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Abstract 

To help understand multidimensional data, information visualisation techniques are often 

applied to take advantage of human visual perception in exposing latent structure. A popular 

means of presenting such data is via two-dimensional scatterplots where the inter-point 

proximities reflect some notion of similarity between the entities represented. This can result 

in potentially interesting structure becoming almost immediately apparent. 

Traditional algorithms for carrying out this dimension reduction tend to have different 

strengths and weaknesses in terms of run times and layout quality. However, it has been found 

that the combination of algorithms can produce hybrid variants that exhibit significantly lower 

run times while maintaining accurate depictions of high-dimensionai structure. 

The author's initial contribution in the creation of such algorithms led to the design and 

implementation of a software system (HIVE) for the development and investigation of new 

hybrid variants and the subsequent analysis of the data they transform. This development was 

motivated by the fact that there are potentially many hybrid algorithmic combinations to 

explore and therefore an environment that is conducive to their development, analysis and use 

is beneficial not only in exploring the data they transform but also in exploring the growing 

number of visualisation tools that these algorithms beget. 

This thesis describes three areas of the author's contribution to the field of information 

visualisation. Firstly, work on hybrid algorithms for dimension reduction is presented and 

their analysis shows their effectiveness. Secondly, the development of a framework for the 

creation of tailored hybrid algorithms is illustrated. Thirdly, a system embodying the 

framework, providing an environment conducive to the development, evaluation and use of 

the algorithms is described. Case studies are provided to demonstrate how the author and 

others have used and found value in the system across areas as diverse as environmental 

science, social science and investigative psychology, where multidimensional data are in 

abundance. 
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1. Introduction 

1.1 Introduction and background 

To gain actionable knowledge from the ever-increasing sea of data facing analysts, data must 

be represented in a way that any pertinent information contained is made available as quickly 

as possible. It is well known that of all the senses, the human visual system has by far the 

greatest bandwidth for communicating information to the brain and it is for this reason that 

data are often represented graphically [CMS99]. 

A major challenge, however, is in graphically depicting abstract data. Abstract data are 

those observations or measurements that have no direct physical derivation and therefore do 

not immediately lend themselves to the spatial mappings required for visual rendering. This is 

compounded by complex data sets consisting of many items, each consisting of many 

variables. In the endeavour to make sense of these multivariate data by thinking of them in 

spatial terms, they are referred to as multidimensional data. 

When data are presented graphically on a spatial substrate, interesting features such as 

patterns, trends and Gestalt forms might be revealed. A very popular means of achieving this 

is to plot the data as points against the axes of a two-dimensional scatterplot. If the data 

dimensionality is relatively low, for example four, then scatterplot points can be rendered as 

glyphs, whose positions denote two dimensions, and whose visual properties encode the 

remaining dimensions in retinal variables such as shape, size or colour [CMS99]. However, 

when the data dimensionality is too high to directly map to position and other visual 

structures, the data must be transformed in such a way that they are represented by a lower 

number of derived dimensions that retain as much of the original information as possible. This 

is known as the challenge of dimension reduction or multidimensional scaling (MDS). 

Many researchers have developed dimension reduction algorithms, sometimes referred 

to as layout algorithms, each with different benefits and drawbacks. Some algorithms can be 

very effective at reducing dimensionality whilst preserving the high dimensional relationships, 

but be too inefficient to scale up to data sets with high cardinality. On the other hand, some 

algorithms might be fast but be unable to accurately capture the original information, thus 

interesting patterns can elude the analyst. To address this, some researchers have investigated 



the diligent combination of algorithms to minimise the individual weaknesses while making 

the most of their strong points. 

The challenges presented by this hybrid algorithmic approach include determining 

which algorithmic components should be combined and in what order, as well as how to 

assess their performance. The advantages of the combination of algorithms, and the challenges 

they present, motivate the author in pursuing this rich avenue of research. 

The main objective of the research is to develop a framework for creating clustering and 

layout algorithms, and to develop and evaluate a platform in which they can be used to 

explore multidimensional data. The framework has been embodied in a software system 

called HIVE (Hybrid Information Visualisation Environment) that has a novel hybrid 

algorithmic architecture at its core. This architecture enables algorithmic and visualisation 

components to be combined so that they complement each other in producing effective hybrid 

visualisation applications. 

It is the intention of this thesis to provide a proof of concept for the HIVE framework 

via an account of advances in HIVE and observations of its use by the author and other 

information visualisation practitioners. 

1.2 Motivation 

Dimension reduction can be achieved either by linear projection algorithms such as Principal 

Component Analysis (PCA), or by non-linear techniques such as those in the family of Force

Directed Placement (FOP) algorithms. Both techniques consider data as a set of vectors 

where each element is a value for a particular variable or attribute. This allows each datum to 

be regarded as a point in a high-dimensional space. Linear dimension reduction techniques 

tend to seek a projection of these high-dimensional points on a plane, maximising variance or 

some other projection index. While this process can be fast and therefore more readily applied 

to large data sets, it is achieved via a linear combination of the variables and therefore 

potentially interesting non-linear structure in the data can evade detection. 

Non-linear techniques, on the other hand, have more freedom to find a low-dimensional 

representation of the data in which complex relationships in the data are preserved. However, 

non-linear techniques tend to exhibit high computational complexity and therefore are not so 

applicable to large data sets. This is a frustrating drawback because it is commonly the case 

that it is harder to find interesting patterns as data sets grow in size, while the applicability of 

the non-linear algorithms that have more potential in finding such structure diminishes 

because of their complexity. 
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This dilemma is the prime motivator of the author's research and has prompted work 

into the development of faster algorithms for non-linear dimension reduction. It has been 

found that the hybrid combination of algorithmic components can produce models exhibiting 

significant reduction in computational complexity while preserving latent high-dimensional 

structure within data. These algorithms provide an opportunity to gain more insight into the 

exploration of larger data sets. 

Non-linear techniques lend themselves to intuitive heuristic improvements [CT98], 

because they are often modelled upon simple physical systems such as the spring model 

[Ead84], and this helps when creating novel hybrid solutions. However, there are many 

hybrid algorithms and potential improvements to explore and this, in itself, presents a large 

problem space. The algorithms, the views of the data they produce and the interaction 

mechanisms that supplement their utility are shown to be useful tools in the exploration of 

multidimensional data. However, the number of tools available is growing as fast as the data 

and therefore visualisation techniques can be called upon to help the designer build them and 

the user decide how and when to use them. 

To address this, a development environment is required in which dimension reduction 

algorithms can, on the one hand, be quickly prototyped and profiled, and on the other hand, be 

used to explore data. This dual role of an environment, both for the development and use of 

dimension reduction algorithms, is due to the premise that the best way of developing and 

evaluating visualisations is not only by the analysis of the computational aspects such as time 

and space complexity but also through their use in anger on exploratory tasks. 

This thesis shows how the algorithmic development environment created by the author 

has been used to build effective hybrid algorithms and how they have been used to gain 

insight into abstract multidimensional data. More generally, the work explores the way that 

making a visualisation that is customised to one's data and interests, and which takes 

advantage of a palette of algorithmic components, can be a complex task - a task that may be 

aided by modern tools for interaction and visualisation. It would be frustrating and limiting for 

designers and for users if powerful tools for analysis were themselves difficult to analyse and 

understand. Therefore it is suggested that the use of visualisation for visualisation - in the 

form of well-designed interaction with the algorithmic components, processes and parameters 

of a visualisation system - might afford deeper insight into the visualised information itself. 
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1.3 Research aims 

The aim of the research described in this thesis is to provide a framework in which the hybrid 

approach to non-linear dimension reduction can be thoroughly investigated. The framework 

should be implemented in a system in which algorithm designers and analysts can quickly 

prototype and experiment with potential solutions; it should be conducive to the visual 

exploration of the data space as well as the solution space. Hybrid algorithms naturally lend 

themselves to providing multiple views of data as they are transformed and this can be a 

bonus. It should be possible to assess algorithms with respect to this expressiveness and the 

opportunity it presents for affording richer interaction with the data they transform. 

1.3.1 Thesis statement 

An algorithmic development environment can be used to build effective hybrid dimension 

reduction algorithms and can provide insight into abstract multidimensional data. Building 

algorithms for information visualisation through the use of visualisation techniques expedites 

the exploration of the algorithms as well as the data they transform. 

1.3.2 Key research questions 

Previous work with hybrid algorithms has provided evidence of their efficacy, but in order to 

validate a general framework and environment for their creation and use, certain questions 

must be answered: 

1. Which algorithmic components should be combined? 

2. When should the different types of algorithms be used? 

3. As well as facilitating the creation and evaluation of hybrid algorithms, can the system 

be effective in allowing the exploration of the data they transform? 

4. Is visualisation good for creating new visualisations? 

The first two questions pertain to an algorithmic 'cookbook' for the creation and evaluation of 

hybrid algorithms for dimension reduction. The last two questions enquire as to their use 

within HIVE as an environment where algorithm creation is integrated with data exploration. 

The answers to these questions will determine whether the framework can enhance hypothesis 

formation, experimentation and analysis - a fundamental cycle in visual infonnation-seeking. 
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1.3.3 Approach 

To answer the first two research questions, the author began experimenting with combinations 

of algorithmic components to create hybrid dimension reduction and clustering solutions. The 

palette of components the author used was made up from most of the algorithms described in 

Chapters 3 and 4. It was found that by matching the complexity of algorithmic components to 

the complexity of data as they are transformed, effective and efficient hybrid algorithms can 

emerge. This is documented in Chapter 5 and forms the basis of the hybrid algorithmic 

framework detailed in Chapter 7, identifying which algorithmic components should be used 

and when they should be applied. 

A software environment was developed to test the framework and the hybrid solutions 

it helps generate. Chapter 6 details a review of the literature that was carried out as a 

requirements gathering phase. It is suggested that the algorithms should not only be tested 

using quantitative measurements such as runtime and stress, but they should also be tested for 

their effectiveness in allowing users to explore data. The algorithmic development 

environment and the studies of user engagement described in Chapter 10 answered the third 

research question: as well as facilitating the creation and evaluation of hybrid algorithms, can 

the system be effective in allowing the exploration of the data they transform? 

The approach taken to answer the fourth research question (is visualisation good for 

creating new visualisations?) was to build the functionality to allow users to create 

visualisation applications through visual programming. Also, to profile the underlying 

algorithms via visual profiling methods such as those described in Chapter 8. Again, 

observations from user engagement helped answer this question. 

1.4 Thesis structure 

The rest of this thesis is structured as follows: 

Chapter 2: A survey of the information visualisation literature is summarised. The chapter 

describes the major advances and the most popular interaction techniques employed in 

information visualisation. 

Chapter 3: A detailed exposition of clustering algorithms as a means for reducing data for 

subsequent visualisation is provided. The six main categories of clustering algorithms are 

hierarchical, partitional, density-based, graph-based, grid-based and model-based. Examples 

of each category are described. 
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Chapter 4: Dimension reduction is another way of performing data reduction, somewhat 

orthogonal compared to the clustering approach. Again, the emphasis is on visualisation and 

several important dimension reduction algorithms are described. 

Chapter 5: The merits of hybrid combinations of clustering and layout algorithms with respect 

to run time and output quality are illustrated. Examples from the literature are provided before 

going on to describe the author's own work in this area. A novel hybrid spring model is shown 

to outperform what was the fastest non-linear dimension reduction algorithm. A new non

metric MDS algorithm is also discussed. Finally a new hybrid clustering algorithm is 

illustrated. 

Chapter 6: Given the advantages of the hybrid approach to creating clustering and layout 

algorithms as described in Chapter 5 it is proposed that a custom environment (HIVE) for 

their creation, evaluation and use would be beneficial. This chapter details a review of the 

literature regarding the design and development of visualisation environments as a 

requirements gathering phase and precursor to the implementation of HIVE. 

Chapter 7: The design and implementation of HIVE is described. A novel hybrid algorithmic 

framework, at the heart of HIVE, is proposed to help guide the algorithm designer and semi

automatically create hybrid algorithms. Examples of HIVE's use are given along with a 

reflection upon the main issues raised in Chapter 6. 

Chapter 8: This chapter provides an account of how HIVE's suite of tools has been extended 

to aid in the evaluation and intervention of hybrid algorithms. 

Chapter 9: An example of how HIVE can be applied to the analysis of unstructured text is 

given. It was surmised that the ability for HIVE to analyse such data would boost its adoption 

by other researchers with the aim to gain more feedback on its use and areas for improvement. 

Chapter 10: Since the early stages of HIVE's development, the author has made the source 

code freely available. This chapter provides an account of feedback from users. Examples and 

case studies of its use by others and what the author has learned from this are given. The case 

studies demonstrate two modes of use: one where new algorithms and visualisations are 

developed, and one where the software is used solely for data exploration. 

Chapter 11: The thesis is concluded with a summary of the work undertaken and the value of 

its contribution to the field of information visualisation. The author reflects on the design 

implications of HIVE and potentially fruitful avenues for future research are also described. 
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2. Information Visualisation 

Visualisation is of a holistic nature - it is more than the sum of its parts. It is essentially a 

cognitive aid that provides inspiration or insight into the previously latent relationships within 

data. This is called cognitive amplification [CMS99]. The subject of this thesis resides in the 

field of information visualisation and this chapter begins by describing the field's roots in 

scientific visualisation before discussing some of the facets that comprise the visualisation of 

abstract data. 

2.1 Scientific visualisation 

In 1987 the National Science Foundation (NSF) in the United States published a report, 

Visualization in scientific computing [MOB87] that paved the way for the fields of scientific 

and information visualisation. The emphasis on visualisation was (and still is) dominant 

because the NSF recognised that visualisation provides scientists with a tool that can 

transform their myriad data into images that allow people to recognise patterns. It was also 

realised that when visualising simulations of physical systems, the scientists could steer the 

simulations by changing the parameters used in their calculations and immediately gain visual 

feedback, whereas previously the calculations would require to be rerun in entirety. 

Scientific visualisation occurs when physical data are represented by graphics 

portraying a physical system, allowing scientists to explore its properties. In this way the 

visualisation is an external aid supporting the human's mental model of a system; it helps 

humans perceive its properties and amplifies cognition [CMS99]. If it were not for apt 

visualisations then humans could easily fall foul of information overload. If someone were to 

look at a database table consisting of thousands of records, each representing an object 

(datum), and each with numerous variables (columns), it would be almost impossible to gain 

an overview of structure in the data. The virtue of visualisation also enhances communication 

and teaching because much of the information portrayed cannot be easily communicated in 

print [DBM89]. 

Application areas for scientific visualisation include molecular modelling, medical 

imaging, meteorology, astrophysics, flow analysis and seismology. (see Figures 2.1 and 2.2). 

The common property of the data predominant in such fields is that the variables are 

inherently spatial and can map directly on to a spatial substrate rendered on a CRT. 
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A typical implementation for scientific visualisation systems is in the form of a modular 

data-flow architecture where data are piped through a set of modules, each of which has a 

specific purpose such as carrying out calculations, rendering or controlling parameter values. 

This piping of data is akin to the familiar UNIX pipe command for controlling the flow of data 

in inter-process communication [Hae88]. The data-flow architecture allows the modules to be 

connected in a network that ultimately shapes the application with respect to its input, 

transformations and graphical rendering. This notion has been extended to allow users to 

explicitly build the data-flow network, usually through direct manipulation of representations 

of the modules at the interface, and effectively build their own applications [AT95a, BBB*93, 

Hae88, UFK*89]. 

Figure 2.1 A screenshot from the IBM DX scientific visualisation system [AT95a] depicting an 

unsteady flow simulation over a space shuttle launch vehicle. 

Figure 2.2 Initial survey results obtained by HMS Scott showing images of the coastline of Sumatra 

where the earthquake that resulted in the Indian Ocean tsunamis occurred. It is hoped that these 

visualisations will help scientists understand the cause of such natural phenomena and help predict 

them in the future. 
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2.2 Information visualisation 

According to Card, Mackinlay and Shneiderman, the phrase Information Visualisation was 

first adopted in [RCM89]. In this context information refers to non-physically based abstract 

data and visualisation is the use of computers to visually render these data in such a way that 

humans can interactively explore their structure. Information visualisation is inspired by 

scientific visualisation but in this case the data to be turned into information are abstract and 

generally have no straightforward physical derivation. Figure 2.3 provides an example in 

which the abstract data, in this case search results returned by Google, can be interactively and 

pictorially summarised according to criteria such as hit rank and web-page size. 

Figure 2.3 A Honeycomb© [Hon04] view of results returned by the Google internet search engine. The 

visualisation is based upon Johnson and Shneiderman's treemap [JS91]: a technique designed to utilize 

space efficiently in the display of hierarchical information structures. 

Information visualisations are holistic and have many facets such as interaction 

mechanisms, spatial representations and abstraction. The fields of Human Computer 

Interaction (HCI), cognitive, Gestalt and ecological psychology influence them. The types of 

data and their volume in terms of data set size and dimensionality are key issues in 

determining their form, and therefore mathematical algorithms playa major part in both data 

transformations and visual rendering. 
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Applications of information visualisation include stock market analysis, project 

management, risk analysis, information retrieval etc. The literature presents many information 

visualisation techniques and workspaces borne of diverse architectures. Some examples are 

Visage [RCK*97], IVEE [AW95], Information Visualizer [CRM91] and snap-together 

visualisation [NSOOa, NSOOb, NorOl, NSOl] . Figure 2.4 shows an application of visualisation 

in project management. This tool is part of a commercial issues-tracking package [Nic04] 

developed by the author for Nickleby HFE Ltd. In this case, the author has used the package 

to track issues relevant to his PhD research. The visualisation shown here is of a subset of the 

issues, arranged according to how they are interrelated. 
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Figure 2.4 The link map visualisation in nicklebYKIT®. Each node represents an issue raised in respect to 

the author's research. Nodes that are deemed as being closely related are linked. The layout was 

produced by a force-directed placement algorithm for graph-drawing (see Section 4.4). 

2.3 Abstraction 

Abstraction is a conceptual representation of a physical (or non-physical) object. In computer 

graphics this abstraction is the visual rendering of properties of the object. This presents less 

of a problem in scientific visualisation because the properties tend to be physical. However, 

in information visualisation, the properties of objects tend to have no straightforward 

derivation from physical space and thus the problem of creating visual representations that 

appeal to the human's perception is harder. 

There are four prominent considerations in the process of creating visual 

representations of abstract data. These are dimensionality, which will be discussed in more 
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detail in the next section, data types, Gestalt principles and visual structures. Each of these 

must be taken into account in order to provide an effective mapping of data onto a perceptual 

visual form, namely a 2- or 3- dimensional spatial substrate. 

2.3.1 Gestalt principles 

Humans can interpret visual information very quickly. When we look at a picture, whether 

static or animated, our visual system allows us to perceive patterns and relationships between 

components of the picture. For example, a group of points on a scatterplot, which are close 

together, will be perceived to be a cluster and therefore stand out as one perceptual unit. This 

is illustrated in Figure 2.S. It is with regard to such automatic pattern or grouping detection 

that Gestalt principles exist. 

Gestalt is the German translation of the word shape or form and is the inspiration for the 

Gestalt school of psychology that, in the early part of the 20eb century, investigated some 

perceptual grouping properties and devised the Gestalt laws of grouping [RomOl]. Table 2.1 

provides a categorisation of these laws [CMS99]. 

Rule DeSCr!l!dOD 

Prignanz I Figural Visual perception groups stimuli into a good figure. In this 
goodness context, good means simple, regular, symmetrical etc. 

Familiarity 
Groups are more likely to appear if they seem familiar or 
meaningful. 

Similarity 
When presented with several stimuli, those that are similar to 
one another tend to be perceived as a group. 

Closure Contours that are spaced close together tend to be united. 

Good A consecutive straight or curved path of close spacing through 
continuation a set of objects is perceiVed as a group. 

Proximity 
Objects that are close to one another are perceiVed as a group I 
cluster. 

Common fate 
When objects are moving in the same direction they are seen as 
a group. 

Table 2. t Gestalt laws of grouping. 

The discovery of these principles means that they can be exploited to produce visualisations 

where the human can perceive aggregate structures or patterns to form a visual indexing. This 
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means that individual objects within a depiction become easier to find and thus in a good 

visualisation, exhaustive searching is not required. For example, the spring model [Ead84] 

was proposed to produce aesthetically pleasing graph layouts but has been widely used to 

produce layouts of general data objects. This meant that clusters could be formed and thus aid 

in analysing the intrinsic relationships within data [Cha96]. 
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Figure 2.5 A scatterplot has the potential to make groups of points appear as individual perceptual units 

(clusters). For example, the author would assume that in making reference to ' A' in the figure, the 

reader's attention would be drawn to the upper cluster as a whole and not the single point nearest to the 

label. 

Also, in [W AMO 1] time series data are mapped onto a spiral in order to make better use of 

screen real estate and to aid in the detection of cycles. This can be considered as an example 

of the good continuation rule and is illustrated in Figure 2.6. However, it should be noted that 

the groups formed within a visual representation are only useful if they reflect actual relations 

within the data and are not a side-effect of the underlying rendering process. 
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Figure 2.6 An example of the Gestalt principle of good continuation. Both of the above images 

represent sunshine intensity over an extended period of time, however, the spiral visualisation 

[W AMO I] more clearly shows the day/light periods. 

The Gestalt principles of organisation indicate that in a good layout, abstract data can 

be organised to provide a visualisation that reveals information in the structure and 

relationships within the data. As a final example on the importance of the Gestalt principles, 

consider the following figure: 

/ 

Figure 2.7 The familiarity rule. 

The above figure illustrates that at the heart of Gestalt theory is the proposition that in 

perception the whole is more than the sum of its parts. 
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2.3.2 Visual structures 

The mapping of data as abstract objects to symbols within a space is closely related to the 

Gestalt principles, specifically the similarity rule described above. However, there is more to 

visualisation than merely grouping similar objects. In the case of using visualisations for 

analysis and problem solving, individual entities may require comparison. For example, in a 

frequency domain graph, at what frequencies are the highest magnitudes exhibited? This 

brings to bear the need to distinguish between the types of variable considered and the spatial 

substrate in which they are represented. The main categories for variable types are as follows: 

Category Description 

Nominal can only be = or != to other values 

Ordinal can obey <, ~ > and ~lations 

Quantitative 
continuous values allowing mathematical axioms of division, 
multiplication, subtraction and addition 

Table 2.2 Variable types. 

In [CM97], a list of graphical properties is described and the appropriate mapping of variable 

types to some of these is demonstrated. The graphical properties are marks (including points, 

lines, areas, surfaces and volumes), position in space, and retinal properties, including shape, 

size, orientation etc. It has been established that certain variable types are better mapped onto 

specific graphical properties than others, i.e. some properties are more effective encoders of 

information than others. For example, in [CMS99] it is stated that greyscale is better for 

encoding and comparing nominal variables than quantitative variables. 

The careful use of graphical properties is essential in creating a visualisation that 

communicates information to the user. There have been a number of models proposed which 

aim to classify data by the type of visualisation that could best convey information. Several of 

these are described in [Rob99] where an algebraic method is proposed to describe 

visualisations in order to guide the visual designer in creating the most effective depiction of 

abstract data. 

2.3.3 Data types 

Where the type of variables considered in a visualisation can suggest the most appropriate 

representative glyphs and symbols, the overall intrinsic structure of data (internal relationships 
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and dimensionality) can suggest the utilisation of pre-existing visualisation types. As an 

example, temporal data may lend itself to being presented as a Gantt chart. 

In [Shn96], Shneiderman describes a Task by Data Type Taxonomy whereby a designer 

can choose between given examples of visualisations depending upon the type of data to be 

processed. The seven data types Shneiderman outlines are: 

• I-dimensional 

• 2-dimensional 

• 3-dimensional 

• multi-dimensional 

• temporal 

• tree 

• network 

This taxonomy was devised with Shneiderman's Visual Information seeking mantra [Shn96] 

in mind: "Overview first. zoom and filter. then details-on-demand." Shneiderman suggested 

that each component of the mantra is one of the salient tasks in visual information seeking. 

The major point of this section is to show that when a data type is known, there may 

already be tried and tested techniques for presenting a visualisation and therefore provide a 

basis for discussion or prevent the designer from ore-inventing the wheel' for new tools. 

2.4 Dimensionality 

Dimensionality pertains to the number of attributes or variables that are to be considered for 

every object within a visualisation. For example, a geographical position can be described by 

two variables: latitude and longitude. Dimensionality is an important consideration in 

information visualisation because humans can only readily perceive structures within a low 

number of dimensions. If a set of objects of three dimensions or less is to be visualised, then 

the dimensions can be mapped directly onto a set of orthogonal axes. Considering the example 

above, a set of geographical positions may be displayed by mapping longitude to the x-axis 

and latitude to the y-axis, while maintaining the proportional distance interrelationships 

between points. However, there are many cases where the entities to be visualised have many 

dimensions and therefore there is no direct mapping to a 2- or 3-dimensional substrate. As an 

example, consider the visualisation of a corpus of textual documents where each unique word 
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contained within the set is regarded as a dimension. In this case the dimensionality of the 

space in which the objects reside can go into the tens of thousands. 

In this section some of the techniques that have been applied to the visualisation of low 

(:S3) and high (>3) dimensional data will be discussed. 

2.4.1 I-dimensional visualisation 

A common example of I-dimensional data is a list. Lists may be composed of any variable 

types, but in this section strings represented as ordinals will be considered. In [Eic94a] a 

visualisation tool called SeeSoft is presented where lines of source code are greatly visually 

compressed into narrow rectangles along a folding axis (see Figure 2.8). The author of 

[Eic94a] describes this method as reduced representation and claims that up to 50,000 lines of 

code can be displayed within one screen. The beauty of this approach is that the reduced 

representation holds all of the spatial pattern information within the data set in the same way 

as the original text, but reduced in size so that an overview is gained that maintains 

recognisable groupings of the unreduced text. The system also offers interactive features such 

as a magic lens to allow users to magnify and read sections of code. The retinal variable, 

colour, is also used to map statistical information such as modification requests to lines of 

code. In this way, the user can scan the overview of the code and automatically process the 

colour information to detect patterns and areas of interest for deeper examination. It may be 

argued that one of the contributors to the effectiveness of this visualisation is the familiarity 

rule of the Gestalt principles. The reduced representation of the source code does not distort 

the proportional natural layout of the data and therefore sections (groups) of lines may remain 

recognisable. The SeeSoft tool is also a good example of a visualisation of I-dimensional data 

because it exhibits the use of a folding axis. A folding axis is an axis that is designed to use 

available space more efficiently by folding back on its self at certain points (again, see Figure 

2.8). It is a 2-d method for visualising I-d data and therefore can be considered as a 

• dimension expansion' technique. This technique can be applied to the visualisation of data of 

dimensionality d > J, but it is most effective when variables of only one dimension are to be 

depicted. 
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Figure 2.8 An example of reduced representation. The figure depicts two source code modules, each of 

which is on a folding axis. 

2.4.2 2-dimensional visualisation 

When dealing with data of two dimensions, the visualisation process is often based upon a 

simple direct mapping onto two axes. The most common form of a 2-dimensional 

visualisation is a geographical map where locations are placed according to the longitude and 

latitude variables. 

Data that are comprised of two-variable entities are described as planar. This is because 

they map directly onto a flat 2-dimensional surface or plane. However, an interesting twist in 

the display of a 2-dimensional layout was proposed in [MRC91] where a 'perspective wall', 

shown in Figure 2.9, is described to transform 2-d layouts into a 3-d representation. The basic 

idea is that 2-d layouts with large aspect ratios can be distorted so that the central part of the 

layout is entirely visible to the user while the far left and right portions appear to stretch off 

into the distance. This is a technique inspired by the bifocal lens [SA82, ATS82]. This serves 

the purpose of affording the user detail and overview simultaneously and is closely related to 

the ideas of Furnas [Fur86]. The perspective wall is also an example of a type of folding axis 

in the 2-d case, where the two dimensions of the plane are folded in the direction of the third 

dimension (away from the user). 
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Figure 2.9 The 'perspective wall' distorts a 2-d layout so that the focus at the centre of the screen is 

most legible while the remainder of the layout is peripheral. The user can scroll potentially interesting 

parts of the layout to the fore and still be afforded the context of neighbouring regions. 

2.4.3 3-dimensional visualisation 

3-dimensional visualisation is most prominent in the field of scientific visualisation where 

collective bodies of 3-d physical data are often the basis of analysis. When a physical object 

is modelled it is useful to render it in three dimensions to conform to the mental model of the 

person who is viewing it. Examples include the visualisation of molecular structures and the 

physiology of the human body. 

Although 3-dimensional abstract data can be directly mapped into a 3-dimensional 

visualisation space, for example a 3-d bar chart could be used to depict a company's profit for 

different products across various cities, abstract data often gains little from this 

embellishment. This may be because there is no inherent physical mental model to sustain. 

On the other hand, there have been attempts to use a 3-dimensional space to navigate complex 

data structures. In (HK97], a system called Cat-a-Cone consists of a hierarchical ConeTree 

[RMC91] which is displayed in three dimensions to make better use of screen real estate (see 

Figure 2.10). In [Ren94] a tool named Galaxy of News organises textual information in a 3-d 

space where similarity between texts is reflected by their proximity to one another. As the user 

navigates through the space semantic zooming is employed to show or elide text and detail, 

depending upon the user's position in the space. However, there can be serious disadvantages 

to rendering abstract data in three dimensions. A problem exhibited by the Cat-a-Cone system 
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is that the nodes of the tree can become occluded and therefore the amount of information to 

be gleaned at anyone time is reduced. Also, in the Galaxy of News system, the lack of a 

referential horizon and ground plane can cause the user to be disoriented. In the words of 

Chalmers [Cha93], "Our skills in ... mental model-making, as honed on our everyday '2.1D ' 

world, become more difficult to employ." In the context of this quote, Chalmers describes a 

metaphor of a 2.1-d landscape for representing the distribution of a corpus of documents. This 

type of visualisation can be called an information landscape or themescape [WTP*95] and is 

based upon the premise that the metaphor can provide landmarks and other natural aids to 

allow the user to build a mental map of the corpus. Figure 2.11 depicts a visualisation based 

upon Wise's themescape [WTP*95]. 

Figure 2.10 Cat-a-Cone [HK97] arranges each level of a hierarchical categorisation scheme in a 3-d 

view to utilise space efficiently. This technique, like the 'perspective wall ', uses perspective distortion 

to clarify the focus (the node closest to the viewer) while maintaining the context of the adjacent nodes. 

Although 3-dimensional visualisations can be impressive, they do, in general, create 

cumbersome overheads. They require more powerful hardware and require more intensive 

processing in the visual transformations; navigation is more complex because at least six 

degrees of freedom of movement may be required and it is more difficult to incorporate 

textual objects that are often predominant in information visualisation [CMS99]. 
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Figure 2.11 A screenshot from Spire [Wis99] - a tool based upon Wise's themescape [WTP*95]. A 

document corpus is represented via a landscape metaphor in which the themes that run through the 

collection are mapped to visual attributes. 

2.4.4 4+ -dimensional visualisation 

In statistical analysis, data sets that are comprised of objects consisting of more than three 

variables are described as multivariate or hypervariate and are considered as n-attribute items 

dispersed within an n-dimensional space. Thus, in information visualisation these generally 

come under the rubric of the multidimensional. There has been a great deal of work 

concentrating on the visualisation of multidimensional data, spurred on by the fact that there is 

no possible way of directly mapping multidimensional objects onto a set of visually perceptive 

axes. However, there are some shortcuts available to multidimensional data at the lower end 

ofthe scale. For example, three dimensions of 4-dimensional data may be mapped onto points 

in a 3-d substrate and the fourth dimension mapped to colour, or shape, but beyond this, more 

innovative techniques must be derived. 

Spoerri [Sp093] proposes a tool called InfoCrystal (Figure 2.12) for querying and 

visualising results for information retrieval. The idea is to generalise the Venn diagram to 

discretely display the distribution of objects of more than three dimensions. This system is 

intuitive because of the familiarity with the Venn diagram; however, as the number of 

dimensions to be depicted increases the complexity of the graphics soon becomes 

overwhelming. 
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Figure 2.12 An Info ry tal [Sp093] representing three search criteria or inputs, A, Band C and all 

pos ible Boolean querie in nonnal conjunctive form. The interior icons can be embellished to show the 

result of ubmitting the respective queries to a document collection. Tn this example, these inputs 

define a 3-d earch pace, however, Spoerri has demonstrated the application of InfoCrystals to more 

than three inputs. 

Tweedie et al. [TSDS96] present the 'Prosection Matrix'. This idea stems from the 

statistical technique of representing all possible combinations of pairs of variables for a data 

set as a matrix of scatterplots. They embellished this technique by adding an interaction 

technique called brushing [BC87] that allows selected points in one scatterplot to be 

highlighted in others. In this case the brushing entails using sliders (one for each 

dimension/parameter) to define selected parameter ranges so that points in one scatterplot, 

depicting the relation hip between pI and p2 for instance, can be highlighted according to the 

elected range of p3 for example. Hence the name prosection was derived from projection of 

a ectioD. This technique, like that in InfoCrystal, also becomes intractable for visualising data 

of many dimensions becau e the number of scatterplots required is equal to N(N - 1)/2 where 

N is th number f dimensions. 

A the dimensionality of data increases, the plausible techniques for clearly depicting 

the influence of all of the attributes falls sharply in number and in effectiveness. It is partly 

for thi rea on that methods such as Multidimensional Scaling (MDS), Principal Components 

Analysi and a plethora of clustering algorithms exist. Specifically, in information 

visuali ation their role i to map the objects from their high-dimensional space to points in 

two or three dimension. hese techniques will be discussed in more detail in later chapters, 

but for now, m examples of their application will be given. 

in et a!. [ M9 I] take advantage of Kohonen' s self-organising feature map ( OM) 

[KKL'" J to map high-dimen i nal textual document onto a di crete 2-d grid. As tated 
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earlier, a corpus of textual documents has dimensionality roughly equal to the number of 

unique terms contained within, and therefore it is impossible to directly map the documents as 

points in this high-dimensional space into two or three dimensions. Lin et al. proposed that 

the SOM could be used to create concept areas in the plane of the SOM which would 

effectively partition the corpus into classes and thus give insight into the topology of the 

corpus at a glance (see Figure 2.13). 
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Figure 2.13 An example of the output of a SOM, depicting the concept areas relating to electronics. 

The only drawback with this approach is that only the topology of the corpus is 

communicated. Relationships between individual documents cannot be visualised as only the 

cluster centres are depicted and the discrete grid-like output of the SOM ensures that these are 

all evenly spaced. The SOM is described in more detail in Section 4.2. 

In a paper by Rodden et al. [RBSWO 1], another discrete visualisation maps images onto 

a grid to aid in browsing. In this case an unspecified MDS algorithm is used to create a 

continuous 2-d layout of objects so that similar images are placed close together, and then one 

of several algorithms proposed by Basalj [BasOO] is utilised to discretise the space in order to 

remove occlusions. This approach may be considered as an alternative heuristic to the SOM. 

2.5 Interactivity 

It is difficult to communicate the intrinsic and latent relationships within high-dimensional 

abstract data through a single static representation. For this reason, mechanisms which afford 

the u er interactive control over the representation are required to unlock the information that 

can only be revealed in dynamic visualisations. 
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2.5.1 Affordance and appropriation 

An important aspect that blends interactive visualisation with the premise of good graphical 

user interface (GUI) design is the issue of affordance. The user quickly understands the use of 

a device for a given function or activity. When affordance exists in the design of an interface, 

whether it is physical or in the digital domain, the resulting system is easier and maybe even 

pleasant to use [Nor88]. Sometimes affordances can be accidental, in which case the user may 

appropriate the functions to his or her own ends in different ways to those the interface 

designer intended or even considered. From the perspective of interface evaluation via 

observation of use, this can be advantageous in offering insight into the correct way to 

implement complex functions. 

2.5.2 Time 

Another important consideration in the design of interactive systems is the speed of 

interaction. In [CRM91] three categories of interaction speed are described: 

Time Category Description 

Stimuli presented within 0.1 s of each other are 
0.1 seconds perceptual processing perceived to be a single stimulus. An example of 

this is in animations comprised of several stills. 

1 second immediate response 
The minimum time in which a user may respond 
to stimuli. 

10 seconds unit task 
Described as the time taken for a simple action, 
requiring minimal cognition. 

Table 2.3 Categories of interaction speeds. 

Inspired by the interaction between humans, Robertson et al. [RCM89], proposed an interface 

architecture called the cognitive coprocessor to match the impedance between the user and an 

automated information agent. Essentially, the response times of the system should match the 

capabilities and expectations of the user when reacting to stimuli and carrying out elemental 

tasks. 

Shneiderman [Shn83] describes Direct Manipulation, which shows that a short 

response time for visual feedback is very important. Direct manipulation can be described as a 

metaphor for manipulating graphical objects as if using one's own hands, in order to conform 

to the user's expectations of what should happen. For example, when a file is dragged over 
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the recycle bin on a Windows OS desktop, and then let go, the file disappears as if the file has 

fallen into the bin. Shneiderman also describes the supplanting of textual query languages (in 

the user interface) such as SQL with direct manipulation in the fonn of Dynamic Queries 

[Shn94]. Dynamic queries provide immediate feedback during query fonnulation by updating 

results as the queries are built. 

From the above, it can be considered that direct manipulation mechanisms must react to 

the user's actions within 0.1 seconds for the perceived continuity of physical motion. 

2.5.3 Interaction mechanisms 

In a paper by Shneiderman [Shn96], his visual information seeking mantra is described: 

"Overview first, zoom and filter, then details-on-demand". According to Shneiderman this 

indicates the basic elements required in an interactive visualisation when seeking information. 

However, this implies that visual information seeking is a sequential process where a series of 

views are presented in isolation. The following sub-sections describe interaction mechanisms 

that have been developed to integrate such views so that overview and detail can be presented 

simultaneously, and zooming and filtering can be applied within the context of the original 

view. 

1.5.3.1 Overview plus detail 

An overview of a visual representation is important to afford the user navigation and pattern 

detection. As a result, searching can be enhanced. However, both the whole overview and the 

finer-grained details of local data structures are often required to facilitate analysis and 

evaluation of smaller portions of data. The overview enables a high-level view to help orient 

the user while (s)he drills down into the details. 

A typical guise of overview plus detail is the zoom function. In Eick's SeeSoft tool 

[Eic94a], a separate window can be shown over the reduced representation in order to allow 

the user to read individual lines of code. The advantage of this is that the user may perceive 

where he or she is within the overview and also gain finer details of that area. This, applied in 

SeeSoft, is an example of/ocus plus context and mimics the human's visual system where the 

bandwidth is split between the peripheral view and the higher resolution focus [CMS99]. This 

allows people to understand something by its context as well as its detail within the context. 

Two everyday examples of overview + detail include Windows Explorer - the overview 

is provided by a treeview while the detail is shown as a set of file and folder icons in a 

separate pane - and Adobe Acrobat [Ado04] where the thumbnail view gives a (reduced 

representation) overview of a PDF file, next to the detailed text. North, Shneiderman and 
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Plaisant [NSP96] contributed a more novel application in the visualisation of a medical digital 

library. The overview is a longitudinal cut of a human body and the detail view consists of an 

axial cross-section (see Figure 2.14). 

Figure 2.14 North et al. 's Visible Human Explorer interface. The overview of the human body is tightly 

coupled with axial detail view. The user can sweep a horizontal line across the overview to dynamically 

update the detailed cross-section view. 

The following subsection is inspired by the problem of overview plus detail and 

describes some of the methods for achieving it. 

2.5.3.2 Focus plus context 

Focus plus context is related to overview plus detail by the fact that the context is provided by 

the overview and the focus is on the finer detail. A classic example of the focus plus context 

method is Furnas's Generalised Fisheye Views [Fur86]. In this paper, Furnas defines a degree 

of interest (DOl) function that is used to assign a number reflecting the importance to the user 

of an object within a visual structure, given his or her current task. This number can then be 

used to reduce or remove detail from less important areas of the view. 

This is an example of a distortion technique similar to the Perspective Wall [MRC91]. 

Another example of view distortion for focus plus context is the hyperbolic tree [LRP95], 

where it is proposed that by mapping large hierarchical trees onto a hyperbolic plane, the 

hyperbolic geometry will create a fisheye-like distortion. The part of the plane that is the least 

distorted (more detailed and larger) is that which is closest to the viewpoint in the centre of the 

screen, i.e. the focus, whereas other areas are more distorted and shrink the embedded objects 

as the distance from the focus increases. Direct manipulation is used here to rotate the 
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hyperbolic plane and thus move the focus, and as a result very large tree hierarchies may be 

displayed. 

Zooming is another well established technique for gaining insight into detailed areas of 

a view while maintaining the context. There are two predominant types of zoom mechanisms: 

semantic and logical. Logical zooming lends itself more to our familiar notion of zooming as 

it describes the perspective notion of objects being larger when closer and smaller as the 

distance between them and the viewer increases. For this reason, logical zooming can be 

described as physical or geometric because our psychophysical perspective pertains mainly to 

changes in object size and colour saturation for this type of zooming. The SeeSoft tool 

described above makes use of logical zooming. 

On the other hand, semantic zooming, which mayor may not contain aspects of logical 

zooming, pertains more to the idea that as the area of focus approaches objects, the level of 

abstraction is changed - mappings of data attrIbutes to graphical properties change. A user

interface proposed by Bederson and Hollan called Pad++ [BH94] provides semantic zooming. 

Here, direct manipulation of a focus point is used to provide additional details to objects that 

appear under the focus. The Magic Lens [FS95] is another example of the zooming paradigm 

and has been demonstrated as a way to supplant textual database querying because mUltiple 

lenses (focus points) can be used in conjunction to form Boolean expressions that filter or 

abstract details of the objects being visualised. 

This now leads on to describing filtering within an information space. As stated earlier 

it is difficult to map high dimensional abstract data into a single static view. As a result MDS 

techniques have been devised to reduce the dimensionality in order to be able to display high

dimensional objects in a 2- or 3-d point space, usually preserving some distance function. 

Although this provides an overview of the data set's distribution, the contribution of 

individual attributes can be hard to interpret in these scatterplot-like displays - some variables 

may be more dominant than others. It is for this reason that filtering comes into its own as a 

means for drilling down into the data to help find latent relationships. As described, the magic 

lens is one means but there are many other OUI components that may afford the filtering 

process. One such component is the slider control, which provides an example of direct 

manipulation for view transformation. In [CM97] it is stated that using sliders, a user can take 

into account additional variables without these being mapped to retinal properties. 

In essence, a slider is a OUI control that allows the user to define ranges (double-ended 

sliders) or to select individual values or thresholds. Eick [Eic94b] describes the use of sliders 

to filter or highlight items within a view as determined by the value or range of values selected 

by the slider. An example of which can be found in Ahlberg and Shneiderman'sfilmjinder 
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[AS94a] as shown in Figure 2.15. In filmfinder, the range selected in a double-ended slider 

maps to a zoom function, while the position of the range, along the slider's scale, maps to a 

pan function. 

Eick then goes on to describe graphical embellishments such as using the space inside 

the slider to depict the distribution of the data being analysed (see Figure 2.16) and thereby 

provide clues in information seeking. 
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Figure 2.15 Double-ended sliders to the left and bottom of the plot in filmfinder allow the user to zoom 

and pan along the two axes, essentially filtering the view. 

Figure 2.16 A double-ended slider with a histogram, showing a range selection. 

Tweedie et al. [TSDS96] also make use of this type of enhanced slider. In their influence 

explorer tool, where histograms are used in conjunction with sliders, the sliders are all 

interlinked so that when the selection of one slider is changed, the effect can be seen by 

highlighting sections of the histograms of other sliders. 
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2.6 Conclusions 

In this chapter some of the techniques used in information visualisation, and their motivations, 

have been described. Information visualisation serves as a key to unlock the black box of 

abstract data, to reveal the interrelationships and salient properties. It is holistic in nature - it 

is more than just a collection of glyphs, axes and graphical structures. Through abstraction, 

visualisation can help the user create mental models of the data and gain insight into their 

structure. Through interaction, the user is prompted to ask questions and then be provided 

with the answers. It can afford the user navigation and browsing of abstract data whose 

elements reside in a bewildering number of dimensions. It is envisaged that in the future 

many more interesting and novel devices will be devised to aid the user's perception of 

complex data and their interrelationships. 

Visualisation relies upon intuitive reduction of data so that their representation is 

simplified and therefore information is easier to convey. A very popular means of attaining 

this is via cluster analysis. By considering data as points in a data space, clustering algorithms 

can find contiguous groups of closely related points thus reducing the representative size of 

the data set to the number of clusters. Another approach is to reduce the dimensionality of the 

data so that it conveys as much of the original information as possible using a small number of 

derived dimensions. As will be seen in later chapters, clustering and dimension reduction 

algorithms often go hand-in-hand to create hybrid solutions that provide an efficient and 

effective basis for visualisation. 

This thesis is concerned with the development of a system and framework for building 

and using such hybrid algorithms. Most of the visualisation techniques described above have 

been called upon to assist the user in creating algorithms, as well as for interacting with their 

output. The next chapter discusses the prominent methods for clustering data. 
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3. Clustering Algorithms 

In many disciplines, clustering is used as an exploratory tool for multidimensional data. It is 

essentially the process of organising points (or patterns) in a multidimensional space into 

groups based upon similarities. When applied to information retrieval, van Rijsbergen's 

cluster hypothesis [vRij79] succinctly states that if a document is similar to one that is 

contained within a known cluster of documents, then it is with high probability that it is also 

similar to the other documents within that cluster. 

Clustering provides a compact representation of data - instead of coping with a large 

amount of data, the clusters can be regarded as classes or categories and therefore made easier 

to understand and manipulate, especially when visualised. Jain et at. [JMF99] state that the 

process of clustering can be broken into the steps described in Table 3.1: 

Clustering step Description 

This includes determining which features (dimensions) of the 
Pattern representation objects comprising the data set are to be considered in calculating 

cluster memberships. 

Pattern proximity 
This defines how the similarity between objects is measured. 
This is normally based upon a distance function, of which the 

measure 
Euclidean distance is most widely used. 

This defines how the clusters are created. Methods include 
Clustering/grouping hierarchical, partitional, density-based, graph-based and model-

based. 

Devising a succinct description of the clusters based upon their 

Data abstraction members. These representations are known as cluster digests 
when applied in scatter/gather [CKPT92], and as concept areas 
[LSM91] in SOMs. 

Assessment of output Evaluating the validity of the clusters. 

Table 3.1 The main steps involved in cluster analysis. 

Note that in the above, a final step may be added that leads to adaptation of the algorithm as a 

result of the assessment of its output. This is especially the case in supervised learning 

algorithms. 

In real data, clusters come in all different shapes, sizes and densities with varying 

degrees of noise thrown in. It is therefore the goal of clustering algorithms to extract clusters 

in as many of these situations as possible. However, this is not a trivial task. Some clustering 
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algorithms cope well with, for example, finding clusters of varying sizes and densities, but not 

within the presence of noise or for different shaped clusters. 

In this chapter, several types of iterative, unsupervised clustering techniques are 

described, along with their visual representations where appropriate. Hierarchical and 

partitioning algorithms are described before going on to distinguish between graph-theoretic, 

density-based, grid-based and model-based approaches. The underlying algorithms generally 

concentrate on the high-dimensional clustering process but do not often provide a direct 

mapping to a lower dimensional visualisation. However, it is suggested that these could form 

a pre-processing step in dimension reduction. The chapter following this will describe 

algorithms that reduce the dimensionality of the data so that clusters can be directly visualised 

resulting in a more intuitive representation. 

Unsupervised algorithms will be focussed upon because they endeavour to find the 

natural groupings within abstract data where little is known a priori as to the intrinsic classes 

contained and structure of the data. 

3.1 Hierarchical 
Hierarchical clustering produces one large cluster (the entire data set) and partitions of sub

clusters. These sub-clusters, in tum, contain clusters, and so on. This can be represented by a 

structure called a dendrogram (see Figure 3.1). 

similarity 

Figure 3.1 A dendrogram, which when cut at different levels, will produce different clusters. 

Hierarchical clustering algorithms can be split into two types: agglomerative and divisive. 

Hierarchical agglomerative clustering (HAC) starts by considering each individual element in 

the data as a unit cluster and proceeds by merging elements (clusters) together until the 

desired number of clusters is reached or all of the elements in the data set have been included 

in a cluster. With regard to the dendrogram, this method may be seen as creating the 
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hierarchy from the leaf nodes upwards. Examples of this type of algorithm are single-link and 

complete-link. 

