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Abstract 

 

Introduction: Varying degrees of periodontal disease affect the majority of the 

population. Severe forms of periodontitis have a considerable impact on oral 

health and quality of life. Periodontitis results from imbalances in the oral 

microbiome and the host immune response. The mainstay of periodontal 

treatment – removal of dental plaque – is only partially successful. B cells 

infiltrate the gingiva of periodontitis patients, but their role in pathology has not 

been well characterised. The overarching aim of this research was to better 

characterise the role of B cells in periodontitis. Periodontitis shares similarities 

in risk factors and aspects of immunopathology with rheumatoid arthritis. 

Epidemiological evidence suggests patients with rheumatoid arthritis are more 

likely to have periodontitis, which cannot be completely explained by shared risk 

factors. This has led to the hypothesis that the two diseases are immunologically 

linked, and that periodontitis may precede, and cause, rheumatoid arthritis. A 

further objective of this research was to investigate whether the autoimmunity 

characteristic of rheumatoid arthritis emerges in periodontitis. 

Results: B cell infiltrate in the gingiva of periodontitis patients was confirmed. 

Periodontitis patients were found to have elevated serum titers of anti-

citrullinated peptide antibodies which were generally below the diagnostic 

threshold for rheumatoid arthritis, and were reduced following non-surgical 

periodontal treatment. In a murine model of periodontitis, subtle changes to B 

cell phenotype were observed in tissues regional to the oral cavity in mice with 

periodontitis, at an early stage of disease. Such changes included increased B 

cell expression of receptor activator of NfκB ligand in the gingiva, and increased 

proportions of GC B cells in the draining lymph nodes. Some of these trends were 

enhanced in mice with periodontitis exacerbated by interleukin-33 treatment. B 

cell-deficient mice were protected from the alveolar bone loss normally induced 

in the model of periodontitis. 

Conclusion: B cells form a substantial proportion of the inflammatory infiltrate 

in the gingiva of periodontitis patients. Treatment of periodontitis can reduce 

titers of anti-citrullinated peptide antibodies in patients, potentially reducing 

their risk of developing rheumatoid arthritis. Evidence from B cell-deficient mice 

suggests that B cells contribute to pathological alveolar bone loss. Therefore, B 

cells may be worthy of targeting therapeutically in periodontitis. 
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Chapter 1: General introduction 

 

1.1 Periodontitis 

 

1.1.1 Clinical characterisation of periodontitis 

 

PD is a chronic inflammatory disease which destroys the tissues and bone 

supporting the teeth, and can result in tooth loss. Diagnosis of PD is usually 

achieved through assessing gingival inflammation and destruction by testing for 

BOP and measuring LOA. LOA of the gingiva is evaluated by assessing the position 

of the GM relative to the CEJ in combination with measuring PPD (Figure 

1.1.1.1). Radiographic evaluation of the level of the alveolar bone relative to 

the CEJ enables the degree of alveolar bone loss to be determined. Alveolar 

bone loss may be further calculated as the proportion of bone loss relative to 

tooth root length: < 30 %, 30-50 %, or > 50 % alveolar bone loss can be defined as 

mild, moderate, or severe respectively. In line with proposals from the EFP and 

AAP, these clinical parameters can be used as a guide for case definitions in 

periodontal research. At the 2005 EFP workshop, it was proposed that mild or 

incipient PD could be assigned to cases where there are two or more tooth sites 

(on different, non-adjacent teeth) with LOA of ≥ 3 mm, and severe PD 

considered where ≥ 30 % of teeth have LOA of ≥ 5 mm (Preshaw, 2009). In 2007 

the CDC and AAP further distinguished between moderate and severe PD, stating 

that cases could be considered as moderate PD where there are two or more 

tooth sites with LOA of ≥ 4 mm, and severe PD where there are two or more 

tooth sites with LOA of ≥ 6 mm (Preshaw, 2009). 

 



21 
 

 

Figure 1.1.1.1. Clinical characterisation of periodontitis. Arrows indicate 
distances used as clinical parameters of PD. CEJ = cementoenamel junction, GC 
= gingival crevice GM = gingival margin, PPD = probing pocket depth, LOA = loss 
of attachment, R = recession. Compared with health, PD is characterised by 
greater PPD and LOA.  
 

The term ‘periodontal disease’ can encompass both gingivitis and PD. Gingivitis 

is reversible inflammation of the gingiva caused by accumulation of dental 

plaque. Removal of the plaque enables resolution of the inflammation. PD is 

characterised by irreversible destruction of periodontal tissues, with evidence of 

persistent inflammation in most cases. Gingivitis may or may not progress to PD. 

The factors determining progression are complex and not fully understood. In 

addition to being classified as mild, moderate, or severe, PD can be broadly 

categorised as either aggressive or chronic. Aggressive PD, which is less common, 

typically affects younger age groups and progresses rapidly; chronic PD tends to 

affect patients over the age of 35 and progresses more slowly. Disease may be 

further described as ‘generalised’ if the majority of teeth are affected or 

‘localised’ if only a few teeth are affected (Armitage, 2004, Albandar, 2014). 

The criteria for assigning patients to these different categories of PD have not 

been strictly standardised and practices can vary greatly between different 
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clinics, which makes it difficult to review research (Burt, 2005, Savage et al., 

2009). 

 

1.1.2 History and epidemiology of periodontitis 

 

Periodontal disease is one of the most common causes of inflammatory bone loss 

of mankind. It is a worldwide health problem, with the majority of the 

population experiencing some level of gingival inflammation, and 5-8 % of the 

population suffering from severe forms of PD (Coventry et al., 2000, Hugoson et 

al., 2008). 

 

Periodontal disease has affected humans for thousands of years. Data gathered 

from the dental matter of skeletons indicates that 3,000 years ago almost all 

British inhabitants over the age of 10 years had gingivitis, and that the 

prevalence of PD then was similar to the prevalence of PD today (Kerr, 1998).  

 

In the US, analysis of the 2009-2010 National Health and Nutrition Examination 

Survey suggested the overall prevalence of PD is higher among men (56.4 %) than 

women (38.4 %). This sexual dimorphism in susceptibility to PD has been also 

been reported in smaller scale studies elsewhere, and has been attributed to the 

differential regulation of immune parameters by sex hormones (Shiau and 

Reynolds, 2010, Thornton-Evans et al., 2013). 

 

Unlike other oral health problems, such as dental caries, the development of PD 

is not strictly dictated by changes in diet or dental hygiene habits. Many patients 

suffer PD in spite of good dental hygiene practice. Longitudinal studies of human 

populations where there is a total lack of dental hygiene, and no access to 

professional dental care, found that approximately 10 % of people were 

apparently resistant to PD, 10 % were highly susceptible, and the remainder of 

the population showed moderate disease progression (Loe et al., 1986, Morris et 

al., 2001). These observations highlight that PD is a multi-factorial disease. The 

global distribution of periodontal diseases - including PD - has been found to 

correlate with low income, poor education, and lack of access to dental care, 

but these factors are not deterministic (Petersen and Ogawa, 2005). 
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1.1.3 Treatment of periodontitis 

 

Treatment of PD presently remains focused on physical removal of dental 

plaque. The main treatment strategies are dental health education, oral hygiene 

instruction, supra-gingival scaling of teeth, and root surface debridement. In 

some cases, access to the root surfaces is improved through periodontal surgery 

(Wang and Greenwell, 2001). Various antimicrobials such as metronidazole, 

amoxicillin, and chlorhexidine have been used as adjuncts to the physical 

removal of plaque, but have led to minimal improvements in treatment 

outcomes (Rooney et al., 2002, Feres et al., 2009, Silva et al., 2011, Soares et 

al., 2014).  

 

PD patients require long-term maintenance treatment to manage the disease. 

Although the current approaches to treatment are successful in reducing gingival 

inflammation and retaining teeth, disease reoccurrence and progression are 

common (Hujoel et al., 2000, Lorentz et al., 2009, Oliveira Costa et al., 2011, 

Darcey and Ashley, 2011, Mdala et al., 2013). 

 

The scale of PD prevalence and the intensity of treatment can be gauged in 

financial terms. The cost to the NHS in Scotland for simple, non-surgical 

periodontal treatment was just over £23,000,000 in 2010 (ISD Scotland National 

Statistics). This figure does not include the cost of specialist care or the cost of 

treating the sequelae of PD (tooth loss).  

 

1.1.4 Risk factors for periodontitis 

 

1.1.4.1 Genetics 

 

Twin studies have indicated that susceptibility to PD is approximately 50 % 

genetic (Michalowicz et al., 2000, Torres de Heens et al., 2010). Genetic risk 

factors for PD are generally associated with perturbations of the immune 

response and bone mineralisation. Candidate gene studies have identified 

polymorphisms associated with PD located in genes that encode cytokines, 

cytokine receptors, PRRs, FcRs, MMPs, and the vitamin D receptor (Loos et al., 

2003, Laine et al., 2005, Borges et al., 2009, Wang et al., 2009, Karimbux et al., 
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2012, Pan et al., 2013). These associations have also been detected within large-

scale genome-wide association studies, although none have been found to be 

significant when analysed in this context (Divaris et al., 2013, Teumer et al., 

2013, Shaffer et al., 2014).  

 

As a patient’s genome is only partially accountable for their relative risk of PD, 

studies which combine genome analysis with analysis of other factors, such as 

the microbiome, may be more likely to shed light on disease pathogenesis. So 

far, colonisation with PD-associated bacteria has been linked to the 

chromosomal region 1q42 in a genome-wide study of 1,020 patients (Divaris et 

al., 2012). This field of ‘infectogenomics’ is in its infancy and its full potential 

remains to be explored. Future studies may be able to draw a network of 

associations between different species of PD-associated bacteria and specific 

genetic variances in components of the immune system. An earlier study which 

focused on a limited number of known candidate genes, identified moderate 

associations between FcR and IL-6 polymorphisms and colonisation with P. 

gingivalis and Aggregatibacter actinomycetemcomitans (Nibali et al., 2007, 

Nibali et al., 2014). 

 

1.1.4.2 Smoking  

 

Among the environmental factors which influence susceptibility to PD, smoking 

is one of the most potent and most common. According to a National Health and 

Nutrition Examination Survey, current and former smoking may be responsible 

for more than half of PD cases in the US (Tomar and Asma, 2000). There is a 

striking dose-dependent effect, with heavy smokers at greatest risk of PD 

(Tomar and Asma, 2000).  

 

The nicotine component of cigarettes is known to act as an immunosuppressant 

(Geng et al., 1995, Geng et al., 1996, Nouri-Shirazi and Guinet, 2003, Kalra et 

al., 2004). Smoking is associated with reduced production of cytokines and 

chemokines locally in the gingiva, and reduced rates of phagocytosis by 

neutrophils (Giannopoulou et al., 2003, Guntsch et al., 2006, Tymkiw et al., 

2011, Bondy-Carey et al., 2013, Haytural et al., 2014, Souto et al., 2014a). PD 

patients with a history of smoking typically have lower antibody titers against 
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disease-associated bacteria, including P. gingivalis (Tangada et al., 1997, 

Graswinckel et al., 2004, Apatzidou et al., 2005, Giuca et al., 2014).  

 

Numerous studies suggest that smoking promotes colonisation of the oral cavity 

by PD-associated bacteria (Quinn et al., 1998, Haffajee and Socransky, 2001, 

Gomes et al., 2006, Mdala et al., 2013, Zambon et al., 1996, Kamma et al., 

1999). Potential pathogens have greater opportunities to breach the oral 

mucosal barrier as toxins in smoke cause tissue damage, and reduce the ability 

of the host to repair this damage by inhibiting fibroblast growth and collagen 

production (Zhang et al., 2010, Semlali et al., 2011, Joshi et al., 2014).  

 

1.1.4.3 Obesity 

 

After smoking, obesity is increasingly recognised as the second greatest risk 

factor for PD. An extensive meta-analysis showed that obesity is associated with 

a 30-40 % increased risk of PD (Chaffee and Weston, 2010). Obesity is marked by 

a significant increase in the amount of adipose tissue. Adipose tissue is 

composed of adipocytes and lymphocytes which actively in regulate metabolism 

and inflammation through the production of hormones, adipokines, and 

cytokines (Ouchi et al., 2011, Mraz and Haluzik, 2014). Circulating IL-6 and TNFα 

concentrations are positively correlated with obesity in patients (Ziccardi et al., 

2002, Crowther et al., 2006, Illan-Gomez et al., 2012, Zimmermann et al., 

2013). The immunological mechanism linking obesity to PD remains to be fully 

elucidated. One potential consequence of obesity that could contribute to the 

destruction of periodontal tissues is the exaggeration or dysregulation of 

inflammatory responses to bacterial infection (Genoni et al., 2014). Another 

possibility is that the integrity of the mucosal barrier is compromised in obese 

individuals, by elevated circulating levels of NAMPT. Extracellular NAMPT can act 

as both an adipokine, and a cytokine, and has been found to inhibit the 

regenerative capacity of periodontal ligament cells in vitro (Nokhbehsaim et al., 

2013).  

 

Obesity may be considered as one component of metabolic syndrome, which also 

involves insulin resistance, dyslipidemia, and hypertension, all of which have 

been linked to PD. 
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1.1.4.4 Insulin resistance and diabetes 

 

Obesity and PD are associated with lower serum levels of the adipokine 

adiponectin. In obese mice, exogenous delivery of adiponectin reduced P. 

gingivalis infection-induced alveolar bone loss (Zhang et al., 2014b). A decrease 

in circulating adiponectin causes insulin resistance. Insulin resistance leads to 

bouts of hyperglycaemia, which can lead to the production of AGEs. AGEs appear 

to accumulate in the gingiva of diabetic patients (Schmidt et al., 1996). In 

patients with diabetes, PD is associated with increased insulin resistance and 

poor glycaemic control, which in turn, exacerbate PD. A five year follow-up 

study of patients on a periodontal therapy programme reported that progression 

of PD and tooth loss was significantly higher among diabetic PD patients with 

poor glycaemic control compared with diabetic PD patients with good glycaemic 

control or non-diabetic PD patients (Costa et al., 2013). It has been hypothesised 

that interaction of AGEs with their receptor (RAGE) on endothelial cells, 

fibroblasts, and leukocytes in the gingiva contributes to the persistent 

inflammation in PD, and is one of the underlying mechanisms by which diabetes 

exacerbates PD (Lalla et al., 2000a). Blockade of RAGE has been demonstrated 

to suppress P. gingivalis infection-induced alveolar bone loss in diabetic mice in 

a dose-dependent manner (Lalla et al., 2000b). 

 

1.1.4.5 Age 

 

Although there are juvenile forms of PD, in the majority of cases, the onset of 

PD occurs in adulthood. Cross-sectional studies have shown that the prevalence 

of PD is much higher in older populations compared with the general population, 

and longitudinal studies have clearly indicated that the risk of developing PD 

increases with age (Norderyd and Hugoson, 1998, Norderyd et al., 1999, 

Norderyd et al., 2012, Renvert et al., 2013). In young adults, PD likely manifests 

as a result of the gradual accumulation of environmental or lifestyle risk factors 

against a background of genetic predisposition. The increased risk of developing 

PD in old-age (≥ 65 years) is probably due to age-associated phenomena 

encompassing a reduction in the capacity of tissues to repair damage and 

widespread changes in the immune response to bacteria (Ashcroft et al., 1997b, 

Ashcroft et al., 1997a, Swift et al., 1999, Swift et al., 2001, Ashcroft et al., 
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2002). This concept is supported by human studies of experimental gingivitis 

which involves total abstinence from oral hygiene to enable plaque to 

accumulate, following the delivery of professional dental care to ensure that all 

participants have comparable plaque levels at baseline. In groups of young (aged 

20-25) and elderly (≥ 60 years) individuals, the latter group developed more 

severe gingivitis following plaque accumulation (Fransson et al., 1996, Tsalikis et 

al., 2002). This concurs with observations of mice and non-human primates, 

which naturally develop periodontal inflammation and bone loss as a product of 

age, in response to the indigenous oral microbiota (Ebersole et al., 2008, Liang 

et al., 2010). Further evidence of ‘age-altered susceptibility’ has been gathered 

from in vitro studies of immune cells and mesenchymal cells (Table 1.1.4.5.1). 

Age-associated changes to both the basal activity of cells, and their response to 

bacteria have been observed, which may have implications for PD.  

 

Cell type Age-associated changes to phenotype and function 

Reduced Increased 

gingival 
fibroblasts 

 basal IL-6 and IL-8 
production 

 basal MMP3 and MMP13 
production 

neutrophils  signal transduction (TLR2, 
TLR4, CD14, and CD11b)  

 chemotaxis (fMLP and 
GM-CSF) 

 phagocytosis 

 microbicidal activity 

 stimulus-induced 
apoptosis 

macrophages  cytokine production 

 chemotaxis 

 phagocytosis 

 intracellular killing 

 TLR5 expression 

DCs  antigen presentation 

 chemotaxis 

 IL-12 production 

 IL-6 and TNFα production 

 basal expression of co-
stimulatory molecules 

Table 1.1.4.5.1 Age-associated changes to the phenotype and function of 
cells. Adapted from Hajishengallis (2014). Data are sourced from a mixture of 
human and murine in vitro studies (Biasi et al., 1996, Wenisch et al., 2000, 
Butcher et al., 2001, Fulop et al., 2004, Agrawal et al., 2007a, Liang et al., 
2009, Panda et al., 2010, Domon et al., 2014).  
 

Telomere length is known to decrease with age, and this has been linked to 

oxidative stress (von Zglinicki, 2002, Harley et al., 1990). Several studies have 

found that the telomeres of leukocytes from PD patients were shorter than those 

of age-matched periodontally healthy controls (Masi et al., 2011, Masi et al., 
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2014, Sanders et al., 2015). It is not known whether this sign of aging is a cause 

or consequence of disease. Oxidative stress is thought to have a role in the 

immunopathogenesis of PD, and to be one of the ways in which smoking poses a 

risk factor for PD (Matthews et al., 2012, Akpinar et al., 2013, Hendek et al., 

2014).  

 

1.2 P. gingivalis and microbial dysbiosis in periodontitis 

 

PD may now be defined as a disease resulting from a dysregulated immune 

response to a dysbiotic oral microbiome. Formerly, PD was thought to be caused 

by a handful of ‘pathogenic’ bacteria; Porphyromonas gingivalis, Treponema 

denticola, and Tannerella forsythia described as the ‘red complex’ (Socransky et 

al., 1998). Of the red complex of bacteria, colonisation by one species – P. 

gingivalis – had the strongest positive correlation with the clinical parameters 

BOP and PPD, and subsequently received a great deal of attention. Presently, it 

is more widely accepted that P. gingivalis and the other red complex members 

are not ‘pathogenic’ per se, as they do not strictly adhere to Koch’s postulates. 

P. gingivalis is often undetectable in PD patients, with as few as 40 % harbouring 

detectable numbers of P. gingivalis in one study (Eick and Pfister, 2002). 

Meanwhile, P. gingivalis can be detected in as many as 25 % periodontally 

healthy individuals (Griffen et al., 1998). Studies of spouses of PD patients have 

demonstrated that they are more likely to harbour P. gingivalis and other 

disease-associated bacteria in subgingival plaque and saliva than the general 

population, but this is not associated with changes to their periodontal health 

(Von Troil-Linden et al., 1995, von Troil-Linden et al., 1997). Moreover, using 

mice it has been demonstrated that introduction of P. gingivalis to the oral 

cavity, in the absence of other oral bacteria, is not able to cause disease 

(Hajishengallis et al., 2011). 

 

A better understanding of how P. gingivalis and other putative periodontal 

pathogens operate within a community of bacteria has emerged with 

advancements in technology. Socransky et al. (1998) studied the relationships 

between different species of bacteria and between groups of bacteria using 

checkerboard DNA: DNA hybridisation. This involved isolating the DNA of 40 

cultivable species from samples of plaque, and fixing it to a membrane which 
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was then hybridised with digoxigenin-labelled chromosome probes that could be 

detected using AP-conjugated anti-digoxigenin antibodies. 

 

A decade later, the Human Oral Microbiome Database was set-up, and now lists 

over 700 species of bacteria detected in the human oral microbiome, of which 

approximately 49 % are both named and cultivated. These have all been 

identified by cloning and sequencing their 16S rRNA genes using CE-based 

sequencing. Full genome sequences are available for approximately 46 % (315) of 

the taxa listed. This database was an off-shoot from the NIH-supported Human 

Microbiome Project which aims to identify all of the major organisms comprising 

the human microbiome to help establish their role in health and disease (Chen et 

al., 2010, Dewhirst et al., 2010). Concurrently, the Human Oral Microbe 

Identification Microarray was developed which enabled analysis of the 

abundance of 300 different species in dental plaque including those which were 

uncultivable (Paster et al., 2001). Using these tools, it was revealed that PD is 

associated with a greater increase in microbial diversity than previously 

envisaged (Colombo et al., 2009). 

 

The preferred method for compiling a full profile of the oral microbiome is now 

NGS. Compared with CE-based sequencing, NGS enables multiple, larger DNA 

fragments to be sequenced in parallel, which in turn increases the level of 

resolution of bacterial communities, as well as the speed with which the data 

can be collected (Shendure and Ji, 2008). In addition to sequencing bacterial 

DNA, NGS provides a platform for the analysis of transcriptomics, and DNA-

protein interactions (ChIP-Seq). NGS therefore offers the opportunity to 

investigate the activities associated with different bacterial biofilms. Typically 

in phylogenetic studies of the oral microbiome, bacterial DNA is isolated from 

clinical samples and amplicons of virtually all bacterial 16S genes present are 

produced by using primers that recognise conserved flanking regions. NGS is then 

used to sequence regions of 16S rRNA genes which are aligned with those 

recorded in the Human Oral Microbiome Database to identify different species.  

 

With NGS, the differences and the surprising similarities between the oral 

microbiota associated with PD and with health have been further characterised. 

Alongside the previously identified ‘red complex’, novel species have been 
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identified in the periodontal pockets of PD patients with active disease. One 

study discovered an abundance of the Gram positive bacterium Filifactor alocis 

in subgingival plaque from PD patients. Surprisingly, this study suggested that 

the microbial composition associated with PD is generally a mixture of Gram 

negative and Gram positive bacteria. Previously, Gram negatives were believed 

to dominate in disease (Griffen et al., 2012).  

 

The relative abundance of over 100 species have been associated with PD, and 

more than 50 species associated with health. The revelation that changes to the 

composition of the oral biofilm in PD is due to the rise of pre-existing low-

abundance species rather than the invasion and displacement of health-

associated species by putative periodontal pathogens is the result of the 

increased power of detection of low-abundance species conferred by NGS 

compared to older molecular techniques (Abusleme et al., 2013). The challenge 

remains to establish which of the bacteria present in PD have an active role in 

the disease, and which benefit from the micro-environment but contribute little 

to the stability of the disease-associated biofilm (Griffen et al., 2012, 

Schwarzberg et al., 2014).  

 

There is substantial variability in the microbiota between different tooth sites in 

a single patient, and between individuals within the same patient group (Griffen 

et al., 2012, Abusleme et al., 2013, Ge et al., 2013). It is thought that this 

variability is influenced by numerous environmental and genetic host factors 

including the geographical location, race, and smoking status (Nasidze et al., 

2009, Ge et al., 2013).  

 

Microbiologists are getting closer to the goal of determining which bacteria or 

combinations of bacteria in oral biofilms are game-changers in PD pathogenesis 

following major developments in microarrays, which enable culture-independent 

linkage of phylogenetic and functional analyses. GeoChip 4.0 and HuMiChip 1.0 

contain 83,992 and 36,802 probes respectively, which target key functional 

genes in various biochemical pathways such as antibiotic resistance; virulence; 

and the metabolism of amino acids, carbohydrates, lipids, glycan, vitamins, and 

nucleotides (Tu et al., 2014a, Tu et al., 2014b). Comparison of the metabolic 

activities of bacteria in plaque samples from patients with PD and periodontally 
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healthy subjects revealed considerable differences (Li et al., 2014a). Genes 

enriched in disease-associated bacteria included four which have roles in lysine, 

alanine and arginine metabolism, and three which are involved in GAG 

degradation. Conversely, several genes involved in amino acid synthesis and 

pyrimidine synthesis had a relatively lower abundance in plaque samples from PD 

patients compared with periodontally healthy patients.  

 

Following an investigation of the murine model of PD, it has emerged that a 

single disease-associated low-abundance bacterium, P. gingivalis, is capable of 

conducting a massive shift in the oral microbiota. Many studies previously 

demonstrated that oral inoculation of mice with P. gingivalis leads to gingival 

inflammation and alveolar bone loss characteristic of PD (Baker et al., 1994, 

Sasaki et al., 2004). Using qRT-PCR,  Hajishengallis et al. (2011) revealed that 

introduction of P. gingivalis to the murine oral cavity led to an increase in the 

total cultivable commensal bacterial load (of which P. gingivalis itself 

constituted < 0.01 %) and to alterations in the composition of the oral microbiota 

compared with uninfected control mice. These quantitative and qualitative 

changes to the oral biofilm have hence formed the definition of ‘microbial 

dysbiosis’ in the context of PD. The ability of P. gingivalis to induce microbial 

dysbiosis is evidently dependent on the interaction between P. gingivalis and 

complement, since it was unable to do so in C3aR and C5aR KO mice, which 

were resistant to infection-induced alveolar bone loss. The current paradigm is 

that P. gingivalis subverts complement and inhibits phagocytosis by innate 

immune cells, boosting the survival of an array of bacteria which results in the 

observed dysbiosis (Wang et al., 2010, Hajishengallis et al., 2011, Liang et al., 

2011). GF mice were found to be resistant to P. gingivalis infection-induced 

alveolar bone loss - although the ability of P. gingivalis to colonise GF mice was 

not significantly altered. This indicates that alveolar bone loss in the murine 

model of PD is dependent on the presence of both P. gingivalis and other species 

of bacteria, and results from the interaction between the host and a dysbiotic 

oral microbiota.   

 

Understanding the mechanisms behind the development of dysbiosis, the 

interactions between different bacteria within the dysbiotic biofilm, and the 

interaction of the dysbiotic community with the host could lead to the 
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development of interventions which reverse the dysbiotic state (Jenkinson and 

Lamont, 2005, Curtis, 2014). A small peptide antagonist which blocks the 

interaction between P. gingivalis and Streptococcus gordonii reduced P. 

gingivalis colonisation and protected mice from P. gingivalis infection-induced 

alveolar bone loss (Daep et al., 2011). The utility of such a drug in PD patients 

may be limited however, as there are potentially other disease-associated 

bacteria which are equally capable of orchestrating dysbiosis. Broader disruption 

of the dysbiotic biofilm may be required to treat disease and could be achieved 

by targeting quorum signalling: the non-contact communications between 

bacteria (Hentzer and Givskov, 2003, Jenkinson and Lamont, 2005). 

 

1.3 Different strains of P. gingivalis 

 

Despite the revelation that PD is the product of polymicrobial dysbiosis, P. 

gingivalis continues to be the sole focus of many microbe-host interaction 

studies in the context of PD. This is partly because P. gingivalis possesses an 

assortment of unique virulence factors, the activity of which benefit not just P. 

gingivalis, but other members of the microbiota.   

 

Around 100 different strains of P. gingivalis have been isolated from humans, 

monkeys, and other animals (Loos et al., 1993, Laine and van Winkelhoff, 1998). 

A selection of these have become commonly used in the laboratory. These 

strains vary slightly in the virulence factors they possess, most notably, in the 

presence and type of polysaccharide capsule, and in the type of fimbriae (Table 

1.3.1). 

 

Historically, virulence has been assessed through the use of the skin abscess 

mouse model or the chamber model of infection. The skin abscess model 

involves subcutaneous inoculation of bacteria into the dorsum. Mice are then 

monitored daily for the size and ulceration of lesion, body weight, and general 

health. At the end-point, less than a week after the inoculation, systemic spread 

of the bacteria is assessed (Ebersole et al., 1995, Katz et al., 1996, Laine and 

van Winkelhoff, 1998). These virulence studies performed are generally in 

agreement that the capsulated strains 53977, W50, and W83 are more virulent 

than the non-capsulated strains 381 and ATCC 33227 as they were associated 
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with larger lesions and greater lethality. Subsequent studies using the murine 

model of PD involving oral infection with P. gingivalis confirmed that the 

capsulated strains caused greater alveolar bone loss, with one study indicating 

that P. gingivalis W83 caused the greatest alveolar bone loss (Baker et al., 

2000a, Wilensky et al., 2009, Marchesan et al., 2012). For this reason, the W83 

strain was selected for use in all the murine studies of PD conducted in the 

following chapters. 

 

Strain Capsule ± 
(serotype) 

FimA   
isoforms (length) 

Virulence  
high/ low 

W83  + (K1) type IV (very short) high 

W50 (ATCC 53978) + (K1) type IV (very short) high 

HG184 + (K2) type II (long) high 

A7A1-28 (ATCC 53977) + (K3) type II (long) high 

ATCC 49417 + (K4) type III (long) high 

HG1690 + (K5) type II (long) high 

HG1691 + (K6) type Ib  high 

381 - type I (very long) low 

ATCC 33227 - type I (very long) low 

Table 1.3.1. Different strains of P. gingivalis isolated from humans. 
Examples of P. gingivalis strains originally isolated from PD patients, some of 
which are commonly used in the laboratory (Loos et al., 1993, Fujiwara et al., 
1993, Sojar et al., 1997, Laine and van Winkelhoff, 1998, Mikolajczyk-Pawlinska 
et al., 1998, Baker et al., 2000a, Naito et al., 2008, Fabrizi et al., 2013, Kerr et 
al., 2014, Siddiqui et al., 2014). 
 

Six different capsular serotypes have been identified (K1-6). P. gingivalis W83 

has the K1 serotype (Laine et al., 1996). Although several in vitro studies have 

reported that K1 and K2 bearing P. gingivalis strains have superior resistance to 

phagocytosis, there is no trend in P. gingivalis with a particular capsular 

serotype being more strongly associated with virulence in vivo (Sundqvist et al., 

1991, Laine and van Winkelhoff, 1998, d'Empaire et al., 2006, Vernal et al., 

2009).  

 

Different forms of fimbriae have been characterised. P. gingivalis expresses two 

distinct types of fimbriae: major (FimA) and minor (Mfa 1). Major fimbriae are 

classified into six types (type I-V and Ib) based on the isoforms of FimA gene, the 

key subunit. These different FimA genotypes are associated with different 

lengths of major fimbriae, although the length is actually regulated by the FimB 

gene (Nagano et al., 2010). The extremely long length of major fimbriae in P. 
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gingivalis 381 and ATCC 33227 is due to a deficiency in FimB (Nagano et al., 

2012).  

 

P. gingivalis strains with type II major fimbriae are most commonly found in the 

mouths of PD patients, and are more frequently detected in deeper periodontal 

pockets (Amano et al., 1999, Miura et al., 2005, Zhao et al., 2007, Fabrizi et al., 

2013). A selection of in vitro studies have indicated that P. gingivalis with type II 

major fimbriae are enhanced in their ability to adhere to and invade epithelial 

cells (Amano et al., 2004, Nakagawa et al., 2006, Kato et al., 2007). However, 

not all P. gingivalis strains with type II major fimbriae are highly virulent in the 

skin abscess mouse model (Inaba et al., 2008). The lack of a strong correlation 

between the type of major fimbriae and virulence observed in the murine 

abscess model could be due to advantages associated with particular types of 

major fimbriae being dependent on the context of the oral cavity, as well as 

other strain-specific features masking the role of major fimbriae in this scenario. 

 

1.4 The host immune response to P. gingivalis  

 

A fully-functioning immune system can usually manage the oral microbiome, 

prevent invasion by potential pathogens, and minimise damage to the host 

tissues if invasion does occur. P. gingivalis contributes to dysbiosis and the 

development of PD by subverting the host immune response. The following sub-

sections of this chapter describe, in detail, the interactions between P. 

gingivalis and components of the innate and adaptive immune system.  
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Figure 1.4.1 Summary of the host immune response to P. gingivalis in 
periodontitis. In health, neutrophils migrate through the gingiva. There are a 
small number of resident mast cells and DCs. In susceptible hosts, P. gingivalis 
colonisation can cause microbial dysbiosis, characterised by an increase in the 
total biofilm biomass, and a shift in the relative abundance of different species. 
Interplay between a dysbiotic oral microbiome and a dysregulated immune 
response leads to chronic inflammation of the gingiva and the development of 
PD. First an innate immune response is triggered when the oral mucosal barrier 
is breached by P. gingivalis; there is increased influx of neutrophils, activation 
of mast cells, and recruitment of macrophages. As P. gingivalis subverts this 
innate immune response, it fails to clear the bacteria and inflammation persists. 
An adaptive immune response is launched following the activation of DCs. 
Lymphocytes are recruited to the tissue and aggregates of lymphocytes form 
near DCs. Antibody producing plasma cells appear. Downstream of these 
activities of the immune system, osteoclast activity is increased, causing 
resorption of the alveolar bone. 
 

1.4.1 The innate immune response 

 

1.4.1.1 The mucosal barrier 

 

Within the gingival crevice, P. gingivalis is able to live in the biofilm, in the GCF, 

and in and on the GECs that line the crevice (Hajishengallis and Lamont, 2014). 

In PD patients, there is increased invasion of the gingival tissue by P. gingivalis 
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(Dibart et al., 1998, Colombo et al., 2007). P. gingivalis breaches the oral 

mucosal barrier by two major mechanisms: invasion of GECs, and destruction of 

GEC junctions. 

 

The FimA subunit of major fimbriae binds to β1-integrin receptors on the GEC 

surface (Njoroge et al., 1997, Yilmaz et al., 2002). This then recruits and 

activates the integrin focal adhesion complex. Simultaneously, P. gingivalis 

secretes the serine phosphatase SerB, which enters cells and activates the actin 

depolymerising molecule cofilin (Moffatt et al., 2011). As a result, there is 

transient and localised disruption of the cytoskeleton, which allows the 

bacterium to move inside the GEC (Yilmaz et al., 2003).  

 

From inside the GECs, P. gingivalis degrades junctional proteins, thereby 

disrupting the bonds between adjacent GECs, and between GECs and the 

underlying ECM. P. gingivalis possesses three cysteine proteinases known as 

gingipains. Of these, two are arginine-specific (RgpA and RgpB), and one is 

lysine-specific (Kgp). RgpA and RgpB degrade paxillin, a focal adhesion-

associated adaptor protein (Nakagawa et al., 2006). Gingipains are also thought 

to be responsible for the degradation of other cell adhesion molecules, including 

integrins and catenins (Hintermann et al., 2002). As a result of this proteolysis, 

GEC morphology is altered and the wound healing function of GECs is impaired in 

vitro (Hintermann et al., 2002, Nakagawa et al., 2006). Cytochalasin D was 

found to inhibit P. gingivalis degradation of paxillin in GECs, proving that this 

proteolysis is dependent on cell invasion (Nakagawa et al., 2006).  

 

Whilst inside GECs, P. gingivalis SerB dephosphorylates and inactivates NfκB, and 

induces the expression of suppressive micro-RNAs. This re-programs host cell 

gene expression, leading to temporary paralysis of chemokine expression 

(Moffatt and Lamont, 2011, Takeuchi et al., 2013). In mice, the overall 

expression of CXCL1 (the functional murine ortholog of human IL-8) in the 

gingiva was significantly reduced at four days post-infection with P. gingivalis, 

but returned to baseline or above basal levels at six weeks post-infection 

(Hajishengallis et al., 2011).  
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The gingipains secreted by P. gingivalis can rapidly degrade various chemokines 

secreted by GECs, which may further stall the recruitment of leukocytes. IL-1, 

IL-6, and IL-8 can all be degraded by Kgp (Stathopoulou et al., 2009). This 

temporary paralysis of chemokine gene and protein expression is thought to 

offer P. gingivalis, and bystander bacteria, the opportunity to establish 

colonisation of the gingival tissues, unimpeded by patrolling neutrophils. 

 

1.4.1.2 Neutrophils    

 

In health, co-ordinated gradients of chemokines and adhesion molecules direct 

the migration of neutrophils to the gingival crevice (Hajishengallis and 

Hajishengallis, 2014). This migration is not solely regulated by the microbiome 

since neutrophils are recruited to the gingiva of GF mice, albeit in small 

numbers (Zenobia et al., 2013). The presence of commensals is associated with 

increased IL-8 production by GECs, which in turn increases the recruitment of 

neutrophils (Zenobia et al., 2013). Bacteria-derived products such as fMLP 

peptide and proteins modified with fMet are also potent chemokines for 

leukocytes, especially neutrophils (Gallin et al., 1983, Marasco et al., 1984). 

 

Neutrophils roll along vessel walls through a series of weak interactions between 

endothelial selectins (P- and E- selectins) and neutrophil glycoproteins. IL-8 or 

microbial products initiate a conformational change in the β2-integrin LFA-1, 

which subsequently binds ICAM-1 on endothelial cells with greater affinity to 

facilitate extravasation. Neutrophils then continue to follow the chemokine 

gradient as they migrate through the lamina propria of the gingival tissue. 

Eventually, they cross the GECs lining the gingival crevice to enter the GCF. 

 

In PD, disruption of the chemokine gradients by P. gingivalis may delay the 

recruitment of neutrophils. When neutrophils do reach the gingival crevice, they 

struggle to phagocytose bacteria within a biofilm, instead undergoing frustrated 

phagocytosis, whereby the contents of lysosomes and other pro-inflammatory 

substances are released into the extracellular space, leading to tissue damage 

(Ryder, 2010, Chapple and Matthews, 2007).  
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Although undoubtedly a potential source of tissue damage, there is clearly a role 

for neutrophils in maintaining periodontal health. This is exemplified by the 

association of congenital conditions which give rise to neutropenia with early-

onset PD. One example of this type of condition arises from mutations in the 

neutrophil elastase gene ELANE, which causes the production of misfolded 

elastase thought to induce apoptosis of neutrophil precursors in the BM (Ye et 

al., 2011).  

 

Similarly, severe PD develops early on in patients with LAD. LAD refers to a 

group of inherited disorders in which the normal extravasation of circulating 

neutrophils to sites of infection or inflammation is inhibited due to defects in 

the integrins or selectins involved in adhesion to vascular endothelial cells 

(Waldrop et al., 1987, Deas et al., 2003, Hanna and Etzioni, 2012). 

 

Murine models have confirmed that PD can be exacerbated by a reduction in the 

number of neutrophils recruited to the gingiva. Mice deficient in LFA-1, P- and E- 

selectin, or CXCR2 (the chemokine receptor for CXCL1, the functional murine 

ortholog of IL-8), have a higher oral bacterial load, and apparently increased 

alveolar bone loss in response to normal flora (Niederman et al., 2001, 

Hajishengallis et al., 2011, Zenobia et al., 2013). 

 

On the other hand, murine models have also demonstrated that excessive 

neutrophil recruitment can be disadvantageous in the pathogenesis of PD. Del-1 

is an endogenous negative regulator of neutrophil diapedesis which blocks the 

interaction between LFA-1 and ICAM-1 (Choi et al., 2008). Mice deficient in Del-1 

have increased neutrophil infiltrate in the gingiva and spontaneously develop 

alveolar bone loss (Eskan et al., 2012). 

 

1.4.1.3 Mast cells 

 

Low numbers of mast cells reside in the gingival tissue. They are usually located 

near small blood vessels beneath the GEC barrier. An increase in mast cells, and 

specifically, activated mast cells, have been observed in the gingival tissue of PD 

patients compared with periodontally healthy subjects (Gunhan et al., 1991, 

Batista et al., 2005, Huang et al., 2012). 
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Mast cells express FcRs which bind IgE (FcɛRI) and IgG (FcᵧRIII). Tissue resident 

plasma cells in the gingiva of PD patients, have been reported to frequently 

produce IgG, but rarely produce IgE (Okada et al., 1983, Ogawa et al., 1989, 

Marton et al., 1990, Takahashi et al., 1997). Activation of mast cells can also 

occur downstream of either the classical or alternative complement pathway as 

mast cells express the C5aR, which binds C5a. P. gingivalis is known to 

selectively inhibit other components of the complement cascade and generate 

C5a using its gingipains - which proteolytically destroy most complement 

proteins, but double-up as C5 convertases (Popadiak et al., 2007). 

 

As a result of activation, mast cells undergo degranulation, releasing a vast array 

of enzymes, cytokines, chemokines, and other inflammatory mediators into the 

microenvironment. Histamine released by mast cells increases the permeability 

of blood vessels, assisting the extravasation of leukocytes. MMPs and serine 

proteases (tryptase and chymase) breakdown ECM, making it easier for 

leukocytes to migrate through connective tissue (Zhou et al., 2012). Cytokines 

and chemokines further help to attract and activate neutrophils, macrophages, 

and lymphocytes (Steinsvoll et al., 2004).  

 

Several of the inflammatory mediators produced by mast cells preferentially 

support a Th2 biased adaptive immune response by modulating DC function 

(Mazzoni et al., 2006, Kitawaki et al., 2006). A Th2 response is thought to 

benefit the survival of the oral bacteria involved in PD, and be detrimental to 

the host. This is discussed further in section 1.4.2.2. 

 

1.4.1.4 Macrophages   

 

Macrophages form only 1-2 % of the inflammatory infiltrate in the gingiva of PD 

patients, but even fewer are found in healthy gingival tissue (Berglundh and 

Donati, 2005, Jagannathan et al., 2014). The precursors of macrophages, 

monocytes, can be recruited to sites of infection, by essentially the same 

mechanism as neutrophils, but they are responsive to a slightly different array of 

chemokines including MCP-1, MCP-2, MCP-3, MIP-1α, and MIP-1β (Janeway, 

2005). Expression of MCP-1 (also known as CCL2) and MCP-3 is increased in the 

gingiva of PD patients compared with periodontally healthy subjects (Hanazawa 
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et al., 1993, Garlet et al., 2003, Dezerega et al., 2010). In vitro studies indicate 

that VECs and GECs can secrete these monocyte chemokines in response to oral 

bacteria (Kusumoto et al., 2004, Maekawa et al., 2010, Peyyala et al., 2012). 

 

Direct ligation of TLR4, and CD14 by bacterial components, or cross-linking of 

FcRs by bacteria-bound IgG1 and IgG3 would normally lead macrophages to 

phagocytose a potential pathogen. Like neutrophils, macrophages have several 

methods of killing engulfed bacteria. Lysosomes filled with enzymes and 

antimicrobial peptides fuse with the phagocytic vacuole. Added to this mixture 

are a variety of toxic chemicals including nitric oxide, superoxide, and hydrogen 

peroxide, which are rapidly synthesised upon phagocytosis (Janeway, 2005).  

 

Paradoxically in PD, the presence of macrophages in the gingiva appears to be 

more beneficial to P. gingivalis than to the host. Depletion of macrophages has 

been shown to protect mice from alveolar bone loss induced by oral infection 

with P. gingivalis (Lam et al., 2014). P. gingivalis manipulates macrophages, 

promoting inappropriate, inflammatory immune responses and suppressing 

protective, microbicidal immune responses.  

 

P. gingivalis subverts macrophage function through several strategies. Direct 

recognition of P. gingivalis by macrophages is prevented by the antagonistic 

effect of P. gingivalis LPS on TLR4 (Bainbridge et al., 2002, Coats et al., 2003, 

Sawada et al., 2007, Zhang et al., 2008), and the degradation of CD14 by P. 

gingivalis gingipains (Wilensky et al., 2014). P. gingivalis gingipains also degrade 

IgG1, IgG3, and the central complement component C3, thereby inhibiting 

opsonisation and phagocytosis (Vincents et al., 2011, Popadiak et al., 2007).   

 

P. gingivalis gains entry to macrophages by an alternative, safer route, using its 

major fimbriae to interact with TLR2 and hijack the CR3 complement pathway 

(Wang et al., 2007). It then subverts several other signalling pathways to 

enhance its survival inside macrophages, for example, by initiating cross-talk 

between TLR2 and C5aR. This pathway is augmented by P. gingivalis gingipain-

generated C5a. C5a activates C5aR, a GPCR. Activation of C5aR synergises with 

TLR2 activation by P. gingivalis to increase intracellular cAMP which activates 

PKA, which inhibits iNOS. Simultaneously, activation of CR3 by P. gingivalis 
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fimbriae, and of C5aR by C5a, leads to activation of ERKs which inhibits 

activation of IRF1. IRF1 is a transcription factor which controls expression of 

cytokines, its inhibition results in suppression of IL-12 and IFNᵧ production (Wang 

et al., 2010). The importance of these mechanisms of P. gingivalis evasion of 

host defences has been demonstrated by the resistance of C3 KO mice, C5aR KO 

mice, and TLR2 KO mice, to P. gingivalis infection-induced alveolar bone loss 

(Burns et al., 2006, Liang et al., 2011, Maekawa et al., 2014). Local inhibition of 

C5aR has been associated with a reduction in TNFα, IL-1, IL-6, and IL-17 in the 

gingiva of mice with PD (Abe et al., 2012b). Local inhibition of C3 has similarly 

been associated with a reduction in pro-inflammatory cytokines in the GCF of 

non-human primates (Maekawa et al., 2014). These data suggest that these 

complement pathways are linked to the production of inflammatory cytokines 

which in turn contribute to alveolar bone loss. 

 

1.4.2 The adaptive immune response 

 

1.4.2.1 Dendritic cells 

 

Different subsets of DCs occupy different regions of the gingival tissue. CD1a+ 

immature LCs predominantly reside in the gingival epithelium, and CD83+ mature 

dermal DCs specifically infiltrate the lymphocyte-rich lamina propria. Dermal 

DCs have been found to increase in number in PD (Jotwani et al., 2001, Cutler 

and Jotwani, 2006, Cury et al., 2008). 

 

LCs can be derived from CD14+ monocytes, and both LCs and dermal DCs can be 

derived from CD34+ haematopoietic progenitor cells (Chomarat et al., 2003, 

Ueno et al., 2007). Little is known about how DCs or DC precursors are recruited 

specifically to the gingiva. The expression of MCP-1 and MIP-3α positively 

correlate with increased densities of CD1a+ DCs. (Souto et al., 2014b). MCP-1 

binds the chemokine receptor CCR2 and MIP-3α binds CCR6. It is known that in 

vitro and in situ immature CD1a+ LCs express high levels of CCR6 and are 

selectively responsive to MIP-3α, whereas CD14+ precursors of DCs and 

macrophages are not attracted by MIP-3α. Therefore, it has been speculated 

that MIP-3α may have an important role in the recruitment of LCs to the gingiva 
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in health and disease (Dieu et al., 1998, Charbonnier et al., 1999, Cook et al., 

2000). 

 

In their immature state, DCs constitutively take up antigens by phagocytosis and 

non-specific micropinocytosis. Uptake of a potential pathogen and activation of 

PPRs usually induces maturation of DCs, whereby they undergo phenotypic 

changes that facilitate their migration toward lymphoid organs and priming of 

naïve T cells. Mature DCs are less active in taking up and processing antigen, but 

more efficient at presenting antigen as they increase their surface expression of 

MHC II and co-stimulatory molecules (Janeway, 2005).  

 

Like macrophages, DCs can be activated by LPS and other PAMPS. The exact set 

of PPRs expressed by DCs depends on their subtype and location (Geijtenbeek et 

al., 2004). Epidermal LCs isolated from skin express TLR1, TLR2, TLR3, TLR6, 

and TLR10, but lack TLR4 and TLR5. In contrast, dermal DCs from skin express 

TLR2, TLR4, TLR5, and other TLRs which recognise bacterial PAMPs. Therefore, 

dermal DCs may be more specialised for bacterial recognition (Kadowaki et al., 

2001, Ueno et al., 2007). It is not clear which TLRs are expressed by the various 

DCs in the gingiva, but there is some indication of the CLRs that are expressed: 

langerin (CD207), macrophage mannose receptor (CD206), and DC-SIGN (CD209) 

have all been identified. The expression of langerin was reduced in the gingival 

epithelium in chronic PD, while the expression of macrophage mannose receptor 

and DC-SIGN is increased in the lamina propria in chronic PD (Jotwani et al., 

2001, Jotwani and Cutler, 2003). Unlike TLRs, activation of CLRs often has 

immunosuppressive effects, and does not directly lead to DC maturation (Cutler 

and Teng, 2007).  

 

P. gingivalis minor fimbriae subvert the normal DC response via DC-SIGN-

mediated internalisation (Zeituni et al., 2009, Zeituni et al., 2010). DC-SIGN+ 

dermal DCs have been found in greater numbers in the gingiva of PD patients 

compared with periodontally healthy subjects (Jotwani and Cutler, 2003). This 

same pathway is used by other pathogens (such as HIV-1 and Mycobacterium 

tuberculosis), which share a common feature of manipulating the adaptive T cell 

response, and causing chronic infection (van Kooyk and Geijtenbeek, 2003). 

Compared to macrophages, DCs have less robust bactericidal capabilities, 
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therefore P. gingivalis internalised by DCs may have increased chance of 

survival.  

