
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Ross, Greg (2006) An algorithmic framework for visualising and
exploring multidimensional data. PhD thesis.

http://theses.gla.ac.uk/6481/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/6481/

An Algorithmic Framework for

Visualising and Exploring

Multidimensional Data

By

Greg Ross

Submitted In Partial Fulfilment of the

Requirements for the Degree of

Doctor of Philosophy

University of Glasgow

Glasgow, Scotland

June 2006

<0 Copyright by Greg Ross, 2006

Abstract

To help understand multidimensional data, information visualisation techniques are often

applied to take advantage of human visual perception in exposing latent structure. A popular

means of presenting such data is via two-dimensional scatterplots where the inter-point

proximities reflect some notion of similarity between the entities represented. This can result

in potentially interesting structure becoming almost immediately apparent.

Traditional algorithms for carrying out this dimension reduction tend to have different

strengths and weaknesses in terms of run times and layout quality. However, it has been found

that the combination of algorithms can produce hybrid variants that exhibit significantly lower

run times while maintaining accurate depictions of high-dimensionai structure.

The author's initial contribution in the creation of such algorithms led to the design and

implementation of a software system (HIVE) for the development and investigation of new

hybrid variants and the subsequent analysis of the data they transform. This development was

motivated by the fact that there are potentially many hybrid algorithmic combinations to

explore and therefore an environment that is conducive to their development, analysis and use

is beneficial not only in exploring the data they transform but also in exploring the growing

number of visualisation tools that these algorithms beget.

This thesis describes three areas of the author's contribution to the field of information

visualisation. Firstly, work on hybrid algorithms for dimension reduction is presented and

their analysis shows their effectiveness. Secondly, the development of a framework for the

creation of tailored hybrid algorithms is illustrated. Thirdly, a system embodying the

framework, providing an environment conducive to the development, evaluation and use of

the algorithms is described. Case studies are provided to demonstrate how the author and

others have used and found value in the system across areas as diverse as environmental

science, social science and investigative psychology, where multidimensional data are in

abundance.

Table of Contents
1. Introduction .. 1

1.1 Introduction and background .. 1

1.2 Motivation .. 2

1.3 Research aims ... 4

1.3.1 Thesis statement ... 4

1.3.2 Key research questions ... 4

1.3.3 Approach .. 5

1.4 Thesis structure .. 5

2. Information Visualisation ... 7

2.1 Scientific visualisation ... 7

2.2 Information visualisation .. 9

2.3 Abstraction ... 1 0

2.3.1 Gestalt principles .. 11

2.3.2 Visual structures ... 14

2.3.3 Data types ... 14

2.4 Dimensionality ... 15

2.4.1 1-dimensional visualisation .. 16

2.4.2 2-dimensional visualisation .. 17

2.4.3 3-dimensional visualisation .. 18

2.4.4 4+ -dimensional visualisation ... 20

2.5 Interactivity .. 22

2.5.1 Affordance and appropriation ... 23

2.5.2 Time .. 23

2.5.3 Interaction mechanisms .. 24

2.6 Conclusions .. 28

3. Clustering Algorithms .. 29

3.1 Hierarchical .. 30

3.1.1 Agglomerative single-link clustering ... 31

3.1.2 Scatter/Gather: An application of hierarchical clustering 32

3.2 Partitional ... 33

3.2.1 K-means .. 33

3.2.2 Bisecting K-means .. 34

3.2.3 NNS with K-means: An application of a partitioning clustering algorithm 35

3.3 Density-based ... 37

3.4 Graph-theoretic ... 40

II

3.4.1 The minimal spanning tree as a basis for clustering .. .41

3.4.2 Other graph-theoretic clustering algorithms .. .42

3.5 Grid-based .. 44

3.6 Model-based ... 46

3.7 Conclusions .. 47

4. Dimension reduction '" .. 49

4.1 Projection techniques ... 50

4.1.1 Principal Component Analysis (PCA) .. 5 I

4.1.2 Singular Value Decomposition (SVD) ... 54

4.1.3 Projection Pursuit ... 55

4.1.4 Random Projection (RP) ... 56

4.1.5 FastMap .. 58

4.2 Kohonen's Self-Organising Feature Map ... 61

4.2.1 Batch-mode SOM ... 62

4.3 Multidimensional Scaling ... 64

4.3.1 Torgerson's classical metric MOS .. 66

4.3.2 Non-metric MDS .. 69

4.3.3 MOS for feature selection ... 73

4.4 Force-directed placement ... 76

4.5 Conclusions .. 79

5. Hybrid clustering and layout algorithms .. 82

5.1 Hybrid algorithms for clustering .. 83

5.2 Hybrid algorithms for dimension reduction ... 85

5.3 A novel hybrid algorithm for dimension reduction .. 86

5.3.1 Distance metric ... 89

5.3.2 Brodbeck and Girardin's Interpolation algorithm ... 9O

5.3.3 An improved interpolation technique ... 93

5.3.4 Evaluation of the full layout algorithm ... 96

5.3.5 A hybrid variant based upon K-means ... 97

5.4 Fast non-metric multidimensional scaling .. 99

5.4.1 Evaluation of fast NMOS ... 103

5.5 Voronoi-based clustering algorithm ... 106

5.5.1 Preattentive cluster identification ... 1 06

5.5.2 A novel clustering algorithm .. 107

5.6 Conclusions .. 119

6. Visualisation environments .. 120

6.1 Data-flow model ... 121

6.1.1 Visual programming ... 122

III

6.1.2 Data-flow architecture .. 123

6.1.3 Some examples ... 126

6.1.4 Relevance of data-flow based scientific visualisation to the HIVE framework .130

6.2 Information visualisation environments ... 132

6.2.1 Multiple views for information visualisation .. 133

6.2.2 Information workspaces ... 138

6.2.3 Data, information and knowledge ... 140

6.2.4 Relevance of the information workspace concept to the HIVE framework 142

6.3 Visualisation system design theory .. 144

6.3.1 Ecological interface design (EIO) .. 144

6.3.2 Cognitive dimensions of notations ... 146

6.3.3 Dimensions of expression ... 149

6.3.4 Abstraction ... 150

6.3.5 Relevance to the HIVE framework ... 152

6.4 Conclusions .. 153

7. The hybrid information visualisation environment (HIVE) ... 156

7.1 Multiple-view co-ordination ... 157

7.2 Combinatorial hybrid approach .. 158

7.2.1 3-stage hybrid approach .. 160

7.3 Adaptability to different variable types and heterogeneous data .. 163

7.4 Implementation of HIVE .. 163

7.4.1 System architecture .. 164

7.4.2 Graph manager ... 165

7.4.3 Visual modules ... 165

7.4.4 Ports .. 166

7.4.5 Linking and the composition model ... 166

7.4.6 Hybrid algorithm generation .. 168

7.5 Examples .. 169

7.5.1 Comparison of spring model layouts .. 170

7.5.2 Exploration of a real data set .. 171

7.5.3 Using MDS for feature selection .. 174

7.6 Design review ... 176

7.6.1 Data-flow model ... 176

7.6.2 Information visualisation environments ... 177

7.6.3 Visualisation system design theory .. 178

7.6.4 HIVE features ... 179

7.7 Conclusions .. 179

8. Algorithmic profiling ... 181

8.1 Multiple runs module ... 181

IV

8.2 Stress and clock modules ... 182

8.3 Shepard plot ... 183

8.4 Coordination of profiling modules in HIVE ... 184

8.5 Case studies .. 186

8.5.1 Batchjob of executions for algorithm evaluation ... 186

8.5.2 Exploratory analysis of synthetic data .. 188

8.5.3 Exploratory analysis of real data .. 189

8.6 Conclusions .. 193

9. Text-mining in HIVE ... 195

9.1 Vector representation of documents ... 195

9.2 Where is particular literature within a HIVE layout? ... 200

9.3 Conclusions .. 204

10.HIVE user engagement .. 206

10.1 Questionnaire ... 207

10.2 Examples of HIVE's use .. 210

10.2.1 Development and evaluation ofa new FDP algorithm 210

10.2.2 Steerable dimension reduction .. 212

10.2.3 A bioinforrnatics chain description tool.. .. 213

10.2.4 HIVE for psychological profiling ... 214

10.3 Conclusions .. 218

11. Conclusions .. 220

11. 1 Summary .. 220

11.2 Ongoing work with CIP ... 222

11.3 Aggregation of flow networks .. 223

11.4 Automatic routing of sub-layouts ... 223

11.5 Usability studies ... 225

11.6 Contribution and thesis statement .. 225

11.6.1 Novel algorithms .. 226

11.7 Research questions ... 227

11.8 Reflection and design implications .. 228

Appendix A: List of HIVE modules .. 232

Appendix B: Algorithmic 'cookbook' ... 234

Appendix C: HIVE user questionnaire .. 235

Bibliography .. 238

v

List of Figures

Figure 2.1 A screenshot from the IBM DX scientific visualisation system [AT95a] depicting an

unsteady flow simulation over a space shuttle launch vehicle .. 8

Figure 2.2 Initial survey results obtained by HMS Scott showing images of the coastline of

Sumatra where the earthquake that resulted in the Indian Ocean tsunamis occurred. It

is hoped that these visualisations will help scientists understand the cause of such

natural phenomena and help predict them in the future .. 8

Figure 2.3 A Honeycomb© [Hon04] view of results returned by the Google internet search

engine. The visualisation is based upon Johnson and Shneiderman's treemap [JS9I]:

a technique designed to utilize space efficiently in the display of hierarchical

information structures ... 9

Figure 2.4 The link map visualisation in nicIdebyKI-re. Each node represents an issue raised in

respect to the author's research. Nodes that are deemed as being closely related are

linked. The layout was produced by a force-directed placement algorithm for graph-

drawing (see Section 4.4) .. 10

Figure 2.5 A scatterplot has the potential to make groups of points appear as individual

perceptual units (clusters). For example, the author would assume that in making

reference to 'A' in the figure, the reader's attention would be drawn to the upper

cluster as a whole and not the single point nearest to the label. .. 12

Figure 2.6 An example of the Gestalt principle of good continuation. Both of the above images

represent sunshine intensity over an extended period of time, however, the spiral

visualisation [W AMO I] more clearly shows the day/night periods 13

Figure 2.7 The familiarity rule .. 13

Figure 2.8 An example of reduced representation. The figure depicts two source code modules,

each of which is on a folding axis ... 17

Figure 2.9 The 'perspective wall' distorts a 2-d layout so that the focus at the centre of the screen

is most legible while the remainder of the layout is peripheral. The user can scroll

potentially interesting parts of the layout to the fore and still be afforded the context

of neighbouring regions .. 18

Figure 2.10 Cat-a-Cone [HK97] arranges each level of a hierarchical categorisation scheme in a 3-

d view to utilise space efficiently. This technique, like the 'perspective wall', uses

perspective distortion to clarify the focus (the node closest to the viewer) while

maintaining the context of the adjacent nodes .. 19

VI

Figure 2.11 A screenshot from Spire [Wis99] - a tool based upon Wise's themescape [WTP*95].

A document corpus is represented via a landscape metaphor in which the themes that

run through the collection are mapped to visual attributes .. 20

Figure 2.12 An InfoCrystal [Spo93] representing three search criteria or inputs, A, B and C and

all possible Boolean queries in normal conjunctive form. The interior icons can be

embellished to show the results of submitting the respective queries to a document

collection. In this example, these inputs define a 3-d search space, however, Spoerri

has demonstrated the application ofinfoCrystals to more than three inputs 21

Figure 2.13 An example of the output of a SOM, depicting the concept areas relating to

electronics ... 22

Figure 2.14 North et al.'s Visible Human Explorer interface. The overview of the human body is

tightly coupled with axial detail view. The user can sweep a horizontal line across the

overview to dynamically update the detailed cross-section view .. 25

Figure 2.15 Double-ended sliders to the left and bottom of the plot in filmfinder allow the user to

zoom and pan along the two axes, essentially filtering the view .. 27

Figure 2.16 A double-ended slider with a histogram, showing a range selection 27

Figure 3.1 A dendrogram, which when cut at different levels, will produce different clusters 30

Figure 3.2 The single-link clustering algorithm .. 31

Figure 3.3 The K-means algorithm ... 34

Figure 3.4 A screen shot of the K-means NNS experimental program. Green points represent

randomly distributed data, the blue points represent K-means centroids, and the red

points indicate 'queries' while the black points are the approximate nearest

neighbours to the (red) query points ... 36

Figure 3.5 A case where the K-means NNS is only approximate ... 36

Figure 3.6 Clusters of different densities. When the clustering is via a global density parameter,

only clusters [A, D and E] or [A, Band C] will be found. .. 38

Figure 3.7 A Voronoi tessellation ofa 2-d point pattern consisting of two clusters. Notice how the

polygons of points inside the clusters have smaller areas than those towards the

outside. Duyckaerts and Godefroy use this property to automatically find clusters. In

the above example an area threshold has been set and polygons within it are shaded -

each cluster is distinguished by shading with a different colour. This image was

generated by HIVE [RC03a, RC03b] .. 39

Figure 3.8 Points in a 2-d data space (left) and their minimal spanning tree (right) 40

Figure 3.9 The MST above shows that intra-cluster distances are shorter than inter-cluster

distances. Deletion of edges A and B would result in three separate connected sub-

graphs representing the clusters .. 42

Figure 3.10 Partitioning of a 2-d data space into regular cells. The resulting structure, called a

map [HK98] or grid structure [Sch96], can intuitively be generalised to the multi-

dimensional case ... 45

VII

Figure 4.1 Projection of3-dimensional points onto a plane ... 51

Figure 4.2 PCA projections of a 3-dimensional swiss roll-shaped data set. The image on the left is

the projection of the whole set. The image on the right is a peA projection of the

highlighted cross-section of the image on the left. These projections were generated

by the author's HIVE software ... 53

Figure 4.3 Since the first principal component is the direction of greatest variance in the data, the

outliers shown in blue on the left, dominate the regression. This results in the

projection onto the principal component (right) where possibly significant structure,

such as the two clusters shown, has been lost ... 54

Figure 4.4 A PCA projection ofa 3-d cube (left). A random projection of the cube distorts mutual

similarities (right). Both of the above projections were produced by the HIVE

software [RC03a, RC03b] ... 57

Figure 4.5 Object 0, is projected using the Cosine Law onto the line passing through the pivot

objects OQ and 0" . ..•.........•................•..........•........•..•...•..•........................••.•.•..•..............••.. 58

Figure 4.6 Objects 0, and OJ are projected onto the hyperplane H, perpendicular to the line

through OQ and 0"•.................•.............•.•..•..••......••....•••..•..............•..••...•..•...........••..•.... 60

Figure 4.7 A screen shot from the author's batch-SOM implementation ... 63

Figure 4.8 The coloured points bounding the figure, ranging from red to violet show the

configuration obtained by Shepard's MDS algorithm when run on the colour

similarity data. It is clear that this closely follows the familiar colour circle (centre).

The original figure [She62] has been rotated and flipped in this reproduction for ease

of comparison .. 65

Figure 4.9 The point configuration on the left was recovered from the original 2-d data after they

were transformed into proximities. The Shepard plot on the right shows the shape of

the function used in the transformation. These images were produced in HIVE 71

Figure 4.10 An SSA layout of variables representing the MOs of a set of arson offences 74

Figure 4.11 An SSA layout of the variables of a scientific data set is used to select a subset

(highlighted in yellow) for subsequent dimension reduction (two left-hand frames).

The projection of the full data set is shown on the right-hand frame 76

Figure 4.12 An illustration of Eades' concept of the spring model. The image on the left shows

steel rings held in random positions causing the connecting springs to be stretched or

compressed. The image on the right depicts the system in a state of minimal energy

after the rings have been let go resulting in the springs reverting to their rest lengths.

For clarity, only springs connecting adjacent rings are shown .. 77

Figure 4.13 The same data set as in Figure 4.9 is fed into Chalmers' spring model and the layout

is shown on the left. The corresponding Shepard plot is shown on the right. 79

Figure 4.14 A taxonomy of dimension reduction techniques ... 80

Figure 5.1 The sub-quadratic (O(N.JN» algorithm for non-linear dimension reduction 88

Figure 5.2 Chalmers' spring model is initialised by randomly positioning the ..IN sample in 2-d 88

VIII

Figure 5.3 The spring model interatively produces an accurate layout of the sample 88

Figure 5.4 The remaining (N - .IN) items are interpolated onto the sample layout. The spring

model can then be run for a constant number of iterations to refine the layout. In this

case that is not necessary ... 88

Figure 5.5 Brodbeck and Girardin's interpolation routine [BG98] ... 91

Figure 5.6 Brodbeck and Girardin's interpolation often provides a sub-optimallayout, even for 2-

d data ... 92

Figure 5.7 For a 2-d layout of 2-d data, the recovered distances should exactly match the original

distances. This one-to-one relation should manifest itself as a 45 degree slope in the

Shepard plot, however, in this case it can be seen that the interpolation routine has

resulted in deviation from this slope ... 92

Figure 5.8 An outline of the new interpolation algorithm ... 93

Figure 5.9 The placement of item; begins with finding its parent point P in the initial layout. A

circle of radius r (proportional to the high-dimensional distance between i and the

item represented by P) is centred on P. Quadrant and binary search over the circle's

circumference finds the position ;0 that minimises the summed discrepancy between

the high- and low-dimensional distances to the subset of layout points. This position

is then refined by iteratively adding an aggregate force vector, moving the item to its

final position i] 94

Figure 5.10 The new interpolation routine has produced a much more accurate layout of the 2-d

data .. 95

Figure 5.11 A comparison of Brodbeck and Girardin's original routine with the new interpolation

algorithm. These results were obtained by Morrison [Mor04] using the author's

HIVE software. The results for each algorithm were averaged over 10 runs for 2-d

data sets ranging from 1000 to 10,000 items ... 95

Figure 5.12 Results obtained by Morrison [Mor04] showing a comparison of Chalmers' spring

model with the new algorithm ... 96

Figure 5.13 The image on the left is a layout of a random data sample. The image on the right is a

layout of items that are closest to the K-means centroids of the data. The original data

used are 2-d and consist of 7239 items. Both layouts contain 85 (../1239) points from

the data set. .. 98

Figure 5.14 A comparison of the K-means based algorithm with the sample+interpolation and

Chalmers' algorithms .. 98

Figure 5.15 An outline of the fast NMDS algorithm .. 100

Figure 5.16 The image on the left shows the layout of a 3-d cube obtained by the first stage of the

fast NMDS algorithm. This shows how monotonicity is only locally preserved. The

image on the right shows a layout obtained by Chalmers' spring model on the same

data. Here the overall structure is better preserved but local regions remain rough 102

IX

Figure 5.17 Stress is plotted after every 5 iterations for Shepard's NMDS and the fast NMDS

algorithms ... 103

Figure 5.18 Run times for Shepard's algorithm and the fast NMDS algorithm I 04

Figure 5.19 The image on the left shows a layout of proximity data obtained by the fast NMOS

algorithm. The layout on the right was produced by the novel hybrid algorithm

described in Section 5.3 .. 105

Figure 5.20 The Shepard plot on the left shows that the fast NMDS algorithm has recovered the

function relating proximities to real Euclidean distances. The plot on the right shows

that the hybrid spring model was not able to recover this function with the same

degree of accuracy .. 106

Figure 5.21 The winged-edge data structure. This maintains a compromise between a compact

representation of the Voronoi geometry and fast retrieval of vertex, edge and polygon

incidence relations. Edges are used to keep track of the geometry and are represented

by arrays of start and end vertices, polygon faces, predecessors and successors 1 09

Figure 5.22 The top-left graph is the Voronoi diagram, which can be used for density-based

clustering. The top-right graph is the dual of the Voronoi diagram, the Delaunay

tessellation, whose sub-graphs include the minimum spanning tree (shown here in

red) and therefore is suitable for graph-theoretic clustering applications 110

Figure 5.23 Data set used for clustering (a). Perimeter threshold reduced gradually (b) - (t) 112

Figure 5.24 Pseudocode for the first stage of the clustering algorithm .. 114

Figure 5.25 Pseudocode for the second stage of the clustering algorithm .. 115

Figure 5.26 Clustering results of the first version of the clustering algorithm on benchmark data

sets. Points of the same colour are deemed to be in the same cluster 116

Figure 5.27 Clustering results of the final version of the clustering algorithm on benchmark data

sets. The modified algorithm correctly identifies most clusters 118

Figure 6.1 An example of a data-flow architecture. Blocks represent functional modules and the

arrows represent the flow of data .. 124

Figure 6.2 An outline of the hybrid algorithmic architecture .. 131

Figure 6.3 A conceptual view of the ''process of knowing" .. 140

Figure 6.4 Linked meaning triangles ... 141

Figure 6.5 The Java model-view-controller architecture ... 152

Figure 7.1 Two screen-shots of the HIVE interface. The image on the left illustrates

interconnected components that import, transform and render multidimensional data.

The algorithmic components collectively represent the O(N.JN) hybrid algorithm of

Section 5.3. Thick lines that link modules represent data-flows while thin ones,

connecting scatterplots and other visualisations, represent the connections between

interlinked interactive views. The image on the right shows the same scatterplots

enlarged and supplemented with a fisheye table component (bottom-right) and

x

histograms (bottom-left). The data consist of 5000 points sampled from a 3-d 'S'

shaped distribution .. 157

Figure 7.2 Data input to components in a hybrid algorithmic architecture can be categorised by

the ranges of dimensionality and cardinality they are best suited for - high. medium

or low. Each component transforms the data, effectively moving across the 3x3 grid.

The hybrid spring model in Section 5.3 produces a low-dimensionallayout of a large

high-dimensional data set i.e. a move from (H, H) to (L, H) that involves several steps

shown as dotted lines in the figure: sampling, which reduces N, then a spring model

of the sample, which reduces D, and then interpolation, which increases N 159

Figure 7.3 The proposed model of the hybrid approach for scalability and adaptability 161

Figure 7.4 The system architecture of the HIVE framework ... 164

Figure 7.5 When HIVE is in link mode, all Swing components are hidden while port

representations are rendered .. 166

Figure 7.6 The top part of the image shows a link from a data source to a sample module. The

bottom half of the image shows a link after it has been selected and bent by the user 168

Figure 7.7 A network of the three types of components: data source (2-d geometric data),

algorithm (Chalmers' spring model) and visualisation (fisheye table and scatterplot) 170

Figure 7.8 An example demonstrating the non-deterministic nature of the spring model. The

expanded view of the bottom spring model component shows controls for changing

parameters such as freeness, velocity and damping as well as controls for setting

convergence criteria .. 171

Figure 7.9 The leftmost scatterplot shows the output of neural PCA. The middle scatterplot

shows the data after interpolation around the K-means centroids while the right

scatterplot illustrates the output of the final spring model component. The highlighted

cluster is a small subset of erroneous PAR measurements. These clusters are much

clearer in the hybrid algorithm's plots than with PCA. The histogram shows the PAR

distribution at a depth of 10 metres. The outlying peak (far-left) has been selected and

this highlights the clusters in the scatterplots .. 172

Figure 7.10 Dashed arrows represent the HIVE-generated hybrid algorithm spanning the space

from (M, M) to (L, M) via K-means, Chalmers' spring model and Interpolation

(clockwise). The solid arrow represents the manually instantiated PCA module 174

Figure 7.11 Port connections for using MDS for feature selection and subsequent analysis 175

Figure 7.12 MDS for feature selection in action .. 175

Figure 8.1 As a spring model runs, stress is measured and charted against each iteration. The

plateau, after around 26 iterations, shows that the algorithm has fallen into a local

minimum while the layout (of the 2-d data) shows that more iterations are required to

break out of the minimum configuration ... 183

Figure 8.2 The Shepard plot module ... 184

XI

Figure 8.3 The top two images show 2-d layouts using linear peA (left) and spring model (right).

Below each layout is the associated Shepard plot. The peA layout has no pair of

objects at a greater distance from each other than in high-dimensional space. This is

confirmed by the fact that no objects appear below the diagonal in the peA's Shepard

plot. ... 185

Figure 8.4 The yellow modules represent different stages of a hybrid algorithm. The Multiple

Runs module coordinates a sequence of executions, loading data and parameters into

each component. Charts plot run time against data set size at various stages of the

algorithm. The bottom left chart shows run times under three separate sets of

parameters for stage three. Having connected the various components and provided

instructions to the MR module, the algorithm executions and chart plotting may

proceed unsupervised .. 187

Figure 8.5 peA layout and Shepard plot working together interactively to help build user

understanding of a data set. The peA layout (a). A selection is made in the Shepard

plot of points corresponding to distances in the layout that may benefit from further

analysis (highlighted region) (b). The selection in the Shepard diagram is also

highlighted in the PCA layout (c). A re-projection of the selected points and their

immediate region confirms their misrepresentation in the original layout (d) 189

Figure 8.6 Various algorithmic and visualisation components working together in a coordinated

environment. A PCA layout is made and the associated Shepard diagram is used to

detect a local area that might be better represented if considered separately. A

Voronoi tessellation component is used to cluster the data, and extract the cluster

containing the previously identified local area (the yellow objects in the central

component). This cluster is processed with a spring model (FOP) routine, which

uncovers two sub-clusters that the author had not previously been able to identify 191

Figure 8.7 . A close-up view of the Voronoi module in Figure 8.6 .. 192

Figure 8.8 The left image shows the spring model layout of a selected Voronoi cluster within a

PCA layout. On the right is the original PCA layout. Selecting the C-shaped sub

cluster on the left highlights the corresponding objects in the PCA layout, helping one

understand the overlap or separation of sub-clusters in the PCA 192

Figure 8.9 Shepard diagrams based upon the peA layout of the full data set (left) and the spring

model layout of the selected cluster (right). Red lines are drawn at 45 degrees to help

detect the extent to which points deviate from this diagonal. ... 193

Figure 9.1 Initial experimental layouts. Cosine measure using normalised term frequency (tf) (a).

Euclidean distance using tf (b). Cosine measure using tf-idf (c) and Euclidean

distance using tf-idf (d) ... 196

Figure 9.2 Layouts of the abstracts data set using the same measures as in Figure 9. t but with the

empty documents removed ... t 98

XII

Figure 9.3 The points that are highlighted in red represent documents that contain the phrase

"multidimensional scaling". No clustering seems to occur and upon reproducing the

layouts, the points appear in different positions with respect to each other and the

other points .. 198

Figure 9.4 Histograms showing the distribution of sample Euclidean distances and cosine

measures of dissimilarity. The histograms show that the samples do indeed cluster

tightly around a high positive value .. 199

Figure 9.5 The histogram shows that the distribution of dissimilarities is now spread out more.

The layout accordingly shows potentially interesting structure in the data 200

Figure 9.6 A screenshot from HIVE of a text-mining application (right) - the top-left visual

module is the text collection. The text-viewer component is next to the scatterplot

layout and two search modules appear in the top-right of the figure. For clarity, the

layout is reproduced in the image to the left of the screenshot ... 201

Figure 9.7 The layout from Figure 9.6 is labelled to indicate general themes running through the

documents in different regions. Some HIVE papers are highlighted in the data mining

and clustering region at the upper-left side of the layout. ... 203

Figure 9.8 A layout oftenns in HIVE. This can be used for feature selection as in Section 7.5.3.. 204

Figure 10.1 The first 16 questions coded and laid out by a spring model in HIVE. The responses

of the selected users in the scatterplot are highlighted in the table. The stress in this

configuration was measured as 0.087 indicating a good fit. ... 208

Figure 10.2 Morrison's hybrid algorithm in HIVE. The large component at the top-left is the

multiple runs module. Morrison used this in conjunction with clock and stress

modules to evaluate the algorithms ... 211

Figure 10.3 The image on the left shows a layout obtained by Williams and Munzner using the

novel layout algorithm of Section 5.3. The image on the right shows an overview of

the same data set using MDSteer. Black boxes represent bins that have no unplaced

points while red boxes represent bins in which there are points still to be placed 213

Figure 10.4 A chain of visual modules representing bioinfonnatics applications in Darroch's

Chain Description TooI- a customised version ofHIVE ... 214

Figure 11.1 A layout of a data set is clustered (bottom-left module). Each cluster feeds into a

cluster-picker (top-centre module) which can route each cluster to another process for

subsequent analysis. In this case spring models are used to layout each of the two

largest clusters independently ... 224

XIII

List of Tables

Table 2.1 Gestalt laws of grouping ... II

Table 2.2 Variable types , " ... 14

Table 2.3 Categories of interaction speeds .. " 23

Table 3.1 The main steps involved in cluster analysis .. 29

Table 7.1 Ordinal categories of cardinality and dimensionality ... 160

Table 7.2 Linking rules for HIVE's composition model. ... 167

XIV

Contributing Publications

1. G. Ross, A. J. Morrison and M. Chalmers. Visualisation techniques for users and

designers of layout algorithms. In Proceedings of the 9th International Conference on

Information Visualisation (IV05), pages 579-586, IEEE Computer Society Press, 2005.

2. G. Ross, A. J. Morrison and M. Chalmers. Coordinating views for data visualisation and

algorithmic profiling. In Proceedings of the IEEE International Conference on

Coordinated and Multiple Views in Exploratory Visualization 2004, pages 3-14, IEEE

Computer Society Press, 2004.

3. G. Ross and M. Chalmers. A visual workspace for constructing hybrid MDS algorithms

and coordinating multiple views. Information Visualization, 2(4):247-257, Palgrave

Macmillan, 2003.

4. G. Ross and M. Chalmers. A visual workspace for hybrid multidimensional scaling

algorithms. In Proceedings of the IEEE Symposium on Information Visualization, pages

91-96, IEEE Computer Society Press, 2003.

5. A. J. Morrison, G. Ross and M. Chalmers. Fast multidimensional scaling through

sampling, springs and interpolation. Information Visualization 2(1):68-77, Palgrave

Macmillan, 2003.

6. A. J. Morrison, G. Ross and M. Chalmers. A hybrid layout algorithm for sub-quadratic

multidimensional scaling. In Proceedings of the IEEE Symposium on Information

Visualization, pages 152-160, IEEE Computer Society Press, 2002.

xv

Acknowledgements
Thank you to Laura, and my family, for patience and support during the course of my

research, and Alistair Morrison, my friend and colleague, for good laughs and good advice. I

am extremely grateful to Matthew Chalmers for his encouragement and supervision.

I am also grateful to Nickleby HFE Ltd., especially Ron McLeod, for funding my work.

I would also like to thank Iadh Ounis for guidance and advice, and my officemates, Agathe

Girard and John Williamson, for valuable discussions and entertaining banter.

XVI

Declaration of Originality

The material presented in this thesis is the result of my own research carried out at the

Department of Computing Science at the University of Glasgow working under the

supervision of Dr. Matthew Chalmers and Dr. Iadh Ounis, except where explicitly stated

otherwise. All other referenced material has been given full acknowledgement in the text.

XVII

1. Introduction

1.1 Introduction and background

To gain actionable knowledge from the ever-increasing sea of data facing analysts, data must

be represented in a way that any pertinent information contained is made available as quickly

as possible. It is well known that of all the senses, the human visual system has by far the

greatest bandwidth for communicating information to the brain and it is for this reason that

data are often represented graphically [CMS99].

A major challenge, however, is in graphically depicting abstract data. Abstract data are

those observations or measurements that have no direct physical derivation and therefore do

not immediately lend themselves to the spatial mappings required for visual rendering. This is

compounded by complex data sets consisting of many items, each consisting of many

variables. In the endeavour to make sense of these multivariate data by thinking of them in

spatial terms, they are referred to as multidimensional data.

When data are presented graphically on a spatial substrate, interesting features such as

patterns, trends and Gestalt forms might be revealed. A very popular means of achieving this

is to plot the data as points against the axes of a two-dimensional scatterplot. If the data

dimensionality is relatively low, for example four, then scatterplot points can be rendered as

glyphs, whose positions denote two dimensions, and whose visual properties encode the

remaining dimensions in retinal variables such as shape, size or colour [CMS99]. However,

when the data dimensionality is too high to directly map to position and other visual

structures, the data must be transformed in such a way that they are represented by a lower

number of derived dimensions that retain as much of the original information as possible. This

is known as the challenge of dimension reduction or multidimensional scaling (MDS).

Many researchers have developed dimension reduction algorithms, sometimes referred

to as layout algorithms, each with different benefits and drawbacks. Some algorithms can be

very effective at reducing dimensionality whilst preserving the high dimensional relationships,

but be too inefficient to scale up to data sets with high cardinality. On the other hand, some

algorithms might be fast but be unable to accurately capture the original information, thus

interesting patterns can elude the analyst. To address this, some researchers have investigated

the diligent combination of algorithms to minimise the individual weaknesses while making

the most of their strong points.

The challenges presented by this hybrid algorithmic approach include determining

which algorithmic components should be combined and in what order, as well as how to

assess their performance. The advantages of the combination of algorithms, and the challenges

they present, motivate the author in pursuing this rich avenue of research.

The main objective of the research is to develop a framework for creating clustering and

layout algorithms, and to develop and evaluate a platform in which they can be used to

explore multidimensional data. The framework has been embodied in a software system

called HIVE (Hybrid Information Visualisation Environment) that has a novel hybrid

algorithmic architecture at its core. This architecture enables algorithmic and visualisation

components to be combined so that they complement each other in producing effective hybrid

visualisation applications.

It is the intention of this thesis to provide a proof of concept for the HIVE framework

via an account of advances in HIVE and observations of its use by the author and other

information visualisation practitioners.

1.2 Motivation

Dimension reduction can be achieved either by linear projection algorithms such as Principal

Component Analysis (PCA), or by non-linear techniques such as those in the family of Force

Directed Placement (FOP) algorithms. Both techniques consider data as a set of vectors

where each element is a value for a particular variable or attribute. This allows each datum to

be regarded as a point in a high-dimensional space. Linear dimension reduction techniques

tend to seek a projection of these high-dimensional points on a plane, maximising variance or

some other projection index. While this process can be fast and therefore more readily applied

to large data sets, it is achieved via a linear combination of the variables and therefore

potentially interesting non-linear structure in the data can evade detection.

Non-linear techniques, on the other hand, have more freedom to find a low-dimensional

representation of the data in which complex relationships in the data are preserved. However,

non-linear techniques tend to exhibit high computational complexity and therefore are not so

applicable to large data sets. This is a frustrating drawback because it is commonly the case

that it is harder to find interesting patterns as data sets grow in size, while the applicability of

the non-linear algorithms that have more potential in finding such structure diminishes

because of their complexity.

2

This dilemma is the prime motivator of the author's research and has prompted work

into the development of faster algorithms for non-linear dimension reduction. It has been

found that the hybrid combination of algorithmic components can produce models exhibiting

significant reduction in computational complexity while preserving latent high-dimensional

structure within data. These algorithms provide an opportunity to gain more insight into the

exploration of larger data sets.

Non-linear techniques lend themselves to intuitive heuristic improvements [CT98],

because they are often modelled upon simple physical systems such as the spring model

[Ead84], and this helps when creating novel hybrid solutions. However, there are many

hybrid algorithms and potential improvements to explore and this, in itself, presents a large

problem space. The algorithms, the views of the data they produce and the interaction

mechanisms that supplement their utility are shown to be useful tools in the exploration of

multidimensional data. However, the number of tools available is growing as fast as the data

and therefore visualisation techniques can be called upon to help the designer build them and

the user decide how and when to use them.

To address this, a development environment is required in which dimension reduction

algorithms can, on the one hand, be quickly prototyped and profiled, and on the other hand, be

used to explore data. This dual role of an environment, both for the development and use of

dimension reduction algorithms, is due to the premise that the best way of developing and

evaluating visualisations is not only by the analysis of the computational aspects such as time

and space complexity but also through their use in anger on exploratory tasks.

This thesis shows how the algorithmic development environment created by the author

has been used to build effective hybrid algorithms and how they have been used to gain

insight into abstract multidimensional data. More generally, the work explores the way that

making a visualisation that is customised to one's data and interests, and which takes

advantage of a palette of algorithmic components, can be a complex task - a task that may be

aided by modern tools for interaction and visualisation. It would be frustrating and limiting for

designers and for users if powerful tools for analysis were themselves difficult to analyse and

understand. Therefore it is suggested that the use of visualisation for visualisation - in the

form of well-designed interaction with the algorithmic components, processes and parameters

of a visualisation system - might afford deeper insight into the visualised information itself.

3

1.3 Research aims

The aim of the research described in this thesis is to provide a framework in which the hybrid

approach to non-linear dimension reduction can be thoroughly investigated. The framework

should be implemented in a system in which algorithm designers and analysts can quickly

prototype and experiment with potential solutions; it should be conducive to the visual

exploration of the data space as well as the solution space. Hybrid algorithms naturally lend

themselves to providing multiple views of data as they are transformed and this can be a

bonus. It should be possible to assess algorithms with respect to this expressiveness and the

opportunity it presents for affording richer interaction with the data they transform.

1.3.1 Thesis statement

An algorithmic development environment can be used to build effective hybrid dimension

reduction algorithms and can provide insight into abstract multidimensional data. Building

algorithms for information visualisation through the use of visualisation techniques expedites

the exploration of the algorithms as well as the data they transform.

1.3.2 Key research questions

Previous work with hybrid algorithms has provided evidence of their efficacy, but in order to

validate a general framework and environment for their creation and use, certain questions

must be answered:

1. Which algorithmic components should be combined?

2. When should the different types of algorithms be used?

3. As well as facilitating the creation and evaluation of hybrid algorithms, can the system

be effective in allowing the exploration of the data they transform?

4. Is visualisation good for creating new visualisations?

The first two questions pertain to an algorithmic 'cookbook' for the creation and evaluation of

hybrid algorithms for dimension reduction. The last two questions enquire as to their use

within HIVE as an environment where algorithm creation is integrated with data exploration.

The answers to these questions will determine whether the framework can enhance hypothesis

formation, experimentation and analysis - a fundamental cycle in visual infonnation-seeking.

4

1.3.3 Approach

To answer the first two research questions, the author began experimenting with combinations

of algorithmic components to create hybrid dimension reduction and clustering solutions. The

palette of components the author used was made up from most of the algorithms described in

Chapters 3 and 4. It was found that by matching the complexity of algorithmic components to

the complexity of data as they are transformed, effective and efficient hybrid algorithms can

emerge. This is documented in Chapter 5 and forms the basis of the hybrid algorithmic

framework detailed in Chapter 7, identifying which algorithmic components should be used

and when they should be applied.

A software environment was developed to test the framework and the hybrid solutions

it helps generate. Chapter 6 details a review of the literature that was carried out as a

requirements gathering phase. It is suggested that the algorithms should not only be tested

using quantitative measurements such as runtime and stress, but they should also be tested for

their effectiveness in allowing users to explore data. The algorithmic development

environment and the studies of user engagement described in Chapter 10 answered the third

research question: as well as facilitating the creation and evaluation of hybrid algorithms, can

the system be effective in allowing the exploration of the data they transform?

The approach taken to answer the fourth research question (is visualisation good for

creating new visualisations?) was to build the functionality to allow users to create

visualisation applications through visual programming. Also, to profile the underlying

algorithms via visual profiling methods such as those described in Chapter 8. Again,

observations from user engagement helped answer this question.

1.4 Thesis structure

The rest of this thesis is structured as follows:

Chapter 2: A survey of the information visualisation literature is summarised. The chapter

describes the major advances and the most popular interaction techniques employed in

information visualisation.

Chapter 3: A detailed exposition of clustering algorithms as a means for reducing data for

subsequent visualisation is provided. The six main categories of clustering algorithms are

hierarchical, partitional, density-based, graph-based, grid-based and model-based. Examples

of each category are described.

s

Chapter 4: Dimension reduction is another way of performing data reduction, somewhat

orthogonal compared to the clustering approach. Again, the emphasis is on visualisation and

several important dimension reduction algorithms are described.

Chapter 5: The merits of hybrid combinations of clustering and layout algorithms with respect

to run time and output quality are illustrated. Examples from the literature are provided before

going on to describe the author's own work in this area. A novel hybrid spring model is shown

to outperform what was the fastest non-linear dimension reduction algorithm. A new non

metric MDS algorithm is also discussed. Finally a new hybrid clustering algorithm is

illustrated.

Chapter 6: Given the advantages of the hybrid approach to creating clustering and layout

algorithms as described in Chapter 5 it is proposed that a custom environment (HIVE) for

their creation, evaluation and use would be beneficial. This chapter details a review of the

literature regarding the design and development of visualisation environments as a

requirements gathering phase and precursor to the implementation of HIVE.

Chapter 7: The design and implementation of HIVE is described. A novel hybrid algorithmic

framework, at the heart of HIVE, is proposed to help guide the algorithm designer and semi

automatically create hybrid algorithms. Examples of HIVE's use are given along with a

reflection upon the main issues raised in Chapter 6.

Chapter 8: This chapter provides an account of how HIVE's suite of tools has been extended

to aid in the evaluation and intervention of hybrid algorithms.

Chapter 9: An example of how HIVE can be applied to the analysis of unstructured text is

given. It was surmised that the ability for HIVE to analyse such data would boost its adoption

by other researchers with the aim to gain more feedback on its use and areas for improvement.

Chapter 10: Since the early stages of HIVE's development, the author has made the source

code freely available. This chapter provides an account of feedback from users. Examples and

case studies of its use by others and what the author has learned from this are given. The case

studies demonstrate two modes of use: one where new algorithms and visualisations are

developed, and one where the software is used solely for data exploration.

Chapter 11: The thesis is concluded with a summary of the work undertaken and the value of

its contribution to the field of information visualisation. The author reflects on the design

implications of HIVE and potentially fruitful avenues for future research are also described.

6

2. Information Visualisation

Visualisation is of a holistic nature - it is more than the sum of its parts. It is essentially a

cognitive aid that provides inspiration or insight into the previously latent relationships within

data. This is called cognitive amplification [CMS99]. The subject of this thesis resides in the

field of information visualisation and this chapter begins by describing the field's roots in

scientific visualisation before discussing some of the facets that comprise the visualisation of

abstract data.

2.1 Scientific visualisation

In 1987 the National Science Foundation (NSF) in the United States published a report,

Visualization in scientific computing [MOB87] that paved the way for the fields of scientific

and information visualisation. The emphasis on visualisation was (and still is) dominant

because the NSF recognised that visualisation provides scientists with a tool that can

transform their myriad data into images that allow people to recognise patterns. It was also

realised that when visualising simulations of physical systems, the scientists could steer the

simulations by changing the parameters used in their calculations and immediately gain visual

feedback, whereas previously the calculations would require to be rerun in entirety.

Scientific visualisation occurs when physical data are represented by graphics

portraying a physical system, allowing scientists to explore its properties. In this way the

visualisation is an external aid supporting the human's mental model of a system; it helps

humans perceive its properties and amplifies cognition [CMS99]. If it were not for apt

visualisations then humans could easily fall foul of information overload. If someone were to

look at a database table consisting of thousands of records, each representing an object

(datum), and each with numerous variables (columns), it would be almost impossible to gain

an overview of structure in the data. The virtue of visualisation also enhances communication

and teaching because much of the information portrayed cannot be easily communicated in

print [DBM89].

Application areas for scientific visualisation include molecular modelling, medical

imaging, meteorology, astrophysics, flow analysis and seismology. (see Figures 2.1 and 2.2).

The common property of the data predominant in such fields is that the variables are

inherently spatial and can map directly on to a spatial substrate rendered on a CRT.

7

A typical implementation for scientific visualisation systems is in the form of a modular

data-flow architecture where data are piped through a set of modules, each of which has a

specific purpose such as carrying out calculations, rendering or controlling parameter values.

This piping of data is akin to the familiar UNIX pipe command for controlling the flow of data

in inter-process communication [Hae88]. The data-flow architecture allows the modules to be

connected in a network that ultimately shapes the application with respect to its input,

transformations and graphical rendering. This notion has been extended to allow users to

explicitly build the data-flow network, usually through direct manipulation of representations

of the modules at the interface, and effectively build their own applications [AT95a, BBB*93,

Hae88, UFK*89].

Figure 2.1 A screenshot from the IBM DX scientific visualisation system [AT95a] depicting an

unsteady flow simulation over a space shuttle launch vehicle.

Figure 2.2 Initial survey results obtained by HMS Scott showing images of the coastline of Sumatra

where the earthquake that resulted in the Indian Ocean tsunamis occurred. It is hoped that these

visualisations will help scientists understand the cause of such natural phenomena and help predict

them in the future.

8

2.2 Information visualisation

According to Card, Mackinlay and Shneiderman, the phrase Information Visualisation was

first adopted in [RCM89]. In this context information refers to non-physically based abstract

data and visualisation is the use of computers to visually render these data in such a way that

humans can interactively explore their structure. Information visualisation is inspired by

scientific visualisation but in this case the data to be turned into information are abstract and

generally have no straightforward physical derivation. Figure 2.3 provides an example in

which the abstract data, in this case search results returned by Google, can be interactively and

pictorially summarised according to criteria such as hit rank and web-page size.

Figure 2.3 A Honeycomb© [Hon04] view of results returned by the Google internet search engine. The

visualisation is based upon Johnson and Shneiderman's treemap [JS91]: a technique designed to utilize

space efficiently in the display of hierarchical information structures.

Information visualisations are holistic and have many facets such as interaction

mechanisms, spatial representations and abstraction. The fields of Human Computer

Interaction (HCI), cognitive, Gestalt and ecological psychology influence them. The types of

data and their volume in terms of data set size and dimensionality are key issues in

determining their form, and therefore mathematical algorithms playa major part in both data

transformations and visual rendering.

9

Applications of information visualisation include stock market analysis, project

management, risk analysis, information retrieval etc. The literature presents many information

visualisation techniques and workspaces borne of diverse architectures. Some examples are

Visage [RCK*97], IVEE [AW95], Information Visualizer [CRM91] and snap-together

visualisation [NSOOa, NSOOb, NorOl, NSOl] . Figure 2.4 shows an application of visualisation

in project management. This tool is part of a commercial issues-tracking package [Nic04]

developed by the author for Nickleby HFE Ltd. In this case, the author has used the package

to track issues relevant to his PhD research. The visualisation shown here is of a subset of the

issues, arranged according to how they are interrelated.

I lmkmdp ~

0
fiI [""'."..,.,J!!.!!

Sol"""
-.J_l

11 HM . cHecue ch problem ARCQ II ..
41 '1'1 booI." d HM: 1igoIitmc_ o~
66 S am 01 HIVE', event chIm 0

5' ..

Figure 2.4 The link map visualisation in nicklebYKIT®. Each node represents an issue raised in respect to

the author's research. Nodes that are deemed as being closely related are linked. The layout was

produced by a force-directed placement algorithm for graph-drawing (see Section 4.4).

2.3 Abstraction

Abstraction is a conceptual representation of a physical (or non-physical) object. In computer

graphics this abstraction is the visual rendering of properties of the object. This presents less

of a problem in scientific visualisation because the properties tend to be physical. However,

in information visualisation, the properties of objects tend to have no straightforward

derivation from physical space and thus the problem of creating visual representations that

appeal to the human's perception is harder.

There are four prominent considerations in the process of creating visual

representations of abstract data. These are dimensionality, which will be discussed in more

10

detail in the next section, data types, Gestalt principles and visual structures. Each of these

must be taken into account in order to provide an effective mapping of data onto a perceptual

visual form, namely a 2- or 3- dimensional spatial substrate.

2.3.1 Gestalt principles

Humans can interpret visual information very quickly. When we look at a picture, whether

static or animated, our visual system allows us to perceive patterns and relationships between

components of the picture. For example, a group of points on a scatterplot, which are close

together, will be perceived to be a cluster and therefore stand out as one perceptual unit. This

is illustrated in Figure 2.S. It is with regard to such automatic pattern or grouping detection

that Gestalt principles exist.

Gestalt is the German translation of the word shape or form and is the inspiration for the

Gestalt school of psychology that, in the early part of the 20eb century, investigated some

perceptual grouping properties and devised the Gestalt laws of grouping [RomOl]. Table 2.1

provides a categorisation of these laws [CMS99].

Rule DeSCr!l!dOD

Prignanz I Figural Visual perception groups stimuli into a good figure. In this
goodness context, good means simple, regular, symmetrical etc.

Familiarity
Groups are more likely to appear if they seem familiar or
meaningful.

Similarity
When presented with several stimuli, those that are similar to
one another tend to be perceived as a group.

Closure Contours that are spaced close together tend to be united.

Good A consecutive straight or curved path of close spacing through
continuation a set of objects is perceiVed as a group.

Proximity
Objects that are close to one another are perceiVed as a group I
cluster.

Common fate
When objects are moving in the same direction they are seen as
a group.

Table 2. t Gestalt laws of grouping.

The discovery of these principles means that they can be exploited to produce visualisations

where the human can perceive aggregate structures or patterns to form a visual indexing. This

II

means that individual objects within a depiction become easier to find and thus in a good

visualisation, exhaustive searching is not required. For example, the spring model [Ead84]

was proposed to produce aesthetically pleasing graph layouts but has been widely used to

produce layouts of general data objects. This meant that clusters could be formed and thus aid

in analysing the intrinsic relationships within data [Cha96].

• • •
• •

• •
• •

•
• •
• • • •

•
• •

•

•

•

•

•

•

•

• •
• • • • • • •

• • • • • •

· A
"' · r

• •

'.. p a'tt'· B • • .f..=.a.; ~
~. ~A'i-·~

.. ,... ... ~i.. .._
.: •• ~. • •• .\.- •• rt.-:. =

• J. • I •••••
••
•• • .. • • •

• • • • •
•

•

•

..
• • • •

•
•

•

Figure 2.5 A scatterplot has the potential to make groups of points appear as individual perceptual units

(clusters). For example, the author would assume that in making reference to ' A' in the figure, the

reader's attention would be drawn to the upper cluster as a whole and not the single point nearest to the

label.

Also, in [W AMO 1] time series data are mapped onto a spiral in order to make better use of

screen real estate and to aid in the detection of cycles. This can be considered as an example

of the good continuation rule and is illustrated in Figure 2.6. However, it should be noted that

the groups formed within a visual representation are only useful if they reflect actual relations

within the data and are not a side-effect of the underlying rendering process.

12

Figure 2.6 An example of the Gestalt principle of good continuation. Both of the above images

represent sunshine intensity over an extended period of time, however, the spiral visualisation

[W AMO I] more clearly shows the day/light periods.

The Gestalt principles of organisation indicate that in a good layout, abstract data can

be organised to provide a visualisation that reveals information in the structure and

relationships within the data. As a final example on the importance of the Gestalt principles,

consider the following figure:

/

Figure 2.7 The familiarity rule.

The above figure illustrates that at the heart of Gestalt theory is the proposition that in

perception the whole is more than the sum of its parts.

13

2.3.2 Visual structures

The mapping of data as abstract objects to symbols within a space is closely related to the

Gestalt principles, specifically the similarity rule described above. However, there is more to

visualisation than merely grouping similar objects. In the case of using visualisations for

analysis and problem solving, individual entities may require comparison. For example, in a

frequency domain graph, at what frequencies are the highest magnitudes exhibited? This

brings to bear the need to distinguish between the types of variable considered and the spatial

substrate in which they are represented. The main categories for variable types are as follows:

Category Description

Nominal can only be = or != to other values

Ordinal can obey <, ~ > and ~lations

Quantitative
continuous values allowing mathematical axioms of division,
multiplication, subtraction and addition

Table 2.2 Variable types.

In [CM97], a list of graphical properties is described and the appropriate mapping of variable

types to some of these is demonstrated. The graphical properties are marks (including points,

lines, areas, surfaces and volumes), position in space, and retinal properties, including shape,

size, orientation etc. It has been established that certain variable types are better mapped onto

specific graphical properties than others, i.e. some properties are more effective encoders of

information than others. For example, in [CMS99] it is stated that greyscale is better for

encoding and comparing nominal variables than quantitative variables.

The careful use of graphical properties is essential in creating a visualisation that

communicates information to the user. There have been a number of models proposed which

aim to classify data by the type of visualisation that could best convey information. Several of

these are described in [Rob99] where an algebraic method is proposed to describe

visualisations in order to guide the visual designer in creating the most effective depiction of

abstract data.

2.3.3 Data types

Where the type of variables considered in a visualisation can suggest the most appropriate

representative glyphs and symbols, the overall intrinsic structure of data (internal relationships

.4

and dimensionality) can suggest the utilisation of pre-existing visualisation types. As an

example, temporal data may lend itself to being presented as a Gantt chart.

In [Shn96], Shneiderman describes a Task by Data Type Taxonomy whereby a designer

can choose between given examples of visualisations depending upon the type of data to be

processed. The seven data types Shneiderman outlines are:

• I-dimensional

• 2-dimensional

• 3-dimensional

• multi-dimensional

• temporal

• tree

• network

This taxonomy was devised with Shneiderman's Visual Information seeking mantra [Shn96]

in mind: "Overview first. zoom and filter. then details-on-demand." Shneiderman suggested

that each component of the mantra is one of the salient tasks in visual information seeking.

The major point of this section is to show that when a data type is known, there may

already be tried and tested techniques for presenting a visualisation and therefore provide a

basis for discussion or prevent the designer from ore-inventing the wheel' for new tools.

2.4 Dimensionality

Dimensionality pertains to the number of attributes or variables that are to be considered for

every object within a visualisation. For example, a geographical position can be described by

two variables: latitude and longitude. Dimensionality is an important consideration in

information visualisation because humans can only readily perceive structures within a low

number of dimensions. If a set of objects of three dimensions or less is to be visualised, then

the dimensions can be mapped directly onto a set of orthogonal axes. Considering the example

above, a set of geographical positions may be displayed by mapping longitude to the x-axis

and latitude to the y-axis, while maintaining the proportional distance interrelationships

between points. However, there are many cases where the entities to be visualised have many

dimensions and therefore there is no direct mapping to a 2- or 3-dimensional substrate. As an

example, consider the visualisation of a corpus of textual documents where each unique word

IS

contained within the set is regarded as a dimension. In this case the dimensionality of the

space in which the objects reside can go into the tens of thousands.

In this section some of the techniques that have been applied to the visualisation of low

(:S3) and high (>3) dimensional data will be discussed.

2.4.1 I-dimensional visualisation

A common example of I-dimensional data is a list. Lists may be composed of any variable

types, but in this section strings represented as ordinals will be considered. In [Eic94a] a

visualisation tool called SeeSoft is presented where lines of source code are greatly visually

compressed into narrow rectangles along a folding axis (see Figure 2.8). The author of

[Eic94a] describes this method as reduced representation and claims that up to 50,000 lines of

code can be displayed within one screen. The beauty of this approach is that the reduced

representation holds all of the spatial pattern information within the data set in the same way

as the original text, but reduced in size so that an overview is gained that maintains

recognisable groupings of the unreduced text. The system also offers interactive features such

as a magic lens to allow users to magnify and read sections of code. The retinal variable,

colour, is also used to map statistical information such as modification requests to lines of

code. In this way, the user can scan the overview of the code and automatically process the

colour information to detect patterns and areas of interest for deeper examination. It may be

argued that one of the contributors to the effectiveness of this visualisation is the familiarity

rule of the Gestalt principles. The reduced representation of the source code does not distort

the proportional natural layout of the data and therefore sections (groups) of lines may remain

recognisable. The SeeSoft tool is also a good example of a visualisation of I-dimensional data

because it exhibits the use of a folding axis. A folding axis is an axis that is designed to use

available space more efficiently by folding back on its self at certain points (again, see Figure

2.8). It is a 2-d method for visualising I-d data and therefore can be considered as a

• dimension expansion' technique. This technique can be applied to the visualisation of data of

dimensionality d > J, but it is most effective when variables of only one dimension are to be

depicted.

16

Fold~

Figure 2.8 An example of reduced representation. The figure depicts two source code modules, each of

which is on a folding axis.

2.4.2 2-dimensional visualisation

When dealing with data of two dimensions, the visualisation process is often based upon a

simple direct mapping onto two axes. The most common form of a 2-dimensional

visualisation is a geographical map where locations are placed according to the longitude and

latitude variables.

Data that are comprised of two-variable entities are described as planar. This is because

they map directly onto a flat 2-dimensional surface or plane. However, an interesting twist in

the display of a 2-dimensional layout was proposed in [MRC91] where a 'perspective wall',

shown in Figure 2.9, is described to transform 2-d layouts into a 3-d representation. The basic

idea is that 2-d layouts with large aspect ratios can be distorted so that the central part of the

layout is entirely visible to the user while the far left and right portions appear to stretch off

into the distance. This is a technique inspired by the bifocal lens [SA82, ATS82]. This serves

the purpose of affording the user detail and overview simultaneously and is closely related to

the ideas of Furnas [Fur86]. The perspective wall is also an example of a type of folding axis

in the 2-d case, where the two dimensions of the plane are folded in the direction of the third

dimension (away from the user).

17

< >

_ . ,.. -

Figure 2.9 The 'perspective wall' distorts a 2-d layout so that the focus at the centre of the screen is

most legible while the remainder of the layout is peripheral. The user can scroll potentially interesting

parts of the layout to the fore and still be afforded the context of neighbouring regions.

2.4.3 3-dimensional visualisation

3-dimensional visualisation is most prominent in the field of scientific visualisation where

collective bodies of 3-d physical data are often the basis of analysis. When a physical object

is modelled it is useful to render it in three dimensions to conform to the mental model of the

person who is viewing it. Examples include the visualisation of molecular structures and the

physiology of the human body.

Although 3-dimensional abstract data can be directly mapped into a 3-dimensional

visualisation space, for example a 3-d bar chart could be used to depict a company's profit for

different products across various cities, abstract data often gains little from this

embellishment. This may be because there is no inherent physical mental model to sustain.