However, one drawback of HAC is that most of the clusters in the lower levels of the 

dendrogram are very small and very close together and therefore tend to be a waste of 

computation. This is especially problematic in HAC because these small clusters are 

necessarily formed before the larger ones. Manoranjan et al. [MLST03] call this the 90-10 

rule and use it to increase computational efficiency when validating clusters. 

The alternative, divisive approach (known as numeric taxonomy in the field of machine 

learning [LS97a)), works by initially considering the entire data set as one large cluster. The 

algorithm then proceeds by partitioning the set until, as above, a criterion for stopping is met. 

With this approach the 90-10 rule can be taken into consideration when deciding when to stop 

the clustering process. 

3.1.1 Agglomerative single-link clustering 

Single-link clustering - also referred to as nearest neighbour clustering - is one of the oldest 

clustering techniques (see [Sib73] for an implementation). It is an agglomerative hierarchical 

algorithm in that it starts with every point belonging to its own cluster and progressively 

merges clusters until one large cluster, containing all of the points, remains. The distance 

between two clusters is taken as the shortest distance from any member of one cluster to any 

member of the other. Pseudocode for the single-link algorithm is shown in Figure 3.2. 

1. given N points to cluster, assign each to its own cluster, i. e. 

initially there are N clusters 

2. find the closest pair of clusters and merge them 

3. compute the distance/ (dis) similarity between the new cluster and 

all other clusters 

4. repeat steps 2 and 3 until all items are members of a single 

cluster of size N 

Figure 3.2 The single-link clustering algorithm. 

The output of the algorithm is a nested set of graphs represented by a dendrogram (see Figure 

3.1), which when cut at the desired level (ofdistance/(dis)similarity) yields a clustering of the 

data. One of the major drawbacks of this approach is that it suffers from a chaining effect 

31 



where chains of close points form bridges between clusters and therefore erroneously merge 

them. As a result, the single-link algorithm tends to return elongated clusters [JMF99]. 

Two variants of this algorithm are complete-link and average-link techniques. These 

algorithms are identical apart from the way in which distance between clusters is measured. 

The complete-link method treats the distance between two clusters as the maximum distance 

between any member of one cluster and any member of the other. This serves to circumvent 

the chaining effect incurred by the single-link method and tends to return compact clusters. 

The average-link method treats the distance between two clusters as the average distance 

between any member of one cluster and to any member of the other. 

While these hierarchical algorithms are simple and intuitive, they have a number of 

disadvantages. They tend to be quite computationally expensive (O(N» and may prove to be 

infeasible for use with large amounts of high-dimensional data. In information visualisation, 

views often need to be dynamic and be generated on the fly, and therefore need fast clustering 

algorithms with respect to the underlying data. Also, dendrograms can be very hard to 

interpret, especially when the data set is large. Although the user does not have to estimate the 

number of clusters in advance, deciding which merging/splitting strategy to apply and 

determining where to split the dendrogram can be difficult. 

3.1.2 Scatter/Gather: An application of hierarchical 
clustering 

Cutting et al. [CKPT92] describe a hierarchical clustering technique for information retrieval 

aimed at overcoming the problem of users not being able to initially and precisely define their 

search goal. This technique is called scatter/gather and is inspired by the way that people use 

the table of contents of a textbook in order to gain a sense of the structure of the book as a 

precursor to searching for specific topics. The process works by clustering (scattering) the 

corpus into a number of clusters and presenting the user with short summaries of each cluster. 

These are called cluster digests. The user can then select (gather) one or more of these 

clusters and the system performs another clustering stage upon this sub-collection. This 

process continues, iteratively refining the results returned to the user until individually 

enumerated documents are presented. 

Pirolli et al. [PSHD96] indicate that scatter/gather allows the user to more efficiently 

browse a textual corpus, as opposed to searching for specific topics. This leads to gaining an 

insight into the distribution of topics within the corpus, which is a result in itself, thus 

allowing the user to build a mental model. Armed with this perception of the corpus, the user 

can then search the corpus and receive more accurate results. 
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Scatter/gather requires that the clustering algorithms used can be applied on-line. This 

is due to its interactive nature, requiring speedy responses to users' requests. It is for this 

reason that algorithms such as Buckshot (Section 5.1) are used to obtain clusters in rectangular 

time complexity. 

3.2 Partitional 
Unlike hierarchical clustering, partitional clustering forms a single partition in the data set, i.e. 

no dendrogram is created, and because of this, it is less computationally expensive. 

Generally, the input to partitional clustering is the data set and the desired number (k) of 

clusters. 

The most common partitional routine is an optimisation algorithm. Algorithms of this 

type, such as K-means [Mac67], aim to minimise a cost function which is associated with each 

cluster. 

3.2.1 K-means 

This algorithm is iterative and centroid-based. This means that the algorithm goes through an 

unknown number of cycles of creating clusters and updating the centroids until it finally 

converges. The algorithm starts by selecting k items from the data set, where k is the desired 

number of clusters to obtain - these are the initial cluster centroids and are often referred to as 

seeds. The next step is to assign each of the remaining elements from the data set to the 

centroid that is closest (in Euclidean space). Once all of the data items have been assigned to 

a cluster, the centroids are recomputed by calculating the average of all of the cluster members 

and the process of clustering begins again. This iterative process continues until no items 

change cluster membership. At this point it can be said that the algorithm has converged. It 

should be noted that the data patterns considered must consist of continuous value vectors 

because their arithmetic mean must be calculable. Also, the cost function that K-means 

endeavours to minimise is the common sum-of-squares criterion, i.e. it should minimise the 

sum of the squares of the inter-object distances within each cluster. 

Pseudocode for the K-means algorithm is provided below: 
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1. let L = {11 , ••• , 1 k } be a random subset of the data set P 

where k < N 

2. create k arrays to hold the cluster members 

3. for each data point SE P find the closest centroid k i in L, 

according to Euclidean distance, and allocate s to the appropriate 

array 

4. calculate the arithmetic mean of each cluster and let these now be 

the members of L 

5. if the values in L have not changed then return the clusters as 

the solution, otherwise go to step 3 

Figure 3.3 The K-means algorithm. 

The attractiveness of the K-means clustering algorithm is that it is easy to implement 

and its computational complexity is reasonable [JMF99]. Its time complexity is O(CNIc) 

where C is the number of iterations, and its space complexity is O(N + k). Another advantage 

ofK-means is due to its iterative nature. Iterative algorithms tend to allow the addition of new 

data to the set after convergence is achieved, rather than performing the clustering from 

scratch. This is because the clusters that are formed can be regarded as categorical classes of 

the data and therefore the addition of new items simply implies associating them with the 

closest cluster. However, K-means does have at least two drawbacks. The first is that the 

clusters that it is trying to find are assumed to lie in a spherical Gaussian distribution [BF98]. 

The second is that, although it will converge, the algorithm is sensitive to the initial choice of 

cluster centroids. Both of these points mean that K-means will often converge to a local rather 

than a global minimum. However, regarding the initialisation problem, Bradley [BF98] has 

developed a technique using multiple runs of the algorithm and then choosing the best 

outcome according to a measure of validity. Another solution is the use of classifier ensembles 

[KHDM98] where the outcomes of several clustering runs are regarded as votes for the 

obtained clusters (classes) - the clusters that receive the majority of the votes (appear 

consistently) are retained. Classifier ensembles will be discussed further in Chapter 5. 

3.2.2 Bisecting K-means 
A variant of the traditional K-means called Bisecting K-means is described by Steinbach et at. 

[SKKOO]. This works in exactly the same way as regular K-means with the exception of the 

selection of the number of cluster centres. Initially two centroids are chosen and the clusters 

are produced in the same way, then according to intra-cluster variance or size, one of these 
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clusters is split into two more clusters. This continues until some convergence criterion is met 

(for example, the centroid values stop changing). 

In [SOBOl] it is stated that bisecting K-means is useful because it produces a binary 

taxonomy, useful in document retrieval. Also, in [SKKOO], the algorithm is conjectured to be 

superior to traditional K-means because the clusters are nearer to being uniform in size and 

this results in lower entropy. 

Bisecting K-means, although based on a partitional algorithm can, however, imply the 

production of hierarchical clusters. This is due to its ability to produce a binary tree similar to 

the dendrogram. 

3.2.3 NNS with K-means: An application of a 

partitioning clustering algorithm 

Nearest Neighbour Searching describes a way to find the most similar item (nearest 

neighbour) within a data set to a given query. It was considered that this approach could be 

useful for speeding up the process in the addition of new data to a pre-configured spring 

model layout. An informal experiment was set up to use the K-means algorithm for such a 

purpose. The experiment consisted of a program written in VB 6.0 that plotted 2-dimensional 

normally distributed random points on a plane. K-means was then used as the clustering stage 

to a Buckshot algorithm that was run on these data so that ..IN clusters were formed. The idea 

then was to simulate the submission of a query (addition of a new point) into this space by 

plotting points at random on the plane. In order to find the nearest neighbour of each 'query', 

the query is first compared to each of the K-means centroids to find the closest in Euclidean 

distance. Once this closest cluster centroid was found, each of the cluster members are then 

compared to the query and the closest point is the one that is returned as the nearest 

neighbour. See Figure 3.4 below. This approach is faster than an exhaustive search of the 

data because only ..IN + m distance calculations are required, where m is the number of cluster 

members associated with the closest centroid. 
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Figure 3.4 A screen shot ofthe K-means NNS experimental program. Green points represent randomly 

distributed data, the blue points represent K-means centroids, and the red points indicate 'queries' while 

the black points are the approximate nearest neighbours to the (red) query points. 

As can be seen from the above, the results prove quite promising when applied to this 

normally distributed random data. However, there are cases envisaged when the algorithm 

will not return the correct nearest neighbour, consider Figure 3.5 below: 
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Figure 3.5 A case where the K-means NNS is only approximate. 

In this scenario, the two hollow circles are centroids and the black points and crosses are their 

respective cluster members. If the star is regarded as the query then clearly it is the cross just 

above it that is its nearest neighbour. However, the algorithm returns the grey point to its left 

as the closest instead of the cross. This is because the algorithm initially looks for the closest 

centroid. It is only the set of black points that are considered to contain the closest point 

because in this case, the cluster centroid for the black points is closer than the other centroid 

that actually represents the cluster containing the nearest neighbour. This means that this 

approach to finding a nearest neighbour, given a new point, is only an approximate solution, 

but it is envisaged that it will still perform well for introducing new points into layouts by 

initially placing them somewhere within the vicinity of the best position. 
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3.3 Density-based 

Instead of basing a clustering upon the proximity of data points to representative centroids, as 

is the case in partitioning algorithms, density-based clustering seeks groups of points that are 

dense, and which are separated by sparse regions. The advantage of this approach is that 

clusters of various shapes can be retrieved while noise points - those data that do not belong 

to any cluster in particular, including outliers - can be effectively filtered out [SEKX98]. 

A well-known density-based technique called DBSCAN was proposed by Ester et al. 

[EKSX96]. In their proposal, density is associated with a point by determining the number of 

neighbouring points within a specific radius e, referred to as an Eps-neighbourhood. When a 

point has a pre-specified minimum number of points MinPts within this radius, it is classified 

as a core point and a cluster C is created for it and its Eps-neighbours. Next, each member of 

C is checked to see if it is also a core point and if it is, it and its Eps-neighbours are added to 

C. This process is continued until no more points can be added to C. After all possible clusters 

have been found in this manner, points that are not classified as core points or cluster 

members are classified as noise points. Points that are not deemed as noise or core points are 

called border points and are considered as members of the cluster associated within £ of the 

nearest core point. 

Two disadvantages of this algorithm are that I) it relies on the user to specify the 

MinPts and & inputs and 2) these are global parameters and therefore clusters of different 

densities cannot be found. For example, when the density threshold is quite low, only the 

densest clusters will be found while sparser ones will be discarded as noise. On the other 

hand, if the threshold is lower, dense clusters might be merged (see Figure 3.6). As Estivill

Castro and Lee point out, density is hard to define; the user should not have to guess a global 

density threshold [CL02]. 
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Figure 3.6 Clusters of different densities. When the clustering is via a global density parameter, only 

clusters [A, D and E] or [A, Band C] will be found. 

To overcome the shortcomings described above, Ankerst et a1. developed an algorithm called 

OPTICS [ABKS99]. This method imposes a special ordering upon the data set called the 

cluster order which is based upon the distances between points within an Eps-neighbourhood 

threshold. This ordering captures information equivalent to the output of the DBSCAN 

algorithm over a range of E values and therefore can find clusters of different densities 

simultaneously. Another advantage is that the distances, called reachability distances, provide 

a view of the clustering structure inherent in the data when plotted against this cluster order. 

The algorithm requires the user to specify values for E and MinPts but the authors provide 

heuristics to determine these and show that it is much less sensitive than DBSCAN to the 

values chosen. 

While OPTICS provides a solution to finding clusters of disparate densities without 

relying too heavily on the user to specify abstract parameters, traditional Euclidean density

based techniques still do suffer from one major drawback when clustering high-dimensional 

data. Ertoz et a1. [ESK03] pointed out the fact that as the dimensionality of the data increases, 

the number of points required to maintain a specific density - that is, a certain number of 

points per unit volume of space - increases exponentially. This is known as the curse of 

dimensionality [Fri94]. To alleviate this, Ertoz et a1. defined an alternative notion of density in 

their graph-theoretic clustering algorithm, based upon shared nearest neighbour graphs. This 

will be discussed further in the Section 3.4. 

Another approach for density-based clustering was proposed by Duyckaerts and 

Godefroy for studying neural densities in the thalamus and cortex of the human brain 

[DGH94]. In this application, the authors wished to be able to compare neuronal densities and 
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subsequently find clusters of neurons I . To achieve this, the authors use a Voronoi tessellation 

of part of the brain surface. The tessellation partitions each neuron into the area that it 

occupies such that any point within this area is closer to that neuron than any other and the 

result is that each neuron resides in a convex polygon (Section 5.5 for a description of 

Voronoi tessellations). In a Voronoi tessellation, clusters produce groups of contiguous 

polygons with small areas compared to their neighbours [OBSCOO]. Duyckaerts and Godefroy 

take advantage of this property to define a simple clustering algorithm that first finds the 

smallest polygon, adds its neuron to a cluster and then grows the cluster by examining its 

neighbours, adding them if their polygonal areas are within a predefined threshold. When the 

cluster cannot be grown any further, the next smallest polygon, that is not part of the cluster, is 

found and a new cluster is created. This process continues until no more polygons can be 

added to a cluster (see Figure 3.7). The time complexity of this algorithm is dominated by the 

computation of the Voronoi tessellation which is O(N log N), where N is the number of 

neurons. 

Figure 3.7 A Voronoi tessellation of a 2-d point pattern consisting of two clusters. Notice how the 

polygons of points inside the clusters have smaller areas than those towards the outside. Duyckaerts and 

Godefroy use this property to automatically find clusters. In the above example an area threshold has 

been set and polygons within it are shaded - each cluster is distinguished by shading with a different 

colour. This image was generated by HlVE [RC03a, RC03b] . 

I Within the context of this chapter, neurons should be taken as analogous with points within a 2-d data space. 
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The Voronoi tessellation is shown to exhibit other useful properties for analysing spatial 

density. By sampling mean densities, confidence intervals can be used to make statistical 

comparisons of density. Also, the coefficient of variance of polygon areas allows one to 

distinguish between regular, clustered and random point distributions. The main drawback of 

this approach, however, is that the time complexity of computing a Voronoi tessellation 

increases exponentially with dimensionality. For this reason, its application to clustering is 

best suited to 2-d applications. 

3.4 Graph-theoretic 

Graph theory provides a succinct notation for expressing relationships between points in a 

data space. A graph is defined by the formula G = (V, E) where V denotes a set of vertices and 

E denotes a set of edges (arcs connecting the vertices). Given this definition, a data space can 

be modelled as a graph when points are considered as vertices, and constraints upon their 

relationships are considered as edges. The graph forms a data structure that encapsulates 

information about how data are related. As an example, consider the 2-d data space in Figure 

3.8. If the notion of a relationship is constrained to any point and its nearest neighbours, then 

drawing edges between such related pairs of points can yield a graph called the minimal 

spanning tree [Pri57]. 

• • • • • • • 
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Figure 3.8 Points in a 2-d data space (left) and their minimal spanning tree (right). 

There is a diverse range of graph types, each with different properties that can be 

utilised to model difficult problems. In the field of artificial intelligence, state space graphs 

are used to model the structure of complex systems. The state space graph provides an 

efficient way of traversing a sequence of state transitions to a desired outcome, such as 

winning a game of chess. Another problem modelled by graphs is the well known travelling 
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salesman problem. In this case the graph is traversed in search of the shortest Hamiltonian 

cycle - a path where each vertex is visited exactly once and the last visited is the starting 

vertex [LS97a]. 

The versatility of graphs in modelling complex problems can also be applied to 

clustering data. A data set D can be represented by a complete weighted graph G(D). 

Complete, if every point is connected to every other point, and weighted if the lengths of the 

edges correspond to the distance or dissimilarity between points. By the careful deletion of 

edges, individual clusters can be separated into sub-graphs - connected components of G(D) -

and returned as the clustering solution. Thus, the deletion of edges is pivotal in the graph

theoretic approach to clustering. 

Since the number of edges in a complete graph is quadratic with the number of vertices, 

it is an expensive representation. However, sub-graphs that are less expensive to compute, 

store and traverse can retain enough information to define clusters and therefore simplify the 

problem of deciding which edges to remove. Thus the modus operandi of many graph

theoretic clustering algorithms consists of two steps. The first is to define a graph that 

efficiently contains the information necessary to define clusters. The second is to employ a 

strategy of edge removal that will decompose the graph and reveal clusters. The best-known 

graph-theoretic algorithm reflects this. It starts with a minimal spanning tree and then removes 

the longest edges [Zah71]. 

3.4.1 The minimal spanning tree as a basis for clustering 

Let D = {d,} be a data set where each d, = (a: , ... ,a:) is a datum representing the set of 

attribute values 1 through k. A weighted and undirected graph G( D) = (V, E) can be defined 

where V = {dll d; ED} is the set of vertices and E = ((d;,dj ) I d;,dj ED and d; ~ dj}is the set 

of edges. Since an edge exists between every pair of vertices, G(D) is a complete graph. 

Furthermore, the weight of each edge (dj,dj)E E can be represented by some measure of 

dissimilarity such as Euclidean distance. 

A connected sub-graph containing every vertex of G(D) and no cycles is called a 

spanning tree and the spanning tree with the lowest sum of edge weights is the minimal 

spanning tree (MST), i.e. the shortest path connecting all vertices without any cycles. In an 

MST such as that in Figure 3.9 it may be observed that points in a cluster are connected by 

short edges while longer edges connect points between different clusters [XOD02]. 
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Figure 3.9 The MST above shows that intra-cluster distances are shorter than inter-cluster distances. 

Deletion of edges A and B would result in three separate connected sub-graphs representing the clusters. 

This observation provides an intuitive basis for clustering. By deleting the longer edges of the 

MST, the data can be decomposed into clusters. 

Zahn developed the most famous graph-theoretic algorithm [Zah71] in which edges 

that are significantly longer than nearby edges are removed from the MST (see Page [Pag74] 

for an implementation). Zahn called these edges inconsistent and defined them as edges 

whose length is more than f times the average length of nearby edges and more than s 

standard deviations larger than the average. 

The advantages of the MST in Zahn's algorithm are that it is not contingent on the 

order of input and it can detect clusters of different shapes, sizes and densities. However, the 

construction of the MST dominates the time complexity - taking O(IIElllog I lEI I) time using 

Kruskal's algorithm - and the user must specify quantities for f and s. 

3.4.2 Other graph-theoretic clustering algorithms 

While the MST provides an explicit graph representation for clustering, it is also the basis for 

single-link hierarchical clustering where clusters are the connected components of the MST 

[JMF99]. The major difference between Zahn's algorithm and single-link is in the way in 

which edges are removed to reveal clusters. Zahn's approach is to identify and remove 

inconsistent edges whereas in single-link, the user cuts the dendrogram at a specific level in 

the hierarchy. 

Another graph commonly used in clustering is the Delaunay graph. This graph is 

popular because it contains the MST and the relative neighbourhood graph (RNG) as sub

graphs [OBSCOO] and therefore contains more information conducive to clustering; it can also 

be computed in O(N log N) time for the 2-d case. The Delaunay graph forms a triangulation 

over the data by defining edges between all pairs of points that are Voronoi neighbours. 
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Estivill-Castro and Lee [CL02] use this in their AUTOCLUST algorithm to find clusters by 

searching for their boundaries. They postulate that edge lengths at the boundaries of clusters 

exhibit more variability because they connect inter- and intra-cluster points. The authors use 

both local and global neighbourhood relations to identify edges which are statistically 

significant with respect to this variability. 

Eldershaw and Hegland [EH97] also utilise the Delaunay graph. They noted that Zahn's 

technique of removing edges from the graph that exhibit a length greater than f times the 

average length of nearby edges, was not applicable because in the Delaunay graph, vertices on 

cluster borders tend to have more incident edges that span between clusters and this pulls up 

the average length resulting in all edges being preserved. To overcome this, they consider the 

choice of an edge-length threshold p as a reduced clustering problem In the search for p, they 

note that this is a classification of the edges into two classes; one for short intra-cluster edges 

($) and one for long inter-cluster edges that should be removed (>p). To identify a suitable 

threshold, a range of values for p are fed into a cost function Jtp) that measures how "neatly 

split" the edges are between these two classes. By plotting T(p), the authors demonstrate that 

the global minimum can be easily found. Eldershaw and Hegland's approach is interesting 

because it reduces the M-dimensional clustering problem into a two-cluster J-D problem. 

However, the drawback of this approach is that the threshold parameter p is global and 

therefore clusters of different densities may evade detection. Again, the time complexity of 

this algorithm is dominated by the triangulation of the Delaunay graph which increases with 

dimensionality by 0(Jl.d/2J+/) [Aur9I]. 

Up to this point, each of the graph-theoretic approaches described have relied on graph 

edges being defined by a direct dissimilarity measure between points. However, as Ertoz et al. 

[ESK03] point out, direct measures of (dis)similarity can be misleading. One example is in 

measuring the Euclidean distance between texts; Ertoz et al. show that the distance between 

documents that do not share any common terms can be lower than between documents that do 

share terms. They also point out that similarity measures such as the Jaccard coefficient and 

cosine similarity can be "unreliable" when overall similarity between points is low. To 

counter these shortcomings, rather than using direct measures of (dis)similarity some 

clustering algorithms define similarity in terms of the number of nearest neighbours shared by 

points. For example if u and v are two points that are close to each other and also close to a set 

of points S then their similarity is "confirmed" by their mutual proximity to points in S. When 

an edge is drawn between every pair of points that have each other in their list of k nearest 

neighbours this forms the shared nearest neighbour (SNN) graph [IP73]. The weight of an 

edge in an SNN graph, i.e. the similarity between its end points is defined as follows: 
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similarity{u, v) = size(NN(u) (l NN(v» (3.1) 

NN(u) and NN(v) are the nearest neighbour lists of u and v respectively and similarity is 

proportional to the size of their intersection. This similarity measure works well in high

dimensions and the SNN graph can be calculated in O(N log N) time [KHK99]. 

CHAMELEON [KHK99] is a two-phase clustering algorithm that utilises the SNN 

graph. In the first phase it creates a sparse SNN graph and partitions it into many dense sub

clusters. Density of a point is taken as the sum of the edge weights incident to the point. In the 

second phase, an agglomerative hierarchical clustering algorithm is used to successively 

merge the sub-clusters according to their relative inter-connectivity and relative closeness. 

Another approach using the SNN graph was proposed by Ertoz et aI. [ESK03]. Here the 

density based clustering algorithm DBSCAN is extended by building an SNN graph and 

defining density as the number of points within a radius (eps-neighbourhood) determined by 

SNN similarity. While this algorithm still requires the user to input the eps-neighbourhood 

and MinPts parameters (see Section 3.3) it outperforms DBSCAN by being able to detect 

clusters of different densities. This is because the eps-neighbourhood is relative to shared 

nearest neighbours and not a direct measure of dissimilarity. 

In summary, graph-theoretic clustering algorithms generally take extra time in graph 

construction but the good thing about graphs is that they can succinctly represent the 

information required to detect clusters of different shapes, sizes and densities when noise is 

present. 

3.5 Grid-based 

By dividing a data space into contiguous regions, it is possible to index and summarise points 

according to the cells in which they reside. While this provides a form of data compression, it 

also potentially provides fast access to information such as the neighbourhood relationships, 

which is required for clustering. Grid-based clustering algorithms work upon such a 

representation to take advantage of the fast information access and the intuitive notion of 

density as defined by the number of points in a cell. 

The grid-based approach is the dual of graph-theoretic clustering; it was stated in 

Section 3.4 that the modus operandi of many graph-theoretic clustering algorithms consists of 

two steps. The first is to define a graph that efficiently contains the information necessary to 



derme clusters; the equivalent of this in Grid-based clustering is to partition the data space into 

regular cells. The second step in graph-theoretic clustering is to employ a strategy of edge 

removal that will decompose the graph and reveal clusters; in the grid-based method, the 

equivalent is to employ a strategy for merging cells (See Figure 3.10). 
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Figure 3.1 0 Partitioning of a 2-d data space into regular cells. The resulting structure, called a map 

[HK98] or grid structure [Sch96], can intuitively be generalised to the multi-dimensional case. 

Wang et al. developed an algorithm called STING [WYM97] in which the data space is 

divided into nested rectangular cells that map to a cluster hierarchy. The smallest cells - those 

most deeply nested - are represented by summary statistics such as mean and standard 

deviation calculated directly from the data contained. The statistics of higher level cells are 

computed from their children. By using summary statistics to represent the data, the 

information required for clustering and subsequent querying can be stored in main memory 

even if the original data set is too large. The authors do not provide details on the time 

complexity required to initially partition the space, although it is suspected that it will be 

around O(N log N) because of the recursive nature of the cell division, N being the number of 

data points. However, the authors do show that the time complexity involved in querying the 

structure is O( k) where k is the number of most deeply nested cells and k < < N. 

Schikuta considers grid-based clustering as a process of organising the value space 

surrounding points rather than organising the points themselves [Sch96]. Schikuta's approach 

revolves around the use of a structure similar to a hash table for representing the data. This is 

referred to as a grid structure and is developed by introducing points, one by one, into the 

structure. The grid structure initially consists of one large hypercube with an upper bound on 

the number of points it can contain. Once this upper bound is met, the hypercube is 

recursively split into two new hypercubes, demarking a division point on the scale for each 
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dimension, and new data are allocated to a hypercube according to their attribute values. This 

approach, like STING, also produces a hierarchical clustering result. The algorithm works by 

finding the densest hypercubes (those hypercubes with the largest ratio of number of points to 

volume), making them cluster centres and then examining their neighbours, adding them to 

the clusters in order of increasing density. Each time a hypercube is merged into a cluster, a 

corresponding level is created in the cluster hierarchy. 

Although grid-based clustering can provide an efficient representation of a data set, 

there are several disadvantages. Since data points are summarised according to the contents of 

the cell in which they reside, individual points do not have equal importance. Also, the 

number of cells in which to partition the space grows exponentially with dimensionality. 

Hinneburg and Keirn [HK98] also point out that clusters can potentially be split up over many 

grid cells resulting in the necessity of the expensive process of remerging them. 

3.6 Model-based 

Unlike the clustering methods described in the previous sections, clusters can be modelled by 

probability density functions. Although similar to density-based clustering, this approach 

instead considers density distribution functions rather than the raw densities. The most basic 

model-based clustering technique assumes that each cluster follows a Gaussian distribution, 

and that the data set can therefore be modelled as a mixture of Gaussians. The parameters of 

the individual Gaussian mixture components, namely the mean, the variance, the mixing 

weights, and the number of components, can be estimated from the data. 

The estimation of these parameters is known as the maximum-likelihood parameter 

estimation problem. Given a set of points (observations) X = {XI, X], ••• , XII}' that are drawn 

from a set of unknown distributions E = {el, e], ... , ek}, the density at point X, with respect to 

distribution ej is given by the density function f!..x, I 0) where 0 is the set of unknown 

parameters. The likelihood of the parameters, given the input point data, is L(O, t IX). 

n k 

L(8,rIX)= TILt./(x, 10) 
r=1 1=1 (3.2) 

Where -r:. is the probability that point Xr belongs to distribution ej. 
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The most common method of maximising the likelihood function is via the 

Expectation-Maximisation (EM) algorithm [DLR77]. The algorithm has two steps and begins 

by initially estimating the set of parameters and iteratively rescoring the input data 

accordingly. The score of a data point represents the likelihood of it belonging to a particular 

component of the mixture model. In the second step, the algorithm updates the set of 

parameters to increase their likelihood given the data. These two steps are repeated until the 

model converges to a local maximum of the likelihood function. Data points that are allocated 

the same mixture component are deemed to be in the same cluster. 

While model-based clustering can outperform single-link and K-means algorithms, it 

can exhibit high time and space complexity when the mixture parameters are left 

unconstrained. Another disadvantage is that the user is left to specify the number of clusters 

[Fas99]. 

3.7 Conclusions 
Clustering techniques can be classified according to six categories: hierarchical, partitionai, 

density-based, graph-theoretic, grid-based and model-based. It is evident these categories are 

interrelated. For example, bisecting K-means is a partitional algorithm but it can also build a 

cluster hierarchy; the most common graph-theoretic techniques (single-, average- and 

complete-link) are also predisposed to produce cluster hierarchies. Also, model-based 

techniques formally use probability density functions (PDFs) and can therefore be considered 

as density-based. 

An important issue concerning clustering algorithms is in choosing the correct type of 

algorithm to apply in different situations. For example, if the data are of high cardinality and 

dimensionality, a partitional algorithm might be appropriate for faster computation; if the data 

contains clusters of varying shapes, then a graph-based method might be more appropriate. 

However, the common traits among the different clustering methods and the ability of some 

methods to do better than others, has naturally led to the exploration of hybrid clustering 

algorithms. The continuing research into such algorithms is looking promising for creating 

more general purpose techniques with higher efficiency that are able to support interactive 

applications. In Chapter 5, a new hybrid clustering algorithm, borrowing from graph- and 

density-based approaches is described. 

In the context of information visualisation, clustering allows for a richer representation 

of data. Clustering results can be in the form of interactive dendrograms or scatterplots (in the 

2-d or 3-d case) where latent structure in the data is made clearly visible and interpretable. 
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Also, the ability of clustering algorithms to decompose a data set into a smaller number of 

significant units is also advantageous to dimension reduction as demonstrated in Chapters 4 

and 5. More generally, individual clustering algorithms can be considered as computational 

tools that analysts can select according to their circumstances. If these algorithms are 

packaged into an easily accessible toolbox then it would allow their flexible application and 

potentially their combination for efficient hybrid clustering and dimension reduction solutions. 

In the next chapter, dimension reduction techniques will be described and it is shown that by 

reducing data dimensionality, latent structure can be made more readily visible. 
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4. Dimension reduction 

As shown in the previous chapter, the cardinality of data, i.e. the number of individual data 

items, can be reduced to a smaller number of distinct clusters. This reduced representation 

makes understanding, manipulating and visualising the data easier. However, there exists an 

orthogonal approach to acquiring a reduced representation of the data and this is achieved by 

reducing dimensionality. 

Consider a data set X = {x" X;z, ••. , xN } consisting of n data items, each represented as a 

vector of d variables, observations or measurements, XI = [au, a1.l,"" ad,lf. It is common to 

consider d as dimensionality thus providing a set of axes that define the data space. One of the 

most effective and scalable ways to graphically present an overview of data is via a scatterplot 

because it can plot all of the data against two or three axes when d :S:3. As demonstrated in 

Section 2.3.1, point patterns in scatterplots such as clusters can visibly stand out as individual 

perceptual units. The scatterplot brings out Gestalt qualities and therefore clustering is carried 

out automatically by the human visual system. However, when d > 3, data cannot be directly 

depicted as points on a scatterplot unless the number of remaining dimensions is sufficiently 

small enough to be encoded into retinal variables such as shape, colour, size and orientation of 

glyphs [CMS99]. A common approach in exploratory data analysis is to produce a matrix of 

2-d scatterplots from all possible and unique pairs of dimensions [BC87] but the drawback 

here is that the number of scatterplots is equal to d( d - 1 )/2 and therefore can quickly become 

overwhelming. 

In such cases it is desirable to reduce the dimensionality and this can be achieved by 

feature selection or feature extraction. These are terms borrowed from the nomenclature of 

cluster analysis [JMF99] but they are directly relevant to the process of dimension reduction. 

When a scientist is making observations of an experiment, deciding which measurements to 

record is a manual form of feature selection, however, when the number of possible variables 

is large and their interrelationships are unclear, this task becomes more complicated. Feature 

selection is the process of filtering out dimensions (features) that are deemed redundant or 

irrelevant. If two dimensions are highly correlated then one might be redundant; they might 

both refer to a single higher level observation and therefore one dimension could be used in 

their place. In the context of text mining where each unique word can be considered as a 

dimension, redundancy is dealt with by replacing content-bearing words by their word stems 

or synonyms. For example the terms visualise and visualisation might be replaced by visual. 
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The text mining analogy also provides a good example of filtering out irrelevant dimensions. 

Stop words (articles and connectives) are treated as irrelevant noise - they are deemed not to 

bear any content - and are therefore removed [SaI71]. Another method of feature selection. 

illustrated in Section 4.3.3, is based upon clustering dimensions according to the correlation 

coefficients of their observations and visualising the results. In this case, the user can see 

which dimensions are potentially redundant and remove them from the analysis. 

Feature selection is usually carried out as a pre-processing stage to reduce 

dimensionality and therefore make data more manageable for time and space intensive 

processes such as those involved in text mining and information retrieval. Feature extraction, 

on the other hand, is a process that often follows feature selection, and involves transforming a 

set of dimensions into a smaller set of derived dimensions. For example, Principal Component 

Analysis (see Section 4.1.1) is a type of feature extraction where the resulting dimensions are 

derived from a linear combination of the original dimensions. In Section 4.3.3, it is shown that 

dimension reduction tasks commonly encountered in the field of investigative psychology 

consist of a cyclic process of feature selection and extraction. Here, the two processes feed 

into each other as the analyst forms, tests and refines hypotheses on the relationships between 

variables and between the data items composed of the variables. 

Dimension reduction is primarily concerned with finding a smaller data space (or low

dimensional embedding) that contains as much information as possible from the original 

space. Regarding the author's research, it is desirable to reduce the number of dimensions to 

two and therefore accommodate visualisation of data via scatterplots so that latent structure is 

pronounced. This chapter describes some of the most prominent techniques in dimension 

reduction. Most of the techniques are accompanied with examples of their salient properties as 

observed from the author's experiments. 

4.1 Projection techniques 

One way of reducing dimensionality is to geometrically project data into a lower dimensional 

space. A simple example is shown in Figure 4.1 where points in a 3-dimensional Euclidean 

space have been projected onto a plane that is parallel to the z-x plane. Projection techniques 

typically produce an embedding space that is derived from a linear combination of the original 

dimensions. One such example is PCA where the projection plane is effectively rotated to a 

position where the projected points retain as much variance as possible. PCA and other 

projection techniques will be discussed in the following subsections. 
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Figure 4.1 Projection of 3-dimensional points onto a plane. 

4.1.1 Principal Component Analysis (PCA) 

PCA is a classical statistical method and one of the most widely used projection techniques for 

dimension reduction [ED91]. It linearly combines correlated dimensions to produce a smaller 

set of uncorrelated dimensions under the premise that such correlations indicate redundant 

dimensions. The resulting derived axes are called principal components. The ftrst principal 

component corresponds to the direction of greatest variance in the data and provides the ftrst 

axis onto which the data can be projected. The second principal component is orthogonal to 

the ftrst and the third is orthogonal to the ftrst and second, and so on, progressively accounting 

for as much variance in the data as possible. For visualisation purposes, it is common to 

project the data onto the ftrst two principal components thus providing a 2-d scatterplot that 

maximally preserves variance. 

PCA is carried out via an eigenanalysis as follows. Suppose a data set is in the form of a 

population of vectors X where: 

(4.1) 

With mean given by: 

(4.2) 

and the symmetric covariance matrix denoted as: 
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(4.3) 

Elements of the covariance matrix are denoted CIJ and represent the covariance between 

variables; and j where Ctl is the variance of variable; - the amount of spread around its mean 

value. The projection space or orthogonal basis can then be detennined by finding the 

eigenvectors el and corresponding scalar eigenvalues At of the covariance matrix. These values 

are solutions of the following equation: 

(4.4) 

and can be found by solving the characteristic equation: 

(4.5) 

Where I is the identity matrix and 1.1 denotes the determinant. 

Given a data vector X and a matrix A representing the eigenvectors as the rows, the data 

vector's projection coordinates yare obtained by the following equation: 

(4.6) 

An eigenvalue is proportional to the amount of variance in the data set along the 

direction of the corresponding eigenvector. Thus, by composing the matrix A from the 

eigenvectors defined by the two highest eigenvalues, the 2-d projection of the data that 

maximally preserves variance is obtained. 

However, there are two important drawbacks of peA. The first is that in maximising 

variance as a global condition, interesting structure in the data that does not dominate the 

overall variance can be hidden. Figure 4.2 provides an example. The data in the figure is 

comprised of 10,000 3-d objects forming a 'swiss roll' shaped distribution. Since the greatest 

spread of the data is along the breadth of the swiss roll, the peA projection onto the first two 

principal components provides a rather uninformative view. It is only when a cross-section of 

the data is taken, so that the greatest variance is across the diameter of the swiss roll, that peA 

depicts a more informative view. 
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This issue has been indirectly addressed by Roweis and Saul who developed a 

dimension reduction technique called locally linear embedding [RSOO]. Rather than trying to 

reduce dimensionality according to overall variance, samples are taken throughout the data 

and the localised regions of the samples are used to determine individual low-dimensional 

subspaces. When these local projections are patched together they can potentially depict 

global non-linear structure. 

Figure 4.2 PCA projections of a 3-dimensional swiss roll-shaped data set. The image on the left is the 

projection of the whole set. The image on the right is a PCA projection of the highlighted cross-section 

of the image on the left. These projections were generated by the author's HIVE software. 

Unfortunately, even a minority of outliers in the data can cause such a 'distraction' as 

shown in figure 4.3. Though, one way of overcoming this problem was proposed by Koren 

and Carmel [KC03] who developed a weighted PCA scheme. Here, pairwise distances are 

normalised in such a way that larger distances are less dominant in determining the projection. 
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Figure 4.3 Since the first principal component is the direction of greatest variance in the data, the 

outliers shown in blue on the left, dominate the regression. This results in the projection onto the 

principal component (right) where possibly significant structure, such as the two clusters shown, has 

been lost. 

The second drawback of peA is due to the fact that the low-dimensional space is 

derived from a linear combination of the original dimensions. This means that unless any 

significant structure in the data lies upon a linear manifold, then it will not be adequately 

represented by peA. These problems are also inherent in similar eigenanalysis methods such 

as singular value decomposition andfactor analysis. 

An advantage of peA is that a neural network implementation can be quite fast. To 

train the network requires O(LDP) time where L » N is the number of epochs (training 

iterations), D is the dimensionality of the training data and P is the dimensionality of the 

projection space. To produce the projection takes O(NDP) where N is the cardinality of the 

data [Oja82]. 

4.1.2 Singular Value Decomposition (SVD) 

Another well-known projection technique for dimension reduction is Singular Value 

Decomposition. The SVD of a rectangular data matrix X with n rows and d columns is 

obtained by its decomposition into three special matrices: 

x = U[nx rJ . S[rx r J . Ji[~XdJ (4.7) 

Where U and V are composed of the left and right singular vectors of X respectively and have 

orthonormal columns. S is a square diagonal matrix and contains the singular values, the 

number of which is determined by the rank r of X. 
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A singular value is proportional to the amount of variance in the data set along the 

direction of the corresponding singular vector and therefore SVD is similar to peA in that the 

data can be projected onto a lower, k-dimensional space by sorting the singular values (peA 

eigenvalues) in descending order and taking the first k corresponding singular vectors (peA 

eigenvectors). This results in a new decomposition showing the best least-squares-fit to X 

(4.8) 

For example, if k = 2 then U contains the 2-dimensional coordinates of the items (represented 

by rows) in the data set that minimise the sum of squares of projection errors. Like peA, this 

can be thought of as rotating a plane in space to maximise the variance of the projected points. 

SVD was employed for Latent Semantic Analysis (LSA) by Deerwester et al. in 

reducing the dimensionality of document collections to improve retrieval [DDF*90]. In this 

case the input is a term-by-document matrix, resulting in the left singular vectors being the 

coordinates of terms, and the right singular vectors representing the coordinates of the 

documents in k-dimensional space. Deerwester et al. provided an example where k = 2, using 

a scatter plot to show how the proximity of terms and documents exposes latent relationships 

in the data due to second and higher-order term co-occurrences. 

SVD suffers from the same drawbacks as peA, namely non-linear structure can elude 

analysis and outliers can hamper the detection of potentially interesting projections. SVD is 

also computationally intensive, running in 0(11 D) time where Nand D are the cardinality and 

dimensionality of the input data [LG03]. However, if the input data are sparse then the time 

complexity can be reduced to O(NcD) time where c is the average number of non-zero entries 

in the input matrix [BMOl]. 

4.1.3 Projection Pursuit 

While the goal of peA and SVD is to find a projection based upon the directions of greatest 

variance, the goal of Projection Pursuit is to find low-dimensional projections that optimise a 

different projection index. The projection index defines the "interest" of a direction and is 

typically a measure of departure from a Gaussian density. This is because the standard normal 

distribution does not contain much structure and is therefore not considered interesting in this 

context. 

The negative Shannon entropy is commonly used as the projection index [Hub85] since 

it is minimised by the Gaussian distribution. Given a variable x with a probability density 

function/. its negative Shannon entropy is given by: 
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Q(x) = If(X)logf(X)d(x) (4.9) 

When the projection space is 2-dimensional the outcome of projection pursuit is one or 

more static views portraying potentially interesting structure. However, Cook et al. [CBCH95] 

realised that these disparate views suffered from a lack of context. Inspired by Asimov's 

Grand Tour [Asi85], Cook et al. remedied this in the development of a technique of smoothly 

animating the transition from one projection to the next by interpolating a series of 

intennediate projections. They called this technique a projection pursuit guided tour. This 

process can be likened to smoothly rotating a 2-d viewing plane so that a salient aspect of 

structure is always visible in the projected point pattern, albeit from different angles. 

While this approach helps alleviate the problem of not being able to expose any non

linear structure, which is common to all linear dimension reduction methods, projection 

pursuit still suffers from another drawback due to the necessity of sphering [CBCH95]. 

Sphering is a pre-processing step where data are conditioned to remove any effects of location 

(mean) and scale (variance) on the search for the projection pursuit index. If this is not carried 

out then differences between the distribution of variables with respect to location and scale 

might dominate other structure. However, as pointed out by Cook et aI., sphering changes the 

shape of the data and as a result the projected views might present or elide structure as an 

artefact of this conditioning. 

4.1.4 Random Projection (RP) 

First proposed by Kaski [Kas98], Random Projection or Random Mapping, is one of the 

simplest dimension reduction techniques. In contrast to the techniques described above, RP 

does not use a measure of interest such as variance to identify a good projection [FB03]. It 

simply projects data through the origin onto a random subspace. Given a data matrix X with n 

rows and d columns, and a random matrix R, the projection onto a lower k-dimensional 

subspace is achieved by the following matrix multiplication (Equation 4.10): 

(4.10) 

Where A is the matrix in which the rows are the k-dimensional coordinates of the input data. 

Kaski showed that RP approximately preserves the mutual similarities in the original 

data, though the amount of distortion in the similarities is inversely proportional to (d - k). 

This is based upon the Johnson-Lindenstrauss lemma [JL84] that states for n points in a d-
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dimensional Euclidean space, there exists a k-dimensional projection where k ~O(e-2 log n), 

such that similarities will not be distorted more than a factor of (1 ± e) with 0 < e < 1. Figure 

4.4 shows a comparison between peA and RP in projecting a 3-d cube. It can be seen that 

peA preserves the similarities relatively well, while RP introduces some distortion. 

Figure 4.4 A PCA projection of a 3-d cube (left). A random projection of the cube distorts mutual 

similarities (right). Both of the above projections were produced by the HIVE software [RC03a, 

RC03b]. 

The susceptibility of RP to distorting mutual similarities led Kohonen et al. to use it as a pre

processing stage in the visualisation of a massive document collection [KKL *00]. Rather than 

attempting to reduce the dimensionality, which is in tens of thousands for such a corpus, down 

to two for visualisation, the authors opted to initially reduce it to several hundred so that 

distortion would be lessened. This compressed representation of the data then lessened the 

burden on a more computationally intensive process for further reduction and subsequent 

visualisation (see Section 5.2). 

It should be mentioned that the distortion introduced by RP is not without its benefits, 

as Dasgupta discovered [DasOO]. Dasgupta showed that the shape of clusters in a high

dimensional space is made more spherical after RP while the extent of their separation is 

maintained. This therefore suggests that random projection might be an appropriate pre

processing step for clustering algorithms such as K-means and model-based techniques that 

are naturally predisposed to finding spherical clusters. Dasgupta combined RP and the EM 

algorithm (see Section 3.6) and the results showed that the hybrid algorithm performed better 

than EM alone. 

The major advantage ofRP is that it is computationally very simple because it relies on 

a simple matrix multiplication. The random matrix R can be created in O(dk) time and the 

projection of the data matrix X onto the k-dimensional subspace is O(dkn). However, as with 

SVD (see Section 4.1.2) if X and/or R is sparse, then the time complexity can be reduced to 
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O(clcn) where c is the average number of non-zero entries [BM01]. Even if Xis not sparse, one 

can employ a reasonably sparse random matrix such as that suggested by Achlioptas [AchOl]: 

{

+ I with probability V6 
'i,} = .J3 . 0 with probability 2/3 

-I with probability 1/6 
(4.11 ) 

Here, the element r at the ,-th row and J-th column of the random matrix is assigned an integer 

value according to the given probabilities. With this random matrix, further time can be saved 

if computations are carried out using integer arithmetic. 

4.1.5 FastMap 

In 1995 Faloutsos and Lin proposed a very simple yet effective dimension reduction algorithm 

called FastMap [FL95]. Its name is taken from its achievement of "a fast mapping of objects 

into points, so that distances are preserved well." Like Random Mapping, FastMap does not 

explicitly try to optimise a measure of interest in a projection, but it does work in a similar, 

albeit simpler way to PCA and SVD. 

The algorithm starts by identifying two objects in the data set that are relatively far 

apart in the original D-dimensional space. These items are referred to as pivot objects (Oa, Ob) 

and the line that passes through them is taken as the first axis onto which the remainder of the 

data set is initially projected. This projection is achieved by the Cosine Law where the triangle 

formed by the pivot objects and a data object 0 1 allows for that object's I-d coordinate to be 

solved. See Figure 4.5. 

Figure 4.5 Object 0 1 is projcctcd using the Cosine Law onto the line passing through the pivot objects 

Oaand 0". 
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From Figure 4.5 it can be seen that the l-d coordinate of object 0 1 is given by XI' This value is 

derived from the Cosine Law as follows: 

(4.12) 

Where d(iJ") is the distance between objects i andj. 

It is clear that the only information required to find the projection coordinates in the l-d 

case is the distances between points. To extend this to the 2-d and eventually the k-d case, the 

authors realised that they had to be able to determine the distances upon consecutive 

orthogonal axes. This would enable the Cosine Law to determine the new projection 

coordinate. 

To achieve this, the authors devised a way to measure distance on a (D-I) hyperplane H 

that is perpendicular to the line (Oa, Ob). Let 0/ denote object 0 1 when it is projected onto H, 

and d'( 0 1', OJ ~ represent the distance between two objects on H. When this distance function 

is used to find a second set of pivots, thus defining a second line orthogonal to the first (Oa, 

0,,), then it can be used to provide the second projection coordinate by Equation 4.12, 

substituting d(Oj, q) with d'(O/, Oj~. Figure 4.6 illustrates this reasoning. 