 

Cytokine production and migration by DCs are affected by this interaction 

between bacteria and DC-SIGN. In the gut, the binding of probiotic bacteria to 

DC-SIGN induces tolerance, characterised by an increase in the generation of IL-

10 producing Tregs (Smits et al., 2005). This has led to the hypothesis that P. 

gingivalis may also be attempting to induce a state of tolerance by interacting 

with DC-SIGN (Cutler and Teng, 2007). An increase in the proportion of Tregs has 

been observed in the gingiva of PD patients (Cardoso et al., 2008). Numerous 

studies of the interaction between P. gingivalis and DCs report a change in 

cytokine production, but the nature of this change is variable depending on 

several experimental parameters. If DCs are stimulated with purified P. 

gingivalis LPS, this tends to increase the production of Th2 cell polarising 

cytokines (Jotwani et al., 2003, Pulendran et al., 2001). However, there are 

conflicting reports concerning the cytokine output of DCs stimulated with whole, 

live P. gingivalis bacteria, and these differences may, in part, be strain-

dependent (Vernal et al., 2009, Marchesan et al., 2012, Vernal et al., 2014).  

 

Peripheral blood myeloid DCs from PD patients have increased CXCR4 and 

reduced CCR7 expression compared with periodontally healthy subjects. These 

changes in chemokine receptor expression can be induced in vitro by P. 

gingivalis infection of myeloid DCs. Presumably CCR7-dependent homing of DCs 

to secondary lymphoid organs is disrupted as a result of reduced CCR7 

expression. The proportion of myeloid DCs in circulation, and the P. gingivalis 

carriage rate by these circulating DCs is increased in PD patients compared with 

periodontally healthy subjects (Carrion et al., 2012, Miles et al., 2014).  

 

1.4.2.2 T cells 

 

T cells form approximately 20 % of the inflammatory infiltrate in the gingiva of 

PD patients, while few T cells can be found in healthy gingival tissue (Okada et 

al., 1983, Berglundh and Donati, 2005). The formation of mature DC and CD4+ T 

cell clusters in the inflamed gingiva suggests that there may be ongoing in situ 

maturation of DCs and priming of T cells in addition to the priming of T cells in 
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secondary lymphoid organs (Cirrincione et al., 2002, Jotwani and Cutler, 2003, 

Cutler and Jotwani, 2006). 

 

Numerous different subsets of effector CD4+ T cells have been characterised 

based upon the transcription factors and cytokines they express, the cytokines 

they respond to, and their function. Of these, the most-studied in the oral cavity 

are Th1, Th2, Th17, and Tregs (Table 1.4.2.2.1). Th1 responses are usually 

directed against intracellular and extracellular viral and bacterial infections. 

Th1 responses primarily support the activities of macrophages, NK cells, and 

CD8+ T cells, and therefore are synonymous with ‘cell mediated immunity’ 

(Janeway, 2005). Th2 responses are generally most effective at dealing with 

helminth parasites and are associated with high titers of IgM, IgA, and IgE (Else 

et al., 1993, Pritchard et al., 1995). Th17 responses have only been 

characterised relatively recently, but appear to be triggered by infections with 

extracellular pathogens including fungi, bacteria, and parasites (Bettelli et al., 

2007). Tregs are responsible for inducing tolerance to harmless stimuli, helping 

regulate the activities of other CD4+ T cells, and dampening down inflammation 

following the successful clearance of a pathogen (Piccirillo, 2008). 

 

CD4+ T cell subset Transcription 
factor 

Polarising 
cytokines 

Secreted 
cytokines 

Th1 T-bet IL-12 IFNᵧ 

Th2 Gata-3 IL-4 IL-4  
IL-5  
IL-13 

Th17 Rorᵧt IL-1  
IL-6  
IL-21 

IL-6  
IL-17  
IL-21 

Treg Foxp3 TGFβ IL-10  
TGFβ 

Table 1.4.2.2.1. CD4+ T cell subsets mostifn studied in the oral cavity.  
(Mosmann et al., 1986, Moser and Murphy, 2000, Sakaguchi, 2000, Hori et al., 
2003, Bettelli et al., 2007, Aliahmadi et al., 2009, Chung et al., 2009). 
 

CD4+ T cells may be recruited to the gingiva by MIP-1α and MIP-3α. CD4+ T cells 

in the gingiva of PD patients have been demonstrated to express the appropriate 

receptors for these chemokines (CCR5 and CCR6). Moreover, an increase in the 

availability of MIP-1α has been noted in the gingiva of PD patients, in comparison 
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to the gingiva of periodontally healthy subjects (Taubman and Kawai, 2001, 

Hosokawa et al., 2002).  

 

P. gingivalis suppresses GEC gene expression of T cell chemokines CXCL9, 

CXCL10, and CXCL11 via downregulation of IRF1 and STAT1 transcription factors 

(Jauregui et al., 2013). These chemokines all induce T cell migration through 

binding to CXCR3, which is found predominantly on Th1 cells. Meanwhile, P. 

gingivalis gingipains also influence the availability of T cell cytokines including 

IL-2, which is important for the activation and proliferation of all types of CD4+ T 

cells (Khalaf and Bengtsson, 2012). Lack of IL-2 signalling can lead to T cell 

anergy and consequently block TD antibody production by B cells (Macian et al., 

2004, Okada et al., 2005). IL-12 is also targeted by P. gingivalis gingipains, and 

this can lead to a reduction in IL-12 induced IFNᵧ production by Th1 cells (Yun et 

al., 2001). It is plausible that P. gingivalis defends itself against Th1 cells 

specifically, because they pose more of a threat to its destruction.  

Over 30 years ago, a study of experimental gingivitis found that, comparable 

with a DTH response, T cells and macrophages infiltrate the gingiva within four 

to eight days of plaque accumulation (Seymour et al., 1979, Platt et al., 1983, 

Seymour et al., 1988). As Th1 cells are known to mediate DTH, this histological 

analysis was interpreted to indicate that Th1 cells are involved in the early 

stages of PD (Fong and Mosmann, 1989). Within two to three weeks, established 

gingivitis was distinguished by a predominance of plasma cells (Page and 

Schroeder, 1976). Similarly, studies of PD patients have revealed that 

progression of disease is associated with increased infiltration by B cells and 

plasma cells (Berglundh and Donati, 2005). It has consequently been 

hypothesised that the initial response to dental plaque is mediated by Th1 cells, 

and that transition to PD is characterised by switching to a predominantly Th2 

polarised adaptive immune response that supports the proliferation of B cells 

(Gemmell et al., 2007). 

 

This hypothesis has to some degree been supported by murine studies of PD. 

BALB/c mice are more likely to generate a Th2 type response and are more 

susceptible to P. gingivalis infection-induced alveolar bone loss than C57BL/6 

mice (Baker et al., 2000b, Gemmell et al., 2002a). However, extreme 

polarisation of the adaptive immune response to either Th1 or Th2 has been 
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found to exacerbate PD in mice. Mice lacking key Th1 cytokines (IL-12, IFNᵧ, and 

TNFα) or Th2 cytokine (IL-4 and IL-10) have both been found to develop greater 

alveolar bone loss than WT mice following infection with P. gingivalis (Sasaki et 

al., 2004, Alayan et al., 2007).  

 

The Th1/Th2 paradigm in PD was revised following the discovery of Th17 cells 

(Gaffen and Hajishengallis, 2008). Several investigations of T cell transcription 

factor and cytokine expression have found that a mixture of Tregs, Th1, Th2, 

and Th17 cells are present in the gingiva of PD patients, with no CD4+ T cell 

subset forming a majority (Fujihashi et al., 1996, Berglundh et al., 2002a, Ito et 

al., 2005).  

 

Interestingly, the level of IL-17 in PD patient gingiva has been found to positively 

correlate with pathology (Johnson et al., 2004, Vernal et al., 2005, Lester et al., 

2007). Th17 cells and IL-17 have been associated with elevated levels of RANKL, 

which promotes osteoclastogenesis (Sato et al., 2006, Moutsopoulos et al., 

2012). It has been demonstrated that IL-17 can directly increase the expression 

of RANKL in periodontal ligament cells (Lin et al., 2014). A role for Th17 cells in 

mediating pathological bone loss has been well established in murine models of 

RA (Sato et al., 2006, Komatsu et al., 2014). Furthermore, the proportion of 

circulating Th17 cells has been found to positively correlate with disease activity 

in RA patients (Kim et al., 2013, Miao et al., 2014). Consequently, several anti-

IL-17 therapies are in clinical trials for application in RA (Martin et al., 2013, 

Genovese et al., 2013, Genovese et al., 2014). Yet IL-17R-deficient mice are 

more susceptible to P. gingivalis infection-induced alveolar bone loss. This is 

apparently related to their inability to recruit neutrophils in the early stages of 

infection (Yu et al., 2007). One explanation put forward for these conflicting 

results is that the relative protective and destructive effects of some cytokines 

are context dependent and may differ at different stages of disease (Gaffen and 

Hajishengallis, 2008). 

 

Tregs have been demonstrated to be capable of reducing inflammation and 

attenuating PD in murine models (Garlet et al., 2010, Glowacki et al., 2013, 

Garlet et al., 2014). Nonetheless, excessive or inappropriate activation of Tregs 
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following exposure to P. gingivalis could, hypothetically, stunt the development 

of an effective Th response.  

 

The overall contribution of CD4+ T cells to PD appears to be pathogenic since 

CD4+ T cell-deficient mice were found to be protected from P. gingivalis 

infection-induced alveolar bone loss (Baker et al., 2002), as were mice deficient 

in both T cells and B cells (Baker et al., 1999b). Teasing apart which functions of 

CD4+ T cells and other leukocytes are pathogenic, and when, remains a 

challenge. 

 

1.4.2.3 B cells and plasma cells 

 

Together, B cells and plasma cells form approximately 70 % of the inflammatory 

infiltrate in the gingiva of PD patients (Berglundh and Donati, 2005). Several 

studies have found that the proportion of B cells and plasma cells increases in 

association with disease progression, activity or severity (Liljenberg et al., 1994, 

Lappin et al., 1999, Amunulla et al., 2008, Thorbert-Mros et al., 2014). In 

comparison, relatively few leukocytes have been found in healthy gingiva, of 

which only about 5 % are B cells (Gemmell et al., 2002b). Despite their 

predominance in the established periodontal lesion, the roles of B cells in PD are 

arguably the least well understood of all the immune cells. 

 

Although aggregates of B cells and T cells have been identified within the gingiva 

of PD patients, there is no evidence of the formation of GCs (Jotwani et al., 

2001, Okada et al., 1983). The basis of the interaction between B cells and T 

cells in the gingiva has yet to be defined. There have been several reports that B 

cells in the gingiva of PD patients express the co-stimulatory molecules CD80, 

CD83, and CD86 (Orima et al., 1999, Mahanonda et al., 2002, Jotwani and 

Cutler, 2003). Unsurprisingly - given their scarcity - a comparison with B cells in 

healthy gingival tissue was not made in each case. This has prevented 

assessment of whether B cells have increased capacity to present antigen or 

have an activated phenotype in disease.  

 

There is evidence that plasma cells in the gingiva of PD patients are actively 

producing antibodies. A mixture of antibody classes have detected, indicating 
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that class-switching occurs. There seems to be a consensus that the majority of 

antibodies produced belong to the IgG class, followed by IgA, and then IgM 

(Okada et al., 1983, Ogawa et al., 1989, Takahashi et al., 1997). Up to 22 % of 

plasma cells in the gingiva of PD patients are producing antibodies which 

specifically recognise P. gingivalis (Mizutani et al., 2014). It is not known 

whether these locally produced antibodies contribute to those in circulation. 

The serum anti-P. gingivalis antibody titers of PD patients have consistently 

been found to be higher than those of periodontally healthy individuals (Lopatin 

and Blackburn, 1992, Benjamin et al., 1997, Takeuchi et al., 2006, Lappin et al., 

2013). However, it seems that many of the anti-P. gingivalis antibodies produced 

by hosts are ineffective in promoting clearance of this bacterium. One study 

showed that out of 18 PD patients with high anti-P. gingivalis IgG titers, only 

three patients had serum antibodies capable of opsonising P. gingivalis for 

phagocytosis by neutrophils (Cutler et al., 1991). In addition, it has been 

demonstrated that gingipains produced by P. gingivalis efficiently destroy 

opsonising antibodies belonging to the IgG1 and IgG3 subclasses (Vincents et al., 

2011).  

 

Accompanying the anti-bacterial humoral response, increased titers of 

autoantibodies have found in the sera of PD patient, including autoantibodies 

specific for components of ECM: type I collagen, fibronectin, and laminin (De-

Gennaro et al., 2006). Anti-collagen antibodies have also been identified in the 

gingiva of PD patients (Hirsch et al., 1988, Jonsson et al., 1991, Anusaksathien 

et al., 1992). These autoantibodies are believed to be involved in the 

progression of PD and to contribute to more aggressive forms of PD 

(Anusaksathien et al., 1992, De-Gennaro et al., 2006, Koutouzis et al., 2009). 

 

The production of autoantibodies indicates that B cell function has become 

dysregulated in PD. There is some evidence that oral bacteria may distinctively 

and directly regulate B cell function. B cells stimulated with A. 

actinomycetemcomitans increased their expression of RANKL and when 

transferred to mice orally infected with A. actinomycetemcomitans, these B 

cells exacerbated alveolar bone loss (Han et al., 2006, Han et al., 2009). This 

indicates that B cell function, particularly their expression of RANKL, may be 
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altered following interaction with oral bacteria, and subsequently contribute to 

pathology in PD.  

 

Subsets of mature B cells have been characterised, which may differentially 

respond to bacterial stimuli (Barr et al., 2007). These are described in more 

detail in Chapter 5. To date, there has been minimal effort to further 

phenotype the B cells associated with PD in order to determine whether a 

particular B cell function or subset has a more prominent role in pathology.  

 

1.4.3 Osteoclastogenesis  

 

Osteoclastogenesis is essential for remodelling bone. In health, a balance exists 

between bone resorption by osteoclasts, and bone formation by osteoblasts. In 

many chronic inflammatory diseases, the process of osteoclastogenesis becomes 

dysregulated and this balance is lost, resulting in pathological bone loss.  

 

Osteoclasts are large, multinucleated cells formed by the fusion of precursors of 

the monocyte-macrophage lineage at or near the bone surface (Kukita et al., 

2004, Yagi et al., 2005). M-CSF is essential for the survival and differentiation of 

pre-osteoclasts (Yoshida et al., 1990). M-CSF up-regulates the expression of 

RANK by pre-osteoclasts, rendering them permissible to signalling induced by 

RANKL, a cytokine belonging to the TNF superfamily. In the presence of M-CSF, 

RANKL is able to induce the differentiation of pre-osteoclasts into osteoclasts via 

several protein kinase signalling pathways: NFκB, JNK, p38, MAPK, ERK, Src, 

PKA, and PKC (Darnay et al., 1998, Galibert et al., 1998, Bachmann et al., 1999, 

Takahashi et al., 1999, Matsumoto et al., 2000, Mizukami et al., 2002, 

Takayanagi, 2007). During osteoclastogenesis, a number of structural changes 

take place. The basal membrane of the pre-osteoclast forms a tight junction 

with the bone surface, creating an external vacuole. Into this space, osteoclasts 

export hydrogen ions and lytic enzymes such as TRAP and cathepsin K, which 

resorb the bone (Li et al., 1999). Solubilised components of ECM, as well as 

calcium and phosphate ions are then processed by the osteoclasts and released 

into circulation. Not only can RANKL induce osteoclastogenesis in precursor 

cells, but it can also increase ‘the bone-resorbing activity of mature osteoclasts 

(Hsu et al., 1999, Burgess et al., 1999). 
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Mesenchymal cells such as fibroblasts are a primary source of M-CSF and RANKL 

(Takayanagi et al., 2000, Bloemen et al., 2010). There are three different 

isoforms of RANKL that cells can produce, one is membrane-bound and the other 

two are soluble (Ikeda et al., 2001, Suzuki et al., 2004).  Activated lymphocytes 

may contribute to the supply of both cell-surface and sRANKL (Kong et al., 

1999a, Han et al., 2009, Belibasakis et al., 2011, Walsh et al., 2013). RANKL-

RANK signalling is negatively regulated by OPG, a soluble decoy receptor 

(Simonet et al., 1997, Yasuda et al., 1999). In gingival tissues, mesenchymal 

cells are the main source of OPG (Sakata et al., 1999, Crotti et al., 2003). In 

bone, OPG is additionally provided by B cells (Marusic et al., 2000, Li et al., 

2007, Manilay and Zouali, 2014). 

 

There is an increase in the ratio of RANKL to OPG expression and protein in the 

gingiva of PD patients, which is believed to underpin the observed alveolar bone 

loss (Liu et al., 2003, Crotti et al., 2003, Wara-aswapati et al., 2007, 

Giannopoulou et al., 2012). There is some evidence that this increase in RANKL 

expression may be triggered by the direct interaction of cells with members of 

the dysbiotic oral microbiota. In vitro, P. gingivalis induced RANKL expression by 

mesenchymal cells, and by T cells (Belibasakis et al., 2007, Belibasakis et al., 

2011), whilst A. actinomycetemcomitans has been shown to induce RANKL 

expression by B cells (Han et al., 2006, Han et al., 2009). In addition to the 

direct effects of oral bacteria, the local cytokine milieu in the gingiva may 

regulate RANK-RANKL interactions and osteoclastogenesis in PD (Table 1.4.3.1).  

 

RANKL has a significant role in homeostatic osteoclastogenesis, and many studies 

of murine PD have indicated that pathological alveolar bone loss induced by P. 

gingivalis is RANKL-dependent (Naito et al., 1999, Han et al., 2006, Jin et al., 

2007, Yuan et al., 2011). However, osteoclastogenesis can occur independently 

of RANKL in the presence of certain cytokine cocktails (Kim et al., 2005, Yago et 

al., 2009). Furthermore, novel regulators of osteoclastogenesis are continually 

being identified which can also apparently induce osteoclastogenesis 

independently of RANKL. One example is SOFAT, the expression of which is 

increased in PD patient gingiva (Rifas and Weitzmann, 2009) (Jarry et al., 2013).  
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Cytokine Effect on 
osteoclastogenesis 

Cellular sources Cellular targets Functions 

RANKL activation  mesenchymal 
cells 

 T cells 

 B cells 

 osteoclast 
precursors 

 osteoclasts 
 

 induction of 
osteoclast 
differentiation 

 increase 
activity of 
osteoclasts 

TNFα activation  macrophages  

 Th17 cells 

 osteoclast 
precursors 

 mesenchymal 
cells 

 induction of 
RANKL 
expression by 
mesenchymal 
cells 

 synergy with 
RANKL 

IFNᵧ inhibition  Th1 cells  osteoclast 
precursors 

 inhibition of 
RANKL 
signalling 

IL-1α/β activation  mesenchymal 
cells 

 macrophages 

 T cells  Th17 cell 
differentiation 
and survival 

IL-4 inhibition  Th2 cells  osteoclast 
precursors 

 inhibition of 
RANKL 
signalling 

IL-6 activation  mast cells  

 B cells 

 Th2 cells 

 DCs 

 T cells 

 mesenchymal 
cells 
 

 Th17 cell 
differentiation 

 induction of 
RANKL 
expression by 
mesenchymal 
cells 

IL-12 inhibition  macrophages 

 DCs 

 T cells  Th1 cell 
differentiation 

IL-17 activation  Th17 cells  mesenchymal 
cells 

 induction of 
RANKL 
expression by 
mesenchymal 
cells 

IL-18 inhibition  macrophages 

 DCs 

 T cells  Th1 cell 
differentiation 

Table 1.4.3.1. The roles of cytokines in osteoclastogenesis.  
Adapted from Takayanagi (2007). 
 

1.5 The association of periodontitis with systemic diseases 

 

PD is a chronic disease associated with profound inflammation locally in the 

gingiva, and some signs of perturbation to the systemic immune response. 

Epidemiological evidence indicates that PD is more common, and more likely to 

be more severe, in patients that have a systemic chronic inflammatory disease 

such as CVD, diabetes, or RA (Mercado et al., 2001, Bahekar et al., 2007, 

Humphrey et al., 2008, Chen et al., 2008, de Pablo et al., 2009, Nesse et al., 

2010, Smit et al., 2012, Weinspach et al., 2013). PD shares many common risk 
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factors with these systemic diseases (Figure 1.5.1), but this does not fully 

account for the association between them.  

 

It has been hypothesised that the systemic inflammatory changes that arise in PD 

may cause or contribute to the inflammation attributed to these other diseases 

and vice versa. The immunopathology of RA has striking similarities with PD as it 

involves the destruction of connective tissue and bone, orchestrated by 

lymphocytes. The potential link between PD and RA is particularly intriguing 

because RA is an autoimmune disease of unknown aetiology. 

 

 

Figure 1.5.1. Common risk factors and consequences of chronic inflammatory 
diseases: periodontitis, type 2 diabetes, cardiovascular disease and 
rheumatoid arthritis. A combination of risk factors that may lie at the cause of 
disease are depicted. Following disease onset, the consequences of disease can 
drive further inflammation and in this sense, also act as risk factors (Symmons et 
al., 1997, Genco et al., 2002, Chaffee and Weston, 2010, D'Aiuto et al., 2010, 
Kallberg et al., 2011, Preshaw and Bissett, 2013, Wesley et al., 2013, Postma et 
al., 2014). HLA = human leukocyte antigen, AGEs = advanced glycation end 
products, ACPAs = anti-citrullinated peptide antibodies. 
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1.6 Rheumatoid arthritis 

 

1.6.1 Clinical characterisation of rheumatoid arthritis 

 

RA is an autoimmune disease characterised by stiffness and swelling of the 

synovial joints lasting longer than six weeks. It tends to manifest in adults 

between the ages of 40 and 50. Due to its complex aetiology, there is no single 

parameter which can be used to conclusively diagnose RA. Since 1987, 

standardised criteria for clinical classification of RA have been set by the ACR 

and EULAR. A physical assessment is performed to determine the number of 

small and large joints involved. X-rays, MRI, and ultrasound scans are used to 

reveal the extent of damage to the cartilage and bone in the joints. The level of 

non-specific systemic inflammation is determined by ESR and the concentration 

of circulating CRP. Serum immunoassays are used to distinguish RA from other 

forms of arthritis such as osteoarthritis. The anti-IgG autoantibodies known as RF 

were originally used as the sole indicator of autoimmunity. However, RF have a 

relatively low specificity of 85 % for RA; they can be found in other autoimmune 

conditions, and even in healthy individuals (Gran et al., 1984, Hoffman et al., 

2005, Nishimura et al., 2007). In 2010, the published RA classification criteria 

were updated to stipulate the requirement of a second diagnostic test for a 

different set of autoantibodies: ACPAs (Kay and Upchurch, 2012). In comparison 

to RF, the standard ACPA assay has a similar sensitivity of 70 % but a much 

higher specificity of 95 % (Nishimura et al., 2007). Furthermore, ACPAs may be 

detectable up to 10 years before clinical onset of disease (Nielen et al., 2004, 

Zendman et al., 2004). These features of ACPAs have led to the concept that 

ACPA positive and ACPA negative RA represent distinct forms of disease (Daha 

and Toes, 2011). 

 

There are standardised criteria for monitoring disease progression, response to 

treatment, and remission. One of these is the DAS28. In accordance with this 

system, the tenderness and swelling of 28 joints and the patient’s perception of 

disease activity, pain, and physical function are evaluated - usually in 

conjunction with ESR and CRP (Prevoo et al., 1995). An improvement in 

symptoms can be determined by calculating the difference between disease 

activity scores at baseline and follow-up appointments. A patient may meet the 
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criteria for the ACR20 when there is 20 % improvement in both the tender joint 

count and the swollen joint count and at least 20 % improvement in three of the 

five other measures used to determine disease activity (Felson et al., 1995). 

Similarly, higher thresholds such as the ACR50 or ACR70 may be used to gauge 

improvement in symptoms, and are typically used as a benchmark in clinical 

trials (Ma et al., 2014, Ward et al., 2014). A patient is considered to have 

achieved disease remission if they have just one or no tender or swollen joints, 

and a CRP level of ≤ 1 mg/dl according to the Boolean-based definition (Felson 

et al., 2011). 

 

1.6.2 Epidemiology of rheumatoid arthritis 

 

RA affects approximately 0.5 - 1 % of the global population. A very high 

incidence has been reported in the Pima Indians (5.3 %) and Chippewa Indians 

(6.8 %), whilst a much lower incidence (0.2-0.3 %) has been reported in China 

and Japan (Harvey et al., 1981, Del Puente et al., 1989, Shichikawa et al., 

1999). In the US and in Europe, the proportion of people affected is in line with 

the global average (Aho et al., 1998, Cimmino et al., 1998, Simonsson et al., 

1999, Carmona et al., 2002, Symmons et al., 2002). Across all regions, it has 

been reported that RA is around three times more common in women than in 

men. Twin studies have found that monozygotic twins have a concordance rate 

of 15 % for RA (Silman et al., 1993). Together these data indicate the 

involvement of genes in determining development of RA. 

 

The chronic pain and restriction of movement that results from RA can be 

seriously debilitating, and as a result at least 50 % of patients are unable to work 

full-time within 10 years of disease onset (Brooks, 1997, Birtane et al., 2008, 

Walsh and McWilliams, 2012). In 2010, the National Rheumatoid Arthritis Society 

reported that productivity losses due to RA cost the UK economy approximately 

£8 billion per year (Bosworth, 2010).  

 

Due to various co-morbidities, the life-expectancy of RA patients is reduced by 

three to seven years (Wicks et al., 1988, Lassere et al., 2013). The risk of CVD is 

increased by 48 % in RA patients and almost 40 % of RA patients die from 

complications of CVD (Dhawan and Quyyumi, 2008, Avina-Zubieta et al., 2012).  
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1.6.3 Immunopathology of rheumatoid arthritis 

 

Lymphocytes are a prominent feature of the inflammatory infiltrate in the 

joints. T cells and B cells clearly have important roles in RA as treatments 

specifically targeting these cells have had some success in patients that were 

unresponsive to other drugs (Boumans et al., 2012, Keystone et al., 2012, Pieper 

et al., 2013, Picchianti Diamanti et al., 2014). Murine models have indicated 

that an increase in Th1 or Th17 cells, and a decrease in Tregs exacerbates RA 

(Sato et al., 2006, Postigo et al., 2011, Komatsu et al., 2014, Lee et al., 2014). 

Th1 and Th17 cells contribute to the pathogenesis of RA through the production 

of inflammatory cytokines and by supporting autoantibody production by B cells. 

Both in murine models, and in human patients, the titers of autoantibodies have 

been found to correlate with severity of RA (van Gaalen et al., 2004, Agrawal et 

al., 2007b, Conigliaro et al., 2011, Patakas et al., 2012).  

 

Histological analysis of synovial tissue samples has revealed that in some cases, 

the infiltrate is sparse, whereas in others, there are large aggregates of T and B 

cells, sometimes surrounding clusters of follicular DCs (Yanni et al., 1992, 

Randen et al., 1995, Thurlings et al., 2008). These more organised aggregates of 

lymphocytes have been found to exhibit features associated with GCs in 

lymphoid organs, which has prompted references of tertiary lymphoid organs or 

ectopic lymphoid organs (Weyand and Goronzy, 2003, Humby et al., 2009). The 

presence of lymphoid aggregates in synovial tissues has been shown to correlate 

with increased local expression of cytokines, and elevated concentrations of 

cytokines in the peripheral blood (Randen et al., 1995, Klimiuk et al., 1997, 

Thurlings et al., 2008). Although ACPA are produced by tissue-resident plasma 

cells, no consistent correlation has been found between the presence of ectopic 

lymphoid structures, and the concentration of RF or ACPAs in synovial fluid or 

serum (Cantaert et al., 2008, Thurlings et al., 2008, Humby et al., 2009).  

 

1.6.4 Treatment of rheumatoid arthritis 

 

Treatment of RA is focused on preserving function, minimising pain, and 

reducing inflammation. Research efforts have yielded significant advances in 

treatment, with a range of drugs now available that target specific cells, 
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cytokines, and inflammatory pathways. Up to two thirds of patients show some 

response to one of the currently approved biological therapies (Hyrich et al., 

2006, Hetland et al., 2010, Greenberg et al., 2012). However a significant 

proportion of patients do not respond, and some patients that initially respond 

later develop resistance to the therapy. Ultimately, 10-50 % of RA patients 

achieve disease remission (Ma et al., 2010, Scott et al., 2010). The exact figures 

depend on the criteria used to assess disease activity. 

 

Further developments in treatment are restricted by an incomplete 

understanding of the causes of RA. PD is one of several potentially modifiable 

risk factors for RA identified by epidemiological studies. Treatment of PD in RA 

patients potentially offers a low-risk, simple, and cost-efficient adjunct to the 

available treatments for RA, and this warrants further investigation. 

 

1.7 The potential immunological link between periodontitis and rheumatoid 

arthritis 

 

RA patients may be as much as four times more likely to have PD, and are more 

likely to have more severe PD (Mercado et al., 2001, de Pablo et al., 2008, Smit 

et al., 2012). The idea PD could cause RA stems from evidence of elevated 

circulating titers of autoantibodies in PD patients. PD was actually once thought 

of as an autoimmune disease itself (Anusaksathien et al., 1992, De-Gennaro et 

al., 2006, Koutouzis et al., 2009).  

 

The majority of the autoantibodies found in PD patients have no specific 

association with RA. However, there has been one report detailing the detection 

of antibodies recognising a citrullinated peptide (filaggrin) in PD patient sera 

(Hendler et al., 2010), and another which claims a cocktail of ACPAs were 

generally higher in the serum of PD patients compared with periodontally 

healthy subjects (Molitor, 2009).  

 

Targets of ACPAs include citrullinated forms of various components of 

connective tissue: vimentin, collagen, fibrinogen, and filaggrin (Burkhardt et al., 

2005, Snir et al., 2009, Hansson et al., 2012, Cornillet et al., 2014). The 

citrullinated peptides recognised by ACPAs have been detected in the synovium 
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of RA patients and in the gingiva of PD patients (De Rycke et al., 2005, Nesse et 

al., 2012, Harvey et al., 2013).  

 

Citrullinated peptides can be found in healthy tissues, although less frequently 

than in inflamed tissues (Vossenaar et al., 2004). Citrullination is a normal post-

translational modification of peptides, which, in changing the charge of a 

positive arginine residue to a neutral citrulline residue, can alter the tertiary 

structure of a peptide and it’s interaction with other peptides. This has a wide 

range of physiological applications from condensation of chromatin and 

regulation of gene expression to autophagy and antigen presentation (Leshner et 

al., 2012, Tanikawa et al., 2012, Ireland and Unanue, 2012). 

 

Citrullination is mediated by a PAD. There are six human PAD isoforms which are 

expressed by different cells in different anatomical regions. PAD2 and PAD4 are 

both expressed by fibroblasts and endothelial cells in the gingiva and synovium, 

and by leukocytes throughout the body (Chang et al., 2005, Foulquier et al., 

2007, Harvey et al., 2013). Certain environmental stressors can increase the 

activity of human PADs. For example, smoking has been associated with 

increased PAD2 expression and peptide citrullination in the lungs, and smoking 

status strongly correlates with serum ACPA titers in RA patients (Klareskog et 

al., 2006, Makrygiannakis et al., 2008). 

 

The citrullination of peptides observed in PD patient gingiva could result from 

the increased activity of human PADs as a result of inflammation or from the 

activity of a PAD belonging to P. gingivalis, referred to as PPAD. P. gingivalis is 

unique among bacteria in its possession of PPAD. Gingipains produced by P. 

gingivalis cleave peptides at arginine residues, providing substrate to PPAD. 

PPAD can citrullinate both host and P. gingivalis derived peptides at lysine or 

arginine residues by substituting an amine group for an oxygen moiety and 

forming ammonia as a bi-product (Figure 1.7.1). PPAD will preferentially 

citrullinate free arginine, and arginine exposed at the end of a peptide, whereas 

human PADs will citrullinate arginine embedded within a peptide (McGraw et al., 

1999). 
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Figure 1.7.1. Citrullination. Host PAD or P. gingivalis PPAD enzymes catalyse 
the substitution of an amine group (=NH) for an oxygen moiety (=O) to convert 
an arginine residue to a citrulline residue in a peptide. This requires the input of 
a water molecule (+H2O) and forms ammonia (+NH3) as a bi-product (McGraw et 
al., 1999). 
 

PPAD is evidently an important virulence factor of P. gingivalis since infection 

with a PPAD-deficient P. gingivalis mutant induced less alveolar bone loss than 

infection with WT P. gingivalis in the murine model of PD (Gully et al., 2014). In 

the initial stages of infection, the production of ammonia by PPAD is thought to 

help P. gingivalis to survive in the acidic environment of the oral cavity by 

increasing the pH (Marquis et al., 1987, McGraw et al., 1999, Takahashi, 2003). 

Later, following invasion of the host tissues, citrullination of certain cytokines 

and chemokines by PPAD is known to inactivate their immune function, and help 

P. gingivalis to evade the host adaptive immune response (Proost et al., 2008, 

Moelants et al., 2014).  

 

The citrullination of peptides by PPAD is hypothesised to be capable of breaching 

immune tolerance through two mechanisms: creating de novo epitopes and 

molecular mimicry. Firstly, citrullination of host peptides in a novel way could 

cause them to be perceived as foreign by the host, which in the inflammatory 

setting of PD, could stimulate an autoimmune response. Secondly, citrullination 

of P. gingivalis peptides, and the presentation of these alongside PAMPs, could 
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induce the generation of ACPAs, which are cross-reactive with host peptides that 

share similar citrullinated epitopes. For example, P. gingivalis citrullinated α-

enolase shares 51 % sequence homology overall with the human form. This 

increases to 82 % homology within a specific region, an immunodominant epitope 

known as CEP-1 (Table 1.7.1), and 100 % homology for nine amino acids 

spanning CEP-1 (Lundberg et al., 2008, Lundberg et al., 2010). It is thought this 

sequence homology has been conserved in key functional proteins because it 

enables bacteria to evade the human immune defence (Blank et al., 2007, 

Wegner et al., 2009). Interestingly, CEP-1 is a major epitope of ACPAs in RA and 

anti-CEP-1 antibodies are present in around 25 % of RA patients (Fisher et al., 

2011, Montes et al., 2012). 

 

Peptide/protein Amino acid sequence 

A)  
P. gingivalis CEP-1 

K I I G X E I L D S X G N P T V E 

B)  
human CEP-1 

K I H A X E I F D S X G N P T V E 

C)  
human REP-1 

K I H A R E I F D S R G N P T V E 

D) 
human  
α-enolase 

MSILKIHAREIFDSRGNPTVEVDLFTSKGLFRAAVPSGASTGIY
EALELRDNDKTRYMGKGVSKAVEHINKTIAPALVSKKLNVTEQ
EKIDKLMIEMDGTENKSKFGANAILGVSLAVCKAGAVEKGVPL
YRHIADLAGNSEVILPVPAFNVINGGSHAGNKLAMQEFMILPV
GAANFREAMRIGAEVYHNLKNVIKEKYGKDATNVGDEGGFA
PNILENKEGLELLKTAIGKAGYTDKVVIGMDVAASEFFRSGKY
DLDFKSPDDPSRYISPDQLADLYKSFIKDYPVVSIEDPFDQDDW
GAWQKFTASAGIQVVGDDLTVTNPKRIAKAVNEKSCNCLLLK
VNQIGSVTESLQACKLAQANGWGVMVSHRSGETEDTFIADLV
VGLCTGQIKTGAPCRSERLAKYNQLLRIEEELGSKAKFAGRNF
RNPLAK 

Table 1.7.1. The amino acid sequence of P. gingivalis CEP-1 and human CEP-
1 epitopes. A) P. gingivalis CEP-1 amino acid sequence and B) human CEP-1 
amino acid sequence with the nine amino acids sharing 100 % sequence homology 
shaded in grey. C) the sequence of the native, uncitrullinated form of human 
CEP-1 - human REP-1. D) the entire human α-enolase sequence with REP-1 
shaded in grey (Lundberg et al., 2008). X = citrulline, R = arginine. 
 

RA is much less common than PD, and not all RA patients have PD. This means 

even if PD can cause RA, not all PD patients will automatically develop 

autoimmunity and RA, and that there must be alternative causes of RA. Whether 

P. gingivalis actually induces breach of immune tolerance is likely dictated to a 

degree by the host immune system, just as whether P. gingivalis can cause PD in 
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the first place is likely dependent on certain weaknesses of the host immune 

system. Another layer of host-related risk factors comes into play.   

 

RA patient ACPA seropositivity is closely related to the possession of particular 

HLA alleles on chromosome six (van Gaalen et al., 2004, Snir et al., 2011, 

Nordang et al., 2013). A number of HLA-DRB1 alleles which dictate the range of 

peptide-binding specificities of an MHC II molecule predispose people to RA. 

These alleles all contain a conserved five amino acid stretch, the ‘shared 

epitope’ in the third hypervariable region, which forms the peptide-binding 

pocket. The five amino acids are positively charged, and therefore preferentially 

bind peptides bearing a neutral citrulline residue rather than a positively 

charged residue (Gregersen et al., 1987, Ireland and Unanue, 2012). The 

generation of ACPAs and a sustained autoimmune response in PD patients may 

depend on these patients having HLA alleles with the ‘shared epitope’ or an 

equivalent genetic predisposition. Some studies have shown that the frequency 

of certain HLA-DRB1 alleles associated with RA is higher among PD patients than 

in a periodontally healthy population, although reports vary depending on the 

subtype of PD and the ethnicity of the patient cohort (Ohyama et al., 1996, 

Bonfil et al., 1999, Reichert et al., 2002, Stein et al., 2003, Jazi et al., 2013).  

 

The two-hit hypothesis was born out of this concept of the cumulative effects of 

risk factors (Farquharson et al., 2012). In terms of this hypothesis, PD, HLA 

genotype, and smoking are all potential ‘first hits’ which lead to loss of immune 

tolerance to citrullinated peptides and the production of ACPAs (Figure 1.7.2). 

Any factor which subsequently further increases circulating ACPAs presumably 

increases the likelihood that RA develops. Of the potential ‘first hits’ indicated, 

many could also serve as ‘second hits’. It is unclear why ACPAs would specifically 

target the joints and not affect other organs. One thought is that induction of 

local inflammation and citrullination of peptides in the joints may promote the 

generation and accumulation of ACPAs in this location.  

 

 

 

 

 



61 
 

 

Figure 1.7.2. The two-hit hypothesis. Potential ‘first hits’ predispose 
individuals to the production of ACPAs, then a ‘second hit’ increases ACPA 
production and triggers the development of RA. (Sverdrup et al., 2005, Klareskog 
et al., 2006, Makrygiannakis et al., 2008, Mahdi et al., 2009, Scher and 
Abramson, 2011, Ruiz-Esquide et al., 2012, Brusca et al., 2014, Ytterberg et al., 
2014). 
 

1.8 Summary of the general introduction 

 

PD is a chronic inflammatory disease, the aetiology of which has yet to be 

completely characterised. Microbial dysbiosis is key to the development PD, but 

the efficacy of current PD treatment, which is focused on managing the oral 

microbiome, is limited. Patients may benefit from the development and 

administration of adjunctive therapies which target the damaging inflammatory 

responses to plaque.  

 

The prevalence of PD is increased in patients with systemic inflammatory 

diseases, and this association cannot be fully explained by shared risk factors. 

The relationships between PD and systemic diseases are not well understood, 

but are potentially mediated by inflammation. RA is a chronic autoimmune 

disease with comparable immunopathology to PD which has led to the hypothesis 

that there is an immunological link between these diseases. RA treatment has 

scope for improvement and modifying risk factors is an appealing avenue. 
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Treatments that target inflammation in PD could potentially benefit RA patients 

too. To enable the development of these, a better understanding of the 

immunopathology of PD and potential mechanisms linking PD to RA is required.  

 

1.9 Aim and objectives 

 

The overall aim of this PhD project was to characterise the role of B cells in the 

immunopathology of PD. Specific objectives were to:  

1) Characterise B cells and plasma cells in the gingiva of PD patients 

(Chapter 3) 

2) Characterise the serum antibody response of PD patients (Chapter 4) 

3) Characterise B cell phenotype and function in the murine model of PD 

(Chapter 5) 

4) Assess the contribution of B cells to pathology in the murine model of PD 

by:  

a) Altering B cell phenotype (Chapter 6) 

b) Depleting B cells (Chapter 7) 
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Chapter 2: Methods 

 

2.1 Periodontitis patients 

 

2.1.1 Tissue samples from periodontitis patients and periodontally healthy 

patients 

 

Samples of healthy gingival tissue (n = 6) were taken from patients undergoing 

procedures unrelated to periodontal disease, such as exposure of implants or 

gingivectomy for aesthetic reasons. Samples of diseased gingival tissue (n = 19) 

were taken from patients diagnosed with chronic PD, who required open flap 

debridement. These patients had PPD ≥ 5 mm and LOA ≥ 5 mm, which persisted 

after non-surgical treatment. All samples were obtained from subjects in the 

Unit of Periodontics at Glasgow Dental Hospital, with written consent. The study 

was reviewed and approved by the local Research Ethics Committee. Samples of 

gingival tissue were stored in RNAlater® (Life technologies) at -80 oC for future 

extraction of RNA, or in formalin at room temperature for preservation prior to 

embedding in paraffin for IHC, or in RPMI prior to processing for flow cytometry.                                                                                                                                      

 

2.1.2 Longitudinal study of periodontitis patients undergoing non-surgical 

periodontal treatment  

 

This pilot study to investigate the ACPA response in PD patients was designed 

with Dr Andrea Sherriff (Senior Lecturer in Statistics at the University of 

Glasgow) and Dr David Lappin (Research Fellow at the Glasgow Dental Hospital 

and School, University of Glasgow). The samples available to this study were 

previously collected by Dr Danae Apatzidou to assess the serum antibody 

response to periodontal pathogens (Apatzidou et al., 2005). The original study 

was reviewed and approved by the local research ethics committee. Based on 

the previously generated data on titers of serum antibodies against periodontal 

bacteria in PD patients compared with healthy participants, it was determined 

that a group size of approximately 20 patients would be required for the current 

study. This was based on an effect size of 1 standard deviation, 80 % power, and 

a significance level of 5 %. As serum was available from 39 PD patients and 36 
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healthy subjects, it was deemed that sufficient numbers were available for a 

meaningful study.  

 

All PD patients in the study had been referred to the Unit of Periodontics at 

Glasgow Dental Hospital for non-surgical treatment of previously untreated 

chronic PD. The healthy volunteers were of similar age and gender and included 

a similar proportion of smokers and non-smokers as the PD patient group. All 

participants had a clinical periodontal examination carried out by the same 

practitioner, recording the number of teeth, PPD, LOA, and BOP. Patients with 

PD had a minimum of 18 teeth and at least 2 sites with PPD ≥ 5 mm, LOA ≥ 5 

mm, and radiographic evidence of bone loss. Participants were considered to be 

periodontally healthy if they had no history of PD, no PPD ≥ 2 mm, and no LOA ≥ 

2 mm. At the time of recruitment, all participants were systemically healthy and 

apart from PD, had no other known disease. No participants had received 

antibiotics 3 months prior to or during the study.  

 

Non-surgical periodontal treatment included detailed oral hygiene instruction, 

supra-gingival scaling, and root surface debridement using manual and electrical 

tools, with local anaesthesia. This treatment was carried out by a single clinician 

during 1 visit or quadrant-by-quadrant at bi-weekly intervals. Patients were re-

evaluated 20-26 weeks following the last treatment session and 6 months from 

baseline. Periodontal treatment was deemed to be successful by reduced PPD, 

BOP, and plaque scores. Plaque samples were collected from the deepest site in 

each quadrant before non-surgical periodontal treatment, and at re-evaluation.  

 

Before and after treatment, peripheral venous blood was collected into a glass 

vacutainer between 9.00 am and 11.00 am to minimise diurnal variations in 

biochemical parameters. After coagulation, blood was centrifuged at 200 x g and 

room temperature for 10 minutes. Serum was separated and stored in aliquots at 

-70 oC. This study has been previously described in detail (Apatzidou et al., 

2005, Lappin et al., 2013). 
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2.2 Mice 

 

All animals were maintained, and experiments carried out, under standard 

conditions in accordance with local and UK Home Office regulations (Licence 

60/4041, Biological Services, University of Glasgow) and all animal studies are 

reported according to ARRIVE guidelines (Kilkenny et al., 2010). BALB/c mice 

(Harlan, UK) and C57BL/6 (Charles River, UK) were housed in standard cages, 

whereas μMT mice (kindly donated by Prof. Robert Nibbs, University of Glasgow 

(Kitamura et al., 1991)) were housed in ‘barrier’ cages. There was a maximum of 

5 mice per cage. All mice were maintained on a 12 hour light-dark cycle and 

received dH2O and food ad libitum. The welfare of the mice was assessed daily. 

No adverse events occurred during any of the experiments. The number of 

animals in each experimental group ranged from 4-6. The maximum total 

number of animals in a single experiment was 22. Experiments were designed 

with Dr Andrea Sherriff, Senior Lecturer in Statistics at the University of 

Glasgow. Based on previous data, using clinical disease measures (alveolar bone 

loss) as our primary outcome, it was estimated that group sizes of 5 were 

required to have a 80 % power of demonstrating differences at a significance 

level of 5 % between groups in an unpaired t test.  

 

2.3 P. gingivalis growth    

 

Stocks of P. gingivalis W83 (ATCC) originating from a human oral infection 

(isolated in the 1950s by Werner, H. in Germany (Loos et al., 1993)) were stored 

long-term in 10 % glycerol at -80 oC. Frozen bacteria were applied to Schaedler 

anaerobic agar (Sigma-Aldrich) supplemented with 10 % FCS and 0.0025 μg/ml 

Vitamin K (Sigma-Aldrich) following the streak dilution method with sterile 

pipette tips (Starlab). Bacteria were grown on agar plates for 2-3 days at 37 oC in 

an anaerobic chamber (Don Whitely, Yorkshire, UK) with 85 % N2, 5 % H2 and 10 % 

CO2, and then 3-4 colonies of bacteria were collected using sterile loops 

inoculated into 30 ml of Schaedler anaerobic broth (Sigma-Aldrich) 

supplemented with 0.0025 μg/ml menadione (Sigma-Aldrich) and 5 % horse blood 

(TCS biosciences, UK), and incubated for a further 2 days in the anaerobic 

chamber.  
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2.4 Murine model of periodontitis 

 

The bacteria were grown as described in section 2.3. The OD of the planktonic 

bacteria was measured at 600 nm to determine the number of ml required for 

the desired total CFU. This was achieved using a previously generated standard 

curve (kindly provided by Emma Millhouse, Glasgow Dental School). A total CFU 

of 1 x 1010 was needed for infecting 5 mice. The required volume of planktonic 

bacteria was transferred to a new universal tube and centrifuged at 3,750 rpm 

for 20 minutes. The majority of the supernatant was poured off and the pellet 

was re-suspended in the remaining supernatant, then transferred to several 1.5 

ml Eppendorf® tubes and centrifuged at 13,400 rpm for 10 minutes. The 

supernatants were removed and the bacteria were washed twice by re-

suspending in 1 ml/tube de-oxygenated PBS, centrifuging at 13,400 rpm for 10 

minutes, and removing the supernatant. Finally, approximately 1 x 1010 CFU of 

bacteria were pooled into a single 1.5 ml Eppendorf® tube and re-suspended in 

800 μl de-oxygenated 2 % CMC (Sigma-Aldrich) in PBS. 

 

Female mice aged 4-6 weeks were treated with antibiotics (0.08 % 

sulphamethoxazole, 0.016 % trimethoprim in dH2O, ad libitum) for 10 days, and 

then rested for 3 days. Mice were then divided into 2 groups. PD was induced in 

half of the mice by orally infecting with approximately 109 CFU P. gingivalis W83 

in 75 μl 2 % CMC vehicle by gavage into the oral cavity using pipette tips 

(Starlab). Infections were performed on 3 occasions within 5 days. Control mice 

were orally inoculated with an equal volume of 2 % CMC only on these occasions. 

At 1, 2, or 6 weeks post-infection animals were euthanised by increasing 

concentrations of CO2 and exsanguination by cardiac puncture to obtain blood. 

The gingiva were dissected from the maxillae and the maxillae were retained for 

assessment of alveolar bone level. Inguinal LN, mesenteric LN, dLNs, spleens, 

and peritoneal fluid were also collected in some experiments. 
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Figure 2.4.1 Timeline of the murine model of periodontitis. 

 

2.5 Murine model of periodontitis with IL-33 treatment 

 

Mice to be infected with P. gingivalis and sham-infected mice were divided into 

2 sub-groups which either received 0.9 μg recombinant murine IL-33 (BioLegend) 

or vehicle only (0.1 % BSA in PBS) via intraperitoneal injection. Mice received 

their first IL-33 injection the day before their first infection with P. gingivalis, 

and the next 2 IL-33 injections on alternate days to the infections (Figure 

2.5.1). In some experiments, mice were euthanised 1 week post-infection. In 

other experiments, mice received an additional 6 IL-33 injections over 10 days as 

indicated (Figure 2.5.1), and were euthanised at 6 weeks post-infection. 

 

 

Figure 2.5.1 Timeline of the murine model of periodontitis with IL-33 
treatment. 
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2.6 Dissection of murine gingiva 

 

Gingiva were dissected from the maxillae of mice following a published protocol 

(Mizraji et al., 2013). In brief, the maxillae were cut away from the head. 