On the other hand, there have been attempts to use a 3-dimensional space to navigate complex

data structures. In (HK97], a system called Cat-a-Cone consists of a hierarchical ConeTree

[RMC91] which is displayed in three dimensions to make better use of screen real estate (see

Figure 2.10). In [Ren94] a tool named Galaxy of News organises textual information in a 3-d

space where similarity between texts is reflected by their proximity to one another. As the user

navigates through the space semantic zooming is employed to show or elide text and detail,

depending upon the user's position in the space. However, there can be serious disadvantages

to rendering abstract data in three dimensions. A problem exhibited by the Cat-a-Cone system

18

is that the nodes of the tree can become occluded and therefore the amount of information to

be gleaned at anyone time is reduced. Also, in the Galaxy of News system, the lack of a

referential horizon and ground plane can cause the user to be disoriented. In the words of

Chalmers [Cha93], "Our skills in ... mental model-making, as honed on our everyday '2.1D '

world, become more difficult to employ." In the context of this quote, Chalmers describes a

metaphor of a 2.1-d landscape for representing the distribution of a corpus of documents. This

type of visualisation can be called an information landscape or themescape [WTP*95] and is

based upon the premise that the metaphor can provide landmarks and other natural aids to

allow the user to build a mental map of the corpus. Figure 2.11 depicts a visualisation based

upon Wise's themescape [WTP*95].

Figure 2.10 Cat-a-Cone [HK97] arranges each level of a hierarchical categorisation scheme in a 3-d

view to utilise space efficiently. This technique, like the 'perspective wall ', uses perspective distortion

to clarify the focus (the node closest to the viewer) while maintaining the context of the adjacent nodes.

Although 3-dimensional visualisations can be impressive, they do, in general, create

cumbersome overheads. They require more powerful hardware and require more intensive

processing in the visual transformations; navigation is more complex because at least six

degrees of freedom of movement may be required and it is more difficult to incorporate

textual objects that are often predominant in information visualisation [CMS99].

19

Figure 2.11 A screenshot from Spire [Wis99] - a tool based upon Wise's themescape [WTP*95]. A

document corpus is represented via a landscape metaphor in which the themes that run through the

collection are mapped to visual attributes.

2.4.4 4+ -dimensional visualisation

In statistical analysis, data sets that are comprised of objects consisting of more than three

variables are described as multivariate or hypervariate and are considered as n-attribute items

dispersed within an n-dimensional space. Thus, in information visualisation these generally

come under the rubric of the multidimensional. There has been a great deal of work

concentrating on the visualisation of multidimensional data, spurred on by the fact that there is

no possible way of directly mapping multidimensional objects onto a set of visually perceptive

axes. However, there are some shortcuts available to multidimensional data at the lower end

ofthe scale. For example, three dimensions of 4-dimensional data may be mapped onto points

in a 3-d substrate and the fourth dimension mapped to colour, or shape, but beyond this, more

innovative techniques must be derived.

Spoerri [Sp093] proposes a tool called InfoCrystal (Figure 2.12) for querying and

visualising results for information retrieval. The idea is to generalise the Venn diagram to

discretely display the distribution of objects of more than three dimensions. This system is

intuitive because of the familiarity with the Venn diagram; however, as the number of

dimensions to be depicted increases the complexity of the graphics soon becomes

overwhelming.

20

Figure 2.12 An Info ry tal [Sp093] representing three search criteria or inputs, A, Band C and all

pos ible Boolean querie in nonnal conjunctive form. The interior icons can be embellished to show the

result of ubmitting the respective queries to a document collection. Tn this example, these inputs

define a 3-d earch pace, however, Spoerri has demonstrated the application of InfoCrystals to more

than three inputs.

Tweedie et al. [TSDS96] present the 'Prosection Matrix'. This idea stems from the

statistical technique of representing all possible combinations of pairs of variables for a data

set as a matrix of scatterplots. They embellished this technique by adding an interaction

technique called brushing [BC87] that allows selected points in one scatterplot to be

highlighted in others. In this case the brushing entails using sliders (one for each

dimension/parameter) to define selected parameter ranges so that points in one scatterplot,

depicting the relation hip between pI and p2 for instance, can be highlighted according to the

elected range of p3 for example. Hence the name prosection was derived from projection of

a ectioD. This technique, like that in InfoCrystal, also becomes intractable for visualising data

of many dimensions becau e the number of scatterplots required is equal to N(N - 1)/2 where

N is th number f dimensions.

A the dimensionality of data increases, the plausible techniques for clearly depicting

the influence of all of the attributes falls sharply in number and in effectiveness. It is partly

for thi rea on that methods such as Multidimensional Scaling (MDS), Principal Components

Analysi and a plethora of clustering algorithms exist. Specifically, in information

visuali ation their role i to map the objects from their high-dimensional space to points in

two or three dimension. hese techniques will be discussed in more detail in later chapters,

but for now, m examples of their application will be given.

in et a!. [M9 I] take advantage of Kohonen' s self-organising feature map (OM)

[KKL'" J to map high-dimen i nal textual document onto a di crete 2-d grid. As tated

21

earlier, a corpus of textual documents has dimensionality roughly equal to the number of

unique terms contained within, and therefore it is impossible to directly map the documents as

points in this high-dimensional space into two or three dimensions. Lin et al. proposed that

the SOM could be used to create concept areas in the plane of the SOM which would

effectively partition the corpus into classes and thus give insight into the topology of the

corpus at a glance (see Figure 2.13).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 DiSI)hlY 0 0 0 Digitnl 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 " 'LSI 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 o Actuntol s
0 0 Aunlogu(l 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 o ~o 0 0 0 0 0

Figure 2.13 An example of the output of a SOM, depicting the concept areas relating to electronics.

The only drawback with this approach is that only the topology of the corpus is

communicated. Relationships between individual documents cannot be visualised as only the

cluster centres are depicted and the discrete grid-like output of the SOM ensures that these are

all evenly spaced. The SOM is described in more detail in Section 4.2.

In a paper by Rodden et al. [RBSWO 1], another discrete visualisation maps images onto

a grid to aid in browsing. In this case an unspecified MDS algorithm is used to create a

continuous 2-d layout of objects so that similar images are placed close together, and then one

of several algorithms proposed by Basalj [BasOO] is utilised to discretise the space in order to

remove occlusions. This approach may be considered as an alternative heuristic to the SOM.

2.5 Interactivity

It is difficult to communicate the intrinsic and latent relationships within high-dimensional

abstract data through a single static representation. For this reason, mechanisms which afford

the u er interactive control over the representation are required to unlock the information that

can only be revealed in dynamic visualisations.

22

2.5.1 Affordance and appropriation

An important aspect that blends interactive visualisation with the premise of good graphical

user interface (GUI) design is the issue of affordance. The user quickly understands the use of

a device for a given function or activity. When affordance exists in the design of an interface,

whether it is physical or in the digital domain, the resulting system is easier and maybe even

pleasant to use [Nor88]. Sometimes affordances can be accidental, in which case the user may

appropriate the functions to his or her own ends in different ways to those the interface

designer intended or even considered. From the perspective of interface evaluation via

observation of use, this can be advantageous in offering insight into the correct way to

implement complex functions.

2.5.2 Time

Another important consideration in the design of interactive systems is the speed of

interaction. In [CRM91] three categories of interaction speed are described:

Time Category Description

Stimuli presented within 0.1 s of each other are
0.1 seconds perceptual processing perceived to be a single stimulus. An example of

this is in animations comprised of several stills.

1 second immediate response
The minimum time in which a user may respond
to stimuli.

10 seconds unit task
Described as the time taken for a simple action,
requiring minimal cognition.

Table 2.3 Categories of interaction speeds.

Inspired by the interaction between humans, Robertson et al. [RCM89], proposed an interface

architecture called the cognitive coprocessor to match the impedance between the user and an

automated information agent. Essentially, the response times of the system should match the

capabilities and expectations of the user when reacting to stimuli and carrying out elemental

tasks.

Shneiderman [Shn83] describes Direct Manipulation, which shows that a short

response time for visual feedback is very important. Direct manipulation can be described as a

metaphor for manipulating graphical objects as if using one's own hands, in order to conform

to the user's expectations of what should happen. For example, when a file is dragged over

23

the recycle bin on a Windows OS desktop, and then let go, the file disappears as if the file has

fallen into the bin. Shneiderman also describes the supplanting of textual query languages (in

the user interface) such as SQL with direct manipulation in the fonn of Dynamic Queries

[Shn94]. Dynamic queries provide immediate feedback during query fonnulation by updating

results as the queries are built.

From the above, it can be considered that direct manipulation mechanisms must react to

the user's actions within 0.1 seconds for the perceived continuity of physical motion.

2.5.3 Interaction mechanisms

In a paper by Shneiderman [Shn96], his visual information seeking mantra is described:

"Overview first, zoom and filter, then details-on-demand". According to Shneiderman this

indicates the basic elements required in an interactive visualisation when seeking information.

However, this implies that visual information seeking is a sequential process where a series of

views are presented in isolation. The following sub-sections describe interaction mechanisms

that have been developed to integrate such views so that overview and detail can be presented

simultaneously, and zooming and filtering can be applied within the context of the original

view.

1.5.3.1 Overview plus detail

An overview of a visual representation is important to afford the user navigation and pattern

detection. As a result, searching can be enhanced. However, both the whole overview and the

finer-grained details of local data structures are often required to facilitate analysis and

evaluation of smaller portions of data. The overview enables a high-level view to help orient

the user while (s)he drills down into the details.

A typical guise of overview plus detail is the zoom function. In Eick's SeeSoft tool

[Eic94a], a separate window can be shown over the reduced representation in order to allow

the user to read individual lines of code. The advantage of this is that the user may perceive

where he or she is within the overview and also gain finer details of that area. This, applied in

SeeSoft, is an example of/ocus plus context and mimics the human's visual system where the

bandwidth is split between the peripheral view and the higher resolution focus [CMS99]. This

allows people to understand something by its context as well as its detail within the context.

Two everyday examples of overview + detail include Windows Explorer - the overview

is provided by a treeview while the detail is shown as a set of file and folder icons in a

separate pane - and Adobe Acrobat [Ado04] where the thumbnail view gives a (reduced

representation) overview of a PDF file, next to the detailed text. North, Shneiderman and

24

Plaisant [NSP96] contributed a more novel application in the visualisation of a medical digital

library. The overview is a longitudinal cut of a human body and the detail view consists of an

axial cross-section (see Figure 2.14).

Figure 2.14 North et al. 's Visible Human Explorer interface. The overview of the human body is tightly

coupled with axial detail view. The user can sweep a horizontal line across the overview to dynamically

update the detailed cross-section view.

The following subsection is inspired by the problem of overview plus detail and

describes some of the methods for achieving it.

2.5.3.2 Focus plus context

Focus plus context is related to overview plus detail by the fact that the context is provided by

the overview and the focus is on the finer detail. A classic example of the focus plus context

method is Furnas's Generalised Fisheye Views [Fur86]. In this paper, Furnas defines a degree

of interest (DOl) function that is used to assign a number reflecting the importance to the user

of an object within a visual structure, given his or her current task. This number can then be

used to reduce or remove detail from less important areas of the view.

This is an example of a distortion technique similar to the Perspective Wall [MRC91].

Another example of view distortion for focus plus context is the hyperbolic tree [LRP95],

where it is proposed that by mapping large hierarchical trees onto a hyperbolic plane, the

hyperbolic geometry will create a fisheye-like distortion. The part of the plane that is the least

distorted (more detailed and larger) is that which is closest to the viewpoint in the centre of the

screen, i.e. the focus, whereas other areas are more distorted and shrink the embedded objects

as the distance from the focus increases. Direct manipulation is used here to rotate the

25

hyperbolic plane and thus move the focus, and as a result very large tree hierarchies may be

displayed.

Zooming is another well established technique for gaining insight into detailed areas of

a view while maintaining the context. There are two predominant types of zoom mechanisms:

semantic and logical. Logical zooming lends itself more to our familiar notion of zooming as

it describes the perspective notion of objects being larger when closer and smaller as the

distance between them and the viewer increases. For this reason, logical zooming can be

described as physical or geometric because our psychophysical perspective pertains mainly to

changes in object size and colour saturation for this type of zooming. The SeeSoft tool

described above makes use of logical zooming.

On the other hand, semantic zooming, which mayor may not contain aspects of logical

zooming, pertains more to the idea that as the area of focus approaches objects, the level of

abstraction is changed - mappings of data attrIbutes to graphical properties change. A user

interface proposed by Bederson and Hollan called Pad++ [BH94] provides semantic zooming.

Here, direct manipulation of a focus point is used to provide additional details to objects that

appear under the focus. The Magic Lens [FS95] is another example of the zooming paradigm

and has been demonstrated as a way to supplant textual database querying because mUltiple

lenses (focus points) can be used in conjunction to form Boolean expressions that filter or

abstract details of the objects being visualised.

This now leads on to describing filtering within an information space. As stated earlier

it is difficult to map high dimensional abstract data into a single static view. As a result MDS

techniques have been devised to reduce the dimensionality in order to be able to display high

dimensional objects in a 2- or 3-d point space, usually preserving some distance function.

Although this provides an overview of the data set's distribution, the contribution of

individual attributes can be hard to interpret in these scatterplot-like displays - some variables

may be more dominant than others. It is for this reason that filtering comes into its own as a

means for drilling down into the data to help find latent relationships. As described, the magic

lens is one means but there are many other OUI components that may afford the filtering

process. One such component is the slider control, which provides an example of direct

manipulation for view transformation. In [CM97] it is stated that using sliders, a user can take

into account additional variables without these being mapped to retinal properties.

In essence, a slider is a OUI control that allows the user to define ranges (double-ended

sliders) or to select individual values or thresholds. Eick [Eic94b] describes the use of sliders

to filter or highlight items within a view as determined by the value or range of values selected

by the slider. An example of which can be found in Ahlberg and Shneiderman'sfilmjinder

26

[AS94a] as shown in Figure 2.15. In filmfinder, the range selected in a double-ended slider

maps to a zoom function, while the position of the range, along the slider's scale, maps to a

pan function.

Eick then goes on to describe graphical embellishments such as using the space inside

the slider to depict the distribution of the data being analysed (see Figure 2.16) and thereby

provide clues in information seeking.

P.".arity

•

:

~--

Figure 2.15 Double-ended sliders to the left and bottom of the plot in filmfinder allow the user to zoom

and pan along the two axes, essentially filtering the view.

Figure 2.16 A double-ended slider with a histogram, showing a range selection.

Tweedie et al. [TSDS96] also make use of this type of enhanced slider. In their influence

explorer tool, where histograms are used in conjunction with sliders, the sliders are all

interlinked so that when the selection of one slider is changed, the effect can be seen by

highlighting sections of the histograms of other sliders.

27

2.6 Conclusions

In this chapter some of the techniques used in information visualisation, and their motivations,

have been described. Information visualisation serves as a key to unlock the black box of

abstract data, to reveal the interrelationships and salient properties. It is holistic in nature - it

is more than just a collection of glyphs, axes and graphical structures. Through abstraction,

visualisation can help the user create mental models of the data and gain insight into their

structure. Through interaction, the user is prompted to ask questions and then be provided

with the answers. It can afford the user navigation and browsing of abstract data whose

elements reside in a bewildering number of dimensions. It is envisaged that in the future

many more interesting and novel devices will be devised to aid the user's perception of

complex data and their interrelationships.

Visualisation relies upon intuitive reduction of data so that their representation is

simplified and therefore information is easier to convey. A very popular means of attaining

this is via cluster analysis. By considering data as points in a data space, clustering algorithms

can find contiguous groups of closely related points thus reducing the representative size of

the data set to the number of clusters. Another approach is to reduce the dimensionality of the

data so that it conveys as much of the original information as possible using a small number of

derived dimensions. As will be seen in later chapters, clustering and dimension reduction

algorithms often go hand-in-hand to create hybrid solutions that provide an efficient and

effective basis for visualisation.

This thesis is concerned with the development of a system and framework for building

and using such hybrid algorithms. Most of the visualisation techniques described above have

been called upon to assist the user in creating algorithms, as well as for interacting with their

output. The next chapter discusses the prominent methods for clustering data.

28

3. Clustering Algorithms

In many disciplines, clustering is used as an exploratory tool for multidimensional data. It is

essentially the process of organising points (or patterns) in a multidimensional space into

groups based upon similarities. When applied to information retrieval, van Rijsbergen's

cluster hypothesis [vRij79] succinctly states that if a document is similar to one that is

contained within a known cluster of documents, then it is with high probability that it is also

similar to the other documents within that cluster.

Clustering provides a compact representation of data - instead of coping with a large

amount of data, the clusters can be regarded as classes or categories and therefore made easier

to understand and manipulate, especially when visualised. Jain et at. [JMF99] state that the

process of clustering can be broken into the steps described in Table 3.1:

Clustering step Description

This includes determining which features (dimensions) of the
Pattern representation objects comprising the data set are to be considered in calculating

cluster memberships.

Pattern proximity
This defines how the similarity between objects is measured.
This is normally based upon a distance function, of which the

measure
Euclidean distance is most widely used.

This defines how the clusters are created. Methods include
Clustering/grouping hierarchical, partitional, density-based, graph-based and model-

based.

Devising a succinct description of the clusters based upon their

Data abstraction members. These representations are known as cluster digests
when applied in scatter/gather [CKPT92], and as concept areas
[LSM91] in SOMs.

Assessment of output Evaluating the validity of the clusters.

Table 3.1 The main steps involved in cluster analysis.

Note that in the above, a final step may be added that leads to adaptation of the algorithm as a

result of the assessment of its output. This is especially the case in supervised learning

algorithms.

In real data, clusters come in all different shapes, sizes and densities with varying

degrees of noise thrown in. It is therefore the goal of clustering algorithms to extract clusters

in as many of these situations as possible. However, this is not a trivial task. Some clustering

29

algorithms cope well with, for example, finding clusters of varying sizes and densities, but not

within the presence of noise or for different shaped clusters.

In this chapter, several types of iterative, unsupervised clustering techniques are

described, along with their visual representations where appropriate. Hierarchical and

partitioning algorithms are described before going on to distinguish between graph-theoretic,

density-based, grid-based and model-based approaches. The underlying algorithms generally

concentrate on the high-dimensional clustering process but do not often provide a direct

mapping to a lower dimensional visualisation. However, it is suggested that these could form

a pre-processing step in dimension reduction. The chapter following this will describe

algorithms that reduce the dimensionality of the data so that clusters can be directly visualised

resulting in a more intuitive representation.

Unsupervised algorithms will be focussed upon because they endeavour to find the

natural groupings within abstract data where little is known a priori as to the intrinsic classes

contained and structure of the data.

3.1 Hierarchical
Hierarchical clustering produces one large cluster (the entire data set) and partitions of sub

clusters. These sub-clusters, in tum, contain clusters, and so on. This can be represented by a

structure called a dendrogram (see Figure 3.1).

similarity

Figure 3.1 A dendrogram, which when cut at different levels, will produce different clusters.

Hierarchical clustering algorithms can be split into two types: agglomerative and divisive.

Hierarchical agglomerative clustering (HAC) starts by considering each individual element in

the data as a unit cluster and proceeds by merging elements (clusters) together until the

desired number of clusters is reached or all of the elements in the data set have been included

in a cluster. With regard to the dendrogram, this method may be seen as creating the

30

hierarchy from the leaf nodes upwards. Examples of this type of algorithm are single-link and

complete-link.

However, one drawback of HAC is that most of the clusters in the lower levels of the

dendrogram are very small and very close together and therefore tend to be a waste of

computation. This is especially problematic in HAC because these small clusters are

necessarily formed before the larger ones. Manoranjan et al. [MLST03] call this the 90-10

rule and use it to increase computational efficiency when validating clusters.

The alternative, divisive approach (known as numeric taxonomy in the field of machine

learning [LS97a)), works by initially considering the entire data set as one large cluster. The

algorithm then proceeds by partitioning the set until, as above, a criterion for stopping is met.

With this approach the 90-10 rule can be taken into consideration when deciding when to stop

the clustering process.

3.1.1 Agglomerative single-link clustering

Single-link clustering - also referred to as nearest neighbour clustering - is one of the oldest

clustering techniques (see [Sib73] for an implementation). It is an agglomerative hierarchical

algorithm in that it starts with every point belonging to its own cluster and progressively

merges clusters until one large cluster, containing all of the points, remains. The distance

between two clusters is taken as the shortest distance from any member of one cluster to any

member of the other. Pseudocode for the single-link algorithm is shown in Figure 3.2.

1. given N points to cluster, assign each to its own cluster, i. e.

initially there are N clusters

2. find the closest pair of clusters and merge them

3. compute the distance/ (dis) similarity between the new cluster and

all other clusters

4. repeat steps 2 and 3 until all items are members of a single

cluster of size N

Figure 3.2 The single-link clustering algorithm.

The output of the algorithm is a nested set of graphs represented by a dendrogram (see Figure

3.1), which when cut at the desired level (ofdistance/(dis)similarity) yields a clustering of the

data. One of the major drawbacks of this approach is that it suffers from a chaining effect

31

where chains of close points form bridges between clusters and therefore erroneously merge

them. As a result, the single-link algorithm tends to return elongated clusters [JMF99].

Two variants of this algorithm are complete-link and average-link techniques. These

algorithms are identical apart from the way in which distance between clusters is measured.

The complete-link method treats the distance between two clusters as the maximum distance

between any member of one cluster and any member of the other. This serves to circumvent

the chaining effect incurred by the single-link method and tends to return compact clusters.

The average-link method treats the distance between two clusters as the average distance

between any member of one cluster and to any member of the other.

While these hierarchical algorithms are simple and intuitive, they have a number of

disadvantages. They tend to be quite computationally expensive (O(N» and may prove to be

infeasible for use with large amounts of high-dimensional data. In information visualisation,

views often need to be dynamic and be generated on the fly, and therefore need fast clustering

algorithms with respect to the underlying data. Also, dendrograms can be very hard to

interpret, especially when the data set is large. Although the user does not have to estimate the

number of clusters in advance, deciding which merging/splitting strategy to apply and

determining where to split the dendrogram can be difficult.

3.1.2 Scatter/Gather: An application of hierarchical
clustering

Cutting et al. [CKPT92] describe a hierarchical clustering technique for information retrieval

aimed at overcoming the problem of users not being able to initially and precisely define their

search goal. This technique is called scatter/gather and is inspired by the way that people use

the table of contents of a textbook in order to gain a sense of the structure of the book as a

precursor to searching for specific topics. The process works by clustering (scattering) the

corpus into a number of clusters and presenting the user with short summaries of each cluster.

These are called cluster digests. The user can then select (gather) one or more of these

clusters and the system performs another clustering stage upon this sub-collection. This

process continues, iteratively refining the results returned to the user until individually

enumerated documents are presented.

Pirolli et al. [PSHD96] indicate that scatter/gather allows the user to more efficiently

browse a textual corpus, as opposed to searching for specific topics. This leads to gaining an

insight into the distribution of topics within the corpus, which is a result in itself, thus

allowing the user to build a mental model. Armed with this perception of the corpus, the user

can then search the corpus and receive more accurate results.

32

Scatter/gather requires that the clustering algorithms used can be applied on-line. This

is due to its interactive nature, requiring speedy responses to users' requests. It is for this

reason that algorithms such as Buckshot (Section 5.1) are used to obtain clusters in rectangular

time complexity.

3.2 Partitional
Unlike hierarchical clustering, partitional clustering forms a single partition in the data set, i.e.

no dendrogram is created, and because of this, it is less computationally expensive.

Generally, the input to partitional clustering is the data set and the desired number (k) of

clusters.

The most common partitional routine is an optimisation algorithm. Algorithms of this

type, such as K-means [Mac67], aim to minimise a cost function which is associated with each

cluster.

3.2.1 K-means

This algorithm is iterative and centroid-based. This means that the algorithm goes through an

unknown number of cycles of creating clusters and updating the centroids until it finally

converges. The algorithm starts by selecting k items from the data set, where k is the desired

number of clusters to obtain - these are the initial cluster centroids and are often referred to as

seeds. The next step is to assign each of the remaining elements from the data set to the

centroid that is closest (in Euclidean space). Once all of the data items have been assigned to

a cluster, the centroids are recomputed by calculating the average of all of the cluster members

and the process of clustering begins again. This iterative process continues until no items

change cluster membership. At this point it can be said that the algorithm has converged. It

should be noted that the data patterns considered must consist of continuous value vectors

because their arithmetic mean must be calculable. Also, the cost function that K-means

endeavours to minimise is the common sum-of-squares criterion, i.e. it should minimise the

sum of the squares of the inter-object distances within each cluster.

Pseudocode for the K-means algorithm is provided below:

33

1. let L = {11 , ••• , 1 k } be a random subset of the data set P

where k < N

2. create k arrays to hold the cluster members

3. for each data point SE P find the closest centroid k i in L,

according to Euclidean distance, and allocate s to the appropriate

array

4. calculate the arithmetic mean of each cluster and let these now be

the members of L

5. if the values in L have not changed then return the clusters as

the solution, otherwise go to step 3

Figure 3.3 The K-means algorithm.

The attractiveness of the K-means clustering algorithm is that it is easy to implement

and its computational complexity is reasonable [JMF99]. Its time complexity is O(CNIc)

where C is the number of iterations, and its space complexity is O(N + k). Another advantage

ofK-means is due to its iterative nature. Iterative algorithms tend to allow the addition of new

data to the set after convergence is achieved, rather than performing the clustering from

scratch. This is because the clusters that are formed can be regarded as categorical classes of

the data and therefore the addition of new items simply implies associating them with the

closest cluster. However, K-means does have at least two drawbacks. The first is that the

clusters that it is trying to find are assumed to lie in a spherical Gaussian distribution [BF98].

The second is that, although it will converge, the algorithm is sensitive to the initial choice of

cluster centroids. Both of these points mean that K-means will often converge to a local rather

than a global minimum. However, regarding the initialisation problem, Bradley [BF98] has

developed a technique using multiple runs of the algorithm and then choosing the best

outcome according to a measure of validity. Another solution is the use of classifier ensembles

[KHDM98] where the outcomes of several clustering runs are regarded as votes for the

obtained clusters (classes) - the clusters that receive the majority of the votes (appear

consistently) are retained. Classifier ensembles will be discussed further in Chapter 5.

3.2.2 Bisecting K-means
A variant of the traditional K-means called Bisecting K-means is described by Steinbach et at.

[SKKOO]. This works in exactly the same way as regular K-means with the exception of the

selection of the number of cluster centres. Initially two centroids are chosen and the clusters

are produced in the same way, then according to intra-cluster variance or size, one of these

34

clusters is split into two more clusters. This continues until some convergence criterion is met

(for example, the centroid values stop changing).

In [SOBOl] it is stated that bisecting K-means is useful because it produces a binary

taxonomy, useful in document retrieval. Also, in [SKKOO], the algorithm is conjectured to be

superior to traditional K-means because the clusters are nearer to being uniform in size and

this results in lower entropy.

Bisecting K-means, although based on a partitional algorithm can, however, imply the

production of hierarchical clusters. This is due to its ability to produce a binary tree similar to

the dendrogram.

3.2.3 NNS with K-means: An application of a

partitioning clustering algorithm

Nearest Neighbour Searching describes a way to find the most similar item (nearest

neighbour) within a data set to a given query. It was considered that this approach could be

useful for speeding up the process in the addition of new data to a pre-configured spring

model layout. An informal experiment was set up to use the K-means algorithm for such a

purpose. The experiment consisted of a program written in VB 6.0 that plotted 2-dimensional

normally distributed random points on a plane. K-means was then used as the clustering stage

to a Buckshot algorithm that was run on these data so that ..IN clusters were formed. The idea

then was to simulate the submission of a query (addition of a new point) into this space by

plotting points at random on the plane. In order to find the nearest neighbour of each 'query',

the query is first compared to each of the K-means centroids to find the closest in Euclidean

distance. Once this closest cluster centroid was found, each of the cluster members are then

compared to the query and the closest point is the one that is returned as the nearest

neighbour. See Figure 3.4 below. This approach is faster than an exhaustive search of the

data because only ..IN + m distance calculations are required, where m is the number of cluster

members associated with the closest centroid.

35

: ...
• •

•
•
•

•

... form1 rgJ

_ R""k.me~~ Rondonise New por.t

Figure 3.4 A screen shot ofthe K-means NNS experimental program. Green points represent randomly

distributed data, the blue points represent K-means centroids, and the red points indicate 'queries' while

the black points are the approximate nearest neighbours to the (red) query points.

As can be seen from the above, the results prove quite promising when applied to this

normally distributed random data. However, there are cases envisaged when the algorithm

will not return the correct nearest neighbour, consider Figure 3.5 below:

•
•

.00

••
•
it

+
+0 +
++

Figure 3.5 A case where the K-means NNS is only approximate.

In this scenario, the two hollow circles are centroids and the black points and crosses are their

respective cluster members. If the star is regarded as the query then clearly it is the cross just

above it that is its nearest neighbour. However, the algorithm returns the grey point to its left

as the closest instead of the cross. This is because the algorithm initially looks for the closest

centroid. It is only the set of black points that are considered to contain the closest point

because in this case, the cluster centroid for the black points is closer than the other centroid

that actually represents the cluster containing the nearest neighbour. This means that this

approach to finding a nearest neighbour, given a new point, is only an approximate solution,

but it is envisaged that it will still perform well for introducing new points into layouts by

initially placing them somewhere within the vicinity of the best position.

36

3.3 Density-based

Instead of basing a clustering upon the proximity of data points to representative centroids, as

is the case in partitioning algorithms, density-based clustering seeks groups of points that are

dense, and which are separated by sparse regions. The advantage of this approach is that

clusters of various shapes can be retrieved while noise points - those data that do not belong

to any cluster in particular, including outliers - can be effectively filtered out [SEKX98].

A well-known density-based technique called DBSCAN was proposed by Ester et al.

[EKSX96]. In their proposal, density is associated with a point by determining the number of

neighbouring points within a specific radius e, referred to as an Eps-neighbourhood. When a

point has a pre-specified minimum number of points MinPts within this radius, it is classified

as a core point and a cluster C is created for it and its Eps-neighbours. Next, each member of

C is checked to see if it is also a core point and if it is, it and its Eps-neighbours are added to

C. This process is continued until no more points can be added to C. After all possible clusters

have been found in this manner, points that are not classified as core points or cluster

members are classified as noise points. Points that are not deemed as noise or core points are

called border points and are considered as members of the cluster associated within £ of the

nearest core point.

Two disadvantages of this algorithm are that I) it relies on the user to specify the

MinPts and & inputs and 2) these are global parameters and therefore clusters of different

densities cannot be found. For example, when the density threshold is quite low, only the

densest clusters will be found while sparser ones will be discarded as noise. On the other

hand, if the threshold is lower, dense clusters might be merged (see Figure 3.6). As Estivill

Castro and Lee point out, density is hard to define; the user should not have to guess a global

density threshold [CL02].

37

B

Figure 3.6 Clusters of different densities. When the clustering is via a global density parameter, only

clusters [A, D and E] or [A, Band C] will be found.

To overcome the shortcomings described above, Ankerst et a1. developed an algorithm called

OPTICS [ABKS99]. This method imposes a special ordering upon the data set called the

cluster order which is based upon the distances between points within an Eps-neighbourhood

threshold. This ordering captures information equivalent to the output of the DBSCAN

algorithm over a range of E values and therefore can find clusters of different densities

simultaneously. Another advantage is that the distances, called reachability distances, provide

a view of the clustering structure inherent in the data when plotted against this cluster order.

The algorithm requires the user to specify values for E and MinPts but the authors provide

heuristics to determine these and show that it is much less sensitive than DBSCAN to the

values chosen.

While OPTICS provides a solution to finding clusters of disparate densities without

relying too heavily on the user to specify abstract parameters, traditional Euclidean density

based techniques still do suffer from one major drawback when clustering high-dimensional

data. Ertoz et a1. [ESK03] pointed out the fact that as the dimensionality of the data increases,

the number of points required to maintain a specific density - that is, a certain number of

points per unit volume of space - increases exponentially. This is known as the curse of

dimensionality [Fri94]. To alleviate this, Ertoz et a1. defined an alternative notion of density in

their graph-theoretic clustering algorithm, based upon shared nearest neighbour graphs. This

will be discussed further in the Section 3.4.

Another approach for density-based clustering was proposed by Duyckaerts and

Godefroy for studying neural densities in the thalamus and cortex of the human brain

[DGH94]. In this application, the authors wished to be able to compare neuronal densities and

38

subsequently find clusters of neurons I . To achieve this, the authors use a Voronoi tessellation

of part of the brain surface. The tessellation partitions each neuron into the area that it

occupies such that any point within this area is closer to that neuron than any other and the

result is that each neuron resides in a convex polygon (Section 5.5 for a description of

Voronoi tessellations). In a Voronoi tessellation, clusters produce groups of contiguous

polygons with small areas compared to their neighbours [OBSCOO]. Duyckaerts and Godefroy

take advantage of this property to define a simple clustering algorithm that first finds the

smallest polygon, adds its neuron to a cluster and then grows the cluster by examining its

neighbours, adding them if their polygonal areas are within a predefined threshold. When the

cluster cannot be grown any further, the next smallest polygon, that is not part of the cluster, is

found and a new cluster is created. This process continues until no more polygons can be

added to a cluster (see Figure 3.7). The time complexity of this algorithm is dominated by the

computation of the Voronoi tessellation which is O(N log N), where N is the number of

neurons.

Figure 3.7 A Voronoi tessellation of a 2-d point pattern consisting of two clusters. Notice how the

polygons of points inside the clusters have smaller areas than those towards the outside. Duyckaerts and

Godefroy use this property to automatically find clusters. In the above example an area threshold has

been set and polygons within it are shaded - each cluster is distinguished by shading with a different

colour. This image was generated by HlVE [RC03a, RC03b] .

I Within the context of this chapter, neurons should be taken as analogous with points within a 2-d data space.

39

The Voronoi tessellation is shown to exhibit other useful properties for analysing spatial

density. By sampling mean densities, confidence intervals can be used to make statistical

comparisons of density. Also, the coefficient of variance of polygon areas allows one to

distinguish between regular, clustered and random point distributions. The main drawback of

this approach, however, is that the time complexity of computing a Voronoi tessellation

increases exponentially with dimensionality. For this reason, its application to clustering is

best suited to 2-d applications.

3.4 Graph-theoretic

Graph theory provides a succinct notation for expressing relationships between points in a

data space. A graph is defined by the formula G = (V, E) where V denotes a set of vertices and

E denotes a set of edges (arcs connecting the vertices). Given this definition, a data space can

be modelled as a graph when points are considered as vertices, and constraints upon their

relationships are considered as edges. The graph forms a data structure that encapsulates

information about how data are related. As an example, consider the 2-d data space in Figure

3.8. If the notion of a relationship is constrained to any point and its nearest neighbours, then

drawing edges between such related pairs of points can yield a graph called the minimal

spanning tree [Pri57].

• • • • • • •
• ••
•

Figure 3.8 Points in a 2-d data space (left) and their minimal spanning tree (right).

There is a diverse range of graph types, each with different properties that can be

utilised to model difficult problems. In the field of artificial intelligence, state space graphs

are used to model the structure of complex systems. The state space graph provides an

efficient way of traversing a sequence of state transitions to a desired outcome, such as

winning a game of chess. Another problem modelled by graphs is the well known travelling

40

salesman problem. In this case the graph is traversed in search of the shortest Hamiltonian

cycle - a path where each vertex is visited exactly once and the last visited is the starting

vertex [LS97a].

The versatility of graphs in modelling complex problems can also be applied to

clustering data. A data set D can be represented by a complete weighted graph G(D).

Complete, if every point is connected to every other point, and weighted if the lengths of the

edges correspond to the distance or dissimilarity between points. By the careful deletion of

edges, individual clusters can be separated into sub-graphs - connected components of G(D) -

and returned as the clustering solution. Thus, the deletion of edges is pivotal in the graph

theoretic approach to clustering.

Since the number of edges in a complete graph is quadratic with the number of vertices,

it is an expensive representation. However, sub-graphs that are less expensive to compute,

store and traverse can retain enough information to define clusters and therefore simplify the

problem of deciding which edges to remove. Thus the modus operandi of many graph

theoretic clustering algorithms consists of two steps. The first is to define a graph that

efficiently contains the information necessary to define clusters. The second is to employ a

strategy of edge removal that will decompose the graph and reveal clusters. The best-known

graph-theoretic algorithm reflects this. It starts with a minimal spanning tree and then removes

the longest edges [Zah71].

3.4.1 The minimal spanning tree as a basis for clustering

Let D = {d,} be a data set where each d, = (a: , ... ,a:) is a datum representing the set of

attribute values 1 through k. A weighted and undirected graph G(D) = (V, E) can be defined

where V = {dll d; ED} is the set of vertices and E = ((d;,dj) I d;,dj ED and d; ~ dj}is the set

of edges. Since an edge exists between every pair of vertices, G(D) is a complete graph.

Furthermore, the weight of each edge (dj,dj)E E can be represented by some measure of

dissimilarity such as Euclidean distance.

A connected sub-graph containing every vertex of G(D) and no cycles is called a

spanning tree and the spanning tree with the lowest sum of edge weights is the minimal

spanning tree (MST), i.e. the shortest path connecting all vertices without any cycles. In an

MST such as that in Figure 3.9 it may be observed that points in a cluster are connected by

short edges while longer edges connect points between different clusters [XOD02].

41

Figure 3.9 The MST above shows that intra-cluster distances are shorter than inter-cluster distances.

Deletion of edges A and B would result in three separate connected sub-graphs representing the clusters.

This observation provides an intuitive basis for clustering. By deleting the longer edges of the

MST, the data can be decomposed into clusters.

Zahn developed the most famous graph-theoretic algorithm [Zah71] in which edges

that are significantly longer than nearby edges are removed from the MST (see Page [Pag74]

for an implementation). Zahn called these edges inconsistent and defined them as edges

whose length is more than f times the average length of nearby edges and more than s

standard deviations larger than the average.

The advantages of the MST in Zahn's algorithm are that it is not contingent on the

order of input and it can detect clusters of different shapes, sizes and densities. However, the

construction of the MST dominates the time complexity - taking O(IIElllog I lEI I) time using

Kruskal's algorithm - and the user must specify quantities for f and s.

3.4.2 Other graph-theoretic clustering algorithms

While the MST provides an explicit graph representation for clustering, it is also the basis for

single-link hierarchical clustering where clusters are the connected components of the MST

[JMF99]. The major difference between Zahn's algorithm and single-link is in the way in

which edges are removed to reveal clusters. Zahn's approach is to identify and remove

inconsistent edges whereas in single-link, the user cuts the dendrogram at a specific level in

the hierarchy.

Another graph commonly used in clustering is the Delaunay graph. This graph is

popular because it contains the MST and the relative neighbourhood graph (RNG) as sub

graphs [OBSCOO] and therefore contains more information conducive to clustering; it can also

be computed in O(N log N) time for the 2-d case. The Delaunay graph forms a triangulation

over the data by defining edges between all pairs of points that are Voronoi neighbours.

42

Estivill-Castro and Lee [CL02] use this in their AUTOCLUST algorithm to find clusters by

searching for their boundaries. They postulate that edge lengths at the boundaries of clusters

exhibit more variability because they connect inter- and intra-cluster points. The authors use

both local and global neighbourhood relations to identify edges which are statistically

significant with respect to this variability.

Eldershaw and Hegland [EH97] also utilise the Delaunay graph. They noted that Zahn's

technique of removing edges from the graph that exhibit a length greater than f times the

average length of nearby edges, was not applicable because in the Delaunay graph, vertices on

cluster borders tend to have more incident edges that span between clusters and this pulls up

the average length resulting in all edges being preserved. To overcome this, they consider the

choice of an edge-length threshold p as a reduced clustering problem In the search for p, they

note that this is a classification of the edges into two classes; one for short intra-cluster edges

($) and one for long inter-cluster edges that should be removed (>p). To identify a suitable

threshold, a range of values for p are fed into a cost function Jtp) that measures how "neatly

split" the edges are between these two classes. By plotting T(p), the authors demonstrate that

the global minimum can be easily found. Eldershaw and Hegland's approach is interesting

because it reduces the M-dimensional clustering problem into a two-cluster J-D problem.

However, the drawback of this approach is that the threshold parameter p is global and

therefore clusters of different densities may evade detection. Again, the time complexity of

this algorithm is dominated by the triangulation of the Delaunay graph which increases with

dimensionality by 0(Jl.d/2J+/) [Aur9I].

Up to this point, each of the graph-theoretic approaches described have relied on graph

edges being defined by a direct dissimilarity measure between points. However, as Ertoz et al.

[ESK03] point out, direct measures of (dis)similarity can be misleading. One example is in

measuring the Euclidean distance between texts; Ertoz et al. show that the distance between

documents that do not share any common terms can be lower than between documents that do

share terms. They also point out that similarity measures such as the Jaccard coefficient and

cosine similarity can be "unreliable" when overall similarity between points is low. To

counter these shortcomings, rather than using direct measures of (dis)similarity some

clustering algorithms define similarity in terms of the number of nearest neighbours shared by

points. For example if u and v are two points that are close to each other and also close to a set

of points S then their similarity is "confirmed" by their mutual proximity to points in S. When

an edge is drawn between every pair of points that have each other in their list of k nearest

neighbours this forms the shared nearest neighbour (SNN) graph [IP73]. The weight of an

edge in an SNN graph, i.e. the similarity between its end points is defined as follows:

43

similarity{u, v) = size(NN(u) (l NN(v» (3.1)

NN(u) and NN(v) are the nearest neighbour lists of u and v respectively and similarity is

proportional to the size of their intersection. This similarity measure works well in high

dimensions and the SNN graph can be calculated in O(N log N) time [KHK99].

CHAMELEON [KHK99] is a two-phase clustering algorithm that utilises the SNN

graph. In the first phase it creates a sparse SNN graph and partitions it into many dense sub

clusters. Density of a point is taken as the sum of the edge weights incident to the point. In the

second phase, an agglomerative hierarchical clustering algorithm is used to successively

merge the sub-clusters according to their relative inter-connectivity and relative closeness.

Another approach using the SNN graph was proposed by Ertoz et aI. [ESK03]. Here the

density based clustering algorithm DBSCAN is extended by building an SNN graph and

defining density as the number of points within a radius (eps-neighbourhood) determined by

SNN similarity. While this algorithm still requires the user to input the eps-neighbourhood

and MinPts parameters (see Section 3.3) it outperforms DBSCAN by being able to detect

clusters of different densities. This is because the eps-neighbourhood is relative to shared

nearest neighbours and not a direct measure of dissimilarity.

In summary, graph-theoretic clustering algorithms generally take extra time in graph

construction but the good thing about graphs is that they can succinctly represent the

information required to detect clusters of different shapes, sizes and densities when noise is

present.

3.5 Grid-based

By dividing a data space into contiguous regions, it is possible to index and summarise points

according to the cells in which they reside. While this provides a form of data compression, it

also potentially provides fast access to information such as the neighbourhood relationships,

which is required for clustering. Grid-based clustering algorithms work upon such a

representation to take advantage of the fast information access and the intuitive notion of

density as defined by the number of points in a cell.

The grid-based approach is the dual of graph-theoretic clustering; it was stated in

Section 3.4 that the modus operandi of many graph-theoretic clustering algorithms consists of

two steps. The first is to define a graph that efficiently contains the information necessary to

derme clusters; the equivalent of this in Grid-based clustering is to partition the data space into

regular cells. The second step in graph-theoretic clustering is to employ a strategy of edge

removal that will decompose the graph and reveal clusters; in the grid-based method, the

equivalent is to employ a strategy for merging cells (See Figure 3.10).

11 J2 H 3' 15 3&

as u 27 21 29)0

I
I

19 20 21 ' 33 23 U

.

13 14 IS l' 1'7 11 ,

7 • , 111 U 12
I .

1 a) , Ii ,

Figure 3.1 0 Partitioning of a 2-d data space into regular cells. The resulting structure, called a map

[HK98] or grid structure [Sch96], can intuitively be generalised to the multi-dimensional case.

Wang et al. developed an algorithm called STING [WYM97] in which the data space is

divided into nested rectangular cells that map to a cluster hierarchy. The smallest cells - those

most deeply nested - are represented by summary statistics such as mean and standard

deviation calculated directly from the data contained. The statistics of higher level cells are

computed from their children. By using summary statistics to represent the data, the

information required for clustering and subsequent querying can be stored in main memory

even if the original data set is too large. The authors do not provide details on the time

complexity required to initially partition the space, although it is suspected that it will be

around O(N log N) because of the recursive nature of the cell division, N being the number of

data points. However, the authors do show that the time complexity involved in querying the

structure is O(k) where k is the number of most deeply nested cells and k < < N.

Schikuta considers grid-based clustering as a process of organising the value space

surrounding points rather than organising the points themselves [Sch96]. Schikuta's approach

revolves around the use of a structure similar to a hash table for representing the data. This is

referred to as a grid structure and is developed by introducing points, one by one, into the

structure. The grid structure initially consists of one large hypercube with an upper bound on

the number of points it can contain. Once this upper bound is met, the hypercube is

recursively split into two new hypercubes, demarking a division point on the scale for each

45

dimension, and new data are allocated to a hypercube according to their attribute values. This

approach, like STING, also produces a hierarchical clustering result. The algorithm works by

finding the densest hypercubes (those hypercubes with the largest ratio of number of points to

volume), making them cluster centres and then examining their neighbours, adding them to

the clusters in order of increasing density. Each time a hypercube is merged into a cluster, a

corresponding level is created in the cluster hierarchy.

Although grid-based clustering can provide an efficient representation of a data set,

there are several disadvantages. Since data points are summarised according to the contents of

the cell in which they reside, individual points do not have equal importance. Also, the

number of cells in which to partition the space grows exponentially with dimensionality.

Hinneburg and Keirn [HK98] also point out that clusters can potentially be split up over many

grid cells resulting in the necessity of the expensive process of remerging them.

3.6 Model-based

Unlike the clustering methods described in the previous sections, clusters can be modelled by

probability density functions. Although similar to density-based clustering, this approach

instead considers density distribution functions rather than the raw densities. The most basic

model-based clustering technique assumes that each cluster follows a Gaussian distribution,

and that the data set can therefore be modelled as a mixture of Gaussians. The parameters of

the individual Gaussian mixture components, namely the mean, the variance, the mixing

weights, and the number of components, can be estimated from the data.

The estimation of these parameters is known as the maximum-likelihood parameter

estimation problem. Given a set of points (observations) X = {XI, X], ••• , XII}' that are drawn

from a set of unknown distributions E = {el, e], ... , ek}, the density at point X, with respect to

distribution ej is given by the density function f!..x, I 0) where 0 is the set of unknown

parameters. The likelihood of the parameters, given the input point data, is L(O, t IX).

n k

L(8,rIX)= TILt./(x, 10)
r=1 1=1 (3.2)

Where -r:. is the probability that point Xr belongs to distribution ej.

46

The most common method of maximising the likelihood function is via the

Expectation-Maximisation (EM) algorithm [DLR77]. The algorithm has two steps and begins

by initially estimating the set of parameters and iteratively rescoring the input data

accordingly. The score of a data point represents the likelihood of it belonging to a particular

component of the mixture model. In the second step, the algorithm updates the set of

parameters to increase their likelihood given the data. These two steps are repeated until the

model converges to a local maximum of the likelihood function. Data points that are allocated

the same mixture component are deemed to be in the same cluster.

While model-based clustering can outperform single-link and K-means algorithms, it

can exhibit high time and space complexity when the mixture parameters are left

unconstrained. Another disadvantage is that the user is left to specify the number of clusters

[Fas99].

3.7 Conclusions
Clustering techniques can be classified according to six categories: hierarchical, partitionai,

density-based, graph-theoretic, grid-based and model-based. It is evident these categories are

interrelated. For example, bisecting K-means is a partitional algorithm but it can also build a

cluster hierarchy; the most common graph-theoretic techniques (single-, average- and

complete-link) are also predisposed to produce cluster hierarchies. Also, model-based

techniques formally use probability density functions (PDFs) and can therefore be considered

as density-based.

An important issue concerning clustering algorithms is in choosing the correct type of

algorithm to apply in different situations. For example, if the data are of high cardinality and

dimensionality, a partitional algorithm might be appropriate for faster computation; if the data

contains clusters of varying shapes, then a graph-based method might be more appropriate.

However, the common traits among the different clustering methods and the ability of some

methods to do better than others, has naturally led to the exploration of hybrid clustering

algorithms. The continuing research into such algorithms is looking promising for creating

more general purpose techniques with higher efficiency that are able to support interactive

applications. In Chapter 5, a new hybrid clustering algorithm, borrowing from graph- and

density-based approaches is described.

In the context of information visualisation, clustering allows for a richer representation

of data. Clustering results can be in the form of interactive dendrograms or scatterplots (in the

2-d or 3-d case) where latent structure in the data is made clearly visible and interpretable.

47

Also, the ability of clustering algorithms to decompose a data set into a smaller number of

significant units is also advantageous to dimension reduction as demonstrated in Chapters 4

and 5. More generally, individual clustering algorithms can be considered as computational

tools that analysts can select according to their circumstances. If these algorithms are

packaged into an easily accessible toolbox then it would allow their flexible application and

potentially their combination for efficient hybrid clustering and dimension reduction solutions.

In the next chapter, dimension reduction techniques will be described and it is shown that by

reducing data dimensionality, latent structure can be made more readily visible.

48

4. Dimension reduction

As shown in the previous chapter, the cardinality of data, i.e. the number of individual data

items, can be reduced to a smaller number of distinct clusters. This reduced representation

makes understanding, manipulating and visualising the data easier. However, there exists an

orthogonal approach to acquiring a reduced representation of the data and this is achieved by

reducing dimensionality.

Consider a data set X = {x" X;z, ••. , xN } consisting of n data items, each represented as a

vector of d variables, observations or measurements, XI = [au, a1.l,"" ad,lf. It is common to

consider d as dimensionality thus providing a set of axes that define the data space. One of the

most effective and scalable ways to graphically present an overview of data is via a scatterplot

because it can plot all of the data against two or three axes when d :S:3. As demonstrated in

Section 2.3.1, point patterns in scatterplots such as clusters can visibly stand out as individual

perceptual units. The scatterplot brings out Gestalt qualities and therefore clustering is carried

out automatically by the human visual system. However, when d > 3, data cannot be directly

depicted as points on a scatterplot unless the number of remaining dimensions is sufficiently

small enough to be encoded into retinal variables such as shape, colour, size and orientation of

glyphs [CMS99]. A common approach in exploratory data analysis is to produce a matrix of

2-d scatterplots from all possible and unique pairs of dimensions [BC87] but the drawback

here is that the number of scatterplots is equal to d(d - 1)/2 and therefore can quickly become

overwhelming.

In such cases it is desirable to reduce the dimensionality and this can be achieved by

feature selection or feature extraction. These are terms borrowed from the nomenclature of

cluster analysis [JMF99] but they are directly relevant to the process of dimension reduction.

When a scientist is making observations of an experiment, deciding which measurements to

record is a manual form of feature selection, however, when the number of possible variables

is large and their interrelationships are unclear, this task becomes more complicated. Feature

selection is the process of filtering out dimensions (features) that are deemed redundant or

irrelevant. If two dimensions are highly correlated then one might be redundant; they might

both refer to a single higher level observation and therefore one dimension could be used in

their place. In the context of text mining where each unique word can be considered as a

dimension, redundancy is dealt with by replacing content-bearing words by their word stems

or synonyms. For example the terms visualise and visualisation might be replaced by visual.

49

The text mining analogy also provides a good example of filtering out irrelevant dimensions.

Stop words (articles and connectives) are treated as irrelevant noise - they are deemed not to

bear any content - and are therefore removed [SaI71]. Another method of feature selection.

illustrated in Section 4.3.3, is based upon clustering dimensions according to the correlation

coefficients of their observations and visualising the results. In this case, the user can see

which dimensions are potentially redundant and remove them from the analysis.

Feature selection is usually carried out as a pre-processing stage to reduce

dimensionality and therefore make data more manageable for time and space intensive

processes such as those involved in text mining and information retrieval. Feature extraction,

on the other hand, is a process that often follows feature selection, and involves transforming a

set of dimensions into a smaller set of derived dimensions. For example, Principal Component

Analysis (see Section 4.1.1) is a type of feature extraction where the resulting dimensions are

derived from a linear combination of the original dimensions. In Section 4.3.3, it is shown that

dimension reduction tasks commonly encountered in the field of investigative psychology

consist of a cyclic process of feature selection and extraction. Here, the two processes feed

into each other as the analyst forms, tests and refines hypotheses on the relationships between

variables and between the data items composed of the variables.

Dimension reduction is primarily concerned with finding a smaller data space (or low

dimensional embedding) that contains as much information as possible from the original

space. Regarding the author's research, it is desirable to reduce the number of dimensions to

two and therefore accommodate visualisation of data via scatterplots so that latent structure is

pronounced. This chapter describes some of the most prominent techniques in dimension

reduction. Most of the techniques are accompanied with examples of their salient properties as

observed from the author's experiments.

4.1 Projection techniques

One way of reducing dimensionality is to geometrically project data into a lower dimensional

space. A simple example is shown in Figure 4.1 where points in a 3-dimensional Euclidean

space have been projected onto a plane that is parallel to the z-x plane. Projection techniques

typically produce an embedding space that is derived from a linear combination of the original

dimensions. One such example is PCA where the projection plane is effectively rotated to a

position where the projected points retain as much variance as possible. PCA and other

projection techniques will be discussed in the following subsections.

50

• y
• •

•

x

Figure 4.1 Projection of 3-dimensional points onto a plane.

4.1.1 Principal Component Analysis (PCA)

PCA is a classical statistical method and one of the most widely used projection techniques for

dimension reduction [ED91]. It linearly combines correlated dimensions to produce a smaller

set of uncorrelated dimensions under the premise that such correlations indicate redundant

dimensions. The resulting derived axes are called principal components. The ftrst principal

component corresponds to the direction of greatest variance in the data and provides the ftrst

axis onto which the data can be projected. The second principal component is orthogonal to

the ftrst and the third is orthogonal to the ftrst and second, and so on, progressively accounting

for as much variance in the data as possible. For visualisation purposes, it is common to

project the data onto the ftrst two principal components thus providing a 2-d scatterplot that

maximally preserves variance.

PCA is carried out via an eigenanalysis as follows. Suppose a data set is in the form of a

population of vectors X where:

(4.1)

With mean given by:

(4.2)

and the symmetric covariance matrix denoted as:

51

(4.3)

Elements of the covariance matrix are denoted CIJ and represent the covariance between

variables; and j where Ctl is the variance of variable; - the amount of spread around its mean

value. The projection space or orthogonal basis can then be detennined by finding the

eigenvectors el and corresponding scalar eigenvalues At of the covariance matrix. These values

are solutions of the following equation:

(4.4)

and can be found by solving the characteristic equation:

(4.5)

Where I is the identity matrix and 1.1 denotes the determinant.

Given a data vector X and a matrix A representing the eigenvectors as the rows, the data

vector's projection coordinates yare obtained by the following equation:

(4.6)

An eigenvalue is proportional to the amount of variance in the data set along the

direction of the corresponding eigenvector. Thus, by composing the matrix A from the

eigenvectors defined by the two highest eigenvalues, the 2-d projection of the data that

maximally preserves variance is obtained.

However, there are two important drawbacks of peA. The first is that in maximising

variance as a global condition, interesting structure in the data that does not dominate the

overall variance can be hidden. Figure 4.2 provides an example. The data in the figure is

comprised of 10,000 3-d objects forming a 'swiss roll' shaped distribution. Since the greatest

spread of the data is along the breadth of the swiss roll, the peA projection onto the first two

principal components provides a rather uninformative view. It is only when a cross-section of

the data is taken, so that the greatest variance is across the diameter of the swiss roll, that peA

depicts a more informative view.

52

This issue has been indirectly addressed by Roweis and Saul who developed a

dimension reduction technique called locally linear embedding [RSOO]. Rather than trying to

reduce dimensionality according to overall variance, samples are taken throughout the data

and the localised regions of the samples are used to determine individual low-dimensional

subspaces. When these local projections are patched together they can potentially depict

global non-linear structure.

Figure 4.2 PCA projections of a 3-dimensional swiss roll-shaped data set. The image on the left is the

projection of the whole set. The image on the right is a PCA projection of the highlighted cross-section

of the image on the left. These projections were generated by the author's HIVE software.

Unfortunately, even a minority of outliers in the data can cause such a 'distraction' as

shown in figure 4.3. Though, one way of overcoming this problem was proposed by Koren

and Carmel [KC03] who developed a weighted PCA scheme. Here, pairwise distances are

normalised in such a way that larger distances are less dominant in determining the projection.

53

••• • ••
• • •• ••

Figure 4.3 Since the first principal component is the direction of greatest variance in the data, the

outliers shown in blue on the left, dominate the regression. This results in the projection onto the

principal component (right) where possibly significant structure, such as the two clusters shown, has

been lost.

The second drawback of peA is due to the fact that the low-dimensional space is

derived from a linear combination of the original dimensions. This means that unless any

significant structure in the data lies upon a linear manifold, then it will not be adequately

represented by peA. These problems are also inherent in similar eigenanalysis methods such

as singular value decomposition andfactor analysis.