By Pythagoras' theorem, d'( 0/, OJ ~ is calculated as follows: 

(4.13) 

This method can be extended to find k-d projections by recursively calculating the distances 

on consecutive orthogonal hyperplanes and applying the Cosine Law to find the projection 

coordinates. 
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Figure 4.6 Objects O( and OJ are projected onto the hyperplane H, perpendicular to the line through Oa 

and Ob' 

Dimension reduction using FastMap can be achieved in O(nk) time, where n is the 

number of items in the data set and k is the desired number of target dimensions. In 

comparison with a non-linear technique called Multidimensional Scaling (MDS), the authors 

also showed that FastMap produced a layout of almost equal quality in terms of layout stress 

a measure of the residual sum of error. In plotting stress against time, the authors argue that 

the ideal scenario is to achieve zero stress in zero time and therefore the closer the trace to the 

origin, the better [FL95]. From this it was shown that FastMap's trace is indeed closer to this 

ideal origin than MDS and achieves almost an order of magnitude speed increase while 

maintaining comparable output quality. MDS and stress measures will be discussed more in 

Section 4.3. 

The dimension reduction algorithms discussed above rely on a linear combination of the 

original dimensions to derive a projection basis. For this reason, they are commonly referred 

to as linear layout algorithms. While this approach can often be effective in representing data, 

potentially interesting non-linear structure might be lost because the linear combination of 

dimensions is not adequate for capturing non-linear relationships in the data. In the following 

sections several non-linear dimension reduction techniques will be discussed. 
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4.2 Kohonen's Self-Organising Feature Map 

The inspiration for the Self-Organising Feature Map (SOM) comes from the topographic maps 

in the mammalian brain [RMS92], where closely related sensory stimuli activate topologically 

close regions in the brain. The SOM mimics this natural mapping by activating neurons, 

placed in a 2- or 3-d regular grid, according the input patterns that are presented. This grid (or 

map) is an Artificial Neural Network (ANN) and each neuron is represented by a reference 

vector that is of equal dimensionality to the input pattern vectors. 

The SOM is an example of competitive learning and is trained in an unsupervised 

manner by presenting the input data xe9t" to the map of reference vectors m1 e9t". 

Reference vectors compete with each other to be allocated each input pattern and this is 

usually determined by the lowest Euclidean distance. When the winner or best matching unit 

is found, it is adjusted, along with neighbouring reference vectors, to be closer to the input. 

This representation is gradually refined by the learning process until the map provides an 

ordered non-linear regression of the reference vectors into the data space. The reference 

vectors ml are updated at training step t + 1 by the following function. 

(4.14) 

ha(t) is a symmetric, monotonically decreasing function of the distance between the winning 

reference vector c and neighbour ml on the map and is typically Gaussian. The outcome of this 

function is that the closer neighbours are to the winning vector, the more similar they will be 

made to the input. The function ha(t), known as the neighbourhoodfunction, is defined below: 

(4.15) 

Where 0 < a(t) < 1 determines the learning rate which decreases monotonically with t 

resulting in smaller updates to the reference vectors with time. 

This process prompts the evolution or self-organising of a topologically ordered map 

with each reference vector being representative of one or more closely related points within 

the training set. This training stage can be said to classify the data set because the topological 

regions on the map conform to groups of similar items in the data set. Once training is 

complete, new data can be assigned to a class by finding the closest reference vector. 
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The SOM is trained by repeatedly inputting all of the training data and updating the 

reference vectors accordingly. Each of these cycles is called an epoch which can be carried 

out in O(ND) time where N is the number of training items and D is their dimensionality. The 

number of epochs is bounded by the SOM's learning rate «, but a smaller number is often 

heuristically chosen. 

The SOM effectively maps the data into a 2- or 3-d layout that can provide a useful 

visualisation because the neurons can be depicted as graphical structures and the map can be 

partitioned into regions allowing one to scan the view and gain insight into the data space 

being represented. One can therefore think of the SOM as providing clustering and dimension 

reduction simultaneously. In an implementation by Lin et ai. [LSM91], the SOM was applied 

to the visualisation and retrieval of text documents where summaries of cluster contents were 

used to label regions of the layout called concept areas. Lin et al.'s idea was to provide a 

semantic map of the document associations akin to the mental or psychological map in the 

human brain. In another application, Lagus et al. [LHKK96] likened the neural clusters to 

document traps or bins which could be checked as the SOM evolves over time to see if new 

interesting texts had arrived, in a similar way to consulting the in-box of an email application. 

However, it should be noted that the discrete layout of the SOM elides the proportional 

(dis)similarities between individual items that would otherwise be apparent in a continuous 

spatial layout such as in a scatterplot. This is mainly due to the neighbourhood function used 

in the construction of the SOM. Only local areas are adjusted in training and, as a result, the 

global relationships are coarsely represented. 

4.2.1 Batch-mode SOM 

The learning strategy of the traditional SOM can be described as incremental because after 

each presentation of a training pattern, the weights of the best matching unit (BMU) and its 

neighbours are updated. Heskes et ai. [HW96] describe the properties of a variant of the 

traditional SOM, called the batch-mode SOM. In this case the weights of the network are 

updated at the end of each algorithmic epoch rather than after the presentation of each training 

pattern. In this way, the batch-mode SOM is described as deterministic because running the 

algorithm repeatedly for the same initialisation of reference vectors will produce the same 

output, whereas the traditional SOM is stochastic in the arbitrary way in which the input 

patterns are presented to the network. 

The batch-mode SOM, like its traditional counterpart, provides the same discrete visual 

structure depicting the competitive layer, but it can be quicker in converging to a solution 
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because there is a lesser number of weight updates. This makes it a promising algorithm to 

use for higher volumes of data [KKL *00]. 

This algorithm was implemented by the author to informally assess its performance and 

gain a feel for how the discrete visual output conveys information. The software was written 

in Microsoft Visual Basic 6.0 and the data set used was financial bond trade information 

consisting of 1000 records. In each record there are nine fields, and therefore these data are of 

relatively low dimensionality, but they still cannot be easily mapped directly onto a low

dimensional space for visualisation. Figure 4.7 shows a screen shot from the software. 
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Figure 4.7 A screen shot from the author' s batch-SOM implementation. 

The discrete grid-like output of the batch SOM is shown in the top-left comer of the 

figure. Each square represents a neuron (potential cluster) and the lighter the colour, the more 

records it represents. The controls to the right of the grid are for setting parameters of the 

SOM. These include the size of the grid and the number of epochs. The control for Kernel 

size determines how many layers of neighbours to each winning neuron have their weights 

updated at the end of each epoch, and the cluster threshold control allows the view to elide 

neurons with a degree of membership below the set value. The table at the bottom of the view 

gives details of the members of the currently selected cluster, which is shown as the yellow 
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neuron on the layout. This table also allows the inclusion or exclusion of fields in the training 

of the SOM, i.e. this allows customisable feature selection. As shown, the red column headers 

represent features (dimensions) that have been excluded from the training phase, whereas the 

green column headers indicate features that have been taken into account. 

From this exercise it is concluded that the batch-mode SOM could produce a rough 

intermediate layout for relatively large data sets. With the appropriate interaction controls, 

such as more advanced visual filtering, and better use of graphical structures representing the 

neurons, more information can be gleaned from this technique. The implementation of the 

batch-SOM is relatively simple, implying that it could be easily incorporated as a pre

processing stage or visualisation in an existing system. When the algorithm was run on the 

data set, it was found to converge to a solution much more quickly than a canonical spring 

model (see Section 4.4). However, the discrete layout produced can be hard to interpret even 

though it can capture non-linear relationships in the data - it tends to require more graphical 

embellishments to convey structural information because the position of clusters do not vary. 

In the author's implementation, this was alleviated somewhat by using colouring, and an 

interlinked table to brush clusters and subsequently reveal their contents. 

The following section will, however, describe other methods where individual points 

can be represented in 2-d scatterplots, engaging Gestalt to reveal non-linear structure. 

4.3 Multidimensional Scaling 

Most of the dimension reduction techniques described above are applied in the process of 

feature extraction - they help identify, out of a number of pre-existing features (dimensions), 

the ones that convey salient information while removing or combining those that are irrelevant 

or redundant. There exists, however, a class of data which is not quantified by a set of features 

but by mutual (dis)similarities based upon people's judgements. Rather than being represented 

by true distances in a high-dimensional space, they can be considered as comparative 

distances in a space of unknown dimensionality [Tor52]. Such data are known as proximity 

data [She62] because only their subjective similarities are given, i.e. their mutual closeness or 

nearness is defined by some hitherto unknown mental model. Such data are commonly 

generated by psychophysical experimentation [BG97]. For example, a group of human 

subjects might be presented with a set of stimuli - some physical or abstract entities - and be 

asked to comment upon the similarities between all pairwise or triadic combinations. The goal 

then, is to find a Euclidean space of the minimum dimensionality into which the data can be 

64 



fitted so that the proportions of similarity are preserved. These dimensions might then be 

interpreted as the underlying principles of a theoretical mental or physiological model. 

Multidimensional Scaling (MDS) is a tool that has evolved to transform proximity data 

into such a geometric representation. A good example of the efficacy of MDS was provided 

by Shepard in 1962 [She62]. The data from Shepard's experiment were acquired from a study 

by Ekman [Ekm54] where subjects were presented with 14 colours of varying hue - the 

stimuli. Each subject was presented with the colours, two at a time and asked to judge how 

similar they were on a five-step scale. The mean ratings were then transformed to lie on a 

scale between 0 (for "no similarity at all") and 1 (for "identity") in a 14 x 14 matrix. When 

Shepard fed these data into his MDS routine, a 2-d configuration of points was obtained that 

bore a striking resemblance to the familiar colour circle. The comparison is illustrated in 

figure 4.8. 
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Figure 4.8 The coloured points bounding the figure, ranging from red to violet show the configuration 

obtained by Shepard's MDS algorithm when run on the colour-similarity data. It is clear that this 

clo ely follow the familiar colour circle (centre). The original figure [Sbe62] has been rotated and 

flipped in thi reproduction for ease of comparison. 
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The colour circle was discovered by the physicist and mathematician Isaac Newton 

three centuries ago and contributes to today's theories on the psychological structure of 

colour. Opposing hues complement one another when mixed and one axis spans the perceived 

warm colours (from red to yellow) to the cool colours (from blue-green to blue-violet). The 

underlying physiological and psychological principles of this are well-understood, but it is 

intriguing that the MDS routine is able to reproduce the model just from the similarity 

judgments of human subjects. 

In the above example, the interpretation of Shepard's point configuration was 

straightforward because of the prior knowledge of the colour circle. However, it is of interest 

to consider what an observer's interpretation would be if there was not such an a priori model. 

One might relate the vertical axis to the perceived difference between the warm and cool hues, 

but what about the horizontal axis? In this case there appears to be no definite cognitive or 

physical significance explained solely by this axis. Instead, it is a non-linear combination of 

both orthogonal axes that is important. The increasing wavelength from violet through to red 

is conveyed by this, hence the circle. This example suggests a warning in the general case of 

interpreting such MDS layouts. While it might be tempting to only attribute the axes to trivial 

or perhaps obvious factors, it should always be borne in mind that there might be more 

complex relationships represented by their combination. 

4.3.1 Torgerson's classical metric MDS 

One of the first MDS routines was proposed by Torgerson in 1952 [Tor52] and operated by 

transforming similarities into distances. This transformation was essential because similarities 

are not often symmetric, nor do they obey the triangular inequality. As a result, they do not fit 

into a Euclidean space. In the traditional unidimensional methods of analysis performed in 

psychophysical and psychometrics, subjects are required to specify similarity judgements 

between stimuli along one particular dimension such as brightness or weight. These 

similarities are then conditioned to lie upon a scale to reflect the psychological distance or 

difference between stimuli. As an example (provided by Torgerson), consider four stimuli SJ, 

S2, S3 and S4 on the 1-<1 scale shown below: 
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Rather than scaling the stimuli to obtain a I-d solution, Torgerson's multidimensional 

approach involved initially obtaining a scale of the similarities between all stimuli. So, for the 

four stimuli, a l-d scale of the six inter-stimulus similarities might be as follows: 

Torgerson pointed out that these comparative distances are not absolute distances. This is 

important because it is the absolute distances that are essential in finding the Euclidean space 

of the smallest dimensionality which might accurately represent the data. To obtain the 

distance d/j between stimuli, Torgerson stated that a constant C must be added to the 

comparative distances h/j: 

(4.16) 

He also stated that finding C is analogous to finding the true zero point of the scale of 

comparative distances, and that this would then permit the stimuli to be fitted by a Euclidean 

space of the smallest possible dimensionality. To continue with Torgerson's example, 

consider the comparative distances between a set of five stimuli: 

hI] = 1, 

h/J = 2, 

hu= I, 

hJj = -I, 

h2J = 1, 

hu=4, 

hJ5=-I, 

h45 = o. 

In this case the additive constant required is 4, resulting in the stimuli fitting into a 2-d space 

as shown below: 
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If any number other than 4 was taken as C then a space of higher dimensionality would be 

required to fit the derived distances. 

Having developed a routine for deriving absolute distances from similarities, 

Torgerson' s MDS algorithm then drew upon Young and Householder's method for 

confirming whether data do indeed lie in a Euclidean space and if so, how to determine their 

dimensionality [YH38]. This is achieved by finding a matrix of lower rank than that which 

holds the distance information - a technique akin to peA and SVD. In other words, once the 

Euclidean space is found in which the data fit, the space is rotated to produce a projection onto 

a lower number of meaningful axes. 

Torgerson's approach was one of the first breakthroughs in multidimensional scaling 

and is known as classical metric MDS. The term metric is applied because the routine works 

solely on quantitative similarities. It is a virtue of MDS that the meaningful dimensionality of 

information can be uncovered from only a set of similarities. Recall from Section 4.1.5 that 

FastMap has the ability to produce a projection of data from a set of distances alone. While 

this provides an extremely quick reduction in dimensionality, it is worth noting that it cannot 

handle the proximity data for which MDS has evolved. 

Apart from being computationally intensive, requiring O(n3) time for transforming 

similarities to distances alone, Torgerson's technique can be problematic when working with 

fallible data. Errors might be made in observing, recording and encoding subjects ' similarity 

judgments and therefore the proportions of mutual similarity might evade a Euclidean space of 

suitably low dimensionality. This is because the routine seeks the absolute distances, 

conforming as closely as possible to the proportions of mutual similarities. The MDS methods 

described in the following subsections avoid this shortcoming. 
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4.3.2 Non-metric MDS 

The second breakthrough in MDS was made by Shepard in 1962 [She62] whose algorithm is 

classified as non-metric [Krus64] because it can handle qualitative as well as quantitative 

measures of similarity. In embracing the analogy of similarity measures with representative 

physical distances, Shepard named such observations proximity data and his technique as the 

analysis of proximities. Shepard's approach treats input data types as ordinal by considering 

only their rank ordering when reducing their dimensionality. He showed that the rank order of 

mutual proximities is sufficient for metrically recovering a Euclidean configuration rather than 

Torgerson's method of first transforming quantitative similarities into absolute quantitative 

distances. 

Shepard's algorithm starts by ordering the N(N - 1)/2 proximities between N objects, 

from the smallest to the largest values. This produces a scale analogous to that of Torgerson's 

scale of comparative distances. The goal thereafter is to arrange N points in Euclidean space 

so that their mutual distances obey an inverse ranking of the proximities. For example, if 

objects A and B have a high mutual proximity, then their representative points in Euclidean 

space should have a low mutual distance. That is, the distances are constrained only to the 

extent that they have a monotonic relationship with the original proximities; the proportions of 

the distances do not have to comply exactly with those of the proximities. Thus, proximity is 

treated as an unknown monotonic function of distance and once transformed by this function, 

the data can be arranged in a Euclidean space. 

To achieve a monotonic relationship, points are initially arranged on the vertices of an 

(N - 1 )-dimensional simplex centred at the origin and with edges of unit length. This ensures 

that all inter-point distances are initially equal to unity thus removing any bias from the final 

configuration. Also, when N points are placed in an (N - 1 )-dimensional space, they can be 

arranged to obtain any desired ordering of the mutual distances. These facts become clear if 

one imagines the case where N = 3, with each of the points lying on the vertices of an 

equilateral triangle - the 2-d simplex. 

After the N points have been organised on the vertices of the simplex, the routine 

iteratively updates their positions by comparing the rank order of their distances to the rank 

order of their proximities, shrinking distances that are too large and stretching those that are 

too small. This produces a set of displacement vectors that are added to the point coordinates 

to move them closer to a monotonic relationship with the original proximities. Since the points 

reside in a relatively high dimensional space, they are free to move quickly to positions 

satisfying the monotonic requirement. However, as the goal of MDS is to reduce the 
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representative dimensionality of the input data, clearly the (N - l)-d configuration must be 

flattened out to enable projection of the points into a space of lower dimensionality. 

Shepard noted that dimension reduction is generally accompanied with an increase in 

variance of the point coordinates. In initialising the points to lie on the simplex vertices, the 

variance is at its minimum possible value because the inter-point distances are unity, thus to 

reduce the dimensionality this variance must be increased. This is accomplished by 

introducing a second set of displacement vectors, complementing those for attaining 

monotonicity. Rather than shrinking the larger distances and stretching the smaller distances, 

the opposite approach is required to increase variance and therefore force the configuration 

into a space of smaller dimensionality. That is, the smaller distances are further reduced while 

stretching out the larger distances. While the algorithm iteratively updates the point positions, 

the two sets of displacement vectors gradually balance out to the stage where the routine 

converges to a configuration of points where an optimal compromise between monotonicity 

and dimensionality is accomplished. However, the points still reside in a space of (N - I) 

dimensionality somewhat analogous to a plane in a 3-d space. To attain the final configuration 

in the desired number of dimensions, the points are rotated to their principal axes before being 

projected into the smaller space. 

Shepard demonstrated how the monotonic function relating proximity to distance can 

also be recovered. When the original proximities between pairs of stimuli are plotted against 

the recovered pairwise distances in the low-d point configuration, the resulting trend shows 

the shape of the function. This graph is known today as a Shepard plot. An example is given 

in Figure 4.9. A set of 2-d data consisting of 300 points was converted into a set ofproximities 

(specifically dissimilarities) by a Gaussian transformation based on that used by Shepard in 

his sequel paper [She62]. These points were then fed into the routine so that the following 

configuration and Shepard plot were produced: 
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Figure 4.9 The point configuration on the left was recovered from the original 2-d data after they were 

tran formed into proximities. The Shepard plot on the right shows the shape of the function used in the 

transformation. These images were produced in HIVE. 

The function used to transform the original data into proximities is as follows: 

S ij = exp[J.4 * dij) (4.17) 

Where d/j represents the Euclidean distance between points i and j. In real-life data, the 

function that allows proximity data to fit into a real Euclidean space can be of arbitrary shape, 

however, using the above technique, the function can still be recovered no matter what the 

shape. Note that if the original data had not been transformed, then the Shepard plot would 

show a straight 45 degree line representing a one-to-one relationship between the original 

inter-object distances and those recovered by the routine. 

This MDS routine represented a breakthrough because it proved that quantitative 

distances could be recovered from qualitative (non-metric) proximity data and the monotonic 

function that relates proximities to the Euclidean distances could also be simultaneously 

recovered. Shepard's routine has the advantage over Torgerson's approach in that it can 

handle missing or erroneous data and it can be generalised to work with distance metrics other 

than Euclidean. However, its downfall is its computational complexity. The routine requires 

that N(N - 1 )/2 distances must be calculated over the (N - 1 )-d points for each update thus 

taking O(N) time per iteration. The algorithm requires O(N) iterations to converge resulting 

in an overall time complexity of O(N) although the author has recently reworked Shepard' s 

algorithm to attain convergence in O(N) time. This is detailed in Section 5.4. 
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The criterion Shepard used for determining when to stop the iterative process, and 

project the data into a space of lower dimensionality, is the overall departure from 

monotonicity: 

(4.18) 

Where sl} is the proximity of objects i and j and s(dl}) is the proximity at the rank of the 

corresponding configuration distance between the same objects. This is the closest Shepard 

goes to providing a measure of the goodness of fit of the recovered configuration from the 

given proximities. In 1964, Kruskal took this further to define a measure that the MDS routine 

explicitly attempts to minimise [Krus64]. Instead of directly using the proximities, Kruskal 

defines the distances required to maintain the monotonic relationship with the proximities and 

takes the deviation of the current configuration distances from these ideal distances as a 

measure of fit. This measure of the goodness of fit is called stress and is defined as follows: 

(4.19) 

Stress is the residual sum of squares of the difference between the actual distance dlj and the 

desired distance dl}. While it is invariant to rotation and translation of the configuration, it 

must also be normalised to make it invariant to uniform dilation. 

Kruskal's version of the non-metric MDS algorithm employed a steepest descent 

routine where the goal of each successive iteration is to reduce the measured stress as much as 

possible. The routine ends when stress does not decrease further. While Kruskal's stress 

measure provides a more solid theoretical foundation for MDS, one disadvantage of this 

approach is due to the possibility that the steepest descent method might get stuck in a local 

minimum. The fact that stress does not reduce in a successive iteration does not necessarily 

mean that this is its lowest possible value; it might simply be resting in a valley in the curve of 

the stress function. 

The time complexity of Kruskal's routine is O(Jt) because stress takes O(Jf) to 

compute when the dimensionality before projection is equal to (N - I) and approximately N 

iterations are needed to attain a local minimum of the stress function. 
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It is interesting to note that both Shepard's and Kruskal's approaches initially increase 

the dimensionality of the data to (N - I). The primary purpose of this is to quickly achieve 

monotonicity through the increased freedom of the points in this large space. As such, both 

methods rely on a linear projection technique such as PCA or SVD to collapse this 

representation into a space of the lower target dimensionality. While this last step is a linear 

transformation, the routine is still a non-linear technique in that it can represent non-linear 

relationships within the data. 

4.3.3 MDS for feature selection 

In the introduction to this chapter, the distinction between feature selection and feature 

extraction was provided. All of the examples of dimension reduction discussed hereto have 

described feature extraction which is the derivation of a set of features (dimensions) that are 

pertinent in succinctly representing the structure inherent in a set of data. However, MDS can 

be used for feature selection. That is, a method of selecting a subset of the original variables to 

use as dimensions for subsequent analysis of data. 

Guttman [Gut68] developed a non-metric MDS routine called smallest space analysis 

(SSA), known today as Similarity structure analysis. This is a form of MDS that became 

popular with practitioners in the fields of psychometrics and investigative psychology 

[Can85J. The example that will be provided here is concemed with the latter which is very 

closely related to the author's current occupation. 

In the field of investigative psychology, various observations of criminal activity made 

at crime scenes are used to build behavioural models in order to profile offenders. Such 

observations are collectively called modus operandi (MO) and are treated as variables in a 

multivariate data set of crimes. These data are initially represented by a raw data matrix 

(ROM) where crimes are allocated to the rows and variables to the columns. In the first step of 

building a model of the typical MO for a particular type of crime, analysts apply SSA to the 

data to attain a layout of the variables, rather than a layout of the crimes. Thus the starting 

dimensionality is not the number of variables but the number of crimes. Formally, a data set of 

N items and d dimensions is represented by d vectors AtCO Sai < d) comprised of N elements 

a~O Sa} < N) [ABK98]. SSA then places variables that are highly correlated close to each 

other while uncorrelated variables are placed further apart. 

The output of this process is a scatterplot depicting the variables and the analyst 

manually partitions this plot into thematic regions. This can be thought of as a kind of spatial 

categorisation. For example, in the case of arson the variables might include the time of the 

offence, its location and the type of accelerant used. The underlying themes, represented by 
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groups of adjacent variables, might reflect whether the offence is manifested in the offender 

expressing him or herself, or whether it is instrumental for some personal gain. Figure 4.10 

provides an example extracted from Canter and Fritzon [CF98]. The definition of these 

themes does, of course require diligent consideration of what the variables mean and their 

psychological significance. While it is rare for well-formed clusters to appear, the statistical 

properties such as co-occurrence and correlation are manifest in the MDS output in such a 

way that the psychological significance of their positions can be strongly explained and 

justified. It is generally also observed from such a layout that the centroid of the configuration 

is surrounded by the most frequent variables (usually the absence or presence of a variable at a 

crime scene is encoded as a Boolean value and therefore the sum of values for a particular 

variable is taken across the entire data set and considered as its frequency). Canter 

hypothesises that these high-frequency variables indicate the significance of the offences to 

the offenders. 

Once such a layout and its partition have been obtained, analysts can select a subset of 

variables for further analysis such as MDS of the crimes where each point in the layout 

represents an offence. That is, in the first stage of analysis, MDS is employed for feature 

selection and then MDS is applied for feature extraction. 
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Figure 4.10 An SSA layout of variables representing the MOs of a set of arson offences. 
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This approach can also be applied to scientific data to identify redundant variables. 

Using MDS to layout variables essentially depicts their correlations - proximity in the layout 

is proportional to correlation between the variables concerned and if two variables are highly 

correlated then perhaps including just one of them would suffice in a representation of the 

data. To test this hypothesis, the author ran SSA on a data set gathered from an eScience 

project within the Equator Interdisciplinary Research Collaboration (www.equator.ac.uk). The 

eScience team set up a remote sensing probe at a frozen lake in the Antarctic, which transmits 

data including ice thickness, water temperature, UV radiation levels etc. to environmental 

scientists at the University of Nottingham. The aim of this is to learn about carbon cycling 

processes. The data set was composed of 2202 probe measurements, each consisting of 14 

variables measured at five-minute intervals between 17th January 2003 and 31st January 

2003. This was converted into CSV format before importing it into the author's HIVE 

software for analysis (discussed further in Chapter 7). 

SSA was run on the variables of the data to gain the layout shown on the left frame of 

Figure 4.11. One would expect variables such as data-logger temperature and air temperature 

to be correlated and this is indeed the case, as can be seen from their proximity in the layout. 

From each group of highly correlated variables, one representative variable was selected 

resulting in a subset of 6 variables from the original 14. This 6-d representation of the data 

was then projected onto a 2-d layout using PCA as illustrated in the middle frame of the 

figure. This was then compared with a PCA projection of the full 14-d data set (right-hand 

frame of the figure). It can be seen that even though the number of variables has been reduced 

to less than half, the layouts are very similar indicating that there was indeed a high degree of 

redundancy. 

Feature selection can also be achieved by applying clustering algorithms to the 

dimensions of a data set. Yang et al. [YPWR03] employ an agglomerative hierarchical 

clustering routine and visualise the result in their radial space filling (RSF) visualisation 

called InterRing [YWR02]. Yang et al. also show that dimension-clustering and filtering can 

facilitate the diligent ordering and spacing of dimensions in visualisations such as parallel 

coordinates [Ins85] to greatly improve their efficacy. Ankerst, Berchtold and Keim [ABK98] 

provide an extensive account of how to define similarity measures for dimension clustering. 

They also show that obtaining an optimal ordering of dimensions (according to similarity) is 

an NP-complete problem, although they provide heuristics for speeding up this operation. 

Another alternative for dimension-ordering and clustering is provided by Guo [Guo03]. In this 

case the d-dimensional data space is partitioned into nested means and the maximal 

conditional entropy of the partition cells is computed and used as a measure of dissimilarity. 
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Guo applies the minimum spanning tree in a graph-based clustering routine (see Section 3.4.1) 

to form the dimension clusters and derive an ordering. 

Figure 4.11 An SSA layout of the variables of a scientific data set is used to select a subset (highlighted 

in yellow) for subsequent dimension reduction (two left-hand frames) . The projection of the full data 

set is shown on the right-hand frame. 

4.4 Force-directed placement 

For many years, researchers have been devising algorithms for the automatic layout of graphs 

given a set of vertices and edges [CT98]. Usually the goal is to obtain a graph where some 

predefmed criteria is to be fulfilled. For example, in some cases it is desirable to minimise the 

number of edge-crossings and make the graph as near to planar as possible; also, it might be 

desirable to have the graph as symmetrical as possible or constrain the edges to be of unit 

length. Generally speaking, a graph-drawing algorithm reproduces a visual representation of a 

graph according to some desired aesthetic properties. A popular basis for such an algorithm is 

called force-directed placement (FDP) - a term coined by Fruchterman and Reingold [FR91] 

because the general technique is based upon a simulation of forces and motion in a physical 

system. 

A seminal paper by Eades [Ead84] describes a heuristic technique for the aesthetic 

layout of general undirected graphs through the physical analogy of a system of steel rings 

connected by springs. The basic idea is that a graph, G = (V, E), where V represents the 

vertices and E represents the edges, can have its vertices replaced by steel rings and its edges 

replaced by springs to represent a mechanical system. This system is initialised so that the 

vertices are placed in random positions and therefore the springs connecting them are 

stretched or compressed. When the system is let go the attractive and repulsive forces exerted 

by the springs move the system to a state of minimum energy or equilibrium (see Figure 4.12). 
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Such a y tern can be simulated using Hooke's law or Newton's law of motion, yielding a set 

of differential equation that can be solved numerically using a method such as Runge-Kutta 

[ DH92] , although in this case, Eades defined his own formula for relating forces to the 

analogou pring. Thi technique was found to produce good results with regard to aesthetics 

of ymmetry and uniform edge lengths in graph drawing but has since been applied in 

dimen ion reduction cenarios where the layout of high-dimensional objects in a low

dim n ional pac is the goal. Because the analogy of forces and springs is explicit, this type 

of alg rithm i often referred to as a spring model. 

igure 4.12 n illu tration of Eades' concept of the spring model. The image on the left shows steel 

ring h Id in random po itions cau ing the connecting springs to be stretched or compressed. The image 

on the right d pi t the y tem ina tate of minimal energy after the rings have been let go resulting in 

the pring re erting to their rest lengths. For clarity, only springs connecting adjacent rings are shown. 

When applied to the low-dimensional embedding of a set of abstract data, this model 

can be c n idered a a combinatorial optimisation algorithm and is an example of the well

known N-bod problem. The forces in the system are computed as being proportional to the 

difference etween the high-dimensional (desired) distance and the low-dimensional (layout) 

di tance nd therefore a loss function can be derived which indicates the amount of energy in 

the y tern [ oh97, Cha96. This loss function is related to Kruskal's stress function 

de cribcd 10 e tion 4.3.2 and is a measure of the sum-of-squared errors of inter-object 

di tanee . hu the objectiv of the spring model is to minimise the stress (Equation 4.20). It 

can be en th t the spring model is a form of metric MOS. It works directly upon the values 

of the di imilaritie (ill lanCes) to provide a layout. 

(4.20) 
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Where d,j is the desired high-dimensional distance and g/j is the current layout distance. It 

should be noted that the stress measure is widely used to describe the quality of layouts, 

however. it should be used with caution. A low stress value indicates a close fit of the low

dimensional layout to the high-dimensional space, but it states nothing of the layout's 

interpretability. In fact, from the author's experience even small differences in stress can 

reflect large differences between layouts often resulting in familiar or expected structure being 

hidden. 

In its basic form, there are N(N - 1 )/2 pairwise object interactions to take into account 

and therefore it can be computationally infeasible when a large volume of data is to be 

considered, especially since it is usually implemented as an iterative algorithm. The number 

of iterations required for the system to reach a state of equilibrium tends to be proportional to 

N and therefore the overall time complexity could potentially be 0(Ji3). 

In a paper by Chalmers [Cha96] an algorithm is proposed in which stochastic sampling 

is employed to derive an array of neighbours V and an array of samples S for each data item. 

The sizes of both arrays are held constant. At the start of each iteration the sample arrays are 

filled with random items before calculating the forces between each item and only those items 

in the respective neighbour and sample sets. This bounds the number of distance calculations 

in each iteration of the algorithm to NO JII + lSi) and therefore results in overall time 

complexity of O(Ji) in achieving equilibrium. At the end of each iteration, the neighbour sets 

are updated by replacing items that are further away with closer items that are in the sample 

set. That is, if a neighbour is further away from its parent item than the closest sample item, 

then the sample item replaces the neighbour. This improves the accuracy of the neighbours as 

the algorithm progresses. Chalmers' algorithm was one of the fastest non-linear dimension 

reduction techniques at the time of its publication. 

The spring model can be used to provide visually intuitive views of a data set. Items 

that are similar are placed close together and items that are dissimilar are placed farther apart 

in a continuous fashion. This approach, as with MOS, provides an improved layout over that 

of the discrete SOM layout. It also has the advantage over the projection-based techniques in 

that it can uncover non-linear relationships within data. A user can perceive how similar or 

dissimilar groups or individual items are because the topology and the proportional inter

object distances are preserved to some extent. The simplicity of the spring model and its 

openness to heuristic improvements such as that of Chalmers make it a good component for 

hybrid dimension reduction algorithms, as will be seen in the next chapter. 

A major difference between FOP and non-metric MOS is that FOP cannot yield a 

solution which is invariant under all monotonic transformations of the input data. While non-
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metric MDS tries to minimise departure from monotonicity, the spring model attempts to 

recreate the distances perfectly and is therefore not readily applicable to proximity data where 

there exists no Euclidean space in which they would fit. Recall the example illustrated above 

in Figure 4.9. A data set consisting of 300 2-d points was transformed into proximity measures 

and non-metric MOS was shown to exactly recover the Euclidean configuration as well as the 

function relating proximity to Euclidean distance. The author applied Chalmers' spring model 

to the same data. The result is shown in Figure 4.13. 

Although Chalmers' spring model produced a 2-d layout relatively faithful to the 

original 2-d configuration (see Figure 4.9), some distortion is evident. The corresponding 

Shepard plot implies the shape of the function but is not as clear as that in Figure 4.9 as 

produced by Shepard's non-metric MOS. The Shepard plot also shows that there is more 

discrepancy between the original data and the layout. This is evident in the roughness of the 

curve and is due to the distortion in the layout. 
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Figure 4.13 The same data set as in Figure 4.9 is fed into Chalmers' spring model and the layout is 

shown on the left. The corresponding Shepard plot is shown on the right. 

4.5 Conclusions 

This chapter has discussed a number of techniques for dimension reduction, many of which 

have been implemented by the author to help clarify their operation and gain a deeper 

understanding of their behaviour. Several of the figures were produced by a system called 

HIVE that was developed by the author to explore, combine and utilise such algorithms. 

HIVE will be the focus of later chapters where its utility will be demonstrated in the creation 

and evaluation of several novel algorithms for dimension reduction and data clustering. 
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Dimen i n reduction can be classified according to two dichotomies. The first 

di tingui he between feature extraction, where a new smaller set of uncorrelated dimensions 

i deri ed fr m the original data, and feature selection, where the dimensions are carefully 

filtered to reduce redundancy in the data. The second dichotomy is a sub-class of feature 

extra tion and includes the family of projection techniques in which a linear combination of 

the variable provide a new set of derived dimensions. An advantage of this approach is that 

the re ulting axe are ea ier to interpret because of their linear relationship and the routines 

pr ducing them tend to be quite fast. The second class of this dichotomy pertains to non-linear 

meth d which tend to be more powerful than the projection techniques because they can 

expo e latent non-linear relationships in data. This latter class does, however, tend to provide 

m re computationally expensive solutions and the reduced set of dimensions can be harder to 

interpret. te that while the two (or three) geometric dimensions of a layout do not mean 

anything in them elve , non-linear techniques can still be regarded as a type feature extraction 

the onu i put on the u er to look at any resulting patterns such as trends and clusters and 

try to figure out the underlying meaningful dimensions of the data. 

While thi taxonomy (see Figure 4.14) of dimension reduction techniques is by no 

mean definitive, it ha erved its purpose in providing a structured account of the prominent 

routine found in the literature. 

Feature extraction 

projection 
techniques 

Dimension reduction 

non-linear 
techniques 

Feature selection 

Figure 4.14 A ta on my of dimen ion reduction techniques. 

A v ith clu tering algorithms, dimension reduction routines provide a reduced 

repre entation of data. Dimension reduction can be considered as an orthogonal approach to 

clu tering it w rks primarily on data dimensionality d whereas clustering most commonly 

tackle cardinality N, with the exception of the special case of dimension clustering as 

de cribed in ecti n 4.3.3. However, both approaches can work together to reduce data to a 
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concise fonn suitable for visualisation or further processing that would otherwise be 

unfeasible due to insufficient computational resources. The next chapter is concerned with 

hybrid algorithms for clustering and dimension reduction. 
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5. Hybrid clustering and layout 

algorithms 

The previous two chapters have shown how data can be reduced to a smaller number of 

representative units (clustering) with fewer variables (dimension reduction) without losing 

much information. This makes visualisation easier because there are fewer entities to code 

into graphical structures; it also makes the resulting visualisations easier to comprehend. The 

fact that the two approaches described for producing such a reduced representation often go 

hand-in-hand has also been demonstrated. Clustering can be utilised to aid dimension 

reduction and dimension reduction can be used to help define clusters. One may also argue 

that the two approaches are equivalent. 

This chapter is concerned with hybrid algorithms for attaining a reduced representation 

of data. Such combinations, including both clustering and dimension reduction algorithms 

have been touched upon in the previous chapter. For example, the SOM (Section 4.2) 

performs clustering and dimension reduction simultaneously. In another example (Section 

4.3.3), dimension clustering can be used to expose redundancy in variables and therefore 

facilitates feature selection. Section 4.1.4 describes how Random Projection can enhance the 

effectiveness of clustering algorithms such as Expectation Maximisation and K-means that are 

predisposed to detecting spherically shaped clusters. While these observations imply that 

hybrid combinations of particular clustering and dimension reduction algorithms can be useful 

in attaining reduced representations of data. many such algorithms still sutTer from the 

drawback of being computationally expensive operations. However, various clustering 

algorithms and dimension reduction techniques exhibit their individual advantages and 

disadvantages and hybrid compositions can be exploited to counter the shortcomings of the 

individual components. Generally speaking, some cheap algorithms (with respect to time) can 

be used as pre-processing stages that effectively provide a shortcut for more expensive 

routines, thus reducing overall running time while maintaining layout quality. This chapter 

will provide evidence of the potential effectiveness of hybrid algorithms through examples 

from the literature and from the author's own research. 
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5.1 Hybrid algorithms for clustering 

In Section 3.2.1, it was pointed out that the K-means algorithm is prone to converge to a local 

minimum of the clustering cost function and is especially sensitive to the initial cluster centres 

which are usually randomly selected. The Buckshot algorithm [CKPT92] can be used to find 

good initial cluster centres that can help K-means avoid local minima. The Buckshot method 

works by randomly choosing v'N samples from the data set (of size N) before applying a 

hierarchical clustering routine such as HAC (see Section 3.1). Since the time complexity of 

HAC is O(NZ), the dendrogram of the v'N sample can be attained in linear time. K-means can 

then be initialised and run on the full data set using the mean vectors of a selected subset of 

the clusters obtained from the HAC routine. Since the chosen centres already approximate 

potential clusters, K-means is more likely to avoid local minima. The advantage of the 

Buckshot algorithm is its stochastic sampling. This reduces the time complexity of the initial 

(computationally expensive) clustering routine which subsequently provides a head-start for 

the second (computationally cheaper) clustering stage. In principle, the clustering routines 

used with Buckshot do not have to be HAC and K-means as described above. 

Another way of improving the quality of a clustering solution while decreasing the time 

complexity is to apply Random Projection dimension reduction (see Section 4.1.4) as a pre

processing stage for a clustering algorithm that is predisposed to finding spherical clusters. 

The tendency for clustering algorithms such as K-means and model-based techniques such as 

Expectation Maximisation (EM) to detect predominantly spherical clusters is obviously a 

disadvantage because it is unlikely for real data to contain only spherically shaped clusters. 

However, Random Projection has been shown to distort clusters of arbitrary shape by making 

them more spherical but it still maintains their separation [DasOO]. This means that a 

clustering algorithm such as K-means or EM has the potential to find clusters of different 

shapes. Another benefit arises because Random Projection reduces the dimensionality of the 

data, and therefore the time taken by the clustering routine is reduced. 

The research areas of cluster analysis and pattern classification are closely related. In 

data mining and exploratory data analysis, clusters are often sought in the attempt to classify 

(or categorise) existing data and to subsequently classify new data. A new pattern (data item) 

can be classified by finding the most similar cluster in an existing data set and this has had a 

major impact in the fields of pattern recognition and artificial intelligence [LS97a]. In fact the 

unsupervised clustering algorithms detailed in Chapter 3 can be considered as machine 

learning techniques because they can be applied in the unsupervised classification of data. A 

relatively recent development in pattern classification involves the use of multiple classifiers 
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to improve the accuracy of the resulting classification). This is based upon the Condorcet jury 

theorem - proposed by the Marquis of Condorcet in 1784, this theorem provides evidence 

showing that the judgement of a group of people is superior to that of an individual [LS97b]. 

This theorem can easily be transposed to pattern classification by running a classifier on a data 

set several times and considering the allocation of a pattern to a class as a 'vote' vouching for 

that pattern as being a true member of the class. If a pattern x has a majority of votes for class 

A over another class B then it is considered as more likely to be a true member of class A. A 

simple example of this would be to apply mUltiple runs of K-means clustering on a data set 

and then derive the clusters from the most consistent allocation ofthe data [Fre02]. 

Formally, the Condorcet jury theorem can be defined as follows. If each classifier has a 

probability p of being correct and the probability of the majority of classifiers being correct is 

m, then: 

• p > 0.5 implies m > p 

• and m approaches 1, for all p > 0.5 as the number of classifiers approaches 
infinity 

This reasoning, as employed in pattern classification, is referred to as classifier ensemble, 

combination or fusion [LamOO, RK02, Str02] and can be considered as a special case of a 

hybrid algorithmic approach to clustering. There are several possible manifestations (or 

topologies) of classifier ensembles [LamOO]. The conditional topology works by using a 

primary classifier and when certain patterns are rejected or allocated to a class with low 

confidence, then another different classifier can be used to see if it can do better. This 

approach can be very efficient, especially if the primary classifier is computationally cheap. 

The hierarchical topology involves a set of (possibly diverse) classifiers applied successively 

to patterns. Each classifier produces a smaller number of classes which are in tum used by the 

next classifier thus gradually reducing the classification problem and focussing the process. 

The hybrid topology systematically chooses a particular type of classifier according to the 

values of the pattern features. If, for example, there are missing features in a pattern vector, 

then a classifier that can cope with this would be employed. The mUltiple topology has already 

been demonstrated by the K-means example above. This approach employs the simple 

majority voting rule to determine classes from the consistent allocation of patterns. 

I In the context of this section, the tenn classifier will be used synonymously with clustering algorithm as will 

class with cluster. 

84 



5.2 Hybrid algorithms for dimension 

reduction 

This section will describe how some researchers have exploited hybrid algorithms to improve 

the quality and speed of dimension reduction routines. One of the most popular algorithmic 

components used is the SOM due to its reasonable time complexity and its ability to detect 

clusters and reduce dimensionality simultaneously. 

In the attempt to make the SOM faster, Su and Chang [SCOO] employed K-means to 

gather k clusters from the data set. The representative centroids of these clusters are then 

organised into a discrete ...Jk by ...Jk grid and a SOM is subsequently used to fine-tune the 

layout. Su and Chang suggest that this hybrid approach is much faster than the traditional on

line SOM because K-means has a lower time complexity than the SOM and it provides an 

initialisation that is reasonably close to the final solution. 

Kohonen et at. [KKL ·00] demonstrated another way of reducing the running time of 

the SOM. In this case the objective was to use the SOM to classify and visualise over six 

million text documents. After discounting words that appeared less than 50 times in the whole 

corpus and removing stopwords (terms, such as articles and connectives, that would normally 

be considered to bear little content), the remaining vocabulary - and therefore the 

dimensionality - of the data was 43,222. Kohonen et at. then employed Random Projection to 

reduce the dimensionality to 500 before applying the SOM. Random Projection can be 

achieved in time linear with N while still retaining much of the original information. In this 

example. it was instrumental in making the application of the SOM to such a large data set 

feasible. 

In another example, Brodbeck and Girardin [BG98] reduced the running time of a 

canonical spring model algorithm (Section 4.4) by using the SOM as a pre-processing step. 

Consisting of a discrete grid of cells (or neurons), SOMs cannot show as much intuitive 

structure or detail as a spring model layout but are often quicker to produce and scale to larger 

data sets. In this example, Brodbeck and Girardin used the SOM to acquire a set of clusters, 

much in the same way as Su and Chang used K-means, however, in the next step a spring 

model was employed to either layout the contents of one of the clusters or to layout the set of 

vectors representing the SOM neurons. Whichever step is taken is up to the discretion of the 

user. However, to obtain a full layout of the data set, the latter option is taken before applying 

a novel interpolation routine to add the cluster contents to the layout of neurons. Since the 

spring model is consequently run upon a reduced data set (the representative SOM neurons), it 
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converges far more quickly while the interpolation of the remainder of the data set takes only 

O(N) time. The accuracy of the interpolation depends upon a set of constants used to govern 

the process; the higher the values for these constants, the longer the process takes but the 

better the positioning obtained. Example figures showed that layouts could be produced that 

were strikingly similar to those generated by a spring model run on the entire data set. 

Brodbeck and Girardin also stated that an improvement in run time was gained, requiring 

hours rather than days to complete. 

While the SOM can be an effective component of a hybrid algorithm for dimension 

reduction, other methods have been explored. Schroeder and Katopodis [SK02] ran 

experiments to find a good method of initialising the point positions for a canonical spring 

model. A common heuristic for initialising a spring model is to place the layout points in a 

random configuration before allowing the spring model to iteratively refine their positions 

until the final solution is obtained. Schroeder and Katopodis compared this technique along 

with several others including initially placing all points at the origin of the 2-d layout, placing 

the points on a circle, and using a hierarchical clustering algorithm to dictate placement. They 

found that the clustering approach provided the best results. Initially placing points in the 

layout according to their relative positions in the clustering dendrogram improved the 

performance of the spring model resulting in lower stress levels in a smaller number of 

iterations. This is due to the points being placed in positions that approximated the final 

solution. 

The previous two sections have indicated that the hybrid combination of algorithms can 

provide more efficient and effective clustering and layout algorithms. The approach generally 

adheres to an algorithmic symbiosis - a cheap process roughly reduces the problem to hasten a 

more expensive one which improves the output. The following sections will outline some of 

the author's own work in this area. 

5.3 A novel hybrid algorithm for dimension 

reduction 

This section presents an original algorithm for reducing high-dimensional data to a 2-

dimensional layout. The routine is based upon a hybrid combination of Chalmers' spring 

model [Cha96], stochastic sampling and an improved version of Brodbeck and Girardin's 

interpolation [BG98]. Results of the algorithm's evaluation show that it is successful in 

obtaining non-linear dimension reduction in sub-quadratic time. The algorithm and the results 
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were published in the proceedings of InfoVis 2002 [MRC02] and In the Journal of 

Information Visualization [MRC03]. 

Chalmers' spring model algorithm was one of the fastest non-linear dimension 

reduction techniques (see Section 4.4). Taking O(}I,) time to provide a solution, it outpaces 

the traditional MDS routines while providing more detail in its output than the SOM. It also 

has the potential to expose more interesting structure than linear techniques such as PCA and 

SVD. It was for these reasons that this algorithm was chosen as one of the components to be 

included in the experimental hybrid conjunction. 

The goal was to reduce the time complexity of Chalmers' spring model without bearing 

any detrimental effects on the resulting layout quality. This was achieved by initially sampling 

.IN items from the input data to obtain a spring model layout of the subset in O(.JN ..IN), hence 

O(N) time. Assuming that this layout provides a reasonable representation of the full data set, 

the remaining (N - .IN) items can be interpolated onto the layout to provide a good 

approximation of that produced by running the spring model on the entire data set. The results, 

as will be seen, indicate that this is indeed a reasonable assumption. 

Interpolation is carried out by placing each of the remaining (N - .IN) items near to the 

closest item in the subset and therefore takes O(N..JN) time. Even though the interpolation can 

exactly recover the inter-object distances in 2-d data. it might not always provide the desired 

results. especially for data of higher dimensionality. If. for example. the spring model of the 

subset tenninated prematurely with some points misplaced, then this would have a knock-on 

effect on the interpolation. resulting in segments of the layout lying askew. To overcome this. 

the spring model is run for a constant number of iterations over the full data set to refine the 

layout. In practice. this constant is between 20 and 35 iterations because it was frequently 

observed that this was long enough to significantly reduce layout stress. 

Since each iteration of Chalmers' algorithm is achieved in linear time. the overall time 

complexity is dominated by the interpolation stage and is therefore O(N..JN). The outline of the 

algorithm is given in Figure 5.1. and its operation is illustrated in Figures 5.2 to 5.4. 
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1. take sample of IN items from data set 

2. run Chalmers' spring model on the sample 

3. interpolate remaining (N - IN) items onto layout 

4 . refine layout by applying Chalmers' spring model to the full 

data set for a constant number of iterations 

Figure 5.1 The sub-quadratic (O(N...jN» algorithm for non-linear dimension reduction. 

Figure 5.2 Chalmers' spring model is initialised by randomly positioning the ...jN sample in 2-d. 

Figure 5.3 The spring model interatively produces an accurate layout of the sample. 