Incisions were made with a scalpel blade around the gingival tissue, which was 

stripped away using forceps. The gingiva, and strips of palatal tissue were placed 

in PBS prior to analysis of cells by flow cytometry, or the gingiva only were 

stored in RNAlater® for subsequent RNA extraction and analysis of gene 

expression.  

 

 

Figure 2.6.1. Dissection of murine gingiva. Images of the inside of the murine 
oral cavity from Mizraji et al. 2013. A) cartoon indicating the incisions made to 
dissect the gingiva (MM = masseter muscle, HP = hard palate, SP = soft palate, 
G= gingiva). First, the blue and green incisions were made to remove the HP 
from the oral cavity to improve the access to the gingiva, then the black 
incisions were made to excise the gingiva from around the teeth. B) 
photographic representation of the dissection. 
 

2.7 Assessment of alveolar bone level in mice 

 

The gingival and palatal tissues were carefully removed by dissection as 

described in section 2.6. The left and right sides of the jaw were separated, and 

the remaining tissue was removed from the bone, by incubation with 2 mg/ml 

collagenase (Sigma-Aldrich), 50 U/µl DNAse I (Invitrogen) and 1 mg/ml 

hyaluronidase (Sigma-Aldrich) for 30 minutes at 37 oC with gentle agitation. The 
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enzyme reaction was stopped by adding cRPMI and the teeth were washed with 

distilled water, then incubated with 3 % H2O2 at room temperature overnight. 

The teeth were washed again with dH2O and incubated with 2 % PFA overnight. 

The teeth were washed again with dH2O before finally being stained with 0.5 % 

methylene blue at room temperature for 30 minutes. The teeth were washed 

with dH2O and air-dried prior to imaging. Images were captured at X3.2 

magnification using an SZX7 dissection microscope fitted with SC100 camera 

(Olympus). Maxillae were orientated for measurements by aligning the buccal 

and palatal tips of the middle cusp of the first (largest) molar. Measurements of 

the distance between the CEJ and the ABC were made in images using GIMP 

version 2.8, by referring to the scale bar. This distance was measured on the 

palatal side of the teeth at 12 points on the left side and 12 points on the right 

side of the jaw, generating a total of 24 measurements for each mouse (Figure 

2.7.1). In some cases, measurements of the alveolar bone level were also made 

independently by Dr Annelie Hellvard and Birth Bergum (Broegelmann Research 

Laboratory, University of Bergen, Norway) using X-ray micro-CT with OsiriX 

software (Pixmeo, Switzerland). This method involved measuring the distance 

between the CEJ and the ABC on the mesial and distal sides of the second molar, 

on the left and the right sides of the jaw. This measurement was guided by a 

reference line which indicated the plane of the ABC (Figure 2.7.2). All 

measurements were made blindly. After the measurements were made, the 

mean distance from the CEJ to the ABC (the alveolar bone level) was calculated 

for each mouse. The mean value of the alveolar bone level for the whole sham-

infected group was subtracted from the mean alveolar bone level of each 

individual mouse in all groups, including the sham-infected group itself, in order 

to normalise the data. The mean alveolar bone level of the sham-infected group 

was consequently 0 mm and the SEM of the sham-infected group was determined 

from the deviation of normalised measurements of individual sham-infected 

mice from 0 mm. Values of alveolar bone level > 0 mm were presented as 

negative and values < 0 mm were presented as positive to indicate the relative 

loss of alveolar bone for all mice. 
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Figure 2.7.1. Assessment of alveolar bone level in mice using a dissection 
microscope. The maxillary teeth and supporting alveolar bone were stained with 
methylene blue and images were captured at X3.2 magnification. Measurements 
of the distance between the CEJ and the ABC were made at 14 points across the 
lingual side of the teeth to assess the alveolar bone level (ABL) in mice. These 
measurements were made by referring the scale bar in the bottom-right corner 
of images, which indicates the length of 200 μm. A) the CEJ is highlighted in 
yellow, the ABC is highlighted in red, and the measurements are shown in black. 
B) the measurements only are shown in black.  
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Figure 2.7.2. Assessment of alveolar bone level in mice using X-ray micro-CT. 
A) the roots of the 3 molars were aligned and the orange line indicated where a 
cross-section was to be made. B) on a cross-sectional image of the 3 molars, the 
distance between the CEJ (junction between the white enamel and the grey 
cementum) and the ABC was measured either side of the second molar. This 
distance is shown by the vertical green lines. Perpendicular to these 
measurements are guide lines, also green, which rest on the plane of the ABC. In 
some cases, the angle of these guide lines was somewhat arbitrary due to the 
degree of bone erosion.     
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2.8 Extraction of RNA and DNA and analysis of gene expression 

 

2.8.1 RNA extraction and qRT-PCR 

 

Samples of human gingival tissue were retrieved from storage in RNAlater® at -

80oC. Murine gingiva were transferred to an Eppendorf® tube containing 100 μl 

RNAlater® and RNA extracted later the same day. Murine spleens were collected 

and transferred to cRPMI (RPMI with 10 % FCS, 1 % Penicillin Streptomycin, and 1 

% L-glutamine (Invitrogen)), then dissected into small sections and immediately 

processed for RNA extraction.  

 

Extraction of total RNA from all tissue samples was carried out using the RNeasy® 

fibrous tissue kit (Qiagen), according to the manufacturer’s instructions. In 

brief, a maximum of 30 mg tissue was placed in a clean 1.5 ml Eppendorf® tube 

with 300 μl 1 % ß-mercaptoethanol in buffer RLT. The mixture was homogenised 

using a cordless motorised homogeniser with disposable pellet pestles (Sigma-

Aldrich). Then, 590 μl nfH2O and 10 μl proteinase K (Qiagen) were added to the 

homogenous lysate and the mixture was incubated at 55 oC for 10 minutes. The 

homogenate was centrifuged at 10,000 rpm for 3 minutes at room temperature. 

The supernatant (700–900 μl) was transferred into a new 1.5 ml Eppendorf® 

tube, followed by addition of an equal volume of ethanol (96–100 %). The 

mixture was gently mixed by pipetting up and down before being transferred 

onto an RNeasy® spin column placed in a 2 ml collection tube and centrifuged at 

10,000 rpm for 15 seconds. The flow-through was discarded and the membrane 

was washed with 350 μl buffer RW1. The sample was centrifuged at 10,000 rpm 

for 15 seconds. The flow through was discarded and DNase digestion was 

performed ‘on column’ by incubating the membrane with a mixture of 10 μl 

DNase I stock solution (Qiagen) and 70 μl buffer RDD for 15 minutes at room 

temperature. Afterwards, the column was washed again with buffer RW1. Next, 

the column was washed twice with 500 μl buffer RPE. Finally, RNA was eluted 

from the column by adding 30-50 μl nfH2O and centrifugation at 10,000 rpm for 1 

minute. The RNA was stored at -80 oC until further use. A NanoDrop 1000 

spectrophotometer (Thermo Fisher Scientific) was used to assess the 

concentration and quality of the RNA. Quality was assessed by measuring the 

ratio of absorbance at 260/280 and 260/230. A 260/280 ratio of around 2.0 and a 
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260/230 ratio in the range of 1.8-2.2 is generally accepted as ‘pure’ for RNA. 

Samples with 260/280 and 260/230 ratios appreciably lower than those in the 

ideal range were not used as this indicates the presence of protein, phenol, or 

other contaminants. 

 

Depending on kit availability, reverse transcription was carried out using the 

either the High Capacity RNA-to-cDNA kitTM or the High Capacity cDNA Reverse 

Transcription Kit (both Applied Biosystems). A reaction mix was prepared 

containing 1 μg RNA template (1-9 μl), nfH2O (0-8 μl), and kit-specific master 

mix containing manufacturer optimised concentrations of MgCl2, along with 

dNTPs, random primers, with (RT+) or without (RT-) 1 μl enzyme mix containing 

manufacturer optimised concentrations of MultiScribeTM MuLV reverse 

transcriptase enzyme, and recombinant RNase inhibitor protein. RT- reaction 

mixtures included an additional 1 μl of nfH2O instead of the enzyme mix. The 

RNA template was added last to the reaction. Reaction mixtures were prepared 

in 0.2 ml Eppendorf® tubes on ice. The tubes were sealed, briefly centrifuged, 

loaded onto a DNA Engine® thermal cycler (BIORAD), and underwent the thermal 

cycling conditions in Table 2.8.1.1. 

 

 High Capacity RNA-to-cDNA KitTM  High Capacity cDNA Reverse 
Transcription Kit 

Step Temperature 
(oC) 

Time 
(minutes:seconds) 

Temperature 
(oC) 

Time 
(minutes:seconds) 

1 25 05:00 25  10:00 

2 42 30:00 37 120:00 

3 85 05:00 85  05:00 

Table 2.8.1.1. Thermal cycling conditions for conversion of mRNA to cDNA 
using the High Capacity RNA-to-cDNA KitTM and High Capacity cDNA Reverse 
Transcription Kit.   
 

Quantitative RT-PCR of cDNA products was performed using TaqMan® reagents 

(Applied Biosystems). Reactions were prepared in a 96 well plate (Starlab) on 

ice. All reactions were prepared and measured in duplicate. Each reaction 

consisted of 1 μl cDNA, 1 μl TaqMan® Primer Probe Assay Mix (Applied 

Biosystems), 10 μl TaqMan® Universal PCR Master Mix (Applied Biosystems), and 8 

μl nfH2O. The plate was sealed, briefly centrifuged, loaded onto the MxPro3000P 

qPCR System (Aligent Technologies) or the 7500 Real-Time PCR System (Applied 

Biosystems), and underwent the thermal cycling conditions in Table 2.8.1.2. 
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Real-time PCR data were analysed using the 2-ΔCT method (Schmittgen & Livak, 

2008). Expression of the gene of interest was determined relative to the 

expression of 18S. 

 

Step Temperature (oC) Time (minutes:seconds) 

1 95 10:00 

2 (x40) 95 00:15 

60 01:00 

Table 2.8.1.2. Thermal cycling conditions for qRT-PCR using TaqMan® 
reagents.   
 

Primer Species Supplier Assay ID Spans exon 

18S rRNA eukaryote Applied Biosystems 4352930E NA 

CD19  human Applied Biosystems Hs01047410_g1 1-2 

FcRL4  human Applied Biosystems Hs00972783_m1 10-11 

CD19  mouse Applied Biosystems mM00515420_m1 4-5 

CD4  mouse Applied Biosystems mM00442754_m1 5-6 

Table 2.8.1.3. TaqMan® primers used in qRT-PCR. NA = not applicable. 
 

2.8.2 Bacterial DNA extraction and PCR 

 

Dr Danae Apatzidou and Dr David Lappin carried out the collection of plaque, 

extraction of bacterial DNA, and PCR as previously described (Apatzidou et al., 

2005, Lappin et al., 2013). Plaque was collected from PD patients and healthy 

volunteers using a sterile curette and dispersed into 1 ml of PBS. Bacteria were 

centrifuged at full speed for 10 minutes in a microcentrifuge, then resuspended 

in 500 μl dH2O and lysed by incubating at 100 oC for 10 minutes. Carriage of P. 

gingivalis by PD patients was determined by PCR amplification of P. gingivalis-

specific 16S rRNA sequences. In brief, 10 µl of extracted bacterial DNA was 

added to a 90 μl reaction mixture containing PCR buffer (10 mM tris-HCl pH 9.0, 

1.5 mM MgCl2, 50 mM KCl, 0.1% Triton® X-100), 2 U GoTaq® DNA polymerase 

(Promega), 0.2 mM dNTPs and 50 pM each primer (forward and reverse). Samples 

were then loaded onto the OmniGene thermal cycler (Hybaid, Teddington, UK) 

and underwent the thermal cycling conditions in Table 2.8.2.1. For analysis, 

10 μl each reaction product was added to 1.5 μl gel-loading dye (0.25 % 

bromophenol blue, 50 % glycerol, 100 mM EDTA pH 8.0), electrophoresed on a 2 

% agarose gel containing ethidium bromide (0.5 μg/ml) and visualised and 

photographed using an ImageMaster video documentation system (Pharmacia 

Biotech, St. Albans, UK). A 100 bp DNA ladder (Pharmacia Biotech) was used as a 



75 
 

molecular weight marker. The results confirmed whether patients were positive 

or negative for carriage of P. gingivalis but were not quantitative.  

 

Step Temperature (oC) Time (minutes:seconds) 

1 94 05:00 

2 (x35) 94 01:00 

60 01:00 

72 01:30 

3 72 10:00 

Table 2.8.2.1. Thermal cycling conditions for PCR amplification of P. 
gingivalis 16S in isolates of human dental plaque.   
 

Primer Supplier Sequence (5’-3’) 

P. gingivalis 16S MWG-Biotech Forward AGG CAG CTT GCC ATA CTG CG 
Reverse ACT GTT AGC AAC TAC CGA TGT 

Table 2.8.2.2. Primers used for PCR amplification of P. gingivalis 16S in 
isolates of human dental plaque.   
 

Plaque was collected from mice by swabbing the oral cavity using sterile 

eSwabsTM (Copan, US) containing 1 ml Liquid Amies transport medium. Bacterial 

DNA was isolated using the MasterPureTM  Gram Positive DNA Purification Kit 

(Epicentre, US), following the manufacturer’s instructions with minor 

modifications. In brief, the oral swabs were vortexed, then 1 ml from each swab 

was transferred to a 1.5 ml Eppendorf® tube. The bacteria were pelleted by 

centrifugation at full speed for 10 minutes in a microcentrifuge, and the 

supernatant was discarded. Bacteria were resuspended in 150 μl/tube TE buffer. 

After adding 1 μl/tube lysozyme, samples were incubated at 37 oC for 2 hours. A 

mixture of 1 μl proteinase K in 150 μl Gram Positive Lysis Solution was added to 

each tube. Samples were incubated at 65-70 oC for 15 minutes with intermittent 

vortexing, then cooled on ice for 5 minutes. Next, 175 μl/tube of MPC Protein 

Precipitation Reagent was added, and samples were vortexed for 10 seconds, 

then centrifuged at full speed for 10 minutes in a microcentrifuge. The 

supernatant containing the DNA was transferred to a clean tube and then 

incubated with 1 μl/tube RNase A (5 μg/μl) at 37 oC for 30 minutes. Isopropanol 

was added 500 μl/tube, and tubes were inverted 30-40 times, then centrifuged 

at full speed for 10 minutes in a microcentrifuge. The supernatant was removed 

and the DNA pellet was rinsed with 70 % ethanol. Finally, the DNA was 

resuspended in 35 μl/sample TE buffer.  
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Following extraction, 1 μl bacterial DNA was added to a PCR reaction mixture 

which consisted of 10 μl SYBR® Select Master Mix (Life Technologies) containing 

manufacturer optimised concentrations of SYBR® GreenER™ dye, AmpliTaq® DNA 

Polymerase, uracil DNA glycosylase, dNTPs, and ROX passive reference dye in a 

buffer, 7 μl nfH2O, and 1 μl each primer (forward and reverse, final 

concentration 10 μM) as listed in Table 2.8.2.3. Reactions were prepared in a 

96-well plate (Starlab) on ice. The plate was sealed, briefly centrifuged, loaded 

onto the MxPro3000P qPCR System (Aligent Technologies) or the 7500 Real-Time 

PCR System (Applied Biosystems), and underwent the thermal cycling conditions 

in Table 2.8.2.4. P. gingivalis 16S could not be detected by this method. The 

number of CFU present in the 1 ml samples of bacteria was estimated based on 

the Ct values generated by qRT-PCR with primers recognising a universal 16S 

sequence detected in the genome of most bacteria (Muyzer et al., 1993). This 

was achieved using a previously generated standard curve (kindly provided by 

Lindsay O’Donnell, Glasgow Dental School) of the average CFU and corresponding 

Ct values of generic 16S for a combination of representative Gram negative and 

Gram positive bacteria: Pseudomonas aeruginosa and Staphylococcal aureus 

(each of which had similar copy numbers of 16S to P. gingivalis (Vetrovsky and 

Baldrian, 2013)). 

 

Primer Supplier Sequence (5’-3’) 

universal 16S  Primer Design Forward ACT CCT ACG GGA GGC AGC AGT 
Reverse TAT TAC CGC GGC TGC TGG C 

P. gingivalis 16S Primer Design Forward GCG CTC AAC GTT CAG CC 
Reverse CAC GAA TTC GCC TGC 

Table 2.8.2.3. Primers used in qRT-PCR of bacterial DNA isolated from mice. 

   

Step Temperature (oC) Time (minutes:seconds) 

1 50 02:00 

2 95 02:00 

3 (x40) 95 00:15 

60 01:00 

Table 2.8.2.4. Thermal cycling conditions for PCR amplification of bacterial 
16S in murine plaque samples.   
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2.8.3 Murine DNA extraction for anti-dsDNA ELISA 

 

DNA was extracted from the spleens of mice using the DNeasy® Blood and Tissue 

Kit (Qiagen), according to the manufacturer’s instructions. In brief, the tissue 

was dissected into small fragments weighing < 10 mg each. Individual fragments 

were transferred to 1.5 ml Eppendorf® tubes and incubated with 180 μl/tube 

buffer ATL and 20 μl/tube at 56 oC for 8 hours with intermittent vortexing. After 

this, 200 μl/tube buffer AL was added and the samples were incubated at 56 oC 

for a further 10 minutes. Then, 200 μl/tube 100 % ethanol was added and the 

samples were vortexed. The samples were transferred into DNeasy® mini spin 

columns placed in 2 ml collection tubes and centrifuged at 8,000 rpm for 1 

minute in a microcentrifuge, then the spin columns placed in new 2 ml 

collection tubes and 500 μl/tube buffer AW1 was added. The samples were 

centrifuged at 8,000 rpm for 1 minute then transferred into new collection tubes 

as before and 500 μl/tube buffer AW2 was added. The samples were centrifuged 

at 13,400 rpm for 3 minutes and then transferred to clean 1.5 ml Eppendorf® 

tubes. Finally, the DNA was eluted by adding 200 μl/tube buffer AE, incubating 

at room temperature for 1 minute, and then centrifuging at 8,000 rpm for 1 

minute. A NanoDrop 1000 spectrophotometer was used to assess the 

concentration and quality of the DNA. Quality was assessed by measuring the 

ratio of absorbance at 260/280 and 260/230. A 260/280 ratio of around 1.8 and a 

260/230 ratio in the range of 1.8-2.2 is generally accepted as ‘pure’ for DNA. 

Samples with 260/280 and 260/230 ratios appreciably lower than those in the 

ideal range were not used as this indicates the presence of protein, phenol, or 

other contaminants. 

 

2.9 IHC with human gingival tissue  

 

2.9.1 Single IHC staining for light microscopy 

 

Paraffin sections (prepared by staff in the histopathology department at the 

Veterinary School of Medicine, University of Glasgow) were incubated at 60 oC 

for 35 minutes to soften the wax. Sections were deparaffinised and rehydrated 

by passing through the solutions as indicated in Table 2.9.1.1. 
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Step Solution Time (minutes) 

1 Xylene 10   

2 (x2) 100 % Ethanol 3 

3 (x2) 90 % Ethanol 3 

4 (x2) 70 % Ethanol 3 

Table 2.9.1.1. Steps for deparaffinisation and rehydration of paraffin tissue 
sections. 
 

Sections were washed with dH2O, and endogenous peroxidase activity was 

blocked by incubating sections with 0.5 % H2O2 in methanol at room temperature 

for 30 minutes. Sections were washed with TBST (0.05 % Tween, 20 mM tris, 9 % 

NaCl, pH 7.6). Epitope retrieval was performed by immersing sections in boiling 

citrate buffer (0.01 M citrate, pH 6) for 8 minutes. Sections were cooled to room 

temperature and washed with dH2O, followed by TBST. Sections were 

demarcated with ImmEdgeTM hydrophobic barrier pen (Vector Laboratories), 

blocked using the Avidin/Biotin Blocking Kit (Vector Laboratories), then 

incubated with 100 μl/section of non-specific antibody binding block (2.5 % 

human serum (Thermo Fisher Scientific), 2.5 % serum of the animal that the 

secondary antibody was raised in (Vector Laboratories), and 2.5 % avidin D block, 

in TBST) at room temperature for 30 minutes. Primary antibodies were prepared 

in primary diluent (2.5 % human serum, 2.5 % serum of the animal that the 

secondary antibody was raised in, and 2.5 % biotin block, in TBST) as indicated in 

Table 2.9.1.2. Sections were incubated with 100 μl/section primary antibodies 

at 4 oC overnight. Sections were then warmed to room temperature and washed 

in TBST. Biotin-conjugated secondary antibodies were prepared in secondary 

diluent (2.5 % serum that the secondary antibody was raised in, in TBST) as 

indicated in Table 2.9.1.2. Sections were incubated with 100 μl/section 

secondary antibodies at room temperature for 30 minutes, then washed with 

TBST. Sections were incubated with 100 μl/section avidin-biotin complex 

prepared using the VECTASTAIN® Elite ABC Kit (Vector Laboratories) at room 

temperature for 30 minutes. The epitopes were visualised with 50 μl/section 

DAB substrate (Vector Laboratories). Sections were washed with dH2O, and 

counterstained with Harris Haematoxylin (Sigma-Aldrich). 
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Antibody Isotype Final concentration Supplier 

mouse anti-human 
CD19 

IgG1 0.83 μg/ml Dako 

goat anti-human  
CD5 

IgG 1 μg/ml R&D systems 

mouse anti-human 
CD138 

IgG1 5.4 mg/ml Dako 

rabbit anti-human  
IgG 

IgG Fab2 

fragment 
5.7 mg/ml Dako 

horse anti-mouse  
IgG 

IgG 7.5 μg/ml Vector Laboratories 

rabbit anti-goat  
IgG 

IgG 7.5 μg/ml Vector Laboratories 

Table 2.9.1.2. Primary and secondary antibodies used in IHC. 
Final concentrations of antibodies were optimised in preliminary experiments.  
 

Sections were washed with dH2O, then dehydrated as indicated in Table 

2.9.1.3, and mounted with histomount® (national diagnostics, US) and glass 

coverslips (VWR International). Sections were stored at room temperature, 

protected from light. Images of stained tissue were captured at X20 

magnification and stitched together to form a tile scan of the entire section 

using an EVOS® Cell Imaging System (Life Technologies). The area of tissue 

containing CD19+ B cells or CD138+ plasma cells was calculated as a percentage 

of the total area of the tissue section for each patient using ImageJ software 

(National Institute of Health, US).  

 

Step Solution Time (minutes:seconds) 

1 70 % Ethanol 00:30 

2  90 % Ethanol 01:00 

3 (x2) 100 % Ethanol 03:00 

4 Xylene 05:00 

Table 2.9.1.3. Steps for dehydration of paraffin tissue sections. 

 

2.9.2 Dual IHC staining for light microscopy 

 

Sections were deparaffinised, rehydrated, and epitope retrieval performed as 

previously described in section 2.9.1. Sections were stained using the EnVision™ 

G|2 Doublestain System for Rabbit/Mouse (Dako) according to the 

manufacturer’s instructions (patented biotin-free staining system, all reagents 

provided by manufacturer at ready-to-use concentrations). In brief, sections 

were incubated with 100 μl/section dual endogenous enzyme block (0.5 % H2O2 
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and enzyme inhibitors, pH 2) at room temperature for 5 minutes, washed with 

TBST and incubated with 100 μl/section mouse anti-human CD138 antibody 

(prepared in TBST as indicated in Table 2.9.1.2) at room temperature for 30 

minutes. Sections were washed in TBST and incubated with 100 μl/section of 

polymer-HRP (HRP-conjugated dextran polymer that also carries antibodies to 

mouse and rabbit antibodies) at room temperature for 10 minutes. Sections were 

washed in TBST and the CD138 epitopes were visualised with 50 μl/section DAB 

substrate. Sections were washed in dH2O, followed by TBST, and incubated with 

100 μl/section of double stain block at room temperature for 5 minutes. Sections 

were washed in TBST, and incubated with the anti-human IgG antibody 

(prepared in TBST as indicated in Table 2.9.1.2) at room temperature for 30 

minutes. Sections were washed in TBST and incubated with 100 μl/section LINK 

polymer (a dextran polymer carrying antibodies to mouse and rabbit antibodies) 

at room temperature for 10 minutes. Sections were washed with TBST and 

incubated with 100 μl/section of polymer-AP (AP-conjugated dextran polymer 

carrying affinity-isolated antibodies) at room temperature for 10 minutes. 

Sections were washed in TBST and the IgG epitopes were visualised with 50 

μl/section of permanent red. Sections were washed in dH2O and mounted with 

Faramount Aqueous Mounting Medium (Dako) and glass coverslips. Sections were 

stored at room temperature, protected from light. Images of CD138+ plasma cell 

rich areas of tissue were captured at X10 and at X40 magnification using an 

inverted light microscope fitted with a DP25 digital camera, and Cell B software 

(Olympus). The total number of CD138+ plasma cells, and the total number of 

CD138+ IgG+ plasma cells were counted in 4-5 fields of view at X40 magnification 

using ImageJ software (National Institute of Health, US). From this, the average 

percentage of CD138+ plasma cells that were IgG+ was calculated. 

 

2.9.3 Dual IHC staining for fluorescence microscopy 

 

Sections were deparaffinised, rehydrated, endogenous peroxidase blocked, and 

epitope retrieval performed as previously described in section 2.9.1. Sections 

were washed and non-specific antibody binding blocked (2.5 % human serum, 2.5 

% horse serum, and 2.5 % avidin D block, in TBST) as previously described in 

section 2.9.1. The first primary antibody, mouse anti-human CD19 was prepared 

in the appropriate diluent (2.5 % human serum, 2.5 % horse serum, and 2.5 % 
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biotin block, in TBST) as indicated in Table 2.9.1.2. Sections were incubated 

with 100 μl/section of this antibody at 4 oC overnight. Sections were warmed to 

room temperature and washed in TBST. The first secondary antibody, biotin-

conjugated horse anti-mouse IgG was prepared in the appropriate diluent (2.5 % 

horse serum in TBST) as indicated in Table 2.9.1.2. Sections were incubated 

with 100 μl/section of this antibody at room temperature for 30 minutes. SA-

conjugated fluorochrome DyLight® 549 (Vector Laboratories) was diluted 1/200 

in PBS, Ph8. All subsequent steps were performed with the sections protected 

from light. Sections were washed in TBST and incubated with 100 μl/section of 

this fluorochrome at room temperature for 45 minutes. Sections were washed 

with dH2O followed by TBST and incubated with non-specific antibody binding 

block (2.5 % human serum, 2.5 % rabbit serum, and 2.5 % avidin D block, in TBST) 

a second time, at room temperature, for 30 minutes. The second primary 

antibody, rabbit anti-human CD5 was prepared in the appropriate diluent (2.5 % 

human serum, 2.5 % rabbit serum, and 2.5 % biotin block, in TBST) as indicated 

in Table 2.9.1.2. Sections were incubated with 100 μl/section of this antibody 

at room temperature for 30 minutes. SA-conjugated fluorochrome DyLight® 488 

(Vector Laboratories) was diluted 1/200 in PBS, Ph8. Sections were washed in 

TBST and incubated with 100 μl/section of this fluorochrome at room 

temperature for 45 minutes. Sections were washed with dH2O followed by TBST 

and mounted with VECTASHIELD® mounting media containing DAPI (Vector 

Laboratories) and glass coverslips. Sections were stored at 4 oC, protected from 

light. Images of CD19+ B cell rich regions were captured at X10 and X20 

magnification using an M2 epifluorescence microscope fitted with AxioCamMRm 

and AxioCamMRc cameras, and AxioVision software (Zeiss). The total number of 

CD19+ B cells, and the total number of CD19+ CD5+ B1a cells were counted in 4-5 

fields of view at X20 magnification using ImageJ software. From this, the 

average percentage of CD19+ plasma cells that were CD5+ B1a cells was 

calculated. 
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2.10 Preparation of cells for cell separation, tissue culture, and flow 

cytometry 

  

2.10.1 Gingiva 

 

Gingiva dissected from groups of 5 mice were placed in 1 ml PBS. Samples of 

gingival tissue collected from individual PD patients were temporarily stored in 1 

ml RPMI (Invitrogen) on ice, then transferred to 1 ml PBS. The human and murine 

gingival tissues were processed identically. The gingiva were incubated with 200 

μl (500 μg)/sample of dispase-high liberase (Roche) at 37 oC for 30-45 minutes 

with intermittent pipetting to disrupt the tissue. The enzymatic reaction was 

stopped by adding 3 ml cRPMI and the tissue suspension was transferred to 

gentleMACSTM C tubes (Miltenyi). Two 40 second cycles of cellular dissociation 

were performed using the gentleMACSTM dissociator, program C (Miltenyi). The 

tubes were briefly centrifuged to remove bubbles, and the cell suspension was 

passed through a 40 μm cell strainer using the plunger from a 2 ml syringe (BD 

Bioscience). Excess cRPMI was added to wash the cells which were centrifuged at 

400 x g and 4 oC for 5 minutes. The cells were resuspended in 5 ml cRPMI for 

counting.  

 

2.10.2 Murine LN and spleen 

 

LN and spleens were harvested and transferred to cRPMI. Single cell suspensions 

were prepared by passing them through a 40 μm sieve (BD Biosciences) into 

cRPMI using the plunger of a 5 ml syringe (BD Biosciences). Cell suspensions were 

washed with cRPMI and were centrifuged at 400 x g for 5 minutes at 4 oC. Spleen 

cells were resuspended in 2-5 ml of RBC lysis buffer (eBioscience) and incubated 

for 5 minutes at 4 oC. The reaction was stopped by adding excess cRPMI. The 

cells were centrifuged as before and resuspended in cRPMI for counting.  

 

2.10.4 Murine blood 

 

Approximately 500 μl blood was transferred to a 1.5 ml Eppendorf® tube 

containing 500 μl Heparin 20 U/ml in PBS (LEO Pharma, Berkshire, UK). 

Heparinised blood samples were pooled from groups of 5 mice into a 15 ml 
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universal tube and further PBS added to give a total volume of 15 ml. Blood was 

layered on top of 15 ml Histopaque® 1083 (Sigma-Aldrich) in a 50 ml universal 

tube. The blood and Histopaque® were centrifuged at 2,300 rpm for 30 minutes 

at room temperature, with the brake switched off. The uppermost layer of PBS 

and blood plasma was discarded. The cellular interface between the PBS and the 

Histopaque® was aspirated using a pastette, and transferred to a clean 50 ml 

universal tube. The cells were washed with 30 ml PBS and centrifuged at 250 x g 

for 10 minutes. The cells were resuspended in 5 ml flow cytometry buffer (0.01 

% NaN3, 2 % FCS in PBS) for a second wash and centrifuged at 250 x g for 10 

minutes. The cells were finally resuspended in 5 ml flow cytometry buffer for 

counting. 

 

2.10.5 Murine peritoneal fluid 

 

Peritoneal washes were performed with 5 ml ice cold PBS with 3 % FCS (Ray and 

Dittel, 2010). A 27 G needle and syringe were used to inject the wash fluid, and 

after gentle massage of the peritoneum, a 25 G needle and syringe were used to 

collect the wash fluid with peritoneal cells which were transferred to universal 

tubes. Volumes of fluid collected were recorded and cell counts were made. 

Cells were centrifuged at 1,500 rpm for 8 minutes at 4 oC prior to resuspension. 

 

2.10.6 Cell counts 

 

All cell counts were performed using a haemocytometer (Neubauer) and BH-2 

light microscope (Olympus). Dead cells were excluded on the basis of trypan 

blue staining. 

 

2.11 Separation of B cells  

 

MACS® separation of B cells was performed according to the manufacturer’s 

instructions (Miltenyi). Cells and reagents were kept ice-cold throughout. All 

steps were performed under sterile conditions. Cells were resuspended in MACS® 

buffer (0.5 % FCS, 2 mM EDTA in PBS) 90 μl/107 cells, then CD19 MACS® 

microbeads (Miltenyi) were added 10 μl/107 cells, and the mixture was 

incubated at 4 oC for 15 minutes. Cells were washed by adding MACS® buffer 1-2 
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ml/107 cells and centrifuging at 350 x g for 5 minutes. Cells were resuspended in 

MACS® buffer with up to 1 x 108 cells/500 μl. MACS® Columns (Miltenyi) were set 

up in the magnetic field of a MACS® Separator (Miltenyi). MS Columns were used 

for a maximum total of 2 x 108 cells. LS Columns were used for a maximum total 

of 2 x 109 cells. The columns were prepared by rinsing with MACS® buffer (500 

μl/MS Column, 3 ml/LS Column), then the cell suspensions were applied. The 

columns were washed with MACS® buffer (3 x 500 μl/MS Column or 3 x 3 ml/LS 

Column) and the CD19 negative fraction of cells was collected. These were kept 

aside to check the efficiency of the process by flow cytometry. Finally the CD19 

positive fraction of cells was eluted by adding MACS® buffer to the column (1 

ml/MS Column or 5 ml/LS Column), removing the column from the magnetic 

field and forcing the cells out using the plunger. The CD19 positive fraction of 

cells was centrifuged at 400 x g for 5 minutes at 4 oC and resuspended in 5 ml 

cRPMI, and cell counts were performed. Purity of the CD19 positive fraction of 

cells was confirmed by flow cytometry. 

 

2.12 Stimulation of cells from murine gingiva and LN  

 

Single cell suspensions were prepared from gingiva and LNs as described in 

sections 2.10.1 and 2.10.2 respectively. Cells were resuspended in cRPMI at a 

concentration of 1 x 107/ml and aliquoted 1 x 106/well in a 24-well flat-

bottomed plate (Costar), then topped up with 900 μl/well PMA and ionomycin 

(10 ng/ml PMA (Sigma), 500 ng/ml ionomycin (Sigma) in cRPMI) or cRPMI only. 

Cells were incubated at 37 oC with 5 % CO2 for 3 days. At the end of this 

incubation, the media was harvested for analysis by ELISA. 

 

2.13 Stimulation of cells from murine spleen 

 

Spleens were harvested from mice infected with P. gingivalis and sham-infected 

controls at 6 weeks post-infection. Cells were prepared as described in section 

2.10.2, and CD19+ B cells were separated as described in section 2.11. All cells 

were plated at a density of 5 x 105/well for 3 and 4 day cultures, or 2 x 105/well 

for 1 week cultures, in 96-well round-bottom cell culture plates (Costar). For 

cultures of mixed lymphocytes, the plates were pre-coated with anti-CD3 

antibody (eBioscience) by incubating with 50 μl/well of anti-CD3 antibody (1 
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μg/ml in PBS) at 37 oC with 5 % CO2 for 4 hours, then carefully removing the 

excess liquid before adding the cells. In some experiments both lymphocytes and 

purified B cells were additionally cultured with or without 1 μg/well anti-CD40 

(eBioscience), 1 μg/well E. coli LPS (Sigma-Aldrich), and 1 μg/well P. gingivalis 

LPS (Invivogen) singly or in combination, as indicated in the results, at 37 oC with 

5 % CO2 for 4 days (Chapter 5). In other experiments, both lymphocytes and 

purified B cells were additionally cultured with 1 μg/well anti-CD40 

(eBioscience), 0.2 μg/well anti-IgD (eBioscience), and 2 ng/ well IL-4, with or 

without 0.5 μg/well E. coli LPS (Sigma-Aldrich), 0.5 μg/well P. gingivalis LPS 

(Invivogen), and 4 ng/well IL-33 (BioLegend) singly or in combination, as 

indicated in the results (Chapter 6), at 37 oC with 5 % CO2 for 3 days or 1 week. 

 

2.14 Murine osteoclastogenesis assay 

 

To generate pre-osteoclasts, BM cells were flushed out from the 4 rear leg bones 

of a BALB/c mouse using HBSS (Invitrogen). The BM cells were centrifuged at 380 

x g for 5 minutes at 4 oC and resuspended in 1 ml of RBC lysis buffer for 2 

minutes. The lysis was stopped by adding excess HBSS. The BM cells were 

centrifuged as before, a resuspended at a 1 x 106/ml in macrophage media 

(cRPMI with 25 ng/ml M-CSF (eBioscience)), aliquoted 1 x 105/well in a 96-well 

flat-bottomed plate (Costar), and incubated at 37 oC with 5 % CO2 for 1 day. The 

cells were fed with 100 µl/well osteoclast media (macrophage media with 100 

ng/ml sRANKL (Peprotech)) and incubated at 37 oC with 5 % CO2 for another 2 

days. The pre-osteoclasts had 100 μl/well of their existing media removed and 

replaced with fresh osteoclast media with CD19+ cells or CD19- cells (separated 

as described in section 2.11). These cells were been harvested from the inguinal 

LN and mesenteric LN of female BALB/c mice 3 days after they had received 

their final treatment of 80 µl IL-33 (10 µg/ml in PBS with 0.2 % BSA) or vehicle 

only (n = 3/group) delivered by intraperitoneal injection, within a 4 day period. 

The pre-osteoclasts were incubated with the CD19+ or CD19- cells at 37 oC with 5 

% CO2 for 3 days, then 100 μl/well osteoclast media was added and they were 

incubated at 37 oC with 5 % CO2 for 1 more day. The osteoclasts were stained 

using the acid phosphatase leukocyte staining kit (Sigma-Aldrich) according to 

the manufacturer’s instructions. In brief, all reagents were warmed to room 

temperature and dH2O was warmed to 37 oC. A diazotized fast garnet solution 
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was made by mixing 200 μl fast garnet base with 200 μl sodium nitrite. After 

standing for 2 minutes, 200 μl of the diazotized fast garnet solution was added 

to 9 ml dH2O 100 μl napthol phosphate, 400 μl acetate, and 200 μl tartrate to 

make the TRAP stain. A positive control stain was also prepared which lacked 

tartrate, and a negative control stain was prepared which lacked the napthol 

phosphate. All staining mixtures were warmed to 37 oC before use. Meanwhile, 

the media and non-adherent cells were removed from the cell culture plate. 

Cells were fixed with 200 μl/well fixative (26 % citrate, 66 % acetone, 3 % 

formaldehyde) for 30 seconds, then washed 3 times with 200 μl/well dH2O. Cells 

were incubated with 200 μl/well of TRAP stain at 37 oC for 1.5 hours, then 

washed 3 times as before, and air dried. Images were captured at X10 

magnification using an inverted light microscope fitted with a Colourview I 

digital camera, and Cell D software (Olympus). 

 

 

Figure 2.14.1. Timeline of the murine osteoclastogenesis assay 
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2.15 Flow cytometry  

 

2.15.1 Human gingival cells 

 

Single cell suspensions were prepared from human gingival tissue as described in 

2.9.1. The total live cell count ranged from 5 x 105 – 7 x 106. Cells were 

centrifuged at 400 x g for 5 minutes at 4 oC, and resuspended in 600 μl FcR 

blocking buffer (eBioscience). Cells were incubated at 4 oC for 20 minutes and 

split into flow cytometry tubes for the different staining conditions. Antibodies 

were added (as indicated in Table 2.16.1.1.) and cells were incubated at 4 oC 

for 30 minutes. Cells were washed twice by centrifuging at 400 x g for 5 minutes 

at 4 oC and resuspending in 200 μl flow cytometry buffer (0.01 % NaN3, 2 % FCS in 

PBS). Cells were resuspended in 4 % PFA after the second wash and incubated at 

4 oC for 10 minutes. Cells were washed twice as before, resuspended in 200 μl 

flow cytometry buffer after the last wash, and passed through nitex before 

proceeding to flow cytometry. Flow cytometry was performed using the CyAnTM 

(Beckman Coulter) or the MACSQuant® (Miltenyi). Data were subsequently 

analysed using FlowJo® software (Tree Star Inc., Ashland, US). 

 

Antibody Isotype Final concentration Supplier 

CD3 PerCP Cy5.5 Mouse IgG2aκ 0.25 μg/100 μl eBioscience 

CD19 APC Mouse IgG1κ 1 μg/100 μl eBioscience 

CD138 FITC Mouse IgG1κ 10 μg/100 μl BioLegend 

Table 2.15.1.1. Anti-human antibodies for flow cytometry. 
Final concentrations of antibodies were determined by the manufacturer’s 
recommendations.  
 

 

 

 

 



88 
 

 

Figure 2.15.1.1. Example of flow cytometry plots of human gingival cells. A 
population of cells likely to contain lymphocytes, and exclude some debris and 
dead cells, were identified based on their forward and side scatter properties 
(top panel). The proportion of cells expressing CD3, CD19, and CD138 was then 
analysed. Isotype staining was not performed due to insufficient cell numbers in 
most samples. 
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2.15.2 Murine cells 

 

Single cell suspensions were prepared as described in 2.10. Freshly isolated 

gingiva, LN, and spleen cells were aliquoted up to 1 x 106/well of a 96-well 

round-bottom plate (Costar). Cells from culture were originally plated at a 

density of 2-5 x 105/well in a 96-well round-bottom plate (Costar) and retained 

in the plate for staining. Freshly isolated blood and peritoneal cells were 

transferred to flow cytometry tubes. All cells were resuspended in 100 μl/1 x 106 

cells of FcR blocking buffer (5 % mouse serum in 2.4G2 hybridoma supernatant 

(containing monoclonal antibodies which block FcRs)) and incubated at 4 oC for 

15 minutes. Primary antibodies for extracellular staining were prepared in flow 

cytometry buffer as indicated in Table 2.15.2.1. All subsequent steps were 

performed protected from light. Cells were incubated with the FcR blocking 

buffer and 100 μl/1 x 106 cells of primary antibodies at 4 oC for a further 30 

minutes. Cells were washed twice with 200 μl/well or tube of flow cytometry 

buffer and centrifuged at 400 x g and 4 oC for 5 minutes.  

 

When viability dye was used, the cells were then washed with 200 μl/well or 

tube PBS and centrifuged at 400 x g and 4 oC for 5 minutes. The viability dye was 

prepared in PBS as indicated in Table 2.15.2.1. Cells were incubated with 100 

μl/1 x 106 cells of viability dye at 4 oC for 30 minutes. This was the final step 

prior to washing and fixing, which was were both performed in PBS, and the cells 

were resuspended in PBS for flow cytometry.  

 

When primary antibodies were conjugated to biotin, a secondary antibody 

conjugated to fluorochrome-labelled SA was required. The secondary antibody 

was prepared in flow cytometry buffer as indicated in Table 2.15.2.1. Cells 

were incubated with 100 μl/1 x 106 cells of secondary antibodies at 4 oC for 30 

minutes. Cells were washed twice with 200 μl/well or tube of flow cytometry 

buffer and centrifuged at 400 x g and 4 oC for 5 minutes. 

 

Intracellular staining was performed on cells from culture, following incubation 

with the final surface antibodies. Cells were resuspended in 100 μl/well of 

fixation-permeabilisation buffer (eBioscience) and incubated at 4 oC for 20 

minutes, then washed twice with 200 μl/well of permeabilisation-wash buffer 
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(eBioscience). Intracellular antibodies were prepared in permeabilisation-wash 

buffer (eBioscience). Cells were incubated with 50 μl/well of intracellular 

antibodies at 4 oC for 30 minutes. Cells were washed once with 200 μl/well 

permeabilisation-wash buffer (eBioscience) and centrifuged at 400 x g and 4 oC 

for 5 minutes. Cells were then washed twice with 200 μl/well or tube of flow 

cytometry buffer and centrifuged at 400 x g and 4 oC for 5 minutes, and either 

resuspended in flow cytometry buffer or fixed with 100 μl/well or tube of 4 % 

PFA at 4 oC for 10 minutes. After fixing, cells were washed twice as before and 

resuspended in flow cytometry buffer.  

 

All samples were passed through nitex before proceeding to flow cytometry. 

Flow cytometry was performed using the CyAnTM (Beckman Coulter) or the 

MACSQuant® (Miltenyi). Data were subsequently analysed using FlowJo® software 

(Tree Star Inc.). When there were sufficient cell numbers, flow cytometry plots 

were viewed as pseudocolour density dot plots for analysis (for example Figure 

2.15.2.1). When there were low cell numbers, flow cytometry plots were 

viewed as contour zebra plots for analysis (for example Figure 2.15.2.3). 

 

Antibody  Clone Isotype Final 
dilution 

Final 
concentration 
(μg/ml) 

Supplier 

B220 FITC RA3-6B2 Rat IgG2aκ 1/200 2.5  eBioscience 

B220 421 RA3-6B2 Rat IgG2aκ 1/400 ND BioLegend 

CD3 PerCP 145-2C11 Hamster IgG1κ 1/200 1  BD Bioscience 

CD4 PerCP RM4-5 Rat IgG2aκ 1/200 1  eBioscience 

CD5 PerCP 53-7.3 Rat IgG2aκ 1/300 0.7  BD Bioscience 

CD8 FITC 53-6.7 Rat IgG2aκ 1/200 2.5  eBioscience 

CD19 APC-Cy7 1D3 Rat IgG2aκ 1/200 1  BD Bioscience 

CD23 Biotin B3B4 Rat IgG2aκ 1/200 2.5  BD Bioscience 

CD43 FITC S7 Rat IgG2aκ 1/200 2.5  BD Bioscience 

CD44 APC IM7 Rat IgG2bκ 1/200 1  eBioscience 

CD45 450 30-F11 Rat IgG2bκ 1/400 0.5  eBioscience 

CD62L PE Mel-14 Rat IgG2aκ 1/200 1  BD Bioscience 

CD69 FITC H1.2F3 Hamster IgG 1/200 2.5  BD Bioscience 

CD86 PE GL1 Rat IgG2aκ 1/200 1  BD Bioscience 

CD95 (Fas) PE Jo2 Hamster IgG2λ2 1/200 1  BD Bioscience 

CD138 PE 281-2 Rat IgG2aκ 1/200 1 BD Bioscience 

GL7 FITC GL7 Rat IgM 1/200 2.5 BD Bioscience 

Ki-67 647 16A8 Rat IgG2aκ 1/200 2.5 BioLegend 

Ki-67 PE-Cy7 SolA15 Rat IgG2aκ 1/400 0.5 eBioscience 

RANKL 647 IK22-5 Rat IgG2aκ 1/100 2 BD Bioscience 

viability dye 450 NA NA 1/1,000 ND eBioscience 

SA PE-Cy7 NA NA 1/200 1  BD Bioscience 

Table 2.15.2.1. Anti-mouse antibodies for flow cytometry.  
Final concentrations of antibodies were optimised in preliminary experiments. 
NA = not applicable, ND = no data available. 
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Figure 2.15.2.1. Example of flow cytometry plots of B cell subsets in murine 
gingiva. A population of cells likely to contain lymphocytes, and exclude some 
debris and dead cells, were identified based on their forward and side scatter 
properties (top far-left panel). The proportion of cells expressing CD19 (B cells) 
was determined, and the proportion of B cells that were CD43+ CD5+ B1a cells, 
CD43+ CD5- B1b cells, CD43- CD23- B2 MZ cells, and CD43- CD23+ B2 FO cells was 
analysed. Stained cells were back-gated to confirm their forward and side 
scatter properties. Cells that appeared stained in the isotype condition appeared 
to be mostly dead by forward and side scatter, whereas cells that appeared 
stained in the stained condition appeared to be lymphocytes. 
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Figure 2.15.2.2. Example of flow cytometry plots of B cell RANKL expression 
in murine gingiva. The proportion of cells expressing CD19 (B cells) was 
determined as indicted in Figure 2.15.2.1, and the proportion of B cells that 
were RANKL+ was analysed. The RANKL isotype control appeared to stain a 
population of cells. However, a high proportion of the cells that appeared 
stained in the isotype condition appeared to be dead by forward and side scatter 
compared with the proportion of cells that appeared stained in the stained 
condition.  
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Figure 2.15.2.3. Example of flow cytometry plots of differential B cell RANKL 
expression in murine gingiva. The proportions of B cell subsets were 
determined as indicted in Figure 2.15.2.1, and RANKL expression by CD43+ CD5+ 
B1a cells, CD43+ CD5- B1b cells, CD43- CD23- B2 MZ-like cells, and CD43- CD23+ B2 
FO cells was then analysed. RANKL isotype staining on gingival B cells is 
indicated in Figure 2.15.2.2. Flow cytometry plots were viewed as contour 
zebra plots for this analysis due to low cell numbers. 
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Figure 2.15.2.4. Example of flow cytometry plots of B cell subsets in murine 
dLNs. A population of cells likely to contain lymphocytes, and exclude some 
debris and dead cells, were identified based on their forward and side scatter 
properties (top far-left panel). The proportion of cells expressing CD19 (B cells) 
was determined, and the proportion of B cells that were CD43+ CD5+ B1a cells, 
CD43+ CD5- B1b cells, CD43- CD23- B2 MZ-like cells, and CD43- CD23+ B2 FO cells 
was analysed. The RANKL isotype control appeared to stain a higher population 
of cells than would be reasonably expected, the reason for this is unclear. 
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Figure 2.15.2.5. Example of cytometry plots of differential B cell RANKL 
expression in murine dLNs. The proportions of B cell subsets were determined 
as indicted in Figure 2.15.2.4, and RANKL expression by CD43+ CD5+ B1a cells, 
CD43+ CD5- B1b cells, CD43- CD23- B2 MZ-like cells, and CD43- CD23+ B2 FO cells 
was then analysed. RANKL isotype staining on gingival B cells is indicated in 
Figure 2.15.2.4. Flow cytometry plots were viewed as contour zebra plots for 
this analysis due to low cell numbers. 
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Figure 2.15.2.6. Example of flow cytometry plots of GC B cells in murine 
dLNs. A population of cells likely to contain lymphocytes, and exclude some 
debris and dead cells, were identified based on their forward and side scatter 
properties (top panel). The proportion of cells expressing CD19 (B cells) was 
determined, and the proportion of B cells that were Fas+ GL7+ GC B cells was 
analysed.  
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Figure 2.15.2.7. Example of flow cytometry plots of plasmablasts and plasma 
cells in murine dLNs. A population of cells likely to contain lymphocytes, and 
exclude some debris and dead cells, were identified based on their forward and 
side scatter properties (top panel). The proportion of cells that were CD19+ 
CD138+ plasmablasts and CD19- CD138+ plasma cells was then analysed.  
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Figure 2.15.2.8. Example of flow cytometry plots of B cell subsets in murine 
blood. A population of cells likely to contain lymphocytes, and exclude some 
debris and dead cells, were identified based on their forward and side scatter 
properties (top far-left panel). The proportion of cells expressing CD19 (B cells) 
was determined, and the proportion of B cells that were CD43+ CD5+ B1a cells, 
CD43+ CD5- B1b cells, CD43- CD23- B2 MZ-like cells, and CD43- CD23+ B2 FO cells 
was analysed.  
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Figure 2.15.2.9. Example of flow cytometry plots of B cell subsets in murine 
peritoneal fluid. A population of cells likely to contain lymphocytes, and 
exclude some debris and dead cells, were identified based on their forward and 
side scatter properties (top far-left panel). The proportion of cells expressing 
CD19 (B cells) was determined, and the proportion of B cells that were CD43+ 
CD5+ B1a cells, CD43+ CD5- B1b cells, CD43- CD23- B2 MZ-like cells, and CD43- 
CD23+ B2 FO cells was analysed.  
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Figure 2.15.2.10. Example of flow cytometry plots of B cell RANKL and CD86 
expression in murine peritoneal fluid. Cells that were lymphocytes were 
identified based on their forward and side scatter properties. The proportion of 
cells expressing CD19 (B cells) was determined, and the proportion of B cells 
that were expressing RANKL and CD86 was analysed.  
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Figure 2.15.2.11. Example of flow cytometry plots of plasmablasts and 
plasma cells in murine peritoneal fluid. A population of cells likely to contain 
lymphocytes, and exclude some debris and dead cells, were identified based on 
their forward and side scatter properties (top panel). The proportion of cells 
that were CD19+ CD138+ plasmablasts and CD19- CD138+ plasma cells was then 
analysed.  
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Figure 2.15.2.12. Example of flow cytometry plots of differential B cell 
RANKL expression in murine peritoneal fluid. The proportions of B cell subsets 
were determined as indicted in Figure 2.15.2.9, and RANKL expression by CD43+ 
CD5+ B1a cells, CD43+ CD5- B1b cells, CD43- CD23- B2 MZ-like cells, and CD43- 
CD23+ B2 FO cells was then analysed. RANKL isotype staining on gingival B cells is 
indicated in Figure 2.15.2.10. Flow cytometry plots were viewed as contour 
zebra plots for this analysis due to low cell numbers. 
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Figure 2.15.2.13. Example of flow cytometry plots of B cell separation. 
Samples of cells were stained before and after MACS® B cell separation. Cells 
were separated into CD19 negative and CD19 positive populations. A population 
of cells likely to contain lymphocytes, and exclude some debris and dead cells, 
were identified based on their forward and side scatter properties (top panel). 
The proportion of cells expressing B220 (B cells) and CD4 (T cells) was 
determined. B cells could not be identified by their expression of CD19 due to 
interference with the MACS® microbeads. 
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Figure 2.15.2.14. Example of flow cytometry plots of murine splenic B cells 
after 4 day culture. A population of cells likely to contain lymphocytes, and 
exclude some debris and dead cells, were identified based on their forward and 
side scatter properties (top panels). The proportion of cells expressing CD138 
(plasma cells) and B220 (B cells) and was determined, and B cell expression of 
Ki67+ was analysed. 
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Figure 2.15.2.15. Example of flow cytometry plots of murine splenic B cells 
after 4 day culture. B cells were identified as indicated in Figure 2.12.2.14, 
and B cell expression of CD69, CD86, and CD22 was analysed. 
 