An advantage of peA is that a neural network implementation can be quite fast. To

train the network requires O(LDP) time where L » N is the number of epochs (training

iterations), D is the dimensionality of the training data and P is the dimensionality of the

projection space. To produce the projection takes O(NDP) where N is the cardinality of the

data [Oja82].

4.1.2 Singular Value Decomposition (SVD)

Another well-known projection technique for dimension reduction is Singular Value

Decomposition. The SVD of a rectangular data matrix X with n rows and d columns is

obtained by its decomposition into three special matrices:

x = U[nx rJ . S[rx r J . Ji[~XdJ (4.7)

Where U and V are composed of the left and right singular vectors of X respectively and have

orthonormal columns. S is a square diagonal matrix and contains the singular values, the

number of which is determined by the rank r of X.

54

A singular value is proportional to the amount of variance in the data set along the

direction of the corresponding singular vector and therefore SVD is similar to peA in that the

data can be projected onto a lower, k-dimensional space by sorting the singular values (peA

eigenvalues) in descending order and taking the first k corresponding singular vectors (peA

eigenvectors). This results in a new decomposition showing the best least-squares-fit to X

(4.8)

For example, if k = 2 then U contains the 2-dimensional coordinates of the items (represented

by rows) in the data set that minimise the sum of squares of projection errors. Like peA, this

can be thought of as rotating a plane in space to maximise the variance of the projected points.

SVD was employed for Latent Semantic Analysis (LSA) by Deerwester et al. in

reducing the dimensionality of document collections to improve retrieval [DDF*90]. In this

case the input is a term-by-document matrix, resulting in the left singular vectors being the

coordinates of terms, and the right singular vectors representing the coordinates of the

documents in k-dimensional space. Deerwester et al. provided an example where k = 2, using

a scatter plot to show how the proximity of terms and documents exposes latent relationships

in the data due to second and higher-order term co-occurrences.

SVD suffers from the same drawbacks as peA, namely non-linear structure can elude

analysis and outliers can hamper the detection of potentially interesting projections. SVD is

also computationally intensive, running in 0(11 D) time where Nand D are the cardinality and

dimensionality of the input data [LG03]. However, if the input data are sparse then the time

complexity can be reduced to O(NcD) time where c is the average number of non-zero entries

in the input matrix [BMOl].

4.1.3 Projection Pursuit

While the goal of peA and SVD is to find a projection based upon the directions of greatest

variance, the goal of Projection Pursuit is to find low-dimensional projections that optimise a

different projection index. The projection index defines the "interest" of a direction and is

typically a measure of departure from a Gaussian density. This is because the standard normal

distribution does not contain much structure and is therefore not considered interesting in this

context.

The negative Shannon entropy is commonly used as the projection index [Hub85] since

it is minimised by the Gaussian distribution. Given a variable x with a probability density

function/. its negative Shannon entropy is given by:

55

Q(x) = If(X)logf(X)d(x) (4.9)

When the projection space is 2-dimensional the outcome of projection pursuit is one or

more static views portraying potentially interesting structure. However, Cook et al. [CBCH95]

realised that these disparate views suffered from a lack of context. Inspired by Asimov's

Grand Tour [Asi85], Cook et al. remedied this in the development of a technique of smoothly

animating the transition from one projection to the next by interpolating a series of

intennediate projections. They called this technique a projection pursuit guided tour. This

process can be likened to smoothly rotating a 2-d viewing plane so that a salient aspect of

structure is always visible in the projected point pattern, albeit from different angles.

While this approach helps alleviate the problem of not being able to expose any non

linear structure, which is common to all linear dimension reduction methods, projection

pursuit still suffers from another drawback due to the necessity of sphering [CBCH95].

Sphering is a pre-processing step where data are conditioned to remove any effects of location

(mean) and scale (variance) on the search for the projection pursuit index. If this is not carried

out then differences between the distribution of variables with respect to location and scale

might dominate other structure. However, as pointed out by Cook et aI., sphering changes the

shape of the data and as a result the projected views might present or elide structure as an

artefact of this conditioning.

4.1.4 Random Projection (RP)

First proposed by Kaski [Kas98], Random Projection or Random Mapping, is one of the

simplest dimension reduction techniques. In contrast to the techniques described above, RP

does not use a measure of interest such as variance to identify a good projection [FB03]. It

simply projects data through the origin onto a random subspace. Given a data matrix X with n

rows and d columns, and a random matrix R, the projection onto a lower k-dimensional

subspace is achieved by the following matrix multiplication (Equation 4.10):

(4.10)

Where A is the matrix in which the rows are the k-dimensional coordinates of the input data.

Kaski showed that RP approximately preserves the mutual similarities in the original

data, though the amount of distortion in the similarities is inversely proportional to (d - k).

This is based upon the Johnson-Lindenstrauss lemma [JL84] that states for n points in a d-

S6

dimensional Euclidean space, there exists a k-dimensional projection where k ~O(e-2 log n),

such that similarities will not be distorted more than a factor of (1 ± e) with 0 < e < 1. Figure

4.4 shows a comparison between peA and RP in projecting a 3-d cube. It can be seen that

peA preserves the similarities relatively well, while RP introduces some distortion.

Figure 4.4 A PCA projection of a 3-d cube (left). A random projection of the cube distorts mutual

similarities (right). Both of the above projections were produced by the HIVE software [RC03a,

RC03b].

The susceptibility of RP to distorting mutual similarities led Kohonen et al. to use it as a pre

processing stage in the visualisation of a massive document collection [KKL *00]. Rather than

attempting to reduce the dimensionality, which is in tens of thousands for such a corpus, down

to two for visualisation, the authors opted to initially reduce it to several hundred so that

distortion would be lessened. This compressed representation of the data then lessened the

burden on a more computationally intensive process for further reduction and subsequent

visualisation (see Section 5.2).

It should be mentioned that the distortion introduced by RP is not without its benefits,

as Dasgupta discovered [DasOO]. Dasgupta showed that the shape of clusters in a high

dimensional space is made more spherical after RP while the extent of their separation is

maintained. This therefore suggests that random projection might be an appropriate pre

processing step for clustering algorithms such as K-means and model-based techniques that

are naturally predisposed to finding spherical clusters. Dasgupta combined RP and the EM

algorithm (see Section 3.6) and the results showed that the hybrid algorithm performed better

than EM alone.

The major advantage ofRP is that it is computationally very simple because it relies on

a simple matrix multiplication. The random matrix R can be created in O(dk) time and the

projection of the data matrix X onto the k-dimensional subspace is O(dkn). However, as with

SVD (see Section 4.1.2) if X and/or R is sparse, then the time complexity can be reduced to

57

O(clcn) where c is the average number of non-zero entries [BM01]. Even if Xis not sparse, one

can employ a reasonably sparse random matrix such as that suggested by Achlioptas [AchOl]:

{

+ I with probability V6
'i,} = .J3 . 0 with probability 2/3

-I with probability 1/6
(4.11)

Here, the element r at the ,-th row and J-th column of the random matrix is assigned an integer

value according to the given probabilities. With this random matrix, further time can be saved

if computations are carried out using integer arithmetic.

4.1.5 FastMap

In 1995 Faloutsos and Lin proposed a very simple yet effective dimension reduction algorithm

called FastMap [FL95]. Its name is taken from its achievement of "a fast mapping of objects

into points, so that distances are preserved well." Like Random Mapping, FastMap does not

explicitly try to optimise a measure of interest in a projection, but it does work in a similar,

albeit simpler way to PCA and SVD.

The algorithm starts by identifying two objects in the data set that are relatively far

apart in the original D-dimensional space. These items are referred to as pivot objects (Oa, Ob)

and the line that passes through them is taken as the first axis onto which the remainder of the

data set is initially projected. This projection is achieved by the Cosine Law where the triangle

formed by the pivot objects and a data object 0 1 allows for that object's I-d coordinate to be

solved. See Figure 4.5.

Figure 4.5 Object 0 1 is projcctcd using the Cosine Law onto the line passing through the pivot objects

Oaand 0".

S8

From Figure 4.5 it can be seen that the l-d coordinate of object 0 1 is given by XI' This value is

derived from the Cosine Law as follows:

(4.12)

Where d(iJ") is the distance between objects i andj.

It is clear that the only information required to find the projection coordinates in the l-d

case is the distances between points. To extend this to the 2-d and eventually the k-d case, the

authors realised that they had to be able to determine the distances upon consecutive

orthogonal axes. This would enable the Cosine Law to determine the new projection

coordinate.

To achieve this, the authors devised a way to measure distance on a (D-I) hyperplane H

that is perpendicular to the line (Oa, Ob). Let 0/ denote object 0 1 when it is projected onto H,

and d'(0 1', OJ ~ represent the distance between two objects on H. When this distance function

is used to find a second set of pivots, thus defining a second line orthogonal to the first (Oa,

0,,), then it can be used to provide the second projection coordinate by Equation 4.12,

substituting d(Oj, q) with d'(O/, Oj~. Figure 4.6 illustrates this reasoning.

By Pythagoras' theorem, d'(0/, OJ ~ is calculated as follows:

(4.13)

This method can be extended to find k-d projections by recursively calculating the distances

on consecutive orthogonal hyperplanes and applying the Cosine Law to find the projection

coordinates.

S9

Xi - Xj

d(OI, q,~

---------------, OJ

-, OJ'
7

Figure 4.6 Objects O(and OJ are projected onto the hyperplane H, perpendicular to the line through Oa

and Ob'

Dimension reduction using FastMap can be achieved in O(nk) time, where n is the

number of items in the data set and k is the desired number of target dimensions. In

comparison with a non-linear technique called Multidimensional Scaling (MDS), the authors

also showed that FastMap produced a layout of almost equal quality in terms of layout stress

a measure of the residual sum of error. In plotting stress against time, the authors argue that

the ideal scenario is to achieve zero stress in zero time and therefore the closer the trace to the

origin, the better [FL95]. From this it was shown that FastMap's trace is indeed closer to this

ideal origin than MDS and achieves almost an order of magnitude speed increase while

maintaining comparable output quality. MDS and stress measures will be discussed more in

Section 4.3.

The dimension reduction algorithms discussed above rely on a linear combination of the

original dimensions to derive a projection basis. For this reason, they are commonly referred

to as linear layout algorithms. While this approach can often be effective in representing data,

potentially interesting non-linear structure might be lost because the linear combination of

dimensions is not adequate for capturing non-linear relationships in the data. In the following

sections several non-linear dimension reduction techniques will be discussed.

60

4.2 Kohonen's Self-Organising Feature Map

The inspiration for the Self-Organising Feature Map (SOM) comes from the topographic maps

in the mammalian brain [RMS92], where closely related sensory stimuli activate topologically

close regions in the brain. The SOM mimics this natural mapping by activating neurons,

placed in a 2- or 3-d regular grid, according the input patterns that are presented. This grid (or

map) is an Artificial Neural Network (ANN) and each neuron is represented by a reference

vector that is of equal dimensionality to the input pattern vectors.

The SOM is an example of competitive learning and is trained in an unsupervised

manner by presenting the input data xe9t" to the map of reference vectors m1 e9t".

Reference vectors compete with each other to be allocated each input pattern and this is

usually determined by the lowest Euclidean distance. When the winner or best matching unit

is found, it is adjusted, along with neighbouring reference vectors, to be closer to the input.

This representation is gradually refined by the learning process until the map provides an

ordered non-linear regression of the reference vectors into the data space. The reference

vectors ml are updated at training step t + 1 by the following function.

(4.14)

ha(t) is a symmetric, monotonically decreasing function of the distance between the winning

reference vector c and neighbour ml on the map and is typically Gaussian. The outcome of this

function is that the closer neighbours are to the winning vector, the more similar they will be

made to the input. The function ha(t), known as the neighbourhoodfunction, is defined below:

(4.15)

Where 0 < a(t) < 1 determines the learning rate which decreases monotonically with t

resulting in smaller updates to the reference vectors with time.

This process prompts the evolution or self-organising of a topologically ordered map

with each reference vector being representative of one or more closely related points within

the training set. This training stage can be said to classify the data set because the topological

regions on the map conform to groups of similar items in the data set. Once training is

complete, new data can be assigned to a class by finding the closest reference vector.

61

The SOM is trained by repeatedly inputting all of the training data and updating the

reference vectors accordingly. Each of these cycles is called an epoch which can be carried

out in O(ND) time where N is the number of training items and D is their dimensionality. The

number of epochs is bounded by the SOM's learning rate «, but a smaller number is often

heuristically chosen.

The SOM effectively maps the data into a 2- or 3-d layout that can provide a useful

visualisation because the neurons can be depicted as graphical structures and the map can be

partitioned into regions allowing one to scan the view and gain insight into the data space

being represented. One can therefore think of the SOM as providing clustering and dimension

reduction simultaneously. In an implementation by Lin et ai. [LSM91], the SOM was applied

to the visualisation and retrieval of text documents where summaries of cluster contents were

used to label regions of the layout called concept areas. Lin et al.'s idea was to provide a

semantic map of the document associations akin to the mental or psychological map in the

human brain. In another application, Lagus et al. [LHKK96] likened the neural clusters to

document traps or bins which could be checked as the SOM evolves over time to see if new

interesting texts had arrived, in a similar way to consulting the in-box of an email application.

However, it should be noted that the discrete layout of the SOM elides the proportional

(dis)similarities between individual items that would otherwise be apparent in a continuous

spatial layout such as in a scatterplot. This is mainly due to the neighbourhood function used

in the construction of the SOM. Only local areas are adjusted in training and, as a result, the

global relationships are coarsely represented.

4.2.1 Batch-mode SOM

The learning strategy of the traditional SOM can be described as incremental because after

each presentation of a training pattern, the weights of the best matching unit (BMU) and its

neighbours are updated. Heskes et ai. [HW96] describe the properties of a variant of the

traditional SOM, called the batch-mode SOM. In this case the weights of the network are

updated at the end of each algorithmic epoch rather than after the presentation of each training

pattern. In this way, the batch-mode SOM is described as deterministic because running the

algorithm repeatedly for the same initialisation of reference vectors will produce the same

output, whereas the traditional SOM is stochastic in the arbitrary way in which the input

patterns are presented to the network.

The batch-mode SOM, like its traditional counterpart, provides the same discrete visual

structure depicting the competitive layer, but it can be quicker in converging to a solution

62

because there is a lesser number of weight updates. This makes it a promising algorithm to

use for higher volumes of data [KKL *00].

This algorithm was implemented by the author to informally assess its performance and

gain a feel for how the discrete visual output conveys information. The software was written

in Microsoft Visual Basic 6.0 and the data set used was financial bond trade information

consisting of 1000 records. In each record there are nine fields, and therefore these data are of

relatively low dimensionality, but they still cannot be easily mapped directly onto a low

dimensional space for visualisation. Figure 4.7 shows a screen shot from the software.

Nl.mber 01 map row. <II'ld coIumm:

5 15)J 5 15)J

.!.l J .!.I.!I J .!.I
I

Number 01 epoch&:
1 100 curent epoch:
• j

• J

Kernel Clulterthreohold:
I 1 5 1 1001

.!I:: .!.I ~ ~

• - Apply I
Refresh table I Open dlJIa file I Rill

1 0000 CHF Dome;tic Bond Second",
HmO CHF E uropea'1 Government

100 CHF Dome;tic Bond Secondao
500 CHF FOIeign Bond Secondary 02l02I19

342 III 4.(.:;7 2527 10000 CHF European Government 06J02J19
21 I>AA 4.157 2425 200 CHF Foreign Bond Second"'y 06J02J19

1(,:; 2 CHF FFF 4.018 2465 3000 CHF Dome;tic Bond SecOl'lda1 07102119
73 4 CHI" GGG 4.165 2485 250 CHF Foreign Bond Secondary 07102119
B1 4 CHI" CCC 4.124 2484 100 CHF Foreign Bond Secondary 0BI02I19
10 5 CHI" I>AA 4.te6 2521 30000 CHF Europe"" Goverrvnent 12102119
36 4 CHF I>AA 4.199 2418 100 CHf forergn 80nd Secondary 1310211S..:.l

Figure 4.7 A screen shot from the author' s batch-SOM implementation.

The discrete grid-like output of the batch SOM is shown in the top-left comer of the

figure. Each square represents a neuron (potential cluster) and the lighter the colour, the more

records it represents. The controls to the right of the grid are for setting parameters of the

SOM. These include the size of the grid and the number of epochs. The control for Kernel

size determines how many layers of neighbours to each winning neuron have their weights

updated at the end of each epoch, and the cluster threshold control allows the view to elide

neurons with a degree of membership below the set value. The table at the bottom of the view

gives details of the members of the currently selected cluster, which is shown as the yellow

63

neuron on the layout. This table also allows the inclusion or exclusion of fields in the training

of the SOM, i.e. this allows customisable feature selection. As shown, the red column headers

represent features (dimensions) that have been excluded from the training phase, whereas the

green column headers indicate features that have been taken into account.

From this exercise it is concluded that the batch-mode SOM could produce a rough

intermediate layout for relatively large data sets. With the appropriate interaction controls,

such as more advanced visual filtering, and better use of graphical structures representing the

neurons, more information can be gleaned from this technique. The implementation of the

batch-SOM is relatively simple, implying that it could be easily incorporated as a pre

processing stage or visualisation in an existing system. When the algorithm was run on the

data set, it was found to converge to a solution much more quickly than a canonical spring

model (see Section 4.4). However, the discrete layout produced can be hard to interpret even

though it can capture non-linear relationships in the data - it tends to require more graphical

embellishments to convey structural information because the position of clusters do not vary.

In the author's implementation, this was alleviated somewhat by using colouring, and an

interlinked table to brush clusters and subsequently reveal their contents.

The following section will, however, describe other methods where individual points

can be represented in 2-d scatterplots, engaging Gestalt to reveal non-linear structure.

4.3 Multidimensional Scaling

Most of the dimension reduction techniques described above are applied in the process of

feature extraction - they help identify, out of a number of pre-existing features (dimensions),

the ones that convey salient information while removing or combining those that are irrelevant

or redundant. There exists, however, a class of data which is not quantified by a set of features

but by mutual (dis)similarities based upon people's judgements. Rather than being represented

by true distances in a high-dimensional space, they can be considered as comparative

distances in a space of unknown dimensionality [Tor52]. Such data are known as proximity

data [She62] because only their subjective similarities are given, i.e. their mutual closeness or

nearness is defined by some hitherto unknown mental model. Such data are commonly

generated by psychophysical experimentation [BG97]. For example, a group of human

subjects might be presented with a set of stimuli - some physical or abstract entities - and be

asked to comment upon the similarities between all pairwise or triadic combinations. The goal

then, is to find a Euclidean space of the minimum dimensionality into which the data can be

64

fitted so that the proportions of similarity are preserved. These dimensions might then be

interpreted as the underlying principles of a theoretical mental or physiological model.

Multidimensional Scaling (MDS) is a tool that has evolved to transform proximity data

into such a geometric representation. A good example of the efficacy of MDS was provided

by Shepard in 1962 [She62]. The data from Shepard's experiment were acquired from a study

by Ekman [Ekm54] where subjects were presented with 14 colours of varying hue - the

stimuli. Each subject was presented with the colours, two at a time and asked to judge how

similar they were on a five-step scale. The mean ratings were then transformed to lie on a

scale between 0 (for "no similarity at all") and 1 (for "identity") in a 14 x 14 matrix. When

Shepard fed these data into his MDS routine, a 2-d configuration of points was obtained that

bore a striking resemblance to the familiar colour circle. The comparison is illustrated in

figure 4.8.

./
/

4;/
~/

/'
........ -."..

RED

Figure 4.8 The coloured points bounding the figure, ranging from red to violet show the configuration

obtained by Shepard's MDS algorithm when run on the colour-similarity data. It is clear that this

clo ely follow the familiar colour circle (centre). The original figure [Sbe62] has been rotated and

flipped in thi reproduction for ease of comparison.

65

The colour circle was discovered by the physicist and mathematician Isaac Newton

three centuries ago and contributes to today's theories on the psychological structure of

colour. Opposing hues complement one another when mixed and one axis spans the perceived

warm colours (from red to yellow) to the cool colours (from blue-green to blue-violet). The

underlying physiological and psychological principles of this are well-understood, but it is

intriguing that the MDS routine is able to reproduce the model just from the similarity

judgments of human subjects.

In the above example, the interpretation of Shepard's point configuration was

straightforward because of the prior knowledge of the colour circle. However, it is of interest

to consider what an observer's interpretation would be if there was not such an a priori model.

One might relate the vertical axis to the perceived difference between the warm and cool hues,

but what about the horizontal axis? In this case there appears to be no definite cognitive or

physical significance explained solely by this axis. Instead, it is a non-linear combination of

both orthogonal axes that is important. The increasing wavelength from violet through to red

is conveyed by this, hence the circle. This example suggests a warning in the general case of

interpreting such MDS layouts. While it might be tempting to only attribute the axes to trivial

or perhaps obvious factors, it should always be borne in mind that there might be more

complex relationships represented by their combination.

4.3.1 Torgerson's classical metric MDS

One of the first MDS routines was proposed by Torgerson in 1952 [Tor52] and operated by

transforming similarities into distances. This transformation was essential because similarities

are not often symmetric, nor do they obey the triangular inequality. As a result, they do not fit

into a Euclidean space. In the traditional unidimensional methods of analysis performed in

psychophysical and psychometrics, subjects are required to specify similarity judgements

between stimuli along one particular dimension such as brightness or weight. These

similarities are then conditioned to lie upon a scale to reflect the psychological distance or

difference between stimuli. As an example (provided by Torgerson), consider four stimuli SJ,

S2, S3 and S4 on the 1-<1 scale shown below:

66

Rather than scaling the stimuli to obtain a I-d solution, Torgerson's multidimensional

approach involved initially obtaining a scale of the similarities between all stimuli. So, for the

four stimuli, a l-d scale of the six inter-stimulus similarities might be as follows:

Torgerson pointed out that these comparative distances are not absolute distances. This is

important because it is the absolute distances that are essential in finding the Euclidean space

of the smallest dimensionality which might accurately represent the data. To obtain the

distance d/j between stimuli, Torgerson stated that a constant C must be added to the

comparative distances h/j:

(4.16)

He also stated that finding C is analogous to finding the true zero point of the scale of

comparative distances, and that this would then permit the stimuli to be fitted by a Euclidean

space of the smallest possible dimensionality. To continue with Torgerson's example,

consider the comparative distances between a set of five stimuli:

hI] = 1,

h/J = 2,

hu= I,

hJj = -I,

h2J = 1,

hu=4,

hJ5=-I,

h45 = o.

In this case the additive constant required is 4, resulting in the stimuli fitting into a 2-d space

as shown below:

67

If any number other than 4 was taken as C then a space of higher dimensionality would be

required to fit the derived distances.

Having developed a routine for deriving absolute distances from similarities,

Torgerson' s MDS algorithm then drew upon Young and Householder's method for

confirming whether data do indeed lie in a Euclidean space and if so, how to determine their

dimensionality [YH38]. This is achieved by finding a matrix of lower rank than that which

holds the distance information - a technique akin to peA and SVD. In other words, once the

Euclidean space is found in which the data fit, the space is rotated to produce a projection onto

a lower number of meaningful axes.

Torgerson's approach was one of the first breakthroughs in multidimensional scaling

and is known as classical metric MDS. The term metric is applied because the routine works

solely on quantitative similarities. It is a virtue of MDS that the meaningful dimensionality of

information can be uncovered from only a set of similarities. Recall from Section 4.1.5 that

FastMap has the ability to produce a projection of data from a set of distances alone. While

this provides an extremely quick reduction in dimensionality, it is worth noting that it cannot

handle the proximity data for which MDS has evolved.

Apart from being computationally intensive, requiring O(n3) time for transforming

similarities to distances alone, Torgerson's technique can be problematic when working with

fallible data. Errors might be made in observing, recording and encoding subjects ' similarity

judgments and therefore the proportions of mutual similarity might evade a Euclidean space of

suitably low dimensionality. This is because the routine seeks the absolute distances,

conforming as closely as possible to the proportions of mutual similarities. The MDS methods

described in the following subsections avoid this shortcoming.

68

4.3.2 Non-metric MDS

The second breakthrough in MDS was made by Shepard in 1962 [She62] whose algorithm is

classified as non-metric [Krus64] because it can handle qualitative as well as quantitative

measures of similarity. In embracing the analogy of similarity measures with representative

physical distances, Shepard named such observations proximity data and his technique as the

analysis of proximities. Shepard's approach treats input data types as ordinal by considering

only their rank ordering when reducing their dimensionality. He showed that the rank order of

mutual proximities is sufficient for metrically recovering a Euclidean configuration rather than

Torgerson's method of first transforming quantitative similarities into absolute quantitative

distances.

Shepard's algorithm starts by ordering the N(N - 1)/2 proximities between N objects,

from the smallest to the largest values. This produces a scale analogous to that of Torgerson's

scale of comparative distances. The goal thereafter is to arrange N points in Euclidean space

so that their mutual distances obey an inverse ranking of the proximities. For example, if

objects A and B have a high mutual proximity, then their representative points in Euclidean

space should have a low mutual distance. That is, the distances are constrained only to the

extent that they have a monotonic relationship with the original proximities; the proportions of

the distances do not have to comply exactly with those of the proximities. Thus, proximity is

treated as an unknown monotonic function of distance and once transformed by this function,

the data can be arranged in a Euclidean space.

To achieve a monotonic relationship, points are initially arranged on the vertices of an

(N - 1)-dimensional simplex centred at the origin and with edges of unit length. This ensures

that all inter-point distances are initially equal to unity thus removing any bias from the final

configuration. Also, when N points are placed in an (N - 1)-dimensional space, they can be

arranged to obtain any desired ordering of the mutual distances. These facts become clear if

one imagines the case where N = 3, with each of the points lying on the vertices of an

equilateral triangle - the 2-d simplex.

After the N points have been organised on the vertices of the simplex, the routine

iteratively updates their positions by comparing the rank order of their distances to the rank

order of their proximities, shrinking distances that are too large and stretching those that are

too small. This produces a set of displacement vectors that are added to the point coordinates

to move them closer to a monotonic relationship with the original proximities. Since the points

reside in a relatively high dimensional space, they are free to move quickly to positions

satisfying the monotonic requirement. However, as the goal of MDS is to reduce the

69

representative dimensionality of the input data, clearly the (N - l)-d configuration must be

flattened out to enable projection of the points into a space of lower dimensionality.

Shepard noted that dimension reduction is generally accompanied with an increase in

variance of the point coordinates. In initialising the points to lie on the simplex vertices, the

variance is at its minimum possible value because the inter-point distances are unity, thus to

reduce the dimensionality this variance must be increased. This is accomplished by

introducing a second set of displacement vectors, complementing those for attaining

monotonicity. Rather than shrinking the larger distances and stretching the smaller distances,

the opposite approach is required to increase variance and therefore force the configuration

into a space of smaller dimensionality. That is, the smaller distances are further reduced while

stretching out the larger distances. While the algorithm iteratively updates the point positions,

the two sets of displacement vectors gradually balance out to the stage where the routine

converges to a configuration of points where an optimal compromise between monotonicity

and dimensionality is accomplished. However, the points still reside in a space of (N - I)

dimensionality somewhat analogous to a plane in a 3-d space. To attain the final configuration

in the desired number of dimensions, the points are rotated to their principal axes before being

projected into the smaller space.

Shepard demonstrated how the monotonic function relating proximity to distance can

also be recovered. When the original proximities between pairs of stimuli are plotted against

the recovered pairwise distances in the low-d point configuration, the resulting trend shows

the shape of the function. This graph is known today as a Shepard plot. An example is given

in Figure 4.9. A set of 2-d data consisting of 300 points was converted into a set ofproximities

(specifically dissimilarities) by a Gaussian transformation based on that used by Shepard in

his sequel paper [She62]. These points were then fed into the routine so that the following

configuration and Shepard plot were produced:

70

14

13

12

II

10

~
g

~
8

E 7
'(i;

'" (3

is
5

4

3

2

0 .0 0 . 1 0 2 0 .3 0.4 0 .5 0.1'1

Low-D dlstanc"

Figure 4.9 The point configuration on the left was recovered from the original 2-d data after they were

tran formed into proximities. The Shepard plot on the right shows the shape of the function used in the

transformation. These images were produced in HIVE.

The function used to transform the original data into proximities is as follows:

S ij = exp[J.4 * dij) (4.17)

Where d/j represents the Euclidean distance between points i and j. In real-life data, the

function that allows proximity data to fit into a real Euclidean space can be of arbitrary shape,

however, using the above technique, the function can still be recovered no matter what the

shape. Note that if the original data had not been transformed, then the Shepard plot would

show a straight 45 degree line representing a one-to-one relationship between the original

inter-object distances and those recovered by the routine.

This MDS routine represented a breakthrough because it proved that quantitative

distances could be recovered from qualitative (non-metric) proximity data and the monotonic

function that relates proximities to the Euclidean distances could also be simultaneously

recovered. Shepard's routine has the advantage over Torgerson's approach in that it can

handle missing or erroneous data and it can be generalised to work with distance metrics other

than Euclidean. However, its downfall is its computational complexity. The routine requires

that N(N - 1)/2 distances must be calculated over the (N - 1)-d points for each update thus

taking O(N) time per iteration. The algorithm requires O(N) iterations to converge resulting

in an overall time complexity of O(N) although the author has recently reworked Shepard' s

algorithm to attain convergence in O(N) time. This is detailed in Section 5.4.

71

The criterion Shepard used for determining when to stop the iterative process, and

project the data into a space of lower dimensionality, is the overall departure from

monotonicity:

(4.18)

Where sl} is the proximity of objects i and j and s(dl}) is the proximity at the rank of the

corresponding configuration distance between the same objects. This is the closest Shepard

goes to providing a measure of the goodness of fit of the recovered configuration from the

given proximities. In 1964, Kruskal took this further to define a measure that the MDS routine

explicitly attempts to minimise [Krus64]. Instead of directly using the proximities, Kruskal

defines the distances required to maintain the monotonic relationship with the proximities and

takes the deviation of the current configuration distances from these ideal distances as a

measure of fit. This measure of the goodness of fit is called stress and is defined as follows:

(4.19)

Stress is the residual sum of squares of the difference between the actual distance dlj and the

desired distance dl}. While it is invariant to rotation and translation of the configuration, it

must also be normalised to make it invariant to uniform dilation.

Kruskal's version of the non-metric MDS algorithm employed a steepest descent

routine where the goal of each successive iteration is to reduce the measured stress as much as

possible. The routine ends when stress does not decrease further. While Kruskal's stress

measure provides a more solid theoretical foundation for MDS, one disadvantage of this

approach is due to the possibility that the steepest descent method might get stuck in a local

minimum. The fact that stress does not reduce in a successive iteration does not necessarily

mean that this is its lowest possible value; it might simply be resting in a valley in the curve of

the stress function.

The time complexity of Kruskal's routine is O(Jt) because stress takes O(Jf) to

compute when the dimensionality before projection is equal to (N - I) and approximately N

iterations are needed to attain a local minimum of the stress function.

72

It is interesting to note that both Shepard's and Kruskal's approaches initially increase

the dimensionality of the data to (N - I). The primary purpose of this is to quickly achieve

monotonicity through the increased freedom of the points in this large space. As such, both

methods rely on a linear projection technique such as PCA or SVD to collapse this

representation into a space of the lower target dimensionality. While this last step is a linear

transformation, the routine is still a non-linear technique in that it can represent non-linear

relationships within the data.

4.3.3 MDS for feature selection

In the introduction to this chapter, the distinction between feature selection and feature

extraction was provided. All of the examples of dimension reduction discussed hereto have

described feature extraction which is the derivation of a set of features (dimensions) that are

pertinent in succinctly representing the structure inherent in a set of data. However, MDS can

be used for feature selection. That is, a method of selecting a subset of the original variables to

use as dimensions for subsequent analysis of data.

Guttman [Gut68] developed a non-metric MDS routine called smallest space analysis

(SSA), known today as Similarity structure analysis. This is a form of MDS that became

popular with practitioners in the fields of psychometrics and investigative psychology

[Can85J. The example that will be provided here is concemed with the latter which is very

closely related to the author's current occupation.

In the field of investigative psychology, various observations of criminal activity made

at crime scenes are used to build behavioural models in order to profile offenders. Such

observations are collectively called modus operandi (MO) and are treated as variables in a

multivariate data set of crimes. These data are initially represented by a raw data matrix

(ROM) where crimes are allocated to the rows and variables to the columns. In the first step of

building a model of the typical MO for a particular type of crime, analysts apply SSA to the

data to attain a layout of the variables, rather than a layout of the crimes. Thus the starting

dimensionality is not the number of variables but the number of crimes. Formally, a data set of

N items and d dimensions is represented by d vectors AtCO Sai < d) comprised of N elements

a~O Sa} < N) [ABK98]. SSA then places variables that are highly correlated close to each

other while uncorrelated variables are placed further apart.

The output of this process is a scatterplot depicting the variables and the analyst

manually partitions this plot into thematic regions. This can be thought of as a kind of spatial

categorisation. For example, in the case of arson the variables might include the time of the

offence, its location and the type of accelerant used. The underlying themes, represented by

73

groups of adjacent variables, might reflect whether the offence is manifested in the offender

expressing him or herself, or whether it is instrumental for some personal gain. Figure 4.10

provides an example extracted from Canter and Fritzon [CF98]. The definition of these

themes does, of course require diligent consideration of what the variables mean and their

psychological significance. While it is rare for well-formed clusters to appear, the statistical

properties such as co-occurrence and correlation are manifest in the MDS output in such a

way that the psychological significance of their positions can be strongly explained and

justified. It is generally also observed from such a layout that the centroid of the configuration

is surrounded by the most frequent variables (usually the absence or presence of a variable at a

crime scene is encoded as a Boolean value and therefore the sum of values for a particular

variable is taken across the entire data set and considered as its frequency). Canter

hypothesises that these high-frequency variables indicate the significance of the offences to

the offenders.

Once such a layout and its partition have been obtained, analysts can select a subset of

variables for further analysis such as MDS of the crimes where each point in the layout

represents an offence. That is, in the first stage of analysis, MDS is employed for feature

selection and then MDS is applied for feature extraction.

hosp O

Expressive
Person

suicide
Onote

lives deh~rate

Instrumental
Person

non-spec. trigger
o

Expressive
Object

seraal O
public

o

Opartner

D thr arson

prior arson
o

daytime
o

o
business

miscO

mutt
ofndrD

Figure 4.10 An SSA layout of variables representing the MOs of a set of arson offences.

74

This approach can also be applied to scientific data to identify redundant variables.

Using MDS to layout variables essentially depicts their correlations - proximity in the layout

is proportional to correlation between the variables concerned and if two variables are highly

correlated then perhaps including just one of them would suffice in a representation of the

data. To test this hypothesis, the author ran SSA on a data set gathered from an eScience

project within the Equator Interdisciplinary Research Collaboration (www.equator.ac.uk). The

eScience team set up a remote sensing probe at a frozen lake in the Antarctic, which transmits

data including ice thickness, water temperature, UV radiation levels etc. to environmental

scientists at the University of Nottingham. The aim of this is to learn about carbon cycling

processes. The data set was composed of 2202 probe measurements, each consisting of 14

variables measured at five-minute intervals between 17th January 2003 and 31st January

2003. This was converted into CSV format before importing it into the author's HIVE

software for analysis (discussed further in Chapter 7).

SSA was run on the variables of the data to gain the layout shown on the left frame of

Figure 4.11. One would expect variables such as data-logger temperature and air temperature

to be correlated and this is indeed the case, as can be seen from their proximity in the layout.

From each group of highly correlated variables, one representative variable was selected

resulting in a subset of 6 variables from the original 14. This 6-d representation of the data

was then projected onto a 2-d layout using PCA as illustrated in the middle frame of the

figure. This was then compared with a PCA projection of the full 14-d data set (right-hand

frame of the figure). It can be seen that even though the number of variables has been reduced

to less than half, the layouts are very similar indicating that there was indeed a high degree of

redundancy.

Feature selection can also be achieved by applying clustering algorithms to the

dimensions of a data set. Yang et al. [YPWR03] employ an agglomerative hierarchical

clustering routine and visualise the result in their radial space filling (RSF) visualisation

called InterRing [YWR02]. Yang et al. also show that dimension-clustering and filtering can

facilitate the diligent ordering and spacing of dimensions in visualisations such as parallel

coordinates [Ins85] to greatly improve their efficacy. Ankerst, Berchtold and Keim [ABK98]

provide an extensive account of how to define similarity measures for dimension clustering.

They also show that obtaining an optimal ordering of dimensions (according to similarity) is

an NP-complete problem, although they provide heuristics for speeding up this operation.

Another alternative for dimension-ordering and clustering is provided by Guo [Guo03]. In this

case the d-dimensional data space is partitioned into nested means and the maximal

conditional entropy of the partition cells is computed and used as a measure of dissimilarity.

7S

Guo applies the minimum spanning tree in a graph-based clustering routine (see Section 3.4.1)

to form the dimension clusters and derive an ordering.

Figure 4.11 An SSA layout of the variables of a scientific data set is used to select a subset (highlighted

in yellow) for subsequent dimension reduction (two left-hand frames) . The projection of the full data

set is shown on the right-hand frame.

4.4 Force-directed placement

For many years, researchers have been devising algorithms for the automatic layout of graphs

given a set of vertices and edges [CT98]. Usually the goal is to obtain a graph where some

predefmed criteria is to be fulfilled. For example, in some cases it is desirable to minimise the

number of edge-crossings and make the graph as near to planar as possible; also, it might be

desirable to have the graph as symmetrical as possible or constrain the edges to be of unit

length. Generally speaking, a graph-drawing algorithm reproduces a visual representation of a

graph according to some desired aesthetic properties. A popular basis for such an algorithm is

called force-directed placement (FDP) - a term coined by Fruchterman and Reingold [FR91]

because the general technique is based upon a simulation of forces and motion in a physical

system.

A seminal paper by Eades [Ead84] describes a heuristic technique for the aesthetic

layout of general undirected graphs through the physical analogy of a system of steel rings

connected by springs. The basic idea is that a graph, G = (V, E), where V represents the

vertices and E represents the edges, can have its vertices replaced by steel rings and its edges

replaced by springs to represent a mechanical system. This system is initialised so that the

vertices are placed in random positions and therefore the springs connecting them are

stretched or compressed. When the system is let go the attractive and repulsive forces exerted

by the springs move the system to a state of minimum energy or equilibrium (see Figure 4.12).

76

Such a y tern can be simulated using Hooke's law or Newton's law of motion, yielding a set

of differential equation that can be solved numerically using a method such as Runge-Kutta

[DH92] , although in this case, Eades defined his own formula for relating forces to the

analogou pring. Thi technique was found to produce good results with regard to aesthetics

of ymmetry and uniform edge lengths in graph drawing but has since been applied in

dimen ion reduction cenarios where the layout of high-dimensional objects in a low

dim n ional pac is the goal. Because the analogy of forces and springs is explicit, this type

of alg rithm i often referred to as a spring model.

igure 4.12 n illu tration of Eades' concept of the spring model. The image on the left shows steel

ring h Id in random po itions cau ing the connecting springs to be stretched or compressed. The image

on the right d pi t the y tem ina tate of minimal energy after the rings have been let go resulting in

the pring re erting to their rest lengths. For clarity, only springs connecting adjacent rings are shown.

When applied to the low-dimensional embedding of a set of abstract data, this model

can be c n idered a a combinatorial optimisation algorithm and is an example of the well

known N-bod problem. The forces in the system are computed as being proportional to the

difference etween the high-dimensional (desired) distance and the low-dimensional (layout)

di tance nd therefore a loss function can be derived which indicates the amount of energy in

the y tern [oh97, Cha96. This loss function is related to Kruskal's stress function

de cribcd 10 e tion 4.3.2 and is a measure of the sum-of-squared errors of inter-object

di tanee . hu the objectiv of the spring model is to minimise the stress (Equation 4.20). It

can be en th t the spring model is a form of metric MOS. It works directly upon the values

of the di imilaritie (ill lanCes) to provide a layout.

(4.20)

77

Where d,j is the desired high-dimensional distance and g/j is the current layout distance. It

should be noted that the stress measure is widely used to describe the quality of layouts,

however. it should be used with caution. A low stress value indicates a close fit of the low

dimensional layout to the high-dimensional space, but it states nothing of the layout's

interpretability. In fact, from the author's experience even small differences in stress can

reflect large differences between layouts often resulting in familiar or expected structure being

hidden.

In its basic form, there are N(N - 1)/2 pairwise object interactions to take into account

and therefore it can be computationally infeasible when a large volume of data is to be

considered, especially since it is usually implemented as an iterative algorithm. The number

of iterations required for the system to reach a state of equilibrium tends to be proportional to

N and therefore the overall time complexity could potentially be 0(Ji3).

In a paper by Chalmers [Cha96] an algorithm is proposed in which stochastic sampling

is employed to derive an array of neighbours V and an array of samples S for each data item.

The sizes of both arrays are held constant. At the start of each iteration the sample arrays are

filled with random items before calculating the forces between each item and only those items

in the respective neighbour and sample sets. This bounds the number of distance calculations

in each iteration of the algorithm to NO JII + lSi) and therefore results in overall time

complexity of O(Ji) in achieving equilibrium. At the end of each iteration, the neighbour sets

are updated by replacing items that are further away with closer items that are in the sample

set. That is, if a neighbour is further away from its parent item than the closest sample item,

then the sample item replaces the neighbour. This improves the accuracy of the neighbours as

the algorithm progresses. Chalmers' algorithm was one of the fastest non-linear dimension

reduction techniques at the time of its publication.

The spring model can be used to provide visually intuitive views of a data set. Items

that are similar are placed close together and items that are dissimilar are placed farther apart

in a continuous fashion. This approach, as with MOS, provides an improved layout over that

of the discrete SOM layout. It also has the advantage over the projection-based techniques in

that it can uncover non-linear relationships within data. A user can perceive how similar or

dissimilar groups or individual items are because the topology and the proportional inter

object distances are preserved to some extent. The simplicity of the spring model and its

openness to heuristic improvements such as that of Chalmers make it a good component for

hybrid dimension reduction algorithms, as will be seen in the next chapter.

A major difference between FOP and non-metric MOS is that FOP cannot yield a

solution which is invariant under all monotonic transformations of the input data. While non-

78

metric MDS tries to minimise departure from monotonicity, the spring model attempts to

recreate the distances perfectly and is therefore not readily applicable to proximity data where

there exists no Euclidean space in which they would fit. Recall the example illustrated above

in Figure 4.9. A data set consisting of 300 2-d points was transformed into proximity measures

and non-metric MOS was shown to exactly recover the Euclidean configuration as well as the

function relating proximity to Euclidean distance. The author applied Chalmers' spring model

to the same data. The result is shown in Figure 4.13.

Although Chalmers' spring model produced a 2-d layout relatively faithful to the

original 2-d configuration (see Figure 4.9), some distortion is evident. The corresponding

Shepard plot implies the shape of the function but is not as clear as that in Figure 4.9 as

produced by Shepard's non-metric MOS. The Shepard plot also shows that there is more

discrepancy between the original data and the layout. This is evident in the roughness of the

curve and is due to the distortion in the layout.

, , -.f'.
,,~. tI~· : • . ~ ., ~ -. .

"01: ~., ~ .. .::. • (•
~. . ,. .,

... "w.~ ••
•• -I: .

-:.. . .f .
-~ ,'\ C· • -~ . ·i·· -.~ ,. .

I 1/.,.
t: -... ,.

-.

14

13

12

II
. . .. , - 10

\I

~ 9
~
E 7
u;

13 V'J

is
15

"
3

2

0 .0 ~.~ 15.0 7.15 10 .0 1:.15

Low-D distance

Figure 4.13 The same data set as in Figure 4.9 is fed into Chalmers' spring model and the layout is

shown on the left. The corresponding Shepard plot is shown on the right.

4.5 Conclusions

This chapter has discussed a number of techniques for dimension reduction, many of which

have been implemented by the author to help clarify their operation and gain a deeper

understanding of their behaviour. Several of the figures were produced by a system called

HIVE that was developed by the author to explore, combine and utilise such algorithms.

HIVE will be the focus of later chapters where its utility will be demonstrated in the creation

and evaluation of several novel algorithms for dimension reduction and data clustering.

79

Dimen i n reduction can be classified according to two dichotomies. The first

di tingui he between feature extraction, where a new smaller set of uncorrelated dimensions

i deri ed fr m the original data, and feature selection, where the dimensions are carefully

filtered to reduce redundancy in the data. The second dichotomy is a sub-class of feature

extra tion and includes the family of projection techniques in which a linear combination of

the variable provide a new set of derived dimensions. An advantage of this approach is that

the re ulting axe are ea ier to interpret because of their linear relationship and the routines

pr ducing them tend to be quite fast. The second class of this dichotomy pertains to non-linear

meth d which tend to be more powerful than the projection techniques because they can

expo e latent non-linear relationships in data. This latter class does, however, tend to provide

m re computationally expensive solutions and the reduced set of dimensions can be harder to

interpret. te that while the two (or three) geometric dimensions of a layout do not mean

anything in them elve , non-linear techniques can still be regarded as a type feature extraction

the onu i put on the u er to look at any resulting patterns such as trends and clusters and

try to figure out the underlying meaningful dimensions of the data.

While thi taxonomy (see Figure 4.14) of dimension reduction techniques is by no

mean definitive, it ha erved its purpose in providing a structured account of the prominent

routine found in the literature.

Feature extraction

projection
techniques

Dimension reduction

non-linear
techniques

Feature selection

Figure 4.14 A ta on my of dimen ion reduction techniques.

A v ith clu tering algorithms, dimension reduction routines provide a reduced

repre entation of data. Dimension reduction can be considered as an orthogonal approach to

clu tering it w rks primarily on data dimensionality d whereas clustering most commonly

tackle cardinality N, with the exception of the special case of dimension clustering as

de cribed in ecti n 4.3.3. However, both approaches can work together to reduce data to a

80

concise fonn suitable for visualisation or further processing that would otherwise be

unfeasible due to insufficient computational resources. The next chapter is concerned with

hybrid algorithms for clustering and dimension reduction.

81

5. Hybrid clustering and layout

algorithms

The previous two chapters have shown how data can be reduced to a smaller number of

representative units (clustering) with fewer variables (dimension reduction) without losing

much information. This makes visualisation easier because there are fewer entities to code

into graphical structures; it also makes the resulting visualisations easier to comprehend. The

fact that the two approaches described for producing such a reduced representation often go

hand-in-hand has also been demonstrated. Clustering can be utilised to aid dimension

reduction and dimension reduction can be used to help define clusters. One may also argue

that the two approaches are equivalent.

This chapter is concerned with hybrid algorithms for attaining a reduced representation

of data. Such combinations, including both clustering and dimension reduction algorithms

have been touched upon in the previous chapter. For example, the SOM (Section 4.2)

performs clustering and dimension reduction simultaneously. In another example (Section

4.3.3), dimension clustering can be used to expose redundancy in variables and therefore

facilitates feature selection. Section 4.1.4 describes how Random Projection can enhance the

effectiveness of clustering algorithms such as Expectation Maximisation and K-means that are

predisposed to detecting spherically shaped clusters. While these observations imply that

hybrid combinations of particular clustering and dimension reduction algorithms can be useful

in attaining reduced representations of data. many such algorithms still sutTer from the

drawback of being computationally expensive operations. However, various clustering

algorithms and dimension reduction techniques exhibit their individual advantages and

disadvantages and hybrid compositions can be exploited to counter the shortcomings of the

individual components. Generally speaking, some cheap algorithms (with respect to time) can

be used as pre-processing stages that effectively provide a shortcut for more expensive

routines, thus reducing overall running time while maintaining layout quality. This chapter

will provide evidence of the potential effectiveness of hybrid algorithms through examples

from the literature and from the author's own research.

82

5.1 Hybrid algorithms for clustering

In Section 3.2.1, it was pointed out that the K-means algorithm is prone to converge to a local

minimum of the clustering cost function and is especially sensitive to the initial cluster centres

which are usually randomly selected. The Buckshot algorithm [CKPT92] can be used to find

good initial cluster centres that can help K-means avoid local minima. The Buckshot method

works by randomly choosing v'N samples from the data set (of size N) before applying a

hierarchical clustering routine such as HAC (see Section 3.1). Since the time complexity of

HAC is O(NZ), the dendrogram of the v'N sample can be attained in linear time. K-means can

then be initialised and run on the full data set using the mean vectors of a selected subset of

the clusters obtained from the HAC routine. Since the chosen centres already approximate

potential clusters, K-means is more likely to avoid local minima. The advantage of the

Buckshot algorithm is its stochastic sampling. This reduces the time complexity of the initial

(computationally expensive) clustering routine which subsequently provides a head-start for

the second (computationally cheaper) clustering stage. In principle, the clustering routines

used with Buckshot do not have to be HAC and K-means as described above.

Another way of improving the quality of a clustering solution while decreasing the time

complexity is to apply Random Projection dimension reduction (see Section 4.1.4) as a pre

processing stage for a clustering algorithm that is predisposed to finding spherical clusters.

The tendency for clustering algorithms such as K-means and model-based techniques such as

Expectation Maximisation (EM) to detect predominantly spherical clusters is obviously a

disadvantage because it is unlikely for real data to contain only spherically shaped clusters.

However, Random Projection has been shown to distort clusters of arbitrary shape by making

them more spherical but it still maintains their separation [DasOO]. This means that a

clustering algorithm such as K-means or EM has the potential to find clusters of different

shapes. Another benefit arises because Random Projection reduces the dimensionality of the

data, and therefore the time taken by the clustering routine is reduced.

The research areas of cluster analysis and pattern classification are closely related. In

data mining and exploratory data analysis, clusters are often sought in the attempt to classify

(or categorise) existing data and to subsequently classify new data. A new pattern (data item)

can be classified by finding the most similar cluster in an existing data set and this has had a

major impact in the fields of pattern recognition and artificial intelligence [LS97a]. In fact the

unsupervised clustering algorithms detailed in Chapter 3 can be considered as machine

learning techniques because they can be applied in the unsupervised classification of data. A

relatively recent development in pattern classification involves the use of multiple classifiers

83

to improve the accuracy of the resulting classification). This is based upon the Condorcet jury

theorem - proposed by the Marquis of Condorcet in 1784, this theorem provides evidence

showing that the judgement of a group of people is superior to that of an individual [LS97b].

This theorem can easily be transposed to pattern classification by running a classifier on a data

set several times and considering the allocation of a pattern to a class as a 'vote' vouching for

that pattern as being a true member of the class. If a pattern x has a majority of votes for class

A over another class B then it is considered as more likely to be a true member of class A. A

simple example of this would be to apply mUltiple runs of K-means clustering on a data set

and then derive the clusters from the most consistent allocation ofthe data [Fre02].

Formally, the Condorcet jury theorem can be defined as follows. If each classifier has a

probability p of being correct and the probability of the majority of classifiers being correct is

m, then:

• p > 0.5 implies m > p

• and m approaches 1, for all p > 0.5 as the number of classifiers approaches
infinity

This reasoning, as employed in pattern classification, is referred to as classifier ensemble,

combination or fusion [LamOO, RK02, Str02] and can be considered as a special case of a

hybrid algorithmic approach to clustering. There are several possible manifestations (or

topologies) of classifier ensembles [LamOO]. The conditional topology works by using a

primary classifier and when certain patterns are rejected or allocated to a class with low

confidence, then another different classifier can be used to see if it can do better. This

approach can be very efficient, especially if the primary classifier is computationally cheap.

The hierarchical topology involves a set of (possibly diverse) classifiers applied successively

to patterns. Each classifier produces a smaller number of classes which are in tum used by the

next classifier thus gradually reducing the classification problem and focussing the process.

The hybrid topology systematically chooses a particular type of classifier according to the

values of the pattern features. If, for example, there are missing features in a pattern vector,

then a classifier that can cope with this would be employed. The mUltiple topology has already

been demonstrated by the K-means example above. This approach employs the simple

majority voting rule to determine classes from the consistent allocation of patterns.

I In the context of this section, the tenn classifier will be used synonymously with clustering algorithm as will

class with cluster.

84

5.2 Hybrid algorithms for dimension

reduction

This section will describe how some researchers have exploited hybrid algorithms to improve

the quality and speed of dimension reduction routines. One of the most popular algorithmic

components used is the SOM due to its reasonable time complexity and its ability to detect

clusters and reduce dimensionality simultaneously.

In the attempt to make the SOM faster, Su and Chang [SCOO] employed K-means to

gather k clusters from the data set. The representative centroids of these clusters are then

organised into a discrete ...Jk by ...Jk grid and a SOM is subsequently used to fine-tune the

layout. Su and Chang suggest that this hybrid approach is much faster than the traditional on

line SOM because K-means has a lower time complexity than the SOM and it provides an

initialisation that is reasonably close to the final solution.

Kohonen et at. [KKL ·00] demonstrated another way of reducing the running time of

the SOM. In this case the objective was to use the SOM to classify and visualise over six

million text documents. After discounting words that appeared less than 50 times in the whole

corpus and removing stopwords (terms, such as articles and connectives, that would normally

be considered to bear little content), the remaining vocabulary - and therefore the

dimensionality - of the data was 43,222. Kohonen et at. then employed Random Projection to

reduce the dimensionality to 500 before applying the SOM. Random Projection can be

achieved in time linear with N while still retaining much of the original information. In this

example. it was instrumental in making the application of the SOM to such a large data set

feasible.

In another example, Brodbeck and Girardin [BG98] reduced the running time of a

canonical spring model algorithm (Section 4.4) by using the SOM as a pre-processing step.

Consisting of a discrete grid of cells (or neurons), SOMs cannot show as much intuitive

structure or detail as a spring model layout but are often quicker to produce and scale to larger

data sets. In this example, Brodbeck and Girardin used the SOM to acquire a set of clusters,

much in the same way as Su and Chang used K-means, however, in the next step a spring

model was employed to either layout the contents of one of the clusters or to layout the set of

vectors representing the SOM neurons. Whichever step is taken is up to the discretion of the

user. However, to obtain a full layout of the data set, the latter option is taken before applying

a novel interpolation routine to add the cluster contents to the layout of neurons. Since the

spring model is consequently run upon a reduced data set (the representative SOM neurons), it

8S

converges far more quickly while the interpolation of the remainder of the data set takes only

O(N) time. The accuracy of the interpolation depends upon a set of constants used to govern

the process; the higher the values for these constants, the longer the process takes but the

better the positioning obtained. Example figures showed that layouts could be produced that

were strikingly similar to those generated by a spring model run on the entire data set.

Brodbeck and Girardin also stated that an improvement in run time was gained, requiring

hours rather than days to complete.

While the SOM can be an effective component of a hybrid algorithm for dimension

reduction, other methods have been explored. Schroeder and Katopodis [SK02] ran

experiments to find a good method of initialising the point positions for a canonical spring

model. A common heuristic for initialising a spring model is to place the layout points in a

random configuration before allowing the spring model to iteratively refine their positions

until the final solution is obtained. Schroeder and Katopodis compared this technique along

with several others including initially placing all points at the origin of the 2-d layout, placing

the points on a circle, and using a hierarchical clustering algorithm to dictate placement. They

found that the clustering approach provided the best results. Initially placing points in the

layout according to their relative positions in the clustering dendrogram improved the

performance of the spring model resulting in lower stress levels in a smaller number of

iterations. This is due to the points being placed in positions that approximated the final

solution.

The previous two sections have indicated that the hybrid combination of algorithms can

provide more efficient and effective clustering and layout algorithms. The approach generally

adheres to an algorithmic symbiosis - a cheap process roughly reduces the problem to hasten a

more expensive one which improves the output. The following sections will outline some of

the author's own work in this area.

5.3 A novel hybrid algorithm for dimension

reduction

This section presents an original algorithm for reducing high-dimensional data to a 2-

dimensional layout. The routine is based upon a hybrid combination of Chalmers' spring

model [Cha96], stochastic sampling and an improved version of Brodbeck and Girardin's

interpolation [BG98]. Results of the algorithm's evaluation show that it is successful in

obtaining non-linear dimension reduction in sub-quadratic time. The algorithm and the results

86

were published in the proceedings of InfoVis 2002 [MRC02] and In the Journal of

Information Visualization [MRC03].

Chalmers' spring model algorithm was one of the fastest non-linear dimension

reduction techniques (see Section 4.4). Taking O(}I,) time to provide a solution, it outpaces

the traditional MDS routines while providing more detail in its output than the SOM. It also

has the potential to expose more interesting structure than linear techniques such as PCA and

SVD. It was for these reasons that this algorithm was chosen as one of the components to be

included in the experimental hybrid conjunction.

The goal was to reduce the time complexity of Chalmers' spring model without bearing

any detrimental effects on the resulting layout quality. This was achieved by initially sampling

.IN items from the input data to obtain a spring model layout of the subset in O(.JN ..IN), hence

O(N) time. Assuming that this layout provides a reasonable representation of the full data set,

the remaining (N - .IN) items can be interpolated onto the layout to provide a good

approximation of that produced by running the spring model on the entire data set. The results,

as will be seen, indicate that this is indeed a reasonable assumption.

Interpolation is carried out by placing each of the remaining (N - .IN) items near to the

closest item in the subset and therefore takes O(N..JN) time. Even though the interpolation can

exactly recover the inter-object distances in 2-d data. it might not always provide the desired

results. especially for data of higher dimensionality. If. for example. the spring model of the

subset tenninated prematurely with some points misplaced, then this would have a knock-on

effect on the interpolation. resulting in segments of the layout lying askew. To overcome this.

the spring model is run for a constant number of iterations over the full data set to refine the

layout. In practice. this constant is between 20 and 35 iterations because it was frequently

observed that this was long enough to significantly reduce layout stress.

