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Abstract 

The origin of high elevation topography at so-called ―passive‖ continental 

margins and their interior hinterlands has been an outstanding question in 

geoscience for decades. An important step towards answering this question is to 

improve our understanding of the response of the landscape to deformation of 

the lithosphere over different length scales. During continental rifting, elevated 

rift flanks may develop as a result of lateral extension of the lithosphere 

combined with vertical movements of the lithosphere driven by isostasy or 

convection of buoyant mantle flow. However, mechanisms capable of 

maintaining rift-related topography over geological timescales or driving post-

rift rejuvenation of margin topography remain largely speculative and are 

strongly dependent on theoretical models. By constraining the timing and 

magnitude of major erosional events that have occurred across a particular 

margin using suitable empirical data we can begin to unravel the geomorphic 

development of the margin and identify the forces driving surface uplift. Apatite 

fission track (AFT) and apatite (U-Th-Sm)/He (AHe) thermochronometry has the 

unique ability to deliver these constraints by providing information on the 

cooling of rocks through temperatures of c. 120 – 40°C as they are exhumed 

from depth (c. 4 – 6 km) by erosion of overlying rock. 

Along the western continental margin of South Africa recent insights from 

thermochronology, structural geology and geomorphology has revealed that the 

margin may have experienced a more complex post-rift tectonic history than is 

to be expected for a ―passive‖ margin. In this study, AFT and AHe analysis was 

performed on samples collected across the high relief escarpment zone along 

the continental margin (Namaqualand Highlands) and across the continental 

interior plateau (Bushmanland Plateau) to determine the post-break up cooling 

history of the continental margin. Sampling was undertaken from a structural 

perspective by sampling individual fault blocks within the heavily faulted 

Namaqualand Highlands and by collecting a profile of samples, from the interior 

plateau, that crosses major structural features at the boundary of the Kaapvaal 

craton. The approach for AHe analysis was to obtain multiple single grain age 

measurements (up to 20 grains per sample) for selected samples in order to 
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investigate and exploit the primary causes of natural dispersion of AHe single 

grain ages and the influence of this dispersion on thermal history modelling. AFT 

and AHe data from 56 outcrop samples are jointly inverted using a Bayesian 

transdimensional approach incorporating the compositional influence on fission 

track annealing and radiation damage enhanced He retention.  

Two major discrete cooling episodes are recorded in thermal history models at 

c. 150 – 130 Ma and 110 – 90 Ma, respectively. These cooling episodes are 

broadly coeval with periods of enhanced deposition in the offshore Orange Basin 

and are therefore linked to discrete periods of enhanced continental erosion. 

The first phase of erosion is believed to involve the progressive destruction of 

syn-rift topography which prevailed across the developing continental margin 

and inland to the SW boundary of the Kaapvaal craton. The second phase of 

erosion is proposed to have been induced by regional uplift of southern Africa 

coupled with localised reactivation of basement structures at the continental 

margin and craton boundary. A vertical thickness of at least c. 3 – 5 km of 

material was eroded across the continental margin during the Cretaceous with 

only minor erosion (typically < 0.5km) occurring during the Cenozoic. 

There is now considerable support from the low temperature thermochronology 

record that km-scale denudation has occurred regionally across South Africa 

during the Mid-Late Cretaceous, long after the end of continental rifting in the 

South Atlantic. Data from this study reveals a more localised structural 

component to this regional event and more complexity in the spatial and 

temporal distribution of denudation during this period. The mechanisms driving 

this denudation are still uncertain but it is proposed here that regional dynamic 

uplift of South Africa has occurred due to the presence of an underlying 

upwelling of buoyant mantle, while in-plane horizontal stresses have triggered 

reactivation of basement structures. It now seems appropriate to revise the 

classification of the southwest African continental margin as being ―passive‖ in a 

tectonic sense and consider the implications this has for our understanding of 

global plate tectonics. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Project rationale 

Continental margins that have formed following rifting and break-up of larger 

supercontinents (e.g. Gondwana) have long been considered ―passive‖ (Lister et 

al., 1991; Maslanyj et al., 1992; Ziegler and Cloetingh, 2004; Séranne and Anka, 

2005). Similarly, ancient geological terrains which dominate the geology of many 

continental interiors are traditionally described as being ―stable‖ cratons (King, 

2005; Foley, 2008; Cocks and Torsvik, 2011). However, insights from geodynamic 

modelling, structural and geomorphic observations and thermochronology data 

have questioned how appropriate these terms really are for describing such 

geological settings. Improving our understanding of the tectonic processes 

occurring at continental margins and across continental interiors long after 

rifting and break-up is of major importance to future studies of plate tectonics 

and to the exploration and exploitation of geo-resources.  

One approach to investigating plate tectonics and deep Earth mantle convection 

is to study the response of the surface to these processes. Geodynamic 

modelling has provided a new understanding of the different possible styles of 

lithospheric extension that occur during intracontinental rifting (Huismans and 

Beaumont, 2011; Lundin and Doré, 2011; Péron-Pinvidic et al., 2013) and the 

interaction between regional in-plane stresses and vertical stress imposed at the 

base of the lithosphere by buoyant mantle flow (Burov et al., 2007; Guillou-

Frottier et al., 2012; Cloetingh et al., 2013; Braun et al., 2014a). These driving 

mechanisms have the potential to trigger regional uplift of the Earth‘s surface or 

discrete fault block uplift during reactivation of major structural zones. Such 

uplift creates elevated landscapes which are progressively destroyed by surface 

processes (e.g. erosion and weathering) and generate major topographic 

features. Moreover, it is these surface processes which are responsible for the 
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removal of significant thicknesses of crustal material (denudation) from the 

landscape and transportation of this material to adjacent offshore basins. 

Constraining the timing and magnitude of major episodes of denudation can 

therefore help improve our understanding of the link between plate tectonics 

and the evolution of macro-geomorphology over geological timescales. Low 

temperature thermochronology (LTT) is a well-established technique for 

constraining the temperature-time history path of rocks in the upper crust, 

which can in turn be used to infer timing and rates of erosion (Brown et al., 

1994; Ehlers and Farley, 2003). This study uses apatite fission track and apatite 

(U-Th-Sm)/He analysis to generate thermal history information for samples as 

they cool through temperatures less than 110±10°C (Lisker et al., 2009) and is 

the first to explicitly combine these methods in southern Africa. 

The southwest African margin is a well-developed continental margin that has 

long been considered as a type example of a passive margin. Additionally, the 

presence of a major low seismic velocity anomaly zone in the upper mantle 

beneath the southern African plate has been interpreted as buoyant mantle 

upwelling creating dynamic uplift of the continental interior (e.g. Lithgow-

Bertelloni and Silver, 1998; Gurnis et al., 2000; Forte et al., 2010a; Fishwick and 

Bastow, 2011). However, to what extent the post-rift tectonic activity and/or 

dynamic uplift has influenced the development of the present day topography of 

Southern Africa is hard to resolve because of the lack of preservation onshore of 

well-dated post-rift stratigraphy. For this reason, the southwest African margin 

is an ideal study area to utilise low temperature thermochronology to investigate 

the erosional and topographic evolution of this interesting area.  

This work will provide a fresh perspective on the long-standing debate on the 

age of the first order topography of South Africa while contributing to our wider 

understanding of plate tectonics. Specifically this work aims to address the 

following main hypotheses: 

(i) The present day first-order topography of the southwest African 

margin is not a rift-related feature. 
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(ii) At least one phase of regional km-scale denudation occurred during 

the post-rift phase and was linked to reactivation of pre-existing 

basement structures. 

(iii) Dispersion in AHe ages can be used as a proxy for cooling rates and aid 

thermal history modelling alongside AFT data. 

1.2 Study Area 

The study area comprises the entire western continental margin of South Africa 

and the elevated continental interior. The margin formed following continental 

rifting between South America and Africa and opening of the South Atlantic 

ocean which initiated during the late Jurassic (c. 160-150 Ma). The elevated 

continental interior and low-lying coastal margin are now characterised by low 

relief and are separated by a series of escarpments or high relief escarpment 

zone (Fig. 1-1). Along the southern margin, the Cape Fold Belt forms an 

additional zone of high relief between the plateau and the coast. New 

thermochronology data are obtained from two regions within the overarching 

study area to address two different aspects of the study. The Namaqualand 

Highland study area (Fig. 1-1) investigates the development of the high relief 

escarpment zone at the continental margin. The Bushmanland Plateau study 

area (Fig. 1-1) focusses on the South African interior plateau and tectonic 

stability of the southwest margin of the Kaapvaal Craton (Fig. 1-2).  

A more detailed description of the morphology and geology of the Namaqualand 

Highlands and Bushmanland Plateau study areas are provided in Chapter 5 and 6, 

respectively. A simplified geological map of Southern Africa is shown in Figure 1-

2. The Archean – Palaeoproterozoic Kaapvaal craton is a collation of Archean 

terranes, composed of mainly granitoids and gneiss covered by 

Palaeoproterozoic basins (Begg et al., 2009; Baptiste et al., 2012). The SW 

boundary of the Kaapvaal Craton is defined by the prominent structures of the 

Kheis Belt and marks the transition to the younger, Meso- and Neoproterozoic 

metamorphic rocks of the Namqua-Natal metamorphic (NMP) province. The 

basement rocks of the NMP are comprised of intensely deformed, high-grade 

gneisses with several phases of granitoid intrusion (Groenewald et al., 1991; 
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Figure 1-1: Topographic map of southwestern Africa showing major drainage channels and 
locations of cities, towns and farms referred to throughout the thesis. Study areas are 
indicated by boxes with dashed outlines, NQH = Namaqualand Highlands; BMP = 
Bushmanland Plateau. 

Eglington, 2006; Cornell et al., 2006). The NMP is unconformably overlain by 

shallowly dipping metasedimentary and metavolcanic rocks (Gresse et al., 2006). 

The Permo-Triassic Karoo sedimentary basin covers much of central South Africa 

and is comprised of the glacially dominated Dwyka group and which is 

stratigraphically overlain by shallow marine sedimentary rocks of the Ecca and 

fluvial Beaufort Group (Johnson et al., 2006). Sedimentation within the Karoo 

Basin ended in the Late Jurassic (c. 200 – 175 Ma) with the voluminous and 

extensive eruption of the Karoo tholeiitic flood basalts and intrusion of 

numerous coeval dolerite sills and dykes throughout the Karoo basin (Duncan et 

al., 1997; Jourdan et al., 2007; Moulin et al., 2011; Svensen et al., 2012). Along 

the southern margin, the geology is dominated by the Cape Supergroup 

comprised of thick Ordovician-Carboniferous siliciclastic sediments overlying the 

Pan-African (c. 500 Ma) granites (Tankard et al., 2009). Crustal shortening during 

the Permo-Triassic intensely folded these rocks and formed the Cape Fold Belt  
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Figure 1-2: Simplified geological map of southern Africa (after Schlüter, 2008). Study areas 
are indicated by boxes with dashed outlines, NQH = Namaqualand Highlands; BMP = 
Bushmanland Plateau. 

(Newton et al., 2006; Scheepers and Schoch, 2006). Late Mesozoic –  Cenozoic 

sequences are extremely limited across the whole of southwestern Africa. Their 

occurrence and importance is discussed in detail in subsequent chapters. 

1.3 Thesis outline 

This study presents new low temperature thermochronology data and thermal 

history models determined for samples collected across the southwest African 

margin and these are used to infer the timing, rate and magnitude of denudation 

that has occurred since the onset of rifting. This is interpreted alongside 

independent geological observations to derive a new model for the development 

of the southwest African margin over the last c. 150 Ma. To create an 

appropriate framework for the ensuing discussion, Chapter 2 and Chapter 3 

provide a critical review of the historical and modern day approaches to 

understanding the development of high elevation continental margins.  
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Chapter 2 addresses the geodynamic aspects of continental rifting, highlighting 

the uncertainty surrounding the structural and thermal processes which drive 

lithospheric extension and the importance of pre-existing structure and crustal 

rheology on the style of rifting. 

Chapter 3 then focuses on the geomorphological development of continental 

margins and their hinterlands including discussions on ―classical‖ 

geomorphological models of landscape evolution, surface process numerical 

modelling approaches and the influence of geological factors on the 

development and preservation of topography.  

Chapter 4 moves the discussion towards technical aspects of low temperature 

thermochronology and, specifically, examines outstanding issues with applying 

this approach and how to resolve these in a pragmatic and robust manner. The 

theory of AFT and AHe analysis is briefly outlined; however, the main focus of 

this chapter is to discuss the present issues and uncertainties associated with 

integrating AFT and AHe datasets. A subset of the new data obtained for this 

study is used in this chapter to evaluate the key factors controlling AFT and AHe 

ages. This chapter also outlines the modelling approach and philosophy used in 

subsequent chapters.  

Chapter 5 and 6 present and discuss the new AFT and AHe data and thermal 

history modelling results from the Namaqualand Highlands and Bushmanland 

Plateau study areas, respectively. Thermal history models are then used to 

derive estimates of crustal denudation responsible for exhuming rocks from 

depth causing them to cool. The new thermochronology data and thermal 

histories are discussed alongside previous geological and thermochronological 

studies from the area to elucidate the post-rift structural and geomorphic 

history of both areas. 

Chapter 7 presents a regional, integrated discussion of the post-rift landscape 

evolution of southwestern Africa. This discussion summarises the available AFT 

and AHe dataset and compares the inferences made on regional denudation with 

the offshore sedimentary record. Key datasets used to investigate Cenozoic 
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landscape evolution (cosmogenic nuclide data, palaeontology and geomorphic 

landforms) are also summarised and critically reviewed to provide a robust 

chronology of landscape development from continental break-up to present day. 

Chapter 8 concludes with a summary of the revised model for the evolution of 

the southwest African continental margin and presents some final conclusions 

about both the geological and technical aspects of the study. The wider 

relevance of this work to similar geological settings and potential significance to 

industry is also outlined as are directions for further study. 
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CHAPTER 2 

REVIEWING AND REASSESSING PASSIVE 
MARGINS 

 

2.1 Introduction: Declassifying rifted margins 

The theory of continental drift (Wegener, 1915) and the modern 

conceptualisation of plate tectonics established a fundamental framework for 

understanding the Earth as a dynamic system. The theory of plate tectonics 

provided a means to explain many geological and geomorphological observations 

that were once at odds with traditional models of landscape evolution. Despite 

its extraordinary success as a theory, many details of plate tectonics remain 

poorly understood. A key to enhancing our knowledge of plate tectonics is to 

reach a better understanding of the local and regional mechanisms that control 

thermal and structural processes associated with major plate tectonic 

movements. Manifestations of these processes can be found in the continental 

lithosphere where deformation causes surface processes (i.e. uplift and erosion) 

to become enhanced or subdued at different periods in time. Therefore, 

understanding the long-term development of topography and its 

geomorphological evolution is central to understanding the complete geological 

history of a particular continental region; how plate tectonics processes operate 

globally and processes occurring within the inaccessible interior of the Earth. 

A particular plate boundary can be described as being convergent 

(compressional), divergent (extensional) or translational (strike-slip) (Fig. 2-1). 

Much of the Earth‘s prominent morphological features such as orogenic belts 

(e.g. the Andes in South America or the Himalayas of Asia) and island arcs (e.g. 

the Caribbean Islands) are found at convergent margins. However, major 

topographic features such as extensive elevated plateaus (e.g. Southern Africa, 

Southeastern Australia, North East Brazil) and subsided basins (e.g. Congo Basin, 

Central Africa; Illinois Basin, North America; Eromanga Basin, Eastern Australia)  
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Figure 2-1: Location of major plate boundaries and high elevation continental margins (after 
Summerfield, 1991). (b) Magnified relief map (same elevation colour scale as Figure 2-1a) of 
Southern Africa highlighting the Great Escarpment which marks the transition from the low 
elevation coastal plain to the elevated, low relief continental interior. Topographic map was 
taken from ETOPO1 Global Relief Model. 

can be found within so called ‗stable‘ plate interiors, far from the effects of 

active plate boundaries (Summerfield, 1991; Moucha et al., 2008). The South 

African topography is characterised by its extensive high elevation interior 

plateau and well-developed rifted continental margins surrounding the entire 

sub-continent. Therefore, Southern Africa provides an excellent case study to 

investigate the origin of topographic anomalies at rifted margin settings and 

their persistence over time (Fig. 2-1b). 

The term ―rifted margin‖ is often used interchangeably with divergent margin 

due to the tectonic processes involved during their formation. Rifted margin 

settings have been studied extensively for over half a century, in no small part 

due to the hydrocarbon potential locked in their thick offshore sedimentary 

successions (Summerfield, 1991; Jackson et al., 2000; Szatmari, 2000; Corner et 

al., 2002; Paton et al., 2006a, 2007; de Vera et al., 2010; Kuhlmann et al., 

2010). Much of the analysis of rifted margin formation and evolution has come 

from geodynamic studies and geomorphology. During early investigations of plate 
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tectonics these disciplines largely tackled margin evolution independently. This 

resulted in model predictions, particularly of rift related topography, to conflict 

with one another (King, 1962; McKenzie, 1978; Steckler and Watts, 1982; Ollier, 

1985; Braun and Beaumont, 1989; Weissel and Karner, 1989; Gilchrist and 

Summerfield, 1990). 

Despite efforts to integrate the observations from these disciplines, several 

aspects of rifted margins remain unexplained. A consensus has been reached 

that divergent margins are produced by continental rifting: a process which 

involves stretching, thinning and faulting of the lithosphere, with some degree 

of intra-plate volcanic activity (Fig. 2-2) (Lister et al., 1986; Braun and 

Beaumont, 1989; White and McKenzie, 1989; Keen and Boutilier, 2000; 

Whitmarsh et al., 2001; Menzies et al., 2002; Ziegler and Cloetingh, 2004; Lavier 

and Manatschal, 2006; Reston, 2009; Huismans and Beaumont, 2011; Lundin and 

Doré, 2011; Franke, 2013). Beyond that, however, traditional methods of further 

classifying rifted margins (i.e. Volcanic, Non-volcanic, Passive) have arguably not 

provided a useful generic or globally applicable framework for understanding the 

true and often complex crustal architecture at a particular margin (Gaina et al., 

2013). A critical review of the different approaches and theoretical outcomes of 

a range of rifted margin analyses from geodynamic and geomorphic perspectives 

is provided in this chapter and in Chapter 3, respectively. These reviews will be 

concluded with a summary of the present day perceptions of continental rifted 

margin evolution and will highlight the necessity for quantitative constraints on 

surface processes to improve the accuracy of current and future models. 

2.2 Rifted margin evolution: Insights from geodynamic 
modelling 

Geodynamic numerical modelling techniques have been used as an approach to 

understand rifting dynamics since the 1970s. Since then, modelling techniques 

have grown more sophisticated, partly thanks to the increases in computational 

power allowing more complex mathematical problems to be solved and more 

realistic thermal dynamics and structural kinematics to be simulated. In these 

studies end-member scenarios have typically been put forward to describe the 
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Figure 2-2: (a) Generic model of continental rifting involving lithospheric extension with 
mantle upwelling and some degree of syn-rift magmatism. The timing of mantle upwelling 
relative to extension of the lithosphere is unresolved and discussed in Section 2.2.1 (after 
Franke, 2013).  (b) Simple schematic diagram of a rifted margin’s offshore and continental 
architecture (after Summerfield, 1991). 

formation and characteristics of one group of margins or another. Over time new 

information provided from different disciplines investigating rifted margins 

contradict certain aspects of these end-member scenarios. Frequently, however, 

these models yield common features strengthening their validity, and become 

the foundation for more complex models. The following section provides 

background to these simple end-member models and also to modern day thermo-

mechanical models that have enhanced our knowledge of rift margin evolution. 

Ultimately, these models have brought us from having to rely on simple end-

member scenarios to being able to deal with styles of rifting that encompass a 

more complex evolution over space and/or time (e.g. Kusznir and Karner, 2007; 

Péron-Pinvidic and Manatschal, 2009; Blaich et al., 2011; Huismans and 

Beaumont, 2011; Lundin and Doré, 2011; Andersen et al., 2012; Beaumont and 

Ings, 2012; Armitage et al., 2013). 
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2.2.1 Rift initiation: active vs. passive rifting 

In early investigations of rift zone initiation a key issue to address, and one that 

is still not fully understood (e.g. Kusznir and Karner, 2007; Franke, 2013; 

Koopmann et al., 2014), was the link between lithospheric extension and mantle 

upwelling. On one hand, thermally buoyant mantle upwellings are thought to be 

responsible for triggering lithospheric extension and thinning (active rifting) 

while on the other, it is suggested that these upwellings are initiated as a result 

of lithospheric extension focussing the rise of relatively hotter mantle material 

into the rift (passive rifting) (Fig. 2-3) (Menzies et al., 2002; Ziegler and 

Cloetingh, 2004; Anderson and Natland, 2005). 

The active rifting model involves the presence of an upwelling of hot mantle (c. 

150 to 200°C above normal mantle temperatures) beneath the lithosphere. This 

upwelling mantle plume would cause partial melting of the mantle by 

decompression and a period of intense volcanism, marking the onset of rifting 

(White and McKenzie, 1995). Prior to rifting, the lithosphere is uplifted, creating 

a dome or domes above the underlying mantle plumes. In response to this uplift, 

the lithosphere ruptures under an extensional stress caused by its higher 

potential energy, and extends laterally away from the centre of the upwelling 

region, thinning the crust in the process (Dewey and Burke, 1975; Bott and 

Kusznir, 1979; Bott, 1981). 

The passive rifting model envisions rifted margins as a consequence of far-field 

in-plane horizontal lithospheric stresses (e.g. slab pull, basal drag, ridge push) 

causing extension without the need for an associated plume (McKenzie, 1978; 

McKenzie and Bickle, 1988). However, during progressive thinning of the 

lithosphere, upwelling of asthenospheric mantle is suggested to cause partial 

melting at the base of the lithosphere over a wide area, and potentially result in 

significant thermal uplift and magmatism following the onset of rifting (White 

and McKenzie, 1989). 

 In general, there has been a shift away from the traditional ―vertically forced‖ 

view of plume driven rifting (Ziegler and Cloetingh, 2004; Foulger, 2007; Torsvik  
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Figure 2-3: Schematic representation of the major differences between Active and Passive 

rifting styles (after Ziegler and Cloetingh, 2004). 

et al., 2009; Franke, 2013). However, the contribution of mantle upwelling to 

the overall weakening of the lithosphere and its control on the presence and 

volume of magma exhumed at a particular margin is still significant (Menzies et 

al., 2002; Ziegler and Cloetingh, 2004). At margins traditionally referred to as 

―Volcanic Margins‖ (e.g. Paraná-Etendeka, South Atlantic margin; North Atlantic 

Igneous Province; Deccan Large Igneous Province, SW India) total volumes of 

igneous rock added to the continental margin during the rifting phase range from 

1x106 – 1x107 km3. It is suggested that at volcanic margins, igneous material is 

emplaced over an extensive area (c. 200 km from the rift) over short geological 

timescales (typically < 5 Myr) (White and McKenzie, 1989). The link between 

magmatism at rifted margins is further complicated by large volumes of igneous 
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material being observed at so-called ―Non-Volcanic‖ margins (e.g. Müntener and 

Manatschal, 2006) and potentially less syn-rift magmatism observed at 

―Volcanic‖ margins (e.g. Koopmann et al., 2014). The timing of this volcanism in 

relation to uplift and rifting therefore has become central to our understanding 

of the primary forcing driving rift initiation (Summerfield, 1991; Menzies et al., 

2002; Franke, 2013; Koopmann et al., 2014).  

The relationship between lithospheric thinning and mantle upwelling is still a 

contentious issue within margin studies and it is likely that a particular rifted 

margin‘s evolution will pass through a phase akin to ―passive‖ rifting prior to an 

―active‖ phase with associated magmatism (Wilson, 1993; Burov and Cloetingh, 

1997; Reemst and Cloetingh, 2000; Huismans et al., 2001). Regardless of the 

active or passive style, both models highlight the necessity of significant 

extension and thinning of the crustal lithosphere accompanied by some degree 

of volcanic activity. 

2.2.2 Lithospheric extension and thinning: pure shear vs. simple 
shear 

Early models of rifting assumed instantaneous extension, uniform with depth, 

throughout the entire lithosphere and attributed the primary source of magmatic 

activity to be the presence of an anomalously hot upwelling from the mantle. 

However, the style of structural features observed across a margin and the 

variable morphology of rift flank uplift required to match observations was not 

reproduced very well by these early models (McKenzie, 1978; White and 

McKenzie, 1989; Bown and White, 1995; Keen and Boutilier, 2000). 

A simple model of pure shear lithospheric extension typically leads to the 

development of a symmetric rifted margin (Fig. 2-4) (Summerfield, 1991). 

Thinning of the lithosphere focuses hot mantle asthenosphere beneath the rift 

axis which becomes the site of extrusive magmatism (McKenzie, 1978; Buck et 

al., 1988; Latin and White, 1990). A significant flaw in early uniform extension- 

pure shear models was their inability to generate the uplift required to match 

observations of the adjacent rift flanks (Summerfield, 1991). To address this 

issue, non-uniform extension was explored; in these models extension varies  
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Figure 2-4: Schematic representation of the major differences between simple and pure 
shear lithosphere extension styles (after Summerfield, 1991). 

with depth, location and thermal structure of the lithosphere (Reemst and 

Cloetingh, 2000; Davis and Kusznir, 2004; Kusznir and Karner, 2007; Reston, 

2007). Despite this modification, hot mantle still becomes focused beneath the 

thinned lithosphere but with the addition of ductile deformation occurring 

within the lower crust, significant uplift of rift flanks could be produced (Kusznir 

and Ziegler, 1992). 
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An alternative view of lithospheric extension is simple shear style deformation 

controlled by a major detachment fault cutting through the brittle crust into a 

ductile mantle lithosphere (Wernicke, 1985; Lister et al., 1986; Voorhoeve, 

1988; Issler et al., 1989). This style ultimately produces rifted margin settings 

that are asymmetric both in terms of the distribution of magmatism across the 

rift and its structural features (Fig. 2-4) (Wernicke, 1981, 1985; Lister et al., 

1986). This asymmetry is caused by extension occurring along major detachment 

faults and results in an upper and lower plate margin (Fig. 2-4) (Lister et al., 

1986; Voorhoeve, 1988). Due to the asymmetry of rifted margins produced 

through simple shear style extension, the uplift and subsidence history of the 

upper and lower plate during the syn and post rift phases are also predicted to 

be distinctly different. On the lower plate, unloading of the lithosphere 

promotes isostatic uplift but thinning of the lithosphere results in overall 

subsidence of the margin (Issler et al., 1989). On the upper plate, however, the 

presence of hot upwelling mantle material promotes uplift, while thermal 

weakening of the lithosphere promotes pure shear in the lower crust and mantle 

lithosphere (Ziegler and Cloetingh, 2004). Despite the popularity of depth 

dependant models of lithospheric extension and their ability to explain more 

features at particular margins than simple uniform extension models, the 

conditions which control depth dependent extension are still being investigated 

(e.g. Huismans and Beaumont, 2008). 

2.2.3 Modern rifted margin modelling: joint physical, thermal and 
chemical models 

It has long been suggested that a major control on the style of continental rifting 

and stability of the lithosphere during depth dependant extension is the rheology 

and composition of the lithosphere (Braun and Beaumont, 1989). However, it is 

only recently that numerical modelling techniques have been able to incorporate 

complex rheological structure within the crust and mantle and explore its 

influence on continental deformation (e.g. Lavier and Manatschal, 2006; 

Huismans and Beaumont, 2008, 2011; Lundin and Doré, 2011; Beaumont and 

Ings, 2012; Armitage et al., 2013). Different rheological layers promoting ductile 

or brittle deformation can act to decouple the crust from the mantle lithosphere 
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and allow them to thin independently (Lavier and Manatschal, 2006). Modelling 

by Huismans and Beaumont (2008, 2011) and later Beaumont and Ings (2012) 

investigated the effects of depth-dependant extension with a decoupled 

crust/mantle boundary. 

This work presented two end member scenarios for depth-dependant extension 

(Fig. 2-5). At ―Type I‖ margins the crust and mantle are strongly coupled, 

creating a brittle upper lithosphere and ductile lower lithosphere, whereas at 

―Type II‖ margins, a weak crustal rheology causes the crust and upper mantle to 

decouple. Type I margins can be expected to form after an initial phase of 

widely distributed extension which propagates inward until a main centre of 

rifting accommodates the associated stress (Fig. 2-5a). Decoupling the upper and 

lower lithosphere results in Type II margins where both layers can extend and 

thin independently of one another (Fig. 2-5b). This style of rifting begins with 

stretching of the upper and middle crust over a wide region becoming less 

pronounced with distance from the main rift zone. At the same time, localised 

mantle necking leads to rupture of the mantle lithosphere prior to crustal 

breakup.  

An additional feature of the Type II scenario is that during rifting of the mantle 

lithosphere, advection allows hot asthenosphere to be exhumed and cooled, 

forming a buoyant underplate beneath the crust (Huismans and Beaumont, 2011, 

Beaumont and Ings, 2012). The presence of this partly metasomised lower 

continental mantle underplate can result in a reduction of subsidence promoting 

a shallow marine environment for the developing rift (Huismans and Beaumont, 

2011) and/or a two-stage rifting phase. An alternative possibility is that the 

presence of such low viscosity and density material will create a counterflow 

back towards the rift axis (Beaumont and Ings, 2012). The inward lateral flow of 

the lithospheric mantle would result in decompression, melting and 

emplacement at distal parts of the margin during the rupture of the crust 

(Beaumont and Ings, 2012). It is suggested that the mechanisms involved in these 

depth-dependent models are more likely to produce magma poor margins; 

however, the additional influence of an anomalously hot, ‗active‘ upwelling 

mantle plume has still not been fully explored.   
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Figure 2-5: Illustration of the characteristic features of (a) Type I and (b) Type II rifted 
continental margins (after Huismans and Beaumont, 2011). At Type I margins break-up of 
the crust occurs before mantle lithosphere causing exhumation and exposure of 
serpentinized continental mantle lithosphere. Other characteristics include limited 
magmatism during rifting and delayed establishment of sea-floor spreading and normal 
ocean crust production. At Type II margins limited syn-rift rift flanks are observed and 
subsidence is limited due to hot asthenosphere replacing continental mantle lithosphere 
beneath the rift. Rupture of the continental mantle lithosphere prior to break up of the crust 
promotes upwelling of hot material and syn-rift magmatism. 

Decoupling of the crust and mantle lithosphere and mantle underplating is 

predicted to prolong extension of the upper crust and will produce an extremely 

wide rifted margin (Huismans and Beaumont, 2011). Hyperextension of a rifted 

margin as described by Lundin and Doré (2011) is a rifted margin that exhibits 

crustal stretching factors of 3 – 4 or greater. Investigations of the effects of 

hyperextension across rifted margins largely agree that hyperextension will lead 

to a severe weakening of the lithosphere by causing the crust to become heavily 

faulted (Maggi et al., 2000; Burov and Watts, 2006; Lundin and Doré, 2011; 

Andersen et al., 2012). If these faults are able to cut entirely through the crust, 
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water may infiltrate the mantle causing serpentinization of the upper mantle 

and create a buoyant, low density ―lower crustal body‖ beneath the rift (White 

et al., 2008; Lundin and Doré, 2011). 

The Northeast Atlantic rifted margin is characterised by widespread magmatism 

during rifting and yet also exhibits rift basins that can be referred to as being 

hyperextended (Lundin and Doré, 2011), suggesting hyperextension is not solely 

a precursor to so-called magma poor margins. The association of hyperextended 

margins with high-velocity lower crustal bodies suggest that there may be a 

relationship between a weakening of the lithosphere and serpentinization of the 

upper mantle. This weakening of the lithosphere prolongs extension and makes 

the lithosphere more susceptible to future deformation. As stated by Lundin and 

Doré, (2011), hyperextension models of rifted margin evolution may be 

appropriate for both magma-rich and magma-poor margins. It is likely that 

hyperextension is not a special form of the magma-poor end member rifting 

scenario but instead is another poorly understood mechanism that causes 

observations at rifted margins to conflict with predictions derived from 

modelling approaches. 

2.3 The influence of structural inheritance 

2.3.1 Pre/syn-rift 

Pre-existing crustal and mantle–lithospheric discontinuities have long been 

identified as a major influencing factor on the location of the rift zone (Ziegler 

and Cloetingh, 2004). In early models, sites of lithospheric weakness that define 

the location and geometry of rifting were incorporated as an initial condition of 

the model (White and McKenzie, 1989; Bown and White, 1995; Keen and 

Boutilier, 2000). The formation of the typical ―Atlantic-type‖ rifted margins 

involves a phase of widespread tensional stresses where small scale rifts are 

initiated around the location of future continental break-up and develop 

complex graben systems (White and McKenzie, 1989, Ziegler and Cloetingh, 

2004). Over time the zone of crustal break-up accommodates the majority of 

stress and becomes the main focus of rifting activity (Fig. 2-6). Syn-rift graben 

systems become  
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Figure 2-6: Steps 1-4 present a sketch model of fault migration during lithospheric 
extension whereby the main focus of faulting migrates inward and becomes concentrated at 
the future rift zone, leaving marginal faults inactive. The bottom panels represent 
reactivation of these structures during a post rift phase of extension or compression. 

progressively less active until break-up ensues and they become tectonically 

inactive and the margin becomes ―passive‖ (Ziegler and Cloetingh, 2004). 

More generally, the orientation of rift initiation relative to the pre-existing 

structural grain is suggested to be intimately linked to the style of lithospheric 

deformation (Ziegler and Cloetingh, 2004; Armitage et al., 2010; Autin et al., 

2013). Deformation of the lithosphere by pure-shear extension is typical for rifts 
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cross-cutting the structural grain as the orientation of stress during rifting will 

not reactivate pre-existing faults (McKenzie, 1978; Govers and Wortel, 1993; 

Ziegler, 1996). The opposite is the case for rifts that are sub-parallel to the 

regional basement fabric. Zones of crustal weakness will be reactivated and 

linked, causing decoupling of the crust and mantle lithosphere promoting simple-

shear lithospheric extension (Wernicke, 1981; Lister et al., 1986; Harry and 

Sawyer, 1992). 

Analogue modelling by Corti et al. (2013) has shown that inward focussing of 

rifting is controlled by (i) the thickness of the brittle and ductile layers of the 

lithosphere; (ii) the extension rate; (iii) the obliquity of the rift to the 

orientation of extension and (iv) the width of the weak zone accommodating 

extension. An increase in (i) and/or a decrease of the remaining factors will 

promote a greater amount and prolonged phase of slip on the outer faults. 

Modern day thermo-mechanical rifting models also indicate that extension can 

be widely distributed throughout the lithosphere promoting hyper- or polyphase 

extension (e.g. Lavier and Manatschal, 2006; Blaich et al., 2011; Huismans and 

Beaumont, 2008, 2011; Lundin and Doré, 2011; Reston and McDermott, 2014). 

2.3.2 Post-rift 

The initiation of the main phase of continental break up is preceded by an 

inward migration of faulting from the boundaries of the rift zone leaving smaller 

outer rifts inactive (Ziegler and Cloetingh, 2004). However, the manner in which 

the crust and mantle evolve during the syn and post-rift phases is still largely 

uncertain (Fig. 2-6). This is due to uncertainty over whether, during extension, 

the associated structural processes will strengthen or weaken the lithosphere 

(Aitken et al., 2013; Kennet and Iaffaldano, 2013). Despite the mechanisms 

being unresolved, compelling evidence (discussed in subsequent chapters) exists 

that post-rift reactivation has occurred at many so-called passive continental 

margins. This raises the possibility that ―abandoned‖ rifts created during the 

initial stages of rifting are reactivated at some later stage or that pre-existing 

ancient structures are accommodating post-rift deformation (Ziegler and 

Cloetingh, 2004).  
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Post-rift reactivations suggested for many ―Passive‖ margin settings may be 

triggered by a variety of driving factors. Compression may be induced by the 

convergence of two plates or far-field effects of active plate boundaries (e.g. 

Ziegler et al., 1995; Holford et al., 2009; Japsen et al., 2009, 2012; Cloetingh 

and Burov, 2011; Cogné et al., 2012). Renewed phases of extension may be 

associated with changes in regional plate movements (Eagles, 2007), changes in 

the regional stress field generated by lithospheric resistance to plate rotation 

(Bird et al., 2006) or by a lateral stresses induced by vertical movements of the 

crust driven by flexural isostasy (e.g. Redfield et al., 2005a, b; Salomon et al., 

2014) and/or uplift over hot upwelling mantle plumes (e.g. Guillou-Frottier et 

al., 2012; Burov and Gerya, 2014). 

Mantle convection is a well-established mechanism for extending the lithosphere 

regardless of whether rift initiation is plume driven and has been attributed as 

the cause of regional post-rift epierogenic uplift episodes (Praeg et al., 2005). 

However, the importance of heat flow within the crust and upper mantle 

lithosphere during the post-rift evolution has only recently been evaluated (e.g. 

Holford et al., 2011; Beaumont and Ings, 2012; Armitage et al., 2013). In the 

hyperextension model by Lundin and Doré (2011), it is suggested that at magma 

rich margins the underplated edges of the margin are stronger than the interior 

that is underlain by serpentinized mantle. As a result, during the post-rift phase 

stresses are focused on this part of the margin which is therefore more prone to 

deformation. Underplating is a feature common in Huismans and Beaumont, 

(2011) Type II margins (see also, Beaumont and Ings, 2012) and is thought to be 

present at many continental margins, manifested as a lower crustal body with 

high seismic velocity (White et al., 2008; Hirsch et al., 2009). An additional 

influence may be the presence of a highly radiogenic crustal zone where the 

consequent elevated heat flow could thermally weaken the crust, perturb the 

underlying mantle flow or add buoyancy to the overlying lithosphere (Pysklywec 

and Beaumont, 2004; Holford et al., 2011; Armitage et al., 2013).  
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2.4 The role of regional dynamic uplift 

Rifted margin evolution can be thought of in terms of the interaction between 

lateral processes during rifting (i.e. extension) and a vertical response of the 

lithosphere (subsidence/uplift). Traditionally, the initial vertical response of the 

lithosphere at rifted margins was described in terms of doming of over a mantle 

upwelling, followed by subsidence during thermal relaxation with an associated 

isostatically driven upwarp of rift flanks (Braun and Beaumont, 1989; White and 

McKenzie, 1995; Rouby et al., 2013). It is interesting, in this context, that a 

recent major focus of the geodynamic community is to understand the link 

between widespread uplift caused by anomalous upwellings of buoyant material 

from the lower mantle imposing vertical stresses on the base of the lithosphere 

beneath continental interiors (Simmons et al., 2007; Moucha et al., 2008; Conrad 

and Husson, 2009; Boschi et al., 2010; Liu and Gurnis, 2010). 

The concept of vertical stresses being imposed on the base of the lithosphere 

from upwelling mantle flow and consequently inducing surface uplift was 

proposed by (Pekeris, 1935) and termed ―Dynamic Uplift‖ (Fig. 2-7). Over the 

past two decades investigations of mantle dynamics have provided insights into 

the origin and structure of mantle thermal and/or chemical anomalies and how 

they drive mantle flow and interact with the overlying lithosphere (e.g. Nyblade 

and Robinson, 1994; Burke, 1996; Lithgow-Bertelloni and Silver, 1998; Gurnis et 

al., 2000). For a review of the geodynamic modelling techniques that have been 

used in these investigations see Flament et al. (2013).  

Dynamic uplift is typically expected to occur over long wavelengths (1000s of 

kms) with relatively small amplitudes (c. < 2 km), if the lithosphere is treated as 

a rheologically uniform elastic layer. Mantle flow may also generate small scale, 

short wavelength and significant amplitude topographic anomalies if more 

complex lithosphere rheology is incorporated (Moucha et al., 2008; Petersen et 

al., 2010; Burov, 2011; Cloetingh et al., 2013; Flament et al., 2013) and this is 

an area that warrants further investigation. In either case, uplift occurs as the 

lithosphere attempts to gravitationally balance the viscous stresses imposed at 

the base of the lithosphere induced by mantle upwelling. Models of dynamic  
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Figure 2-7: Simple sketch of the influence of mantle convection on the overlying 
topography. Hot, low density, mantle upwelling promotes uplift, while downward convection 
of colder, higher density, mantle coupled with isostatic effects, may cause subsidence in 
areas adjacent to uplifted regions (after Braun, 2010). 

topography are still hindered by several aspects: (i) our poor knowledge of 

lithospheric structure on a global scale, which is required to understand present 

day dynamic topography (Moucha et al., 2008); (ii) our poor knowledge of the 

chemical composition of the upper and lower mantle and the effect this has on 

the thermochemical circulation (Simmons et al., 2007); (iii) lack of quantitative 

constraints on the surface response (i.e. erosion) to dynamic topography (iv) 

contradictory predictions of uplift and subsidence of the lithosphere in different 

mantle circulation models (Moucha et al., 2008; Müller et al., 2008; Liu and 

Gurnis, 2010; Van Wijk et al., 2010); (v) the difficulty of identifying short 

wavelength (c. 100 km) dynamic topography from isostatic vertical motions 

(Moucha et al., 2008; Flament et al., 2013). So, while dynamic uplift seems to 

play a significant role in the evolution of regional topography of continental 

interiors, especially in southern Africa, how this mechanism integrates with 

thermo-mechanical mechanisms controlling continental margin lithosphere 

extension and how it ultimately influences rift margin evolution remains elusive. 
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2.5 Current thinking on the geodynamical setting of the 
southwest African rifted margin 

The early models explaining the evolution of continental margins as either active 

or passive, or evolving by pure or simple shear, are an oversimplification of the 

reality, but they have nonetheless provided the foundations upon which current 

and more advanced models are built. Rheological properties of the entire crust-

mantle system have been shown to have a major control on the style of depth-

dependant extension of the lithosphere (Huismans and Beaumont, 2008, 2011). 

The pattern and mode of mantle convection and the location of zones of crustal 

weakness will influence lithospheric extension and govern the evolution of the 

rifted margin over space and time and influence the volume and distribution of 

any associated magmatism (Müntener and Manatschal, 2006; Armitage et al., 

2010). How these ancient zones of crustal weakness and rift-related structural 

discontinuities evolve following the major period of rifting is unclear, but they 

have the potential to change our current thinking on continental margin 

evolution. 

Within the current literature there is evidence that the South Atlantic volcanic 

passive margin may have significantly less volcanic material than previously 

thought (Koopmann et al., 2014) and has experienced significant post-rift 

reactivation (Brandt et al., 2003, 2005; Kounov et al., 2009, Viola et al., 2012). 

Blaich et al. (2011) suggest that the ―volcanic‖ South Atlantic margin and ―non-

volcanic‖ Central Atlantic margin have shared similar polyphase rifting styles. 

Rifting in the South Atlantic is proposed to have initiated during the Late 

Jurassic – Early Cretaceous and propagated northwards from a position close to 

the Falkland-Agulhas Fracture Zone (Jackson et al., 2000). This predates the 

emplacement of the Parana-Etendeka continental flood basalts (c. 135 – 130 Ma) 

(Hawkesworth et al., 2000; Marsh et al., 2001) which are coeval with break-up 

(Eagles, 2007; Heine et al., 2013). This suggests that the rifting style may have 

initially been similar to a developing ―non-volcanic‖ margin before later 

experiencing volcanism due to the interaction of the rift with an underlying 

mantle plume prior to complete rupture of the continental crust (Blaich et al., 

2011, 2013; Franke, 2013; Koopmann et al., 2014). The style of lithospheric 
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extension in the absence of thermal anomaly was likely depth-dependent 

(Unternehr et al., 2010; Huismans and Beaumont, 2011), prolonged (e.g. Lundin 

and Doré, 2011; Péron-Pinvidic et al., 2013) and asymmetric (Jackson et al., 

2000; Blaich et al., 2011; Becker et al., 2014). In summary, end-member 

scenario models do not describe the evolution of the South Atlantic rifted 

margins, and possibly all rifted margins, in any great detail and further study of 

the entire margin is required. 

Most margin settings are characterised by complex fault systems both in terms of 

their geometry and timing, and often preserve less or more volcanic material 

than would be expected for typical end-member volcanic and non-volcanic style 

margins, respectively (Müntener and Manatschal, 2006; Manatschal and 

Müntener, 2009; Blaich et al., 2011; Franke, 2013; Koopmann et al., 2014). The 

classification terms that are assigned to a particular margin are frequently at 

odds with observations and are therefore inappropriate (Redfield et al., 2005a, 

b; Péron-Pinvidic and Manatschal, 2009; Blaich et al., 2011; Andersen et al., 

2012; Paton, 2012; Gaina et al., 2013; Franke, 2013; Koopmann et al., 2014). 

Structural inheritance, rift-related structures, thermal weakening of the 

lithosphere and or an anomalously hot radiogenic crust, may all contribute to 

weakening the continental lithosphere and prime a ―passive‖ continental margin 

for a renewed phase or phases of tectonic activity long after the initial rifting 

event. The driving factors that trigger this reactivation are likely unique to the 

geological or geodynamical processes acting on the margin and the orientation of 

the regional stress field relative to the structural fabric. If structural 

reactivation during the drift phase is a phenomenon that is common across all 

―passive‖ margins, then it is necessary to understand whether the trigger for 

reactivation is due to a combination of processes specific to a particular margin, 

or if some common influential factor exists that acts across all margins and 

typically leads to as yet unrecognised phases of post-rift evolution. 