 

. 
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Figure 2.15.2.16. Example of flow cytometry plots of murine lymphocytes 
after 1 week culture with IL-33. A population of cells likely to contain 
lymphocytes, and exclude some debris and dead cells, were identified based on 
their forward and side scatter properties (top panels). Live cells were 
distinguished by the absence of staining with viability dye (there was no isotype 
control for this). The proportion of live cells expressing CD138 (plasma cells) was 
determined. 
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Figure 2.15.2.17. Flow cytometry plots of murine lymphocytes after 1 week 
culture with IL-33. Live cells were identified as indicated in Figure 2.15.2.16. 
The proportion of live cells expressing B220 (B cells) was determined and B cell 
expression of RANKL was analysed. 
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2.16 ELISA 

 

2.16.1 Anti-P. gingivalis ELISA 

 

Bacteria were grown as described in section 2.3. Planktonic bacteria were 

centrifuged at 3,750 rpm for 20 minutes, the majority of the supernatant was 

poured off and the pellet was re-suspended in the remaining supernatant, then 

transferred to several 1.5 ml Eppendorf® tubes and centrifuged at 13,400 rpm 

for 10 minutes. The supernatant was removed and the bacteria were washed 

twice by resuspending in 1 ml/tube PBS, centrifuging at 13,400 rpm for 10 

minutes and removing the supernatant before being stored at -80 oC. Frozen 

stocks of P. gingivalis were heat-killed by incubation in a 65 oC water bath for 30 

minutes, then resuspended at 0.02 OD at 600 nm (4 x 107 CFU/ml) in carbonate 

buffer (15 mM Na2CO3, 35 mM Na2 CO3, pH 9.6). Immunolon IB plates (Fischer 

Scientific) were incubated with 100 µl/well bacteria in carbonate buffer (15 mM 

Na2CO3, 35 mM Na2 CO3, pH 9.6) at 4 oC overnight. The plates were washed 3 

times with 200 μl/well 0.05 % Tween in PBS (PBST) after this and each 

subsequent step until the substrate was added. The plates were incubated with 

200 µl/well blocking buffer (10 % FCS in PBS) at 37 oC for 1 hour. Serial dilutions 

of serum ranging from 1/50 to 1/400 were prepared in dilution buffer (0.2 % 

FCS, 0.05 % Tween in PBS). Samples were prepared and measured in duplicate. 

The plates were incubated with 50 μl/well of pre-diluted serum samples at 37 oC 

for 2 hours, then with 50 µl/well HRP-conjugated goat anti-mouse antibody or 

biotin-conjugated goat anti-human antibody (prepared in dilution buffer), at 37 

oC for 1 hour. In cases where biotin-conjugated antibody was being used, a 

further incubation with 100 µl/well ExtraAvidin® peroxidase (Sigma-Aldrich), at 

37 oC for 1 hour was required. Finally, the plates were incubated with 100 

µl/well of TMB substrate (Kirkegaard and Perry Laboratories) at room 

temperature. The reaction was stopped with 50 μl/well 10 % HCl, and 

absorbance was measured at 450 nm using the MRII plate reader (Dynex 

Technologies). The mean OD for each dilution of each serum sample was 

calculated, and the EU for each serum sample was then calculated from the y-

intercept of the slope of OD’s from 4 serial dilutions. Each EU is equal to the 

intercept multiplied by 1,000, as previously published (Gmur et al., 1986). The 

average EU from ‘blank’ wells (which were not incubated with serum but 
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otherwise treated the same as the other wells) was subtracted from the EU of 

the other wells to give the final result. 

 

Antibody Dilution Supplier 

anti-mouse IgG 1/25,000 Southern Biotech, USA. 

anti-mouse IgG1 1/10,000 Southern Biotech. 

anti-mouse IgG2a 1/10,000 Southern Biotech. 

anti-human IgG 1/10,000 Sigma-Aldrich. 

Table 2.16.1. Antibodies used in anti-P. gingivalis ELISAs. 

 

2.16.2 Cotinine ELISA 

 

Cotinine ELISAs were carried out by Dr Danae Apatzidou and Dr David Lappin 

using the serum cotinine assay kit (Cozart Bioscience, Abingdon, UK), according 

to the manufacturer’s instructions, as previously described and published 

(Apatzidou et al., 2005, Lappin et al., 2013). In brief, 10 μl/well standards and 

serum samples (neat and 1/5 dilutions) were added to the microplate (pre-

coated with anti-cotinine capture antibody). All samples were prepared and 

measured in duplicate. The microplate was then incubated with 100 μl/well 

HRP-conjugated cotinine at room temperature for 30 minutes. Cotinine in the 

samples competed with HRP-conjugated cotinine for binding sites on the capture 

antibody. The plate was washed 4 times with 200 μl/well wash buffer, then the 

microplate was incubated with 100 μl/well TMB substrate at room temperature 

for 30 minutes. The reaction was stopped with 100 μl/well 1M H2SO4, and 

absorbance was measured at 450 nm using the MRII plate reader (Dynex 

Technologies). The OD’s and known concentration units of the 4 standards (0, 

10, 25, and 50 ng/ml) were used to make a standard curve, the formula of which 

was then used to calculate the concentration of cotinine in the samples. The 

concentration of cotinine was inversely proportional to the OD. 

 

2.16.3 ACPA ELISA 

 

ACPA ELISAs were performed using the DIASTAT anti-CCP kit (AXIS-Shield, UK), 

according to the manufacturer’s instructions. This kit includes a 96-well 

microtiter plate which is pre-coated with a mixture of 5 (undisclosed) synthetic 

CCPs and enables the semi-quantitative detection of autoantibodies in sera 
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which are reactive to these. This ELISA is intended to aid the diagnosis of RA; a 

positive result in itself is not considered diagnostic. All steps were performed at 

room temperature. In brief, serum samples, and ‘positive’ and ‘negative’ 

controls (human serum, < 0.1 % NaN3 (provided with the kit)) were pre-diluted 

1/100 with dilution buffer (phosphate buffer, protein stabiliser, 0.1 % NaN3). All 

samples were prepared and measured in duplicate. The plates were incubated 

with 100 μl/well serum samples, standards (human serum, buffer, < 0.1 % NaN3) 

and ‘positive’ and ‘negative’ controls for 1 hour. After this and subsequent 

steps, plates were washed 3 times with 200 μl/well wash buffer (borate buffer, 

0.05 % NaN3). The plates were incubated with 100 μl/well AP-conjugated mouse 

anti-human IgG antibody (pre-diluted in tris buffer, protein stabiliser, < 0.1 % 

NaN3) for 30 minutes. The plates were then incubated with 100 μl/well substrate 

(PMP, Mg2+). The reaction was stopped with 100 μl/well stop solution (NaOH, 

EDTA, carbonate buffer, pH > 10), and absorbance was measured at 550 mm 

using an MRII plate reader (Dynex Technologies). The mean OD’s of sample 

duplicates were calculated. The OD’s and known concentration units of the 5 

standards (0, 2, 8, 30, and 100 EU/ml) were used to generate a standard curve, 

the formula of which was then used to calculate the concentrations of ACPAs in 

the samples. The suggested diagnostic cut-off for RA is 5 EU/ml, and the lower 

limit of detection is 0.05 EU/ml. 

 

2.16.4 CEP-1 and REP-1 ELISA 

 

The CEP-1 and REP-1 ELISAs were carried out by Dr Anne-Marie Quirke and Prof. 

Patrick Venables at the Kennedy Institute of Rheumatology, University of Oxford. 

Ninety-six well microtiter plates (Costar) were coated with 100 μl/well CEP-1 or 

REP-1 peptide (10 µg/ml in carbonate buffer) or carbonate buffer alone 

overnight at 4 oC. The plates were washed 3 times with 200 μl/well PBST after 

this and each subsequent step until the substrate was added.  Plates were 

blocked with 2 % BSA in PBS at room temperature for 3 hours, then incubated 

with serum samples, diluted 1/100 in RIA buffer (10 mM tris, 1 % BSA, 350 mM 

NaCl, 1 % Triton X-100, 0.5 % sodium deoxycholate, 0.1 % SDS, 10 % FCS) for 1.5 

hours. All samples were prepared and measured in duplicate. The plates were 

then incubated with 100 μl/well AP-conjugated goat anti-human IgG (Jackson 

laboratories), diluted 1/5,000 in RIA buffer, at room temperature for 1 hour. 
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Finally, the plates were incubated with AP substrate (Sigma-Aldrich) in the dark, 

for 30 minutes at room temperature, and absorbance was measured at 405 mm. 

Control serum was included on all plates to correct for plate-to-plate variation. 

The value for background OD at 405 nm (wells coated with carbonate buffer 

alone) was subtracted from the OD value of the patient samples. OD values 

above 0.1 were considered to be positive. AU for anti-CEP1 antibody titers were 

determined from a standard curve made from human sera pooled from known 

positive patients as previously published (Mahdi et al., 2009). 

 

2.16.5 Cytokine ELISAs 

 

IL-6, IL-10, and TNFα ELISAs were performed using Ready-SET-Go!® ELISA kits 

(eBioscience) according to the manufacturer’s instructions. Ninety-six well 

microtiter plates (Costar) were coated with 100 μl/well of cytokine capture 

antibody (concentration optimised by manufacturer) diluted in coating buffer 

and incubated at 4 oC overnight. All subsequent steps were performed at room 

temperature. The plates were washed 3 times with 200 μl/well PBST after this 

and each subsequent step until the substrate was added. The plates were 

blocked with 200 μl/well assay diluent (provided with the kits) for 1 hour, then 

incubated with 100 μl/well standards or samples (prepared in assay diluent) for 

2 hours, followed by 100 μl/well biotinylated detection antibody (concentration 

optimised by manufacturer) for 1 hour, then 100 μl/well avidin-HRP for 30 

minutes. Finally, 100 µl/well TMB substrate was added. The reaction was 

stopped with 50 μl/well 10 % HCl and absorbance was measured at 450 nm using 

an MRII plate reader (Dynex Technologies). The OD’s and known concentrations 

of the standards were used to generate a standard curve, the formula of which 

was then used to calculate the unknown concentrations of cytokines in the 

samples. The standards ranged from 4-500 pg/ml for the IL-6 ELISA, 31-4,000 

pg/ml for the IL-10 ELISA, and 8-1,000 pg/ml for the TNFα ELISA. In each case, 

the limit of detection of cytokines by the ELISA was equivalent to the 

concentration of the lowest standard.  

 

ELISAs for sRANKL were performed using the DuoSet® ELISA kit (R&D systems) 

according to the manufacturer’s instructions. Ninety-six well microtiter plates 

(Costar) were coated with 100 μl/well goat anti-mouse RANKL capture antibody 
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at 4 μg/ml in PBS, and incubated at 4 oC overnight. All subsequent steps were 

performed at room temperature. The plates were washed 3 times with 200 

μl/well PBST after this and each subsequent step until the substrate was added. 

The plates were blocked with 200 μl/well reagent diluent (1 % BSA in PBS) for 1 

hour, then incubated with 100 μl/well standards or samples (prepared in reagent 

diluent) at room temperature for 1 hour, followed by 100 μl/well biotinylated 

goat anti-mouse RANKL detection antibody (200 ng/ml in reagent diluent) for 1 

hour, and 100 μl/well SA-HRP for 20 minutes. Finally, 100 µl/well TMB substrate 

was added. The reaction was stopped with 50 μl/well 10 % HCl and absorbance 

was measured at 450 nm using an MRII plate reader (Dynex Technologies). The 

OD’s and known concentrations of the standards were used to make a standard 

curve, the formula of which was then used to calculate the concentrations of 

cytokines in the samples. The standards prepared ranged from 31-4,000 pg/ml. 

The limit of detection of sRANKL by the ELISA was equivalent to the 

concentration of the lowest standard. 

 

2.16.6 RF, anti-dsDNA, and anti-type II collagen ELISAs 

 

Ninety-six well microtiter plates (Costar) were coated with 100 μl/well of 

antigen: 10 µg/ml mouse IgG (Jackson Laboratories) in PBS for RF ELISA; or 5 

µg/ml murine DNA (prepared as described in section 2.8.3) in carbonate buffer 

(15 mM Na2CO3, 35 mM Na2 CO3, pH 9.6) for anti-dsDNA ELISA; or 4 µg/ml type II 

murine collagen (Chondrex) in carbonate buffer for anti-type II collagen ELISA, 

and incubated at 4 oC overnight. The plates were washed 3 times with PBST 

after this and each subsequent step until the substrate was added. The plates 

were incubated with 200 µl/well blocking buffer (10 % PBS, 10 % FCS in dH2O) at 

37 oC for 1 hour. Serial dilutions of serum ranging from 1/25 to 1/200 were 

prepared in dilution buffer (0.2 % FCS, 0.05 % Tween in PBS). All samples were 

prepared and measured in duplicate. The plates were then incubated with 50 

μl/well of pre-diluted serum samples at 37 oC for 2 hours. RF were detected with 

HRP-conjugated rat anti-mouse IgM antibody (BD Biosciences), diluted 1/1,000 in 

dilution buffer; anti-dsDNA and anti-type II collagen IgG antibodies were 

detected with HRP-conjugated goat anti-mouse IgG antibody (Southern Biotech), 

diluted 1/10,000 in dilution buffer. The plates were incubated with 50 μl/well 

secondary antibody at 37 oC for 2 hours. Finally, 100 µl/well TMB substrate was 
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added. The reaction was stopped with 50 μl/well 10 % HCl, and absorbance was 

measured at 450 nm using an MRII plate reader (Dynex Technologies). The mean 

for each dilution of each serum sample was calculated, then the EU for each 

serum sample was calculated as described in section 2.16.1.  

 

2.17 Statistics 

 

All statistical analyses were performed using GraphPad Prism® software, version 

5 (California, US). The distribution of data was determined using the 

Kolmogerov-Smirnov normality test. When the means of 2 groups were 

compared, a Student t test was used if data were normally distributed, or a 

Mann-Whitney test was used if data were not normally distributed. When the 

means of more than 2 groups were compared, a One-Way ANOVA with a Tukey 

post-hoc test was used if data were normally distributed, or a Kruskal-Wallis 

with Dunn’s multiple comparison post-hoc test if data were not normally 

distributed. When the means of 1 group before and after treatment were 

compared, a Wilcoxon signed ranks test was used. Correlations between 2 

dependent variables measured in 1 group were determined by Spearman’s rho. A 

value of P ≤ 0.05 was considered to be significant.  
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Chapter 3: Characterisation of B cells in the gingiva of periodontitis patients 

 

3.1 Introduction 

 

PD results from a dysregulated immune response to a dysbiotic oral biofilm. In 

order to improve approaches to treatment, a better understanding of the 

immunopathology of the disease is required. To achieve this, detailed 

characterisation of the immune cell infiltrate in the gingiva needs to be 

performed. The main objective of this study was to investigate the proportions 

and characteristics of B cells and plasma cells in the gingiva of PD patients. 

 

Several studies have reported that plasma cells account for half of the leukocyte 

infiltrate in the gingiva, and B cells a further 20 % (Berglundh and Donati, 2005). 

Among these, a few studies found that the combined proportion of B cells and 

plasma cells was increased in association with PD progression, activity, or 

severity (Liljenberg et al., 1994, Lappin et al., 1999, Thorbert-Mros et al., 

2014). However, the majority of these studies were limited by a low number of 

PD patient samples, and a lack of healthy control tissue. In cases where healthy 

gingiva were examined, relatively few leukocytes were found, of which only 

about 5 % were B cells (Gemmell et al., 2002b). The relative abundance of B 

cells in the gingiva of PD patients suggests they are involved in disease 

pathogenesis, but their phenotype and function remains to be fully elucidated.  

 

In order to further characterise B cells in PD patients, studies have previously 

analysed the proportion of B cells that express CD5. This particular subset of B 

cells was found to constitute as much as 60 % of the total B cell population in 

the gingiva and 40-50 % of circulating B cells in PD patients, compared with just 

15 % in the gingiva and 15 % circulating in periodontally healthy patients 

(Berglundh et al., 2002b, Donati et al., 2009a). 

 

These findings are intriguing as CD5+ B cells are thought to belong to the B1a 

subset of B cells and have been associated with the development of several 

autoimmune diseases (a more detailed description of the differences which 

distinguish B1a cells from the other mature B cell subsets is provided in Chapter 

5).  
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RA patients have a higher proportion of circulating CD5+ B cells, and the 

proportion of circulating CD5+ B cells positively correlates with markers of bone 

resorption (Sowden et al., 1987, Engelmann et al., 2014). Furthermore, CD5+ B 

cells are a major producer of RF: a class of autoantibodies predominantly of the 

IgM isotype, which recognise the Fc portion of IgG antibodies, and exhibit a 

positive correlation with disease activity in RA (Burastero et al., 1988, Nakamura 

et al., 1988, Harindranath et al., 1991, Mantovani et al., 1993, Vencovsky et al., 

2003, Vallbracht et al., 2004).  

 

In PD, B1a cells potentially produce autoantibodies that recognise components of 

connective tissues. Autoantibodies may contribute to the destruction of 

periodontal tissue and alveolar bone loss through the formation of immune 

complexes, and the stimulation of FcR bearing immune cells including innate 

immune cells and osteoclasts (Seeling et al., 2013). Elevated titers of 

autoantibodies recognising type I collagen, fibronectin, and laminin have been 

detected in the sera of PD patients compared with periodontally healthy 

patients (De-Gennaro et al., 2006). Anti-collagen antibodies have also been 

identified in the gingiva of PD patients (Anusaksathien et al., 1992), and it has 

been demonstrated that CD5+ B cells isolated from inflamed gingiva are more 

proficient than CD5- B cells in producing anti-collagen antibodies of both IgM and 

IgG classes (Sugawara et al., 1992). Overall, the majority of antibodies in the 

GCF and gingiva of PD patients are generally found to belong to the IgG class; 

IgA is the next most commonly found, and then IgM (Okada et al., 1983, Ogawa 

et al., 1989, Takahashi et al., 1997). Following confirmation of B cell and plasma 

cell infiltrate, this study aimed to investigate the proportion of B cells belonging 

to the B1a subset, and the proportion of plasma cells producing IgG in PD patient 

gingiva.  
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3.2 Results 

 

Previous studies have demonstrated increased B cell infiltrate in PD, and initial 

experiments aimed to confirm these findings. Expression of a B cell–specific gene 

(CD19) was measured by qRT-PCR of cDNA derived from samples of gingival 

tissue collected from PD patients during periodontal surgery, and periodontally 

healthy patients (as described in Chapter 2, sections 2.1.1 and 2.8.1). The 

relative expression of CD19 was found to be significantly higher in the gingiva of 

PD patients than in the gingiva of healthy patients (*P = 0.0323, Figure 3.2.1). 

 

 

Figure 3.2.1. Relative expression of CD19 in the gingiva of periodontitis 
patients. Samples of gingival tissue were collected from 6 PD patients and 6 
periodontally healthy patients. With cDNA derived from these tissue samples, 
the expression of CD19 relative to the housekeeping gene 18S was determined by 
qRT-PCR. Data are shown as mean with SEM. Statistical difference was 
determined by an unpaired t-test (*P < 0.05). 
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The relative expression of CD19 suggested that there was an increased number 

of B cells, or an increase in CD19 expression by B cells, in the gingiva of PD 

patients. To examine the B cell infiltrate at a cellular level, and assess the 

relative proportion of B cells, plasma cells, and T cells, flow cytometry analysis 

of CD19, CD138, and CD3 protein expression was performed on cells isolated 

from freshly collected samples of gingival tissue from four PD patients (as 

described in Chapter 2, sections 2.1.1 and 2.15.1). In each PD patient sample, 

CD19+ B cells constituted 20-25 % of lymphocytes. The proportions of CD138+ 

plasma cells and CD3+ T cells were highly variable between patients. A greater 

number of PD patient samples would be required for a more comprehensive 

assessment of these trends. It was not possible to obtain sufficient fresh healthy 

gingival tissue for this study so a comparison between the cellular composition of 

tissue from healthy and diseased gingiva could not be made.  

 

 

 

Figure 3.2.2. Proportions of B cells, plasma cells and T cells in the gingiva of 
periodontitis patients. Samples of gingival tissue were collected from 4 PD 
patients during periodontal surgery, cells were isolated and analysed by flow 
cytometry. The data are shown as the percentage of lymphocytes that were 
CD19+ (B cells), CD138+ (plasma cells), and CD3+ (T cells).  
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To assess the proportion of CD19+ B cells and CD138+ plasma cells in a greater 

number of patients, and to investigate the location and distribution of these 

within the tissue, IHC was performed on paraffin-embedded gingival tissue that 

had been collected from PD patients during periodontal surgery (as described in 

Chapter 2, sections 2.1.1 and 2.9). To overcome the potential bias in selecting 

fields of view and counting positive cells per field in samples of variable size and 

morphology, whole tissue sections were imaged and analysed. The area of tissue 

infiltrated by CD19+ B cells and CD138+ plasma cells, relative to the total area of 

the tissue section, was quantified (Figure 3.2.3). Both CD19+ B cells and CD138+ 

plasma cells were detectible in the sections. However, there was no association 

between the area of tissue infiltrated by B cells and the area of tissue infiltrated 

by plasma cells. 
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Figure 3.2.3. B cells and plasma cells in the gingiva of periodontitis patients. 
Samples of gingival tissue from 9 PD patients were collected during periodontal 
surgery. Samples were embedded in paraffin, then sectioned and stained by IHC. 
Cell nuclei and cytoplasm were stained blue with haematoxylin. Cells expressing 
CD19 or CD138 were stained brown with specific antibodies linked to DAB. A) 
images of stained tissue were captured at X20 magnification and stitched 
together to form a tile scan of the entire section. B) the tile scan was edited to 
remove background. C) the area of the entire tissue section was measured 
(false-coloured red). D) the area of tissue containing CD19+ B cells or CD138+ 
plasma cells was measured (false-coloured red). E) a tile scan of a tissue section 
from the same patient which underwent staining with isotype control antibodies. 
F) the area of tissue containing B cells or plasma cells was calculated as a 
percentage of the total area of the tissue section for each patient. 
 

To determine whether plasma cells in the gingiva of PD patients were actively 

producing class-switched antibodies, further staining of paraffin embedded 

tissue was performed to detect IgG antibodies alongside CD138+ plasma cells 

(Figure 3.2.4). Samples of human tonsil from tonsillitis patients were also 

stained to validate this method. Out of eight patient samples in which plasma 

cells could be detected, seven samples had plasma cells which were producing 

IgG, and in three samples, over 50 % of plasma cells were IgG+ (Figure 3.2.4E 

and Table 3.2.1). This suggests the majority of PD patients have plasma cell 

infiltrate in the gingiva, and these are likely to produce class-switched 

antibodies.  
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Figure 3.2.4. Plasma cells producing IgG antibodies in the gingiva of 
periodontitis patients. Samples of gingival tissue were collected from 8 PD 
patients during periodontal surgery, and processed for IHC. The connective 
tissue and cell nuclei were stained blue with haematoxylin, CD138 expressing 
cells were stained brown with specific antibodies linked to DAB and human IgG 
antibodies were stained pink with specific antibodies linked to permanent red. 
Representative images of CD138+ IgG+ plasma cells were captured at A) X10 
magnification and B) X40 magnification. C) an image of a tissue section from the 
same tissue sample stained using isotype control antibodies was captured at X10 
magnification. D) an image of a tissue section of human tonsil which underwent 
the same staining procedure was captured at X10 magnification. E) the average 
percentage of CD138+ plasma cells that were IgG+ in each patient’s sample of 
gingival tissue was calculated from the total number of CD138+ plasma cells, and 
the number of CD138+ IgG+ plasma cells, in 4-5 fields of view (X40 magnification) 
of plasma cell rich regions of tissue.  
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 Tissue area 
infiltrated by  
B cells (%) 

Tissue area 
infiltrated by 
plasma cells (%) 

Plasma cells 
producing IgG+ (%) 

Patient 1 4.7 0.10 77 

Patient 2 1.9 6.1 80 

Patient 3 12.3 3.3 17 

Patient 4 12.3 3.4 55 

Patient 5 0.14 10.6 12 

Patient 6 2.5 0.69 5 

Patient 7 0.27 0.15 0 

Patient 8 14.0 0.77 32 

Patient 9 0.92 0.0 NA 

Table 3.2.1. Summary of the proportions of B cells, plasma cells and IgG 
producing plasma cells in the gingiva of periodontitis patients. Data were 
collated from 9 PD patients. NA = not applicable.  
 

The B cells in the gingiva of PD patients were further characterised by dual 

staining of CD19 and CD5 to establish the proportion of B cells belonging to the 

B1a subset (Figure 3.2.5). In contrast to previous reports, less than 1 % of B 

cells in patient samples of gingiva appeared to be CD5+ B1a cells (Berglundh et 

al., 2002b, Donati et al., 2009a). Of the few CD5+ cells that were observed, the 

majority were CD19- and therefore likely to be T cells. As before, samples of 

human tonsil were stained as a positive control.  
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Figure 3.2.5. B1a cells in the gingiva of periodontitis patients. Samples of 
gingival tissue were collected from 8 PD patients during periodontal surgery and 
processed for IHC. Cell nuclei were stained blue with DAPI, CD19 expressing cells 
were stained red with a specific antibody linked to rhodamine, and CD5 
expressing cells were stained green with a specific antibody linked to FITC. 
Images were captured at X20 magnification. A) – D) representative images of 
CD19+ and CD5+ cells in human tonsil which underwent the same staining 
procedure. E) – H) corresponding images of a tissue section from the same 
human tonsil stained using isotype control antibodies. I) – L) representative 
images of CD19+ and CD5+ cells in one sample of gingival tissue. M) – P) 
corresponding images of a tissue section from the same tissue sample stained 
using isotype control antibodies. The total number of CD19+ B cells, and the 
number of CD19+ CD5+ B1a cells were counted in 4-5 fields of view within B cell 
rich regions of each sample of gingival tissue. 
 

Summary of main results: 

 

 The relative expression of CD19 mRNA was increased in the gingiva of PD 

patients compared with gingival tissue from periodontally healthy patients 

 Variable proportions of B cells, plasma cells, and T cells were detected in 

the gingiva of PD patients 

 Plasma cells producing IgG were detected in the gingiva of the majority of 

PD patients  

 CD5+ B cells formed a very rare subset of B cells in the gingiva of the PD 

patients  
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3.3 Discussion 

 

This study successfully confirmed that B cells and plasma cells form a 

considerable proportion of the immune cell infiltrate in the gingiva. One 

convenient approach to analysing cells isolated from gingival tissue is flow 

cytometry. A limitation encountered when performing this analysis was the 

variability in the size of freshly collected samples. Often, after processing, the 

number of cells isolated was too low to enable meaningful analysis, particularly 

of relatively rare cell populations. Whilst some samples were visibly small, 

other, apparently larger samples, were found to contain either very few 

lymphocytes, or a high proportion of dead cells. The latter may be associated 

with the inevitable delay between tissue collection and processing for analysis. 

Identifying an appropriate control for analysis of cellular infiltrate in diseased 

gingival tissue is challenging. Healthy gingival tissue contains relatively few 

immune cells, and there are limitations in the number of donors available, and 

in the size of samples of healthy gingival tissue which can reasonably be 

obtained. Alternatively, peripheral blood from the PD patient may be considered 

as a source of control cells, but this was not available in this study. Hence in this 

case, the analysis was limited to measuring the relative proportions of B cells, 

plasma cells, and T cells in the gingiva. A previous study of gingival tissue from 

six PD patients demonstrated that 15-30 % of mononuclear cells were CD19+ B 

cells, and 20-40 % were CD3+ T cells by flow cytometry analysis (Lukic et al., 

2006). These values are similar to those found in this study, despite slight 

differences in the way in which the samples were collected and processed. 

 

Embedding gingival tissue in paraffin enabled samples of all shapes and sizes to 

be analysed by IHC. The irregularity of samples made it impossible to analyse 

the position of cells within the tissue in reference to known histological features 

such as rete pegs, as these were not consistently present. Nonetheless, IHC 

enabled the quantification of the relative area of tissue infiltrated by B cells and 

plasma cells, and confirmation that plasma cells in the gingiva are a source of 

IgG. This type of analysis differs from that performed by flow cytometry, in 

which the proportion of B cells and plasma cells relative to the total population 

of live cells was calculated. In order to replicate the flow cytometry analysis in 

IHC, the total number of cells as well as the total number of B cells and plasma 
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cells in an entire tissue section would need to be counted manually, which is 

impractical. 

 

The method used to quantify the area of tissue infiltrated by B cells and plasma 

cells was assisted by computer software (ImageJ) which automatically detected 

areas of positively stained cells based on a standardised threshold of colour 

intensity. An advantage of this was that it increased the objectivity of the 

process of determining which cells were positively stained. Nonetheless this 

system of quantification is subject to a degree of bias as it assumes that a single 

section is representative of a whole sample, as well as assuming that a single 

sample is representative of a patient (which was also a limitation of flow 

cytometry experiments). The proportion of B cell and plasma cell infiltrate 

calculated is dependent on the size of the periodontal lesion, and the relative 

amount of tissue collected from the periodontal lesion and surrounding 

connective tissue. Preferably, for all experiments, the size of tissue removed 

from a lesion would have been standardised, and for IHC experiments, B cell and 

plasma cell infiltrate would have been analysed in a set number sections taken 

at different depths from each sample.  

 

A different approach to IHC analysis had to be employed to quantify the 

proportion of plasma cells producing IgG as computer software was not able to 

detect the difference between single-stained CD138+ IgG- and dual-stained 

CD138+ IgG+ plasma cells. For this reason, the proportion of plasma cells that 

were producing IgG was calculated from counts of the total number of CD138+ 

plasma cells within selected plasma cell-rich regions and counts of the total 

number CD138+ IgG+ cells. Ideally, a predetermined minimum total number of 

plasma cells would have been examined in each section, in the region of 

hundreds, but this was not possible here due to the limited number of patient 

samples available and the inherent variability in plasma cell number and 

distribution between samples. The total number of plasma cells counted ranged 

from 88-379 per section.  

 

Commensurate with previous studies, the production of IgG by tissue-resident 

plasma cells observed here indicates that it is possible for a specific anti-

bacterial or autoreactive humoral response to be triggered at this site, and that 
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plasma cells here potentially make a significant contribution to the pool of IgG 

antibodies circulating in saliva, GCF, and blood in PD patients (Okada et al., 

1983, Ogawa et al., 1989, Takahashi et al., 1997).  

 

Characterisation of the specificity of the IgG detected in the tissue here would 

have been enlightening. The full range of components of disease-associated 

bacteria or components of connective tissue recognised by antibodies in the 

gingiva has yet to be defined. Robust detection of anti-bacterial antibodies in 

situ has proved challenging. Recently, specific antibody-producing plasma cells 

were detected in frozen tissue sections using six enzyme-labelled synthetic 

peptides representing P. gingivalis–derived antigens. The binding of these probes 

was deemed specific as positive signals to antigens were completely abolished 

following adsorption with an excess of the corresponding unlabelled peptide but 

not following adsorption with an excess of an unlabelled unrelated peptide 

(Mizutani et al., 2014). The enzymatic processing of the tissue sections required 

for the probes to bind, destroyed the CD138 protein on the surface of plasma 

cells, so that plasma cells could only be co-localised with the probe using the 

surrogate marker CD79a, an adaptor protein which forms part of the BCR 

complex.  

 

Somewhat easier to achieve is the phenotyping of B cells by IHC using well-

established markers that indicate the activation status of the B cell or which 

subset it belongs to. Here, CD5 expression by B cells in the gingival tissue of PD 

patients was investigated. It was found that CD5+ CD19+ B cells were very rare. 

This was surprising since others have reported that up to 60 % of B cells in the 

gingiva are CD5+ (Berglundh et al., 2002b, Donati et al., 2009a, Thorbert-Mros et 

al., 2014). This could be due to differences in the classification of PD, and the 

way tissue samples were collected or stained. In all the studies reporting high 

numbers of CD5+ B cells, the patients had advanced, generalised, chronic PD, 

and relatively large biopsies were collected from diseased sites with PPD ≥ 6 mm 

(Berglundh et al., 2002b, Donati et al., 2009a) or ≥ 7 mm (Thorbert-Mros et al., 

2014). In this study, patients also had chronic PD, and samples were collected 

from gingiva around teeth with a PPD ≥ 6 mm. However, whether the PD 

patients had different levels of disease activity is impossible to determine from 

the available information. 
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Other B cell features which could have been investigated to obtain insight of 

their role in PD include the expression of co-stimulatory molecules CD80 and 

CD86, which provide an indication of the activation status of B cells and their 

capacity to activate T cells. The expression of CD80 and CD86 by cells in PD 

patient gingiva has been documented (Orima et al., 1999, Gemmell et al., 2001). 

One group found elevated B cell expression of CD80 and CD86 in gingival tissue 

from six PD patients (Mahanonda et al., 2002) when compared with B cells from 

the peripheral blood of periodontally healthy individuals, assessed by flow 

cytometry. This may be disputed as a fair comparison as tissue-resident B cells 

are likely to have a different phenotype to those in circulation, even in health. 

 

The expression of RANKL by B cells in PD patient gingiva could also have been 

investigated by IHC. RANKL activates pre-osteoclasts to undergo 

osteoclastogenesis, and osteoclasts breakdown bone. In health, this process is 

carefully controlled by the negative regulator OPG, a decoy receptor for RANKL 

(Yasuda et al., 1999). A multitude of studies have shown that the overall 

expression of RANKL and the ratio of RANKL expression to OPG expression is 

increased in the gingiva of PD patients (Crotti et al., 2003, Lu et al., 2006, Kawai 

et al., 2006, Wara-aswapati et al., 2007). Not many studies have examined the 

cellular sources of RANKL in the gingiva. B cell expression and secretion of 

RANKL could theoretically contribute to alveolar bone loss in PD as B cells 

isolated from the peripheral blood of healthy individuals, which are activated to 

induce RANKL secretion, can enhance osteoclastogenesis by monocytes in vitro 

(Kawai et al., 2006). One study found 90 % of B cells in PD patient gingiva 

expressed RANKL, compared with 50 % of T cells and 5 % of monocytes (Kawai et 

al., 2006). As B cell RANKL expression was only determined in 15 PD patients in 

this particular study, follow-up IHC studies are required to confirm these 

findings. Co-localisation of RANKL expressing B cells with monocytes and 

macrophages could additionally be investigated, to determine the likelihood of 

cell-mediated interaction between these cells in the gingiva. RANKL expressing B 

cells could also be further characterised to determine if they belong to a 

particular subset.  

 

FcRL4 expressing B cells form a large proportion of the RANKL expressing B cells 

in the rheumatoid synovium, and have been identified as pro-inflammatory in 
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other respects such as in the production of high levels of TNFα relative to other 

B and T cells (Yeo et al., 2014). FcRL4 is an immunoregulatory molecule 

expressed by a subset of memory B cells that are typically found in mucosal 

lymphoid tissues in close proximity to the microbiota and sites of pathogen 

invasion (Ehrhardt et al., 2005, Sohn et al., 2011). However, FcRL4 expression 

could not be detected by qRT-PCR of cDNA derived from gingival tissue of six PD 

patients in this study, although it was detected in human tonsil tissue (data not 

shown). As an alternative to FcRL4, a broader marker of memory B cells could be 

selected for assessing differential RANKL expression by B cells in the gingiva by 

IHC. However, FcRL4+ B cells are atypical memory B cells and one of the ways in 

which they are distinct from other memory B cells is that they lack expression of 

CD27, which would otherwise be an obvious choice for this purpose (Ehrhardt et 

al., 2008). There is no single cell-surface protein which could clearly 

differentiate all memory B cells, from all other B cells or similarly demarcate 

any other B cell subset. This makes it difficult to pursue this form of analysis by 

IHC. More complex analysis of B cell RANKL expression could be achieved by flow 

cytometry, but this would require fresh samples of gingival tissue of adequate 

size. 

 

Characterising the B cells in the gingiva in health and disease could yield 

valuable information that helps direct future development of immunological 

therapies for PD and other diseases characterised by chronic inflammation and 

bone loss. Targeting very specific subsets of immune cells could be associated 

with reduced side-effects compared with broad-spectrum therapeutics. For 

example, Rituximab, which depletes all B cells and is associated with a 

reduction in the levels of RANKL in synovial fluid, effectively inhibits progressive 

joint damage in RA patients whom are unresponsive to other treatments, but is 

also associated with reduced protection following pneumococcal and influenza 

vaccinations (Boumans et al., 2012, Keystone et al., 2012, Hua et al., 2014).  
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3.4 Conclusion 

 

This study confirmed that B cells and plasma cells form a substantial proportion 

of the immune cells in the gingiva of PD patients. As with previous studies, 

limitations in the number of donors and the size of tissue samples with respect 

to both PD patients and periodontally healthy individuals prevented more 

comprehensive analysis. An alternative approach to investigating the roles of B 

cells in PD is to measure the levels of B cell-derived products - cytokines and 

antibodies - in PD patients. The production of inflammatory cytokines and 

autoantibodies are two mechanisms by which B cells may contribute to 

pathology in PD, and the latter may additionally predispose patients with PD to 

autoimmunity and the development of RA. 
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Chapter 4: Influence of periodontitis, P. gingivalis, and smoking on systemic 

anti-citrullinated peptide antibody titers 

 

4.1 Introduction 

 

Evidence pointing towards a central role for B cells and plasma cells in the 

immunopathology of PD is just one of several features PD shares with RA. The 

numerous similarities in the aetiology and pathogenesis between these two 

diseases creates the impression that they are closely connected, but as yet there 

is no evidence of a causal relationship. In one of the first of its kind, this study 

sought to make a step towards establishing whether the autoimmunity 

characteristic of RA begins to emerge in PD patients, and if there is an 

association with carriage of P. gingivalis.  

 

An awareness of the co-incidence of PD with systemic inflammatory diseases has 

existed for over 50 years (Williams et al., 1960, Liubomorova, 1964). Shared risk 

factors provide a partial explanation for the increased incidence of PD in 

patients with diabetes, CVD, and RA (Symmons et al., 1997, Mercado et al., 

2001, Genco et al., 2002, Bahekar et al., 2007, Humphrey et al., 2008, Chen et 

al., 2008, de Pablo et al., 2009, Nesse et al., 2010, Chaffee and Weston, 2010, 

Kallberg et al., 2011, Smit et al., 2012, Wesley et al., 2013, Preshaw and 

Bissett, 2013, Weinspach et al., 2013, Postma et al., 2014). As the effects of 

these risk factors on functions of the immune system are further characterised, 

and common features in the immunopathology continue to be identified, the 

concept that there could be immunological interplay between PD and systemic 

diseases is gaining credibility. In the last decade, there has been some 

exploration of the hypothesis that PD could cause systemic disease. The 

potential link between PD and RA is particularly intriguing because RA is an 

autoimmune disease of unknown aetiology. 

 

RA patients may be four times more likely to have PD, and more likely to have 

more severe PD (Mercado et al., 2001, de Pablo et al., 2008, Smit et al., 2012). 

Severity of PD in RA has been found to be associated with serum titers of RF and 

ACPAs (Dissick et al., 2010). The idea that PD could precede RA stems from 

evidence of elevated titers of circulating autoantibodies which recognise native 
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and modified ECM proteins in PD patients. PD was once thought of as an 

autoimmune disease itself, and these autoantibodies were believed to be 

involved in the progression of PD and to contribute to more aggressive forms of 

PD (Anusaksathien et al., 1992, De-Gennaro et al., 2006, Koutouzis et al., 2009).  

 

The majority of the autoantibodies found in PD have no specific association with 

RA. However, one study has reported the detection of antibodies recognising a 

citrullinated peptide (filaggrin) in PD patient sera (Hendler et al., 2010), and 

another study has claimed that a cocktail of ACPAs were higher in the serum of 

PD patients compared with periodontally healthy controls (Molitor, 2009). ACPAs 

have a high specificity for RA, are found in 70 % of RA patients, are associated 

with RA progression, and may be detectable up to 10 years before clinical onset 

of disease (van Gaalen et al., 2004, Nielen et al., 2004, Zendman et al., 2004). 

Although ACPA immunoassays are widely used in the diagnosis and monitoring of 

RA, the triggers of ACPA generation and their role in the immunopathology of RA 

are unknown. As described in Chapter 1, one hypothesis of the immunological 

link between PD and RA is that the periodontitis-associated bacterium P. 

gingivalis could breach immune tolerance and induce the generation of ACPAs 

via molecular mimicry of host citrullinated peptides or the creation of novel 

citrullinated peptides using its gingipains and PPAD.  

 

There are at least 700 species of bacteria in the oral cavity (Chen et al., 2010). 

P. gingivalis, and the antibody response to this bacteria, has received a lot of 

attention in the study of PD pathogenesis since it was classified as a member of 

the ‘red complex’ of bacteria, whose presence is closely associated with clinical 

parameters of PD  (Socransky et al., 1998). Intensive research of P. gingivalis has 

revealed that its impact on oral health is actually dependent on its intricate 

relationships with other species of bacteria. It has been established that P. 

gingivalis is key to the development of the microbial dysbiosis characteristic of 

PD, and that in the absence of a bacterial community, P. gingivalis is unable to 

cause alveolar bone loss in mice (Hajishengallis et al., 2011, Hajishengallis et 

al., 2012).  

 

Once microbial dysbiosis has been established, PD can apparently progress 

without large numbers of P. gingivalis present in dental plaque. P. gingivalis is 
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often undetectable in PD patients, with as few as 40 % harbouring detectable 

numbers of P. gingivalis in one study (Eick and Pfister, 2002). Nonetheless, 

detection of P. gingivalis strongly correlates with disease status since it is less 

frequently detected in periodontally healthy individuals (Griffen et al., 1998).  

 

Anti-P. gingivalis antibodies can be measured in PD patients even when P. 

gingivalis bacteria cannot be detected in the dental plaque. They provide a 

useful indication that P. gingivalis was once present and that it managed to 

breach the oral mucosal barrier in order to initiate an immune response 

(Haffajee and Socransky, 1994). Anti-P. gingivalis antibody titers have 

consistently found to be higher in PD patients than in periodontally healthy 

individuals (Benjamin et al., 1997, Graswinckel et al., 2004, Takeuchi et al., 

2006, Miyashita et al., 2012). Moreover, anti-P. gingivalis antibody titers in PD 

patients are often higher than the titers of antibodies against other disease-

associated bacteria and some studies show a stronger correlation with clinical 

symptoms of PD (Apatzidou et al., 2005, Hayman et al., 2011, Ebersole et al., 

2014). 

 

Understanding the influence of PD and P. gingivalis on parameters of systemic 

inflammation and autoimmunity is of benefit to both PD and RA patients. PD is 

one of several potentially modifiable risk factors for RA identified by 

epidemiological studies. Whether treatment of PD modifies signs of systemic 

autoimmunity warrants further investigation.  

 

4.2 Results 

 

The patient demographics are outlined in Table 4.2.1. Clinical assessment of the 

oral cavity was performed to confirm the status of periodontally healthy 

participants and PD patients (Table 4.2.2). All PD patients had extensive BOP 

and PPDs of ≥ 3 mm, with at least two sites that had a PPD of ≥ 5 mm. All 

periodontally healthy individuals had little or no BOP and PPDs of ≤ 2 mm. 

Smoking was not associated with a difference in any of these parameters within 

the healthy group, or the PD group.  
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Samples of dental plaque and serum were collected from both groups of 

participants at ‘baseline’. PD patients then received a non-surgical periodontal 

treatment, which included oral hygiene instruction and root surface 

debridement with local anaesthetic if required. Six months from baseline, 

clinical assessment and sample collection was repeated for PD patients. Clinical 

parameters of PD significantly improved after treatment, as expected (Table 

4.2.2). Periodontally healthy participants did not receive periodontal treatment, 

and only one batch of samples was collected from them. 

 

Before periodontal treatment, carriage of P. gingivalis was determined by PCR 

of bacterial DNA in the dental plaque (as described in Chapter 2, section 2.8.2). 

P. gingivalis could not be detected in any of the periodontally healthy 

individuals but was detected in 16 of the 39 PD patients, before periodontal 

treatment. The remaining PD patients in which P. gingivalis could not be 

detected may not have been harbouring P. gingivalis in their dental plaque at 

the time samples were collected, but may have previously been exposed to P. 

gingivalis, or may have been harbouring such a small number of P. gingivalis 

bacteria that they could not be detected by the methods used (the limit of 

detection was 10-20 ng P. gingivalis dsDNA in the plaque sample).  

 

Before periodontal treatment, PD patients had significantly higher anti-P. 

gingivalis IgG titers than periodontally healthy participants (mean ± SEM: 10,441 

± 2,826 EU PD vs. 64.03 ± 19.36 EU health, **P < 0.001, Figure 4.2.2A). When PD 

patients were sub-categorised based upon whether P. gingivalis had been 

detected dental plaque, it appeared that P. gingivalis positive patients had 

lower anti-P. gingivalis IgG titers than P. gingivalis negative patients, but this 

trend was not statistically significant (Figure 4.2.2B). 