Since each iteration of Chalmers' algorithm is achieved in linear time. the overall time

complexity is dominated by the interpolation stage and is therefore O(N..JN). The outline of the

algorithm is given in Figure 5.1. and its operation is illustrated in Figures 5.2 to 5.4.

87

1. take sample of IN items from data set

2. run Chalmers' spring model on the sample

3. interpolate remaining (N - IN) items onto layout

4 . refine layout by applying Chalmers' spring model to the full

data set for a constant number of iterations

Figure 5.1 The sub-quadratic (O(N...jN» algorithm for non-linear dimension reduction.

Figure 5.2 Chalmers' spring model is initialised by randomly positioning the ...jN sample in 2-d.

Figure 5.3 The spring model interatively produces an accurate layout of the sample.

Figure 5.4 The remaining (N - ..IN) items are interpolated onto the sample layout. The spring model can

then be run for a constant number of iterations to refine the layout. In this case that is not necessary.

88

Figures 5.2 to 5.4 show screenshots demonstrating the algorithm working on a small 2-

d data set consisting of 300 items. While this provides an intuitive example of how the

algorithm works, it also demonstrates an advantage of this multistage technique. The user can

quickly observe an overview of the data and then decide whether to proceed with the more

time-consuming full layout or to halt the process. Furthermore, the views provided by

individual algorithmic stages can enrich interaction with data and therefore provide more

insight. This will be demonstrated in later chapters where an interactive environment

developed by the author for building and using such algorithms is discussed.

It should be noted that there are several methods for determining when to terminate the

execution of the initial spring model run on the sample. One commonly used method for

terminating force-directed placement routines is to measure the stress after each iteration and

terminate execution when its value no longer decreases [Krus64]. However, this method

suffers from a major disadvantage due to the fact that measuring stress requires calculating all

inter-object distances and therefore takes O(}{-) time. Although, the initial stage of the

algorithm works on a.JN sample of the data, the additional time for calculating stress can still

be prohibitive with large data sets. Another method of terminating execution is based upon the

rule-of-thumb that force-directed placement requires O(N) iterations on average to reach

equilibrium. The initial spring model can thus be run for .IN iterations before applying

interpolation. In practice, however, an alternative criterion for termination based upon velocity

is used. Since the spring model simulates a system of objects with forces acting between them,

the velocity of an object (its speed and direction) can be measured with respect to these forces.

When the difference in overall velocity between the current iteration and the preceding

iteration drops below a scalar threshold, the spring model is terminated and interpolation

begins. Measuring velocity does not require much additional time because it is calculated as

part of the spring model routine. Furthermore, it provides a dynamic account of how the

algorithm is progressing and therefore provides a more effective means of termination than

that based upon the assumption that convergence is achieved after N iterations.

5.3.1 Distance metric

The operation of the algorithm is pivotal on the measurement of dissimilarity between data

items. By measuring the dissimilarity between items in their high-dimensional space and

comparing this to their representative distances in the 2-d layout, the algorithm progressively

refines the layout by moving items closer or further apart in the layout in accordance with this

comparison (see Section 4.4 for a description of the spring model). However, since the spring

model is based upon a physical analogy, it attempts to reproduce the high-dimensional

89

dissimilarities as well as possible. This predisposes the algorithm to the use of a dissimilarity

measure that obeys the triangle inequality, is non-negative and is symmetric. If these criteria

are not met then the model cannot be expected to find a layout in a Euclidean space of any

dimensionality.

For this reason, the choice of dissimilarity used belongs to the family of metrics known

as the Minkowski (or Lebesgue) metrics [JMF99], which operate on a vector representation of

each datum. The general form of this family of metrics is as follows:

(5.1)

Where L is a parameter that takes on some value in the interval [1, 00] and d represents

dimensionality. The most commonly used instance of this metric is Euclidean distance, where

L = 2. This has been adopted as the measure of dissimilarity in this algorithm because of its

metric qualities as described above and also because it is widely used in measuring distances

in lower dimensional space (such as the physical environment), and intuitively generalises to

higher dimensional spaces.

Inter-object distances are calculated on the fly during execution of the algorithm.

However, to prevent specific dimensions from dominating the distance, the values for each

dimension are normalised by dividing them by two standard deviations of their distribution.

5.3.2 Brodbeck and Girardin's Interpolation algorithm

The interpolation stage of the algorithm was derived from Brodbeck and Girardin's [B098]

technique of introducing points onto a layout of a subset of the data. They achieve this by

finding for each item that is to be added, the point in the layout representing an item that is

closest in the high-dimensional space. Herein, such a point will be referred to as a parent

point. The algorithm progressively improves the position of the item so that the difference

between its high- and low-dimensional distances to a sample set of layout points is reduced.

Figure 5.5. provides an outline of this algorithm.

90

1. centre a circle of radius proportional to the high-dimensional

distance, at the closest layout point

2. define a random subset of layout points S

3. repeat nc times:

a. take a random position on the circle's circumference.

b. sum the discrepancy between the high-dimensional and the

low-dimensional distances between this position and the

points in S

4. place the new item at the position on the circumference that

provides the lowest sum of discrepancies

5. repeat nr times:

a. define a force vector between the current position and

the sample of layout points

b. randomly sample a number nr of positions along the

vector's direction

c. sum the discrepancies between high- and low-dimensional

distances between this position and the points in S

d. place the new item at the position that provides the

least discrepancy

Figure 5.S Brodbeck and Girardin's interpolation routine [8G98].

The quantities nco nr and nr are fixed and therefore the time complexity of this algorithm is

linear with respect to N. Increasing these values will result in more accurate placement but

will increase the time taken.

It was found that this technique often produced sub-optimal layouts, even for 2-d data.

This is due to the stochastic sampling of positions in the vicinity of the parent point. Figure

5.6 shows a layout of a 2-d data set after running Chalmers' spring model on a "'" subset and

subsequent interpolation by Brodbeck and Girardin's method. It can be seen that although the

general shape of the data has been recovered, it remains rather rough. The Shepard plot in

Figure 5.7 confinns this by the deviation from the 45 degree diagonal. An accurate layout of

2-d data in two dimensions should result in a perfect 45 degree line appearing in the Shepard

plot due to the one-to-one relationship between the original distances and the recovered layout

distances.

91

One might be tempted to blame the initial spring model for throwing the interpolation

off course. However, in this case (as is usual for 2-d data), the spring model produced a layout

of the .IN subset with near zero stress, that is, an almost perfect layout.

Figure 5.6 Brodbeck and Girardin's interpolation often provides a sub-optimal layout, even for 2-d data.

'.I>
t.8

1.7

1 ,1)

,.(\

1.4

,3

,",I I:

~ ,.,
~ 10
o
~ 0.8

Z 08

OT

O.ft

011

0 4

0 .3

0.::

0 '

0.25 0 ./10 O.7~ 1.00 1.25 ' .50 \ .15

Low-O distance

Figure 5.7 For a 2-d layout of 2-d data, the recovered distances should exactly match the original

distances. This one-to-one relation should manifest itself as a 45 degree slope in the Shepard plot,

however, in this case it can be seen that the interpolation routine has resulted in deviation from this

slope.

92

5.3.3 An improved interpolation technique

Prompted by the shortcomings described above, the author designed and implemented a new

routine to improve upon Brodbeck and Girardin's. As with the original, the new routine starts

with finding a parent point in the layout which is closest in high-dimensional space to an item

that is to be added. Again, a circle of radius proportional to this high-dimensional distance is

centred on the parent. However, in the next stage, rather than randomly sampling points on the

circumference of the circle to find one that has a small discrepancy between high- and low

dimensional distances, a quadrant and binary search is applied instead. The pseudocode for

this new routine is shown in Figure 5.8.

1. centre a circle of radius proportional to the high-dimensional

distance, at the closest layout point

2. define a random subset of layout points S of size ~/4

3. at positions on the circumference 0, 1t/2, 1t and 31t/2 radians

from the horizontal norm, sum the discrepancies between the

high- and low-dimensional distances. The position that provides

the lowest discrepancy defines the quadrant of the circle's

circumference upon which the new item will be placed.

4. apply a binary search to the chosen quadrant to find the

position that minimises the discrepancy between high- and low

dimensional distances

6. repeat nr times:

a. define a force vector between the current position and

the sample of layout points S

b. add the force vector to the current position

Figure 5.8 An outline of the new interpolation algorithm.

After defining a circle around the parent point in the layout, the algorithm finds the

quadrant on the circumference that would minimise the difference between high- and low

dimensional distances of a point on that quadrant, and the /t /4 sample of layout points. This

narrows the space of a binary search to the xJ2 radians on that quadrant. The binary search

finds the position that minimises the discrepancy between distances before force calculations

are performed to refine the position of the interpolated item Figure 5.9 illustrates this

diagrammatically.

93

•

• •
Figure 5.9 The placement of item i begins with finding its parent point P in the initial layout. A circle of

radiu r (proportional to the high-dimensional distance between i and the item represented by P) is

centred on P. Quadrant and binary search over the circle's circumference finds the position io that

minimi e the surnrn d discrepancy between the high- and low-dimensional distances to the subset of

layout points. This position is then refmed by iteratively adding an aggregate force vector, moving the

item to its final position i l .

After finding an item's parent in the layout, its interpolation requires O(}/ /4) time

becau e a ub et of size NI!4 is used to calculate its position and all other quantities are

constant - finding the best position on the circle's circumference requires 4 steps for the

quadrant earch and 6, at most, for the binary search. The aggregate force vector for refining

this po ition is achieved in n r distance comparisons. However, since there are initially .IN
items in the initial layout, this leaves the remaining (N - .IN) items to interpolate. There is no

information gained a priori as to which layout point is an item's parent, and so a brute force

search i requir d. This search dominates the time taken by the routine so the overall time

complexity i O(N.JN).

A i ual compari on of the output of this interpolation routine shows that it is more

accurate than Brodbeck and Girardin's routine. Figure 5.10 illustrates the 2-d test data set after

interpolation and the associated Shepard plot. Comparison with Figure 5.6 shows that the

layout ha reached a better representation of the data. The Shepard plot depicts a straight 45

degre line with no points deviating from the diagonal indicating that the original distances

have been p rfectly reproduced by the algorithm.

94

..
I.'

C I'
" ~ 1.0

~U
:f •• . , ., .. . ,

00
0.0 0.1 0.2 0.3 o.~ 0.' o_~ O.T 0.. 0» 1.0 I t 1 .~ 1,31 I." U HI 1.1 1JI U

l·' OtlllitlOcw

Figure 5.10 The new interpolation routine has produced a much more accurate layout ofthe 2-d data.

The author designed and implemented this interpolation algorithm, however, its

evaluation was undertaken by a colleague, Alistair Morrison [Mor04]. Morrison employed the

author's HIVE software (from which all of the screenshots in this chapter have been taken) to

automate multiple runs of the algorithm and record run time and stress values. Figure 5.11

show the results of a comparison between Brodbeck and Girardin's interpolation and the new

routine. Experiments were carried out on a PC with 504 MB RAM and a Pentium 4 2.41 GHz

processor, running Windows XP Professional.

Run times of original and novel interpolation

.... N - tlo-;:;i1

D ... SIt.

Stress following original and novel interpolation

~ ~Origi"'l - Nero. i

Dat.SIt.

Figure 5.11 A comparison of Brodbeck and Girardin's original routine with the new interpolation

algorithm. The e results were obtained by Morrison [Mor04] using the author's IDVE software. The

re ult for each algorithm were averaged over 10 runs for 2-d data sets ranging from 1000 to 10,000

items.

he e re ults show a significant improvement over Brodbeck and Girardin's

interpolation routine in terms of both run time and stress. It is interesting to observe that for

maller data ets, the stress levels are higher than those gained with the larger sets. This can be

95

explained by the fact that as N increases, so does the size of the N I4 sample used in the force

calculations. This results in a more accurate placement. Although smaller data sets result in

higher stress, this is not important because as a final stage of the layout algorithm, a spring

model is used to refine the layout and therefore reduce the stress. Also, since the data sets are

smaller, the final spring stage converges quickly. Figure 5.12 illustrates graphs of run time and

stress for these data.

5.3.4 Evaluation of the full layout algorithm

The initial spring model stage and interpolation as described above comprise the first two

stages of the new hybrid algorithm - the final stage involves the use of a spring model to

refine the layout produced after interpolation. In this section, Chalmers' algorithm is used as a

benchmark to which the new routine (including the final stage) is compared. Both algorithms

were run on subsets of a 3-d 's' shaped data set. The size of the subsets range from 5000 to

50,000 items and results are averaged for the subsets over 10 runs for each algorithm.

Run Times on 3D "5" data Stress on 3D "5" data

~.(:

" k-'

" ,"l

', 11' 1

f., " r r ,..

::wJ: ":0: 1 ~))~ ::«t ::;.,:= nco ~:~: 'c:; ~::~) ~:::o

0 ... Size

Figure 5.12 Results obtained by Morrison [Mor04] showing a comparison of Chalmers' spring model

with the new algorithm.

Up until the publication of the new algorithm, Chalmers' spring model was one of the

fastest non-linear reduction algorithms based upon a spring model. From the above results, it

is evident that the new algorithm significantly outperforms Chalmers' routine with respect to

run time while maintaining comparable layout quality.

The initial spring model stage has time complexity of O(N) because it operates on a

sample of the data and the final spring model stage also has O(N) time complexity because it

is run for a maximum of 35 iterations to refine the full layout. This means that the overall time

comple ity i dominated by the interpolation routine because a brute force search is required

to locate the parent points. The overall time complexity is therefore O(N.JN).

96

5.3.5 A hybrid variant based upon K-means

During the development of the above algorithm, the author investigated an alternative

approach based upon the K-means clustering algorithm (see Section 3.2.1). The reasoning

behind this is as follows. Recall that the K-means algorithm partitions the data into clusters by

identifying and refining centroids. The centroids are representative of clusters and each datum

is allocated to one cluster according to their proximity. After each iteration the values of the

centroid vectors are updated according to the average of the data vectors allocated to them.

This has two implications. The first is that the centroids will gradually disperse throughout the

data set as their vector values will increasingly reflect local regions of the data. Thus the

centroids can provide an overview of the data distribution. The second implication is that all

items in the data set are allocated to their nearest centroid and therefore the simple heuristic,

described in Section 3.2.3, for finding the nearest neighbour of a given item can be employed.

This heuristic is as follows. Given a K-means clustered data set X and a datum XI E X, its

approximate nearest neighbour xJ ~, can be found by searching through the cluster members

of the centroid to which X, has been allocated.

With this in mind it can be seen that this is applicable in the interpolation stage of the

novel hybrid algorithm described in the previous section. The interpolation stage is the

computational bottleneck because of the brute force search required for parent finding,

however, if the full data set is initially clustered using K-means, then the centroids and their

cluster members can be used to find interpolation parents in much less time. Also, since the

initial spring model runs upon a random subset of data, there is a small chance that this sample

is confined to one local portion of the distribution. This would have a disastrous effect on the

remaining stages of the algorithm. However, if the initial subset is chosen to be the K-means

centroids, then the subset is guaranteed to be more representative of the true distribution thus

providing a more reliable basis for interpolation. Figure 5.13 illustrates this concept.

To test this theory the author initialised the K-means algorithm with a randomly

selected .IN subset of data. K-means was then run until the centroid vectors ceased to change

value. The items in the data set that were closest to the centroids were then fed in to a spring

model before the interpolation algorithm was deployed, using the nearest neighbour heuristic

to find parent points. Finally, a spring model was used to refine the full layout. The results of

similar experiments were recorded by Alistair Morrison as discussed below.

97

()

" • • •• • •
•

• ,.
•• •
•

Figure 5.13 The image on the left is a layout of a random data sample. The image on the right is a

layout of items that are closest to the K-means centroids of the data. The original data used are 2-d and

consist of7239 items. Both layouts contain 85 (..j!239) points from the data set.

Experiments were run on two data sets, each of which were synthetically created. The

first collection was created by sampling points from a 2-d set - the logo for a company owned

by Brodbeck and Girardin [BG05]. Subsets of 10 different cardinalities were created from this

'logo' set from 1000 to 10,000 items. The second collection was similarly sampled from a

band curving in an'S' shape through three dimensions. Again, 10 subsets were derived, this

time from 2000 to 20,000 items. The K-means based algorithm (hereafter referred to as K

mean +interpolation) was then compared to both Chalmers' spring model and the novel

algorithm (hereafter referred to as sample+interpolation) described in the preceding sections.

~
c .;.... ,

c -....· ..
, " w..~

....
r::- ~~=:.~::...,..lIk1tt 1
~~II.elpo ... 'on

.... ~ ''''''

-.J.- • ! ,

O. 01 0 1 1 ., " l' 11 2

Siz •• f dolt t ~ 10·

Figure 5.14 A comparison of the K-means based algorithm with the sample+interpolation and

halmers' algorithms.

98

Figure 5.14 compares the stress and run time of Chalmers', sample+interpolation and

K-means+interpolation algorithms. Tests were run on a PC with an Intel Pentium 3 731MHz

and 256MB RAM running Microsoft Windows 2000 Professional. As expected, Chalmers'

algorithm took longer to converge than both of the hybrid algorithms, over all of the data

subsets. It can also be seen that the sample+interpolation and K-means+interpolation

algorithms exhibit comparable times. For the smaller data sets, K-means appears slightly

faster. The K-means algorithm converges quickly for smaller subsets, however, as the size of

the data set increases, the cost of using K-means would seem to outweigh its benefit over

simple sampling.

The stress recorded for Chalmers' algorithm is significantly higher than the others. This

is because, as the algorithm proceeds, the stress tends to fall sharply and then level out for a

considerable time before the layout becomes stable. The stress levels exhibited by the hybrid

algorithms are lower for the logo set because the interpolation can achieve near-optimal

positioning of the points in two dimensions. To enhance this, Chalmers' algorithm is finally

run on this interpolated structure for a small constant number of iterations to refine the layout

and minimise stress.

Since K-means was run on a $ subset of the data it dominates the time complexity,

taking O(N.JN) time. Although the two hybrid algorithms exhibit the same time complexity,

the difference in observed times is due to overheads in the K-means algorithm being greater

than those for the brute force search for the sample+interpolation approach. It can therefore be

concluded that the only benefit of using the K-means routine is to ensure that a good

representative subset of the data is gained to provide a basis for interpolation. However, in

practice it is very unlikely that random sampling would result in the initial subset residing in a

local area of the data and therefore the sample+interpolation algorithm is preferred.

5.4 Fast non-metric multidimensional scaling

The two novel hybrid algorithms discussed above are essentially spring models. They model

the differences between data items as Euclidean distances in a high-dimensional space and

progressively refine their positions on a low-dimensional layout to reflect those distances as

well as possible. However, since this approach is a metric one, it cannot be readily applied to

non-metric proximity data, that is, measures that do not necessarily satisfy the triangle

inequality, symmetry and non-negativity. It is more difficult to model such data in a low

dimensional Euclidean space and as such the spring model is often inadequate.

99

In Section 4.3.2 Shepard's non-metric multidimensional scaling (NMDS) was discussed

and shown to be applicable to proximity data. Recall that Shepard's solution to dimension

reduction has a very special property in that it can obtain a metric low-dimensional

configuration from non-metric information. This is achieved by ranking proximities and

iteratively forming a layout in which the (inverse) rank of the inter-point distances matches

the rank of proximities as well as possible. The condition in which the ranks perfectly match is

known as monolonicity. However, the main drawback of Shepard's NMDS is its O(Jt) time

complexity making it prohibitive in its application to larger data sets.

In this section, the author will discuss his work on a faster O(N3) version of Shepard's

algorithm. This algorithm is outlined in Figure 5.15.

1. obtain a ranked list of all (N(N-1)/2) inter-object proximities

2. randomly place N points in a 2-d layout

3. instantiate neighbour and sample arrays for every point (as in

Chalmers' spring model)

4. repeat until departure from local monotonicity < threshold ml:

a. for each obj ect 1 . ..N:

i. rank distances between object and its neighbour and

sample arrays

ii. calculate displacement vector based upon

discrepancy of ranks

iii. update point positions in the layout

iv. update the neighbour and sample arrays

5. repeat until departure from global monotonicity < threshold mg:

a. for each obj ect l. . .N:

i. obtain a ranked list of all (N(N-1)/2) inter-point

Euclidean distances

ii. compare object to its neighbour and sample arrays

and calculate displacement vector according to

discrepancy in overall rank

iii. update the neighbour and sample arrays

Figure 5.15 An outline of the fast NMOS algorithm.

100

Recall that in the initialisation step of Shepard's algorithm, all points are placed upon

the vertices of an (N - I)-d simplex. As Shepard's algorithm progresses, this (N - 1)-d space is

gradually collapsed to a dimensionality in which monotonicity is satisfactorily maintained.

There are therefore two conditions that Shepard's algorithm seeks to optimise. These being

minimum dimensionality and monotonicity. This requires two displacement vectors to update

the positions of points. One to reduce dimensionality and one to increase monotonicity.

However, since in the context of this thesis dimension reduction is used for visualising

data in 2-d layouts, the points are initialised in a 2-d space instead of the (N - 1)-d space.

Thus, only the displacement vector for increasing monotonicity needs to be calculated. Also,

since the configuration space is reduced to 2-d and no longer O(N), the algorithm is reduced to

O(li) time complexity per iteration.

The speed of the algorithm is improved further by using Chalmers' neighbour and

sample approach to reduce the number of inter-object and rank comparisons. This is employed

in two stages: in the first stage of the algorithm, the distances between each object and its

neighbour and sample arrays are ranked and the discrepancy between the ranks is used to

calculate the displacement vector for maximising monotonicity. The displacement vector is

calculated using Equation 5.2.

(5.2)

This is the same equation defined by Shepard [She62]. alja is the ad! element of the 2-d vector

directed from point; to another pointj. The proximity between; andj is denoted by S/j and a

(without subscripts) is a parameter for determining the length of the displacement vector. The

Euclidean distance between points in the layout space is given by d/j, and X/IJ denotes the ad!

element of the vector representing point i. The quantity s(djj) represents the proximity at the

rank of dij. When points are too close or too far away such that monotonicity is compromised,

this equation pushes them apart or moves them closer to rectify this.

Since in the first stage of the new algorithm this equation is applied only to distances

between each object and its neighbour and sample arrays, it serves to reduce departure from

local monotonicity rather than global monotonicity. This is emphasised by making sure that

the neighbour array is larger than the sample array ensuring that the rank of distances in local

portions of the layout approximate those of the corresponding proximities. Figure 5.16

illustrates this concept. The figure shows a layout of a 3-d cube data set consisting of 1200

items obtained by the first stage of the fast NMDS algorithm and layout of the same data using

101

a spring model. It can be seen that with NMDS local structure is preserved while the global

structure has been dramatically distorted. The spring model, on the other hand preserves

global structure at the expense of local detail.

Figure 5.16 The image on the left shows the layout of a 3-d cube obtained by the first stage of the fast

NMDS algorithm. This shows how monotonicity is only locally preserved. The image on the right

shows a layout obtained by Chalmers' spring model on the same data. Here the overall structure is

better preserved but local regions remain rough.

The first stage of the algorithm only requires O(N) time per iteration because the layout

is 2-d and because each point's neighbour and sample arrays are of fixed size. This first stage

serve to quickly obtain an approximate layout and terminates when the departure from local

monotonicity falls below a threshold mi. Using monotonicity in this instance is analogous to

using velocity to determine when to terminate the initial stage of the algorithm in Section 5.3.

Monotonicity can be derived at little expense from calculations used in the layout process and

it provide a dynamic account of the algorithm's progress.

The econd stage of the algorithm is more similar to Shepard's original approach in that

all inter-point distances are ranked and the displacement vector is derived according to these.

In other words, s(dij) from Equation 5.2 is derived from the full set of proximities and

therefore aims to improve on global monotonicity. However, to improve performance, the

di placement vector is obtained only from a comparison of each object to the neighbour and

sample array . That is, all other quantities in Equation 5.2 are obtained from a representative

sub et of the data. Since all inter-point distances are calculated in each iteration of the second

stage it time complexity is increased to O(N2) time per iteration and therefore O(N) overall.

102

It can be seen that this is a hybrid algorithm. The first stage provides an approximate layout to

speed up the operation of the more time consuming second stage.

5.4.1 Evaluation of fast NMDS

Evaluation of the fast NMDS algorithm was carried out in comparison to Shepard's original

algorithm. The first experiment investigated the layout stress obtained by both algorithms on a

small 2-d data set consisting of 120 items. Such a small set was used because Shepard's

algorithm is too time consuming when applied to larger sets. Results were averaged over 5

runs of each algorithm and tests were carried out on a PC with 256 MB of RAM and a 1.4

GHz Pentium M processor, running Windows XP professional. Figure 5.17 shows the results

obtained from measuring stress after every 5 iterations up to a total of 70.

stress per iteration

I--+- Shepard's NMOS ----- Fast NMOSI

0.1

~ 0.01
...

Vi 0.001

0.0001

0.00001 +--r-,-,--r-,-,---,-----,-.----,-----,-.----,-~
5 10 15 20 25 30 35 40 45 50 55 60 65 70

Iterations

Figure 5.17 Stress is plotted after every 5 iterations for Shepard's NMDS and the fast NMDS

aJgorithms.

Stress is shown on a logarithmic scale on the y-axis to clarify the comparison between

both algorithms. For the fast NMDS algorithm a was set to 0.2, and for Shepard's algorithm

its was set to 0.035. This discrepancy is due to the fact that Shepard's algorithm balances the

displacement vector for achieving monotonicity with another displacement vector for reducing

dimen ionality. This is not required in the fast NMDS routine.

It can be seen that the fast NMDS algorithm initially displays a higher global stress

level. This can be explained by the first stage of the algorithm achieving only local

monotonicity. At around iteration 30, the first stage terminates and the second stage kicks in to

achieve global monotonicity. This results in a sharper descent in stress per iteration,

103

eventually surpasslOg that of Shepard's algorithm. The lower stress for the fast NMDS

algorithm comes as a result of only requiring the tuning of one parameter a. Shepard's

algorithm requires a second parameter to determine the length of a displacement vector for

collapsing the (N - 1)-d configuration space. This means that a very fine balance between the

two parameters must be maintained to approach monotonicity in 2-d. This can be difficult to

attain and in this case Shepard's algorithm favours a reduction in dimensionality to the extent

that stres suffers.

A second experiment was run to compare the run times of Shepard's algorithm to the

new fast NMDS. The same 2-d data set used in the first experiment was taken as the test data,

however, 6 subsets were sampled ranging in size from 20 to 120 items and the time taken for

both algorithms to converge to a minimum in departure from monotonicity was measured.

Again, results for each data set are averaged over 5 runs of each algorithm. Figure 5.18 show

the results.

Runtimes

I--+- Shepard's NMDS --- Fast NMDS I
60

~50
tJ)

~
:: 40
Q
<.>
: 30
41 20 ~ ::
~ 10

0
20 40 60 80 100 120

Numbel of d~lttl items

Figure 5.18 Run times for Sbepard's algorithm and the fast NMOS algorithm.

It can be clearly seen that the new algorithm is much faster than Shepard's algorithm.

However, it is still too time consuming to be applicable to the size of data sets to which the

novel spring model described in Section 5.3 can be applied. It does, however, outperform the

hybrid spring model algorithm when applied to proximity data. Recall from the discussion of

Shepard's algorithm in Section 4.3.2 that when applied to proximity data, the routine can

recover a monotone function relating proximities to Euclidean distances. Figure 4.9 showed a

Shepard plot of a layout obtained using Shepard's NMDS run on data that were transformed

into proximities using Equation 4.17. The plot showed that the routine recovered the shape of

104

this function . When the same data were fed into a spring model, it was found that the function

could not be recovered with the same accuracy (see Figure 4.13).

It was found that the new NMDS algorithm is also capable of recovering such a

function. To illustrate this, a 2-d data set consisting of350 items was transformed into 61,075

(N(N - 1)/2) proximities using equation 4.17. The data were then fed into both the new

NMDS algorithm and the novel spring model of Section 5.3. Figure 5.19 shows that the fast

NMDS algorithm produces a more accurate layout than the hybrid spring model. The data

were sampled from a set of concentric circles and, as can be seen, the configuration has been

recovered by the fast NMDS algorithm, while the hybrid spring model has only produced a

rough layout.

Figure 5.19 The image on the left shows a layout of proximity data obtained by the fast NMDS

algorithm. The layout on the right was produced by the novel hybrid algorithm described in Section 5.3.

The corresponding Shepard plots for the above layouts are shown in Figure 5.20. The plot on

the left shows that the fast NMDS algorithm has recovered the shape of the function given by

Equation 4.17, whereas the plot for the hybrid spring model has not recovered it with the same

accuracy. Overall these results indicate that when presented with a large amount of proximity

data the hybrid spring model algorithm can be applied to quickly gain an overview, albeit at

the expen e of a less accurate layout. However, to gain a more accurate layout, the fast NMDS

algorithm can be run on a sample of the data to get a glimpse of the finer local detail.

105

To carry on with the demonstration of the efficacy of hybrid algorithms, the next

section describes a novel hybrid clustering algorithm developed by the author.

,.
,.
'7
'0
I:; ,.

UI t:l

~ "
15 10
o

f. • 'l: •

: 3 ~ 0 IJ 7 8 Q 10 11 I~ 13 I ..

low-O dlst:lOctli

Figure 5.20 The Shepard plot on the left shows that the fast NMDS algorithm has recovered the

function relating proximities to real Euclidean distances. The plot on the right shows that the hybrid

spring model was not able to recover this function with the same degree of accuracy.

5.5 Voronoi-based clustering algorithm

This section illustrates the author's design and implementation of a novel clustering algorithm.

The algorithm is a hybrid combination of density-based and graph-theoretic clustering

routines and is similar to CHEMELEON [KHK99], DBSCAN [EKSX96] and Ertoz et al. 's

algorithm [ESK03] (see Chapter 3) in that it addresses the challenge of identifying clusters of

different shapes, sizes and densities by identifying a small subset of points before ' growing'

the clusters from them.

5.5.1 Preattentive cluster identification

The scatterplot is the predominant visualisation technique used in this thesis. Groups of

similar data points are immediately recognisable because their proximity forms clusters and

other structures that appeal to our perception. This is because the human visual system has the

ability to automatically process the visual stimuli. Certain patterns and Gestalt qualities stand

out without requiring attention to any specific part of the visual field. This unconscious and

preattentive processing is what allows information visualisations to accelerate the rate at

which humans perceive information.

106

By reducing the dimensionality of data so that they can be represented in a spatial

substrate such as a scatterplot, preattentive processing allows the user to recognise structure

and patterns very quickly. Colour and other retinal properties can also be used to augment this

basic property of the scatterplot by providing visual stimuli that attract attention.

The combination of preattentive and attentive processing in visualisation also allows the

user to build a cognitive map ofa layout. The visual stimuli become part of the users' internal

representation that aids orientation, navigation and browsing between pertinent regions. This

is the underlying concept of spatial location memory.

In Rob Ingram's work [IB95a, IB95b], this quality is referred to as legibility, a term

borrowed from the context of city planning. Ingram's work was inspired by Kevin Lynch's

book "The Image of the City" [Lyn60] in which a study reveals that urban dwellers'

development of cognitive maps of a city is enhanced by features such as landmarks, nodes,

and paths. By transposing this theory into the domain of information visualisation, Ingram's

aim was to accelerate the users' creation ofa cognitive map of the information.

Other researchers including Chalmers [Cha93, CIP96], Brodbeck et al. [BCLC97], and

Wise et al. [WTP·95] have adopted a similar approach by representing data via this landscape

metaphor. It is for these reasons that a clustering algorithm has been developed to

automatically detect potentially interesting structure in the layouts produced by the algorithms

discussed above. The layouts are segmented into clusters and then coloured to distinguish

them. This helps preattentive processing guide the user to interesting parts of the layouts

before any conscious effort is required to examine them.

5.5.2 A novel clustering algorithm

Layout algorithms tend to produce a 2-d point configuration in which it is left to the observer

to perceive any patterns of interest. To aid the user in this respect, a clustering scheme is

applied to 2-d layouts to help to differentiate points that contribute to interesting structure.

This partitions the configuration of points, explicitly highlighting existing patterns. It also

enables the user to easily select clusters for brushing and linking with other views, or to

extract a subset for further processing. To achieve this, a partitioning algorithm is required

that is unsupervised, able to detect clusters of varying size, shape and density, and sufficiently

fast for user interaction not to be hampered. Many partitioning algorithms are described in the

literature. However, each behaves differently according to characteristics of the data set (such

as distribution and variable types) and input parameters (for example, the number of centroids

used in K-means [Mac67]).

107

The author has introduced a visual module in his HIVE software that implements a

novel Voronoi-based clustering algorithm. The goal was to produce a clustering scheme where

the user does not have to select or adjust abstract parameter values to obtain an effective

partition, nor wait too long for it to complete. This is a two-stage algorithm, drawing from

concepts underlying density-based and graph-theoretic clustering. The first stage finds

significant areas of similar density in the point configuration. These 'hotspots' are then fed

into the second stage of the clustering algorithm where their neighbourhood relationships are

used to expand the groups in an agglomerative way. The algorithm effectively extracts small

contiguous groups of points from regions of similar density and then uses these as the seeds

from which the clusters are grown.

The next sub-section describes and justifies the Voronoi algorithm that was

implemented as the basis for the clustering. The last two sub-sections detail the 'first cut'

version of the algorithm and the final implementation along with experimental results.

5.5.2.1 Voronol diagrams

The point pattern of a 2-d scatterplot can be segmented into different areas so that each point

is contained by a convex polygon. If the polygons are contiguous and the portion of space

within each polygon is closer to the contained point than any other then these regions form a

tessellation of the plane called the planar ordinary Voronoi diagram [OBSCOO, Aur91].

In HIVE, the Voronoi diagram is implemented using an incremental method. A seed

Voronoi diagram is first drawn for three dummy points that are arranged as an equilateral

triangle. To build the Voronoi diagram for the point pattern, new points are added, creating

new edges and vertices to gradually fill out the structure. This approach was chosen because

it is the most robust technique for handling degeneracies such as those due to co-circularities

in the point pattern. The incremental method is also one of the fastest techniques, capable of

achieving a..N) time complexity on average.

lOS

The Voronoi diagram was used as the clustering basis for two reasons. The first is

because the underlying data structure can be used to efficiently store and retrieve information

such as that for quickly finding points within a region of the plane, e.g. nearest-neighbour

searching, and for easily determining incidence relations between Voronoi edges, vertices and

polygons. In the author's implementation, a standard structure used in geometric modelling

called the winged-edge data structure [8au75] is employed (see Figure 5.21).

~,.-
,-(-"

-'

I
I
I

ia 2
I

I
I
I

II

vertices

start I end

x I y

faces left traverse right traverse

left I right pred. I succ. pred. I succ.

1 I 2 b I d e I c

Figure 5.21 The winged-edge data structure. This maintains a compromise between a compact

representation of the Voronoi geometry and fast retrieval of vertex, edge and polygon incidence

relations. Edges are used to keep track of the geometry and are represented by arrays of start and end

vertices, polygon faces, predecessors and successors.

The second reason for utilising the Voronoi diagram is because it provides a very

flexible platform for experimenting with different clustering routines. The Voronoi diagram

has a dual graph called the Delaunay triangulation, which is formed by drawing arcs between

points contained in adjacent Voronoi regions. Among the sub-graphs of the Delaunay

triangulation is the Minimum Spanning Tree (MST) from which familiar graph-theoretic

clustering schemes such as single-link, complete-link and average-link are derived.

ince the Voronoi diagram represents the point pattern as a set of areas, it is easy to

devise density-based clustering. It is also relatively easy to derive the Delaunay triangulation

from the Voronoi diagram and vice versa. This means that the Voronoi diagram bridges the

gap between the two families of clustering techniques: density-based and graph theoretic and

therefore lends itselfto experimenting with hybrid conjunctions. See Figure 5.22 below.

109

--~-------===~~~==~~

Dellslly-ba:>ed

c hl:4a mg

< Du~of >

Ch aph-theol ehe

chlsterwg

Figure 5.22 The top-left graph is the Voronoi diagram, which can be used for density-based clustering.

The top-right graph is the dual of the Voronoi diagram, the Delaunay tessellation, whose sub-graphs

include the minimum spanning tree (shown here in red) and therefore is suitable for graph-theoretic

clustering applications.

Promising results have been obtained from clustering algorithms based upon the

Voronoi te eHation and its dual, the Delaunay triangulation [OBSCOO]. Duyckaerts et a1.

[DGH94] de cribe an algorithm where a 2-d partition is obtained from the Voronoi

te ellation by first selecting the Voronoi polygon with the smallest area, then creating a new

empty clu ter, and then appending neighbouring polygons whose areas are less than a pre-

pecified thre hold. This threshold is proportional to the area of the smallest polygon. Once

the remaining polygons exceed the threshold, and the cluster therefore cannot expand any

further, it i removed and the process is repeated, starting with the smallest of the remaining

polygon . Thi approach can be classed as a density-based clustering because the clusters are

defined by pattern of points that are similarly spaced. An alternative approach has been taken

by tivill- a tro [L02], where the Delaunay diagram is used in a graph-based clustering.

Here local and global point neighbourhood relations are considered when producing the

clu tering. Thi method is desirable because it is an 'argument-free' approach i.e. it does not

require the u r to e timate any algorithm parameters or make assumptions about the data set.

Another ad antage i that graph-theoretic clustering is not sensitive to the input order of the

data. hi approach, again, is applied to partitioning points on a plane. Interestingly, this

noti n of taking both global and local connectivity into account in graph-theoretic clustering is

not oft n e plicitly addressed in the clustering literature. However, in their exposition of the

den ity-ba d PTI algorithm [ABKS99], Ankerst et a1. acknowledge the fact that with

110

most real-world data sets global density or connectivity parameters cannot be used to pick out

clusters of varying density.

Andrews et al. [AKS*02] have taken another novel approach to clustering via the

Voronoi diagram. However, their use of the diagram is to use multidimensional scaling to lay

out different levels of a predefined document hierarchy and then encapsulate whole clusters

within individual Voronoi regions. It should be noted that this is different from the approach

adopted here. The goal of the algorithms described in the following sub-sections is to obtain

the clustering without any a priori class information.

5.5.2.2 Interactive density exploration

To examine how the Voronoi diagram can depict varying density in a point pattern, a slider

was added to the Voronoi visual module in HIVE to apply an (optional) area or perimeter

threshold. As the user changes the value with the slider, Voronoi polygons whose area or

perimeter is smaller than the threshold are filled with a colour. Duyckaerts et al. [DGH94]

developed a density-based clustering algorithm using this threshold technique (Section 3.3).

It can be seen that as the threshold is reduced, the highlighted regions recede to areas of

higher density and clusters of various shapes and sizes stand out. However, because of the

global threshold, clusters of different density cannot be highlighted simultaneously when their

densities are at either side of the threshold. This creates an effect where clusters appear,

shrink and then blink out of existence as the user moves the slider to reduce the threshold

value. This is illustrated in Figure 5.23.

III

Figure 5.23 Data set used for clustering (a). Perimeter threshold reduced gradually (b) - (t).

Figure 5.23(a) shows the data set used to demonstrate the effects of modifying the perimeter

and area thresholds. Dense clusters appear at the top of the layout, and density gradually

reduces towards the bottom. Figure 5.23(b) shows the points, Voronoi regions and shading

when the user initially reduces the perimeter threshold just below the maximum value.

Figures 5.23(c) to (f) show how clusters of lower density gradually fragment then vanish

leaving only the densest clusters as the threshold is reduced. For example, the blue and green

clusters visible at the bottom of Figure 5.23(d) disappear for the threshold set for Figures (e)

and (t).

The author's colleague at Nickleby HFE Ltd. has used this interactive mechanism in

exploring text data in HIVE (see Chapter 7). He creates layouts representing text documents,

and then adjusts the density slider until various clusters appear. He then selects these clusters

to view the text they represent. This allows him to explore the themes present in the corpus.

112

The next two sub-sections detail a clustering scheme that automatically reduces the

perimeter threshold while keeping track of clusters as they appear and diminish. This

information is then used to resolve clusters of varying density as well as shape and size.

5.5.2.3 Clustering algorithm - first version

The new clustering algorithm consists of two steps. The purpose of the first step is to find

groups of points that lie in areas of similar density. Recall that one does not want to burden the

user with the task of specifying any data-dependent parameters. A recursive threshold

reduction approach is therefore applied in finding the density 'hotspots'. This is achieved by

first calculating the smallest Voronoi polygon perimeter and then the standard deviation of

polygon perimeters. These are then used as the smallest (tmin) and largest (tmu) thresholds for

perimeter size in determining whether to append a polygon to the cluster. The author has

found in most cases that when the tmax threshold is set to the standard deviation of polygon

perimeters, all of the points are grouped into one cluster. By then slowly reducing the

threshold value by a small amount a, this large cluster eventually breaks up into smaller

clusters, each representing an area of similar local density. Pseudocode for this approach is

provided below in Figure 5.24.

It should be noted that the Voronoi polygon perimeter is used as the dynamic threshold

value because it tends to have a narrower distribution than area and therefore it takes less time

to move the threshold across its range while keeping the decrement steps at low values. Also,

tllllx is initially set to one standard deviation of polygon perimeters because from the author's

experience with lots of data sets, this initially includes all of the points in one large cluster.

When a contiguous region of similar density is found that contains at least twice the

minimum number of points for a cluster (2 • C"'III)' the procedure is recursively applied with a

reduced perimeter threshold to further split this cluster. The amount by which the perimeter

threshold decreases, a, is equal to (I/IIQX - 1"'111) • 0.01. This decrement is made locally within

the recursive function. When a cluster is smaller than 2 • CmIII, it is added to the list of clusters

found so far, and after the recursive base case is satisfied, the list of clusters is returned and

input to the second stage of the clustering algorithm.

1\3

1. set t_x - st. dev. of Voronoi polygon perimeters

2. set tmin .. smallest Voronoi polygon perimeter

3. set minimum number of contiguous polygons that represent a

cluster, COlin, (e.g. COlin = 10)

4. set current perimeter threshold te = t~

5. make list of all polygons: pList, and for clusters: cList

6. find contiguous groups of polygons within pList whose

perimeters are less than t e , and each group having at least COlin

polygons. Create a list of these groups, gList.

7. while (t e > t min)

7.1 for each group in gList

7.1.1 if group. size ~ (2 * COlin)

make new pList, add group's polygons

set te = te - a

go to step 6 (recursive call)

7.1.2 else

add group to cList

8. return cList

Figure 5.24 Pseudocode for the first stage of the clustering algorithm.

The value a ensures that the threshold will always decrease in a constant number of

steps. However, since gList initially contains all Voronoi polygons (in one large cluster) and

each group of polygons is recursively split, the time complexity of this stage of the algorithm

is O(N log N).

The first stage of the clustering algorithm returns lots of small clusters representing

areas of similar local density. In the second stage, these cluster seeds are grown into larger

clusters, which form a partition of the point configuration. This is achieved by starting with

the smallest Voronoi polygon, in the cluster with lowest average inter-object distance, and

cumulatively expanding the cluster by adding neighbouring points whose distance to the point

in the polygon is less than or equal to the average inter-point distance. When no more points

114

are within this distance to any point in the cluster, the cluster is complete and the next cluster

seed is examined. Figure 5.25 provides pseudocode for this step.

1. sort list of cluster seeds, cList, from stage 1 in ascending

order by average inter-object distance, d av

2.delete all points, except that with the smallest Voronoi

polygon, from each cluster seed

3.for each cluster seed, c., in eList

3.1. set ~ = e.'s smallest polygon point

3.2. for each neighbouring polygon point, v of ~

3.2.1 if dist(v, ~) s ~v

add v to e.

set ~ - v

go to step 3.2 (recursive call)

4. return eList

Figure 5.25 Pseudocode for the second stage of the clustering algorithm.

This stage of the algorithm returns the partitioning of the point configuration. Since the

average inter-object distance of the cluster seed is used to determine whether the nearest

neighbours of each member point are added to the cluster, clusters of different shapes can be

found. The time complexity of this stage is O(N) because it is not necessary to examine a

neighbouring polygon once it is a cluster member. The time complexity of the Voronoi

algorithm and stage 1 is a..N log N) and therefore the overall time complexity of the clustering

algorithm is a..N log N).

To evaluate this algorithm's performance, it was run on the data shown in Figure 5.19

as well as benchmark data sets that were used to test the CHAMELEON [KHK.99] clustering

algorithm and Ertoz et al. 's approach [ESK03]. The latter data sets contain clusters of

different shapes, sizes and densities along with noise points in between them; see Figure 5.26.

lIS

(a) (b)

(c) (d)

Figure 5.26 Clustering results of the first version of the clustering algorithm on benchmark data sets.

Points of the same colour are deemed to be in the same cluster.

From Figure 5.26(a) it can be seen that all of the clusters have been identified, although

one has been overly fragmented. However, the benchmark data sets (Figures 5.26 (b) to (c))

indicate that the noise between clusters affects the algorithm's ability to differentiate between

some of the clusters. This is due to a chaining effect - a problem of which the familiar single

link algorithm is susceptible. The distance calculation in step 3.2 of the pseudocode (Figure

5.25) causes the clusters to merge across bridges built by the noise points.

5.5.2.4 Clustering algorithm - final version

To overcome the fragmentation shown in Figure 5.26(a) and the chaining effect evident from

the benchmark data sets discussed above, it was realised that the probability of a point's

membership of a cluster could be used to help decide whether it is included in that cluster.

This probability is determined by examining the dendrogram created by the first stage of the

c1u tering algorithm described above. The result of reducing the perimeter threshold in the

above clustering strategy produces a hierarchy of clusters (dendrogram), the top level being

116

one cluster that contains all points when the threshold is set to tn.x and the lowest levels

(leaves) consist of clusters of size emll/.

Given a pair of points i andj, the probability of them being in the same cluster p(i (")J)

is determined as follows:

P(,.inj) = { 1

~LlLd

If i and j appear in the same leaf

If i and j do not appear in the same leaf

Where L is the dendrogram level in which i and j diverge, and Ld is the deepest level of i or j.

To determine whether two points i andj should be part of a cluster, p(i (")J) is multiplied by

the average inter-object distance of the cluster seed dav. and if the distance between the points

is below this value then they are deemed to belong to the same cluster. This modifies step 3.2

ofthe pseudocode (Figure 5.25) as follows:

if (dist(i, j) * p(i (") j)) s d.v

II i and j belong to the same cluster

This strategy improves the clustering because it uses density information of the point pattern

to vary the distance threshold. The results of this modification are depicted in Figure 5.27.

Note that this clustering routine is opposite to that of CHAMELEON [KHK99]. Instead

of initially partitioning the graph before merging sub-clusters via an agglomerative

hierarchical algorithm, the current technique first uses a divisive hierarchical algorithm and

then creates the partition by growing the cluster seeds found in the lowest level of the

dendrogram.

117

(3)

(c) (d)
Figure 5.27 Clustering results of the final version of the clustering algorithm on benchmark data sets.

The modified algorithm correctly identifies most clusters.

From these results it can be seen that this algorithm performs very well on the data sets. It

seems that its objective has been met as discussed in Section 5.5.2: The time complexity of the

algorithm remains at a,N log N), the user does not have to manually adjust any parameters

and it can detect clusters of varying shape, size and density. The only drawback of this

algorithm is that its time complexity increases exponentially with data dimensionality. This

overhead is incurred because of the computation of the Voronoi diagram. However, since the

intended application of this algorithm is to augment 2-d layouts produced by dimension

reduction algorithms, this is of little concern.

This algorithm has a valuable role in the hybrid approach to algorithm development. As

well as being a hybrid algorithm, consisting of a density-based stage and a graph-theoretic

stage, it can comprise a useful component in a larger hybrid algorithm. The clusters that are

produced are data aggregates and the routine can therefore be considered as a method for

cardinality reduction. This would suggest that its output - a transformation of the input data

would be suitable for feeding into other algorithmic stages to carry out further processing.

Worked examples ofthis are illustrated in Chapter 8.

118

5.6 Conclusions

This chapter began by describing how hybrid algorithms found in the literature are able to

overcome many of the shortcomings of individual algorithms. This was followed by a

demonstration and discussion of two new hybrid spring model algorithms, a fast version of

Shepard's non-metric multidimensional scaling and a novel clustering algorithm. It has been

shown how the hybrid approach to designing clustering and layout algorithms can improve

performance in terms of run times, layout quality and cluster detection.

The author's work in this area prompted the development of a software environment for

creating, evaluating and using such algorithms. This system is called HIVE (Hybrid

Information Visualisation Environment) and is designed to be extremely flexible for

prototyping dimension reduction and clustering routines. Most of the figures used in the

preceding chapters were generated by HIVE. The next chapter provides a discussion of

visualisation environments and their design. This will provide a basis for describing the design

and implementation of HIVE in Chapter 7.

119

6. Visualisation environments

This chapter details a review of the literature regarding the design and development of

visualisation environments as a requirements gathering phase and precursor to the

implementation of HIVE. Information visualisation environments, like their scientific

visualisation counterparts, are abundant. Although the common goal of these applications is to

tum data into visual information, there are substantial differences in the typical architectures

and modes of use associated with each. The aim of this chapter is to draw, from the fields of

information visualisation and scientific visualisation, a discussion of the major design

concepts and interaction mechanisms.

One of the goals of the author's work was to produce a hybrid algorithmic framework

(HIVE) that supports adaptive and interactive visual information seeking. The key features of

this framework are:

AaptilbUity to dtdtI cllrdblfllity lind diIIIenswnfllity - to cope with evolving databases and

diverse data sets, the core of the framework consists of a hybrid algorithmic architecture. This

architecture borrows from the modular data-flow model familiar in scientific visualisation

applications and is the inspiration for the name of the framework, HIVE: Hybrid Information

Visualisation Environment. The hybrid algorithmic approach essentially uses the complexity

of the data, in terms of cardinality and dimensionality, to efficiently help steer the execution

through a network of algorithmic components to produce the visualisations.

Aaptllbility to divelSe Vllrillbie types lind heterogeneous dalll - the proposed system is able

to work with different types of variables in the input data including nominal, ordinal and

quantitative and a mixture of these. A variable-type transformation process to produce

continuous vectors as required by the algorithmic architecture facilitates this.

InterllCtivity - the framework is comprised of a multiple-view system and tight coupling

between views because a consistent flow of interaction is essential in data exploration. Direct

manipUlation of visual structures is also important in providing flexibility in exploratory

analysis.

120

Abstrtu:tion ",,,,,lIgetnent - to maintain integrity of the visual representations, abstraction

management is required to manage the relationship between the rendered information across

different abstractions and the underlying data.

HIVE allows analysts to gain insight into latent complex relations within abstract data

and helps algorithm designers in building novel hybrid algorithms. The framework combines

information visualisation techniques together with interactivity and computational algorithms

to produce the visualisations, thus affording visual information seeking. Although the theory

of Knowledge Management (KM) is beyond the scope of this thesis, the overall intention of

the framework is to provide a system that will form part of the knowledge management

process. This is by transforming data into information - by adding value to them - and

helping people transform information into knowledge by prompting better understanding

[SpiOO].

Before embarking upon the design and development of HIVE an extensive review of

the literature was carried out to determine how HIVE should look and feel and how interactive

mechanisms should be formed to effectively guide the user in his or her work. The study,

which was essentially a requirements gathering phase, began by looking at the data-flow

architecture adopted in many scientific visualisation systems (Section 6.1). Such a model, in

tandem with visual programming, has proven to be extremely flexible for creating

visualisation applications and for computational steering. This discussion is followed by an

exposition of some useful facets of information visualisation systems (Section 6.2) such as the

use of multiple views, and the notion of the information workspace. Finally, Section 6.3

describes some fundamental concepts in designing information visualisation environments.

6.1 Data-flow model

Computer-based visualisation was first established in its application in the fields of

engineering and the physical sciences. The very nature of these fields, in dealing primarily

with physical data, meant that computer visualisation was a natural step in the evolution of

tools for engineers and scientists - since the data are intrinsically spatial, it would be

appropriate to represent them spatially and therefore graphically for their analysis. It is known

that for humans, space is perceptually dominant [CMS99]. The elements of the physical data

often map directly onto a set of two or three axes in graphical plots that make the myriad data

'jump out' at the beholder and naturally appeal to human perception. In light of this,

121

visualisation was given formal recognition of its application in computing to amplify

cognition.

In this section, some examples of scientific visualisation systems that utilise visual

programming and a data-flow model for execution are given. Systems based specifically on

the data-flow architecture are the focus here, primarily because the underlying model is

extremely flexible and has been widely adopted The key features of these systems are

discussed to demonstrate their relevance to the HWE framework.

6.1.1 Visual programming

At around the time when scientific visualisation was being established, the concept of visual

programming was also becoming established. Conventional programming languages, whether

high-level or low-level, tend to be built around a vocabulary where the 'words' consist of

primitives (characters). Such primitives in the English language are the letters of the alphabet

With this in mind, it can be said that the language constructs are essentially lists of primitives

and are therefore one-dimensional representations.

Visual programming languages, on the other hand, are at a higher level of abstraction

than conventional languages. Haeberli [HaeS8] states that a visual programming environment

is any system that has adopted a graphical 2-d notation for the creation of programs. The

visual structures that make up the vocabulary of these programs are essentially representations

of well-defined aggregates and the (direct) manipulation of these aggregates means that

complex programs can be produced more easily than with conventional languages. This is

because the abstraction allows a greater degree of code or function reuse and the workings of

the programs themselves are more readily understood and communicated due to their visual

and spatial properties. It can also be argued that if the manipulation of the visual constructs is

flexible enough, for example, the user may wish to place them arbitrarily on the display

surface, then this allows a larger margin of freedom for external ising the plans and thoughts of

the user. This 'informality' in the notation is the basis for one of Green's cognitive dimensions

of notations [Gre89] called secondary notation. Secondary notation will be discussed in

greater detail in Section 6.3.

Visual programming has become a significant aspect of scientific visualisation

applications. It has been recognised that many monolithic precompiled applications with

static interfaces tend not to be flexible enough to cater for many of the needs of scientists and

engineers. The functionality and the user interface are 'set in stone' and as a result the system

is only applicable to a few specialised tasks. The application designer cannot anticipate all of

the tasks that the target audience will want to perform. It is also often the case that these

122

systems do not support interoperability between applications and where they are extensible

they require significant amounts of coding on the part of the user. However, visual

programming has been used in a number of systems to address these issues and allows the

user to build his or her own task-specific applications without the need for conventional

programming expertise. By breaking applications down into sets of functional modules, and

rendering them as graphical representations, the user may use direct manipulation to join them

together into networks, where the links are data-flows. With a variety of different modules for

data input, transformations, rendering and parameter control etc., fully functional applications

can be 'thrown' together relatively easily by the user to provide custom visualisation

solutions.

This data-flow model is interesting because it reinforces the merits of visualisation in

computing. With regard to the means-end relationship of scientific and information

visualisation, the means are a visual process and the end result is a tool that produces the

visual information originally sought after - visualisations are very useful for producing other

visualisations.

6.1.2 Data-Dow architecture

Before visual programming was available in scientific visualisation tools, the functional

components of the tools were hidden from the users and they had no control of the flow of

data between them. The stream of data from input through calculation functions to mapping,

filtering and rendering graphics and their control was pre-set and the scientists and engineers

had to make do as best as they could for their tasks. In the words of Haeberli [Hae88],

"Instead of the user driving an application, the user is often driven and constrained by the

application . ..

The concept of visual programming came as a solution to these problems and became a

paradigm of moving away from these monolithic and static applications, providing integrated

environments where the user could customise his or her applications without programming

expertise. The visual programming in the application design cycle took the form of a data

flow architecture. In this architecture, users are presented with a library of modules,

application components, that have specific functions. The users can select which modules will

be useful in their application and draw, via direct manipulation of graphical representations, a

block diagram and create connections between modules for the data to flow through (see

Figure 6.1). This quick and easy process meant that the scientists and engineers could spend

most of their resources on the problems being studied instead of dealing with the overhead of

re-coding and configuring monolithic applications.

123

Data ..
transformation Render .

Data .. Data
import transformation

.... Render .

Render

Figure 6.1 An example of a data-flow architecture. Blocks represent functional modules and the

arrows represent the flow of data.

The data-flow model is appealing because it is visual and it is analogous to water

flowing through a pipe, hence its description as programming by plumbing in [AT95a]. The

mental model it instils in the user is intuitive and makes it easier to learn. It also simplifies

control and navigation through the resulting applications.

The visual design cycle produces an executable flow network [UF'K. *89], which is

essentially a directed acyclic graph. In this graph the modules (nodes) are at a higher level of

abstraction than conventional program procedures but lower than a complete application. This

abstraction borrows from Object Oriented Programming (OOP) and as a result also benefits

from code re-use, polymorphism and extensibility. Integrated visualisation environments are

more readily extensible because new modules can be produced by third parties for use in the

data-flow architecture, provided that an appropriate Application Programming Interface (API)

has been implemented. Some more advantages of the data-flow paradigm are as follows:

• PtlTlIIlel procnslll, - the architecture naturally lends itself to implementation on parallel
processing platforms and distributed environments. Branches of execution in the flow
network may be carried out simultaneously resulting in speed-ups for calculation and
simulation. Research in this area was carried out for the Vipar (Visualisation in Parallel)
project in the Computer Graphics Unit (CGU) at the University of Manchester [LGH02].