2.6 Conclusions 

In detail, rifted margins are an enigmatic element of plate tectonics that are 

more complicated and far more interesting than the traditional classification 
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terms would lead one to believe. Much of our knowledge of rifted margin 

evolution is provided by numerical modelling approaches that require 

independent and quantitative constraints to validate their predictions. Advanced 

geophysical surveys and improved seismic imaging integrated with offshore well 

data contribute to this validation by providing new information on the 

stratigraphy and crustal architecture of the offshore parts of the margin. On the 

terrestrial sector of many rifted margins, however, this geological record has 

largely been eroded away and with it the record of major periods of uplift 

associated with rift and post-rift tectonics. Therefore, other approaches must be 

employed to investigate the spatial and temporal nature of deformation 

experienced by the continental lithosphere. This study will employ low 

temperature thermochronometry to derive cooling histories that can be used to 

quantify periods of denudation across the margin. 

The following chapter explores the approach to understanding passive 

continental margins from a geomorphological perspective and review the current 

debate concerning the origin and longevity of high elevation continental margins 

in particular. The role that thermochronology has played in validating or 

challenging the results of different surface process models is also discussed. New 

apatite fission track analysis and apatite (U-Th-Sm)/He data from the Atlantic 

continental margin of South African and from the continental interior are 

presented and discussed in subsequent chapters to resolve many outstanding 

questions on the long-term development of the southwest African continental 

margin. 
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CHAPTER 3 

THE TECTONIC GEOMORPHOLOGY OF HIGH 
ELEVATION CONTINENTAL MARGINS 

 

3.1 Introduction 

How the Earth‘s topography has developed and evolved over geological 

timescales is a fundamental question for geomorphologists. This question can be 

addressed to both large scale, regional topography, or to small, local, 

perturbations in relief. In both cases the topography itself is carved out by 

surface processes (i.e. erosion and weathering) which in turn are enhanced or 

subdued over different periods of time due to external forcing such as climate 

and tectonics. This chapter will present an overview of the historical and 

present day models and theories used to explain the development of large-scale 

topography. This overview will first look at classical geomorphological models of 

long-term landscape evolution and their modern day adaptations and discuss 

their limitations in explaining long term landscape development. The discussion 

will then move to a review of some of the numerical modelling approaches to 

explaining landscape evolution before discussing landscape evolution in the 

context of continental margins. Through this discussion the need for empirical 

constraints on the timing and rates of erosion will become apparent and 

examples of how thermochronology has provided such constraints will be 

presented. Finally, recent insights into the influence of in-plane regional 

stresses, vertical mantle driven stresses and compositional and structural 

heterogeneity in the crust on intraplate deformation is described. 

3.2 Long-term landscape evolution 

Early theoretical models of long-term landscape evolution designed by 

geomorphologists at the beginning of the twentieth century were formulated 

without the present day framework of global plate tectonics (e.g. Davis, 1899; 

Penck, 1924; King, 1953a). Although the concept of continental drift was still in 
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its infancy, it‘s relevance to geomorphology was appreciated (e.g. King, 1942, 

1953b; Du Toit, 1937, 1954). However, it was not until the general acceptance of 

plate tectonics in the 1960s that these models could be evaluated as part of the 

wider Earth‘s dynamic system. 

In the latter half of the twentieth century our increasing understanding of 

isostatic movements of the Earth‘s surface (e.g. Gilchrist and Summerfield, 

1991; Gilchrist et al., 1994); in-plane stress created by plate movements (e.g. 

Cloetingh et al., 1985); thermal convection within the mantle (e.g. Conrad and 

Gurnis, 2003) and the lithological and climatic controls on erosion patterns (e.g. 

Kooi and Beaumont, 1994) led to a re-evaluation of traditional landscape 

evolution models. Despite these advances, support for classical models, or at 

least certain aspects of them, persist and continue to underpin many modern 

approaches to macro-geomorphology (Ollier and Marker, 1985; Partridge and 

Maud, 1987, 2000; Ollier and Pain, 1997; Japsen et al., 2012; Green et al., 2013; 

Lidmar-Bergström et al., 2013; Rabassa and Ollier, 2014; Römer, 2010; Bonow et 

al., 2014; Twidale, 2014). This has led to two broad schools of thought regarding 

the generation of the Earth‘s current topography: that it is generated by 

repeated cycles of regional uplift and peneplanation to sea level and can 

therefore be described as young; or, landscapes are slowly eroded remnants of 

larger topography generated during a major tectonic event or events (e.g. 

orogenic activity or continental rifting). High elevation continental margins such 

as those surrounding southern Africa have provided geomorphologists and 

geophysicists with a suitable laboratory to test competing theories of landscape 

development. To fully understand the link between the geodynamic processes 

involved during rifting (see Chapter 2) and the development of continental 

margin topography, quantitative constraints are needed to resolve the 

magnitude of onshore erosion in response to surface uplift over space and time. 

Prior to discussing models of landscape evolution, it is prudent to define several 

terms which are fundamental to the large-scale development of topography: 

surface uplift is the vertical movement of the Earth‘s surface with respect to the 

geoid or other specified datum; rock uplift is the vertical movement of a rock 

column with respect to the geoid or other specified datum; exhumation is the 
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upward movement of a rock toward the surface; and denudation is the removal 

of material from a rock column. Rock uplift can equal surface uplift only if there 

is no denudation and, similarly, surface uplift is zero if rock uplift is balanced by 

denudation (England and Molnar, 1990; Summerfield, 1991; Bishop, 2007) (Fig. 3-

1a). Isostasy is the concept that the rigid lithosphere floats on a ductile 

asthenosphere. Two end-member models of isostasy are proposed for the 

compensation of blocks of lithosphere. The Pratt model assumes that the 

lithosphere-asthenosphere boundary is flat and that the lithosphere is comprised 

of columns, each with uniform density. Elevated regions are therefore proposed 

to have low crustal density and low lying blocks having high crustal density. The 

Airy model assumes uniform density throughout the lithosphere and that blocks 

are compensated at depth by crustal roots (i.e. mountains have thick crustal 

roots) (Fowler, 2005). In reality both of these models are likely to be operating. 

Moreover, these models are only applicable over local scales as over regional 

scales the lithosphere is also supported by its rigidity and flexural isostasy is 

more significant (Summerfield, 1991) (Fig. 3-1b). 

3.3 Foundations of modern geomorphology 

Links between the Earth‘s geological history and the present day topography 

began to be forged in the late eighteenth century by several workers across 

Europe (Oldroyd and Grapes, 2008, and references therein). In particular, the 

work of James Hutton (1788) and later Charles Lyell (1833) established the 

concept of deep Earth time; providing a framework in which the Earth‘s 

topography could be carved out over extremely long timescales. Moreover, and 

perhaps more significantly for the future of geomorphology, they also pointed to 

the link between geological structures and surface processes that drive 

landscape evolution and continually recycle material such as: variable erosion of 

different rock types and soils by rivers and the sea; transport of sediment from 

land to sea; and the control exerted on developing drainage patterns by folds, 

faults and easily erodible substrate. 

Geomorphology became particularly popular throughout the mid to late 

nineteenth century (e.g. Reech, 1858; Cayley, 1859; Maxwell, 1870), paving the  
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Figure 3-1: (a) Illustration of the distinction between surface uplift (Us) and rock uplift (Ur) 
and the influence of denudation (D) on a hypothetical rock column. For this illustration the 
effects of isostasy are ignored. (b) Illustration of the Airy and Pratt hypotheses of (local) 
isostasy and flexural (regional) isostasy. For the Airy and Pratt isostasy models h1 and h2 
are the heights of hypothetical mountains; t is the thickness of the lithosphere which in the 
Pratt hypothesis is equal to the isostatic compensation depth. r1, r2 and r3 are the roots of 
thick blocks of lithosphere required to maintain equal density throughout the lithosphere. 
ρu, is the average density of the lithosphere. In the Pratt hypothesis, an equal isostatic 
compensation depth is maintained by blocks of lithosphere having different densities where 
ρ3>ρu>ρ2>ρ1. Illustrations redrawn after Summerfield (1991) and Fowler (2005). 
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way for the first major theoretical concept of long-term landscape evolution. 

The Davisian model of cyclic erosion (Davis, 1899) envisaged a three-stage 

evolution of a landscape, initiated by a period of regional tectonic uplift of a low 

relief surface. The first stage, ―youth‖, is characterised by rapid river incision, 

in response to base-level lowering, creating narrow river valleys with flat 

uplands. The second stage, ―maturity‖, is characterised by high relief as incision 

continues, narrowing the previously flat upland. Downwearing of steep slopes 

causes a decrease in local relief and leads to the final ―old age‖ stage. This 

stage is characterised by a flat surface at the new base level (i.e. peneplain) 

with sporadic remnant erosional features.  

Criticism of the Davisian model soon followed focusing primarily on the under-

appreciated effects of climate, lithology and structure (Summerfield, 1991). 

Moreover, the lack of specific detail on the surface processes involved in slope 

degradation and lack of quantitative information on the rates and distribution of 

uplift were seen as weaknesses in the model (for a review see Summerfield, 

2000; Bishop, 2007; Oldroyd and Grapes, 2008). An alternative model, proposed 

by Penck (1924), differed from the Davisian approach in the manner in which 

uplift proceeds. Instead of cyclic periods of rapid uplift and long periods of 

stability, Penck (1924) proposed a period of waxing where rates of uplift 

increased followed by a period of waning where uplift rates gradually decrease 

(Summerfield, 1991). With Penck‘s contrary view on uplift dynamics came a 

corresponding alternative model of landscape response involving the 

development of steep convex river profiles during the waxing phase which were 

then worn backwards and downward during the waning phase to form concave 

profiles (Summerfield, 1991; Oldroyd and Grapes, 2008). Like Davis, this model 

was also criticised for its handling of lithological variations and variable climate. 

With a growing appreciation for the importance of continental drift, Lester King 

devised another landmark model for the long term evolution of landforms. In his 

view, the step-like topography of southern Africa characterised by low relief 

surfaces and steep escarpments required a cyclic evolution of uplift and erosion 

as suggested by Davis; however, the processes involved in generating broad, low-

angle, concave pediplains required parallel escarpment retreat in a variation of 
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Penck‘s approach (Summerfield, 1991; Blenkinsop and Moore, 2013; Rabassa, 

2014). King‘s model is particularly relevant in the context of this thesis for three 

reasons: 1) It addresses the long term uplift and denudation of continental 

interiors; 2) invoked a mechanism for the evolution of major coast parallel 

escarpments and 3) utilises Southern Africa‘s well developed continental margin 

as a case study. This model has provided a useful baseline model for later 

workers to validate or dispute in either its entirety or particular components. As 

such the detail and controversy surrounding King‘s work and later modifications 

of this model are discussed in subsequent sections and chapters. 

―Classical‖ models as described above are largely based on qualitative dating of 

geomorphic features and lack empirical data on the timing and rates of the 

processes which drive their development. For this reason, these models of long 

term landscape evolution struggle to adequately incorporate the highly variable 

nature of lithology, structure, climate and weathering, which we now know to 

play an important role (Summerfield, 2000). Despite this, the link between 

epeirogenic tectonic movements and the associated surface response is a theme 

which runs through each of these models and into modern day adaptations 

(Bishop, 2007). Resolving the uncertainties surrounding the driving mechanisms 

behind uplift events, the associated rates of uplift and the true nature of 

continental stability or tectonic quiescence over long timescales remains a 

major challenge in tectonic geomorphology today. 

3.4 Polycyclic uplift 

In the original Davisian model of cyclic erosion it was appreciated that any 

renewed period of uplift prior to complete peneplanation of a previous relief 

would generate a polycyclic landscape with a ‗memory‘ of previous falls in base-

level left behind in the geomorphology record. Despite the criticisms of this 

model, the notion of alternating periods of uplift and enhanced erosion has 

persisted to the present day. Part of this endurance can be attributed to the 

passionate support it gained from Lester King throughout the mid-late twentieth 

century (see Twidale, 1992, for a review of King‘s work). 
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In a series of publications, Lester C. King (e.g. 1942, 1950, 1953a, 1956, 1962 

and 1976) discussed the occurrence of prominent ―wall-like‖ scarps and plateaux 

forming the topography across the South African continent. The regionally 

distributed plateaux represent preserved erosion surfaces created by a process 

of pediplanation, driven by river incision to a base-level, following some form of 

regional uplift. By observing their regional distribution and respective 

elevations, King assigned relative ages to these six erosion surfaces invoking 

many periods of uplift and erosion since the Mesozoic (Blenkinsop and Moore, 

2013; Fig. 3-2a).  The oldest surface was termed the Gondwana surface owing to 

its pre-break up formation; while the most extensive surface was called the 

African Surface and was formed in response to rifting in the early Cretaceous 

(King, 1942, 1953a, 1956).  

Two major criticisms surrounded King‘s work: 1) the lack of consistent and 

quantitative dating and correlation of erosion surfaces, particularly over large 

distances and 2) the under-appreciation or misunderstanding of the isostatic 

response to removal of overburden (Van der Beek et al., 2002). An isostatic 

response of the landscape to denudational unloading and offshore sedimentation 

was, in fact, proposed by King (1955) and Pugh (1955) as the mechanism to drive 

periods of epierogenic uplift. However, they suggested that this isostatic 

response occurred only after significant denudation had taken place as opposed 

to a progressive regional response coeval with denudation (Van der Beek et al., 

2002). Because isostatic uplift is a phenomenon acting continuously over time, it 

cannot be used as a driving mechanism for a discrete regional uplift event as 

proposed by King. 

 A comprehensive review and refinement of King‘s South African erosion surfaces 

and their implications for the erosional history of the sub-continent was 

produced by Partridge and Maud, (1987). Further work in southern Africa by 

Partridge and Maud (1987, 2000), Partridge (1998), Ollier and Marker (1985), 

Burke (1996) and Burke and Gunnel (2008) continued the trend of re-evaluating 

and reassigning the timing and nature of erosion surfaces. In particular, the 

African Surface has been interpreted as a composite surface which exists above 

and below the escarpment and was produced through several cycles of erosion 
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Figure 3-2: (a) Illustration of cyclic erosion surfaces in southern Africa as proposed by King 
(1955). Based on the classification of King (1955) the erosion surfaces in chronological 
order are named Gondwana (G); the post-Gondwana (p-G); African (AF), Victoria Falls (VF) 
and Congo (C). (b) Model of relief development in southern Norway as proposed by Green et 
al., (2013). Illustration is a simplification of Figure 14 in Green et al., (2013) to highlight the 
successive nature of erosion surfaces or peneplains (oldest surface = i, youngest surface = 
iv). 

from continental break-up to the Miocene (Partridge and Maud, 1987; Burke and 

Gunnel, 2008). Alternatively, de Wit (1999) suggested that the African Surface 

has not experienced major erosion or incision since the Late Cretaceous; while 

Ollier and Marker, (1985) saw the African Surface as a pre-rift Gondwana 

palaeoplain which could be correlated with the offshore basal unconformity. 

Partridge et al. (2006) summarise the Cenozoic South African geomorphology in 

terms of three major widespread erosion surfaces: 1) African Surface, formed 

following continental break up; 2) Post-African Surface I, formed following Early 

Miocene uplift; and 3) the Post-African Surface II, formed during major uplift (c. 

700 – 900 Ma) in Pliocene (see Chapter 7 – Section 7.5.3). 

Recent work in Scandinavia has attempted to revitalise the study of erosion 

surfaces to infer cyclic periods of uplift and erosion. This approach termed 

―Stratigraphic Landscape Analysis (SLA)‖ by its supporters (e.g. Green et al., 

2013; Lidmar-Bergström et al., 2013; Bonow et al., 2014) involves correlating 

regional planation surfaces based on their form, weathering profile (i.e. 
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regolith), spatial relationship with other planation surfaces and additional 

geological constraints (Green et al., 2013) (Fig. 3-2b). In particular, insights 

from low temperature thermochronology (see below) and identification of 

sedimentary deposits overlying planation surfaces are used to infer multiple 

cycles of burial and subsequent denudation. This modern day adaption of the 

Davis/King-style model of landscape evolution incorporates episodes of burial 

and exhumation and is suggested to explain many continental margin settings 

and continental interiors such as: Greenland (Japsen et al., 2006), Norway 

(Japsen et al., 2009), NE Brazil (Peulvast and de Claudino Sales, 2004; Zalán and 

Oliveira, 2005), southern South America (Rabassa and Ollier, 2014, and 

references within), SE Australia (Twidale, 2007) but has been strongly opposed 

by many other workers (e.g. Chorley, 1965; Inkpen, 2005; Egholm et al., 2013). 

Despite the persistence of the Davisian model of cyclic erosion, or modifications 

of it, for over a century, some of the major criticisms remain unchanged. The 

main thrust behind the Penck‘s model was a belief that uplift is not a rapid short 

lived process but is gradual with the surface experiencing erosion in concert. 

This view is shared by many supporters of ‗steady-state‘ landscapes (Bishop, 

2007) in which a tectonic forcing maintains uplift during erosion. A more 

fundamental criticism is directed at the formation and correlation of erosion 

surfaces and therefore their geological significance (Summerfield, 2000; Van der 

Beek et al., 2002). Alternative explanations for the formation of low relief 

surfaces have been lowering of interfluves; etch planation; local drainage 

variations, including interior base levels, controlled by lithology and/or 

structure; and glacial erosion in glaciated regions (Summerfield, 1991; Thomas, 

1995; Phillips, 2002; Mitchell and Montgomery, 2006; Steer et al, 2012; Egholm 

et al., 2013). As stated by many geomorphologists, and as is evident in Kings own 

frequent re-evaluation and reclassification of erosion surfaces, correlating and 

dating planation surfaces can prove difficult primarily due to the tectonic, 

lithological and climatic variations a region may have experienced over time 

(Burke and Gunnel, 2008). Correlating these surfaces is based on the assumption 

that they once formed a single planation surface which has subsequently been 

dissected. This is unlikely to be the case due to the unstable nature of 
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continental platforms over geological timescales (Summerfield, 2000; Moucha et 

al., 2008). 

3.5 Steady-state landscapes, flexural isostasty and 
surface process numerical modelling at continental 
margins. 

3.5.1 Steady-state landscapes and flexural isostasy 

From the late 1980s through to the present day, numerical modelling of surface 

process have provided enormous insights into long term landscape development 

in many geological settings (Beaumont et al., 2000). Integral to these models is 

the assumption that following tectonic uplift, landscapes develop towards a 

―steady-state‖ setting (Kooi and Beaumont, 1994; Willet et al., 2001; Whipple 

and Meade, 2004). The notion of steady-state landscapes stem from the dynamic 

equilibrium landscape model of Hack (1960). In a steady-state landscape the 

rate of tectonically driven rock advection must balance with the surface erosion 

rate (Willet et al., 2001) (Fig. 3-3). In other words, the relative contributions of 

climate and tectonics in developing large scale topography are balanced. Willet 

and Brandon, (2002), define steady state in terms of different component parts 

including erosional flux, topography, thermal structure and exhumation rate, 

addressing the uncertainty that surrounds defining landscapes as steady-state. 

The simplest example of steady-state topography is achieved when rock uplift is 

driven only by vertical tectonic advection which is balanced by denudation 

(Bishop, 2007). However, horizontal components of tectonic advection can 

prolong the time required to achieve steady-state conditions and is only ever 

achieved for the first-order topography of the entire mountain range (Willet et 

al., 2001).  

In the absence of any additional tectonic forcing, isostatic balance of the 

lithosphere in response to erosion is the primary means of rock uplift and will 

reduce the total amount of surface lowering caused by denudation (Gilchrist and 

Summerfield, 1990). On average, isostasy driven surface uplift is c. 0.8 times the 

thickness of material removed from the surface by denudation (Bishop, 2007). 

However, the amount of surface uplift which occurs due to isostasy is a function  
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Figure 3-3: Block diagram of the nature of steady-state and transient landscapes. (i) A 
crustal block with two hypothetical rock samples at depth. (ii) A period of enhanced tectonic 
uplift raises the surface which is immediately denuded by erosion causing rock uplift. As 
the rate of tectonic advection exceeds erosion rate there is continuous uplift of the surface. 
(iii) As advection continues erosion rate may increase due to elevated regions residing in a 
more erosive climate (Molnar and England, 1990). When advection and erosion are balanced 
the landscape is in steady-state and there is no surface uplift but rock uplift will continue. 
(iv) If the tectonic force driving uplift is removed then erosion will lower the surface. This 
removal of material will induce isostatic rebound of the surface by an amount approximately 
equal to 80% of the thickness of material removed. 

of the amount of material that has been eroded, the density of erodible material 

and the elasticity of the lithosphere (Gilchrist and Summerfield, 1991). The 

elasticity of the lithosphere is quantified in terms of the lithosphere‘s effective 

elastic thickness (EET) and characterises the relationship of flexural isostasy 

with loading/unloading of the lithosphere (Gilchrist and Summerfield, 1991; 

Watts, 2001; Braun et al., 2013a; Rouby et al., 2013). When the lithosphere 

possesses a high EET, its flexural rigidity is high and the influence of the imposed 

load (positive for loading and negative for denudation) over lateral distances is 

less than for lower values of EET (Bishop, 2007).  
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The importance of flexural isostasy has been highlighted particularly for high 

elevation continental margin settings (Karner and Watts, 1982; Braun and 

Beaumont, 1989; Weissel and Karner, 1989; Gilchrist and Summerfield, 1991; 

Tucker and Slingerland, 1994; Sacek et al., 2012). The feedback between 

flexural isostatic uplift and erosion may cause the initial escarpment to retreat 

and ultimately produce prominent marginal upwarps that persist over time 

(Gilchrist and Summerfield, 1990, 1991; ten Brink and Stern, 1992; Tucker and 

Slingerland, 1994). However, the spatial variability of EET across continental 

margins creates uncertainty in escarpment evolution models that assume 

uniform flexural rigidity (ten Brink and Stern, 1992; Tucker and Slingerland, 

1994). Recent modelling by Braun et al. (2013a) and Rouby et al. (2013) 

integrated flexure of the lithosphere in response to rifting with surface 

processes controlling denudation of the continent and deposition in the offshore 

basin. This modelling has shown that using an uniformly thick EET, which does 

not vary in space and time, will promote an initially higher rift shoulder, and 

shallower distal basin but will have a lower amplitude flexural response to 

denudation, accumulation and thermal subsidence and the converse being the 

case for a uniformly thin EET. 

3.5.2 Applications of surface process numerical models 

Using computer-based surface process models (SPM), the development of 

regional landscapes (c. 1 – 1000 km) have been investigated by integrating the 

effects of tectonic processes, erosion, isostasy and climatic and lithological 

variations over 1 – 100 Myr timescales (Bishop, 2007). Applications of SPMs have 

become increasingly popular particularly in investigating the erosional and 

structural feedbacks associated with the development of orogenic belts (Willet 

et al., 2001; Thiede et al., 2005; Koons et al., 2012; Tucker and Van der Beek, 

2013; Giachetta et al., 2014) and the intimate relationship between tectonics 

and climate in mountain building (Whipple et al., 1999; Burbank et al., 2003; 

Whipple and Meade, 2004). Depending on the parameterisation of SPMs, 

different and often conflicting outcomes may be achieved from different models 

investigating the same phenomenon as exemplified by the climate vs. tectonics 
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debate (Molnar and England, 1990; Raymo and Ruddiman, 1992; Whipple, 2009; 

Champagnac et al., 2012). 

The development of continental margins and the persistence of their marginal 

escarpments over time have been of particular interest to surface process 

modellers over the years (Braun and Beaumont, 1989; ten Brink and Stern, 1992; 

Kooi and Beaumont, 1994; Gilchrist et al., 1994; Tucker and Slingerland, 1994; 

Van der Beek et al., 2002; Sacek et al., 2012; Braun et al., 2013a). As with other 

geological settings, without independent quantitative constraints to test their 

outcomes, the models remain largely conceptual but the information they 

provide are crucial for understanding the mechanisms involved in forming 

continental margin topography (Van der Beek and Braun, 1998; Braun and Van 

der Beek, 2004). Insights from SPMs across the southeast and southwest African 

margin and the southeast Australian margins have largely rejected the 

occurrence of a marginal down warping following rifting (e.g. Ollier and Marker, 

1985; Seidl et al., 1996) in favour of isostatically induced or fault bounded rift 

flank upwarps (ten Brink and Stern, 1992; Tucker and Slingerland, 1994; Kooi and 

Beaumont, 1994; Gilchrist et al., 1994; Van der Beek et al., 2002). A major 

finding was the occurrence of differential denudation across the margin with 

much greater amounts of material being removed on the seaward side of the 

escarpment than inland (Gilchrist and Summerfield, 1990). This observation was 

supported by comparable sediment thickness volumes in offshore basins (Rust 

and Summerfield, 1990) and later by extensive LTT work across continental 

margins (see below). This differential denudation is caused by the response of 

the pre-rift drainage to a rapid drop in base level. The combination of river 

erosion and the isostatic response holds a first order control over the 

development of the margin topography (Gilchrist and Summerfield, 1994). Later 

SPMs models built on earlier work and identified second order controls such as 

climate change and lithology (Van der Beek et al., 2002). For example a climate 

changing from a semi-humid to arid environment will slow denudation across 

both domains while the exposure of more resistant substrate can cause 

denudation to decrease as the margin evolves (Gilchrist et al., 1994; Kooi and 

Beaumont, 1994). Local variations in the lateral and vertical distribution of 
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resistant rock units can result in steep escarpments and a stepped topography 

(Gilchrist et al., 1994).  

A major limitation of SPMs is that they are somewhat qualitative in that they are 

not constrained by independent empirical data and observations. Therefore, 

they are subject to assumptions and subjective parameterisation (Bishop, 2007). 

Fortunately, this limitation is well-appreciated and the need for independent 

constraints is acknowledged and typically provided in the form of field-based 

geomorphic observations, quantitative dating techniques and/or offshore 

stratigraphic analyses. An additional consideration for interpretation of SPMs is 

their temporal and spatial resolution (typically 1 – 5km and c. 100 – 1x106 yr) 

(Bishop, 2007). This can result in small scale geomorphic features (e.g. 

knickpoint retreat and river channel width) being unresolved during the 

modelling process, however, this resolution still provides important information 

on long-term, large scale landscape evolution (Van der Beek and Braun, 1998; 

Bishop, 2007; Sacek et al., 2012; Goren et al., 2014). 

Another difficulty faced by continental margin SPMs was their ability to include 

the tectonic processes associated with rifting due to the different timescales 

over which tectonic and surface processes occur (Beaumont et al., 2000). Recent 

numerical models have attempted to integrate the newly formulated 

geodynamic settings (see Chapter 2), such as the parameters that govern 

lithospheric stretching and thermal dynamics of the underlying mantle with 

surface processes. In this way, what were uncertainties or assumptions in 

previous models, such as the value of flexural rigidity of the lithosphere, become 

parameters; the value and importance of which can be investigated (Braun et 

al., 2013a; Rouby et al., 2013). These models have been assessed against real-

life examples such as the West African margin (Braun et al., 2013a, Rouby et al., 

2013), northeast Brazilian margin and southeast Australian margin (Sacek et al., 

2012) with reasonable success. However, the influence of precipitation (e.g. 

Colberg and Anders, 2014), lithological variation (Bishop and Goldrick, 2010) and 

structural complexity (e.g. Redfield et al., 2005a, b) that a margin may exhibit 

is yet to be fully resolved and model parameterisation remains challenging. 
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Figure 3-4: Conceptual models of continental margin evolution and the expected AFT age 
trend across the margin for each. Redrawn after Gallagher and Brown (1999a). Red, yellow, 
blue, etc. = t0, t1, t2, etc. A – Parallel escarpment retreat of a downwarped rift flank. B – 
Escarpment retreat of an elevated rift flank incorporating isostatic readjustments to erosion. 
C – Downwearing model with a pinned drainage divide inland of the initial rift flank. 

3.6 Geomorphic response to rifting: Escarpment retreat 
or plateau downwearing 

Inspired by the dramatic escarpment and plateau landscape of Southern Africa, 

King‘s model of landscape evolution envisaged that coast-parallel escarpments 

evolved towards their present day location and morphology through a process of 

backwearing (e.g. King, 1953; Fig. 3-4a). This model involves the weathering and 

erosion of free-facing slopes inducing parallel escarpment retreat (Summerfield, 

1991). The initial condition for King‘s escarpment retreat model was the 

development of a broad regional monocline (i.e. the Natal monocline) into which 

fluvial erosion drives the escarpment back towards the warp axis (Ollier and 

Marker, 1985). King‘s model involved the generation of pediments (i.e. low relief 
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surfaces with low slope angles) that become collated to form a pediplain (King, 

1955; Summerfield, 1991; Blenkinsop and Moore, 2013).  

King and subsequently other workers suggested that this model of escarpment 

development was applicable to other continental margins, such as the South 

Australian margin (Ollier, 1982; Seidl et al., 1996). Ollier (1985) attempted to 

refine and further generalise the combined process involved in the development 

of high elevation topography of a downwarped continental margin. It was 

suggested that an uplifted surface becomes downwarped by thermally induced 

margin subsidence promoting a long wavelength flexing of the lithosphere 

(Ollier, 1985; Ollier and Marker, 1985; Ollier and Pain, 1997).  This produces a 

warped basal unconformity offshore which Ollier and Pain (1997) suggest is a 

continuation of the onshore downwarped surface. In this view, sporadic 

geomorphic features on the coastal plain such as inselbergs and bonhardts 

(Twidale, 1968) are interpreted to be erosional remnants of a pre-rift surface. 

One of the main criticisms of parallel escarpment retreat model is focused on 

the assumptions made regarding the isostatic response of the landscape during 

the process (Gallagher and Brown, 1999a, b; Van der Beek et al., 2002). 

Specifically, King‘s escarpment retreat model suggested an isostatic response 

only after erosion had caused the escarpment to retreat c. 480 km inland 

(Blenkinsop and Moore, 2013).  

Large scale numerical models (c. 1x103 km2) introduced a different class of 

model for continental margin evolution by incorporating various parameters 

including: lithology, climate and, crucially, flexural isostasty of the lithosphere. 

A variant of the escarpment retreat model was proposed assuming an initially 

horizontal pre-rift topography and imposing the initial condition that the initial 

escarpment is produced at by vertical displacement on normal faults at the 

margin (Gilchrist and Summerfield, 1990; Gilchrist et al., 1994; Tucker and 

Slingerland, 1994). The highest rates of denudation occur immediately seaward 

of the initial escarpment lip by intense incision, as river drainage patterns 

readjust to a rapidly decreasing base level. Erosion of the high-relief escarpment 

leads to scarp retreat however isostatic adjustments to the removal of material 
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produces prominent rift flank upwarps (Fig. 3-4b). Denudation is lower seaward 

of the escarpment and far inland on the continental interior.  

The key difference between plateau-downwearing and scarp retreat models is 

the incorporation of an inland drainage divide (Gilchrist et al., 1994; Kooi and 

Beaumont, 1994; Van der Beek et al., 2002) (Fig. 3-4c). The initial scarp in both 

models is a fault bounded rift flank however if the pre-rift topography or 

lithological variations has produced a drainage divide inland of the initial 

escarpment, rapid incision will erode the initial escarpment. Progressive removal 

of interfluves destroys the initial scarp and a new scarp forms at the position of 

the drainage divide (i.e. pinned-divide) (Gilchrist et al., 1994; Kooi and 

Beaumont, 1994; Van der Beek et al., 2002).  

These models have fundamental differences in both the timing and amount of 

denudation observed across a margin (Van der Beek et al., 2002; Braun and Van 

der Beek, 2004). Except from the escarpment retreat of a downwarped margin, 

the initial elevation of the escarpment and isostatic rebound is greatest towards 

the coast and as such denudation is predicted to be at a maximum at the coast 

decreasing to a minimum at the present-day escarpment. If an inland drainage 

divide is present, denudation is greatest and relatively uniform seaward of the 

drainage divide. However, if the interior base levels are also lowered during rift 

flank uplift inland denudation may also be large (Gallagher and Brown, 1998).   

3.7 Quantifying surface process models: Insights from 
low temperature thermochronometry and 
cosmogenic nuclide analysis 

Theoretical models of long term escarpment development are distinguished by 

their fluvial slope processes which, in turn, produce distinct patterns of erosion 

over time. Because progressive erosion of the margin will cause rocks, previously 

at depth, to cool as they are exhumed towards the Earth‘s surface, low 

temperature thermochronology (LTT) has been deployed in many studies to 

validate conceptual landscape evolution models (e.g. Brown et al., 1994, 2002; 

Gallagher and Brown, 1999a, b; Persano et al., 2002; Reiners et al., 2003; Braun 

and Van der Beek, 2004; Heimsath and Ehlers, 2005). 
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Over the past 25 years or so, apatite fission track (AFT) thermochronology has 

been used at many continental margins to constrain magnitudes of post-rift 

denudation. Gallagher and Brown (1999a) presented a conceptual relationship 

between three styles of escarpment evolution and their corresponding expected 

AFT ages (Fig. 3-4). All models invoke limited erosion on the plateau and 

therefore AFT ages are significantly older than the age of rifting reflecting much 

older cooling of a pre-rift land surface. A slight exception to this is model C (Fig. 

3-4) where an interior drainage divide causes some denudation of the plateau, 

but at lower magnitudes required to exhume rocks with completely reset AFT 

ages following rifting. The major differences in erosion are suggested to occur 

seaward of the escarpment.  

In the downwarp model, remnants of the ―palaeoplain‖ at the coast will yield 

fission track ages greater than or equal to the age of the palaeoplain; AFT ages 

progressively young towards the base of the escarpment in response to parallel 

retreat. The levels of erosion predicted by this model are, however, relatively 

minor and AFT ages across the coastal plain would usually be older than rifting 

as denudation was not pronounced enough to bring rocks that were at a depth of 

more than c. 3 to 4 km before rifting to the surface. In contrast, scarp retreat 

models accounting for isostatic readjustments and beginning with an initial 

escarpment formed by km-scale vertical displacement on normal faults produce 

a fundamentally different style of erosion. Across the margin, denudation is 

initially highest at the high-relief escarpment. Lesser amounts of denudation are 

predicted as the escarpment retreats back into an upwarped surface produced 

by the flexural isostatic response to denudation. In concert with decreasing 

levels of denudation towards the present day escarpment, AFT ages increase. 

Where denudation is highest AFT ages may be younger than the age of rifting as 

they have been exhumed from temperatures higher than c. 110°C. Plateau 

downwearing is promoted when an inland drainage divide is present. The 

drainage divide defines the future location of the escarpment as rapid incision 

occurs on the seaward side. Downwearing is characterised by relatively uniform 

denudation across the margin and as such does not show a steep gradient in AFT 

ages towards the escarpment (e.g. Braun and Van der Beek, 2004) (Fig. 3-4). 
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More recently, AFT analysis has been supplemented with apatite (U-Th)/He 

analysis in landscape evolution studies to better resolve the timing, magnitude 

and distribution of erosion (e.g. Persano et al., 2002; Balestrieri et al., 2005; 

Hansen and Reiners, 2006). The majority of studies at margin settings do not 

find that thermochronometry data are compatible with the parallel escarpment 

retreat model of a downwarped surface. Instead the data favour scarp retreat of 

an uplifted rift flank or plateau downwearing by an interior drainage system. 

However, resolving which model of escarpment evolution using (U-Th)/He 

analysis is limited as the margin may not have experienced enough erosion to 

exhume samples from below the apatite (U-Th)/He closure temperature (Braun 

and Van der Beek, 2004) (Fig. 3-5). Although the theoretical merits of 

integrating AFT and apatite (U-Th)/He techniques are clear, in practice several 

factors influencing the closure temperature of the dating systems, in particular 

the apatite (U-Th)/He system, can make interpreting such data difficult (see 

Chapter 4). 

Efforts to constrain more recent rates of erosion using cosmogenic nuclide dating 

are generally in agreement with models of rapid removal of the rift-related 

escarpment with slower present day erosion rates. This has been shown 

particularly well for the continental margins of South Africa where cosmogenic 

studies on the western margin (Cockburn et al., 2000; Bierman and Caffee, 2001; 

Kounov et al., 2007) and eastern margin (Fleming et al., 1999; Erlanger et al., 

2012) have shown dramatically reduced erosion rates during the Cenozoic, 

relative to those implied by AFT analysis during the Cretaceous (see Chapter 7 – 

Section 7.5.1). This reduction in erosion rate is suggested to have potentially 

persisted since the late Eocene (Cockburn et al., 2000) through to the present 

day on the western margin and has at least been the case over the past c. 1 Myr 

on both eastern and western margins (Fleming et al., 1999; Bierman and Caffee, 

2001; Kounov et al., 2007). Moreover, although rates of denudation on the 

plateau are greatly reduced compared to Cretaceous levels, local variations in 

climate and lithology will still cause the removal of supposedly long-lived erosion 

surfaces (Fleming et al., 1999; Kounov et al., 2007; Erlanger et al., 2012).  



Chapter 4: Apatite fission track and (U-Th-Sm)/He thermochronology 

60 

 

Figure 3-5: Predictions of apatite (U-Th)/He ages with distance from the coast for the 
escarpment retreat and plateau degredation (downwearing) models of rift flank evolution 
(after Braun and van der Beek, 2004). The two end member scenarios where modelled over 
150 Myr with rifting initiating at 100 Ma. The (U-Th)/He age distribution predicted with a 
geothermal gradient of 50°C/km and a constant surface temperature of 0°C. 

Use of this approach at other margins such as the southeastern Australian margin 

has yielded data that suggests rapid erosion occurs at the base of knickpoints 

and escarpment faces with much lower erosion at the head or crest (Weissel and 

Seidl, 1998; Heimsath et al., 2006). This pattern of erosion has been used by 

Wiessel and Seidl (1998) and similarly by Vanacker et al. (2007) to support 

parallel escarpment retreat across southeastern Australia and southern Sri 

Lanka, respectively. Conversely, Heimsath et al. (2006) and Jakica et al. (2011) 

advocate stability of the eastern and western Australia margins, respectively, 

following rapid removal of an initial escarpment. However, the low temporal 

resolution (c. <1Myr) limits the insights cosmogenic nuclides can provide into 

long-term escarpment evolution while proving more sensitive to local 

escarpment retreat and variations in erosion driven by climate and lithology 

(Fleming et al., 1999; Persano et al., 2002; Kounov et al., 2007). 

Resolving whether escarpment retreat or plateau downwearing are more 

applicable at one particular margin or another using thermochronology alone has 

proved to be a particularly difficult and contentious issue. Numerical modelling 

by Braun and Van der Beek, (2004) investigated the spatial pattern of (U-Th)/He 
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ages that would occur across a continental margin that had developed to its 

present morphology by escarpment retreat or plateau downwearing (Fig. 3-5). 

This work highlighted that simple coast perpendicular age vs. distance transects 

do not provide enough detail to resolve the manner of escarpment evolution and 

that coast parallel samples should also be incorporated into surface process 

models. In order for thermochronometric ages to have significance in terms of 

the timing and distribution of escarpment erosion additional variables must be 

considered: (i) the initial height of escarpments; (ii) the geothermal gradient; 

(iii) the flexural rigidity of the lithosphere and (iv) the rate of escarpment 

migration (Braun and Van der Beek, 2004). An increase in (i) or (ii) and decrease 

in (iii) will promote exhumation of deeper or, more accurately, hotter samples 

which will yield thermochronological ages that correspond to the time of 

erosion. If rates of escarpment migration are high then LTT ages from different 

samples may not be distinquishable from one another and provide no insights 

into the style of escarpment evolution. The data often leaves the style of 

escarpment evolution largely unresolved when compared to surface process 

driven numerical models (Van der Beek et al., 2002; Braun and Van der Beek, 

2004). 

Inferences on the style of escarpment evolution that can be made from simple 

LTT age vs. distance from coast relationships alone are clearly limited and many 

margins present a more complex LTT spatial relationship. Green et al. (2013) 

highlight the western continental margin of South Africa specifically because 

young (i.e. close to or younger than rifting) AFT ages extend inland beyond the 

present location of the escarpment. This infers significant denudation occurred 

on the present day interior plateau following rifting, contrary to the simple 

conceptual models. This observation of complex and variable ages across the 

southwest African margin is, in fact, a main impetus behind this thesis. This 

work follows on from the interpretation of Brown (1992) and Gallagher and 

Brown (1999a) that anomalous fission track age patterns are produced by post-

rift fault reactivation. This explanation is rejected by Green et al. (2013) in 

favour of alternative scenarios such as heat flow variations during rifting (e.g. 

Green et al., 2004) or subsequent igneous intrusive activity (Duddy et al., 1998) 

and/or a more complex evolution involving peneplanation between periods of 
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uplift and burial (e.g. Green et al., 2013). These scenarios are discussed in 

detail alongside new LTT data in subsequent chapters. 

Low temperature thermochronology continues to be a popular method of 

deriving estimates of denudation from thermal history information. Beyond this, 

however, resolving the style of escarpment evolution that a margin has 

experienced is difficult. Braun and Van der Beek, (2004, p. 13) state that ―a 

deeper understanding of the mode of escarpment evolution will not necessarily 

be attained through more data collection but from a better understanding of the 

actual processes causing escarpment retreat and how rates of these processes 

may be affected by climatic variations‖. While this is certainly true and is being 

addressed by recent surface process models (e.g. Sacek et al., 2012; Colberg and 

Anders, 2014) recent LTT data has been interpreted in the context of regional 

plate movements (e.g. Holford et al., 2009); local post-rift tectonic reactivation 

of pre- or syn-rift structures (e.g. Redfield et al., 2005a, b) or dynamic 

topography (e.g. Flowers et al., 2012). Taking these regional tectonic influences 

into consideration alongside surface processes is important, particularly in light 

of the growing appreciation of the complex structural and thermal features 

rifted margins may exhibit throughout their evolution (Fig. 3-6). Hence, more 

LTT data should be obtained but the data should have the resolution and 

regional distribution to investigate post-rift fault reactivation of basement 

structures along the continental margin and continental interior. 

3.8 Geological factors controlling passive margin 
evolution 

3.8.1 Regional plate movements 

During continental rifting, in plane stress drives extension and lithospheric 

thinning. Following continental break-up the margin is traditionally referred to 

as ―passive‖ due to its relative tectonic quiescence during the drift phase 

(Ziegler and Cloetingh, 2004). Intraplate settings may then be surrounded by a 

combination of divergent, convergent and transform margins. Extensive in-plane 

stress may propagate far from these active plate boundaries (Ziegler and 

Cloetingh, 2004; Anderson and Natland, 2005; Viola et al., 2005; Foulger, 2007; 
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Figure 3-6: Cartoon illustrating the variety of different mechanisms proposed for creating 
vertical motions at continental margin settings. Crustal thinning during syn-rift extension of 
the lithosphere can lead to overall subsidence of proximal margin with upwarping occurring 
at the rift flanks (e.g. Braun and Beaumont, 1989). If a hot thermal anomaly is present during 
the syn-rift phase initial uplift may occur due to doming over the underlying plume with 
thermal relaxation leading to subsidence during the post-rift phase (Ziegler and Cloetingh, 
2004). The removal of continental mantle lithosphere during rifting (e.g. Huismans and 
Beumont, 2011) may produce uplift due to the influx of hot buoyant material. Emplacement 
of a high density lower crustal body (underplating) beneath the margin can support the 
margin preventing subsidence or causing uplift due to isostasy or the thermal buoyancy of 
the underplate material (e.g. Hirsch et al., 2010). In response to uplift of the margin, erosion 
removes material from the continent which is transported and deposited in offshore basins 
causing further uplift and subsidence of the on and offshore parts of the margin driven by 
flexural isostasy (e.g. Rouby et al., 2013). The presence of hot mantle plumes beneath plates 
can induce long wavelength dynamic uplift (e.g. Gurnis et al., 2000). Mantle convection 
patterns and in plane stresses created by plate movements or propagated from active plate 
boundaries can become enhanced by combining with stresses induced by vertical motions 
and trigger post-rift reactivation of pre-existing faults (e.g. Burov and Cloetingh, 2009). 

Cloetingh and Burov, 2011) or intraplate stresses may be generated by the 

relative rotation of plates and microplates of varying lithospheric strength 

(Nürnberg and Müller, 1991; Schettino and Scotese, 2005; Bird et al., 2006). 
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Propagation of stresses from subduction zones and mid-ocean spreading centres 

can occur within plate interiors over distances greater than 1000km away from 

the active plate boundary (Holford et al., 2009). The stress required to promote 

deformation may be relatively small and therefore intraplate settings are likely 

to show such deformation (Cloetingh and Burov, 2011). Large scale compressive 

stress will induce shortening style structures such as small scale thrusts and folds 

but may extend to complete buckling of the lithosphere (Ziegler et al., 1995; 

Bosworth et al., 1999; Holford et al., 2009; Blenkinsop and Moore, 2013). The 

surface response to compressive deformation will enhance and prolong folding 

and potentially lead to brittle faulting in the upper crust (Cloetingh and Burov, 

2011). Such deformation of the lithosphere has been suggested to have resulted 

in cycles of uplift and erosion to occur in the post-rift phases of many passive 

margins, such as the British Isles (Hillis et al., 2008; Holford et al., 2009, 2010), 

southeastern Australia (Green et al., 2004), southeastern Brazil (Cogné et al., 

2011) and Scandinavia (Japsen et al., 2009; Bonow et al., 2014). 