 

 PD Healthy 

Total no. 39 36 

Sex M:F  22:17 20:16 

Average age (range) 46 (31-70) 43 (30-64) 

Non-smokers no. 23 20 

Smokers no. 16 16 

Table 4.2.1. Demographics of participants. 
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 Non-smokers Smokers 
Periodontitis   

PPD before (mm) 4.4 ± 0.6 4.4 ± 0.7 

PPD after (mm) 2.5 ± 0.3 2.7 ± 0.3 

PPD before vs. after (mm) 1.9 ± 0.6** 1.7 ± 0.5** 

LOA before (mm) 4.9 ± 0.8 5.3 ± 1.1 

LOA after (mm) 3.7 ± 0.8 4.2 ± 1.1 

LOA before vs. after (mm) 1.2 ± 0.5** 1.1 ± 0.5** 

BOP before (%) 70.6 ± 18.7 67.3 ± 16.6 

BOP after (%) 11.6 ± 5.8 12.1 ± 7.9 

BOP before vs. after (%) 59.0 ± 19.8** 55.2 ± 16.7** 

Healthy   

PPD (mm) 1.22 ± 0.21 1.32 ± 0.15 

LOA (mm) 1.27 ± 0.27 1.41 ± 0.22 

BOP (%)  5.32 ± 4.72 2.52 ± 1.07 

Table 4.2.2. Clinical assessment of participants.  
PPD = probing pocket depth, LOA = loss of attachment, BOP = bleeding on 
probing. Measurements of PPD (mm), LOA (mm) and BOP (%) were made in 
healthy participants and in periodontitis (PD) patients before and after 
treatment. All participants were sub-classified by smoking status. In PD patients, 
n = 23 non-smokers, n = 16 smokers; in healthy participants, n = 20 non-smokers, 
n = 16 smokers. Statistical differences between measurements made before and 
after treatment were determined by Wilcoxon signed ranks test (**P < 0.01). 
 
 

  

Figure 4.2.1. Serum anti-P. gingivalis IgG titers in periodontitis patients 
before treatment. A) Serum anti-P. gingivalis IgG titers in healthy participants, 
and in periodontitis (PD) patients before treatment. B) PD patients were sub-
classified by whether P. gingivalis could be detected in dental plaque before 
treatment. In total, n = 36 in the health group, n = 39 in the PD group. Within 
the PD group, n = 16 P. gingivalis positive and n = 23 P. gingivalis negative. 
Statistical differences in A) were determined by Mann-Whitney test and in B) by 
Kruskal-Wallis with Dunn’s multiple comparison test (***P < 0.001). Experiments 
were carried out with Dr David Lappin. 
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To investigate whether patients with untreated PD demonstrated evidence of 

autoimmune responses characteristic of RA, serum ACPA titers were measured 

(as described in Chapter 2, section 2.16.3). ACPAs are diagnostic of RA and 

precede the onset of RA (van Gaalen et al., 2004, Nielen et al., 2004, Zendman 

et al., 2004). Before periodontal treatment, ACPA titers were significantly 

elevated in PD patients compared with periodontally healthy individuals (1.37 ± 

0.23 EU/ml, PD vs. 0.40 ± 0.10 EU/ml, health, P < 0.001, Figure 4.2.2A). 

Previous studies have documented an association between ACPAs and anti-P. 

gingivalis antibodies in RA patients (Hitchon et al., 2010, Mikuls et al., 2012). 

Further analysis revealed that P. gingivalis positive PD patients had higher ACPA 

titers than P. gingivalis negative PD patients (2.31 ± 0.48 EU/ml, P. gingivalis 

positive PD vs. 0.71 ± 0.05 EU/ml, P. gingivalis negative PD, *P < 0.05, Figure 

4.2.2B). Three of the P. gingivalis positive PD patients had ACPA titers which 

were above the diagnostic cut-off for RA (5 EU/ml). There was a weak negative 

correlation between the anti-P. gingivalis IgG titers and ACPA titers of PD 

patients before periodontal treatment (rho = -0.338, P = 0.0356, Figure 4.2.3A). 

This correlation had greater significance in P. gingivalis negative PD patients 

(rho = -0.567, *P = 0.0048, Figure 4.2.3B), but held no significance in P. 

gingivalis positive PD patients. 
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Figure 4.2.2. Serum ACPA titers in periodontitis patients before treatment. 
A) serum ACPA titers were determined in healthy participants and periodontitis 
(PD) patients before treatment. B) PD patients were sub-classified by whether P. 
gingivalis could be detected in dental plaque before treatment. In total, n = 36 
in the health group, n = 39 in the PD group. Within the PD group, n = 16 P. 
gingivalis positive and n = 23 P. gingivalis negative. Statistical differences in A) 
were determined by Mann-Whitney test and in B) by Kruskal-Wallis with Dunn’s 
multiple comparison post-hoc test (*P < 0.05, **P < 0.01, ***P < 0.001). 
Experiments were carried out with Dr David Lappin. 
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Figure 4.2.3. Serum anti-P. gingivalis IgG titers and ACPA titers in 
periodontitis patients before treatment. The correlation between serum anti-
P. gingivalis IgG titers and ACPA titers for A) all periodontitis (PD) patients, B) 
patients in whom P. gingivalis could be detected in dental plaque before 
periodontal treatment, and C) PD patients in whom P. gingivalis could not be 
detected. In total, n = 39 in the PD group. Within the PD group, n = 16 P. 
gingivalis positive and n = 23 P. gingivalis negative. A line of best-fit has been 
drawn on each graph. Statistical correlation was determined by Spearman’s rho 
(*P < 0.05, **P < 0.01). Experiments were carried out with Dr David Lappin. 
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To further probe the specificity of the ACPA response, titers of antibodies 

recognising CEP-1 - an immunodominant epitope in RA - and the uncitrullinated, 

native form of CEP-1, REP-1 were measured (as described in Chapter 2, section 

2.16.4) (Fisher et al., 2011, Montes et al., 2012). Both titers of anti-CEP-1 and 

anti-REP-1 antibodies were significantly higher in PD patients compared with 

healthy participants (7.1 ± 0.46 AU, PD vs. 4.6 ± 0.37 AU, health ***P < 0.001, 

CEP-1, Figure 4.2.4A; 0.11 ± 0.008 OD, PD vs. 0.069 ± 0.007 OD, health, ***P < 

0.001, REP-1 Figure 4.2.4C), but there was no significant association between 

anti-CEP-1 or anti-REP-1 antibody titers and carriage of P. gingivalis by PD 

patients. The anti-CEP-1 response strongly correlated with the anti-REP-1 

response (rho = 0.762, P < 0.0001), indicating that autoimmunity in PD patients 

is not restricted to citrullinated epitopes. 
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Figure 4.2.4. Serum anti-CEP-1 and anti-REP-1 IgG titers in periodontitis 
patients before treatment. Serum anti-CEP-1 (A, B, and E) and anti-REP-1 (C, 
D, and E) IgG titers were determined in healthy participants, and in periodontitis 
(PD) patients before treatment. B) and D) PD patients were sub-classified by 
whether P. gingivalis could be detected in dental plaque before treatment. In 
total, n = 30 in the health group, n = 39 in the PD group. Statistical differences 
in A) and C) were determined by Mann-Whitney test and in B) and D) were 
determined by Kruskal Wallis with Dunn’s multiple comparison test. The 
correlation between anti-REP-1 and anti-CEP-1 IgG titers in E) was analysed by 
Spearman’s rho (*P < 0.05, **P < 0.01, ***P < 0.001). Data were contributed to by 
Dr Anne-Marie Quirke and Prof. Patrick Venables. 
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Smoking was investigated as an independent risk factor for PD and autoimmunity 

in PD because of a large body of evidence linking smoking with altered innate 

immune responses to infection in PD, and with citrullination of peptides and 

ACPA titers in RA (Tangada et al., 1997, Graswinckel et al., 2004, Apatzidou et 

al., 2005, Guntsch et al., 2006, Tymkiw et al., 2011, Bondy-Carey et al., 2013, 

Haytural et al., 2014, Souto et al., 2014a, Giuca et al., 2014, Reynisdottir et al., 

2014). The smoking history of the participants in this study was determined by a 

questionnaire and confirmed by a cotinine enzyme immunoassay (as described in 

Chapter 2, section 2.16.2). Smoking was associated with significantly lower 

anti-P. gingivalis IgG titers in PD patients (2,512 ± 1290 EU, smokers PD vs. 

15,956 ± 4,385 EU, non-smokers PD, *P = 0.027, Figure 4.2.5), suggesting that 

smoking suppresses the humoral response to infection with P. gingivalis. Smoking 

and non-smoking PD patients had similar ACPA titers, but in periodontally 

healthy participants, smoking status had a considerable impact on ACPA titers, 

with smokers having significantly higher titers than non-smokers (0.74 ± 0.19 

EU/ml, health smokers vs. 0.15 ± 047 EU/ml, health non-smokers, **P = 0.0092, 

Figure 4.2.6).  

 

 
Figure 4.2.5. Serum anti-P. gingivalis IgG titers in smoker and non-smoker 
healthy participants and periodontitis patients before treatment. All 
participants were sub-classified based upon their smoking status. In total, n = 36 
healthy participants, of these n = 20 non-smokers and n = 26 smokers; n = 39 
periodontitis (PD) patients, of these n = 23 non-smokers and n = 16 smokers. 
Statistical differences were determined by Mann-Whitney test (*P < 0.05). 
Experiments were carried out with Dr David Lappin. 
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Figure 4.2.6. Serum ACPA titers in smoker and non-smoker healthy 
participants and periodontitis patients before treatment. All participants were 
sub-classified based upon their smoking status. In total, n = 36 healthy 
participants, of these n = 20 non-smokers and n = 26 smokers; n = 39 
periodontitis (PD) patients, of these n = 23 non-smokers and n = 16 smokers. 
Statistical differences were determined by Mann-Whitney test (**P < 0.01). 
Experiments were carried out with Dr David Lappin. 
 

Following treatment, along with the evidence of improvements in clinical 

parameters (Table 4.2.2), there was a reduction in the number of P. gingivalis 

positive PD patients. P. gingivalis DNA could only be detected in one PD patient 

after treatment, compared with 16 patients before treatment. PD patient anti P. 

gingivalis IgG titers showed a trend towards reduction after treatment compared 

with before treatment, although this did not reach statistical significance 

(Figure 4.2.7A). When PD patients were sub-classified based on whether P. 

gingivalis could be detected before and after treatment, there was no change in 

the anti-P. gingivalis IgG titer in the single patient who was P. gingivalis positive 

both before and after treatment (Figure 4.2.7B-D). 

 

In contrast, ACPA titers were reduced in PD patients after treatment (1.37 ± 

0.23 EU before vs. 0.95 ± 0.35 EU after, Figure 4.2.8A). When PD patients were 

sub-classified based on carriage of P. gingivalis before and after treatment, 

ACPA titers did not change in PD patients who were P. gingivalis negative before 

treatment (Figure 4.2.8B), but ACPA titers were significantly reduced in PD 

patients who were P. gingivalis positive before treatment and P. gingivalis 

negative after treatment (2.33 ± 0.51 EU/ml PD P. gingivalis positive before vs. 

0.82 ± 0.34 EU/ml PD P. gingivalis negative after, **P = 0.0067 Figure 4.2.8C).  
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Figure 4.2.7. Serum anti-P. gingivalis IgG titers in periodontitis patients 
before and after treatment. A) serum anti-P. gingivalis IgG titers of 
periodontitis (PD) patients were determined before (circles) and after (squares) 
periodontal treatment. B - D) PD patients were sub-classified based on whether 
P. gingivalis could be detected in dental plaque before or after periodontal 
treatment. B) anti-P. gingivalis IgG titers of PD patients that were P. gingivalis 
negative before treatment and remained P. gingivalis negative after treatment. 
C) anti-P. gingivalis IgG titers of PD patients that were P. gingivalis positive 
before treatment and became P. gingivalis negative after treatment. D) anti-P. 
gingivalis IgG titer of a PD patient that was P. gingivalis positive before 
treatment and remained P. gingivalis positive after treatment. In total, n = 39 
PD patients. Before treatment n = 23 P. gingivalis negative and n = 16 P. 
gingivalis positive; after treatment, n = 38 P. gingivalis negative and n = 1 P. 
gingivalis positive. Data were analysed by the Wilcoxon signed ranks test, but no 
statistically significant differences were found. Experiments were carried out 
with Dr David Lappin. 
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Figure 4.2.8. Serum ACPA titers in periodontitis patients before and after 
treatment. A) serum ACPA titers of periodontitis (PD) patients were determined 
before (circles) and after (squares) periodontal treatment. B – D) PD patients 
were sub-classified based on whether P. gingivalis could be detected in dental 
plaque before or after periodontal treatment. B) ACPA titers of PD patients that 
were P. gingivalis negative before treatment and remained P. gingivalis negative 
after treatment. C) ACPA titers of PD patients that were P. gingivalis positive 
before treatment and became P. gingivalis negative after treatment. D) ACPA 
titer of a PD patient that was P. gingivalis positive before treatment and 
remained P. gingivalis positive after treatment. In total, n = 39 PD patients, 
before treatment n = 23 P. gingivalis negative and n = 16 P. gingivalis positive, 
after treatment n = 38 P. gingivalis negative and n = 1 P. gingivalis positive. 
Statistical differences were determined by the Wilcoxon signed ranks test (**P < 
0.01, ***P < 0.001). Experiments were carried out with Dr David Lappin. 
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Figure 4.2.9. Serum ACPA titers in smoker and non-smoker periodontitis 
patients before and after treatment. Serum ACPA titers of periodontitis (PD) 
patients were determined before (circles) and after (squares) periodontal 
treatment. All PD patients were sub-classified based on their smoking status. A) 
ACPA titers of non-smokers before and after treatment. B) ACPA titers of 
smokers before and after treatment. In total, n = 39 PD patients, of these n = 23 
were non-smokers and n = 16 were smokers. Statistical differences were 
determined by the Wilcoxon signed ranks test (***P < 0.001). Experiments were 
carried out with Dr David Lappin. 
 

When PD patients were sub-classified based on their smoking status, further 

trends were revealed with regard to serum ACPA titers. Non-smoker PD patients 

had a significant reduction in ACPA titers after periodontal treatment (1.39 ± 

0.32 EU/ml before vs. 0.41 ± 0.16 EU/ml after, **P < 0.001, Figure 4.2.9A), 

whereas there was no difference in the ACPA titers of smoker PD patients after 

treatment. Only a single non-smoker, but six smoking patients demonstrated 

higher ACPA titers after periodontal treatment. This data indicates that whilst 

periodontal treatment may be effective in reducing ACPA titers in non-smoking 

PD patients, it is less effective in reducing ACPA titers in smokers.  
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Summary of main results: 

 

 Serum ACPA titers were higher in PD patients than in healthy participants 

 Detection of P. gingivalis in dental plaque was associated with higher 

ACPA titers in PD patients 

 Smoking was associated with higher ACPA titers in healthy participants 

 Smoking was associated with lower anti-P. gingivalis titers in PD patients 

 Periodontal treatment was associated with a reduction in ACPA titers in 

PD patients 

 

4.3 Discussion 

 

The most important finding from this study was that periodontal treatment, and 

the consequential removal of P. gingivalis could reduce ACPA titers in PD 

patients.  The one patient that remained P. gingivalis positive after periodontal 

treatment had an ACPA titer that stayed above the diagnostic cut-off for RA. 

Subsequently it has been shown that periodontal treatment can reduce both 

ACPA titers and the DAS28 in RA in patients with underlying PD, although this 

was in a small study of just 55 patients, the majority of whom were women 

(Okada et al., 2013). Several other small studies have also found periodontal 

treatment reduces DAS28 in RA, but have neglected to investigate the effect on 

ACPA titers (Al-Katma et al., 2007, Ortiz et al., 2009, Biyikoglu et al., 2013, 

Erciyas et al., 2013). Combined, these data make a strong case that in adjunct 

with other therapies, periodontal treatment could help to reduce both 

inflammation and ACPA titers associated with RA, but larger scale studies need 

to be conducted to prove this.  

 

Before treatment, PD patients had higher ACPA titers than the periodontally 

healthy participants in this study. Within the PD group, ACPA titers were found 

to be significantly higher among those that had detectable P. gingivalis in their 

dental plaque before treatment (Figure 4.2.2B). Consistent with the majority of 

studies including microbial analysis, P. gingivalis was no longer detectable after 

treatment, except in one patient (Renvert et al., 1992, Ali et al., 1992, 

Doungudomdacha et al., 2001, Fujise et al., 2002, Rosalem et al., 2011).  
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The increasing knowledge of the roles of other bacteria in PD warns against 

focusing too much on P. gingivalis in relation to disease pathology (Hajishengallis 

and Lamont, 2012). In this study it was appropriate to assess the involvement of 

P. gingivalis in PD, as one of the objectives was to test the hypothesis that P. 

gingivalis may be linked to breach of immune tolerance and the generation of 

ACPAs in PD. There would presumably have been a shift in the composition of 

the oral subgingival biofilm after periodontal treatment. The absence of P. 

gingivalis would probably have been associated with a reduction in other 

disease-associated bacteria – as has been reported elsewhere (Rosalem et al., 

2011). However, interpreting the findings of full microbiome analysis in 

conjunction with the assessment of autoimmunity in PD patients would be 

challenging, and require a much larger study group. 

 

The idea that the periodontal bacterium P. gingivalis is uniquely associated with 

ACPA titers and possibly triggers the generation for ACPAs has been supported by 

a study of 284 subjects deemed to be ‘at risk’ of RA by virtue of having a first-

degree relative with RA and having HLA alleles with the ‘shared epitope’. In this 

case, ACPA titers were found to positively correlate with anti-P. gingivalis 

antibody titers but no association was found between ACPAs and antibody titers 

for other disease-associated bacteria Prevotella intermedia and Fusobacterium 

nucleatum (Mikuls et al., 2012). The oral health of participants was not clinically 

assessed and they were not tested for carriage of P. gingivalis. Nonetheless, 

these results indicate that of these individuals, those who have at some point 

been exposed to P. gingivalis and generated an immune response against the 

bacterium, are more likely to have higher ACPA titers.  

 

Exactly how and when ACPAs are involved in the pathogenesis of RA is not 

known. Attempts have been made to characterise the fine specificity of the 

autoantibody response in PD and in RA to help solve this mystery. The widely 

used commercial ACPA ELISA presents a limited selection of unidentified 

synthetic cyclic citrullinated peptides which cannot truly represent the variety 

citrullinated peptides formed physiologically and therefore can lead to false 

negative results (Wagner et al., 2014). More frequently, researchers are creating 

their own libraries of peptides to assess the response to citrullinated and 
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uncitrullinated autoantigens. One study found no difference in the serum ACPA 

titers of patients with moderate to advanced PD compared with a periodontally 

healthy population using the commercial ELISA, but did find increased titers of 

antibodies specifically recognising CEP-1, REP-1, and unmodified fibrinogen (de 

Pablo et al., 2013). It was suggested that an ACPA response may emerge after an 

autoimmune response against uncitrullinated peptides in PD patients that 

proceed to develop RA. This was supported by a retrospective study of 

autoantibodies in serum samples collected from RA patients at multiple time-

points before the clinical manifestation of the disease (a median of 7.4 years 

before). In this study, autoantibodies recognising uncitrullinated peptides 

tended to be detected at earlier time-points than autoantibodies recognising the 

corresponding citrullinated peptides (Brink et al., 2014). Here, increased titers 

to both CEP-1 and REP-1 were found in the sera of PD patients, and a positive 

correlation existed between them. This confirms that an autoimmune response 

against uncitrullinated peptides tends to accompany the ACPA response, 

although in this case, it was not possible to distinguish which antibodies were 

produced first.  

 

If ACPAs are secondary to the production of other autoantibodies in PD, this 

would refute the idea that P. gingivalis induces breach of immune tolerance 

through the citrullination of peptides. Unravelling the exact order of 

autoimmune events would require multiple assessments of the specificity of 

circulating T cells, B cells, and autoantibodies in PD patients from very early on 

in PD development through to the establishment of chronic PD, and the 

development of RA. Catching patients in the initial stages of PD is very difficult 

as many individuals do not find the first signs of disease troubling and do not 

visit their dentist until there is a very obvious problem. It is also difficult to 

determine how long patients have suffered with PD before they are clinically 

diagnosed as some forms of PD progress more rapidly than others. Adding to 

these complications, the standardised criteria for clinically assessing PD are not 

universally adopted in studies as those are for RA. It has been proposed that this 

accounts for many of the inconsistencies between studies of autoimmunity in PD 

and of PD in RA conducted so far (Dietrich, 2014). 
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Molecular mimicry between P. gingivalis α-enolase can explain the increased 

titers of anti-REP-1 antibodies in PD patients, but P. gingivalis does not possess 

its own version of other host proteins such as fibrinogen. It is puzzling how P. 

gingivalis could then trigger the production of autoantibodies recognising 

uncitrullinated epitopes before those recognising citrullinated epitopes in these 

other targets. It is possible that rapid cleavage of host proteins and production 

of lots of small citrullinated peptides by P. gingivalis’ gingipains and PPAD 

activates T cells which recognise citrulline-containing short amino acid 

sequences in their primary structure. In some instances T cells could activate B 

cells which recognise a different epitope of the same peptide in its tertiary 

structure, which is uncitrullinated. As the autoimmune response persists, and 

more antigens are exposed in the inflammatory environment, epitope spreading 

could lead to autoreactivity to the corresponding uncitrullinated forms of 

peptides. This still cannot fully explain the phenomenon described in the study 

by Brink et al. (2014), that ACPAs were secondary to other autoantibodies in pre-

RA. The periodontal health of the patients in this study was not determined, 

therefore it is possible they achieved their eventual RA status due to a 

combination of other risk factors.  

 

One trend that is remarkably consistent across studies of ACPAs in PD and RA is 

that smoking increases ACPA titers. In this study PD patients that were smokers 

had similar ACPA titers to non-smokers before treatment; but after treatment, 

the ACPA titers of non-smokers were significantly reduced, whereas the ACPA 

titers of smokers were unchanged (Figure 6.13). Six smokers actually had higher 

ACPA titers after treatment, whereas only one non-smoker had a higher ACPA 

titer after treatment. Numerous others cite smoking as being the major 

preventable risk factor of ACPA generation and RA. Analysis of data on 1,204 

patients from the Swedish Epidemiological Investigation of RA case-control study 

found a strong dose-dependent relationship between smoking and risk of ACPA 

positive RA. It was estimated that smoking was responsible for 35 % of cases of 

ACPA positive RA (Kallberg et al., 2011).  

 

Nicotine has been ruled out as an active component of cigarettes contributing to 

the association between smoking and ACPAs, as users of smokeless tobacco in 

Sweden have been shown to have normal ACPA titers, and not to be at increased 
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risk of RA (Carlens et al., 2010, Jiang et al., 2014). Smokeless tobacco bypasses 

the lung and delivers nicotine passively across blood vessels in the oral mucosa. 

This evaluation does not appear to acknowledge the possibility that the lung is 

more vulnerable than the oral mucosa to the effects of nicotine. It does 

highlight that there are many other chemical components of smoke that have 

yet to be independently investigated with regard to their detrimental impact on 

the immune response.  

 

The immunosuppressive effects of nicotine have been well documented (Geng et 

al., 1995, Geng et al., 1996, Nouri-Shirazi and Guinet, 2003, Kalra et al., 2004). 

Other components of smoke may oppose these effects of nicotine. The 

combination of chemicals renders smokers more susceptible to infection and 

inflammation of the lungs which ultimately leads to conditions such as 

emphysema and COPD (Postma et al., 2014). The lungs of smokers have 

macrophages and neutrophils dispersed throughout the tissue, and have 

increased numbers of lymphocyte aggregates in the form of BALT (Richmond et 

al., 1993). It has been hypothesised that the inflammatory environment in the 

lung induced by smoking promotes the citrullination of peptides and the 

generation of ACPAs (Perry et al., 2014, Catrina et al., 2014). Citrullination of 

peptides as a result of increased host PAD2 expression has been observed in 

bronchoalveolar lavage cells from lungs of smokers (Makrygiannakis et al., 2008). 

Plasma cells derived from BALT of patients with pulmonary disease or RA are 

capable of generating ACPAs (Rangel-Moreno et al., 2006). The lung thereby 

presents a separate route by which smoking can increase the risk of RA, in 

addition to the effects on the development of PD. This pathway could 

theoretically account for the slightly elevated ACPA titers observed in the 

smokers group within the periodontally healthy population in this study, 

although these patients did not have any kind of pulmonary disease. PD, 

smoking, and COPD, can be viewed as separate ‘hits’ within the two-hit 

hypothesis. Individually, they may not cause sufficient inflammation and 

autoantibody production to cause RA, but in some combination with other ‘hits’, 

they may contribute to its development (Farquharson et al., 2012).  

 

To explore the associations between P. gingivalis, smoking, and the generation 

of ACPAs further, it would have been useful to assess ACPA production in the 
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gingival tissue of the PD patients, as the gingiva are directly exposed to both of 

these factors. However, such samples are generally obtained from PD patients 

during surgical periodontal treatment, and the patients in this study were not 

suitable candidates for this. Moreover, the detection of ACPAs in gingival tissue 

by IHC is fraught with technical issues. This method would require generating a 

panel of labelled citrullinated peptides to probe the tissue. One approach to 

generating citrullinated peptides is to incubate the peptides in vitro with rabbit 

skeletal muscle PAD. This approach was employed by Humby et al. (2009) who 

used biotin-conjugated citrullinated fibrinogen to detect ACPA producing-plasma 

cells in synovial biopsies from RA patients. The recognition of the citrullinated 

fibrinogen was compared with the recognition of uncitrullinated fibrinogen by 

tissue-resident plasma cells to validate that antibodies were specific for the 

citrullinated form. Ideally in studies where citrullinated peptides are synthesised 

this way, the purity of the citrullinated peptide would be assessed by mass 

spectrometry before use – which would not have been feasible in this study. 

Alternatively, biotinylated, citrullinated peptides can be custom-ordered, but 

this would require knowledge of the exact position of amino acid residues which 

are citrullinated in normal physiology that form part of immunodominant 

epitopes. So far, data gathered on peptides extracted from the rheumatoid 

synovium have only indicated the overall degree of citrullination of a limited 

selection of peptides and the regions within these peptides that are most 

frequently citrullinated (van Beers et al., 2010, De Ceuleneer et al., 2012, 

Tutturen et al., 2014).   

 

In line with the defined immunosuppressive effects of smoking, here PD patient 

smokers were found to have lower anti-P. gingivalis IgG titers than non-smokers 

before periodontal treatment (Figure 4.2.5). Whether the total anti-P. 

gingivalis IgG titer is indicative of the humoral protection a PD patient possesses 

is doubtful since the clinical assessment indicated that smokers and non-smokers 

had similar disease scores before treatment, and both exhibited significant 

improvement in PPD, LOA, and BOP after periodontal treatment (Table 4.2.2). 

This is in contrast to other reports that at baseline, smokers have greater PPDs 

and LOA associated with more advanced PD, but reduced BOP due to the damage 

of blood vessels, and that they benefit less from treatment (Albandar et al., 

2000, Calsina et al., 2002, Apatzidou et al., 2005, Gomes et al., 2006). 
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The improvement in clinical symptoms of PD and apparent absence of P. 

gingivalis observed after treatment was not accompanied by an overall change in 

the titers of anti-P. gingivalis antibodies. Before treatment, anti-P. gingivalis 

IgG titers were higher in PD patients compared with periodontally healthy 

participants (Figure 4.2.1A), and they remained high in the majority of PD 

patients after treatment (Figure 4.2.7A).  

 

Before treatment, P. gingivalis DNA could be detected in the dental plaque of 16 

out of 39 PD patients (41 %). This proportion is similar to that found by other 

studies using equivalent methods (Eick and Pfister, 2002). It is possible that P. 

gingivalis may still be present after treatment, but at numbers below the limits 

of detection. In this study, P. gingivalis was enumerated by qPCR of 16S DNA. 

Other groups have cited the use of different target genes, which have a higher 

copy number within the genome, such as ISPg1 which has 31 copies, enabling 

detection of smaller numbers of the bacteria (Hajishengallis et al., 2011). 

Another possibility is that anti-P. gingivalis IgG titers remain high for a long time 

after treatment in the absence of P. gingivalis, since long-lived plasma cells are 

known to be able to survive months and continue to produce antibody in the 

absence of antigen (Manz et al., 1997, Manz et al., 1998). It is also possible that 

the process of treatment temporarily increases the number of P. gingivalis in the 

bloodstream (Lafaurie et al., 2007, Castillo et al., 2011), which could promote 

the production of new antibodies and mask any loss of antibodies produced by 

short-lived plasma cells.  

 

Before treatment, anti-P. gingivalis IgG titers were highest in P. gingivalis 

negative patients (Figure 4.2.1B), which prompts the theory that anti-P. 

gingivalis antibodies could have aided clearance of the bacteria in these 

patients. Yet despite the large number of studies in which anti-P. gingivalis IgG 

titers have been measured, no consistent correlation with carriage of P. 

gingivalis or treatment outcomes has been identified, and there is no consensus 

on whether they are protective or destructive (Chen et al., 1991, Mooney et al., 

1995, Sakai et al., 2001, Kudo et al., 2012).  

 

Cutler et al. (1991) clearly demonstrated how unreliable anti-P. gingivalis IgG 

antibody titers are for predicting the level of protection a patient has against P. 



151 
 

gingivalis colonisation when they tested the opsonic capability of anti-P. 

gingivalis IgG antibodies isolated from 18 PD patients. All patients had high anti-

P. gingivalis IgG titers, but only three patients had antibodies that could 

promote phagocytosis of P. gingivalis by neutrophils. Antibodies of a particular 

subclass, specificity, avidity, and affinity may be effective in opsonising or 

trapping P. gingivalis – although which antibodies are protective for a particular 

patient will also be dependent on which strain of P. gingivalis they harbour and 

their FcR repertoire (Dimou et al., 2010).  

 

There are reports that antibodies specific for certain components of P. gingivalis 

such as gingipains are associated with less severe PD or recovery after 

periodontal treatment (Nguyen et al., 2004, Gibson et al., 2005, Shelburne et 

al., 2008). This has led to the development of vaccines composed of selected 

gingipain antigens. Preliminary trials in rodent models indicate such vaccines can 

effectively protect hosts from alveolar bone loss induced by subsequent oral 

infection with P. gingivalis (Lee et al., 2006, O'Brien-Simpson et al., 2005). As 

gingipains are one of the major virulence factors of P. gingivalis, targeting them 

is a logical strategy for preventing or treating PD, but no naturally formed 

antibodies have been shown to actually inhibit gingipains activity (Olsen and 

Potempa, 2014). It needs be fully established whether specific anti-P. gingivalis 

antibodies can confer protection in PD. The titers of these could then be 

measured to more accurately assess the impact of risk factors, the success of 

periodontal treatment, and the relationship between the anti-P. gingivalis 

response and the ACPA response in PD patients.  

 

Ultimately, the sample size of this study limits the extent to which any 

associations in this study can be interpreted. A total of 39 PD patients and 36 

periodontally healthy participants were recruited (Table 4.1.2), which is only 

sufficient for a pilot study. A larger patient cohort would have been desirable, 

but was not achievable with the following constraints: PD patients had to fulfil 

the designated criteria for chronic PD, whilst not having any current systemic 

health problems, and these patients had to attend multiple appointments with 

the same clinician for clinical assessment, collection of dental plaque and serum 

samples, and stages of periodontal treatment, all within a set time-frame. A 

larger number of periodontally healthy participants would also be ideal. This 
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study could be subject to selection bias as the periodontally healthy participants 

in the study were Dental School staff; however they had no specific training in 

oral health care. 

 

The other major limitation of this cross-sectional study is that it provides only a 

snapshot of the possible immunological link between PD and RA. The ACPA titers 

observed in PD patients here, although higher than in periodontally healthy 

controls are generally low compared with those reported in seropositive RA 

patients. Only three of the 39 PD patients had ACPA titers which were slightly 

above the diagnostic threshold for RA. Challenging longitudinal studies of PD 

patients (decades in duration) are required to determine if this level of 

autoimmunity increases over time and can cause RA.  

 

Some of the limitations faced in this human study could be overcome by utilising 

murine models of PD. Studies of mice enable greater control of extraneous 

variables, which minimises variability within groups and reduces the need for 

larger group sizes.  In addition, it is easier to perform longitudinal studies on 

mice as they naturally have a shorter life-span, therefore systemic complications 

of PD could theoretically be observed within a relatively short time-frame. 

 

4.4 Conclusion 

 

There is still a great deal of research that needs to be done to establish whether 

there is a causal relationship between PD and RA, and how the generation of 

ACPAs is connected to these diseases. This study has helped to confirm earlier 

findings that ACPA titers are elevated in PD patients and that carriage of P. 

gingivalis and smoking influence the ACPA response. This supports the hypothesis 

that PD or smoking could provide a ‘first hit’ in the immunopathological pathway 

to RA. Furthermore, it has demonstrated that treatment of PD could reduce 

ACPA titers, which, in addition to preventing tooth loss, may hold promise for 

the management of RA.88 
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Chapter 5: Characterisation of B cells in a murine model of periodontitis  

 

5.1 Introduction 

 

In order to elucidate the potential mechanistic links between B cells in the 

gingiva, alveolar bone loss, and autoimmunity, more detailed phenotyping of B 

cells locally and systemically at different stages of PD is required. So far, 

research of B cells in PD patients has been limited in both these, and previous 

studies, by sample size, sample variation, and the types of samples available. 

Consequently, a murine model of PD has been established and utilised here to 

investigate changes in B cell phenotype and cytokine production at early and 

late stages of disease. In subsequent chapters, the murine model is further 

utilised to establish whether the B cell response to P. gingivalis infection is 

associated with pathology in PD. 

 

The inflammatory infiltrate in PD lesions includes an abundance of B cells, along 

with their survival factors: IL-6, APRIL, and BAFF (Gumus et al., 2013a, Gumus et 

al., 2014). Myriad studies have reported that plasma cells account for half of the 

leukocyte infiltrate, and B cells a further 20 % (Berglundh and Donati, 2005). 

These claims were supported by the results in Chapter 3. By contrast, relatively 

few leukocytes have been found in healthy gingiva, of which only about 5 % are B 

cells (Gemmell et al., 2002b).  

 

The detection of autoantibodies in PD patients and the unresolving nature of 

chronic PD suggests that the immune response is dysregulated, B cells are 

abnormally activated, and that this has systemic repercussions (Lappin et al., 

2013). Potentially, a minority of B cells are responsible for the majority of B 

cell-driven immunopathology in PD - including but not limited to - the generation 

of autoantibodies.  

 

Mature B cells can be divided into four different subsets based upon their 

signature expression of cell surface markers, size, anatomical location, and 

specialised functions: B1a cells (CD19+ CD43- CD5+), B1b cells (CD19+ CD43- CD5-), 

B2 MZ cells (CD19+ CD43+ CD23), and B2 FO cells (CD19+ CD43+ CD23+). This is 

summarised in Table 5.1.1. 
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 B1a B1b B2 MZ B2 FO 

Surface 
markers 

CD19+ 
CD43+ 
CD23- 
CD5+ 

CD19+ 
CD43+ 
CD23- 
CD5- 

CD19+ 
CD43- 
CD23- 
CD5- 

CD19+ 
CD43- 
CD23+ 
CD5- 

Main 
anatomical 
location 

peritoneal 
and pleural 
cavities 

peritoneal 
and pleural 
cavities 

spleen and 
LNs 

spleen and 
LNs 
 

Proportion of 
total splenic 
B cell 
population 

2 % < 1 % 15 % > 70 % 

Main 
function 

production of 
IgM 

production of 
IgM 

phagocytosis 
and antigen 
presentation 

production of 
class-switched 
antibodies 

Table 5.1.1. Properties of the major mature B cell subsets.  
Adapted from Baumgarth (2011). 
 

The B1 subsets are considered to be innate-like B cells, which respond rapidly to 

infection and help to bridge the innate and the adaptive immune responses. B1 

cells collectively constitute a very small proportion of the total B cell population 

but evidently make a significant contribution to the immediate defence against 

microbes as a deficiency in B1a cells is associated with impaired clearance of 

bacteria and sepsis (Boes et al., 1998, Rauch et al., 2012). B1 cells are rare in 

the BM, blood, spleen, and LNs, but are enriched in the peritoneal and pleural 

cavities (Hayakawa et al., 1985, Baumgarth, 2011). They are not trapped at 

these sites and have been shown to accumulate elsewhere, including the oral 

cavity, in response to bacterial infection (Donati et al., 2009b, Weber et al., 

2014). Their defences against bacteria include enhanced phagocytic activity 

(Rauch et al., 2012, Gao et al., 2012) and spontaneous secretion of low-

specificity, cross-reactive IgM (Kawahara et al., 2003, Alugupalli et al., 2004, 

Weber et al., 2014). The BCR repertoire of B1 cells has limited diversity, it is 

more restricted to germline encoded sequences and less permissible to 

modification (by addition of non-templated nucleotide inserts between the V, D 

and J segments) than that of the other B cell subsets (Kantor et al., 1997, 

Tornberg and Holmberg, 1995). Targets of these BCRs typically include repetitive 

structures associated with pathogens and also molecules of self-origin that are 

revealed under conditions of stress or tissue damage such as oxidised LDL, 

annexin IV, and phosphatidylcholine (Nakamura et al., 1988, Kulik et al., 2009). 

Under normal circumstances, this autoreactive potential is restrained by 
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inhibitory receptors, but under conditions of stress or injury, the balance 

between inhibitory and activatory ligands is skewed (Bendelac et al., 2001). 

CD5, which demarcates the B1a subset, is one example of such an inhibitory 

receptor which signals via SHP-1 to dampen BCR signalling (Berland and Wortis, 

2002). 

 

B2 MZ cells are similar to B1 cells in several respects. True B2 MZ B cells reside 

in the MZ of the spleen (Kumararatne et al., 1981). Although in humans, 

something resembling a B2 MZ cell has been described in LNs (Tierens et al., 

1999), equivalent reports have not been made in mice (Cerutti et al., 2013). 

Therefore, B cells which fall into the B2 MZ category on the basis of their 

expression of cell surface markers, but which are not derived from the spleen, 

will be referred to as B2 MZ-like here. In the spleen, B2 MZ cells exist in a pre-

activated state, enabling them to respond very quickly to blood-borne 

pathogens. Within four hours of antigen capture in vivo, they are capable of 

antigen presentation and co-stimulation (Martin and Kearney, 2002). B2 MZ cells 

are the most efficient B cell APC (Attanavanich and Kearney, 2004). They 

express high levels of TLRs, and activation of these TLRs can boost their 

expression of co-stimulatory molecules – which may further enhance their ability 

to present antigen (Barr et al., 2007). Like B1 cells, B2 MZ cells have 

polyreactive BCRs, which often recognise PAMPs similar to those which bind 

TLRs, and can rapidly differentiate into plasmablasts secreting IgM and IgG in TI 

responses to microbial polysaccharide antigen (Guinamard et al., 2000, 

Macpherson et al., 2000, Martin et al., 2001). Antibodies generated this way can 

be cross-reactive with host molecules (Bendelac et al., 2001). B2 MZ cells have 

complex relationships with innate cells including iNK T cells (King et al., 2012) 

and neutrophils, which modulate their TI responses to antigen (Puga et al., 2012, 

Cerutti et al., 2013). However, B2 MZ cells are flexible. They can also become 

involved in antigen-specific TD responses and form GCs, and in this respect they 

share something in common with B2 FO cells (Song and Cerny, 2003).  

 

B2 FO cells represent the more traditional notion of what a B cell is and does. 

Forming the majority of B cells in the follicles of secondary lymphoid organs, B2 

FO cells are better adapted for engaging in TD responses to antigen. They have 

differential requirements for activation and are optimally positioned next to T 
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cell zones to receive this help (Pillai and Cariappa, 2009). Through the TD 

pathway it typically takes five to seven days to produce antibodies - rather than 

one to three days by the TI pathway - but the antibody produced is of a higher 

affinity (Martin et al., 2001, Song and Cerny, 2003).  

 

Individual B cell subsets have been linked to pathology in particular 

inflammatory diseases. B1a cells have repeatedly been associated with 

autoimmunity. The production of autoreactive IgM by B1 cells is thought to be 

central to the development of T1DM and SLE in murine models of these diseases 

(Murakami et al., 1995, Ito et al., 2004, Enghard et al., 2010, Fletcher et al., 

2011, Corte-Real et al., 2012, Lamagna et al., 2014). In patients with RA, B1a 

cells produce RF, which, along with ACPAs are diagnostic of the disease and 

correlate with bone erosion (Harindranath et al., 1991, Mantovani et al., 1993, 

Sokolove et al., 2014, Sun et al., 2014, Hecht et al., 2014). On the other hand, 

there are many reports that autoreactive IgM produced by B1a cells are 

protective in murine models of atherosclerosis and inflammatory arthritis, via 

the clearance of apoptotic cells (Litvack et al., 2011, Notley et al., 2011).  

 

In addition to the aforementioned germline encoded BCR sequences of B1a B 

cells, there are selective pressures which allow this subset to be autoreactive. 

Accumulating evidence suggests that there is a positive selection step, after the 

expression of the BCR by B cell progenitors, that is dependent on BCR specificity 

and the presence of self-antigen to elicit strong BCR signalling, which 

preferentially leads to the development of B1 cells rather than B2 cells (Arnold 

et al., 1994, Lam and Rajewsky, 1999, Hayakawa et al., 1999, Casola et al., 

2004). Mature B1 cells in the periphery are in a semi-activated state which 

seems to lower their threshold for activation by TLR agonists and promotes their 

production of low-affinity, cross-reactive antibodies in response to these (Fairfax 

et al., 2007, Genestier et al., 2007, Holodick et al., 2009). Exactly how this pre-

activated condition affects responses to BCR stimulation is unclear. This is likely 

to be influenced by a mixture of signals available in the microenvironment in 

vivo. Peritoneal B1 cells are sub-optimally activated and do not proliferate in 

response BCR cross-linking in the absence of co-stimulation (Morris and 

Rothstein, 1993, Chumley et al., 2002). This reaction has been confused with 

anergy, which is a state of unresponsiveness in optimal stimulatory conditions 
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associated with a separate series of signalling events (Hippen et al., 2000, Wong 

et al., 2002, Durand et al., 2009). The altered regulation of responses to BCR 

signalling, in conjunction with a lack of dependency on survival factors such as 

BAFF, enables self-reactive B1 cells to persist for a long time (Kyaw et al., 

2012).  

 

Since their identification in the 1980’s, there has been some interest in the role 

of B1a cells in PD. One group found the percentage of B1a cells to be greatly 

increased in PD patients, with 30 % of B cells being CD5+ in PD lesions, and 40-50 

% of B cells belonging to the B1a subset in blood samples from PD patients, 

compared with 15 % in blood samples from healthy people (Berglundh et al., 

2002b). Another group found that 60 % of B cells were B1a cells in the gingiva of 

PD patients, and that the percentage of B1a cells closely correlated with clinical 

parameters of PD severity, but they did not have healthy gingiva for comparison 

(Donati et al., 2009a). However, the data presented in Chapter 3 opposed the 

findings of these studies, with < 1 % of the large number of CD19+ B cells being 

CD5+ in samples of gingiva from PD patients. The variability between these and 

other studies of B1a cells in PD could be due to differences in the clinical 

assessment of disease and differences in sampling technique. It has been implied 

that B1a B cells could give rise to autoimmunity in PD, through the production of 

anti-collagen antibodies (Sugawara et al., 1992), but minimal investigation of 

the function of B1a cells in PD has taken place.  

 

Aside from the production of autoantibodies, atypical activation of any subset of 

B cells could contribute to PD pathogenesis by alteration of the cytokine profile. 

All B cells can produce the inflammatory cytokine IL-6, which is known to 

promote the growth and differentiation of T cells and B cells as well as enhance 

osteoclastogenesis (Kurihara et al., 1990). But B cells also have the potential to 

produce the anti-inflammatory cytokine, IL-10. B cells which produce high levels 

of IL-10 have been referred to as Bregs. Bregs have been associated with 

suppression of Th1 and Th17 responses and attenuation of disease in a murine 

model of arthritis (Fillatreau et al., 2002, Mauri et al., 2003, Mauri and 

Ehrenstein, 2008, Gray and Gray, 2010, Carter et al., 2012). The relationship 

between Bregs and the B1a, B1b, B2 MZ, and B2 FO B cell subsets is unclear. 

Counter-intuitively B1 cells, which are reputed to have a pathological role in 
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autoimmune diseases, can be a major source of IL-10 (O'Garra et al., 1992, Amel 

Kashipaz et al., 2003). B1a cells constitutively produce IL-10, and in doing so 

support their own survival (Balabanian et al., 2002). It is possible that in PD, B 

cells contribute to pathology through elevated production of IL-6 or that a 

deficiency of IL-10 producing Bregs allows inflammation to escalate. 

 

RANKL is another cytokine produced by B cells. RANKL belongs to the TNF 

superfamily, and interacts with its receptor RANK to act as a promoter of 

osteoclastogenesis. In health, this process is regulated by OPG, a decoy receptor 

for RANKL (Yasuda et al., 1999). RANKL expression is increased in the gingiva of 

PD patients, and lymphocytes appear to be a major source of this cytokine 

(Kawai et al., 2006, Wara-aswapati et al., 2007). In rodent models of PD, RANK-

RANKL interactions are essential mediators of pathological alveolar bone loss 

(Yuan et al., 2011, Han et al., 2013). In vitro studies have shown that 

lymphocyte expression of RANKL can be increased following culture with PD-

associated bacteria A. actinomycetemcomitans and P. gingivalis (Han et al., 

2009, Belibasakis et al., 2011). The requirement for antigen specificity in this 

system was demonstrated in a study in which antigen-experienced A. 

actinomycetemcomitans-specific B cells were adoptively transferred into A. 

actinomycetemcomitans-immunised rats, and exacerbated RANKL-dependent 

alveolar bone loss (Han et al., 2006, Han et al., 2009). Unfortunately this study 

was unable to uncouple the contribution of B cell-derived RANKL from other 

sources of RANKL, and also the contribution of RANKL from other cytokines 

produced by antigen-experienced B cells. Whether RANKL specifically from B 

cells has a significant impact on the progress of PD remains to be proven, and if 

so, whether all B cells are equal in this respect, or if a given subset is more 

prone to RANKL expression in PD needs to be resolved.  
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5.2 Results  

 

To first confirm that infection with P. gingivalis induced PD in mice, alveolar 

bone loss was measured in mice orally infected with P. gingivalis and sham-

infected controls at six weeks post-infection (as described in Chapter 2, section 

2.7). Previous studies utilising this model of PD have indicated that significant 

alveolar bone loss in mice infected with P. gingivalis compared with controls can 

be observed from four weeks post-infection, and continues to progress through 

to six weeks post-infection (Baker et al., 1999a). Although alveolar bone loss 

continues beyond this time-point, age itself becomes an influential factor, 

complicating the interpretation of findings in this model (Liang et al., 2010). 

Consequently, six weeks post-infection is the most common reference point in 

the literature, and by assessing parameters of immunopathology at this time-

point, these data may be directly compared with those of other studies.  

 

Mice with PD had significant alveolar bone loss relative to the sham controls 

(mean ± SEM: 0.23 ± 0.01 mm PD vs. 0.15 ± 0.005 mm sham, Figure 5.2.1). It 

was not possible to recover cultivable P. gingivalis from the oral cavity or detect 

P. gingivalis by qRT-PCR after one week post-infection (data not shown), 

therefore serum anti-P. gingivalis IgG titers were measured at one, two, and six 

weeks post-infection to confirm the reproducibility of the adaptive immune 

response to P. gingivalis infection (as described in Chapter 2, section 2.16.1). 

Anti-P. gingivalis IgG titers were significantly elevated at two weeks (201.4 ± 

60.45 EU PD vs. 6.23 ± 4.65 EU sham, *P < 0.05, Figure 5.2.2) and six weeks 

(245.2 ± 49.05 EU PD vs. 10.38 ± 2.86 EU sham, ***P < 0.05, Figure 5.2.2) post-

infection in mice with PD relative to sham controls. However, a degree of 

variability is apparent in the murine adaptive immune response to P. gingivalis 

infection, with some mice in the PD groups having very low titers of anti-P. 

gingivalis IgG at each time-point. Subsequent assessments focused primarily on 

the one week and six week time-points post-infection to characterise 

immunological events preceding and following the onset of the humoral 

response. 
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Figure 5.2.1. Alveolar bone level in mice with periodontitis at 6 weeks post-
infection. Mice were infected with P. gingivalis (PD) or sham-infected (sham). 
At 6 weeks post-infection, the alveolar bone loss was measured. The data are 
shown as mean per mouse (symbols) and mean for each group of mice (lines) 
normalised to the sham group mean, n = 4-5 mice/group. Significant difference 
was determined by unpaired t test (***P < 0.001). Data were contributed to by Dr 
John  Butcher. 
 