Figure 5.4 The remaining (N - ..IN) items are interpolated onto the sample layout. The spring model can 

then be run for a constant number of iterations to refine the layout. In this case that is not necessary. 
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Figures 5.2 to 5.4 show screenshots demonstrating the algorithm working on a small 2-

d data set consisting of 300 items. While this provides an intuitive example of how the 

algorithm works, it also demonstrates an advantage of this multistage technique. The user can 

quickly observe an overview of the data and then decide whether to proceed with the more 

time-consuming full layout or to halt the process. Furthermore, the views provided by 

individual algorithmic stages can enrich interaction with data and therefore provide more 

insight. This will be demonstrated in later chapters where an interactive environment 

developed by the author for building and using such algorithms is discussed. 

It should be noted that there are several methods for determining when to terminate the 

execution of the initial spring model run on the sample. One commonly used method for 

terminating force-directed placement routines is to measure the stress after each iteration and 

terminate execution when its value no longer decreases [Krus64]. However, this method 

suffers from a major disadvantage due to the fact that measuring stress requires calculating all 

inter-object distances and therefore takes O(}{-) time. Although, the initial stage of the 

algorithm works on a.JN sample of the data, the additional time for calculating stress can still 

be prohibitive with large data sets. Another method of terminating execution is based upon the 

rule-of-thumb that force-directed placement requires O(N) iterations on average to reach 

equilibrium. The initial spring model can thus be run for .IN iterations before applying 

interpolation. In practice, however, an alternative criterion for termination based upon velocity 

is used. Since the spring model simulates a system of objects with forces acting between them, 

the velocity of an object (its speed and direction) can be measured with respect to these forces. 

When the difference in overall velocity between the current iteration and the preceding 

iteration drops below a scalar threshold, the spring model is terminated and interpolation 

begins. Measuring velocity does not require much additional time because it is calculated as 

part of the spring model routine. Furthermore, it provides a dynamic account of how the 

algorithm is progressing and therefore provides a more effective means of termination than 

that based upon the assumption that convergence is achieved after N iterations. 

5.3.1 Distance metric 

The operation of the algorithm is pivotal on the measurement of dissimilarity between data 

items. By measuring the dissimilarity between items in their high-dimensional space and 

comparing this to their representative distances in the 2-d layout, the algorithm progressively 

refines the layout by moving items closer or further apart in the layout in accordance with this 

comparison (see Section 4.4 for a description of the spring model). However, since the spring 

model is based upon a physical analogy, it attempts to reproduce the high-dimensional 
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dissimilarities as well as possible. This predisposes the algorithm to the use of a dissimilarity 

measure that obeys the triangle inequality, is non-negative and is symmetric. If these criteria 

are not met then the model cannot be expected to find a layout in a Euclidean space of any 

dimensionality. 

For this reason, the choice of dissimilarity used belongs to the family of metrics known 

as the Minkowski (or Lebesgue) metrics [JMF99], which operate on a vector representation of 

each datum. The general form of this family of metrics is as follows: 

(5.1) 

Where L is a parameter that takes on some value in the interval [1, 00] and d represents 

dimensionality. The most commonly used instance of this metric is Euclidean distance, where 

L = 2. This has been adopted as the measure of dissimilarity in this algorithm because of its 

metric qualities as described above and also because it is widely used in measuring distances 

in lower dimensional space (such as the physical environment), and intuitively generalises to 

higher dimensional spaces. 

Inter-object distances are calculated on the fly during execution of the algorithm. 

However, to prevent specific dimensions from dominating the distance, the values for each 

dimension are normalised by dividing them by two standard deviations of their distribution. 

5.3.2 Brodbeck and Girardin's Interpolation algorithm 

The interpolation stage of the algorithm was derived from Brodbeck and Girardin's [B098] 

technique of introducing points onto a layout of a subset of the data. They achieve this by 

finding for each item that is to be added, the point in the layout representing an item that is 

closest in the high-dimensional space. Herein, such a point will be referred to as a parent 

point. The algorithm progressively improves the position of the item so that the difference 

between its high- and low-dimensional distances to a sample set of layout points is reduced. 

Figure 5.5. provides an outline of this algorithm. 
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1. centre a circle of radius proportional to the high-dimensional 

distance, at the closest layout point 

2. define a random subset of layout points S 

3. repeat nc times: 

a. take a random position on the circle's circumference. 

b. sum the discrepancy between the high-dimensional and the 

low-dimensional distances between this position and the 

points in S 

4. place the new item at the position on the circumference that 

provides the lowest sum of discrepancies 

5. repeat nr times: 

a. define a force vector between the current position and 

the sample of layout points 

b. randomly sample a number nr of positions along the 

vector's direction 

c. sum the discrepancies between high- and low-dimensional 

distances between this position and the points in S 

d. place the new item at the position that provides the 

least discrepancy 

Figure 5.S Brodbeck and Girardin's interpolation routine [8G98]. 

The quantities nco nr and nr are fixed and therefore the time complexity of this algorithm is 

linear with respect to N. Increasing these values will result in more accurate placement but 

will increase the time taken. 

It was found that this technique often produced sub-optimal layouts, even for 2-d data. 

This is due to the stochastic sampling of positions in the vicinity of the parent point. Figure 

5.6 shows a layout of a 2-d data set after running Chalmers' spring model on a "'" subset and 

subsequent interpolation by Brodbeck and Girardin's method. It can be seen that although the 

general shape of the data has been recovered, it remains rather rough. The Shepard plot in 

Figure 5.7 confinns this by the deviation from the 45 degree diagonal. An accurate layout of 

2-d data in two dimensions should result in a perfect 45 degree line appearing in the Shepard 

plot due to the one-to-one relationship between the original distances and the recovered layout 

distances. 
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One might be tempted to blame the initial spring model for throwing the interpolation 

off course. However, in this case (as is usual for 2-d data), the spring model produced a layout 

of the .IN subset with near zero stress, that is, an almost perfect layout. 

Figure 5.6 Brodbeck and Girardin's interpolation often provides a sub-optimal layout, even for 2-d data. 
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Figure 5.7 For a 2-d layout of 2-d data, the recovered distances should exactly match the original 

distances. This one-to-one relation should manifest itself as a 45 degree slope in the Shepard plot, 

however, in this case it can be seen that the interpolation routine has resulted in deviation from this 

slope. 
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5.3.3 An improved interpolation technique 

Prompted by the shortcomings described above, the author designed and implemented a new 

routine to improve upon Brodbeck and Girardin's. As with the original, the new routine starts 

with finding a parent point in the layout which is closest in high-dimensional space to an item 

that is to be added. Again, a circle of radius proportional to this high-dimensional distance is 

centred on the parent. However, in the next stage, rather than randomly sampling points on the 

circumference of the circle to find one that has a small discrepancy between high- and low

dimensional distances, a quadrant and binary search is applied instead. The pseudocode for 

this new routine is shown in Figure 5.8. 

1. centre a circle of radius proportional to the high-dimensional 

distance, at the closest layout point 

2. define a random subset of layout points S of size ~/4 

3. at positions on the circumference 0, 1t/2, 1t and 31t/2 radians 

from the horizontal norm, sum the discrepancies between the 

high- and low-dimensional distances. The position that provides 

the lowest discrepancy defines the quadrant of the circle's 

circumference upon which the new item will be placed. 

4. apply a binary search to the chosen quadrant to find the 

position that minimises the discrepancy between high- and low

dimensional distances 

6. repeat nr times: 

a. define a force vector between the current position and 

the sample of layout points S 

b. add the force vector to the current position 

Figure 5.8 An outline of the new interpolation algorithm. 

After defining a circle around the parent point in the layout, the algorithm finds the 

quadrant on the circumference that would minimise the difference between high- and low

dimensional distances of a point on that quadrant, and the /t /4 sample of layout points. This 

narrows the space of a binary search to the xJ2 radians on that quadrant. The binary search 

finds the position that minimises the discrepancy between distances before force calculations 

are performed to refine the position of the interpolated item Figure 5.9 illustrates this 

diagrammatically. 
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• 

• • 
Figure 5.9 The placement of item i begins with finding its parent point P in the initial layout. A circle of 

radiu r (proportional to the high-dimensional distance between i and the item represented by P) is 

centred on P. Quadrant and binary search over the circle's circumference finds the position io that 

minimi e the surnrn d discrepancy between the high- and low-dimensional distances to the subset of 

layout points. This position is then refmed by iteratively adding an aggregate force vector, moving the 

item to its final position i l . 

After finding an item's parent in the layout, its interpolation requires O(}/ /4) time 

becau e a ub et of size NI!4 is used to calculate its position and all other quantities are 

constant - finding the best position on the circle's circumference requires 4 steps for the 

quadrant earch and 6, at most, for the binary search. The aggregate force vector for refining 

this po ition is achieved in n r distance comparisons. However, since there are initially .IN 
items in the initial layout, this leaves the remaining (N - .IN) items to interpolate. There is no 

information gained a priori as to which layout point is an item's parent, and so a brute force 

search i requir d. This search dominates the time taken by the routine so the overall time 

complexity i O(N.JN). 

A i ual compari on of the output of this interpolation routine shows that it is more 

accurate than Brodbeck and Girardin's routine. Figure 5.10 illustrates the 2-d test data set after 

interpolation and the associated Shepard plot. Comparison with Figure 5.6 shows that the 

layout ha reached a better representation of the data. The Shepard plot depicts a straight 45 

degre line with no points deviating from the diagonal indicating that the original distances 

have been p rfectly reproduced by the algorithm. 
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Figure 5.10 The new interpolation routine has produced a much more accurate layout ofthe 2-d data. 

The author designed and implemented this interpolation algorithm, however, its 

evaluation was undertaken by a colleague, Alistair Morrison [Mor04]. Morrison employed the 

author's HIVE software (from which all of the screenshots in this chapter have been taken) to 

automate multiple runs of the algorithm and record run time and stress values. Figure 5.11 

show the results of a comparison between Brodbeck and Girardin's interpolation and the new 

routine. Experiments were carried out on a PC with 504 MB RAM and a Pentium 4 2.41 GHz 

processor, running Windows XP Professional. 

Run times of original and novel interpolation 

.... N - tlo-;:;i1 

D ... SIt. 

Stress following original and novel interpolation 

~ ~Origi"'l - Nero. i 

Dat.SIt. 

Figure 5.11 A comparison of Brodbeck and Girardin's original routine with the new interpolation 

algorithm. The e results were obtained by Morrison [Mor04] using the author's IDVE software. The 

re ult for each algorithm were averaged over 10 runs for 2-d data sets ranging from 1000 to 10,000 

items. 

he e re ults show a significant improvement over Brodbeck and Girardin's 

interpolation routine in terms of both run time and stress. It is interesting to observe that for 

maller data ets, the stress levels are higher than those gained with the larger sets. This can be 
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explained by the fact that as N increases, so does the size of the N I4 sample used in the force 

calculations. This results in a more accurate placement. Although smaller data sets result in 

higher stress, this is not important because as a final stage of the layout algorithm, a spring 

model is used to refine the layout and therefore reduce the stress. Also, since the data sets are 

smaller, the final spring stage converges quickly. Figure 5.12 illustrates graphs of run time and 

stress for these data. 

5.3.4 Evaluation of the full layout algorithm 

The initial spring model stage and interpolation as described above comprise the first two 

stages of the new hybrid algorithm - the final stage involves the use of a spring model to 

refine the layout produced after interpolation. In this section, Chalmers' algorithm is used as a 

benchmark to which the new routine (including the final stage) is compared. Both algorithms 

were run on subsets of a 3-d 's' shaped data set. The size of the subsets range from 5000 to 

50,000 items and results are averaged for the subsets over 10 runs for each algorithm. 

Run Times on 3D "5" data Stress on 3D "5" data 
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Figure 5.12 Results obtained by Morrison [Mor04] showing a comparison of Chalmers' spring model 

with the new algorithm. 

Up until the publication of the new algorithm, Chalmers' spring model was one of the 

fastest non-linear reduction algorithms based upon a spring model. From the above results, it 

is evident that the new algorithm significantly outperforms Chalmers' routine with respect to 

run time while maintaining comparable layout quality. 

The initial spring model stage has time complexity of O(N) because it operates on a 

sample of the data and the final spring model stage also has O(N) time complexity because it 

is run for a maximum of 35 iterations to refine the full layout. This means that the overall time 

comple ity i dominated by the interpolation routine because a brute force search is required 

to locate the parent points. The overall time complexity is therefore O(N.JN). 
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5.3.5 A hybrid variant based upon K-means 

During the development of the above algorithm, the author investigated an alternative 

approach based upon the K-means clustering algorithm (see Section 3.2.1). The reasoning 

behind this is as follows. Recall that the K-means algorithm partitions the data into clusters by 

identifying and refining centroids. The centroids are representative of clusters and each datum 

is allocated to one cluster according to their proximity. After each iteration the values of the 

centroid vectors are updated according to the average of the data vectors allocated to them. 

This has two implications. The first is that the centroids will gradually disperse throughout the 

data set as their vector values will increasingly reflect local regions of the data. Thus the 

centroids can provide an overview of the data distribution. The second implication is that all 

items in the data set are allocated to their nearest centroid and therefore the simple heuristic, 

described in Section 3.2.3, for finding the nearest neighbour of a given item can be employed. 

This heuristic is as follows. Given a K-means clustered data set X and a datum XI E X, its 

approximate nearest neighbour xJ ~, can be found by searching through the cluster members 

of the centroid to which X, has been allocated. 

With this in mind it can be seen that this is applicable in the interpolation stage of the 

novel hybrid algorithm described in the previous section. The interpolation stage is the 

computational bottleneck because of the brute force search required for parent finding, 

however, if the full data set is initially clustered using K-means, then the centroids and their 

cluster members can be used to find interpolation parents in much less time. Also, since the 

initial spring model runs upon a random subset of data, there is a small chance that this sample 

is confined to one local portion of the distribution. This would have a disastrous effect on the 

remaining stages of the algorithm. However, if the initial subset is chosen to be the K-means 

centroids, then the subset is guaranteed to be more representative of the true distribution thus 

providing a more reliable basis for interpolation. Figure 5.13 illustrates this concept. 

To test this theory the author initialised the K-means algorithm with a randomly 

selected .IN subset of data. K-means was then run until the centroid vectors ceased to change 

value. The items in the data set that were closest to the centroids were then fed in to a spring 

model before the interpolation algorithm was deployed, using the nearest neighbour heuristic 

to find parent points. Finally, a spring model was used to refine the full layout. The results of 

similar experiments were recorded by Alistair Morrison as discussed below. 
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Figure 5.13 The image on the left is a layout of a random data sample. The image on the right is a 

layout of items that are closest to the K-means centroids of the data. The original data used are 2-d and 

consist of7239 items. Both layouts contain 85 (..j!239) points from the data set. 

Experiments were run on two data sets, each of which were synthetically created. The 

first collection was created by sampling points from a 2-d set - the logo for a company owned 

by Brodbeck and Girardin [BG05]. Subsets of 10 different cardinalities were created from this 

'logo' set from 1000 to 10,000 items. The second collection was similarly sampled from a 

band curving in an'S' shape through three dimensions. Again, 10 subsets were derived, this 

time from 2000 to 20,000 items. The K-means based algorithm (hereafter referred to as K

mean +interpolation) was then compared to both Chalmers' spring model and the novel 

algorithm (hereafter referred to as sample+interpolation) described in the preceding sections. 
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Figure 5.14 A comparison of the K-means based algorithm with the sample+interpolation and 

halmers' algorithms. 
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Figure 5.14 compares the stress and run time of Chalmers', sample+interpolation and 

K-means+interpolation algorithms. Tests were run on a PC with an Intel Pentium 3 731MHz 

and 256MB RAM running Microsoft Windows 2000 Professional. As expected, Chalmers' 

algorithm took longer to converge than both of the hybrid algorithms, over all of the data 

subsets. It can also be seen that the sample+interpolation and K-means+interpolation 

algorithms exhibit comparable times. For the smaller data sets, K-means appears slightly 

faster. The K-means algorithm converges quickly for smaller subsets, however, as the size of 

the data set increases, the cost of using K-means would seem to outweigh its benefit over 

simple sampling. 

The stress recorded for Chalmers' algorithm is significantly higher than the others. This 

is because, as the algorithm proceeds, the stress tends to fall sharply and then level out for a 

considerable time before the layout becomes stable. The stress levels exhibited by the hybrid 

algorithms are lower for the logo set because the interpolation can achieve near-optimal 

positioning of the points in two dimensions. To enhance this, Chalmers' algorithm is finally 

run on this interpolated structure for a small constant number of iterations to refine the layout 

and minimise stress. 

Since K-means was run on a $ subset of the data it dominates the time complexity, 

taking O(N.JN) time. Although the two hybrid algorithms exhibit the same time complexity, 

the difference in observed times is due to overheads in the K-means algorithm being greater 

than those for the brute force search for the sample+interpolation approach. It can therefore be 

concluded that the only benefit of using the K-means routine is to ensure that a good 

representative subset of the data is gained to provide a basis for interpolation. However, in 

practice it is very unlikely that random sampling would result in the initial subset residing in a 

local area of the data and therefore the sample+interpolation algorithm is preferred. 

5.4 Fast non-metric multidimensional scaling 

The two novel hybrid algorithms discussed above are essentially spring models. They model 

the differences between data items as Euclidean distances in a high-dimensional space and 

progressively refine their positions on a low-dimensional layout to reflect those distances as 

well as possible. However, since this approach is a metric one, it cannot be readily applied to 

non-metric proximity data, that is, measures that do not necessarily satisfy the triangle 

inequality, symmetry and non-negativity. It is more difficult to model such data in a low

dimensional Euclidean space and as such the spring model is often inadequate. 
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In Section 4.3.2 Shepard's non-metric multidimensional scaling (NMDS) was discussed 

and shown to be applicable to proximity data. Recall that Shepard's solution to dimension 

reduction has a very special property in that it can obtain a metric low-dimensional 

configuration from non-metric information. This is achieved by ranking proximities and 

iteratively forming a layout in which the (inverse) rank of the inter-point distances matches 

the rank of proximities as well as possible. The condition in which the ranks perfectly match is 

known as monolonicity. However, the main drawback of Shepard's NMDS is its O(Jt) time 

complexity making it prohibitive in its application to larger data sets. 

In this section, the author will discuss his work on a faster O(N3) version of Shepard's 

algorithm. This algorithm is outlined in Figure 5.15. 

1. obtain a ranked list of all (N(N-1)/2) inter-object proximities 

2. randomly place N points in a 2-d layout 

3. instantiate neighbour and sample arrays for every point (as in 

Chalmers' spring model) 

4. repeat until departure from local monotonicity < threshold ml: 

a. for each obj ect 1 . ..N: 

i. rank distances between object and its neighbour and 

sample arrays 

ii. calculate displacement vector based upon 

discrepancy of ranks 

iii. update point positions in the layout 

iv. update the neighbour and sample arrays 

5. repeat until departure from global monotonicity < threshold mg: 

a. for each obj ect l. . .N: 

i. obtain a ranked list of all (N(N-1)/2) inter-point 

Euclidean distances 

ii. compare object to its neighbour and sample arrays 

and calculate displacement vector according to 

discrepancy in overall rank 

iii. update the neighbour and sample arrays 

Figure 5.15 An outline of the fast NMOS algorithm. 
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Recall that in the initialisation step of Shepard's algorithm, all points are placed upon 

the vertices of an (N - I)-d simplex. As Shepard's algorithm progresses, this (N - 1)-d space is 

gradually collapsed to a dimensionality in which monotonicity is satisfactorily maintained. 

There are therefore two conditions that Shepard's algorithm seeks to optimise. These being 

minimum dimensionality and monotonicity. This requires two displacement vectors to update 

the positions of points. One to reduce dimensionality and one to increase monotonicity. 

However, since in the context of this thesis dimension reduction is used for visualising 

data in 2-d layouts, the points are initialised in a 2-d space instead of the (N - 1)-d space. 

Thus, only the displacement vector for increasing monotonicity needs to be calculated. Also, 

since the configuration space is reduced to 2-d and no longer O(N), the algorithm is reduced to 

O(li) time complexity per iteration. 

The speed of the algorithm is improved further by using Chalmers' neighbour and 

sample approach to reduce the number of inter-object and rank comparisons. This is employed 

in two stages: in the first stage of the algorithm, the distances between each object and its 

neighbour and sample arrays are ranked and the discrepancy between the ranks is used to 

calculate the displacement vector for maximising monotonicity. The displacement vector is 

calculated using Equation 5.2. 

(5.2) 

This is the same equation defined by Shepard [She62]. alja is the ad! element of the 2-d vector 

directed from point; to another pointj. The proximity between; andj is denoted by S/j and a 

(without subscripts) is a parameter for determining the length of the displacement vector. The 

Euclidean distance between points in the layout space is given by d/j, and X/IJ denotes the ad! 

element of the vector representing point i. The quantity s(djj) represents the proximity at the 

rank of dij. When points are too close or too far away such that monotonicity is compromised, 

this equation pushes them apart or moves them closer to rectify this. 

Since in the first stage of the new algorithm this equation is applied only to distances 

between each object and its neighbour and sample arrays, it serves to reduce departure from 

local monotonicity rather than global monotonicity. This is emphasised by making sure that 

the neighbour array is larger than the sample array ensuring that the rank of distances in local 

portions of the layout approximate those of the corresponding proximities. Figure 5.16 

illustrates this concept. The figure shows a layout of a 3-d cube data set consisting of 1200 

items obtained by the first stage of the fast NMDS algorithm and layout of the same data using 
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a spring model. It can be seen that with NMDS local structure is preserved while the global 

structure has been dramatically distorted. The spring model, on the other hand preserves 

global structure at the expense of local detail. 

Figure 5.16 The image on the left shows the layout of a 3-d cube obtained by the first stage of the fast 

NMDS algorithm. This shows how monotonicity is only locally preserved. The image on the right 

shows a layout obtained by Chalmers' spring model on the same data. Here the overall structure is 

better preserved but local regions remain rough. 

The first stage of the algorithm only requires O(N) time per iteration because the layout 

is 2-d and because each point's neighbour and sample arrays are of fixed size. This first stage 

serve to quickly obtain an approximate layout and terminates when the departure from local 

monotonicity falls below a threshold mi. Using monotonicity in this instance is analogous to 

using velocity to determine when to terminate the initial stage of the algorithm in Section 5.3. 

Monotonicity can be derived at little expense from calculations used in the layout process and 

it provide a dynamic account of the algorithm's progress. 

The econd stage of the algorithm is more similar to Shepard's original approach in that 

all inter-point distances are ranked and the displacement vector is derived according to these. 

In other words, s(dij) from Equation 5.2 is derived from the full set of proximities and 

therefore aims to improve on global monotonicity. However, to improve performance, the 

di placement vector is obtained only from a comparison of each object to the neighbour and 

sample array . That is, all other quantities in Equation 5.2 are obtained from a representative 

sub et of the data. Since all inter-point distances are calculated in each iteration of the second 

stage it time complexity is increased to O(N2) time per iteration and therefore O(N) overall. 
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It can be seen that this is a hybrid algorithm. The first stage provides an approximate layout to 

speed up the operation of the more time consuming second stage. 

5.4.1 Evaluation of fast NMDS 

Evaluation of the fast NMDS algorithm was carried out in comparison to Shepard's original 

algorithm. The first experiment investigated the layout stress obtained by both algorithms on a 

small 2-d data set consisting of 120 items. Such a small set was used because Shepard's 

algorithm is too time consuming when applied to larger sets. Results were averaged over 5 

runs of each algorithm and tests were carried out on a PC with 256 MB of RAM and a 1.4 

GHz Pentium M processor, running Windows XP professional. Figure 5.17 shows the results 

obtained from measuring stress after every 5 iterations up to a total of 70. 

stress per iteration 

I--+- Shepard's NMOS ----- Fast NMOSI 
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Figure 5.17 Stress is plotted after every 5 iterations for Shepard's NMDS and the fast NMDS 

aJgorithms. 

Stress is shown on a logarithmic scale on the y-axis to clarify the comparison between 

both algorithms. For the fast NMDS algorithm a was set to 0.2, and for Shepard's algorithm 

its was set to 0.035. This discrepancy is due to the fact that Shepard's algorithm balances the 

displacement vector for achieving monotonicity with another displacement vector for reducing 

dimen ionality. This is not required in the fast NMDS routine. 

It can be seen that the fast NMDS algorithm initially displays a higher global stress 

level. This can be explained by the first stage of the algorithm achieving only local 

monotonicity. At around iteration 30, the first stage terminates and the second stage kicks in to 

achieve global monotonicity. This results in a sharper descent in stress per iteration, 
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eventually surpasslOg that of Shepard's algorithm. The lower stress for the fast NMDS 

algorithm comes as a result of only requiring the tuning of one parameter a. Shepard's 

algorithm requires a second parameter to determine the length of a displacement vector for 

collapsing the (N - 1 )-d configuration space. This means that a very fine balance between the 

two parameters must be maintained to approach monotonicity in 2-d. This can be difficult to 

attain and in this case Shepard's algorithm favours a reduction in dimensionality to the extent 

that stres suffers. 

A second experiment was run to compare the run times of Shepard's algorithm to the 

new fast NMDS. The same 2-d data set used in the first experiment was taken as the test data, 

however, 6 subsets were sampled ranging in size from 20 to 120 items and the time taken for 

both algorithms to converge to a minimum in departure from monotonicity was measured. 

Again, results for each data set are averaged over 5 runs of each algorithm. Figure 5.18 show 

the results. 

Runtimes 
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Figure 5.18 Run times for Sbepard's algorithm and the fast NMOS algorithm. 

It can be clearly seen that the new algorithm is much faster than Shepard's algorithm. 

However, it is still too time consuming to be applicable to the size of data sets to which the 

novel spring model described in Section 5.3 can be applied. It does, however, outperform the 

hybrid spring model algorithm when applied to proximity data. Recall from the discussion of 

Shepard's algorithm in Section 4.3.2 that when applied to proximity data, the routine can 

recover a monotone function relating proximities to Euclidean distances. Figure 4.9 showed a 

Shepard plot of a layout obtained using Shepard's NMDS run on data that were transformed 

into proximities using Equation 4.17. The plot showed that the routine recovered the shape of 
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this function . When the same data were fed into a spring model, it was found that the function 

could not be recovered with the same accuracy (see Figure 4.13). 

It was found that the new NMDS algorithm is also capable of recovering such a 

function. To illustrate this, a 2-d data set consisting of350 items was transformed into 61,075 

(N(N - 1 )/2) proximities using equation 4.17. The data were then fed into both the new 

NMDS algorithm and the novel spring model of Section 5.3. Figure 5.19 shows that the fast 

NMDS algorithm produces a more accurate layout than the hybrid spring model. The data 

were sampled from a set of concentric circles and, as can be seen, the configuration has been 

recovered by the fast NMDS algorithm, while the hybrid spring model has only produced a 

rough layout. 

Figure 5.19 The image on the left shows a layout of proximity data obtained by the fast NMDS 

algorithm. The layout on the right was produced by the novel hybrid algorithm described in Section 5.3. 

The corresponding Shepard plots for the above layouts are shown in Figure 5.20. The plot on 

the left shows that the fast NMDS algorithm has recovered the shape of the function given by 

Equation 4.17, whereas the plot for the hybrid spring model has not recovered it with the same 

accuracy. Overall these results indicate that when presented with a large amount of proximity 

data the hybrid spring model algorithm can be applied to quickly gain an overview, albeit at 

the expen e of a less accurate layout. However, to gain a more accurate layout, the fast NMDS 

algorithm can be run on a sample of the data to get a glimpse of the finer local detail. 
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To carry on with the demonstration of the efficacy of hybrid algorithms, the next 

section describes a novel hybrid clustering algorithm developed by the author. 
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Figure 5.20 The Shepard plot on the left shows that the fast NMDS algorithm has recovered the 

function relating proximities to real Euclidean distances. The plot on the right shows that the hybrid 

spring model was not able to recover this function with the same degree of accuracy. 

5.5 Voronoi-based clustering algorithm 

This section illustrates the author's design and implementation of a novel clustering algorithm. 

The algorithm is a hybrid combination of density-based and graph-theoretic clustering 

routines and is similar to CHEMELEON [KHK99], DBSCAN [EKSX96] and Ertoz et al. 's 

algorithm [ESK03] (see Chapter 3) in that it addresses the challenge of identifying clusters of 

different shapes, sizes and densities by identifying a small subset of points before ' growing' 

the clusters from them. 

5.5.1 Preattentive cluster identification 

The scatterplot is the predominant visualisation technique used in this thesis. Groups of 

similar data points are immediately recognisable because their proximity forms clusters and 

other structures that appeal to our perception. This is because the human visual system has the 

ability to automatically process the visual stimuli. Certain patterns and Gestalt qualities stand 

out without requiring attention to any specific part of the visual field. This unconscious and 

preattentive processing is what allows information visualisations to accelerate the rate at 

which humans perceive information. 
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By reducing the dimensionality of data so that they can be represented in a spatial 

substrate such as a scatterplot, preattentive processing allows the user to recognise structure 

and patterns very quickly. Colour and other retinal properties can also be used to augment this 

basic property of the scatterplot by providing visual stimuli that attract attention. 

The combination of preattentive and attentive processing in visualisation also allows the 

user to build a cognitive map ofa layout. The visual stimuli become part of the users' internal 

representation that aids orientation, navigation and browsing between pertinent regions. This 

is the underlying concept of spatial location memory. 

In Rob Ingram's work [IB95a, IB95b], this quality is referred to as legibility, a term 

borrowed from the context of city planning. Ingram's work was inspired by Kevin Lynch's 

book "The Image of the City" [Lyn60] in which a study reveals that urban dwellers' 

development of cognitive maps of a city is enhanced by features such as landmarks, nodes, 

and paths. By transposing this theory into the domain of information visualisation, Ingram's 

aim was to accelerate the users' creation ofa cognitive map of the information. 

Other researchers including Chalmers [Cha93, CIP96], Brodbeck et al. [BCLC97], and 

Wise et al. [WTP·95] have adopted a similar approach by representing data via this landscape 

metaphor. It is for these reasons that a clustering algorithm has been developed to 

automatically detect potentially interesting structure in the layouts produced by the algorithms 

discussed above. The layouts are segmented into clusters and then coloured to distinguish 

them. This helps preattentive processing guide the user to interesting parts of the layouts 

before any conscious effort is required to examine them. 

5.5.2 A novel clustering algorithm 

Layout algorithms tend to produce a 2-d point configuration in which it is left to the observer 

to perceive any patterns of interest. To aid the user in this respect, a clustering scheme is 

applied to 2-d layouts to help to differentiate points that contribute to interesting structure. 

This partitions the configuration of points, explicitly highlighting existing patterns. It also 

enables the user to easily select clusters for brushing and linking with other views, or to 

extract a subset for further processing. To achieve this, a partitioning algorithm is required 

that is unsupervised, able to detect clusters of varying size, shape and density, and sufficiently 

fast for user interaction not to be hampered. Many partitioning algorithms are described in the 

literature. However, each behaves differently according to characteristics of the data set (such 

as distribution and variable types) and input parameters (for example, the number of centroids 

used in K-means [Mac67]). 
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The author has introduced a visual module in his HIVE software that implements a 

novel Voronoi-based clustering algorithm. The goal was to produce a clustering scheme where 

the user does not have to select or adjust abstract parameter values to obtain an effective 

partition, nor wait too long for it to complete. This is a two-stage algorithm, drawing from 

concepts underlying density-based and graph-theoretic clustering. The first stage finds 

significant areas of similar density in the point configuration. These 'hotspots' are then fed 

into the second stage of the clustering algorithm where their neighbourhood relationships are 

used to expand the groups in an agglomerative way. The algorithm effectively extracts small 

contiguous groups of points from regions of similar density and then uses these as the seeds 

from which the clusters are grown. 

The next sub-section describes and justifies the Voronoi algorithm that was 

implemented as the basis for the clustering. The last two sub-sections detail the 'first cut' 

version of the algorithm and the final implementation along with experimental results. 

5.5.2.1 Voronol diagrams 

The point pattern of a 2-d scatterplot can be segmented into different areas so that each point 

is contained by a convex polygon. If the polygons are contiguous and the portion of space 

within each polygon is closer to the contained point than any other then these regions form a 

tessellation of the plane called the planar ordinary Voronoi diagram [OBSCOO, Aur91]. 

In HIVE, the Voronoi diagram is implemented using an incremental method. A seed 

Voronoi diagram is first drawn for three dummy points that are arranged as an equilateral 

triangle. To build the Voronoi diagram for the point pattern, new points are added, creating 

new edges and vertices to gradually fill out the structure. This approach was chosen because 

it is the most robust technique for handling degeneracies such as those due to co-circularities 

in the point pattern. The incremental method is also one of the fastest techniques, capable of 

achieving a..N) time complexity on average. 
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The Voronoi diagram was used as the clustering basis for two reasons. The first is 

because the underlying data structure can be used to efficiently store and retrieve information 

such as that for quickly finding points within a region of the plane, e.g. nearest-neighbour 

searching, and for easily determining incidence relations between Voronoi edges, vertices and 

polygons. In the author's implementation, a standard structure used in geometric modelling 

called the winged-edge data structure [8au75] is employed (see Figure 5.21). 
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Figure 5.21 The winged-edge data structure. This maintains a compromise between a compact 

representation of the Voronoi geometry and fast retrieval of vertex, edge and polygon incidence 

relations. Edges are used to keep track of the geometry and are represented by arrays of start and end 

vertices, polygon faces, predecessors and successors. 

The second reason for utilising the Voronoi diagram is because it provides a very 

flexible platform for experimenting with different clustering routines. The Voronoi diagram 

has a dual graph called the Delaunay triangulation, which is formed by drawing arcs between 

points contained in adjacent Voronoi regions. Among the sub-graphs of the Delaunay 

triangulation is the Minimum Spanning Tree (MST) from which familiar graph-theoretic 

clustering schemes such as single-link, complete-link and average-link are derived. 

ince the Voronoi diagram represents the point pattern as a set of areas, it is easy to 

devise density-based clustering. It is also relatively easy to derive the Delaunay triangulation 

from the Voronoi diagram and vice versa. This means that the Voronoi diagram bridges the 

gap between the two families of clustering techniques: density-based and graph theoretic and 

therefore lends itselfto experimenting with hybrid conjunctions. See Figure 5.22 below. 
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Figure 5.22 The top-left graph is the Voronoi diagram, which can be used for density-based clustering. 

The top-right graph is the dual of the Voronoi diagram, the Delaunay tessellation, whose sub-graphs 

include the minimum spanning tree (shown here in red) and therefore is suitable for graph-theoretic 

clustering applications. 

Promising results have been obtained from clustering algorithms based upon the 

Voronoi te eHation and its dual, the Delaunay triangulation [OBSCOO]. Duyckaerts et a1. 

[DGH94] de cribe an algorithm where a 2-d partition is obtained from the Voronoi 

te ellation by first selecting the Voronoi polygon with the smallest area, then creating a new 

empty clu ter, and then appending neighbouring polygons whose areas are less than a pre-

pecified thre hold. This threshold is proportional to the area of the smallest polygon. Once 

the remaining polygons exceed the threshold, and the cluster therefore cannot expand any 

further, it i removed and the process is repeated, starting with the smallest of the remaining 

polygon . Thi approach can be classed as a density-based clustering because the clusters are 

defined by pattern of points that are similarly spaced. An alternative approach has been taken 

by tivill- a tro [ L02], where the Delaunay diagram is used in a graph-based clustering. 

Here local and global point neighbourhood relations are considered when producing the 

clu tering. Thi method is desirable because it is an 'argument-free' approach i.e. it does not 

require the u r to e timate any algorithm parameters or make assumptions about the data set. 

Another ad antage i that graph-theoretic clustering is not sensitive to the input order of the 

data. hi approach, again, is applied to partitioning points on a plane. Interestingly, this 

noti n of taking both global and local connectivity into account in graph-theoretic clustering is 

not oft n e plicitly addressed in the clustering literature. However, in their exposition of the 

den ity-ba d PTI algorithm [ABKS99], Ankerst et a1. acknowledge the fact that with 
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most real-world data sets global density or connectivity parameters cannot be used to pick out 

clusters of varying density. 

Andrews et al. [AKS*02] have taken another novel approach to clustering via the 

Voronoi diagram. However, their use of the diagram is to use multidimensional scaling to lay 

out different levels of a predefined document hierarchy and then encapsulate whole clusters 

within individual Voronoi regions. It should be noted that this is different from the approach 

adopted here. The goal of the algorithms described in the following sub-sections is to obtain 

the clustering without any a priori class information. 

5.5.2.2 Interactive density exploration 

To examine how the Voronoi diagram can depict varying density in a point pattern, a slider 

was added to the Voronoi visual module in HIVE to apply an (optional) area or perimeter 

threshold. As the user changes the value with the slider, Voronoi polygons whose area or 

perimeter is smaller than the threshold are filled with a colour. Duyckaerts et al. [DGH94] 

developed a density-based clustering algorithm using this threshold technique (Section 3.3). 

It can be seen that as the threshold is reduced, the highlighted regions recede to areas of 

higher density and clusters of various shapes and sizes stand out. However, because of the 

global threshold, clusters of different density cannot be highlighted simultaneously when their 

densities are at either side of the threshold. This creates an effect where clusters appear, 

shrink and then blink out of existence as the user moves the slider to reduce the threshold 

value. This is illustrated in Figure 5.23. 
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Figure 5.23 Data set used for clustering (a). Perimeter threshold reduced gradually (b) - (t). 

Figure 5.23(a) shows the data set used to demonstrate the effects of modifying the perimeter 

and area thresholds. Dense clusters appear at the top of the layout, and density gradually 

reduces towards the bottom. Figure 5.23(b) shows the points, Voronoi regions and shading 

when the user initially reduces the perimeter threshold just below the maximum value. 

Figures 5.23(c) to (f) show how clusters of lower density gradually fragment then vanish 

leaving only the densest clusters as the threshold is reduced. For example, the blue and green 

clusters visible at the bottom of Figure 5.23( d) disappear for the threshold set for Figures (e) 

and (t). 

The author's colleague at Nickleby HFE Ltd. has used this interactive mechanism in 

exploring text data in HIVE (see Chapter 7). He creates layouts representing text documents, 

and then adjusts the density slider until various clusters appear. He then selects these clusters 

to view the text they represent. This allows him to explore the themes present in the corpus. 
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The next two sub-sections detail a clustering scheme that automatically reduces the 

perimeter threshold while keeping track of clusters as they appear and diminish. This 

information is then used to resolve clusters of varying density as well as shape and size. 

5.5.2.3 Clustering algorithm - first version 

The new clustering algorithm consists of two steps. The purpose of the first step is to find 

groups of points that lie in areas of similar density. Recall that one does not want to burden the 

user with the task of specifying any data-dependent parameters. A recursive threshold

reduction approach is therefore applied in finding the density 'hotspots'. This is achieved by 

first calculating the smallest Voronoi polygon perimeter and then the standard deviation of 

polygon perimeters. These are then used as the smallest (tmin) and largest (tmu) thresholds for 

perimeter size in determining whether to append a polygon to the cluster. The author has 

found in most cases that when the tmax threshold is set to the standard deviation of polygon 

perimeters, all of the points are grouped into one cluster. By then slowly reducing the 

threshold value by a small amount a, this large cluster eventually breaks up into smaller 

clusters, each representing an area of similar local density. Pseudocode for this approach is 

provided below in Figure 5.24. 

It should be noted that the Voronoi polygon perimeter is used as the dynamic threshold 

value because it tends to have a narrower distribution than area and therefore it takes less time 

to move the threshold across its range while keeping the decrement steps at low values. Also, 

tllllx is initially set to one standard deviation of polygon perimeters because from the author's 

experience with lots of data sets, this initially includes all of the points in one large cluster. 

When a contiguous region of similar density is found that contains at least twice the 

minimum number of points for a cluster (2 • C"'III)' the procedure is recursively applied with a 

reduced perimeter threshold to further split this cluster. The amount by which the perimeter 

threshold decreases, a, is equal to (I/IIQX - 1"'111) • 0.01. This decrement is made locally within 

the recursive function. When a cluster is smaller than 2 • CmIII, it is added to the list of clusters 

found so far, and after the recursive base case is satisfied, the list of clusters is returned and 

input to the second stage of the clustering algorithm. 
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1. set t_x - st. dev. of Voronoi polygon perimeters 

2. set tmin .. smallest Voronoi polygon perimeter 

3. set minimum number of contiguous polygons that represent a 

cluster, COlin, (e.g. COlin = 10) 

4. set current perimeter threshold te = t~ 

5. make list of all polygons: pList, and for clusters: cList 

6. find contiguous groups of polygons within pList whose 

perimeters are less than t e , and each group having at least COlin 

polygons. Create a list of these groups, gList. 

7. while (t e > t min ) 

7.1 for each group in gList 

7.1.1 if group. size ~ (2 * COlin ) 

make new pList, add group's polygons 

set te = te - a 

go to step 6 (recursive call) 

7.1.2 else 

add group to cList 

8. return cList 

Figure 5.24 Pseudocode for the first stage of the clustering algorithm. 

The value a ensures that the threshold will always decrease in a constant number of 

steps. However, since gList initially contains all Voronoi polygons (in one large cluster) and 

each group of polygons is recursively split, the time complexity of this stage of the algorithm 

is O(N log N). 

The first stage of the clustering algorithm returns lots of small clusters representing 

areas of similar local density. In the second stage, these cluster seeds are grown into larger 

clusters, which form a partition of the point configuration. This is achieved by starting with 

the smallest Voronoi polygon, in the cluster with lowest average inter-object distance, and 

cumulatively expanding the cluster by adding neighbouring points whose distance to the point 

in the polygon is less than or equal to the average inter-point distance. When no more points 
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are within this distance to any point in the cluster, the cluster is complete and the next cluster 

seed is examined. Figure 5.25 provides pseudocode for this step. 

1. sort list of cluster seeds, cList, from stage 1 in ascending 

order by average inter-object distance, d av 

2.delete all points, except that with the smallest Voronoi 

polygon, from each cluster seed 

3.for each cluster seed, c., in eList 

3.1. set ~ = e.'s smallest polygon point 

3.2. for each neighbouring polygon point, v of ~ 

3.2.1 if dist(v, ~) s ~v 

add v to e. 

set ~ - v 

go to step 3.2 (recursive call) 

4. return eList 

Figure 5.25 Pseudocode for the second stage of the clustering algorithm. 

This stage of the algorithm returns the partitioning of the point configuration. Since the 

average inter-object distance of the cluster seed is used to determine whether the nearest 

neighbours of each member point are added to the cluster, clusters of different shapes can be 

found. The time complexity of this stage is O(N) because it is not necessary to examine a 

neighbouring polygon once it is a cluster member. The time complexity of the Voronoi 

algorithm and stage 1 is a..N log N) and therefore the overall time complexity of the clustering 

algorithm is a..N log N). 

To evaluate this algorithm's performance, it was run on the data shown in Figure 5.19 

as well as benchmark data sets that were used to test the CHAMELEON [KHK.99] clustering 

algorithm and Ertoz et al. 's approach [ESK03]. The latter data sets contain clusters of 

different shapes, sizes and densities along with noise points in between them; see Figure 5.26. 
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(a) (b) 

(c) (d) 

Figure 5.26 Clustering results of the first version of the clustering algorithm on benchmark data sets. 

Points of the same colour are deemed to be in the same cluster. 

From Figure 5.26(a) it can be seen that all of the clusters have been identified, although 

one has been overly fragmented. However, the benchmark data sets (Figures 5.26 (b) to (c)) 

indicate that the noise between clusters affects the algorithm's ability to differentiate between 

some of the clusters. This is due to a chaining effect - a problem of which the familiar single

link algorithm is susceptible. The distance calculation in step 3.2 of the pseudocode (Figure 

5.25) causes the clusters to merge across bridges built by the noise points. 

5.5.2.4 Clustering algorithm - final version 

To overcome the fragmentation shown in Figure 5.26(a) and the chaining effect evident from 

the benchmark data sets discussed above, it was realised that the probability of a point's 

membership of a cluster could be used to help decide whether it is included in that cluster. 

This probability is determined by examining the dendrogram created by the first stage of the 

c1u tering algorithm described above. The result of reducing the perimeter threshold in the 

above clustering strategy produces a hierarchy of clusters (dendrogram), the top level being 
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one cluster that contains all points when the threshold is set to tn.x and the lowest levels 

(leaves) consist of clusters of size emll/. 

Given a pair of points i andj, the probability of them being in the same cluster p(i (")J) 

is determined as follows: 

P(,.inj) = { 1 

~LlLd 

If i and j appear in the same leaf 

If i and j do not appear in the same leaf 

Where L is the dendrogram level in which i and j diverge, and Ld is the deepest level of i or j. 

To determine whether two points i andj should be part of a cluster, p(i (")J) is multiplied by 

the average inter-object distance of the cluster seed dav. and if the distance between the points 

is below this value then they are deemed to belong to the same cluster. This modifies step 3.2 

ofthe pseudocode (Figure 5.25) as follows: 

if (dist(i, j) * p(i (") j)) s d.v 

II i and j belong to the same cluster 

This strategy improves the clustering because it uses density information of the point pattern 

to vary the distance threshold. The results of this modification are depicted in Figure 5.27. 

Note that this clustering routine is opposite to that of CHAMELEON [KHK99]. Instead 

of initially partitioning the graph before merging sub-clusters via an agglomerative 

hierarchical algorithm, the current technique first uses a divisive hierarchical algorithm and 

then creates the partition by growing the cluster seeds found in the lowest level of the 

dendrogram. 
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(3) 

(c) (d) 
Figure 5.27 Clustering results of the final version of the clustering algorithm on benchmark data sets. 

The modified algorithm correctly identifies most clusters. 

From these results it can be seen that this algorithm performs very well on the data sets. It 

seems that its objective has been met as discussed in Section 5.5.2: The time complexity of the 

algorithm remains at a,N log N), the user does not have to manually adjust any parameters 

and it can detect clusters of varying shape, size and density. The only drawback of this 

algorithm is that its time complexity increases exponentially with data dimensionality. This 

overhead is incurred because of the computation of the Voronoi diagram. However, since the 

intended application of this algorithm is to augment 2-d layouts produced by dimension 

reduction algorithms, this is of little concern. 

This algorithm has a valuable role in the hybrid approach to algorithm development. As 

well as being a hybrid algorithm, consisting of a density-based stage and a graph-theoretic 

stage, it can comprise a useful component in a larger hybrid algorithm. The clusters that are 

produced are data aggregates and the routine can therefore be considered as a method for 

cardinality reduction. This would suggest that its output - a transformation of the input data 

would be suitable for feeding into other algorithmic stages to carry out further processing. 

Worked examples ofthis are illustrated in Chapter 8. 
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5.6 Conclusions 

This chapter began by describing how hybrid algorithms found in the literature are able to 

overcome many of the shortcomings of individual algorithms. This was followed by a 

demonstration and discussion of two new hybrid spring model algorithms, a fast version of 

Shepard's non-metric multidimensional scaling and a novel clustering algorithm. It has been 

shown how the hybrid approach to designing clustering and layout algorithms can improve 

performance in terms of run times, layout quality and cluster detection. 

The author's work in this area prompted the development of a software environment for 

creating, evaluating and using such algorithms. This system is called HIVE (Hybrid 

Information Visualisation Environment) and is designed to be extremely flexible for 

prototyping dimension reduction and clustering routines. Most of the figures used in the 

preceding chapters were generated by HIVE. The next chapter provides a discussion of 

visualisation environments and their design. This will provide a basis for describing the design 

and implementation of HIVE in Chapter 7. 
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6. Visualisation environments 

This chapter details a review of the literature regarding the design and development of 

visualisation environments as a requirements gathering phase and precursor to the 

implementation of HIVE. Information visualisation environments, like their scientific 

visualisation counterparts, are abundant. Although the common goal of these applications is to 

tum data into visual information, there are substantial differences in the typical architectures 

and modes of use associated with each. The aim of this chapter is to draw, from the fields of 

information visualisation and scientific visualisation, a discussion of the major design 

concepts and interaction mechanisms. 

One of the goals of the author's work was to produce a hybrid algorithmic framework 

(HIVE) that supports adaptive and interactive visual information seeking. The key features of 

this framework are: 

AaptilbUity to dtdtI cllrdblfllity lind diIIIenswnfllity - to cope with evolving databases and 

diverse data sets, the core of the framework consists of a hybrid algorithmic architecture. This 

architecture borrows from the modular data-flow model familiar in scientific visualisation 

applications and is the inspiration for the name of the framework, HIVE: Hybrid Information 

Visualisation Environment. The hybrid algorithmic approach essentially uses the complexity 

of the data, in terms of cardinality and dimensionality, to efficiently help steer the execution 

through a network of algorithmic components to produce the visualisations. 