• /IItD'opertlbUlty - systems implementing the architecture are more likely to be compatible
with other data processing and visualisation applications. Inter-application communication
modules can be part of the framework. In [AT95a] a uniform data model is in place for
unifying access to imported and exported data.

124

• CoUaborlllio" aDd commuDicadoD - if the data-flow architecture's implementation is
distributed across multiple platforms for processing then collaboration between users
comes as a natural extension to the framework.

• A"hntlUd, 1,,1n'1ICtlN silllllltldo" - previous scientific visualisation systems often carried
out calculations in batches and the results were only available when the calculations were
finished. In the data-flow paradigm. modules for changing calculation parameters and
caching intermediate results for animations afford the user interactive intervention to steer
simulations of the processes being visualised [AT95a, Hae88].

• TrDCt!ilblt! colllplltlllio" - in relation to the above point, while simulations are being run,
the branches of execution can be recorded as the calculations are made. When interesting
anomalies arise in the generated visualisations, the calculations can be halted and
backtracked to a previous point in the audit trail, allowing the user to restart from that
point and modify the calculation parameters to gain more insight. This is implemented as
a history tree in [888·93].

• SlIbjll"ctivt! prnt!"tIlIlo" - with mechanisms such as a history tree, simulations can be
run simultaneously from various points in the path of execution but with different
parameter settings. This facilitates the what-if scenarios described in [Lun99] for
comparison of different outcomes.

• Approprllltio" - by allowing the users to carry out the plumbing in their applications, they
have the ability to match the tool to their tasks. This goes beyond mere customisation
because the users can implement applications that the original system designer did not
anticipate.

• Vislllllislltio" - by using visualisation in the design cycle the notational constructs appeal
more to human perception. The user is afforded a higher awareness of the propagation of
data in the application and is therefore made more efficient in constructing and debugging.

Having described most of the virtues of the data-flow architecture adopted in scientific

visualisation environments, it must be said that there are some limitations as a result of the

architecture. However, as will be seen later, these are not intractable.

In [AT95a] the authors pointed out the fact that there are cases where some modules in

the data-flow network executed needlessly. Such instances arise when a module is in the path

of execution but its output is not needed at that time, i.e. it should be bypassed. Another case

is when a module on the path of execution will not change the state of its output from its last

execution and therefore its current execution would be superfluous. These points imply that

the data-flow network should not be static. Internal states and user actions can, and should,

influence the path of execution which, as well as creating computational overheads, can also

provide opportunities for optimisation.

125

Another concern in the data-flow architecture relates to visual programming and the

obvious overhead incurred by the user in creating the application. The resulting applications

may be tailored precisely to the user's needs but they require work in getting them into this

state. The data-flow architecture promotes exploratory application composition, but it is only

useful if the user has a good understanding of the functions offered by the system. Designers

of visual programming languages must be careful in ensuring that the system is usable.

Traditional and typical static-interface applications, on the other hand, allow the user to

explore, experiment and concentrate on his or her tasks almost immediately albeit at the

expense of being less flexible for a wider variety of tasks.

In [UFK*89] an important limitation is highlighted regarding the visual representation

of the data-flow. Upson et al. point out that in some applications the data-flow graph can

become very large and unmanageable if the functional level of abstraction in the modules is

too low. This would present a problem if the data-flow representation were to be relied upon

for navigating through the visualisation application per se. There are, however, practical

means of getting around problems such as these. For example, aggregation of visual

components could reduce the clutter, or, zooming could provide overview and detail on

demand. In Schroeder et al.'s visualization toolkit (VTK) [SML96] this problem is avoided by

manipulating and representing the data-flow model purely in code, rather than visually.

Written in C++, VTK is an open source library of classes that can be hooked together using its

C++, tel, Python and Java APIs. Although this combination of compiled and interpreted

components provides for fast and flexible application creation, its lack of visual programming

means that its data-flow network is not as readily perceivable.

6.1.3 Some examples

A brief discussion of three papers describing scientific visualisation systems that employ

visual programming and a data-flow model will now follow. These systems are discussed in

chronological order of their respective publication in the literature to illustrate the evolution of

the data-flow concept. Although it may seem tautological, the purpose of this section is to

highlight some of the approaches and motivation researchers have in adopting the data-flow

architecture.

6.1.3.1 ConMan: Connection Manager

In 1988 Haeberli [Hae88] published a paper describing a system called ConMan (Connection

Manager). Haeberli realised that existing systems were not flexible enough to cater for many

of the diverse needs of their users and as a result he developed ConMan to address this issue.

126

In presenting his system, Haeberli adopted a culinary metaphor of making a sandwich in

describing this situation. He likened the typical monolithic application to that of a pre

prepared sandwich, and in contrast to this, he went on to describe ConMan as a way of

obtaining the ingredients and making your own sandwich. Through this metaphor Haeberli

highlights one of the points made in the previous section: visual programming incurs an

overhead for the user, i.e. she might be a bad cook and is unable to appropriate the ingredients

to make a sandwich she likes.

This system is described as a visual programming language that uses functional

modules (implied as verbs) and data-types (implied as nouns) as its vocabulary. Inspired by

the UNIX pipe command for channelling data between processes (one-way inter-process

communication), the modules in the system can be connected so that data can flow between

them and the configuration of the pipes and modules is determined by the user's ultimate task.

The types of module included in the system include render controllers for geometric shapes

and bitmaps, and a tape module to record and play back animations of the generated views.

Haeberli implies that the system is easily extended, as modules only have to declare their

input and output port properties to the core system, which in turn maintains a queue of events

to be dispatched to the modules concerned.

Implemented in C and running on the Silicon Graphics Iris Workstation, the ConMan

system is an early example of the data-flow architecture and was limited in its application. Its

applicable data-types were restricted to transformations, geometric shapes, RGB colours and

bitmaps, and the data were piped in textual interchange format between modules. Hence it

was not applicable to many scientific visualisation challenges involving large amounts of

diverse data, but it did influence further research into data-flow architecture [AT95a,

UFK*89].

6.1.3.2 AppUcatioD VisuaUsatioD System

In a paper published by Upson et al. [UFK*89] in 1989, the Application Visualisation System

(A VS) is described. The authors realised that at that time while graphics and computing

hardware were becoming ever advanced, software development was not keeping up to take

full advantage of the new powerful capabilities on offer. The typical scientific visualisation

tools available to researchers were in the form of expensive inflexible monolithic applications,

graphics libraries or animation packages. Graphics libraries required lots of low-level

programming to use and animation packages worked only on pre-computed data and

sacrificed processing power for high-quality graphics rendering rather than maintaining a

balance between rendering and providing better interaction mechanisms. The proposed

127

solution to this was found in applying the notion of object-oriented visual programming and

an interactive GUI in a system that allowed researchers flexible access to the hardware power

without requiring programming expertise. It was intended that this would allow scientists and

engineers to quickly build applications supporting 3-d interactive graphics and high

computational power without low-level programming, thus allowing them to focus more on

their area of study. The authors gave an example of how, for one user of AVS, it took a day to

create a visualisation application for a task, whereas previously without A VS the user had

spent two weeks coding an application for the same task.

In the development of A VS, Upson et a1. determined the requirements that A VS would

need to satisfy by modelling the typical process through which a scientist or engineer would

go about simulating a physical system using scientific visualisation. Inspired by the uncovered

requirements and other work in data-flow architectures such as ConMan, Upson et al.

recognised many of the advantages to be found in the data-flow model, such as animation of

simulations and being appropriate for parallel processing platforms. The direct manipUlation

in visual programming meant that it would be easier to use. The system would also be

extensible by allowing new modules to be developed under A VS by making use of module

templates that provide the housekeeping routines and only requiring the algorithms to be

defined by the user. Third parties could also code modules in C, C++ or FORTRAN

independently of the A VS system The resulting applications would be cheaper because only

new modules would have to be bought instead of entire new monolithic applications.

Going beyond the scope of ConMan and animation packages, A VS offered a more

complete application in that it could be the producer as well as the consumer of data rather

than just manipulating pre-calculated data. It integrates visualisation with the processes that

create the data. Also, to promote inter-application compatibility, the range of applicable data

types is also extensible. Another advance was to make the data-flow model in A VS demand

driven to increase efficiency. Modules pull the data through the data-flow network as they are

needed.

The authors of the A VS paper did however find a limitation of the data-flow visual

programming paradigm. They realised that in complex applications the number of modules

and pipes in the data-flow network could become very large and therefore unmanageable and

that it would lose its value in providing an overview of the application. This, they said, would

be affected by the level of abstraction used in the modules and implied that by making the

abstraction higher without being too generic would help alleviate this problem.

Implemented in C++ on the X Window System, A VS provides three types of view: a

data-flow network diagram for shaping the application; control panels, many of which are

128

created automatically from the parameter descriptions of the network modules; and output

windows for visualisations.

Through the given application example in the paper by Upson et at, A VS was shown to

be one of the first systems implementing the data-flow architecture that could tackle real

scientific visualisation challenges.

6.1.3.3 IBM Data Explorer

mM Corporation's Data Explorer (DX) and its extension of the data-flow model is described

in a 1995 paper by Abram and Treinish [AT95a]. This is another system utilising graphical

programming to allow users to create visualisation applications. By the time this paper was

published. the full advantages of the visual programming data-flow architecture were well

known and. as this paper shows, work was now underway to refine and optimise such systems

to overcome some of the data-flow model limitations that have been described. The goal of

this paper was to show how the data-flow model could be extended to support greater

scientific visualisation challenges while maintaining its fundamental virtues.

The predominant issue that the paper addresses is that in the traditional data-flow

architecture, some modules in the network may needlessly be executed. This superfluous

processing obviously makes the system less efficient. The paper describes side-effect modules

in the data-flow as being sources of output external to the network, for example, a

visualisation on the screen or a data file for exporting. In some instances, in the flow of

execution not all modules in the network will feed into these side-effect modules and will

therefore not require execution. The DX system employed graph evaluation of the data-flow

network and conditional execution strategies to determine which modules needed to be

executed and which ones did not.

Another instance when a module does not need to be executed is when its inputs have

not changed from the last time it was executed. This can happen when the user modifies

another module's parameters, prompting it to execute and the network to process the new

results. Modules in the execution path before the modified module will have the same input

states as before and it will therefore be unnecessary to re-execute them. To overcome this, DX

uses caching of partial results so that when a module is sent input, it determines whether it is

different from the last time it was executed. If the input is the same then the module will

merely retrieve the last results from the cache otherwise it will re-execute to produce new

results. This caching is also the used to create a history tree similar to that of [BBB*93] which

allows previous network states in a simulation to be re-visited and re-run with modified

129

parameters from that point. This naturally extends to creating animated simulations of the

physical processes under study.

These modifications to the data-flow model mean that its performance is optimised and

therefore more applicable to scientific visualisation challenges that present large amounts of

data. As well as this, the OX system outlines a number of further extensions. Adaptability to

new applications and data-types is facilitated by a uniform data model providing uniform

access services to imported data, generated data and exported data of standard scientific

classes described by shape, spatial location, rank and type, etc. This addresses the need to

integrate diverse data sets, which is a prevalent issue in scientific visualisation. The

visualisations per se have also been endowed with a richer variety of interactive mechanisms

such as those for location probing, object selection and user-defined annotation.

OX and OpenOX (the open source version of OX) come with a comprehensive toolkit

of pre-made modules for a large range of applications, and module polymorphism enhances

reusability. It runs on Unix workstations and on pes with Windows and represents a mature

example ofthe visual programming data-flow paradigm.

6.1.4 Relevance of data-flow based scientific visualisation

to the HIVE framework

The key features of the systems described above have provided inspiration in many areas of

the HIVE framework. Those areas include the hybrid algorithmic architecture, the interaction

model, extensibility and the completeness of the system with regard to data production as well

as consumption.

At the core of the HIVE framework is a hybrid algorithmic architecture. The

complexity of the input data, in terms of cardinality and dimensionality, steers the flow of

execution through the various algorithmic stages in a similar fashion to the executable flow

network apparent in the scientific visualisation systems discussed above. However, there are

two points of departure from these systems. The first is where the data-flow network is

formed. In the traditional data-flow model, the user explicitly designs the network via visual

programming, whereas in the HIVE framework, the system can use the complexity of the data

to determine the network. In this sense, it is more accurate to say that the HIVE architecture

can automatically form a graph with the vertices being algorithmic modules and the edges

being the data pipes. The second and most prominent point of departure from the traditional

data-flow model is that the HIVE algorithmic architecture works to increase the computational

efficiency of the system not just its flexibility.

130

In the outline ofthe hybrid architecture shown in Figure 6.2, the node labels refer to the

input combination of the ranges of data dimensionality and cardinality respectively, e.g. HH

means high dimensionality D and high cardinality N. The dotted lines represent a path

through the algorithmic modules for performing transformations of the data. This will be

discussed in depth in Chapter 7.

is -

Cardinality (N)

Ei ···/"-~ "····· "~'8,
\
\.

\

IMMI EJ)
!

~, B ~/
... ,

Figure 6.2 An outline of the hybrid algorithmic architecture.

It should also be mentioned that the HIVE framework is specifically aimed at

information visualisation rather than purely scientific visualisation. With these differences

aside, however, and by borrowing from the data-flow paradigm in scientific visualisation,

potentially all of the advantages listed in section 6.1.2 are available with the bonus of greater

algorithmic efficiency. As an example, consider extensibility: an Application Programming

Interface (API) can be used to allow the extension of the framework without extensive

programming. Algorithmic modules are 'pluggable' by declaring complexity in cardinality

and dimensionality and also describing any natural visualisations that result from them. New

algorithms slot into the framework to improve efficiency as well as to provide new

visualisations.

Although the visual programming aspect of the systems described in this chapter does

not apply so strongly as mediator in the algorithmic architecture of HIVE, the notion of visual

programming is useful in considering how a user may interact with the system. North [NorOl]

and North and Shneiderman [NSOOa, NSOOb, NSOl] have evolved the concept of snap

together visualisation in a system where the user can link views so that specific actions in one

view can propagate to change the appearance of connected views. Although snap-together

visualisation is based upon the premise that multiple views in visualisation provides more

insight [M 90, Rob98, BWKOO] and that tight coupling between views is useful for filtering

13\

data and maintaining consistency [AS94b , AT95b], the system is essentially utilising visual

programming albeit at a higher level of abstraction. This notion of an interaction pipe coupled

with the hybrid algorithmic architecture could be of benefit to the proposed HNE system. The

data-flow model will provide efficiency in the computational stages and the interaction-flow

strategy will reflect this and will also provide a vehicle for appropriation to allow the user

greater flexibility in the system's application. It should be noted that GeoVISTA Studio

[TG02] is very close to this concept. Based upon JavaBeans™, this is a geocomputational

system that utilises visualisation and visual programming to help analyse geospatial data. It

includes an extensible library of algorithmic and visualisation components including k-means,

SOM, parallel coordinates and visual classifiers. The user can select these components and

connect them together into data-flow networks. However, it does not place as much emphasis

on the flow of interaction between views, as provided in HIVE. While views can be

coordinated, the flexibility of snap-together is absent. Also, unlike HNE's proposed hybrid

algorithmic framework there is no provision for the semi-automatic generation of algorithms.

6.2 Information visualisation environments

Information visualisation has its roots in scientific visualisation where the data typically are

physically based and of low dimensionality. Information visualisation is applied to abstract

data of arbitrary dimensionality - from very low to ultra high. There is also a greater variety

of data types that are the focus of information visualisation (as Shneiderman has noted

[Shn96]) and can be characterised by dimensionality (1-d, 2-d, 3-d, 4-d+), temporality (e.g.

lifeLines [PMR*96], Gantt charts), hierarchy (trees) and relationship (networks/graphs).

Therefore, more novel techniques of visualisation are required beyond those of the simple

direct mapping of variables to a set of two or three orthogonal axes, as typically encountered

in scientific visualisation. The literature provides a wealth of novel applications of spatial

substrates, retinal variables and visual structures drawing from the fields of cognitive, gestalt

and ecological psychology. Even though progress in these areas has allowed visualisation

users to glean more information from the data under study, interaction has to be added to

allow users to look at the data from different perspectives and to detect latent structure (or see

the unseen [Rob98]). An example interaction technique is tight coupling [AS94b] between

multiple views which provides a flow of interaction propagating from one view to the next.

Having interactive visualisations is all very well but these informative views of data

must also be considered within the context of the user's task environment. The environment

with its human and informational resources frames the users, their tasks, activities, goals and

132

the information together with the tools to nurture knowledge which may result in new actions

applied in that task environment [SpiOO). To couple information visualisation with the user's

task environment the concept of the information workspace was proposed in [CRM91). An

information workspace is a macro-environment that may reflect the resources in the user's

physical environment but with the informational resources providing more nourishment

through the effective abstraction and manipulation afforded by visualisation.

Information visualisations are very data-dependent and can be extremely complex.

Designing effective visualisations is still a hit-or-miss craft. The visualisations themselves

should be seen as part of a suite of tools in a workspace where people can efficiently make

sense of and work with information to gain knowledge. The following subsections will focus

on multiple-view visualisations, information workspaces and the process of knowledge

discovery. The relevance of these areas to the proposed HNE framework will also be

discussed.

6.2.1 Multiple views for information visualisation

While a single static presentation can offer some insight into the structure of data, there are

great benefits of utilising more than one view of the same data. Visualisations tend to be

abstract representations of data and therefore multiple views serve to provide multiple

representations, each of which offers a different perspective. These different perspectives can

prevent the user from making misinterpretations from the data [Rob98].

There are two obvious choices in determining the configuration of multiple views in

visualising information. They correspond to whether the views are displayed simultaneously

or singularly over time. This is addressed by Baldonado et al. 's rule of space/time resource

optimisation in their guidelines on using multiple views [BWKOO]. A common example of the

latter is found in animation where frames are displayed sequentially and rapidly to give the

viewer a sense of motion. This sense of motion blends a whole series of perspectives on the

data into one continuous view allowing the information to unfold with time. This could be

interpreted as a special case of using mUltiple views and is most naturally applied to temporal

data.

In the former case, however, the diligent use of screen real estate and the co-ordination

of the visual spatial substrates is paramount in affording insight into non-temporal data.

While animation might be effective in showing how data evolve over time, the use of

simultaneous views can have several purposes depending upon the technique employed and

the desired end result. The techniques of focus-plus-context and overview-plus-detail

[CMS99) use one view as an overview of a large set or subset of data and another view as a

133

window into a specific, more detailed portion of this set. This is to afford the user an

understanding of the data by the context and the detail within the wider context. Another

related technique is to use previews-and-overviews [GMPSOO]. Again, one view provides an

overview while other views provide different levels of representation of parts of the overview.

The purpose of this technique is to allow the user to rapidly probe the overview to seek out

relevant information before deciding to look at it in more detail. A third example of

effectively using multiple views is in brushing-and-Iinking. In this case data are represented as

before, as visual artefacts across several views, and by selecting one or more of these artefacts

in one view, the corresponding artefact(s) can be highlighted in the context of other views. See

Chapter 2 for a detailed discussion of these methods.

The above examples are of co-ordinated views that rely heavily upon interaction to root

out information and enhance navigation through data. However, even the mere spatial

positioning of static views can be used to reinforce understanding as well as making efficient

use of screen real estate. In the field of Ecological Interface Design (EID) [RS98], the

importance of multiple views is realised in the Proximity Compatibility Principle (PCP). In

describing PCP, Burns [BwOO] states that "things are related to each other when they must be

used sequentially within a task" and this is subsequently used to justify the positioning of

views. This is exactly in line with one of Green's cognitive dimensions, side-by-side-ability

[HH99]. This describes the ability of multiple views to allow comparison without unduly

burdening the user's working memory. This is reflected in [EW95] and [LRB*97] where the

juxtaposition of views that have a common axis provides a visual join between the

representations. Superimposition of transparent views can also enrich visualisation, although

occlusion can be a problem.

Although multiple-view environments have many advantages as discussed above, they

are not to be utilised without realising some inherent drawbacks. Typical examples of these

drawbacks are in time overheads incurred in setting up task environments and switching

between tasks. For an analysis task a user may have to open and configure several windows.

This not only takes time but when many such windows are open, system resources may also

be severely drained and the user must also bear a greater cognitive load. This is a common

experience in GUI-based operating systems such as Microsoft's Windows. Being motivated

by these overheads, Kandogan and Shneiderman proposed a system called Elastic Windows

[KS97] to make efficient use of screen space and allow the user to invoke operations over

several windows simultaneously to speed up task environment set-up, context switching and

task execution. In the context of information visualisation, these cognitive-load and system

resource overheads were also realised by Baldonado et al. [BWKOO] and merited a tentative

134

set of guidelines to the proper design of multiple-view systems. These guidelines serve to

clarify when and how to use multiple views.

6.2.1.1 Animation

In stereotypical temporal animation the time dimension tends to be the primary independent

variable of the data set. This means that other (dependent) variables can be mapped onto it

providing a flow of transition in the view that seems natural. However, for non-temporal data

distributions, i.e. time is not a major contributor to the principal components, animation of its

distribution along one of its potentially many components may not be very informative. If, for

example, one rotates a 3-d scatterplot, containing clusters, in arbitrary directions, many

directions would not be good for revealing the clusters and their relationships. Techniques

such as grand tours [CBCH95] and co-ordinated views can overcome this.

Cook et al. [CBCH95] describe a grand tour as being a dynamic view that presents a

sequence of many multidimensionally scaled projections of the data. Rotating the projections

smoothly across the data distribution produces animation with the 'smoothness' determined by

the granularity of the sampling and interpolation employed over the data. This shows that time

can be used to show the distribution of non-temporal data unfolding. However, since the

search space of potentially meaningful projections is so large, animated views of random

paths through this projection space may fail to show anything meaningful.

A special case of interactive animation that is similar to a grand tour is facilitated in

force-directed layout algorithms such as the spring model [Ead84] for multidimensional

scaling. With this type of algorithm, a two or three-dimensional embedding of the higher

dimensional data is gained by iteratively refining the low dimensional representations. As

opposed to a grand tour, the 'projections' in this case are the low-dimensional positions of the

data that continuously move towards an optimal layout. This motion is made with regard to a

measure of global minima in the spatial embedding. With each iteration step. the low

dimensional view of the data can be updated to animate the progress of the algorithm. In

[BSLD98, RMC05]. the user can intervene in this animation by dragging visual

representations of the data to different positions and see how the algorithm reacts. Buja et al.

[BSLD98] use this as sensitivity analysis because the stability of the layout can be observed

with respect to the amount of movement of the data points. The author has also published in

this area - by interactively adding energy to a spring model layout, the user can help the point

configuration bounce out of a local minimum [RMC05].

The term animation tends to instil a notion of a smoothly changing picture where the

transitions between views (frames) are imperceptible. However, there is another side to the

\3S

word 'animation'. High levels of human-computer interaction such as in direct manipulation

of visual artefacts and co-ordinated views can be enough to animate static presentations into

being dynamic visualisations. In this case, the user's actions at the interface directly control

the view transformations. Instead of the transitions in the views being imperceptible, they are

now visual feedback in the cause-effect relation given by interaction over time. Animation, i.e.

multiple changing views, can reveal hidden structure within data. When multiple views are

shown in temporal and spatial context, latent patterns can be found more easily.

6.2.1.2 Tight coupling and flow of interaction

The configuration of multiple views determines whether the data are presented simultaneously

or singularly over time within each view. Interaction however, fruitfully marries the above

two types of view configuration. It allows two or more views to be concurrent as well as to

show visual representations evolving as the user participates in their transformations. The flow

of visual transformations in views occurs with the flow of interaction. By co-ordinating

multiple views so that changes made in one view are reflected in other views, interaction can

be said to flow between them. This provides the user with the ability of focussing in on

specific parts of the data set and seeing them within the context of other representations. In

evaluating their snap-together visualisation system, North and Shneiderman have found that

this enhances user-performance in data analysis tasks [NSOOa].

The notion of co-ordinated views is expressed in the concept of tight coupling [AT95b,

AS94b). Tight coupling between visual interface components such as controls and views

allow actions invoked on these components to affect the state of other components. Take, for

example, a series of form windows with button controls for moving backwards and forwards

through the sequence of forms. By using tight coupling between the fields (for entering

information) and the "Next" button (for progressing to the next form), the system can grey out

the button until the user has filled in all of the necessary fields. This effectively constrains the

user's actions and can be used in general to guide the user through interacting with the

interface in the direction of possible goals. When applied to graphical query controls such as

range sliders, tight coupling can also alleviate the all-or-nothing phenomenon typically

associated with Boolean queries in information retrieval. When multiple controls such as

range sliders and check-boxes are used to enter query parameters, the selection of a value on

one control can influence the range of values that are selectable in the others. This can prevent

zero-result situations where the data space being searched has no items matching specific

queries. Conversely it can also prevent the user from being overwhelmed by too many results.

By displaying result previews as queries are being constructed, users can quickly refine

136

queries until a manageable and relevant set of results is obtained. This is also known as

dynamic querying [Shn94).

Co-ordination between multiple views has been around since the 1970s. A popular and

well-established technique used by statisticians is to use a matrix of scatterplots to gain

several simultaneous perspectives of their multivariate data [BC87). The scatterplots represent

layouts of each possible pairwise combination of the variables comprising the data set. This

means that for a data set of dimensionality d, the number of scatterplots required is equal to

d(d - /)/2. Obviously, the downside to this approach is in its limited applicability to high

dimensional data sets. As dimensionality increases, screen space for the scatterplots rapidly

diminishes. However. when the dimensionality of the data permits such a configuration of

multiple views of the data, the collage of views can be enhanced by interactive mechanisms.

This interaction typically allows the selection of arbitrary points in any of the plots and

highlighting the corresponding points in the other views. The highlighting usually takes the

fonn of using different colours to distinguish selections and has therefore led to the adoption

of the tenn painting to describe such interaction [MS90). It is also known as brushing-and

linking [BC87) and location probing [CMS99). In statistical analysis this interactive

mechanism is referred to as part of exploratory data analysis (EDA).

The insight into data that EDA provided statisticians inspired researchers to experiment

in its use in visualisations other than scatterplot matrices. Generally the concept can be applied

to any multiple-view system where visual entities have different abstract representations

across the views. One example is in the linked views employed in the Apple Dylan

programming environment [DP9S). In this case, views are connected by what Dumas calls

hOI-links that cause the selection of an object in one view to effect prominence of related

objects in the other linked views. Another example is in the spreadsheet approach to

visualisation. In [CKBR97). a spreadsheet layout of views allows efficient use of space,

multiple operations, side-by-side-ability etc. and supports conjunctive analysis by allowing

'what if questions to be easily posed and answered (like a normal spreadsheet). The notion of

brushing has also been extended. Buja et al. [BSLD98) make a distinction between two types

of brushing. They call the temporary highlighting of objects, as the mouse brushes them,

transient brushing. Whereas for highlighting that remains after direct manipulation of the

visual artefacts, they use the phrase persistent brushing. This interaction was implemented in

the XGobi system [SCB98) which provides a workspace for exploring multidimensional data.

In XGobi, brushing can be applied to link scatterplots and projections but is limited by the fact

that the software's set of algorithms and views is not extensible.

137

So far, a number of tenns have been introduced in this section: tight coupling, co

ordinated views, brushing and linking, location probing, dynamic querying; but whatever it is

called or part of, the co-ordination of activity across multiple views gives the user greater

control over the visual representations of the data. This ultimately nurtures discovery. In

[BCS96] it is described as linking a graphical query to a graphical response ", and in

[EW9S] it is stated that it gives users the impression that they are touching the data.

Such systems do, however, incur overheads in tenns of search time and memory, and

therefore efficient data-structures must be employed to keep these down [JS94]. This issue,

along with more novel applications of interaction with multiple views, remains a challenge in

information visualisation research. Fekete addresses this with his InfoVis Toolkit [Fek04].

This is a Java library, consisting of many visualisation components such as scatterplots, tables

and trees that can be linked together and incorporated into java-based visualisation

applications. These components can also be supplemented with interactive mechanisms such

as fisheye views and dynamic labelling and therefore efficient data structures are implemented

to help maintain the computation speeds required by dynamic queries and multiple

coordinated views. However, Fekete's toolkit is similar, in a sense, to Schroeder et al.'s VTK.

[SML96]. It does not provide a visual method of dynamically coordinating data-flows

between the toolkit components and, as such, lacks the flexibility that visual programming can

provide.

Prefuse [HCLOS], which is also implemented in Java, is similar to Fekete's toolkit,

however, it utilises a lower level of abstraction for the composition of visualisation

applications. Rather than modularising whole visualisations, Prefuse adheres to a model akin

to the data-flow paradigm. Again, the data-flow is established only by writing Java code,

albeit a far smaller amount than would be necessary for creating applications from scratch.

6.2.2 Information workspaces

The notion of the information workspace addresses two important issues in information

visualisation. One is the cost structure of information. The other, which essentially

supplements the first, is in providing the user with a suite of tools for carrying out different

tasks within the work domain. With regard to the first issue, Card et al. made one of the

earliest proposals of an information workspace called the Information Visualizer [CRM91].

The inspiration for this system came from the ways in which people organise their resources

within their working environment. For example, in an office, information that is not needed

all of the time is stored in filing cabinets (secondary storage), whereas information that is in

current or constant use is placed on the worker's desk for convenient access (immediate

138

storage). Thus, in a sense the information in the office has a cost structure - the cost of

retrieving a document from the filing cabinet is higher than that of taking a document from the

desk. Hence, for efficient use, the user tunes this structure to his or her current working

situation to reduce the overall cost of accessing the information required. Card et a1. argued

that such a structure is also evident in electronic information processing systems. They made

several observations of this structure and implemented their system as an electronic

information workspace where the cost of information in cognitive and temporal terms could

be minimised.

The second issue that the information workspace addresses is the provision of a variety

of tools applicable within the worker's task domain. For example, consider a programming

environment for software development such as Microsoft's Visual Studio Integrated

Development Environment (IDE). This provides packaged bundles of many disparate tools for

utilisation and appropriation in the programmer's task processes such as multiple views for

source code files, plug-in extensions and database configuration tools. Because many of the

tasks and goals of programmers are not known in advance, the system designer cannot

anticipate them. For this reason such software environments tend to provide this extensive

suite of tools and also allow a great deal of customisation of the environment itself. This is

also reflected in the information-centric visualisation environment Visage, implemented by

Roth et al. [RCK*97). With Visage, the primary objective was to integrate visualisation tools

for information retrieval, analysis and communication (via presentation) in a flexible system

where the user could arrange these information resources in any way he or she desired.

The workspace metaphor is also prominent in the field of computer supported co

operative work (CSCW), although in [H096) the word 'space' was contested by 'place'

because it was argued that people only really understand and interpret spaces as places. Also,

the term media space [Gav92] has been adopted in CSCW to denote a video-based virtual

environment as a medium of communication and social interaction. That aside, the inspiration

ultimately comes from physical spaces (or places) that often have more than one person

present at any given time and promote communication such as face-to-face speech and

gesture. This implies that a virtual workspace should also provide a means of collaboration

and awareness of other people working in the domain. This is in line with the theory of

distributed cognition [HHKOO) , where system boundaries are expanded to include the

activities of other people and processes that bear on one's current task and work domain.

Notification systems such as Elvin [FMK.*99] attempt to enhance awareness of other people

and events and can supplement a virtual workspace. Recording histories of user interaction

with the information artefacts as in [HHWM92) also provides awareness and generates useful

139

information. This suggests that channels for communication and collaboration should be

amongst the tools provided by an information workspace.

Physical workspaces such as a joiner's workshop are not entirely specialised

applications - there might be communication facilities such as phones and an office area, i.e.

the workspaces are not geared purely for woodwork - but are macro-environments that are

appropriated by the human worker(s). The virtual workspace, to be true to its physical

counterpart, must provide intuitive means of retrieving and organising the required

information from a variety of people and processes in an efficient manner that promotes

productivity and/or satisfaction. The virtual workspace should not be an encapsulated

environment but should be extensible and be able to broaden its boundaries to accommodate

other tools and resources within the user's domain.

6.2.3 Data, information and knowledge

When multiple views portraying abstract representations of data are brought together, possibly

intentionally adhering to the notion of an information workspace, the prime motive is to gain

knowledge from this arrangement. In [SpiOO]. Spiegler defines knowledge as being ''the

process of knowing". This is described as a cyclic process that takes data. information. social

context and experience etc. to produce knowledge. which can in turn generate more data,

information and even more knowledge.

Representation,
Abstraction,
Visual structures

Figure 6.3 A conceptual view of the "process of knowing".

Multiple views,
Interaction,
Environment,
Experience

In [SowOO] it is implied that data and information are lower and higher levels of

knowledge representation. They are abstractions. and in the context of this chapter it can be

seen that visualisations serve to increase the level of abstraction of data into the higher level of

information. Visualisations naturally appeal more to one's perception than raw data. When

this occurs in an information workspace where the system boundaries are broad enough to

incorporate many resources in the user's environment. including the above-mentioned social

context and experience. meaning can be found in information and foster new insight and

140

ultimately knowledge (see Figure 6.3). Spiegler states that this transformation of data to

information to knowledge has a strong inherent time dimension. The process takes data,

generated in the past, to create information in the present and foster knowledge in the future.

The relationship between data, information and knowledge can also be tentatively

mapped onto a Meaning Triangle [SowOO]. A meaning triangle is a triadic structure similar to

Peirce's ontology [SowOO] ofjirstness, second ness and third ness, based on entities, signs and

meaning (or concept). In this case, the entity is described at the lowest level by data, the sign

is the information gleaned from the data and the meaning/concept is derived from a person's

perception of the representation. These meaning triangles can be created for different levels of

representation of knowledge and when joined together, where the sign of one triangle

becomes the entity of the next, an arbitrary number of levels of representation can be gained.

This is the basis for Peirce's idea of unlimited semiosis and can explain how Spiegler's

transformation of data to information to knowledge can indeed generate more data,

information and knowledge in an infinite cycle. See Figure 6.4 below:

Concept Concept Concept

Entity Sign I Entity Sign I Entity Sign ...

Figure 6.4 Linked meaning triangles.

Data mining and data archaeology are knowledge-discovery paradigms that ideally

adhere to the concept of the process of knowing. By incrementally increasing the level of

representation from data to information, typically via visualisation, it is their goal to uncover

hidden knOWledge. There is, however, a conceptual difference between data mining and data

archaeology. In [BST·94], Brachman et al. established data archaeology - aptly named when

one considers Spiegler's notion of temporality in data. In data archaeology, Brachman et al.

put human intervention and interaction at the centre of the knowledge discovery process.

Rather than allowing some automated and unsupervised classification algorithm to try and

find patterns in the data as in data mining, data archaeology dictates that the user should

instead be in the driver's seat. By giving the user a suite of flexible tools for representation,

manipulation and analysis of data and information, the user can form and test hypotheses. As

emphasised in the previous paragraphs, different levels of representation in data and

information are involved in describing knowledge and, in realising this, Brachman et al.

141

implemented a formal knowledge representation (KR) language as the core of their system for

data archaeology. By giving the user a powerful means of representing concepts in the target

problem domain, the user can use queries and inferences to segment (abstract) data into

interesting subsets for analysis and hypothesis testing. With respect to artificial intelligence

and machine learning, data archaeology can be more generally thought of as a form of

supervised learning, whereas data mining, on the other hand, predominantly employs

unsupervised learning algorithms for the discovery of potentially interesting subsets within

data.

Representation plays a critical role in information visualisation. From the internal bit

wise representations of knowledge in the form of data for the machine to manipulate, to the

visual abstractions that encode information for the human to perceive, the representations

potentially serve as a resource for the creation of knowledge upon which he or she can act.

6.2.4 Relevance of the information workspace concept to

the HIVE framework

At the core of the proposed HIVE framework is the hybrid algorithmic architecture as

discussed in Section 6.1.4, however, this architecture merely transforms the data, which are

the low-level representations of knowledge, into a slightly higher level of abstraction. The

architecture may accurately classify and segment the data but this may be seen as producing

meta-data, an informed synopsis of the original data set. A rich variety of interactive views of

this transformed data are required not only to allow the user to perceive Gestalt qualities but

also to allow the user to steer the computations of the hybrid architecture. This serves to help

form hypotheses based upon the uncovering and manipulation of the higher-level visual

representations.

North and Shneiderman propose a classification of visualisation systems into four levels

of flexibility in data, visualisation and co-ordination [NSOOa, NSOOb]. They state that level 0

systems are the least flexible in that they work only with one type of data and proffer perhaps

only one form of visualisation with no co-ordination between mUltiple views (if any). Levell

and 2 systems are described as being progressively more flexible up to the point where the

level 3 system emerges. Level 3 systems permit the user to apply a variety of visualisation

techniques to disparate data sets and also to define how the interaction with one view can

transform the visual representations that are the other connected views. This level of user

defined co-ordination between views is akin to the visual programming paradigm discussed in

Section 6.1.1, but at the same time, the range of visualisations provides a comprehensive suite

142

of tools that somewhat resemble the notion of an information workspace. This suggests that it

would be beneficial to make the HIVE framework extensible not only in the underlying

algorithms but also in the visualisation tools, as this would allow the system to address the two

issues behind the information workspace as described in section 6.2.2. The extensibility of the

algorithmic architecture addresses Card et al. 's cost structure of information [CRM91] by

making the transition from data to meta-data or information more efficient. This efficiency is

to be achieved by matching algorithms of appropriate complexity to the data in such a way

that transformations in the data are produced in as little time as possible. Also, the provision

of a variety of visualisation tools makes it easier for the user to get his or her hands on the

data. By approaching the HIVE framework from this workspace perspective, the author can

strategically map out the transformation, through abstraction and representation of data to

information and to potential knowledge discovery.

A limitation that is generally encountered In information visualisation-based

workspaces is that the original data being transformed cannot be modified in terms of adding

or deleting elements. While systems such as IVEE [AW95], XGvis [BSLD98], DEVise

[LRB*97] and Visage [RLS*96] offer flexible workspaces for the visualisation of information

and the creation of meta-data, they do not allow the user to use any of their tools for

modifying the composition of the underlying data set. It may be for this reason that these

systems have not seen the widespread use anticipated by the designers, because in real-world

situations the consumers of data are also often the producers as well. In scientific

visualisation, however, the Application Visualisation System [UFK*S9] and the GRASPARC

system [BBB·93] have addressed this limitation. Here, the processes that generate the data are

part of the system. Also, as mentioned in section 6.2.2, programming language environments

can be seen as information workspaces, but this type of non-visualisation based workspace

inherently facilitates production of the data it contains, i.e. the source code. As far as can be

seen in the literature, the closest information workspaces get to expanding the data upon

which they work is by deriving meta-data such as interesting classes, or recording use

histories such as in [HHWM92].

It is the nature of scientific visualisation and programming workspaces that makes the

production of data a natural aspect of their anticipated use. In scientific visualisation, data tend

to be derived from the simulation of physical processes where subjunctive analysis is desired

and therefore requires the generation of simulation data on the fly. In programming IDEs the

goal is to produce data, the source code. However, in typical information visualisation

systems, the data being transformed are abstract, generated in the past and might not lend

themselves to subjunctive analysis. This serves to understate the importance of on-line

143

modifications to the data. With this in mind it is considered that if the HIVE framework

accommodates modification of the underlying data set, this will be an important asset because

it will make it a more useful system for a wider range of people (the information producers as

well as the consumers). The fluctuation in data complexity should not be a problem because

the proposed hybrid algorithmic architecture is designed to adapt in such situations. The

adaptability of the algorithmic architecture comes from the notion of matching the appropriate

algorithms for clustering, layout and variable transformations to the data, as they are needed

(see Chapter 7 for a detailed discussion).

6.3 Visualisation system design theory

The previous two sections have outlined potentially useful concept options for system

architecture and applicable theories for turning abstract data into information (visualisations)

with the intent to foster knowledge. However, this alone is not enough to ensure the

effectiveness of a target system. Petre et al. describe such a system as a cognitive technology

[PRR·O I], characterised as a means of externally representing information residing in the

user's short-term memory, essentially extemalising his or her plans. This has the advantages

of reducing cognitive load, and also making the extemalised information easier to

communicate to others and to interact with in order to create more information. For this to be

effective, the system obviously must be usable.

Only recently has there been a flurry of activity in the empirical evaluation and meta

analyses of information visualisations [CYOO], but there are several long-standing proposals

of design theories for information artefacts in the literature. These include ecological interface

design (EID) [BurOO, FTM·98, RS98], cognitive dimensions of notations [Gre89, HH99,

PRR·OI] and Roth et al.'s dimensions of expression [RCK·97]. Each of these theories

presents a comprehensive set of guidelines that intrinsically overlap and complement each

other. In this section each theory will be discussed in turn and the common ground between

them will be uncovered.

6.3.1 Ecological interface design (EID)

There are many approaches to information system design. Their constraints and the aspects of

the system that are emphasised generally distinguish them, for example:

144

• Techllology-celltred - this approach focuses primarily on the limitations and the
capabilities of the technology underlying the system. The user interface is designed in
such a way as to fully utilise the functionality provided. This is often referred to as the
single-sensor-single-indicator (SSSI) approach in EID [FTM*98, RS98].

• User-celltred - this emphasises the capabilities of the users. Operation of the system
should not exceed the capabilities of the user. The Visage workspace [RCK*97] is user
centred because it aims to make information accessible to users by breaking down the
barriers between applications and processes that externalise the required information.

• COlltrol-celltred - this concentrates on the stability of the human-machine control loop in
terms of time delays and order of operations [FTM*98]. Systems that try to minimise
delays in user response to information often aim to help the user anticipate future states
such as in subjunctive displays [Lun99] and situation awareness displays [AC98].

• Applicatioll-celltred - with this approach, the information is stored in files and has no
other useful representation external to the application that is required to manipulate the
files [RCK*97].

• Doc"",ellt-celltred - this is at a higher level of abstraction than the application-centred
approach. Documents provide a more useful abstraction and organisation of information
[RCK*97].

• /II/o,.",atioll-celltred - this approach provides yet a higher level of abstraction than the
document-centred approach. Here the system allows individual data elements to be treated
as manipulable objects. The Visage workspace [RCK*97] also provides an example of
this.

• Activlty-centred - systems that adopt this approach generally aim to enhance the
awareness and/or visibility of other users and their actions, as well as one's own previous
activity. Examples include systems that record use-histories [HHWM92] and paths
through informational resources [CRB98] to help guide the activities of others in attaining
their goals.

• Property-celltred - this approach is used in the Presto document system at Xerox P ARC
[DELS99]. Here users can attach arbitrary property value-pairs to documents to facilitate
objective and subjective categorisation for retrieval of information. This approach
provides a flexible level of representation for information, based upon the abstract notion
of documents.

The first three of the above design approaches were detailed in [FTM*98] by Flach et

aI., where they were considered in the design of human-machine systems such as flight crews

and their aircraft. They are however, also applicable in the design of abstract information

systems as is implied by their descriptions. Flach et al. stated that these three approaches have

a common image of the system, i.e. that of the user and the machine. The addition of the other

145

design approaches with the exception of activity and property-centred types do not violate this

image.

It was asserted by Flach et al. that in designing a system, the initial analysis of the

user's activities in the work domain could best be understood by considering them within the

broader context of the workspace, i.e. the ecology. This served to shift the focus of attention

from purely human-machine interaction, with situation-based constraints (technology, control,

user, etc.), to human-work interaction where all of the above constraints are situated. This

notion lead to the use-centred (not user-centred) design approach that is now known as

ecological interface design. "Ecological" is the term used because the design approach

concentrates on the (work) ecology and the (worker's) niche. "Environment", on the other

hand, was too broad a notion as this implies habitat and things external to the system rather

than niche [Gib79].

Traditionally EID is applied to tangible systems with an underlying physical theory

such as aircraft and control rooms, to address problems from the likes of SSSI. EID can,

however, be applied to situations where one must make sense from abstract data, for example,

the information visualisation equivalent of SSSI could be regarded as a table of figures or a

range slider control for every attribute in a query view. Also, the burgeoning application of

distributed cognition theory and CSCW that inherently recognise ecological issues in

information system design, show that EID can be transposed to virtual workspaces as well as

their physical counterparts. This is also reinforced by the inclusion of the activity-centred and

property-centred approaches in the list above. Whether it is used for enhancing analysis in

scientific visualisation or control for system operators, EID is also entirely applicable to the

design of information visualisation workspaces.

6.3.2 Cognitive dimensions of notations

For over a decade the 'cognitive dimensions' framework, originally proposed by Green

[Gre89], has been developed as a framework to help designers create notational systems and

information artefacts. Notational systems are defined as being any means by which

information can be structured by a user via manipUlation of (in the visual case) graphical

properties and retinal variables. Examples of notational systems include word processors,

programming language IDEs and CAD tools etc. Information artefacts, on the other hand, are

self-contained notational systems such as radios and clocks.

The dimensions are a list of issues the designer should consider and they provide a

vocabulary for design decisions and their cognitive implications for the end users. Each

dimension addresses specific activities that the target user may engage in and a particular

146

aspect of the system involved. and by conforming to the dimensions. they also provide a basis

for design evaluation. The following is a description of the set of cognitive dimensions

[PRR·OI]:

Jrucosity: resistance to change. This pertains to how difficult or time-consuming it is to

modify a construct in a notation to achieve a goal. For example. in a programming IDE,

source code markers bookmark specific lines of code. If the programmer wanted to remove

all ofthe markers then he or she would have to go through all ofthe code to select and remove

each marker if there was no function to 'remove all' .

VIsibility: ability to view components easily. Too high a level of abstraction could make

information important to the task at hand invisible

PrDIIllhln co"''''illrlent: constraints on the order of doing things. The history tree [888·93]

mechanism used in some scientific visualisation systems, as described in chapter three,

addresses this. In this context a user can set parameter values then run a simulation. When

something interesting appears. the user can backtrack to a previous point in time and modify

parameter values to gain more understanding of the interesting phenomenon.

Role-expresslveness: the purpose of an entity is easily inferred. This pertains to how visible

the relationship is between two or more elements in a notation.

E"or proneness: the notation invites mistakes and the system gives little protection. Slips and

errors specific to the notation should be anticipated so that adequate means of recovery are

provided by the system.

AbstrtlClion: types and availability of abstraction mechanisms. If the system permits

modification of abstract representations then some form of abstraction management should be

provided (see section 6.3.4).

Secolldilry IIot11tioll: extra information in a means other than formal syntax. This is a vehicle

for appropriation. Comments in a program's source code are an example. Here the user

increases comprehensibility without having to adhere to the formal program language syntax.

147

Close"ess of "'lIPpi"g: closeness of representation to domain. This regards how close the

representation of entities in the notation is to the notional entities in the user's problem

domain.

Co"siste"cy: similar semantics are expressed in similar syntactic forms. Similar information

should have similar representation.

Diffuse"ess: verbosity of language. The notation should be concise. Visual structures should

not use more screen space than is necessary. 'Chart junk' should be obviated.

H"rd ",e"tIIl operlllio"s: high demand on cognitive resources. Information encoded in visual

structures should be readily perceived.

Provuio"lIlity: degree of commitment to actions or marks. Subjunctive interfaces [Lun99]

address this by facilitating ''what-if' scenarios.

Progressive evmlllllio,,: work-to-date can be checked at any time. The history trees in

scientific visualisation address this by allowing simulations to be halted and re-run. Software

written in an interpreted language can be run before its completion to check for bugs and

conformance to requirements.

Side-by-sitk-tlbUity: providing comparison of notational structures. The positioning of visual

structure in information visualisations can convey meaning per se. Graphs that share a

common axis can be placed so that screen space is utilised efficiently and related information

is perceived.

The influence each of the dimensions has on design decisions is determined by the

nature of the target system. Trade~ffs also become apparent because if one dimension is

addressed this can have an impact on other dimensions.

The cognitive dimensions framework has been shown to be applicable to the design of

information workspaces. Hendry and Harper [HH99] emphasised secondary notation in the

design of SketchTrieve, an information seeking workspace that allows users to organise their

queries and results in a very flexible manner to increase comprehensibility and support

opportunistic searching. Cognitive dimensions are in line with ecological interface design

because they essentially provide a use-centred design approach. By considering the target

148

audience and the type of system under analysis, the dimensions provide situated constraints

that can be traded off with each other to tune the design.

6.3.3 Dimensions of expression

In the design of the information visualisation workspace Visage, Roth et al. utilised a set of

design guidelines they called dimensions of expression [RCK*97]. These dimensions are

similar to cognitive dimensions but have been developed specifically with information

visualisation in mind. Each dimension pertains to how the user may express his or her intent in

interacting with information visualisations for exploratory tasks. The four dimensions of

expression are as follows:

Set descriptloll: how people describe data sets of interest. There are two means of

determining set memberships: set extension and set intension. In set extension, users may

define a set by pointing and clicking with a mouse to select visual structures, for example, the

members of a cluster on a scatterplot may be selected by dragging a bounding rectangle over

the cluster. However, set intension can be used when the interface makes it difficult for direct

selection of objects and therefore the user must specify criteria for set membership. Examples

of set intension are SQL queries, range sliders and forms. Set description is related to the

cognitive dimension of 'secondary notation' with regard to organisation of visual structures

into spatial sets to enhance comprehension.

Grllll"llIrity lI11d cOlllposlbllity of tICtIOIIS: whether people communicate via composing

primitives or with higher level, abstract expressions. Ideally there should be a trade-off

between the constraining appliance-like interface and composition-by-primitives approach to

allow greater flexibility at the same time as reducing the number of steps in carrying out an

operation. This relates to the cognitive dimension of 'viscosity' because the granularity of

actions (resolution of representation) is inversely proportional to the viscosity of a notation.

COlltillulty of actioll: whether the communication process is about a continuous process or

discrete action. Continuous communication with the system is used where the user is unsure

of what intermediate stages will yield in the process. An example is in using smooth semantic

zooming such as in Pad++ [8H94] to progressively uncover detail and provide feedback to see

entity relationships emerge. Discrete actions, on the other hand, are used when the user

knows what the outcome of the action will be and does not require intermediate visual

feedback. An example is in closing a view. Continuity of action is related to the cognitive

149

dimension of 'hard mental operations'. This is because the degree of continuity should be

chosen to alleviate cognitive load as in not having to remember previous states or lose context

in the representation.

Consistency with do",ain VOCabulllry: whether communication can reflect familiar domain

vocabulary. This refers to the vocabulary (representations) used in interacting with the system

and how similar or relevant they are to the familiar vocabulary of the target user in his or her

work domain. This is most strongly related to the cognitive dimension of 'closeness of

mapping'.

As can be seen from the above, the dimensions of expression have much in common

with the cognitive dimensions described in section 6.3.2. Roth et a1. state that in designing

information visualisation systems, the above dimensions repeatedly arise, and like the

cognitive dimensions, they are situated constraints that have a degree of influence dependent

upon the type of system under development and the context of its use. The dimension

pertaining to the consistency with domain vocabulary can be seen as a human-work

interaction issue. This emphasis on the work ecology is one of the essential ingredients in

information workspace design and is in line with the theory of ecological interface design.

6.3.4 Abstraction

Abstraction in information visualisation is about the representation of data in such a way that

the user's visual perception is utilised to transform the representation into meaningful

information. The lower levels of abstraction pertain to how visual structures are composed of

graphical properties such as marks (which are the geometrical structures of points, lines,

planes and volumes) and retinal properties (characterised by shape, size, colour, orientation

and texture). These visual structures serve to encode either individual data elements or

compound aggregates in a meaningful way. When the visual structures are presented in

concert, as in points on a scatterplot or nodes in a network diagram, a higher level of

abstraction is achieved where the context of visual structures brings to bear more (relational)

information. The low-level abstraction was the focus of a paper by Card and Mackinlay

[CM97] where contemporary information visualisation techniques were analysed with respect

to visual structures and the use of spatial substrates. A paper by Lohse et a1. [LBWR94]

focussed on the higher level of abstraction used in visual representations. Here, a taxonomy of

graph types was developed to distinguish between the various techniques of providing

informative views of data sets. However, both of these papers only marginally addressed the

ISO

fact that there can be many different representations for encoding data and fmding the most

effective is by no means trivial.

Russell et al. [RSPC93] have addressed this issue of providing the most effective means

of representation in a paper written in 1993, where they outline the cost structure of

sensemaking. They state that finding the most effective representation, i.e. one from which the

right information is perceived and which facilitates task-specific operations, can be difficult

and they define this process of searching for this representation as sensemaking. It should be

noted that the cost structure of sensemaking is different from the cost structure of information

(see section 6.2.2). This is because in sensemaking the search for the correct representation

and evaluating it with respect to the problem domain is a cyclic process with each step having

an associated cost. In the cost structure of information, informational resource availability and

the associated cognitive work in disseminating information incur the costs. However, this

aside, sensemaking is important to getting abstraction right in information visualisation -

abstractions that make the most sense, given the task domain, are desired. The encoded data

must be in a form where the user can immediately make sense of them and become more

informed.

6.3.4.1 Abstraction management

In describing abstraction as a cognitive dimension, Petre et al. asserted that systems that

permit many abstractions are potentially difficult to learn. They also stated that when the user

is allowed to modify the abstractions, some form of abstraction manager is required. In

information visualisation the proliferation of abstractions can be difficult to avoid because the

user is usually provided with interactive functions to transform and co-ordinate views. The

transformation of views is in itself modification of the abstractions.

Abstraction management is required mainly to maintain consistency. It should ensure

that the visual representations accurately represent the state of the system and the

transformations of the abstract data under analysis. For example, when the system is carrying

out heavyweight calculations that may be unavoidable due to extremely high volume data, it

might be appropriate to give feedback on the progress of the computations. An example of

abstraction management is provided by the model-view-controller (MVC) architecture' which

is used in Sun Microsystems' Java [Sun02]. The model represents the data and rules for

accessing and modifying the data. The view corresponds to how the data are visually rendered

and it makes sure that changes to the data made through the model are reflected. Finally, the

I MVC was first developed at Xerox P ARC in the late 1 970s for the Smalltalk-SO programming system [K.PSS].

lSI

controller translates the interactions with the views into actions for the model. In Java, the

view and controller mechanisms are collapsed into one entity called a user interface delegate.

This is to make their management easier when implementing interfaces. See Figure 6.5.

Figure 6.S The Java model-view-controller architecture.

The Java MVC essentially ties together the data, rules for its manipulation and its

visualisation. The MVC can be seen as an abstraction manager because the views are

abstractions of the data and by formalising the link between the data and their representation,

consistency is maintained across views and through interaction.

With respect to sensemaking, an abstraction manager should ensure that the generated

abstractions remain meaningful in the context of a given problem domain. In keeping with the

dynamic process of sensemaking, abstraction management should be flexible enough to allow

the exploration of different abstractions as well as maintaining their consistency. If the

representations are not consistent and appropriate, contextual information can be lost and the

visualisations may become open to misinterpretation.

6.3.5 Relevance to the HIVE framework

In Shneiderman's task-by-data-type taxonomy [Shn96], he outlined his visual information

seeking mantra: "overview first. zoom and filter. then details on demand". This is an intuitive

and useful procedure in information visualisation and one that was adhered to in the

implementation of the proposed HIVE framework. However, this is a top-level description of

what the system offers the user in terms of functionality. It states nothing of the situated

152

constraints and the work ecology addressed by the design approaches described in this

chapter. For this reason the design approaches described above have been utilised to some

extent to flesh out the object of Shneiderman' s mantra.

Of Green's cognitive dimensions, secondary notation as employed in SketchTrieve

[HH99] is an important characteristic of the framework's user interface. With respect to

secondary notation, users are able to store and retrieve visual structures by using space and

layout to externalise their plans. This allows the display to be used for both prospective (future

plans) and retrospective memory. The informality of secondary notation allows the user

greater expression and flexibility in the management of the information space. Secondary

notation can also be implemented by allowing the user to mark/paint parts of individual

visualisations as in labelling and persistent brushing in XGvis [BSLD98]. These notation

instances along with their context may be saved and retrieved as the user desires. Secondary

notation should ideally provide a vehicle for appropriation. However, one drawback of

secondary notation is the cognitive overhead incurred as a result of re-arranging and placing

items on the display [Rob98]. This can be alleviated by trading off secondary notation for

increased viscosity to decrease the granularity of actions.

It has been suggested that the HIVE framework should address producers of data as

well as consumers. It should provide a means for not only visualising information but also

modifying the underlying data set. This will obviously require updating current abstractions to

maintain consistency and therefore some form of abstraction management has been utilised

The framework has been implemented in Java and therefore this abstraction management is

based upon the model-view-controller architecture. The Observer software pattern [GHJV95]

has also been adopted for data- and interaction-flow. MVC handles the link between the

underlying data and views of them, while the Observer pattern manages the interaction

between different stages in hybrid algorithms.

6.4 Conclusions

Section 6.1 discussed scientific visualisation systems that use the concept of visual

programming and data-flow models. Their relevance to the proposed HIVE framework has

been outlined and it appears that the inspiration they provide could be fruitful.

The data-flow metaphor is appealing when designing and using applications. It helps

the user/designer form a mental model of the processes involved in the transformation of data

into information. This has also been recognised and implemented in disciplines other than

scientific visualisation. One example is in information retrieval where Young and

IS3

Shneiderman [YS93] used a guise of the data-flow model they calledfilterlflow. This system

was based explicitly on the metaphor of water flowing through pipes and filters to represent

information flowing through successive Boolean queries.