 

 

Figure 5.2.2. Anti-P. gingivalis IgG titers in mice with periodontitis at 1, 2, 
and 6 weeks post-infection. Mice were infected with P. gingivalis (PD) or sham-
infected (sham). At 1, 2, and 6 weeks post-infection serum anti-P. gingivalis IgG 
titers were measured by ELISA. At 1 and 2 weeks post-infection, n = 5 mice/ 
group. At 6 weeks post-infection, data are combined from 3 independent 
experiments, n = 4-5 mice/group. Significant differences were determined by 
unpaired t test (*P < 0.05, ***P < 0.001). 
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Initial experiments sought to confirm that T cells and B cells could be detected 

in the gingiva of mice. The gingiva of mice infected with P. gingivalis and sham-

infected mice were harvested at one week and six weeks post-infection. RNA 

was extracted from each individual mouse’s gingiva, then mRNA was reverse 

transcribed to cDNA, and the relative gene expression of CD4 and CD19 was 

measured by qRT-PCR (as described in Chapter 2, sections 2.6 and 2.8.1). The 

concentration of RNA obtained from these small tissue samples was adequate for 

this purpose in all samples except one (Table 5.2.1). The 260/280 ratio 

indicated that the RNA was consistently of acceptable purity - a 260/280 ratio of 

~2.0 is typically accepted as pure for RNA. On the other hand the 260/230 ratio 

was highly variable and much lower than desirable – a 260/230 ratio between 

2.0–2.2 is generally accepted for nucleic acid. This indicated the presence of 

contaminants which absorb at 230 nm which may be due to carry-over of 

reagents used in the RNA extraction process. This aspect of RNA quality does not 

appear to have caused a problem with the qRT-PCR as the amplification curves 

looked normal (Figure 5.2.3A). Controls were included in which the reverse 

transcriptase enzyme was omitted from the reaction (RT- controls). These 

controls did not undergo amplification in qRT-PCR of CD4 or CD19, 

demonstrating that there was little or no contamination of the reaction mixture 

with genomic DNA. The SD between replicate qRT-PCR reactions was, in the 

majority of cases < 0.5 Ct’s from the mean Ct value, indicating good technical 

accuracy. 

 

The qRT-PCR data showed that CD4 and CD19 expression could easily be 

detected in the gingiva, but no significant difference in the expression of either 

lymphocyte marker was evident between the mouse groups at either time-point 

(Figure 5.2.3B and 5.2.3C). A high degree of variability within groups was 

apparent at one week post-infection. With regard to CD19 expression, these 

results do not mirror the observation in the gingival lesions of human PD patients 

that CD19 expression was increased compared with periodontally healthy 

individuals (Chapter 3, Figure 3.2.1). Potentially, the total number of T cells 

has been underestimated by investigating CD4 expression rather than CD3 

expression, which would also account for CD8 T cells. 
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Time-point Sample RNA ng/ µl 260/280 260/230 

1 week sham 1 325.16 2.07 1.85* 

1 week sham 2 310.53 2.06 2.06 

1 week sham 3 288.31 2.08 2.12 

1 week sham 4 339.02 2.06 2.22 

1 week sham 5 232.11 2.09 1.69* 

1 week PD 1 216.61 2.09 1.78* 

1 week PD 2 303.54 2.06 1.77* 

1 week PD 3 436.11 2.07 2.00 

1 week PD 4 312.45 2.05 2.08 

1 week PD 5 307.39 2.08 1.89* 

6 weeks sham 1 220.26 2.04 1.67* 

6 weeks sham 2 273.30 2.08 1.46* 

6 weeks sham 3 220.16 2.03 1.19* 

6 weeks sham 4 225.50 2.06 1.65* 

6 weeks sham 5 240.12 2.03 1.64* 

6 weeks PD 1 94.47** 2.08 0.77* 

6 weeks PD 2 299.59 2.07 1.34* 

6 weeks PD 3 242.24 2.08 1.26* 

6 weeks PD 4 204.11 2.07 1.45* 

Table 5.2.1. Quality of RNA extracted from the gingiva of mice with 
periodontitis. Mice were infected with P. gingivalis (PD) or sham-infected 
(sham). At 1 and 6 weeks post-infection RNA was extracted from the gingiva. 
The data shown are values for RNA concentration and relative absorbance at 
different wavelengths of light. Asterisk * indicates values which were suboptimal 
for qRT-PCR, ** indicates values which were unusable for qRT-PCR. n = 5 
mice/group except group PD at 6 weeks post-infection, n = 4. 
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Figure 5.2.3. Relative expression of CD4 and CD19 in the gingiva of mice with 
periodontitis at 1 and 6 weeks post-infection. Mice were infected with P. 
gingivalis (PD) or sham-infected (sham). At 1 and 6 weeks post-infection, RNA 
was extracted from the gingiva and reverse transcribed to cDNA (RT+) or not 
(RT-). The expression of 18S, CD4, and CD19 was then measured by qRT-PCR of 
the cDNA. A) amplification curves of 18S, CD4, and CD19 sequences in RT+ and 
RT- samples. B) expression of CD4 relative to 18S. C) expression of CD19  
relative to 18S. Data are shown as mean with SEM, n = 5 mice/group, except 
group PD at 6 weeks post-infection, n = 3. Data were analysed by Mann Whitney 
U test, and no significant differences were found. 
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To ascertain whether there was a qualitative change in the phenotype of the B 

cells in mice with PD, he proportions of B cells, GC B cells and plasma cells in 

the gingiva of mice infected with P. gingivalis, and sham controls were analysed 

by flow cytometry at one week and six weeks post-infection (as described in 

Chapter 2, sections 2.6, 2.10.1, and 2.15.2). In line with the qRT-PCR results in 

Figure 5.2.3, the percentage of B cells in the gingiva of mice with PD was 

similar to that of sham controls at both time-points (Figure 5.2.4). The 

percentage of plasma cells present was very low (< 1 %) or undetectable in both 

mice with PD and sham controls (data not shown). These data indicate that 

there was no increased infiltrate of B cells or increased differentiation of B cells 

into plasma cells in the gingiva of mice with PD, at the time points investigated, 

but does not conclusively demonstrate that B cell phenotype is not altered in 

murine PD. Further experiments were conducted to examine other aspects of B 

cell phenotype such as activation status and cytokine production.  

 

Throughout the results presented in Chapter 5, Chapter 6, and Chapter 7 

comparisons between mice with PD and sham controls are made at 1 week or 6 

weeks post-infection. These comparisons do not consider that immunological 

changes have occurred in both groups relative to baseline as a result of age or in 

sham controls as a result of treatment with CMC. To establish baseline values for 

each of the parameters investigated, assessments could have additionally been 

made in sham control mice in untreated mice prior to infection. To investigate 

the possibility of very early immunological changes, assessments could also have 

been made at day 0 post-infection. However, such additional assessments could 

not be justified in line with the UK Home Office legislation to replace, refine, 

and reduce animal research.  
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Figure 5.2.4. B cells in the gingiva of mice with periodontitis at 1 and 6 
weeks post-infection. Mice were infected with P. gingivalis (PD) or sham-
infected (sham). At 1 week (A) and 6 weeks (B) post-infection cells were isolated 
from the gingiva and analysed by flow cytometry. Percentages of B cells are 
shown as mean with SEM for 3 independent experiments at both time-points. 
Percentages of GC B cells are shown as mean with SEM for 2 independent 
experiments at 6 weeks post-infection. Gingiva were pooled from 5 mice/group 
in each experiment. Data were analysed by Mann Whitney U test and no 
significant differences were found. 
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B cells can be stimulated to increase the expression of RANKL (Han et al., 2009), 

and RANKL has been demonstrated to be a crucial mediator of alveolar bone loss 

in murine PD (Han et al., 2013). Therefore, B cell expression of RANKL, in the 

total B cell population and across B cell subsets, was assessed in this model of 

PD to explore the possibility that B cells could contribute to pathology in PD by 

this mechanism. No significant difference in B cell expression of RANKL was 

found in the gingiva at one or six weeks post-infection in mice with PD compared 

with sham controls (Figure 5.2.5).  

 

There were no significant differences in the proportions of B cell subsets in the 

gingiva of mice with PD compared with sham controls. At one week post-

infection there was an increase in the ratio of B2 MZ-like cells to B2 FO cells in 

the gingiva of mice with PD compared with sham controls. However, as this 

experiment was only performed once, with pooled samples of gingiva, these 

data cannot be statistically analysed (Figure 5.2.5C). At six weeks post-

infection, no differences were observed in the proportion of any of the subsets 

in the gingiva of mice with PD compared with sham controls. At both time-

points, the majority of B cells in the gingiva belonged to the B2 MZ-like or B2 FO 

cell subsets in both mouse groups (45.57 ± 8.12 % sham, 48.83 ± 9.59 % PD, B2 

MZ-like cells; 43.03 ± 8.85 % sham, 39.37 ± 10.75 % PD, B2 FO cells, Figure 

5.2.5D).  

 

Because RANKL expression by each B cell subset in the gingiva was comparable 

between mice with PD and sham controls (Figure 5.2.5E and 5.2.5F), these 

data were collated from the two mouse groups in order to analyse the 

differential RANKL expression between the B cell subsets. The proportion of B1 

cells expressing RANKL was greater than the proportion of B2 cells expressing 

RANKL. This trend was significant at six weeks, when the data from more than 

one experiment could be analysed (39.28 ± 3.60 % B1a, mean 38.55 ± 9.60 % B1b, 

3.13 ± 0.59 % B2 MZ-like, and 15.80 ± 4.44 % B2 FO, Figure 5.2.6B). These 

results suggest that there are intrinsic differences in the expression of RANKL by 

different B cell subsets in mice, but these differences do not appear to be 

altered by infection with P. gingivalis.  
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Figure 5.2.5. RANKL expression by B cell subsets in the gingiva of mice with 
periodontitis at 1 and 6 weeks post-infection. Mice were infected with P. 
gingivalis (PD) or sham-infected (sham). At 1 week (A, C, and E) and 6 weeks (B, 
D, and F) post-infection, cells were isolated from the gingiva and analysed by 
flow cytometry. Data are shown as mean with SEM for 3 independent 
experiments (A, B, D, and F) or are representative of one experiment (C and E). 
Gingiva were pooled from 5 mice/group in each experiment. Data were analysed 
by Mann-Whitney U test and no significant differences were found. Data were 
contributed to by Dr Jennifer Malcolm. 
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Figure 5.2.6. Differential RANKL expression by B cell subsets in murine 
gingiva at 1 and 6 weeks. Mice were infected with P. gingivalis (PD) or sham-
infected (sham). At 1 week (A) and 6 weeks (B) post-infection, cells were 
isolated from the gingiva and analysed by flow cytometry. Data from mice with 
PD and sham control mice have been collated and are shown as mean from 1 
experiment in (A) and mean with SEM for 3 independent experiments in (B). 
Gingiva were pooled from 5 mice/group in each experiment, giving 2 data-points 
per experiment. Significant differences in (B) were determined by One-Way 
ANOVA with a Tukey post-hoc test (*P < 0.05, **P < 0.01, ***P < 0.001). 
 

To further investigate whether there were any changes in B cell phenotype as a 

result of P. gingivalis infection, the four superficial cervical LNs were harvested 

from mice with PD and sham controls at one and six weeks post-infection. It is 

presumed that in mice, antigen delivered to the oral cavity drains to these LNs 

which are hence referred to as the dLNs, as it has been shown that OVA 

delivered sublingually causes the proliferation of OVA-specific T cells in these 

LNs (Yamazaki et al., 2012). In various other models of bacterial infection or 

antigen administration, the adaptive immune response is characterised by the 

activation and proliferation of B cells and their differentiation into GC B cells in 

the dLNs (Garside et al., 1998, Adams et al., 2003, Maglione et al., 2007). 

Therefore, total lymphocyte counts were performed, and the proportions of B 

cells relative to the total lymphocyte population, and the proportion of B cells 

that had differentiated into GC B cells in the dLNs were analysed by flow 

cytometry (as described in Chapter 2, sections 2.10.2 and 2.15.2).  
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Mice with PD exhibited small increases in the numbers and proportions of B cells 

in the dLNs, which were significant at six weeks post-infection (650,800 ± 

173,143 sham vs. 1,551,000 ± 271,777 PD, *P = 0.0235, Figure 5.2.7B; mean 

20.72 ± 0.89 % sham vs. 23.22 ± 0.20 % PD, *P = 0.0258, Figure 5.2.7D). The 

percentage of B cells that were GC B cells was significantly increased at one 

week post-infection (2.03 ± 0.47 % sham vs. 6.90 ± 1.30 % PD, **P = 0.0079, 

Figure 5.2.7C), and a moderate increase was sustained at six weeks post-

infection (3.35 ± 0.35 % sham vs. 6.89 ± 1.52 % PD, P = 0.0523, Figure 5.2.7D). 

The increased proportion of B cells that were GC B cells in the dLNs of mice with 

PD compared with sham controls confirmed that there was increased 

differentiation of B cells into GC B cells in this location as a consequence of 

infection with P. gingivalis.  

 

 

Figure 5.2.7. B cells in the dLNs of mice with PD at 1 and 6 weeks post-
infection. Mice were infected with P. gingivalis (PD) or sham-infected (sham). 
At 1 week (A and C) and 6 weeks (B and D) post-infection cells were isolated 
from the dLNs and analysed by flow cytometry. Data are shown as mean with 
SEM for 1 experiment at both time-points, n = 5 mice/group in each experiment. 
At 6 weeks post-infection data are representative of a total of 3 independent 
experiments. Significant differences were determined by unpaired t test (*P < 
0.05, **P < 0.01, ***P < 0.001). Data were contributed to by John Butcher. 
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B cell RANKL expression was measured in the dLNs by flow cytometry. 

Differential RANKL expression by the mature B cell subsets (B1a, B1b, B2 MZ-

like, and B2 FO), and by GC B cells was analysed. At six weeks post-infection, 

the proportion of B cells expressing RANKL was slightly increased in the dLNs, 

but this did not reach statistical significance (5.09 ± 0.70 % sham vs. 7.04 ± 1.50 

% PD, P = 0.2513, Figure 5.2.8B). As the total number of B cells was increased in 

the dLNs of these mice, absolute numbers of RANKL expressing B cells were 

increased in the dLNs of mice with PD. This trend was significant at one week 

post-infection (107,919 ± 19,654 sham vs. 180,586 ± 17,905 PD, *P = 0.0137, 

Figure 5.2.8C), but whether this represents a meaningful biological difference 

in the availability of RANKL requires further investigation.  

 

B2 FO cells were the majority B cell subset in the dLNs (Figure 5.2.8E and 

Figure 5.2.8F). The composition of B cell subsets in the dLNs was unaffected by 

PD (Figure 5.2.8E and Figure 5.2.8F). Mature B cell subsets in the dLNs 

exhibited differential RANKL expression, but this was also unaffected by PD 

(Figure 5.2.8G and Figure 5.2.8H). Data were therefore collated from the two 

mouse groups in order to increase the statistical power for analysis. The 

proportion of B1 cells expressing RANKL was significantly greater than the 

proportion of B2 cells expressing RANKL (12.16 ± 1.08 % B1a, 11.54 ± 0.75 % B1b, 

4.86 ± 0.80 % B2 MZ-like, and 3.89 ± 0.28 % B2 FO, one week, Figure 5.2.9A; 

10.47 ± 0.55 % B1a, 10.98 ± 0.45 % B1b, 2.82 ± 0.35 % B2 MZ-like, and 5.29 ± 0.25 

% B2 FO, six weeks, Figure 5.2.9B). This pattern in RANKL expression across 

these four mature B cell subsets in the dLNs is similar to that observed in the 

gingiva. 

 

RANKL expression by GC B cells was analysed separately from RANKL expression 

by the four mature B cell subsets. As the GC B cell population was previously 

shown to change in the dLNs of mice with PD compared with sham controls 

(Figure 5.2.7), data was not collated from the two mouse groups for this. GC B 

cell RANKL expression was significantly greater than the average RANKL 

expression by B cells (7.52 ± 0.61 % sham B cells vs. 17.28 ± 1.40 % sham GC B 

cells, ***P = 0.0002; 14.22 ± 1.70 % PD B cells vs. 19.06 ± 0.81 % PD GC B cells, *P 

= 0.0333 Figure 5.2.9C). There was no significant difference in GC B cell RANKL 

expression in the dLNs of mice with PD compared with sham controls. 
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Figure 5.2.8 RANKL expression by B cell subsets in the dLNs of mice with PD 
at 1 and 6 weeks post-infection. Mice were infected with P. gingivalis (PD) or 
sham-infected (sham). At 1 week (A, C, E, and G) and 6 weeks (B, D, F, and H) 
post-infection cells were isolated from the dLNs and analysed by flow cytometry. 
Data are shown as mean with SEM for 2 independent experiments at 1 week or 3 
independent experiments at 6 weeks, n = 5 mice/group in each experiment. 
Significant differences were determined by unpaired t test (*P < 0.05). 



172 
 

 

Figure 5.2.9. Differential RANKL expression by B cell subsets in dLNs at 1 and 
6 weeks post-infection. Mice were infected with P. gingivalis (PD) or sham-
infected (sham). At 1 week (A) and 6 weeks (B) post-infection, cells were 
isolated from the dLNs and analysed by flow cytometry. Data from mice with PD 
and control mice have been collated in A) and B). Data are shown as mean with 
SEM of 1 experiment in A) and C) and for 3 independent experiments in B), n = 5 
mice/group. Significant differences in A) and B) were determined by One-Way 
ANOVA with a Tukey post-hoc test, and significant differences in C) were 
determined by unpaired t test (*P < 0.05, **P < 0.01, ***P < 0.001). 
 

RANKL can be expressed in three different isoforms, one is the membrane-bound 

form, the other two are soluble, secreted forms (Ikeda et al., 2001, Suzuki et 

al., 2004, Walsh et al., 2013). The membrane-bound form may also be cleaved 

from the cell surface by MMPs and shed (Lynch et al., 2005). Therefore, an 

assessment of cell surface RANKL by flow cytometry alone does not provide a 

complete picture of B cell contribution to RANKL production in PD. To determine 

if there were any changes in sRANKL production in the gingiva and dLNs, gingival 

cells and dLN cells were isolated from mice infected with P. gingivalis and 



173 
 

controls at one and six weeks post-infection and stimulated for three days with 

PMA and ionomycin (as described in Chapter 2, sections 2.10.1, 2.10.2, and 

2.12). PMA and ionomycin were selected as stimulants for this assay as they act 

broadly and potently on a number of cell types. Heat-killed P. gingivalis has 

previously been found to be ineffective in activating dLN cells from P. gingivalis 

infected mice (data not shown). The concentration of stimulants and the length 

of stimulation was selected on the basis of previously published methods and 

preliminary experiments which indicated these conditions were optimal for the 

induction of sRANKL production by lymphocytes (Fionda et al., 2007). The 

concentrations of sRANKL and IL-6 in the culture media were measured by ELISA 

at the end of the stimulation (as described in Chapter 2, section 2.16.5). IL-6 

was measured to provide an indication of the activity level of the cells 

stimulated, and the potential support that was available for B cell growth and 

differentiation in the tissue of origin (Muraguchi et al., 1988).  

 

Stimulated gingival cells did not produce detectable levels of sRANKL (data not 

shown). However, stimulated gingival cells did produce high levels of IL-6. 

Interestingly, IL-6 production was higher by gingival cells isolated from mice 

with PD compared with sham controls at one week post-infection (Figure 

5.2.10A), and lower in cells from mice with PD compared with sham controls at 

six weeks post-infection (Figure 5.2.10B), but this experiment was only 

performed once with pooled samples of gingival cells making it impossible to 

draw any conclusions. Conversely, high levels of sRANKL and very low levels of 

IL-6 were detected in the media of stimulated dLN cells from both PD and 

control mice, but there was no difference in the production of either cytokine 

between these groups at either time-point (Figure 5.2.10C - F). Neither IL-6 nor 

RANKL cytokine production could be detected when the gingival cells and dLN 

cells were cultured for three days in media only without stimulants (data not 

shown). Although the exact contribution of B cells to the production of the IL-6 

and sRANKL in health and PD cannot be determined from this study, the data 

shows that there was no change in total sRANKL potentially available in the 

gingiva or dLNs.  
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Figure 5.2.10. In vitro cytokine production by gingiva and draining  
lymph node cells from mice with periodontitis at 1 and 6 weeks post-
infection. Mice were infected with P. gingivalis (PD) or sham-infected (sham). 
At 1 week (A, C, and E) and 6 weeks (B, D, and F) post-infection, cells were 
isolated from the gingiva (A and B) and dLNs (C, D, E, and F) and stimulated for 
three days with PMA (10 ng/ml) and ionomycin (500 ng/ml). At the end of the 
culture the concentration of sRANKL and IL-6 in the media was measured by 
ELISA. Gingival cells were pooled from 5 mice/group, whilst dLN cells from each 
mouse were stimulated separately, n = 5 mice/group. In the supernatants of 
gingival cell cultures, sRANKL could not be detected. Data shown are mean with 
SEM for 1 experiment (A, B, C, and E) or 2 experiments (D and F). Data were 
analysed by unpaired t test and no significant differences were found. 
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In vitro studies of B cells were carried out to investigate whether B cells from 

mice infected with P. gingivalis respond differently to stimulation compared 

with B cells from controls. It was anticipated that the nature of the response of 

B cells to in vitro stimulation could be amplified in B cells isolated from mice 

infected with P. gingivalis. 

 

Splenic B cells were selected for the purpose of this investigation for several 

reasons. Of greatest significance is that inflammatory changes in the spleen have 

previously been reported in variations of this murine model of PD. In one study, 

splenocytes harvested from P. gingivalis infected mice, and stimulated with P. 

gingivalis antigen for six days, secreted more IFNᵧ compared with stimulated 

splenocytes from naïve mice (Aoki-Nonaka et al., 2014). In another study, 

splenocytes harvested from P. gingivalis infected mice, and stimulated with PMA 

and ionomycin for two days, secreted less IL-10 and more IL-4 compared with 

stimulated splenocytes from naïve mice (Marchesan et al., 2012). The cellular 

sources of these cytokines have not been identified, but it has been speculated 

that T cells are involved in their production. Investigating differences in the 

behaviour of both T cells and B cells, in secondary lymphoid tissues is a 

fundamental step in investigating the potential immunological link between PD 

and systemic inflammatory disease. It has been indicated that the B cell 

composition of the spleen is altered in mice six weeks post-infection with P. 

gingivalis, with an increase in CD5+ B cells reported (Marchesan et al., 2012).  

 

In this study, B cells were purified from the spleens of P. gingivalis infected 

mice and sham controls and stimulated in vitro. B cells were harvested at six 

weeks post-infection to investigate the potential long-term systemic side-effects 

of murine PD. B cells were cultured with media only, anti-CD40 antibody, P. 

gingivalis LPS, E. coli LPS, or a combination of these for four days (as described 

in Chapter 2, sections 2.10.2, 2.11, and 2.13). Proliferation, activation, 

regulation, and differentiation of B cells into plasma cells was assessed by 

analysing the expression of Ki67, CD69, CD86, CD22, and CD138 respectively, 

using flow cytometry (as described in Chapter 2, section 2.15.2). The 

concentrations of sRANKL, IL-6, and IL-10 in the culture media were measured by 

ELISA at the end of this stimulation (as described in Chapter 2, section 2.16.5).   
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P. gingivalis LPS was used in this assay rather than whole heat-killed P. gingivalis 

bacteria because the concentration and purity of P. gingivalis LPS could be 

controlled with greater accuracy. P. gingivalis LPS is biochemically distinct from 

other bacterial LPS and it differentially signals through TLRs, activating TLR2 but 

having both agonistic and antagonistic effects via TLR4 (Dixon and Darveau, 

2005, Diya et al., 2008, Herath et al., 2011, Nebel et al., 2012, Herath et al., 

2013). As B cells express both TLR2 and TLR4, they have the capacity to respond 

to both P. gingivalis LPS and E. coli LPS and it has been previously demonstrated 

that E. coli LPS induces proliferation and activation of naïve B cells (Genestier et 

al., 2007, Gururajan et al., 2007, Rubtsov et al., 2008). In addition to 

establishing whether interaction of B cells with P. gingivalis LPS could promote 

or inhibit the B cell functions measured, culture conditions were set up to test if 

P. gingivalis LPS could oppose or enhance the effect of E. coli LPS as a result of 

differential TLR signalling. 

 

Culture conditions with E. coli LPS significantly increased the proliferation, 

activation, and IL-6 production of B cells relative to corresponding conditions 

with P. gingivalis LPS (Figure 5.2.11A-C, Figure 5.2.12A, and comparisons 2 

and 5 in Table 5.2.2 and Table 5.2.3). P. gingivalis LPS had minimal effects on 

B cell function and did not antagonise the effects of E. coli LPS (Figure 5.2.11, 

Figure 5.2.12, and comparisons 3 and 6 in Table 5.2.2 and Table 5.2.3). 

Splenic B cells from mice infected with P. gingivalis generally did not respond 

very differently to those isolated from sham controls. However, the 

concentration of IL-6 in the culture media tended to be higher across all culture 

conditions with B cells from mice with PD, and was significantly greater in 

conditions where E. coli LPS was present (Figure 5.2.12A and comparisons 1 – 7, 

Table 5.2.4). In contrast, sRANKL was undetectable in all conditions (data not 

shown). 
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Figure 5.2.11. Phenotype of splenic B cells from mice with periodontitis after 
4 day in vitro stimulation. Mice were infected with P. gingivalis (PD) or sham-
infected (sham). At 6 weeks post-infection, B cells were purified (> 85 % B220+) 
from the spleens and cultured for 4 days with or without anti-CD40 (αCD40), E. 
coli (EC) LPS, P. gingivalis (PG) LPS singly or in combination. At the end of the 
culture B cells were analysed by flow cytometry. Data shown are mean with SEM 
for 2 independent experiments, n = 5 mice/group. Significant differences 
between culture conditions within a mouse group were determined by One-Way 
ANOVA with a Tukey post-hoc test (Table 5.2.2 and Table 5.2.3). Comparisons 
between mouse groups were made by an unpaired t test and no significant 
differences were found (Table 5.2.4).  
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Figure 5.2.12. Cytokine production by splenic B cells from mice with 
periodontitis after 4 day in vitro stimulation.  Mice were infected with P. 
gingivalis (PD) or sham-infected (sham). At 6 weeks post-infection, B cells were 
purified (> 85 % B220+) from the spleens and cultured for 4 days with or without 
anti-CD40 (αCD40), E. coli (EC) LPS, P. gingivalis (PG) LPS singly or in 
combination. At the end of the culture the concentration of IL-6 (A and B) and 
IL-10 (C and D) in the media was measured by ELISA. Data shown are mean with 
SEM for 2 independent experiments, n = 5 mice/group. Significant differences 
between culture conditions within a mouse group were determined by One-Way 
ANOVA with a Tukey post-hoc test (Table 5.1 and Table 5.2). Significant 
differences between mouse groups were made by an unpaired t test (Table 5.3). 
 
 
 

 

 

 

 

 

 



179 
 

Comparison Ki67 CD69 CD86 CD22 CD138 IL-6 IL-10 

1 A) PG LPS vs.  
   B) media 

ns = ns = ns = ns  ns = ns  ns = 

2 A) PG LPS vs.  
   B) EC LPS 

ns = *  *  ns  ns  ns  ns  

3 A) PG LPS + EC LPS vs. 
   B) EC LPS 

ns = ns = ns = ns  ns = ns = ns  

4 A) PG LPS + αCD40 vs.  
   B) αCD40 

ns = ns = ns = ns = ns = ns = ns = 

5 A) PG LPS + αCD40 vs.  
   B) EC LPS + αCD40 

***  ***  ***  ns  ns  ***  ***  

6 A) PG LPS + EC LPS + αCD40 vs. 
   B) EC LPS + αCD40 

ns  ns = ns  ns  ns  *  ns  

Table 5.2.2. Summary of the effect of different stimulants on splenic B cells 
from sham-infected mice. B cells were purified (> 85 % B220+) from the spleens 
of sham-infected mice and cultured for 4 days with or without anti-CD40 
(αCD40), E. coli (EC) LPS, P. gingivalis (PG) LPS singly or in combination. At the 
end of the culture the expression of Ki67, CD69, CD86, CD22, and CD138 by B 
cells was analysed by flow cytometry, and the concentration of IL-6 and IL-10 in 
the media was measured by ELISA. Comparisons (listed 1 to 6) were made 
between different combinations of stimuli (A and B): those including PG LPS (A) 
with those not including any LPS, or those including PG LPS with those including 
EC LPS instead (B). Significant differences were determined by One-Way ANOVA 
with a Tukey post-hoc test (ns = not significant, *P < 0.05, **P < 0.01, ***P < 
0.001). The direction of the difference between culture conditions has been 
indicated (= where A) is equal to B), where A) is greater than B),  where A) is 
less than B)). 
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Comparison Ki67 CD69 CD86 CD22 CD138 IL-6 IL-10 

1 A) PG LPS vs.  
   B) media 

ns = ns = ns = ns = ns = ns = ns = 

2 A) PG LPS vs.  
   B) EC LPS 

ns = ***  *  ns = ns = ns                                                                                                                                                                                    = ns = 

3 A) PG LPS + EC LPS vs. 
   B) EC LPS 

ns = ns = ns = ns = ns = ns = ns = 

4 A) PG LPS + αCD40 vs.  
   B) αCD40 

ns = ns = ns = ns = ns = ns = ns = 

5 A) PG LPS + αCD40 vs.  
   B) EC LPS + αCD40 

***  ***  ***  ns = ns = ***  ***  

6 A) PG LPS + EC LPS + αCD40 vs. 
   B) EC LPS + αCD40 

ns = ns = ns = ns = ns = ns = ns = 

Table 5.2.3. Summary of the effect of different stimulants on splenic B cells 
from mice with periodontitis. B cells were purified (> 85 % B220+) from the 
spleens of mice infected with P. gingivalis (PD) and cultured for 4 days with or 
without anti-CD40 (αCD40), E. coli (EC) LPS, P. gingivalis (PG) LPS singly or in 
combination. At the end of the culture the expression of Ki67, CD69, CD86, 
CD22, and CD138 by B cells was analysed by flow cytometry, and the 
concentration of IL-6 and IL-10 in the media was measured by ELISA. 
Comparisons (listed 1 to 6) were made between different combinations of stimuli 
(A and B): those including PG LPS (A) with those not including any LPS, or those 
including PG LPS with those including EC LPS instead (B). Significant differences 
were determined by One-Way ANOVA with a Tukey post-hoc test (ns = not 
significant, *P < 0.05, **P < 0.01, ***P < 0.001). The direction of the difference 
between culture conditions has been indicated (= where A) is equal to B), 
where A) is greater than B),  where A) is less than B)). 
 
 

Condition CD69 IL-6 

1 αCD40 ns, P = 0.299 = ns, P = 0.425 = 

2 PG LPS  ns, P = 0.506 = ns, P = 0.764 = 

3 EC LPS ns, P = 0.33 = **P = 0.0042  
4 PG LPS + EC LPS ns, P = 0.25 = ***P = 0.0008  
5 PG LPS + αCD40  ns, P = 0.229 = ns, P = 0.225 = 

6 EC LPS + αCD40 ns, P = 0.331 = ns, P = 0.0599 = 

7 PG LPS + EC LPS + αCD40  ns, P = 0.353 = **P = 0.0054  
Table 5.2.4. Summary of differences between stimulated splenic B cells from 
mice with periodontitis and sham controls. Mice were infected with P. 
gingivalis (PD) or sham-infected (sham). At 6 weeks post-infection, B cells were 
purified (> 85 % B220+) from the spleens and cultured for 4 days with or without 
anti-CD40 (αCD40), E. coli (EC) LPS, P. gingivalis (PG) LPS singly or in 
combination. At the end of the culture the expression of CD69 by B cells was 
analysed by flow cytometry, and the concentration of IL-6 in the media was 
measured by ELISA. Comparisons were made between B cells from different 
mouse groups that were stimulated in the same conditions (listed 1 to 7). 
Significant differences were determined by unpaired t test (ns = not significant, 
**P < 0.01, ***P < 0.001). The trend difference between mouse groups has been 
indicated (= where PD is equal to sham, where PD is greater than sham,  
where PD is less than sham). 
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The results so far have mainly characterised the nature of the local and regional 

B cell response to infection with P. gingivalis in our murine model. Several 

studies of PD patients suggest that PD is linked to dysregulation of circulating 

immune cells, and therefore PD potentially affects parts of the body far 

removed from the site of infection in the oral cavity (Loos et al., 2000, 

Berglundh et al., 2002b). To investigate whether murine PD had an impact on 

the systemic B cell populations at the latter stage of disease, B cell populations 

in the blood and peritoneal fluid of mice infected with P. gingivalis and sham 

controls were analysed by flow cytometry at six weeks post-infection (as 

described in Chapter 2, sections 2.10.4, 2.10.5, and 2.15.2). The total 

proportion of B cells and the composition of subsets in these compartments were 

similar in mice with PD compared with sham controls, except for a small 

increase in the ratio of B2 MZ-like cells to B2 FO cells in the peritoneal fluid 

(Figure 5.2.13). This suggests that PD does not have a systemic impact on B cell 

populations in the murine model at this time-point. 

 

It is possible that there are other aspects of B cell phenotype which are altered 

in murine PD that have not been assessed here. The possibility that any 

aberrations in B cell phenotype associated with murine PD leads to the 

production of autoantibodies was explored. Serum was collected from mice with 

PD and sham controls at one, two, and six weeks post-infection, and titers of 

anti-dsDNA, anti-type II collagen, and RF autoantibodies were measured by ELISA 

(as described in Chapter 2, section 2.16.6). No significant differences in any of 

these autoantibody titers between the mouse groups were observed at one week 

or six weeks post-infection. At two weeks, there was a significant increase in RF 

titers in mice with PD relative to sham controls (272.4 ± 40.3 EU PD vs. 154.5 ± 

8.2 EU sham, *P = 0.021, Figure 5.2.14F) and this was accompanied by a small, 

but insignificant increase in titers of anti-collagen type II IgG antibodies (144.0 ± 

13.5 EU PD vs. 110.1 ± 9.8 EU sham, P = 0.077, Figure 5.2.14E). Sera from mice 

with CIA were included in the assays for comparison, and this contained 

significantly higher titers of all the autoantibodies measured (data not shown). 

This suggests that murine PD is not associated with a generalised autoimmune 

response that is characteristic of murine models of RA. 
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Figure 5.2.13. B cell subsets in blood and peritoneal fluid of mice with 
periodontitis at 6 weeks post-infection. Mice were infected with P. gingivalis 
(PD) or sham-infected (sham). At 6 weeks post-infection, cells were isolated 
from the blood (A and C) and peritoneal fluid (B and D) and analysed by flow 
cytometry. Data shown are shown as mean with SEM for 3 independent 
experiments. Samples of blood and peritoneal fluid were pooled from 5 
mice/group in each experiment. Data were analysed by Mann-Whitney U test and 
no significant differences were found. 
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Figure 5.2.14. Serum autoantibody titers in mice with periodontitis at 1, 2, 
and 6 weeks post-infection. Mice were infected with P. gingivalis (PD) or sham-
infected (sham). At 1, 2, and 6 weeks PI, serum samples were collected and 
anti-dsDNA IgG, anti-collagen type II IgG, and anti-IgG IgM (RF) antibody titers 
were measured by ELISA. Data are shown as EU for individual mice (symbols) and 
mean EU for each group of mice (lines). Data are from 1 experiment at 1 and 2 
weeks PI, and from 3 experiments at 6 weeks PI, n = 4-5 mice/group. Significant 
differences were determined by unpaired t test (*P < 0.05). 
 

Summary of main results: 

 

 The number and percentage of B cells was increased in the dLNs of mice 

with PD compared with sham controls at six weeks post-infection 

 The percentage of GC B cells was increased in the dLNs of mice with PD 

compared with sham controls at one week post-infection 

 RANKL was differentially expressed by the mature B cell subsets (B1a, 

B1b, B2 MZ-like, and B2 FO) in the gingiva and dLNs of mice but this was 

unaffected by PD status 
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5.3 Discussion  

 

Current PD treatment focuses on reducing the bacterial burden in PD patients. 

Whilst, undoubtedly successful for many patients, partial treatment success and 

disease recurrence are common, hence a better understanding of the host 

immune response in PD may yield improvements (Kinane et al., 2011). B cells are 

abundant in the inflammatory lesions in the gingiva of PD patients and therefore 

might offer a therapeutic target (Berglundh and Donati, 2005). However, the 

specific roles of B cells in PD pathogenesis are not fully understood. Extensive 

analysis of gingival B cell phenotype in PD patients and healthy individuals is 

difficult due to sample limitations, discussed in Chapter 3. Moreover, localised 

changes in B cells at the initial stages of microbial dysbiosis following P. 

gingivalis infection cannot be characterised in human disease as patients 

inevitably present following several years of microbial dysbiosis.  

 

Employing a murine model of PD has enabled some of these hurdles to be 

overcome, but has also presented new challenges. The major advantage of the 

model was that it relieved many of the restrictions relating to collection of 

tissue samples. This enabled gingival dissection to be relatively standardised and 

provided temporal control over sample collection. Repeated experiments could 

be made at the same stage of disease in infected mice, and the same types of 

tissue samples could also be taken from healthy, age-matched animals for 

comparison. 

 

In the murine model used here, P. gingivalis was introduced by oral gavage, as 

this is assumed to be the natural route by which humans would encounter the 

bacteria. This assumption is based on evidence of its niche requirements for 

oxygen and nutrients within the oral cavity, its intricate relationships with other 

oral bacteria, and epidemiological data which implies oral P. gingivalis is 

horizontally transmitted human-to-human (van Steenbergen et al., 1993, Tuite-

McDonnell et al., 1997, Asano et al., 2003, Rijnsburger et al., 2007). Although P. 

gingivalis commonly colonises the mouths of humans, it has been noted that P. 

gingivalis is not very good at colonising the oral cavity of rodents, which are not 

natural hosts. Hence in this murine model the commensal oral bacteria were 

depleted by antibiotic treatment prior to infection with P. gingivalis. Attempts 
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to induce PD by oral infection with P. gingivalis without prior antibiotic 

treatment did not cause significant alveolar bone loss relative to sham controls 

(personal communication with Dr John Butcher, University of Glasgow). 

Antibiotic treatment eliminates any baseline differences in the oral microbiota 

between mouse groups, and possibly reduces the competition for P. gingivalis to 

colonise. P. gingivalis was also delivered in the vehicle of a viscous carbohydrate 

mixture (2 % CMC in PBS), to help it to adhere to the tooth surface. 

 

Systemic antibiotics disrupt the normal relationship between commensal 

bacteria and the immune system. This has been well studied in the gut, where 

commensal bacteria are known to continuously engage with and ‘educate’ the 

immune system. For example, a close relationship exists between Gram negative 

bacteria of the phylum SFB found in the gut and Th17 cell responses. Removal of 

SFB from the gut through the use of antibiotics or breeding in GF conditions 

significantly reduces the differentiation of Th17 cells in the lamina propria, and 

this is associated with a relative increase in the proportion of Tregs (Ivanov et 

al., 2008). Similarly, depletion of the commensal oral bacteria by antibiotics 

could be detrimental to the differentiation and maintenance of T cell 

populations in the oral mucosa. This could have repercussions on the ability of 

the cells to mount an adaptive immune response to subsequent infection with P. 

gingivalis. 

 

In recent years, the reliance of P. gingivalis on other species of bacteria for 

colonisation of the oral cavity has been unravelled at the molecular level and we 

have a better understanding of the mechanisms involved (Lamont et al., 2002, 

Kuboniwa and Lamont, 2010). It has been demonstrated that P. gingivalis ATCC 

33227 is absolutely dependent on adherence to Streptococcus gordonii to cause 

alveolar bone loss in the murine model of PD (Daep et al., 2011). This, and the 

work of others, has informed adaptations of the oral inoculation method of 

inducing murine PD, whereby P. gingivalis is delivered in combination with, or 

shortly after, delivery of a bacterium known to commonly co-inhabit with P. 

gingivalis in the oral cavity - such as A. actinomycetemcomitans or F. nucleatum 

(Chen et al., 1996, Polak et al., 2009). However, not all combinations of P. 

gingivalis with other PD-associated bacteria have a synergistic impact on 

alveolar bone loss. An independent investigation found no significant change in 
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the disease outcome following dual infection with P. gingivalis W83 and P. 

intermedia compared to infection with P. gingivalis alone (personal 

communication with Dr John Butcher, unpublished data, University of Glasgow). 

Co-infecting mice with P. gingivalis and another species of bacteria could 

actually hinder the ability of this strain to colonise if it is unable to adhere to 

the other species as there would be increased competition for binding directly to 

the tooth surface. The interactions of P. gingivalis with other oral bacteria can 

be strain-dependent. P. gingivalis W83, used throughout the studies described 

here can be distinguished by its possession of a polysaccharide capsule, and lack 

of minor fimbriae.  Fimbriae are the major mechanism used by other strains, 

including ATCC 33227, to bind to the salivary pellicle on the tooth surface and to 

other species of oral bacteria in a biofilm. It is believed that P. gingivalis W83 is 

consequently better at evading phagocytosis and ‘hiding’ from the immune 

system but poorer at colonising the oral cavity compared with P. gingivalis ATCC 

33227 (Sundqvist et al., 1991, Jotwani and Cutler, 2004, Bostanci and 

Belibasakis, 2012). Other mechanisms of adherence exist, but are less well 

characterised. Adhesins are thought to be released in vesicles from P. gingivalis 

which help it to co-aggregate with P. intermedia in vitro, but these may not 

have a significant role in vivo (Kamaguch et al., 2001, Kamaguchi et al., 2003). 

 

Alternative routes of P. gingivalis infection include the ‘airpouch model’, which 

involves injecting P. gingivalis into a dorsal subcutaneous pouch (Pouliot et al., 

2000), and the ‘chamber model’ which involves injecting P. gingivalis into a 

subcutaneous surgically implanted metal wire chamber (Genco et al., 1991). 

Both of these models bypass the oral mucosal barrier and the specific 

immunological defences associated with this, rendering them less relevant for 

the study of the adaptive immune response to P. gingivalis in PD. The advantage 

of these models is that they cause substantial histopathology, which can be 

easily studied and quantified. Consequently, the chamber model has been 

applied to determine the virulence of different strains of P. gingivalis (Graves et 

al., 2008).  

 

Using the oral gavage murine model, B cell phenotype was characterised in 

different tissues at different time-points post-infection with P. gingivalis and 

compared with sham controls. Subtle local and regional alterations in B cells 
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were observed in mice with PD. Interestingly, a small trend increase in the 

proportion of RANKL expressing B cells – a hallmark of human disease - was 

observed in the gingiva at one week post-infection (Kawai et al., 2006). It has 

previously been demonstrated that RANKL is a critical mediator of alveolar bone 

loss, and that as a source of RANKL, and potentially other osteoclastogenic 

factors, antigen-experienced B cells can contribute to this process in rodent PD 

(Han et al., 2006, Yuan et al., 2011, Han et al., 2013). The data presented here 

have attempted to expand on these findings and for the first time, further 

classify B cells expressing RANKL in PD. It was found that the majority of them 

belonged to the B1a and B1b subsets, which constitute a small proportion of the 

total B cell population in these tissues. The trend in B cell RANKL expression was 

accompanied by an expansion of the GC B cell population in the dLNs, indicating 

that differentiation of dLN B cells was enhanced as a result of P. gingivalis 

infection.  

 

Whilst observations of dLN responses in mice were consistent between 

experiments, achieving reproducible analyses of B cells in the gingiva was 

challenging. Due to the small size of the gingival tissue, and the complexity of 

the multi-step processing for flow cytometry, there were a limited, variable, 

number of cells available. A degree of caution is consequently required when 

interpreting the results. The analysis of gingival B cells could perhaps be 

improved by making a few small changes to the protocol. To begin with taking 

only the gingiva, which is most likely to be inflamed, rather than the gingiva and 

the palate, could be more revealing of the local immune response. The number 

of mice per group would have to be increased to compensate for the lower 

number of cells obtainable per mouse as a result. In subsequent steps, modifying 

the enzyme cocktail used for digestion and reducing the number of cell transfers 

between tubes during processing could help to preserve a larger number of cells. 

B cell phenotype could then be analysed by more sensitive methods. Viable B 

cells could be separated into subsets using for example a MoFloTM XDP cell sorter 

(Beckman Coulter), then the DNA isolated from each subset using a method 

adapted for recovery from a small number of cells. Finally, a multiplex qRT-PCR 

could be performed to more accurately analyse the expression of receptors, co-

stimulatory molecules, cytokines, RANKL, and other immunomodulators by each 

subset of B cells.   
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There was a tendency towards increased IL-6 production, specifically by B cells, 

in the spleens of mice with PD. Splenic B cells from mice with PD, stimulated 

with a mixture of E. coli LPS and P. gingivalis LPS with or without αCD40 

produced significantly higher levels of IL-6 than B cells from sham controls, but 

otherwise exhibited a similar phenotype. These results confirm previous reports 

that P. gingivalis LPS is a poor mitogen for lymphocytes, compared with other 

bacterial LPS (Gemmell and Seymour, 1992, Petit and Stashenko, 1996, Dixon 

and Darveau, 2005, Diya et al., 2008, Herath et al., 2011, Jain et al., 2011, 

Nebel et al., 2012, Herath et al., 2013), which is suspected to stem from the 

differential interaction of the LPS with TLR2 and TLR4 (Coats et al., 2003, 

Herath et al., 2013, Jain et al., 2013). Differential expression of TLR2 and TLR4 

by B cells relative to monocytes, macrophages, and DCs may explain how P. 

gingivalis LPS can induce a degree of activation in other APCs but apparently not 

in B cells (Barr et al., 2007, Jones et al., 2010, Yanagita et al., 2012).  

 

Since direct stimulation of B cells with P. gingivalis LPS is insufficient to elicit an 

activated phenotype, the activation of B cells observed in vivo must be 

dependent on various other factors downstream of P. gingivalis infection such as 

contact and non-contact interactions with other immune cells, as well as 

interactions with a range of bacterial stimuli. This concept could have been 

further investigated by attempting to recapitulate the hypothetical series of 

events in vitro. For example, epithelial cells and innate immune cells such as 

neutrophils could have been cultured with a bacterial biofilm containing P. 

gingivalis, then the media from this culture removed and added to a second 

culture of B cells or a mixture of lymphocytes, supplemented with P. gingivalis 

LPS before analysing B cell phenotype. The indirect and direct effects of P. 

gingivalis on lymphocyte responses to antigen could have additionally been 

assessed by using B cells from transgenic MD4 mice which specifically recognise 

HEL, T cells from transgenic DO11.10 mice, which specifically recognise OVA, 

and creating an OVA-HEL conjugate for this second stage (Goodnow et al., 1988, 

Murphy et al., 1990, Adams et al., 2003). TLR signals are integrated in both TI 

and TD B cell responses to antigen, providing P. gingivalis LPS with an 

opportunity to influence this step (Rawlings et al., 2012). Ideally, a transgenic P. 

gingivalis strain expressing OVA or OVA-HEL would be used in this scenario, as 
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free antigen may be recognised and processed differently to antigen presented 

by a pathogen (Robson et al., 2008). Unfortunately, attempts to create a 

transgenic P. gingivalis have so far, been unsuccessful.  Aside from the 

difficulties of generating a transgenic P. gingivalis, there are several other 

factors which complicate this in vitro system.  Firstly, each of the components 

of the culture systems – the bacteria and the different mammalian cell types – 

have individual preferences for conditions in vitro to survive, and in this respect 

it would be difficult to establish a fair compromise. Another dilemma is that 

media which has been ‘conditioned’ by the secretions of stimulated innate cells 

would likely contain various inflammatory mediators but also metabolites and 

other molecules released from dead cells and bacteria which could be toxic to 

lymphocytes. The time-frame for culturing lymphocytes with conditioned media 

would have to be optimised to allow sufficient time for the lymphocytes to 

become activated but not long enough to become overwhelmed and die. As a 

consequence of these and other practical considerations, a large amount of 

preparatory experiments would be required to optimise this type of assay.   

 

In conjunction with the data from in vitro stimulations of splenic B cells, the 

lack of significant alterations in B cell populations in blood and peritoneal fluid 

indicates that oral infection with P. gingivalis has limited systemic impact on B 

cell phenotype. No differences in the proportions of B cell subsets (B1a, B1b, B2 

MZ-like, and B2 FO) were observed in the gingiva either, again in contrast to 

claims from human studies that an increase is observed in B1a cells in these sites 

(Berglundh et al., 2002b, Donati et al., 2009a, Donati et al., 2009b). The 

nuances of the human studies referred to may explain these discrepancies. 