Aaptllbility to divelSe Vllrillbie types lind heterogeneous dalll - the proposed system is able 

to work with different types of variables in the input data including nominal, ordinal and 

quantitative and a mixture of these. A variable-type transformation process to produce 

continuous vectors as required by the algorithmic architecture facilitates this. 

InterllCtivity - the framework is comprised of a multiple-view system and tight coupling 

between views because a consistent flow of interaction is essential in data exploration. Direct 

manipUlation of visual structures is also important in providing flexibility in exploratory 

analysis. 
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Abstrtu:tion ",,,,,lIgetnent - to maintain integrity of the visual representations, abstraction 

management is required to manage the relationship between the rendered information across 

different abstractions and the underlying data. 

HIVE allows analysts to gain insight into latent complex relations within abstract data 

and helps algorithm designers in building novel hybrid algorithms. The framework combines 

information visualisation techniques together with interactivity and computational algorithms 

to produce the visualisations, thus affording visual information seeking. Although the theory 

of Knowledge Management (KM) is beyond the scope of this thesis, the overall intention of 

the framework is to provide a system that will form part of the knowledge management 

process. This is by transforming data into information - by adding value to them - and 

helping people transform information into knowledge by prompting better understanding 

[SpiOO]. 

Before embarking upon the design and development of HIVE an extensive review of 

the literature was carried out to determine how HIVE should look and feel and how interactive 

mechanisms should be formed to effectively guide the user in his or her work. The study, 

which was essentially a requirements gathering phase, began by looking at the data-flow 

architecture adopted in many scientific visualisation systems (Section 6.1). Such a model, in 

tandem with visual programming, has proven to be extremely flexible for creating 

visualisation applications and for computational steering. This discussion is followed by an 

exposition of some useful facets of information visualisation systems (Section 6.2) such as the 

use of multiple views, and the notion of the information workspace. Finally, Section 6.3 

describes some fundamental concepts in designing information visualisation environments. 

6.1 Data-flow model 

Computer-based visualisation was first established in its application in the fields of 

engineering and the physical sciences. The very nature of these fields, in dealing primarily 

with physical data, meant that computer visualisation was a natural step in the evolution of 

tools for engineers and scientists - since the data are intrinsically spatial, it would be 

appropriate to represent them spatially and therefore graphically for their analysis. It is known 

that for humans, space is perceptually dominant [CMS99]. The elements of the physical data 

often map directly onto a set of two or three axes in graphical plots that make the myriad data 

'jump out' at the beholder and naturally appeal to human perception. In light of this, 
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visualisation was given formal recognition of its application in computing to amplify 

cognition. 

In this section, some examples of scientific visualisation systems that utilise visual 

programming and a data-flow model for execution are given. Systems based specifically on 

the data-flow architecture are the focus here, primarily because the underlying model is 

extremely flexible and has been widely adopted The key features of these systems are 

discussed to demonstrate their relevance to the HWE framework. 

6.1.1 Visual programming 

At around the time when scientific visualisation was being established, the concept of visual 

programming was also becoming established. Conventional programming languages, whether 

high-level or low-level, tend to be built around a vocabulary where the 'words' consist of 

primitives (characters). Such primitives in the English language are the letters of the alphabet 

With this in mind, it can be said that the language constructs are essentially lists of primitives 

and are therefore one-dimensional representations. 

Visual programming languages, on the other hand, are at a higher level of abstraction 

than conventional languages. Haeberli [HaeS8] states that a visual programming environment 

is any system that has adopted a graphical 2-d notation for the creation of programs. The 

visual structures that make up the vocabulary of these programs are essentially representations 

of well-defined aggregates and the (direct) manipulation of these aggregates means that 

complex programs can be produced more easily than with conventional languages. This is 

because the abstraction allows a greater degree of code or function reuse and the workings of 

the programs themselves are more readily understood and communicated due to their visual 

and spatial properties. It can also be argued that if the manipulation of the visual constructs is 

flexible enough, for example, the user may wish to place them arbitrarily on the display 

surface, then this allows a larger margin of freedom for external ising the plans and thoughts of 

the user. This 'informality' in the notation is the basis for one of Green's cognitive dimensions 

of notations [Gre89] called secondary notation. Secondary notation will be discussed in 

greater detail in Section 6.3. 

Visual programming has become a significant aspect of scientific visualisation 

applications. It has been recognised that many monolithic precompiled applications with 

static interfaces tend not to be flexible enough to cater for many of the needs of scientists and 

engineers. The functionality and the user interface are 'set in stone' and as a result the system 

is only applicable to a few specialised tasks. The application designer cannot anticipate all of 

the tasks that the target audience will want to perform. It is also often the case that these 
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systems do not support interoperability between applications and where they are extensible 

they require significant amounts of coding on the part of the user. However, visual 

programming has been used in a number of systems to address these issues and allows the 

user to build his or her own task-specific applications without the need for conventional 

programming expertise. By breaking applications down into sets of functional modules, and 

rendering them as graphical representations, the user may use direct manipulation to join them 

together into networks, where the links are data-flows. With a variety of different modules for 

data input, transformations, rendering and parameter control etc., fully functional applications 

can be 'thrown' together relatively easily by the user to provide custom visualisation 

solutions. 

This data-flow model is interesting because it reinforces the merits of visualisation in 

computing. With regard to the means-end relationship of scientific and information 

visualisation, the means are a visual process and the end result is a tool that produces the 

visual information originally sought after - visualisations are very useful for producing other 

visualisations. 

6.1.2 Data-Dow architecture 

Before visual programming was available in scientific visualisation tools, the functional 

components of the tools were hidden from the users and they had no control of the flow of 

data between them. The stream of data from input through calculation functions to mapping, 

filtering and rendering graphics and their control was pre-set and the scientists and engineers 

had to make do as best as they could for their tasks. In the words of Haeberli [Hae88], 

"Instead of the user driving an application, the user is often driven and constrained by the 

application . .. 

The concept of visual programming came as a solution to these problems and became a 

paradigm of moving away from these monolithic and static applications, providing integrated 

environments where the user could customise his or her applications without programming 

expertise. The visual programming in the application design cycle took the form of a data

flow architecture. In this architecture, users are presented with a library of modules, 

application components, that have specific functions. The users can select which modules will 

be useful in their application and draw, via direct manipulation of graphical representations, a 

block diagram and create connections between modules for the data to flow through (see 

Figure 6.1). This quick and easy process meant that the scientists and engineers could spend 

most of their resources on the problems being studied instead of dealing with the overhead of 

re-coding and configuring monolithic applications. 
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Data .. 
transformation Render . 

Data .. Data 
import transformation 

.... Render . 

Render 

Figure 6.1 An example of a data-flow architecture. Blocks represent functional modules and the 

arrows represent the flow of data. 

The data-flow model is appealing because it is visual and it is analogous to water 

flowing through a pipe, hence its description as programming by plumbing in [AT95a]. The 

mental model it instils in the user is intuitive and makes it easier to learn. It also simplifies 

control and navigation through the resulting applications. 

The visual design cycle produces an executable flow network [UF'K. *89], which is 

essentially a directed acyclic graph. In this graph the modules (nodes) are at a higher level of 

abstraction than conventional program procedures but lower than a complete application. This 

abstraction borrows from Object Oriented Programming (OOP) and as a result also benefits 

from code re-use, polymorphism and extensibility. Integrated visualisation environments are 

more readily extensible because new modules can be produced by third parties for use in the 

data-flow architecture, provided that an appropriate Application Programming Interface (API) 

has been implemented. Some more advantages of the data-flow paradigm are as follows: 

• PtlTlIIlel procnslll, - the architecture naturally lends itself to implementation on parallel 
processing platforms and distributed environments. Branches of execution in the flow 
network may be carried out simultaneously resulting in speed-ups for calculation and 
simulation. Research in this area was carried out for the Vipar (Visualisation in Parallel) 
project in the Computer Graphics Unit (CGU) at the University of Manchester [LGH02]. 

• /IItD'opertlbUlty - systems implementing the architecture are more likely to be compatible 
with other data processing and visualisation applications. Inter-application communication 
modules can be part of the framework. In [AT95a] a uniform data model is in place for 
unifying access to imported and exported data. 
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• CoUaborlllio" aDd commuDicadoD - if the data-flow architecture's implementation is 
distributed across multiple platforms for processing then collaboration between users 
comes as a natural extension to the framework. 

• A"hntlUd, 1,,1n'1ICtlN silllllltldo" - previous scientific visualisation systems often carried 
out calculations in batches and the results were only available when the calculations were 
finished. In the data-flow paradigm. modules for changing calculation parameters and 
caching intermediate results for animations afford the user interactive intervention to steer 
simulations of the processes being visualised [AT95a, Hae88]. 

• TrDCt!ilblt! colllplltlllio" - in relation to the above point, while simulations are being run, 
the branches of execution can be recorded as the calculations are made. When interesting 
anomalies arise in the generated visualisations, the calculations can be halted and 
backtracked to a previous point in the audit trail, allowing the user to restart from that 
point and modify the calculation parameters to gain more insight. This is implemented as 
a history tree in [888·93]. 

• SlIbjll"ctivt! prnt!"tIlIlo" - with mechanisms such as a history tree, simulations can be 
run simultaneously from various points in the path of execution but with different 
parameter settings. This facilitates the what-if scenarios described in [Lun99] for 
comparison of different outcomes. 

• Approprllltio" - by allowing the users to carry out the plumbing in their applications, they 
have the ability to match the tool to their tasks. This goes beyond mere customisation 
because the users can implement applications that the original system designer did not 
anticipate. 

• Vislllllislltio" - by using visualisation in the design cycle the notational constructs appeal 
more to human perception. The user is afforded a higher awareness of the propagation of 
data in the application and is therefore made more efficient in constructing and debugging. 

Having described most of the virtues of the data-flow architecture adopted in scientific 

visualisation environments, it must be said that there are some limitations as a result of the 

architecture. However, as will be seen later, these are not intractable. 

In [AT95a] the authors pointed out the fact that there are cases where some modules in 

the data-flow network executed needlessly. Such instances arise when a module is in the path 

of execution but its output is not needed at that time, i.e. it should be bypassed. Another case 

is when a module on the path of execution will not change the state of its output from its last 

execution and therefore its current execution would be superfluous. These points imply that 

the data-flow network should not be static. Internal states and user actions can, and should, 

influence the path of execution which, as well as creating computational overheads, can also 

provide opportunities for optimisation. 
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Another concern in the data-flow architecture relates to visual programming and the 

obvious overhead incurred by the user in creating the application. The resulting applications 

may be tailored precisely to the user's needs but they require work in getting them into this 

state. The data-flow architecture promotes exploratory application composition, but it is only 

useful if the user has a good understanding of the functions offered by the system. Designers 

of visual programming languages must be careful in ensuring that the system is usable. 

Traditional and typical static-interface applications, on the other hand, allow the user to 

explore, experiment and concentrate on his or her tasks almost immediately albeit at the 

expense of being less flexible for a wider variety of tasks. 

In [UFK*89] an important limitation is highlighted regarding the visual representation 

of the data-flow. Upson et al. point out that in some applications the data-flow graph can 

become very large and unmanageable if the functional level of abstraction in the modules is 

too low. This would present a problem if the data-flow representation were to be relied upon 

for navigating through the visualisation application per se. There are, however, practical 

means of getting around problems such as these. For example, aggregation of visual 

components could reduce the clutter, or, zooming could provide overview and detail on 

demand. In Schroeder et al.'s visualization toolkit (VTK) [SML96] this problem is avoided by 

manipulating and representing the data-flow model purely in code, rather than visually. 

Written in C++, VTK is an open source library of classes that can be hooked together using its 

C++, tel, Python and Java APIs. Although this combination of compiled and interpreted 

components provides for fast and flexible application creation, its lack of visual programming 

means that its data-flow network is not as readily perceivable. 

6.1.3 Some examples 

A brief discussion of three papers describing scientific visualisation systems that employ 

visual programming and a data-flow model will now follow. These systems are discussed in 

chronological order of their respective publication in the literature to illustrate the evolution of 

the data-flow concept. Although it may seem tautological, the purpose of this section is to 

highlight some of the approaches and motivation researchers have in adopting the data-flow 

architecture. 

6.1.3.1 ConMan: Connection Manager 

In 1988 Haeberli [Hae88] published a paper describing a system called ConMan (Connection 

Manager). Haeberli realised that existing systems were not flexible enough to cater for many 

of the diverse needs of their users and as a result he developed ConMan to address this issue. 
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In presenting his system, Haeberli adopted a culinary metaphor of making a sandwich in 

describing this situation. He likened the typical monolithic application to that of a pre

prepared sandwich, and in contrast to this, he went on to describe ConMan as a way of 

obtaining the ingredients and making your own sandwich. Through this metaphor Haeberli 

highlights one of the points made in the previous section: visual programming incurs an 

overhead for the user, i.e. she might be a bad cook and is unable to appropriate the ingredients 

to make a sandwich she likes. 

This system is described as a visual programming language that uses functional 

modules (implied as verbs) and data-types (implied as nouns) as its vocabulary. Inspired by 

the UNIX pipe command for channelling data between processes (one-way inter-process 

communication), the modules in the system can be connected so that data can flow between 

them and the configuration of the pipes and modules is determined by the user's ultimate task. 

The types of module included in the system include render controllers for geometric shapes 

and bitmaps, and a tape module to record and play back animations of the generated views. 

Haeberli implies that the system is easily extended, as modules only have to declare their 

input and output port properties to the core system, which in turn maintains a queue of events 

to be dispatched to the modules concerned. 

Implemented in C and running on the Silicon Graphics Iris Workstation, the ConMan 

system is an early example of the data-flow architecture and was limited in its application. Its 

applicable data-types were restricted to transformations, geometric shapes, RGB colours and 

bitmaps, and the data were piped in textual interchange format between modules. Hence it 

was not applicable to many scientific visualisation challenges involving large amounts of 

diverse data, but it did influence further research into data-flow architecture [AT95a, 

UFK*89]. 

6.1.3.2 AppUcatioD VisuaUsatioD System 

In a paper published by Upson et al. [UFK*89] in 1989, the Application Visualisation System 

(A VS) is described. The authors realised that at that time while graphics and computing 

hardware were becoming ever advanced, software development was not keeping up to take 

full advantage of the new powerful capabilities on offer. The typical scientific visualisation 

tools available to researchers were in the form of expensive inflexible monolithic applications, 

graphics libraries or animation packages. Graphics libraries required lots of low-level 

programming to use and animation packages worked only on pre-computed data and 

sacrificed processing power for high-quality graphics rendering rather than maintaining a 

balance between rendering and providing better interaction mechanisms. The proposed 
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solution to this was found in applying the notion of object-oriented visual programming and 

an interactive GUI in a system that allowed researchers flexible access to the hardware power 

without requiring programming expertise. It was intended that this would allow scientists and 

engineers to quickly build applications supporting 3-d interactive graphics and high 

computational power without low-level programming, thus allowing them to focus more on 

their area of study. The authors gave an example of how, for one user of AVS, it took a day to 

create a visualisation application for a task, whereas previously without A VS the user had 

spent two weeks coding an application for the same task. 

In the development of A VS, Upson et a1. determined the requirements that A VS would 

need to satisfy by modelling the typical process through which a scientist or engineer would 

go about simulating a physical system using scientific visualisation. Inspired by the uncovered 

requirements and other work in data-flow architectures such as ConMan, Upson et al. 

recognised many of the advantages to be found in the data-flow model, such as animation of 

simulations and being appropriate for parallel processing platforms. The direct manipUlation 

in visual programming meant that it would be easier to use. The system would also be 

extensible by allowing new modules to be developed under A VS by making use of module 

templates that provide the housekeeping routines and only requiring the algorithms to be 

defined by the user. Third parties could also code modules in C, C++ or FORTRAN 

independently of the A VS system The resulting applications would be cheaper because only 

new modules would have to be bought instead of entire new monolithic applications. 

Going beyond the scope of ConMan and animation packages, A VS offered a more 

complete application in that it could be the producer as well as the consumer of data rather 

than just manipulating pre-calculated data. It integrates visualisation with the processes that 

create the data. Also, to promote inter-application compatibility, the range of applicable data

types is also extensible. Another advance was to make the data-flow model in A VS demand

driven to increase efficiency. Modules pull the data through the data-flow network as they are 

needed. 

The authors of the A VS paper did however find a limitation of the data-flow visual 

programming paradigm. They realised that in complex applications the number of modules 

and pipes in the data-flow network could become very large and therefore unmanageable and 

that it would lose its value in providing an overview of the application. This, they said, would 

be affected by the level of abstraction used in the modules and implied that by making the 

abstraction higher without being too generic would help alleviate this problem. 

Implemented in C++ on the X Window System, A VS provides three types of view: a 

data-flow network diagram for shaping the application; control panels, many of which are 
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created automatically from the parameter descriptions of the network modules; and output 

windows for visualisations. 

Through the given application example in the paper by Upson et at, A VS was shown to 

be one of the first systems implementing the data-flow architecture that could tackle real 

scientific visualisation challenges. 

6.1.3.3 IBM Data Explorer 

mM Corporation's Data Explorer (DX) and its extension of the data-flow model is described 

in a 1995 paper by Abram and Treinish [AT95a]. This is another system utilising graphical 

programming to allow users to create visualisation applications. By the time this paper was 

published. the full advantages of the visual programming data-flow architecture were well 

known and. as this paper shows, work was now underway to refine and optimise such systems 

to overcome some of the data-flow model limitations that have been described. The goal of 

this paper was to show how the data-flow model could be extended to support greater 

scientific visualisation challenges while maintaining its fundamental virtues. 

The predominant issue that the paper addresses is that in the traditional data-flow 

architecture, some modules in the network may needlessly be executed. This superfluous 

processing obviously makes the system less efficient. The paper describes side-effect modules 

in the data-flow as being sources of output external to the network, for example, a 

visualisation on the screen or a data file for exporting. In some instances, in the flow of 

execution not all modules in the network will feed into these side-effect modules and will 

therefore not require execution. The DX system employed graph evaluation of the data-flow 

network and conditional execution strategies to determine which modules needed to be 

executed and which ones did not. 

Another instance when a module does not need to be executed is when its inputs have 

not changed from the last time it was executed. This can happen when the user modifies 

another module's parameters, prompting it to execute and the network to process the new 

results. Modules in the execution path before the modified module will have the same input 

states as before and it will therefore be unnecessary to re-execute them. To overcome this, DX 

uses caching of partial results so that when a module is sent input, it determines whether it is 

different from the last time it was executed. If the input is the same then the module will 

merely retrieve the last results from the cache otherwise it will re-execute to produce new 

results. This caching is also the used to create a history tree similar to that of [BBB*93] which 

allows previous network states in a simulation to be re-visited and re-run with modified 
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parameters from that point. This naturally extends to creating animated simulations of the 

physical processes under study. 

These modifications to the data-flow model mean that its performance is optimised and 

therefore more applicable to scientific visualisation challenges that present large amounts of 

data. As well as this, the OX system outlines a number of further extensions. Adaptability to 

new applications and data-types is facilitated by a uniform data model providing uniform 

access services to imported data, generated data and exported data of standard scientific 

classes described by shape, spatial location, rank and type, etc. This addresses the need to 

integrate diverse data sets, which is a prevalent issue in scientific visualisation. The 

visualisations per se have also been endowed with a richer variety of interactive mechanisms 

such as those for location probing, object selection and user-defined annotation. 

OX and OpenOX (the open source version of OX) come with a comprehensive toolkit 

of pre-made modules for a large range of applications, and module polymorphism enhances 

reusability. It runs on Unix workstations and on pes with Windows and represents a mature 

example ofthe visual programming data-flow paradigm. 

6.1.4 Relevance of data-flow based scientific visualisation 

to the HIVE framework 

The key features of the systems described above have provided inspiration in many areas of 

the HIVE framework. Those areas include the hybrid algorithmic architecture, the interaction 

model, extensibility and the completeness of the system with regard to data production as well 

as consumption. 

At the core of the HIVE framework is a hybrid algorithmic architecture. The 

complexity of the input data, in terms of cardinality and dimensionality, steers the flow of 

execution through the various algorithmic stages in a similar fashion to the executable flow 

network apparent in the scientific visualisation systems discussed above. However, there are 

two points of departure from these systems. The first is where the data-flow network is 

formed. In the traditional data-flow model, the user explicitly designs the network via visual 

programming, whereas in the HIVE framework, the system can use the complexity of the data 

to determine the network. In this sense, it is more accurate to say that the HIVE architecture 

can automatically form a graph with the vertices being algorithmic modules and the edges 

being the data pipes. The second and most prominent point of departure from the traditional 

data-flow model is that the HIVE algorithmic architecture works to increase the computational 

efficiency of the system not just its flexibility. 
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In the outline ofthe hybrid architecture shown in Figure 6.2, the node labels refer to the 

input combination of the ranges of data dimensionality and cardinality respectively, e.g. HH 

means high dimensionality D and high cardinality N. The dotted lines represent a path 

through the algorithmic modules for performing transformations of the data. This will be 

discussed in depth in Chapter 7. 
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Figure 6.2 An outline of the hybrid algorithmic architecture. 

It should also be mentioned that the HIVE framework is specifically aimed at 

information visualisation rather than purely scientific visualisation. With these differences 

aside, however, and by borrowing from the data-flow paradigm in scientific visualisation, 

potentially all of the advantages listed in section 6.1.2 are available with the bonus of greater 

algorithmic efficiency. As an example, consider extensibility: an Application Programming 

Interface (API) can be used to allow the extension of the framework without extensive 

programming. Algorithmic modules are 'pluggable' by declaring complexity in cardinality 

and dimensionality and also describing any natural visualisations that result from them. New 

algorithms slot into the framework to improve efficiency as well as to provide new 

visualisations. 

Although the visual programming aspect of the systems described in this chapter does 

not apply so strongly as mediator in the algorithmic architecture of HIVE, the notion of visual 

programming is useful in considering how a user may interact with the system. North [NorOl] 

and North and Shneiderman [NSOOa, NSOOb, NSOl] have evolved the concept of snap

together visualisation in a system where the user can link views so that specific actions in one 

view can propagate to change the appearance of connected views. Although snap-together 

visualisation is based upon the premise that multiple views in visualisation provides more 

insight [M 90, Rob98, BWKOO] and that tight coupling between views is useful for filtering 
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data and maintaining consistency [AS94b , AT95b], the system is essentially utilising visual 

programming albeit at a higher level of abstraction. This notion of an interaction pipe coupled 

with the hybrid algorithmic architecture could be of benefit to the proposed HNE system. The 

data-flow model will provide efficiency in the computational stages and the interaction-flow 

strategy will reflect this and will also provide a vehicle for appropriation to allow the user 

greater flexibility in the system's application. It should be noted that GeoVISTA Studio 

[TG02] is very close to this concept. Based upon JavaBeans™, this is a geocomputational 

system that utilises visualisation and visual programming to help analyse geospatial data. It 

includes an extensible library of algorithmic and visualisation components including k-means, 

SOM, parallel coordinates and visual classifiers. The user can select these components and 

connect them together into data-flow networks. However, it does not place as much emphasis 

on the flow of interaction between views, as provided in HIVE. While views can be 

coordinated, the flexibility of snap-together is absent. Also, unlike HNE's proposed hybrid 

algorithmic framework there is no provision for the semi-automatic generation of algorithms. 

6.2 Information visualisation environments 

Information visualisation has its roots in scientific visualisation where the data typically are 

physically based and of low dimensionality. Information visualisation is applied to abstract 

data of arbitrary dimensionality - from very low to ultra high. There is also a greater variety 

of data types that are the focus of information visualisation (as Shneiderman has noted 

[Shn96]) and can be characterised by dimensionality (1-d, 2-d, 3-d, 4-d+), temporality (e.g. 

lifeLines [PMR*96], Gantt charts), hierarchy (trees) and relationship (networks/graphs). 

Therefore, more novel techniques of visualisation are required beyond those of the simple 

direct mapping of variables to a set of two or three orthogonal axes, as typically encountered 

in scientific visualisation. The literature provides a wealth of novel applications of spatial 

substrates, retinal variables and visual structures drawing from the fields of cognitive, gestalt 

and ecological psychology. Even though progress in these areas has allowed visualisation 

users to glean more information from the data under study, interaction has to be added to 

allow users to look at the data from different perspectives and to detect latent structure (or see 

the unseen [Rob98]). An example interaction technique is tight coupling [AS94b] between 

multiple views which provides a flow of interaction propagating from one view to the next. 

Having interactive visualisations is all very well but these informative views of data 

must also be considered within the context of the user's task environment. The environment 

with its human and informational resources frames the users, their tasks, activities, goals and 
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the information together with the tools to nurture knowledge which may result in new actions 

applied in that task environment [SpiOO). To couple information visualisation with the user's 

task environment the concept of the information workspace was proposed in [CRM91). An 

information workspace is a macro-environment that may reflect the resources in the user's 

physical environment but with the informational resources providing more nourishment 

through the effective abstraction and manipulation afforded by visualisation. 

Information visualisations are very data-dependent and can be extremely complex. 

Designing effective visualisations is still a hit-or-miss craft. The visualisations themselves 

should be seen as part of a suite of tools in a workspace where people can efficiently make 

sense of and work with information to gain knowledge. The following subsections will focus 

on multiple-view visualisations, information workspaces and the process of knowledge 

discovery. The relevance of these areas to the proposed HNE framework will also be 

discussed. 

6.2.1 Multiple views for information visualisation 

While a single static presentation can offer some insight into the structure of data, there are 

great benefits of utilising more than one view of the same data. Visualisations tend to be 

abstract representations of data and therefore multiple views serve to provide multiple 

representations, each of which offers a different perspective. These different perspectives can 

prevent the user from making misinterpretations from the data [Rob98]. 

There are two obvious choices in determining the configuration of multiple views in 

visualising information. They correspond to whether the views are displayed simultaneously 

or singularly over time. This is addressed by Baldonado et al. 's rule of space/time resource 

optimisation in their guidelines on using multiple views [BWKOO]. A common example of the 

latter is found in animation where frames are displayed sequentially and rapidly to give the 

viewer a sense of motion. This sense of motion blends a whole series of perspectives on the 

data into one continuous view allowing the information to unfold with time. This could be 

interpreted as a special case of using mUltiple views and is most naturally applied to temporal 

data. 

In the former case, however, the diligent use of screen real estate and the co-ordination 

of the visual spatial substrates is paramount in affording insight into non-temporal data. 

While animation might be effective in showing how data evolve over time, the use of 

simultaneous views can have several purposes depending upon the technique employed and 

the desired end result. The techniques of focus-plus-context and overview-plus-detail 

[CMS99) use one view as an overview of a large set or subset of data and another view as a 

133 



window into a specific, more detailed portion of this set. This is to afford the user an 

understanding of the data by the context and the detail within the wider context. Another 

related technique is to use previews-and-overviews [GMPSOO]. Again, one view provides an 

overview while other views provide different levels of representation of parts of the overview. 

The purpose of this technique is to allow the user to rapidly probe the overview to seek out 

relevant information before deciding to look at it in more detail. A third example of 

effectively using multiple views is in brushing-and-Iinking. In this case data are represented as 

before, as visual artefacts across several views, and by selecting one or more of these artefacts 

in one view, the corresponding artefact(s) can be highlighted in the context of other views. See 

Chapter 2 for a detailed discussion of these methods. 

The above examples are of co-ordinated views that rely heavily upon interaction to root 

out information and enhance navigation through data. However, even the mere spatial 

positioning of static views can be used to reinforce understanding as well as making efficient 

use of screen real estate. In the field of Ecological Interface Design (EID) [RS98], the 

importance of multiple views is realised in the Proximity Compatibility Principle (PCP). In 

describing PCP, Burns [BwOO] states that "things are related to each other when they must be 

used sequentially within a task" and this is subsequently used to justify the positioning of 

views. This is exactly in line with one of Green's cognitive dimensions, side-by-side-ability 

[HH99]. This describes the ability of multiple views to allow comparison without unduly 

burdening the user's working memory. This is reflected in [EW95] and [LRB*97] where the 

juxtaposition of views that have a common axis provides a visual join between the 

representations. Superimposition of transparent views can also enrich visualisation, although 

occlusion can be a problem. 

Although multiple-view environments have many advantages as discussed above, they 

are not to be utilised without realising some inherent drawbacks. Typical examples of these 

drawbacks are in time overheads incurred in setting up task environments and switching 

between tasks. For an analysis task a user may have to open and configure several windows. 

This not only takes time but when many such windows are open, system resources may also 

be severely drained and the user must also bear a greater cognitive load. This is a common 

experience in GUI-based operating systems such as Microsoft's Windows. Being motivated 

by these overheads, Kandogan and Shneiderman proposed a system called Elastic Windows 

[KS97] to make efficient use of screen space and allow the user to invoke operations over 

several windows simultaneously to speed up task environment set-up, context switching and 

task execution. In the context of information visualisation, these cognitive-load and system

resource overheads were also realised by Baldonado et al. [BWKOO] and merited a tentative 
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set of guidelines to the proper design of multiple-view systems. These guidelines serve to 

clarify when and how to use multiple views. 

6.2.1.1 Animation 

In stereotypical temporal animation the time dimension tends to be the primary independent 

variable of the data set. This means that other (dependent) variables can be mapped onto it 

providing a flow of transition in the view that seems natural. However, for non-temporal data 

distributions, i.e. time is not a major contributor to the principal components, animation of its 

distribution along one of its potentially many components may not be very informative. If, for 

example, one rotates a 3-d scatterplot, containing clusters, in arbitrary directions, many 

directions would not be good for revealing the clusters and their relationships. Techniques 

such as grand tours [CBCH95] and co-ordinated views can overcome this. 

Cook et al. [CBCH95] describe a grand tour as being a dynamic view that presents a 

sequence of many multidimensionally scaled projections of the data. Rotating the projections 

smoothly across the data distribution produces animation with the 'smoothness' determined by 

the granularity of the sampling and interpolation employed over the data. This shows that time 

can be used to show the distribution of non-temporal data unfolding. However, since the 

search space of potentially meaningful projections is so large, animated views of random 

paths through this projection space may fail to show anything meaningful. 

A special case of interactive animation that is similar to a grand tour is facilitated in 

force-directed layout algorithms such as the spring model [Ead84] for multidimensional 

scaling. With this type of algorithm, a two or three-dimensional embedding of the higher

dimensional data is gained by iteratively refining the low dimensional representations. As 

opposed to a grand tour, the 'projections' in this case are the low-dimensional positions of the 

data that continuously move towards an optimal layout. This motion is made with regard to a 

measure of global minima in the spatial embedding. With each iteration step. the low 

dimensional view of the data can be updated to animate the progress of the algorithm. In 

[BSLD98, RMC05]. the user can intervene in this animation by dragging visual 

representations of the data to different positions and see how the algorithm reacts. Buja et al. 

[BSLD98] use this as sensitivity analysis because the stability of the layout can be observed 

with respect to the amount of movement of the data points. The author has also published in 

this area - by interactively adding energy to a spring model layout, the user can help the point 

configuration bounce out of a local minimum [RMC05]. 

The term animation tends to instil a notion of a smoothly changing picture where the 

transitions between views (frames) are imperceptible. However, there is another side to the 
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word 'animation'. High levels of human-computer interaction such as in direct manipulation 

of visual artefacts and co-ordinated views can be enough to animate static presentations into 

being dynamic visualisations. In this case, the user's actions at the interface directly control 

the view transformations. Instead of the transitions in the views being imperceptible, they are 

now visual feedback in the cause-effect relation given by interaction over time. Animation, i.e. 

multiple changing views, can reveal hidden structure within data. When multiple views are 

shown in temporal and spatial context, latent patterns can be found more easily. 

6.2.1.2 Tight coupling and flow of interaction 

The configuration of multiple views determines whether the data are presented simultaneously 

or singularly over time within each view. Interaction however, fruitfully marries the above 

two types of view configuration. It allows two or more views to be concurrent as well as to 

show visual representations evolving as the user participates in their transformations. The flow 

of visual transformations in views occurs with the flow of interaction. By co-ordinating 

multiple views so that changes made in one view are reflected in other views, interaction can 

be said to flow between them. This provides the user with the ability of focussing in on 

specific parts of the data set and seeing them within the context of other representations. In 

evaluating their snap-together visualisation system, North and Shneiderman have found that 

this enhances user-performance in data analysis tasks [NSOOa]. 

The notion of co-ordinated views is expressed in the concept of tight coupling [AT95b, 

AS94b). Tight coupling between visual interface components such as controls and views 

allow actions invoked on these components to affect the state of other components. Take, for 

example, a series of form windows with button controls for moving backwards and forwards 

through the sequence of forms. By using tight coupling between the fields (for entering 

information) and the "Next" button (for progressing to the next form), the system can grey out 

the button until the user has filled in all of the necessary fields. This effectively constrains the 

user's actions and can be used in general to guide the user through interacting with the 

interface in the direction of possible goals. When applied to graphical query controls such as 

range sliders, tight coupling can also alleviate the all-or-nothing phenomenon typically 

associated with Boolean queries in information retrieval. When multiple controls such as 

range sliders and check-boxes are used to enter query parameters, the selection of a value on 

one control can influence the range of values that are selectable in the others. This can prevent 

zero-result situations where the data space being searched has no items matching specific 

queries. Conversely it can also prevent the user from being overwhelmed by too many results. 

By displaying result previews as queries are being constructed, users can quickly refine 
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queries until a manageable and relevant set of results is obtained. This is also known as 

dynamic querying [Shn94). 

Co-ordination between multiple views has been around since the 1970s. A popular and 

well-established technique used by statisticians is to use a matrix of scatterplots to gain 

several simultaneous perspectives of their multivariate data [BC87). The scatterplots represent 

layouts of each possible pairwise combination of the variables comprising the data set. This 

means that for a data set of dimensionality d, the number of scatterplots required is equal to 

d(d - /)/2. Obviously, the downside to this approach is in its limited applicability to high

dimensional data sets. As dimensionality increases, screen space for the scatterplots rapidly 

diminishes. However. when the dimensionality of the data permits such a configuration of 

multiple views of the data, the collage of views can be enhanced by interactive mechanisms. 

This interaction typically allows the selection of arbitrary points in any of the plots and 

highlighting the corresponding points in the other views. The highlighting usually takes the 

fonn of using different colours to distinguish selections and has therefore led to the adoption 

of the tenn painting to describe such interaction [MS90). It is also known as brushing-and

linking [BC87) and location probing [CMS99). In statistical analysis this interactive 

mechanism is referred to as part of exploratory data analysis (EDA). 

The insight into data that EDA provided statisticians inspired researchers to experiment 

in its use in visualisations other than scatterplot matrices. Generally the concept can be applied 

to any multiple-view system where visual entities have different abstract representations 

across the views. One example is in the linked views employed in the Apple Dylan 

programming environment [DP9S). In this case, views are connected by what Dumas calls 

hOI-links that cause the selection of an object in one view to effect prominence of related 

objects in the other linked views. Another example is in the spreadsheet approach to 

visualisation. In [CKBR97). a spreadsheet layout of views allows efficient use of space, 

multiple operations, side-by-side-ability etc. and supports conjunctive analysis by allowing 

'what if questions to be easily posed and answered (like a normal spreadsheet). The notion of 

brushing has also been extended. Buja et al. [BSLD98) make a distinction between two types 

of brushing. They call the temporary highlighting of objects, as the mouse brushes them, 

transient brushing. Whereas for highlighting that remains after direct manipulation of the 

visual artefacts, they use the phrase persistent brushing. This interaction was implemented in 

the XGobi system [SCB98) which provides a workspace for exploring multidimensional data. 

In XGobi, brushing can be applied to link scatterplots and projections but is limited by the fact 

that the software's set of algorithms and views is not extensible. 
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So far, a number of tenns have been introduced in this section: tight coupling, co

ordinated views, brushing and linking, location probing, dynamic querying; but whatever it is 

called or part of, the co-ordination of activity across multiple views gives the user greater 

control over the visual representations of the data. This ultimately nurtures discovery. In 

[BCS96] it is described as linking .. ... a graphical query to a graphical response ", and in 

[EW9S] it is stated that it gives users the impression that they are touching the data. 

Such systems do, however, incur overheads in tenns of search time and memory, and 

therefore efficient data-structures must be employed to keep these down [JS94]. This issue, 

along with more novel applications of interaction with multiple views, remains a challenge in 

information visualisation research. Fekete addresses this with his InfoVis Toolkit [Fek04]. 

This is a Java library, consisting of many visualisation components such as scatterplots, tables 

and trees that can be linked together and incorporated into java-based visualisation 

applications. These components can also be supplemented with interactive mechanisms such 

as fisheye views and dynamic labelling and therefore efficient data structures are implemented 

to help maintain the computation speeds required by dynamic queries and multiple 

coordinated views. However, Fekete's toolkit is similar, in a sense, to Schroeder et al.'s VTK. 

[SML96]. It does not provide a visual method of dynamically coordinating data-flows 

between the toolkit components and, as such, lacks the flexibility that visual programming can 

provide. 

Prefuse [HCLOS], which is also implemented in Java, is similar to Fekete's toolkit, 

however, it utilises a lower level of abstraction for the composition of visualisation 

applications. Rather than modularising whole visualisations, Prefuse adheres to a model akin 

to the data-flow paradigm. Again, the data-flow is established only by writing Java code, 

albeit a far smaller amount than would be necessary for creating applications from scratch. 

6.2.2 Information workspaces 

The notion of the information workspace addresses two important issues in information 

visualisation. One is the cost structure of information. The other, which essentially 

supplements the first, is in providing the user with a suite of tools for carrying out different 

tasks within the work domain. With regard to the first issue, Card et al. made one of the 

earliest proposals of an information workspace called the Information Visualizer [CRM91]. 

The inspiration for this system came from the ways in which people organise their resources 

within their working environment. For example, in an office, information that is not needed 

all of the time is stored in filing cabinets (secondary storage), whereas information that is in 

current or constant use is placed on the worker's desk for convenient access (immediate 
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storage). Thus, in a sense the information in the office has a cost structure - the cost of 

retrieving a document from the filing cabinet is higher than that of taking a document from the 

desk. Hence, for efficient use, the user tunes this structure to his or her current working 

situation to reduce the overall cost of accessing the information required. Card et a1. argued 

that such a structure is also evident in electronic information processing systems. They made 

several observations of this structure and implemented their system as an electronic 

information workspace where the cost of information in cognitive and temporal terms could 

be minimised. 

The second issue that the information workspace addresses is the provision of a variety 

of tools applicable within the worker's task domain. For example, consider a programming 

environment for software development such as Microsoft's Visual Studio Integrated 

Development Environment (IDE). This provides packaged bundles of many disparate tools for 

utilisation and appropriation in the programmer's task processes such as multiple views for 

source code files, plug-in extensions and database configuration tools. Because many of the 

tasks and goals of programmers are not known in advance, the system designer cannot 

anticipate them. For this reason such software environments tend to provide this extensive 

suite of tools and also allow a great deal of customisation of the environment itself. This is 

also reflected in the information-centric visualisation environment Visage, implemented by 

Roth et al. [RCK*97). With Visage, the primary objective was to integrate visualisation tools 

for information retrieval, analysis and communication (via presentation) in a flexible system 

where the user could arrange these information resources in any way he or she desired. 

The workspace metaphor is also prominent in the field of computer supported co

operative work (CSCW), although in [H096) the word 'space' was contested by 'place' 

because it was argued that people only really understand and interpret spaces as places. Also, 

the term media space [Gav92] has been adopted in CSCW to denote a video-based virtual 

environment as a medium of communication and social interaction. That aside, the inspiration 

ultimately comes from physical spaces (or places) that often have more than one person 

present at any given time and promote communication such as face-to-face speech and 

gesture. This implies that a virtual workspace should also provide a means of collaboration 

and awareness of other people working in the domain. This is in line with the theory of 

distributed cognition [HHKOO) , where system boundaries are expanded to include the 

activities of other people and processes that bear on one's current task and work domain. 

Notification systems such as Elvin [FMK.*99] attempt to enhance awareness of other people 

and events and can supplement a virtual workspace. Recording histories of user interaction 

with the information artefacts as in [HHWM92) also provides awareness and generates useful 
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information. This suggests that channels for communication and collaboration should be 

amongst the tools provided by an information workspace. 

Physical workspaces such as a joiner's workshop are not entirely specialised 

applications - there might be communication facilities such as phones and an office area, i.e. 

the workspaces are not geared purely for woodwork - but are macro-environments that are 

appropriated by the human worker(s). The virtual workspace, to be true to its physical 

counterpart, must provide intuitive means of retrieving and organising the required 

information from a variety of people and processes in an efficient manner that promotes 

productivity and/or satisfaction. The virtual workspace should not be an encapsulated 

environment but should be extensible and be able to broaden its boundaries to accommodate 

other tools and resources within the user's domain. 

6.2.3 Data, information and knowledge 

When multiple views portraying abstract representations of data are brought together, possibly 

intentionally adhering to the notion of an information workspace, the prime motive is to gain 

knowledge from this arrangement. In [SpiOO]. Spiegler defines knowledge as being ''the 

process of knowing". This is described as a cyclic process that takes data. information. social 

context and experience etc. to produce knowledge. which can in turn generate more data, 

information and even more knowledge. 

Representation, 
Abstraction, 
Visual structures 

Figure 6.3 A conceptual view of the "process of knowing". 

Multiple views, 
Interaction, 
Environment, 
Experience 

In [SowOO] it is implied that data and information are lower and higher levels of 

knowledge representation. They are abstractions. and in the context of this chapter it can be 

seen that visualisations serve to increase the level of abstraction of data into the higher level of 

information. Visualisations naturally appeal more to one's perception than raw data. When 

this occurs in an information workspace where the system boundaries are broad enough to 

incorporate many resources in the user's environment. including the above-mentioned social 

context and experience. meaning can be found in information and foster new insight and 
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ultimately knowledge (see Figure 6.3). Spiegler states that this transformation of data to 

information to knowledge has a strong inherent time dimension. The process takes data, 

generated in the past, to create information in the present and foster knowledge in the future. 

The relationship between data, information and knowledge can also be tentatively 

mapped onto a Meaning Triangle [SowOO]. A meaning triangle is a triadic structure similar to 

Peirce's ontology [SowOO] ofjirstness, second ness and third ness, based on entities, signs and 

meaning (or concept). In this case, the entity is described at the lowest level by data, the sign 

is the information gleaned from the data and the meaning/concept is derived from a person's 

perception of the representation. These meaning triangles can be created for different levels of 

representation of knowledge and when joined together, where the sign of one triangle 

becomes the entity of the next, an arbitrary number of levels of representation can be gained. 

This is the basis for Peirce's idea of unlimited semiosis and can explain how Spiegler's 

transformation of data to information to knowledge can indeed generate more data, 

information and knowledge in an infinite cycle. See Figure 6.4 below: 

Concept Concept Concept 

Entity Sign I Entity Sign I Entity Sign ... 

Figure 6.4 Linked meaning triangles. 

Data mining and data archaeology are knowledge-discovery paradigms that ideally 

adhere to the concept of the process of knowing. By incrementally increasing the level of 

representation from data to information, typically via visualisation, it is their goal to uncover 

hidden knOWledge. There is, however, a conceptual difference between data mining and data 

archaeology. In [BST·94], Brachman et al. established data archaeology - aptly named when 

one considers Spiegler's notion of temporality in data. In data archaeology, Brachman et al. 

put human intervention and interaction at the centre of the knowledge discovery process. 

Rather than allowing some automated and unsupervised classification algorithm to try and 

find patterns in the data as in data mining, data archaeology dictates that the user should 

instead be in the driver's seat. By giving the user a suite of flexible tools for representation, 

manipulation and analysis of data and information, the user can form and test hypotheses. As 

emphasised in the previous paragraphs, different levels of representation in data and 

information are involved in describing knowledge and, in realising this, Brachman et al. 
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implemented a formal knowledge representation (KR) language as the core of their system for 

data archaeology. By giving the user a powerful means of representing concepts in the target 

problem domain, the user can use queries and inferences to segment (abstract) data into 

interesting subsets for analysis and hypothesis testing. With respect to artificial intelligence 

and machine learning, data archaeology can be more generally thought of as a form of 

supervised learning, whereas data mining, on the other hand, predominantly employs 

unsupervised learning algorithms for the discovery of potentially interesting subsets within 

data. 

Representation plays a critical role in information visualisation. From the internal bit

wise representations of knowledge in the form of data for the machine to manipulate, to the 

visual abstractions that encode information for the human to perceive, the representations 

potentially serve as a resource for the creation of knowledge upon which he or she can act. 

6.2.4 Relevance of the information workspace concept to 

the HIVE framework 

At the core of the proposed HIVE framework is the hybrid algorithmic architecture as 

discussed in Section 6.1.4, however, this architecture merely transforms the data, which are 

the low-level representations of knowledge, into a slightly higher level of abstraction. The 

architecture may accurately classify and segment the data but this may be seen as producing 

meta-data, an informed synopsis of the original data set. A rich variety of interactive views of 

this transformed data are required not only to allow the user to perceive Gestalt qualities but 

also to allow the user to steer the computations of the hybrid architecture. This serves to help 

form hypotheses based upon the uncovering and manipulation of the higher-level visual 

representations. 

North and Shneiderman propose a classification of visualisation systems into four levels 

of flexibility in data, visualisation and co-ordination [NSOOa, NSOOb]. They state that level 0 

systems are the least flexible in that they work only with one type of data and proffer perhaps 

only one form of visualisation with no co-ordination between mUltiple views (if any). Levell 

and 2 systems are described as being progressively more flexible up to the point where the 

level 3 system emerges. Level 3 systems permit the user to apply a variety of visualisation 

techniques to disparate data sets and also to define how the interaction with one view can 

transform the visual representations that are the other connected views. This level of user

defined co-ordination between views is akin to the visual programming paradigm discussed in 

Section 6.1.1, but at the same time, the range of visualisations provides a comprehensive suite 
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of tools that somewhat resemble the notion of an information workspace. This suggests that it 

would be beneficial to make the HIVE framework extensible not only in the underlying 

algorithms but also in the visualisation tools, as this would allow the system to address the two 

issues behind the information workspace as described in section 6.2.2. The extensibility of the 

algorithmic architecture addresses Card et al. 's cost structure of information [CRM91] by 

making the transition from data to meta-data or information more efficient. This efficiency is 

to be achieved by matching algorithms of appropriate complexity to the data in such a way 

that transformations in the data are produced in as little time as possible. Also, the provision 

of a variety of visualisation tools makes it easier for the user to get his or her hands on the 

data. By approaching the HIVE framework from this workspace perspective, the author can 

strategically map out the transformation, through abstraction and representation of data to 

information and to potential knowledge discovery. 

A limitation that is generally encountered In information visualisation-based 

workspaces is that the original data being transformed cannot be modified in terms of adding 

or deleting elements. While systems such as IVEE [AW95], XGvis [BSLD98], DEVise 

[LRB*97] and Visage [RLS*96] offer flexible workspaces for the visualisation of information 

and the creation of meta-data, they do not allow the user to use any of their tools for 

modifying the composition of the underlying data set. It may be for this reason that these 

systems have not seen the widespread use anticipated by the designers, because in real-world 

situations the consumers of data are also often the producers as well. In scientific 

visualisation, however, the Application Visualisation System [UFK*S9] and the GRASPARC 

system [BBB·93] have addressed this limitation. Here, the processes that generate the data are 

part of the system. Also, as mentioned in section 6.2.2, programming language environments 

can be seen as information workspaces, but this type of non-visualisation based workspace 

inherently facilitates production of the data it contains, i.e. the source code. As far as can be 

seen in the literature, the closest information workspaces get to expanding the data upon 

which they work is by deriving meta-data such as interesting classes, or recording use 

histories such as in [HHWM92]. 

It is the nature of scientific visualisation and programming workspaces that makes the 

production of data a natural aspect of their anticipated use. In scientific visualisation, data tend 

to be derived from the simulation of physical processes where subjunctive analysis is desired 

and therefore requires the generation of simulation data on the fly. In programming IDEs the 

goal is to produce data, the source code. However, in typical information visualisation 

systems, the data being transformed are abstract, generated in the past and might not lend 

themselves to subjunctive analysis. This serves to understate the importance of on-line 
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modifications to the data. With this in mind it is considered that if the HIVE framework 

accommodates modification of the underlying data set, this will be an important asset because 

it will make it a more useful system for a wider range of people (the information producers as 

well as the consumers). The fluctuation in data complexity should not be a problem because 

the proposed hybrid algorithmic architecture is designed to adapt in such situations. The 

adaptability of the algorithmic architecture comes from the notion of matching the appropriate 

algorithms for clustering, layout and variable transformations to the data, as they are needed 

(see Chapter 7 for a detailed discussion). 