The scientific visualisation systems described in this chapter make use of abstraction of

computational processes and as a result make the components easier to manipulate and the

composite system more versatile and understandable. The same applies when the abstraction

is carried forth into interaction as in North and Shneiderman's snap-together concept. By

breaking down systems into user-definable configurations of modules, truly flexible

applications can be built that might not have otherwise been anticipated by the system

designers. The importance of functional decomposition has long been realised in the field of

Artificial Intelligence. Luger and Stubblefield [LS97a] state: "Modern AI programs generally

consist of a collection of modular components, or rules of behaviour, that do not execute in a

rigid order but rather are invoked as needed in response to the structure of a particular

problem instance". This applies directly to the basis of the hybrid algorithmic framework in

HIVE where the complexity of the data determines the order of algorithmic execution. HIVE

adds computational efficiency to the list of advantages of the traditional data-flow metaphor.

By extending this with the concept of visual programming at the user interface to determine

the flow of interaction, HIVE lets the user drive the application, rather than the application

drive the user.

In Section 6.2. facets of information visualisation environments were discussed. Such

systems transform data into information and ultimately information into actionable

knowledge. Data are the low-level representation of knowledge. but in their raw form humans

can find it impossible to perceive latent patterns within them. By using visual representations

as surrogates for data structures. the level of abstraction is increased to convey information to

the user. These static presentations of information must be supplemented by interaction

mechanisms to animate the views into visualisations from which the user can gain more

information. and form and test hypotheses about the data as well as the application. Finally. by

providing multiple visualisations. supplementary tools and resources from the working

environment within a virtual workspace, users are afforded a flexible means of organising,

manipulating and sharing their information.

Inspired by this process of discovering knowledge and the limitations of contemporary

visualisation workspaces, the HIVE framework is implemented to provide its users with a

means of minimising the cost structure of information. It is an extensible system developed

from an ecological perspective to broaden its boundaries and incorporate resources from the

user's environment. The visualisations provided by the HIVE framework not only provide a

154

front-end to a database and hybrid architecture, but are instrumental in the transformation of

information to knowledge.

The design theories that have been discussed in Section 6.3 have addressed situated

constraints and their role in work ecology for information system design. The situated

constraints pertain to how the design facilitates use of the system in certain situations.

Technology, user, control, information-centred design approaches etc. address these. So do

Roth et al. 's first three dimensions of expression. On the other hand, the theory of ecological

interface design and the other related dimensions of design take the work ecology into

account. EID provides a setting for the situated constraints to be applied. It broadens the

boundaries of the system so that they not only include the human and the machine but also

parts of the human's working environment as well- a predominant concept in the notion of

information workspaces, at least to the extent of application interoperability and electronic

communication.

These design approaches provide the designer with a vocabulary for articulating design

decisions and understanding the trade-offs apparent when considering specific parts of a

design. Although the design approaches have been developed independently of one another,

they have been shown to have considerable overlap in their underlying theories. A unification

of these approaches is beyond the scope of this thesis, but it is considered that this may be

worthwhile.

The next chapter will outline the development of the HNE framework.

ISS

7. The hybrid information

visualisation environment (HIVE)

There is a multitude of algorithms available for dimension reduction and clustering abstract

data. The different algorithmic approaches seem to be tailored to specific types of data. Some

algorithms perform well with low cardinality and dimensionality, such as the canonical spring

model [Ead84], and these would suggest practical application in the likes of small to medium

size, general graph drawing and dimension reduction. Other algorithms work well with only

high cardinality data. An example of which is the self organising map [RMS92] where, in

training, a substantial training set allows the SOM to learn how to classify a very large body

of data.

In a working environment, corporate memory and project-specific databases tend to

start off small and gradually evolve into large information repositories. While it would be

feasible to visualise the inter-object relationships with a force-directed layout algorithm in the

infancy of such a database, it would become less and less effective as the database matures

and demands a more computationally feasible solution. Previous work has shown that hybrid

algorithmic approaches to visualisation scale up to relatively high-volume data sets, even

though some of the constituent algorithms would be too costly on their own if applied to the

entire set (see Chapter 5). This would suggest that when applied to a growing database,

algorithmic steps could be bypassed in the repository's infancy and incorporated as it

approaches maturity. Or, in the case that volume fluctuates, the hybrid algorithm could

fluctuate and adapt with it.

This chapter presents an implemented system and framework called HNE (Hybrid

Information Visualisation Environment) that utilises direct manipulation to allow users to

interactively create and explore hybrid dimension reduction and clustering algorithms. Figure

7.1 shows screen-shots of the system. Visual programming and a novel algorithmic

architecture are proposed as a means to let the user semi-automatically co-ordinate multiple

views and define data-flows.

156

t Sf .M ," J,
•• 3

•
""-~':\"}

'. ';)

."

" ! '~l ,-. . '

"""
,]

Figure 7.1 Two creen-shots of the IDVE interface. The image on the left illustrates interconnected

comp n nt that import, transform and render multidimensional data. The algorithmic components

coli cti ely r pre ent the O(NJN) hybrid algorithm of Section 5.3. Thick lines that link modules

repre ent data-flows while thin ones, connecting scatterplots and other visualisations, represent the

conn ctions between interlinked interactive views. The image on the right shows the same scatterplots

enlarged and upplemented with a fisheye table component (bottom-right) and histograms (bottom-left).

Tb data consi t of 5000 points sampled from a 3-d 'S' shaped distribution.

7. Multiple-view co-ordination

HJV take advantage of the data-flow model and visual programming. To create a hybrid

alg rithm a u er drag components from the system's tool bar into the drawing region (see

igure 7.1) and then interconnects them by dragging links between ports on the components.

ot nly i th data-flow set up in this manner, but the view co-ordination can also be defined

thi way. fter connecting visualisation tools such as scatterplots to the output ports of

alg rithmic c mponents,' elect' ports can be linked between view components to establish

'bru h and link' functionality.

Hy rid alg rithm can exhibit a lower run time than spring models run upon the whole

dat t, adieu ed in [MRC03] and Chapter 5, but they also lend themselves to the

f int rmediate vi ualisations. The benefits of this hybrid approach are two-fold:

i enhan d and intermediate views provide more insight into the data. For

ampl the hybrid algorithm depicted in Figure 7.1 (left) uses a spring model of a sample of

th full data t, to gain an initial small-scale 2-d layout. In the left frame of Figure 7.1,

157

scatterplots have been hooked up to intermediate stages of the hybrid algorithm to allow for

comparison. The three layouts have been positioned by the user on the right hand side of the

frame. The sample layout is fed into another module, which interpolates the remainder of the

set to produce a second scatterplot. The third and final scatterplot, shown in the right of the

frame shows this layout after spring model refinement. In the right hand frame in the figure,

the fisheye table shows the layout points sorted on the x dimension and histogram views have

also been connected to depict the x and y distributions of the 3-d set. If one then uses brushing

to select a range of rows in the table or a region in a histogram, this highlights the

corresponding points in the scatterplots and reveals more of the structure of the data. An

extension of the work presented in [RC03a] allows for the neatly tiled layout of visualisation

components, as in the right hand frame of the figure.

7.2 Combinatorial hybrid approach

HIVE has been inspired by some of the existing data-flow and visual programming systems

that are prominent in the literature and common in the marketplace. Upson et al.'s Application

Visualisation System (AVS) [UFK*S9] and North and Shneiderman's snap-together system

[NSOOa] are two good examples. AVS is predominantly aimed at scientific visualisation, for

modelling or simulating physical processes such as fluid dynamics, and concentrates on

channelling data through algorithmic processes for transformation and rendering. The

emphasis here is on the data-flow. North and Shneiderman's snap-together system, on the

other hand, is concerned with information visualisation. In this system there is less emphasis

upon the algorithmic processes for transforming data and more on the transformation of

graphical representations by way of multiple interconnected views. Here the flow of

interaction takes precedence.

HIVE borrows from the data-flow model of A VS to be flexible in creating efficient

algorithms for the visualisations. However, to be in line with the goal of information

visualisation, it concentrates on exploration rather than simulation. This is achieved by

supplementing the data-flow with interaction flow across multiple views, rather like the snap

together system. It must be said, however, that this approach does not come without

drawbacks. It is important to note that if the level of abstraction used in the visual

programming language is too low then there might be too many visual modules, in that

programming would become complicated and the flow networks too large and hard to manage

in the available screen space. One solution being considered is to allow the user to

ISS

dynamically increase the level of abstraction by aggregating groups of modules, simplifying

the graph of interconnected modules and the programming task.

As well as implementing visual programming to steer data-flows and co-ordinate

multiple views, HIVE has at its core a novel hybrid algorithmic framework, exploring a

general approach to the composition of efficient and flexible hybrid algorithms. The choice of

each algorithmic component is influenced by many characteristics including computational

cost the cardinality, dimensionality and distribution of the data, and the other interaction

components that might be used within a larger workspace, such as scatterplots and fisheye

tables. The author suggests that these choices can be made incrementally, so that users can

employ intermediate representations as they work with and explore their data. The author also

suggests that the system can assist the user by using a pre-authored classification of data -

based on, initially, cardinality and dimensionality of data sets - and a corresponding

classification of available algorithmic components based on the classes of data each is suited

for. This offers an incremental and combinatorial approach to the creation of efficient and

informative hybrid visualisations.

6' -

Cardinality (N)
~

Ef/---~------~,
\ •.•...

\
\

EJ EJ EJ i
I

.1

Ii El !~(
................,.~ '

Figure 7.2 Data input to components in a hybrid algorithmic architecture can be categorised by the

ranges of dimensionality and cardinality they are best suited for - high, medium or low. Each

component transforms the data, effectively moving across the 3x3 grid. The hybrid spring model in

ection 5.3 produces a low-dimensional layout of a large high-dimensional data set i.e. a move from

(H, II) to (L , II) that involves several steps shown as dotted lines in the figure : sampling, which reduces

N, then a pring model of the sample, which reduces D, and then interpolation, which increases N

The author' s work has focused on data set cardinality, N, and the dimensionality or

number of variables associated with each object: D. A rough categorisation of D and N using

an ordinal range (high, medium and low), permits the categorisation of an algorithmic

159

component with values of D and N for 'good' inputs and for the component's outputs,

effectively stating that the component is best suited to such combinations of D and N. For

example, it is considered that the input to K-means clustering should be medium to high in D

and N, whereas a canonical O(N) spring model algorithm can only handle low N and low to

mediumD.

As shown in Figure 7.2, the choice of components and how they are connected allows

one to solve familiar problems in new ways. The hybrid algorithm of Section 5.3 transforms a

large set of data of high D to low D. It can be thought of as a move across the grid of

combinations of D and N, stepping from (H, 11) to (L, 11) - but taking an indirect route via (H,

L) and (L, L) that involves sampling, spring model layout of the sample, and interpolation

based on that intermediate representation.

Tentative default values for these ordinal categories of data are as shown in Table 7.1.

The author derived these values from his own experience of constructing hybrid algorithms,

however, HIVE allows the user to tailor them:

Cardinality DimensionaHty

LowN<1000 LowD<3

1000 <= Moderate N <= 25000 3 <= Moderate D <= 100

High N> 25000 HighD> 100

Table 7.1 Ordinal categories of cardinality and dimensionality.

The HIVE system has been designed and implemented with this hybrid algorithmic

approach in mind, and serves to provide a workspace for experimental algorithm design and

exploratory data analysis. The visual modules that have been implemented so far include a

CSV data-importer (imports comma-separated-value data files into HIVE), Chalmers' 1996

spring model, radial interpolation (see Section 5.3.3), K-means, neural PCA [Oja82],

stochastic sampling, scatterplot, histogram and fisheye table (Appendix A provides a full list).

These components are the ingredients used in an algorithmic 'cookbook', in which

components deemed to suit particular data characteristics can be automatically connected to

form hybrid algorithmic paths that span the grid of Figure 7.2 (see Appendix B).

7.2.1 3-stage hybrid approach

It is not yet known whether there is a full set of algorithms available that would be suitable for

the hybrid framework. However, as a starting point to test whether the framework would

160

work, it is possible to implement part of the above model and evaluate its performance over

the ordinal range of data cardinalities and dimensionalities. Supposing the outer loop in the

conceptual diagram of Figure 7.2 is implemented then there need only be three types of

algorithms. It may then be assumed that some tolerance in the allowable input of the

algorithms is present, i.e. the algorithm for taking high dimensionality and/or high cardinality

could work adequately with medium cardinality and/or medium dimensional data.

It is therefore proposed that hybrid algorithms consisting of three incremental stages

can be created to determine whether the larger framework is feasible and therefore justify the

search and/or development of new algorithms that would fit into place in the larger

framework. uch algorithms have already been demonstrated in Section 5.3 and it will be

hown here how they fit into the proposed algorithmic framework.

Note that the computational complexity of the individual algorithmic stages should be,

informally speaking, inversely proportional to the cardinality and dimensionality of the input

patterns. This is supported by the results given in Chapter 5. A hybrid approach to dimension

reduction is taken, where K-means or stochastic sampling (linear algorithmic time complexity

in N) is initially applied to high-cardinality data to reduce the representative cardinality. Then,

the more complex (quadratic algorithmic time complexity in N) spring model is applied to this

sub et to reduce dimensionality and therefore obtain a 2-d spatial layout. The results show that

this reduces overall time complexity in N and increases layout quality with respect to stress.

Figure 7.3 illustrates the 3-stage approach.

Low-complexity pre-
................ processing '-.... .

('---V-O-IU-m-e-(-N-)--')
\ . :

Q -
~
ro
c
o
Ul c
Q)

E

° '·'''8

Hvl 8:.<'---",.
[~~L J Mid-complexity

algorithms

B ... /
LL """ .. "." " -~

.~ .. ,

\,
........ High-comple~ty)

algorithms . .. ",

Figure 7.3 The propo ed model of the hybrid approach for scalability and adaptability.

161

Investigation into some of these algorithmic steps has already been detailed; however,

there are some aspects that will require a deeper explanation and more research.

Note that in Figures 7.2 and 7.3, the hybrid process starts by clustering or sampling and

then performs dimensional reduction. This ordering is enforced because the hybrid algorithms

described in Section S.3 performed sampling or clustering first, then dimensional reduction,

and produced promising results. In the future, work will need to be carried out to determine

whether the proportions of N to D might impact on this process order. New algorithms that

are fitted into the framework may work linearly in N but be quadratic in D, and in this case it

may be appropriate to reduce dimensionality first.

7.2.1.1 Low algorithmic complexity pre-processing

Clustering at the initial or pre-processing stage should be performed in O(N) time complexity.

Otherwise, stochastic sampling should be employed to gain a representative subset of the data.

As can be seen from the above, the output of this pre-processing step, consisting of the cluster

centroids or samples, is passed to the next stage of the hybrid algorithm. As with each of the

hybrid algorithmic stages, each preceding stage serves to give the next a head start by

producing intermediate results and/or a reduced representation of the data that can be refined

by successively more expensive stages.

7.2.1.2 Medium algorithmic complexity

In the hybrid algorithms detailed in chapter S, Chalmers' spring model was used for the

intermediate stage. Having reduced cardinality, the aim is now to reduce dimensionality. This

stage further reduces the representation of the data but does so in a way that it provides an

accurate overview. As will be seen later, such intermediate algorithmic stages also serve to

provide extra visualisations of the data that can be effective in gaining insight.

Although it has overall time complexity of O(li), the spring model's complexity is

effectively reduced to O(N) because the preceding algorithmic stage provides it with a sample

or small set of cluster centroids. Other possibilities for this stage in HIVE are neural PCA,

random mapping and the first stage of the fast NMDS algorithm described in Section S.4. In

fact, just about any dimension reduction algorithm that converges in quadratic or sub

quadratic time can be used.

7.2.1.3 High algorithmic complexity

The input data of this stage of the hybrid approach should be of relatively low cardinality and

dimensionality - a reduced and representative subset of the data. It was shown in Section S.3

that interpolation can be used to increase the number of represented objects because initially

162

only the cluster centres or samples are placed in the layout. This then forms the lower arrow

on Figure 7.1.

7.3 Adaptability to different variable types
and heterogeneous data

As well as being able to cope with varying cardinalities and dimensionalities of data sets,

HIVE also works with different types of variables in the data including nominal, ordinal and

real and a mixture of these. This is handled by a modular stage in the system that transforms

different types of data into continuous vectors. This essentially forms part of the pre

processing illustrated in Figure 7.2. This is essential because algorithms such as K-means can

only process numerically continuous vectors because they are often represented within

Euclidean space.

There are existing strategies for transforming nominal and ordinal variables into

continuous numerical quantities [RB99, RRBW03]. In text processing the tf-idf weighting

scheme is often applied, where tf means the intra-document frequency of unique terms and idf

is the 'inverse document frequency'. This is commonly used in the field of information

retrieval and can also be used as a pre-processing stage in the proposed system Chapter 9

demonstrates a strategy for this in HIVE.

Techniques such as this can be automatically called on depending upon the variable

composition of the input pattern vectors, in order to transform the data set into a collection of

continuous values. For example, when the data are Boolean, HIVE automatically uses the

Jaccard similarity coefficient instead of Euclidean distance when measuring dissimilarities on

the fly. Similarly, when a text corpus is the input, dissimilarities are calculated using the

cosine measure.

7.4 Implementation of HIVE

In light of the literature review summarised in Chapter 6 of this thesis, a well-defined image of

the system that conveys the HIVE framework was developed. Development of the software is

now at an advanced stage and HIVE has been adopted by several researchers in their work on

new algorithms, novel interaction techniques and exploring their data.

The software has been implemented in Java SDK 1.4. The system architecture (Figure

7.4) has been designed to let users compose visualisation tools. In general terms, the

architecture involves a graph manager that supports the user's composition of a flow of data

163

through components such as scatterplots, K-means clustering, spring model layouts, table

views and so forth. Additionally, a hybrid algorithm generator allows HIVE to semi

automatically load and connect algorithmic components.

7.4.1 System architecture

The architecture, illustrated in Figure 7.4, has been designed with visual programming and the

data-flow model in mind. Users can compose visualisation tools using modular components

for importing data, algorithmic processing and graphical rendering. Information workspace

issues such as inter-application operation, interaction flow and their relation to the underlying

hybrid algorithmic architecture have also been taken into account.

Before implementation of the system had commenced, alternatives other than creating a

system in Java from the ground up were considered. One alternative option was to expand on

an existing environment such as AVS or Snap-Together. This would have circumvented the

need to write and debug lots of new code. However, it was felt that this approach would not be

flexible enough in achieving the interface's look and feel, and the system behaviour that was

desired. The author's approach allows much more breathing space for experimenting with

design options. There was, of course, more work in implementing the system this way, but

ready-to-use implementations and examples of useful Java programs are prolific and therefore

much of the code for HIVE was derived from these.

Hybtid algorithm gena-ator

LMHdata Algoritlunic
classification 'cookbook'

1
Graph managa-

Visual anoWles
~
..... .."

Visualisation Data ~ C~sition ~ components source r--v model ~

....... .." Algoritlunic
con1>0nents

Figure 7.4 The system architecture of the IDVE framework.

164

7.4.2 Graph manager

The graph manager allows the user to incrementally create executable networks of

components. It employs a scripting/composition model [NTMS91] to impose constraints upon

which modules can be connected and through which 'ports', depending upon factors such as

the categorisation of data types mentioned in Section 7.2, as well as graph structure and port

polarity (input only, output only, two-way). A user can manually connect together

components, and is warned of potentially unsuitable or inefficient connections. Another mode

otTers an automatically generated default path through the grid of Figure 7.2, instantiating

components, from an algorithmic 'cookbook', based on the system's classification of the input

data set.

7.4.3 Visual modules

The graph manager defines three types of components to support the construction of hybrid

visualisations. These are (I) a data source component to allow the import of CSV files, free

text and lower triangle data matrices, performing the required variable type transformations;

(2) algorithmic components to transform data into metadata and intermediate representations;

and finally, (3) visualisation components for rendering. It should be noted that this system is

not strictly a data-flow model since it is not the original data that are passed between

components through links and ports, but references to the data and any transformations that

are applied. The primary benefit of this is the more efficient support for tightly coupled

interaction such as brushing and linking.

To facilitate extensibility, the visual modules that represent algorithmic processes and

visualisations are all derived from a common Java class. This means that to accommodate new

algorithms and visualisations, the programmer need only extend the base class and implement

his or her own specific methods. The base class exhibits default behaviour such as allowing

the user to resize, transpose and rename modules via keyboard or mouse commands. This

class also contains the routines that handle port declarations.

The Java Reflection API [Sun03] has been employed in HNE to dynamically load

algorithmic and visualisation components at run time. Compiled visual module classes reside

within a specific folder in the system's directory structure. Periodically and without unduly

impacting performance, HIVE checks this folder for any new modules - any class, that is,

having the default visual module as its superclass. If any are detected, the software creates a

new drag-label for it in the toolbar and the component is ready for use.

165

Within the Department of Computing Science at the University of Glasgow, users of

HIVE are already implementing their own extended modules - one user has created diagnostic

components to measure layout stresses and run times exhibited by hybrid algorithms. With the

ability to dynamically load visual modules, users can now share their algorithmic or

visualisation components and incorporate them into HIVE while actively using it. A list of the

implemented visual modules and their descriptions in the author's version of HIVE is given in

Appendix A.

7.4.4 Ports

Visual components 'listen' to each other by way of their ports (illustrated in Figure 7.5).

When a programmer writes a component, he or she must declare the ports that are necessary

for the functioning and communication of the component. There are five types of port that a

visual component can implement. These consist of the one-way data-in, data-out, trigger-in

and trigger-out ports, as well as the two-way 'select' port. When declaring ports, this type

must be defined. However, data-in and data-out ports may also define the structure of the data

that will pass through them as well as the variable types comprising those data. Two forms of

data structure that the ports cater for are high-dimensional feature vectors that can consist of

real integer, string and date variables, and 2-d real-valued co-ordinate vectors. Trigger-in and

trigger-out ports can convey arbitrary data structures. Their purpose is to allow algorithmic

module to signify convergence and pass control to other modules - rather like control

con tructs in a conventional programming language. Selection ports pass integer arrays of

elected datum indices between visualisation components.

Oata In

FestNll)S1

outp
Convergence trigger

Starte

Figure 7.5 When HIVE is in link: mode, all Swing components are hidden while port representations

are rendered.

7.4.5 Linking and the composition model

The y tern' composition model is responsible for laying down the rules for which ports can

be connected, ba ed upon their port types. These rules comprise the default composition

166

model, however visual component implementations can override them to tighten or loosen

connection constraints when required. An overview of these rules is shown in table 7.2.

Port Hnldng rule Description

polarity one-way ports can only be connected to their
complement

self-connection ports on the same component cannot be
connected

fan-in one input port can be linked to only one
output port

fan-out one output port can be linked to many input
ports

data-in and data-out ports can only be
data-structure compatibility connected when they are declared to handle

the same data structure

data-in and data-out ports can only be
data-variable compatibility connected when they are declared to handle

the same variable types

Table 7.2 Linking rules for HIVE's composition model.

The rules of the composition model constrain the user to create only legal and sensible

connections between modules. To create a link, the user must place the system in 'link mode'.

This is achieved via menu selection or by double-clicking the black background of the

drawing canvas. When in link mode, HIVE hides all Java Swing GUI controls on each visual

module, such as buttons and sliders, before rendering the ports as grey circles shown in Figure

7.5 (both links and ports are rendered using the Java2D APQ. Input ports are drawn on the

left-hand and output ports on the right-hand side of each module and all ports are labelled as

to their purpose. Ports are not visible during the normal mode of operation so that more space

on the visual modules can be allocated to GUI controls useful in controlling algorithmic and

visualisation parameters. While it would have been possible to render ports outside the edges

of modules, it was felt that this would complicate the placement of port labels and would have

made the resulting networks more cluttered

The user creates a link between two modules by first placing the mouse pointer over a

port and holding down the mouse's left button. This changes the selected port's colour to blue.

There might be several modules on the drawing canvas and each might have several ports. To

prevent the user from trying to make illegal connections and to save time, HIVE looks at all

other ports and consults the composition model to see if a valid connection can be made from

the selected port. If so, each potential target port's colour is changed to pink. This visual

167

feedback guides the user in connecting modules. To complete the link's creation, the user

simply drags the mouse from the selected port to one of the highlighted ports. While doing

this HNE provides additional feedback by rendering a link from the initially selected port to

the current mouse position. When the mouse is dragged over a legal terminating port, that port

turn green, signifying that the user can now release the mouse and the link will be made.

Both data-flow links (between algorithmic modules) and view co-ordination links (between

vi uali ation modules) are made in this way. However, to distinguish between them, data-flow

links are rendered as thicker lines while co-ordination links are thinner (Figure 7.1).

A link can be selected by clicking on it with the mouse, which causes the link to turn

red. When in link mode this causes the corresponding ports to be highlighted to identify the

link's start and destination ports. Once selected, the link can be deleted or it can be dragged to

bend it. Bending links allows the user to clarify connections and tidy up the resulting graph.

ee Figure 7.6.

Figure 7.6 The top part of the image shows a link from a data source to a sample module. The bottom

half of the image hows a link: after it has been selected and bent by the user.

7.4.6 Hybrid algorithm generation

There i on exception to the data-structure compatibility rule above. This is to facilitate the

emi-automatic generation of hybrid algorithms and occurs when the user connects a high

dimen ional output port such as the output of a data source component, to a 2-d input port

uch a the input to a scatterplot. In this case HNE classifies the data on the output port

acc rding to the ordinal ranges of dimensionality and cardinality as described in Section 7.2.

168

Once this is complete, HIVE loads the appropriate algorithm from a default set of hybrid

algorithms - the algorithmic 'cookbook'. These algorithms have been pre-classified in their

applicability in spanning the grid of Figure 7.2, and are inserted between the two components

that the user had originally connected, thus restoring adherence to the data-structure

compatibility rule described above. Appendix B illustrates the cookbook in HIVE.

When HIVE has finished this process the user can run or modify the algorithm and

visualise his or her data. It is suggested that this functionality might aid inexperienced users of

the system, as well as encourage experimentation with hybrid algorithmic conjunctions.

HIVE allows users to save algorithms and visualisations by serialising module, link and

port instances and writing them to file. The default set of algorithms in the 'cookbook' is also

stored in this way in a 'patterns' folder within the system directory structure. If the user

modifies the HIVE-generated algorithm, he/she can save it to this directory and specify that

this should be used the next time HIVE is prompted to generate an algorithm under the same

circumstance. That is, the data to be visualised are in the same LMH categories and the same

type of visualisation is requested.

Overall, this architecture is inspired by the subject matter of Chapter 6. The data-flow

model and visual programming used in scientific visualisation (Section 6.1) is used in

conjunction with the design dimensions of secondary notation and side-by-side-ability

(Section 6.3). HIVE also has functions to select data in scatterplot views and export to

Microsoft Excel or export to PNG format graphics files. This awareness of interoperation with

existing information tools is in line with the notion of information workspaces described in

Section 6.2.

7.S Examples

The system currently holds a limited number of composition components for creating

visualisation applications and hybrid algorithms. Figure 7.7 shows a simple network of data,

algorithmic and visualisation components. The data set used in this case is in the form of a

CSV file containing 300 2-d co-ordinates representing a box that is open at one side. Note that

the data are fed into the spring model and the table simultaneously. This creates a cyclic graph

but in this case the scripting/composition model allows this because no conflicts between

modules can arise due to the only output of the table being an interaction connection.

In this view, the spring model has finished laying out the data, however, during the

iterative process, the spring model has output to the scatterplot the 2-d layout co-ordinates of

the set after every ten iterations. This allowed the scatterplot to display an animation of the

169

layout proce s so that the user could watch the layout form. The link that is highlighted in red

(link between table and scatter plot) is an interaction link. This means that by selecting rows

on the table or points in the scatterplot, the corresponding items are highlighted in the other

view. Thi location probing and its representation is an example of the flow of interaction

pos ible within the system.

)(------~-------~y.~----

.. ••
00

--------------~gg---------------
0 .0
00 •• •• N

Figure 7.7 A network of the three types of components: data source (2-d geometric data), algorithm

(haJrners' pring model) and visualisation (fisheye table and scatterplot).

7.5.1 Comparison of spring model layouts

In the n xt creen hot (Figure 7.8), two data sources, two spring models and two scatterplots

are wir d together to provide a side-by-side comparison of the spring model layouts. The data

u d in thi instance are a financial data set containing historical performance and volatility

informati n n investment funds. In this set there are 1000 items, each of which has 13

By placing the scatterplots next to each other and connecting them with an interaction

link it ea y to id ntify the differences in the two layouts. We see that the model has converged

up n th tw major clusters but by brushing one of the plots we also see that these layouts

ha e been flipp d round with respect to each other. These differences exist because of the

170

non-deterministic convergence of the spring model algorithm - when used on

multidimen ional data, two layouts of the same data are seldom the same.

Figure 7. An example demonstrating the non-deterministic nature of the spring model. The expanded

view of the bottom spring model component shows controls for changing parameters such as freeness,

velocity and damping as well as controls for setting convergence criteria.

7.5.2 Exploration of a real data set

HIV wa u ed to explore a data set gathered from an eScience project within the Equator

Interdi ciplinary Re earch Collaboration (www.equator.ac.uk). The eScience team set up a

rem te n ing probe at a frozen lake in the Antarctic, which transmits data including ice

thickne , water temperature, UV radiation levels etc. to environmental scientists at the

nt r ity of ottingham. The aim of this is to learn about carbon cycling processes. The data

t was c mpo ed of 2202 probe measurements, each consisting of 16 variables measured at

fi -minut interval between 17th January 2003 and 31 sl January 2003. This was converted

int V fi rmat before importing it into HIVE.

171

Two algorithms were set up in parallel in HIVE and used to perform dimensional

reduction of the data so that they could be rendered as a point distribution in scatterplots. One

algorithm consisted of a neural PCA component and the other was generated automatically

after the u er specified the data set and visualisation tool, in this case a scatterplot. This latter

algorithm wa irnilar to the hybrid algorithm illustrated in Figure 7.1 with the exception that

it u ed K-means instead of stochastic sampling in initially reducing the representative

cardinality. Both algorithms took less than five seconds to run. By setting up these two

algorithmic paths in parallel, it was possible to directly compare the visualisations produced

(Figure 7.9).

';jM I,." __ _ _ ~r-J

• •
~o 7100

T", .. l

~
~fiiiiM .. • •

~I

I J

Figure 7.9 The leftmo t scatterplot shows the output of neural peA. The middle scatterplot shows the

data after interpolation around the K-means centroids while the right scatterplot illustrates the output of

the final pring model component. The highlighted cluster is a small subset of erroneous PAR

mea urement . The e clusters are much clearer in the hybrid algorithm's plots than with peA. The

hi togram how the PAR distribution at a depth of 10 metres. The outlying peak (far-left) has been

ele ted and thi highlights the clusters in the scatterplots.

ne n table difference between the visualisations was a small cluster made prominent

by the hybrid pring model, especially in the intermediate view after the interpolation phase,

which wa n t apparent in the PCA output. By linking a histogram and table to the scatterplots

it wa found that thi cluster of points represented data where the photosynthetically active

radiati n (P R) mea urements at a depth of 10 metres were invalid. It turned out that these

172

erroneous measurements were caused by the light level exceeding the sensor's maximum

input threshold.

The fisheye table view in Figure 7.9 has been sorted on PAR at 10m. The rows that

correspond to the selection in the histogram and scatterplots are highlighted. This table depicts

the data distribution over individual variables by colouring areas of each cell proportional to

the value it contains. In its application here, it can be seen that the highlighted block of rows

show that the distribution of values they represent is uncharacteristic of the other non

highlighted rows below them - the two regions appear disjointed. Although this clearly

reflects the erroneous data, they would have been harder to identify without the help of the

connected scatterplot. This is because without the scatterplot the user would have to sort each

column in turn to look for such uncharacteristic distributions. Fortunately in this case, the low

dimensional representation provided by the scatterplot (and underlying hybrid algorithm)

immediately caught the author's attention and made it easier to manipulate the table to take a

closer look.

The two algorithms used here are examples of 'recipes' that are in the algorithmic

cookbook mentioned in Section 7.2. Since the data set used here is deemed to be of moderate

cardinality and dimensionality, K-means is applicable in reducing the representative

cardinality (centroids) to make it low enough for Chalmers' spring model to converge very

quickly and reduce the dimensionality to 2-d. From here, the rest of the data set is interpolated

onto the layout to restore the representative cardinality. A final spring model step is added to

run for a small constant number of iterations to refine the final layout. This algorithm was

generated by HIVE to span the grid in Figure 7.10 from (M, M) to (L, M). If however, the

cardinality of the data set was high, the algorithm would have had to span from (M, 11) to (L,

11), in which case HIVE would have utilised stochastic sampling instead of K-means in the

initial phase, to speed things up. The other algorithm used in the exercise, neural PCA, was

composed manually and can be regarded as a direct jump from (M, M) to (L, M) with respect

to the algorithmic space in Figure 7.10.

173

Cardinality (N)

··/························I~~ 1\

.....
8

.............

Figure 7.10 Da bed arrows represent the mvE-generated hybrid algorithm spanning the space from

(M. M) to (L. M) via K-means, Chalmers' spring model and Interpolation (clockwise). The solid arrow

repre en the manually instantiated PCA module.

7.5.3 Using MDS for feature selection

Recall that in ection 4.3.3 the use of MDS to help an analyst select features (variables) from

a data twa de cribed. This section will provide an example of how HIVE can be used to do

thi . The fir t tep i to load a data set into a data source module. In this case the data were

c l1at d by the author ' colleagues at the Centre for Investigative Psychology (CIP) at the

ni er ity of Liverpool. The data consist of 115 items each with 35 binary variables. Each

item r pr nt a per on and each variable represents a particular crime to which the person

ha admitt d. Figure 7.11 hows the modules and port connections required to allow the user

to lay ut th variable (rather than items) and select a subset to use in laying out the items.

he data ource is shown on the top-left of the figure and feeds into a transpose module.

he tran p e m dule effectively turns the data matrix on its side so that the rows become

c lumn and therefore each output item represents a vector of values for one variable across

all of the 115 riginal items, i.e. the dimensionality is now 115 and the cardinality is 35. The

tran p e m dule al 0 offers the user the option of standardising the value scales of the

". h tran po ed data are then fed into an SSA (Section 4.3.3) module for dimension

rcdu tJ n, which in tum feeds into a scatterplot (lower-left) to display the layout of variables.

In tbi lay ut, th proximity of variables reflects their co-occurrence. The "Data out" port of

thi ' tt rpl t [! d the user's selection to another transpose module which restores the

rdmah! f the data, however, the dimensionality is now determined by the variables

174

el t d in the catterplot. These data are then fed into a spring model that provides a layout of

the it ms in the econd scatterplot. The thin link, shown in red between the scatterplots

r pre nt an interaction link. When the data are binary, as in this case, this means that if the

u er lect point in the variable scatterplot (lower-left) then the items that contain a 'I' for

tho ariable will be highlighted in the other scatterplot. Similarly, selecting items in the

lower-ri hl catterplot will highlight the variables that have a value of '1' for the selected

it ms.

igure 7.il P rt c nnections for using MDS for feature selection and subsequent analysis.

igur 7.12 hows the above network after loading data and running the dimension

r du ti n algorithm .

ute 7.12 MD fi r feature election in action.

175

Given that the data are binary, the variable layout in the lower-left of Figure 7.12 has been

embellished with a frequency surface - the lighter the area, then the higher the frequency of

the variables represented by that region in the data set. The scatterplot also shows dynamic

variable labels for the points near the mouse. The scatterplots in HIVE have several view

changing functions including custom annotation, changing background brightness, various

colour schemes and displaying all point labels (if any) simultaneously.

In the figure, the author has selected several of the variables before pressing the

"Output selection" button to send them to the second transpose module and then to the spring

model. The highlighted points in the lower-right layout of items (people) show all those who

have forged cheques, stolen cars and used a weapon. This is the type of functionality that

researchers at CIP have been using to investigate whether the specific subsets of variables

explain patterns in the population of items. Chapter 10 provides an account of this.

7.6 Design review
In the previous chapter each of the three main sections - Section 6.1 (data-flow model),

Section 6.2 (information visualisation environments) and Section 6.3 (visualisation system

design theory) - provided a subsection detailing the relevance of the reported observations

from the literature to the design and implementation of the HIVE framework. These

observations were made during what can be considered as a requirements gathering phase.

This section will describe how these reflections on the literature have influenced HIVE.

Finally, subsection 7.6.4 provides a complete list of the key features in HIVE.

7.6.1 Data-flow model

In scientific visualisation the data-flow model coupled with the visual programming paradigm

can potentially facilitate the following advantageous features:

• Parallel processing

• lnteroperability

• Collaboration and communication

• Animated, interactive simulation

• Traceable computation

• Subjunctive presentation

• Appropriation

176

It was suggested that the HIVE framework could also attain these advantages because the

underlying algorithmic architecture acts as a data-flow model. Indeed, the nature of the

proposed architecture should add increased efficiency to the above list. This coupled with co

ordinated views - which are akin to the visual programming paradigm - provides the

flexibility that allows the user to drive the application rather than the other way around.

An additional feature that has been inspired by the review of data-flow models in

scientific visualisation is that to open up the applicability of the system, it should allow the

production as well as the consumption of data as in [888*93, UFK*S9]. If users can modify

the underlying data set through the same interface as for its analysis then the system might be

more beneficial in real world scenarios. This was put forward in section 6.2.4 as a potential

reason for the failure of widespread adoption of contemporary information visualisation

systems such as Visage. This has been implemented to an extent in that the user can

interactively apply feature selection and extraction, as well as filter and sample the data,

essentially modifying their composition and meta-data.

From the description of the framework in Section 7.2 it is implied that it is data-driven

in the sense that the complexity of the data determines their path through the hybrid

algorithmic architecture. The data are pushed through the hybrid algorithm. However, it is

highly likely that the algorithms on the most efficient path through the model may not be

capable of producing the visual representations that the user desires. This means that there

must be a trade-off between the complexities of the data that 'push' them through, and the

chosen representations (views) that essentially 'pull' them through. This means that the HWE

framework is essentially data-driven and goal-driven. The data-driven aspect is automatically

determined by the system's implicit suggestion of a path through the hybrid architecture, and

the goal-driven aspect is determined by the user's visualisation requirements. This is a

departure from the typical approach in the scientific visualisation system described in Section

6.1. As well as using visual programming and the desired visualisations to explicitly

determine the data-flow in the system, the HIVE framework also uses the data-complexity and

the required visualisations to implicitly define the data-flow.

7.6.2 Information visualisation environments
The role of information visualisation environments is to transform abstract data into

information to supplement the user's perception in creating knowledge from the data. This can

be achieved by enhancing visualisations by using multiple co-ordinated views for interaction

flow, effective representations via abstraction management and sensemaking, by and within

the views. The hybrid architecture addresses Card et ai.' s cost structure of information by

177

increasing the efficiency in generating the data segments that will be the basis of visual

representation. These issues address the notion of a workspace that is an information-rich

environment for problem solving.

The HIVE framework is as flexible as North's level-3 system (defined in section 6.2.4)

by allowing a variety of visualisations of different types of data, and by providing the user

with the means to connect multiple views to enhance interaction. This increases the

applicability of the system across different work domains and essentially allows the user to

help steer the transformation of abstract data into information. If collaboration and

communication services are also built into the system then it will be closer to being an

effective virtual workspace. This has been partially addressed by using Java's reflection

framework to allow users to swap and integrate visual modules at run time. The ability to

export data and save analyses is also a step towards this ideal.

7.6.3 Visualisation system design theory

Shneiderman's visual information seeking mantra hints at the useful interaction techniques

that are applicable in gaining more information from visualisations. This, however, is not

enough to ensure the effectiveness of an information system in facilitating the discovery of

knowledge. Design theories such as EID, cognitive dimensions of notations, dimensions of

expression and abstraction management must supplement visual information seeking.

Ecological interface design has taken a different perspective on the role of information

systems. EID suggests that by expanding the boundaries of the system to include aspects of

the work ecology, the target system is much more likely to be useful in the work domain. In

addressing the notion of a virtual workspace, the HIVE framework has been designed with not

only the interaction mechanisms (situated constraints) in mind but with how it will be used

within the working environment and how it may be augmented by services for sharing

information (and knowledge) with co-workers.

The design principles provided by Green's cognitive dimensions of notation and Roth et

al. 's dimensions of expression provide a richer design vocabulary for describing situated

constraints and the trade-offs between them. Of the cognitive dimensions, secondary notation

and abstraction greatly appealed in considering the design of the HIVE framework. The

informality of interfaces that employ secondary notation (as with HIVE) provides a vehicle for

appropriation and encourages opportunistic searching of information. Abstraction is important

because, as addressed by Russell et al.'s cost structure of sensemaking, some representations

(abstractions) of information are more effective than others. Also, if the system allows the

user to modify abstractions such as by making changes to the underlying data set and by

178

transfonning views, then some fonn of abstraction management must be in place to efficiently

maintain consistency in the information visualisations produced. In HIVE's architecture, the

graph manager and its composition model regulate the higher-level abstraction of the

visualisation application itself.

7.6.4 HIVE features

The key features that have been built into HIVE are:

• user-defined and directly manipulable data flows

• user-defined and directly manipulable interaction flows

• an algorithmic framework for semi-automatically generating hybrid algorithms

• an extensible palette of algorithmic, visualisation and profiling components

• histogram range-selection provides dynamic querying of other views

• visual and dynamic profiling of hybrid algorithms

• user-defined colour schemes, annotations and Excentric labelling [FP99] in scatterplots

• capability for indexing and mining raw text

• export data to MS Excel

• zoom and pan scatterplots

• automatic layout segmentation

• caters for CSV, lower triangle and raw text input data

• tabular data views provide focus + context

• surface plots of variables

• cross platfonn - developed in Java

7.7 Conclusions

The flex.ible algorithmic framework of HIVE adds power to visualisations because the time

taken to generate the visualisations, and therefore also the view transformations via efficient

hybrid algorithms, is reduced. This helps maintain the cause and effect relation between a

user's actions at the interface and the subsequent visualisations. In the context of figure 7.2,

interaction brings the human into the loop, effectively closing it by allowing exploration of

high-dimensional abstract data.

The work documented up to this point has answered, at least to some extent, the first

two research questions posed at the beginning of this thesis: Which algorithmic components

179

should be combined? When should the different types of algorithms be used? The former is

answered in the experiments with hybrid algorithms and the development of the hybrid

algorithmic framework in HIVE. The framework dictates that a series of algorithmic stages

should be matched to the complexity of the data set as it is transformed by them. successively

refining and improving its representation for visualisation. The algorithmic components that

have been used include K-means clustering, stochastic sampling, novel radial interpolation,

Chalmers' spring model, SSA, PCA, fast NMOS and Voronoi clustering. Note that some of

these components are themselves hybrid algorithms. The latter question, again, pertains to the

hybrid algorithmic framework. The order of successive algorithmic stages is very important to

the outcome of a hybrid algorithm and depends upon the components used. The novel

algorithms for dimension reduction described in Chapter 5 suggest that an inexpensive

algorithm should first be used to reduce data cardinality (such as K-means clustering) before a

more expensive algorithm (such as NMOS or a spring model) works upon this reduced

representation of the data to further reduce it - this time by dimensionality. Finally, the

representative cardinality can be restored by fast interpolation before frne tuning with

restricted application of a dimension reduction routine such as Chalmers' spring model.

The composition of hybrid algorithms by direct manipUlation of visual modules

produces a system schema that can be understood more easily. The flow of data and

interaction can be visually traced through the system. Another benefit of this interactive

approach is that hybrid algorithms can be set up in parallel in a similar fashion, as in Figures

7.8 and 7.9 above, i.e. two or more runs can be made simultaneously. This is useful for testing

the robustness of the algorithms with respect to different types of data and starting conditions.

This approach can also be used to determine and compare the run times and output quality of

composite algorithms as well as the individual components. The interactivity of the system is

very useful when it comes to evaluating and using hybrid algorithms, as will be seen in the

next chapter.

180

8. Algorithmic profiling

HIVE has been demonstrated to be an effective environment within which to create hybrid

algorithms and explore high dimensional data sets. A palette of algorithmic components and

visualisation tools provides the user with several disparate views of a data set and allows a

number of different aspects to be explored. Further insight is supported via coordination

between these views. Novel combinations of modules may be experimented with, and the

extensible nature of the algorithmic palette pennits the simple addition of new components.

In addition to this, it is proposed that HIVE is a useful tool for profiling and evaluation of

hybrid algorithms. A number of HIVE modules have been implemented to measure and

display performance characteristics of other HIVE components. Such profiling modules

permit algorithm evaluation to be tightly and interactively coupled with the algorithms being

run. Linking together profiling modules can be carried out using the same visual metaphors,

and the choice of algorithmic properties to measure can be made and altered at run time.

Profiling tools may also be linked to existing visual modules, with their coordinated use

providing insight into data sets that would go unnoticed in a sole visualisation. Examples of

such coordination are provided in Section 8.4.

This chapter introduces the profiling modules implemented in HIVE. All of these

modules, with the exception of the interactive Shepard plot were implemented by the author's

colleague, Alistair Morrison. However, the author did assist Alistair with this implementation.

8.1 Multiple runs module

When evaluating an algorithm, several runs over several data sets must be executed, often

with different algorithmic parameter settings. Manually coordinating such algorithmic

executions can be a laborious and time-consuming task. To alleviate this, a Multiple Runs

(MR) module has been implemented as a central controller for automating such operations.

The MR module passes data sets and algorithmic parameters through its output ports to

a connected algorithm. At the start of each run the MR module tells the algorithm to begin

execution and once execution is complete the algorithm notifies the MR module to start the

next run. Instructions for the module are specified by the user via a text field and are in the

following format:

(DataFile,[NumRuns, <Module/D, (parameters»,<> ..])

181

The DataFile parameter specifies the input data file to pass to the algorithm and the NumRuns

parameter determines how many times the algorithm will be run on this data set. The

<module/D, (parameters» tuples specify an algorithmic component and its relevant

parameters. A spring model, for example might be identified by moduleID and parameters

such as the number of iterations and damping might also be specified. Many data sets and

experimental conditions can be specified in this way and batch runs of more than one

algorithm can be executed simultaneously using multiple MR modules.

8.2 Stress and clock modules

Recall from Chapter 4 that stress (Equation 4.20) provides a measure of the discrepancy

between layout distances and high dimensional relationships. It quantifies the goodness of fit

of the layout to the high-dimensional data space. To analyse dimension reduction algorithms

in HIVE with respect to stress, a new module was implemented. This module simply takes the

output from an algorithm and performs the stress calculations. It can be used in conjunction

with the MR module by measuring stress after (and during) algorithmic execution. Since it is a

self-contained module, it can have multiple instantiations and can be used to measure stress at

intermediate algorithmic stages, such as after the initial spring model layout in the algorithm

described in Section 5.3.

Algorithms should also be evaluated with respect to running time. To this end, a clock

module was implemented with trigger ports to commence and terminate timing of algorithms.

Like the stress module, clock modules can be used to take measurements at intermediate

stages of hybrid algorithms.

The output of both stress modules and clock modules can be used in several ways. One

approach is to write the values to a file for exporting to Excel to produce graphs such as those

shown for the evaluation of algorithms in Chapter 5. Another use of the modules is to build

performance charts while algorithms are executed (see Figure 8.1). By charting performance

measures while watching a layout form, the user can ascertain whether the algorithm has

reached a local minimum and whether more iterations are required. A final, more novel use

introduced by the author is to collate performance measures, along with algorithmic

parameters and data sets sizes for individual algorithmic runs, into new multidimensional data

sets and use algorithms in HIVE to visualise them [RMC05]. Morrison [M0r04] used this

technique to distinguish between the behaviour of several types of dimension reduction

algorithms in HIVE. Each algorithm was applied to 9 data sets, and both run time and stress

182

rd d ~ r each execution using the profiling modules. With each algorithm represented

by an 1 -d ct r, a pring model was then used to visualise the results.

Add Cloer 1

• selles l

igure . l a pring model runs, stress is measured and charted against each iteration. The plateau,

fter ar und 26 it rations, hows that the algorithm has fallen into a local minimum while the layout (of

th 2-d dat h w that more iterations are required to break out of the minimum configuration.

8.3 bepard plot

he rd plot [he62], as demonstrated in Chapters 4 and 5, is another tool that can be

t illu trot th quality of a dimension reduction solution. The Shepard plot shows the

n hip f th high-dimensional distances (between each pair of items in the data set) and

p nding I w-dimensional layout distances. Given an ideal fit of high-dimensional

pa c f I wer dimensionality, the points in the Shepard diagram form a 45 degree

di th e orne less representative, points will start to deviate from this diagonal.

indi

hepard diagram in HIVE. High dimensional distances are plotted along

nd lay ut di tance are plotted along the x-axis. Points that lie above the diagonal

th tar to close in the low-dimensional space, while points lying below the

rent it m that have been placed too far apart. Outliers in the Shepard plot

f bj t that ar likely to contribute more to layout stress.

183

Shepard Diagram

igure .2 h hepard plot module.

in th calculation of the Shepard plot requires O(N-) time, controls have been added

t all w th u r 1 pecify the size of a random data sample over which the plot is created.

Thi pi

dim n 1 n

an al coordinated with the corresponding scatterplot representing the

utput. This allows one to select points in the Shepard plot and

IT p nding points in the layout. highhght th

h h p rd pi t ha been used for decades for evaluating the output of MDS routines.

raditi nally it i' a tatic pre entation of the output of an MDS routine. However, its novel

n in HIVE gives it more analytical power and increases its applicability

8.4 oordination of profIling modules in

HIVE

Th pr \"i u. e ti n have de cribed isolated instances of HIVE's new profiling modules.

[. r c

qu litatin:\ .

in rp tin

f u h t hniques, however, comes in their combination and interaction with

within the HIVE environment. Histograms, fisheye tables and

interactive functionality, allowing coordination with the profiling

mpJ. th h pard plot is traditionally a static presentation technique for

valu tin a low-dimensional representation of high-dimensional data. By

it tnt th' HlV framework, the plot can have as many instantiations as

184

n ry, v,,'ith h in. tance connected to a different part of the visualisation's data-flow. It

in r m nt

y

th tw

th

n t d that th hepard plot is traditionally employed after the completion of a

the h pard plot can be used during the layout process to give an

fth quality of the layout.

a hepard plot to a scatterplot, one creates an interactive link between

I ction in the Shepard plot will therefore highlight those objects in

pairwi e distances correspond to the selected points. For example,

in Fi ur tare u ed to compare layouts obtained from peA and a spring

m I. It i: ap r ot th t th hepard plot of the peA layout has a distinct diagonal edge,

di

\,; whi h n int ar plotted. This may be explained by the fact that peA functions via a

n f th high dimen ional pace onto a 2-d plane. In contrast, the spring model has no

and attempt to position objects to best preserve high-dimensional

. Thi r ult in a hepard plot where there are points both above and below the

th pint that represent items ideally placed in the plane.

how 2-d layouts using linear peA (left) and spring model (right).

th r than in high-dimensional space. This is confirmed by the fact that no objects

hepard plot.

185

Another implemented component that may be used in interactive combination with the

profiling modules is a module for Voronoi tessellation and clustering (see Section 5.5). This

module may be used to partition a completed layout. Each point is contained by a convex

polygon so that the portion of space contained within the polygon is closer to that point than

any other. Clustering may then be performed by finding contiguous groups of polygons where

the density of points is similar. The module may be used in combination with profiling

modules to detect clusters that may benefit from closer examination.

The following section provides more concrete examples of the coordination of

components with a series of case studies.

8.5 Case studies

This section documents several case studies, demonstrating the coordinated use of existing

components with the novel profiling modules within HIVE.

8.S.1 Batch job of executions for algorithm evaluation

The first case examined is the evaluation of a novel algorithm. The use of the profiling

modules described in the previous section allows such an evaluation to be performed simply

and in an intuitive manner. The following describes the evaluation process undertaken in the

writing of a paper that presents a novel hybrid layout algorithm that was implemented and

evaluated in HIVE [MC04].

In performing such algorithmic profiling, a large number of executions is necessary.

Several models might be evaluated on several different data sets. In addition, results should

be averaged over multiple runs: an especially important consideration in the case of iterative

models, which can occasionally become stuck in local minima. It is common to require

several hundred executions for a thorough evaluation, and it is therefore clear that an

automated profiling process is a useful aid to the designer. Figure 8.4 illustrates the

configuration of components required for such an evaluation. To avoid unnecessarily

describing the specific model in depth, details such as the names of individual components

have been omitted from the figure.

Having built a hybrid algorithm (composed of the modules shaded in yellow in Figure

8.4), it is desirable to examine its performance in comparison with an alternative technique.

Profiling modules (grey) may be added to the module configuration at the user's discretion.

Here, the author has elected to measure the run time of two stages. Stress is also measured at

186

lh fi ur. By pecifying file names on each of these components, separate

ul n rat d by ach, allowing the performance characteristics to be explored

u h a Microsoft Excel.

[h l p-t ft) i provided with a list of data files and parameter commands. It

in ch fiI , and passes the instructions for the current execution to each

rithm mp n nt. Th MR module passes a start trigger into stage one, and receives

tage to indicate that the algorithm has terminated: the cue to

ul nd gin an ther run.

Muttiple Runs

Stage 4

Run Times for Stage 4

nlO<Jul

repr ent different stages of a hybrid algorithm. The Multiple Runs

- qu n e f executions, loading data and parameters into each component.

. inrt d ta et ize at various stages of the algorithm. The bottom left chart

eparat et of parameters for stage three. Having connected the various

n

pi I run tin

to th MR module, the algorithm executions and chart plotting

up i: d.

t th tt m of the figure display experimental results. A test data

n ~ampl d t reate data sets of varying size. The charts show run times

oil ' und'r difll rent algorithmic conditions, with each line on the chart

nditi n. ch chart is connected to a different clock module, and

lh di pia tilll ' t k n y differ nt algorithmic components. For example, the chart at

187

the left-hand side displays the run times required by the third stage of the model. Three

separate approaches were experimented with for this stage (as specified by the experimenter in

the MR module and passed to stage three via parameters), as indicated by the three lines on

the chart. It can be deduced that on small data sets, condition one executed in the least time,

whereas condition two becomes optimal as data size increases.

Charts of this type formed the basis of the results section of a paper by Morrison and

Chalmers [MC04]. What could have been a laborious evaluation procedure was undertaken

via a simple, unsupervised process. The algorithms can be left to run overnight, and the

generated charts can be exported as bitmaps or]PEG files.

8.5.2 Exploratory analysis of synthetic data

This example illustrates the interactive combination of the Shepard plot with other HIVE

visualisations. As mentioned before, brush-and-link coordination has been incorporated in the

Shepard plot to allow interaction with other components. For example, linking the Shepard

plot and scatterplot views allows insight into the relationships between quality of positioning

and objects' placement within the layout.

To illustrate the utility of this interactive capability, an example is provided using a

synthetic data set representing a 3-d cube. Such a data set is a useful test case as it is

impossible to represent perfectly in a 2-d space, and no 2-d projection of the data is much

better or worse than any other. To begin, PCA is used to obtain a scatterplot layout (Figure

8.5(a». Linear projection-based layout techniques such as PCA and SVD, although fast,

provide a layout based upon global data properties (e.g. variance). It is therefore the case that

certain local areas might be poorly represented. This example illustrates how interactive use of

the Shepard plot can help a user to resolve inaccuracies in these areas, and thereby enhance

understanding of the structure of the data.

The cube structure is clearly visible from Figure 8.5(a), coloured dark to light from top

to bottom. Figure 8.5(b) shows a Shepard plot of the layout generated by PCA. Each point in

the Shepard diagram represents a distance between a pair of objects. In Figure 8.5(b), the

author has highlighted a section of points in the upper left of the layout: those points

corresponding to the relationships worst represented in the PCA layout. Figure 8.5(c) shows

how this selection affects the scatterplot display. The linking between views indicates that the

objects worst represented in the layout appear in the centre. These objects represent points at

opposite comers of the cube, forced together in the projected layout.

Having identified such a poorly represented area of the layout, it may be desirable to

extract the subset of objects in that region and lay them out separately. In doing so, it is

188

ibl r m v th' influ nee of the full data set, and examine only relationships between

th in th t I et d region was therefore fed into another peA module and

t d, .j Iding th lay ut hown in Figure 8.5(d). It can be clearly seen that the inter

n w m re accurate; the two corners of the cube have been separated. As a

f th qu lity of the layouts, the stress of the full layout was measured

the ' U -layout. As expected the stress of the sub-layout was much less

i ure ~ P 01 nd hepard plot working together interactively to help build user understanding

th

13 ut (). election is made in the Shepard plot of points corresponding to

n fit from further analysis (highlighted region) (b). The selection in

hphltght d in the peA layout (c). A re-projection of the selected points

nfirms their mi representation in the original layout (d) .

. s. . ploratory analysis of real data

d '01 n 'trot d, via a imple example on synthetic data, how a profiling

uld u. d lOt rn tiv Iy in combination with other views to encourage further

Imilor ample will now follow to illustrate the usefulness of

h t hniqu's in r ' low rId tting. The data used here are the same as in Section 7.5.2

189

and were gathered with a remote sensor probe during an investigation into carbon cycling in

Antarctic lakes (www.equator.ac.uk). They represent a number of properties measured over

time, such as water temperature and the level of photosynthetically active radiation.