In Southern Africa, Moore et al. (2009) explain the causes of the regional 

episodes of epierogenic uplift and erosion suggested by King (1953) and Partridge 

and Maud (1987) using far-field horizontal plate forces. Moore et al. (2009) 

suggest that three coast parallel axes of flexure (Escarpment Axis, Etosha-

Griqualand-Transvaal Axis, Ovambo-Kalahari-Zimbabwe Axis) were formed due to 

the break-up of Gondwana (Gilchrist and Summerfield, 1990), a rotation in the 

African plate at c. 84 Ma (Nürnberg and Müller, 1991) and a Palaeogene 

reorganization of spreading geometry in the Indian Ocean (Reeves and de Wit, 

2000), respectively (Fig. 3-7). These workers prefer this model of uplift of 

Southern Africa ahead of plume driven models due to the coherence of drainage 

patterns to their proposed flexural axes of uplift, occurrence of intrusive activity 

at the time of proposed uplift and the coeval timing of offshore erosional 

unconformities. 

3.8.2 Surface response to faulting 

The influence of a pre-existing structural fabric on the style and location of 

rifting is well appreciated (e.g. Ziegler and Cloetingh, 2004; Corti et al., 2013;  
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Figure 3-7: Drainage system of southern Africa (after Moore et al., 2009). Three major river 
divides are identified and interpreted to reflect epeirogenic uplift Axes by Moore et al. 

(2009). E-G-T Axis = Etosha–Griqualand–Transvaal Axis; O-K-Z Axis = Ovambo–Kalahari–
Zimbabwe Axes. 

Autin et al., 2013) but the potential of post-rift movement on ancient basement 

structures or reactivation of failed syn-rift basins is still debated (Ziegler and 

Cloetingh, 2004). Post-rift inversion structures or extensional tectonic features 

have previously been identified in offshore rifted margin sequences (Lundin and 

Doré, 2002; Viola et al., 2005; Paton et al., 2008; de Vera et al., 2010), 

however, the onshore record of structural deformation is often destroyed by 

surface processes and is therefore harder to decipher. 

In tectonically active regions, the main indication of the presence of brittle 

deformation is the creation of relief as fluvial incision responds to a change in 

base level driven by fault block movement (Kirby and Whipple, 2012). Variations 

in prevailing climate, lithology and pre-existing drainage network can produce 

distinct patterns of relief over different timescales (Beaumont et al., 1992; ter 

Voorde et al., 2004; Kirby and Whipple, 2012). In regions where fault movement 

has occurred in an erosional environment, prominent geomorphic features such 

as triangular facets, erosional surfaces, and knickpoints may develop and these 

can be used to evaluate patterns of erosion associated with fault movement (Roe 
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et al., 2006; Strak et al., 2011). Many geomorphic markers, however, preserve a 

record over short timescales (<100,000 yrs) and therefore do not provide insights 

into long-term landscape evolution (Strak et al., 2011). To address this issue, 

analogue and numerical modelling has been used to investigate the erosional 

response to thrust (Sinclair et al., 1991; Graveleau and Domininguez, 2008) and 

normal faulting (Hardy and Gawthorpe, 2002; Cowie et al., 2006; Strak et al., 

2011).  

In extensional settings the rate of erosion by fluvial incision is positively linked 

to the steepness of river slopes which are positively related to the timing and 

growth rate of faults. Moreover, Cowie et al. (2006) suggest that the distribution 

and interaction of normal faults has a major control on the location of drainage 

divides and catchment area of drainage on the footwall. For example, for fast 

rates of fault growth, small drainage basins develop while topographic relief is 

high and potentially laterally extensive. In compressional environments 

numerical modelling has pointed to the development of thrust-folds and the dip 

of major detachment folds as a major control on drainage development and 

migration of sediments (Tucker and Slingerland, 1996; Van der Beek et al., 

2002).  

Thermochronology provides another means to assess the magnitude of long-term 

erosion of uplifted fault blocks. However, the thermal effects associated with 

fault zones such as lateral heat flow due to fault block juxtaposition; varying 

geothermal gradients beneath eroding footwalls and buried hanging-walls; and 

heat flow perturbations beneath the developing relief on the footwall may 

complicate interpretation of data from such settings (Ehlers et al., 2001). The 

lag between erosion of the uplifted footwall relative to the timing of fault 

movement can also have a major influence of the thermal structure over time 

and therefore on the thermal history an exhumed rock column would experience 

(ter Voorde et al., 2004, Lock and Willet, 2008). Abrupt variations in fission 

track ages across basement terrains have been interpreted as evidence for 

structural reactivation at many margin settings (Raab et al., 2002; Redfield et 

al., 2004, 2005a, b; Kounov et al., 2009; Cogné et al., 2011, 2012; Danišík et al., 

2012; Emmel et al., 2012; Karl et al., 2013; Franco-Magalhaes et al., 2014; 
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Ksienzyk et al., 2014). Importantly, these interpretations of fission track data 

are in agreement with recent studies of so-called ―passive‖ margin settings using 

field-based structural analyses (Paton, 2006b; de Beer, 2012; Bezerra et al., 

2014; McPherson et al., 2014), geophysical data (Stankiewicz et al., 2008; 

Maystrenko et al., 2013), or offshore seismic analysis (Viola et al., 2005; Paton 

et al., 2008; de Vera et al., 2010; Holford et al., 2014). Combined, these studies 

support major post-rift and neotectonic structural reactivation at continental 

margins that induced significant cooling of crustal rocks in the process. 

3.8.3 Crustal heterogeneity 

3.8.3.1 Rock hardness and rock density 

Lithological control in the generation of relief has long been argued by 

geomorphologists resulting in the formation of bornhardts, knickpoints and even 

escarpment type morphologies with resistant cap-rocks (e.g. Drakensberg 

escarpment). This has traditionally been viewed in terms of a rocks hardness, 

cohesion and particle size, that dictate how easily erodible the lithology will be 

(Summerfield, 1991). However, recent work has suggested that rock density 

exerts a greater control over relief generation than rock hardness (Braun et al., 

2014b). 

Braun et al. (2014b) suggest that the erosion of dense rocks such as granite 

intrusions will induce an isostatic response greater than when less dense rocks 

are removed. This results in dense crustal bodies existing as topographic highs in 

the landscape (Fig. 3-8a). A major source of contention with this model is that it 

is contradictory to the traditional geomorphic view of difficult to erode granite 

bodies. Braun et al. (2014a) suggest that isostatic-density driven relief 

generation will enhance erosion over the dense body creating a faster 

exhumation rate than the surrounding less dense rock. These effects will be 

most pronounced at settings where the lithosphere has a low flexural rigidity 

and has not been affected by a complex structural history (Braun et al., 2014b; 

Flowers, 2014). 
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Figure 3-8: Illustration showing the potential effect on topography predicted to occur by 
introducing (a) a region of dense crust (i.e. high density intrusion into low density 
sedimentary rock) (after Braun et al., 2014a) and (b) a region of radiogenic crust (after 
Pysklywec and Beaumont, 2004). (c) Shows the effect of changing the effective elastic 
thickness of the lithosphere on the development of rift flank topography (after Gilchrist and 
Summerfield, 1990).   
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3.8.3.2 Radiogenic crust 

The decay of radioactive isotopes (particularly U, Th and K) within the crust 

produces additional heat energy. Radiogenic heat production is thought to decay 

exponentially with depth before being dominated by the heat flow imposed on 

the base of the crust by the upper mantle (Braun et al., 2006). However, lateral 

variations in radiogenic heat production can be abrupt, dictated by lithology and 

rock composition (Andreoli et al., 2006). In general terms, the effect of crust 

with an elevated radiogenic heat production is that in this region the lithosphere 

will be weaker than the surrounding crust (Holford et al., 2009; Burov, 2011; 

Cloetingh and Burov, 2011; Armitage et al., 2013; Mareschal and Jaupart, 2013).  

Large thermal contrasts can induce instabilities in the lithosphere and promote 

vertical deformation at major structures at continental margins or supposedly 

stable interiors (Pysklywec and Beaumont, 2004; Holford et al., 2011; Armitage 

et al., 2013). Modelling by Pysklywec and Beaumont, (2004) propose feedbacks 

may be established at regions of radiogenic crust coincident with mantle 

downwellings (Fig. 3-8b). These feedbacks involve a process of crustal thickening 

within the radiogenic crust causing heating that further weakens the 

lithosphere. These effects are most pronounced when the crustal thermal 

anomaly is distributed uniformly over a region or is buried beneath low 

radioactivity material. Such a region of radiogenic crust may make the 

lithosphere inherently prone to deformation as a result of mantle convection or 

in-plane stresses (Pysklywec and Beaumont, 2004; Holford et al., 2009; Burov, 

2011; Cloetingh and Burov, 2011; Armitage et al., 2013; Mareschal and Jaupart, 

2013). 

3.8.3.3 Effective elastic thickness 

The role of flexural isostasy underpins all models investigating vertical 

movement of the lithosphere as a response to surface processes or mantle 

dynamics. In general, the regional deformation experienced by rigid lithosphere 

(high EET) in response to a vertical forcing will be of a smaller magnitude than a 

less rigid lithosphere (low EET) (Fig. 3-8c). Most models typically explore the 

effect of various values of EET on whatever process is being investigated. 
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However, despite being long recognised as a major influence on lithospheric 

deformation, the impact of laterally variable lithosphere elasticity is 

underexplored (ten Brink and Stern, 1992; Tucker and Slingerland, 1994). 

During the rifting process, isostatic flexure of the lithosphere is initially a 

consequence of lithospheric thinning and sensitive to the depth of crustal 

necking (Braun and Beaumont, 1989; Rouby et al., 2013). In the post rift phase, 

flexing of the lithosphere is driven by unloading of the sub-aerial continental 

lithosphere and loading of adjacent sedimentary basins (Weissel and Karner, 

1989). In this later phase, the efficiency of surface processes and the density of 

the material being removed have a major impact on the uplift and subsidence 

history of the margin (Rouby et al., 2013). Recent numerical modelling 

integrating the dynamics of both the continental and offshore domain has 

provided insights into the geomorphic evolution of the margin and the 

corresponding offshore stratigraphic record (e.g. Braun et al., 2013a; Rouby et 

al., 2013). 

Results from this modelling predict that the initial topography, related to 

flexural uplift during rifting, will be eroded away within 20 Myr and produce an 

exponential decline in sedimentary volumes in offshore basins over time (Rouby 

et al., 2013). Moreover, it is suggested that peaks in offshore accumulation 

during a margin‘s post-rift history must therefore be driven by separate events 

such as sea level fall, crustal uplift or a climatically induce increase in erosion 

rate (Rouby et al., 2013). This model has been supported by field analysis by 

Dauteuil et al. (2013), using the northern Namibian margin as a type-example. 

3.8.3.4 Igneous bodies 

Previous sections have addressed structural deformation or the transfer of mass 

in the upper crust. However, the addition of crustal material in the form of 

igneous intrusions can also perturb the thermal and structural stability of the 

region and influence patterns of uplift. The presence of a lower crustal 

underplate comprised of igneous material is a feature identified in many rift 

models and is suggested to support uplifted rift-flanks over time (McKenzie, 

1984; Cox, 1993; Gilchrist et al., 1994). Recent seismic imaging has revealed the 
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presence of lower crustal bodies at many margins in the form of high seismic 

velocity zones (Hirsch et al., 2010, Reynisson et al., 2010; Thybo and Artemieva, 

2013). However, the origin of these zones is not exclusively magmatic and can 

be related to partial serpentinization of the mantle (e.g. O'Reilly et al., 1996; 

Lundin and Doré, 2011) or the presence of ancient inherited high grade 

metamorphic rocks (Ebbing et al., 2006; Gernigon et al., 2006; Reynisson et al., 

2010). The uplift associated with the emplacement of a lower crustal body may 

induce a magnitude of surface uplift up to 10% of the thickness of the underplate 

(Maclennan and Lovell, 2002). However, depending on the composition, 

morphology and lateral extent of these crustal bodies, their impact may be 

spatially variable (Levell et al., 2010). 

Local intrusive activity such as the emplacement of dykes and sills and small 

kimberlite and carbonitite pipes can be significant in terms of the tectonic 

geomorphology of the area. Their impact on the geomorphology comes either 

through doming above the intruding material or by creating local variations in 

lithology and, more importantly, erodability (Summerfield, 1991). This can result 

in pediment formation with resistant cap rocks atop steep escarpments (Gilchrist 

et al., 1994; Van der Beek et al., 2002) providing an important geomorphic 

record. A record of a regions erosional history can also be found in the 

preservation of crater facies and is discussed with particular relevance to 

Southern Africa in Chapter 7 – Section 7.5.2. Intrusions may also be closely 

linked to the structural history of the region. The spatial and temporal 

relationship of intrusive activity with structural zones and periods of active 

tectonics, respectively, is well documented (Stracke et al., 1979; White et al., 

1995; Jelsma et al., 2004, 2009; Moore et al., 2008; Woolley and Bailey, 2012). 

However, following intrusion emplacement, these regions may become 

strengthened and focus later faulting and structural uplift to adjacent regions 

(Magee et al., 2013).  

3.9 Geomorphology of dynamic topography 

The King model of landscape evolution ran into criticism partly due to the lack 

of a mechanism that could produce regional vertical movements of the crust; 
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lacking any explanation, King named the process of up-warping of the Earth‘s 

surface Cymatogeny (Ollier, 2014). Now, we know that such a mechanism may 

be attributed to vertical stresses being imposed at the base of the crust by 

upwelling mantle flows (i.e. dynamic uplift). The geomorphic expression of 

dynamic uplift is termed dynamic topography (Pekeris, 1935; Hager et al., 1985) 

and is of particular interest within the current literature and this study. 

Both the style of uplift and associated topography is described as ‖Dynamic‖ as 

the processes are transient; linked directly to the presence of mantle up or 

down-welling (Flament et al., 2013). As the plate passes away from its position 

over the hot upwelling, the associated uplift dissipates and may lead to 

subsidence adjacent to regions of uplift (Moucha and Forte, 2011). Despite the 

transient nature, mantle convection cells and zones of anomalous heat flow have 

been shown to persist over long timescales (up to 10s of millions of years) and, 

depending on the relative rates of plate motion over the mantle, inducing 

surface uplift on the order of 10 – 30 m/Myr (Braun, 2010). This uplift is typically 

expected to occur over long wavelengths (1000s of kms) with relatively small 

amplitudes (c. < 2000 m) and therefore it should not lead to deep erosion of the 

uplifted surface (Braun, 2010). However, recent modelling has suggested that 

dynamic topography can be efficiently eroded due to the strong scaling between 

the size of the catchments draining the continent and the erosional response of 

the landscape (Braun et al., 2013b, 2014b). 

Geological insights are crucial in understanding the relationship of surface 

processes with dynamic uplift; yet these can be difficult to obtain and attribute 

specifically to mantle-flow effects (Braun et al., 2013b). Well-preserved 

stratigraphic successions in sedimentary basins are often relied upon to provide 

such geological evidence through the identification of unconformities and marine 

regressions (Mitrovica et al., 1989; Heine et al., 2008; Petersen et al., 2010). 

However, any geological expression of dynamic uplift which occurs in sub-aerial 

environments has the potential to be eroded away. In this situation, 

understanding the timing, magnitude and distribution of erosion either by 

investigating geomorphological features (e.g. Burke, 1996; Hartley et al., 2011) 

or by quantitative dating techniques such as cosmogenic nuclide dating or low 
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temperature thermochronology is critical. Eroding a dynamic upwelling with 

consequent deposition in adjacent basins may disrupt the balance between 

gravitational stress and viscous stress from an upwelling mantle and perturb the 

underlying mantle flow, potentially driving further uplift (Braun, 2010, Braun et 

al., 2013b). Braun et al. (2013b) suggest that such a positive feedback could 

result in a single kilometre of dynamic uplift resulting in several kilometres of 

erosion.  

It is still unclear whether these feedback mechanisms would be efficient over 

the long wavelengths which are associated with dynamic topography or whether 

mantle convection may only be affected at small-scales. Mantle convection on a 

shorter temporal and spatial scale as described above led Moucha et al. (2008) 

to suggest that continental margins and interiors are never stable over 10 – 100 

Myr timescales. Moreover, small-scale mantle convection will likely disrupt 

eustatic sea level trends and create regional transgressive or regressive phases 

(Lovell et al., 2010). Consequently, this has implications for the geological 

record of the margins sedimentary basins and for geomorphic analyses using 

global sea levels as a stable base level over long timescales. 

The signal of dynamic topography is likely modified by deformation of the 

lithosphere driven by lateral, plate motion driven, effects as discussed in Section 

3.8.1. Indeed workers suggest that plume upwellings have a minor influence of 

lithospheric deformation relative to regional plate motions and intraplate 

stresses (e.g. Moore et al., 2009). However, a more likely scenario is that mantle 

upwellings combine with in-plane stresses to deform the brittle upper-

lithosphere (e.g. Burov and Cloetingh, 2009; Guillou-Frottier et al., 2012; 

Cloetingh et al., 2013).   

The most likely places to observe the present day and past signal of dynamic 

topography are low relief areas where dynamic topography may have perturbed 

drainage and catchment networks, continental interiors that have been 

tectonically quiet over hundreds of millions of years and the stratigraphic record 

that has not experienced periods of erosion (Flament et al., 2013). The effects 

of dynamic uplift have been advocated in a variety of geological settings such as 
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the Colorado Plateau (Liu and Gurnis, 2010; Karlstrom et al., 2012; Rowley et 

al., 2013), South America (Shephard et al., 2010; Dávila and Lithgow-Bertelloni, 

2013), Eastern Australia (Di Caprio et al., 2011; Matthews et al., 2011), Southern 

Europe (Boschi et al., 2010) and Southern Africa (Gurnis et al., 2000; Moucha 

and Forte, 2011; Zhang et al., 2012). 

3.10 Summary and conclusions 

Classical models of landscape evolution (e.g. Davis, Penck, and King) were 

developed largely out with the framework of plate tectonics. In the present day 

view of tectonic geomorphology these models are clearly an oversimplification 

of a complex problem. In fact, the influx of information from novel modelling 

techniques combined with new perspectives on geological observations both on 

and offshore continues to question and challenge established models of 

landscape development. 

Key to resolving this debate will be in understanding if continental settings ever 

become truly stable and if so, when has this occurred over a regions geological 

history. Continental stability is crucial for allowing a landscape to evolve to 

reach its final stage, which, depending on different models, will be either a 

steady-state relief or planation surface. Regular periods of continental 

instability, further complicate the morphology of the landscape and, potentially 

the geological record, as they will drive sea level fluctuations and possibly 

create local inland base levels for drainage systems. Considering the influence 

thermal anomalies and regional plate stresses may have in deforming a 

lithosphere characterised by structural defects and rheological heterogeneity 

(affecting lithospheric strength) both laterally and vertically, long term stability 

may be unlikely. 

Continental margins, including southwestern Africa, commonly exhibit the 

following features: a complex structural setting characterised by pre and syn-rift 

structures; emplacement of syn-rift intrusions of large volumes of mafic 

material; intense erosion of rift-related topography and offshore deposition; and 

a poorly understood and likely complex mantle convection throughout margin 
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development. For this reason, although continental margins may be regarded as 

―passive‖ compared to their intense rifting phase, they are likely to be 

geological settings where vertical and horizontal stresses are accommodated by 

movement on various scales on pre-existing structures across the entire length of 

the margin. The notion of a more dynamic post-rift geological setting also 

extends to continental interiors which have long been considered to be stable 

platforms. However, the combined effects of mantle driven uplift and regional 

in plane stress fields may encourage deformation, particularly at weak 

lithospheric zones such as at the boundaries of thick cratonic regions. 

Except for regions where the climate is arid and the lithology is difficult to 

erode (such as the present day southwestern African margin), erosion efficiently 

creates relief following uplift. Depending on the flexural rigidity of the 

lithosphere the isostatic response can contribute to kilometres of overburden 

being removed from the continental margin following an initial modest uplift. As 

such thermochronology is a powerful tool for constraining the timing of 

denudation driven cooling of crustal rocks. While thermochronology may be 

limited in resolving the specific mechanisms involved in generating the present 

day topography, the temporal and spatial relationship of the data can be 

combined with additional geological data to produce an interpretation of the 

regions geomorphic history. More importantly, thermochronological data should 

be integrated with future models as key constraints on the crusts thermal 

history. However, considering the ambiguity in interpreting thermochronological 

data and uncertainty which persists in these approaches, careful consideration 

should be given as to how this should be done. 
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CHAPTER 4 

APATITE FISSION TRACK AND (U-Th-Sm)/He 
THERMOCHRONOLOGY 

 

4.1 Introduction 

Dating techniques that are used to investigate past geological events typically 

exploit the ability of certain minerals to accumulate and retain daughter 

products created over time during the natural decay of radiogenic isotopes. The 

dominant control on the retention of daughter products only within a particular 

mineral is temperature. In his classic paper on this topic Dodson (1973) 

demonstrated that for simple monotonic cooling paths the retentivity of 

individual systems could be described by a specific ‗closure temperature‘ that 

was a function of the cooling rate. In this way different minerals and different 

radiogenic decay series can be analysed to investigate the cooling history of a 

rock sample as a response to geological events (Fig. 4-1). In detail, however, the 

kinetics of diffusion and/or fission track annealing in most thermochronological 

systems cannot be adequately described using a discrete closure temperature as 

proposed by Dodson (1973). The sensitivity of these systems typically extends 

over a wider range of temperature where significant partial loss of daughter 

products can occur. This behaviour can be exploited to determine and constrain 

complex cooling paths through a particular temperature zone. It is this 

behaviour that underpins these methods as powerful thermochronometers rather 

than simple geochronometers.  

Low temperature thermochronometry (LTT), as the name implies, focuses on 

relatively low temperature cooling within the upper crust of the Earth (c. < 300 

to 350°C). For this reason, LTT has become a powerful tool for investigating 

upper crustal tectonic and geomorphic events where other direct geological 

evidence is scarce (Ehlers and Farley, 2003). Apatite fission track (AFT) and 

apatite (U-Th-Sm)/He (AHe) have been widely used in investigations of these  
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Figure 4-1: Cartoon showing common thermochronology techniques used in geological 
investigations. Each technique is characterised by a decay series, a mineral and a range of 
temperature over which the thermochronometer is sensitive. What defines a low 
temperature thermochronometers is not strictly defined but is here described as 
thermochronometers sensitive to temperatures less than c. 300 – 350°C. 

types as they have the potential to provide detailed constraints on a rock‘s 

thermal history through c. 120 to 35°C. However, limitations inherent in each of 

these systems and an incomplete understanding of some of the underlying 

physical properties governing their systematics has, in some cases, led to 

apparently incompatible AFT and AHe datasets, ‗over-dispersion‘ in observed 

ages and conflicts in thermal history interpretations derived from each method 

(Hendriks and Redfield, 2005; Green et al., 2006; Flowers, 2009; Brown et al., 

2013). 

Theoretical aspects of AFT and AHe analysis are briefly discussed here and in 

more detail in numerous published literature (e.g. Brown et al., 1994; Gallagher 

et al., 1998; Farley, 2002; Ehlers and Farley, 2003; Donelick et al., 2005; Lisker 

et al., 2009). Details of the practical approach to AFT and AHe analysis used in 

this study are provided in Appendix 1. This chapter will give a brief summary of 

the analytical techniques before focusing on the present issues and uncertainties 

associated with integrating data using both of these techniques. Through 

highlighting and discussing the points of uncertainty surrounding both AFT and 

AHe analysis, the methodology and interpretive approach used in this thesis will 
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be justified and described. This approach makes use of multiple single-grain AHe 

analysis and the use of a Bayesian transdimensional approach (e.g. Gallagher, 

2012) to thermal history modelling. It will be demonstrated that this approach is 

effective for dealing with AFT and AHe data sets which initially appear 

incompatible or complex but can and do produce reliable and useful thermal 

history information. 

4.2 Theoretical Background 

4.2.1 Apatite fission track analysis 

During the spontaneous fission decay of 238U within apatite, two highly charged 

fission particles are propelled through the host crystal lattice in opposite 

directions causing a linear trail of damage, or, a fission track (Fleischer et al., 

1975). The number of tracks in a sample increases with time and 238U content. 

By counting the number of tracks intersecting a polished grain surface and 

estimating the concentration of 238U using the external detector method (EDM) 

(see Appendix 1.2) an AFT age can be obtained. Prior to analysis, samples 

undergo a standardised chemical etching treatment allowing fission tracks to be 

revealed so they are observable under an optical microscope (Donelick et al., 

2005).  

Fission tracks in apatite form with the same initial etchable track length of 16 ± 

1 µm (Green et al., 1986; Donelick et al., 1990). The effect of thermal annealing 

is to shorten the maximum etchable length of a fission track. The degree of 

shortening is a strong function of temperature (Fleischer et al., 1975; Gleadow 

et al., 1986a; Green et al., 1989). The significance of a samples AFT age can 

therefore only very rarely be assigned any geological evidence on its own as the 

measured age is conditional on the distribution of track lengths which is itself a 

function of the thermal history of the sample (Gleadow et al., 1986a; Green, 

1988). Rates of thermal annealing are extremely slow at temperatures below c. 

60°C and rise significantly above this temperature until tracks are effectively 

instantaneously and completely annealed at temperatures greater than c. 110°C 

over geological timescales (Gleadow and Duddy, 1981). The temperature range 

between 60 and 110 ± 10°C is known as the Partial Annealing Zone (PAZ) 



Chapter 4: Apatite fission track and (U-Th-Sm)/He thermochronology 

79 

(Gleadow et al., 1986b; Gleadow and Fitzgerald, 1987; Wagner et al., 1989). By 

measuring horizontal confined track lengths (Appendix 1.2; Gleadow et al., 

1986) alongside the AFT age a prediction can be made on the nature of sample 

cooling through the PAZ (Gleadow et al., 1986) (Fig. 4-2).  

As a result of thermal annealing over geological timescales, the measured fission 

track age of a sample will decrease towards zero with depth as tracks become 

annealed to a greater degree (Fig. 4-3). Therefore, a ―true‖ apatite fission track 

age (i.e. one which represents the time a sample last resided at temperatures 

within the crust ≥ c. 110±10°C) will only be recorded if cooling has been 

sufficiently quick so that a sample is brought to temperatures <60°C in a 

geological instant and consequently thermal annealing is minimal. In all other 

cases, the track length distribution (TLD) within a sample will represent a 

mixture of tracks that have been produced at elevated temperatures and have 

undergone some degree of annealing and tracks produced at temperatures below 

c. 60°C which will have not undergone annealing and will therefore be long. 

Decoding the thermal history information within the TLD is thus the key to 

robust interpretations of AFT ages. 

4.2.2 Apatite (U-Th-Sm)/He analysis 

Apatite (U-Th-Sm)/He dating utilises the accumulation of He within the apatite 

crystal produced by the alpha series decay of U, Th and, to varying degrees of  

importance, Sm (Zeitler et al., 1987; Farley, 2002; Fitzgerald et al., 2006). 

Assuming that all of the alpha particles produced and retained within the crystal 

are from the decay of parent isotopes within the crystal then an AHe age can be 

obtained by measuring the relative abundances of U, Th and Sm against the 

amount of He retained in the crystal. 

As with other thermochronometers, the measured age reflects the cooling 

trajectory of the sample through the temperature range that controls He 

diffusion within apatite. The sensitivity of He diffusion in apatite to temperature 

defines a theoretical partial retention zone (PRZ) where retention of helium in 

apatite increases with decreasing temperature. The PRZ influences AHe ages  
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Figure 4-2: Upper panel shows three hypothetical thermal histories. Lower panel shows 
three typical track lengths distributions that are observed for the respective thermal history. 
For this reason, the track length distribution can be inverted to reveal thermal history 
information (after Gallagher et al., 1998). 

with depth in a similar manner as the PAZ for AFT ages (Wolf et al., 1998). At 

temperatures hotter than the maximum temperature of the PRZ, diffusive loss is 

effectively instantaneous and the AHe age would be zero (Fig. 4-3). At lower 

temperatures, retention of He progressively increases until at sufficiently low 

temperatures (c. <40°C) diffusion of He is effectively negligible. Early 

investigations of He diffusion from apatite estimated the PRZ to be a 

temperature range of c. 40 to 75 ± 5°C (Wolf et al., 1996, 1998; Farley, 2000). 

However, the concept of defining a single set of kinetic parameters for the AHe 

system has become increasingly difficult as it has been shown that individual 

grains begin to retain He at higher temperatures due to variations in crystal size 

(e.g. Farley, 2000; Reiners and Farley, 2001), composition (e.g. Warnock et al., 

1997) and accumulated radiation damage caused by alpha recoil during the 

decay of U and Th (Shuster et al., 2006; Flowers et al., 2009; Gautheron et al., 

2009). 

  



Chapter 4: Apatite fission track and (U-Th-Sm)/He thermochronology 

81 

 

Figure 4-3: Left hand figure shows the structure of the theoretical PAZ and PRZ beneath a 
flat topography and the expected age profile with depth for both AFT and AHe 
thermochronomters. Asterix and star represent samples currently at depth. Right hand 
figure shows these samples now exhumed following a period of rapid uplift and denudation 
producing high relief topography. The high relief topography perturbs the present day PAZ 
and PRZ at depth. In high relief areas the age profile may have preserved the structure of 
the profile through the now exhumed palaeo-PAZ and palaeo-PRZ (after Fitzgerald et al., 
2006).   

Much of our knowledge of Helium diffusion from apatite comes from diffusion 

experiments using the near gem quality Durango apatite from Cerro de Mercado, 

Mexico (Farley, 2000). For this reason, Durango apatite is commonly used as a 

standard for analysis (see Appendix 2.2) and the kinematics of the AHe system 

incorporated into modelling techniques is based on diffusion experiments using 

Durango apatite. However, it is now becoming increasingly clear that 

geologically ‗old‘ samples that contain high concentrations of U, Th and Sm and 

therefore may have varying degrees of radiation damage and/or zonation of 

parent isotopes can not be adequately understood using the on Durango apatite 

based diffusion kinematics is a matter for debate (e.g. Green et al., 2006; 

Flowers et al., 2009; Gautheron et al., 2009, 2013) 

Aside from diffusion of He from the crystal, helium is lost by a process of alpha-

ejection (Farley et al., 1996; Hourigan et al., 2005; Spiegel et al., 2009; 
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Gautheron et al., 2012). This occurs due to alpha particles travelling up to 20 µm 

before coming to rest after being emitted from their parent isotope (Farley et 

al., 1996). As such, a proportion of alpha particles produced within 20 µm of the 

crystal edge are lost from the crystal due to ejection. This phenomenon is 

commonly corrected for using a correction factor (Ft) during the calculation of 

AHe ages (Farley et al., 1996; Ketcham et al., 2011). However, the justification 

for making this correction is questionable because it is only ever appropriate if 

the sample cooled quickly and did not suffer any diffusional loss of He. 

Consequently, using the Ft to correct for alpha-ejection will always over-correct 

ages that have experienced significant diffusive loss of helium during their 

thermal history (Spiegel et al., 2009; Gautheron et al., 2012). An alternative 

approach to interpreting AHe ages is to work with the uncorrected, measured 

ages and use a thermal model to derive constraints on the cooling paths 

consistent with the measured age and which explicitly accounts for the loss of 

He by alpha-ejection at each time-step during thermal history (e.g. Meesters and 

Dunai, 2002a, b). In this way, the necessity of making any assumptions on the 

thermal history a-priori or to making any geometrical correction for He lost by 

alpha ejection is circumvented. This latter approach is followed in this thesis.  

4.2.3 Integrating AFT and AHe datasets 

The AFT and AHe thermochronometers are sensitive over different but 

overlapping temperature ranges. Under normal conditions, combining the AHe 

technique with AFT analysis should provide two major benefits: (i) AHe analysis 

augments and enhances the lower temperature portion of the AFT dating domain 

and (ii) provides new insights into cooling events (denudation driven or 

otherwise) at temperatures where AFT analysis is no longer sensitive. Combing 

multiple thermochronometers such as AFT and AHe is therefore a logical step in 

generating more robust thermal history information. Due to their respective 

nominal theoretical closure temperatures, a sample would be expected to yield 

an AHe age that is younger or equal to the complementary AFT age. However, in 

several studies this relationship is poorly defined either in individual samples or 

throughout the entire dataset (e.g. Hendriks and Redfield, 2005; Fitzgerald et 

al., 2006; Green and Duddy, 2006; Flowers and Kelley, 2011; Danišík et al., 
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2012; Ksienzyk et al., 2014). In some cases, this relationship improves if the 

uncorrected age is taken ahead of alpha-recoil corrected AHe ages. This supports 

suggestions that correcting the raw AHe age using a single Ft factor will 

overestimate the degree of helium loss by alpha ejection (Gautheron et al., 

2012; Brown et al., 2013).  

Many studies also assume that the Sm contribution to the total concentration of 

radiogenic 4He is extremely low relative to that of U and Th (e.g. Hansen and 

Reiners, 2006; Vermeesch, 2008). Data presented here agrees with previous 

work that the Sm contribution to the age is small but variable from sample to 

sample and can have a non-negligible effect on the measured age. For example, 

three samples have Sm contribution greater than or equal to 5% with sample 

SA12-35 having a Sm contribution of 8.6%. In most other cases the contribution is 

less than 2 – 3%.  The Sm contribution for Durango standards was less than 0.4% 

and could therefore be argued as insignificant (see appendix A2.2). However, 

this is not representative of natural samples. Figure 4-4 shows the relationship 

between AFT and AHe for new data from SW Africa and highlights the 

importance of quantifying Sm in AHe analyses and the improvement in the AFT – 

AHe relationship when uncorrected AHe ages (raw AHe age) are reported. For 

certain samples, however, the raw AHe age, including the Sm contribution, is 

still older than the complementary AFT age. Moreover, high levels of single grain 

AHe age dispersion suggest additional factors are complicating the AFT – AHe 

relationship and a calculating a single mean AHe age may not be appropriate. 

The following section looks at aspects of both systems to evaluate the factors 

decoupling the AFT – AHe relationship and explore whether they present 

problems or potential for the procurement of thermal history information. 

4.3 Uncertainties in apatite fission track analysis 

Throughout the 1980s the foundations for the geological application of apatite 

fission track analysis were laid down in a series of contributions addressing both 

the theoretical and statistical framework for fission track analysis. A critical 

outcome of these studies was the identification of the primary control of 

temperature over track annealing (e.g. Gleadow et al., 1983; Hurford and  
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Figure 4-4: Relationship between AFT and AHe average ages excluding single grains 
without quantified Sm. Plot shows the improvement of the expected AFT ≥ AHe relationship 
when the contribution of Sm is included and a single alpha correction is not applied. The 
average AHe age used here is calculated using a subset of single grain ages (presented in 
Chapters 5 and 6) however single grains without quantified Sm have been excluded from 
the calculation of the mean value to highlight the effect of Sm on the AFT-AHe relationship. 

Green, 1983; Green et al., 1986; Laslett et al., 1987; Duddy et al., 1988; Green 

et al., 1989). Diligent and systematic laboratory calibrations of the annealing 

behaviour of apatite fission tracks continued throughout the subsequent decades 

leading to the development of robust numerical models designed to invert track 

length measurements to extract thermal history information (see section 4.2.1). 

Through the development of theoretical work, AFT analysis has become a 

reliable tool for understanding thermally sensitive geological processes with both 

academic and industry applications. However, certain aspects of fission track 

annealing have been questioned by several workers suggesting that additional 

factors may enhance rates of thermal annealing. A few of these factors are 

briefly explored and discussed as well as the more fundamental issue of how 

reliable an individual analysts track length measurements may  be. 
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4.3.1 Chemical composition 

Fluoroapatite is the most common end-member composition of apatite 

(Ca10(PO4)6F2) but it has been shown that compositional heterogeneity between 

apatite crystals can influence the rate of thermal annealing (Green et al., 1986; 

O‘Sullivan and Parrish, 1995; Carlson et al., 1999). Compositional heterogeneity 

within apatite can occur by cation or anion substitution of Ca and/or F, 

respectively (Carlson et al., 1999; Barbarand et al., 2003). Substitution of F 

typically occurs with OH or Cl. While the potential for the former to increase 

track resistance to annealing is appreciated by certain workers (e.g. Crowley et 

al., 1990) the presence of the latter, particularly at concentrations > 0.3 wt% 

has been shown to be a more common and more dominant cause (Crowley et al., 

1991; O‘Sullivan and Parrish, 1995; Carlson et al., 1999; Barbarand et al., 2003). 

REEs, Mn, and Sr can become incorporated into the crystal composition in place 

of Ca (Ravenhurst et al., 1993; Burtner et al., 1994; Carlson et al., 1999). The 

influence of REEs is still poorly understood but is likely to exert a significant, 

though second order, influence on the structure of the fluoroapatite end 

member crystals (Barbarand et al., 2003).  

More recent annealing models have included the compositional effect on thermal 

annealing by incorporating additional kinetic parameters. Ideally, these kinetic 

parameters should reflect variations in Cl, REE and all other possible chemical 

heterogeneities that can influence track annealing. However, as stated by 

Barbarand et al., (2003), a full compositional characterisation of each analysed 

grain is analytically challenging. A popular approach is to assume Cl has a 

dominant control on the resistance of fission tracks to annealing and quantify Cl 

contents using electron microprobe analysis. Alternatively, the kinetic 

parameter Dpar (Donelick et al., 1999) can be used in track annealing models as a 

proxy for the amount of resistance to annealing (Carlson et al., 1999; Barbarand 

et al., 2003; Ketcham et al., 2007; Sobel and Seward, 2010). This value 

represents the size of the etch-pit made by the intersection of a fission track 

with the polished surface of the grain mount and can easily be measured during 

AFT analysis. For example, small Dpar values imply Fluoroapatite like annealing 

behaviour while higher Dpar values suggest a higher degree of compositional  



Chapter 4: Apatite fission track and (U-Th-Sm)/He thermochronology 

86 

 

Figure 4-5: Relationship between etch pit measurements (Dpar) and AFT age and MTL. (a) 
Shows the relationship of average measurements for both parameters for all samples 
across the region. NQH = Namaqualand Highlands study area; BMP = Bushmanland Plateau 
study area. (b) Shows the Dpar – AFT age relationship for single grain ages from two 
different samples. 

complexity influencing annealing (Carlson et al., 1999). For a 10°C/Myr cooling 

rate it is suggested that a 0.1 µm change in Dpar corresponds to a 1.5 – 2°C 

change in AFT closure temperature (Ketcham et al., 2007).  

Gautheron et al. (2013) report weak positive correlations between AFT age and 

Dpar and Cl wt% and Barabarand et al. (2003) present a similar correlation 

between Dpar and MTL. Figure 4-5a shows the relationship between Dpar and AFT 

Age/MTL for samples in this study. R2 values close to zero highlights the lack of 

correlation between average Dpar measurements for samples against central AFT 

ages and MTLs. Some samples with high Dpar values can be treated with caution 

as they are potentially over etched and therefore will not be representative of 

the samples compositional effect on annealing. Removing suspiciously large Dpar 

values would encourage a slightly improved positive correlation in the data 

however as all samples were processed by the same procedure there is no reason 

to suspect that the majority of these samples with large Dpar values are over 

etched. An exception to this is sample SA12-11 (Dpar = 4.95 µm). Inspection of 
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this samples fission track mount provides more evidence that this sample is 

indeed over-etched.  

Further investigation on the influence of Dpar is made by plotting Age-Dpar 

relationships for single grain ages. Figure 4-5b shows two samples which show 

two contrasting correlations. Both positive and negative correlations are 

identified throughout the dataset and these two samples are the best correlated 

for each example but the correlation is still statistically poor (R2 ≤ 0.31). The 

complex relationships observed here are not surprising considering the primary 

influence of temperature on the preservation of track lengths coupled with the 

possibility of additional compositional complexity, particularly for low Cl 

samples. Correlations are likely to be absent as many samples have experienced 

fairly rapid cooling, as implied by their long track lengths and narrow TLDs. If 

the sample has been rapidly cooled, annealing and any compositional influence 

over it will have been minimal. 

4.3.2 Pressure 

Contrary to conclusions of early work on fission track annealing (e.g. Fleischer et 

al., 1965, 1975; Naeser and Faul, 1969), Wendt et al. (2002, 2003) and Vidal et 

al. (2003) suggest that elevated pressures and stresses can influence fission track 

annealing kinetics. However, criticism by Kohn et al. (2003) was fuelled mainly 

by a lack of extrapolation of the pressure dependant annealing model to 

geological timescales. An additional criticism was aimed at the lack of direct 

evidence of the effect from, for example, deep borehole profiles in cratonic 

regions (Kohn et al., 2003; Green et al., 2013). Annealing experiments by 

Donelick et al. (2003) could not produce results to suggest that pressure has a 

significant impact on fission track annealing. More recently, Schmidt et al. 

(2014) performed similar pressure-annealing experiments showing that pressure 

dependence exists at extreme pressures of 2 – 4 Ga but when extrapolated to 

pressures more typical of upper crustal temperatures (≤ 150°C) the effect is 

negligible. It is widely appreciated that current annealing models do not need to 

be modified to incorporate pressure effects (Green et al., 2013). 
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4.3.3 Radiation Enhanced Annealing 

Annealing experiments by Donelick et al. (1990) have shown that fission track 

annealing can occur even at room temperatures however the kinematics of low 

temperature annealing is still poorly understood (Gleadow and Duddy, 1981; 

Hendriks and Redfield, 2005; Spiegel et al., 2007). Hendriks and Redfield (2005) 

suggest that cratonic rocks that have resided in a geologically stable setting for 

long periods (i.e. > 100 Myr.) and/or have extremely elevated levels of U and Th 

may experience enhanced annealing at low temperatures. Radiation enhanced 

annealing (REA) may occur by (i) elevated temperatures in the sub-surface crust 

caused by radiogenic decay in basement rocks (i.e. by decay of U, Th, K); (ii) 

induced defect recovery during alpha-emission (Miro et al., 2005). Supporting 

this proposition Hendriks and Redfield (2005) present data that appear to show 

negative correlations between AFT age and MTL with uranium content. It is 

stated by Hendriks and Redfield (2005) that if such correlations are attributed to 

REA then the effect will be most pronounced in samples that are geologically old 

and/or contain high concentrations of U and Th.  

Data presented in this study fail to consistently show negative correlations 

between U content and AFT central age. Figure 4-6a shows a plot of average U 

content (estimated using the EDM method) verses central AFT age and MTL for 

all samples analysed. In neither case, nor in either study area investigated in this 

study, is there a negative correlation with uranium content. However, due to 

differences in the thermal history experienced by these samples any REA effects 

may by masked. Figure 4-6b shows single grain data from three different samples 

that are the ―old‖ (> 90 Ma) and enriched in U (c. 50 – 70 ppm). The correlations 

observed in these samples are representative of the entire dataset and it can be 

seen that there exists positive, negative and zero correlation between AFT 

age/MTL and U content. More accurately, correlations of any sort are suspect 

because they are statistically very poor with low R2 values. The samples 

presented in Figure 4-6b show the best correlation in the dataset. The best fit is, 

in fact, the positive correlation shown by GGO2 (R2 = 0.47, N = 20). It is thus 

concluded that in this study REA cannot be supported as a controlling factor on 

the observed AFT data. 
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Figure 4-6: Relationship of AFT age and MTL against uranium content as a proxy for the 
degree of radiation enhanced annealing experienced by the sample (Hendriks and Redfield, 
2005). (a) Average values for samples across the entire study area. NQH = Namaqualand 
Highlands study area; BMP = Bushmanland Plateau study area. (b) single grain data 
correlations for AFT age – uranium content from three samples. The lower plots highlight 
the lack of consistency in the style and strength of correlations. 

Correlations used to support radiation enhanced annealing were criticised by 

Green and Duddy (2006) and Green et al. (2006); particularly correlations made 

in samples with increasing borehole depth which they advocate can be explained 

in terms of thermal annealing. Their alternative view is that discrepancies 

between AFT and AHe datasets in cratonic regions are due to radiation damage 

enhanced retentivity of helium (see section 4.4.5). Larson et al. (2006) direct 

their criticism at the geological interpretation required by Hendriks and Redfield 

to justify the need for an improved AFT annealing model. While radiation 

enhanced annealing is still supported by Hendriks and Redfield (2006), their 

conclusions were questioned by a subsequent analysis of the same data by Kohn 

et al. (2009). The debate suggests an unresolved issue in low temperature 

thermochronology analysis regarding our understanding of old, U and Th rich 

apatites and the role that radiation damage might play in controlling fission 

track annealing. 
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4.3.4 Calibration and reproducibility of track length 
measurements 

While our empirical understanding of fission track annealing is reasonably well 

developed there still exists a major source of human uncertainty surrounding the 

measurement of horizontal confined tracks within fission track mounts 

(Donelick, 2005). Inter-laboratory and multiple analyst experiments of track 

length measurements (Miller et al., 1993; Barbarand et al., 2003; Ketcham et 

al., 2009) identified major inconsistencies between track length distributions 

measured by different analysts. The discrepancy between analysts was initially 

attributed to differential sampling of long and short track populations and length 

differences induced by different lab protocols in etching and microscopy 

technique and, as discussed above, natural sample heterogeneity was another 

possible source of variation. 

Consistency was improved when measured track lengths were normalised for 

their orientation to the crystallographic c-axis (e.g. Ketcham, 2005). This 

normalisation is performed to incorporate anisotropic annealing of fission tracks 

(Green and Durrani, 1977; Donelick, 1991). Another major inconsistency was in 

measurements of unnannealed fission tracks (L0) induced in apatite standards 

(Ketcham et al., 2009). Knowing the initial track length of a sample is crucial 

information for thermal history inversion to be successful. The initial track 

length is suggested to vary with etch pit size and therefore Dpar measurements 

can be used in inversion techniques to calibrate the initial track length (Donelick 

et al., 1999; Ketcham et al., 2007).  