6.3 Visualisation system design theory 

The previous two sections have outlined potentially useful concept options for system 

architecture and applicable theories for turning abstract data into information (visualisations) 

with the intent to foster knowledge. However, this alone is not enough to ensure the 

effectiveness of a target system. Petre et al. describe such a system as a cognitive technology 

[PRR·O I], characterised as a means of externally representing information residing in the 

user's short-term memory, essentially extemalising his or her plans. This has the advantages 

of reducing cognitive load, and also making the extemalised information easier to 

communicate to others and to interact with in order to create more information. For this to be 

effective, the system obviously must be usable. 

Only recently has there been a flurry of activity in the empirical evaluation and meta

analyses of information visualisations [CYOO], but there are several long-standing proposals 

of design theories for information artefacts in the literature. These include ecological interface 

design (EID) [BurOO, FTM·98, RS98], cognitive dimensions of notations [Gre89, HH99, 

PRR·OI] and Roth et al.'s dimensions of expression [RCK·97]. Each of these theories 

presents a comprehensive set of guidelines that intrinsically overlap and complement each 

other. In this section each theory will be discussed in turn and the common ground between 

them will be uncovered. 

6.3.1 Ecological interface design (EID) 

There are many approaches to information system design. Their constraints and the aspects of 

the system that are emphasised generally distinguish them, for example: 

144 



• Techllology-celltred - this approach focuses primarily on the limitations and the 
capabilities of the technology underlying the system. The user interface is designed in 
such a way as to fully utilise the functionality provided. This is often referred to as the 
single-sensor-single-indicator (SSSI) approach in EID [FTM*98, RS98]. 

• User-celltred - this emphasises the capabilities of the users. Operation of the system 
should not exceed the capabilities of the user. The Visage workspace [RCK*97] is user
centred because it aims to make information accessible to users by breaking down the 
barriers between applications and processes that externalise the required information. 

• COlltrol-celltred - this concentrates on the stability of the human-machine control loop in 
terms of time delays and order of operations [FTM*98]. Systems that try to minimise 
delays in user response to information often aim to help the user anticipate future states 
such as in subjunctive displays [Lun99] and situation awareness displays [AC98]. 

• Applicatioll-celltred - with this approach, the information is stored in files and has no 
other useful representation external to the application that is required to manipulate the 
files [RCK*97]. 

• Doc"",ellt-celltred - this is at a higher level of abstraction than the application-centred 
approach. Documents provide a more useful abstraction and organisation of information 
[RCK*97]. 

• /II/o,.",atioll-celltred - this approach provides yet a higher level of abstraction than the 
document-centred approach. Here the system allows individual data elements to be treated 
as manipulable objects. The Visage workspace [RCK*97] also provides an example of 
this. 

• Activlty-centred - systems that adopt this approach generally aim to enhance the 
awareness and/or visibility of other users and their actions, as well as one's own previous 
activity. Examples include systems that record use-histories [HHWM92] and paths 
through informational resources [CRB98] to help guide the activities of others in attaining 
their goals. 

• Property-celltred - this approach is used in the Presto document system at Xerox P ARC 
[DELS99]. Here users can attach arbitrary property value-pairs to documents to facilitate 
objective and subjective categorisation for retrieval of information. This approach 
provides a flexible level of representation for information, based upon the abstract notion 
of documents. 

The first three of the above design approaches were detailed in [FTM*98] by Flach et 

aI., where they were considered in the design of human-machine systems such as flight crews 

and their aircraft. They are however, also applicable in the design of abstract information 

systems as is implied by their descriptions. Flach et al. stated that these three approaches have 

a common image of the system, i.e. that of the user and the machine. The addition of the other 
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design approaches with the exception of activity and property-centred types do not violate this 

image. 

It was asserted by Flach et al. that in designing a system, the initial analysis of the 

user's activities in the work domain could best be understood by considering them within the 

broader context of the workspace, i.e. the ecology. This served to shift the focus of attention 

from purely human-machine interaction, with situation-based constraints (technology, control, 

user, etc.), to human-work interaction where all of the above constraints are situated. This 

notion lead to the use-centred (not user-centred) design approach that is now known as 

ecological interface design. "Ecological" is the term used because the design approach 

concentrates on the (work) ecology and the (worker's) niche. "Environment", on the other 

hand, was too broad a notion as this implies habitat and things external to the system rather 

than niche [Gib79]. 

Traditionally EID is applied to tangible systems with an underlying physical theory 

such as aircraft and control rooms, to address problems from the likes of SSSI. EID can, 

however, be applied to situations where one must make sense from abstract data, for example, 

the information visualisation equivalent of SSSI could be regarded as a table of figures or a 

range slider control for every attribute in a query view. Also, the burgeoning application of 

distributed cognition theory and CSCW that inherently recognise ecological issues in 

information system design, show that EID can be transposed to virtual workspaces as well as 

their physical counterparts. This is also reinforced by the inclusion of the activity-centred and 

property-centred approaches in the list above. Whether it is used for enhancing analysis in 

scientific visualisation or control for system operators, EID is also entirely applicable to the 

design of information visualisation workspaces. 

6.3.2 Cognitive dimensions of notations 

For over a decade the 'cognitive dimensions' framework, originally proposed by Green 

[Gre89], has been developed as a framework to help designers create notational systems and 

information artefacts. Notational systems are defined as being any means by which 

information can be structured by a user via manipUlation of (in the visual case) graphical 

properties and retinal variables. Examples of notational systems include word processors, 

programming language IDEs and CAD tools etc. Information artefacts, on the other hand, are 

self-contained notational systems such as radios and clocks. 

The dimensions are a list of issues the designer should consider and they provide a 

vocabulary for design decisions and their cognitive implications for the end users. Each 

dimension addresses specific activities that the target user may engage in and a particular 
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aspect of the system involved. and by conforming to the dimensions. they also provide a basis 

for design evaluation. The following is a description of the set of cognitive dimensions 

[PRR·OI]: 

Jrucosity: resistance to change. This pertains to how difficult or time-consuming it is to 

modify a construct in a notation to achieve a goal. For example. in a programming IDE, 

source code markers bookmark specific lines of code. If the programmer wanted to remove 

all ofthe markers then he or she would have to go through all ofthe code to select and remove 

each marker if there was no function to 'remove all' . 

VIsibility: ability to view components easily. Too high a level of abstraction could make 

information important to the task at hand invisible 

PrDIIllhln co"''''illrlent: constraints on the order of doing things. The history tree [888·93] 

mechanism used in some scientific visualisation systems, as described in chapter three, 

addresses this. In this context a user can set parameter values then run a simulation. When 

something interesting appears. the user can backtrack to a previous point in time and modify 

parameter values to gain more understanding of the interesting phenomenon. 

Role-expresslveness: the purpose of an entity is easily inferred. This pertains to how visible 

the relationship is between two or more elements in a notation. 

E"or proneness: the notation invites mistakes and the system gives little protection. Slips and 

errors specific to the notation should be anticipated so that adequate means of recovery are 

provided by the system. 

AbstrtlClion: types and availability of abstraction mechanisms. If the system permits 

modification of abstract representations then some form of abstraction management should be 

provided (see section 6.3.4). 

Secolldilry IIot11tioll: extra information in a means other than formal syntax. This is a vehicle 

for appropriation. Comments in a program's source code are an example. Here the user 

increases comprehensibility without having to adhere to the formal program language syntax. 
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Close"ess of "'lIPpi"g: closeness of representation to domain. This regards how close the 

representation of entities in the notation is to the notional entities in the user's problem 

domain. 

Co"siste"cy: similar semantics are expressed in similar syntactic forms. Similar information 

should have similar representation. 

Diffuse"ess: verbosity of language. The notation should be concise. Visual structures should 

not use more screen space than is necessary. 'Chart junk' should be obviated. 

H"rd ",e"tIIl operlllio"s: high demand on cognitive resources. Information encoded in visual 

structures should be readily perceived. 

Provuio"lIlity: degree of commitment to actions or marks. Subjunctive interfaces [Lun99] 

address this by facilitating ''what-if' scenarios. 

Progressive evmlllllio,,: work-to-date can be checked at any time. The history trees in 

scientific visualisation address this by allowing simulations to be halted and re-run. Software 

written in an interpreted language can be run before its completion to check for bugs and 

conformance to requirements. 

Side-by-sitk-tlbUity: providing comparison of notational structures. The positioning of visual 

structure in information visualisations can convey meaning per se. Graphs that share a 

common axis can be placed so that screen space is utilised efficiently and related information 

is perceived. 

The influence each of the dimensions has on design decisions is determined by the 

nature of the target system. Trade~ffs also become apparent because if one dimension is 

addressed this can have an impact on other dimensions. 

The cognitive dimensions framework has been shown to be applicable to the design of 

information workspaces. Hendry and Harper [HH99] emphasised secondary notation in the 

design of SketchTrieve, an information seeking workspace that allows users to organise their 

queries and results in a very flexible manner to increase comprehensibility and support 

opportunistic searching. Cognitive dimensions are in line with ecological interface design 

because they essentially provide a use-centred design approach. By considering the target 
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audience and the type of system under analysis, the dimensions provide situated constraints 

that can be traded off with each other to tune the design. 

6.3.3 Dimensions of expression 

In the design of the information visualisation workspace Visage, Roth et al. utilised a set of 

design guidelines they called dimensions of expression [RCK*97]. These dimensions are 

similar to cognitive dimensions but have been developed specifically with information 

visualisation in mind. Each dimension pertains to how the user may express his or her intent in 

interacting with information visualisations for exploratory tasks. The four dimensions of 

expression are as follows: 

Set descriptloll: how people describe data sets of interest. There are two means of 

determining set memberships: set extension and set intension. In set extension, users may 

define a set by pointing and clicking with a mouse to select visual structures, for example, the 

members of a cluster on a scatterplot may be selected by dragging a bounding rectangle over 

the cluster. However, set intension can be used when the interface makes it difficult for direct 

selection of objects and therefore the user must specify criteria for set membership. Examples 

of set intension are SQL queries, range sliders and forms. Set description is related to the 

cognitive dimension of 'secondary notation' with regard to organisation of visual structures 

into spatial sets to enhance comprehension. 

Grllll"llIrity lI11d cOlllposlbllity of tICtIOIIS: whether people communicate via composing 

primitives or with higher level, abstract expressions. Ideally there should be a trade-off 

between the constraining appliance-like interface and composition-by-primitives approach to 

allow greater flexibility at the same time as reducing the number of steps in carrying out an 

operation. This relates to the cognitive dimension of 'viscosity' because the granularity of 

actions (resolution of representation) is inversely proportional to the viscosity of a notation. 

COlltillulty of actioll: whether the communication process is about a continuous process or 

discrete action. Continuous communication with the system is used where the user is unsure 

of what intermediate stages will yield in the process. An example is in using smooth semantic 

zooming such as in Pad++ [8H94] to progressively uncover detail and provide feedback to see 

entity relationships emerge. Discrete actions, on the other hand, are used when the user 

knows what the outcome of the action will be and does not require intermediate visual 

feedback. An example is in closing a view. Continuity of action is related to the cognitive 
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dimension of 'hard mental operations'. This is because the degree of continuity should be 

chosen to alleviate cognitive load as in not having to remember previous states or lose context 

in the representation. 

Consistency with do",ain VOCabulllry: whether communication can reflect familiar domain 

vocabulary. This refers to the vocabulary (representations) used in interacting with the system 

and how similar or relevant they are to the familiar vocabulary of the target user in his or her 

work domain. This is most strongly related to the cognitive dimension of 'closeness of 

mapping'. 

As can be seen from the above, the dimensions of expression have much in common 

with the cognitive dimensions described in section 6.3.2. Roth et a1. state that in designing 

information visualisation systems, the above dimensions repeatedly arise, and like the 

cognitive dimensions, they are situated constraints that have a degree of influence dependent 

upon the type of system under development and the context of its use. The dimension 

pertaining to the consistency with domain vocabulary can be seen as a human-work 

interaction issue. This emphasis on the work ecology is one of the essential ingredients in 

information workspace design and is in line with the theory of ecological interface design. 

6.3.4 Abstraction 

Abstraction in information visualisation is about the representation of data in such a way that 

the user's visual perception is utilised to transform the representation into meaningful 

information. The lower levels of abstraction pertain to how visual structures are composed of 

graphical properties such as marks (which are the geometrical structures of points, lines, 

planes and volumes) and retinal properties (characterised by shape, size, colour, orientation 

and texture). These visual structures serve to encode either individual data elements or 

compound aggregates in a meaningful way. When the visual structures are presented in 

concert, as in points on a scatterplot or nodes in a network diagram, a higher level of 

abstraction is achieved where the context of visual structures brings to bear more (relational) 

information. The low-level abstraction was the focus of a paper by Card and Mackinlay 

[CM97] where contemporary information visualisation techniques were analysed with respect 

to visual structures and the use of spatial substrates. A paper by Lohse et a1. [LBWR94] 

focussed on the higher level of abstraction used in visual representations. Here, a taxonomy of 

graph types was developed to distinguish between the various techniques of providing 

informative views of data sets. However, both of these papers only marginally addressed the 
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fact that there can be many different representations for encoding data and fmding the most 

effective is by no means trivial. 

Russell et al. [RSPC93] have addressed this issue of providing the most effective means 

of representation in a paper written in 1993, where they outline the cost structure of 

sensemaking. They state that finding the most effective representation, i.e. one from which the 

right information is perceived and which facilitates task-specific operations, can be difficult 

and they define this process of searching for this representation as sensemaking. It should be 

noted that the cost structure of sensemaking is different from the cost structure of information 

(see section 6.2.2). This is because in sensemaking the search for the correct representation 

and evaluating it with respect to the problem domain is a cyclic process with each step having 

an associated cost. In the cost structure of information, informational resource availability and 

the associated cognitive work in disseminating information incur the costs. However, this 

aside, sensemaking is important to getting abstraction right in information visualisation -

abstractions that make the most sense, given the task domain, are desired. The encoded data 

must be in a form where the user can immediately make sense of them and become more 

informed. 

6.3.4.1 Abstraction management 

In describing abstraction as a cognitive dimension, Petre et al. asserted that systems that 

permit many abstractions are potentially difficult to learn. They also stated that when the user 

is allowed to modify the abstractions, some form of abstraction manager is required. In 

information visualisation the proliferation of abstractions can be difficult to avoid because the 

user is usually provided with interactive functions to transform and co-ordinate views. The 

transformation of views is in itself modification of the abstractions. 

Abstraction management is required mainly to maintain consistency. It should ensure 

that the visual representations accurately represent the state of the system and the 

transformations of the abstract data under analysis. For example, when the system is carrying 

out heavyweight calculations that may be unavoidable due to extremely high volume data, it 

might be appropriate to give feedback on the progress of the computations. An example of 

abstraction management is provided by the model-view-controller (MVC) architecture' which 

is used in Sun Microsystems' Java [Sun02]. The model represents the data and rules for 

accessing and modifying the data. The view corresponds to how the data are visually rendered 

and it makes sure that changes to the data made through the model are reflected. Finally, the 

I MVC was first developed at Xerox P ARC in the late 1 970s for the Smalltalk-SO programming system [K.PSS]. 
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controller translates the interactions with the views into actions for the model. In Java, the 

view and controller mechanisms are collapsed into one entity called a user interface delegate. 

This is to make their management easier when implementing interfaces. See Figure 6.5. 

Figure 6.S The Java model-view-controller architecture. 

The Java MVC essentially ties together the data, rules for its manipulation and its 

visualisation. The MVC can be seen as an abstraction manager because the views are 

abstractions of the data and by formalising the link between the data and their representation, 

consistency is maintained across views and through interaction. 

With respect to sensemaking, an abstraction manager should ensure that the generated 

abstractions remain meaningful in the context of a given problem domain. In keeping with the 

dynamic process of sensemaking, abstraction management should be flexible enough to allow 

the exploration of different abstractions as well as maintaining their consistency. If the 

representations are not consistent and appropriate, contextual information can be lost and the 

visualisations may become open to misinterpretation. 

6.3.5 Relevance to the HIVE framework 

In Shneiderman's task-by-data-type taxonomy [Shn96], he outlined his visual information 

seeking mantra: "overview first. zoom and filter. then details on demand". This is an intuitive 

and useful procedure in information visualisation and one that was adhered to in the 

implementation of the proposed HIVE framework. However, this is a top-level description of 

what the system offers the user in terms of functionality. It states nothing of the situated 
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constraints and the work ecology addressed by the design approaches described in this 

chapter. For this reason the design approaches described above have been utilised to some 

extent to flesh out the object of Shneiderman' s mantra. 

Of Green's cognitive dimensions, secondary notation as employed in SketchTrieve 

[HH99] is an important characteristic of the framework's user interface. With respect to 

secondary notation, users are able to store and retrieve visual structures by using space and 

layout to externalise their plans. This allows the display to be used for both prospective (future 

plans) and retrospective memory. The informality of secondary notation allows the user 

greater expression and flexibility in the management of the information space. Secondary 

notation can also be implemented by allowing the user to mark/paint parts of individual 

visualisations as in labelling and persistent brushing in XGvis [BSLD98]. These notation 

instances along with their context may be saved and retrieved as the user desires. Secondary 

notation should ideally provide a vehicle for appropriation. However, one drawback of 

secondary notation is the cognitive overhead incurred as a result of re-arranging and placing 

items on the display [Rob98]. This can be alleviated by trading off secondary notation for 

increased viscosity to decrease the granularity of actions. 

It has been suggested that the HIVE framework should address producers of data as 

well as consumers. It should provide a means for not only visualising information but also 

modifying the underlying data set. This will obviously require updating current abstractions to 

maintain consistency and therefore some form of abstraction management has been utilised 

The framework has been implemented in Java and therefore this abstraction management is 

based upon the model-view-controller architecture. The Observer software pattern [GHJV95] 

has also been adopted for data- and interaction-flow. MVC handles the link between the 

underlying data and views of them, while the Observer pattern manages the interaction 

between different stages in hybrid algorithms. 

6.4 Conclusions 

Section 6.1 discussed scientific visualisation systems that use the concept of visual 

programming and data-flow models. Their relevance to the proposed HIVE framework has 

been outlined and it appears that the inspiration they provide could be fruitful. 

The data-flow metaphor is appealing when designing and using applications. It helps 

the user/designer form a mental model of the processes involved in the transformation of data 

into information. This has also been recognised and implemented in disciplines other than 

scientific visualisation. One example is in information retrieval where Young and 
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Shneiderman [YS93] used a guise of the data-flow model they calledfilterlflow. This system 

was based explicitly on the metaphor of water flowing through pipes and filters to represent 

information flowing through successive Boolean queries. 

The scientific visualisation systems described in this chapter make use of abstraction of 

computational processes and as a result make the components easier to manipulate and the 

composite system more versatile and understandable. The same applies when the abstraction 

is carried forth into interaction as in North and Shneiderman's snap-together concept. By 

breaking down systems into user-definable configurations of modules, truly flexible 

applications can be built that might not have otherwise been anticipated by the system 

designers. The importance of functional decomposition has long been realised in the field of 

Artificial Intelligence. Luger and Stubblefield [LS97a] state: "Modern AI programs generally 

consist of a collection of modular components, or rules of behaviour, that do not execute in a 

rigid order but rather are invoked as needed in response to the structure of a particular 

problem instance". This applies directly to the basis of the hybrid algorithmic framework in 

HIVE where the complexity of the data determines the order of algorithmic execution. HIVE 

adds computational efficiency to the list of advantages of the traditional data-flow metaphor. 

By extending this with the concept of visual programming at the user interface to determine 

the flow of interaction, HIVE lets the user drive the application, rather than the application 

drive the user. 

In Section 6.2. facets of information visualisation environments were discussed. Such 

systems transform data into information and ultimately information into actionable 

knowledge. Data are the low-level representation of knowledge. but in their raw form humans 

can find it impossible to perceive latent patterns within them. By using visual representations 

as surrogates for data structures. the level of abstraction is increased to convey information to 

the user. These static presentations of information must be supplemented by interaction 

mechanisms to animate the views into visualisations from which the user can gain more 

information. and form and test hypotheses about the data as well as the application. Finally. by 

providing multiple visualisations. supplementary tools and resources from the working 

environment within a virtual workspace, users are afforded a flexible means of organising, 

manipulating and sharing their information. 

Inspired by this process of discovering knowledge and the limitations of contemporary 

visualisation workspaces, the HIVE framework is implemented to provide its users with a 

means of minimising the cost structure of information. It is an extensible system developed 

from an ecological perspective to broaden its boundaries and incorporate resources from the 

user's environment. The visualisations provided by the HIVE framework not only provide a 
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front-end to a database and hybrid architecture, but are instrumental in the transformation of 

information to knowledge. 

The design theories that have been discussed in Section 6.3 have addressed situated 

constraints and their role in work ecology for information system design. The situated 

constraints pertain to how the design facilitates use of the system in certain situations. 

Technology, user, control, information-centred design approaches etc. address these. So do 

Roth et al. 's first three dimensions of expression. On the other hand, the theory of ecological 

interface design and the other related dimensions of design take the work ecology into 

account. EID provides a setting for the situated constraints to be applied. It broadens the 

boundaries of the system so that they not only include the human and the machine but also 

parts of the human's working environment as well- a predominant concept in the notion of 

information workspaces, at least to the extent of application interoperability and electronic 

communication. 

These design approaches provide the designer with a vocabulary for articulating design 

decisions and understanding the trade-offs apparent when considering specific parts of a 

design. Although the design approaches have been developed independently of one another, 

they have been shown to have considerable overlap in their underlying theories. A unification 

of these approaches is beyond the scope of this thesis, but it is considered that this may be 

worthwhile. 

The next chapter will outline the development of the HNE framework. 
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7. The hybrid information 

visualisation environment (HIVE) 

There is a multitude of algorithms available for dimension reduction and clustering abstract 

data. The different algorithmic approaches seem to be tailored to specific types of data. Some 

algorithms perform well with low cardinality and dimensionality, such as the canonical spring 

model [Ead84], and these would suggest practical application in the likes of small to medium 

size, general graph drawing and dimension reduction. Other algorithms work well with only 

high cardinality data. An example of which is the self organising map [RMS92] where, in 

training, a substantial training set allows the SOM to learn how to classify a very large body 

of data. 

In a working environment, corporate memory and project-specific databases tend to 

start off small and gradually evolve into large information repositories. While it would be 

feasible to visualise the inter-object relationships with a force-directed layout algorithm in the 

infancy of such a database, it would become less and less effective as the database matures 

and demands a more computationally feasible solution. Previous work has shown that hybrid 

algorithmic approaches to visualisation scale up to relatively high-volume data sets, even 

though some of the constituent algorithms would be too costly on their own if applied to the 

entire set (see Chapter 5). This would suggest that when applied to a growing database, 

algorithmic steps could be bypassed in the repository's infancy and incorporated as it 

approaches maturity. Or, in the case that volume fluctuates, the hybrid algorithm could 

fluctuate and adapt with it. 

This chapter presents an implemented system and framework called HNE (Hybrid 

Information Visualisation Environment) that utilises direct manipulation to allow users to 

interactively create and explore hybrid dimension reduction and clustering algorithms. Figure 

7.1 shows screen-shots of the system. Visual programming and a novel algorithmic 

architecture are proposed as a means to let the user semi-automatically co-ordinate multiple 

views and define data-flows. 
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Figure 7.1 Two creen-shots of the IDVE interface. The image on the left illustrates interconnected 

comp n nt that import, transform and render multidimensional data. The algorithmic components 

coli cti ely r pre ent the O(NJN) hybrid algorithm of Section 5.3. Thick lines that link modules 

repre ent data-flows while thin ones, connecting scatterplots and other visualisations, represent the 

conn ctions between interlinked interactive views. The image on the right shows the same scatterplots 

enlarged and upplemented with a fisheye table component (bottom-right) and histograms (bottom-left). 

Tb data consi t of 5000 points sampled from a 3-d 'S' shaped distribution. 

7. Multiple-view co-ordination 

HJV take advantage of the data-flow model and visual programming. To create a hybrid 

alg rithm a u er drag components from the system's tool bar into the drawing region (see 

igure 7.1) and then interconnects them by dragging links between ports on the components. 

ot nly i th data-flow set up in this manner, but the view co-ordination can also be defined 

thi way. fter connecting visualisation tools such as scatterplots to the output ports of 

alg rithmic c mponents,' elect' ports can be linked between view components to establish 

'bru h and link' functionality. 

Hy rid alg rithm can exhibit a lower run time than spring models run upon the whole 

dat t, adieu ed in [MRC03] and Chapter 5, but they also lend themselves to the 

f int rmediate vi ualisations. The benefits of this hybrid approach are two-fold: 

i enhan d and intermediate views provide more insight into the data. For 

ampl the hybrid algorithm depicted in Figure 7.1 (left) uses a spring model of a sample of 

th full data t, to gain an initial small-scale 2-d layout. In the left frame of Figure 7.1, 
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scatterplots have been hooked up to intermediate stages of the hybrid algorithm to allow for 

comparison. The three layouts have been positioned by the user on the right hand side of the 

frame. The sample layout is fed into another module, which interpolates the remainder of the 

set to produce a second scatterplot. The third and final scatterplot, shown in the right of the 

frame shows this layout after spring model refinement. In the right hand frame in the figure, 

the fisheye table shows the layout points sorted on the x dimension and histogram views have 

also been connected to depict the x and y distributions of the 3-d set. If one then uses brushing 

to select a range of rows in the table or a region in a histogram, this highlights the 

corresponding points in the scatterplots and reveals more of the structure of the data. An 

extension of the work presented in [RC03a] allows for the neatly tiled layout of visualisation 

components, as in the right hand frame of the figure. 

7.2 Combinatorial hybrid approach 

HIVE has been inspired by some of the existing data-flow and visual programming systems 

that are prominent in the literature and common in the marketplace. Upson et al.'s Application 

Visualisation System (AVS) [UFK*S9] and North and Shneiderman's snap-together system 

[NSOOa] are two good examples. AVS is predominantly aimed at scientific visualisation, for 

modelling or simulating physical processes such as fluid dynamics, and concentrates on 

channelling data through algorithmic processes for transformation and rendering. The 

emphasis here is on the data-flow. North and Shneiderman's snap-together system, on the 

other hand, is concerned with information visualisation. In this system there is less emphasis 

upon the algorithmic processes for transforming data and more on the transformation of 

graphical representations by way of multiple interconnected views. Here the flow of 

interaction takes precedence. 

HIVE borrows from the data-flow model of A VS to be flexible in creating efficient 

algorithms for the visualisations. However, to be in line with the goal of information 

visualisation, it concentrates on exploration rather than simulation. This is achieved by 

supplementing the data-flow with interaction flow across multiple views, rather like the snap

together system. It must be said, however, that this approach does not come without 

drawbacks. It is important to note that if the level of abstraction used in the visual 

programming language is too low then there might be too many visual modules, in that 

programming would become complicated and the flow networks too large and hard to manage 

in the available screen space. One solution being considered is to allow the user to 
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dynamically increase the level of abstraction by aggregating groups of modules, simplifying 

the graph of interconnected modules and the programming task. 

As well as implementing visual programming to steer data-flows and co-ordinate 

multiple views, HIVE has at its core a novel hybrid algorithmic framework, exploring a 

general approach to the composition of efficient and flexible hybrid algorithms. The choice of 

each algorithmic component is influenced by many characteristics including computational 

cost the cardinality, dimensionality and distribution of the data, and the other interaction 

components that might be used within a larger workspace, such as scatterplots and fisheye 

tables. The author suggests that these choices can be made incrementally, so that users can 

employ intermediate representations as they work with and explore their data. The author also 

suggests that the system can assist the user by using a pre-authored classification of data -

based on, initially, cardinality and dimensionality of data sets - and a corresponding 

classification of available algorithmic components based on the classes of data each is suited 

for. This offers an incremental and combinatorial approach to the creation of efficient and 

informative hybrid visualisations. 
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Figure 7.2 Data input to components in a hybrid algorithmic architecture can be categorised by the 

ranges of dimensionality and cardinality they are best suited for - high, medium or low. Each 

component transforms the data, effectively moving across the 3x3 grid. The hybrid spring model in 

ection 5.3 produces a low-dimensional layout of a large high-dimensional data set i.e. a move from 

(H, II) to (L , II) that involves several steps shown as dotted lines in the figure : sampling, which reduces 

N, then a pring model of the sample, which reduces D, and then interpolation, which increases N 

The author' s work has focused on data set cardinality, N, and the dimensionality or 

number of variables associated with each object: D. A rough categorisation of D and N using 

an ordinal range (high, medium and low), permits the categorisation of an algorithmic 
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component with values of D and N for 'good' inputs and for the component's outputs, 

effectively stating that the component is best suited to such combinations of D and N. For 

example, it is considered that the input to K-means clustering should be medium to high in D 

and N, whereas a canonical O(N) spring model algorithm can only handle low N and low to 

mediumD. 

As shown in Figure 7.2, the choice of components and how they are connected allows 

one to solve familiar problems in new ways. The hybrid algorithm of Section 5.3 transforms a 

large set of data of high D to low D. It can be thought of as a move across the grid of 

combinations of D and N, stepping from (H, 11) to (L, 11) - but taking an indirect route via (H, 

L) and (L, L) that involves sampling, spring model layout of the sample, and interpolation 

based on that intermediate representation. 

Tentative default values for these ordinal categories of data are as shown in Table 7.1. 

The author derived these values from his own experience of constructing hybrid algorithms, 

however, HIVE allows the user to tailor them: 

Cardinality DimensionaHty 

LowN<1000 LowD<3 

1000 <= Moderate N <= 25000 3 <= Moderate D <= 100 

High N> 25000 HighD> 100 

Table 7.1 Ordinal categories of cardinality and dimensionality. 

The HIVE system has been designed and implemented with this hybrid algorithmic 

approach in mind, and serves to provide a workspace for experimental algorithm design and 

exploratory data analysis. The visual modules that have been implemented so far include a 

CSV data-importer (imports comma-separated-value data files into HIVE), Chalmers' 1996 

spring model, radial interpolation (see Section 5.3.3), K-means, neural PCA [Oja82], 

stochastic sampling, scatterplot, histogram and fisheye table (Appendix A provides a full list). 

These components are the ingredients used in an algorithmic 'cookbook', in which 

components deemed to suit particular data characteristics can be automatically connected to 

form hybrid algorithmic paths that span the grid of Figure 7.2 (see Appendix B). 

7.2.1 3-stage hybrid approach 

It is not yet known whether there is a full set of algorithms available that would be suitable for 

the hybrid framework. However, as a starting point to test whether the framework would 
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work, it is possible to implement part of the above model and evaluate its performance over 

the ordinal range of data cardinalities and dimensionalities. Supposing the outer loop in the 

conceptual diagram of Figure 7.2 is implemented then there need only be three types of 

algorithms. It may then be assumed that some tolerance in the allowable input of the 

algorithms is present, i.e. the algorithm for taking high dimensionality and/or high cardinality 

could work adequately with medium cardinality and/or medium dimensional data. 

It is therefore proposed that hybrid algorithms consisting of three incremental stages 

can be created to determine whether the larger framework is feasible and therefore justify the 

search and/or development of new algorithms that would fit into place in the larger 

framework. uch algorithms have already been demonstrated in Section 5.3 and it will be 

hown here how they fit into the proposed algorithmic framework. 

Note that the computational complexity of the individual algorithmic stages should be, 

informally speaking, inversely proportional to the cardinality and dimensionality of the input 

patterns. This is supported by the results given in Chapter 5. A hybrid approach to dimension 

reduction is taken, where K-means or stochastic sampling (linear algorithmic time complexity 

in N) is initially applied to high-cardinality data to reduce the representative cardinality. Then, 

the more complex (quadratic algorithmic time complexity in N) spring model is applied to this 

sub et to reduce dimensionality and therefore obtain a 2-d spatial layout. The results show that 

this reduces overall time complexity in N and increases layout quality with respect to stress. 

Figure 7.3 illustrates the 3-stage approach. 
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Figure 7.3 The propo ed model of the hybrid approach for scalability and adaptability. 
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Investigation into some of these algorithmic steps has already been detailed; however, 

there are some aspects that will require a deeper explanation and more research. 

Note that in Figures 7.2 and 7.3, the hybrid process starts by clustering or sampling and 

then performs dimensional reduction. This ordering is enforced because the hybrid algorithms 

described in Section S.3 performed sampling or clustering first, then dimensional reduction, 

and produced promising results. In the future, work will need to be carried out to determine 

whether the proportions of N to D might impact on this process order. New algorithms that 

are fitted into the framework may work linearly in N but be quadratic in D, and in this case it 

may be appropriate to reduce dimensionality first. 

7.2.1.1 Low algorithmic complexity pre-processing 

Clustering at the initial or pre-processing stage should be performed in O(N) time complexity. 

Otherwise, stochastic sampling should be employed to gain a representative subset of the data. 

As can be seen from the above, the output of this pre-processing step, consisting of the cluster 

centroids or samples, is passed to the next stage of the hybrid algorithm. As with each of the 

hybrid algorithmic stages, each preceding stage serves to give the next a head start by 

producing intermediate results and/or a reduced representation of the data that can be refined 

by successively more expensive stages. 

7.2.1.2 Medium algorithmic complexity 

In the hybrid algorithms detailed in chapter S, Chalmers' spring model was used for the 

intermediate stage. Having reduced cardinality, the aim is now to reduce dimensionality. This 

stage further reduces the representation of the data but does so in a way that it provides an 

accurate overview. As will be seen later, such intermediate algorithmic stages also serve to 

provide extra visualisations of the data that can be effective in gaining insight. 

Although it has overall time complexity of O(li), the spring model's complexity is 

effectively reduced to O(N) because the preceding algorithmic stage provides it with a sample 

or small set of cluster centroids. Other possibilities for this stage in HIVE are neural PCA, 

random mapping and the first stage of the fast NMDS algorithm described in Section S.4. In 

fact, just about any dimension reduction algorithm that converges in quadratic or sub

quadratic time can be used. 

7.2.1.3 High algorithmic complexity 

The input data of this stage of the hybrid approach should be of relatively low cardinality and 

dimensionality - a reduced and representative subset of the data. It was shown in Section S.3 

that interpolation can be used to increase the number of represented objects because initially 
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only the cluster centres or samples are placed in the layout. This then forms the lower arrow 

on Figure 7.1. 

7.3 Adaptability to different variable types 
and heterogeneous data 

As well as being able to cope with varying cardinalities and dimensionalities of data sets, 

HIVE also works with different types of variables in the data including nominal, ordinal and 

real and a mixture of these. This is handled by a modular stage in the system that transforms 

different types of data into continuous vectors. This essentially forms part of the pre

processing illustrated in Figure 7.2. This is essential because algorithms such as K-means can 

only process numerically continuous vectors because they are often represented within 

Euclidean space. 

There are existing strategies for transforming nominal and ordinal variables into 

continuous numerical quantities [RB99, RRBW03]. In text processing the tf-idf weighting 

scheme is often applied, where tf means the intra-document frequency of unique terms and idf 

is the 'inverse document frequency'. This is commonly used in the field of information 

retrieval and can also be used as a pre-processing stage in the proposed system Chapter 9 

demonstrates a strategy for this in HIVE. 

Techniques such as this can be automatically called on depending upon the variable 

composition of the input pattern vectors, in order to transform the data set into a collection of 

continuous values. For example, when the data are Boolean, HIVE automatically uses the 

Jaccard similarity coefficient instead of Euclidean distance when measuring dissimilarities on 

the fly. Similarly, when a text corpus is the input, dissimilarities are calculated using the 

cosine measure. 

7.4 Implementation of HIVE 

In light of the literature review summarised in Chapter 6 of this thesis, a well-defined image of 

the system that conveys the HIVE framework was developed. Development of the software is 

now at an advanced stage and HIVE has been adopted by several researchers in their work on 

new algorithms, novel interaction techniques and exploring their data. 

The software has been implemented in Java SDK 1.4. The system architecture (Figure 

7.4) has been designed to let users compose visualisation tools. In general terms, the 

architecture involves a graph manager that supports the user's composition of a flow of data 
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through components such as scatterplots, K-means clustering, spring model layouts, table 

views and so forth. Additionally, a hybrid algorithm generator allows HIVE to semi

automatically load and connect algorithmic components. 

7.4.1 System architecture 

The architecture, illustrated in Figure 7.4, has been designed with visual programming and the 

data-flow model in mind. Users can compose visualisation tools using modular components 

for importing data, algorithmic processing and graphical rendering. Information workspace 

issues such as inter-application operation, interaction flow and their relation to the underlying 

hybrid algorithmic architecture have also been taken into account. 

Before implementation of the system had commenced, alternatives other than creating a 

system in Java from the ground up were considered. One alternative option was to expand on 

an existing environment such as AVS or Snap-Together. This would have circumvented the 

need to write and debug lots of new code. However, it was felt that this approach would not be 

flexible enough in achieving the interface's look and feel, and the system behaviour that was 

desired. The author's approach allows much more breathing space for experimenting with 

design options. There was, of course, more work in implementing the system this way, but 

ready-to-use implementations and examples of useful Java programs are prolific and therefore 

much of the code for HIVE was derived from these. 

Hybtid algorithm gena-ator 

LMHdata Algoritlunic 
classification 'cookbook' 

1 
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Visual anoWles 
~ ...... 
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Figure 7.4 The system architecture of the IDVE framework. 
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7.4.2 Graph manager 

The graph manager allows the user to incrementally create executable networks of 

components. It employs a scripting/composition model [NTMS91] to impose constraints upon 

which modules can be connected and through which 'ports', depending upon factors such as 

the categorisation of data types mentioned in Section 7.2, as well as graph structure and port 

polarity (input only, output only, two-way). A user can manually connect together 

components, and is warned of potentially unsuitable or inefficient connections. Another mode 

otTers an automatically generated default path through the grid of Figure 7.2, instantiating 

components, from an algorithmic 'cookbook', based on the system's classification of the input 

data set. 

7.4.3 Visual modules 

The graph manager defines three types of components to support the construction of hybrid 

visualisations. These are (I) a data source component to allow the import of CSV files, free 

text and lower triangle data matrices, performing the required variable type transformations; 

(2) algorithmic components to transform data into metadata and intermediate representations; 

and finally, (3) visualisation components for rendering. It should be noted that this system is 

not strictly a data-flow model since it is not the original data that are passed between 

components through links and ports, but references to the data and any transformations that 

are applied. The primary benefit of this is the more efficient support for tightly coupled 

interaction such as brushing and linking. 

To facilitate extensibility, the visual modules that represent algorithmic processes and 

visualisations are all derived from a common Java class. This means that to accommodate new 

algorithms and visualisations, the programmer need only extend the base class and implement 

his or her own specific methods. The base class exhibits default behaviour such as allowing 

the user to resize, transpose and rename modules via keyboard or mouse commands. This 

class also contains the routines that handle port declarations. 

The Java Reflection API [Sun03] has been employed in HNE to dynamically load 

algorithmic and visualisation components at run time. Compiled visual module classes reside 

within a specific folder in the system's directory structure. Periodically and without unduly 

impacting performance, HIVE checks this folder for any new modules - any class, that is, 

having the default visual module as its superclass. If any are detected, the software creates a 

new drag-label for it in the toolbar and the component is ready for use. 
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Within the Department of Computing Science at the University of Glasgow, users of 

HIVE are already implementing their own extended modules - one user has created diagnostic 

components to measure layout stresses and run times exhibited by hybrid algorithms. With the 

ability to dynamically load visual modules, users can now share their algorithmic or 

visualisation components and incorporate them into HIVE while actively using it. A list of the 

implemented visual modules and their descriptions in the author's version of HIVE is given in 

Appendix A. 

7.4.4 Ports 

Visual components 'listen' to each other by way of their ports (illustrated in Figure 7.5). 

When a programmer writes a component, he or she must declare the ports that are necessary 

for the functioning and communication of the component. There are five types of port that a 

visual component can implement. These consist of the one-way data-in, data-out, trigger-in 

and trigger-out ports, as well as the two-way 'select' port. When declaring ports, this type 

must be defined. However, data-in and data-out ports may also define the structure of the data 

that will pass through them as well as the variable types comprising those data. Two forms of 

data structure that the ports cater for are high-dimensional feature vectors that can consist of 

real integer, string and date variables, and 2-d real-valued co-ordinate vectors. Trigger-in and 

trigger-out ports can convey arbitrary data structures. Their purpose is to allow algorithmic 

module to signify convergence and pass control to other modules - rather like control 

con tructs in a conventional programming language. Selection ports pass integer arrays of 

elected datum indices between visualisation components. 
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outp 
Convergence trigger 

Starte 

Figure 7.5 When HIVE is in link: mode, all Swing components are hidden while port representations 

are rendered. 

7.4.5 Linking and the composition model 

The y tern' composition model is responsible for laying down the rules for which ports can 

be connected, ba ed upon their port types. These rules comprise the default composition 
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model, however visual component implementations can override them to tighten or loosen 

connection constraints when required. An overview of these rules is shown in table 7.2. 

Port Hnldng rule Description 

polarity one-way ports can only be connected to their 
complement 

self-connection ports on the same component cannot be 
connected 

fan-in one input port can be linked to only one 
output port 

fan-out one output port can be linked to many input 
ports 

data-in and data-out ports can only be 
data-structure compatibility connected when they are declared to handle 

the same data structure 

data-in and data-out ports can only be 
data-variable compatibility connected when they are declared to handle 

the same variable types 

Table 7.2 Linking rules for HIVE's composition model. 

The rules of the composition model constrain the user to create only legal and sensible 

connections between modules. To create a link, the user must place the system in 'link mode'. 

This is achieved via menu selection or by double-clicking the black background of the 

drawing canvas. When in link mode, HIVE hides all Java Swing GUI controls on each visual 

module, such as buttons and sliders, before rendering the ports as grey circles shown in Figure 

7.5 (both links and ports are rendered using the Java2D APQ. Input ports are drawn on the 

left-hand and output ports on the right-hand side of each module and all ports are labelled as 

to their purpose. Ports are not visible during the normal mode of operation so that more space 

on the visual modules can be allocated to GUI controls useful in controlling algorithmic and 

visualisation parameters. While it would have been possible to render ports outside the edges 

of modules, it was felt that this would complicate the placement of port labels and would have 

made the resulting networks more cluttered 

The user creates a link between two modules by first placing the mouse pointer over a 

port and holding down the mouse's left button. This changes the selected port's colour to blue. 

There might be several modules on the drawing canvas and each might have several ports. To 

prevent the user from trying to make illegal connections and to save time, HIVE looks at all 

other ports and consults the composition model to see if a valid connection can be made from 

the selected port. If so, each potential target port's colour is changed to pink. This visual 
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feedback guides the user in connecting modules. To complete the link's creation, the user 

simply drags the mouse from the selected port to one of the highlighted ports. While doing 

this HNE provides additional feedback by rendering a link from the initially selected port to 

the current mouse position. When the mouse is dragged over a legal terminating port, that port 

turn green, signifying that the user can now release the mouse and the link will be made. 

Both data-flow links (between algorithmic modules) and view co-ordination links (between 

vi uali ation modules) are made in this way. However, to distinguish between them, data-flow 

links are rendered as thicker lines while co-ordination links are thinner (Figure 7.1). 

A link can be selected by clicking on it with the mouse, which causes the link to turn 

red. When in link mode this causes the corresponding ports to be highlighted to identify the 

link's start and destination ports. Once selected, the link can be deleted or it can be dragged to 

bend it. Bending links allows the user to clarify connections and tidy up the resulting graph. 

ee Figure 7.6. 

Figure 7.6 The top part of the image shows a link from a data source to a sample module. The bottom 

half of the image hows a link: after it has been selected and bent by the user. 

7.4.6 Hybrid algorithm generation 

There i on exception to the data-structure compatibility rule above. This is to facilitate the 

emi-automatic generation of hybrid algorithms and occurs when the user connects a high 

dimen ional output port such as the output of a data source component, to a 2-d input port 

uch a the input to a scatterplot. In this case HNE classifies the data on the output port 

acc rding to the ordinal ranges of dimensionality and cardinality as described in Section 7.2. 
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Once this is complete, HIVE loads the appropriate algorithm from a default set of hybrid 

algorithms - the algorithmic 'cookbook'. These algorithms have been pre-classified in their 

applicability in spanning the grid of Figure 7.2, and are inserted between the two components 

that the user had originally connected, thus restoring adherence to the data-structure 

compatibility rule described above. Appendix B illustrates the cookbook in HIVE. 

When HIVE has finished this process the user can run or modify the algorithm and 

visualise his or her data. It is suggested that this functionality might aid inexperienced users of 

the system, as well as encourage experimentation with hybrid algorithmic conjunctions. 

HIVE allows users to save algorithms and visualisations by serialising module, link and 

port instances and writing them to file. The default set of algorithms in the 'cookbook' is also 

stored in this way in a 'patterns' folder within the system directory structure. If the user 

modifies the HIVE-generated algorithm, he/she can save it to this directory and specify that 

this should be used the next time HIVE is prompted to generate an algorithm under the same 

circumstance. That is, the data to be visualised are in the same LMH categories and the same 

type of visualisation is requested. 

Overall, this architecture is inspired by the subject matter of Chapter 6. The data-flow 

model and visual programming used in scientific visualisation (Section 6.1) is used in 

conjunction with the design dimensions of secondary notation and side-by-side-ability 

(Section 6.3). HIVE also has functions to select data in scatterplot views and export to 

Microsoft Excel or export to PNG format graphics files. This awareness of interoperation with 

existing information tools is in line with the notion of information workspaces described in 

Section 6.2. 

7.S Examples 

The system currently holds a limited number of composition components for creating 

visualisation applications and hybrid algorithms. Figure 7.7 shows a simple network of data, 

algorithmic and visualisation components. The data set used in this case is in the form of a 

CSV file containing 300 2-d co-ordinates representing a box that is open at one side. Note that 

the data are fed into the spring model and the table simultaneously. This creates a cyclic graph 

but in this case the scripting/composition model allows this because no conflicts between 

modules can arise due to the only output of the table being an interaction connection. 

In this view, the spring model has finished laying out the data, however, during the 

iterative process, the spring model has output to the scatterplot the 2-d layout co-ordinates of 

the set after every ten iterations. This allowed the scatterplot to display an animation of the 
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layout proce s so that the user could watch the layout form. The link that is highlighted in red 

(link between table and scatter plot) is an interaction link. This means that by selecting rows 

on the table or points in the scatterplot, the corresponding items are highlighted in the other 

view. Thi location probing and its representation is an example of the flow of interaction 

pos ible within the system. 
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Figure 7.7 A network of the three types of components: data source (2-d geometric data), algorithm 

( haJrners' pring model) and visualisation (fisheye table and scatterplot). 

7.5.1 Comparison of spring model layouts 

In the n xt creen hot (Figure 7.8), two data sources, two spring models and two scatterplots 

are wir d together to provide a side-by-side comparison of the spring model layouts. The data 

u d in thi instance are a financial data set containing historical performance and volatility 

informati n n investment funds. In this set there are 1000 items, each of which has 13 

By placing the scatterplots next to each other and connecting them with an interaction 

link it ea y to id ntify the differences in the two layouts. We see that the model has converged 

up n th tw major clusters but by brushing one of the plots we also see that these layouts 

ha e been flipp d round with respect to each other. These differences exist because of the 
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non-deterministic convergence of the spring model algorithm - when used on 

multidimen ional data, two layouts of the same data are seldom the same. 

Figure 7. An example demonstrating the non-deterministic nature of the spring model. The expanded 

view of the bottom spring model component shows controls for changing parameters such as freeness, 

velocity and damping as well as controls for setting convergence criteria. 