The data set was initially fed into a PCA module with the Shepard plot used to identify

a local region of items that were potentially badly placed. In a manner similar to the previous

example, points far away from the diagonal trend were selected in the Shepard plot, which

resulted in the contributing items being highlighted in the connected PCA layout The leftmost

two components of Figure 8.6 illustrate the scatterplot and Shepard diagram following this

selection.

Having identified these poorly represented objects, they appear to be localised to a

specific region in the top-right of the layout. One might hypothesise that this area represents a

distinct cluster within the data, which has not been made apparent by the PCA layout. A

Voronoi clustering component (see Section 5.5) can be employed to gain a clearer

understanding of the partitions within the data. The output from PCA is fed into a Voronoi

component, which identifies five separate clusters in the layout.

The Voronoi component is illustrated in the centre of Figure 8.6 and is shown in detail

in Figure 8.7. Five clusters were found, and shown in different colours. Outlying objects not

identified as belonging to a specific cluster were coloured grey. It can be seen that the objects

highlighted in the PCA layout all belong to the yellow cluster. This subset is selected and

overlays the Voronoi tessellation.

Having now identified a cluster of the data within which certain distances are poorly

represented, it is possible to extract it for further exploration to determine why this is the case.

Through connecting to the Voronoi output port, another component may take as input the

selected cluster. The figure illustrates how the cluster is passed to a spring model (FDP). This

non-linear technique is able to discover further detail that PCA could not identify: two clear

sub-clusters are found within the selected data.

The PCA layout had clearly failed to adequately separate these two sub-clusters, which

explains the large discrepancy between high- and low-dimensional distances observed from

the Shepard plot. The measures calculated by the stress module confirm the findings, with the

PCA layout exhibiting 0.031 and the spring model layout of the extracted cluster giving 0.025.

Having discovered the presence of two sub-clusters, it is interesting to see how they are

depicted in the original PCA layout. Comparing the spring model layout and the Voronoi

display, it might seem as if the smaller of the two sub-clusters appears on the left of the yellow

Voronoi region, with the larger C-shaped sub-cluster appearing on the right. Had the two

images been produced independently, one may have made this assumption. HIVE's interactive

190

nd r in.lIt.:d \ i fram w rk. h wever, allows the user to compare the location of the

pr

u"""· .. · .. ,"'"

Ih

thi

r nt lay ut. igure 8.8 shows the selected C-shaped sub-cluster in the

t 'nd th r 'ultant highlighting of the corresponding objects in the PCA

n th t th divi ion between the two sub-clusters actually occurs in the

ul.

nd i ualisation components working together in a coordinated

\ 1<\ ' ut i made and the as ociated Shepard diagram is used to detect a local area

nted Ire n 'idered eparately. A Voronoi tessellation component is used to

lu:ler containing the previously identified local area (the yellow

Thi lu ter is processed with a spring model (FDP) routine, which

th 1 th Bulh r had not previously been able to identify.

ssin und rtaken in Figure 8.6 is the creation of the Shepard plot of

ut. ' h lwn in th top right corner. In tandem with the stress calculations ,
f th degree to which the PCA and spring model layouts

191

.1.

I h

m

n.

i' >n m re 'ulting from the PCA layout exhibits a 'cleaner' line on the 45

t, h \ V r, that appears to show less deviation from the diagonal overall.

,tt r illu tmt d in Figure 8,9, where the 45 degree diagonal line has been

. pring m del layout of a selected Voronoi cluster within a peA

lay ut. electing the C-shaped sub-cluster on the left highlights

1 ut, helping one understand the overlap or separation of sub-

s parat clu ter of points exist on the Shepard diagram of the

UI. 'in, an tniti 1 reaction may be to assume that each of these

192

f th id ntifi d in the spring model layout. This is not the

h pard diagram is due to the presence of two clusters in

h pard dla ram plot distances, and therefore the two apparent

h'p rd diagram correspond to distinct ranges of distances

r)f th tw gr up refer to pairwise distances between objects in

r up repre ents inter-cluster pairs.

o.e 10 I.e ~.O Z.5 3.0 3.e 40 4 .5 5.0

Low-D distance

layout of the full data set (left) and the spring model

are drawn at 45 degrees to help detect the extent to

of HIVE's multi-view framework over

f pr filing m dules provides further insight into data sets.

n b tw n uch views encourages further exploration and

n I n

numh r f c mp nents within the HIVE system that are used to

uHr I lh r 11IV omponents. Their construction, and examples of

rib d, n of the advantages of bringing such components

upp It th process of understanding the strengths,

f alg rithmi components. Through techniques such as

p'r!i nnan c of ongoing runs, and linking layouts from

n i from int nn diate tage, it is suggested that designers and

193

users can explore not only the data but also the ways that the system represents, transforms

and presents those data.

The work described in this chapter is based upon the premise that building visualisation

applications that are tailored to one's data and interests, and which are comprised of a palette

of algorithmic components, can be a complex task. However, this task may be aided by

modem visualisation techniques such as those used by the profiling modules in HIVE. As

data set sizes increase, so do the number of tools developed for visualising them and it can be

frustrating for designers and for users if the tools for analysis and understanding data were

themselves difficult to analyse and manage. Therefore the author suggests that the use of

visualisation for visualisation - in the form of well-designed interaction with the components,

processes and parameters of a visualisation system - may afford deeper insight into the

visualised information itself.

194

9. Text-mining in HIVE

This chapter provides details on how HIVE can be used for mining unstructured text.

Functionality for text analysis has been implemented to broaden the possible target audience

in preparation for user engagement with HIVE - just about everyone deals with text in their

work. Many researchers have developed ways to visualise document collections. Perhaps the

most popular technique is the use of self-organising maps (SOMs) [HKLK96, HKLK97],

however, with respect to HIVE, the force-directed placement approach such as that adopted by

Chalmers [Cha96], Wise [Wis99] and Korfhage [Kor91] is the most relevant here. The

influence of Wise's technique will be discussed later in this chapter.

To import text into HIVE, a new data-source visual module was written to apply the

common text processing operations such as stop-word removal [SaI71] and stemming [Por80].

This was achieved by using the API provided by Lucene - an open source text search engine

written by volunteers for the Apache Jakarta project [Jak04]. Lucene creates an inverted index

to facilitate efficient searching and access to term and associated document frequencies.

One of the most important aspects of text mining is in finding an effective vector

representation of the documents. The author experimented with popular techniques such as

nonnalised tenn frequencies and tf-idf measures [RB99], but settled on a representation based

upon the conditional probabilities of tenn occurrences, as will be discussed shortly. Another

issue that was dealt with is the measurement of similarity between document vectors.

9.1 Vector representation of documents

To apply the layout algorithms in HIVE to a set of text documents, each document must be

represented by a vector of numbers where the number of elements, D, is equal to the number

of unique content-bearing terms across the collection. If there are N documents in the

collection then the vectorisation produces a D x N term-document matrix (TOM) - columns

represent documents and rows represent terms.

To help discriminate between documents, stop-words such as articles and connectives

are removed and stemming is applied to normalise terms. In addition to this, the 5% of least

frequent terms and the 4% of most frequent terms in the text collection are discounted. From

the author's experience these values provided a set of content-bearing words that adequately

discriminate documents while substantially reducing the dimensionality of the TDM.

195

rim nko ilh th r way of conducting this initial filtering of terms

ample, us a visualisation called interRing [HWR03]

kstein et al. [BKR98] observed that content-

_ __ _ "" __ of te t that clump together, and they used this

nd sub quently remove terms from the analysis whose

v lu . How ver, these techniques require considerable

for fluid user interaction, the simple

m thod for converting terms to numbers for the

quantifi ti n were u ed: normalised term frequency and tf

arried out with two measures of similarity between

imitarity.

o. ine measure using normalised term frequency (tf) (a),

\ in m a ure u ing tf-idf(c) and Euclidean distance using tf-idf(d).

i n t ideal for this application because even when

uclidean distance between them can be

h rc orne common terms [ESK03]. However, the

1%

author decided to experiment with this metric to observe this for himself. The cosine similarity

measure, on the other hand, overcomes this shortcoming.

The above quantification and similarity types led to four experimental conditions:

cosine measure using tf, Euclidean distance using tf, cosine measure using tf-idf and

Euclidean distance using tf-idf. It should be noted that since the FDP routines in HIVE use

distances in calculating layouts, cosine similarity was converted to dissimilarity by subtracting

it from I and this was used to approximate distance.

Figure 9.1 illustrates screen shots oflayouts produced by Chalmers' spring model when

run on a collection of 538 abstracts. The abstracts were taken from the University of

Glasgow'S DCS bibliography, from the proceedings of Info Vis 2001 to 2003, and from other

papers that cite publications about HIVE and the algorithms produced in it, as well as articles

related to these. After stopping, and removing low and high frequency terms, the

dimensionality of the TDM was 348.

From Figure 9.1 it is evident that the cosine measure does not show any interesting

structure in the data. On the other hand, both layouts that use Euclidean distance to compare

documents show structure that is highly suspicious. Upon closer inspection of the small

cluster of points visible in the centre of Figure 9.1(b) and 9.1(d), it was found that these points

represent documents that contained no content bearing words at all - no terms contained in

these documents were used in the vectorisation. This means that when using Euclidean

distance to approximate similarity, this small group of documents is much more dissimilar

(and equally distant) from all other documents. This causes a high amount of repulsion of the

remaining documents and explains the outer 'ring' of repelled points. This effect is not

observed with the cosine measure of similarity because many other documents that do contain

content-bearing words can still have zero similarity between them - e.g. when they have no

terms in common. Hence the inclusion of the empty documents does not greatly affect how

strongly the other points are repelled.

The empty documents were removed from the data set and new layouts were generated.

The layouts are shown in Figure 9.2.

After removal of the empty documents, the layouts all appear very similar and there

appears to be no interesting structure. To test if this was indeed the case, all documents that

contain the phrase "multidimensional scaling" were highlighted to see if they clustered or

appeared consistently within a particular region or configuration. The layouts of Figure 9.2 are

shown with the highlighted points in Figure 9.3.

197

ut t using the same measures as in Figure 9.1 but with the

red repre ent documents that contain the phrase

l lust rin' s ms to occur and upon reproducing the layouts, the points

ilh r I 10 each other and the other points.

198

u pected, the matching documents show hardly any tendency to cluster and upon

recreating the layouts it wa found that their positions varied greatly between different layouts

u ing the ame imilarity measures and term-weighting.

Buja and wayne [B 02] point out that in cases where the distribution of distances

tightly clu ter around a po itive value, point configurations similar to the above circular

layout ar produced. Buja and Swayne refer to this property as indifJerentiation. To find out

if this i indeed what i happening, 60,000 distance samples were taken under each of the

experim ntal condition that produced the layouts of Figure 9.2. Histograms of two of these

ample are hown in igure 9.4.

nly two of the hi tograms are shown here because the others are very similar. The

histogram confirm that di tances/dissimilarities do tightly gather around a non-zero value and

therefore indifferentiation is the most probable cause of the degenerate layouts in Figure 9.2.

3500

Euclidean distances using normalised term
frequency

3(XX) ~--------------t
2500 +_-------------oti
~+--------------------~
1500+_--------------
1~+_-------------

500 +--------------:: O ~ ________________ ~~

I I I I I I I I I
000 0 ~ ~ ~ ~

dltrtlflce

Cosine dissimilarities using normalised term
frequencies

~,-------------------~
7~ +---------------1
6000 +_--------------_1
5000 +_-------------------1
4~+_-------------_I

3000 +----------------1
2000 +_-------------_1
1~+_---------------. O ~ ______________

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i
• 000 0 0 0 0 0 0 0 0 0

dissimilarity

Figure 9.4 Hi tograms showing the distribution of sample Euclidean distances and cosine measures of

di imilarity. The hi tograrns how that the samples do indeed cluster tightly around a high positive

value.

The likely cau e ofthi indifferentiation is the sparsity of the TDM. This results in many high

value of di imilarity between documents. Inspired by Wise's use of conditional probabilities

for weighting c ntent-bearing words [Wis99], it was realised that the zero values in a

document vector of term frequencies could be replaced by the probability that they would

occur given the term that actually do occur in the document. This would result in a less

parse DM and therefore greatly diminish the likelihood of indifferentiation. Figure 9.5

depict the re utt of this approach using Bayes theorem for calculating the probabilities, and

the co ine mea ure for di imilarity.

199

m

•

dCIS.miI'lrit ... us ng condrt.on.1 probabolrt1es

. ,. .)
. ': :::.:. :y~:~ .. .
'. ·f. oI• :f ",.~ ~ : •• -.. :: •• , :-v.~ ".:' .

• 1 -. c. .. -:. ".A '"
, .1 •• ,_;..., •• -'-". 1'1,

I •• - J' • ., •• ,r ":'~-i

tl t th di.tributi n of di imilarities is now spread out more. The

, II Ih I Ih r i. ·ti1l a large proportion of distances tightly hugging the

.
1

Ih rc 'ult of u ing conditional probabilities to fill in the

ult d in a di tribution with greater spread. When the

pring m I, the layout produced looked much more

w rc al 0 run on a collection of over 1000 issue

ts und rtaken by the author and his colleagues at

n roie con ultaney. The results obtained from

d rib d above.

particular literature within a

out?

pr mi in t, but in rder to ee if it actually means anything it is

th nl 'nls f th d ument that are represented. Two new

to allow the user to search the layout for

th)nt nt' 1 t d documents.

200

th engme to query the indexed set of

regular and Boolean expressions. Since it is

a many instances as required thus

that when it returns the query results, the

ut, or in any other view for that matter,

th oth r vi ual modules in HIVE.

nt in d in documents with the text-viewer

t- I wer to the search module so that query

t th te t-viewer to the data output port of a

d i quite intuitive because in the course of

r h m dule to highlight documents that match a

urn nt, nd th r that are nearby, that might be relevant but

... -

t I-mining application (right) - the top-left visual module is

. t I the atterplot layout and two search modules

la ut i reproduced in the image to the left of the

t-mining trategy described above would be to

, r 500 d uments), then find where the HIVE

'pI ring nearby documents to see if they are

m t ab tracts of papers that were cited in

that cite the HIVE and algorithm papers.

stra ts arc al in th data set so as not to bias the

201

experiment and also to see if any other relevant papers that have not yet been read by the

author appear close to the HIVE related articles.

Figure 9.6 is a screenshot from HIVE showing how a simple text-mining application

can be set up in HIVE and used to query the abstracts document collection. Two query

components have been connected, and the red and blue points in the scatterplot represent

documents that were returned by the search on "multidimensional scaling". Red points

represent unselected query results; blue points denote returned documents that the user has

selected in the layout, and yellow points represent documents that are selected by the user but

were not returned by the query. In this case, the author has selected one of the abstracts

returned by the query (which represents a journal paper about HIVE [RC03b]) and one

neighbouring point representing an abstract that was not returned by the query.

The scatterplot is connected to a text-view and therefore the text represented by selected

points (blue and yellow) is visible. Words that are coloured red in this view represent content

bearing terms that are used in creating the layout. Words that are black are low or high

frequency terms that were filtered out during the pre-processing stage described earlier.

Functionality has also been provided to allow the user to select red and black terms, modify

their weights and exclude or include them in the layout process. This can be done while the

layout is forming and provides an interesting animation as groups of points move, forming and

dissolving clusters as the user modifies the term values. Also, at the top of the text view, the

top five most frequent terms in the selected documents are indicated along with their counts to

give an idea of the subjects covered. The remaining grey terms in the text-viewer indicate

stop-words that were removed in the indexing process.

The purpose of this experiment was to see if the layout does indeed indicate structure in

the data and not just artefacts of the layout algorithm. By searching the layout using the

"multidimensional scaling" query, the author knew that some of his papers and several others

would be highlighted in the layout. It was found that the author's papers are close to each

other, as would be expected, and the region of points that contains them pertains to abstracts

of papers on algorithms, data and text mining, clustering and more generally information

visualisation. Upon repeating the experiment, the same general configuration was generated.

This provided to some extent a picture of where HIVE is in the context of the literature (see

Figure 9.7).

In Section 7.5.3, the use of dimension reduction for feature selection was demonstrated.

This method can also be applied to text. Figure 9.8 illustrates transposed textual data resulting

in a layout of the terms in the abstracts document collection. This allows the user to select the

202

terms he is interested in and then layout a (sub)set of documents according to only the chosen

terms.

The e experiments were carried out using the cosine measure of dissimilarity. However,

when Euclidean distance was used, it was found that although the topological structure of the

layout wa roughly the same, the salient structure that was made apparent with the cosine

measure wa not a pronounced using Euclidean distance. For this reason, the cosine measure

is the preferred choice.

Figure 9.7 The layout from Figure 9.6 is labelled to indicate general themes running through the

document in different regions. Some IDVE papers are highlighted in the data mining and clustering

region at the upper-left side of the layout.

This e ample uses a small document collection and therefore only a small number of

po ible qu ry re ults can be returned; in this case eleven abstracts were returned for the query

"multidimen ional caling". It would be interesting to see how this hands-on approach scales

up to larger collections and to see whether second or higher order term-eo-occurrences, such

203

as tho e in latent emantic indexing (LSI) [DDF*90], are being influenced by the conditional

probabilitie u ed in term-weighting. However, for now, the results from this example and

other explorations appear promising. Psychologists at the University of Liverpool have

recently applied HIVE to the analysis of text. The preliminary results will be described in

Chapter 10.

SI8rt Show corIrola

_12

-.,
. lnCIUd

. r.qulr

• compon

. propos . oper

• level • build

• detail

• structur

. improv . map
• studl

. show

• Import

• interfac
. Issu

Figure 9. A layout of terms in IDVE. This can be used for feature selection as in Section 7.5.3.

9.3 Conclusions
This chapter has described how HIVE has been equipped with functionality to apply

dimension reduction algorithms to unstructured textual data. An investigation of the effects of

both Euclidean distance and cosine dissimilarity showed that there was little difference

between layout of documents represented by vectors of tf-idf values or normalised term

frequencie . In fact the layouts produced did not reflect any interesting structure. It was found,

however that by representing documents by term frequencies and filling in any zero entries

with conditional probabilities of the corresponding terms, that salient structure was made

apparent. xploring layouts produced by a spring model indicated that similar documents

were placed c10 e to each other and that the topology of the layouts were indeed meaningful.

It i w rth mentioning that layout stress was not used to assess the solutions. This is

becau e tre i mainly u ed to test the layout algorithm; in this instance, however, the author

intere ted in the vectorisation (or document representation) and the interpretability that it

204

conveys; not the layout algorithm per se. This was a more subjective challenge that could not

be mediated by trying to reduce stress values alone.

HIVE has been shown to be capable of building simple and reconfigurable text-mining

applications. An example was provided in which some of the author's HIVE-related

publications were visualised in a wider frame of general computing science publications.

While this provided promising results by the appearance of sensible and explicable structure,

it also implied a novel means of profiling the HIVE framework per se. In the previous chapter,

it was shown that profiling modules could be implemented in HIVE to help evaluate hybrid

algorithms; it now seems that the text mining functionality could be used for a higher level of

profiling - that of the overall HIVE framework with respect to its place in the literature.

205

10. HIVE user engagement

The author's work evolved from the investigation and development of novel hybrid clustering

and layout algorithms to the development of a framework for their creation, evaluation and

use. The initial target audience of this framework consisted of the author and his colleagues,

however, as HIVE became more familiar through the literature and by word of mouth, the

number of its users has considerably increased. HIVE is available as an open source code

project under the provision of the Mozilla Public License and has been requested by

researchers at several prominent institutions, both academic and commercial, from all around

the world. HIVE cannot be downloaded directly from the author's website, instead it is

available purely by request. In this way the author can engage in dialogue with potential users

from the start and politely keep abreast of their progress.

The feedback provided by users has shown that HIVE has two main modes of use. One

is to take the code, create new visual modules and therefore customise it for new tasks and

work domains; several publications, written independently of the author have arisen from such

work with the software [Me03, MC04, Mor04, WM04, Darl>4]. The second mode of use is

purely for exploring data and testing related hypotheses without creating new visual modules.

This chapter provides details of how various people have used HIVE and how its two

modes of use have emerged. The evaluation of the software has been achieved by giving it to

users with real tasks. Rather than being a usability study, this evaluation is based upon a

demonstration of HIVE's efficacy and flexibility.

It should be noted that the study documented in this chapter is purely exploratory and

therefore the validity of the results is not guaranteed. Possible impact factors on its validity

include bias due to some of the users being familiar with both the author and his research -

this has not been accounted for in the study; also, the questionnaire, described in the next

section, was not piloted or evaluated in any other way prior to its distribution and therefore

problems such as respondents misunderstanding some questions might have occurred. One

might also consider the possibility that some of the users may have further distributed HIVE.

Thus, the pool of users might be larger. In this case, the information obtained by observing

and querying about user engagement might not be an entirely accurate account of the general

view of all of those who have attempted to use HIVE.

206

10.1 Questionnaire

Shortly after the author published the fll'St two publications on HIVE [RC03a, RC03b], it was

made available to anyone who expressed interest. Within a few months, there were nine

people actively using HIVE. Only two were internal to the Department of Computing Science

at the University of Glasgow and of the remainder, two worked at commercial companies.

Upon receiving the software, each of the users were provided with installation and operating

instructions along with some examples of simple visualisation applications and hybrid

algorithms that could be implemented.

The author desired to find out how HIVE had been used and whether it had been useful

and effective. To determine this, an on-line questionnaire was carefully designed and several

weeks after each user received the software, the author made contact to politely ask him or her

for its completion. Fortunately all nine users participated in the questionnaire's completion.

The format of the questionnaire (shown in Appendix C) was prepared according to the

guidelines provided by Sudman and Bradburn [SB82]. These guidelines include the following:

• clearly state the purpose of the questionnaire

• avoid loaded questions

• avoid appearing judgemental

• questions should be succinct and concise yet clear

• ask multiple choice (attitude) questions first

• ask long open-ended (behavioural) questions last

• keep it short

It should be noted that the questionnaire was not intended for statistical analysis - this would

have required more users. Instead the author was concerned with gaining some preliminary

feedback on the usefulness of the software. In total there were twenty-one questions; the first

ten were on a Likert scale and required the user to choose one response from five possibilities

ranging from "strongly agree" to "strongly disagree". These were followed by several

''yes/no'' closed questions. The last five questions were open-ended and prompted the user to

enter free text.

The purpose of the first five questions was to determine to some extent whether the

software was easy or difficult to use. All respondents with the exception of one agreed that it

was, indeed, easy to use. The same number of respondents also agreed that it was flexible.

207

Four re pondent agreed with the statement "it is easy to make the software do exactly what I

want". F ur al 0 agreed that HIVE's design made it easy to modify the source code and six

agreed that the oftware was satisfying to use.

The ne t five questions were aimed at gaining some feedback regarding HIVE's data

flow mod I and it u e of visual programming for interactively building applications. Five

re p nd nt agre d that the semi-automatic creation of algorithms was useful while the

remainin four neither agreed nor disagreed. Four agreed that HIVE's generation of a hybrid

algorithm wa not confu ing while, again, the remainder neither agreed nor disagreed.

Regarding the linking of visual modules for data- and interaction-flows, seven agreed that

they were u eful and intuitive. For the statement "the visual construction of algorithms is

advantageou" ix re pondents agreed and only one disagreed. All of the respondents, with

the exception of one tated they had more than five years programming experience, however,

only five modified the source code to implement new visual modules or for further

ell tomi ation. All re pondents stated that they would use HIVE again.

Figure 10.1 The first 16 que tions coded and laid out by a spring model in lllVE. The responses of the

elected ursin the catterplot are highlighted in the table. The stress in this configuration was

mea ur d a 0.0 7 indicating a good fit.

The r ult are heartening and, even though they are not overwhelmingly positive,

th y do imply that th visual programming adopted for data- and interaction-flow provides a

fle ible and intuiti e method of building algorithms and visualisation applications. Out of

curio ity and t further analyse the results, the author fed them into a spring model. Since the

fi t I qu ti n are multiple choice, they can be simply coded according to their response.

cale from "strongly agree" to "strongly disagree" can be coded from 0 to 4.

208

This allowed the results to be represented by a 16-d data set. Figure 10.1 shows a screen shot

of the results in HIVE.

It is possible to investigate the similarities between users' responses by selecting points

in the scatterplot to highlight rows representing the responses in the table. This showed that

users 2,3,4 and 9, who did not modify the source code, are adjacent in the plot. These users

also answered the majority of the dichotomous questions with a 'no'. The remaining users

were slightly more dispersed. From multiple runs, users 1 and 6 were found to consistently

reside at opposite ends of the plot. Upon closer inspection it appeared that this difference was

due to user 6 strongly agreeing that the software was easy to use and responding positively to

more of the earlier questions.

The final five questions were open, providing space for the respondents to write

answers in their own words. The first of these asked what aspects of the software did the users

dislike. One respondent stated that the data-flows can clutter the screen and suggested that

some form of aggregation might be useful so that a hybrid algorithm could be wrapped into a

single derived visual module that could be opened up for inspection. For the same question,

three respondents stated that there could have been more documentation provided on the

default visual modules and their parameters; another wrote that the method of entering Iink

mode (for hooking visual modules together) was not obvious. One respondent commented on

the limited data types that HIVE could handle and that it would also be better if the visual

programming interface could be supplemented by a scripting language.

The author has since addressed several of these points. More documentation on the use

of visual modules and examples of their use has been drawn up. It is now also possible to

invoke link-mode via a view menu that incorporates several other useful functions such as

tiling visualisation modules. Also, the diversity of data types that HIVE can take as input has

been extended; unstructured text and lower-triangular matrices of proximity data can be

loaded into data source modules for analysis. Owing to a lack of time, module aggregation has

not been implemented yet.

The next open question asked what particular aspects of HIVE the users liked. The

ability to alter parameters interactively and perform comparisons at run time was noted by

one respondent. Another respondent said that the visual construction of algorithms was

interesting and helpful, and another described this as easy. The ability to handle large data

sets and integration of many different data analysis tools was another response. These answers

imply that HIVE's design and its intended use are indeed valuable to others.

The third open question enquired into the use of HIVE. One respondent used it for the

design and evaluation of hybrid algorithms for force-directed placement. Similarly, another

209

respondent used it to investigate how incremental (hybrid) MDS algorithms worked. Two

others used it (independently) for the analysis of genetic data. HIVE was also used by one

respondent for the creation of a new method of intervening in the process of FOP, while

another user simply wanted to extract some of the hybrid algorithms for his own software.

These answers indicated that HIVE has a dual role, as anticipated by the author: to analyse

data and to create the processes for such analyses.

The next question asked what other software the respondents might use for the same

tasks. It was felt that this might indicate target systems for comparison with HIVE for future

evaluation. Two respondents left the field blank and one stated none. Another said that he

would have had to write something similar from scratch. Others mentioned research systems

such as FSMvis [MRC02] and xGobi [BCS96].

The final question simply asked for any other comments and the answers mainly

reiterated what was already stated. Although HIVE had only nine users - fortunately all of

whom answered the author's questions - their feedback has provided some valuable insight

into how HIVE was adopted and the author has addressed some of this feedback to improve

the system. On the whole, the results appear promising.

10.2 Examples of HIVE's use

This section will briefly describe how HIVE has been utilised by others. The first subsection

describes how one user employed HIVE to develop and evaluate the fastest FOP algorithm to

date [MC04]. The second subsection provides details on how the software was used by

another researcher as a development platfonn for a tool called MDSteer [WM04]. HIVE was

also used to develop a bioinfonnatics application for describing chains of data analysis

components. This will be the focus of the third subsection. Finally, the fourth subsection

describes work with HIVE by psychologists at the University of Liverpool.

10.2.1 Development and evaluation of a new FDP

algorithm

Recall the novel hybrid spring model algorithm from section 5.3. At the time of its

publication, this was the fastest force-directed placement routine that could produce layouts of

quality comparable to that of Chalmers' algorithm. To recap, the algorithm works by first

randomly selecting a sample of .IN items from the input data set consisting of N items.

Chalmers' spring model is then applied to produce a layout of the sample, before a novel

210

int rp lati n te hnique i u ed to place the remaining items in the plot. The interpolation stage

th b ttleneck of the algorithm because each of the remaining non-sample items

plac dace rdin to it nearest neighbour (or parent) in the high-d space. This parent-finding

ace mpJi h d ia a brute force search and therefore the time complexity of this stage is

O(N..jN). th th r tages of the hybrid algorithm are executed in linear time with

re pe t t th interp lation tage dominates the complexity of the algorithm as a whole.

R ently, Morri on [MC04] addressed this by reworking the algorithm in HIVE.

one ntrating n parent-finding in the interpolation stage of the algorithm, Morrison

ueee fully r du d the time complexity to O(}!14) and demonstrated the improvement over

it r by evaluating it with a data set consisting of 108,000 14-dimensional items.

he n el parent-finding strategy, implemented as a new visual module in HIVE, works

by rand mly lecting a ub et of items from the initial sample and discretising the distances

of pint t member of the subset. This subset (of a subset) contains very few items -

typically thr e which are referred to as pivots. For each of these pivots, a set of buckets

repr nting a range of distances is defined and each of the remaining items in the initial .IN
ampl i all at d to a bucket for every pivot. To find an interpolation parent in the .IN
ample fi r an it m, the di tance from the item to each pivot is calculated, indicating the

buck t t whi h th item belongs. The parent is then found by searching through all sample

items ntain d in th buckets and selecting the closest.

Figure 10.2 M rri n' hybrid algorithm in HIVE. The large component at the top-left is the multiple

runs dul . M rri n u ed thi in conjunction with clock and stress modules to evaluate the

al rithrns.

In ke ping th number of pivots constant and by defining N l /4 buckets for each pivot,

th tim c mpl it of the interpolation stage, and therefore the whole hybrid algorithm is

o 4). IT! n provided experimental results on the performance of the new algorithm by

211

using the profiling modules in HIVE as described in Chapter 8. The results reflected the

reduction in time complexity and average layout stress comparable to the previous hybrid

algorithm. Figure 10.2 shows a screenshot of Morrison's configuration of visual modules in

HIVE for the implementation and evaluation of his algorithm [MC04].

Since completing this work, Morrison continued to use HIVE. For the successful

completion of his PhD, he developed numerous novel visual modules and several

experimental hybrid FDP algorithms, all of which were profiled in HIVE. As a final analysis

of these algorithms, his thesis [M0r04] demonstrates how a dimension reduction algorithm is

used to produce a layout of the characteristics of the novel designs.

Now working as a research associate in the department of Computing Science at the

University of Glasgow, Morrison continues to develop visualisation solutions via HIVE. So

far, he has implemented HIVE modules for time series analysis based upon mutual

information, a parallel coordinates visual module and a matrix histogram module.

10.2.2 Steerable dimension reduction

In 2004 Williams and Munzner developed a means of intervening in the layout process of

Chalmers' spring model. This tool, called MDSteer [WM04] was built in HIVE and allows the

user to direct the computation of the layout algorithm to user-selected areas of interest in the

layout. This approach is highly visual and interactive. It starts by progressively laying out $

points where N is the number of items in a data set. Once this initial layout is obtained, the

viewing area is subdivided into two regions. The user can then select one of these regions to

specify that the algorithm concentrates only on this area ofthe layout. After a subset of points

that should lie in this area have been placed, the two regions (called bins) are further

subdivided and all points in the data set are allocated to the appropriate bin. This process is

repeated until all items in the data set have been laid out. The hierarchy of bins is shown on

the layout as wire frame boxes subtending progressively smaller regions. Figure 10.3

illustrates MDSteer in HIVE. The figure shows layouts of an environmental data set

consisting of 40,000 294-dimensional items. Each dimension pertains to a measurement such

as water and air quality. The image on the right shows MDSteer in action where each box on

the layout can be selected, effectively stating the user's intention that the layout algorithm fills

out that region.

Williams and Munzner argue that this approach can be used to quickly obtain

overviews of very large data sets and also drill down into areas of potential interest. In fact,

the authors used the tool to obtain partial layouts of up to one million items. Rather than only

selecting a sample for laying out, Williams' and Munmer's approach allows the user to

212

detennin p tentially intere ting regions oflayouts and therefore allocate more computation to

them. Thi m th d upplements the incremental layout process that is typical of FDP routines

with us r-interacti n 0 that exploration is enhanced.

he author tated that HIVE was used because it was one of the only tools available

that could handl very large data sets. It also allowed them to experiment with the dimension

reduction alg rithm for producing the incremental layouts used with the MDSteer technique.

Figure 10. The image on the left shows a layout obtained by Williams and Munzner using the novel

tion 5.3. The image on the right shows an overview of the same data set using

MD teer. Black repre ent bins that have no unplaced points while red boxes represent bins in

which there ar p In till to be placed.

10.2.3 bioinformatics chain description tool

In the an Iy i f data, cientists often use several programs, taking the output of one as the

input to an th r and on. The use of programs in this manually driven pipeline is akin to the

hybrid clu t ring and layout algorithms for which HIVE has been designed. For his PhD,

Darr h [arM] r -branded HIVE as a Chain Description Tool (CDT) for use in the domain

of bi infi nnatic. The tean "chain" refers to the serial connection of computational

c mp n nt t fi rrn an application. Darroch defmed a chain description language in XML

f pr gram for the incremental analysis of biological data can be specified.

H w v r, roth r than having users resort to the cumbersome process of typing scripts in thi

langu g • D. rr h emb died the language in HIVE so that visual modules represent programs

p citY the chain, effectively translating HIVE module configurations

into hi hain d' ripti n language.

213

In Darroch' version of HIVE, he implemented visual modules for tasks such a

searching for p cific proteins on the internet and taking the results from such searches and

predicting the econdary structure of the proteins. It is often the case the outputs of different

bioinformatic programs are in a format that is not compatible with the required input of othcr

program. 0 addre this, Darroch also implemented visual translation modules. The

implem ntation of HIVE in this domain is described in Chapter 5 of Darroch's PhD the i

[Oa£o4].

By u ing HIVE, multiple analysis runs can be automated - a process akin to batch run

of hybrid algorithm as demonstrated in Chapter 8. HIVE also provides a uniform

environm nt in which the analyses can be carried out recorded and repeated at later datc .

Figure 1O.4 how one of Darroch's chains consisting of a series of visual modules. Darroch

added orne n w iotere ting functionality to his modules. The "Annotation" button visible at

the bottom of each new module allows the user to see (or enter) a description of the modul

and how it could be u ed. Ports have also been embellished by adding a drop-down Ii t that

the user can query to ee what other visual modules would be compatible with the particular

data typ on that port. By selecting one of the list entries, the corresponding module is loaded

and automatically linked to the selected port.

"-11

Figure) 0.4 A chain of visual modules representing bioinformatics applications in Darroch's hain

De cription T 01 a cu tomised version of RIVE.

Oarr h carri d out an evaluation of his customised version of HIVE with biologi t

and c ncJuded that the application chains were capable of capturing real-world analyses. The

visual pr gramming of data-flows for this domain appear to be intuitive and useful.

10.2.4 IVE for psychological profiling

Re earcher in th ntre for Investigative Psychology (CIP) at the University of Liverpo 1

have n u ing dim n ion reduction in behavioural analysis for decades. Dimen ion

con id r d in their oaly i range from background characteristics of people such as education

and upati n, t a ti n variable (or modus operandi) observed at crime scenes. Recall from

ecti n 4 . . 1 and 7.5. that multidimensional scaling can be used to aid feature select· Ion .

214

This is indeed one of the main roles that dimension reduction plays at CIP. In obtaining

layouts of relationships among variables, researchers can theorise about the facets of human

behaviour that characterise specific types of crime. When these facets (sets of salient

variables) have been identified more traditional MDS can be applied to gain layouts of the

population of crimes or offenders. Essentially dimension reduction is used to form and test

hypotheses in psychological profiling.

SSA (Section 4.3.3) is the most popular type of dimension reduction routine used by

CIP. While it has been shown that it has been very effective in its application [CF98], it

exhibits a high time complexity and is therefore limited in the amount of data to which it can

be applied. Furthermore, CIP's SSA routine is implemented in a tool developed several years

ago and while being a tremendous improvement over the old command line FORTRAN

implementations that some of the senior psychologists are accustomed to, it still lacks

flexibility and the richness of interaction that modem visualisation techniques can afford.

HIVE was brought to the attention of CIP researchers by word of mouth and in late

2004 the author was invited to have dinner with the head of CIP, Professor David Canter.

while he was on a business trip in Glasgow. The discussion that followed sparked a mutual

interest in the application of HIVE in CIP's work and since then the author has been working

closely with CIP researchers, aiding them in their enthusiastic adoption of the software. This

collaboration has also resulted in the authors' current employment with the Kelvin Institute.

implementing dimension reduction tools in a project funded by the Metropolitan Police

Service for an Interactive Offender Profiling System (lOPS).

The author has visited CIP several times now, and the discussions and observations that

ensued have provided a wealth of feedback on how the researchers have been using HIVE and

where useful improvements could be made. Suggested improvements included constraining

the I: I aspect ratio of scatterplots so as not to distort the relative inter-point distances; make

scatterplot points larger; allow users to define scatterplot background colour; provide surface

plots based on binary variable frequencies; provide for user-defined dictionaries to be used in

text analysis; be able to import proximity data in the form of a lower triangle matrix. The

latest modification suggested by CIP was to be able to freeze an application after it had been

visually programmed in HIVE - in effect disallowing other users from modifying the

structure of visual modules and data-flows, although still being able to specify the input data.

In addressing the suggested improvements to the software, the development of HIVE

entered an iterative design cycle. Each time, after modifying the software, an informal

meeting was arranged to provide a demonstration and prompt further discussion. Current users

of HIVE were also given updated versions and, after several of these development iterations,

21S

the author carried out infonnal user testing of HIVE to gain more feedback on its long term

use. Two people at elP who had been using HIVE over several months for quite different

work agreed to take part in the study. Since the author did not intend to collect statistical data

and was more concerned with gaining feedback from real users, this low number of

participants was acceptable.

Rather than inventing tasks for the users to carry out, the author instead asked them to

perfonn some real tasks for which they currently use HIVE. This allowed the author to see

how deeply the users delved into HIVE and to note which parts were more useful. The

evaluation was based upon the think aloud protocol - users were asked to comment on their

actions and describe any difficulties encountered as they used the software. The users'

interactions with HIVE and their voices were recorded for future reference by screen capture

software.

A number of observations were gained from this evaluation. The first user is a

psycholinguist and used the text analysis capabilities of HIVE to analyse a set of suicide

notes. In this task the user wanted to find out about differences in writings between male and

female authors. The user first hooked together HIVE modules to gain a layout (scatterplot) of

the notes. In this layout each point represents a note and their mutual proximities should

reflec:t the similarity between them according to the terms used. The user then proceeded to

annotate each point in the layout with the names of the notes stating that it would be useful if

HIVE would do this automatically. Upon completing this, the user observed that the notes

were grouped in contiguous regions of the layout according to whether they were written by a

male or female. This observation was aided by linking a text viewer module to the layout so

that when layout points were selected, the text of the corresponding notes was displayed.

Noting that this did indeed suggest differences in writing style, the user then transposed the

data and obtained a second layout, this time depicting the words used in the notes. The

purpose of this was to identify words that contribute most to the differentiation of the notes. In

this view. words that co-occur frequently would be closer together in the layout than those that

rarely co-occur. At this point the user stated that it would be useful if the term frequencies

were displayed next to points on the layout. The main difficulty the user encountered with

HIVE was with panning and zooming in the layouts. This is achieved via the middle mouse

button for zooming and the right button for panning. It appears that the view updates were too

sensitive to the user's actions resulting in the user panning or zooming too much and

subsequently losing orientation.

The second user embarked on a different task with HIVE. In this case the user wanted

to analyse data on a set of burglaries. In this data each datum represented a burglary and the

216

variables consisted of the actions observed from the corresponding crime scene. For example

one variable was whether a window was broken to gain entry, another regards whether an

untidy search was carried out. The data are therefore binary. In contrast with the first user who

initially obtained a layout of the population (where each point represents a datum), the second

user first transposed the data to obtain a layout of the variables. The second user stated that

she wanted to look for variables of high and low frequencies and see where they were in

relation to each other. She used SSA for dimension reduction and then applied a frequency

surface to the layout so that darker areas would correspond to low frequency variables. In this

layout the higher the correlation between a pair of variables then the closer they are in the

view. While the user visually programmed this application the author observed one difficulty.

It is easy to miss the ports when dragging data-flows between modules, resulting in either a

module being dragged or the link being lost. A possible solution to this would be to increase

the size of the ports.

After exploring the layout of variables, the user then decided to produce a layout of the

population of burglaries. The user stated that she wanted to be able to select variables and then

see in which burglaries they occurred. Conversely the user also wished to be able to select

some burglaries and observe the actions that occurred. This was achieved by inserting a

selection link between the two layouts to accommodate view coordination.

Both users exhibited familiarity with HIVE by quicldy selecting and linking the

modules they needed without much difficulty. Only the second user employed the algorithmic

profiling capabilities of HIVE. At one point she viewed the co-efficient of alienation and

stress to assess the output of an SSA routine. It was also seen that the scatterplot and text

views were the only visualisation components they employed, however, when more than one

view was present at any time the users were quick to coordinate them and explore their data

from another perspective. An interesting observation was that both users obtained a layout of

the variables in the data as well as a layout of the population. Upon linking these two types of

view. the users began exploring one view, selecting points and then going to the second view

to explore what was subsequently highlighted before making further selections and referring

back to the first view. This process continued in a cycle and appears to reflect the users'

hypothesis generation, testing and refinement as they explored their data.

It should be mentioned that neither user implemented any hybrid algorithms. They

simply used individual modules for carrying out MOS. One explanation for this is that these

users have limited knowledge about how the algorithms actually work. They are primarily

concerned with the interpretation of the output and accordingly treat the algorithms as black

boxes. Also. the data sets studied were not large and therefore the running time of the solo

211

algorithms was not high, thus evading the need for more efficient hybrid solutions. In general,

the behavioural data sets analysed at CIP tend to be reasonably small - usually between 10

and 10,000 items. If elP researchers begin to look at larger sets, then the use of hybrid

algorithms would be necessary to improve performance. That aside, the users did link together

several modules and views in exactly the same way that hybrid algorithms are implemented in

HIVE. This indicates that hybrid algorithms were not being avoided due to any problems with

visual programming.

In general the feedback from CIP bas been excellent and those who are using HWE

continue to express its effectiveness and potential for their work.

10.3 Conclusions

It was the author's intention to gain feedback on how users have adopted HWE; to determine

how they used it and what they used it for and also to see how it could be improVed. It has

been shown that this bas been achieved by having users fill in a questionnaire and to observe

their work with HIVE through infonnal meetings, discussions and user testing.

There were a number of distinctions between the way people used HWE, for example

Williams' and Darroch's use of HIVE (Section 10.2) is more code-intensive than that of

Morrison. While Williams and Darroch modified more of HIVE's core source code to build

more specialised visualisation systems, Morrison mainly created new visual modules.

Interestingly Darroch's use of HIVE for visual programming was at a higher level of

abstraction - rather than have visual modules represent algorithmic components, they

represent entire applications such as web services. It was also found that HIVE bad two modes

of use: one taken typically by computer science researchers was to extend HWE by building

new visual modules. The other mode was taken by the researchers at CIP who used HWE

solely for exploring their data. This is understandable since these researchers had no

traditional programming expertise.

The range of feedback generated has been positive, indicating that the software is useful

for both the creation of algorithms for visualisation and for exploring data that are transformed

by such algorithms. The third research question in Section 1.3.2 asks: As well as facilitating

the creation and evaluation of hybrid algorithms, can the system be effective in allOWing the

exploration of the data they transform? The feedback and observations of HIVE's use suggest

that the answer is yes. Some of the users who are computer scientists have successfully

developed and published new visualisation techniques and algorithms built with HIVE while

some psychologists have found value in using HIVE for exploring their data. The fourth

218

research question asks: Is visualisation good/or creating new visualisations? Observations of

the elP researchers perfonning real tasks showed that they had quickly become accustomed to

visual programming of data-flows and view coordination. This method of building and using

an application is a visualisation itself and it appears to be intuitive enough for users to pick it

up with little difficulty. This would imply that the answer to the fourth research question, in

this case is yes.

219

11. Conclusions

This chapter will summarise the work described in this thesis. From the development of

hybrid algorithms to the provision of HIVE. several design implications have been realised

and are discussed. The work documented in this thesis also prompts the author to suggest

several directions for future effort. especially for potential future work with psychologists at

the University of liverpool. Prospective general improvements to the HIVE framework will

also be described. some of which have been prompted by feedback from its users.

11.1 Summary

The masses of data that are prevalent across diverse domains presents a challenge for

information visualisation. As more data are continuously gathered and stored, the task of

transforming them into information and affording their exploration calls for continuous

progress in the field. Since the human visual system has the broadest bandwidth for conveying

information. graphical representations of data must be found to convey pertinent information

as quickly as possible. When data are given a graphical representation on a spatial substrate,

potentially interesting patterns might become apparent. However, abstract data - those data

that do not have any physical derivation - present the biggest challenge because they do not

easily lend themselves to the spatial mappings necessary for their rendering. The challenge is

further heightened when such data are numerous and multidimensional.

One of the most scalable graphical techniques for presenting data is the scatterplot. If

data are represented by points on a 2~ scatterplot, then two of the data dimensions can be

mapped onto the plot' s axes and another one or two dimensions may be mapped to retinal

variables such as the colour and size of the points. A scatterplot can depict many points

simultaneously and can often pronounce clusters and trends. However, as the dimensionality

of the data increases. it becomes increasingly difficult to map them to spatial structures and

retinal variables. Similarly as the cardinality of the data rises, the plot becomes more cluttered.

Although a scatterplot can potentially represent many thousands of items, their distribution

and ultimately their frequency can cause occlusion and elide detail. To address these

limitations. not just with respect to scatterplots but to all graph types, complex data must be

simplified. By .. f;"'piifyiltg. the author means to reduce the cardinality and dimensionality of

data in such a way that as much as possible of the original information is maintained.

220

Cardinality reduction can be obtained by techniques including sampling and clustering. On the

other hand. dimension reduction can be achieved by algorithms such as peA and force

directed placement. These orthogonal reductions can make data easier to represent visuaJIy

and ~fore clarify information.

There has been a great amount of work by researchers in the development of clustering

and dimension reduction algorithms. some of which has been surveyed in Chapters 3 and 4 of

this thesis. However. it has been shown that in being tailored to different types of data and

focussing on specific challenges therein, individual algorithms exhibit different strengths and

weaknesses in various situations. For example, some dimension reduction algorithms,

generally the non-linear techniques. might produce good layouts of data but take too long to

run on sets of high cardinality. Modern information visualisation techniques afford users

dynamic and rapid interaction with the views of their data. Hence faster algorithms are

required. On the other hand. linear projection techniques tend to provide fast solutions at the

expense of poorer layouts. This is a frustrating drawback because it is commonly the case that

it is harder to find interesting patterns as data sets grow in size, while the applicability of the

non-linear algorithms that have more potential in finding such structure diminishes because of

their time complexity. In addressing these observations, the author has investigated the

diligent combination of individual clustering and dimension reduction algorithms. The reason

was to balance their strengths and weaknesses, producing efficient hybrids that provide quality

solutions. Chapter S provides an account of the author's work in this area and the results show

that this hybrid approach works.

The first two research questions posed at the beginning of this thesis regard decisions

about which algorithmic components should be combined and when they should be used. In

search of an answer. the author developed a framework for the combinatorial hybrid approach

to algorithm development. This framework is discussed in Chapter 7. It is mainly based upon

a classification of data complexity according to their cardinality and dimensionality. When

data are transformed by consecutive stages of a visualisation application, their representation

changes and therefore so do their complexity. By matching the complexity of algorithmic

components to the complexity of data as they are transformed, the appropriate algorithmic

stages can be applied to increase efficiency without being detrimental to the final output.

This combinatorial hybrid approach to algorithmic development has been embodied in

the HIVE system. The author's intention in HIVE was to provide a way of easily prototyping

and experimenting with hybrid algorithms and be able to use them to explore data. Before

designing HIVE. the author investigated contemporary visualisation environments and picked

out paradigms such as the data-flow model, visual programming, mUltiple coordinated views,

221

.-':!'."- .. :

as well as the concept of the information workspace. This review, which served as a

requirements gathering phase for HIVE is given in Chapter 6, and its outcome - the

development of the software - is described in Chapter 7.

HIVE has become advanced. allowing richer interaction with the hybrid algorithms

created in it and with the data they transform. Since it is the intention of the author to provide

a framework for creating hybrid algorithms and also use them to explore multidimensional

data. the tools developed facilitate both of these activities. For example, the intermediate

staaes of hybrid clustering and dimension reduction algorithms provide multiple views of

data. while the profiling modules described in Chapter 8 let the user monitor and visualise

algorithmic performance. The discussion of the feedback from HIVE's users in Chapter 10

indicates that the system has been a success. People have not only being using HIVE to

explore their data - such as by using the text-mining capabilities discussed in Chapter 9 - they

have also been using it to create novel algorithms.

11.2 Ongoing work with CIP

The author's current employment at the Kelvin Institute in Glasgow is involved in the

application of MDS routines to the profiling of criminal behaviour. As discussed in the

previous chapter, researchers in the Centre of Investigative Psychology (CIP) at the University

of Liverpool are involved in this work and have been using HIVE. From numerous meetings

and interviews, several possible modifications have been suggested. Since the feedback given

by CIP has already been discussed in Section 10.2.4, a summary of the resulting future work is

given below.

ctHUINIJt ~ &fp«I rwIIo: In HIVE all visual modules can be resized both

horizontally and venically. When scatterplots are resized the relative inter-point distances are

modified due to changes in the horizontal and vertical scaling. Professor David Canter stated

thai usen might be tempted to resize scatterplots so that they are rectangular and therefore

diston the layout to some extent.

~N IIJctlDltlll'ia 'or tIJtt alllysls: While the weighting and filtering of terms in

unstr\IctUmJ text (as discussed in Chapter 9) provides good results for the analysis of text, it

would be interesting to allow users to provide a set of terms that take precedence in the

analysis.

222

Fr.u .tHlMI, cOllJiIf"I'tII/oII tuUI siMpUfy bttNftu:e: It would be useful to allow one to

freeze an application in HIVE. i.e. fix the positions of visual modules so that other users, such

as students cannot modify the structure of the application. At the same time, interface

mechanisms such as the module tool bar and any inappropriate menu items could be removed

to simplify the interface. in effect tailoring HIVE to a particular application.

The head of CIP. Professor David Canter, hopes that HIVE can embody these

modifications as part of a new research project centred on HIVE. Plans for this project and its

funding are currently underway.

11.3 Aggregation of flow networks

One of the disadvantages of the data-flow model employed in HIVE is that there can be quite

a few visual modules required for a reasonably complex application or algorithm. This can

result in a cluttered view. One way around this challenge is to wrap several connected

modules into a single derived module. This would allow the organisation of data-flow

networks into cohesive units, facilitating greater understanding of the application and freeing

up screen space. Another advantage of this would be to save effort - aggregate modules could

be saved and incorporated into future applications circumventing the need to re-wire

commonly used sets of modules.

Module aggregation could also have an impact on the combinatorial hybrid approach

for algorithms as discussed in Section 7.2. Recall that HIVE can assist the user by

automatically loading a hybrid algorithm when given the user's choice of input data. It was

shown that this algorithmic path through a space of data representation states can lead to the

desired view of the data. In Figure 7.2 the blue arrows represent a single visual module in

changing the representative state of the data in terms of dimensionality and cardinality. With

module aggregation, a single visual module could represent a whole algorithm. If a single

module represents an entire hybrid algorithm then the algorithmic 'cookbook' could be

extended to include hybrid-hybrid algorithms.

11.4 Automatic routing of sub-layouts

Recall from Section 8.S.3 that a Shepard plot can be used in HIVE to interactively detect areas

of a layout that could benefit from further processing. For example, consider a tetrahedron;

223

thi i th

int r-v rt

m

th

nd cann t be laid out in two dimensions without distorting some of the

h di torted di tances would be represented by points in the Shepard

t fr m th 45 degree diagonal. This notion generalises to real data of

r t r th n tw . ince it is possible to detect the inter-object distances that are

tea t th appropriate points for subsequent dimension reduction without

r mind r f the data set, one can obtain a more accurate depiction of a

author demonstrated this, using HIVE, in a recent paper

int r ting however, if there was some automatic mechanism whereby

tr t d and fed into other processes. Figure 11.1 shows how this might

in by clu tering a layout using the Voronoi clustering algorithm

cluster-picker module could then be used to extract the clusters

an uch as spring models for independent analysis without the

Fi

pic r {t

f th r m md r f th data. The configuration of modules shown in Figure 11.1 has

and i fully functional but if it could be created automatically

i ' n th tn ut data. then thi might be very powerful. Of course, this could cause an

f vi ual modules. It is therefore suggested that the module

pr viou sub ection would have to be in place to help avoid this.

d t t i clustered (bottom-left module). Each cluster feeds into a cluster-

ul) whi h can route each cluster to another process for subsequent analysis. In

e u d to layout each of the two largest clusters independently.

224

11.5 Usability studies

There have numerous calls for more formal evaluation of visualisation systems [GLS5, GP96,

CCOO, Pla04) and recent publications have provided examples and even meta-analyses

[CYOO). While Chapter 10 provided evidence that HIVE has been found to be successful in its

application to the creation of flexible visualisation applications and hybrid algorithms, it is felt

that a formal analysis of its usability would be advantageous. The nature of such analyses is

not clear at present but it is suspected that some statistical rigour would be called for to

establish the significance of particular facets of HIVE's interface and their use.

Such studies might answer different questions regarding HIVE and the finer details of

its user interface. It is anticipated that work in conjunction with CIP, as described in Section

11.2, will prompt this type of evaluation.

11.6 Contribution and thesis statement

The work described in this thesis has contributed to the field of information visualisation in

several ways. The early development of hybrid algorithms for dimension reduction produced

solutions that were the most efficient at the time of their publication. Such algorithms, being

more scalable, have been shown to facilitate the visual exploration of large data sets - sets that

were unfeasibly large for the application of earlier dimension reduction solutions. The aut~or

also developed a framework for building hybrid algorithms. Knowing more about the types of

algorithmic components to combine and when to use them could help in the creation of an

algorithmic cookbook where each recipe can be applied to different types of data in various

situations. Since this framework has been built into the HIVE system numerous new

visualisation techniques and ideas have emerged. In HIVE, hybrid algorithms provide mUltiple

intermediate views of data as they are transformed; algorithms can be profiled at run time;

researchers can (and have) extended HIVE to include new visual modules for the development

of novel algorithms and they have also used it to explore their data.

At the begiMing of this thesis, the author put forward his thesis statement claiming that

an algorithmic development environment can be used to build effective dimension reduction

solutions. Evidence of this being true is provided in Chapter 10 which provides accounts of

how users such as Morrison and Williams have built new algorithms in HIVE. The novel

algorithms illustrated in Chapter S have also been built and evaluated with the software.

225

Ultimately, the flexibility of HIVE allows it to be easily extended and new hybrid algorithms

to be rapidly prototyped and evaluated.

The thesis statement also claimed that such an environment might support the

exploration of abstract multidimensional data. This is supported by findings discussed

throughout the thesis. One example is described in Section 7.5.2 where HIVE was used to

analyse a data set consisting of environmental measurements gathered from a frozen lake in

Antarctica. When HIVE produced a hybrid dimension reduction algorithm and applied it, a

final layout was obtained almost instantly in which it was possible to see a clear cluster. Upon

further investigation in HIVE, it turned out that this cluster represented erroneous

measurements. The ability to view the results at intermediate algorithmic stages has also been

demonstrated in this context, and shows potential in allowing greater insight into data. The

exploratory power of HIVE is apparent through examples such as its text-mining capabilities

and by observations of long term users in the Centre for Investigative Psychology.

The thesis statement finally claimed that building algorithms for visualisation via the

use of visualisation methods helps people understand the algorithms better as well as the data

that they subsequently transform. Visualisation and data analysis is often a complex task and,

as such. is itself a potential application area for InfoVis tools. The author's research

developed and explored responses to this, applying analysis techniques to the components,

processes and parameters of a visualisation system. An example is provided by the profiling

modules. Given demonstrations of their use by Morrison in Section 10.2.1 and in a recent

paper [RMC04]. they provide a promising way to afford better understanding and control of

the visualisation system and, in turn, deepen insight into the visualised information itself.

11.6.1 Novel algorithms

During the course of the author's research several new hybrid algorithms have been developed

and have been documented in Chapter 5. The first two were non-linear dimension reduction

solutions based upon Chalmers' spring model [Cha96]. One algorithm employed stochastic

sampling to obtain an initial reduced representation of the input data before applying further

transformations. The other algorithm used k-means clustering in the first stage instead of

stochastic sampling.

The author also developed a faster version of Shepard's non-metric MDS algorithm.

The increase in speed was obtained by having only two output dimensions and by having both

algorithmic stages incorporate the neighbour and sample strategy that was first adopted in

Chalmers' spring model.

226

A novel clustering algorithm was also created. Its purpose was to help highlight

potential areas of interest in the output of dimension reduction algorithms. This algorithm is

based upon the Voronoi tessellation of a 2-dimensional layout of the input data and is

comprised of two stages. The first stage identifies small areas of similar density in the layout

while the second stage progressively grows clusters from these density hotspots.