Prior to sample analysis, horizontal confined track (HCT) lengths were measured 

and compared to MTL, MTL standard deviations and TLDs as measured by 

previous analysts at the University of Glasgow. The samples were first irradiated 

and then heated to different degrees to produce different amounts of annealing 

and consequently produce different TLDs. The results shown in Figure 4-7 show 

that track length measurements are more reproducible once the orientation of 

tracks to c-axis is corrected. The mean c-axis corrected track length measured 

in this study lies within 1σ standard deviation the average measured by previous 

analysts. The standard deviation of the mean track length is reproduced less  
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Figure 4-7: Interlabratory AFT length calibration for analysts at the University of Glasgow. 
Blue colour represents raw measured track length data. Red colour represents track length 
data corrected for c-axis orientation. Horizontal line and bar indicates the average and 1σ 
standard deviation of MTL observed for all analysts. Vertical line and bar indicates the 
average and 1σ standard deviation of MTL-SD measurements observed for all analysts. 
Small circles with faint colour are data from previous analysts following University of 
Glasgow FT lab protocols. Large circles with intense colour are data measured by M. 
Wildman prior to sample analysis. 

well but in all cases lies within 2σ standard deviation of the average reported 

MTL-SD from previous analysis. Within uncertainty, track length measurements 

in this study are comparable with other fission track analysts and any user bias 

towards longer or shorter tracks should be minimal. 

4.4 Uncertainties in apatite (U-Th-Sm)/He analysis 

Apatite (U-Th-Sm)/He dating depends on the progressive accumulation of helium 

within the host crystal lattice. However, to understand the geological 

significance of AHe data it is necessary to know when and at what temperatures 

4He begins to become retained within the apatite crystal and by what process He 

escapes from the crystal over geological timescales (i.e. diffusion or alpha-

ejection) (Gautheron et al., 2012). An additional assumption is that all He 

retained comes from the decay of parent isotopes within the crystal structure 
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and not from additional sources such as neighbouring grains or mineral or fluid 

inclusions (Vermeesch et al., 2007). At elevated temperatures 4He is lost from 

the crystal  through diffusion but the kinetics of this process are still poorly 

understood and have been shown to be influenced by grain geometry and the 

presence of radiation damage defects. This, coupled with the effects of zonation 

of U, Th and Sm, ejection of alpha particles from the crystal rim and the impact 

of analysing fragmented grains creates many sources of uncertainty within AHe 

analysis are often manifested as ‗over-dispersion‘ of single grain ages. As 

diffusion is temperature dependent many of the factors cause dispersion to be 

highest when cooling is slow or complex. Therefore, enhancing AHe single grain 

age dispersion may hold crucial thermal history information and is potentially 

beneficial rather than detrimental to AHe analysis. 

4.4.1 Alpha ejection 

During the decay of 238U, 235U and 232Th, alpha particles are emitted and come to 

rest with a stopping distance of c. 20 µm. As a result of long-stopping distances 

some alpha particles emitted close to the crystal rim may be ejected (Fig. 4-8) 

(Farley et al., 1996). The physical size and shape of apatite crystals used in (U-

Th-Sm)/He analysis will have a pronounced effect on not only diffusion of He but 

also the proportional loss of He from apatite through alpha ejection (Gautheron 

and Tassan-Got, 2010). Farley et al. (1996) produced a model to quantitatively 

correct for alpha ejection (i.e. Ft alpha recoil correction) assuming that (i) 

parent nuclides are homogenously distributed within the crystal and (ii) that 

implantation of He to apatite from the surrounding rock matrix is negligible. 

Since the development of the alpha-correction model there have been 

suggestions that the correction factor may over estimate true AHe ages due to 

the interplay of diffusion and alpha ejection (Meesters and Dunai, 2002a, b). 

However, at elevated temperatures, He is lost predominantly through diffusion 

which will occur to a greater degree at the crystal rim and should not be 

effectively replaced by correcting for alpha-ejection. Hence treating diffusive 

loss and alpha-recoil as independent processes, where first diffusion is corrected 

using forward modelling and then ejection corrected using Ft, will over correct 

sample ages (Dunai, 2005).  
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Figure 4-8: Cartoon figure representing the effects of implantation, ejection and U and Th 
rich inclusions caused by long-stopping distances of alpha particles emitted from parent 
nuclides. 

Clearly the overcorrection effect will be most pronounced for samples which 

cool slowly through the PRZ where diffusion has dominated He loss. More recent 

mathematical models have been developed to generate more accurate 

correction factors accounting for a better representation of the true crystal 

geometry, compositional heterogeneity and presence of broken faces (Gautheron 

and Tassan-Got, 2010; Ketcham et al., 2011; Gautheron et al., 2012). However, 

adopting the more sophisticated approach outlined by Gautheron et al. (2012) 

will only improve the accuracy of the correction factor by c. 1 – 5% (Ketcham et 

al., 2011) and does not address the problem of partially degassed grains at all. In 

this study an Ft correction, after Farley et al. (1996) is used to report a 

‗corrected age‘. However, the likelihood of inconsistency between ‗corrected‘ 

AHe ages and AFT ages (Fig. 4-4) encourages the approach outlined by Meesters 

and Dunai (2002a, b) where alpha ejection is determined explicitly during 

thermal history modelling at each time step as appropriate. Moreover, further 

investigations of AHe age dispersion are made using the raw ages as this removes 

an added layer of uncertainty that could mask other major dispersion factors 

(Brown et al., 2013). 
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4.4.2 Implantation 

Just as long stopping distance of alpha particles may result in alpha ejection 

from the rim of the apatite crystal, it may also result in implantation from 

adjacent U and/or Th rich minerals (Fig. 4-8) (Farley et al., 1996; Spiegel et al., 

2009; Gautheron et al., 2012). This phenomenon will occur if U and Th rich 

minerals (e.g. zircon, titanite or monazite) are in contact with the apatite 

crystal, with the effect becoming less potent with increasing distance. Although 

it has been shown theoretically that 4He enrichment could be up to 50%, and in 

extreme cases >300%, for this to have occurred the apatite would have had to 

have been entirely surrounded be large, enriched minerals (Gautheron et al., 

2012). Spiegel et al. (2009) highlighted the improvement in reproducibility of 

potentially implanted grains following air abrasion of the grains to remove the 

outer 20 – 25 µm rim of the crystal. However, this may remove potentially useful 

information held in the diffusion profile of the grain and for the reasons 

described above the issue may not require any additional treatment. It should be 

noted that if significant levels of implantation have occurred in an individual 

apatite crystal, the probability of selecting that crystal from a mineral separate 

is relatively low (Brown et al., 2013). This study adopts an approach where many 

single grain ages (c. 10 – 20 grains) are analysed this allows extreme outliers to 

be identified. Implantation may be used as a potential explanation for these 

crystals but in most cases the effect is expected to be small and, if present, is 

encapsulated in the uncertainty given to the observed age. 

4.4.3 Inclusions 

Mineral inclusions, mainly of zircon and monazite, with high concentrations of U 

and Th can provide an additional source of alpha particles that can become 

implanted into the crystal lattice. During dissolution of the crystal in HNO3 (see 

Appendix 1.3.2) the apatite will dissolve but the mineral inclusion may not 

(Vermeesch et al., 2007). Therefore, measured 4He that has been implanted into 

the apatite grain will be parentless and will cause ages that are too old (House 

et al., 1997; Stockli et al., 2000; Farley, 2002; Fitzgerald et al., 2006). Fluid 

inclusions can also introduce parentless He as the fluid is typically magmatic or 

metamorphic and may contain radiogenic material capable of emitting alpha 
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particles (Fitzgerald et al., 2006). However, recent work by Vermeesch et al. 

(2007) has suggested that unless inclusions are particularly large (e.g. >10% of 

the apatite volume) and extremely concentrated in U and Th (c. x1000 of host 

apatite) they will not contribute He concentrations significant enough to 

seriously impact the age. Only in extreme cases will the closure temperature of 

the crystal be increased by as much as 5°C but in most cases it will vary by less 

than 2.5°C. As single grains are routinely screened under both optical and 

petrographic microscopes to identify and avoid grains with large inclusions, the 

―extreme‖ case is unlikely to have been encountered. If smaller inclusions (< 

few µm) have not been identified they are unlikely to have a major impact on 

the measured grain age. 

4.4.4 Grain radius 

The size of the diffusion domain in any thermochronology technique has a major 

influence over the effective closure temperature of the system (Dodson, 1973; 

Lovera et al., 2002). Previous experiments of Durango apatite have shown the 

diffusion domain for apatite is the approximated by the size of the crystal 

(Farley, 2000; Cherniak et al., 2009; van Soest et al., 2011). These studies have 

highlighted that He diffusion from Durango is crystallographically isotropic and 

that diffusivity is inversely proportional to the square of the minimum domain 

dimension for diffusive loss (i.e. grain radius) (Fig. 4-9) (Farley, 2000). This 

effectively results in an increase in closure temperature of about c. 10°C for 

grain radii increasing from 50 to 150 µm. This effect is reflected in an increase 

of AHe age with grain radius, a relationship which becomes more pronounced for 

slow rates of cooling and can result in single grain age dispersion on the order of 

50 – 100% (Reiners and Farley, 2001; Brown et al., 2013). Reiners and Farley 

(2001) state that for a reproducible age, grains of a similar radius must be 

analysed. However, (U-Th-Sm)/He analysis of a variety of grain radii can allow 

interpretations of the samples thermal history to be made on the basis of the 

relationship between AHe age and grain radius. As most models of He diffusion 

convert the size of the apatite crystal to a sphere with the same surface to 

volume ratio, correlations of AHe age and grain size are more accurately made 

against a spherical equivalent radius (here referred to as R*) (Fig. 4-9).  
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Figure 4-9: Illustration of the He diffusion profile along the length and width of a typical 
apatite crystal. Right hand side shows how the spherical approximation is made for the 
apatite crystal. Lower right hand side figure shows the influence of grain size and cooling 
rate on the effective closure temperature of the apatite (U-Th-Sm)/He dating system (after 
Farley, 2000). 

 

Figure 4-10: Relationships of AHe age (uncorrected) against spherical equivalent radius. All 
uncertainties include 1σ analytical uncertainty plus an additional 10% uncertainty observed 
in the dispersion of Durango standards analysed (see Appendix 2.2). (a) Shows the positive 
relationship for two samples measured by Reiners and Farley (2001). (b) Strongest positive 
relationship observed in dataset is from sample NQ12-07. (c)  Strongest negative correlation 
in the dataset recorded by sample GGO2. (d) The common case where the correlation is 
extremely poorly defined as shown by sample SA12-14. 
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Gautheron and Tassan-Got, (2010) outline the importance of reliable crystal 

measurements and documentation of the crystal shape. 

 The characteristic positive relationship between AHe age and grain radius 

reported by Reiners and Farley (2001) is shown if Figure 4-10a. Positive grain age 

– R* relationships were reported in subsequent studies (eg. Hansen and Reiners, 

2006) and can be seen for many samples from this study (e.g. Figure 4-10b). In 

some cases, however, grain age and R* is negatively correlated or not 

correlated. The effect of grain size on the AHe closure temperature and 

therefore on AHe age is thought to be a fairly well understood relationship if the 

effects of radiation damage, zonation and fragmentation are small or absent 

entirely. Another consideration is the rate of cooling the sample has 

experienced. If cooling has been rapid and, as a result, diffusive loss of helium 

has been low then the AHe age – radius relationship may not be observed. In 

almost all of the samples analysed here the effects of radiation damage, 

zonation and grain fragmentation cannot be ignored and likely disrupt simple 

age – R* relationships. 

4.4.5 Radiation Damage 

A major focus of recent research in LTT has been towards the influence of 

radiation damage within U and Th rich minerals (e.g. apatite - Shuster et al., 

2006; monazite - Meldrum et al., 1998; titanite - Hawthorne et al., 1991; zircon 

- Guenthner et al., 2013). Radiation damage accumulates due to recoil of parent 

nuclei during alpha decay which creates defects within the crystal lattice 

(Nasdala et al., 2001; Shuster et al., 2006). As the volume density of this 

structural damage increase, the apatite crystal becomes more retentive of 4He. 

The diffusion of a 4He atom is governed predominantly by temperature in the 

absence of radiation damage and diffuses through the crystal lattice with an 

activation energy (Ea). If structural damage and voids produced by radiation 

damage exist, 4He atoms may pass into these vacancies and acquire an energy 

state lower than the surrounding crystal matrix leaving them trapped (Fig. 4-11). 

4He atoms then require a greater magnitude of energy (Et) to escape the void 

(Shuster et al., 2006; Gautheron et al., 2013). Similar to the effect of grain  
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Figure 4-11: Cartoon diagram of the radiation damage trapping model (after Shuster et al., 
2006). Free alpha particles (

4
Hef) travel through the crystal during diffusion with an 

activation energy (Ea). When a damage defect is produced the 
4
Hef particle may enter the 

defect and become trapped (
4
Het). Once the alpha particle is trapped it requires a greater 

energy to diffuse back into the main crystal lattice (Et). The number of potential traps 
increase with increasing radiation damage and therefore a greater energy is required to 
successful diffuse He from the crystal and as such the closure temperature increases. 

 

Figure 4-12: Plots of AHe age against effective uranium ([eU] = [U] + [0.235*Th]). (a) The 
expected AHe age – eU relationship for three different cooling rates as predicted by the 
RDAAM model of Flowers et al. (2009). (b) SA12-38 shows the strongest positive eU 
correlation in the dataset. (c) NQ12-04 shows an example of the zero correlation observed in 
many samples. (d) JN3 shows a good example of a strong negative correlation also 
observed in some samples in the data set. 
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radius on AHe ages, the influence of radiation damage is enhanced by slower 

cooling rates through the PRZ where diffusive loss of He is important (Shuster et 

al., 2006; Flowers et al., 2009).  

The progressive accumulation of radiation damage defects in an apatite crystal 

over time will alter the closure temperature of the AHe system in that grain. 

However, direct empirical evidence for a radiation damage influence on helium 

diffusion within apatite is currently lacking (Shuster and Farley, 2009). To assess 

the potential influence of radiation damage on single grain age dispersion, many 

workers report positive correlations between AHe age and effective uranium (eU 

= U + 0.235*Th) (Fig. 4-12a) (Ault et al., 2009; Cogné et al., 2011; Flowers and 

Kelley, 2011; McKeon et al., 2014) and interpret these as a result of slow or 

complex cooling. While data presented in this study do occasionally show weak 

positive correlations (e.g. Fig. 4-12b) this is not an observation that persists 

throughout the entire dataset. In many cases the data can appear irregularly 

dispersed (Fig. 4-12c) or negatively correlated (Fig. 4-12d). The lack of 

correlation is likely due, in part at least, to the competing factors influencing 

AHe ages such as grain radius and fragmentation (Brown et al., 2013). 

Numerical models for predicting this behaviour have been suggested (e.g. 

Flowers et al., 2009; Gautheron et al., 2009; Gautheron et al., 2013) however 

many unresolved theoretical aspects question both the robustness and 

appropriateness of using these models. Both the radiation damage model of 

Flowers et al. (2009) (RDF) and of Gautheron et al. (2009) (RDG) treat sites of 

alpha-recoil damage as analogous to fission tracks in that at elevated 

temperatures defects will anneal (e.g. Chaumont et al., 2002). In both models 

this first-order approximation is treated in a manner similar to the AFT annealing 

model of Ketcham et al. (2007). The major difference between the two radiation 

damage models comes from the treatment of the reduction of defects over time 

and temperature which is inversely proportional to the diffusion coefficient. 

While the RDG model calculates the reduction of fission track density in a linear 

manner the RDF model treats it with an empirically determined cubic function 

and therefore predicts and enhanced reduction in diffusivity with increasing 

radiation damage. Gautheron et al. (2009) acknowledge that a non-linear 
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function would improve the model fit to the data but they do not find a physical 

mechanism to justify such an approach. While the RDF model fits the data better 

at low levels of radiation damage at higher levels the model fails to match the 

observed data within uncertainty levels. The difficulty of obtaining a reasonable 

fit to experimental data is acknowledged by Flowers et al. (2009) and it is stated 

that parameterisation of their radiation damage accumulation and annealing 

model was not optimal. 

The practical implications for this situation (i.e. significantly different 

treatments of damage) are illustrated in Figure 4-13 which shows forward 

modelling results for three different thermal histories. Due to rapid cooling 

experienced in model 1, there is limited variation in predicted ages regardless 

what, if any, radiation damage model is used. In model 2, the protracted history 

through the PRZ causes major discrepancies in predicted ages with increasing 

eU, particularly at eU concentrations > 10 – 25 ppm. For model 3, where the 

history experiences a prolonged period in the PRZ, the most severe discrepancy 

is at low levels at eU. At high concentrations of eU both models predict a gentle 

increase in age with eU, almost becoming a plateau. 

Both RDG and RDF models have, as yet, only been calibrated for F-apatite 

(Durango) and these have been incorporated into commonly used thermal history 

inversion packages (e.g. Ketcham et al., 2011; Gallagher et al., 2012). However, 

as damage zones are believed to behave in a manner similar to fission tracks, 

then compositional heterogeneity will likewise affect damage annealing. This 

point remains speculative, however, as it is still not certain to what extent, if 

any, radiation damage annealing and fission track annealing are comparable. A 

more recent model developed by Gautheron et al. (2013) has incorporated an 

additional kinetic parameter (Dpar or Cl wt%) to account for this effect. 

Interestingly, this new development in our understanding of radiation damage 

brings us back to issues pertinent to AFT analysis, namely the effect of 

composition. In order to calibrate radiation damage models and annealing 

models better understanding is required of the compositional control on both the 

annealing of radiation damage defects and fission track annealing. Further 

chemical analysis may point to a more fundamental control on helium diffusion  
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Figure 4-13: Results for forward modelling of three thermal histories incorporating: (i) no 
radiation damage effects; (ii) radiation damage after Flowers et al. (2009); (ii) radiation 
damage after Gautheron et al. (2009). The grain size for each grain was constant in all 
models to eliminate this source of dispersion. Dashed lines represent 10% uncertainty 
levels on synthetic AHe grain ages. 

before considering radiation damage effects (Gautheron et al., 2013) but past 

studies have identified composition dependent diffusion (Wolf et al., 1996; 

Warnock et al., 1997; Reiners and Farley, 2001). 

Insights from previous AHe studies and recent work on radiation damage in 

zircon (e.g. Guenthner et al., 2013; Ketcham et al., 2013; Pidgeon, 2014) 

suggests that the phenomenon does have major implications for the 

reproducibility of age measurements on different grains and for thermal history 

modelling, but current models still lack an adequate approximation of the 

physical kinetics of the process. Neither radiation damage model is well 

calibrated for the complexities inherent in real AHe data sets. However, as 

supported by many studies reporting highly dispersed (U-Th-Sm)/He ages from 

either zircon or apatite, radiation damage will likely have an important 

influence over the closure temperature of the system and, therefore, on the 

measured AHe age. Because of the current uncertainty in these models in this 
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study thermal history inversion was performed using both of these models and 

the results of these are discussed in the subsequent chapters. 

4.4.6 Fragment Length 

During the mineral separation process, whole apatite crystals (2 termination, or 

2T grains) frequently break along their weak basal cleavage and appear with one 

(1T) or zero (0T) terminations in the mineral separate (Ehlers and Farley, 2003; 

Beucher et al., 2013; Brown et al., 2013). In past studies, broken crystals have 

been treated as whole grains during analysis and an additional factor being 

incorporated into the Ft correction to account for the altered geometry of alpha 

ejection from the fragmented grain (Farley et al., 1996; Gautheron and Tassan-

Got, 2010). However, recent work has shown that the effect of analysing broken 

fragments can have a significant effect on AHe age dispersion (Beucher et al., 

2013; Brown et al., 2013). Due to inhomogeneous diffusive loss of He, which 

occurs more readily at the crystal terminations, analysis of fragmented grains 

will only sample part of the complete helium diffusion profile (Brown et al., 

2013). 1T grains that are less than half of the original 2T grain will be younger 

than the true whole grain age and the fragment age will increase age with 

increasing length. For 1T grains that are more than half the length of the initial 

whole grain, an age older than the true age will be obtained. 0T grains will most 

commonly be older than their corresponding 2T whole grain and reproduce well; 

except in the case where the 0T fragment was close to the end of the whole 

grain (Fig. 4-14). 

An important observation is that the He diffusion profile is mimicked by the age 

dispersion – fragment distribution (ADFD) relationship observed from analysing 

broken crystals (Brown et al., 2013). Depending on how quickly the sample has 

cooled and how long 4He has had to accumulate in the crystal, the shape of the 

profile will be altered (i.e. slowly cooled samples have a broad 4He 

concentration profile whereas rapidly cooled samples have a very narrow 

profile). If sufficient 1T fragments are analysed it is suggested that the form of 

the diffusion profile can be estimated from the pattern of dispersionand the 

data inverted to extract thermal history information (Beucher et al., 2013). 
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Figure 4-14: Cartoon illustrating the influence of analysing fragments of larger apatite 
crystal. Left hand panel shows the diffusion profile for an apatite crystal that has cooled 
rapidly (dark purple) through to slowly cooled (red profile). Right hand panel shows the 
expected age dispersion-fragment distribution (ADFD) plot for synthetic apatite grains. 
Green circles = 0T grains; red circles = 1T grains; cross = 2T grains age. 

 

Figure 4-15: (a) Theoretical Age Dispersion – Fragment Distribution (ADFD) relationship 
(Brown et al., 2013; Beucher et al., 2013). This is the same plot as shown in Figure 4-14(b) 
but simplified and recoloured for comparison against sample data plots.  (b) Relationships 
of AHe age (uncorrected) against fragment length. These plots are referred to as ADFD. All 
uncertainties include 1σ analytical uncertainty plus an additional 10% uncertainty observed 
in the dispersion of Durango standards analysed (See Appendix 2.2). 
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Figure 4-15 shows ADFD plots for data analysed in this study. No plot readily 

matches the hypothetical ADFD plot as drawn in Figure 4-14. However, this is not 

unexpected considering these samples are real world samples and as such have a 

variety of eU and grain width measurements. Moreover, grains may have, on rare 

occasions, contained an inclusion and/or some degree of parent zonation. So 

while there is no clear linear increase in 1T grains toward a plateau of 2T ages 

the plots could be dissected in more detail to look for some control on dispersion 

due to the presence of fragmented grains.  In most cases 1T grains are positively 

correlated. 

While a slower thermal history should increase the fragmentation effect, by 

broadening the diffusion profile, this will also cause eU and grain size effects to 

become more pronounced and any correlation may be difficult to observe. 

Conversely, rapidly cooled samples will have a very narrow diffusion profile and 

as such there may not be much of an effect caused by analysing 1T grains and 

again a correlation may be absent. Samples JN2 and SA12-30 show AHe ages that 

have a positive, albeit fairly weak (0.29 and 0.14, respectively), correlation with 

fragment length for one termination grains (Fig. 4-15). 2T fragments are fairly 

coherent with one another. NQ12-04 does not show any correlation for 1T grains. 

Compared to other samples in the data set this sample has a relatively low MTL 

implying slower rates of cooling and therefore the fragmentation effect should 

be more pronounced. 2T grains are more scattered which could be due to eU and 

grain size effects. 

4.4.7 Zonation 

Zonation of parent isotopes (i.e. U and Th) within apatite is rarely measured 

prior to (U-Th-Sm)/He analysis but has often been cited as a possible source of 

age variation (Ehlers and Farley, 2003; Fitzgerald et al., 2006; Flowers and 

Kelley, 2011). Parent nuclide zonation has the potential to influence the 

measured AHe age in three distinct ways: (i) by altering the  spatial extent of 

alpha ejection and therefore cause an erroneous alpha-recoil correction; (ii) by 

creating variable fractional He loss due to different He diffusion gradients across 

zoned apatites compared to un-zoned; and (iii) by creating intra-crystaline 
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variability of radiation damage, creating zones of higher He retentivity where U 

and Th concentrations are rich (Farley et al., 2011) (Fig. 4-16).  

The combination of these three influences will potentially yield AHe ages that 

are too old (for apatites with eU enriched cores) or too young (for apatites with 

eU enriched rims). In a recent study by Ault and Flowers, (2012), prior to 

analysis, apatite zoning was mapped using LA-ICP-MS (e.g. Farley et al., 2011) to 

identify apatites exhibiting both enriched cores and enriched rims, as well as 

apatites with variable spatial zonation. This work observed that age variations 

between zoned and un-zoned apatites do not typically exceed 10% and reach up 

to 13% only for thermal histories which involve up to 150 Myr residence times in 

the PRZ. It is suggested by Ault and Flowers, (2012) that since these age 

deviations fall within generally accepted levels for (U-Th-Sm)/He analysis and a 

misinterpretation of AHe data caused by zonation is unlikely and detailed U and 

Th mapping prior to analysis is not required.  

While zonation in zircon is clearly apparent in ion probe analysis and 

Cathodoluminescence (CL) imaging (Dobson et al., 2008), observing zonation in 

apatite optically is more difficult due to the relatively low levels of U and Th. 

Analysis of the fission track distribution, which can act as a proxy for U content, 

within sample mounts can provide insight to the occurrence and severity of 

zonation. CL imaging has been suggested as a relatively quick method of 

screening for zonation of U and Th however an additional outcome of analysis by 

Ault and Flowers (2012) was that although CL imaging in some cases correlates 

with the true zonation within the crystal it cannot be trusted entirely due to the 

potential for other REE to influence the luminescent properties. CL imaging was 

performed on the sample GGO2 for this study, for two reasons: (i) fission track 

density suggests strong zonation in U; and (ii) this sample has extremely high 

levels of average U and Th for an apatite (> 100 ppm). 

Fission track mounts clearly show extreme variations in fission track density that 

can be described as both core enriched and core depleted (Fig. 4-17). However, 

even within a sample showing such strong zonation there are grains which show 

no apparent zones of high fission track density (e.g. Fig. 4-17h). The CL images  
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Figure 4-16: Representation of two end-member styles of zonation. Not shown is 
heterogeneous zonation patterns as the influence on the diffusion profile is uncertain due to 
the uncertainties in how this effects alpha ejection and radiation damage enhanced 
retention of alpha particles (after Fitzgerald et al., 2006). 

on different individual grains from the same fission track mount clearly shows 

light and dark portions on the grain showing some degree of compositional 

control over luminosity (Fig. 4-18). Fission track etch pits can be seen in BSE 

images to the left of the respective CL images which can be used to correlate 

regions of low and high track density with luminosity. Areas of high track density 

correlate with saturated portions of CL image while low track density correlate 

with illuminated portions. This may only be one example but there appears to be 

some correlation between the fission track distributions (and by extension U 

content) and luminosity patterns in CL images and this requires further 

investigation. The potential effect of variable zonation on AHe ages from a 

sample set containing fragmented grains is still not yet fully quantified and extra 

caution should be taken when analysing fragmented grains if strong U zonation 

has been identified from fission track mounts. 
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Figure 4-17: Fission track mount photographs for sample GGO2 showing relative 
enrichment (E) or depletion (D) of uranium. Variation in fission track density across the 
mount can be used as a proxy for the nature of zonation within the crystal. Pictures a, b, c, d 
show an example of enriched rim zonation; e, f, g show enriched core zonation. Picture h 
shows that even within this highly zoned sample some grains do not show a great amount 
of zonation. 
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Figure 4-18: SEM images for sample GGO2 showing relative enrichment (E) or depletion (D). 
Left hand image shows BSE images of each grain. Right hand images show 
cathodoluminescence images for each grain. Fission tracks can be observed in BSE images 
and suggests that where fission track density is higher, there is an enrichment of U. This 
correlates well with darker bands in CL images, while lighter bands are likely depleted 
zones. 
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4.5 Thermal history modelling: Joint AFT and AHe 
inversion 

The ultimate goal of LTT techniques is to derive cooling histories of samples and 

quantify surface and sub-surface processes that have produced the observed 

data (e.g. magmatism, uplift and erosion, subsidence and burial). Inverse 

modelling of LTT data has become a popular method of generating numerical 

solutions for a rocks temperature-time (T-t) history. Inverse modelling uses the 

measured data and a forward model, to estimate the behaviour of the system 

over time, to generate a thermal history from a defined starting T-t condition 

(ideally obtained from the geological record) and the present day conditions of 

the sample.  

Predicting how the AFT thermochronometer evolves as a function of 

temperature and time is based on a theoretical annealing model (e.g. Laslett et 

al., 1987; Ketcham et al., 2007). More recent annealing models require some 

form of compositional parameter to be assigned to account for the differences in 

annealing rate in F- (less resistant to annealing) and Cl- rich (more resistant to 

annealing) apatites (Gleadow and Duddy, 1981, Green et al., 1986). A final 

consideration for fission track modelling is to account for variations in annealing 

caused by the angle of tracks to the c-axis of the crystal (e.g. Donelick et al., 

2005; Ketcham et al., 2007).  It has been shown that fission tracks measured at 

high angles to the c-axis are shorter than those that are parallel to the c-axis. 

Normalising track length measurements for their angle to the c-axis (e.g. 

Ketcham et al., 2007) may provide a better representation of the true track 

length distribution. 

Modelling of the (U-Th-Sm)/He system typically uses a spherical equivalent 

approximation of the grain shape with the following aspects of the systems 

behaviour needing to be defined: (i) the activation energy of alpha production 

from the decay of U, Th and Sm (ii) alpha stopping distances and (iii) thermal 

diffusivity (e.g. Wolf et al., 1998; Farley et al., 1996; Farley, 2000; Meesters and 

Dunai, 2002a, b; Ketcham, et al., 2007; Gautheron and Tassan-Got, 2010; 

Gallagher, 2012). Integrating this information with the dimension of the diffusion 
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domain (typically effective grain radius is used for a spherical approximation) 

allows thermal history information to be derived from predicted ages calculated 

as a function of net daughter product in growth and diffusive loss from the grain 

(Meesters and Dunai, 2002a, b). As discussed in section 4.4.5 additional 

calibration models have been developed to account for radiation damage 

annealing (e.g. Shuster et al., 2006; Gautheron et al., 2009; Flowers et al., 

2009) and alpha stopping distances (Farley and Stockli, 2002; Ketcham et al., 

2011). 

AFT data can be readily modelled jointly with (U-Th-Sm)/He data from the same 

sample to provide even tighter constraints for possible models to be tested and 

hence predict a more robust thermal history. Debate still exists however on the 

fundamental issues of what model should be used to explain the data. Do you 

use i) a weighted mean thermal history (weighted average of all viable models 

found) which tends to produce a rather smooth and simpler thermal history 

which suitably fits the data or ii) a maximum likelihood model (the single model 

that fits the data the best) which may fit the data better but may be more 

complex and difficult to justify geologically (e.g. Green et al., 2006). Thermal 

history models can only be deemed to be successful if they provide information 

consistent with other geological evidence. Where appropriate geological 

constraints are available, they can be included in the model explicitly. However, 

in basement terrains where there are only sparse and limited sedimentary 

deposits, it is difficult to define reliable additional stratigraphic constraints. 

4.5.1 Modelling Approach: QTQt 

In this study, QTQt, a Bayesian transdimensional approach to data inversion, as 

described in detail by Gallagher (2012), is used for generating thermal history 

models. Within this approach the multi-kinetic fission track annealing model of 

Ketcham et al. (2007) and the Durango diffusion model of Farley (2000) is 

adopted to derive robust thermal history information from the observed AFT and 

AHe data, respectively. The effects of including the two radiation damage 

accumulation and annealing models discussed above on thermal history models 

are also systematically assessed. Prior information on model parameters (i.e. 
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range of temperature and timescale over which to search) is first provided to 

define a model space with a prior probability distribution. The model space is 

then randomly sampled using a Markov Chain Monte Carlo (MCMC) approach (e.g. 

Gilks, 2005; Sambridge et al., 2006; Gallagher et al., 2009) whereby the current 

model is perturbed to produce a proposed model which is then accepted or 

rejected based on the likelihood of the new proposed model fitting the observed 

data. The novel aspect of this transdimensional approach is that the number of 

T-t points does not have to be defined explicitly and can be treated as an 

unknown parameter to be optimised. This allows the data to determine the 

complexity of the proposed thermal history model. The Bayesian aspect of the 

modelling technique penalises complex models proposed during sampling in 

favour of models with fewer T-t points that adequately fit the observed data. 

This is done by calculating the posterior probability of the model: 

 ( |    (    ( |   

Where P(M|D) is the posterior probability of obtaining the proposed model given 

the data; P(D|M) is the likelihood probability function of obtaining the data 

given the model and P(M) is the prior probability density function given to the 

model. Using this iterative process of exploring the model space, many thermal 

histories are tested creating an expected thermal history weighted for its 

posterior probability distribution. A key advantage of this approach is that the 

outcome defines a range of allowable models and avoids highlighting overly 

complex thermal histories that may fit the data well but that are unjustified 

when considered in light of both the model and data uncertainties. Unless 

otherwise specified, prior information on time was simply the oldest sample age 

± oldest sample age. The prior information on temperature range was set to 70 ± 

70°C. Additional prior information, if they are available from geological 

constraints can be entered in a similar manner.  

An additional novel aspect of QTQt is the ability to model samples from vertical 

and borehole profiles together. This is achieved by optimising an additional 

model parameter representing the temperature offset between the top and 

bottom sample. This temperature offset represents the effective geothermal 
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gradient with temperature information being interpolated linearly through 

intermittent samples. This approach is utilised in Chapter 5, 6 and 7. 

The MCMC algorithm was run for a minimum of c. 200,000 iterations after 

discarding an initial c. 50,000 iterations deemed to be ―burn in‖ runs (Gallagher 

et al., 2009). In most cases however, the number of runs far exceeds this as 

short c. 10,000 iteration runs are performed in order to optimise the MCMC 

search parameters before performing longer runs. The output of the Bayesian 

approach is a collation of all thermal history models that have been tested, each 

with an associated posterior probability of fitting the observed data. From this 

collection of thermal histories, a summary probability distribution map of 

temperature at a given time (at intervals of 1 Myr) can be generated. A mean 

thermal history model (weighted for its posterior probability), termed the 

expected model, can also be determined with associated 95% credible intervals 

which provide the uncertainty on the inferred model. The maximum likelihood 

model is also presented for each sample or profile in subsequent chapters, as 

this is the model that statistically fits the observed data best. The maximum 

likelihood model is often overly complicated though, containing structure that is 

not justified if the uncertainties on the data and model are taken into account, 

and could lead to over interpretation of the data. 

The nature of the expected model is that it will retain well constrained features 

(i.e. features common to many individual models) while more complex 

deviations observed in only a small number of viable models are averaged out. 

The expected model, and its associated probability, provides the most robust 

insight to the thermal history evolution, and the additional structure indicated 

by the maximum likelihood model should be always be assessed in light of these 

constraints as well as other geological information. 

4.5.2 Combining AFT and AHe data 

4.5.2.1 Modelling AFT data independently 

The dataset presented in this work is a prime example of a complex LTT dataset. 

The AFT age is often older than the accompanying AHe age and, moreover, 
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single grain age dispersion in the AHe dataset is large with simple interpretations 

being hindered further by a lack of correlation with eU or grain radius. A large 

number of measured single grain ages were retained for interpretation and 

thermal history modelling (see Appendix 3 for details on excluded single grains). 

During the modelling process the user is required to make many decisions based 

on what they know about the geological history of the region and/or the 

kinematics of a particular dating technique. These decisions are included into 

the modelling process as constraint boxes for independent thermal history 

information (i.e. from geological evidence) and as uncertainties on the input 

data, respectively. The former is discussed in later chapters where and when it 

is relevant for a particular sample. The following section presents a walkthrough 

of the decision making process that was used taken in order to reach a 

consistent modelling procedure. 

It is suggested that our theoretical and statistical understanding of fission track 

analysis is well-developed (Kohn et al., 2006; Green et al., 2013). However, 

uncertainties still exist in our understanding of fission track annealing and track 

length measurements as discussed in section 4.3. It is believed here that the 1σ 

uncertainty levels on fission track age measurements via the EDM method (c. 5%) 

is sufficient to encapsulate the effect these phenomena may have on AFT ages. 

The uncertainty on track length measurements and crucially their initial track 

length is addressed by combining a small propagated uncertainty on track length 

measurements (c. 1%) with an uncertainty on the standard deviation of all 

measured track lengths (10%) and with the compositional parameter Dpar which 

has an uncertainty equal to the standard deviation of all Dpar measurements 

within that sample. Figure 4-19 shows pairs of thermal history models for four 

different samples. These pairs of models show the results of inverting the fission 

track data with and without taking into account the tracks orientation to the c-

axis after Ketcham et al. (2005). 

In samples where the TLD is relatively long and narrow (either corrected or 

uncorrected for c-axis) the two models do not produce significantly different 

results (e.g. JN2 and SA12-13A). However, differences in the models are present 

when there is a broader TLD with a mix of shorter and longer tracks. In both 



Chapter 4: Apatite fission track and (U-Th-Sm)/He thermochronology 

114 

 

Figure 4-19: Thermal history models for four outcrop samples. The inversion was performed using only fission track data. Models on the left hand side 
included a correction for the tracks orientation to the crystal c-axis while right hand side models did not. The data fits are presented alongside each model.
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cases (SA12-14 and GGO2) the cooling history predicted is more rapid when c-

axis projection is not included than when it is. This seems counterintuitive 

however as correcting for c-axis orientation typically increases the MTL and 

decreases MTL standard deviation and thus should encourage more rapidly 

cooled histories. However, prior to c-axis correction the fact that there is a 

broader TLD means that many different styles of model are able to fit the broad 

spectrum of track lengths that have been measured. In some cases these 

histories will be slow similar to the c-axis corrected models but in some cases 

they may be more rapid or include a rapidly cooled component followed by 

reheating. This can be seen in the large uncertainty levels in the model at 

temperatures below c. 60°C. In both models the timing for the onset of cooling 

is about the same. Anisotropic annealing has been shown to significantly affect 

the reproducibility of fission track measurements. For this reason, c-axis 

projection is used routinely in this study. 

4.5.2.2 Modelling AHe data independently: with analytical uncertainty 

The potential complexities of the AHe datasets have already been discussed but 

in many studies AHe ages are used on their own or with some geological 

constraint to obtain thermal histories. However, using the Bayesian approach of 

QTQt in which the data primarily decide the complexity of the thermal history 

and speculative constraints are kept to a minimum it remains to be seen 

whether or not AHe on their own can provide useful thermal history information. 

In the first instance the input AHe ages are assigned an uncertainty which 

reflects only the analytical uncertainty (typically 1-3%). However, during the 

modelling process the observed AHe age is resampled from within this 

uncertainty to help improve the fit of predicted ages while still honouring the 

observed data (Fig. 4-20).  

The thermal histories produced through modelling the AHe data in this way are 

complicated. Depending on how radiation damage is treated, extremely 

different thermal histories both in terms of the timing and style of cooling can 

be produced. In many cases, these thermal histories also contradict the thermal 

history predicted by AFT data. When radiation damage is not included, the 
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Figure 4-20: Thermal history models for four outcrop samples investigating the effects of modelling only AHe data with a small analytical uncertainty. No 
RD = No radiation damage model included; RDF = Radiation damage incorporated after Flowers et al. (2009); RDG = Radiation damage incorporated after 
Gautheron et al. (2009). 
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thermal histories are well constrained and relatively simple. Cooling is either 

extremely rapid and then minimal (e.g. JN2, GGO2) or very slow (e.g. SA12-14). 

The exception to this is SA12-13A which predicts that the sample resided at low 

temperatures over the last c. 200Ma. Introducing the effects of radiation 

damage creates larger uncertainty in the low temperature portion of the 

thermal history (i.e. < 60°C) because the measured ages now correspond to a 

higher closure temperature dependant on the degree of radiation damage 

experienced. Thermal histories also show additional complexity which can be 

extreme (e.g. SA12-13A-RDG model) which is required to best fit the complex 

data. In some cases, there is good agreement with predicted and observed ages 

but in general the observec data is not reproduced well. The problem is that 

each AHe age has a very small uncertainty and the model is finding that complex 

models are required to best fit this data within these data with these tight 

uncertainty levels. 

4.5.2.3 Modelling AHe data independently: with estimated uncertainty 

Modelling AHe data as described above implies that the ―true‖ AHe age that we 

are trying to measure lies within analytical uncertainty. However, analysis of 

Durango apatite standards over the course of producing this data has only been 

able to achieve a standard deviation of 10% (see Appendix 2.2). As such this level 

of uncertainty should be added on to samples to reflect the natural 

reproducibility in AHe analysis. In fact, in some cases an additional uncertainty 

should be added to some apatite grains to account for uncertainties in (i) 

whether Durango apatite diffusion systematics are applicable to apatites with 

high concentrations of uranium; (ii) how much Sm is present in apatites that 

have not been analysed for this study and (iii) unknown compositional influences 

on diffusion. These uncertainties are difficult to quantify and as such have not 

been included.  

The observed AHe age is now resampled within the estimated uncertainty level 

of c. 9 – 12% of the measured age. This makes it much more likely that less 

complex models are able to to predict AHe ages that are compatible with the 

observed data. As such, the expected thermal history models may be more 
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Figure 4-21: Thermal history models for four outcrop samples investigating the effects of modelling only AHe data with a large estimated uncertainty 
(estimate uncertainty = analytical uncertainty + standard deviation of Durango standards). No RD = No radiation damage model included; RDF = Radiation 
damage incorporated after Flowers et al. (2009); RDG = Radiation damage incorporated after Gautheron et al. (2009). 
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poorly constrained over much of their thermal history but complex features 

which may be unjustified geologically are smoothed out (Fig. 4-21). For most 

grains the predicted and observed ages agree within uncertainty levels which are 

now considerably large. Without including the effects of radiation damage, each 

of the samples have very similar, simple, protracted thermal histories. The 

effects of the different radiation damage models are best seen in the extremely 

high eU samples JN2 and GGO2. RDG models for samples SA12-14 and GGO2 are 

in fairly good agreement with AFT thermal history models while samples JN2 and 

SA12-13A entirely contradict the rapid cooling predictions of AFT thermal history 

models. This is because highly dispersed AHe ages are symptomatic of slow 

cooling histories but JN2 and SA12-13A have long MTLs and narrow TLDs which 

strongly supports rapid cooling. As such modelling these datasets independently 

will not produce coherent results. However, it has already been stated that the 

AHe data have a large uncertainty range which can be modelled alongside fission 

track data and the uncertainties therein to find a model which is compatible 

with both datasets.  

4.5.2.4 Modelling AFT and AHe data together 

Integrating both datasets, that is jointly modelling the AFT and AHe data, 

produces thermal histories which are relatively simple but which are still able to 

define distinct transitions in cooling style over time (Fig. 4-22). Samples which 

were predicted to be rapidly cooled based on AFT data alone (e.g. JN2 and SA12-

13A) are rapidly cooled when the AHe data are integrated without deterioration 

in the quality of the data fit. This shows that caution should be taken when 

modelling AHe independently as the AHe dataset can be reproduced within 

uncertainty levels both with relatively rapid or slow cooling. The AHe data is still 

crucially important however as it can help to constrain the cooling history 

through lower temperatures. In the case of SA12-13A this simply confirms rapid 

cooling to near surface temperatures. However, the JN2 RDG model predicts 

that cooling is initially fairly rapid but slows more gradually towards surface 

temperatures throughout the Mid-Late Cretaceous. 
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Figure 4-22: Thermal history models for four outcrop samples investigating the effects of modelling both AFT data and  AHe data with a large estimated 
uncertainty (estimate uncertainty = analytical uncertainty + standard deviation of Durango standards). No RD = No radiation damage model included; RDF = 
Radiation damage incorporated after Flowers et al. (2009); RDG = Radiation damage incorporated after Gautheron et al. (2009). 
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Figure 4-23: Cartoon illustrating the relative influence on AHe ages by the different factors 
causing natural AHe single grain age dispersion (after Brown et al., 2013). (a) shows the 
expected trajectory for AHe age and R* and (b) shows the expected trajectory for AHe age 
and eU. However, the competing influence of all dispersion contributors perturbs the simple 
relationship. Age increases with increasing eU and R*. Larger fragment lengths of broken 
crystals are typically older than small fragment lengths. 

Slowly cooled samples highlight the uncertainty in using the current radiation 

damage models. Major differences can be seen in the style of cooling, however 

in all models the timing for the onset of cooling is consistent and is considered 

to be reliable. Certain aspects of the thermal history models are still unresolved 

but to a large degree this can be attributed to the uncertainties which are 

inherent in how radiation damage affects AHe ages. By assigning the measured 

AHe a large uncertainty and resampling the observed age within this uncertainty 

our poor understanding of radiation damage is dealt with as best as can currently 

be achieved. Including AFT data is therefore imperative in helping to constrain 

the AHe data. For the data presented in the subsequent chapters thermal history 

models will jointly model AFT data alongside resampled AHe data and models 

using no radiation damage, radiation damage after Flowers et al. (2009) and 

radiation damage after Gautheron et al. (2009) are systematically determined 

and discussed. 

4.6 Summary and strategy for joint AFT and AHe analysis 

Low temperature thermochronology has been successfully applied to a variety of 

geological problems and settings. In settings where cooling has been sufficiently 

rapid, recent, and/or samples have low concentrations of U and Th, the AFT and 
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AHe thermochronometers likely behave coherently and conform to closure 

temperatures that reflect theoretical studies. However, in regions such as South 

Africa where cooling has been variable and occurred over a long time period (c. 