There are only a handful of reports that describe the proportion of CD5+ B cells 

in PD patients, and the majority of these reports stem from a single research 

group – hence the patient population used in these studies could skew the 

results. In some of the studies conducted there was a lack of healthy 

participants for comparison, which made it difficult to contextualise the 

findings. These issues aside, direct comparisons between human and murine 

studies of CD5+ B cells are fundamentally impeded by the differential pattern of 

CD5 expression between these species. In mice, CD5 expression can be induced 

in activated B2 cells (Cong et al., 1991), creating the need for additional 

analysis of CD43 and CD23 to distinguish B1 and B2 subsets. But overall, the 
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majority of CD5+ B cells in mice belong to the B1a subset, whereas in humans 

CD5 seems to be expressed more broadly across B cells and does not define a 

specific population (Carsetti et al., 2004). Other markers have been proposed to 

better identify ‘innate-like’ B cell populations that may be equivalent to murine 

B1a cells, but further research is required to confirm whether any of these truly 

represents the murine B1a lineage (Baumgarth, 2011). Therefore although CD5 is 

probably not the most appropriate marker of B1a-like B cells in humans, until 

suitable alternatives have been identified, it is the best option available.   

 

Another way in which the murine model of PD differed from the human condition 

was in the absence of autoantibodies. A wide range of autoantibodies have been 

identified which are increased in the sera of PD patients relative to healthy 

participants, including anti-collagen antibodies and others targeting components 

of connective tissue (Anusaksathien et al., 1992, De-Gennaro et al., 2006, 

Koutouzis et al., 2009). As a result, it was once believed that PD was an 

autoimmune disease in its own right. The view of PD pathogenesis has since 

shifted slightly, although there has been renewed interest in the concept that PD 

could contribute to the development of autoimmune disease, particularly RA, 

through the generation of autoantibodies. The assessment of autoantibody titers 

here was not extensive, and has excluded a key class of autoantibodies which 

have been most closely linked to the development of RA: ACPAs (van Gaalen et 

al., 2004, Nielen et al., 2004, Zendman et al., 2004). Preliminary experiments 

carried out indicated that ACPAs could not be detected in the sera of mice with 

PD or sham controls using components of the commercially available assay 

intended for use with human samples (personal communication with Dr John 

Butcher, unpublished data, University of Glasgow). 

 

It is possible that there is no evidence of a systemic impact on B cell phenotype 

or on the production of autoantibodies in murine PD because it simply does not 

progress to a chronic inflammatory state in the same way that the human 

disease does. This may be because the inbred mice used here possess minimal 

genetic susceptibility and are shielded from the environmental factors, such as 

smoking, that are known to contribute to human disease (Baker et al., 2000b, 

Haffajee and Socransky, 2001, Takahashi et al., 2001, Apatzidou et al., 2005, 

Petersen and Ogawa, 2005, Stabholz et al., 2010). It may be that by six weeks 
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post-infection, the localised inflammation in the gingiva has resolved, following 

the generation of an adaptive immune response, and the production of anti-P. 

gingivalis antibodies. In this murine model we are relying solely upon the 

immune response to P. gingivalis to elicit disease. In reality, humans may 

harbour P. gingivalis and not develop PD. It has been shown that up to 25 % of 

periodontally healthy individuals carry P. gingivalis (Griffen et al., 1998). 

 

No other studies using the murine model of PD established by Baker et al. 

(whereby no more than three inoculations of 109 colony forming units of P. 

gingivalis are administered by oral gavage over a period of a week, and in total) 

in WT BALB/c mice have published evidence of systemic inflammation, 

specifically in relation to B cells. This leads to the conclusion that such 

publications have not been made because these parameters have not previously 

been studied in this model of PD, or because studies performed did not yield 

positive results. 

 

The search for signs of systemic inflammation tends only to be performed when 

P. gingivalis infection is carried out in conjunction with a model of a systemic 

disease such as RA, diabetes, or atherosclerosis. Because the primary purpose of 

these types of experiments is to demonstrate whether P. gingivalis exacerbates 

systemic disease, and there is less interest in the development of PD, the way in 

which P. gingivalis is administered is often quite different from the oral gavage 

protocol implemented here. In studies where P. gingivalis is delivered orally, a 

much higher number of infections are performed over the time-course, ranging 

from 10 infections in three weeks to 42 infections in six weeks (Lalla et al., 

2003, Maekawa et al., 2011). In other studies, P. gingivalis is delivered by an 

alternative route using the subcutaneous chamber model (Maresz et al., 2013) or 

intravenous injection (Ashigaki et al., 2013). Intravenous injection of P. 

gingivalis alone is sufficient to cause systemic inflammation, including increasing 

the concentration of IL-6 in serum (Akamatsu et al., 2011). Arguably, delivering 

P. gingivalis by any of these alternative routes is more artificial. The impact on 

systemic disease is dependent on exposure to an unusually high bacterial load, 

and not necessarily at a site this species would normally be encountered. In PD 

patients, P. gingivalis forms an extremely low proportion of the total dental 

plaque biomass and is not always detectable (Slots and Chen, 1993, Socransky et 
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al., 1998, Bizzarro et al., 2013). Likewise, in murine studies employing the 

model of PD established by Baker et al. (1994), P. gingivalis is rarely detectable 

in the oral cavity at the end-point unless highly sensitive qRT-PCR methods are 

used, which are able to measure in the region of hundreds of bacteria 

(Hajishengallis et al., 2011). 

 

5.4 Conclusion 

 

In the murine model of PD, subtle changes in B cell phenotype are evident in the 

gingiva and dLNs. It remains to be established whether B cells contribute to 

pathology in PD, and if so, by what mechanisms. This particular model of PD 

does not appear to have a systemic impact on the B cell compartment, and 

therefore may not be suitable for studies which aim to determine the relative 

risk of autoimmunity and RA in PD. 
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Chapter 6: Periodontitis in mice with an altered B cell profile 

 

6.1 Introduction 

 

The murine model of PD described in Chapter 5 was associated with a significant 

increase in alveolar bone loss, and with subtle changes to B cell phenotype, 

mainly localised to the gingiva and dLNs. To discern more clearly, the 

relationship between changes in B cell phenotype and pathology in PD, there are 

two strategies which can be implemented using in vivo and in vitro murine 

models. The first is to enhance B cell activation and increase B cell numbers. 

The second is to inhibit B cell activity or deplete B cells. The first strategy was 

employed in this chapter, and the second in Chapter 7. 

 

There are several ways of altering B cell phenotype, which can be thought of in 

terms of targeting their receptors including the BCR, co-stimulatory molecules, 

TLRs, and certain IL receptors. The increase in B cell number and expression of 

RANKL by B cells following P. gingivalis infection are among the features which 

may be enhanced by altering the balance of specific inflammatory and anti-

inflammatory cytokines, either by alteration of gene expression of cytokines or 

their receptors, exogenous delivery of cytokine or exogenous delivery of a 

cytokine inhibitor.  

 

Amongst the various risk factors associated with chronic PD are numerous 

genetic polymorphisms and modifications which affect the expression or activity 

of cytokines, including IL-1, IL-6, IL-18, and TNFα (Holla et al., 2004, Galicia et 

al., 2006, Ding et al., 2012, Ishida et al., 2012, Karimbux et al., 2012, Deng et 

al., 2013, Yang et al., 2013, Li et al., 2014b, Zhang et al., 2014a). Clinical 

improvement in PD is often associated with a reduction in the levels of these 

cytokines in the gingiva and GCF (Lee et al., 1995, de Campos et al., 2012, Reis 

et al., 2014). 

 

Many of the cytokines studied in PD can be assigned to one of three categories: 

those associated with Th1, Th2, or Th17 responses (Mosmann et al., 2005, Chen 

and O'Shea, 2008). The balance of these Th responses is thought to be central to 

the pathogenesis of PD, but it has yet to be established if a particular Th 
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response is more helpful than any other at a particular stage in the course of PD. 

An immune response strongly skewed towards one of these Th responses can 

exacerbate PD. Mice that lacked key Th1 cytokines (IL-12, IFNᵧ, and TNFα) or 

Th2 cytokines (IL-4 and IL-10) have both been found to develop more severe PD 

than wild type mice (Sasaki et al., 2004, Alayan et al., 2007). Tregs function to 

help prevent excessive activation of the Th cells, and maintain a balanced, 

efficient response. Inhibition of Tregs was demonstrated to increase severity of 

murine PD (Garlet et al., 2010). Furthermore, recruitment of Tregs to the oral 

cavity, via exogenous administration of the chemokine CCL22 led to attenuation 

of murine PD (Glowacki et al., 2013). 

 

Th cells largely dictate the activities of B cells (summarised in Figure 6.1.1). 

Each type of Th response can be further characterised by the consequences on B 

cell function. Th1 responses are usually directed against intracellular and 

extracellular viral and bacterial infections. Th1 responses promote B cell 

production of opsonising antibodies, predominantly of the IgG2a isotype in mice. 

These help aid the phagocytosis of extracellular pathogens and the destruction 

of infected cells by ADCC. Th2 responses are generally most effective at dealing 

with helminth parasites (Else et al., 1993, Pritchard et al., 1995). Th2 responses 

promote B cell production of neutralising antibodies, predominantly of the IgE 

and IgG1 isotypes in mice. IgE antibodies help to neutralise toxins released by 

the pathogen, and direct mast cell degranulation onto the surface of a 

pathogen. Th2 responses can also lead to an increase in B cell expression of MHC 

II and antigen presentation (Horsnell et al., 2013). Th17 responses are 

increasingly being associated with infections by extracellular pathogens, 

including P. gingivalis (Bettelli et al., 2007). Th17 cells produce IL-21 which 

supports Tfh cells, that in turn provide help to GC B cells in secondary lymphoid 

organs (Wei et al., 2007). Th17 responses result in the production of IgM, IgG, 

and IgA antibodies, but not IgE (Annunziato et al., 2007). 
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 Figure 6.1.1. B cell activity associated with Th1, Th2, and Th17 polarised 
responses to infection. Cytokine secretion by DCs influences Th cell polarisation 
following interaction with antigen. In turn, cytokine secretion by polarised Th1, 
Th2, and Th17 cells influences B cell activity including antibody isotype 
switching. Tfh cells provide help to cognate GC B cells, supporting the 
production of high-affinity antibodies. Induction of Treg cell differentiation by 
DCs creates a negative feedback loop. Tregs suppress the generation and activity 
of the other Th effector cells (Mosmann et al., 1986, Moser and Murphy, 2000, 
Breitfeld et al., 2000, Sakaguchi, 2000, Hori et al., 2003, Bettelli et al., 2007, 
Aliahmadi et al., 2009, Chung et al., 2009, Avery et al., 2010, Gringhuis et al., 
2014). 
 

IL-1 increases cytokine production, MHC and co-stimulatory molecule expression 

by DCs, and acts as a general amplifier of T cell responses (Kruse et al., 2001, 

Ben-Sasson et al., 2009). IL-1 is especially good at enhancing Th2 and Th17 

responses, and is required for full commitment of a naïve T cell to the Th17 

lineage as well for the maintenance of Th17 responses (Lichtman et al., 1988, 

Wilson et al., 2007, Chung et al., 2009, Guo et al., 2009). As a consequence of 

increasing help from T cells, IL-1 indirectly enhances B cell activation, 

maturation, and antibody production, but it also directly boosts B cell responses 

to stimulation (Phillips and Rabson, 1983, Freedman et al., 1988, Rousset et al., 

1991, Nakae et al., 2001). 
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IL-1 has been relatively well studied in the context of PD. IL-1 is produced by 

GECs and monocytes following stimulation with whole P. gingivalis or P. 

gingivalis LPS (Gemmell and Seymour, 1993, Sandros et al., 2000). IL-1 actually 

refers to two cytokines: IL-1α and IL-1β. These are produced by distinct genes 

but share the same receptors and have the same functions (Garlanda et al., 

2013). It has been demonstrated that overexpression of IL-1 in the oral 

epithelium of mice induced spontaneous development of PD (Dayan et al., 

2004). It has also been shown that mice deficient in the endogenous IL-1 

receptor antagonist are more susceptible to PD (Izawa et al., 2014). 

Furthermore, the delivery of exogenous IL-1 antagonists led to attenuation of PD 

in a murine model, and in a primate model of the disease (Delima et al., 2002).  

 

IL-33 is a member of the IL-1 cytokine family, which appears to be involved in 

various chronic inflammatory diseases including asthma, colitis, and RA (Xu et 

al., 2008, Prefontaine et al., 2009, Pastorelli et al., 2010, Tang et al., 2013, 

Sattler et al., 2014). IL-33 is expressed by a range of cells lining mucosal 

surfaces and the skin, as well as selected immune cells: fibroblasts, endothelial 

cells, keratinocytes, epithelial cells, dendritic cells, and activated macrophages 

(Palmer et al., 2008, Kuchler et al., 2008, Moussion et al., 2008). Like IL-1, IL-33 

is thought to act as an alarmin – a signal of cellular stress or injury (Cayrol and 

Girard, 2009, Nile et al., 2010). IL-33 has roles in both intracellular and 

extracellular signalling, but is only secreted and able to exert extracellular 

effects following necrosis of the source cell. In living cells, IL-33 is located 

within the cytoplasm. During apoptosis it is sequestered in the nucleus, where it 

is cleaved and inactivated.  

 

There are multiple splice variants of the receptor for IL-33. One of these is the 

soluble decoy receptor sST2, and one is the membrane-bound receptor ST2L. 

Binding of IL-33 to ST2L and subsequent recruitment of the adaptor IL-1RAP, 

results in activation of NFκB and MAPK signalling pathways (Chackerian et al., 

2007). ST2L was originally described as an orphan receptor, mainly expressed by 

Th2 cells and mast cells (Moritz et al., 1998, Lohning et al., 1998), but it is now 

known to be expressed by basophils, eosinophils, NK cells, iNK T cells, DCs, and 

B cells. As a result, IL-33 has widespread effects on the immune system (Figure 

6.1.2). 
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Analogous to IL-1, IL-33 can enhance both Th2 and Th17 responses. The 

production of cytokines by Th2 cells is amplified by IL-33 itself whereas Th17 

responses are enhanced via IL-33 activation of mast cells, which release an array 

of inflammatory mediators following degranulation (Schmitz et al., 2005, Komai-

Koma et al., 2007, Komai-Koma et al., 2011, Cho et al., 2012). As a result of 

these effects on Th cells, and the direct interaction of IL-33 with B cells, IL-33 

treatment can augment the production of antibodies of most classes. A 

combination of IL-5 and IL-33 was found to be sufficient to increase the 

proliferation and production of IgM by the B1 subset of B cells in vitro. Both T 

cells and mast cells are significant sources of IL-5 in vivo following IL-33 

treatment. These events are thought to account for IL-33 exacerbation of DTH 

responses (Komai-Koma et al., 2011).  

 

Studies of the role of IL-33 in asthma and RA are especially relevant to PD; RA 

shares common immunopathological pathways with PD, and asthma, like PD, 

takes place at a mucosal surface. Increased IgE titers resulting from IL-33 

treatment have been linked to increased mast cell activity and exacerbation of 

airway inflammation in mice, and this is thought to be an underlying mechanism 

of asthma (Zhiguang et al., 2010, Kobayashi et al., 2013a). Most interestingly, in 

CIA and CAIA murine models of RA, IL-33 treatment led to elevated titers of anti-

collagen IgG antibodies, greater footpad swelling, and higher clinical score in WT 

mice whilst ST2 KO mice had attenuated disease (Xu et al., 2008, Xu et al., 

2010). IL-33 is expressed in the synovial tissue of RA patients, and fibroblasts 

isolated from the rheumatoid synovium can be stimulated to secrete IL-33 by 

adding IL-1β and TNFα (Xu et al., 2008, Tang et al., 2013). Moreover, levels of 

IL-33 in synovial fluid have been found to positively correlate with titers of RF in 

RA patients (Tang et al., 2013).  
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Figure 6.1.2. The IL-33 cytokine-cell network. IL-33 has direct effects on ST2 
receptor bearing cells including DCs, mast cells, Th2 cells, and B cells. 
Activation of this first line of immune cells by IL-33 results in the generation of 
other cytokines and the activation of a second wave of cells, including plasma 
cells, macrophages, fibroblasts, and osteoclasts (Barksby et al., 2007, Cherry et 
al., 2008, Smithgall et al., 2008, Bourgeois et al., 2009, Pecaric-Petkovic et al., 
2009, Kroeger et al., 2009, Rank et al., 2009, Nile et al., 2010).  
 

There is some evidence which suggests that oral infection with P. gingivalis 

could result in increased IL-33 gene expression in the gingiva. When stimulated 

with P. gingivalis LPS, a human monoctyte cell line (THP-1) was found to 

increase IL-33 gene expression (Nile et al., 2010). In addition, preliminary data 

has indicated that oral keratinocyte cell lines (OKF6 and TERT-2) and primary 

human GECs stimulated with P. gingivalis monospecies biofilms increase IL-33 

gene expression, and that IL-33 gene expression and protein are elevated in the 

gingiva of PD patients (Nile et al., personal communication, manuscripts in 

preparation, University of Glasgow).   
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Arguing against a role for IL-33 in PD are a handful of small studies of PD 

patients which found the level of IL-33 protein in the GCF of patients to be 

reduced or unchanged relative to periodontally healthy participants (Buduneli et 

al., 2012, Papathanasiou et al., 2013, Kursunlu et al., 2014). Whether IL-33 has a 

role in PD pathogenesis, and by what mechanism, remains to be fully 

established. 

 

As IL-33 can strongly influence the adaptive immune response, and enhance 

certain B cell functions, it seems an appropriate novel tool for further 

investigating associations between altered B cell phenotype and PD. A series of 

experiments were therefore conducted to simultaneously determine the impact 

of IL-33 treatment on alveolar bone loss in the murine model of PD and to assess 

changes in B cell phenotype associated with this, including the B cell expression 

of RANKL.  

 

6.2 Results 

 

To determine the effect of IL-33 treatment on pathology in murine PD, mice 

were infected with P. gingivalis or sham-infected and these groups were split 

further into sub-groups that received either IL-33 or PBS treatment by 

intraperitoneal injection (as described in Chapter 2, section 2.5). At six weeks 

post-infection, alveolar bone loss was measured (as described in Chapter 2, 

section 2.7). Sham-infected mice treated with IL-33 had greater alveolar bone 

loss than sham-infected untreated mice (mean ± SEM: 0.21 ± 0.009 mm sham vs. 

0.24 ± 0.0065 mm sham + IL-33, *P < 0.05, Figure 6.2.1), and P. gingivalis-

infected mice treated with IL-33 had the greatest alveolar bone loss (-0.24 ± 

0.0055 mm PD vs. -0.29 ± 0.0053 mm PD + IL-33, ***P < 0.001; -0.24 ± 0.0065 mm 

sham + IL-33 vs. -0.29 ± 0.0053 mm PD + IL-33, ***P < 0.001, Figure 6.2.1). Thus, 

IL-33 exacerbated alveolar bone loss in murine PD. The next objective was to 

investigate whether this phenotype was associated with alterations in the local 

and systemic B cell profile. To begin with, B cell RANKL expression in the gingiva 

of mice was analysed by flow cytometry (as described in Chapter 2, sections 

2.6, 2.10.1, and 2.15.2). Unfortunately, due to insufficient resources, not all of 

the following in vivo experiments included a group of IL-33 treated sham-

infected controls. 
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Figure 6.2.1. Alveolar bone level in IL-33 treated mice with periodontitis at 6 
weeks post-infection. Mice were infected with P. gingivalis (PD) or sham-
infected (sham). Half of the mice with PD and sham controls were treated with 
IL-33 (PD/ sham + IL-33) and half were treated with PBS. At 6 weeks post-
infection, the alveolar bone level was measured. The data are shown as mean 
per mouse (symbols) and mean for each group of mice (lines) normalised to the 
sham group mean. The data are combined from 2 experiments, n = 5 
mice/group. Significant differences were determined by One-Way ANOVA with a 
Tukey post-hoc test (*P < 0.05, **P < 0.01, ***P < 0.001). Data provided by Dr 
Jennifer Malcolm. 
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A number of IL-33-associated changes in B cells were evident in the gingiva at 

both one and six weeks post-infection. However, none of these trends could be 

statistically analysed due to the pooling of samples of gingiva within each 

experiment, and the fact that the data were from just one or two experiments. 

At one week post-infection there was, surprisingly, a lower proportion of B cells 

in the gingiva of IL-33 treated mice with PD compared with PBS treated mice 

with PD (30.45 ± 1.38 % PD vs. 20.95 ± 0.40 % PD + IL-33, Figure 6.2.2A). On the 

other hand, B cell expression of RANKL was increased in IL-33 treated mice and 

was highest in IL-33 treated mice with PD at one week post-infection (4.39 ± 

0.50 % sham vs. 11.30 ± 0.50 % PD; 11.30 ± 0.50 % PD vs. 22.90 ± 2.80 % PD + IL-

33, Figure 6.2.2C). At six weeks post-infection, B cell RANKL expression in PBS 

treated mice with PD was reduced relative to PBS treated sham controls, and 

further reduced in IL-33 treated mice with PD, opposing the trend observed at 

one week post-infection. Analysis of B cell subsets and differential RANKL 

expression by B cell subsets unfortunately could not be performed in these 

studies due to the limited number of gingival cells available and requirements 

for other ongoing independent studies.  
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Figure 6.2.2. RANKL expression by B cells in the gingiva of IL-33 treated mice 
with periodontitis at 1 and 6 weeks post-infection.  Mice were infected with P. 
gingivalis (PD) or sham-infected (sham). Half of the mice with PD and sham 
controls were treated with IL-33 (PD/sham + IL-33) and half were treated with 
PBS. At 1 week (A and C) and 6 weeks (B and D) post-infection, cells were 
isolated from the gingiva and analysed by flow cytometry. The data are shown as 
mean for 2 independent experiments at 1 week, and for 1 experiment at 6 
weeks. There was no sham + IL-33 group at 6 weeks. Gingiva were pooled from 
4-5 mice/group at 1 week post-infection and 5 mice/group at 6 weeks post-
infection. Data contributed to by Dr Jennifer Malcolm. 
 

B cell populations in the dLNs were analysed to further probe the impact of IL-33 

treatment on the regional immune response to P. gingivalis infection (as 

described in Chapter 2, sections 2.10.2 and 2.15.2). At one week post-infection 

there was a small increase in the proportion of B cells in the dLNs of PBS treated 

mice with PD relative to PBS treated sham controls, and a significant increase in 

the proportion of B cells in the dLNs of IL-33 treated mice with PD relative to 

PBS treated sham controls (20.82 ± 1.68 % sham vs. 26.98 ± 0.87 % PD; 26.98 ± 

0.87 % PD vs. 29.70 ± 1.46 % PD + IL-33; 20.82 ± 1.68 % sham vs. 29.70 ± 1.46 % 

PD + IL-33, **P < 0.01, Figure 6.2.3A). The proportion of B1b cells was 

significantly increased in IL-33 treated mice with PD relative to PBS treated mice 
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with PD, and PBS treated sham controls (1.8 ± 0.11 % sham vs. 3.03 ± 0.08 % PD + 

IL-33, **P < 0.01; 1.99 ± 0.06 % PD vs. 3.03 ± 0.08 % PD + IL-33, *P < 0.05, Figure 

6.2.3C), and the proportion of plasmablasts was also significantly increased in 

IL-33 treated mice with PD (7.14 ± 0.26 % sham vs. 11.13 ± 0.35 % PD + IL-33, *P 

< 0.05; 7.32 ± 0.32 % PD vs. 11.13 ± 0.35 % PD + IL-33, *P < 0.05, Figure 6.2.3F). 

None of these observations of dLNs B cell populations in IL-33 treated mice with 

PD persisted at six weeks post-infection (Figure 6.2.4). The proportion of 

plasmablasts in the dLNs of IL-33 treated mice with PD was reduced at six weeks 

post-infection relative to the PBS treated mice with PD, and PBS treated sham 

controls (4.11 ± 0.44 % sham vs. 3.09 ± 0.19 % PD + IL-33; 4.4-0 ± 0.3 2 % PD vs. 

3.09 ± 0.19 % PD + IL-33, *P < 0.05, Figure 6.2.4F). 

 

Analogous to observations in the gingiva, at one week post-infection, B cell 

RANKL expression was increased in the dLNs of IL-33 treated mice with PD 

relative to PBS treated mice with PD, and PBS treated sham controls (7.14 ± 0.15 

% sham vs. 7.69 ± 0.34 % PD; 7.69 ± 0.34 % PD vs.10.98 ± 0.61 % PD + IL-33; 7.14 

± 0.15 % sham vs.10.98 ± 0.61 % PD + IL-33, *P < 0.05, Figure 6.2.5A). There 

were no differences in B cell RANKL expression between the groups at six weeks 

post-infection (Figure 6.2.5B). Nonetheless, due to the differences observed at 

one week post-infection, differential expression of RANKL by B cell subsets was 

then analysed in the dLNs of IL-33 treated mice in isolation. At one week post-

infection, the B1a and B1b cells had the highest proportions expressing RANKL of 

the B cell subsets (18.23 ± 1.32 % B1a, 16.28 ± 0.53 % SEM B1b, 6.17 ± 0.79 % B2 

MZ-like, 9.15 ± 0.46 % B2 FO, Figure 6.2.6A). At six weeks post-infection, all the 

B cell subsets expressed lower levels of RANKL compared with one week post-

infection, and the B1a subset clearly had the highest proportion expressing 

RANKL (8.73 ± 0.97 % B1a, 4.83 ± 0.24 % B1b, 3.35 ± 0.39 % B2 MZ-like, 4.09 ± 

0.15 % B2 FO, Figure 6.2.6B). Similar patterns in RANKL expression by B cell 

subsets were observed in the dLNs of PBS treated mice with PD and PBS treated 

sham controls (data not shown). 
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Figure 6.2.3. B cell subsets in the dLNs of IL-33 treated mice with 
periodontitis at 1 week post-infection. Mice were infected with P. gingivalis 
(PD) or sham-infected (sham). A group of mice with PD were additionally treated 
with IL-33 (PD + IL-33). At 1 week post-infection, lymphocytes were isolated 
from the dLNs and analysed by flow cytometry. The data are shown as mean 
with SEM, n = 4-5 mice/group. Significant differences were determined by 
Kruskal-Wallis with Dunn’s multiple comparison post-hoc test (*P < 0.05). 
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Figure 6.2.4. B cell subsets in the dLNs of IL-33 treated mice with 
periodontitis at 6 weeks post-infection. Mice were infected with P. gingivalis 
(PD) or sham-infected (sham). A group of mice with PD were additionally treated 
with IL-33 (PD + IL-33). At 6 weeks post-infection, lymphocytes were isolated 
from the dLNs and analysed by flow cytometry. The data are shown as mean 
with SEM, n = 5 mice/group. Significant differences were determined by One-
Way ANOVA with Tukey post-hoc test (*P < 0.05). 
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Figure 6.2.5. RANKL expression by B cells in the dLNs of IL-33 treated mice 
with periodontitis treated at 1 and 6 weeks post-infection. Mice were infected 
with P. gingivalis (PD) or sham-infected (sham). A group of mice with PD were 
additionally treated with IL-33 (PD + IL-33). At 1 week (A) and 6 weeks (B) post-
infection, lymphocytes were isolated from the dLNs and analysed by flow 
cytometry. The data are shown as mean with SEM, n = 4-5 mice/group at 1 week 
post-infection and n = 5 mice/group at 6 weeks post-infection. Significant 
differences were determined in (A) by Kruskal-Wallis with Dunn’s multiple 
comparison post-hoc test (Sham vs. PD + IL-33 *P < 0.05) and in (B) data were 
analysed by One-Way ANOVA with Tukey post-hoc test, and no significant 
differences were found.  
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Figure 6.2.6. Differential RANKL expression by B cell subsets in the dLNs of 
IL-33 treated mice with periodontitis at 1 and 6 weeks post-infection. Mice 
were infected with P. gingivalis and treated with IL-33 (PD + IL-33). At 1 week 
(A) and 6 weeks (B) post-infection, lymphocytes were isolated from the dLNs and 
analysed by flow cytometry. Data are shown as mean with SEM, n = 4-5 
mice/group. Significant differences were determined in (A) by Kruskal-Wallis 
with Dunn’s multiple comparison post-hoc test and in (B) by One-Way ANOVA 
with Tukey post-hoc test (*P < 0.05, **P < 0.01, ***P < 0.001). Similar patterns in 
RANKL expression by B cell subsets were observed in the dLNs of PBS treated 
mice with PD and PBS treated sham controls (data not shown). 
 

In addition to RANKL expressed on the surface of lymphocytes, sRANKL and TNFα 

can also promote osteoclastogenesis (Lam et al., 2000). Therefore, an in vitro 

lymphocyte stimulation assay was performed to determine if IL-33 treatment 

affected the production of these cytokines. Lymphocytes from the dLNs and 

inguinal LNs of IL-33 treated mice with PD, PBS treated mice with PD, and sham 

controls were stimulated with PMA and ionomycin for three days, and then the 

concentration of these cytokines were measured in the culture media (as 

described in Chapter 2, sections 2.10.2, 2.12, and 2.16.5). This strong, non-

specific stimulation provided an indication of the cytokine secreting potential of 

lymphocytes in vivo. Observations of the dLNs revealed the combined effects of 

local P. gingivalis infection and systemic IL-33 treatment, whereas the inguinal 

LNs provided insight to systemic effects both P. gingivalis infection and IL-33 

treatment in LNs which do not directly drain the peritoneal cavity (in which the 
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potent effects of IL-33 would be more likely to mask any systemic effects of P. 

gingivalis infection).  

 

At one week post-infection, sRANKL production by lymphocytes from the dLNs of 

PBS treated mice was significantly increased compared with sham controls and 

an intermediate level was produced by lymphocytes from the dLNs of IL-33 

treated mice with PD (81.62 ± 7.23 pg/ml sham vs. 196.3 ± 28.06 ng/ml PD, *P < 

0.05, Figure 6.2.7). At six weeks post-infection, there was no difference in the 

production of sRANKL by lymphocytes from the dLNs of the different mouse 

groups (Figure 6.2.8A). There was a trend towards elevated sRANKL production 

by lymphocytes from the inguinal LNs of IL-33 treated mice with PD compared 

with PBS treated sham controls, but this did not reach statistical significance 

(0.055 ± 0.035 ng/ml sham vs. 0.22 ± 0.064 ng/ml PD; 0.055 ± 0.035 ng/ml sham 

vs. 0.23 ± 0.075 ng/ml PD + IL-33, Figure 6.2.8B).  Production of IL-6, IL-17, and 

TNFα, by lymphocytes from the dLNs and inguinal LNs of mice was also analysed 

at six weeks post-infection, and no significant differences between mouse groups 

were found at this time-point (data not shown).  

 

 

Figure 6.2.7. In vitro sRANKL production by lymphocytes from IL-33 treated 
mice with periodontitis at 1 week post-infection. Mice were infected with P. 
gingivalis (PD) or sham-infected (sham). A group of PD mice were additionally 
treated with IL-33 (PD + IL-33). At 1 week post-infection, lymphocytes were 
isolated from the dLNs of mice and stimulated for three days with PMA (10 
ng/ml) and ionomycin (500 ng/ml). The concentration of sRANKL in the culture 
media was then measured by ELISA. Data are shown as mean with SEM, n = 4-5 
mice/group. Significant differences were determined by Kruskal-Wallis with 
Dunn’s multiple comparison post-hoc test (*P < 0.05). 
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Figure 6.2.8. In vitro sRANKL production by lymphocytes from IL-33 treated 
mice with periodontitis at 6 weeks post-infection. Mice were infected with P. 
gingivalis (PD) or sham-infected (sham). A group of PD mice were additionally 
treated with IL-33 (PD + IL-33). At 6 weeks post-infection, lymphocytes were 
isolated from the dLNs (A) and inguinal LNs (B) of mice and stimulated for three 
days with PMA (10 ng/ml) and ionomycin (500 ng/ml). The concentration of 
sRANKL in the culture media was then measured by ELISA. Data are shown as 
mean with SEM, n = 4-5 mice/group. Data were analysed by Kruskal-Wallis with 
Dunn’s multiple comparison post-hoc test, and no significant differences were 
found. 
 

Previously in Chapter 5, it was demonstrated that PD alone has no impact on B 

cell subsets in the peritoneal fluid. However, since the IL-33 treatments were 

delivered intra-peritoneally, and the peritoneal cavity is a prominent source of B 

cells, IL-33 induced changes to B cell phenotype were investigated here (as 

described in Chapter 2, sections 2.10.5 and 2.15.2) (Ray and Dittel, 2010). At 

one week post-infection, the number of B cells was increased in the peritoneal 

fluid of IL-33 treated mice, with a significantly increase in IL-33 treated mice 

with PD compared with PBS treated mice with PD (1,651,000 ± 658,926 PD vs. 

6,875,000 ± 737,493 PD + IL-33, *P < 0.05, Figure 6.2.9A), although the 

proportion of B cells as a percentage of total cells was similar across the 

different groups (Figure 6.2.9B). IL-33 treatment was associated with subtle 

shifts in the proportions of B cell subsets, but none of these trends reached 

statistical significance. These included reductions in the proportions of B1a cells, 

B1b cells, and plasmablasts, and an increase in the proportion of B2 MZ-like cells 

(Figure 6.2.9C-H). 
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In line with earlier observations in the gingiva (Figure 6.2.2) and in the dLNs 

(Figure 6.2.5), there was a trend towards increased B cell RANKL expression in 

the peritoneal fluid of IL-33 treated mice relative to PBS treated mice at one 

week post-infection (Figure 6.2.10A). However, there was no synergistic effect 

of PD and IL-33 on B RANKL expression. Differential expression of RANKL by B 

cell subsets was then analysed in the peritoneal fluid of IL-33 treated mice in 

isolation. As observed in the dLNs (Figure 6.2.6), the B1a and B1b subsets 

formed the majority of RANKL expressing B cells, whilst the B2 MZ-like subset 

included a comparatively small proportion of RANKL expressing B cells (24.80 ± 

4.54 % B1a, 15.66 ± 3.57 % B1b, 6.60 ± 1.11 % B2 MZ-like, 14.11 ± 3.87 % B2 FO, 

Figure 6.2.11). Similar patterns in RANKL expression by B cell subsets were 

observed in the peritoneal fluid of PBS treated mice with PD and PBS treated 

sham controls (data not shown). 



211 
 

 

Figure 6.2.9. B cell subsets in the peritoneal fluid of IL-33 treated mice with 
periodontitis at 1 week post-infection. Mice were infected with P. gingivalis 
(PD) or sham-infected (sham). Half of the mice with PD and sham controls were 
treated with IL-33 (PD/sham + IL-33) and half were treated with PBS. At 1 week 
post-infection, lymphocytes in the peritoneal fluid were analysed by flow 
cytometry. Data is shown as mean with SEM, n = 4-5 mice/group. Significant 
differences were determined by Kruskal-Wallis with Dunn’s multiple comparison 
post-hoc test (*P < 0.05). 
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Figure 6.2.10. RANKL expression by B cell subsets in the peritoneal fluid of 
IL-33 treated mice with periodontitis at 1 week post-infection. Mice were 
infected with P. gingivalis (PD) or sham-infected (sham). Half of the mice with 
PD and sham controls were treated with IL-33 (PD/sham + IL-33) and half were 
treated with PBS. At 1 week post-infection lymphocytes in the peritoneal fluid 
were analysed by flow cytometry. Data are shown as mean with SEM, n = 4-5 
mice/group. Data were analysed by Kruskal-Wallis with Dunn’s multiple 
comparison post-hoc test, and no significant differences were found. 
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Figure 6.2.11. Differential RANKL expression by B cell subsets in the 
peritoneal fluid of IL-33 treated mice with periodontitis at 1 week post-
infection. Mice were infected with P. gingivalis and treated with IL-33. At 1 
week post-infection, lymphocytes in the peritoneal fluid were analysed by flow 
cytometry. Data are shown as mean with SEM, n = 4 mice/group. Significant 
difference was determined by Kruskal-Wallis with Dunn’s multiple comparison 
post-hoc test (*P < 0.05). Similar patterns in RANKL expression by B cell subsets 
were observed in the peritoneal fluid of PBS treated mice with PD and PBS 
treated sham controls (data not shown). 
 

Subtle shifts in B cell populations in the peritoneal fluid associated with IL-33 

treatment also existed at six weeks post-infection. The overall proportion of B 

cells was not altered (Figure 6.2.12A), but trends in the proportions of B cell 

subsets in IL-33 treated mice relative to PBS treated mice included a reduction 

in the proportion of B1a cells (Figure 6.2.12B) and an increase in the proportion 

of B2 MZ-like cells (Figure 6.2.12D). None of these trends in the proportions of 

B cell subsets reached statistical significance. Data on plasmablasts and plasma 

cells at this time-point were from pooled samples of peritoneal fluid from one 

experiment, so statistical analysis could not be performed. RANKL expression by 

B cell subsets was not analysed at this later time-point due to limited resources.  

Based on the data from one week post-infection, it was expected that any 

differences in B cell RANKL expression in the peritoneal fluid of IL-33 treated 

and PBS treated mice at six weeks post-infection would not reach statistical 

significance. 
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Figure 6.2.12. B cell subsets in the peritoneal fluid of IL-33 treated mice with 
periodontitis at 6 weeks post-infection. Mice were infected with P. gingivalis 
(PD) or sham-infected (sham). Half of the mice with PD and sham controls were 
treated with IL-33 (PD/sham + IL-33) and half were treated with PBS. At 6 weeks 
post-infection, lymphocytes in the peritoneal fluid were analysed by flow 
cytometry. Data are shown as mean with SEM for 2 independent experiments (A, 
B, C, D and E) or 1 experiment (F and G). Samples of peritoneal fluid were 
pooled from 4-5 mice/group. Data in A - E) were analysed by Kruskal-Wallis with 
Dunn’s multiple comparison post-hoc test, and no significant differences were 
found. 
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Collectively, the data presented demonstrate that IL-33 treatment is associated 

with a pattern of increased B cell RANKL expression in vivo at one week post-

infection. Activated B cells can express ST2 receptors and directly react to IL-33, 

but it is not known whether this interaction directly increases expression of 

RANKL by B cells or if factors derived from other IL-33 activated cells - such as T 

cells or stromal cells - are responsible for eliciting this response. To test 

whether IL-33 could directly induce RANKL expression by activated B cells, 

whereby purified B cells or lymphocytes were cultured in vitro with either media 

only, or a combination of B cell stimulants; IL-4, anti-CD40, anti-IgD, and LPS 

from P. gingivalis or E. coli, in the presence or absence of IL-33. Initially, this 

culture was set up for three days, then it was repeated for one week (as 

described in Chapter 2, sections 2.10.2, 2.11, and 2.13). B cell phenotype was 

analysed by flow cytometry and the production of IL-6 and sRANKL was measured 

by ELISA (as described in Chapter 2, sections 2.15.2 and 2.16.5). 

 

After three days of stimulation, all combinations of LPS and IL-33 apparently 

resulted in some activation of the B cells in terms of Ki67 expression, Fas and 

GL7 expression, and RANKL expression. There were significant differences in the 

proportion of Ki67+ B cells and Fas+GL7+ B cells when comparing culture 

conditions that had both E. coli LPS and IL-33 with media control, in both 

cultures of purified B cells and in cultures of mixed lymphocytes (Ki67: 12.53 ± 

0.26 % media vs. 46.03 ± 0.84 % E. coli LPS + IL-33, **P < 0.01, Figure 6.2.13C; 

19.77 ± 1.01 % media vs. 63.83 ± 0.81 % E. coli LPS + IL-33, **P < 0.01, Figure 

6.2.13D. Fas/GL7: 0.65 ± 0.03 % media vs. 19.5 ± 75 % E. coli LPS + IL-33, **P < 

0.01, Figure 6.2.13E; 6.13 ± 0.97 % media vs. 39.8 ± 1.2 % E. coli LPS + IL-33, *P 

< 0.05, Figure 6.2.13F). Stimulation of purified B cells with P. gingivalis LPS and 

IL-33 was associated with a significant increase in RANKL expression compared 

with media control (2.16 ± 0.08 % media vs. 2.98 ± 0.01 % P. gingivalis LPS + IL-

33, *P < 0.05 Figure 6.2.13G). 

 

After one week of stimulation, the overall viability of the cells was very low, and 

not enough cells in the media only or media with IL-33 conditions survived to 

perform any meaningful analysis. Lymphocytes were freshly isolated in order to 

provide ‘unstimulated’ lymphocytes for comparison. IL-33 treatment appeared 

to enhance the proliferation of cells, although this is based upon representative 
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cell counts which cannot be statistically analysed (Figure 6.2.14A and 6.2.14B). 

In cultures of purified B cells, IL-33 increased the number of cells present when 

in combination with E. coli LPS but not with P. gingivalis LPS. In cultures of 

mixed lymphocytes, IL-33 increased the number of cells present when in 

combination with either type of LPS. These findings add weight to the in vivo 

observations of increased numbers of B cells in the dLNs and peritoneal fluid of 

IL-33 treated mice and suggest that IL-33 can augment the proliferation of B 

cells in response to other stimuli. In cultures of purified B cells, the proportion 

of viable B cells expressing RANKL was low in all culture conditions (Figure 

6.2.14E), whereas in cultures of mixed lymphocytes, the proportion of B cells 

expressing RANKL was relatively high in all culture conditions - compared with 

unstimulated freshly isolated lymphocytes (Figure 6.2.14F). The addition of IL-

33 to culture conditions did not alter RANKL expression by purified B cells or by 

B cells in mixed lymphocyte cultures. The one week period of stimulation was 

sufficiently long enough to permit the differentiation of B cells into CD138+ 

plasma cells. A high proportion of viable cells were CD138+ in both cultures of 

purified B cells and in cultures of mixed lymphocytes relative to samples of 

unstimulated freshly isolated lymphocytes – but this did not appear to be 

specifically altered by IL-33 treatment (Figure 6.2.14G and 6.2.14H).  

 

After both three days and one week of cell culture, there was very minimal or no 

detectable production of IL-6 or sRANKL from either purified B cells or mixed 

lymphocytes cultured with IL-33 alone or media only. In cultures of purified B 

cells, there was detectable production of IL-6 following culture with E. coli LPS, 

but this was not significantly altered by the addition of IL-33. In cultures of 

mixed lymphocytes, IL-6 and sRANKL were produced in response to both P. 

gingivalis LPS, and E. coli LPS, but again this was not altered by the addition of 

IL-33 (Figure 6.2.15). 
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Figure 6.2.13. Phenotype of B cells after 3 day in vitro stimulation with P. 
gingivalis LPS and IL-33. B cells were purified (> 90 % B220+) from the spleens 
and lymphocytes were isolated from LNs of mice. B cells (A, C, E, and G) and 
lymphocytes (B, D, F, and H) were cultured for 3 days in the presence of media 
only (unstimulated) or B cell stimulants (anti-CD40, anti-IgD, and IL-4) and P. 
gingivalis (PG) LPS or E. coli (EC) LPS with or without IL-33. At the end of the 
culture, the B cells were analysed by flow cytometry. Data are shown as mean 
with SEM for 3 wells of cells cultured in each condition. Significant differences 
were determined by Kruskal-Wallis with Dunn’s multiple comparison post-hoc 
test (*P < 0.05, **P < 0.01). 
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Figure 6.2.14. Phenotype of B cells after 1 week in vitro stimulation with P. 
gingivalis LPS and IL-33. B cells were purified (> 85 % B220+) from spleens and 
lymphocytes were isolated from LNs of mice then cultured for 1 week in the 
presence of B cell stimulants (anti-CD40, anti-IgD, and IL-4) and P. gingivalis 
(PG) LPS or E. coli (EC) LPS with or without IL-33. Lymphocytes were additionally 
cultured with plate-bound anti-CD3. At the end of the culture, cells were 
analysed by flow cytometry. Freshly isolated lymphocytes were used as an 
unstimulated control for comparison. Cell counts in A) and B) are representative 
of 1 well. Data in C – H) are shown as mean with SEM for 3 wells of cells cultured 
in each condition, or 2 sets of unstimulated lymphocytes. Significant differences 
were determined by Kruskal-Wallis with Dunn’s multiple comparison post-hoc 
test (*P < 0.05).  
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Figure 6.2.15. In vitro cytokine production by B cells after 3 day or 1 week 
stimulation with P. gingivalis LPS and IL-33. B cells were purified (> 85 % 
B220+) from the spleens and lymphocytes were isolated from LNs of mice then  
cultured for 3 days or 1 week in the presence of media only (unstimulated) or B 
cell stimulants (anti-CD40, anti-IgD, and IL-4) and P. gingivalis (PG) LPS or E. coli 
(EC) LPS with or without IL-33. All lymphocytes were additionally cultured with 
plate-bound anti-CD3. At the end of the culture, the concentration of sRANKL 
and IL-6 in the culture media was measured by ELISA. Data are shown as mean 
with SEM for 2 wells of cells cultured in each condition. ND = no data available. 
Data were analysed by Kruskal-Wallis with Dunn’s multiple comparison post-hoc 
test, and no significant differences were found. 
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Whilst IL-33 is associated with elevated B cell RANKL expression in vivo, in vitro 

studies indicate that IL-33 has limited direct effects on B cells, and that other 

mediators are involved in the induction of RANKL expression which remain to be 

identified. There was elevated B cell RANKL expression at one week post 

infection in IL-33 treated mice with PD, which appeared to correlate with 

increased alveolar bone loss at six weeks post-infection. As RANKL is known to 

be a critical mediator of osteoclastogenesis, it was therefore hypothesised that 

this phenomenon could be contributing to pathology. A second in vitro assay was 

designed to determine whether B cells from IL-33 treated mice could enhance 

sRANKL mediated osteoclastogenesis or induce osteoclastogenesis in 

macrophages (as described in Chapter 2, sections 2.10.2, 2.11, and 2.14).  

 

Mice received three treatments of IL-33 (0.8 μg) or vehicle control (0.1 % BSA in 

PBS) by intraperitoneal injection over the course of five days, and one week 

after the first treatment, B cells were purified from the mesenteric and inguinal 

LN. The mesenteric LN were selected as they drain the peritoneal cavity, and 

therefore would be likely to be strongly affected by the IL-33 treatment 

(Parungo et al., 2007).  

 

Surprisingly, there was no difference in the expression of RANKL by B cells 

purified from IL-33 treated mice compared with PBS treated mice on this 

occasion (data not shown). Nonetheless, to determine if other B cell derived 

factors induced by IL-33 treatment may promote osteoclastogenesis, the purified 

B cells were added to cultures of bone-marrow derived macrophages or pre-

osteoclasts at day three of differentiation. B cells from IL-33 treated mice 

significantly enhanced osteoclastogenesis in pre-osteoclasts (media 9.5 ± 1.32 

vs. 17.19 ± 1.67 IL-33 B cells, *P < 0.05; B cells 8.00 ± 1.63 vs. 17.19 ± 1.67 IL-33 

B cells, **P < 0.01, Figure 6.2.16D) but were unable to induce 

osteoclastogenesis in macrophages (data not shown). The exact mechanism 

behind the enhancement of osteoclastogenesis by B cells from IL-33 treated 

mice remains unclear. There was no difference in the concentration of sRANKL 

in the culture media from different conditions, and TNFα and IL-6 were 

undetectable (data not shown).  
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Figure 6.2.16. Osteoclastogenesis in pre-osteoclasts cultured with B cells 
from IL-33 treated mice. Mice received 3 treatments of IL-33 (0.8 μg) or vehicle 
control (0.1 % BSA in PBS) via intraperitoneal injection, over the course of 5 
days. B cells were purified (> 85 % CD19+) from inguinal and mesenteric LNs of 
mice treated with IL-33 (IL-33 B cells) and mice treated with vehicle control (B 
cells), and were added to pre-osteoclasts on day 3 of maturation. At day 7, TRAP 
staining was performed and the numbers of osteoclasts were counted in 4 
images/well at X10 magnification. A) Representative image from 1 well of 
osteoclasts. B) Representative image from 1 well of osteoclasts that received B 
cells from PBS treated mice. C) Representative image from 1 well of osteoclasts 
that received B cells from IL-33 treated mice. D) Number of osteoclasts/image. 
E) Total number of osteoclasts/well. Data are shown as mean with SEM for 4 
wells of osteoclasts cultured in each condition. Significant differences were 
determined by Kruskal-Wallis with Dunn’s multiple comparison post-hoc test (*P 
< 0.05, **P < 0.01). 
 

Summary of main results: 

 

 IL-33 exacerbates alveolar bone loss in murine PD 

 A higher proportion of B cells from the gingiva and dLNs of IL-33 treated 

mice with PD express RANKL at one week post-infection compared with 

PBS treated mice with PD and PBS treated sham controls 

 IL-33 is not sufficient to induce B cell RANKL expression in vitro 

 B cells from IL-33 treated mice enhance osteoclastogenesis in vitro  
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6.3 Discussion 

 

These are the first data which indicate that IL-33 could have an important role 

in PD by demonstrating that IL-33 treatment exacerbated alveolar bone loss in 

mice with PD. It is thought that this could be mediated by RANKL. Very recently, 

IL-33 expression was found to be increased in the gingiva of rodents following 

induction of PD, and this was associated with increased RANKL expression in the 

gingiva (Koseoglu et al., 2014). A novel finding among the data presented in this 

chapter was that IL-33 treatment was associated with increased B cell expression 

of RANKL in the gingiva, dLNs, and peritoneal fluid at one week post-infection 

with P. gingivalis. IL-33 treatment, however, did not appear to have long-lasting 

effects on B cell expression of RANKL as no differences were observed in the 

gingiva, dLNs or peritoneal fluid at six weeks post-infection in IL-33 treated mice 

compared with PBS treated mice. The concentration of circulating IL-33 was not 

measured at these time-points but it is likely that by six weeks post-infection 

the level of exogenous IL-33 in circulation was significantly reduced and 

therefore no longer able to exert a strong effect.  