7.5.2 Exploration of a real data set 

HIV wa u ed to explore a data set gathered from an eScience project within the Equator 

Interdi ciplinary Re earch Collaboration (www.equator.ac.uk). The eScience team set up a 

rem te n ing probe at a frozen lake in the Antarctic, which transmits data including ice 

thickne , water temperature, UV radiation levels etc. to environmental scientists at the 

nt r ity of ottingham. The aim of this is to learn about carbon cycling processes. The data 

t was c mpo ed of 2202 probe measurements, each consisting of 16 variables measured at 

fi -minut interval between 17th January 2003 and 31 sl January 2003. This was converted 

int V fi rmat before importing it into HIVE. 
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Two algorithms were set up in parallel in HIVE and used to perform dimensional 

reduction of the data so that they could be rendered as a point distribution in scatterplots. One 

algorithm consisted of a neural PCA component and the other was generated automatically 

after the u er specified the data set and visualisation tool, in this case a scatterplot. This latter 

algorithm wa irnilar to the hybrid algorithm illustrated in Figure 7.1 with the exception that 

it u ed K-means instead of stochastic sampling in initially reducing the representative 

cardinality. Both algorithms took less than five seconds to run. By setting up these two 

algorithmic paths in parallel, it was possible to directly compare the visualisations produced 

(Figure 7.9). 
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Figure 7.9 The leftmo t scatterplot shows the output of neural peA. The middle scatterplot shows the 

data after interpolation around the K-means centroids while the right scatterplot illustrates the output of 

the final pring model component. The highlighted cluster is a small subset of erroneous PAR 

mea urement . The e clusters are much clearer in the hybrid algorithm's plots than with peA. The 

hi togram how the PAR distribution at a depth of 10 metres. The outlying peak (far-left) has been 

ele ted and thi highlights the clusters in the scatterplots. 

ne n table difference between the visualisations was a small cluster made prominent 

by the hybrid pring model, especially in the intermediate view after the interpolation phase, 

which wa n t apparent in the PCA output. By linking a histogram and table to the scatterplots 

it wa found that thi cluster of points represented data where the photosynthetically active 

radiati n (P R) mea urements at a depth of 10 metres were invalid. It turned out that these 
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erroneous measurements were caused by the light level exceeding the sensor's maximum 

input threshold. 

The fisheye table view in Figure 7.9 has been sorted on PAR at 10m. The rows that 

correspond to the selection in the histogram and scatterplots are highlighted. This table depicts 

the data distribution over individual variables by colouring areas of each cell proportional to 

the value it contains. In its application here, it can be seen that the highlighted block of rows 

show that the distribution of values they represent is uncharacteristic of the other non

highlighted rows below them - the two regions appear disjointed. Although this clearly 

reflects the erroneous data, they would have been harder to identify without the help of the 

connected scatterplot. This is because without the scatterplot the user would have to sort each 

column in turn to look for such uncharacteristic distributions. Fortunately in this case, the low

dimensional representation provided by the scatterplot (and underlying hybrid algorithm) 

immediately caught the author's attention and made it easier to manipulate the table to take a 

closer look. 

The two algorithms used here are examples of 'recipes' that are in the algorithmic 

cookbook mentioned in Section 7.2. Since the data set used here is deemed to be of moderate 

cardinality and dimensionality, K-means is applicable in reducing the representative 

cardinality (centroids) to make it low enough for Chalmers' spring model to converge very 

quickly and reduce the dimensionality to 2-d. From here, the rest of the data set is interpolated 

onto the layout to restore the representative cardinality. A final spring model step is added to 

run for a small constant number of iterations to refine the final layout. This algorithm was 

generated by HIVE to span the grid in Figure 7.10 from (M, M) to (L, M). If however, the 

cardinality of the data set was high, the algorithm would have had to span from (M, 11) to (L, 

11), in which case HIVE would have utilised stochastic sampling instead of K-means in the 

initial phase, to speed things up. The other algorithm used in the exercise, neural PCA, was 

composed manually and can be regarded as a direct jump from (M, M) to (L, M) with respect 

to the algorithmic space in Figure 7.10. 
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Figure 7.10 Da bed arrows represent the mvE-generated hybrid algorithm spanning the space from 

(M. M) to (L. M) via K-means, Chalmers' spring model and Interpolation (clockwise). The solid arrow 

repre en the manually instantiated PCA module. 

7.5.3 Using MDS for feature selection 

Recall that in ection 4.3.3 the use of MDS to help an analyst select features (variables) from 

a data twa de cribed. This section will provide an example of how HIVE can be used to do 

thi . The fir t tep i to load a data set into a data source module. In this case the data were 

c l1at d by the author ' colleagues at the Centre for Investigative Psychology (CIP) at the 

ni er ity of Liverpool. The data consist of 115 items each with 35 binary variables. Each 

item r pr nt a per on and each variable represents a particular crime to which the person 

ha admitt d. Figure 7.11 hows the modules and port connections required to allow the user 

to lay ut th variable (rather than items) and select a subset to use in laying out the items. 

he data ource is shown on the top-left of the figure and feeds into a transpose module. 

he tran p e m dule effectively turns the data matrix on its side so that the rows become 

c lumn and therefore each output item represents a vector of values for one variable across 

all of the 115 riginal items, i.e. the dimensionality is now 115 and the cardinality is 35. The 

tran p e m dule al 0 offers the user the option of standardising the value scales of the 

". h tran po ed data are then fed into an SSA (Section 4.3.3) module for dimension 

rcdu tJ n, which in tum feeds into a scatterplot (lower-left) to display the layout of variables. 

In tbi lay ut, th proximity of variables reflects their co-occurrence. The "Data out" port of 

thi ' tt rpl t [! d the user's selection to another transpose module which restores the 

rdmah! f the data, however, the dimensionality is now determined by the variables 
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el t d in the catterplot. These data are then fed into a spring model that provides a layout of 

the it ms in the econd scatterplot. The thin link, shown in red between the scatterplots 

r pre nt an interaction link. When the data are binary, as in this case, this means that if the 

u er lect point in the variable scatterplot (lower-left) then the items that contain a 'I' for 

tho ariable will be highlighted in the other scatterplot. Similarly, selecting items in the 

lower-ri hl catterplot will highlight the variables that have a value of '1' for the selected 

it ms. 

igure 7.il P rt c nnections for using MDS for feature selection and subsequent analysis. 

igur 7.12 hows the above network after loading data and running the dimension 

r du ti n algorithm . 

ute 7.12 MD fi r feature election in action. 
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Given that the data are binary, the variable layout in the lower-left of Figure 7.12 has been 

embellished with a frequency surface - the lighter the area, then the higher the frequency of 

the variables represented by that region in the data set. The scatterplot also shows dynamic 

variable labels for the points near the mouse. The scatterplots in HIVE have several view

changing functions including custom annotation, changing background brightness, various 

colour schemes and displaying all point labels (if any) simultaneously. 

In the figure, the author has selected several of the variables before pressing the 

"Output selection" button to send them to the second transpose module and then to the spring 

model. The highlighted points in the lower-right layout of items (people) show all those who 

have forged cheques, stolen cars and used a weapon. This is the type of functionality that 

researchers at CIP have been using to investigate whether the specific subsets of variables 

explain patterns in the population of items. Chapter 10 provides an account of this. 

7.6 Design review 
In the previous chapter each of the three main sections - Section 6.1 (data-flow model), 

Section 6.2 (information visualisation environments) and Section 6.3 (visualisation system 

design theory) - provided a subsection detailing the relevance of the reported observations 

from the literature to the design and implementation of the HIVE framework. These 

observations were made during what can be considered as a requirements gathering phase. 

This section will describe how these reflections on the literature have influenced HIVE. 

Finally, subsection 7.6.4 provides a complete list of the key features in HIVE. 

7.6.1 Data-flow model 

In scientific visualisation the data-flow model coupled with the visual programming paradigm 

can potentially facilitate the following advantageous features: 

• Parallel processing 

• lnteroperability 

• Collaboration and communication 

• Animated, interactive simulation 

• Traceable computation 

• Subjunctive presentation 

• Appropriation 
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It was suggested that the HIVE framework could also attain these advantages because the 

underlying algorithmic architecture acts as a data-flow model. Indeed, the nature of the 

proposed architecture should add increased efficiency to the above list. This coupled with co

ordinated views - which are akin to the visual programming paradigm - provides the 

flexibility that allows the user to drive the application rather than the other way around. 

An additional feature that has been inspired by the review of data-flow models in 

scientific visualisation is that to open up the applicability of the system, it should allow the 

production as well as the consumption of data as in [888*93, UFK*S9]. If users can modify 

the underlying data set through the same interface as for its analysis then the system might be 

more beneficial in real world scenarios. This was put forward in section 6.2.4 as a potential 

reason for the failure of widespread adoption of contemporary information visualisation 

systems such as Visage. This has been implemented to an extent in that the user can 

interactively apply feature selection and extraction, as well as filter and sample the data, 

essentially modifying their composition and meta-data. 

From the description of the framework in Section 7.2 it is implied that it is data-driven 

in the sense that the complexity of the data determines their path through the hybrid 

algorithmic architecture. The data are pushed through the hybrid algorithm. However, it is 

highly likely that the algorithms on the most efficient path through the model may not be 

capable of producing the visual representations that the user desires. This means that there 

must be a trade-off between the complexities of the data that 'push' them through, and the 

chosen representations (views) that essentially 'pull' them through. This means that the HWE 

framework is essentially data-driven and goal-driven. The data-driven aspect is automatically 

determined by the system's implicit suggestion of a path through the hybrid architecture, and 

the goal-driven aspect is determined by the user's visualisation requirements. This is a 

departure from the typical approach in the scientific visualisation system described in Section 

6.1. As well as using visual programming and the desired visualisations to explicitly 

determine the data-flow in the system, the HIVE framework also uses the data-complexity and 

the required visualisations to implicitly define the data-flow. 

7.6.2 Information visualisation environments 
The role of information visualisation environments is to transform abstract data into 

information to supplement the user's perception in creating knowledge from the data. This can 

be achieved by enhancing visualisations by using multiple co-ordinated views for interaction 

flow, effective representations via abstraction management and sensemaking, by and within 

the views. The hybrid architecture addresses Card et ai.' s cost structure of information by 
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increasing the efficiency in generating the data segments that will be the basis of visual 

representation. These issues address the notion of a workspace that is an information-rich 

environment for problem solving. 

The HIVE framework is as flexible as North's level-3 system (defined in section 6.2.4) 

by allowing a variety of visualisations of different types of data, and by providing the user 

with the means to connect multiple views to enhance interaction. This increases the 

applicability of the system across different work domains and essentially allows the user to 

help steer the transformation of abstract data into information. If collaboration and 

communication services are also built into the system then it will be closer to being an 

effective virtual workspace. This has been partially addressed by using Java's reflection 

framework to allow users to swap and integrate visual modules at run time. The ability to 

export data and save analyses is also a step towards this ideal. 

7.6.3 Visualisation system design theory 

Shneiderman's visual information seeking mantra hints at the useful interaction techniques 

that are applicable in gaining more information from visualisations. This, however, is not 

enough to ensure the effectiveness of an information system in facilitating the discovery of 

knowledge. Design theories such as EID, cognitive dimensions of notations, dimensions of 

expression and abstraction management must supplement visual information seeking. 

Ecological interface design has taken a different perspective on the role of information 

systems. EID suggests that by expanding the boundaries of the system to include aspects of 

the work ecology, the target system is much more likely to be useful in the work domain. In 

addressing the notion of a virtual workspace, the HIVE framework has been designed with not 

only the interaction mechanisms (situated constraints) in mind but with how it will be used 

within the working environment and how it may be augmented by services for sharing 

information (and knowledge) with co-workers. 

The design principles provided by Green's cognitive dimensions of notation and Roth et 

al. 's dimensions of expression provide a richer design vocabulary for describing situated 

constraints and the trade-offs between them. Of the cognitive dimensions, secondary notation 

and abstraction greatly appealed in considering the design of the HIVE framework. The 

informality of interfaces that employ secondary notation (as with HIVE) provides a vehicle for 

appropriation and encourages opportunistic searching of information. Abstraction is important 

because, as addressed by Russell et al.'s cost structure of sensemaking, some representations 

(abstractions) of information are more effective than others. Also, if the system allows the 

user to modify abstractions such as by making changes to the underlying data set and by 
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transfonning views, then some fonn of abstraction management must be in place to efficiently 

maintain consistency in the information visualisations produced. In HIVE's architecture, the 

graph manager and its composition model regulate the higher-level abstraction of the 

visualisation application itself. 

7.6.4 HIVE features 

The key features that have been built into HIVE are: 

• user-defined and directly manipulable data flows 

• user-defined and directly manipulable interaction flows 

• an algorithmic framework for semi-automatically generating hybrid algorithms 

• an extensible palette of algorithmic, visualisation and profiling components 

• histogram range-selection provides dynamic querying of other views 

• visual and dynamic profiling of hybrid algorithms 

• user-defined colour schemes, annotations and Excentric labelling [FP99] in scatterplots 

• capability for indexing and mining raw text 

• export data to MS Excel 

• zoom and pan scatterplots 

• automatic layout segmentation 

• caters for CSV, lower triangle and raw text input data 

• tabular data views provide focus + context 

• surface plots of variables 

• cross platfonn - developed in Java 

7.7 Conclusions 

The flex.ible algorithmic framework of HIVE adds power to visualisations because the time 

taken to generate the visualisations, and therefore also the view transformations via efficient 

hybrid algorithms, is reduced. This helps maintain the cause and effect relation between a 

user's actions at the interface and the subsequent visualisations. In the context of figure 7.2, 

interaction brings the human into the loop, effectively closing it by allowing exploration of 

high-dimensional abstract data. 

The work documented up to this point has answered, at least to some extent, the first 

two research questions posed at the beginning of this thesis: Which algorithmic components 

179 



should be combined? When should the different types of algorithms be used? The former is 

answered in the experiments with hybrid algorithms and the development of the hybrid 

algorithmic framework in HIVE. The framework dictates that a series of algorithmic stages 

should be matched to the complexity of the data set as it is transformed by them. successively 

refining and improving its representation for visualisation. The algorithmic components that 

have been used include K-means clustering, stochastic sampling, novel radial interpolation, 

Chalmers' spring model, SSA, PCA, fast NMOS and Voronoi clustering. Note that some of 

these components are themselves hybrid algorithms. The latter question, again, pertains to the 

hybrid algorithmic framework. The order of successive algorithmic stages is very important to 

the outcome of a hybrid algorithm and depends upon the components used. The novel 

algorithms for dimension reduction described in Chapter 5 suggest that an inexpensive 

algorithm should first be used to reduce data cardinality (such as K-means clustering) before a 

more expensive algorithm (such as NMOS or a spring model) works upon this reduced 

representation of the data to further reduce it - this time by dimensionality. Finally, the 

representative cardinality can be restored by fast interpolation before frne tuning with 

restricted application of a dimension reduction routine such as Chalmers' spring model. 

The composition of hybrid algorithms by direct manipUlation of visual modules 

produces a system schema that can be understood more easily. The flow of data and 

interaction can be visually traced through the system. Another benefit of this interactive 

approach is that hybrid algorithms can be set up in parallel in a similar fashion, as in Figures 

7.8 and 7.9 above, i.e. two or more runs can be made simultaneously. This is useful for testing 

the robustness of the algorithms with respect to different types of data and starting conditions. 

This approach can also be used to determine and compare the run times and output quality of 

composite algorithms as well as the individual components. The interactivity of the system is 

very useful when it comes to evaluating and using hybrid algorithms, as will be seen in the 

next chapter. 
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8. Algorithmic profiling 

HIVE has been demonstrated to be an effective environment within which to create hybrid 

algorithms and explore high dimensional data sets. A palette of algorithmic components and 

visualisation tools provides the user with several disparate views of a data set and allows a 

number of different aspects to be explored. Further insight is supported via coordination 

between these views. Novel combinations of modules may be experimented with, and the 

extensible nature of the algorithmic palette pennits the simple addition of new components. 

In addition to this, it is proposed that HIVE is a useful tool for profiling and evaluation of 

hybrid algorithms. A number of HIVE modules have been implemented to measure and 

display performance characteristics of other HIVE components. Such profiling modules 

permit algorithm evaluation to be tightly and interactively coupled with the algorithms being 

run. Linking together profiling modules can be carried out using the same visual metaphors, 

and the choice of algorithmic properties to measure can be made and altered at run time. 

Profiling tools may also be linked to existing visual modules, with their coordinated use 

providing insight into data sets that would go unnoticed in a sole visualisation. Examples of 

such coordination are provided in Section 8.4. 

This chapter introduces the profiling modules implemented in HIVE. All of these 

modules, with the exception of the interactive Shepard plot were implemented by the author's 

colleague, Alistair Morrison. However, the author did assist Alistair with this implementation. 

8.1 Multiple runs module 

When evaluating an algorithm, several runs over several data sets must be executed, often 

with different algorithmic parameter settings. Manually coordinating such algorithmic 

executions can be a laborious and time-consuming task. To alleviate this, a Multiple Runs 

(MR) module has been implemented as a central controller for automating such operations. 

The MR module passes data sets and algorithmic parameters through its output ports to 

a connected algorithm. At the start of each run the MR module tells the algorithm to begin 

execution and once execution is complete the algorithm notifies the MR module to start the 

next run. Instructions for the module are specified by the user via a text field and are in the 

following format: 

(DataFile,[NumRuns, <Module/D, (parameters»,<> .. ]) 
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The DataFile parameter specifies the input data file to pass to the algorithm and the NumRuns 

parameter determines how many times the algorithm will be run on this data set. The 

<module/D, (parameters» tuples specify an algorithmic component and its relevant 

parameters. A spring model, for example might be identified by moduleID and parameters 

such as the number of iterations and damping might also be specified. Many data sets and 

experimental conditions can be specified in this way and batch runs of more than one 

algorithm can be executed simultaneously using multiple MR modules. 

8.2 Stress and clock modules 

Recall from Chapter 4 that stress (Equation 4.20) provides a measure of the discrepancy 

between layout distances and high dimensional relationships. It quantifies the goodness of fit 

of the layout to the high-dimensional data space. To analyse dimension reduction algorithms 

in HIVE with respect to stress, a new module was implemented. This module simply takes the 

output from an algorithm and performs the stress calculations. It can be used in conjunction 

with the MR module by measuring stress after (and during) algorithmic execution. Since it is a 

self-contained module, it can have multiple instantiations and can be used to measure stress at 

intermediate algorithmic stages, such as after the initial spring model layout in the algorithm 

described in Section 5.3. 

Algorithms should also be evaluated with respect to running time. To this end, a clock 

module was implemented with trigger ports to commence and terminate timing of algorithms. 

Like the stress module, clock modules can be used to take measurements at intermediate 

stages of hybrid algorithms. 

The output of both stress modules and clock modules can be used in several ways. One 

approach is to write the values to a file for exporting to Excel to produce graphs such as those 

shown for the evaluation of algorithms in Chapter 5. Another use of the modules is to build 

performance charts while algorithms are executed (see Figure 8.1). By charting performance 

measures while watching a layout form, the user can ascertain whether the algorithm has 

reached a local minimum and whether more iterations are required. A final, more novel use 

introduced by the author is to collate performance measures, along with algorithmic 

parameters and data sets sizes for individual algorithmic runs, into new multidimensional data 

sets and use algorithms in HIVE to visualise them [RMC05]. Morrison [M0r04] used this 

technique to distinguish between the behaviour of several types of dimension reduction 

algorithms in HIVE. Each algorithm was applied to 9 data sets, and both run time and stress 

182 



rd d ~ r each execution using the profiling modules. With each algorithm represented 

by an 1 -d ct r, a pring model was then used to visualise the results. 

Add Cloer 1 

• selles l 

igure . l a pring model runs, stress is measured and charted against each iteration. The plateau, 

fter ar und 26 it rations, hows that the algorithm has fallen into a local minimum while the layout (of 

th 2-d dat h w that more iterations are required to break out of the minimum configuration. 

8.3 bepard plot 

he rd plot [ he62], as demonstrated in Chapters 4 and 5, is another tool that can be 

t illu trot th quality of a dimension reduction solution. The Shepard plot shows the 

n hip f th high-dimensional distances (between each pair of items in the data set) and 

p nding I w-dimensional layout distances. Given an ideal fit of high-dimensional 

pa c f I wer dimensionality, the points in the Shepard diagram form a 45 degree 

di th e orne less representative, points will start to deviate from this diagonal. 

indi 

hepard diagram in HIVE. High dimensional distances are plotted along 

nd lay ut di tance are plotted along the x-axis. Points that lie above the diagonal 

th tar to close in the low-dimensional space, while points lying below the 

rent it m that have been placed too far apart. Outliers in the Shepard plot 

f bj t that ar likely to contribute more to layout stress. 
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Shepard Diagram 

igure .2 h hepard plot module. 

in th calculation of the Shepard plot requires O(N-) time, controls have been added 

t all w th u r 1 pecify the size of a random data sample over which the plot is created. 

Thi pi 

dim n 1 n 

an al coordinated with the corresponding scatterplot representing the 

utput. This allows one to select points in the Shepard plot and 

IT p nding points in the layout. highhght th 

h h p rd pi t ha been used for decades for evaluating the output of MDS routines. 

raditi nally it i' a tatic pre entation of the output of an MDS routine. However, its novel 

n in HIVE gives it more analytical power and increases its applicability 

8.4 oordination of profIling modules in 

HIVE 

Th pr \"i u. e ti n have de cribed isolated instances of HIVE's new profiling modules. 

[. r c 

qu litatin:\ . 

in rp tin 

f u h t hniques, however, comes in their combination and interaction with 

within the HIVE environment. Histograms, fisheye tables and 

interactive functionality, allowing coordination with the profiling 

mpJ. th h pard plot is traditionally a static presentation technique for 

valu tin a low-dimensional representation of high-dimensional data. By 

it tnt th' HlV framework, the plot can have as many instantiations as 
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n ry, v,,'ith h in. tance connected to a different part of the visualisation's data-flow. It 

in r m nt 

y 

th tw 

th 

n t d that th hepard plot is traditionally employed after the completion of a 

the h pard plot can be used during the layout process to give an 

fth quality of the layout. 

a hepard plot to a scatterplot, one creates an interactive link between 

I ction in the Shepard plot will therefore highlight those objects in 

pairwi e distances correspond to the selected points. For example, 

in Fi ur tare u ed to compare layouts obtained from peA and a spring 

m I. It i: ap r ot th t th hepard plot of the peA layout has a distinct diagonal edge, 

di 

\,; whi h n int ar plotted. This may be explained by the fact that peA functions via a 

n f th high dimen ional pace onto a 2-d plane. In contrast, the spring model has no 

and attempt to position objects to best preserve high-dimensional 

. Thi r ult in a hepard plot where there are points both above and below the 

th pint that represent items ideally placed in the plane. 

how 2-d layouts using linear peA (left) and spring model (right). 

th r than in high-dimensional space. This is confirmed by the fact that no objects 

hepard plot. 
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Another implemented component that may be used in interactive combination with the 

profiling modules is a module for Voronoi tessellation and clustering (see Section 5.5). This 

module may be used to partition a completed layout. Each point is contained by a convex 

polygon so that the portion of space contained within the polygon is closer to that point than 

any other. Clustering may then be performed by finding contiguous groups of polygons where 

the density of points is similar. The module may be used in combination with profiling 

modules to detect clusters that may benefit from closer examination. 

The following section provides more concrete examples of the coordination of 

components with a series of case studies. 

8.5 Case studies 

This section documents several case studies, demonstrating the coordinated use of existing 

components with the novel profiling modules within HIVE. 

8.S.1 Batch job of executions for algorithm evaluation 

The first case examined is the evaluation of a novel algorithm. The use of the profiling 

modules described in the previous section allows such an evaluation to be performed simply 

and in an intuitive manner. The following describes the evaluation process undertaken in the 

writing of a paper that presents a novel hybrid layout algorithm that was implemented and 

evaluated in HIVE [MC04]. 

In performing such algorithmic profiling, a large number of executions is necessary. 

Several models might be evaluated on several different data sets. In addition, results should 

be averaged over multiple runs: an especially important consideration in the case of iterative 

models, which can occasionally become stuck in local minima. It is common to require 

several hundred executions for a thorough evaluation, and it is therefore clear that an 

automated profiling process is a useful aid to the designer. Figure 8.4 illustrates the 

configuration of components required for such an evaluation. To avoid unnecessarily 

describing the specific model in depth, details such as the names of individual components 

have been omitted from the figure. 

Having built a hybrid algorithm (composed of the modules shaded in yellow in Figure 

8.4), it is desirable to examine its performance in comparison with an alternative technique. 

Profiling modules (grey) may be added to the module configuration at the user's discretion. 

Here, the author has elected to measure the run time of two stages. Stress is also measured at 
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the left-hand side displays the run times required by the third stage of the model. Three 

separate approaches were experimented with for this stage (as specified by the experimenter in 

the MR module and passed to stage three via parameters), as indicated by the three lines on 

the chart. It can be deduced that on small data sets, condition one executed in the least time, 

whereas condition two becomes optimal as data size increases. 

Charts of this type formed the basis of the results section of a paper by Morrison and 

Chalmers [MC04]. What could have been a laborious evaluation procedure was undertaken 

via a simple, unsupervised process. The algorithms can be left to run overnight, and the 

generated charts can be exported as bitmaps or ]PEG files. 

8.5.2 Exploratory analysis of synthetic data 

This example illustrates the interactive combination of the Shepard plot with other HIVE 

visualisations. As mentioned before, brush-and-link coordination has been incorporated in the 

Shepard plot to allow interaction with other components. For example, linking the Shepard 

plot and scatterplot views allows insight into the relationships between quality of positioning 

and objects' placement within the layout. 

To illustrate the utility of this interactive capability, an example is provided using a 

synthetic data set representing a 3-d cube. Such a data set is a useful test case as it is 

impossible to represent perfectly in a 2-d space, and no 2-d projection of the data is much 

better or worse than any other. To begin, PCA is used to obtain a scatterplot layout (Figure 

8.5(a». Linear projection-based layout techniques such as PCA and SVD, although fast, 

provide a layout based upon global data properties (e.g. variance). It is therefore the case that 

certain local areas might be poorly represented. This example illustrates how interactive use of 

the Shepard plot can help a user to resolve inaccuracies in these areas, and thereby enhance 

understanding of the structure of the data. 

The cube structure is clearly visible from Figure 8.5(a), coloured dark to light from top 

to bottom. Figure 8.5(b) shows a Shepard plot of the layout generated by PCA. Each point in 

the Shepard diagram represents a distance between a pair of objects. In Figure 8.5(b), the 

author has highlighted a section of points in the upper left of the layout: those points 

corresponding to the relationships worst represented in the PCA layout. Figure 8.5(c) shows 

how this selection affects the scatterplot display. The linking between views indicates that the 

objects worst represented in the layout appear in the centre. These objects represent points at 

opposite comers of the cube, forced together in the projected layout. 

Having identified such a poorly represented area of the layout, it may be desirable to 

extract the subset of objects in that region and lay them out separately. In doing so, it is 

188 



ibl r m v th' influ nee of the full data set, and examine only relationships between 

th in th t I et d region was therefore fed into another peA module and 

t d, .j Iding th lay ut hown in Figure 8.5(d). It can be clearly seen that the inter

n w m re accurate; the two corners of the cube have been separated. As a 

f th qu lity of the layouts, the stress of the full layout was measured 

the ' U -layout. As expected the stress of the sub-layout was much less 

i ure ~ P 01 nd hepard plot working together interactively to help build user understanding 

th 

13 ut (). election is made in the Shepard plot of points corresponding to 

n fit from further analysis (highlighted region) (b). The selection in 

hphltght d in the peA layout (c). A re-projection of the selected points 

nfirms their mi representation in the original layout (d) . 

. s. . ploratory analysis of real data 

d '01 n 'trot d, via a imple example on synthetic data, how a profiling 

uld u. d lOt rn tiv Iy in combination with other views to encourage further 

Imilor ample will now follow to illustrate the usefulness of 

h t hniqu's in r ' low rId tting. The data used here are the same as in Section 7.5.2 

189 



and were gathered with a remote sensor probe during an investigation into carbon cycling in 

Antarctic lakes (www.equator.ac.uk). They represent a number of properties measured over 

time, such as water temperature and the level of photosynthetically active radiation. 

The data set was initially fed into a PCA module with the Shepard plot used to identify 

a local region of items that were potentially badly placed. In a manner similar to the previous 

example, points far away from the diagonal trend were selected in the Shepard plot, which 

resulted in the contributing items being highlighted in the connected PCA layout The leftmost 

two components of Figure 8.6 illustrate the scatterplot and Shepard diagram following this 

selection. 

Having identified these poorly represented objects, they appear to be localised to a 

specific region in the top-right of the layout. One might hypothesise that this area represents a 

distinct cluster within the data, which has not been made apparent by the PCA layout. A 

Voronoi clustering component (see Section 5.5) can be employed to gain a clearer 

understanding of the partitions within the data. The output from PCA is fed into a Voronoi 

component, which identifies five separate clusters in the layout. 

The Voronoi component is illustrated in the centre of Figure 8.6 and is shown in detail 

in Figure 8.7. Five clusters were found, and shown in different colours. Outlying objects not 

identified as belonging to a specific cluster were coloured grey. It can be seen that the objects 

highlighted in the PCA layout all belong to the yellow cluster. This subset is selected and 

overlays the Voronoi tessellation. 

Having now identified a cluster of the data within which certain distances are poorly 

represented, it is possible to extract it for further exploration to determine why this is the case. 

Through connecting to the Voronoi output port, another component may take as input the 

selected cluster. The figure illustrates how the cluster is passed to a spring model (FDP). This 

non-linear technique is able to discover further detail that PCA could not identify: two clear 

sub-clusters are found within the selected data. 

The PCA layout had clearly failed to adequately separate these two sub-clusters, which 

explains the large discrepancy between high- and low-dimensional distances observed from 

the Shepard plot. The measures calculated by the stress module confirm the findings, with the 

PCA layout exhibiting 0.031 and the spring model layout of the extracted cluster giving 0.025. 

Having discovered the presence of two sub-clusters, it is interesting to see how they are 

depicted in the original PCA layout. Comparing the spring model layout and the Voronoi 

display, it might seem as if the smaller of the two sub-clusters appears on the left of the yellow 

Voronoi region, with the larger C-shaped sub-cluster appearing on the right. Had the two 

images been produced independently, one may have made this assumption. HIVE's interactive 
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users can explore not only the data but also the ways that the system represents, transforms 

and presents those data. 

The work described in this chapter is based upon the premise that building visualisation 

applications that are tailored to one's data and interests, and which are comprised of a palette 

of algorithmic components, can be a complex task. However, this task may be aided by 

modem visualisation techniques such as those used by the profiling modules in HIVE. As 

data set sizes increase, so do the number of tools developed for visualising them and it can be 

frustrating for designers and for users if the tools for analysis and understanding data were 

themselves difficult to analyse and manage. Therefore the author suggests that the use of 

visualisation for visualisation - in the form of well-designed interaction with the components, 

processes and parameters of a visualisation system - may afford deeper insight into the 

visualised information itself. 
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9. Text-mining in HIVE 

This chapter provides details on how HIVE can be used for mining unstructured text. 

Functionality for text analysis has been implemented to broaden the possible target audience 

in preparation for user engagement with HIVE - just about everyone deals with text in their 

work. Many researchers have developed ways to visualise document collections. Perhaps the 

most popular technique is the use of self-organising maps (SOMs) [HKLK96, HKLK97], 

however, with respect to HIVE, the force-directed placement approach such as that adopted by 

Chalmers [Cha96], Wise [Wis99] and Korfhage [Kor91] is the most relevant here. The 

influence of Wise's technique will be discussed later in this chapter. 

To import text into HIVE, a new data-source visual module was written to apply the 

common text processing operations such as stop-word removal [SaI71] and stemming [Por80]. 

This was achieved by using the API provided by Lucene - an open source text search engine 

written by volunteers for the Apache Jakarta project [Jak04]. Lucene creates an inverted index 

to facilitate efficient searching and access to term and associated document frequencies. 

One of the most important aspects of text mining is in finding an effective vector 

representation of the documents. The author experimented with popular techniques such as 

nonnalised tenn frequencies and tf-idf measures [RB99], but settled on a representation based 

upon the conditional probabilities of tenn occurrences, as will be discussed shortly. Another 

issue that was dealt with is the measurement of similarity between document vectors. 

9.1 Vector representation of documents 

To apply the layout algorithms in HIVE to a set of text documents, each document must be 

represented by a vector of numbers where the number of elements, D, is equal to the number 

of unique content-bearing terms across the collection. If there are N documents in the 

collection then the vectorisation produces a D x N term-document matrix (TOM) - columns 

represent documents and rows represent terms. 

To help discriminate between documents, stop-words such as articles and connectives 

are removed and stemming is applied to normalise terms. In addition to this, the 5% of least 

frequent terms and the 4% of most frequent terms in the text collection are discounted. From 

the author's experience these values provided a set of content-bearing words that adequately 

discriminate documents while substantially reducing the dimensionality of the TDM. 
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author decided to experiment with this metric to observe this for himself. The cosine similarity 

measure, on the other hand, overcomes this shortcoming. 

The above quantification and similarity types led to four experimental conditions: 

cosine measure using tf, Euclidean distance using tf, cosine measure using tf-idf and 

Euclidean distance using tf-idf. It should be noted that since the FDP routines in HIVE use 

distances in calculating layouts, cosine similarity was converted to dissimilarity by subtracting 

it from I and this was used to approximate distance. 

Figure 9.1 illustrates screen shots oflayouts produced by Chalmers' spring model when 

run on a collection of 538 abstracts. The abstracts were taken from the University of 

Glasgow'S DCS bibliography, from the proceedings of Info Vis 2001 to 2003, and from other 

papers that cite publications about HIVE and the algorithms produced in it, as well as articles 

related to these. After stopping, and removing low and high frequency terms, the 

dimensionality of the TDM was 348. 

From Figure 9.1 it is evident that the cosine measure does not show any interesting 

structure in the data. On the other hand, both layouts that use Euclidean distance to compare 

documents show structure that is highly suspicious. Upon closer inspection of the small 

cluster of points visible in the centre of Figure 9.1(b) and 9.1(d), it was found that these points 

represent documents that contained no content bearing words at all - no terms contained in 

these documents were used in the vectorisation. This means that when using Euclidean 

distance to approximate similarity, this small group of documents is much more dissimilar 

(and equally distant) from all other documents. This causes a high amount of repulsion of the 

remaining documents and explains the outer 'ring' of repelled points. This effect is not 

observed with the cosine measure of similarity because many other documents that do contain 

content-bearing words can still have zero similarity between them - e.g. when they have no 

terms in common. Hence the inclusion of the empty documents does not greatly affect how 

strongly the other points are repelled. 

The empty documents were removed from the data set and new layouts were generated. 

The layouts are shown in Figure 9.2. 

After removal of the empty documents, the layouts all appear very similar and there 

appears to be no interesting structure. To test if this was indeed the case, all documents that 

contain the phrase "multidimensional scaling" were highlighted to see if they clustered or 

appeared consistently within a particular region or configuration. The layouts of Figure 9.2 are 

shown with the highlighted points in Figure 9.3. 
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u pected, the matching documents show hardly any tendency to cluster and upon 

recreating the layouts it wa found that their positions varied greatly between different layouts 

u ing the ame imilarity measures and term-weighting. 

Buja and wayne [B 02] point out that in cases where the distribution of distances 

tightly clu ter around a po itive value, point configurations similar to the above circular 

layout ar produced. Buja and Swayne refer to this property as indifJerentiation. To find out 

if this i indeed what i happening, 60,000 distance samples were taken under each of the 

experim ntal condition that produced the layouts of Figure 9.2. Histograms of two of these 

ample are hown in igure 9.4. 

nly two of the hi tograms are shown here because the others are very similar. The 

histogram confirm that di tances/dissimilarities do tightly gather around a non-zero value and 

therefore indifferentiation is the most probable cause of the degenerate layouts in Figure 9.2. 
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Figure 9.4 Hi tograms showing the distribution of sample Euclidean distances and cosine measures of 

di imilarity. The hi tograrns how that the samples do indeed cluster tightly around a high positive 

value. 

The likely cau e ofthi indifferentiation is the sparsity of the TDM. This results in many high 

value of di imilarity between documents. Inspired by Wise's use of conditional probabilities 

for weighting c ntent-bearing words [Wis99], it was realised that the zero values in a 

document vector of term frequencies could be replaced by the probability that they would 

occur given the term that actually do occur in the document. This would result in a less 

parse DM and therefore greatly diminish the likelihood of indifferentiation. Figure 9.5 

depict the re utt of this approach using Bayes theorem for calculating the probabilities, and 

the co ine mea ure for di imilarity. 
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experiment and also to see if any other relevant papers that have not yet been read by the 

author appear close to the HIVE related articles. 

Figure 9.6 is a screenshot from HIVE showing how a simple text-mining application 

can be set up in HIVE and used to query the abstracts document collection. Two query 

components have been connected, and the red and blue points in the scatterplot represent 

documents that were returned by the search on "multidimensional scaling". Red points 

represent unselected query results; blue points denote returned documents that the user has 

selected in the layout, and yellow points represent documents that are selected by the user but 

were not returned by the query. In this case, the author has selected one of the abstracts 

returned by the query (which represents a journal paper about HIVE [RC03b]) and one 

neighbouring point representing an abstract that was not returned by the query. 

The scatterplot is connected to a text-view and therefore the text represented by selected 

points (blue and yellow) is visible. Words that are coloured red in this view represent content

bearing terms that are used in creating the layout. Words that are black are low or high 

frequency terms that were filtered out during the pre-processing stage described earlier. 

Functionality has also been provided to allow the user to select red and black terms, modify 

their weights and exclude or include them in the layout process. This can be done while the 

layout is forming and provides an interesting animation as groups of points move, forming and 

dissolving clusters as the user modifies the term values. Also, at the top of the text view, the 

top five most frequent terms in the selected documents are indicated along with their counts to 

give an idea of the subjects covered. The remaining grey terms in the text-viewer indicate 

stop-words that were removed in the indexing process. 

The purpose of this experiment was to see if the layout does indeed indicate structure in 

the data and not just artefacts of the layout algorithm. By searching the layout using the 

"multidimensional scaling" query, the author knew that some of his papers and several others 

would be highlighted in the layout. It was found that the author's papers are close to each 

other, as would be expected, and the region of points that contains them pertains to abstracts 

of papers on algorithms, data and text mining, clustering and more generally information 

visualisation. Upon repeating the experiment, the same general configuration was generated. 

This provided to some extent a picture of where HIVE is in the context of the literature (see 

Figure 9.7). 

In Section 7.5.3, the use of dimension reduction for feature selection was demonstrated. 

This method can also be applied to text. Figure 9.8 illustrates transposed textual data resulting 

in a layout of the terms in the abstracts document collection. This allows the user to select the 
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terms he is interested in and then layout a (sub)set of documents according to only the chosen 

terms. 

The e experiments were carried out using the cosine measure of dissimilarity. However, 

when Euclidean distance was used, it was found that although the topological structure of the 

layout wa roughly the same, the salient structure that was made apparent with the cosine 

measure wa not a pronounced using Euclidean distance. For this reason, the cosine measure 

is the preferred choice. 

Figure 9.7 The layout from Figure 9.6 is labelled to indicate general themes running through the 

document in different regions. Some IDVE papers are highlighted in the data mining and clustering 

region at the upper-left side of the layout. 

This e ample uses a small document collection and therefore only a small number of 

po ible qu ry re ults can be returned; in this case eleven abstracts were returned for the query 

"multidimen ional caling". It would be interesting to see how this hands-on approach scales 

up to larger collections and to see whether second or higher order term-eo-occurrences, such 
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as tho e in latent emantic indexing (LSI) [DDF*90], are being influenced by the conditional 

probabilitie u ed in term-weighting. However, for now, the results from this example and 

other explorations appear promising. Psychologists at the University of Liverpool have 

recently applied HIVE to the analysis of text. The preliminary results will be described in 

Chapter 10. 
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Figure 9. A layout of terms in IDVE. This can be used for feature selection as in Section 7.5.3. 

9.3 Conclusions 
This chapter has described how HIVE has been equipped with functionality to apply 

dimension reduction algorithms to unstructured textual data. An investigation of the effects of 

both Euclidean distance and cosine dissimilarity showed that there was little difference 

between layout of documents represented by vectors of tf-idf values or normalised term 

frequencie . In fact the layouts produced did not reflect any interesting structure. It was found, 

however that by representing documents by term frequencies and filling in any zero entries 

with conditional probabilities of the corresponding terms, that salient structure was made 

apparent. xploring layouts produced by a spring model indicated that similar documents 

were placed c10 e to each other and that the topology of the layouts were indeed meaningful. 

It i w rth mentioning that layout stress was not used to assess the solutions. This is 

becau e tre i mainly u ed to test the layout algorithm; in this instance, however, the author 

intere ted in the vectorisation (or document representation) and the interpretability that it 
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conveys; not the layout algorithm per se. This was a more subjective challenge that could not 

be mediated by trying to reduce stress values alone. 

HIVE has been shown to be capable of building simple and reconfigurable text-mining 

applications. An example was provided in which some of the author's HIVE-related 

publications were visualised in a wider frame of general computing science publications. 

While this provided promising results by the appearance of sensible and explicable structure, 

it also implied a novel means of profiling the HIVE framework per se. In the previous chapter, 

it was shown that profiling modules could be implemented in HIVE to help evaluate hybrid 

algorithms; it now seems that the text mining functionality could be used for a higher level of 

profiling - that of the overall HIVE framework with respect to its place in the literature. 
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10. HIVE user engagement 

The author's work evolved from the investigation and development of novel hybrid clustering 

and layout algorithms to the development of a framework for their creation, evaluation and 

use. The initial target audience of this framework consisted of the author and his colleagues, 

however, as HIVE became more familiar through the literature and by word of mouth, the 

number of its users has considerably increased. HIVE is available as an open source code 

project under the provision of the Mozilla Public License and has been requested by 

researchers at several prominent institutions, both academic and commercial, from all around 

the world. HIVE cannot be downloaded directly from the author's website, instead it is 

available purely by request. In this way the author can engage in dialogue with potential users 

from the start and politely keep abreast of their progress. 

The feedback provided by users has shown that HIVE has two main modes of use. One 

is to take the code, create new visual modules and therefore customise it for new tasks and 

work domains; several publications, written independently of the author have arisen from such 

work with the software [Me03, MC04, Mor04, WM04, Darl>4]. The second mode of use is 

purely for exploring data and testing related hypotheses without creating new visual modules. 

This chapter provides details of how various people have used HIVE and how its two 

modes of use have emerged. The evaluation of the software has been achieved by giving it to 

users with real tasks. Rather than being a usability study, this evaluation is based upon a 

demonstration of HIVE's efficacy and flexibility. 

It should be noted that the study documented in this chapter is purely exploratory and 

therefore the validity of the results is not guaranteed. Possible impact factors on its validity 

include bias due to some of the users being familiar with both the author and his research -

this has not been accounted for in the study; also, the questionnaire, described in the next 

section, was not piloted or evaluated in any other way prior to its distribution and therefore 

problems such as respondents misunderstanding some questions might have occurred. One 

might also consider the possibility that some of the users may have further distributed HIVE. 

Thus, the pool of users might be larger. In this case, the information obtained by observing 

and querying about user engagement might not be an entirely accurate account of the general 

view of all of those who have attempted to use HIVE. 
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10.1 Questionnaire 

Shortly after the author published the fll'St two publications on HIVE [RC03a, RC03b], it was 

made available to anyone who expressed interest. Within a few months, there were nine 

people actively using HIVE. Only two were internal to the Department of Computing Science 

at the University of Glasgow and of the remainder, two worked at commercial companies. 

Upon receiving the software, each of the users were provided with installation and operating 

instructions along with some examples of simple visualisation applications and hybrid 

algorithms that could be implemented. 

The author desired to find out how HIVE had been used and whether it had been useful 

and effective. To determine this, an on-line questionnaire was carefully designed and several 

weeks after each user received the software, the author made contact to politely ask him or her 

for its completion. Fortunately all nine users participated in the questionnaire's completion. 

The format of the questionnaire (shown in Appendix C) was prepared according to the 

guidelines provided by Sudman and Bradburn [SB82]. These guidelines include the following: 

• clearly state the purpose of the questionnaire 

• avoid loaded questions 

• avoid appearing judgemental 

• questions should be succinct and concise yet clear 

• ask multiple choice (attitude) questions first 

• ask long open-ended (behavioural) questions last 

• keep it short 

It should be noted that the questionnaire was not intended for statistical analysis - this would 

have required more users. Instead the author was concerned with gaining some preliminary 

feedback on the usefulness of the software. In total there were twenty-one questions; the first 

ten were on a Likert scale and required the user to choose one response from five possibilities 

ranging from "strongly agree" to "strongly disagree". These were followed by several 

''yes/no'' closed questions. The last five questions were open-ended and prompted the user to 

enter free text. 

The purpose of the first five questions was to determine to some extent whether the 

software was easy or difficult to use. All respondents with the exception of one agreed that it 

was, indeed, easy to use. The same number of respondents also agreed that it was flexible. 
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Four re pondent agreed with the statement "it is easy to make the software do exactly what I 

want". F ur al 0 agreed that HIVE's design made it easy to modify the source code and six 

agreed that the oftware was satisfying to use. 

The ne t five questions were aimed at gaining some feedback regarding HIVE's data

flow mod I and it u e of visual programming for interactively building applications. Five 

re p nd nt agre d that the semi-automatic creation of algorithms was useful while the 

remainin four neither agreed nor disagreed. Four agreed that HIVE's generation of a hybrid 

algorithm wa not confu ing while, again, the remainder neither agreed nor disagreed. 

Regarding the linking of visual modules for data- and interaction-flows, seven agreed that 

they were u eful and intuitive. For the statement "the visual construction of algorithms is 

advantageou" ix re pondents agreed and only one disagreed. All of the respondents, with 

the exception of one tated they had more than five years programming experience, however, 

only five modified the source code to implement new visual modules or for further 

ell tomi ation. All re pondents stated that they would use HIVE again. 

Figure 10.1 The first 16 que tions coded and laid out by a spring model in lllVE. The responses of the 

elected ursin the catterplot are highlighted in the table. The stress in this configuration was 

mea ur d a 0.0 7 indicating a good fit. 

The r ult are heartening and, even though they are not overwhelmingly positive, 

th y do imply that th visual programming adopted for data- and interaction-flow provides a 

fle ible and intuiti e method of building algorithms and visualisation applications. Out of 

curio ity and t further analyse the results, the author fed them into a spring model. Since the 

fi t I qu ti n are multiple choice, they can be simply coded according to their response. 

cale from "strongly agree" to "strongly disagree" can be coded from 0 to 4. 
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This allowed the results to be represented by a 16-d data set. Figure 10.1 shows a screen shot 

of the results in HIVE. 

It is possible to investigate the similarities between users' responses by selecting points 

in the scatterplot to highlight rows representing the responses in the table. This showed that 

users 2,3,4 and 9, who did not modify the source code, are adjacent in the plot. These users 

also answered the majority of the dichotomous questions with a 'no'. The remaining users 

were slightly more dispersed. From multiple runs, users 1 and 6 were found to consistently 

reside at opposite ends of the plot. Upon closer inspection it appeared that this difference was 

due to user 6 strongly agreeing that the software was easy to use and responding positively to 

more of the earlier questions. 

The final five questions were open, providing space for the respondents to write 

answers in their own words. The first of these asked what aspects of the software did the users 

dislike. One respondent stated that the data-flows can clutter the screen and suggested that 

some form of aggregation might be useful so that a hybrid algorithm could be wrapped into a 

single derived visual module that could be opened up for inspection. For the same question, 

three respondents stated that there could have been more documentation provided on the 

default visual modules and their parameters; another wrote that the method of entering Iink

mode (for hooking visual modules together) was not obvious. One respondent commented on 

the limited data types that HIVE could handle and that it would also be better if the visual 

programming interface could be supplemented by a scripting language. 

The author has since addressed several of these points. More documentation on the use 

of visual modules and examples of their use has been drawn up. It is now also possible to 

invoke link-mode via a view menu that incorporates several other useful functions such as 

tiling visualisation modules. Also, the diversity of data types that HIVE can take as input has 

been extended; unstructured text and lower-triangular matrices of proximity data can be 

loaded into data source modules for analysis. Owing to a lack of time, module aggregation has 

not been implemented yet. 

The next open question asked what particular aspects of HIVE the users liked. The 

ability to alter parameters interactively and perform comparisons at run time was noted by 

one respondent. Another respondent said that the visual construction of algorithms was 

interesting and helpful, and another described this as easy. The ability to handle large data 

sets and integration of many different data analysis tools was another response. These answers 

imply that HIVE's design and its intended use are indeed valuable to others. 

The third open question enquired into the use of HIVE. One respondent used it for the 

design and evaluation of hybrid algorithms for force-directed placement. Similarly, another 
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respondent used it to investigate how incremental (hybrid) MDS algorithms worked. Two 

others used it (independently) for the analysis of genetic data. HIVE was also used by one 

respondent for the creation of a new method of intervening in the process of FOP, while 

another user simply wanted to extract some of the hybrid algorithms for his own software. 