150 Ma) and samples of basement lithologies contain a large variation in U and 

Th contents problems arise when using low temperature thermochronometers. 

These problems are common to other studies and have been discussed above in 

detail, but ultimately the measured AFT or AHe data holds useful temporal 

information related to upper crustal cooling. In particular, the influence of 

factors such as radiation damage, grain size and fragmentation of whole grains 

will induce natural dispersion. This dispersion can be inverted to extract thermal 

history information but the likelihood of observing simple correlations between 

AHe age and any of these factors is low as they each act to decouple one 

another (Fig. 4-23). Therefore, it is suggested that obtaining multi-single grain 

analysis (c. 10 – 20 grains), maximising the amount of dispersion in AHe ages and 

integrating the AHe data with robust AFT data will provide the optimum 

combination which can be inverted to yield thermal histories. By adopting a 

Bayesian approach to thermal history inversion, which utilises the uncertainties 

within each of these data sets, a coherent and conservative, thermal history for 

a sample can be obtained. 
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CHAPTER 5 

CONSTRAINING LARGE-SCALE BRITTLE 
DEFORMATION IN THE NAMAQUALAND 

HIGHLANDS 

 

5.1 Introduction 

As discussed in the opening chapters, our understanding of the thermal and 

structural processes during continental rifting has developed to a point where 

the traditional models of long term landscape evolution of continental margins 

are no longer adequate and need to be readdressed. If structural reactivation at 

so-called ―passive‖ continental margins is common, then it is crucial that 

quantitative constraints on the timing and magnitude of the major tectonic 

events are obtained to aid the development of more sophisticated surface 

process models. Low temperature thermochronology is ideally suited to obtain 

these constraints by providing information on the temperature-time (T-t) history 

of samples as they cool through the upper kilometres of the crust. 

The Namaqualand sector of the South Atlantic margin has recently been the 

subject of investigations into the post-rift evolution of the margin and may be a 

prime example of a passive margin which has experienced many phases of post-

rift structural reactivation. However, a lack of post-rift geological evidence and 

poor age constraints on the timing of deformation means that our understanding 

of the development of the present day morphology is still unresolved. 

This study provides a comprehensive suite of apatite fission track and apatite (U-

Th-Sm)/He data which have been inverted using a Bayesian transdimensional 

Markov Chain Monte Carlo (MCMC) approach to resolve the thermal history of the 

continental margin. By demonstrating that these cooling episodes relate to 

crustal denudation, a multi-stage development of the continental margin is 

proposed. 
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5.2 Local Geology 

5.2.1 Study Area 

The study area extends from the coastal margin at Hondeklip Bay eastward 

towards Vaalputs, encompassing the low-intermediate nuclear waste disposal 

site operated by NECSA at Vaalputs. The broad transect cuts through the heart 

of the Namaqualand basement inlier and through the small towns of 

Kamieskroon and Leliefontein. The distribution of samples parallel to the coast 

encroaches on the region just south of Springbok to the north, and extends into 

the region around the town of Garies in the south (Fig. 5-1). 

5.2.2 Morphology 

The most prominent topographic feature in the study area is the high relief 

Namaqualand Highlands (NQH) (Fig. 5-1). Seaward of this feature is a coastal 

plain with a width of c. 40 – 50km which comprises a low relief morphology. This 

low elevation plain gradually increases in elevation from sea level at the margin 

to c. 400m at the periphery of the NQH. Inland of the NQH, the Namaqualand 

Plateau attains an average elevation of approximately 1km. The Namaqualand 

Plateau is the western extent of a regionally extensive low relief plain spanning 

across much of the interior of southern Africa. The NQH form a high relief zone 

rather than a prominent steep escarpment or well-defined escarpments in a 

stepped topography such as along the SE African margin. Elevations frequently 

reach up to 1500 m while locally the Kamiesberg Mountains reach up to 1770m. 

Intervening valley floor elevations are typically 400 – 500 m a.s.l in the western 

side of the NQH but progressively increase to c. 900 m closer to the plateau. 

Superficial sandy deposits fill the valley floors and follow a complex network of 

major and minor structures that predominantly trend NNW-SSE. The nature of 

valley incision and the origin of the NQH terrain have previously been 

interpreted as a remnant of Late Jurassic rift shoulders (Partridge and Maud, 

1987); a remnant of a post-rift feature uplifted during escarpment retreat (e.g. 

Gilchrist et al., 1994; Brandt et al., 2005); or an expression of Mid-Late 

Cretaceous tectonically induced uplift (e.g. Kounov et al., 2009). 
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Figure 5-1: Location map of the Namaqualand Highlands study area. DEM created using SRTM90m. Elevation map is draped over Landsat ETM+ RGB:321 
satellite images to enhance local relief and geomorphic features. Elevation profiles for three coast perpendicular transects are shown and are used later 
alongside two coast parallel transects (a-a’; b-b’) in Figure 5-20(d) and (e) with projected data. 
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5.2.3 Namaqua Metamorphic Province 

Rocks of the Meso-Proterozoic Namaqua Metamorphic Province (NMP) dominate 

the geology of the study area (Fig. 5-2). The NMP are comprised mainly of 

granitic gneisses and granite bodies that can be attributed to syn or post 

tectonic emplacement during multiple periods of orogeny and terrane 

accumulation (Tankard et al., 1982; Groenewald et al., 1991; Jacobs et al., 

1993; Cornell et al., 2006). The NMP therefore records a complicated history of 

magma emplacement and metamorphism that has produced a variety of 

supracrustal and intrusive rock types (Thomas et al., 1994a, b; Eglington, 2006; 

Voordouw and Rajesh, 2012). A detailed description of these rock types can be 

found in Eglington (2006). 

What is more pertinent in the context of this study is the tectonic fabric that 

was established at this time. This basement structure has likely been important 

in controlling the style of pre, syn and post-rift tectonics (e.g. Ziegler and 

Cloetingh, 2004). At least four compressional deformation events have been 

documented in gneissic foliations and folding of the crust and are thought to 

have been driven by processes coeval with the regional Kibaran Orogeny (c. 1200 

– 1000 Ma) and global Grenville Orogeny (c. 1300 – 950 Ma) (Jacobs et al., 1993; 

Clifford et al., 2004; Eglington, 2006; Viola et al., 2012; Colliston et al., 2014). 

Following these phases of crustal shortening, a phase of extension followed in 

western Namaqualand, and has been attributed to the collapse of the 

Namaqualand orogenic belt (Dewey et al., 2006). Dykes, folds and lineations 

ascribed to these deformation events typically strike NW-SE or NE-SW and 

occasionally E-W (Cornell et al., 2006). The main phase of metamorphism of the 

NMP was largely granulite-facies metamorphism (T: 800–860°C and P: ~5–6 

kbar/15-18km) and was completed by c. 1000 - 800 Ma (Waters, 1989; Eglington, 

2006). 

5.2.4 Neoproterozoic – Palaeozoic: Pan-Africa Orogeny 

Neoproterozioc-Palaeozoic units are rare within the study area and outcrop only 

in the south towards the town of Bitterfontein (Fig. 5-2). These units consist of 

sedimentary rocks that have experienced very low-grade metamorphism and are 
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Figure 5-2: Geological map of the Namaqualand Highlands study area. Geological map was redrawn to highlight the major geological units, structures and 
features relevant to this study, using 1:250,000 maps produced by the Council for Geoscience, South Africa. (Garies, sheet 3017: de Beer, 2010; 
Loriesfontein, sheet 3018: Macey et al., 2011; Springbok, sheet 2916: Marais et al., 2001). 
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part of the Vanrhynsdorp Group. The Vanrhynsdorp group was deposited during 

the latter stages of the Pan-African orogeny (c. 700 – 500 Ma) in a foreland basin 

setting (Gresse and Germs, 1993). In the study area, the Vanrhynsdorp Group 

outcrop in half-graben structures trending N-S and as gently folded, fault 

parallel synclines, that overly an easterly dipping unconformity across the NMP 

basement (Gresse et al., 2006; Macey et al., 2011). The main Vanrhynsdorp 

Basin in the southeast of the study area is characterised by a fold-and-thrust belt 

with NW-SE trending faults. The influence of the pan-African orogeny is observed 

in the NMP as brittle overprint structures produced during dextral and sinistral 

movement along shear zone and thrusting towards NE and SW depending on the 

orientation and geometry of the fault (Viola et al., 2012).  

5.2.5 Karoo Supergroup 

Rocks of the Karoo Supergroup were deposited in a sub-continental foreland 

basin during the Carboniferous – Triassic (Tankard et al., 2009). The Karoo Basin 

covers an area of approximately 7x105 km2 across central South Africa but only 

outcrops in the most easterly extent of the study area (Fig. 5-2). The Karoo 

Supergroup deposits in this region include the lowermost Permian Dwyka and 

Ecca Group rocks (Johnson et al., 2006) which are intruded by Late Triassic-Early 

Jurassic Karoo dolerite sills and dykes. Dwyka glacial diamictites were 

unconformably deposited on the NMP basement and Vanrhynsdorp units during 

Late Carboniferous to Early Permian glaciations of southern Africa (Visser, 1990). 

The thickness and lithofacies of the Dwyka Group are highly variable and are 

attributed to erosion of an irregular pre-Karoo relief (Johnson et al., 2006). 

Clasts within the diamictite can be variable in size and are typically derived 

from the surrounding NMP or Palaeozoic bedrock (Macey et al., 2011). Glacial 

pavements are preserved on many basement exposures (Macey et al., 2011) and 

show striations indicating a SW direction of ice movement. Conformably 

overlying the Dwyka Group glacial deposits is the Permian Ecca Group consisting 

of shale units that are thinly laminated and fossiliferous (Johnson et al., 2006). 

These rocks were deposited in a shallow-marine environment and are the 

dominant sedimentary unit in the north-west Karoo Basin. Their exposure in the 

study area is limited and is typically observed beneath extensive dolerite sills. 
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The intrusion of Karoo dolerite sills and dykes (c. 180±5 Ma) was coeval with the 

eruption of thick continental flood basalts (> c. 1.5 – 2 km) and marks the 

termination of Karoo deposition and the onset of continental rifting in eastern 

Gondwana (Duncan et al., 1997; Jourdan et al., 2005, 2007; Moulin et al., 2011; 

Svenson et al., 2012). Karoo dolerite intrusions are widely preserved in the 

eastern part of the study area as prominent isolated summits (koppies) above 

the flat lying plateau.  

5.2.6 Syn and post-rift intrusive activity 

The Karoo dolerite intrusions have been dated at c. 180 Ma (Duncan et al., 1997; 

Jourdan et al., 2005; 2007) and are thought to be linked to the break-up of 

eastern Gondwana during the Late Jurassic. Igneous activity coeval with Atlantic 

rifting can be found in the most southern region of the study area (Fig. 5-2). The 

Koegel Fontein complex near the towns of Kotzesrus and Biesiesfontein is 

comprised of a variety of intrusive bodies including tholeiitic basalt plugs, 

syenite and granite plutons and dykes of varying composition (de Beer et al., 

2002; Curtis et al., 2011). The Reitpoort Granite is the largest of these and is 

described as a homogenous, medium-coarse grained alkali-feldspar granite 

forming prominent dome-like hills (de Beer, 2010). A suite of NNW-SSE trending 

dolerite dykes cross cut the Koegel Fontein complex. These dykes are named the 

False Bay dolerite suite after the dolerite dykes of similar age and composition 

observed in the Southern Cape (Day, 1987; Reid, 1990; Reid et al., 1991; 

Trumbull et al., 2007; de Beer, 2010). 

Later Cretaceous intrusions are commonly olivine melilitite plugs and alkali and 

carbonitite dykes. Olivine melilitie plugs are poorly exposed and are inferred by 

the identification of low hills or depressions covered in boulders and rubble. The 

Biesiesfontein plugs intrude into the Reitpoort Granite and have been dated at c. 

55 Ma (Moore and Verwoerd, 1985). The Sandkopsdrif Complex north of Rietpoort 

is made up of numerous alkaline and carbonitite dykes (de Beer, 2010; Curtis et 

al., 2013) and is thought to post-date olivine melilitites in Biesiesfontein (Moore 

and Verwoerd, 1985). An important observation that can be made from these 

intrusions is their coherent trend along a N to NNW striking fracture zone 
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suggesting a link between reactivation of major structures during the Early 

Cretaceous and the Early Cenozoic creating pathways for intrusive rock (e.g. 

Jelsma et al., 2009). 

The Gamoep suite consisting of olivine melilitite plugs and possible kimberlite 

intrusions is found inland on the interior plateau north of Banke farm close to 

the Vaalputs nuclear repository site. Preservation of up to 260m of carbonaceous 

shales and tuff bands within the diatremes of pipe-bodies are commonly topped 

with conglomerates and arenites. These are interpreted as crater-lake deposits 

and indicate limited erosion has taken place since the emplacement of these 

igneous intrusives (Cornelissen and Verwoerd, 1975; Moore and Verwoerd, 1985). 

The intrusions have been radiometrically dated at 54 – 77 Ma (Moore and 

Verwoerd, 1985). Fossil frogs discovered in the sediment infill have been used to 

infer a Late Cretaceous to Tertiary (Haughton, 1931) or Eocene age for the 

sediments (Estes, 1977). Palynological evidence presented by Scholtz (1985) 

however suggests a Palaeocene age for the sediments (64 – 54 Ma).  

5.2.7 Late Cretaceous and Tertiary units 

The preservation of crater-lake sedimentary successions is highly significant as 

they provide insights into a period of the margins geological history which is 

otherwise absent. The other major Late Cretaceous – Early Cenozoic sedimentary 

units of note are the Dasdap and Vaalputs formation which are exposed 

immediately eastward of the NQH on the plateau near Banke Farm, south of 

Vaalputs (Fig. 5-2). These sequences are observed as silicified and kaolinitised 

conglomerates and coarse grained, cross-bedded sandstones forming prominent 

mesas and inliers (Brandt et al., 2003). Rounded pebbles of various compositions 

within the conglomerate horizons and the occurrence of widespread cross 

laminations in the Dasdap sediments suggest that these sediments were 

deposited in a fluvial environment. The dominant presence of granitoid and 

blue-vein quartz pebbles in conglomerate units suggests a metamorphic 

basement source. However, occasional pebbles of Dwyka tillite composition, 

confined to the Vaalputs sequence, were also described by Brandt et al. (2005). 

The composition of conglomerate clasts, palaeocurrent indicators and grain size 
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characteristics indicate a westerly provenance and easterly directed 

palaeocurrents for the Dasdap and Vaalputs sediments (Brandt et al., 2003, 

2005). The volcanic pipes in the region discussed above are overlain by these 

units in places and therefore provide an upper age limit of c. 67 Ma for the 

Dasdap sequence (Brandt et al., 2003, 2005; Viola et al., 2012). 

The Vaalputs formation and adjacent Santab-se-Vloer Basin overly the Dasdap 

sequence and are intersected and bounded, respectively, by prominent NNW – 

SSW trending faults. One particular group of outcrops of Dasdap sediments at 

Kookoppe form a fault bounded north-northwest linear chain. This is in keeping 

with the predominantly NNW – SSE structural trend observed within the wider 

region (Viola et al., 2012). These observations have two main implications in the 

context of this study: i) erosion of basement and some Karoo Supergroup Dwyka 

units occurred during the Late Cretaceous, possibly related to tectonically 

steepened river gradients and increased rainfall associated with the humid Late 

Cretaceous climate (Partridge and Maud, 1987; Brandt et al., 2005), and  ii) 

tectonic activity across the margin, including significant displacement and 

differential uplift across faults, extends far inland of the escarpment zone, and 

has been episodically significant long after the initial phase of rift related 

lithospheric thinning. 

A variety of Cenozoic sedimentary deposits are present over a narrow zone along 

the low coastal plain extending along almost the entire length of the margin 

(e.g. Roberts et al., 2006, de Beer, 2012). These Cenozoic deposits are typically 

preserved in the form of elevated marine terraces, semi- and unconsolidated 

aeolian sands and as inliers preserved in localised depressions in basement 

lithologies. The strata comprising coastal marine terraces are best represented 

by the Alexander Bay Formation which records Miocene and younger cycles of 

erosion and weathering; attributed to sea-level fluctuations driven by both 

tectonic and eustatic processes (Roberts et al., 2006). Three distinct packages 

have been defined within the Alexander Bay Formation at 90 m, 50 m and 30 m 

above sea level. Late Oligocene to Early Miocene terrestrial sediments are rarely 

preserved; typically thin c. 10 m; and are poorly understood both in terms of 

their depositional environment and age (de Beer, 2010, 2012). The Oligocene De 
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Toren Formation is present on the Koegel Fontein intrusive complex and on the 

periphery of the NQH at Quaggafontein farm. The sediments are proposed to 

have been deposited in a similar environment to the Dasdap Formation. The 

Koingnaas Formation overlies strongly weathered basement along the margin at 

Hondeklip Bay and were deposited in channels formed during regression during 

the Oligocene (de Beer, 2010). 

5.3 AFT Analysis 

5.3.1 Results 

Apatite fission track (AFT) analysis was performed on samples using the external 

detector method (EDM) as outlined in Appendix 1.2. All uncertainties for AFT 

data reported here and in Chapter 6 are 1 standard error. A zeta value of 316.7 

± 10.5 was used in age calculations for all samples except JN2 and JN3 for which 

a zeta value of 317.3 ± 11.1 was used (see Appendix 2.1). Central AFT ages range 

from 58.3 ± 2.6 to 132.2 ± 3.6 Ma with c. 35% falling between 100 and 110 Ma. 

AFT ages do not show any correlation with elevation and, in fact, some of the 

youngest measured AFT ages can be found at the highest elevations (Fig. 5-3). 

Horizontal confined track (HCT) lengths were measured to investigate the 

thermal history of the samples. Mean track lengths (MTL) range between 10.9 ± 

0.19 and 14.35 ± 0.22 µm with the majority being greater than 13 µm. The width 

of track length distribution (TLD) of these samples is reflected using the 

standard deviation of length measurements (MTL-SD) which are between 0.97 

and 2.50, the majority of these however are less than two (see Appendix 5.2 for 

all TLD plots). 

 The data are summarised in Table 5-1 and Figure 5-4. In settings where there 

has been more than one thermal event, AFT age – MTL plots may show a 

‗Boomerang‘ style relationship (e.g. Green, 1986; Gallagher and Brown, 1997). 

This relationship is produced by a proportion of samples having long MTLs and 

ages coeval with the initial thermal event and a proportion of the samples 

having long MTLs and ages coeval with the second, younger, thermal event. The 

intervening samples represent samples which remained at depth following the  
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Figure 5-3: Plot of AFT and AHe age against elevation. White circles are Central AFT ages 

with uncertainty bars representing 1 standard error on the central age. Green circles are 

uncorrected mean AHe ages with uncertainty bars representing 1 standard deviation. The 
standard deviation is used in this instance to highlight the dispersion in single grain AHe 
ages. 

initial cooling event and so were partially annealed prior to the second phase of 

cooling (Gallagher and Brown, 1997). Observing a boomerang style plot is 

difficult for this dataset as almost all MTLs are similar in value and are 

predominantly greater than 13 µm. Therefore, it is likely that most samples 

resided at elevated temperatures and were almost completely reset prior to 

cooling and did not reside in the PAZ for extremely long periods. Despite the 

range in MTL being small for the majority of samples, the shorter (i.e. c. 13 – 

13.5 µm) MTLs are associated with the older (c. 100 – 110 Ma) AFT ages. This 

amount of thermal annealing may simply be due to relatively slow rates of 

cooling and will be resolved during thermal history modelling. Distinguishing a 

clear trend in the main cluster of data is difficult because of the low spread of 

MTLs. However, there are several samples which fall away from the main cluster 

of data due to their short (i.e. < 13 µm) MTL and/or young age (c. < 80 Ma). A 

boomerang relationship could be argued for as there appears to be a decrease in 
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JN2 18.05 -30.68 376 42.7 3605 100.2 8451 19.8 14137 0.01 2.13 67.6 132.2 3.6 20 13.73 0.11 1.08 14.74 0.12 0.79 103

JN3 17.38 -29.90 418 24.2 1790 64.7 4796 19.9 14137 0.81 1.91 44.1 116.8 3.2 20 13.62 0.11 1.10 14.72 0.12 0.78 103

NQ12-01 17.99 -30.55 238 15.0 1365 40.4 3675 14.6 16086 0.04 1.49 37.6 85.4 3.4 20 13.39 0.13 1.32 14.65 0.14 0.80 100

NQ12-03 17.95 -30.46 582 11.1 1163 29.8 3127 14.7 16086 0.57 1.83 27.0 86.0 3.0 20 14.01 0.11 1.10 15.03 0.12 0.76 101

NQ12-04 17.93 -30.40 720 7.2 1324 21.2 3898 16.6 16348 0.00 1.65 27.8 89.6 4.1 19 13.85 0.10 0.98 14.95 0.11 0.63 100

NQ12-06 17.86 -30.34 690 26.7 2080 76.9 5989 16.5 16348 0.32 1.62 65.3 90.2 2.4 19 12.50 0.13 1.39 13.73 0.14 1.04 115

NQ12-07 17.82 -30.32 688 29.6 2511 72.0 6095 14.8 16086 0.12 1.92 65.0 96.0 2.6 20 13.63 0.10 1.23 14.74 0.11 0.82 151

NQ12-08 17.80 -30.34 598 23.1 2283 60.9 6012 16.5 16348 0.06 2.98 49.5 98.7 3.0 19 13.96 0.13 1.23 14.95 0.14 0.90 73

NQ12-09 17.77 -30.34 355 12.6 1153 31.8 2906 17.1 16086 0.49 2.49 25.8 106.6 3.8 20 13.60 0.19 1.92 14.74 0.21 1.20 101

NQ12-10 17.75 -30.36 239 5.9 208 19.2 678 16.5 16348 0.50 3.42 16.3 79.7 6.3 9 14.35 0.22 1.05 15.18 0.23 0.83 22

NQ12-11 17.72 -30.37 416 4.6 477 11.2 1167 17.2 16086 0.82 2.07 10.1 110.4 6.0 20 13.51 0.16 1.43 14.64 0.17 0.90 38

NQ12-12 17.68 -30.36 388 31.2 1649 96.3 5096 16.5 16348 0.10 2.89 83.4 83.7 2.7 18 13.45 0.15 1.50 14.67 0.16 0.97 106

NQ12-13 17.62 -30.36 354 7.8 747 21.8 2082 14.9 16086 0.28 1.45 19.3 84.0 4.1 20 13.59 0.13 1.27 14.77 0.14 0.91 100

NQ12-15 17.30 -30.32 38 4.5 373 11.7 966 15.0 16086 0.17 2.06 10.8 91.5 6.3 20 14.05 0.15 1.45 15.10 0.16 0.91 94

NQ12-16 17.27 -30.29 11 8.5 643 22.0 1654 15.2 16086 0.01 1.87 19.5 93.5 6.1 20 13.70 0.15 1.22 14.80 0.16 0.83 65

NQ12-17 17.29 -30.36 5 8.6 914 21.7 2316 16.8 16086 0.14 1.82 17.5 104.9 4.6 20 13.02 0.19 1.91 14.07 0.21 1.33 100

NQ12-18 17.28 -30.34 5 8.9 1161 21.8 2846 16.9 16086 0.02 2.11 16.6 108.4 4.9 20 13.88 0.19 1.30 14.92 0.20 0.88 100

NQ12-19 17.64 -30.28 250 5.2 754 11.8 1723 15.4 16086 0.64 1.90 10.8 105.8 4.6 20 13.40 0.19 1.48 14.55 0.20 1.06 82

NQ12-20 17.72 -30.20 473 22.3 1556 53.5 3723 15.6 16086 0.18 2.28 45.3 102.5 3.6 19 13.77 0.12 1.28 14.82 0.13 0.87 108

NQ12-21 17.77 -30.21 665 24.6 1468 80.9 4831 17.3 16086 0.00 1.82 54.6 83.2 4.0 17 13.67 0.19 1.41 14.57 0.20 0.98 102

NQ12-23 18.52 -31.23 300 9.0 779 40.3 3474 16.5 16348 0.18 1.56 32.0 58.3 2.6 20 13.83 0.13 1.31 14.56 0.14 0.90 103

NQ12-24 18.35 -31.13 400 20.8 1164 58.3 3259 16.5 16348 0.93 2.27 46.8 92.7 3.2 20 14.20 0.09 0.97 15.15 0.10 0.66 108

NQ12-25 17.93 -30.21 740 7.1 772 15.6 1700 15.8 16086 0.64 2.46 14.3 112.6 4.9 20 14.01 0.14 1.45 14.98 0.15 0.96 112

NQ12-26 17.93 -30.13 850 37.4 2822 90.4 6823 16.5 16348 0.17 2.43 79.7 107.2 2.7 20 13.94 0.12 1.21 14.93 0.13 0.80 103

NQ12-27 17.88 -30.03 600 18.5 2167 44.5 5213 16.2 16086 0.43 1.91 38.0 105.8 2.7 23 13.37 0.13 1.35 14.61 0.14 0.85 104

NQ12-28 17.90 -30.17 650 35.6 2282 95.2 6107 17.4 16086 0.35 2.15 76.0 102.1 2.5 20 12.89 0.16 1.83 14.28 0.18 1.11 128

NQ12-29 17.78 -30.09 720 28.7 586 74.8 1527 16.5 16348 0.17 2.20 61.6 99.1 5.6 10 13.81 0.11 1.15 14.85 0.12 0.80 111

NQ12-30 17.83 -30.15 550 31.6 2426 74.9 5758 16.4 16348 0.40 1.75 58.2 108.5 2.6 20 13.86 0.11 1.13 14.99 0.12 0.75 110

NQ12-33 18.08 -30.17 1050 13.9 1319 33.4 3174 16.3 16086 0.03 1.64 29.1 105.8 4.5 20 13.56 0.14 1.40 14.76 0.15 0.97 100

NQ12-34 18.16 -30.18 1000 15.0 949 34.8 2203 16.3 16438 0.05 1.93 30.6 110.0 5.3 20 13.21 0.15 1.49 14.49 0.16 0.98 106

SA12-22 19.08 -29.93 922 35.9 2565 81.3 5812 14.0 16086 0.01 2.20 76.6 97.2 3.1 20 14.04 0.14 1.48 15.07 0.15 0.97 108

SA12-27 18.70 -30.23 987 5.6 334 24.1 1434 16.6 16348 0.71 1.84 22.4 60.9 3.7 18 12.66 0.37 1.95 14.16 0.41 1.38 27

SA12-30 18.00 -30.53 258 9.4 1012 33.4 3600 16.6 16348 0.06 2.94 27.0 73.2 3.3 20 14.17 0.22 1.20 15.10 0.23 0.80 100

SA12-32 18.06 -30.53 351 6.0 106 20.4 360 16.2 16348 0.85 1.70 18.6 75.1 8.3 3 10.90 0.19 1.54 13.28 0.23 0.95 2

SA12-33 18.06 -30.49 400 5.2 353 12.3 836 16.6 16348 0.75 1.71 9.9 110.0 7.0 23 13.48 0.28 1.33 14.63 0.30 0.95 23

SA12-35 18.06 -30.45 605 3.4 232 6.5 442 14.1 16086 0.62 1.87 6.1 119.0 10.0 17 13.71 0.22 1.31 14.85 0.24 0.86 35

SA12-36 18.06 -30.45 707 3.6 288 10.4 822 16.6 16348 0.57 2.03 9.2 91.4 6.3 21 13.90 0.17 1.58 14.98 0.18 0.93 82

SA12-37 18.06 -30.43 807 12.4 409 38.0 1256 16.6 16348 0.61 1.74 32.5 85.0 4.8 12 13.43 0.34 1.68 14.64 0.37 1.13 24

SA12-38 18.07 -30.40 959 15.3 808 53.9 2839 16.6 16348 0.61 1.68 45.3 74.4 3.0 20 13.83 0.13 1.31 14.88 0.14 0.89 100

SA12-47 18.23 -30.39 1064 5.0 484 11.2 1086 14.3 16086 0.22 2.06 12.5 100.8 5.9 21 12.40 0.22 1.80 13.89 0.25 1.22 74

SA12-51 18.42 -30.32 1066 34.9 3341 75.0 7183 14.4 16086 0.00 2.30 67.7 107.7 3.8 20 12.81 0.15 1.19 14.24 0.17 1.19 139

SA12-52 18.46 -30.32 1065 3.2 208 7.1 461 14.5 16086 0.99 2.20 7.3 102.8 8.6 16 13.67 0.19 1.42 14.68 0.20 1.01 55

Sample Nd
b

Ni
b

#HCT
i#XtlsNs

b
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h

C. AFT Age (Ma)
f ±1σ

 

Table 5-1: Results of apatite fission track analysis. a: ρi,s,d are track density of induced, spontaneous, dosimeter tracks. b: Ni,s,d are the number of induced, 
spontaneous and dosimeter tracks counted. c: p-value of the chi-sq age homogeneity test (Galbraith, 2010; see appendix 3.1). d: Dpar measurements are 
etch pit diameters used as a proxy for the influence of chemical composition on track annealing (Donelick et al., 2005). Between three to five Dpar 
measurements where measured for each dated single grain. e: Uranium content estimated using EDM. f: Central AFT ages calculated with TrackKey (Dunkl, 
2002) with 1σ standard error. Ages were calculated using a ζ = 316.7 ± 10.5 (317.3 ± 11.1 for samples JN2 and JN3) for a standard IRMM540 glass g: SD is 
the standard deviation of measured horizontal confined track lengths. h: mean track length after individual track length measurements are corrected for 
their orientation to the c-axis after Ketcham et al., (2005). i: HCT = Horizontal Confined Track. Analysis details can be found in Appendix 1. For details on 
sample lithology see Appendix 4. 
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Figure 5-4: Plot of AFT age against mean track length. AFT ages are Central AFT ages with 

1 standard error. Plot (a) shows AFT age against MTLs uncorrected for their c-axis 
orientation; (b) shows AFT age against MTLs corrected for their c-axis orientation after 

Ketcham et al., (2005). For both plots MTLs have uncertainty bars with 1 standard error. 
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MTL with age from a starting point defined by relatively long track lengths at c. 

100 – 120 Ma. The ending point for the boomerang curve is defined by a single 

sample which has a long MTL and age of 58.3 Ma. Although this trend could be 

described, in actuality its existence is tenuous. Very few points define its 

structure, particularly towards the younger end of the plot. Moreover, the 

sample which defines the base of the boomerang has limited AFT data (2 lengths 

and 3 single grain ages) due to the poor quality of the sample and therefore 

must be treated with caution. Finally, the samples which comprise this proposed 

boomerang are from the Namaqualand plateau, the Namaqualand highland 

terrain and from the Bitterfontein area close to the Koegelfontein complex. Each 

of these areas is characterised by a different structural, thermal and geomorphic 

setting and may have responded to discrete geological events or processes. 

Figure 5-5 illustrates the relationship between AFT age and MTL against MTL-SD. 

A high MTL-SD indicates a broad TLD and a low MTL-SD represents a narrow TLD. 

There is no correlation between AFT age and MTL-SD suggesting that there are 

samples with similar ages but with distinct track length distributions and 

therefore different cooling histories. There is a general negative correlation 

between MTL and MTL-SD. This is the expected relationship for track length 

distributions with samples with a long mean track length typically having a 

narrow TLD, indicative of fairly rapid cooling. 

5.3.2 Data quality assessment 

The quality of the data was assessed following the steps outlined in Appendix 3 

and outlier single grain ages were removed only when appropriate. The number 

of single grains counted for each sample ranges from 3 to 23 with more than 90% 

of samples yielding more than 15 grains with sufficient quality suitable for 

counting. Dispersion (Galbraith, 2010) on single grain ages is generally low, with 

an average of 6% across the entire sample set and not exceeding 20%. Radial 

plots visually illustrating single grain dispersion are found in Appendix 5.1.  

9 samples yielded P(χ2) equal to or less than 0.05 (and dispersion of 8-19%). 

These samples yielded 17 grains or above suitable for counting with the number  
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Figure 5-5: Plot of AFT age (left hand side; lower x-axis) and mean track length (right hand 
side; upper x-axis) against mean track length standard deviation. AFT ages are Central AFT 

ages with 1 standard error. MTLs are uncorrected for their c-axis orientation; with 1 
standard error. 

of spontaneous tracks ranging from 643 to 3341. Therefore the issue of a low 

P(χ2) value being attained due to a ‗lack of evidence‘ is avoided as plenty of 

tracks have been counted. A mixture model (Galbraith and Green, 1990; 

Appendix 5.1) was used to investigate whether the single grain age distributions 

better represent more than one population of ages. No sample produces a clear 

distinction of two or more populations but the mixture model does suggest that 

two or, in the case of SA12-51, three, populations could be present in some 

sample data sets. However, there is always a large uncertainty on the 

percentage of grains that can be assigned to each population and this blurs the 

distinction of individual populations. 

The number of track lengths found within each sample varies from 2 to 151 with 

more than 80% containing at least 50 HCTs. In cases where, MTLs are relatively 

short or TLDs are relatively broad; the shape of the TLD is either normally 
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distributed around the mean value or is negatively skewed with a large 

proportion of longer tracks and tail of shorter tracks. 

Dpar values for the Namaqualand area range between 1.45 to 3.42 µm with most 

values (76% of samples) falling between 1.7 and 2.3 µm. This range of values is 

comparable with Durango apatite which has been quoted as having a Dpar range 

of 2.05 ± 0.16 µm (Sobel and Seward, 2010). It is suggested that the majority of 

samples have compositional controlled annealing properties similar to the 

Durango standard. There is no clear relationship between Dpar values and MTLs, 

MTL-SDs or AFT ages (see Chapter 4 – Figure 4-5) suggesting that compositional 

variations cannot be solely responsible for the observed AFT data. Estimated 

uranium values range from 6.11 to 83.36 ppm with a widespread variation across 

all samples and no correlation with age, MTL or MTL-SD (c.f. Chapter 4 – Figure 

4-6). 

5.3.3 Summary of AFT Data 

The AFT data presented here for the NQH study area can be described as having 

ages that range from the Early Cretaceous to Early Tertiary with moderate to 

long MTLs. TLDs are generally narrow to moderately broad. A lack of correlation 

observed in plots of Dpar and uranium content against MTL, MTL-SD and AFT age 

suggest that there is no dominant compositional control on the data observed. It 

is reinforced here that the majority of samples have relatively long MTLs and 

therefore they have not experienced significant partial annealing and the effect 

of varying apatite composition will be small. The relationship between track 

length and AFT age indicates that major cooling of the crust occurred 

throughout the Cretaceous, continuing into the Early Tertiary. This cooling may 

have been spatially and temporally variable across the study area with individual 

samples potentially recording both a rapid and protracted response to multiple 

cooling events. 
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5.4 AHe Analysis 

5.4.1 Results 

A subset of samples were selected for AHe analysis based on their quality and 

sample location. 16 samples were chosen and multiple single grain AHe analysis 

was performed (Table 5-2). Apatite (U-Th-Sm)/He analysis was performed as 

outlined in Appendix 1.3. For AHe data reported here and in Chapter 6 

uncertainty on mean AHe ages is reported as 1 standard deviation and 

uncertainty on single grains is 1 standard error, propagated from analytical 

errors, plus 1 standard deviation of Durango apatite age standards (see Chapter 

4, section 4.5.2.3). Mean AHe ages, uncorrected for alpha recoil, range from 

55.8 to 120.6 Ma and alpha-recoil corrected ages (after Farley et al., 1996) 

range from 74.3 to 156.9 Ma. However, there are two problems with quoting 

ages in this way. (i) mean ages are associated with large degrees of single grain 

age dispersion ranging from 12 – 56% (dispersion = standard deviation of 

age/mean age) (ii) corrected ages do not take into account the abundance of 

alpha particles produced in the outer 20 µm of the crystal that are lost due to 

diffusive loss at high temperatures and not alpha ejection. That being said, the 

mean age does provide a useful frame of reference to compare against AFT ages 

and the wider geological context but should not be quoted without some 

indication of the single grain age dispersion. The oldest single grain age of 181.4 

± 24.7 Ma is obtained from sample NQ12-11 while the youngest of 22.4 ± 3.4 Ma 

is from NQ12-15. As explained in Chapter 4 – Section 4.4, AHe ages are subject 

to extreme variation due to their eU content, grain size and whether or not they 

are fragments of larger crystals and so AHe ages alone cannot be interpreted 

easily. 

5.4.2 Data quality assessment 

In theory, AFT ages should be greater than or equal to their equivalent AHe age. 

Samples from the NQH show that 44% of average AHe ages are indeed younger 

than AFT ages and only three samples that are older, do not overlap within the 

uncertainty given to the average age (i.e. sample standard deviation) (Fig. 5-3). 

The uncertainty levels on AHe ages are representative of the dispersion of single 
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4He eUa Lc Wc R*d Raw Age ±Est. UCf Cor. Ageg ±Est. UCf

(cc) (ng) (ppm) (ng) (ppm) (ng) (ppm) (ng) (ppm) (ppm)  (μm)  (μm)  (μm) Average St. Dev Average St. Dev

JN2 1 1.8E-09 0.10 69.3 7.2E-04 0.50 0.42 291.4 138.3 1 116.3 70.5 40.6 0.62 74.6 8.4 121.2 13.7 94.4 12.3 138.5 14.4

2 2.0E-09 0.05 36.9 3.6E-04 0.27 0.77 567.3 170.4 1 112.6 69.4 39.8 0.59 70.1 8.1 118.5 13.6

3 1.8E-09 0.07 52.3 5.2E-04 0.38 0.51 367.7 139.0 1 120.1 67.9 39.7 0.60 78.3 8.9 130.7 14.9

4 8.9E-09 0.27 73.5 1.9E-03 0.53 1.98 545.7 202.3 2 187.9 87.7 53.3 0.70 99.2 11.3 141.4 16.1

5 9.3E-09 0.25 69.0 1.8E-03 0.50 2.21 613.6 213.7 2 197.7 85.2 52.6 0.70 98.9 11.3 142.3 16.3

6 8.9E-09 0.14 66.1 1.0E-03 0.48 2.57 1170.7 341.7 2 126.4 83.2 46.9 0.65 97.2 11.2 149.0 17.2

7 8.7E-09 0.27 102.8 1.9E-03 0.75 1.74 663.5 259.5 2 158.8 81.1 48.5 0.67 105.3 12.0 156.5 17.9

8 5.9E-09 0.12 32.4 8.6E-04 0.24 1.87 507.2 151.8 2 167.6 93.6 54.9 0.70 86.0 9.9 122.2 14.1

9 9.8E-09 0.25 83.7 1.8E-03 0.61 2.57 866.0 287.8 1 117.4 100.3 52.7 0.69 94.2 10.8 135.6 15.6

10 5.7E-09 0.14 53.6 1.0E-03 0.39 1.80 667.3 210.8 1 116.1 96.1 51.0 0.68 82.6 9.5 121.0 13.9

12 1.5E-08 0.23 71.2 1.7E-03 0.52 4.47 1372.7 394.3 2 152.6 92.2 53.1 0.69 94.6 10.9 136.7 15.8

16 5.2E-09 0.11 48.1 8.3E-04 0.35 0.63 263.0 110.3 1 116.8 90.4 48.9 0.68 160.8 18.3 237.2 27.0

17 1.9E-08 0.46 99.9 3.3E-03 0.72 4.02 864.1 303.7 1 192.7 98.1 58.6 0.73 112.5 12.9 154.2 17.7

18 2.2E-08 0.62 125.1 4.5E-03 0.91 4.82 959.4 351.4 1 208.5 97.9 59.5 0.73 102.9 11.8 140.6 16.1

19 7.1E-09 0.20 66.6 1.4E-03 0.48 1.35 446.0 171.9 1 120.7 99.8 53.0 0.70 111.8 12.8 159.6 18.2

20 7.8E-09 0.27 83.5 2.0E-03 0.61 1.82 548.3 213.0 1 139.5 97.3 54.1 0.71 90.9 10.4 128.6 14.7

21 8.2E-09 0.32 87.8 2.3E-03 0.64 1.68 463.9 197.5 1 160.5 94.7 54.9 0.71 94.1 10.7 132.0 15.0

22 1.2E-08 0.26 66.0 1.9E-03 0.48 1.03 259.1 127.4 1 193.2 90.5 55.0 0.72 193.0 21.9 269.1 30.5

23 3.9E-09 0.11 49.5 7.7E-04 0.36 1.01 464.8 159.1 1 96.2 94.6 47.6 0.66 93.1 10.7 140.4 16.1

24 7.2E-09 0.21 62.6 1.5E-03 0.45 1.28 373.8 150.9 1 152.2 94.6 54.1 0.71 115.2 13.1 162.7 18.6

25 3.7E-09 0.10 47.6 7.6E-04 0.35 0.86 389.7 139.6 1 101.6 93.2 47.9 0.67 99.5 11.4 149.4 17.1

26 4.1E-09 0.15 43.2 1.1E-03 0.31 1.13 321.3 119.0 1 146.2 97.8 55.0 0.71 80.6 9.2 113.5 13.0

27 5.1E-09 0.17 81.7 1.2E-03 0.59 1.02 480.0 195.1 1 101.9 91.0 47.2 0.67 101.5 11.6 152.5 17.4

JN3 1 2.6E-09 0.16 24.2 1.1E-03 0.18 0.20 29.9 31.4 1 170.4 124.1 68.2 0.78 103.6 11.4 132.5 14.6 106.2 12.9 140.6 18.7

2 3.0E-09 0.17 12.7 1.3E-03 0.09 0.12 8.6 14.8 1 187.7 171.4 88.2 0.83 122.0 13.4 146.2 16.1

3 2.2E-09 0.15 32.3 1.1E-03 0.23 0.17 38.0 41.4 2 187.6 98.2 58.4 0.75 95.1 10.5 127.4 14.1

4 3.9E-09 0.22 42.8 1.6E-03 0.31 0.34 66.9 58.8 1 157.9 113.5 62.6 0.76 107.0 11.9 140.7 15.6

5 2.7E-09 0.16 16.5 1.2E-03 0.12 0.17 17.1 20.7 1 184.4 146.2 78.5 0.81 107.1 11.8 131.8 14.5

6 1.9E-09 0.11 20.3 7.7E-04 0.15 0.19 36.0 28.9 1 160.9 113.9 63.1 0.76 103.6 11.5 136.1 15.1

7 2.5E-09 0.08 18.0 6.1E-04 0.13 0.51 109.2 43.8 2 191.3 99.0 59.0 0.73 100.3 11.5 144.3 16.5

8 2.4E-09 0.13 30.9 9.4E-04 0.22 0.39 93.0 53.0 1 120.4 118.3 59.5 0.74 87.2 9.8 120.9 13.6

9 2.5E-09 0.13 20.9 9.4E-04 0.15 0.11 17.7 25.3 1 210.8 108.6 64.8 0.77 129.8 14.3 185.7 20.4

NQ12-04 1 5.1E-09 0.40 42.77 2.9E-03 0.31 0.13 13.8 46.3 1 328.6 106.1 68.5 0.79 96.4 13.5 122.0 17.0 101.4 21.2 134.8 25.6

2 4.5E-09 0.29 63.33 2.1E-03 0.46 0.45 100.2 87.3 1 202.1 94.5 57.4 0.74 93.4 12.7 126.4 17.2

3 3.4E-10 0.28 31.43 2.0E-03 0.23 0.11 12.9 34.7 1 194.1 134.4 74.9 0.81 9.3 1.3 11.5 1.6

4 1.2E-09 0.08 30.30 6.2E-04 0.22 0.03 10.9 0.36 129.1 33.1 2 188.7 76.8 47.9 0.70 101.0 11.3 144.3 16.2

5 4.3E-09 0.22 29.71 1.6E-03 0.22 0.06 7.4 0.92 124.0 31.7 2 196.2 123.0 70.2 0.80 143.8 16.0 180.6 20.1

6 1.4E-09 0.12 23.07 8.6E-04 0.17 0.03 5.9 24.6 1 142.7 119.9 63.3 0.77 92.4 13.0 119.4 16.9

7 3.3E-10 0.03 9.70 2.2E-04 0.07 0.03 8.7 0.30 96.6 11.8 2 187.8 80.6 49.8 0.70 69.3 7.8 98.3 11.1

8 2.5E-09 0.20 24.72 1.5E-03 0.18 0.06 7.2 26.6 2 261.9 111.5 68.9 0.79 93.6 13.1 118.2 16.6

12 2.0E-09 0.12 38.85 8.9E-04 0.28 0.16 52.1 0.34 109.4 51.4 2 164.8 87.2 51.7 0.71 98.1 10.8 137.8 15.2

22 2.1E-09 0.12 23.27 8.6E-04 0.17 0.05 10.0 0.53 104.7 25.8 2 245.4 90.9 57.5 0.75 124.4 13.9 166.1 18.6

NQ12-06 3 4.4E-09 0.21 33.3 1.5E-03 0.24 1.46 230.01 0.69 108.7 87.58 1 176.6 119.6 67.0 0.76 64.7 7.3 86.5 9.7 103.2 18.3 135.7 23.3