11.7 Research questions

At the beginning of this thesis the author posed four research questions (Section 1.3.2). During

the work in this thesis. each has been answered to some extent. The first two questions regard

HIVE's algorithmic • cookbook , for semi-automatically building hybrid algorithms. The

second two questions enquire as to their use within HIVE as an environment where algorithm

creation and evaluation is integrated with, and potentially enhances, the visual exploration of

data. Answering these questions has provided evidence, especially from the observations at

CIP Liverpool. that the HIVE framework can enhance hypothesis formation, experimentation

and analysis - a fundamental cycle in visual information-seeking.

The answer to the first research question (Which algorithmic components should be

combined?) was derived from experiments with hybrid algorithms and the development of the

hybrid algorithmic framework in HIVE (Chapters 5 and 7). The framework suggests that

algorithmic stages should be matched to the complexity of the data as they are transformed by

them, successively refining and improving their representation for visualisation. However, it

should be noted that some of the visual modules in HIVE, such as the Voronoi clustering

module. are self-contained hybrid algorithms. This implies that hierarchical algorithms are

possible. Hence the question as to which components to combine may become more

concerned with higher level tasks - not just how to dimensionally reduce a data set, but how

to use the results in combination with other processes and the overall job in hand.

The second research question (When should the different types of algorithms be used?),

also regards the hybrid algorithmic framework. The order of successive algorithmic stages is

critical to the outcome of a hybrid algorithm and depends upon the components used fUld the

data. The novel dimension reduction algorithms described in Chapter 5 suggest that an

algorithm of low time complexity (such as K-means clustering) should first be used to reduce

data cardinality before a more expensive algorithm (such as NMDS or a spring model) works

to reduce the data dimensionality - further reducing the data to promote their visualisation. In

later stages. the representative cardinality can be restored by, for example, fast interpolation.

227

The third research question in Section 1.3.2 asks: As well as facilitating the creation

and evaluation of hybrid algorithms. can the system be effective in allowing the exploration of

the data they transform? The feedback and observations of HNE's use, given in Chapter 10,

suggest yes. Some computer science researchers have successfully developed and published

new visualisation techniques and algorithms built with HNE. Also, researchers at Liverpool

CIP have found value in using HNE for exploring their data.

The founh research question asks: Is visualisation good for creating new

visualisat;ons? Observations of the CIP researchers performing real tasks showed that they

had quickly become accustomed to visual programming of data-flows and view coordination.

This provides a novel combination of the ability to steer data-flows between processes, and

the affordance of interactive coordination across multiple views of data. Also, users did not

appear to be hampered by the extensive palette of visual modules. This visual and interactive

technique of building and using an application is a visualisation itself and it appears to be

intuitive enough for users to learn with little difficulty. Hence the answer to the fourth

research question suggests that, yes, it is apparent that visualisations are good for creating new

vi sua Ii sat ions.

11.8 Reflection and design implications

The author's research has raised design implications for the HNE software and for hybrid

algorithms in general. The course of the author's work spans from early experimentation with

Dovel hybrid dimension reduction algorithms to the design and implementation of HNE. This

progression was made on the basis of a realisation that hybrid algorithms essentially transform

data through consecutive - though sometimes parallel - routines until a desired representative

state is obtained. Within the context of this thesis, that is the wider field of information

visualisation, the general case is that the desired representation state of data is one which lends

itself to human visual perception. When it is possible to quickly tum abstract data into

information, one is in a better position to pose questions about those data - to form and test

hypotheses to obtain actionable knowledge.

In simplifying the representation of data, for example by reducing cardinality and

dimensionality, the challenge of mapping their constituent elements to graphical structure is

also simplified. Furthermore, if such a reduced representation of the data is obtained where the

information that is salient to a user remains encapsulated, then it is more likely that a graphical

portrayal will make that information almost immediately apparent.

228

This provided the motivation for the hybrid framework discussed in Section 7.2, as an

abstraction and generalisation of hybrid algorithms. The representation of data according to

their quantitative combination of dimensionality and cardinality allows the transition between

representations to be thought of as a data-flow through algorithmic components. However, the

set of algorithms that have been implemented and reported in this thesis only specify a few of

the possible paths through the framework (see Figure 7.2). Although it has been demonstrated

how hybrid algorithms such as that in Section 5.3 fit nicely into the framework, there are

potentially many more algorithms that the model might fit. There therefore remain lots of

algorithmic paths to explore.

This approach clarifies hybrid algorithms by segmenting their components into

cohesive units. Treating algorithms this way also provides opportunities for opening them for

multiple and intermediate views of data as they are transformed, as demonstrated in Section

7.5.2. It also opens them up for inspection with respect to performance measures such as

layout stress and running time. An example of this is given by the profiling modules and case

studies discussed in Chapter 8.

The boundaries of the algorithmic units serve as a classification according to

suitability of the input and output data. The author has shown how one can take advantage of

this to provide a basis for semi-automatically generating algorithms when given input data and

a desired output state. In the future it might be worthwhile to see if this would also provide a

good basis for explicitly warning the user of excessively time consuming routines due to

algorithmic and data complexities, and therefore suggest alternatives. For example, the user

might specify that a spring model is to be used to visualise a large body of data. The system

could then calculate the estimated time required to run and if it were deemed excessive it

could suggest a more efficient algorithm for the job, or perhaps tweak some ofthe algorithm's

parameters. The provision of algorithms according to the framework has been likened to

taking recipes from an algorithmic 'cookbook'. However, it is possible that the approach

might be extended to not only suggesting algorithmic recipes, but also to suggest recipes for

profiling performance. Given a hybrid algorithm, profiling stages might be automatically

applied to the appropriate algorithmic stages. Providing this sort of assistance might remove

some of the burden from the user when carrying out analyses of data and/or algorithms.

The hybrid algorithmic framework inspired the development of HIVE. Graphically

representing algorithmic components and visualisations as well as the flow of data and

interactions between them makes them more intuitive. The author took the approach of using

visualisation to help create other visualisations, and the feedback from users, as discussed in

the previous chapter. indicates that this is indeed useful. As well as providing an almost

229

tangible grasp of the routines used for visualising data, the same metaphor of computational

building blocks applies equally well to profiling modules and other developments such as

facilitating batch runs of algorithms. The approach also seems to have benefited tasks such as

the analysis of text by providing flexibility in applying queries and viewing the results.

However. the author still needs to address issues such as screen space and the potential

complexity that accompanies the provision of a wide range of analysis tools. Similar to the

assistance HIVE provides with respect to generating hybrid algorithms, it is suggested that

assistance might also be given by exposing only the interface widgets that are relevant to the

user's current task. This would possibly include module aggregation to make better use of

screen space. To achieve this. one would need to define the triggers for prompting such

assistance. The user's task at hand could entail the use of several visualisations along with

interactions such as brushing and linking views, and this has implications on the use of other

tools that might subsequently be used to test hypotheses. Patterns of interaction for different

tasks - whether for creating hybrid algorithms or for using them in analysing data - could be

used as a basis for dynamically streamlining the user interface, making the more useful

widgets and tools closer to hand. This might be achieved by logging user activity with HNE

and subsequently modelling tasks.

There are several modifications proposed to enhance HIVE and promote its utility.

Work prompted by CIP appears to be the most fruitful and will possibly embody all of the

suggested future work in this chapter. The potential work discussed here is by no means

exhaustive. There are many improvements that can be made. Examples that have not been

mentioned include improving Darroch's approach for providing assistance in choosing visual

modules [Dar04] and allowing users to create and view annotations pertaining to their use

(Section 10.2.3). Also, more hybrid routines must be found that will fall into place in HNE's

• cookbook , for semi-automatically creating algorithms (Section 7.2). It is hoped that the

number of HIVE users will grow and therefore prompt continuing effort in its improvement.

The author's research has produced new algorithms for dimension reduction and

clustering. demonstrating the efficacy of a hybrid approach to algorithm development. A

framework for this approach has been developed and embodied in a software system allowing

the novel combination of algorithm development, evaluation and data analysis via integrated

data- and interaction-flows. Early work raised several research questions, which were

eventually answered, and as the work progressed, several novel developments occurred and

have been published (a list of contributing publications is provided at the start of the thesis).

230

One of the most interesting aspects of the research is how visualisation techniques are

showing potential for helping users understand not only their data but also the tools for

exploring them. HIVE has been developed with this in mind, allowing the visualisation of the

processes that, in turn, allow the visualisation of data. Using visualisation for visualisation is

in keeping with the author's belief that effective tools and techniques should be turned upon

themselves whenever possible, to embrace appropriation and hasten their evolution.

231

Appendix A: List of HIVE modules

In HIVE each toolbar button represents a visual module. Visual modules are the alg rithmi

or visualisation components that the user drags into the drawing area and connects together t

build hybrid algorithms and visualisation applications.

IIiVI

FRe Semngs View

MlHhJiHs I

Visual modules can be compiled independently of HIVE and are located in the 'atb\alg' ~ Id'r

of the software's installation directory. User-created visual modules can be imp rtcd tnt

HIVE at run time simply by putting them in this directory. A description of the exi ting t f

modules, referring to the above figure, is as follows.

Module name Description

'96 Spring model an implementation of Chalmers' spring model

Chart plots algorithmic profiling measurements such as layout stre against
time

Clock used in algorithmic profiling to measure how long it take fi r certain
processes

Cluster picker used in conjunction with the Voronoi module or K-means to all w th
user to allocate clusters of data to other processes
takes algorithmic profiling data such as run times, data et ize and

Concatenation stress measurements to create a HIVE-compatible data ourc . The
data can subsequently be processed in HIVE for visualisation etc.

Data source allows the user to load in CSV (comma separated value) formatted data.
Example data sets are in the 'data in\CSV' directory.

FastNMDS a faster implementation of Shepard's non-metric multidimen i ~at
scaling

Histogram
allows the user to visualise the distribution of values for a particul r
quantitative variable. Double-ended sliders allow data electi n ~ r
coordination with other visualisation modules.

Interpolation used as part of a hybrid dimension-reduction algorithm to interp
onto a 2-d layout

late data

K-means an iterative, centroid-based clustering algorithm

Multiple runs used for setting up batch runs of algorithm executions

NMDS Shepard's original non-metric multidimensional scaling

2]2

Module name Description

Old interp. an implementation of Brodbeck and Girardin's original interpolation
routine [BG98]

ParentFinder a method developed to speed up data interpolation

PCA Artificial Neural Network (ANN) implementation of Principal
Component Analysis.

Random mapping implementation of a data projection technique where a data matrix is
multiplied by a matrix of random numbers to reduce dimensionality.

Sample takes a random sample of data

Scatterplot displays the 2-d output of dimension-reduction algorithms

Search lets the user search for and highlight text documents. Works in
conjunction with 'text data' and 'text viewer'.
used for analysing the output of a dimension-reduction process by

Shepard diagram
plotting the high dimensional (ideal) distances to the low dimensional
(layout) distances. When the distances are exactly preserved, the plot
shows a perfect 45 degree line. View-coordination makes this diagram
useful for finding areas of a layout than might be better refined.

Spring model a customised spring model

SSA a type ofMDS routine called similarity structure analysis

Stress measures stress of a layout configuration

Table displays a table of data. Combines fisheye focusing and bar chart

Text data imports a text data index for applying dimension reduction and
visualisation of collections of text documents

Text viewer allows the user to read the contents of documents that are represented in a
layout. Used in conjunction with the 'text data' module (see "Text data").

Transpose transposes a data set, i.e. each row of values becomes a column. This is
used in creating layouts of variables.

Triangle data a data source for lower triangle data matrices

Voronoi implementation of a clustering algorithm for partitioning a layout

233

Appendix B: Algorithmic 'cookbook'

The diagram shown below represents the hybrid algorithmic cookbook that ha be 'n

implemented in HIVE for semi-automatically generating algorithms. Each block repre cnt u

data-state or categorisation in terms of dimensionality and cardinality where, for e ample. II. 1

means that the data are of high dimensionality and medium cardinality. Quantitative value ' r. r

these states are given in Table 7.1. Given data of high dimensionality and high cardin lit ·

(HH), a user's goal might be to obtain an LH data-state, that is a low-dimensional lay ut fall

of the data. This is illustrated by the path of green arrows in the data-state space hown

and is how the novel algorithms described in Section 5.3 operate.

III
Cardinally (N)

~ ~mapping ~ K·means clustering

~ ~ Qf.1P) spring model §12cha~!ic sampling ~ peA

Each arrow in the diagram represents a change in the data-state which i achie d by a

visual module in HIVE. Vertical arrows show dimension reduction and horizontal arr w '

represent either a reduction in cardinality (pointing right) or an increa e in cardinality

(pointing left). A path, therefore, constitutes a hybrid algorithm and can be semi-automatically

generated by HIVE given the state of the input data and the desired output state.

2.14

Appendix C: HIVE user questionnaire

HIVE que.Honnalre

Greg Ross
Department of Computmg SCIence

UniversIty of Glasgow
Scotland

United Kmgdom

As PM 0/ rrIf PI'D r earch I developed the HIVE software, I would very much appreciate It It you would proVIde me With some feedback
by an no e (JJ SUoos on this page Your anonymity Will be maintained

.,S the film 0/ this QlJ8Sbonnelre 10 determine whether HIVE has been ot use to you, as well as how you have used It
Pte8se indicate hoWstrong¥you egree or disagree With the follOWing statements'

I) TIns IS
lOuse

2) IS

3)

4)

S) HIve' d SIgn
made
rnodIfic on 0/
th so~c cod

Stronaly
4ee

O Stroll,llly
Ailee

O Stroll,llly
Ailee

O Stronaly
4ee

O Stroll,l!ly
Ailee

O Ai;ree

o Agree

o Ailee

O AiJee

o Agree

O Nerther
Ailee nor
Disagree

O Ne!lber
Agree nor
Disagree

O Ne!lber
Agree nor
Disagree

O Netlher
Ai;reenor
Disagree

O Netlher
At,reenor
DIsagree

O Disagree

o Disagree

o Disagree

O Disagree

O Strong\y
Disagree

O SIrOng!y
Disagree

O Slrong\y
Disagree

O Slrong!y
Disagree

O Strong\y
Disagree

'When YOAJ load d a lItO 8 data-source module and then directly connect e scatter plot to It, HIVE automabcal~ loads an algonthm to app~
1he 1lPPI'0I)Il0l ITM 0ITTl lions for plottlng the d te The type of elgonthm loaded depends upon the cardlnellty (number of items) end
di onahty (number 0/ V8I1 5) of the data The follOWing questions pertain to thiS elgorithrn-generellon and the Interaction
I hntQU8S adopt In liVE

235

0 J.wee

7)

8) OJ.wee

O~e

10)

ng (JJe 01'1 ebout how you used HIVE

NOlIe

11)

12) No

13) No

,. No

O NeiIber
~1l0l'
Dis,.ee

O NeiIber
A6eellOl'
DiI,.ee

Ole .. lUll 0IltI,. ..

o Yes

O Ye.

o Yes

O Dis,.ee

ODiuam

o SlrOIIIIIJ
DiI

O Won
lUll&.. ,....

236

Old HIVE make
apparentarr-j

IS) pattems In your data O No O Ye.
that you were
already aware of?

16)
Would you use HIVE O No O Ye. again?

The terw remaining quesbons reqUire you to answer in your own words.

17) VVhat parbcular aspects ot HIVE do you dislike?

\8) VVhat parbcular aspects of HIVE do you like?

19) VVhat did you use HIVE tor?

20) VVhat other soll'fooare would you use Instead of HIVE tor the same tasks?

21) Arr-jOtl'wcomments?

22) Please enter your name. This Will not be disclosed With the results

Thenkyou very much tor taking the bme to help me. It you have any queries or would like a newer version of the HIVE software please getin
touch With me at ar@des ala ae uk

237

Bibliography

[ABK98] Ankerst M., Berchtold S., Keirn D. A.: Similarity Clustering of Dimensions for an Enhanced

Visualization of Multidimensional Data. Proceedings of the IEEE Symposium on Information

Visualization, Info Vis '98 (1998), 52-60.

[ABKS99] Ankerst M., Breunig M. M., Kriegel H.-P., Sander J.: OPTICS: Ordering Points to Identify the

Clustering Structure. Proceedings of SIGMOD'99, ACM SIGMOD International Conference on

Management of Data (1999), 49-60.

[AC98]

[AchOI]

[Ado04]

[AKS*02]

[AS94a]

[AS94b]

[Asi85]

[AT95a]

[AT95b]

[ATS82]

Andre, A. D., Cutler H. A.: Displaying Uncertainty in Advanced Navigation Systems. Proceedings

of the Human Factors and Ergonomics Society 42nd Annual Meeting (October 1998),31-35.

Achlioptas D.: Database-Friendly Random Projections. Proceedings of the ACM Symposium on

Principles of Database Systems (200 I), 274-281.

Adobe Acrobat Reader 5.0. http://www.adobe.comlacrobat (2004).

Andrews K., Kienreich W., Sabol V., Becker J., Kappe F., Droschl G., Granitzer M., Auer P.,

Tochtermann K.: The InfoSky Visual Explorer: Exploiting Hierarchical Structure and Document

Similarities. Information Visualization 1, (2002), 166-181.

Ahlberg C., Shneiderman B.: Visual Information Seeking using the FilmFinder. Proceedings of

ACM CHJ'94 Conference on Human Factors in Computing Systems 2, (1994),433.

Ahlberg C., Shneiderman B.: Visual Information Seeking: Tight Coupling of Dynamic Query

Filters with Starfield Displays. Proceedings of CHl'94, ACM Conference on Human Factors in

Computing Systems (1994), 313-317.

Asimov D.: The Grand Tour: A Tool for Viewing Multidimensional Data. SIAM Journal on

Scientific and Statistical Computing 6, I (1985), 128-143.

Abram G., Treinish L.: An Extended Data-Flow Architecture for Data Analysis and Visualization.

Computer Graphics 29, 3 (May 1995). 17-21.

Ahlberg C., Truve S.: Tight Coupling: Guiding User Actions in a Direct Manipulation Retrieval

System. Proceedings of HCJ'95, Engineeringfor Human-Computer Interaction (1995), 305-321.

Apperley M. D., Tzavaras I., Spence R.: A Bifocal Display Technique for Data Presentation.

Proceedings of Eurographics '82, Conference of the European Association for Computer Graphics

(1982),27-43.

238

[Aur9I]

[AW95]

[8asOO]

[8au75]

[888·931

[8C87]

[BCLC97]

[BCS96]

[8F98]

[8G05]

[8G97]

[8G98]

[BH94]

[BKR98]

Aurenhammer F.: Voronoi Diagrams: A Survey of a Fundamental Geometric Data Structure. ACM

Computing Surveys, 23,3 (1991),345-405.

Ahlberg C., Wi strand E.: IVEE: An Infonnation Visualization and Exploration Environment.

Proceedings of Info Vis '95, IEEE Symposium on Information Visualization (October 1995), 6fr. 73.

8asalaj W.: Proximity Visualisation of Abstract Data. PhD thesis, University of Cambridge

Computer Laboratory (2000).

Baumgart B.: A Polyhedron Representation for Computer Vision. National Computer Conforence

(1975),589-596.

Brodlie K., Brankin L., Banecki G., Gay A .• Poon A., Wright H.: Grasparc-A Problem Solving

Environment Integrating Computation and Visualization. Proceedings of IEEE Visualization '93,

IEEE Computer Society Press (1993), 102-109.

Becker R., Cleveland W.: Brushing Scatterplots. Technometrics 29,2 (1987), 127-142.

Brodbeck D., Chalmers M., Lunzer A., Cotture P.: Domesticating Bead: Adapting an Infonnation

Visualization System to a Financial Institution. Proceedings of Info Vis '97, IEEE Symposium on

Information Visualization (1997), 73-80.

Buja A., Cook D., Swayne D. F.: Interactive High-Dimensional Data Visualization. Journal of

Computational and Graphical Statistics 5 (1996),78-99.

Bradley P. S., Fayyad U. M.: Refining Initial Points for K-Means Clustering. Proceedings of the

Fifteenth International Conference on Machine Learning (1998).91-99.

Brodbeck D., Girardin L.: Macrofocus. http://www.macrofocus.com (January 2005).

Borg I., Groencn P. J. F.: Modern Multidimensional Scaling Theory and Applications. Springer

Verlag, New York. 1997.

Brodbeck D., Girardin L.: Combining Topological Clustering and Multidimensional Scaling for

Visualising Large Data Sets. Unpublished paper (accepted for, but not published in, Proceedings of

Info Vis '98, IEEE Information Visualization 1998).

Bederson B. B., Hollan J. D.: Pad++: A Zooming Graphical Interface for Exploring Alternate

Interface Physics. Proceedings of u/ST'94, ACM Symposium on User Interface Software and

Technology (1994), 17-26.

Bookstein A., Klein S. T., Raita T.: Clumping Properties of Content-Bearing Words. Journal of the

American Society for Information Science 49,2 (1998),102-114.

239

[BMOI]

[BS02]

[BSLD98]

[BST*94]

[BurOO]

Bingham E., Mannila H.: Random Projection in Dimensionality Reduction: Applications to Image

and Text Data. Proceedings of the seventh ACM SIGKDD international conference on Knowledge

discovery and data mining (200 I), 245-250.

Buja A., Swayne D. F.: Visualization Methodology for Multidimensional Scaling. Journal of

Classification 19 (2002), Springer-Verlag, New York, 7-43.

Buja A., Swayne D. F., Littman M., Dean N.: XGvis: Interactive Data Visualization with

Multidimensional Scaling. under review Journal of Computational and Graphical Statistics (1998).

Brachman R. J., P. Selfridge G., Terveen L. G., Altman B., Borgida A, Halper F., Kirk T., Lazar

A., McGuinness D. L., Resnick L. A.: Integrated Support for Data Archaeology. Proceedings of

AAAI-93 Knowledge Discovery in Databases Workshop (Aug 1994), 197-211.

Burns C. M.: Putting it All Together: Improving Integration in Ecological Displays. Human Factors

42 (2000), 226-241.

[BWKoo] Baldonado M., Woodruff A., Kuchinsky A.: Guidelines for Using Multiple Views in Information

Visualization. Proc. ACM Advanced Visual Interfaces (May 2000),110-119.

[Can85] Canter D. (ed.): Facet Theory: Approaches to Social Research. Springer-Verlag, 1985.

[CBCH95] Cook D., Buja A, Cabrera J., Hurley H.: Grand Tour and Projection Pursuit. Journal of

Computational and Graphical Statistics 2, 3 (1995),225-250.

[CCoo]

[CDH92]

Chen C., Czerwinski M. P.: Empirical Evaluation of Information Visualizations: An Introduction.

International Journaifor human-Computer Studies 53, (2000), 631-635.

Croft A, Davidson R. Hargreaves M.: Engineering Mathematics: A Modern Foundation for

Electronic, Electrical and Control Engineers. Addison Wesley, 1992.

[CF98] Canter D. Fritzon K.: Differentiating Arsonists: A Model ofFiresetting Actions and Characteristics.

Legal and Criminological Psychology 3, (1998), 73-96.

[Cha93] Chalmers M.: Using a Landscape Metaphor to Represent a Corpus of Documents. Proceedings of

COSIT '93,European Conference on Spatial In/ormation Theory (1993),377-390.

[Cha96] Chalmers M.: A Linear Iteration Time Layout Algorithm for Visualising High-Dimensional Data.

Proceedings of IEEE Visualization (1996), 127-132.

[CIP96] Chalmers M., Ingram R., Pfranger C.; Adding Imageability Features to Information Displays.

Proceedings ACM UIST' 96, ACM Press (1996), 33-39.

[CKBR97] Chi E. H., Konstan 1., Barry P., Riedl J.: A Spreadsheet Approach to Information Visualization.

Proceedings of ACM User Interface System Technologies (October 1997), 79-80.

240

[CKPT92]

[CL02]

[CM97]

[CMS99]

[Coh97]

[CRB98]

[CRM9I]

[CT98]

[CYOO]

[Dar04]

[DasOO]

[DBM89]

[DDF*90]

Cutting D. R., Karger D. R., Pederson J. O. Tukey 1. W.: Scatter/Gather: A Cluster-Based Approach

to Browsing Large Document Collections. Proceedings ofSIGIR '92, ACM Conference on Research

and Development in Information Retrieval (1992), 318-329.

Estivill-Castro, V., Lee 1..: Argument Free Clustering for Large Spatial Point Data Sets Via

Boundary Extraction from Delaunay Diagram. Computers, Environment and urban systems 26

(2002),315-334.

Card S. K., Mackinlay J. D.: The Structure of the Information Visualization Design Space.

Proceedings of Info Vis '97, IEEE Symposium on Information Visualization (1997), 92-99.

Card S. K., Mackinlay J. D., Shneiderman B.: Information Visualisation - Using Vision to Think.

Morgan Kaufmann, 1999.

Cohen J. D.: Drawing Graphs to Convey Proximity: An Incremental Arrangement Method. ACM

Transactions on Computer-Human Interaction (TOCHI) 4, 3 (1997), 197-229.

Chalmers M., Rodden K., Brodbeck D.: The Order of Things: Activity-Centred Information Access.

Proc. WWWl, Brisbane (April 1998), 359-367.

Card S. K., Robertson G. G., Mackinlay J. D.: The Information Visualizer, an Information

Workspace. Proceedings of CHI '91, ACM Human Factors in Computing Systems Conference

(1991),181-188.

I. F. Cruz and R. Tamassia. Graph Drawing Tutorial. http://www.cs.brown.edulpeoplelrtlpaperslgd

tutoriallgd-constraints.pdf (1998).

Chen C., Yu Y.: Empirical Studies of Information Visualization: a Meta-Analysis. International

Journal of Human-Computer Studies 53, 5 (November 2000), 851 - 866.

Darroch I. D. G.: An End-User Mechanism for Describing Software Component Chains. PhD

Thesis, Department of Computing Science, University of Glasgow, Scotland (2004).

Dasgupta S.: Experiments with Random Projection. Proceedings of the 16th Conference on

Uncertainty in Artijiciallntelligence (2000), 143-151.

DeFanti T. A., Brown M. D., McCormick B. H.: Visualization: Expanding Scientific and

Engineering Research Opportunities. IEEE Computer 22, 8 (1989), 12-25.

Deerwester S., Dumais S. T., Furnas G. W., Landauer T. K., Harshman R. Indexing by Latent

Semantic Analysis. Journal of the American Society for Information Science. 41, 6 (1990), 391-

407.

241

[DELS99]

[ooH94]

[DLR77]

[DP95]

[Ead84]

[ED9I]

[EH97]

[Eic94a]

[Eic94b]

[Ekm54]

[EKSX96]

[ESK03]

[EW95]

[Fas99]

[FB03]

Dourish P., Edwards W. K., LaMarca A., Salisbury M.: Using Properties for Uniform Interaction in

the Presto Document System. Proceedings of the 12th Annual ACM Symposium on User Interface

Software and Technology (November 1999), 5~.

Duyckaerts C., Godeftoy G., Hauw J-J.: Evaluation of Neuronal Density by Dirichlet Tessellation,

Journal of Neuroscience Methods 52, I (1994),47-69.

Dempster A. P., Laird, N. M., Rubin, D. B. Maximum Likelihood for Incomplete Data via the EM

Algorithm. Journal of the Royal Statistical Society. Series B, 39 (1977),341-353.

Dumas J., Parsons P.: Discovering the Way Programmers Think about New Programming

Environments. Communications of the ACM 38,6 (June 1995),45-56.

Eades P.: A Heuristic for Graph Drawing. Congressus Numerantium 42 (1984),149-160.

Everitt B. S. Dunn G.: Applied Multivariate Data Analysis. Arnold, 1991.

Eldershaw C. Hegland M.: Cluster Analysis Using Triangulation. Computational Techniques and

Applications (\ 997), 201-208.

Eick S.: Graphically Displaying Text. Journal of Computational and Graphical Statistics 3, 2

(1994). 127-142.

Eick S. :Data Visualization Sliders. Proceedings of UIST '94. ACM Symposium on User Interface

Software and Technology, (November 1994), 119-120.

Ekman G. Dimensions of Color Vision. Journal of Psychology 38 (1954), 467-474.

Ester M., Kriegel H.-P., Sander J., Xu X.: A Density-Based Algorithm for Discovering Clusters in

Large Spatial Databases with Noise. Proceedings of the 2"" International Conference on Knowledge

Discovery and Data Mining (1996), 226-231.

Ertoz L., Steinbach M., Kumar V.: Finding Clusters of Different Sizes, Shapes, and Densities in

Noisy, High Dimensional Data. Proceedings of the 3rd SIAM International Conference on Data

Mining (2003).

Eick S. G.: Wills G. 1: High Interaction Graphics. European Journal of Operational Research 84

(1995), 44~59.

Fasulo D. An Analysis of Recent Work on Clustering Algorithms.

http://citeseer.nj.nec.comlfasul099analysi.html (April 1999).

Fern X., Brodley C.: Random Projection for High Dimensional Data: A Cluster Ensemble

Approach. Proceedings of the 20th International Conference on Machine Learning (2003), 186-

193.

242

[Fek04]

[FL95]

[FMK*99]

[FP99]

[FR91]

[Frc02]

[Fri94]

[FS95]

[FfM*98]

[Fur86]

[Gav92]

[GHN95]

[Gib79]

Fekete J, -D.: The InfoVis Toolkit. Proceedings of the 10th IEEE Symposium on Information

Visualization (2004), 167-174.

Faloutsos C. Lin K.-I.: FastMap: A Fast Algorithm for Indexing, Data-Mining and Visualization of

Traditional and Multimedia Datasets. Proceedings of the 1995 ACM SIGMOD International

Conference on Management of Data (1995), 163-174.

Fitzpatrick G., Mansfield T., Kaplan S., Arnold D., Phelps T., Segal B.: Instrumenting and

Augmenting the Workaday World with a Generic Notification Service called Elvin. Proceedings of

the 6th European Conference on Computer Supported Cooperative Work (1999), 431-451.

Fekete J.-D., Plaisant C.: Excentric labeling: Dynamic neighborhood labeling for data visualization.

Proceedings of the International Conference on Human Factors in Computing Systems (1999).

512-519.

Fruchterman T. M. J., Reingold E. M.: Graph-Drawing by Force-Directed Placement. Software -

Practise and Experience 21, II (1991), 1129-1164.

Fred A.L.N.: Finding Consistent Clusters in Data Partitions. Proceedings of the 3rd International

Workshop on Multiple Classifier Systems. Eds. F. Roli. J. Kittler (2002),309-318.

Friedman J. H.: An Overview of Predictive Learning and Function Approximation.

In Y. Cherkass1cy. J.H. Friedman. and H. Wechsler. eds. From Statistics to Neural Networks, Proc.

NATOI ASI Workshop (1994), I~ I. Springer Verlag.

Fishkin K., Stone M. C.: Enhanced Dynamic Queries via Movable Filters. Proceedings of ACM

Conference on Human Factors in Computing Systems (May 1995), 415-420.

Flach J. M., Tanabe F., Monta K., Vicente K. J., Rasmussen J.: An Ecological Approach to

Interface Design. Proceeding of the Human Factors and Ergonamics Society 42nd Annual Meeting

(1998),295-299.

Furnas G. W.: Generalized Fisheye Views. Proceedings of the ACM Conference on Human Factors

in Computing Systems (1986),16-23.

Gaver W. W.: The Affordances of Media Spaces for Collaboration. Proceedings of CSCW '92

(November 1992), 17-24.

Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns. Addison-Wesley Professional. 1st

edition (January t 995).

Gibson J. J., The Ecological Approach to Visual Perception. Houghton-Mifflin (1979).

243

[GL85]

[GMPSOO]

[GP96]

[Gre89]

[Guo03]

[Gut68]

[Hae88]

[HCL05]

[HD96]

[HH99]

[HHKOO]

Gould J. D., Lewis C., Designing for Usability: Key Principles and What Designers Think.

Communications of the ACM 28, 3 (March 1985). 30~311.

Greene S .• Marchionini G .• Plaisant C .• Shneiderman B.: Previews and Overviews in Digital

Libraries: Designing Surrogates to Support Visual Information Seeking. Journal of the American

Society for Information Science 5 J. 4 (2000). 38~393.

Green T.R.G., Petre M.: Usability Analysis of Visual Programming Environments: A 'Cognitive

Dimensions' Framework. Journal of Visual Languages and Computing 7.2 (1996),131-174.

Green T. R. G .• Cognitive Dimensions of Notations. Proceeding of the HCI '89 Conference on

People and Computers (1989),443-460.

Guo D.: Coordinating Computational and Visual Approaches for Interactive Feature Selection and

Multivariate Clustering. Information Visualization, 2 2003, 232-246.

Guttman L.: A General Nonmetric Technique for Finding the Smallest Coordinate Space for a

Configuration of Points. Psychometrilw 33 (1968), 469-506.

Haeberli P.: ConMan: A Visual Programming Language for Interactive Graphics. Computer

Graphics 22, 4 (1988),103-111.

Heer J., Card S. K., Landay J. A.: Prefuse: a Toolkit for Interactive Information Visualization.

Proceedings of the SIGCHI conference on Human factors in computing systems (2005). 421-430.

Harrison S., Dourish P.: Re-place-ing Space: The Roles of Place and Space in Collaborative

Systems. Proceedings of the ACM Conference on Computer Supported Cooperative Work CSCW

'96 (1996), 67-76.

Hendry D.G., Harper D. J.: An Informal Information-Seeking Environment. Journal of the

American Society for Information Science. 48, II (1999), 1036--1048.

Hollan J., Hutchins E .• Kirsh D.: Distributed Cognition: Towards a New Foundation for Human

Computer Interaction Research. ACM Transactions on Computer-Human Interaction 7, 2 (June

2000),174-196.

[HHWM92] Hill W. C., Hollan J. D., Wroblewski D., McCandless T.: Edit Wear and Read Wear. Proceedings

of CHI '92, ACM Conference on Human Factors in Computing Systems (May 1992),3-9.

[HK97] Hearst M., Karadi C.: Cat-a-Cone: An Interactive Interface for Specifying Searches and Viewing

Retrieval Results using a Large Category Hierarchy. Proceedings of 20th Annual International

ACMISIGIR Conference (July 1997),246--255.

244

[HK98] Hinneburg A., Keirn D. A.: An Efficient Approach to Clustering in Large Multimedia Databases

with Noise. Proceedings of KDD '98, The Fourth International Conference on Knowledge

Discovery and Data Mining (1998), 58--65.

[HKLK96] Honkela T., Kaski S., Lagus K., Kohonen T.: Exploration of Full-Text Databases with Self

Organizing Maps. Proceedings ICNN96, International Conference on Neural Networks (1996). 56-

61.

[HKLK97] Honkela T .• Kaski S .• Lagus K., Kohonen T.: WEBSOM-Self-Organizing Maps of Document

Co\1ections. Proceedings ofWSOM'97, Workshop on Self-Organizing Maps (1997), 310-315.

[Hon04] Honeycomb. http://www.hivegroup.com (2004).

[Hub8S] Huber P.J.: Projection Pursuit The Annals o/Statistics /3,2 (1985), 435-475.

[HW96] Heskes T., Wiegerinck W.: A Theoretical Comparison of Batch-Mode, On-Line, Cyclic, and

Almost Cyclic Learning. IEEE Transactions on Neural Networks 7, 4 (1996), 919-925.

[HWR03] Huang S., Ward M. 0., Rundensteiner E. A.: Exploration of Dimensionality Reduction for Text

Visualization. Technical Report TR-03-14, Worcester Polytechnic Institute, Computer Science

Department. Available from http://citeseer.ist.psu.edulhuang03exploration.html(2003).

[IB95a]

[IB95b]

[lns85]

[Jak04]

[JL84]

[JMF99]

[JP73]

[JS91]

Ingram, R., Benford S.: Improving the Legibility of Virtual Environments. Proceedings 0/ the 2nd

Eurographics Conference on Virtual Environments (1995),211-223.

Ingram R., Benford S. Legibility Enhancement for Information Visualization. Proceedings of IEEE

Visualization (1995), 209 -216.

Inselberg A.: The Plane with Parallel Coordinates. The Visual Computer /, 2 (1985). 69-91.

Jakarta project, Lucene, http://jakarta.apache.org/luceneidocsJindex.html(August 20(4).

Johnson W.B., Lindenstrauss J.: Extensions of Lipschitz Mapping into Hilbert Space. Proceedings

o/Conference in Modern Analysis and Probability Vol. 26 o/Contemporary Mathematics (1984),

189-206.

Jain A. K., Murty M. N., Flynn P. J.: Data Clustering: A Review. ACM Computing Surveys 31, 3

(September 1999),264-323.

Jarvis R. A., Patrick E. A.; Clustering Using a Similarity Measure Based on Shared Nearest

Neighbors. IEEE Transactions on Computers 22, II (1973), 1025-1034.

Johnson B., Shneiderman B.: Tree-Maps: A Space-Filling Approach to the Visualization of

Hierarchical Information Structures. Proceedings of IEEE Visualization '91 Conference (1991),

284-291.

245

[JS94] Jain V., Shneiderman B.: Data Structures for Dynamic Queries: An Analytical and Experimental

Evaluation. Proceedings of Conference on Advanced Visual Interfaces '94 (1994),1-11.

[Kas98] Kaski S.: Dimensionality Reduction by Random Mapping: Fast Similarity Computation for

Clustering. Proceedings of IJCNN'98. 1998 IEEE International Joint Conference on Neural

Networks (1998),4-9.

[KC03] Koren Y., Carmel L.: Visualization of Labeled Data Using Linear Transformations. Proceedings of

Info Vis '03. the ~ IEEE Symposium in Information Visualisation (2003), 121-128.

[KHDM98] Kittler J., Hatef M., Duin R. P. W., Matas J.: On Combining Classifiers. IEEE Transactions on

Pattern Analysis and Machine Intelligence 20,3 (1998),226--239.

[KHK99] Karypis G., Han E.-H., Kumar V.: CHAMELEON: A Hierarchical Clustering Algorithm Using

Dynamic Modelling. IEEE Computer 32,8 (1999), 68-75.

[KKL*oo] Kohonen T., Kaski S., Lagus K., Salojrvi J., Paatero V., Saarela A.: Self Organization ofa Massive

Document Collection. IEEE Transactions on Neural Networks 11, 3 (2000), 574-585.

[Kor9I] Korfhage R. R.: To See, or Not to See - Is that the Query? Proceedings of the 14th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval

(1991), \31-141.

[KP88]

[Krus64]

[KS97]

Krasner G., Pope S.: A Description of the Model-View-Controller User Interface Paradigm in the

SmaIltalk-80 system. Journal of Object Oriented Programming 1.3 (1988), 26--49.

Kruskal J. B., Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis.

Psychometrika 29, 1 (1964), 1-27.

Kandogan E., Shneiderman B.: Elastic Windows: Evaluation of Multi-Window Operations. Proc.

CHI '97 (1997),250--257.

[LamOO] Lam L.: Classifier Combinations: Implementations and Theoretical Issues. In Kittler and Roli. eds.

Multiple Classifier Systems. vol. 1847 of Lecture Notes in Computer Science (2000), 78-86.

[LBWR94] Lohse G. L., Biolsi K., Walker N., Rueter H. H.: A Classification of Visual Representations.

Communications of the A CM Vol. 37 (December 1994), 36--49.

[LG03] Lin J., Gunopulos D.: Dimensionality Reduction by Random Projection and Latent Semantic

Indexing. Proceedings of the Text Mining Workshop at the 3'" SIAM International Conference on

Data Mining (2003), 1-3.

[LGH02] Larkin S., Grant A. J., Hewitt W. T.: Visualization in Parallel (VIPAR). Manchester Visualization

Centre, University of Manchester, Funded as part of the Portable Software Tools for Parallel

Architectures (PSTPA) Project, (EPSRC Research Grant Reference Number: GRlK40390) (2002).

246

[LHKK96] Lagus K., Honkela T., Kaski S., Kohonen T.: Self-Organizing Maps of Document Collections: A

New Approach to Interactive Exploration. Proceedings of the International Conference on

Knowledge Discovery and Data Mining (1996), 238-243.

[LRB*97]

[LRP95]

[LS97a]

[LS97b]

[LSM91]

[Lun99]

[Lyn60]

[Mac67]

[MC04]

[MDB87]

[MLST03]

[Mor04]

Livny M., Raghu R., Beyer K. S., Chen G., Donjerkovic D., Lawande S., Myllymaki J., Wenger R.

K.: DEVise: Integrated Querying and Visual Exploration of Large Datasets. Proceedings of ACM

SIGMOD (May 1997),301-312.

Lamping J., Rao R., Pirolli P.: A Focus+Context Technique Based Upon Hyperbolic Geometry for

Visualizing Large Hierarchies. Proceedings of CHl'95. ACM Con/erence on Human Factors in

Computing Systems (1995), 401-408.

Luger G. F., Stubblefield, W. A.: Artificial Intelligence - Structures & Strategies for Complex

Problem Solving. (3rd edition), Addison-Wesley (1997).

Lam L., Suen C. Y.: Application of Majority Voting to Pattern Recognition: An Analysis of its

Behaviour and Performance. IEEE Transactions on Systems. Man and Cybernetics-Part A: Systems

and Humans 27, 5 (1997), 553-568.

Lin X., Soergel, D., Marchionini, G : A Self-Organizing Semantic Map for Information Retrieval.

Proceedings of the Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (1991),262-269.

Lunzer A.: Choice And Comparison Where The User Wants Them: Subjunctive Interfaces For

Computer-Supported Exploration. Proceedings of INTERACT '99. the 7th IFIP Conference on

Human-Computer Interaction (1999),474-482.

Lynch K.: The Image of the City. M.LT. Press, 1960.

MacQueen J.: Some Methods for Classification and Analysis of Multivariate Observations. Proc.

5th Berkeley Symposium (1967), 281-297.

Morrison A., Chalmers M.: Improving Hybrid MDS with Pivot-Based Searching. In/ormation

Visualization 3, 2 (2004), 109-122.

McCormick B. H., DeFanti T. A., Brown M. D., eds.: Visualization in Scientific Computing.

Computer Graphics 21,6 (November 1987).

Manoranjan D., Liu H., Scheuermann P., Tan K. L.: Fast Hierarchical Clustering and its Validation.

Data and Knowledge Engineering 44 (2003),109-138.

Morrison A.: Fast Multidimensional Scaling Through Hybrid Nonlinear Algorithms. PhD Thesis,

Department of Computing Science, University of Glasgow, Scotland (2004).

247

[MRC02]

[MRC03]

[MRC91]

[MS90]

[Nic04]

[NorOl]

[Nor88]

[NSOOa]

[NSOOb]

[NSOI]

[NSP96]

Morrison A., Ross G., Chalmers M.: A Hybrid Layout Algorithm for Sub-Quadratic

Multidimensional Scaling. Proceedings of Info Vis '02, IEEE Symposium on Information

Visualisation (October 2002), 152-158.

Morrison A., Ross G., Chalmers M.: Fast Multidimensional Scaling Through Sampling, Springs

and Interpolation. Information Visualization 2, 1(2003),68-77.

Mackinlay J. D., Robertson G. G., Card S. K.: The Perspective Wall: Detail and Context Smoothly

Integrated. Proceedings of CHI'91, ACM Conference on Human Factors in Computing Systems

(1991), 173-179.

McDonald J.A., Stuetzle W.: Painting Multiple Card Views of Complex Objects. Proceedings of the

ECOOP/OOPSLA '90 European Conference on Object Oriented Programming (October 1990),

245-257.

Nickleby HFE Ltd. NicklebyKIT. http://www.nickleby.com (2004).

North C.: Multiple Views and Tight Coupling in Visualization: A Language, Taxonomy, and

System. Proc. CSREA CISST 2001 Workshop of Fundamental Issues in Visualization (2001), 626-

632.

Norman D. A.: The Psychology of Everyday Things. Basic Books, 1988.

North C., Shneiderman B.: Snap-Together Visualization: Can Users Construct and Operate

Coordinated Visualizations? International Journal of Human-Computer Studies 53, (2000), 715-

739.

North C., Shneiderman B.: Snap-Together Visualization: A User Interface for Coordinating

Visualizations Via Relational Schemata. Proceedings of Advanced Visual Interfaces (2000), 128-

135.

North C., Shneiderman B.: Component-Based, User-Constructed, Multiple-View Visualization.

Proc. ACM CHI 2001 (2001), 201-202.

C. North. B. Shneiderman and C. Plaisant. User Controlled Overviews of an Image Library: A Case

Study of the Visible Human. Proceedings ofDL '96, ACM Conference on Digital Libraries. 74-82.

1996.

[NTMS9I] Nierstrasz 0., Tsichritzis D., de Mey V., Stadelmann M.: Objects + Scripts = Applications,

Proceedings of ESPRIT Conference 1991. Kluwer Academic Publishers (1991), 534-.552.

[OBSCOO) Okabe A., Boots B., Sugihara K., Chiu S.N.: Spatial Tessellations. Concepts and Applications of

Voronoi Diagrams. Wiley, Chichester, second edition (2000).

248

[Oja82]

[Pag74]

[Pla04]

[PMR~61

[Por80]

[Pri57]

[PRR*OI]

[PSHD96]

[RB99]

Oja E.: A Simplified Neuron Model as a Principal Component Analyzer. Journal of Mathematical

Biology 15 (1982). 267-273.

Page R. L.: A Minimal Spanning Tree Clustering Method. Communications of the ACM 17. 6

(1974).321-323.

Plaisant C.: The Challenge of Information Visualization Evaluation. Proceedings of the Working

Conference on Advanced Visual Interfaces (2004). 109-116.

Plaisant C .• Milash B .• Rose A .• Widoff S., Shneiderman B.: lifelines: Visualizing Personal

Histories. Proceedings of CHl'96, ACM Conference on Human Factors in Computing Systems

(1996).221-227.

Porter M. F.: An Algorithm for Suffix Stripping. Program 14.3 (1980). 130--137.

Prim R. C.: Shortest Connection Matrix Network and Some Generalizations. Bell System Technical

Journal 36 (1957). 1389-1401.

Petre M .• Roast c.. Roe c.. Wong A .• Young R. M.: Cognitive Dimensions of Notations: Design

Tools for Cognitive Technology. Cognitive Technology (2001).325-341.

Pirolli P .• Schank P .• Hearst M .• Diehl C.: Scatter/Gather Browsing Communicates the Topic

Structure of a Very Large Text Collection. Conference on Human Factors in Computing Systems

(April 1996). 213-220.

Ribeiro-Neto B .• Baeza-Yates R.: Modern Information Retrieval. ACM Press Series, Addison

Wesley. 1999.

[RBSWOI] Rodden K .• Basalaj W .• Sinclair D .• Wood K.: Does Organisation by Similarity Assist Image

Browsing? Proceedings of the SJGCHI on Human Factors in Computing Systems (200 1). 190-197.

[RC03a]

[RC03b]

[RCK~7]

[RCM89]

Ross G .• Chalmers M.: A Visual Workspace for Hybrid Multidimensional Scaling Algorithms.

Proceedings oflnfoVis'03,IEEE Symposium on Information Visualization (2003), 91-96.

Ross G., Chalmers M.: A Visual Workspace for Constructing Hybrid MDS Algorithms and

Coordinating Multiple Views. Information Visualization 2, 4 (2003), 247-257.

Roth S. F .• Chuah M. c.. Kerpedjiev S., Kolojejchick J., Lucas P.: Towards an Information

Visualization Workspace: Combining Multiple Means of Expression. Human-Computer Interaction

Journal 12, I (1997), 131-185.

Robertson G. G., Card S. K., Mackinlay J. D.: The Cognitive Coprocessor Architecture for

Interactive User Interfaces. Proceedings of the ACM SIGGRAPH Symposium on User Interface

Software and Technology (1989), 10--18.

249

[Ren94]

[RK02]

[RLS*96]

[RMC04]

[RMC05]

[RMC9I]

[RMS92]

[Rob98]

[Rob99]

[RomOI]

Rennison E.: Galaxy of News: An Approach to Visualizing and Understanding Expansive News

Landscapes. Proceedings ofUIST'94, ACM Symposium on User Interface Software and Technology

(1994),3-12.

Roli F., Kittler 1.: Fusion of Multiple Classifiers. Information Fusion 3 (2002),243.

Roth S. F., Lucas P., Senn 1. A., Gomberg C. C., Burks M. B., Stroffolino P. J., Kolojejchick J. A.,

Dunmire C.: Visage: A User Interface Environment for Exploring Information. Proceedings of

IEEE Information Visualization (October 1996),3-12.

Ross G., Morrison A. J. Chalmers M.: Coordinating Views for Data Visualisation and Algorithmic

Profiling. In Proceedings of CMV'04, the IEEE International Conference on Coordinated and

Multiple Views in Exploratory Visualization (July 2004), 3-14.

Ross G., Morrison A. J. Chalmers M.: Visualisation Techniques for Users and Designers of Layout

Algorithms. In Proceedings of /V'05, the 9th International Conference on Information Visualisation

(July 2005), 579-586.

Robertson G. G., Mackinlay 1. D. Card S. K.: Cone Trees: Animated 3D Visualizations of

Hierarchical Information. Proceedings of CHJ'9I, ACM Conference on Human Factors in

Computing Systems (1991),189-194.

Ritter H., Martinetz T., Schulten K.: Neural Computation and Self-Organizing Maps. Addison

Wesley. 1992.

Roberts J. C.: On Encouraging Multiple Views for Visualization. IEEE Conference Information

Visualization IV '98 (July 1998), 8-14.

Roberts J. C.: Display Models for Visualization. Proceedings of the International Conference on

Information Visualization (July 1999), 200-206.

Rome E.: Simulating Perceptual Clustering by Gestalt Principles. 25th Workshop of the Austrian

Associationfor Pattern Recognition OAGM / AAPR (June 2001),191-198.

[RRBW03] Rosario G. E., Rundensteiner E. A., Brown D. c., Ward M. 0.: Mapping Nominal Values to

Numbers for Effective Visualization. Proceedings of InfoVis '03, IEEE Symposium on Information

Visualization (2003),113-120.

[RSOO]

[RS98]

Roweis S. T., Saul L. K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding,

Science 290 (2000), 2323-2326.

Reising D. V. C., Sanderson P. M.: Designing Displays Under Ecological Interface Design:

Towards Operationalizing Semantic Mapping. Proceeding of the Human Factors and Ergonomics

Society 42nd Annual Meeting (October 1998), 372-376.

250

[RSPC93]

[SA82]

[Sa171]

[SB82]

[SCB98]

[SCOO]

[Sch96]

[SDBOI]

[SEKX98]

[She62]

[Shn83]

[Shn94]

[Shn96]

[Sib73]

Russell D. M .• Stefik M. J .• Pirolli P .• Card S. K.: The Cost Structure of Sensemaking. Proceedings

of ACM INTERCHI'93 Conference on Human Factors in Computing Systems (1993). 269-276.

Spence R.. Apperley M. D.: Data Base Navigation: An Office Environment for the Professional.

Behaviour and Information Technology I. I (1982). 43-54.

Salton G. cd.: The SMART Retrieval System-Experiments in Automatic Document Processing.

Prentice Hall. 1971.

Sudman S .• Bradburn N. M.: Asking Questions: A Practical Guide to Questionnaire Design. Jossey

Bass. 1982.

Swayne D. F .• Cook D .• Buja A.: XGobi: Interactive Dynamic Data Visualization in the X Window

System. Journal of Computational and Graphical Statistics 7. (1998). 113-130.

Su M.-C .• Chang H.-T.: Fast Self-Organizing Feature Map Algorithm. IEEE Transactions on

Neural Networks II. 3 (2000). 721-723.

Schikuta E.: Grid Clustering: An Efficient Hierarchical Clustering Method for Very Large Data

Sets. Proceedings of the 13th Conference on Pattern Recognition. Vol. 2 (1996). 10 1-105.

Savaresi S. M .• Boley D. L.: On the Performance of Bisecting K-Means and PDDP. First SIAM

International Conference on Data Mining (April 2001). 1-14.

Sander J .• Ester M .• Kriegel H.-P .• Xu x.: Density-Based Clustering in Spatial Databases: The

Algorithm GDBSCAN and its Applications. Data Mining and Knowledge Discovery 2. 2 (June

1998).169-194.

Shepard R. N.: The analysis of proximities: Multidimensional scaling with an unknown distance

function. parts I and II, Psychometrika 27 (1962). 125-140 and 219-246.

Shneiderman B.: Direct Manipulation: A Step Beyond Programming Languages. IEEE Computer

16,8 (1983). 57--68.

Shneiderman B.: Dynamic Queries for Visual Information Seeking. IEEE Software lI. 6 (1994).

7~77.

Shneiderman B.: The Eyes Have it: A Task by Data Type Taxonomy for Information Visualization.

Proceedings of IEEE Workshop on Visual Languages (1996). 336-343.

Sibson R.: SLINK: an Optimally Efficient Algorithm for the Single-Link Cluster Method. The

Computer Journal 16. I (1973). 3~34.

2S1

[SK02]

[SKKOO]

[SML96]

[SowOO]

[SpiOO]

[Spo93]

[Str02]

[Sun02]

[Sun03]

[Too2]

[TorS2]

[TSDS96]

[UFK*89]

[vRij79]

[WAMOI]

Schroeder M., Katopodis G.: Can Hierarchical Clustering Improve the Efficiency of Non-Linear

Dimension Reduction with Spring Embedding? Proceedings of VDM'02, 2nd International

Workshop on Visual Data Mining (August 2002).

Steinbach M., Karypis G., Kumar V.: A Comparison of Document Clustering Techniques. KDD-

2000 Workshop on Text Mining (2000), 109-110.

Schroeder W. J., Martin K. M., Lorensen W. E.: The design and implementation of an object

oriented toolkit for 3D graphics and visualization. Proceedings of the 7th conference on

Visualization (1996), 93-100.

Sowa J. F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations.

Brooks/Cole, 2000.

Spiegler I.: Knowledge Management: A New Idea or a Recycled Concept. Communications of the

Associationfor Information Systems 3, I (June 2000). Article 14.

Spoerri A.: InfoCrystal: A Visual Tool for Information Retrieval and Management. Proceedings of

CIKM Conference (1993), 11-20.

Strehl A.: Cluster Ensembles-A Knowledge Reuse Framework for Combining Multiple Partitions.

Journal of Machine Learning Research 3, (2002), 58H17.

Sun Microsystems Inc., Fundamentals of JFC/Swing: Part II.

httpl/:developer.java.sunldeveloper/online TraininglGUIISwing2/index.htm (August 2(02).

Sun Microsystems. Java API. http://java.sun.com/apil (September 2003).

Takatsuka M., Gahegan M.: GeoVISTA Studio: A codeless visual programming environment for

geoscientific data analysis and visualization. Computers and Geosciences 28, 10(2002), 1131-1144.

Torgerson W. S.: Multidimensional Scaling: I. Theory and Method. Psychometrilca 17. (1952), 401-

419.

Tweedie L.. Spence R., Dawkes H., Su H.: Extemalising Abstract Mathematical Models.

Proceedings of ACM Conference on Human Factors in Computing Systems (1996). 406-412.

Upson. c.. Faulhaber T. Jr., Kamens D., Laidlaw D., Schlegel D., Vroom J., Gurwitz R., van Dam

A.: The Application Visualization System: A Computational Environment for Scientific

Visualization. IEEE Computer Graphics and Applications (July 1989), 30-42.

van Rijsbergen C.J.: Information Retrieval. 2nd edition, Butterworths. 1979.

Weber M., Alexa M., Mueller W.: Visualizing Time Series on Spirals. Proceedings of InfoVis'Ol,

IEEE Symposium on Information Visualization (2001), 7-14.

252

[Wis99]

[WM04]

[WTP~5]

[WYM91]

[XOD02]

[YH38]

Wise J. A.: The Ecological Approach to Text Visualization. Journal of the American Society for

Information Science, Special Issue on Integrating Multiple Overlapping Metadata Standards 50, \3

(November 1999),1224-1233.

Williams M., Munzner T.: Steerable, Progressive Multidimensional Scaling. Proceedings of

Info Vis '04, IEEE Symposium on Information Visualization (2004), 51--64.

Wise J .• Thomas J .• Pennock K., Lantrip D., Pottier M., Schur A., Crow V.: Visualizing the Non

Visual: Spatial Analysis and Interaction with Infonnation from Text Documents. Proceedings of

Info Vis '95, IEEE Symposium on Information Visualization (1995). 51-58.

Wang W., Yang J., Muntz R.: STING: A Statistical Infonnation Grid Approach to Spatial Data

Mining. Proceedings of 23rri International Conference on Very Large Data Bases (1991), 186-195.

Xu Y., Olman V. and Xu D.: Minimum Spanning Trees for Gene Expression Data Clustering.

Bioinformatics 18, (2002), 536-545.

Young G., Householder A. S.: Discussion of a Set of Points in Terms of their Mutual Distances.

Psychometrika 3, I (1938), 19-22.

[YPWR03] Yang 1, Peng W., Ward M. 0., Rundensteiner E. A.: Interactive Hierarchical Dimension Ordering,

Spacing and Filtering for Exploration of High Dimensional Datasets. Proceedings of Info Vis '03,

IEEE Symposium on Information Visualization (2003), 105--112.

[YS93]

[YWR02]

[Zah11]

Young D., Shneiderman B.: A Graphical FilterlFlow Model for Boolean Queries. Journal of the

American Societyfor Information Science 44,1(1993),321-339.

Yang J., Ward M. 0., Rundensteiner E. A.: InterRing: An Interactive Tool for Visually Navigating

and Manipulating Hierarchical Structures. Proceedings of Info Vis '02, IEEE Symposium on

Information Visualization (2002). 11-84.

Zahn C. T.: Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE

Transaction of Computers 20, 1 (1911),68-86.

253