 

Whether specifically B cell-derived RANKL expression is an important mediator 

of alveolar bone loss in IL-33 treated mice with PD, remains to be proven. 

Studies which validate the overall role of RANKL as a mediator of IL-33 

exacerbated alveolar bone loss in murine PD have since been carried out 

(Malcolm et al., manuscript in press, University of Glasgow). In the first of these 

studies, an assessment of the overall balance of RANKL and OPG expression in 

the gingiva was made at one week post-infection, which established that there 

was not a compensatory increase the expression of OPG which is known to 

inhibit RANKL activity. In a subsequent study, mice with PD treated with IL-33 

and OPG were found to be protected from IL-33 exacerbated alveolar bone loss.  

 

In the results presented here, further experiments were conducted based on the 

hypothesis that B cell RANKL expression could result from B cell activation under 

particular circumstances, and that IL-33 could enhance this activation. Ideally, 

more extensive flow cytometry analysis would have been conducted to 

determine the activation state of B cells expressing RANKL in vivo. The limited 

number of cells isolated from the gingiva and dLNs made this impossible to 
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perform alongside B cell subset analysis. Only in the peritoneal fluid was B cell 

expression of the co-stimulatory molecule CD86 measured to obtain an 

indication of activation status - and there did not appear to be a strong 

relationship between IL-33 treatment, CD86 expression, and RANKL expression 

(data not shown). A relatively high proportion of B cells expressed CD86 in PBS 

treated sham controls and a comparatively small increase in CD86 expression 

was observed in mice treated with IL-33. CD86+ B cells were also not significantly 

enriched for RANKL expression, which suggests that not all RANKL+ B cells are 

activated by this definition, and that activation does not always result in RANKL 

expression – or that CD86 was not an appropriate marker for activation in this 

context. Assessment of additional indicators of activation such as the early 

activation marker CD69, or the other co-stimulatory molecule CD80, or the CD27 

ligand CD70, or various adhesion molecules may have been informative (Lai et 

al., 1998).  

 

Not all mature B cell subsets appeared to be equally affected by IL-33 

treatment. The proportion of certain populations increased or decreased as a 

result of treatment. Many of the changes were not consistent between tissues or 

over time, but there was a general increase in the differentiation of B cells 

towards plasma cells. These observations concur with data from other studies 

that show IL-33 treatment augments the production of antibodies in mice, which 

presumably results from an increase in the number and activity of plasma cells 

(Xu et al., 2008, Xu et al., 2010). In an independent investigation, it was found 

that the titer of anti-P. gingivalis IgA was significantly increased in IL-33 treated 

mice with PD compared with PBS treated mice with PD; there was no increase in 

the overall production of anti-P. gingivalis IgG antibodies, but the titer of anti-P. 

gingivalis IgG1 was significantly increased. This was reflective of a shift in the Th 

response towards a predominantly Th2 response in IL-33 treated mice with PD 

(personal communication with Dr Jennifer Malcolm, manuscript in press, 

University of Glasgow). Follow-up studies could investigate the differences in 

functionality of the antibodies produced by IL-33 treated and PBS treated mice 

with PD, for example, their ability to opsonise bacteria.  

 

It has been proposed that each of the B cell subsets have differential 

responsiveness to IL-33. B1 cells, particularly B1b cells have been shown to be 
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more responsive when assessed for proliferation, upregulation of ST2 expression, 

and IgM secretion following re-stimulation with IL-33 in vitro, which is thought 

to account for their expansion in vivo in the peritoneal fluid of IL-33 treated 

mice (Komai-Koma et al., 2011). In the data presented here, there was a small 

increase in the proportion of B1b cells in the dLNs at one week post-infection 

(Figure 6.2.3C), but this was less pronounced at six weeks post-infection 

(Figure 6.2.4C). In the peritoneal fluid, there was actually a decrease in the 

proportion of both B1a and B1b cells at one week post-infection (Figure 6.2.9C 

and 6.2.9D). These contrasting results may be due to methodological differences 

with the research conducted by Komai-Koma et al. (2011); the dose and time-

course of IL-33 treatment differed (they used 2 µg daily for 5-7 days), and B cells 

were analysed at an earlier time-point, just one day after the last treatment 

with IL-33. They also used different markers to distinguish the B cell subsets. 

B1a cells were classified as CD19+ CD11b+ CD5+ and B1b cells as CD19+ CD11b+ 

CD5-.  

 

Ideally, the differential proliferation, activation, and RANKL expression of 

distinct B cell subsets in response to IL-33 in vitro would have been analysed. It 

could be the case that only B1 cells respond directly to IL-33 and increase RANKL 

expression as a result. As B1 cells form a minority of the splenic B cell 

population this could explain why there was an insubstantial increase in the 

overall proportion of RANKL expressing B cells in response to IL-33. In view of 

this, the experiment could be repeated with an alternative source of B cells, 

such as LN, and with B cell subsets sorted and stimulated separately. 

 

The principal finding from the three day in vitro assay was that despite 

significant activation of stimulated B cells, they did not exhibit an equivalent 

change in RANKL expression. It is logical that B cells would not automatically 

increase RANKL expression when activated by the stimuli tested otherwise all 

immune responses to infection would potentially result in bone erosion, whereas 

in reality this only occurs in pathological conditions like PD. However, this 

finding defies a number of claims that induction of RANKL expression in 

lymphocytes can be achieved using quite crude methods of stimulation for 

example: whole bacteria (Han et al., 2009, Belibasakis et al., 2011, Reddi et al., 

2011), PMA and ionomycin (Fionda et al., 2007), anti-CD3, or anti-CD28 signalling 
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(Horwood et al., 1999). These mechanisms of stimulation and those 

implemented here all target the following signalling molecules that are 

purported to be involved in the induction of RANKL expression: MAPK, p38, PKC, 

PKA, and calcium (Takami et al., 2000, Oikawa et al., 2007, Reddi et al., 2011, 

Fujihara et al., 2014). These signalling molecules are central to many different 

pathways in almost all mammalian cell types. It is not known which adaptor 

molecules are acting upstream or which transcription factors are acting 

downstream of these mediators that are more specific to the regulation of 

RANKL expression. These data indicate that B cell expression of RANKL is more 

tightly regulated than earlier studies have implied, and highlight the need to 

fully characterise the signalling pathways involved.  

 

The hypothesis that B cell RANKL expression can result from activation was 

subsequently modified to acknowledge that this must only occur under particular 

circumstances which are conducive to pathology. It was then further adapted to 

encompass the idea that RANKL expression increases with B cell maturation and 

differentiation following sustained activation. This was partly due to the 

observation made here that a relatively high proportion of plasmablast and 

plasma cell populations expressed RANKL in vivo. Other studies which informed 

this hypothesis included one in which an increase in the proportion of IgG 

expressing plasma cells was observed following a 10 day in vitro stimulation of 

lymphocytes with A. actinomycetemcomitans, and several that have found 

memory B cells are enriched for RANKL expression in vivo (Ehrhardt et al., 2005, 

Ehrhardt et al., 2008, Han et al., 2009). 

 

A problem with performing long-term in vitro culture of primary cells is the 

difficulty in maintaining B cell viability for the entire period. The extremely low 

viability of the B cells in this case, particularly those in the purified B cell 

culture, has prevented more extensive analysis of B cell phenotype. One reason 

for the low viability could be that B cells were hyperactivated at an earlier stage 

of the culture leading to exhaustion, and death, due to inadequate availability 

of nutrients and survival factors. Further titration of each of the stimuli should 

have been performed and the lowest possible concentrations used for the one 

week culture to reduce the basal level of activation in each of the conditions. 

This could have not only improved the viability of the cells at the endpoint but 
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also have helped to distinguish the impact of IL-33 from that of the other 

stimuli. If a more robust long-term culture system could be established then 

further questions could be answered regarding the direct and indirect effects of 

IL-33 on B cell phenotype in the context of infection with P. gingivalis. 

 

As well as acquiring a better understanding of the triggers of B cell phenotypic 

changes in PD and IL-33-exacerbated PD it needs to be demonstrated whether 

these changes, especially the increase in RANKL expression, make them more 

likely to cause alveolar bone loss. As a step towards achieving the latter goal, B 

cells were co-cultured with pre-osteoclasts, and osteoclast formation was 

assessed by TRAP staining. The B cells used in this assay were isolated from mice 

treated with IL-33 or PBS control, because IL-33 treatment alone had been 

shown to increase B cell RANKL expression in preceding experiments whilst 

attempts to elicit a high level of RANKL expression by B cells in vitro were 

unsuccessful. 

 

In vivo exposure to IL-33 evidently effects B cells in such a way that they 

enhance osteoclastogenesis. Flow cytometry analysis confirmed that the B cells 

used in the co-culture were of a high purity and that therefore the effect 

observed on osteoclastogenesis was not due to contaminating cells. 

Furthermore, the CD19- fraction was found to inhibit osteoclastogenesis (data 

not shown). There is a possibility that a fraction of the B cells turned into 

osteoclasts themselves, as B1 cells have been reported to be capable of doing 

this (Pugliese et al., 2011). Whether pre-treatment with IL-33 would make B1 

cells more likely to turn into osteoclasts is not known. To exclude this 

possibility, a culture of B cells without pre-osteoclasts but with the M-CSF and 

sRANKL containing media c ould have been set up. 

 

This preliminary osteoclastogenesis study would ideally have been repeated 

using B cells isolated from the gingiva or dLNs of mice with IL-33 exacerbated PD 

which are more likely to be involved in directing alveolar bone loss and which 

are also likely to have a different phenotype to those B cells derived from 

peritoneal fluid – the full extent of which has yet to be described. A large 

number of mice would be required to obtain enough B cells for this from the 

gingiva – which may in part explain why no-one has done this before.  
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6.4 Conclusion 

 

It has been demonstrated that IL-33 exacerbates alveolar bone loss in murine 

PD, and that this is associated with regional and systemic changes in B cell 

phenotype. Of particular interest is that IL-33 treatment was associated with 

increased expression of RANKL by B cells in the gingiva and dLNs. This, combined 

with preliminary data demonstrating that B cells from IL-33 treated mice were 

capable of enhancing osteoclastogenesis, indicate that B cells potentially have a 

role in mediating alveolar bone loss in murine PD. Further research is required to 

characterise the signalling pathways involved in B cell RANKL expression and to 

determine the relative importance of B cell-derived RANKL in regulating alveolar 

bone loss in PD. More fundamentally, it is critical to establish whether the net 

contribution of B cells in PD is pathogenic or protective - since other aspects of B 

cell behaviour such as the production of anti-P. gingivalis antibodies may confer 

protection in PD.  
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Chapter 7: Periodontitis in mice with a B cell deficiency  

 

7.1 Introduction  

 

It was shown in Chapter 5 that the murine model of PD is associated with subtle, 

localised changes in B cell phenotype. In Chapter 6 IL-33 was found to 

exacerbate alveolar bone loss in murine PD, and this was associated with more 

obvious and widespread changes in B cell phenotype. It is not possible to 

interpret from these data whether the observed changes in B cell phenotype 

affected the outcome of PD, whether individual B cell functions are pathogenic 

or protective, and whether the net contribution of B cells to PD is pathogenic or 

protective. 

 

An important finding was that B cell RANKL expression in the gingiva and dLNs 

was increased in PD, and further increased in IL-33 exacerbated PD. RANKL is 

known to be a critical mediator of alveolar bone loss in PD, but whether B cells 

are a critical source of RANKL remains to be established (Yuan et al., 2011, Han 

et al., 2013). Other potential sources of RANKL in the periodontal tissues include 

fibroblasts, macrophages, and T cells (Kawai et al., 2006, Crotti et al., 2003, 

Belibasakis et al., 2011). A direct comparison of T cell RANKL expression with B 

cell RANKL expression in PD has not been made here, but in an independent 

investigation, it was found that a greater proportion of B cells expressed RANKL 

compared with T cells in the gingiva and dLNs of both mice with PD and mice 

with IL-33 exacerbated PD (Malcolm et al., manuscript in press, University of 

Glasgow). This same trend has also been observed in studies of lymphocytes in 

lesions of PD patient gingiva (Kawai et al., 2006). Therefore, although B cells 

may not be the only source of RANKL in PD, they are thought to be a prominent 

source of RANKL.  

 

Although RANKL is the best characterised, there are other bone-resorptive 

factors - some of which are also produced by lymphocytes. Activated T cells, for 

example, are additionally capable of producing the osteoclastogenic cytokine 

SOFAT. SOFAT can induce osteoclastogenesis independently of RANKL, and 

potentially has a role in PD as its expression is increased in periodontal lesions 

(Rifas and Weitzmann, 2009, Jarry et al., 2013). 
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Various bone protective factors can block or balance the actions of bone 

resorptive factors. OPG is a soluble decoy receptor which binds RANKL and 

blocks its interacting with the receptor, RANK. It is the ratio of both these types 

of factors which regulates bone mass in the steady state. Little is known about 

whether lymphocytes, specifically those located in the gingiva, are responsible 

for the production of bone protective factors in health or in PD. Periodontal T 

cells have been ruled out as a source of OPG in the healthy periodontium, but 

that appears to be the extent of the knowledge on this subject (Belibasakis et 

al., 2011). 

 

Other cytokines secreted by B cells may also contribute to PD. B cells are best 

known for their production of IL-6, which can promote the growth and 

differentiation of B cells and T cells, especially Th17 cells, as well as enhance 

osteoclastogenesis (Kurihara et al., 1990, Barr et al., 2012). It has been reported 

that the expression of IL-6 in gingiva, and the level of IL-6 in GCF and saliva is 

increased in PD patients compared with healthy individuals (Stefani et al., 2013, 

Ebersole et al., 2013, Reis et al., 2014). IL-6 KO mice were found to be 

protected from P. gingivalis infection-induced alveolar bone loss, confirming 

that IL-6 has a pathological role in PD (Baker et al., 1999b). Further validation 

came from a study in which PD patients, who also had RA, experienced a 

significant improvement in clinical symptoms of PD after being administered a 

drug that inhibited IL-6 signalling (Kobayashi et al., 2013b). B cells can also 

produce large quantities of the anti-inflammatory cytokine IL-10. B cell 

production of IL-10 in the early stages of infection can delay an effective 

immune response and clearance of a pathogen, but at later stages of an 

infection, IL-10 is often integral to the resolution of inflammation, and some 

argue that B cells are an underappreciated source of IL-10 in these scenarios 

(Couper et al., 2008, Horikawa et al., 2013, Liu et al., 2014). In murine models 

of colitis, SLE, and RA it has been demonstrated that B cell production of IL-10 

impedes the initiation and promotes attenuation of chronic inflammatory disease 

caused by breach of immune tolerance and autoimmunity (Fillatreau et al., 

2002, Mauri et al., 2003, Matsushita et al., 2008, Carter et al., 2012). In 

recognition of this role, certain IL-10 producing B cells have been to be referred 

to as Bregs (Mauri and Ehrenstein, 2008, Gray and Gray, 2010). The extent to 

which IL-10 production by B cells is determined by their subset lineage and by 
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the nature of a stimulus, has been debated (Ries et al., 2014). Nonetheless, a 

defect in this B cell-driven IL-10 feedback mechanism is another potential risk 

factor for chronic PD in humans. An imbalance between IL-6 and IL-10 is 

apparent in the early stages of murine PD. From data presented in Chapter 5, 

and published studies, it appears that the tendency for murine gingival cells to 

produce IL-6 is increased at one week post-infection with P. gingivalis, whilst 

the tendency to produce IL-10 is not changed at this time-point. Later post-

infection, the tendency for gingival cells to produce IL-6 falls back to baseline 

whilst the tendency to produce IL-10 is increased (Kobayashi et al., 2011). As 

with RANKL, there are several possible cellular candidates that produce IL-6 and 

IL-10, and the contribution of B cells to the generation of these cytokines in PD 

may not be significant. Macrophages and mast cells are both capable of 

producing IL-6, although they are present in much smaller numbers than B cells 

in the gingiva of PD patients (Berglundh and Donati, 2005). Likewise, Tregs may 

produce IL-10, and it has been reported that the number of Tregs in the gingiva 

of mice infected with P. gingivalis is increased around four weeks post-infection 

(Kobayashi et al., 2011). Tregs have also been identified in the gingiva of PD 

patients, but they constitute a very small proportion of the cells analysed 

(Cardoso et al., 2009). A direct comparison of the relative contribution of B cells 

and other leukocytes to the production of these cytokines has yet to be made. 

 

One function which is unique to B cells is the production of antibodies. 

Antibodies recognising PD-associated bacteria, including P. gingivalis, can be 

measured in PD patient sera, but there has been limited progress in 

characterising these antibodies further and establishing their ability to confer 

protection against disease. The generally unresolving nature of chronic PD 

implies that the ongoing antibody production in a patient with disease is 

ineffective or insufficient in managing the oral microbiome. Moreover, the anti-

bacterial antibody response in PD is often accompanied by increased levels of 

local and circulating autoantibodies (Anusaksathien et al., 1992, De-Gennaro et 

al., 2006, Koutouzis et al., 2009, Molitor, 2009, Lappin et al., 2013). It is not 

known to what extent the kinetics of antibody generation and the properties of 

the antibodies generated in murine PD resembles the humoral response of PD 

patients. The studies of murine PD conducted so far have indicated that, in 

contrast to the human disease, the changes to B cell phenotype are short-lived, 
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with the majority of changes no longer detectable at six weeks post-infection, 

and no evidence of an autoantibody response at any time-point.  

 

Performing detailed characterisation of the individual functions of B cells and 

assessing their relative contribution to PD pathogenesis presents a mammoth 

task. In order to help direct future investigations, the murine model of PD was 

performed in B cell-deficient μMT mice, to determine whether the net 

contribution of B cells to PD is pathogenic or protective. It was expected that B 

cell-deficient mice would be protected from P. gingivalis infection-induced 

alveolar bone loss if B cells have a predominantly pathogenic role in PD, or that 

B cell-deficient mice would have exacerbated alveolar bone loss if B cells have a 

predominantly protective role in PD. 

 

7.2 Results 

 

B cell precursors in μMT mice are unable to express the membrane-bound form 

of IgM, and are therefore unable to mature in response to BCR signalling. 

Consequently, μMT mice lack mature B cells and plasma cells (Kitamura et al., 

1991). B cell-deficient μMT mice and WT (C57BL/6) mice were infected with P. 

gingivalis or sham-infected and alveolar bone loss was measured at six weeks 

post-infection (as described in Chapter 2, section 2.7). As demonstrated in 

previous studies with BALB/c mice, P. gingivalis-infected WT mice exhibited 

alveolar bone loss relative to the WT sham controls (-0.30 ± 0.0079 mm WT sham 

vs. -0.32 ± 0.0048 mm WT PD, **P = 0.0054, Figure 7.2.1).  Unexpectedly, µMT 

sham controls had less alveolar bone than WT sham controls (µMT sham -0.34 ± 

0.0048 mm vs. -0.30 ± 0.0079 mm WT sham, ***P = 0.0006, Figure 7.2.1) but 

µMT mice appeared to be protected from the pathological alveolar bone loss 

associated with P. gingivalis infection (µMT sham -0.34 ± 0.0048 mm vs. -0.34 ± 

0.0045 mm µMT PD, Figure 7.2.1). These data were independently verified by 

Dr Annelie Hellvard and Birth Bergum (Broegelmann Research Laboratory, 

University of Bergen, Norway) who performed a blinded assessment of alveolar 

bone level using X-ray micro-CT (data not shown). 
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Figure 7.2.1. Alveolar bone level in B cell-deficient μMT mice infected with 
PD. B cell-deficient (μMT) and wild-type (WT) mice were infected with P. 
gingivalis (PD) or sham-infected (sham). At 6 weeks post-infection, the alveolar 
bone level was measured. Data are shown as mean per mouse (symbols) and 
mean for each group of mice (lines) relative to the sham group mean, n = 5 
mice/group for WT, n = 6 mice/group for μMT. Significant differences were 
determined by unpaired t test, as indicated on the graph (**P < 0.01, ***P < 
0.001). 
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To validate that μMT mice were B cell-deficient and assess the impact of this on 

the adaptive immune response to infection with P. gingivalis, the lymphocyte 

composition of the dLNs was analysed by flow cytometry, and serum titers of 

anti-P. gingivalis IgG antibodies were quantified by ELISA (as described in 

Chapter 2, sections 2.10.2, 2.15.2, and 2.16.1). Similar to previous analyses of 

B cells in the dLNs in murine PD, the total number of B cells was significantly 

increased in the dLNs of the WT mice with PD group relative to WT sham 

controls (3,367,820 ± 1,010,000 sham vs. 8,320,240 ± 712,126 PD, ***P < 0.001, 

Figure 7.2.2C), whilst the numbers of B cells present in the dLNs of μMT mice 

were negligible, irrespective of infection status. T cell populations were also 

altered in the dLNs of µMT mice.  There was a trend towards increased total 

numbers of CD4+ T cells in µMT mice compared with WT mice, but unlike WT 

mice with PD, μMT mice with PD did not have a significant increase in the 

proportion of CD4+ T cells that were CD44+ CD62L- effector T cells relative to 

their corresponding sham control group (10.01 ± 0.25 % WT sham vs. 12.46 ± 0.45 

% WT PD, *P < 0.001, Figure 7.2.2F). These defects of µMT mice translated to an 

inability to generate class-switched antibodies specific for P. gingivalis. As 

expected, only the WT P. gingivalis infected mice had detectable titers of serum 

anti-P. gingivalis IgG (629.62 ± 64.06 EU WT PD vs. 1.73 ± 1.73 EU WT sham, *P < 

0.05).  
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Figure 7.2.2. Lymphocytes in the dLNs of B cell-deficient μMT mice infected 
with P. gingivalis. B cell-deficient (μMT) and wild-type (WT) mice were infected 
with P. gingivalis (PD) or sham-infected (sham). At 6 weeks post-infection, 
lymphocytes were isolated from the dLNs and were analysed by flow cytometry. 
Data is shown as mean with SEM, n = 5 mice/group for WT, n = 6 mice/group for 
μMT. Significant differences were determined by One-Way ANOVA with a Tukey 
post-hoc statistical test (*P < 0.05, **P < 0.01, ***P < 0.001). 
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Figure 7.2.3. Serum anti-P. gingivalis IgG titers in B cell-deficient μMT mice 
infected with P. gingivalis. B cell-deficient (μMT) and wild-type (WT) mice 
were infected with P. gingivalis (PD) or sham-infected (sham). At 6 weeks post-
infection, anti-P. gingivalis IgG titers in the serum were measured by ELISA. Data 
are shown as mean with SEM, n = 5 mice/group for WT, n = 6 mice/group for 
μMT. Significant differences were determined by Kruskal-Wallis with Dunn’s 
multiple comparison post-hoc statistical test (*P < 0.05, **P < 0.01). 
 

As WT and μMT mice with PD were infected with P. gingivalis from the same 

stock, it must be assumed that both groups were successfully infected and that 

the lack of anti-P. gingivalis IgG in the serum of µMT PD mice is due to their B 

cell deficiency. A P. gingivalis-specific 16S sequence could not be detected in 

the DNA extracted from oral swabs of WT or μMT mice by qRT-PCR, preventing 

confirmation of successful colonisation. This suggests that there were fewer than 

1,000 P. gingivalis CFU present in total in each mouse’s mouth, as this is the 

lowest possible detectable number by this method. This inability to detect P. 

gingivalis was unrelated to the late time post-infection, as the same result was 

achieved with oral swabs from BALB/c mice at one week post-infection. To 

assess the possibility that the lower level of bone loss in µMT mice was related 

to differences in the overall bacterial load, the expression of a universal 

sequence within the 16S gene (found in almost all species of both Gram negative 

and Gram positive bacteria) was quantified. Interestingly, there were fewer 

bacteria in the oral swabs from µMT mice than from WT mice (WT sham 20.86 ± 

1.12 vs. µMT sham 25.03 ± 0.61; WT PD 20.99 ± 0.71 vs. 25.73 ± 0.71 µMT PD, **P 

< 0.01, Figure 7.2.4). The bacterial load was not affected by infection status in 

either WT or μMT mice.  
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Figure 7.2.4. Oral bacterial load in B cell-deficient μMT mice infected with P. 
gingivalis. B cell-deficient (μMT) and wild-type (WT) mice were infected with P. 
gingivalis (PD) or sham-infected (sham). At 6 weeks post-infection, oral swabs 
were taken, total bacterial DNA was isolated from these and qRT-PCR of a 
universal genomic 16S sequence was performed. With the Ct values of 16S 
amplification the number of bacteria determined from a standard curve of 
known CFU and Ct values of Gram negative and Gram positive bacteria. Data are 
shown as mean with SEM, n = 5 mice/group. Significant differences were 
determined by One-Way ANOVA with a Tukey post-hoc statistical test (*P < 0.05, 
**P < 0.01). 
 

Summary of main results: 

 B cell-deficient µMT mice were protected from P. gingivalis infection-

induced alveolar bone loss 

 Sham-infected B cell-deficient µMT mice had greater age-associated 

alveolar bone loss than sham-infected WT controls 

 B cell-deficient µMT mice had a lower bacterial load in the oral cavity 

compared with WT mice 
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7.3 Discussion 

 

Despite there being a long-standing awareness of the predominance of B cells in 

the gingiva of PD patients (Berglundh and Donati, 2005), functional studies of B 

cells in PD have been lacking. Until now, limited use has been made of 

transgenic mice or modified murine models to investigate, explicitly, the role of 

B cells in PD. Here, B cell-deficient µMT mice were employed to determine 

whether or not B cells have an impact on the pathogenesis of PD, and whether 

their role is predominantly pathogenic or protective. 

These data show that B cell-deficient µMT mice were protected from P. 

gingivalis infection-induced alveolar bone loss, and this was associated with an 

inability to generate class-switched IgG antibodies specific for P. gingivalis 

(Figure 7.2.1 and 7.2.3). The WT control mice exhibited relatively modest 

alveolar bone loss in response to oral infection with P. gingivalis. This is likely 

due to the C57BL/6 background strain of the mice used here. Both these 

(Chapter 5) and other (Baker et al., 2000b, Shusterman et al., 2013) studies 

indicate that BALB/c mice have greater genetic susceptibility to alveolar bone 

loss in response to oral infection with P. gingivalis compared with C57BL/6 mice. 

The genes behind this susceptibility are likely to underpin certain aspects of the 

host immune response. It is known that C57BL/6 mice are prone to making Th1 

responses whereas BALB/c mice are prone to making Th2 responses. T cells from 

C57BL/6 mice preferentially produce IFNᵧ over IL-4 whereas T cells from BALB/c 

mice preferentially produce IL-4 over IFNᵧ (Hsieh et al., 1995). These two mouse 

strains also have different MHC II haplotypes. C57BL/6 mice have MHC II 

haplotype b, and BALB/c mice have MHC II haplotype d. The different array of 

MHC II alleles within each haplotype could affect the types of P. gingivalis 

antigens which can be presented by APCs, which in turn could determine the 

efficacy of the adaptive immune response. 

 

B cell-deficient JHD mice may be considered a more desirable choice for the 

investigation of the impact of B cell deficiency on PD pathogenesis. These mice 

have a germline deficiency in the JH segments required for rearrangement of the 

BCR during B cell development. They possess pre-B cells in the BM but lack 

mature B cells in the periphery and, like μMT mice, are unable to produce 

antibodies (Chen et al., 1993). Crucially, JHD mice are bred on the PD 
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susceptible BALB/c background. However, only µMT mice were available for this 

study. 

 

The data from this study imply that B cell-deficient µMT mice, in addition to 

being protected from P. gingivalis infection-induced alveolar bone loss, had 

altered dLNs composition, less alveolar bone level at baseline, and reduced 

bacterial colonisation of the oral cavity as a consequence of the germline 

defect. Each of these features could have in some way affected the outcome of 

P. gingivalis infection.   

 

B cells have an important role as APCs in the priming of cognate CD4+ T cells and 

are also required for the maintenance of an effector CD4+ T cell population 

(Macaulay et al., 1997, Crawford et al., 2006, Mollo et al., 2013). As key 

producers of lymphotoxin and RANKL, B cells also have an important role in 

dictating the development and structural remodelling of LN and spleen (Kong et 

al., 1999b, Tumanov et al., 2002, Tumanov et al., 2003, Tumanov et al., 2004, 

Kumar et al., 2010, Abe et al., 2012a). The structure of LN in health and 

inflammation is thought to influence the motility of, and interactions between, 

T cells and APCs (Bajenoff et al., 2006, Beltman et al., 2007). As a consequence 

of these pivotal roles of B cells, any method of B cell depletion or inhibition of 

antigen-specific B cell responses will impede the adaptive CD4+ T cell response 

to bacterial infection. Therefore, it is not possible to separate the contribution 

of a reduction in the T cell population to the PD resistance from the contribution 

of B cell-deficiency. However, both IgD KO mice, and now µMT mice have been 

shown to be completely protected from P. gingivalis infection-induced alveolar 

bone loss. In comparison, C57BL/6 Tcra mice - which are T cell-deficient due to 

targeted deletion of the α chain of the TCR - are only partially protected (Baker 

et al., 2002).  

 

Although P. gingivalis-infected µMT mice did not exhibit alveolar bone loss 

relative to sham-infected µMT mice, both groups of µMT mice had less alveolar 

bone than their WT counterparts. This could result from the requirement for B 

cells to regulate basal bone turn over. In the BM, B cells have homeostatic roles 

in bone growth and repair and are known to be a major source of OPG, with 45 % 

of total OPG in the BM produced by mature B cells (Marusic et al., 2000, Li et 
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al., 2007, Manilay and Zouali, 2014). B cell-deficient µMT mice have low levels 

of OPG in the BM and a correspondingly low BMD, a phenotype that can be 

rescued by transfer of WT B cells (Li et al., 2007). These features could have 

been verified here by assessing the relative expression of OPG in the BM of the 

long bones, the alveolar bone, and in the gingiva by qRT-PCR, and by checking 

for global defects in the skeleton of µMT mice using high resolution imaging such 

as micro-CT. It is not obvious how a difference in BMD would affect the alveolar 

bone level, but it may be the case that there is a trend exists in µMT mice 

whereby all many bones are shorter or smaller as a result of increased bone 

turnover. 

 

Another way in which cells of the B cell lineage may maintain alveolar bone level 

in the steady state is via plasma cell production of salivary IgM and IgA. These 

low-affinity, cross-reactive antibodies can help to regulate the number and 

nature of commensal bacteria colonising the tooth surface and prevent non-

commensal bacteria from joining the dental biofilm (Kilian et al., 1981, 

Hajishengallis et al., 1992, Ito et al., 2012, Lonnermark et al., 2012, Brandtzaeg, 

2013).  

 

A lower bacterial load was detected in the oral cavity of B cell-deficient µMT 

mice compared with WT mice (Figure 5.4). In contrast to expectations, P. 

gingivalis infection did not appear to change the bacterial load in either B cell-

deficient µMT mice or WT mice. Previous research has clearly demonstrated that 

oral infection of mice with P. gingivalis results in an increase in the total 

number of bacteria (Hajishengallis et al., 2011). The reason behind these 

contradictory findings is unclear. The key difference in the methodology 

between the present study and the previous study is that the previous study 

extracted bacterial DNA from the periodontal tissues rather than from oral 

swabs. It would be interesting to assess the composition of different species of 

bacteria within these samples by high-throughput sequencing to establish if 

there were qualitative differences in the species present in the oral cavity of B 

cell-deficient µMT mice that related to the difference in alveolar bone level. 

 

Some of the unwanted side-effects of germline B cell-deficiency may be avoided 

in an inducible model of B cell-deficiency. One example of such a model is the 
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depletion of B cells in the humanised CD20 mouse strain using the anti-CD20 

antibody Rituximab. B cells could be depleted days before infection with P. 

gingivalis. However, this method would still have a short-term impact on the T 

cell compartment (Misumi and Whitmire, 2014) and there may be additional 

repercussions that have not yet been published as the mechanism of B cell 

depletion by Rituximab is not fully understood. 

 

An alternative to depleting all B cells, would be to prevent just the P. gingivalis-

specific B cell responses by utilising transgenic mice whose B cells can only 

recognise an unrelated antigen such as MD4 mice whose BCRs all bind HEL with 

high affinity (Adams et al., 2003). Antigen-specific activation of B cells may be 

required for the induction of RANKL expression and maximal production of other 

inflammatory cytokines, as well as the proliferation of GC B cells in the dLNs and 

the generation of anti-P. gingivalis antibodies. The drawback of this method - as 

with the other models of B cell-deficiency described - is that P. gingivalis-

specific T cell responses would also be altered. 

 

7.4 Conclusion 

 

This study demonstrated that B cell-deficient µMT mice were protected from P. 

gingivalis infection-induced alveolar bone loss, defining a pathological role for B 

cells in murine PD. Future studies can aim to unravel which of the B cell 

functions are responsible for pathology, and if there is a particular B cell subset 

which is more strongly associated with pathology. This could inform the 

development of biological therapies in the future for PD patients that exhibit a 

predominance of B cells in their periodontal lesions. 
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Chapter 8: General Discussion 

 

The studies presented in this thesis shared the overall aim of acquiring a better 

understanding of the immunopathology of PD. Based on previous reports 

indicating that they may have an important role in PD, B cells, plasma cells, and 

their products were the focus of these studies. There is a growing body of 

evidence that indicates the immunopathology of PD is linked to the 

immunopathology of systemic diseases, including RA, although the exact 

mechanisms have yet to be fully elucidated. Here, the roles of B cells in PD, and 

their potential roles in linking PD to RA, will be discussed in the context of the 

new data gathered. 

 

Some of the B cell functions which potentially contribute to PD, including the 

production of RANKL, IL-6, and autoantibodies are summarised in Figure 8.1. 

The studies performed sought to investigate a number of these. It was confirmed 

that B cells and IgG producing plasma cells could be found in PD patient gingiva 

(Chapter 3). The main novel finding from the human studies was that titers of 

ACPAs were higher in the sera of PD patients than in periodontally healthy 

participants (Chapter 4). Following successful non-surgical periodontal 

treatment, ACPA titers were reduced in PD patients. This suggests a relationship 

between disease activity and perhaps bacterial burden, and the dysregulated 

immune response in PD. There is a further implication that the treatment of PD 

might help to prevent the development of autoimmunity. Assuming that ACPAs 

play a pathogenic role in RA, it is conceivable that management of PD in patients 

with RA may provide a low-risk, simple, and cost-effective adjunct to other 

therapies, by slightly reducing, or altering the on-going ACPA response.  

 

As in previous studies of PD patients, the number and type of patient samples 

available restricted the investigations conducted here, and larger studies would 

be required to confirm these findings. To maximise the total size of the study 

population, future studies could involve collaborations between multiple 

centres. A wider pool of study participants would potentially enable the 

assessment of autoantibodies in PD patients whose history of dental health has 

been well documented. This would mean that PD patients thought to have a 

similar form of PD, and be at a similar stage of disease, could be grouped 
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together for analysis. The systemic consequences of PD are likely to relate to 

the severity and rate of progression or activity of PD. There are established 

criteria for categorising severity of PD, but these have not been uniformly 

applied across published studies (Preshaw, 2009). Moreover, there is currently no 

accepted method of categorising the rate of progression or activity of PD, which 

adds to the complexity of comparing many small-scale studies.  

 

For assessing the role of a single cell type or cell product in PD, the murine 

model of PD can provide a convenient alternative to longitudinal studies of PD 

patients, permitting assessments of immunopathology at different stages of 

disease. Here, it was employed to perform more detailed assessments of B cells, 

plasma cells, and antibody responses. As with many disease models, the murine 

model of PD established by Baker et al. (1994) is a far from perfect 

representation of the human condition. In these studies, BALB/c mice 

consistently exhibited alveolar bone loss following oral infection with P. 

gingivalis, but the local immune response associated with this appeared to be 

weak, variable, and self-limiting.  

 

In the gingiva of P. gingivalis infected mice there was a small, transient, 

increase in B cell expression of RANKL, but no change to the overall proportion 

of B cells present (Chapter 5). In the dLNs of P. gingivalis infected mice there 

was an expansion of the B cell population, but no difference in the secretion of 

IL-6 by cells in this tissue (Chapter 5). In contrast, patients with chronic PD 

suffer persistent inflammation of the periodontal tissues. This is characterised 

by extensive leukocyte infiltrate, consisting predominantly of B cells, 

accompanied by elevated levels of IL-6 and other inflammatory cytokines in GCF, 

saliva, and serum (Berglundh and Donati, 2005, Gumus et al., 2013b). The 

findings in the gingiva may reflect a true difference in the local immune 

response in the murine model, or represent a caveat of analysing leukocyte 

infiltrate in the entire gingiva and palate, instead of a gingival lesion near the 

worst-affected tooth - as is performed in human studies.  

 

Another way in which observations of the murine model of PD conflicted with 

reports of PD patients was in the lack of changes to the phenotype of circulating 

B cell populations or in serum autoantibody titers (Anusaksathien et al., 1992, 
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De-Gennaro et al., 2006, Koutouzis et al., 2009, Hendler et al., 2010, Lappin et 

al., 2013). In spite of these differences between PD pathogenesis in mice and 

humans, preliminary evidence that B cell-deficient μMT mice were protected 

from P. gingivalis infection-induced alveolar bone loss suggests that targeting B 

cells may be a promising avenue in the development of immunotherapies for 

severe PD (Chapter 7).  

 

Potential follow-up studies pertinent to each set of results presented have been 

discussed in detail within the preceding chapters. In addition, future studies of 

the role of B cells - and other components of the immune system - in PD may 

benefit from adapting the murine model to amplify local inflammation and 

establish greater chronicity, so that it more closely resembles a form of human 

PD. Furthermore, animal studies should ideally consider the relevant risk factors 

of human PD that are likely to alter immune regulation.  

 

Several genetic risk factors for PD are linked to the expression of cytokines 

(Karimbux et al., 2012, Li et al., 2014b, Zhang et al., 2014a). Altering the 

balance of cytokines in mice is one way in which the immune response to 

infection with P. gingivalis may be modified. This approach was adopted in 

Chapter 6. As in many in vivo studies, the cytokine-axis was modulated by 

intraperitoneal delivery of recombinant cytokine - in this case IL-33. This 

method alters the cytokine-axis beyond normal physiological parameters and 

therefore, the associated results must be interpreted cautiously. An alternative 

method of disrupting the balance of cytokines would be to generate mice 

possessing genetic defects that reflect those found in PD patients. For example, 

specific polymorphisms in the genes encoding IL-1, the IL-1 receptor, and the IL-

1 receptor antagonist have been associated with chronic PD (Tai et al., 2002, 

Lopez et al., 2009, Karimbux et al., 2012, Deng et al., 2013, Hao et al., 2013). It 

is thought that these defects lead to an increase in IL-1 production or IL-1-

mediated signalling (Kornman et al., 1997, Engebretson et al., 1999). 

Recapturing the subtleties of different combinations of polymorphisms in a 

murine models is extremely challenging, hence researchers tend to utilise 

readily available KO mouse strains such as the IL-1 receptor antagonist KO mice, 

or treat with exogenous cytokine (Izawa et al., 2014). 
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The two most common environmental risk factors for PD are smoking and obesity 

(Tomar and Asma, 2000, Chaffee and Weston, 2010). Both of these factors 

dysregulate the immune response and increase susceptibility to bacterial 

infection, albeit in different ways. Smoking is associated with the suppression of 

cytokine, chemokine, and antibody production (Tangada et al., 1997, 

Graswinckel et al., 2004, Apatzidou et al., 2005, Tymkiw et al., 2011, Giuca et 

al., 2014, Haytural et al., 2014, Souto et al., 2014a). Obesity on the other hand 

is associated with systemically elevated levels of cytokines (Ziccardi et al., 

2002, Crowther et al., 2006, Illan-Gomez et al., 2012, Zimmermann et al., 2013, 

Genoni et al., 2014).  

 

The ethics of exposing animals to tobacco smoke are questionable, and, in the 

context of the current experiments this could not be justified in line with the UK 

Home Office legislation to replace, refine, and reduce animal research. In 

comparison, obesity is not considered to be as detrimental to animal welfare, 

and several obesity models are in widespread use. In some studies, obesity is 

induced by the administration of a high-fat diet. Other studies utilise strains of 

mice genetically predisposed to developing a form of metabolic syndrome. Mice 

with diet-induced obesity have been demonstrated to have greater alveolar bone 

loss following oral infection with P. gingivalis, compared with non-obese controls 

(Amar et al., 2007). Similarly, Tallyho/JngJ mice - which spontaneously develop 

hyperlipidemia and hyperglycaemia - exhibit greater alveolar bone loss than WT 

controls following infection with P. gingivalis (Li et al., 2013). Although it has 

yet to be demonstrated, the periodontal pathology associated with these models 

of obesity is likely to be associated with an altered inflammatory response in the 

gingiva. Interestingly, B cell-deficient obese mice are protected from P. 

gingivalis infection-induced alveolar bone loss (Zhu et al., 2014). This supports 

the concept that B cells have an important, pathological role in PD. Moreover, 

this indicates that a murine model of PD, exacerbated by obesity, may be useful 

for further dissecting the mechanisms by which B cells can contribute to 

pathology in PD. 
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Figure 8.1. B cell and plasma cell functions which may contribute to PD.  
B cell production of cytokines and presentation of autoantigens to T cells along 
with plasma cell production of autoantibodies may contribute to the 
immunopathogenesis of PD. 
                                                                                                                                                                       

With respect to the role of B cells in PD, a number of questions have arisen from 

the findings in the studies conducted here, which may be addressed by future 

studies. Firstly, whether B cell-derived RANKL makes a significant contribution 

to alveolar bone loss in PD could be answered by attempting to induce PD in 

conditional CD19 RANKL KO mice, whose B cells are unable to express RANKL 

(Onal et al., 2012). The relative contribution of B cell-derived RANKL could be 

compared with that of T cell-derived RANKL by using conditional Lck RANKL KO 

mice, whose T cells are unable to express RANKL (Fumoto et al., 2014). 

Similarly, B cell IL-6 KO mice could be employed to establish the relative 

importance of B cell-derived IL-6 in the immunopathology of PD. This mouse 
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strain has previously been used to show that IL-6 production by B cells is 

fundamental in the pathogenesis of EAE (Barr et al., 2012). 

 

More challenging than investigating whether specific B cell functions contribute 

to alveolar bone loss in PD would be establishing whether individual B cell 

subsets make a differential contribution to pathology. Therapeutically, more 

specific targeting of immune components can help to reduce unwanted side-

effects of immunosuppression. It was demonstrated that, in both mice with PD 

and in sham controls, the B1 subsets of mature B cells consistently had a higher 

proportion of RANKL expressing B cells than the other subsets, in all the tissues 

analysed (Chapter 5 and Chapter 6). It is possible that subsets which have a 

higher proportion of RANKL expressing B cells, make a greater contribution to 

pathology in PD than others. Ideally to explore this possibility, individual subset 

populations would either be depleted, activated, or enriched in vivo. However, 

it would not be possible to deplete specific subsets of B cells as there is no 

single surface molecule which could distinguish a given subset from other B 

cells, as well as from other leukocytes. Equally, it would not be possible to 

enhance the activation of a specific B cell subset as all B cells respond to 

broadly the same stimuli, although there may be variations in the strength of the 

response. Adoptive transfer experiments could be performed to enrich a given B 

cell subset population in the recipient mouse during the induction of PD. 

Ensuring that the B cells transferred trafficked to relevant sites such as the 

gingiva and dLNs would be difficult. Ideally B cells specific for a P. gingivalis 

antigen would be used for this purpose. As previously discussed, a transgenic P. 

gingivalis strain expressing HEL could theoretically be recognised by B cells from 

MD4 mice (Goodnow et al., 1988, Adams et al., 2003). So far, attempts to create 

such a bacterial strain have been unsuccessful. An alternative, simpler, approach 

to answering this question would be to perform in vitro assays in which the 

ability of purified B cell subsets to enhance osteoclastogenesis in pre-osteoclasts 

is compared. Ultimately, the results from such in vitro assays would be of 

limited value for interpreting the relative contribution of individual B cell 

subsets in vivo as the latter would be greatly determined by the frequency and 

location of the cells.  
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Once the contribution of specific B cell functions to the immunopathogenesis of 

PD have been more clearly established, researchers will be in a better position 

to investigate the ways in which these B cells potentially contribute to the link 

between PD and systemic diseases, such as RA. There are three possible routes 

that could account for the apparent relationship between PD and RA, and these 

are summarised in Figure 8.2. B cells may play a part in each of these scenarios.  

 

One theory proposes that in some patients, PD may precede and perhaps even 

cause RA. Hypothetically, PD alone could be sufficient to cause RA (Panel 1, 

Figure 8.2). As previously described in Chapter 1, this theory is based on the 

capacity of P. gingivalis to citrullinate peptides. This is thought to lead to the 

generation of ACPAs that precede the onset of RA, and are associated with RA 

progression (Nielen et al., 2004, van Gaalen et al., 2004, Zendman et al., 2004). 

However, it is unclear whether the observed level of autoimmunity in PD 

patients would increase with progression of PD, and whether this does indeed 

precede the development of RA. Large-scale, longitudinal studies or follow-ups 

of PD patients are required to assess whether this is the case. It may emerge 

that although PD tends to precede RA, a second factor is necessary to induce the 

level of autoimmunity that causes RA. This is essentially, the two-hit hypothesis 

(Panel 2, Figure 8.2). As both PD and RA are complex, multi-factorial diseases, 

there are several possibilities of what the second ‘hit’ could be: a second 

chronic condition such as obesity could augment dysregulation of the immune 

response (Neumann et al., 2011); smoking may further increase serum ACPA 

titers (Kallberg et al., 2011); an acute clinical condition such as physical trauma 

or an aggressive infection could increase inflammation in the joint and/or 

systemically. Precisely how any of these conditions could render the joints more 

susceptible to autoimmune attack is as yet unknown. Whilst considering these 

possibilities, it is also acknowledged that PD may not directly cause, or even 

modulate, RA. The two conditions may co-exist in a patient as manifestations of 

immune dysregulation, perhaps exacerbating one another as they share common 

inflammatory pathways (Panel 3, Figure 8.2).  

 

To date, there is no evidence to suggest that the model of PD established by 

Baker et al. (1999) induces breach of immune tolerance and causes RA in mice 

(Butcher, 2013), although there are reports that systemic infection with P. 
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gingivalis increases the clinical score in murine models of RA (Bartold et al., 

2010, Maresz et al., 2013). Conversely, induction of RA is sufficient to induce 

pathological alveolar bone loss in mice, and can exacerbate alveolar bone loss 

associated with murine PD (Park et al., 2011, Queiroz-Junior et al., 2012, 

Butcher, 2013). One of the major problems with the various murine models of RA 

is that the majority of them are associated with breach of immune tolerance 

other than to the specific immunising antigen (Kannan et al., 2005). A second 

issue is that they are generally not associated with elevated ACPA titers and 

therefore are not appropriate for investigating the ‘citrullination connection’ 

with PD, which is central to the principal hypothesis that PD can cause RA 

(Lundberg et al., 2008, Lundberg et al., 2010). Moreover, the low levels of 

ACPAs detected in human patients with PD are not recaptured in the murine 

model of PD. This may represent an issue with detection (the commercially 

available ACPA ELISA detects only five human peptides which mice may not 

respond to), or reflect the lack of chronicity in the murine model, or result from 

mice simply not producing the same type of immune response and being less 

predisposed to generating ACPAs than humans. Investigating the relationship 

between PD and RA in murine models is fraught with complications inherent to 

each individual model system, which are arguably amplified when the two 

models are combined.  
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Figure 8.2. Three routes by which periodontitis may be immunologically 
linked to RA. 1) PD may precede and cause RA by eliciting the generation of 
ACPAs following the cleavage of proteins (1A) and citrullination of peptides (1B) 
by the PD-associated bacterium P. gingivalis. 2) PD may precede but be 
insufficient to cause RA without a second ‘hit’, which has yet to be defined 
(reference). The second ‘hit’ could be one of a number of risk factors including 
smoking, obesity, and viral infection. 3) PD may not cause RA but PD may 
exacerbate RA and vice versa as a result of common inflammatory pathways 
(Lundberg et al., 2010, Farquharson et al., 2012). 
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Conclusions  

 

Whether PD precedes and causes RA through the generation of ACPAs remains 

unclear. Treatment of PD can lower ACPA titers and thereby potentially reduce 

the risk of PD patients developing RA, and also potentially help to limit RA 

progression in patients who already have the condition. B cells clearly have an 

important role in the immunopathology of PD and may be worthy of therapeutic 

targeting in severe PD. Further investigations are warranted to elucidate which B 

cell functions are of greatest importance in this respect. Possibly through its 

indirect effects on B cells, IL-33 appears to exacerbate PD. Future studies can 

hopefully confirm whether the IL-33 inflammatory pathway represents a link 

between PD and RA involving B cells.   
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