4 3.6E-09 0.17 37.8 1.3E-03 0.27 0.53 115.71 0.35 74.9 65.22 1 165.4 105.3 59.9 0.74 96.7 10.9 129.3 14.6

5 7.9E-09 0.49 64.2 3.5E-03 0.47 0.45 60.10 1.50 198.7 78.74 1 191.3 125.4 70.8 0.79 105.9 11.9 141.5 15.9

6 1.5E-08 0.88 128.9 6.4E-03 0.93 0.95 138.30 1.23 179.4 162.34 2 247.9 104.8 64.9 0.77 110.0 12.1 142.5 15.6

8 1.0E-08 0.51 60.5 3.7E-03 0.44 1.24 147.70 1.04 124.6 95.64 1 176.6 137.4 74.2 0.79 105.1 11.6 132.3 14.6

9 1.2E-09 0.05 14.1 3.5E-04 0.10 0.17 50.83 0.13 37.9 26.11 1 176.0 88.1 52.9 0.71 109.2 12.3 145.9 16.4

10 5.6E-09 2 276.5 78.0 51.3

11 8.7E-10 0.21 26.5 1.5E-03 0.19 1.08 135.07 0.80 100.8 58.39 1 185.9 130.6 72.5 0.78 15.1 1.7 20.2 2.3

14 4.7E-09 0.13 19.3 9.4E-04 0.14 0.68 100.70 0.54 80.4 43.08 2 191.7 118.3 67.8 0.77 130.0 14.5 169.2 18.9

16 5.7E-09 0.11 17.0 8.1E-04 0.12 1.40 213.17 0.76 115.8 67.19 2 241.0 104.3 64.3 0.75 103.7 11.7 138.5 15.6

147Sm238U
Sample Grain #

235U 232Th
Ft

eTb Raw Age (Ma) Cor. Age (Ma)

(Ma) (Ma)

 

Table 5-2: Results of apatite (U-Th-Sm)/He analysis. a: eU (effective uranium) is calculated as eUppm = [Uppm]+(0.235*[Thppm]). b: T = Number of terminations 
identified on crystal. c: L & W = Length and Width of crystal or crystal fragment. d: R*=spherical equivalent radius calculated as R*=(3*(RL))/(2*(R+L)) where 
R = W/2. e: correction factor after Farley et al. (1996), assuming homogeneous distribution U and Th. f: Estimate Uncertainty is equal to 1σ analytical 
uncertainty, which include error propagated from U, Th, Sm and He measurement uncertainties, plus an additional 10% which is the standard deviation 
(reproducibility) of repeat analysis of Durango apatite standards. g: Corrected AHe age = Raw AHe age/Ft). Analysis details can be found in Appendix 1. 
Shaded data has been excluded from mean value calculations and further interpretation (see Appendix 3.2). For details on sample lithology see Appendix 
4. 
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4He eUa Lc Wc R*d Raw Age ±Est. UCf Cor. Ageg ±Est. UCf

(cc) (ng) (ppm) (ng) (ppm) (ng) (ppm) (ng) (ppm) (ppm)  (μm)  (μm)  (μm) Average St. Dev Average St. Dev

NQ12-07 2 1.9E-09 0.12 51.0 8.9E-04 0.37 0.29 121.0 0.19 77.5 79.8 2 168.3 75.3 46.2 0.67 80.7 8.9 119.0 13.1 89.6 14.1 122.5 19.1

4 2.9E-09 0.21 46.9 1.5E-03 0.34 0.17 37.4 0.24 53.9 56.1 1 175.6 100.6 58.7 0.75 94.2 12.8 128.5 17.4

7 4.0E-10 0.02 14.8 1.5E-04 0.11 0.12 84.0 34.6 2 123.9 68.1 40.1 0.61 66.0 9.0 86.8 11.8

8 4.3E-09 0.23 35.7 1.6E-03 0.26 0.30 47.2 0.42 65.3 47.0 1 202.2 111.9 65.7 0.77 115.9 15.7 152.3 20.7

9 5.8E-10 0.04 47.5 3.2E-04 0.34 0.08 89.7 69.0 2 153.3 49.4 31.9 0.53 73.8 10.0 97.0 13.2

13 3.2E-09 0.15 27.7 1.1E-03 0.20 0.40 72.6 0.33 59.7 44.9 2 228.4 97.6 60.3 0.75 104.0 11.5 138.3 15.3

15 1.7E-09 0.10 38.5 7.1E-04 0.28 0.18 69.5 0.17 67.4 55.1 1 112.9 95.0 50.2 0.70 95.9 13.1 139.6 19.1

16 5.5E-10 0.04 17.7 3.0E-04 0.13 0.06 24.5 0.11 46.2 23.6 2 140.8 81.4 47.4 0.69 80.9 8.9 117.8 13.0

17 1.8E-09 0.13 49.3 9.7E-04 0.36 0.10 37.6 58.4 2 166.5 80.5 48.6 0.70 91.0 12.3 119.6 16.2

23 5.0E-11 0.05 17.1 3.4E-04 0.12 0.14 51.1 29.2 2 171.5 79.8 48.6 0.68 5.2 0.7 6.8 0.9

25 2.0E-09 0.12 22.5 8.7E-04 0.16 0.20 37.7 0.29 53.8 31.6 1 154.0 117.0 63.6 0.76 97.6 13.3 129.5 17.7

26 1.6E-09 0.12 49.3 8.5E-04 0.36 0.14 57.0 0.18 74.5 63.1 2 134.0 84.2 48.1 0.69 88.8 9.7 128.5 14.1

28 1.2E-09 0.12 89.2 8.6E-04 0.65 0.06 44.3 100.3 2 131.5 63.4 38.3 0.62 73.9 10.0 97.2 13.2

33 1.2E-09 0.07 16.5 5.3E-04 0.12 0.07 15.9 0.24 55.1 20.4 2 200.4 93.9 57.1 0.82 101.8 11.2 137.9 15.2

NQ12-09 1 1.2E-09 0.04 32.2 3.1E-04 0.23 0.39 293.8 0.09 70.0 101.4 2 146.3 60.3 37.5 0.57 70.3 7.9 122.7 13.8 88.7 16.5 125.2 17.5

2 1.9E-09 0.06 21.0 4.4E-04 0.15 0.63 215.1 0.11 36.3 71.7 2 177.4 80.9 49.4 0.67 73.9 8.3 109.7 12.3

3 2.4E-09 0.08 21.8 5.5E-04 0.16 0.59 169.2 61.7 0 128.4 103.7 55.4 0.71 90.1 13.0 126.5 18.3

4 0.00 0.6 1.6E-05 0.00 0.03 6.9 2.2 1 164.7 96.6 56.0 0.71

5 7.5E-09 0.18 18.2 1.3E-03 0.13 1.94 197.3 64.6 0 191.2 143.2 78.1 0.79 96.2 14.0 121.2 17.7

6 5.1E-09 0.10 17.0 7.6E-04 0.12 0.89 144.3 0.19 30.8 51.0 2 158.9 124.3 67.0 0.76 132.9 14.9 174.6 19.6

7 2.6E-09 0.10 18.5 7.0E-04 0.13 0.64 121.7 47.3 0 192.8 103.8 61.3 0.74 84.7 12.2 114.2 16.4

8 2.0E-09 0.06 10.3 4.0E-04 0.07 0.54 99.7 0.24 44.1 33.8 1 157.2 117.1 64.0 0.75 86.7 9.7 115.8 13.0

9 1.2E-09 0.04 11.6 2.6E-04 0.08 0.34 108.4 0.14 43.6 37.2 1 142.3 93.5 52.8 0.70 85.7 9.4 123.2 13.5

11 1.0E-09 0.04 22.0 2.7E-04 0.16 0.31 181.9 64.9 1 111.5 77.8 43.3 0.63 77.4 11.2 122.8 17.8

12 3.2E-09 0.10 23.1 7.0E-04 0.17 0.88 211.4 0.19 45.5 73.0 1 150.3 105.0 58.4 0.73 86.8 12.6 119.7 17.4

13 3.6E-12 0.08 27.4 5.9E-04 0.20 0.53 181.3 70.2 1 164.1 84.6 50.4 0.69 0.1 0.0 0.2 0.0

15 9.7E-10 0.03 7.8 1.9E-04 0.06 0.30 88.2 28.5 1 133.6 100.8 54.9 0.71 82.0 11.9 116.1 16.9

16 4.2E-09 0.10 20.2 7.5E-04 0.15 0.88 171.6 0.20 39.4 60.7 2 206.9 99.5 60.1 0.73 108.4 12.2 147.6 16.6

17 2.8E-09 0.10 31.0 6.9E-04 0.22 0.86 279.3 0.08 27.2 96.8 1 143.2 92.3 52.4 0.71 78.3 11.4 112.8 16.4

NQ12-10 2 6.7E-10 0.06 19.4 4.4E-04 0.14 0.02 6.6 0.23 72.9 21.1 1 103.1 109.8 53.7 0.73 81.7 9.5 111.6 12.9 89.6 26.3 122.8 40.3

3 9.5E-10 0.08 17.7 5.6E-04 0.13 0.02 5.0 0.28 64.6 19.0 1 178.6 98.5 57.9 0.75 91.8 10.6 122.0 14.0

4 7.2E-10 0.04 18.6 2.8E-04 0.13 0.02 7.8 0.10 49.2 20.5 1 152.8 73.5 44.4 0.68 136.4 17.9 202.0 26.6

5 3.1E-10 0.04 9.3 2.7E-04 0.07 0.01 2.6 10.0 1 108.1 121.1 58.2 0.75 63.8 9.0 84.6 11.9

6 1.1E-09 0.08 25.6 5.9E-04 0.19 0.02 5.5 0.26 82.7 27.1 1 163.2 87.7 51.9 0.72 101.4 12.9 140.0 17.8

8 5.5E-10 0.06 20.4 4.5E-04 0.15 0.03 8.6 22.6 1 172.7 83.3 50.3 0.71 66.3 9.2 92.9 12.8

9 1.5E-09 0.12 27.3 8.8E-04 0.20 0.03 7.2 0.34 75.8 29.2 1 146.6 109.7 59.9 0.76 90.3 10.0 118.7 13.1

10 1.4E-09 0.12 24.4 8.9E-04 0.18 0.02 3.4 25.4 1 176.4 106.7 61.4 0.77 90.2 13.0 117.4 16.9

12 7.1E-10 0.08 16.8 5.6E-04 0.12 0.03 7.2 0.28 60.9 18.6 2 179.4 101.2 59.2 0.76 65.8 7.4 87.1 9.8

13 3.9E-10 0.04 23.4 3.2E-04 0.17 0.02 8.8 25.6 1 105.0 84.5 45.2 0.68 66.3 9.2 97.3 13.5

14 4.7E-09 0.30 19.6 2.2E-03 0.14 0.19 12.1 1.59 104.0 22.6 1 194.9 176.8 91.2 0.84 107.2 11.9 127.6 14.2

15 5.8E-10 0.06 13.3 4.3E-04 0.10 0.02 5.0 14.6 1 155.1 107.3 59.8 0.76 72.8 10.1 95.8 13.3

17 5.8E-10 0.06 18.2 4.0E-04 0.13 0.04 13.1 21.4 1 143.2 92.3 52.4 0.72 72.9 7.9 104.6 11.4

18 5.2E-10 0.02 11.8 1.8E-04 0.09 0.01 6.1 0.13 60.6 13.3 2 138.4 77.1 45.2 0.68 148.0 19.9 217.7 29.3

19 1.9E-08 0.00 0.8 3.3E-05 0.01 0.03 4.9 0.00 0.8 2.0 2 199.0 106.9 63.2 0.75 8649.6 174096.6 11536.7 232207.8

NQ12-11 1 5.2E-10 0.03 5.7 2.5E-04 0.04 0.41 67.6 1.06 176.1 21.6 1 219.2 104.6 63.3 0.74 32.4 3.6 43.5 4.8 120.6 31.4 156.9 40.9

2 1.2E-11 0.03 8.4 2.1E-04 0.06 0.05 13.8 11.7 1 166.6 90.2 53.3 0.72 2.5 0.3 3.4 0.4

3 8.6E-11 0.02 4.6 1.3E-04 0.03 0.02 4.8 0.39 95.8 5.7 1 165.1 99.0 57.1 0.74 28.4 3.2 38.4 4.3

4 6.7E-11 0.01 2.0 1.1E-04 0.01 0.01 2.0 2.5 1 192.7 122.2 69.6 0.79 30.7 4.3 39.0 5.5

5 5.9E-10 0.04 6.4 3.0E-04 0.05 0.03 4.9 0.16 25.8 7.6 1 185.1 116.8 66.6 0.78 99.2 10.9 127.1 13.9

6 4.7E-10 0.03 3.7 1.9E-04 0.03 0.02 3.3 0.14 19.7 4.5 1 227.6 111.4 67.1 0.78 115.4 12.8 147.8 16.4

7 3.4E-10 0.02 3.6 1.3E-04 0.03 0.03 6.1 5.1 1 234.6 93.1 58.3 0.74 109.4 11.9 147.4 16.0

8 8.7E-10 0.04 9.8 2.9E-04 0.07 0.03 6.8 11.5 0 155.8 101.5 57.4 0.75 153.6 20.9 205.9 28.0

147Sm238U
Sample Grain #

235U 232Th
Ft

eTb Raw Age (Ma) Cor. Age (Ma)

(Ma) (Ma)
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4He eUa Lc Wc R*d Raw Age ±Est. UCf Cor. Ageg ±Est. UCf

(cc) (ng) (ppm) (ng) (ppm) (ng) (ppm) (ng) (ppm) (ppm)  (μm)  (μm)  (μm) Average St. Dev Average St. Dev

9 7.3E-10 0.22 47.3 1.6E-03 0.34 0.47 103.0 1.54 336.0 71.9 1 188.8 98.2 58.4 0.74 18.0 1.9 24.3 2.6

10 1.7E-10 0.01 2.8 8.8E-05 0.02 0.01 1.7 3.2 1 122.4 119.2 60.1 0.76 101.1 24.8 133.4 32.7

11 3.5E-10 0.01 2.0 1.0E-04 0.01 0.01 1.2 2.2 0 202.8 117.7 68.4 0.79 181.4 24.7 230.3 31.4

12 4.4E-10 0.03 5.3 1.9E-04 0.04 0.02 3.8 6.3 1 180.2 104.6 60.8 0.76 117.1 14.5 154.1 19.1

13 3.8E-10 0.03 4.1 2.4E-04 0.03 0.01 1.4 4.4 1 194.5 128.0 72.2 0.80 87.3 12.2 109.0 15.2

NQ12-13 1 8.7E-10 0.06 7.2 4.6E-04 0.05 0.04 4.3 8.3 1 186.5 136.7 75.0 0.81 98.9 13.5 122.6 16.7 113.0 21.4 148.7 27.2

3 2.1E-09 0.14 19.3 1.0E-03 0.14 0.10 14.0 22.8 1 177.6 127.1 70.2 0.79 107.3 14.6 135.5 18.4

4 7.7E-10 0.05 15.6 3.7E-04 0.11 0.05 14.7 0.21 64.2 19.2 2 202.1 80.0 50.1 0.71 98.1 10.9 138.9 15.5

5 1.6E-09 0.07 9.6 5.2E-04 0.07 0.04 5.0 10.9 1 206.8 120.1 69.8 0.79 161.0 22.1 203.2 27.9

7 1.0E-09 0.07 15.2 5.0E-04 0.11 0.03 7.4 17.1 1 209.7 93.1 57.1 0.75 104.8 14.4 140.3 19.3

8 2.0E-09 0.14 42.4 1.0E-03 0.31 0.05 16.3 0.14 40.8 46.6 2 180.1 85.5 51.8 0.72 104.9 11.8 145.3 16.4

10 8.1E-10 0.04 11.5 2.9E-04 0.08 0.03 8.6 0.15 44.4 13.6 2 149.7 96.1 54.5 0.73 136.4 16.2 186.3 22.1

12 1.7E-09 0.11 15.0 7.8E-04 0.11 0.09 12.1 17.9 1 202.5 118.9 68.9 0.79 106.1 14.4 134.7 18.3

15 8.2E-10 0.05 10.2 3.9E-04 0.07 0.05 8.6 0.29 54.7 12.3 2 213.4 99.7 60.6 0.76 99.3 11.2 131.0 14.8

17 1.5E-09 0.04 6.2 2.9E-04 0.05 0.03 4.7 0.22 34.9 7.4 2 197.7 113.0 65.9 0.78 254.5 29.4 327.0 37.8

NQ12-15 1 1.5E-10 0.16 7.0 1.1E-03 0.05 0.62 27.7 13.6 0 299.7 172.4 100.4 0.85 4.0 0.4 4.8 0.5 55.8 31.3 74.3 43.8

2 4.1E-11 0.01 1.1 6.0E-05 0.01 0.03 3.6 0.03 4.6 2.0 1 219.2 116.1 68.9 0.78 22.4 3.4 28.9 4.4

3 2.0E-10 0.02 2.1 1.5E-04 0.02 0.12 12.3 0.12 12.5 5.0 2 260.4 121.9 74.1 0.79 32.1 3.5 40.8 4.5

4 2.3E-11 0.01 1.2 7.2E-05 0.01 0.03 3.2 0.07 8.8 2.0 2 265.3 111.5 69.1 0.78 11.4 1.5 14.6 1.9

5 7.6E-11 0.67 65.4 4.9E-03 0.47 0.12 11.4 68.5 0 191.2 143.2 78.1 0.82 0.9 0.1 1.2 0.1

6 2.7E-10 0.01 2.3 9.5E-05 0.02 0.07 13.2 0.06 10.0 5.4 2 255.2 94.1 59.6 0.74 70.1 8.8 95.4 11.9

7 1.1E-10 0.01 1.1 5.8E-05 0.01 0.03 4.6 2.1 0 192.8 103.8 61.3 0.75 53.5 5.8 68.8 7.5

8 2.9E-10 0.01 2.4 8.6E-05 0.02 0.05 9.5 0.04 8.5 4.7 2 212.3 95.6 58.5 0.73 101.0 16.4 137.5 22.3

NQ12-17 2 1.3E-09 0.092 9.0 6.7E-04 0.07 0.03 2.8 0.13 12.8 9.7 1 170.6 154.6 79.8 0.82 104.5 13.8 127.4 16.8 111.8 47.3 136.4 57.5

3 7.3E-10 2 218.2 133.4 76.6

4 3.4E-10 0.028 6.8 2.0E-04 0.05 0.01 3.5 7.7 2 180.9 94.9 56.4 0.74 88.7 12.2 119.4 16.4

6 2.9E-09 0.151 6.9 1.1E-03 0.05 0.11 5.1 0.22 10.3 8.1 1 229.8 194.9 102.6 0.86 132.9 14.2 155.0 16.5

7 1.2E-09 0.075 5.7 5.4E-04 0.04 0.07 5.1 0.0 6.9 2 227.9 151.9 85.4 0.83 111.1 15.1 133.7 18.1

8 3.1E-10 0.064 5.3 4.6E-04 0.04 0.03 2.3 0.25 20.7 5.9 2 211.5 149.5 82.8 0.83 34.9 4.0 42.2 4.8

9 3.9E-09 0.194 8.0 1.4E-03 0.06 0.38 15.7 11.7 2 243.6 199.2 106.0 0.86 112.6 15.4 130.2 17.9

10 5.8E-10 0.055 5.3 4.0E-04 0.04 0.10 9.3 0.19 17.8 7.5 2 206.7 141.4 79.0 0.81 59.9 6.6 74.0 8.1

11 6.8E-10 0.048 4.8 3.5E-04 0.03 0.02 2.4 5.4 2 169.6 153.1 79.1 0.82 102.7 14.1 126.0 17.3

12 2.2E-09 0.090 13.1 6.5E-04 0.10 0.03 4.1 0.08 12.3 14.2 1 178.9 123.6 68.9 0.79 181.3 22.0 229.1 27.7

13 5.4E-10 0.065 8.3 4.7E-04 0.06 0.03 3.6 0.12 15.7 9.2 2 182.7 130.5 72.1 0.80 60.4 7.0 75.6 8.8

14 4.2E-10 0.470 51.7 3.4E-03 0.38 0.22 24.6 1.38 151.9 57.9 2 219.6 128.3 74.5 0.81 6.5 0.8 8.1 1.0

16 4.4E-09 0.187 10.9 1.4E-03 0.08 0.13 7.6 0.31 17.8 12.8 1 217.0 177.5 94.5 0.85 161.3 17.2 190.7 20.3

18 2.5E-09 0.090 8.8 6.5E-04 0.06 0.05 5.1 0.21 20.2 10.0 2 190.4 146.1 79.2 0.82 196.2 21.5 240.2 26.4

19 8.3E-10 0.058 5.5 4.2E-04 0.04 0.02 2.2 6.1 2 181.5 151.5 80.2 0.82 106.4 14.7 129.9 18.0

SA12-22 1 4.5E-09 0.52 37.3 3.8E-03 0.27 0.26 19.0 42.0 2 295.9 136.6 83.2 0.83 63.5 7.1 76.9 8.6 85.9 18.6 108.4 26.6

2 3.4E-09 0.28 37.0 2.0E-03 0.27 0.15 19.1 41.7 1 201.0 122.8 70.6 0.79 89.0 10.0 112.0 12.6

3 3.1E-09 0.29 25.5 2.1E-03 0.18 0.30 26.1 31.8 2 237.4 139.2 80.7 0.82 70.0 7.8 85.7 9.5

4 5.6E-09 0.36 84.5 2.6E-03 0.61 0.35 82.3 104.5 2 156.3 104.3 58.7 0.75 102.4 11.3 136.7 15.1

7 1.1E-08 0.74 86.0 5.3E-03 0.62 0.64 74.2 104.1 2 214.7 126.0 73.1 0.80 104.5 11.5 130.7 14.4

SA12-30 1 5.0E-09 0.30 13.7 2.2E-03 0.10 0.06 3.0 1.19 54.5 14.5 1 302.6 169.1 99.1 0.86 127.0 13.8 148.4 16.1 117.0 22.9 144.0 23.6

2 9.0E-10 0.07 20.0 5.4E-04 0.15 0.01 3.8 0.37 98.9 21.1 1 160.3 95.9 55.3 0.74 91.4 11.6 123.1 15.6

3 1.1E-09 0.08 11.5 5.9E-04 0.08 0.02 3.2 0.40 56.4 12.3 1 250.5 106.0 65.6 0.78 98.8 11.1 126.4 14.2

4 3.9E-09 0.04 2.1 2.7E-04 0.02 0.01 0.6 0.17 9.8 2.2 1 269.1 162.0 93.4 0.85 574.9 161.6 735.6 206.7

5 4.2E-09 0.31 15.2 2.2E-03 0.11 0.02 0.8 15.5 1 260.8 175.5 98.5 0.86 110.1 16.2 128.6 19.0

6 1.7E-09 0.09 8.6 6.7E-04 0.06 0.01 1.0 8.9 1 307.0 117.9 74.2 0.81 146.8 21.3 181.6 26.4

8 1.9E-09 0.15 13.1 1.1E-03 0.09 0.02 1.5 13.5 1 239.7 138.1 80.4 0.82 100.5 14.6 122.0 17.7

9 9.7E-09 0.44 13.0 3.2E-03 0.09 0.06 1.8 2.67 79.3 13.6 1 317.4 205.6 116.5 0.88 165.2 18.1 188.2 20.6

10 2.3E-09 0.12 11.9 8.8E-04 0.09 0.07 7.1 0.86 84.6 13.6 1 197.0 143.3 78.8 0.82 129.1 14.1 158.3 17.3

Ft
eTb Raw Age (Ma) Cor. Age (Ma)

(Ma) (Ma)
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235U 232Th

 

Table 5-2: Continued 



Chapter 5: Constraining large-scale brittle deformation in the Namaqualand Highlands 

143 

4He eUa Lc Wc R*d Raw Age ±Est. UCf Cor. Ageg ±Est. UCf

(cc) (ng) (ppm) (ng) (ppm) (ng) (ppm) (ng) (ppm) (ppm)  (μm)  (μm)  (μm) Average St. Dev Average St. Dev

11 1.5E-09 0.13 23.8 9.5E-04 0.17 0.01 2.5 24.5 1 249.6 93.8 59.2 0.76 91.5 13.3 120.4 17.5

12 2.7E-09 0.18 11.7 1.3E-03 0.09 0.02 1.1 0.85 55.6 12.1 2 302.9 141.8 86.2 0.84 113.5 13.7 135.9 16.4

14 4.9E-09 0.26 21.0 1.9E-03 0.15 0.04 3.0 21.9 1 225.6 147.9 83.5 0.83 147.7 21.3 178.1 25.7

16 9.3E-10 0.07 9.9 5.0E-04 0.07 0.01 2.1 0.43 61.5 10.4 2 212.9 114.2 67.6 0.79 99.4 12.0 126.1 15.2

17 1.2E-09 0.08 17.3 5.9E-04 0.13 0.02 4.3 0.36 77.4 18.4 2 203.5 95.6 58.1 0.75 107.0 12.5 142.1 16.5

19 1.5E-09 0.10 13.6 7.6E-04 0.10 0.01 0.7 0.52 67.8 13.9 1 162.4 137.4 72.4 0.80 109.9 29.5 136.6 36.6

SA12-35 1 5.9E-10 0.01 1.0 7.9E-05 0.01 0.02 1.3 0.15 13.4 1.3 1 214.1 145.7 81.5 0.82 300.2 50.6 367.4 61.9 62.1 28.6 81.1 35.7

3 7.0E-11 0.08 15.4 5.9E-04 0.11 0.26 49.3 27.1 2 242.4 93.1 58.6 0.74 4.0 0.6 5.5 0.8

4 4.2E-10 0.02 2.7 1.4E-04 0.02 0.04 5.8 0.37 51.9 4.1 1 174.3 127.5 70.0 0.78 107.8 14.9 137.6 19.0

5 1.7E-10 0.02 3.5 1.2E-04 0.03 0.03 5.4 4.8 1 216.5 94.1 58.0 0.74 60.0 8.2 80.9 11.0

6 4.9E-11 0.01 1.2 6.0E-05 0.01 0.03 4.6 0.37 2.2 2 234.5 110.5 67.1 0.77 20.9 2.4 27.3 3.1

7 8.9E-10 0.01 1.1 1.1E-04 0.01 0.21 15.1 0.76 55.3 4.6 1 157.6 186.5 87.9 0.82 104.4 15.3 128.1 18.8

8 2.2E-10 0.22 55.4 1.6E-03 0.40 1.12 277.9 1.42 352.7 121.1 1 144.0 105.6 58.0 0.73 3.6 0.5 5.0 0.7

10 2.3E-10 0.01 2.5 1.0E-04 0.02 0.07 11.9 0.28 49.9 5.3 1 207.4 103.1 61.9 0.75 60.8 8.7 81.4 11.6

11 8.3E-11 0.01 2.2 8.2E-05 0.02 0.06 12.2 5.1 2 237.5 93.1 58.4 0.73 26.0 3.7 35.7 5.1

13 5.0E-10 0.08 5.8E-04 0.19 2 248.0 132.9 78.6 0.81 32.6 4.5 40.4 5.6

14 2.2E-10 0.02 3.5 1.2E-04 0.03 0.06 13.8 6.7 1 143.9 112.3 60.6 0.74 59.4 8.4 79.9 11.3

15 2.9E-10 0.02 2.6 1.5E-04 0.02 0.05 5.8 4.0 1 199.3 127.7 72.5 0.79 73.7 10.2 93.2 12.9

16 2.6E-10 0.02 3.8 1.4E-04 0.03 0.03 5.8 5.2 1 219.0 96.4 59.3 0.75 78.8 10.7 105.4 14.3

17 2.0E-10 0.01 2.4 8.3E-05 0.02 0.07 15.3 6.1 2 245.0 87.6 55.7 0.72 58.8 8.4 82.1 11.8

SA12-36 1 1.3E-09 0.03 4.2 1.9E-04 0.03 0.43 68.5 20.2 2 245.2 101.0 62.8 0.74 81.0 11.9 109.3 16.1 92.5 27.7 120.7 29.9

2 0.01 3.8 6.4E-05 0.03 0.03 13.8 0.26 113.8 6.9 2 193.9 68.7 43.7 0.65

3 8.5E-10 0.03 5.0 2.2E-04 0.03 0.20 32.7 11.5 1 217.5 106.1 64.0 0.73 88.8 9.7 118.0 12.9

4 9.8E-10 0.02 4.2 1.7E-04 0.02 0.37 67.1 18.9 1 167.5 114.2 63.9 0.77 73.0 8.0 97.9 10.7

5 1.5E-09 0.06 7.8 4.4E-04 0.06 0.36 46.8 18.8 2 203.2 123.4 71.0 0.78 86.2 12.4 110.9 15.9

6 4.4E-09 0.07 5.9 4.8E-04 0.04 1.35 121.4 34.5 1 189.8 152.5 81.6 0.80 93.8 13.8 117.2 17.3

7 1.1E-09 0.02 3.2 1.1E-04 0.02 0.29 59.7 0.65 134.5 17.3 1 173.6 105.2 60.6 0.73 98.5 10.6 134.9 14.6

8 1.2E-10 0.02 3.1 1.4E-04 0.03 0.07 10.5 6.5 2 204.9 111.0 65.5 0.76 26.8 3.0 35.1 3.9

9 1.4E-09 0.06 4.3 4.7E-04 0.03 0.25 16.5 7.6 1 169.5 187.8 90.6 0.83 95.1 13.4 114.8 16.2

10 7.1E-10 0.02 5.5 1.2E-04 0.03 0.27 92.2 25.5 1 171.4 82.6 49.9 0.67 72.7 10.7 107.9 15.9

11 4.2E-09 0.08 4.2 5.6E-04 0.02 0.45 24.3 1.90 103.2 8.9 1 275.9 163.1 94.4 0.83 170.9 18.6 205.2 22.3

12 1.6E-10 0.01 3.7 1.0E-04 0.03 0.19 50.5 0.56 145.6 15.6 2 189.7 89.5 54.3 0.70 20.7 2.3 29.5 3.3

13 4.2E-09 0.05 7.4 3.8E-04 0.05 1.26 179.0 0.98 138.9 49.5 1 193.7 120.4 68.9 0.76 87.1 9.3 114.3 12.3

14 1.1E-10 0.22 23.6 1.6E-03 0.17 0.64 69.3 40.0 2 226.3 127.3 74.5 0.75 2.4 0.3 3.0 0.3

16 1.8E-09 0.03 5.1 2.0E-04 0.04 0.75 134.9 0.85 153.5 36.8 2 212.9 114.2 67.6 0.76 70.7 7.8 96.6 10.6

SA12-38 1 2.4E-09 0.16 19.0 1.1E-03 0.14 0.10 11.9 0.91 110.3 22.0 1 169.2 139.0 73.9 0.80 106.8 11.5 133.0 14.4 107.3 14.3 135.0 18.3

2 3.3E-09 0.20 25.6 1.4E-03 0.19 0.28 36.5 1.20 156.9 34.4 1 154.1 140.7 72.4 0.79 100.3 10.8 126.3 13.6

3 1.4E-09 0.09 21.9 6.3E-04 0.16 0.15 36.7 0.57 142.6 30.7 2 142.1 105.6 57.7 0.74 89.5 9.8 120.9 13.3

4 6.3E-09 0.07 6.0 5.4E-04 0.04 1.84 149.3 0.86 69.7 41.2 2 277.1 133.0 80.5 0.80 100.2 11.3 125.9 14.2

5 8.1E-09 0.51 26.1 3.7E-03 0.19 0.39 19.8 2.10 107.4 30.9 1 237.1 181.0 98.2 0.85 106.6 14.5 125.2 17.0

6 5.4E-09 0.21 26.0 1.5E-03 0.19 0.61 75.0 1.01 124.2 43.8 1 156.3 143.9 73.9 0.79 120.4 16.8 152.0 21.2

7 2.6E-09 0.16 18.7 1.2E-03 0.14 0.20 23.8 1.33 155.9 24.4 2 230.2 121.6 72.1 0.79 95.6 10.5 120.4 13.2

8 3.8E-09 0.21 31.3 1.5E-03 0.23 0.10 14.4 34.9 0 160.5 129.7 69.3 0.79 130.3 17.9 164.6 22.7

9 7.5E-09 0.53 41.5 3.8E-03 0.30 0.27 21.5 46.9 0 223.6 150.5 84.4 0.83 103.8 14.2 125.3 17.2

10 2.5E-09 0.19 31.1 1.3E-03 0.23 0.17 28.3 0.74 123.6 37.9 2 210.2 106.2 63.6 0.77 88.4 9.7 115.0 12.6

11 6.3E-09 0.38 34.3 2.7E-03 0.25 0.24 22.1 1.63 148.0 39.8 2 233.7 137.0 79.4 0.82 114.0 12.5 139.6 15.3

12 6.3E-09 0.27 48.8 1.9E-03 0.35 0.49 89.2 0.91 165.9 70.1 1 145.7 122.5 64.7 0.77 131.6 18.0 171.6 23.5

147Sm238U
Sample Grain #
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Figure 5-6: Plot of AHe age against spherical equivalent grain radius (R*). AHe ages are mean AHe ages uncorrected for alpha-ejection. Uncertainties on 

AHe ages are 1 analytical uncertainty (typically 1-3%) + 1 standard deviation of Durango standards (10%). R* is calculated using the formula 
(3*(RL))/(2*(R+L)) where R = the measured radius of the apatite crystal and L = measured length of the apatite crystal. 
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Figure 5-7: Plot of AHe age against effective Uranium (eU). AHe ages are mean AHe ages uncorrected for alpha-ejection. Uncertainties on AHe ages are 1σ 
analytical uncertainty (typically 1-3%) + 1σ standard deviation of Durango standards (10%). eU is calculated using the formula [Uppm]+(0.235*[Thppm]) and is 
used as a proxy for accumulated radiation damage. 
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grain ages. Under normal circumstances an AHe age that was approximately the 

same as the AFT age would be indicative of a sample that was rapidly cooled. 

However, because these samples have a variety of grain sizes and variable 

uranium and thorium concentrations, the exact closure temperature of the AHe 

system for each grain is different and such a simple approximation of the 

samples thermal history cannot be made. 

If a sample has experienced relatively slow cooling then correlations of spherical 

equivalent grain radius (R*)/eU with AHe age may be evident. However, as 

suggested by Brown et al. (2013) the combined effects of these influences may 

decouple the expected correlation. Moreover, a large number of grains analysed 

were 1T or, in some cases, 0T fragments of larger grains. Despite this many 

samples still adhere to an apparent positive age-R* correlation (Fig. 5-6). Sample 

NQ12-15 is the only sample in which we can observe a negative age-R* 

correlation however this sample has the fewest number of grains and it is poorly 

defined. eU relationships are more complex as samples show a mix of 

correlations that are positive, negative or entirely absent (Fig. 5-7). A linear fit 

may not be representative of the expected age-eU relationship. For example, 

Flowers et al. (2009) report that for relatively slow cooling rates (c. 0.1 –

1°C/Myr) the age-eU relationship will first be positively correlated but will then 

plateau above eU concentrations of c. 50 ppm. Guenthner et al. (2014) have 

reported eU-age correlations in zircon are strongly negative at high eU 

concentrations but at lower eU correlations may be positively correlated. More 

complex correlations could be estimated from the plots presented in Figure 5-7. 

For example, JN2 could be described as having a positive correlation until eU = 

c. 250 ppm and there is then a plateau of ages; or NQ12-09 could be described 

as having a plateau of ages until c. 50 ppm and are then negatively correlated. 

However, attempting to fit such correlations on eU dispersion plots may be 

premature as our understanding of how the accumulation and annealing of 

radiation defects occurs and the impact this has on alpha-trapping is still 

developing. Expecting to observe correlations in age and eU may also be 

ambitious considering grain radius and the presence of fragmented grains will be 

influencing the closure temperature and preservation of the He diffusion profile, 

respectively. Other factors must also be considered such as the possible 
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presence of zonation, unidentified inclusions, implantation and the contribution 

of Sm which is not quantified in certain grains. Key to single grain age dispersion 

is the sensitivity of He diffusion when the sample (or grain) is residing at 

elevated temperatures. 

5.4.3 Summary of AHe Data 

The AHe data presented here is consistent with the general interpretation made 

based on AFT data: that major cooling has occurred during the Early – Late 

Cretaceous and possibly into the Tertiary. Single grain AHe ages are associated 

with a large amount of dispersion and as such come under severe scrutiny 

regarding the quality of the data and the implications they have for our 

understanding of the AHe dating approach. The competing influences that 

typically cause single grain age dispersion act in tandem to disrupt simple 

correlations and mask any dominating influence.  

However, the former comment regarding quality can be addressed directly. 

Standard lab procedures were followed and analysis of Durango apatite 

standards produced results consistent with previous studies (see Appendix 2.2). 

When AHe ages appeared to be outliers, samples were carefully scrutinised and 

rejected only if there was not any other independent evidence to support the 

reliability of the data. Therefore, the measured AHe age, plus analytical 

uncertainty, plus an uncertainty reflecting the reproducibility of the Durango 

apatite standard should contain the true AHe age that is directly linked to the 

thermal history experienced by the sample. Because of this assumption, AHe and 

AFT data and their respective uncertainties can be treated in terms of 

probability functions that can be used in thermal history modelling techniques.  

5.5 Thermal History Modelling 

5.5.1 Approach 

The general modelling approach has been outlined in Chapter 4 - Section 4.5. All 

samples from this region are outcrop samples taken from basement lithologies 

apart from SA12-27 which has been collected from a boulder clast of basement 
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origin from within the glacial tillite of the Permian Dwyka Group. During 

modelling, SA12-27 was assigned a specific initial constraint of 300±10 Ma, 

20±10°C to represent the fact that the sample must have been at the surface at 

this time to be deposited within the Permian unit. For basement samples, where 

an appropriate/effective stratigraphic age was unknown, a single constraint 

point was used with a time and temperature range 350 ± 10 Ma and 100 ± 100°C, 

respectively. This constraint ensures that the thermal history is constrained at 

least as far back as the approximate age of Karoo deposition covering NMP 

basement rocks, but allows a large temperature range to be explored to allow 

the model to start at depth or at the surface if the data so requires it. In most 

cases, palaeo-temperatures were significantly high to reset the AFT record 

during the Late Jurassic/Early Cretaceous and as such the early part of the 

history is unconstrained. Assigning a more specific constraint box would be an 

assumption that has no influence on the model outcome. Where there is the 

possibility that complete resetting has not occurred alternative models with 

different initial constraints are investigated. For all samples the present-day 

temperature value is assumed to be 20 ± 10°C.  

A lack of geological information limits the amount of post-rift constraints that 

can be added to the models however the implications of sporadic fossil 

evidence, sedimentary deposits and igneous intrusions across the region on 

nearby samples is also investigated below (Section 5.5.3.2). In an attempt to 

increase the amount of information used during modelling and with the aim of 

finding thermal histories consistent with many samples, multiple outcrops were 

treated as vertical profiles with a small temperature offset both at present day 

and in the geological past (see Section 5.5.3.1). Normally this functionality 

would be employed on a steep vertical profile covering a relatively large 

elevation range or down a borehole profile (examples of these are given in 

Chapter 7 – Section 7.2.1). However, if samples, even over a small elevation 

range, have shared a similar thermal history then the combined information 

from the data will help us obtain a model that is consistent with all the data in a 

region. The criteria for grouping samples together was based on their close 

proximity to one another (< 10 km, and typically less than this) and the similar 

nature of their thermal histories when modelled as individual samples. In order 
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to model samples as profiles an additional parameter known as the Vertical 

Offset is specified in order to define the temperature difference between the 

top and bottom sample in the profile. This is calculated, assuming a geothermal 

gradient of 25±10°C/km, as: 

Vertical Offset = (Etop – Ebottom) * G     [± (Etop – Ebottom) * Gmax/min    

Where Etop and Ebottom is the elevation of the top and bottom sample of the 

vertical profile; Gmean is the assumed geothermal gradient; Gmax/min is the upper 

and lower estimates of the geothermal gradient used to calculate the 

uncertainty on the vertical offset. 

5.5.2 Modelling results 

Data from all 42 outcrop samples were inverted using the procedure outlined 

above and in Chapter 4 - Section 4.5. Many samples yield models with similar 

thermal histories and can be grouped into the same class of models. The 

following report of modelling results will describe examples from each of these 

model classes; in most cases, an outcrop sample with only AFT data is presented 

alongside a sample with AFT and AHe data. In general, the onset of cooling for 

thermal histories recorded by the expected model occurs within one of three 

time periods: 150 – 130 Ma, 110 – 90 Ma, 80 – 60 Ma. In rare models cooling is 

recorded in between these intervals but could belong to one class or another 

once you account for the uncertainty on those models. Within these time 

intervals models show varying cooling rates and these define the different 

classes of models discussed here. In addition to the T-t history, the spatial 

relationship of these models is also important and is discussed in detail in 

section 5.6. 

5.5.2.1 150 – 130 Ma: Slow Cooling 

The majority of models that record cooling beginning during the Early 

Cretaceous are characterised by relatively slow cooling rates. Figure 5-8a shows 

two examples of this thermal history with cooling initiating at c. 150 Myr and 

continuing in an almost linear manner until the present day. Due to the 
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Figure 5-8: Thermal history models that represent samples which cooled slowly over the interval 150 – 130 Ma. The expected model is represented by a 
dashed black line with 95% credible intervals (solid black lines). The maximum likelihood model is also presented (yellow line). The black box represents 
initial constraint on the model. The red box represents general ranges for prior (see Chapter 4 - Section 4.5.1). The colour map represents the probability 
distribution of the thermal history. The blue histograms represent the measured TLD; red line represents the predicted TLD from the expected model with 
95% credible intervals (grey curves). The blue circles illustrate the relationship between the observed and predicted AHe age. The dark grey circle 
represents the mean measured AHe age (uncorrected for alpha-ejection). The light grey circle represents the 1σ standard deviation on the mean AHe age. 
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unconstrained initial conditions of the model and the protracted nature of 

cooling, defining a maximum temperature at a given time is difficult. The timing 

is estimated when the space between the 95% credible intervals narrows and the 

model begins to become well constrained (i.e. c. 150 Myr). The maximum 

temperature is estimated as that being recorded by the expected model at this 

time and is typically 110±10°C. Subtle differences in thermal histories, largely in 

the maximum temperature, can be observed between NQ12-28 and NQ12-17 and 

subtle differences can be observed for NQ12-17 itself depending on the radiation 

damage model used. However, these are insignificant and all models suggest a 

cooling rate of c. 0.6°C/Myr. Figure 5-8(b) shows models that are also used as 

examples of slow cooling; however, cooling is slightly faster than those 

described above. The product is a two-stage thermal history where cooling 

initiates at c. 150 – 130 Ma and reaches near surface temperatures by c. 50 – 30 

Ma. Without incorporating any radiation damage model, the thermal history for 

NQ12-09 shows a more rapid cooling rate of c. 1.8°C/Myr. However, including 

either radiation damage model both improves the data fit for AHe data and 

reduces the cooling rate to c. 0.8 - 1°C/Myr. A special mention has to be given 

to sample NQ12-06 (see Appendix 7) as the thermal history changes significantly 

when radiation damage is incorporated; transforming the thermal history from 

one that is predominantly rapidly cooled to one where cooling is more 

protracted. In the models incorporating radiation damage an initial short lived, 

rapid episode of cooling is observed from 130 – 110 Ma at a cooling rate of c. 

1.5°C/Myr. Following this period of enhanced cooling, rates are reduced to c. 

0.6 – 0.7°C/Myr which is comparable with other samples assigned to this class of 

models. 

5.5.2.2 150 – 130 Ma: Fast Cooling 

The most rapid cooling at this time is recorded in four samples across the study 

area. NQ12-25 and NQ12-33 which are in the southern most region of the study 

area and on the eastern edge of the NQH, respectively, have cooling rates of c. 

1.6 – 1.80°C/Myr (Fig. 5-9). This cooling initiates at c. 130 Ma and following 

rapid cooling, progressively rolls over towards surface temperatures by 70 – 50 

Ma.  JN3 and JN2 record faster cooling which initiates at a slightly earlier time 
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Figure 5-9: Thermal history models that represent samples which cooled rapidly over the interval 150 – 130 Ma. The expected model is represented by a 
dashed black line with 95% credible intervals (solid black lines). The maximum likelihood model is also presented (yellow line). The black box represents 
initial constraint on the model. The red box represents general ranges for prior (see Chapter 4 - Section 4.5.1). The colour map represents the probability 
distribution of the thermal history. The blue histograms represent the measured TLD; red line represents the predicted TLD from the expected model with 
95% credible intervals (grey curves). The blue circles illustrate the relationship between the observed and predicted AHe age. The dark grey circle 
represents the mean measured AHe age (uncorrected for alpha-ejection). The light grey circle represents the 1σ standard deviation on the mean AHe age.
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(c. 150 Ma). Cooling rates are between 2 and 4.25°C/Myr depending on which 

radiation damage model is used. The models also imply that near surface 

temperatures were reached shortly after this rapid cooling event and have been 

maintained for at least 100 Ma. The maximum likelihood model shows a period 

of rapid cooling at c. 150 – 130 Ma for all models. The structure in the NQ12-33 

maximum likelihood model matches that of SA12-33 but is absent in other 

models of this class. Some structure is shown in the latter part of the thermal 

history models for both JN2 and JN3. While this structure varies in style for JN2 

depending on the radiation damage model used; JN3 consistently shows a period 

of late Cenozoic cooling (c. 30 – 20 Ma) following minor reheating, regardless of 

the radiation damage model used. It should be remembered, however, that this 

portion of the thermal history is at the very bottom of the AFT and AHe 

temperature sensitivity and therefore is less tightly constrained. 