These answers indicated that HIVE has a dual role, as anticipated by the author: to analyse 

data and to create the processes for such analyses. 

The next question asked what other software the respondents might use for the same 

tasks. It was felt that this might indicate target systems for comparison with HIVE for future 

evaluation. Two respondents left the field blank and one stated none. Another said that he 

would have had to write something similar from scratch. Others mentioned research systems 

such as FSMvis [MRC02] and xGobi [BCS96]. 

The final question simply asked for any other comments and the answers mainly 

reiterated what was already stated. Although HIVE had only nine users - fortunately all of 

whom answered the author's questions - their feedback has provided some valuable insight 

into how HIVE was adopted and the author has addressed some of this feedback to improve 

the system. On the whole, the results appear promising. 

10.2 Examples of HIVE's use 

This section will briefly describe how HIVE has been utilised by others. The first subsection 

describes how one user employed HIVE to develop and evaluate the fastest FOP algorithm to 

date [MC04]. The second subsection provides details on how the software was used by 

another researcher as a development platfonn for a tool called MDSteer [WM04]. HIVE was 

also used to develop a bioinfonnatics application for describing chains of data analysis 

components. This will be the focus of the third subsection. Finally, the fourth subsection 

describes work with HIVE by psychologists at the University of Liverpool. 

10.2.1 Development and evaluation of a new FDP 

algorithm 

Recall the novel hybrid spring model algorithm from section 5.3. At the time of its 

publication, this was the fastest force-directed placement routine that could produce layouts of 

quality comparable to that of Chalmers' algorithm. To recap, the algorithm works by first 

randomly selecting a sample of .IN items from the input data set consisting of N items. 

Chalmers' spring model is then applied to produce a layout of the sample, before a novel 
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int rp lati n te hnique i u ed to place the remaining items in the plot. The interpolation stage 

th b ttleneck of the algorithm because each of the remaining non-sample items 

plac dace rdin to it nearest neighbour (or parent) in the high-d space. This parent-finding 

ace mpJi h d ia a brute force search and therefore the time complexity of this stage is 

O(N..jN). th th r tages of the hybrid algorithm are executed in linear time with 

re pe t t th interp lation tage dominates the complexity of the algorithm as a whole. 

R ently, Morri on [MC04] addressed this by reworking the algorithm in HIVE. 

one ntrating n parent-finding in the interpolation stage of the algorithm, Morrison 

ueee fully r du d the time complexity to O(}!14) and demonstrated the improvement over 

it r by evaluating it with a data set consisting of 108,000 14-dimensional items. 

he n el parent-finding strategy, implemented as a new visual module in HIVE, works 

by rand mly lecting a ub et of items from the initial sample and discretising the distances 

of pint t member of the subset. This subset (of a subset) contains very few items -

typically thr e which are referred to as pivots. For each of these pivots, a set of buckets 

repr nting a range of distances is defined and each of the remaining items in the initial .IN 
ampl i all at d to a bucket for every pivot. To find an interpolation parent in the .IN 
ample fi r an it m, the di tance from the item to each pivot is calculated, indicating the 

buck t t whi h th item belongs. The parent is then found by searching through all sample 

items ntain d in th buckets and selecting the closest. 

Figure 10.2 M rri n' hybrid algorithm in HIVE. The large component at the top-left is the multiple 

runs dul . M rri n u ed thi in conjunction with clock and stress modules to evaluate the 

al rithrns. 

In ke ping th number of pivots constant and by defining N l /4 buckets for each pivot, 

th tim c mpl it of the interpolation stage, and therefore the whole hybrid algorithm is 

o 4). IT! n provided experimental results on the performance of the new algorithm by 
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using the profiling modules in HIVE as described in Chapter 8. The results reflected the 

reduction in time complexity and average layout stress comparable to the previous hybrid 

algorithm. Figure 10.2 shows a screenshot of Morrison's configuration of visual modules in 

HIVE for the implementation and evaluation of his algorithm [MC04]. 

Since completing this work, Morrison continued to use HIVE. For the successful 

completion of his PhD, he developed numerous novel visual modules and several 

experimental hybrid FDP algorithms, all of which were profiled in HIVE. As a final analysis 

of these algorithms, his thesis [M0r04] demonstrates how a dimension reduction algorithm is 

used to produce a layout of the characteristics of the novel designs. 

Now working as a research associate in the department of Computing Science at the 

University of Glasgow, Morrison continues to develop visualisation solutions via HIVE. So 

far, he has implemented HIVE modules for time series analysis based upon mutual 

information, a parallel coordinates visual module and a matrix histogram module. 

10.2.2 Steerable dimension reduction 

In 2004 Williams and Munzner developed a means of intervening in the layout process of 

Chalmers' spring model. This tool, called MDSteer [WM04] was built in HIVE and allows the 

user to direct the computation of the layout algorithm to user-selected areas of interest in the 

layout. This approach is highly visual and interactive. It starts by progressively laying out $ 

points where N is the number of items in a data set. Once this initial layout is obtained, the 

viewing area is subdivided into two regions. The user can then select one of these regions to 

specify that the algorithm concentrates only on this area ofthe layout. After a subset of points 

that should lie in this area have been placed, the two regions (called bins) are further 

subdivided and all points in the data set are allocated to the appropriate bin. This process is 

repeated until all items in the data set have been laid out. The hierarchy of bins is shown on 

the layout as wire frame boxes subtending progressively smaller regions. Figure 10.3 

illustrates MDSteer in HIVE. The figure shows layouts of an environmental data set 

consisting of 40,000 294-dimensional items. Each dimension pertains to a measurement such 

as water and air quality. The image on the right shows MDSteer in action where each box on 

the layout can be selected, effectively stating the user's intention that the layout algorithm fills 

out that region. 

Williams and Munzner argue that this approach can be used to quickly obtain 

overviews of very large data sets and also drill down into areas of potential interest. In fact, 

the authors used the tool to obtain partial layouts of up to one million items. Rather than only 

selecting a sample for laying out, Williams' and Munmer's approach allows the user to 
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detennin p tentially intere ting regions oflayouts and therefore allocate more computation to 

them. Thi m th d upplements the incremental layout process that is typical of FDP routines 

with us r-interacti n 0 that exploration is enhanced. 

he author tated that HIVE was used because it was one of the only tools available 

that could handl very large data sets. It also allowed them to experiment with the dimension 

reduction alg rithm for producing the incremental layouts used with the MDSteer technique. 

Figure 10. The image on the left shows a layout obtained by Williams and Munzner using the novel 

tion 5.3. The image on the right shows an overview of the same data set using 

MD teer. Black repre ent bins that have no unplaced points while red boxes represent bins in 

which there ar p In till to be placed. 

10.2.3 bioinformatics chain description tool 

In the an Iy i f data, cientists often use several programs, taking the output of one as the 

input to an th r and on. The use of programs in this manually driven pipeline is akin to the 

hybrid clu t ring and layout algorithms for which HIVE has been designed. For his PhD, 

Darr h [ arM] r -branded HIVE as a Chain Description Tool (CDT) for use in the domain 

of bi infi nnatic. The tean "chain" refers to the serial connection of computational 

c mp n nt t fi rrn an application. Darroch defmed a chain description language in XML 

f pr gram for the incremental analysis of biological data can be specified. 

H w v r, roth r than having users resort to the cumbersome process of typing scripts in thi 

langu g • D. rr h emb died the language in HIVE so that visual modules represent programs 

p citY the chain, effectively translating HIVE module configurations 

into hi hain d' ripti n language. 
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In Darroch' version of HIVE, he implemented visual modules for tasks such a 

searching for p cific proteins on the internet and taking the results from such searches and 

predicting the econdary structure of the proteins. It is often the case the outputs of different 

bioinformatic programs are in a format that is not compatible with the required input of othcr 

program. 0 addre this, Darroch also implemented visual translation modules. The 

implem ntation of HIVE in this domain is described in Chapter 5 of Darroch's PhD the i 

[Oa£o4]. 

By u ing HIVE, multiple analysis runs can be automated - a process akin to batch run 

of hybrid algorithm as demonstrated in Chapter 8. HIVE also provides a uniform 

environm nt in which the analyses can be carried out recorded and repeated at later datc . 

Figure 1O.4 how one of Darroch's chains consisting of a series of visual modules. Darroch 

added orne n w iotere ting functionality to his modules. The "Annotation" button visible at 

the bottom of each new module allows the user to see (or enter) a description of the modul 

and how it could be u ed. Ports have also been embellished by adding a drop-down Ii t that 

the user can query to ee what other visual modules would be compatible with the particular 

data typ on that port. By selecting one of the list entries, the corresponding module is loaded 

and automatically linked to the selected port. 

"-11 

Figure ) 0.4 A chain of visual modules representing bioinformatics applications in Darroch's hain 

De cription T 01 a cu tomised version of RIVE. 

Oarr h carri d out an evaluation of his customised version of HIVE with biologi t 

and c ncJuded that the application chains were capable of capturing real-world analyses. The 

visual pr gramming of data-flows for this domain appear to be intuitive and useful. 

10.2.4 IVE for psychological profiling 

Re earcher in th ntre for Investigative Psychology (CIP) at the University of Liverpo 1 

have n u ing dim n ion reduction in behavioural analysis for decades. Dimen ion 

con id r d in their oaly i range from background characteristics of people such as education 

and upati n, t a ti n variable (or modus operandi) observed at crime scenes. Recall from 

ecti n 4 . . 1 and 7.5. that multidimensional scaling can be used to aid feature select· Ion . 
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This is indeed one of the main roles that dimension reduction plays at CIP. In obtaining 

layouts of relationships among variables, researchers can theorise about the facets of human 

behaviour that characterise specific types of crime. When these facets (sets of salient 

variables) have been identified more traditional MDS can be applied to gain layouts of the 

population of crimes or offenders. Essentially dimension reduction is used to form and test 

hypotheses in psychological profiling. 

SSA (Section 4.3.3) is the most popular type of dimension reduction routine used by 

CIP. While it has been shown that it has been very effective in its application [CF98], it 

exhibits a high time complexity and is therefore limited in the amount of data to which it can 

be applied. Furthermore, CIP's SSA routine is implemented in a tool developed several years 

ago and while being a tremendous improvement over the old command line FORTRAN 

implementations that some of the senior psychologists are accustomed to, it still lacks 

flexibility and the richness of interaction that modem visualisation techniques can afford. 

HIVE was brought to the attention of CIP researchers by word of mouth and in late 

2004 the author was invited to have dinner with the head of CIP, Professor David Canter. 

while he was on a business trip in Glasgow. The discussion that followed sparked a mutual 

interest in the application of HIVE in CIP's work and since then the author has been working 

closely with CIP researchers, aiding them in their enthusiastic adoption of the software. This 

collaboration has also resulted in the authors' current employment with the Kelvin Institute. 

implementing dimension reduction tools in a project funded by the Metropolitan Police 

Service for an Interactive Offender Profiling System (lOPS). 

The author has visited CIP several times now, and the discussions and observations that 

ensued have provided a wealth of feedback on how the researchers have been using HIVE and 

where useful improvements could be made. Suggested improvements included constraining 

the I: I aspect ratio of scatterplots so as not to distort the relative inter-point distances; make 

scatterplot points larger; allow users to define scatterplot background colour; provide surface 

plots based on binary variable frequencies; provide for user-defined dictionaries to be used in 

text analysis; be able to import proximity data in the form of a lower triangle matrix. The 

latest modification suggested by CIP was to be able to freeze an application after it had been 

visually programmed in HIVE - in effect disallowing other users from modifying the 

structure of visual modules and data-flows, although still being able to specify the input data. 

In addressing the suggested improvements to the software, the development of HIVE 

entered an iterative design cycle. Each time, after modifying the software, an informal 

meeting was arranged to provide a demonstration and prompt further discussion. Current users 

of HIVE were also given updated versions and, after several of these development iterations, 
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the author carried out infonnal user testing of HIVE to gain more feedback on its long term 

use. Two people at elP who had been using HIVE over several months for quite different 

work agreed to take part in the study. Since the author did not intend to collect statistical data 

and was more concerned with gaining feedback from real users, this low number of 

participants was acceptable. 

Rather than inventing tasks for the users to carry out, the author instead asked them to 

perfonn some real tasks for which they currently use HIVE. This allowed the author to see 

how deeply the users delved into HIVE and to note which parts were more useful. The 

evaluation was based upon the think aloud protocol - users were asked to comment on their 

actions and describe any difficulties encountered as they used the software. The users' 

interactions with HIVE and their voices were recorded for future reference by screen capture 

software. 

A number of observations were gained from this evaluation. The first user is a 

psycholinguist and used the text analysis capabilities of HIVE to analyse a set of suicide 

notes. In this task the user wanted to find out about differences in writings between male and 

female authors. The user first hooked together HIVE modules to gain a layout (scatterplot) of 

the notes. In this layout each point represents a note and their mutual proximities should 

reflec:t the similarity between them according to the terms used. The user then proceeded to 

annotate each point in the layout with the names of the notes stating that it would be useful if 

HIVE would do this automatically. Upon completing this, the user observed that the notes 

were grouped in contiguous regions of the layout according to whether they were written by a 

male or female. This observation was aided by linking a text viewer module to the layout so 

that when layout points were selected, the text of the corresponding notes was displayed. 

Noting that this did indeed suggest differences in writing style, the user then transposed the 

data and obtained a second layout, this time depicting the words used in the notes. The 

purpose of this was to identify words that contribute most to the differentiation of the notes. In 

this view. words that co-occur frequently would be closer together in the layout than those that 

rarely co-occur. At this point the user stated that it would be useful if the term frequencies 

were displayed next to points on the layout. The main difficulty the user encountered with 

HIVE was with panning and zooming in the layouts. This is achieved via the middle mouse 

button for zooming and the right button for panning. It appears that the view updates were too 

sensitive to the user's actions resulting in the user panning or zooming too much and 

subsequently losing orientation. 

The second user embarked on a different task with HIVE. In this case the user wanted 

to analyse data on a set of burglaries. In this data each datum represented a burglary and the 
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variables consisted of the actions observed from the corresponding crime scene. For example 

one variable was whether a window was broken to gain entry, another regards whether an 

untidy search was carried out. The data are therefore binary. In contrast with the first user who 

initially obtained a layout of the population (where each point represents a datum), the second 

user first transposed the data to obtain a layout of the variables. The second user stated that 

she wanted to look for variables of high and low frequencies and see where they were in 

relation to each other. She used SSA for dimension reduction and then applied a frequency 

surface to the layout so that darker areas would correspond to low frequency variables. In this 

layout the higher the correlation between a pair of variables then the closer they are in the 

view. While the user visually programmed this application the author observed one difficulty. 

It is easy to miss the ports when dragging data-flows between modules, resulting in either a 

module being dragged or the link being lost. A possible solution to this would be to increase 

the size of the ports. 

After exploring the layout of variables, the user then decided to produce a layout of the 

population of burglaries. The user stated that she wanted to be able to select variables and then 

see in which burglaries they occurred. Conversely the user also wished to be able to select 

some burglaries and observe the actions that occurred. This was achieved by inserting a 

selection link between the two layouts to accommodate view coordination. 

Both users exhibited familiarity with HIVE by quicldy selecting and linking the 

modules they needed without much difficulty. Only the second user employed the algorithmic 

profiling capabilities of HIVE. At one point she viewed the co-efficient of alienation and 

stress to assess the output of an SSA routine. It was also seen that the scatterplot and text 

views were the only visualisation components they employed, however, when more than one 

view was present at any time the users were quick to coordinate them and explore their data 

from another perspective. An interesting observation was that both users obtained a layout of 

the variables in the data as well as a layout of the population. Upon linking these two types of 

view. the users began exploring one view, selecting points and then going to the second view 

to explore what was subsequently highlighted before making further selections and referring 

back to the first view. This process continued in a cycle and appears to reflect the users' 

hypothesis generation, testing and refinement as they explored their data. 

It should be mentioned that neither user implemented any hybrid algorithms. They 

simply used individual modules for carrying out MOS. One explanation for this is that these 

users have limited knowledge about how the algorithms actually work. They are primarily 

concerned with the interpretation of the output and accordingly treat the algorithms as black 

boxes. Also. the data sets studied were not large and therefore the running time of the solo 
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algorithms was not high, thus evading the need for more efficient hybrid solutions. In general, 

the behavioural data sets analysed at CIP tend to be reasonably small - usually between 10 

and 10,000 items. If elP researchers begin to look at larger sets, then the use of hybrid 

algorithms would be necessary to improve performance. That aside, the users did link together 

several modules and views in exactly the same way that hybrid algorithms are implemented in 

HIVE. This indicates that hybrid algorithms were not being avoided due to any problems with 

visual programming. 

In general the feedback from CIP bas been excellent and those who are using HWE 

continue to express its effectiveness and potential for their work. 

10.3 Conclusions 

It was the author's intention to gain feedback on how users have adopted HWE; to determine 

how they used it and what they used it for and also to see how it could be improVed. It has 

been shown that this bas been achieved by having users fill in a questionnaire and to observe 

their work with HIVE through infonnal meetings, discussions and user testing. 

There were a number of distinctions between the way people used HWE, for example 

Williams' and Darroch's use of HIVE (Section 10.2) is more code-intensive than that of 

Morrison. While Williams and Darroch modified more of HIVE's core source code to build 

more specialised visualisation systems, Morrison mainly created new visual modules. 

Interestingly Darroch's use of HIVE for visual programming was at a higher level of 

abstraction - rather than have visual modules represent algorithmic components, they 

represent entire applications such as web services. It was also found that HIVE bad two modes 

of use: one taken typically by computer science researchers was to extend HWE by building 

new visual modules. The other mode was taken by the researchers at CIP who used HWE 

solely for exploring their data. This is understandable since these researchers had no 

traditional programming expertise. 

The range of feedback generated has been positive, indicating that the software is useful 

for both the creation of algorithms for visualisation and for exploring data that are transformed 

by such algorithms. The third research question in Section 1.3.2 asks: As well as facilitating 

the creation and evaluation of hybrid algorithms, can the system be effective in allOWing the 

exploration of the data they transform? The feedback and observations of HIVE's use suggest 

that the answer is yes. Some of the users who are computer scientists have successfully 

developed and published new visualisation techniques and algorithms built with HIVE while 

some psychologists have found value in using HIVE for exploring their data. The fourth 
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research question asks: Is visualisation good/or creating new visualisations? Observations of 

the elP researchers perfonning real tasks showed that they had quickly become accustomed to 

visual programming of data-flows and view coordination. This method of building and using 

an application is a visualisation itself and it appears to be intuitive enough for users to pick it 

up with little difficulty. This would imply that the answer to the fourth research question, in 

this case is yes. 
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11. Conclusions 

This chapter will summarise the work described in this thesis. From the development of 

hybrid algorithms to the provision of HIVE. several design implications have been realised 

and are discussed. The work documented in this thesis also prompts the author to suggest 

several directions for future effort. especially for potential future work with psychologists at 

the University of liverpool. Prospective general improvements to the HIVE framework will 

also be described. some of which have been prompted by feedback from its users. 

11.1 Summary 

The masses of data that are prevalent across diverse domains presents a challenge for 

information visualisation. As more data are continuously gathered and stored, the task of 

transforming them into information and affording their exploration calls for continuous 

progress in the field. Since the human visual system has the broadest bandwidth for conveying 

information. graphical representations of data must be found to convey pertinent information 

as quickly as possible. When data are given a graphical representation on a spatial substrate, 

potentially interesting patterns might become apparent. However, abstract data - those data 

that do not have any physical derivation - present the biggest challenge because they do not 

easily lend themselves to the spatial mappings necessary for their rendering. The challenge is 

further heightened when such data are numerous and multidimensional. 

One of the most scalable graphical techniques for presenting data is the scatterplot. If 

data are represented by points on a 2~ scatterplot, then two of the data dimensions can be 

mapped onto the plot' s axes and another one or two dimensions may be mapped to retinal 

variables such as the colour and size of the points. A scatterplot can depict many points 

simultaneously and can often pronounce clusters and trends. However, as the dimensionality 

of the data increases. it becomes increasingly difficult to map them to spatial structures and 

retinal variables. Similarly as the cardinality of the data rises, the plot becomes more cluttered. 

Although a scatterplot can potentially represent many thousands of items, their distribution 

and ultimately their frequency can cause occlusion and elide detail. To address these 

limitations. not just with respect to scatterplots but to all graph types, complex data must be 

simplified. By .. f;"'piifyiltg. the author means to reduce the cardinality and dimensionality of 

data in such a way that as much as possible of the original information is maintained. 
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Cardinality reduction can be obtained by techniques including sampling and clustering. On the 

other hand. dimension reduction can be achieved by algorithms such as peA and force

directed placement. These orthogonal reductions can make data easier to represent visuaJIy 

and ~fore clarify information. 

There has been a great amount of work by researchers in the development of clustering 

and dimension reduction algorithms. some of which has been surveyed in Chapters 3 and 4 of 

this thesis. However. it has been shown that in being tailored to different types of data and 

focussing on specific challenges therein, individual algorithms exhibit different strengths and 

weaknesses in various situations. For example, some dimension reduction algorithms, 

generally the non-linear techniques. might produce good layouts of data but take too long to 

run on sets of high cardinality. Modern information visualisation techniques afford users 

dynamic and rapid interaction with the views of their data. Hence faster algorithms are 

required. On the other hand. linear projection techniques tend to provide fast solutions at the 

expense of poorer layouts. This is a frustrating drawback because it is commonly the case that 

it is harder to find interesting patterns as data sets grow in size, while the applicability of the 

non-linear algorithms that have more potential in finding such structure diminishes because of 

their time complexity. In addressing these observations, the author has investigated the 

diligent combination of individual clustering and dimension reduction algorithms. The reason 

was to balance their strengths and weaknesses, producing efficient hybrids that provide quality 

solutions. Chapter S provides an account of the author's work in this area and the results show 

that this hybrid approach works. 

The first two research questions posed at the beginning of this thesis regard decisions 

about which algorithmic components should be combined and when they should be used. In 

search of an answer. the author developed a framework for the combinatorial hybrid approach 

to algorithm development. This framework is discussed in Chapter 7. It is mainly based upon 

a classification of data complexity according to their cardinality and dimensionality. When 

data are transformed by consecutive stages of a visualisation application, their representation 

changes and therefore so do their complexity. By matching the complexity of algorithmic 

components to the complexity of data as they are transformed, the appropriate algorithmic 

stages can be applied to increase efficiency without being detrimental to the final output. 

This combinatorial hybrid approach to algorithmic development has been embodied in 

the HIVE system. The author's intention in HIVE was to provide a way of easily prototyping 

and experimenting with hybrid algorithms and be able to use them to explore data. Before 

designing HIVE. the author investigated contemporary visualisation environments and picked 

out paradigms such as the data-flow model, visual programming, mUltiple coordinated views, 
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as well as the concept of the information workspace. This review, which served as a 

requirements gathering phase for HIVE is given in Chapter 6, and its outcome - the 

development of the software - is described in Chapter 7. 

HIVE has become advanced. allowing richer interaction with the hybrid algorithms 

created in it and with the data they transform. Since it is the intention of the author to provide 

a framework for creating hybrid algorithms and also use them to explore multidimensional 

data. the tools developed facilitate both of these activities. For example, the intermediate 

staaes of hybrid clustering and dimension reduction algorithms provide multiple views of 

data. while the profiling modules described in Chapter 8 let the user monitor and visualise 

algorithmic performance. The discussion of the feedback from HIVE's users in Chapter 10 

indicates that the system has been a success. People have not only being using HIVE to 

explore their data - such as by using the text-mining capabilities discussed in Chapter 9 - they 

have also been using it to create novel algorithms. 

11.2 Ongoing work with CIP 

The author's current employment at the Kelvin Institute in Glasgow is involved in the 

application of MDS routines to the profiling of criminal behaviour. As discussed in the 

previous chapter, researchers in the Centre of Investigative Psychology (CIP) at the University 

of Liverpool are involved in this work and have been using HIVE. From numerous meetings 

and interviews, several possible modifications have been suggested. Since the feedback given 

by CIP has already been discussed in Section 10.2.4, a summary of the resulting future work is 

given below. 

ctHUINIJt ~ &fp«I rwIIo: In HIVE all visual modules can be resized both 

horizontally and venically. When scatterplots are resized the relative inter-point distances are 

modified due to changes in the horizontal and vertical scaling. Professor David Canter stated 

thai usen might be tempted to resize scatterplots so that they are rectangular and therefore 

diston the layout to some extent. 

~N IIJctlDltlll'ia 'or tIJtt alllysls: While the weighting and filtering of terms in 

unstr\IctUmJ text (as discussed in Chapter 9) provides good results for the analysis of text, it 

would be interesting to allow users to provide a set of terms that take precedence in the 

analysis. 
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Fr.u .tHlMI, cOllJiIf"I'tII/oII tuUI siMpUfy bttNftu:e: It would be useful to allow one to 

freeze an application in HIVE. i.e. fix the positions of visual modules so that other users, such 

as students cannot modify the structure of the application. At the same time, interface 

mechanisms such as the module tool bar and any inappropriate menu items could be removed 

to simplify the interface. in effect tailoring HIVE to a particular application. 

The head of CIP. Professor David Canter, hopes that HIVE can embody these 

modifications as part of a new research project centred on HIVE. Plans for this project and its 

funding are currently underway. 

11.3 Aggregation of flow networks 

One of the disadvantages of the data-flow model employed in HIVE is that there can be quite 

a few visual modules required for a reasonably complex application or algorithm. This can 

result in a cluttered view. One way around this challenge is to wrap several connected 

modules into a single derived module. This would allow the organisation of data-flow 

networks into cohesive units, facilitating greater understanding of the application and freeing 

up screen space. Another advantage of this would be to save effort - aggregate modules could 

be saved and incorporated into future applications circumventing the need to re-wire 

commonly used sets of modules. 

Module aggregation could also have an impact on the combinatorial hybrid approach 

for algorithms as discussed in Section 7.2. Recall that HIVE can assist the user by 

automatically loading a hybrid algorithm when given the user's choice of input data. It was 

shown that this algorithmic path through a space of data representation states can lead to the 

desired view of the data. In Figure 7.2 the blue arrows represent a single visual module in 

changing the representative state of the data in terms of dimensionality and cardinality. With 

module aggregation, a single visual module could represent a whole algorithm. If a single 

module represents an entire hybrid algorithm then the algorithmic 'cookbook' could be 

extended to include hybrid-hybrid algorithms. 

11.4 Automatic routing of sub-layouts 

Recall from Section 8.S.3 that a Shepard plot can be used in HIVE to interactively detect areas 

of a layout that could benefit from further processing. For example, consider a tetrahedron; 
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thi i th 

int r-v rt 

m 

th 

nd cann t be laid out in two dimensions without distorting some of the 

h di torted di tances would be represented by points in the Shepard 

t fr m th 45 degree diagonal. This notion generalises to real data of 

r t r th n tw . ince it is possible to detect the inter-object distances that are 

tea t th appropriate points for subsequent dimension reduction without 

r mind r f the data set, one can obtain a more accurate depiction of a 

author demonstrated this, using HIVE, in a recent paper 

int r ting however, if there was some automatic mechanism whereby 

tr t d and fed into other processes. Figure 11.1 shows how this might 

in by clu tering a layout using the Voronoi clustering algorithm 

cluster-picker module could then be used to extract the clusters 

an uch as spring models for independent analysis without the 

Fi 

pic r {t 

f th r m md r f th data. The configuration of modules shown in Figure 11.1 has 

and i fully functional but if it could be created automatically 

i ' n th tn ut data. then thi might be very powerful. Of course, this could cause an 

f vi ual modules. It is therefore suggested that the module 

pr viou sub ection would have to be in place to help avoid this. 

d t t i clustered (bottom-left module). Each cluster feeds into a cluster-

ul ) whi h can route each cluster to another process for subsequent analysis. In 

e u d to layout each of the two largest clusters independently. 
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11.5 Usability studies 

There have numerous calls for more formal evaluation of visualisation systems [GLS5, GP96, 

CCOO, Pla04) and recent publications have provided examples and even meta-analyses 

[CYOO). While Chapter 10 provided evidence that HIVE has been found to be successful in its 

application to the creation of flexible visualisation applications and hybrid algorithms, it is felt 

that a formal analysis of its usability would be advantageous. The nature of such analyses is 

not clear at present but it is suspected that some statistical rigour would be called for to 

establish the significance of particular facets of HIVE's interface and their use. 

Such studies might answer different questions regarding HIVE and the finer details of 

its user interface. It is anticipated that work in conjunction with CIP, as described in Section 

11.2, will prompt this type of evaluation. 

11.6 Contribution and thesis statement 

The work described in this thesis has contributed to the field of information visualisation in 

several ways. The early development of hybrid algorithms for dimension reduction produced 

solutions that were the most efficient at the time of their publication. Such algorithms, being 

more scalable, have been shown to facilitate the visual exploration of large data sets - sets that 

were unfeasibly large for the application of earlier dimension reduction solutions. The aut~or 

also developed a framework for building hybrid algorithms. Knowing more about the types of 

algorithmic components to combine and when to use them could help in the creation of an 

algorithmic cookbook where each recipe can be applied to different types of data in various 

situations. Since this framework has been built into the HIVE system numerous new 

visualisation techniques and ideas have emerged. In HIVE, hybrid algorithms provide mUltiple 

intermediate views of data as they are transformed; algorithms can be profiled at run time; 

researchers can (and have) extended HIVE to include new visual modules for the development 

of novel algorithms and they have also used it to explore their data. 

At the begiMing of this thesis, the author put forward his thesis statement claiming that 

an algorithmic development environment can be used to build effective dimension reduction 

solutions. Evidence of this being true is provided in Chapter 10 which provides accounts of 

how users such as Morrison and Williams have built new algorithms in HIVE. The novel 

algorithms illustrated in Chapter S have also been built and evaluated with the software. 
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Ultimately, the flexibility of HIVE allows it to be easily extended and new hybrid algorithms 

to be rapidly prototyped and evaluated. 

The thesis statement also claimed that such an environment might support the 

exploration of abstract multidimensional data. This is supported by findings discussed 

throughout the thesis. One example is described in Section 7.5.2 where HIVE was used to 

analyse a data set consisting of environmental measurements gathered from a frozen lake in 

Antarctica. When HIVE produced a hybrid dimension reduction algorithm and applied it, a 

final layout was obtained almost instantly in which it was possible to see a clear cluster. Upon 

further investigation in HIVE, it turned out that this cluster represented erroneous 

measurements. The ability to view the results at intermediate algorithmic stages has also been 

demonstrated in this context, and shows potential in allowing greater insight into data. The 

exploratory power of HIVE is apparent through examples such as its text-mining capabilities 

and by observations of long term users in the Centre for Investigative Psychology. 

The thesis statement finally claimed that building algorithms for visualisation via the 

use of visualisation methods helps people understand the algorithms better as well as the data 

that they subsequently transform. Visualisation and data analysis is often a complex task and, 

as such. is itself a potential application area for InfoVis tools. The author's research 

developed and explored responses to this, applying analysis techniques to the components, 

processes and parameters of a visualisation system. An example is provided by the profiling 

modules. Given demonstrations of their use by Morrison in Section 10.2.1 and in a recent 

paper [RMC04]. they provide a promising way to afford better understanding and control of 

the visualisation system and, in turn, deepen insight into the visualised information itself. 

11.6.1 Novel algorithms 

During the course of the author's research several new hybrid algorithms have been developed 

and have been documented in Chapter 5. The first two were non-linear dimension reduction 

solutions based upon Chalmers' spring model [Cha96]. One algorithm employed stochastic 

sampling to obtain an initial reduced representation of the input data before applying further 

transformations. The other algorithm used k-means clustering in the first stage instead of 

stochastic sampling. 

The author also developed a faster version of Shepard's non-metric MDS algorithm. 

The increase in speed was obtained by having only two output dimensions and by having both 

algorithmic stages incorporate the neighbour and sample strategy that was first adopted in 

Chalmers' spring model. 
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A novel clustering algorithm was also created. Its purpose was to help highlight 

potential areas of interest in the output of dimension reduction algorithms. This algorithm is 

based upon the Voronoi tessellation of a 2-dimensional layout of the input data and is 

comprised of two stages. The first stage identifies small areas of similar density in the layout 

while the second stage progressively grows clusters from these density hotspots. 

11.7 Research questions 

At the beginning of this thesis the author posed four research questions (Section 1.3.2). During 

the work in this thesis. each has been answered to some extent. The first two questions regard 

HIVE's algorithmic • cookbook , for semi-automatically building hybrid algorithms. The 

second two questions enquire as to their use within HIVE as an environment where algorithm 

creation and evaluation is integrated with, and potentially enhances, the visual exploration of 

data. Answering these questions has provided evidence, especially from the observations at 

CIP Liverpool. that the HIVE framework can enhance hypothesis formation, experimentation 

and analysis - a fundamental cycle in visual information-seeking. 

The answer to the first research question (Which algorithmic components should be 

combined?) was derived from experiments with hybrid algorithms and the development of the 

hybrid algorithmic framework in HIVE (Chapters 5 and 7). The framework suggests that 

algorithmic stages should be matched to the complexity of the data as they are transformed by 

them, successively refining and improving their representation for visualisation. However, it 

should be noted that some of the visual modules in HIVE, such as the Voronoi clustering 

module. are self-contained hybrid algorithms. This implies that hierarchical algorithms are 

possible. Hence the question as to which components to combine may become more 

concerned with higher level tasks - not just how to dimensionally reduce a data set, but how 

to use the results in combination with other processes and the overall job in hand. 

The second research question (When should the different types of algorithms be used?), 

also regards the hybrid algorithmic framework. The order of successive algorithmic stages is 

critical to the outcome of a hybrid algorithm and depends upon the components used fUld the 

data. The novel dimension reduction algorithms described in Chapter 5 suggest that an 

algorithm of low time complexity (such as K-means clustering) should first be used to reduce 

data cardinality before a more expensive algorithm (such as NMDS or a spring model) works 

to reduce the data dimensionality - further reducing the data to promote their visualisation. In 

later stages. the representative cardinality can be restored by, for example, fast interpolation. 
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The third research question in Section 1.3.2 asks: As well as facilitating the creation 

and evaluation of hybrid algorithms. can the system be effective in allowing the exploration of 

the data they transform? The feedback and observations of HNE's use, given in Chapter 10, 

suggest yes. Some computer science researchers have successfully developed and published 

new visualisation techniques and algorithms built with HNE. Also, researchers at Liverpool 

CIP have found value in using HNE for exploring their data. 

The founh research question asks: Is visualisation good for creating new 

visualisat;ons? Observations of the CIP researchers performing real tasks showed that they 

had quickly become accustomed to visual programming of data-flows and view coordination. 

This provides a novel combination of the ability to steer data-flows between processes, and 

the affordance of interactive coordination across multiple views of data. Also, users did not 

appear to be hampered by the extensive palette of visual modules. This visual and interactive 

technique of building and using an application is a visualisation itself and it appears to be 

intuitive enough for users to learn with little difficulty. Hence the answer to the fourth 

research question suggests that, yes, it is apparent that visualisations are good for creating new 

vi sua Ii sat ions. 

11.8 Reflection and design implications 

The author's research has raised design implications for the HNE software and for hybrid 

algorithms in general. The course of the author's work spans from early experimentation with 

Dovel hybrid dimension reduction algorithms to the design and implementation of HNE. This 

progression was made on the basis of a realisation that hybrid algorithms essentially transform 

data through consecutive - though sometimes parallel - routines until a desired representative 

state is obtained. Within the context of this thesis, that is the wider field of information 

visualisation, the general case is that the desired representation state of data is one which lends 

itself to human visual perception. When it is possible to quickly tum abstract data into 

information, one is in a better position to pose questions about those data - to form and test 

hypotheses to obtain actionable knowledge. 

In simplifying the representation of data, for example by reducing cardinality and 

dimensionality, the challenge of mapping their constituent elements to graphical structure is 

also simplified. Furthermore, if such a reduced representation of the data is obtained where the 

information that is salient to a user remains encapsulated, then it is more likely that a graphical 

portrayal will make that information almost immediately apparent. 
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This provided the motivation for the hybrid framework discussed in Section 7.2, as an 

abstraction and generalisation of hybrid algorithms. The representation of data according to 

their quantitative combination of dimensionality and cardinality allows the transition between 

representations to be thought of as a data-flow through algorithmic components. However, the 

set of algorithms that have been implemented and reported in this thesis only specify a few of 

the possible paths through the framework (see Figure 7.2). Although it has been demonstrated 

how hybrid algorithms such as that in Section 5.3 fit nicely into the framework, there are 

potentially many more algorithms that the model might fit. There therefore remain lots of 

algorithmic paths to explore. 

This approach clarifies hybrid algorithms by segmenting their components into 

cohesive units. Treating algorithms this way also provides opportunities for opening them for 

multiple and intermediate views of data as they are transformed, as demonstrated in Section 

7.5.2. It also opens them up for inspection with respect to performance measures such as 

layout stress and running time. An example of this is given by the profiling modules and case 

studies discussed in Chapter 8. 

The boundaries of the algorithmic units serve as a classification according to 

suitability of the input and output data. The author has shown how one can take advantage of 

this to provide a basis for semi-automatically generating algorithms when given input data and 

a desired output state. In the future it might be worthwhile to see if this would also provide a 

good basis for explicitly warning the user of excessively time consuming routines due to 

algorithmic and data complexities, and therefore suggest alternatives. For example, the user 

might specify that a spring model is to be used to visualise a large body of data. The system 

could then calculate the estimated time required to run and if it were deemed excessive it 

could suggest a more efficient algorithm for the job, or perhaps tweak some ofthe algorithm's 

parameters. The provision of algorithms according to the framework has been likened to 

taking recipes from an algorithmic 'cookbook'. However, it is possible that the approach 

might be extended to not only suggesting algorithmic recipes, but also to suggest recipes for 

profiling performance. Given a hybrid algorithm, profiling stages might be automatically 

applied to the appropriate algorithmic stages. Providing this sort of assistance might remove 

some of the burden from the user when carrying out analyses of data and/or algorithms. 

The hybrid algorithmic framework inspired the development of HIVE. Graphically 

representing algorithmic components and visualisations as well as the flow of data and 

interactions between them makes them more intuitive. The author took the approach of using 

visualisation to help create other visualisations, and the feedback from users, as discussed in 

the previous chapter. indicates that this is indeed useful. As well as providing an almost 
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tangible grasp of the routines used for visualising data, the same metaphor of computational 

building blocks applies equally well to profiling modules and other developments such as 

facilitating batch runs of algorithms. The approach also seems to have benefited tasks such as 

the analysis of text by providing flexibility in applying queries and viewing the results. 

However. the author still needs to address issues such as screen space and the potential 

complexity that accompanies the provision of a wide range of analysis tools. Similar to the 

assistance HIVE provides with respect to generating hybrid algorithms, it is suggested that 

assistance might also be given by exposing only the interface widgets that are relevant to the 

user's current task. This would possibly include module aggregation to make better use of 

screen space. To achieve this. one would need to define the triggers for prompting such 

assistance. The user's task at hand could entail the use of several visualisations along with 

interactions such as brushing and linking views, and this has implications on the use of other 

tools that might subsequently be used to test hypotheses. Patterns of interaction for different 

tasks - whether for creating hybrid algorithms or for using them in analysing data - could be 

used as a basis for dynamically streamlining the user interface, making the more useful 

widgets and tools closer to hand. This might be achieved by logging user activity with HNE 

and subsequently modelling tasks. 

There are several modifications proposed to enhance HIVE and promote its utility. 

Work prompted by CIP appears to be the most fruitful and will possibly embody all of the 

suggested future work in this chapter. The potential work discussed here is by no means 

exhaustive. There are many improvements that can be made. Examples that have not been 

mentioned include improving Darroch's approach for providing assistance in choosing visual 

modules [Dar04] and allowing users to create and view annotations pertaining to their use 

(Section 10.2.3). Also, more hybrid routines must be found that will fall into place in HNE's 

• cookbook , for semi-automatically creating algorithms (Section 7.2). It is hoped that the 

number of HIVE users will grow and therefore prompt continuing effort in its improvement. 

The author's research has produced new algorithms for dimension reduction and 

clustering. demonstrating the efficacy of a hybrid approach to algorithm development. A 

framework for this approach has been developed and embodied in a software system allowing 

the novel combination of algorithm development, evaluation and data analysis via integrated 

data- and interaction-flows. Early work raised several research questions, which were 

eventually answered, and as the work progressed, several novel developments occurred and 

have been published (a list of contributing publications is provided at the start of the thesis). 
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One of the most interesting aspects of the research is how visualisation techniques are 

showing potential for helping users understand not only their data but also the tools for 

exploring them. HIVE has been developed with this in mind, allowing the visualisation of the 

processes that, in turn, allow the visualisation of data. Using visualisation for visualisation is 

in keeping with the author's belief that effective tools and techniques should be turned upon 

themselves whenever possible, to embrace appropriation and hasten their evolution. 
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Appendix A: List of HIVE modules 

In HIVE each toolbar button represents a visual module. Visual modules are the alg rithmi 

or visualisation components that the user drags into the drawing area and connects together t 

build hybrid algorithms and visualisation applications. 

IIiVI 

FRe Semngs View 

MlHhJiHs I 

Visual modules can be compiled independently of HIVE and are located in the 'atb\alg' ~ Id'r 

of the software's installation directory. User-created visual modules can be imp rtcd tnt 

HIVE at run time simply by putting them in this directory. A description of the exi ting t f 

modules, referring to the above figure, is as follows. 

Module name Description 

'96 Spring model an implementation of Chalmers' spring model 

Chart plots algorithmic profiling measurements such as layout stre against 
time 

Clock used in algorithmic profiling to measure how long it take fi r certain 
processes 

Cluster picker used in conjunction with the Voronoi module or K-means to all w th 
user to allocate clusters of data to other processes 
takes algorithmic profiling data such as run times, data et ize and 

Concatenation stress measurements to create a HIVE-compatible data ourc . The 
data can subsequently be processed in HIVE for visualisation etc. 

Data source allows the user to load in CSV (comma separated value) formatted data. 
Example data sets are in the 'data in\CSV' directory. 

FastNMDS a faster implementation of Shepard's non-metric multidimen i ~at 
scaling 

Histogram 
allows the user to visualise the distribution of values for a particul r 
quantitative variable. Double-ended sliders allow data electi n ~ r 
coordination with other visualisation modules. 

Interpolation used as part of a hybrid dimension-reduction algorithm to interp 
onto a 2-d layout 

late data 

K-means an iterative, centroid-based clustering algorithm 

Multiple runs used for setting up batch runs of algorithm executions 

NMDS Shepard's original non-metric multidimensional scaling 
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Module name Description 

Old interp. an implementation of Brodbeck and Girardin's original interpolation 
routine [BG98] 

ParentFinder a method developed to speed up data interpolation 

PCA Artificial Neural Network (ANN) implementation of Principal 
Component Analysis. 

Random mapping implementation of a data projection technique where a data matrix is 
multiplied by a matrix of random numbers to reduce dimensionality. 

Sample takes a random sample of data 

Scatterplot displays the 2-d output of dimension-reduction algorithms 

Search lets the user search for and highlight text documents. Works in 
conjunction with 'text data' and 'text viewer'. 
used for analysing the output of a dimension-reduction process by 

Shepard diagram 
plotting the high dimensional (ideal) distances to the low dimensional 
(layout) distances. When the distances are exactly preserved, the plot 
shows a perfect 45 degree line. View-coordination makes this diagram 
useful for finding areas of a layout than might be better refined. 

Spring model a customised spring model 

SSA a type ofMDS routine called similarity structure analysis 

Stress measures stress of a layout configuration 

Table displays a table of data. Combines fisheye focusing and bar chart 

Text data imports a text data index for applying dimension reduction and 
visualisation of collections of text documents 

Text viewer allows the user to read the contents of documents that are represented in a 
layout. Used in conjunction with the 'text data' module (see "Text data"). 

Transpose transposes a data set, i.e. each row of values becomes a column. This is 
used in creating layouts of variables. 

Triangle data a data source for lower triangle data matrices 

Voronoi implementation of a clustering algorithm for partitioning a layout 
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Appendix B: Algorithmic 'cookbook' 

The diagram shown below represents the hybrid algorithmic cookbook that ha be 'n 

implemented in HIVE for semi-automatically generating algorithms. Each block repre cnt u 

data-state or categorisation in terms of dimensionality and cardinality where, for e ample. II. 1 

means that the data are of high dimensionality and medium cardinality. Quantitative value ' r. r 

these states are given in Table 7.1. Given data of high dimensionality and high cardin lit · 

(HH), a user's goal might be to obtain an LH data-state, that is a low-dimensional lay ut fall 

of the data. This is illustrated by the path of green arrows in the data-state space hown 

and is how the novel algorithms described in Section 5.3 operate. 

III 
Cardinally (N) 

~ ~mapping ~ K·means clustering 

~ ~ Qf.1P) spring model §12cha~!ic sampling ~ peA 

Each arrow in the diagram represents a change in the data-state which i achie d by a 

visual module in HIVE. Vertical arrows show dimension reduction and horizontal arr w ' 

represent either a reduction in cardinality (pointing right) or an increa e in cardinality 

(pointing left). A path, therefore, constitutes a hybrid algorithm and can be semi-automatically 

generated by HIVE given the state of the input data and the desired output state. 
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Appendix C: HIVE user questionnaire 

HIVE que.Honnalre 

Greg Ross 
Department of Computmg SCIence 

UniversIty of Glasgow 
Scotland 

United Kmgdom 

As PM 0/ rrIf PI'D r earch I developed the HIVE software, I would very much appreciate It It you would proVIde me With some feedback 
by an no e (JJ SUoos on this page Your anonymity Will be maintained 

.,S the film 0/ this QlJ8Sbonnelre 10 determine whether HIVE has been ot use to you, as well as how you have used It 
Pte8se indicate hoWstrong¥you egree or disagree With the follOWing statements' 

I) TIns IS 
lOuse 

2) IS 

3) 

4) 

S) HIve' d SIgn 
made 
rnodIfic on 0/ 
th so~c cod 

Stronaly 
4ee 

O Stroll,llly 
Ailee 

O Stroll,llly 
Ailee 

O Stronaly 
4ee 

O Stroll,l!ly 
Ailee 

O Ai;ree 

o Agree 

o Ailee 

O AiJee 

o Agree 

O Nerther 
Ailee nor 
Disagree 

O Ne!lber 
Agree nor 
Disagree 

O Ne!lber 
Agree nor 
Disagree 

O Netlher 
Ai;reenor 
Disagree 

O Netlher 
At,reenor 
DIsagree 

O Disagree 

o Disagree 

o Disagree 

O Disagree 

O Strong\y 
Disagree 

O SIrOng!y 
Disagree 

O Slrong\y 
Disagree 

O Slrong!y 
Disagree 

O Strong\y 
Disagree 

'When YOAJ load d a lItO 8 data-source module and then directly connect e scatter plot to It, HIVE automabcal~ loads an algonthm to app~ 
1he 1lPPI'0I)Il0l ITM 0ITTl lions for plottlng the d te The type of elgonthm loaded depends upon the cardlnellty (number of items) end 
di onahty (number 0/ V8I1 5) of the data The follOWing questions pertain to thiS elgorithrn-generellon and the Interaction 
I hntQU8S adopt In liVE 
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0 J.wee 

7) 

8) OJ.wee 

O~e 

10) 

ng (JJe 01'1 ebout how you used HIVE 

NOlIe 

11) 

12) No 

13) No 

,. No 

O NeiIber 
~1l0l' 
Dis,.ee 

O NeiIber 
A6eellOl' 
DiI,.ee 

Ole .. lUll 0IltI,. .. 

o Yes 

O Ye. 

o Yes 

O Dis,.ee 

ODiuam 

o SlrOIIIIIJ 
DiI .... 

O Won 
lUll&.. ,.... 
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Old HIVE make 
apparentarr-j 

IS) pattems In your data O No O Ye. 
that you were 
already aware of? 

16) 
Would you use HIVE O No O Ye. again? 

The terw remaining quesbons reqUire you to answer in your own words. 

17) VVhat parbcular aspects ot HIVE do you dislike? 

\8) VVhat parbcular aspects of HIVE do you like? 

19) VVhat did you use HIVE tor? 

20) VVhat other soll'fooare would you use Instead of HIVE tor the same tasks? 

21) Arr-jOtl'wcomments? 

22) Please enter your name. This Will not be disclosed With the results 

Thenkyou very much tor taking the bme to help me. It you have any queries or would like a newer version of the HIVE software please getin 
touch With me at ar@des ala ae uk 
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