5.5.2.3 110 – 90 Ma: Slow Cooling 

Thermal history models that show cooling beginning during the 110 – 90 Ma time 

interval and are characterised by slow cooling profiles are very rare, with only 

four samples fitting this description (Fig. 5-10). Cooling rates for these samples 

are comparable to slow cooling recorded during the earlier interval ranging 

between 0.7 and 0.95°C/Myr. Each of the models for these samples should be 

treated with extreme caution however due to the quality of the data on which 

they are based. SA12-32 only has 2 HCTs and 3 single grain ages and SA12-37, 

while better, only has 24 HCTs and 12 single grain ages which is far less than is 

typically measured for fission track analysis. SA12-27 has a large number of 

single grains ages but a low number of HCTs (n=27) and therefore there is a lot 

of uncertainty in the observed TLD. NQ12-15 on the other hand has strong AFT 

data with plenty of lengths and single grain ages but the AHe data is limited 

extremely complex. This AHe data has large degrees of dispersion that cannot 

easily be explained in terms of grain size or radiation damage. The data fit for 

NQ12-15 is poor with the expected model compromising on both the accuracy of 

predicted AFT and AHe data in order to produce a model which best satisfies the 

complex data set. 
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Figure 5-10: Thermal history models that represent samples which cooled slowly over the interval 110 – 90 Ma. The expected model is represented by a 
dashed black line with 95% credible intervals (solid black lines). The maximum likelihood model is also presented (yellow line). The black box represents 
initial constraint on the model. The red box represents general ranges for prior (see Chapter 4 - Section 4.5.1). The colour map represents the probability 
distribution of the thermal history. The blue histograms represent the measured TLD; red line represents the predicted TLD from the expected model with 
95% credible intervals (grey curves). The blue circles illustrate the relationship between the observed and predicted AHe age. The dark grey circle 
represents the mean measured AHe age (uncorrected for alpha-ejection). The light grey circle represents the 1σ standard deviation on the mean AHe age. 
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Figure 5-11: Thermal history models that represent samples which rapidly cooled over the interval 110 – 90 Ma. The expected model is represented by a 
dashed black line with 95% credible intervals (solid black lines). The maximum likelihood model is also presented (yellow line). The black box represents 
initial constraint on the model. The red box represents general ranges for prior (see Chapter 4 - Section 4.5.1). The colour map represents the probability 
distribution of the thermal history. The blue histograms represent the measured TLD; red line represents the predicted TLD from the expected model with 
95% credible intervals (grey curves). The blue circles illustrate the relationship between the observed and predicted AHe age. The dark grey circle 
represents the mean measured AHe age (uncorrected for alpha-ejection). The light grey circle represents the 1σ standard deviation on the mean AHe age.
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5.5.2.4 110 – 90 Ma: Fast Cooling 

By far the most common and strongest class of thermal history is characterised 

by rapid cooling rates that begin between 110 and 90 Ma (Fig. 5-11). 50% of the 

outcrop samples modelled can be included in this class of models highlighting its 

regional importance. A major control on the style of thermal history observed is 

the fission track length data which, in this case, is characterised by long MTLs 

with unimodal and narrow track length distributions. As such radiation damage 

effects do not have a major influence on the overall cooling rate and this is 

reflected in the temperature at which the period of rapid cooling terminates and 

becomes more protracted towards the surface. Cooling rates generally range 

from c. 1.5 – 5°C/Myr (Fig. 5-11a) but in certain samples can be higher at 7.4 – 

8.1°C/Myr (Fig. 5-11b). 

5.5.2.5 80 – 60 Ma 

A third cooling episode is poorly preserved across the study area. However, the 

thermal history for one sample clearly shows cooling initiating between at c 70 - 

65 Ma (Fig. 5-12). The style of cooling for NQ12-23 is very rapid occurring at a 

rate of 10°C/Myr. This sample resides in a complex structural setting and is c. 50 

km SW of the Koegel fontein igneous complex which has intrusive bodies dated 

to c. 70 – 50 Ma (de Beer, 2002). Fission track data for this sample is robust with 

plenty of track lengths and single grain ages. This cooling episode, although only 

recorded in one sample throughout the entire study area, is likely to be a 

distinct thermal history from the previously discussed cooling events. 

5.5.3 Alternative scenarios 

5.5.3.1 Profile modelling 

Modelling vertical profiles will be most effective for borehole profiles where 

there is a clear temperature offset between the samples both at the present day 

and geological past and the samples represent a true rock column. However, 

outcrop samples taken from a steep vertical profile can also be inverted 

assuming they have been exhumed as a single rock column (i.e. the profile is not 

dissected by a fault). Where samples are in close proximity to one another (c.  
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Figure 5-12: Thermal history model that represents the only sample which rapidly cooled 
over the interval 80 – 60 Ma. The expected model is represented by a dashed black line with 
95% credible intervals (solid black lines). The maximum likelihood model is also presented 
(yellow line). The black box represents initial constraint on the model. The red box 
represents general ranges for prior (see Chapter 4 - Section 4.5.1). The colour map 
represents the probability distribution of the thermal history. The blue histograms represent 
the measured TLD; red line represents the predicted TLD from the expected model with 95% 
credible intervals (grey curves). The blue circles illustrate the relationship between the 
observed and predicted AHe age. The dark grey circle represents the mean measured AHe 
age (uncorrected for alpha-ejection). The light grey circle represents the 1σ standard 
deviation on the mean AHe age. 

<10 km) and/or are not separated by clear structural features they may have 

shared a similar thermal history and therefore can be modelled together with a 

small temperature offset or a temperature offset that reflects their difference 

in elevation (or depth) over time. To further enhance the dataset, additional 

data from Brown (1992) is also included where appropriate (see Appendix 6). 

The cluster of samples at Hondeklip Bay are modelled together incorporating all 

AFT data and AHe data where available (Fig. 5-13). Individually, NQ12-15 and 

NQ12-17 are slowly cooled thermal histories beginning at c. 150 Ma while NQ12-
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Figure 5-13: Coastal profile thermal history models. Expected model of the top and bottom sample is represented by a thick blue and red line, respectively, 
with 95% credible intervals (cyan and magenta lines). Black box represents initial constraint on the model. Red box represents general ranges for prior (see 
Chapter 4 - Section 4.5.1). Yellow square/bar = Measured/predicted Dpar; blue circle/light blue bar = Measured/predicted AFT age; red diamond/magenta bar 
= measured/predicted MTL; green triangle/light green bar/dark green bar = measured/resampled observed/predicted AHe age. Histograms represent the 
measured TLD; red line represents the predicted TLD with 95% credible intervals (grey curves). The blue circles illustrate the relationship between the 
observed and predicted AHe age. The dark grey circle represents the mean measured AHe age (uncorrected for alpha-ejection). The light grey circle 
represents the 1σ standard deviation on the mean AHe age. 
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16 and NQ12-18 are characterised by more rapid cooling slightly later at c. 130 –120 

Ma. Together, the model becomes dominated by the earlier, slowly cooled history. 

This is to be expected as NQ12-15 and NQ12-17 contain complex AHe datasets that 

are best reproduced through a slow cooling history, particularly once radiation 

damage effects are included. Despite this, the composite model still honours the data 

of NQ12-16 and NQ12-18 well. The poorest data fit is for NQ12-15 as the No RD and 

RDF model poorly reproduce the AFT MTL and RDG model fails to reproduce the AFT 

age and AHe ages with great success. Profile modelling was then performed without 

NQ12-15. The sample was removed not only due to the poor data fit in places but 

because the Langklip Fault (de Beer, 2012) cuts through this cluster of samples; 

separating NQ12-15 from the other samples. These samples may have experienced 

subtle or major differences in their thermal history due to post-rift fault movement. 

Profile modelling of the three remaining coastal samples again produces a slowly 

cooled thermal history from c. 150 Ma with a good data fit (Fig. 5-13). A subtle but 

potentially important difference is that the cooling rate is slightly faster than the 

previous profile model and reaches near surface temperatures in the Mid – Late 

Cenozoic; consistent with fossil evidence from the region (see Chapter 7 – Section 

7.5.2). 

A short, c. 30 km, transect of 8 samples from Weltevreden farm to Twee fontein 

farm, northwest of Garies, span an elevation range of 239 – 750m and were modelled 

as a single profile (Fig. 5-14). The fit of AFT data is poor for certain samples in the 

profile but is, in many cases, quite good. The AHe data fit is worse but by resampling 

the observed age most AHe ages overlap with predicted ages. The expected thermal 

history from this composite dataset suggests fairly rapid cooling at c. 110 – 100 Ma. In 

either model, including radiation damage effects the thermal history is confined to 

high temperatures in the Permian in order to fully reset the AFT and AHe LTT‘s prior 

to the onset of rapid cooling at c. 115 Ma. The assumption that this transect has not 

been affected by any structural displacement and therefore influenced the thermal 

history of individual samples is questioned by the presence of major structural 

lineaments and recent work supporting structural reactivation across the SW margin 

(Kounov et al., 2009; Viola et al., 2012; Salomon et al., 2014). 
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Figure 5-14: Western NQH profile thermal history models. Expected model of the top and bottom sample is represented by a thick blue and red line, 
respectively, with 95% credible intervals (cyan and magenta lines). Black box represents initial constraint on the model. Red box represents general ranges 
for prior (see Chapter 4 - Section 4.5.1). Yellow square/bar = Measured/predicted Dpar; blue circle/light blue bar = Measured/predicted AFT age; red 
diamond/magenta bar = measured/predicted MTL; green triangle/light green bar/dark green bar = measured/resampled observed/predicted AHe age.  
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Figure 5-15: Kamiesberg profile thermal history models. Expected model of the top and bottom sample is represented by a thick blue and red line, 
respectively, with 95% credible intervals (cyan and magenta lines). Black box represents initial constraint on the model. Red box represents general ranges 
for prior (see Chapter 4 - Section 4.5.1). Yellow square/bar = Measured/predicted Dpar; blue circle/light blue bar = Measured/predicted AFT age; red 
diamond/magenta bar = measured/predicted MTL; green triangle/light green bar/dark green bar = measured/resampled observed/predicted AHe age.
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A more appropriate vertical profile is available up the Kamiesberg Mountain 

along the eastern valley wall of Wilterhouts River, south of the town of 

Kamieskroon. This profile initially comprised of 7 outcrop samples covering 1220 

m of elevation and separated by distances less than 10 km (N to S) and 5 km (E 

to W). Contrary to the expected relationship of AFT age and elevation, the 

oldest AFT ages in this profile are at the base. As expected these samples have 

the poorest data fit when all samples in the profile are modelled together (Fig. 

5-15). To resolve this, the profile is split into (i) an upper profile consisting of 

AFT ages that are c. 90 Ma and (ii) a lower profile consisting of two samples with 

AFT ages of c. 115 Ma. A rapidly cooled, tightly constrained cooling event at c. 

110 – 90 Ma is defined for the first profile while a slower cooling history initiating 

at c. 150 – 130 Ma is defined for the second. Modelling the second profile with 

radiation damage, after Gautheron et al. (2009), shows interesting differences 

to previous models of a similar type. In this model, maximum temperatures are 

predicted to be lower at the onset of cooling and two cooling events may be 

present: slow cooling from 130 – 80 Ma and then a slight increase in cooling rate 

from then until the Late Cenozoic. 

An ENE-WSW transect from SA12-47 to SA12-27 covers close to 50 km and an 

elevation range of 987 – 1066 m (Fig. 5-16). SA12-47, -51 and -52 share similar 

AFT data and similar thermal histories: relatively slow cooling from c. 150 – 130 

Ma. Samples 8832-75 and SA12-27 show cooling initiating at c. 100 Ma which is 

rapid and protracted, respectively. These two samples, however, have the 

lowest number of HCTs and therefore their TLD is poorly constrained. All 

samples were modelled together to test whether a common thermal history 

could satisfy the data set. A definitive constraint is imposed on this profile at 

300±10 Ma, 20±10 C as SA12-27 is taken from a basement clast within the 

Permian dwyka group unit. A simple monotonic cooling history from elevated 

temperatures at c. 150 Ma to surface temperatures at present day is predicted. 

AFT age predictions are in good agreement with observed data. The data fit for 

the youngest AFT age (SA12-27) is poorest but still overlaps considerably within 

uncertainty levels. The MTLs are reproduced well by the model except for 

sample 8832-75. This sample however has relatively few HCTs (n = 39) and no  
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Figure 5-16: Namaqualand Plateau thermal history models. Expected model of the top and 
bottom sample is represented by a thick blue and red line, respectively, with 95% credible 
intervals (cyan and magenta lines) Black box represents initial constraint on the model. Red 
box represents general ranges for prior (see Chapter 4 - Section 4.5.1). Yellow square/bar = 
Measured/predicted Dpar; blue circle/light blue bar = Measured/predicted AFT age; red 
diamond/magenta bar = measured/predicted MTL; green triangle/light green bar/dark green 
bar = measured/resampled observed/predicted AHe age. 

measured compositional parameter and therefore the measure MTL may not be a 

true representation of the true value. A sub-profile which excludes samples 

8832-75 and SA12-47 is tested as these two samples are are considerably further 

away from the other samples of the profile (c. 20 km) and are well in to the 

heavily faulted NQH. Excluding these samples does not have any great effect on 

the thermal history. 

5.5.3.2 Speculative constraints 

Independent geological constraints are limited across the study area. Across the 

NQH the only post-rift deposits are unconsolidated Neogene – Quaternary sands. 

More useful deposits are found along the coastal plain and coastal margin on the 

western side of the NQH and sedimentary deposits and crater-lake deposits on 

the plateau on the eastern side of the NQH. As such, there are few samples  
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Figure 5-17: Thermal history models from the NQ coast with additional constraints. Upper 
model is the composite profile model from three coastal samples (NQ12-16,-17 & -18). Lower 
model is sample NQ12-15 which is also from the coastal region but separated from the main 
profile by the Langklip fault. Expected model is represented by a thick blue line with 95% 
credible intervals (magenta lines). Black box represents T-t constraints on the model. Red 
box represents general ranges for prior (see Chapter 4 - Section 4.5.1). Yellow square/bar = 
Measured/predicted Dpar; blue circle/light blue bar = Measured/predicted AFT age; red 
diamond/magenta bar = measured/predicted MTL; green triangle/light green bar/dark green 
bar = measured/resampled observed/predicted AHe age. Histograms represent the 
measured TLD; red line represents the predicted TLD with 95% credible intervals (grey 
curves). 

whose models can be independently constrained using direct lithological 

information.  

The cluster of samples collected at Hondeklip Bay can be constrained using fossil 

evidence in thin sedimentary formations which overly the NMP rocks across the 

coastal plain (Fig. 5-17). Fossil hominoid teeth from the marine sand Alexander 

Bay formation assign an early Miocene age to the deposit (Senut et al., 1997). 

These overly the calcified and silicified gravels and sandstones of the Koignass 

Formation which is presumed to have been deposited in a fluvial environment 
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during a Late Oligocene to Early Miocene marine regression (de Beer, 2010). 

Coastal samples can then be assigned an additional constraint of 20±10 Ma, 

20±20°C to reflect near surface temperatures of the basement rock prior to 

deposition of these Cenozoic deposits. Although more speculative, as the 

outcrop is c. 20 km NE of the coastal samples, the De Toren formation is also 

presumed to be of Late Oligocene age due to the formation overlying the Early 

Cenozoic intrusions of the Biesiesfontein suite in the southern part of the study 

area (de Beer, 2010). Thermal models are tested, using this constraint, for the 

profile of coastal samples excluding NQ12-15 (Fig. 5-17). 

Bamford and Corbett (1994, 1995) and Bamford and Stevenson (2002) report the 

presence of fossilised wood discovered on the offshore continental shelf and 

onshore continental margin. The species of these woods are described as Lower 

Cretaceous in age and are suggested to have been initially deposited in 

continental clastic sediments and where then subject to rapid burial and 

silicification. Considerable reworking of the material prior to deposition on the 

continental shelf is attributed to Late Cretaceous erosion. Bamford and 

Stevenson (2002) argue for an extensive forested area over a low-lying coastal 

region in the Upper Cretaceous. Fossil hominoid teeth and fossil fish bones, also 

of Lower Miocene age, are found at Buffels Bank mine of the Buffels River (Senut 

et al., 1997). The sample JN3 is located in this region, however, the models 

currently satisfy near surface temperatures at this time and so forcing a 

constraint box is not required. 

It has already been established that the NQ plateau profile has to begin with a 

surface constraint at c. 300 Ma. Late Mesozoic and Cenozoic constraints come 

from the sediments in and around the Vaalputs area and fossiliferous crater-lake 

sediments preserved in the Gamoep intrusive suite and in particular the Arnot 

pipe at Banke farm (Fig. 5-18). The Dasdap and Vaalputs sediments are proposed 

to be Late Cretaceous to Early Palaeocene in age. This is supported by 

palynological evidence dated at 71 to 64 Ma (Scholtz, 1985) and preservation of 

fossilised frogs and wood in clay deposits (Adamson, 1931; Haughton, 1931). A 

constraint box of 60±10Ma, 20±20°C was therefore included for individual and 

profile models.The thermal histories show gentle cooling at near surface  
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Figure 5-18: Namaqualand plateau profile thermal history models with additional 
constraints. Expected model is represented by a thick blue line with 95% credible intervals 
(magenta lines). Black box represents T-t constraints on the model. Red box represents 
general ranges for prior (see Chapter 4 - Section 4.5.1). Yellow square/bar = 
Measured/predicted Dpar; blue circle/light blue bar = Measured/predicted AFT age; red 
diamond/magenta bar = measured/predicted MTL; green triangle/light green bar/dark green 
bar = measured/resampled observed/predicted AHe age. Histograms represent the 
measured TLD; red line represents the predicted TLD with 95% credible intervals (grey 
curves). 

temperatures during the Cenozoic when the Cretaceous-Paleocene constraint is 

used.  

Estes (1977) reported younger pollen and fossil leaf evidence from the same 

lacustrine sediments aged from the late Eocene to early Oligocene. A second 

constraint box of 35±10 Ma, 20±20°C is also included to reflect this. The profile 

thermal history shows progressive heating from surface temperatures to a 

maximum temperature just above c. 110°C at 160 – 170 Ma. By 150 Ma cooling 

has begun at a rate of c. 0.45°C/Myr. At c. 80 – 75 Ma cooling becomes enhanced 

and continues at a rate of c. 8.25°C/Myr until c. 55 Ma taking the thermal 
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history to near surface temperatures by the Late Cretaceous – Early Palaeocene. 

The thermal history passes through the later constraint box with the model 

showing minor reheating beforehand and progressive cooling after. The structure 

in the model at this time should be treated with caution because there is quite a 

lot of uncertainty in the models at this stage, the thermochronology data has 

very limited resolution at these low temperatures and the temperature variation 

since the Early Palaeocene is at most 15°C and therefore is relatively minor and 

may either not be real or may not be directly related to denudation. The most 

important aspect is how well this composite model fits the data. The fission 

track ages, kinetic parameter and most of the track length data are predicted 

very well. The poorest fit is with the MTL of sample 8832-75 where the MTL is 

predicted to be younger than observed. As stated above, this sample had a 

relatively small number of HCTs and therefore the true MTL could change with 

more measurements. A more conservative approach would be to exclude both 

this sample and SA12-47 from the profile as they are furthest away from the 

proposed constraints and reside in a valley in the NQH. Modelling only the 

samples adjacent to the Vaalputs basin, reproduces the same style of thermal 

history described above with a very good data fit.   

5.5.4 Summary of modelling results 

From the modelling performed three broad cooling episodes are identified: (i) 

150 – 130 Ma; (ii) 110 – 90 Ma and (iii) 80 – 60 Ma. The first cooling episode is 

predominantly characterised by slow cooling. The second cooling episode 

however is recorded as a much more rapid event and is the dominant thermal 

history observed across the study area. Both of these cooling episodes are 

present in samples from the margin through the plateau and therefore suggest a 

more complex, multi-stage evolution of the margin as opposed to a simple 

retreat or degradation of a rifted margin escarpment. The third cooling event is 

harder to see in the study area and appears in an outcrop sample only once, in a 

location further south from the main dataset. The only other occurrence is a 

period of rapid cooling recorded when multiple samples from the interior 

plateau are modelled together and constrained by local geological information. 

Based on previous AFT studies in the region and recent structural investigations 
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(discussed below) it is suggested here that each of these time intervals 

represents enhanced denudation driven cooling with a spatial-temporal 

relationship controlled by reactivation of basement structures. The spatial 

relationship of this data and the implications for the timing and magnitude of 

denudation are discussed in the following section and for simplicity and 

consistency, ―preferred‖ models will be chosen for samples or collections of 

samples. For all samples containing AHe data, the expected model including 

radiation damage after Gautheron et al. (2009) is chosen and where profile 

models have produced a thermal history consistent all the data from individual 

samples, this is preferred to single outcrop sample models. Where models have 

geological constraints, these are preferred to models without. 

5.6 Temperature-time spatial relationships: Cooling and 
magnitudes of denudation 

5.6.1 Cooling 

The major phase of cooling recorded by each individual sample varies across the 

study area. The majority of samples (n = 33) can be split into roughly equal 

groups that record cooling during either 150 – 130 Ma or 110 – 90 Ma (Fig. 5-19). 

6 samples have an expected model which fall somewhere between these cooling 

episodes. However, the uncertainty on the timing of the onset of cooling usually 

results in these samples overlapping with the proposed cooling episodes. 

Moreover, many of these ambiguous samples are constrained only with AFT data 

and therefore the true nature of the thermal history may not be fully resolved. 

By c. 60 Ma thermal histories predict that most samples were residing at 

temperatures of c. 40 – 60°C or less implying that throughout the Cenozoic the 

amount denudation has been lower than c. 2 – 3 km for normal geothermal 

gradients. 

5.6.2 Denudation 

The study area has been dissected into five transects: three which are 

approximately perpendicular to the coast and two which are approximately 

parallel to the coast. Coast perpendicular transects are 150 km in length and  
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Figure 5-19: Plot represent the expected age and uncertainty (coloured bars) of key 
temperature points in each thermal history. These “key” points include the onset of cooling; 
changes in cooling rate causing inflections in the T-t path and the time when surface 
temperatures were reached. The colour of the bars is representative of the temperature of 
the thermal history at that time. 
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Figure 5-20(a): Section x-x’ with predictions on magnitudes of denudation over time 
intervals since 150 Ma. Data within 7.5km either side of the section trace was projected at 
90° onto the line of section. Denudation estimates are made directly from thermal history 
models generated by inverting data from this study and from Brown (1992). Denudation is 
estimate using three estimates of the geothermal gradient (15, 25, 35°C/km) with 25°C/km 
being the preferred estimate. 

extend from the margin, through the NQH, to the interior plateau. Coast parallel 

transects are 90 km in length and cut through the high relief basement rocks of 

the NQH. For both transects data within 7.5 km either side of the line of section 

is projected at 90°. Simple calculations were made to calculate the amount of 

denudation required to drive cooling over distinct time intervals (Fig. 5-20): 
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Figure 5-20(b): Section y-y’ with predictions on magnitudes of denudation over time 
intervals since 150 Ma. 

Where t0 and t1 = the beginning and end of the time interval; D = denudation 

(km); ΔT = change in temperature over the time interval (°C); G = geothermal 

gradient (°C/km). ΔT is obtained graphically from the expected thermal history 

to avoid any assumptions of a specific closure temperature. The amount of 

denudation required to cool the sampl1e from elevated temperatures to surface 

temperatures depends on the geothermal gradient of the region. Present day 

gradients across much of Southern Africa are c. 20 – 25°C/km (Ballard and 

Pollack, 1987; Jones, 1987). Maintaining the conservative approach adopted 

during modelling, the upper limit of this temperature range (i.e. 25°C/km) was 

assumed to best represent the palaeogeothermal gradient. To reflect the 

uncertainty on the palaeogeothermal gradient, the amount of denudation for a 

particularly low (15°C/km) and high (35°C/km) gradient was also calculated. 

Cooling for many samples began during the 150 – 130 Ma interval, however, due 

to greater uncertainty towards the start of this interval, when temperatures  
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Figure 5-20(c): Section z-z’ with predictions on magnitudes of denudation over time 
intervals since 150 Ma. 

were at, or greater than, the base of the PAZ, the expected model may not truly 

represent the maximum temperature at 150 Ma. For samples which record major 

cooling during the 110 – 90 or 80 – 60 Ma cooling episodes, no estimate is made 

on earlier palaeotemperatures. Partly because of this, denudation during 150 – 

130 Ma is a minimum estimate, typically up to 1 km or less. 8732-46 and JN2 

however show greater denudation on the order of 1 – 3 km (Fig. 20b and 20d). 

These higher magnitudes of denudation may be a truer estimate on the amount 

of denudation at this time as there are tighter constraints on temperature or 

these samples may have been located in a region where denudation was more 

focused such as an up-thrown fault block or rift shoulder. 

Through 130 – 110 Ma denudation of the margin is relatively uniform at with c. 1 

– 3 km of material being removed with only minor regional variations. During this 

period it is proposed that much of the elevated topography and relief created 

during rifting was eroded way. During this period the margin resides in a period  
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Figure 5-20(d): Section a-a’ with predictions on magnitudes of denudation over time 
intervals since 150 Ma. 

of relative tectonic quiescence but may still have been experiencing minor local 

tectonic displacements and isostatic adjustments. Enhanced periods of 

denudation throughout the early Cretaceous are recorded from the margin well 

into the interior plateau. 

The greatest levels of denudation are recorded during 110 – 90 Ma and are 

largely localised to the NQH region and, specifically, localised to individual fault 

blocks in the NQH. Locally in the NQH, the total denudation is 2 – 4 km over this 

time period. Major structural features appear to separate samples which record 

enhanced denudation from those which have cooled in response to the removal 

of minor (<1km) amounts of crustal section. It is suggested here that the 

differences in denudation observed across the NQH is the result of vertical  
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Figure 5-20(e): Section b-b’ with predictions on magnitudes of denudation over time 
intervals since 150 Ma. 

motion of discrete fault blocks driven by a combination of regional vertical uplift 

and an extensional stress regime. Samples recording enhanced denudation are 

up-thrown blocks being eroded more rapidly than the surrounding rock. Along 

the coastal plain, denudation recorded by samples is between 0.5 and 1 km (Fig. 

20c) which is similar to that recorded in the down thrown blocks within the NQH. 

These lower levels of denudation are also recorded in samples from the low 

elevation, low relief, region south of the NQH (Fig. 20d) as well as low relief 

interior plateau. Although 0.5 – 1 km of denudation is comparatively low, over a 

20 Myr timescale it is not negligible and reflects on going erosion of the entire 

margin. Variations in geothermal gradient may lessen the discrepancy in 

denudation recorded in samples from NQH. However, even if the higher estimate 

of the geothermal gradient (i.e. 35°C/km) is used for the samples recording 

enhanced denudation and the lower estimate of the geotherm (i.e. 15°C/km) is 

used for the lower denudation samples; there is still a significant discrepancy of 

c. 1 km in most circumstances. 
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The nature of the change in denudation as you move from the 110 – 90 Ma into 

the 90 – 70 Ma interval is difficult to resolve as the latter interval records 

denudation which is either higher, lower or approximately the same as the 

former interval. Sample NQ12-21 for example suggests c. 2 – 3km of denudation 

during this time whereas the NQ12-03 and NQ12-04 composite thermal history 

suggests that nearly 4km of section where removed during 110 – 90 Ma and then 

almost nothing since then. The reason for the ambiguity in the 90 – 70 Ma is 

likely due to one of, or a combination of, the following: (i) the initial denudation 

during 110 – 90 Ma cooled the sample sufficiently so that it cannot document 

later cooling the LTT record; (ii) structural reactivation combined with a pre-

existing relief and variable lithology promotes a different erosion rates to occur 

across the margin prolonging the removal of 110 – 90 Ma topography; or (iii) Late 

Cretaceous compression reactivates appropriately orientated structures and 

drives another phase of uplift and denudation of fault blocks. If inversion has 

occurred in the Late Cretaceous it has not driven denudation to such an extent 

that rocks have been exhumed from beneath the PAZ. Instead inversion may 

have uplifted both blocks that where either heavily denuded or preserved during 

the 110 – 90 Ma cooling event and enhanced denudation persisted until the end 

of the Cretaceous. It is over this and the following time interval that the 

geological constraints imposed on the samples which reside on the plateau by 

the Dasdap and Vaalputs sediments and preserved crater-lake facies at Banke 

farm are particularly important. Without this constraint directing the thermal 

history to the surface at this time the composite thermal history would predict 

denudation amounts  comparable with SA12-47; c. 0.5 km during each time 

interval throughout its entire history (c. 0.03 km/Myr). Including these 

constraints suggests that the plateau experienced just over 2 km of denudation 

from 90 – 50 Ma which is comparable with denudation occurring across certain 

fault blocks within the NQH. 

In general, by 70 – 50 Ma, denudation has dramatically reduced across both the 

coastal plain and NQH. Apart from the example above and for sample NQ12-21, 

the amount of denudation predicted by thermal history models is less than 1 km 

and in many cases less than 500 m. As stated above by c. 60 – 50 Ma most of the 

samples are predicted to have resided at temperatures of 60°C or lower. 
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Therefore, there is limited resolution on the amount and nature of cooling 

through the Cenozoic, particularly if AHe data is absent or the available AHe 

data has high levels of eU and as such have high closure temperatures. Through 

50 – 30 Ma and 30 – 0 Ma denudation is predicted to be less than c. 500 m. Local 

variations persist where denudation is predicted to be higher than this up to c. 

1.1 km. If real these local variations may be caused by local river networks and 

the erosion of remnant Karoo or younger lithologies on an irregular relief 

however it should again be reinforced that this portion of the thermal history is 

poorly constrained. 

5.6.3 Uncertainties in denudation estimates 

Denudation models presented in Figure 5-20 are calculated using the expected 

thermal history model for three different geothermal gradients. The expected 

model lies within 95% credible intervals which can be treated as an uncertainty 

on the expected model. The uncertainty on the denudation calculation for 

Figure 5-20a is determined using the temperature of the upper 95% credible 

interval (TMin) and lower 95% credible interval (TMax) (Fig. 5-21). However, it 

must be remembered that the expected model and 95% credible intervals should 

be interpreted as a probability density function. As such, uncertainties which 

propagate into calculations of denudation should similarly be viewed in terms of 

probability centred on the amount of denudation calculated using the 

temperature estimated from the expected model (Texpected). The upper 

uncertainty for each time interval was calculated using TMax at the beginning of 

the designated time interval and TMin at the end of the designated time interval 

reflecting the maximum temperature difference over the time interval. 

Similarly, the lower uncertainty was calculated using TMin at the beginning of the 

designated time interval and TMax at the end of the designated time interval 

reflecting the minimum temperature difference over the time interval. In 

certain occasions the minimum temperature difference is negative and suggests 

burial of the sample. The maximum temperature difference results in upper 

uncertainties which imply c. 5 km denudation recorded locally. The upper and 

lower extremes of these uncertainty levels are unlikely scenarios. As the 

uncertainty is calculated using the 95% limits the value of TMax and Tmin at a given 
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Figure 5-21: (a) Magnitudes of denudation for Section x-x’ (see Figure 5-20a) with associated uncertainties for an assumed geothermal gradient of 25°C/km. 

The colours of symbols and uncertainty bars represent the same time intervals used in Figure 5-20 and the same colour scheme is used here. (b) Plots 
showing the effect of geothermal gradient on estimates of denudation. Temperature values in left hand plot represent the change in temperature over a 
specifc time interval in the samples thermal history. The manner of the transformation (non-linear) made for denudation estimates assuming an alternative 
geothermal gradient will also apply to the uncertainty derived from the expected thermal history. 
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time have a probability of 2.5%. Propagating these uncertainties through 

denudation calculations will result in the upper and lower denudation limits 

having a probability of <1%. Estimates of denudation are extremely sensitive to 

the geothermal gradient assumed (Fig. 5-21b). The influence of geothermal 

gradient on denudation estimates is non-linear and most significant for low 

geothermal gradients. This is unlikely to be the case in the study area as the 

basement rocks are particularly enriched in heat providing radiogenic elements 

(U, Th and K) (Andreoli et al., 2006). This has helped maintain moderate-high 

heat flow values across the Namaqualand Highlands (Jones, 1987; Andreoli et 

al., 2006). Propagating these uncertainties into the estimates of denudation will 

clearly result in a much larger range of possible denudation values. However, as 

stated above, these uncertainty ranges should be viewed in terms of their 

probability and therefore the upper and lower uncertainty for denudation 

amounts predicted using the 15°C/km and 35°C/km geothermal gradients will 

also c. 1%. 

5.7 Discussion  

5.7.1 The Namaqualand continental margin low temperature 
thermochronology dataset 

Previous low temperature thermochronology studies in the Namaqualand region 

have been limited with only two studies generating AFT from outcrop samples 

(Brown, 1992; Kounov et al., 2009). Samples analysed by Brown (1992) were 

collected somewhat sporadically across the margin but have also been collected 

at a variety of elevations. Data from Kounov et al. (2009) consists of two 

transects across the margin extending onto the inland plateau. The contribution 

of data from this study helps to create an extremely detailed LTT database 

across this sector of the margin by improving the regional and local sample 

coverage as well as improving the temporal resolution by including AHe analysis. 

The trend of data can be compared with the conceptual models of Gallagher and 

Brown (1999a) (see Chapter 3 - Section 3.6). The observed data does not agree 

with any of these models because young post rift ages extend far inland from the 

margin and abrupt age variation across the NQH region obscures any progressive 
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increase in ages with increasing distance across the margin. However, as 

discussed previously, the LTT age trend alone is not a good representation of the 

thermal history of the region. Looking at the trend in thermal history models 

across coast perpendicular transects (Fig. 5-20) it can be seen that their appear 

to be two general classes of models: (i) protracted to moderately quick cooling 

at c. 150 – 130 Ma and (ii) fairly rapid to very rapid cooling at c. 110 – 90 Ma. 

Interestingly the transition from one style of models to another is abrupt and 

coincides with prominent structural lineaments. The former event coincides 

nicely with the initiation of rifting between S. America and S. Africa (c. 165 – 

130 Ma) and so is ascribed to the erosion of pre-existing topography due to 

incising rivers adjusting the new base level of the evolving Atlantic Ocean. The 

regional distribution of the younger event coupled with its apparent structural 

control and fast nature of the cooling recorded and lack of any other thermal 

influence (e.g. intrusions) supports a regional denudation event confined to 

uplifting fault blocks at this time. 

Data from earlier studies is largely consistent with the data presented here. AFT 

ages are generally Early – Late Cretaceous with moderate to long MTLs. The 

exceptions to this are one sample of Late Jurassic age recorded by Brown (1992) 

(8732-46) in the heart of the NQH and an Early Jurassic age recorded by Kounov 

et al. (2009) from their southern transect near to the town Calvinia. Kounov et 

al. (2009), propose that inverse modelling of their data supports a two stage 

thermal history across the margin. The major phase of cooling is ascribed to the 

Mid-Cretaceous (115 – 90 Ma) and is attributed to a tectonically induced period 

of enhanced denudation. Moreover, they suggest that discrete fault block 

reactivation during this time results in differential denudation to have occurred 

over major structures. The earlier event is driven by either rift-related tectonic 

denudation or thermal relaxation of the surface following widespread Karoo 

magmatism at c. 180 Ma (Jourdan et al., 2005). Kounov et al. (2009) give 

precedence to the latter mechanism as this cooling episode is only recorded in 

samples from the plateau region of the southern transect which were collected 

in the Karoo basin. However, data from Brown (1992), and data presented here 

clearly have preserved a record of Early Cretaceous cooling. The different 

datasets therefore do not contradict each other and in fact help to validate and 
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refine one another. The latest Jurassic – Early Cretaceous cooling at c. 160 – 130 

Ma is recorded regionally but preserved only locally. The discrete, structurally 

controlled, nature of the second cooling event from 115 – 90 Ma across the 

margin is somewhat poorly constrained by Kounov et al. (2009), due to the 

uncertainty in their fission track data and uncertainties in models. However, the 

preservation of the older cooling event across the margin adjacent to samples 

recording younger, rapid cooling helps to support this hypothesis. 

Kounov et al. (2009), limit Cenozoic denudation to less than 2 – 3 km however 

acknowledge that the AFT analysis does not have the temperature sensitivity to 

resolve this part of the thermal history. Under normal circumstances AHe would 

provide constraints over this unresolved temperature range. However, due to 

the effects of radiation damage and grain size, particularly in old, U and Th rich 

samples, the temperature sensitivity of the AHe system (i.e. PRZ) may be 

elevated above normal conditions. Despite this the modelling presented here 

does not support any Cenozoic cooling greater than 2 – 3 km and in many models 

limit denudation to less than 1km. This observation agrees with cosmogenic 

nuclide analysis in Calvinia (Kounov et al., 2007) which reports a decrease in 

denudation rate by an order of magnitude during the Cenozoic relative to the 

Cretaceous. 

5.7.2 The structural history of the Namaqualand Highlands 

The structural evolution of the Namaqualand sector of the South Atlantic 

continental is complex and poorly understood (Andreoli et al., 2009). 

Understanding the structural evolution of the margin from the initiation of 

lithospheric extension during rifting to the present day is crucial in further 

developing our understanding of the geomorphic evolution of continental 

margins. Major pre-rift tectonic events include the Kibran Orogeny (c. 1000 Ma) 

and the Pan-African Orogeny (c. 600 – 480 Ma) (Tankard et al., 2009). 

Deformation associated with these events helped to install much of the pre-

existing structural grain in both Namaqualand and in the Cape Fold Belt (Viola et 

al., 2012). These ancient fractures will likely provide sites of pre-existing 

weakeness in the lithosphere that accommodate deformation during later 
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Figure 5-22: Left panel shows a DEM of the NQH draped over a Landsat ETM+ RGB:321 satellite image. Faults marked on this map are directly related to 
faults drawn on transects from Figure 5-20 and mark the abrupt transition between regions of enhanced and subdued denudation during the Mid-Late 
Cretaceous. Right panel shows a Landsat ETM+ RGB:742 satellite image which highlights the relief variation of the region, location of sediment filled valley 
floors and subtle changes in basement lithology. The same faults from the left panel are drawn on this map as well as fault lineaments identified on the 
satellite image and after Viola et al., (2012). 
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tectonic events with or without the creation of new fractures (e.g. Sykes, 1978; 

Daly et al., 1989; Saintot et al., 2011; Viola et al., 2012). Unfortunately, due to 

the longevity of the margin and lack of stratigraphic information preserved 

unravelling the structural history has proved difficult.  

Recent work by Viola et al. (2012) has attempted to piece together the 

fragmented structural history recorded in the Namaqualand basement terrain by 

utilising remote sensing techniques to identify major structural lineaments 

combined with a detailed field based analysis of brittle fault structures (Fig. 5-

22). In this way, Viola et al. (2012), advocate that evidence for ten distinct 

structural deformation events can be found in the Namaqualand basement. 

However, some of these deformation events are tentative and their age poorly 

constrained. In some cases cross-cutting relationships, used to constrain the 

relative age of deformation, implies active structures which are sub-parallel to 

the orientation of maximum stress at that time. 

The earliest post-rift (or syn-rift) palaeo-stress tensor identified in the 

Namaqualand basement is suggested to have been produced by sub-horizontal 

extension orientated NE-SW and causing reactivation of older vertical faults 

(Viola et al., 2012). This phase of extension is assigned to the initiation of rifting 

and opening of the Atlantic due to the coherence of the orientation of extension 

and the perpendicular orientation of major Early Cretaceous dyke swarms (Reid 

and Rex, 1994; Will and Frimmel, 2013). Activation of pre-existing lines of 

structural weakness is in agreement with models of fault propagation during 

rifting (e.g. Ziegler and Cloetingh, 2004; Autin et al., 2013; Corti et al., 2013) 

with the majority of extension being accommodated on faults in the offshore 

domain (Lundin and Doré, 2002; Paton et al., 2007; de Vera et al., 2010). Major 

extensional deformation across this sector of the margin at this time may have 

been limited due to its distant position relative to the rift zone, however recent 

geodynamic models have shown that deformation may occur at large distances 

away from the main rift zone (Huismans and Beaumont, 2008, 2011).  

The second post-rift palaeo tensor is again relatively poorly constrained but 

indicates E-W extension (Viola et al., 2012). It is this extension that is proposed 
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to coincide with the major period of mid-Cretaceous tectonic denudation as 

advocated by Kounov et al. (2009), this work and in other published work (e.g. 

Brown et al., 1990; Tinker et al., 2008a; Flowers and Schone, 2010; Stanley et 

al., 2013). These two periods of extension are supported by palaeo-stress 

analysis in NW Namibia where ENE-WSW and SW-NE extension is suggested to 

have prevailed during rifting and Mid – Late Cretaceous, respectively (Salomon et 

al., 2014). Thermal histories presented here are consistent with considerable 

denudation driven unloading of the continental margin which may have induced 

considerable flexure of the margin (e.g. Redfield et al., 2005; Dauteuil et al., 

2013) and contributed to coast perpendicular extension (Salomon et al., 2014). 

Although post-rift lithologies across the Namaqualand margin are extremely rare 

their occurrence in the Vaalputs region inland of the Namaqualand Highlands 

provides important constraints for the structural history over Late Cretaceous 

and Cenozoic (Fig. 5-23). Fault-slip structures extend into the silicified and 

Kaolinitised weathering profiles of the Late Cretaceous Dasdap alluvial fan 

sediments meaning that they post-date rift related deformation (Brandt et al., 

2003, 2005; Viola et al., 2012). These structural data record both compression 

and extension and can be correlated with palaeo stress tensors from the wider 

basement terrain which did not correlate with previous deformation events 

(Viola et al., 2012). This is suggested to be evidence of post-rift fault 

reactivation of ancient or syn-rift structures (Brandt et al., 2003, 2005; Viola et 

al., 2012). Late Cretaceous – Cenozoic compression is thought to have occurred 

regionally in two short lived episodes at c. 85 – 83 Ma and 69 – 65 Ma with an 

intervening period of renewed extension (Viola et al., 2012). The compressional 

episodes are recorded in the silicified weathering profiles that cap the Dasdap 

sediments as well as in the volcanic breccias preserved at the Gamoep melilite 

pipe (77 – 54 Ma; Phillips et al., 2000). 

 Identifying cooling episodes coincident with late and post-Cretaceous structural 

events is difficult but certain samples with young fission track ages and 

moderately long track lengths could have thermal histories that were affected 

by Late Cretaceous – Cenozoic cooling. However, since the earlier Mid-

Cretaceous episode appears to have been regionally extensive with large 
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Figure 5-23: Left panel shows a DEM of the Namaqualand plateau region draped over a Landsat ETM+ RGB:321 satellite image. Faults marked on this map 
are drawn after Brandt et al., (2003 and 2005) The black polygon defines the region of the Vaalputs area owned by the South African Nuclear Energy 
Corporation (NECSA) for the disposal of low-intermediate nuclear waste disposal. Right panel shows a Landsat ETM+ RGB:742 satellite image which 
highlights the relief variation of the region, location of sediment filled valley floors and changes in lithology. The Dasdap sediments are identified as bluish-
white sediments at the periphery of the NQH on the satellite image (Brandt et al., 2005). 
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magnitudes of denudation, younger events may be beyond the resolution of the 

AFT and AHe approaches. The orientation of σ1 during the first post-rift 

compression event is believed to be NW to SE rotating through to E-W. 

Subsequent extension and the second phase of compression are orientated NE-

SW causing NW-SE orientated normal faults to become reactivated and/or 

inverted. Santonian – Maastrichtian events are linked to continent wide episodes 

of compression and extension. The former is recorded along the Tethyan margin 

in North Africa where sedimentary basins have been folded and inverted 

(Guiraud and Bosworth, 1997). Extension is associated with rifting along the 

northern Atlantic and Indian Ocean margins recorded in renewed subsidence of 

sedimentary basins and the occurrence of magmatism at this time (Guiraud and 

Bosworth, 1997). The Late Maastrichtian – early Cenozoic episode of compression 

is observed in thrusting along Pan-African shear zones along the Damara Belt in 

central Namibia. This is recorded in fission track data across the region (e.g. 

Raab et al., 2002) and is discussed more in Chapter 6. The expression of Late 

Cretaceous - Cenozoic compression is still somewhat enigmatic as palaeostress 

data from NW Namibia fails to document any clear evidence (Salomon et al., 

2014). This is contrary to the conclusions of Viola et al. (2012), Andreoli et al. 

(2009) and Raab et al. (2002) that relate compression during the Santonian and 

Late Maastrichtian to far-field compression tectonics in North and Central Africa. 

Local variations may therefore exist within the wider regional, or continental, 

stress regime; the deformation experienced across the margin will then be 

significantly controlled by the orientation of basement structures relative to this 

stress field. Moreover, the interplay between the flexural response of the 

lithosphere to unloading of the margin during erosion and loading during 

sedimentation may enhance extensional stresses during the post-rift phase. 

Evidence for neotectonic activity has been identified along the Namibian margin, 

(White et al., 2009) southwest African margin (Andreoli et al., 1996; Brandt et 

al., 2005; de Beer, 2012) and in the adjacent offshore Atlantic basins (Viola et 

al., 2005). The alignment of offshore mud volcanoes and interpretation of 

seismic profiles through the Orange Basin identified NNW-SSE steep faults that 

propagated downwards to older (syn-rift) listric faults. Palaeoseismic 

investigations have identified neotectonic activity in across the Vaalputs region 
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(Andreoli et al., 1996) which has subsequently been supported by field based 

observations in mine trenches both at Vaalputs (Brandt et al., 2005) and across 

the Langklip Fault at Hondeklip Bay (de Beer, 2012). Moreover, it is suggested 

that under the present day stress regime the frequency of seismic events is 

increasing over time (Andreoli et al., 2009). While neotectonic events may not 

have induced the levels of denudation during the Late Cenozoic required to 

become recorded in LTT data they are significant as they may induce local 

variations in the geomorphic development of the margin and allow us to 

understand the current stress field and how this has changed over time. 

The present day stress field across the Namaqualand region is referred to in 

literature as the Wegener Stress Anomaly (WSA) (Andreoli et al., 1996, 2006; 

Viola et al., 2005, 2012; Brandt et al., 2005; Bird et al., 2006; Kounov et al., 

2009). This large regional stress field (≥ 2x106km2) is characterised by a NW-

SE/NNW-SSE orientation of horizontal principal compressive stress which has 

been attributed to by the resistance of the strong lithosphere of the African 

plate against the rotation of the Somalia plate at the opening East African rift 

(Bird et al., 2006). Alternative explanations include ridge-push from the 

developing South West Indian Ridge (Viola et al., 2005). Andreoli et al. (2009) 

propose a model where by the WSA was established during the Mid-Cretaceous 

but rotated to a NNE-SSW orientation throughout most of the Cenozoic before 

becoming established in its current orientation in the Pliocene-Pleistocene. 

Spatially and temporally complex uplift events during the rotation of the stress 

field are proposed; with different styles of faulting occurring on steep, sub-

vertical, structures, forming small highland terrains (Andreoli et al., 2009). 

Finite element modelling by Bird et al. (2006) incorporating rheological and 

density moment (density moment = the integral of density, over the thickness of 

the lithosphere, multiplied by elevation; Turcotte and Schubert, 2002) variations 

across Africa characterised the continental stress field and reproduced the WSA 

anomaly along the western margin. Through this process they observe that the 

NW-SE orientation of compressive horizontal stress is, in many places, actually 

induced by NE-SW extension (Fig. 5-24). The establishment of the WSA stress 

field in the Mid-Cretaceous would contribute to the period of discrete fault block  
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Figure 5-24: Most compressive horizontal principal stress directions from as predicted by 
Bird et al. (2006). Stress field if dominated by effects of relative plate rotation where there is 
a strong resistance to the relative rotation between the Somalia and Africa plates. NF = 
Normal faulting; NS = Normal – strike-slip faulting; SS = Strike-slip faulting; TS = Strike-slip 
– Thrust faulting; TF = Thrust faulting. Intraplate indicators of stress regime and azimuth of 
the most compressive horizontal principal stress (Actual s1h) are from the World Stress 
Map (Reinecker et al., 2004). 

displacement during regional margin uplift proposed here. Later compression 

during the rotation of the regional stress field in the Late Cretaceous/Cenozoic 

may have failed to invert major structures due to their orientation to the stress 

field or induce only minor reverse movement on steep vertical faults with overall 

net-extension still prevailing (e.g. Holford et al., 2014). The development of 

post-rift relief during the Mid – Late Cretaceous due to structural processes 

associated with the WSA is referred to as the Wegener-Type Orogeny by Andreoli 

et al. (2009). However, the exact structural processes responsible and the 

location of faults which accommodated major deformation are still unknown.   
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5.8 Summary and Conclusions 

The data presented here does not conform to previous conceptual models of 

escarpment evolution at Atlantic or ―passive‖ continental margins. It contradicts 

traditional models as (i) there is no trend in AFT ages across the coastal region 

reflecting the progressive retreat or downwearing of a rift related escarpment 

and (ii) exceedingly young AFT ages which post-date rifting by as much as 70 Ma 

persist across the high relief escarpment zone and, crucially, onto the elevated 

plateau. By integrating AFT age and track length data with a complex but 

plentiful AHe data set robust thermal histories are produced and estimates of 

denudation can be made. In this way a major period of enhanced denudation 

during the post-rift phase is identified and attributed to an episode or episodes 

of structural reactivation. 

A more appropriate model for the evolution of the continental margin at 

Namaqualand is required. It is proposed here that regional uplift during 

lithospheric extension at the beginning of rifting was associated with prolonged 

faulting far from major zone of rifting. This resulted in an elevated landscape 

with a series of escarpments or fault scarps which were progressively eroded 

away during the Early Cretaceous. In the Mid – Late Cretaceous (c. 110 – 90 Ma), 

a combination of long-wavelength uplift and horizontal extensional stresses 

induced a regional period of uplift which was manifested across Namaqualand as 

a series of vertical motions across reactivated basement structures. This 

differential uplift resulted in some samples being exhumed rapidly from 

temperatures hotter than the base of the PAZ while others continued to cool 

through lower temperatures and thus retained a record of the earlier denudation 

event. The mechanism behind this deformation event could be a combination of 

lateral flow of the upper mantle and flexure of the margin due to sediment 

loading inducing or enhancing regional horizontal extension of a brittle crust. 

Mantle driven dynamic uplift and isostatic adjustments responding to erosion 

may have provided an additional vertical component to the evolution of the 

margin during the Cretaceous. A period of compression during the Late 

Cretaceous is less well-defined across Namaqualand but has been advocated by 

previous structural analysis. If there has been uplift driven by compression it has 
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been relatively minor so that denudation has not exhumed more rock from 

elevated temperatures. However, compression may have helped to maintain 

enhanced denudation through to the end of the Cretaceous. This model agrees 

with previous work which supports minor denudation through the Cenozoic 

however it leaves several hundreds of metres and possibly 1 km of crust that 

could have been removed, at least locally, during the Cenozoic. 
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CHAPTER 6 

INTRACONTINENTAL DEFORMATION OF THE 
SOUTH AFRICAN PLATEAU 

 

6.1 Introduction 

A defining morphological feature of high elevation continental margins is an 

elevated, low relief interior plateau. These continental plateaus have long been 

considered as ―stable‖ geological regions that have experienced limited 

deformation over long periods of time. Recent insights from geodynamical 

models, however, imply that vertical stresses imposed at the base of the 

lithosphere by the vertical component of mantle flow may induce dynamic uplift 

(or subsidence for down-welling mantle) of the interior plateau (e.g. Gurnis et 

al., 2000; Moucha et al., 2008; Braun, 2010; Forte et al., 2010a; Flament et al., 

2013). In addition to this, thermo-mechanical models simulating the interaction 

between mantle convection and the overlying lithosphere suggest that brittle 

deformation of the upper crust at short-wavelength scales may occur during long 

wavelength, plume induced uplift of the lithosphere (e.g. Burov and Cloetingh, 

2009; Guillou-Frottier et al., 2012; Cloetingh et al., 2013). 

The geology of continental interiors is often dominated by old Archean – 

Palaeoproterozoic cratons surrounded by younger basement rocks, and this is 

certainly the case in southern Africa (Tankard et al., 2009). These younger 

regions are characterised by a strong tectonic fabric which developed during 

early accretion of older cratons (Jacobs et al., 1993; Karlstrom and Humphreys, 

1998; Zhao et al., 2001). The southwest corner of the Kaapvaal craton and its 

boundary with the Namaqua mobile belt represents such a tectonic setting with 

prominent NW-SE trending thrust faults and shear zones defining the craton 

boundary. Recent work has shown that due to thermal, compositional and 

structural contrasts across the craton margin, regional stresses and/or mantle 
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instabilities may become focused at the craton margin and induce intraplate 

deformation (Lenardic et al., 2000, 2003; Guillou-Frottier et al., 2012). 

This study provides a new suite of apatite fission track and apatite (U-Th-Sm)/He 

data from the Bushmanland Plateau across the structural zone defining the 

margin of the Archean Kaapvaal craton. Using the Bayesian transdimensional 

approach to thermal history inversion, as described previously (see Chapter 4 – 

Section 4.5), temperature-time (T-t) cooling paths are obtained for each of the 

analysed samples. The spatial and temporal relationship of the thermal histories 

is used to derive magnitudes of denudation and assess the timing and nature of 

intracontinental deformation across this region of the South African plateau. 

6.2 Local Geology 

6.2.1 Study Area 

The Bushmanland Plateau (BMP) study area extends from the town of Pofadder 

in the west to the town of Douglas in the East (c. 400 km) (Fig. 6-1). The 

northern extent continues just across the Namibian border with two samples 

coming from Namibia on the northern side of the Orange River valley. To the 

south the study area extends just south of the town of Prieska. The study area is 

much larger than the NQH study area and the data are sparser. This is due to the 

lack of basement exposure across this very low relief region of the plateau. 

6.2.2 Morphology 

The continental interior of southern Africa is typically referred to as a plateau 

due to its extensive low-relief plains. This description is generally consistent 

with the study area here where elevations vary only gradually between 900 – 

1100m, and rarely reach elevations above 1200m (Fig. 6-1). In the northwest of 

the study area the Asbestos Hills achieve elevations up to 1600 m and mark the 

transition into the Kaapvaal craton. The main South African drainage conduit, 

the Orange River, enters the study area from the southeast and exits in the 

northwest before continuing westward towards the Atlantic Ocean. At the town 

of Douglas, the NW trending Orange River converges with the southwest flowing 
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Figure 6-1: Location map of the Bushmanland Plateau study area. DEM created using SRTM 90m. Elevation profile for a transect across the plateau is 
shown and is used below in Figure 6-21 with data projected onto the line of section. 
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Vaal River which drains the northeast of South Africa. The Orange River deviates 

southeast along the trend of the Asbestos Hills before becoming deflected 

towards the northwest at Prieska. At this point the Orange River follows the 

major structural trend of the Kheis Front and specifically the Doringberg 

Lineament. After continuing in this trend for c. 170 km, the Orange River 

meanders as it flows west through the towns of Upington and Kakamas. The main 

Orange River channel progressively decreases in elevation through the study area 

but includes several significant knickpoints along its course, particularly at the 

Augrabies Falls (Fig. 6-2). 

6.2.3 Archean – Palaeoproterozoic craton 

The Archean – Palaeoproterozoic Transvaal Supergroup rocks can be found in 

three structural basins on the Kaapvaal craton in South Africa and Botswana 

(Eriksson et al., 2006). In the north east of the study area the Transvaal 

Supergroup is preserved in the Griqualand West Basin (Fig. 6-3). A well 

preserved stratigraphy is observed in the Transvaal Supergroup which was 

deposited in a shallow marine environment during periods of transgression and 

regression on the Kaapvaal craton (Altermann and Nelson, 1998; Eriksson et al., 

2006). The base of the stratigraphic section is characterised by limestone, 

dolomite and shale units which are capped by banded iron formations of the 

Asbestos Hills Subgroup (Beukes and Gutzmer, 2008; Schröder et al., 2011).  The 

Transvaal Supergroup in this region has experienced multiple deformation phases 

over c. 2500 – 1000 Ma involving extensive thrusting and stacking of stratigraphic 

sequences during continental amalgamation (Altermann and Hälbich, 1990, 1991; 

Eriksson et al., 2006). However, the sequence has only experienced limited (sub-

greenschist) metamorphism (Kendall et al., 2013). The boundary between the 

Transvaal Supergroup, and the Kaapvaal craton, and the rocks of the 

Namaqualand metamorphic province (NMP) is marked by the prominent NW-SE to 

N-S striking Doringberg Lineament and Blackridge Thrust (Altermann and 

Hälbich, 1991) (Fig. 6-3; c.f. Chapter 1 - Figure 1-2). 
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Figure 6-2: West-east longitudinal river profile of the Orange River with underlying lithology 
(after Paul et al., 2014). 

6.2.4 Namaqua Metamorphic Province 

The NMP rocks exposed in the study area are granites and granitic gneisses and 

are subtlety different from those present in the NQH. The entire NMP has 

experienced significant metamorphism over c. 2000 – 1000 Ma, the differences 

can be found in minor variations in the timing and P-T conditions of 

metamorphism, variations in the original unmetamorphosed material and 

composition and extent of intrusive activity (Cornell et al., 2006). 

Lithostratigraphic variations in the NMP define terrane subprovinces which are 

bounded by major structural discontinuities (Fig. 6-4). While the NQH region is 

dominated by the Bushmanland Terrane, major shear zones and thrust belts 

define numerous terrane boundaries along the Orange River which extend into 

southern Namibia. 

Along the Orange River the NMP can be subdividied into three zones (Western, 

Central and Eastern marginal zones) characterised by variations in structural 

style and metamorphic grade by major tectonic discontinuities (Tankard et al., 

1982). The Eastern Marginal Zone (EMZ) is characterised by an array of NNW 

trending, steeply dipping, en echelon faults. These faults, particularly the 

Doringberg and Brakbos faults, define the structurally complex transition from 

the Kaapvaal craton to the younger NMP (Tankard et al., 1982, 1995, 2009; 

Altermann and Hälbich, 1991; Eriksson et al., 2006). The NW structural trend 
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Figure 6-3: Geological map of the Bushmanland Plateau study area. Geological map was redrawn to highlight the major geological units, structures and 
features relevant to this study, using 1:1,000,000 scale maps produced by the Council for Geoscience, South Africa. (Fourie and Cole, 1997). For sample 
names, refer to Figure 6-1. Fault names: PS = Poffader Shear Zone; HT = Hartbees Thrust; BoS = Bouzen River Shear Zone; BS = Brakbos Shear Zone; DT = 
Dadep Thrust; BT = Blackridge Thrust; DL = Doringberg Lineament; NF = Namaqua Front; KF = Kheis Front (after Tankard et al., 2009 and Thomas et al., 
1994a). 
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Figure 6-4: Schematic cross section of the Namaqualand Metamorphic Province (after 
Thomas et al., 1994a). Fault names are the same as in Figure 6-3 (GT = Groothoek Thrust). 

associated with the EMZ extends through Southern Namibia and into South Africa 

where post-Karoo displacement is suggested by the presence of basement inliers 

in contact with Karoo sediments (Tankard et al., 2009). 

The NW structural trend continues throughout the Central Zone of the NMP 

which comprises the Areachap and Kakamas Terrane. The Hartbees River Thrust 

bounds the western extent of this region and trends initially NW-SE before 

deviating E-W and running parallel to the trend of the Orange River. The 

generally E-W structural trend of the Western Zone is best represented by the 

Tantalite Valley shear zone, Goothoek Thrust and, further south, Buffels river 

shear zone. Within the Tantalite Valley shear zone, NNE to NE trending normal 

structures associated with transtensional stresses juxtapose basement gneisses 

against late Proterozoic sediments of the overlying Nama Group (Gresse and 

Germs, 1993; Gresse et al., 2006). These structural trends appear to have a 

control over the course of the Orange River which alternates between a 

northwest direction to southwest direction several times as it flows westward 

from the Kaapval craton. This typical trellis pattern of the main channel suggests 

that the river channel geometry is being strongly controlled by separate 

structural directions defined by the NW trend of the EMZ and E-W trend within 

the Tantalite Valley shear zone. 
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6.2.5 Neoproterozoic – Palaeozoic 

The Nama Group unit is believed to have been deposited in a similar geological 

setting and at a similar time to the Vanrhynsdorp Group, discussed in Chapter 5 – 

Section 5.2.4 (Gresse et al., 2006). This depositional environment is proposed to 

be a foreland basin which formed on the craton edge due to flexure of the 

lithosphere during Pan-African thrusting (Gresse and Germs, 1993; Tankard et 

al., 1995; Gresse et al., 2006). Exposure of the Nama Group in the study area is 

limited, occurring only in the northwest where it extends into southern most 

Namibia. Specifically, the Nama group in the study area is represented by the 

sub-horizontal Kuibis Subgroup succession of sandstone and shale cycles (Fig. 6-

3). 

6.2.6 Karoo Supergroup 

The glacially dominated Dwyka Group was deposited unconformably on the 

Precambrian basement in the study area during the Late Carboniferous to Early 

Permian (Johnson et al., 2006). Its preservation is more extensive here than in 

the NQH study area, forming the outer extent of the main Karoo basin which 

covers much of the interior of South Africa (Fig. 6-3). The diamictite facies 

within the Dwyka Group can appear massive or well stratified and clast rich. 

Clasts are variable in size and form and their origin is commonly attributed to 

the surrounding bedrock which has been dislodged from the surrounding outcrops 

(Visser, 1989, 1990). Stratified diamictites contain bedding planes and 

alternating successions of mudrock, conglomerate and sandstone beds produced 

by sediment gravity flows and rain-out debris flows (Visser and Young, 1990; 

Johnson et al., 2006). 

The Ecca group is represented mainly by the Prince Albert Formation which 

attains a thickness up to c. 300 m (Johnson et al., 2006) (Fig. 6-3). The Prince 

Albert Formation predominantly comprises sandstones, siltstones, and silty 

shales which fine upwards from the boundary above the Dwyka Group glacial 

deposits (Scheffler et al., 2006; Herbert and Compton, 2007). The presence of 

mudrocks and marine fossils suggest a shallow marine depositional environment 
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with sandstones and siltstones possibly deposited in a deltaic environment 

(Catuneanu et al., 1998). 

Intrusive dolerite dykes, sills and sheets heavily punctuate the Karoo Basin 

across the study area (Fig. 6-3). Dolerite sheets can form resistant caps up to 

200m thick on small hills which rise above the extensive flat lying plateau 

(Duncan and Marsh, 2006). The intrusion of the Karoo Dolerite Suite is thought to 

have occurred fairly rapidly at c. 180 – 185 Ma (Duncan et al., 1997; Jourdan et 

al., 2005, 2007; Moulin et al., 2011; Svensen et al., 2012). Similarly aged mafic 

rocks are found in Namibia and the Lebombo Mountains in Swaziland and 

collectively they are suggested to be coeval with continental flood basalt 

emplacement associated with continental rifting and break up of Eastern 

Gondwana at this time (Cox, 1992; Duncan et al., 1997). 

6.2.7 Cenozoic 

The Kalahari Group sedimentary unit fills palaeovalleys within the Karoo 

Supergroup and older basement rocks and can reach a thickness up to c. 210 m 

(Fig. 6-3). However, in the study area their thickness is typically < 60 m 

(Partridge et al., 2006). The Kalahari Group unit is mainly comprised of poorly 

sorted and poorly consolidated gravels and sands which have been accumulated 

during the Cenozoic (Thomas and Shaw, 1990). However, the timing of the 

development of the Kalahari Basin and subsequent sediment infill remains 

uncertain due to the absence of direct dating of the sediments (Haddon and 

McCarthy, 2005). The evolution of the basin has largely been inferred from 

proposed models of regional tectonic and drainage evolution involving Cenozoic 

epierogenic uplift which has proved to be a source of much controversy (e.g. 

Partridge and Maud, 1987; Burke, 1996; Brown et al., 2002; Doucouré and de 

Wit, 2003; Moore et al., 2009). 
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6.3 AFT Analysis 

6.3.1 Results 

The external detector method, as outlined in Appendix 1.2, was used to obtain 

AFT ages from 14 samples from a transect across the interior plateau of 

southwestern Africa (Table 6-1). The transect extends west from Douglas to 

Pofadder cutting across the major Doringberg and Hartbees fault lineaments, as 

well as the Orange River. Table 6-1 summarises the data obtained for these 

samples. A zeta value of 317.3 ± 11.1 was used to calculate AFT ages for samples 

FS1605, GGO2 and PRU106 and a value of 316.7 ± 10.5 used for the remaining 

samples (see Appendix 2.1). Central AFT ages range from 58.9 ± 5.9 to 122.8 ± 

7.5 Ma with half of the ages falling between c. 85 and 100 Ma. There is no 

apparent correlation between AFT age and elevation (Fig. 6-5). 

Each sample contained at least 9, and in most cases more than 50, horizontal 

confined track (HCT) lengths which were measured to constrain thermal history 

information. Mean track lengths (MTL) within samples range from 10.33 ± 0.24 to 

14.29 ± 0.12 µm. The standard deviation of track length measurements (MTL-SD) 

range from 1.17 to 2.19 and the majority are < 2. This is representative of the 

fact that most samples have a fairly narrow to moderately broad track length 

distribution (see Appendix 5.2 for TLDs).  

Figure 6-6 does not show a clear relationship between AFT Age and MTL. 

However, there appears to be a similarity in the spread of the data to the Age-

MTL plot for the NQH region further west that was presented in Chapter 5. A 

cluster of longer MTLs exist for ages that are between c. 80 and 100 Ma which 

could be tenuously linked to the younger peak of a boomerang plot (Fig. 6-6). 

Additionally, the sample PRU 106 which has a low MTL and Late Cretaceous age 

could represent the partially annealed record of cooling from an Early 

Cretaceous event. The overall negative correlation between MTL and MTL-SD is 

an indication that when track lengths are long the distribution is narrow, further 

supporting a record of rapid cooling in a particular sample (Fig. 6-7). 
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Long. Lat. Elev. ρs
a ρi

a ρd
a P(χ2)c Dpar

d [U]e

(°) (°) (m) (106cm-2) (106cm-2) (106cm-2)  (%)  (μm) (ppm) MTL (μm) ±1σ SDg MTL (μm) ±1σ SDg

FS1605 22.20 -29.22 843 5.7 400 12.1 845 16.5 13142 0.99 2.07 10.1 122.8 7.5 20 12.87 0.25 2.00 14.38 0.28 1.35 63

GGO2 20.30 -28.36 846 21.3 2174 68.8 7023 20.0 13142 0.00 1.75 48.5 96.6 3.6 20 12.89 0.15 1.55 13.98 0.16 1.12 100

PRU 106 19.52 -28.48 783 19.2 1092 82.3 4672 21.7 13142 0.06 1.76 51.5 78.1 3.4 19 10.33 0.24 2.19 12.83 0.30 1.17 80

SA12-05 23.70 -29.15 1007 4.3 249 13.5 777 16.7 16348 0.46 2.02 11.9 83.9 6.7 20 13.37 0.51 2.10 14.59 0.56 1.44 17

SA12-06b 23.14 -29.54 1068 7.4 537 18.7 1362 15.6 16348 0.03 1.97 16.1 97.7 6.5 18 13.43 0.12 1.26 14.65 0.13 0.85 51

SA12-08 22.31 -29.52 1039 1.9 195 4.4 465 15.5 16348 1.00 1.53 3.9 102.1 8.7 20 13.32 0.30 1.85 14.68 0.33 0.96 39

SA12-09 22.12 -29.40 995 5.8 535 12.4 1150 15.4 16348 0.94 2.44 11.3 112.5 5.9 22 13.98 0.19 1.44 15.03 0.20 0.92 57

SA12-10 21.94 -29.36 1075 4.0 151 12.0 449 16.6 16438 0.22 1.77 9.2 89.0 10.0 12 13.98 0.54 1.61 15.03 0.58 1.09 9

SA12-11 21.94 -29.24 1057 2.2 122 9.4 526 16.1 16348 0.63 4.96 7.7 58.9 5.9 16 13.25 0.47 1.83 14.29 0.51 1.23 15

SA12-12 21.63 -29.30 981 10.3 930 29.1 2631 15.2 16348 0.13 2.38 25.1 85.4 3.8 22 13.84 0.14 1.23 14.86 0.15 0.91 78

SA12-13a 21.47 -29.28 962 9.1 787 25.3 2190 15.1 16348 0.08 2.44 22.3 85.7 4.4 20 14.29 0.12 1.17 15.23 0.13 0.77 89

SA12-14 21.15 -29.35 797 6.2 1013 15.5 2553 14.9 16348 0.00 2.87 13.9 93.4 5.5 20 13.28 0.19 1.33 14.52 0.21 0.94 81

SA12-15 20.98 -29.42 884 5.7 305 23.1 1237 16.6 16348 0.50 1.69 19.5 64.5 4.1 22 13.52 0.34 1.38 14.39 0.36 1.03 17

SA12-19b 19.53 -29.34 1034 7.7 994 16.9 2183 13.8 16086 0.10 1.63 17.2 97.0 4.6 21 13.55 0.15 1.38 14.74 0.16 0.89 126

Sample Nd
bNi

b #HCTi#XtlsNs
b

Measured c-axis correctionh
C. AFT Age 

(Ma)f ±1σ

 

Table 6-1: Results of apatite fission track analysis. a: ρi,s,d are track density of induced, spontaneous, dosimeter tracks. b: Ni,s,d are the number of induced, 
spontaneous and dosimeter tracks counted. c: p-value of the chi-sq age homogeneity test (Galbraith, 2010; see Appendix 3.1). d: Dpar measurements are 
etch pit diameters used as a proxy for the influence of chemical composition on track annealing (Donelick et al., 2005). Between three to five Dpar 
measurements where measured for each dated single grain. e: Uranium content estimated using EDM. f: Central AFT ages calculated with TrackKey (Dunkl, 
2002) with 1σ standard error. Ages were calculated using a ζ = 316.7 ± 10.3 (317.4 ± 11.1 for samples GGO2, FS1605 and PRU106) for a standard IRMM540 
standard glass g: SD is the standard deviation of measured horizontal confined track lengths. h: mean track length after individual track length 
measurements are corrected for their orientation to the c-axis after Ketcham et al., (2005). i: HCT = Horizontal Confined Track. Analysis details can be found 
in Appendix 1. For details on sample lithology see Appendix 4. 
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Figure 6-5: Plot of AFT and AHe age against elevation. White circles are Central AFT ages 

with uncertainty bars representing 1 standard error on the central age. Green circles are 

uncorrected mean AHe ages with uncertainty bars representing 1 standard deviation. The 
standard deviation is used in this instance to highlight the dispersion in single grain AHe 
ages. 

 

Figure 6-6: Plot of AFT age against mean track length. AFT ages are Central AFT ages with 

1 standard error. Plot (a) shows AFT age against MTLs uncorrected for their c-axis 
orientation; (b) shows AFT age against MTLs corrected for their c-axis orientation after 

Ketcham et al. (2005). For both plots MTLs have uncertainty bars with 1 standard error.
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Figure 6-7: Plot of AFT age (left hand side; lower x-axis) and mean track length (right hand 
side; upper x-axis) against mean track length standard deviation. AFT ages are Central AFT 

ages with 1 standard error. MTLs are uncorrected for their c-axis orientation; with 1 
standard error. 

6.3.2 Data quality assessment 

The 14 samples analysed across the study area provided a good number of grains 

suitable for AFT dating (n > 17 for 12 samples) each with a moderate to high 

track density. Outlier grains were once again removed following the protocol 

described in Appendix 3.1. Radial plots for all 14 samples can be found in 

Appendix 5.1 and highlight the dispersion on single grain ages which for all 

samples is less than 21%. 

Only 3 samples produced a P(χ2) value equal to or less than 0.05. These samples 

yielded 18 grains or above suitable for counting with the number of spontaneous 

tracks ranging from 537 to 2174. This means that there should be sufficient 

evidence for the P(χ2) value to be an indication of whether or not the spread in 

age is consistent with a single discrete population of single grain ages. The 

mixture model of Galbraith and Green, (1990) suggests that two of these 

samples potentially have two populations of ages (see Appendix 5.1). GGO2, 

although having an extremely low P(χ2), has a low dispersion and therefore does 
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not require two populations to explain the single grain age distribution. For the 

other two samples, two populations are possible but their existence is only 

weakly supported. The single grain ages from SA12-06B and SA12-14 could be 

separated into two populations with mean ages at 79.7 ± 9.2 and 117 ± 14 Ma 

and 76.9 ± 5.4 and 117.6 ± 9 Ma, respectively. As observed for samples in the 

Namaqualand region, single grain ages within a given sample can be assigned to 

either of these two populations. In this case, almost 50% of grains could belong 

to one population or the other. However, the large uncertainty on the 

percentage of grains that can be assigned to a population significantly weakens 

the justification for two discrete populations. The timing of the two populations 

seen in these two samples does agree with the central AFT ages from both this 

study area and in Namaqualand as well as the individual populations of single 

grain ages of Namaqualand samples with low P(χ2) values. It is important to note 

that the AFT age of any grain is a function of both the grain composition and the 

sample thermal history, and so the single grain ages can only be interpreted 

robustly with reference to the TLD measurements in conjunction with the 

compositional kinetic parameters for the sample. 

The quality of track length data is poorer than for samples from Namaqualand 

due to a lower number of horizontal confined tracks available. However, 9 

samples yielded 50 HCTs suitable for measurement. Even the sample with 9 HCTs 

(i.e. SA12-10) will provide some thermal history information for the sample. 

When MTLs are relatively short or TLDs are relatively broad, the shape of the 

TLD is either normally distributed around the mean value or is negatively skewed 

with a proportionally large number of longer tracks and tail of shorter tracks. 

The maximum Dpar value from the BMP region is 4.96 µm (SA12-11). This Dpar 

value is anomalous with the range of other Dpar values in the area (1.53 and 2.87 

µm) and has likely been over-etched during sample preparation. As a result of 

over-etching track lengths may overestimate the true track length. The range in 

Dpar values is larger than the NQH data set and may reflect a larger degree of 

heterogeneity in apatite composition. Despite this, there is no correlation 

between AFT age or MTL with Dpar suggesting it does not exert a dominant 

influence on the observed AFT data (see Chapter 4 – Figure 4.5). 
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Estimated uranium contents range from 3.9 to 51.5 ppm with most samples 

having U contents towards the moderate to low end of this range. There is a lack 

of correlation of uranium content with MTL and a weak negative correlation with 

age (see Chapter 4 – Figure 4.6). This apparent correlation is not sufficient to 

justify radiation enhanced annealing as a control over AFT ages (e.g. Hendriks 

and Redfield, 2005) as there is no complimentary influence on MTL; different 

thermal events may have been recorded by individual samples; and the largest U 

concentrations do not fall into the negative correlation created by the remaining 

data (see Chapter 4 – Figure 4.6). 

6.3.3 Summary of AFT Data 

The AFT ages presented here for the Bushmanland plateau region are 

predominantly Mid-Cretaceous (80 – 100 Ma) with two samples yielding Early 

Cenozoic ages and two samples Early Cretaceous ages. Moderate to long MTLs 

suggest cooling at these times was fairly rapid but moderate in some places. 

TLDs indicate that periods of rapid or slow cooling cannot be assigned solely to 

one time period. This data is in good agreement with data from the 

Namaqualand region that suggests major cooling of the crust occurred 

throughout the Cretaceous and possibly extending into the Early Tertiary. 

Overall, however, this dataset strongly supports a Mid-Cretaceous pulse of 

rejuvenated erosion of the South African plateau. This data also highlights 

complex spatial-temporal cooling across the study area with samples potentially 

recording both a rapid and protracted response to multiple cooling events. 

6.4 AHe Analysis 

6.4.1 Results 

Twelve samples were dated using AHe analysis (Table 6-2). The approach of 

obtaining multiple single grain analyses was employed here following Appendix 

3.2. However, due to sample quality three samples currently have less than 5 

single grains analysed. Three samples however yielded AHe ages of 14 or more 

grains. The range of mean AHe ages (uncorrected: 25.5 – 173.7 Ma; alpha-recoil 

corrected: 35 – 221.8 Ma) and the dispersion associated with these samples  
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4He eUa Lc Wc R*d Raw Age ±Est. UCf Cor. Ageg ±Est. UCf

(cc) (ng) (ppm) (ng) (ppm) (ng) (ppm) (ng) (ppm) (ppm)  (μm)  (μm)  (μm) Average St. Dev Average St. Dev

SA12-05 1 1.4E-10 0.02 2.69 1.2E-04 0.02 0.02 3.9 0.02 3.1 3.6 1 173.5 120.9 67.2 0.78 48.6 29.5 62.5 37.9 56.1 12.4 72.8 15.8

2 6.5E-10 0.06 11.35 4.5E-04 0.08 0.03 6.2 0.02 3.5 12.9 1 175.0 112.1 63.7 0.77 75.0 19.3 97.1 24.9

3 2.3E-08 0.05 2.02 3.5E-04 0.01 0.32 13.2 5.1 0 308.5 176.4 102.9 0.85 1458.3 163.1 1723.9 192.8

4 1.9E-10 0.13 26.05 9.6E-04 0.19 2.18 428.9 0.44 87.3 127.0 1 218.8 96.1 59.1 0.72 2.4 0.3 3.4 0.4

5 3.6E-10 0.01 2.44 1.0E-04 0.02 0.09 15.5 6.1 0 159.8 120.3 65.5 0.76 44.6 4.9 58.8 6.4

SA12-06B 3 8.9E-10 0.05 8.8 3.6E-04 0.06 0.03 5.4 0.02 3.5 10.1 2 232.8 98.2 60.8 0.76 128.0 15.1 168.2 19.9 93.1 20.4 122.0 26.5

7 7.9E-10 0.06 10.4 4.1E-04 0.08 0.05 8.4 0.03 5.8 12.5 2 174.4 111.3 63.3 0.77 95.0 10.6 123.6 13.8

8 1.1E-09 0.07 16.6 5.2E-04 0.12 0.05 12.3 19.6 1 145.0 108.7 59.3 0.75 110.7 15.0 146.9 19.9

9 6.9E-10 0.05 7.3 3.7E-04 0.05 0.05 7.3 9.1 1 151.8 135.2 70.2 0.79 88.9 12.0 112.6 15.2

10 0.05 12.9 3.7E-04 0.09 0.04 10.6 15.5 1 191.0 90.1 54.7 0.73

11 1.1E-09 0.07 8.5 4.8E-04 0.06 0.06 7.8 0.04 4.7 10.4 2 264.1 108.1 67.3 0.78 108.1 11.9 138.3 15.2

12 5.3E-10 0.05 7.5 3.5E-04 0.05 0.04 6.5 9.1 1 231.4 105.2 64.3 0.77 74.2 10.1 96.2 13.0

13 3.8E-10 0.03 5.9 2.5E-04 0.04 0.07 12.4 8.9 2 263.3 94.4 60.1 0.75 60.2 6.5 80.6 8.7

14 5.3E-10 0.04 8.9 3.0E-04 0.06 0.04 9.6 11.2 2 204.9 95.1 57.9 0.74 82.6 8.9 110.9 12.0

15 1.4E-09 0.11 23.1 7.7E-04 0.17 0.07 16.1 27.1 1 200.7 95.3 57.8 0.75 90.0 12.2 120.5 16.4

SA12-08 1 3.6E-10 0.05 18.3 3.7E-04 0.13 0.11 41.0 0.19 69.1 41.00 1 198.1 74.5 47.0 0.68 37.9 5.2 52.3 7.2 71.3 30.0 94.6 44.2

2 1.7E-10 0.01 4.9 8.8E-05 0.04 0.03 11.2 0.07 29.7 11.22 0 97.6 100.5 49.7 0.69 71.7 10.3 94.8 13.7

3 2.2E-10 0.01 2.3 7.8E-05 0.02 0.02 5.0 0.05 10.5 5.03 1 183.1 101.6 59.7 0.75 109.3 15.3 146.6 20.5

4 1.2E-09 0.08 31.4 5.9E-04 0.23 0.04 14.7 0.17 66.3 14.76 2 158.8 80.3 48.1 0.70 104.6 14.6 149.6 20.9

5a 2.0E-10 0.02 2.6 1.8E-04 0.02 0.05 4.9 4.91 1 195.1 139.1 60.7 0.80 45.4 4.9 54.0 5.8

5b 2.0E-10 0.02 4.3 1.4E-04 0.03 0.03 7.1 6.0 1 99.5 136.4 60.7 0.75 59.0 6.4 70.2 7.6

SA12-09 1 4.3E-10 0.02 5.9 4.3E-02 0.04 0.01 3.8 0.64 211.1 6.9 1 137.6 93.9 52.5 0.72 164.1 38.2 232.6 54.2 98.6 52.1 143.9 68.9

2 6.9E-10 0.03 7.8 5.7E-02 0.06 0.04 12.6 0.40 114.0 10.8 2 164.0 92.8 54.2 0.72 145.2 16.1 202.4 22.4

3 1.6E-10 0.01 6.8 4.9E-02 0.05 0.05 25.2 0.62 321.2 12.7 1 169.5 67.5 42.2 0.63 51.4 5.7 82.9 9.3

4 8.2E-11 0.01 2.1 1.5E-02 0.01 0.02 6.2 3.5 2 192.7 80.9 50.2 0.67 60.1 6.7 89.2 10.0

5 1.1E-10 0.01 5.6 4.1E-02 0.04 0.01 7.1 7.4 1 144.3 68.8 41.7 0.64 72.1 10.8 112.1 16.8

SA12-11 1 2.1E-10 0.01 2.2 7.7E-05 0.02 0.07 13.6 0.23 46.1 5.4 0 204.2 97.6 59.1 0.73 60.6 6.8 82.9 9.3 36.6 14.6 50.3 20.7

2 1.0E-10 0.01 4.9 9.0E-05 0.04 0.06 24.8 0.12 48.7 10.8 0 115.2 93.2 49.8 0.68 30.7 3.5 44.9 5.0

3 9.4E-11 0.01 2.2 5.2E-05 0.02 0.05 15.0 0.13 40.1 5.8 0 115.6 105.1 54.2 0.71 39.2 4.4 55.4 6.2

4 2.1E-10 0.02 5.2 1.8E-04 0.04 0.13 28.1 0.24 51.0 11.8 0 155.7 109.7 60.8 0.74 29.8 3.2 40.1 4.4

5 3.5E-10 0.04 3.1 3.0E-04 0.02 0.34 25.6 0.65 48.9 9.2 1 202.6 161.9 86.7 0.82 22.9 2.5 28.0 3.1

SA12-13A 2 1.2E-09 0.18 13.7 1.3E-03 0.10 0.01 0.9 0.24 17.8 14.0 2 250.6 145.4 84.5 0.83 51.8 8.1 62.2 9.8 76.7 18.4 98.4 23.8

4 1.4E-09 0.11 19.6 8.2E-04 0.14 0.13 22.0 24.9 2 238.7 98.3 61.1 0.76 77.2 10.4 101.8 13.8

5 1.0E-09 0.12 27.5 8.8E-04 0.20 0.22 48.9 39.2 1 169.0 101.9 58.7 0.74 48.0 5.2 64.6 6.9

8 1.4E-09 0.12 18.1 8.4E-04 0.13 0.12 18.3 22.6 2 281.6 95.1 61.0 0.76 81.2 11.0 107.1 14.5

147Sm238U
Sample Grain #

235U 232Th Cor. Age (Ma)
Ft

e

(Ma) (Ma)
Tb Raw Age (Ma)

 

Table 6-2: Results of apatite (U-Th-Sm)/He analysis. a: eU (effective uranium) is calculated as eUppm = [Uppm]+(0.235*[Thppm]). b: T = Number of terminations 
identified on crystal. c: L & W = Length and Width of crystal or crystal fragment. d: R*=spherical equivalent radius calculated as R*=(3*(RL))/(2*(R+L)) where 
R = W/2. e: correction factor after Farley et al., (1996), assuming homogeneous distribution U and Th. f: Estimate Uncertainty is equal to 1σ analytical 
uncertainty, which include error propagated from U, Th, Sm and He measurement uncertainties, plus an additional 10% which is the standard deviation 
(reproducibility) of repeat analysis of Durango apatite standards. g: Corrected AHe age = Raw AHe age/Ft). Analysis details can be found in appendix 1. 
Shaded data has been excluded from mean value calculations and further interpretation (see Appendix 3). For details on sample lithology see Appendix 4. 
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4He eUa Lc Wc R*d Raw Age ±Est. UCf Cor. Ageg ±Est. UCf

(cc) (ng) (ppm) (ng) (ppm) (ng) (ppm) (ng) (ppm) (ppm)  (μm)  (μm)  (μm) Average St. Dev Average St. Dev

9 1.6E-09 0.11 12.8 8.2E-04 0.09 0.15 16.7 0.13 14.4 16.8 2 316.1 105.6 67.9 0.78 89.6 9.7 114.8 12.5

10 1.2E-09 0.09 18.0 6.5E-04 0.13 0.08 16.6 22.1 1 218.3 94.8 58.4 0.75 89.4 9.6 119.4 12.8

11 8.2E-10 0.07 16.9 5.2E-04 0.12 0.07 17.7 0.07 15.9 21.2 2 200.4 91.6 55.9 0.74 74.5 8.4 101.2 11.4

12 2.0E-09 0.17 17.0 1.2E-03 0.12 0.03 3.1 0.14 13.8 17.8 1 193.3 144.4 78.8 0.82 89.4 12.0 109.1 14.7

14 3.9E-09 0.27 36.2 2.0E-03 0.26 0.14 18.5 0.18 24.4 40.8 1 203.8 121.0 70.0 0.79 104.2 11.1 131.4 14.0

15 1.0E-09 0.09 19.8 6.3E-04 0.14 0.08 19.3 24.5 2 182.5 97.6 57.7 0.74 79.2 10.7 106.3 14.4

16 1.7E-09 0.18 21.6 1.3E-03 0.16 0.16 19.3 26.3 1 220.2 124.4 72.7 0.80 60.9 8.2 76.3 10.3

17 6.1E-10 0.12 13.1 8.9E-04 0.09 0.01 1.0 13.4 1 187.0 141.1 76.8 0.82 40.4 5.9 49.6 7.3

20 3.2E-09 0.22 18.4 1.6E-03 0.13 0.26 22.3 0.22 18.5 23.8 2 311.3 122.9 77.0 0.81 93.7 10.1 116.1 12.5

21 1.7E-09 0.16 13.2 1.1E-03 0.10 0.05 4.0 0.15 12.5 14.2 1 304.3 124.4 77.5 0.81 83.3 9.1 102.2 11.1

24 8.1E-10 0.06 8.8 4.4E-04 0.06 0.06 8.6 0.08 11.5 10.9 2 220.8 111.5 66.8 0.78 88.4 10.1 113.4 12.9

SA12-14 2 2.0E-09 0.18 17.8 1.3E-03 0.13 0.13 12.8 20.9 1 224.9 133.6 77.2 0.81 77.9 8.4 96.0 10.3 83.7 13.2 101.0 16.1

3 4.0E-09 0.36 8.9 2.6E-03 0.06 0.11 2.8 0.73 18.3 9.7 1 260.3 247.4 125.8 0.89 84.7 9.1 95.6 10.3

6 3.1E-09 0.23 16.7 1.7E-03 0.12 0.14 10.3 0.40 28.5 19.2 2 357.3 124.4 79.5 0.82 94.4 10.3 115.6 12.6

7 2.0E-09 0.19 12.6 1.4E-03 0.09 0.13 8.8 0.26 17.4 14.8 2 224.1 163.8 90.0 0.84 74.4 8.1 88.8 9.6

8 2.4E-09 0.18 11.7 1.3E-03 0.08 0.08 5.5 0.23 15.0 13.1 1 254.7 154.3 88.8 0.84 99.3 10.6 118.6 12.7

12 2.5E-08 0.78 15.8 5.7E-03 0.11 0.54 10.8 1.56 31.5 18.4 1 197.6 316.0 131.7 0.89 222.2 23.7 249.8 26.7

13 1.2E-09 0.18 14.3 1.3E-03 0.10 1.67 135.2 46.2 1 186.1 162.5 84.8 0.81 16.8 1.8 20.7 2.3

18 2.7E-09 0.23 14.2 1.7E-03 0.10 0.14 8.9 0.45 28.1 16.4 2 271.1 153.2 89.6 0.84 81.7 8.9 97.6 10.6

19 1.5E-09 0.11 11.3 8.1E-04 0.08 0.21 21.0 0.27 27.6 16.4 2 214.8 135.2 77.1 0.80 74.3 7.9 92.4 9.9

21 8.8E-10 0.11 9.8 8.2E-04 0.07 0.07 5.8 0.21 18.0 11.3 2 282.8 126.8 77.7 0.81 55.4 6.0 68.1 7.3

22 6.2E-10 0.04 4.4 3.0E-04 0.03 0.03 2.7 5.0 2 179.1 146.0 77.8 0.81 105.2 14.3 129.4 17.6

23 3.3E-09 0.27 20.2 1.9E-03 0.15 0.16 12.3 23.2 1 270.4 139.2 83.0 0.82 87.5 11.9 106.0 14.5

26 5.1E-10 0.05 5.2 3.7E-04 0.04 0.03 2.6 5.9 2 245.3 125.8 75.1 0.81 73.1 10.0 90.6 12.4

27 0.15 17.9 1.1E-03 0.13 0.04 5.5 19.3 2 203.7 126.1 72.2 0.80

30 3.4E-09 0.33 12.8 2.4E-03 0.09 0.11 4.0 13.8 2 301.6 185.2 106.3 0.86 78.6 11.0 90.8 12.7

34 6.3E-09 0.45 36.8 3.3E-03 0.27 0.25 20.0 41.8 2 218.6 149.7 83.6 0.83 100.8 13.8 121.9 16.7

37 1.5E-09 0.13 11.1 9.6E-04 0.08 0.06 4.9 12.3 2 228.2 143.8 82.0 0.82 84.0 11.6 102.0 14.1

SA12-15 1 1.7E-09 0.07 6.5 5.0E-04 0.05 0.19 18.3 10.9 1 165.6 159.8 47.0 0.81 123.6 17.2 152.6 21.2 74.7 69.3 93.3 83.8

2 3.8E-09 1.07 176.0 7.7E-03 1.28 0.61 100.5 200.9 0 290.7 91.1 49.7 0.75 25.7 3.5 34.0 4.7

SA12-19B 1 2.4E-09 0.17 12.4 1.2E-03 0.09 0.06 4.0 13.4 2 295.9 136.6 83.2 0.83 104.8 12.4 126.7 15.0 106.3 23.5 133.7 26.3

3 1.9E-09 0.10 8.5 7.1E-04 0.06 0.03 2.7 9.2 2 237.4 139.2 80.7 0.82 144.7 19.2 176.0 23.3

4 9.4E-10 0.09 20.1 6.2E-04 0.15 0.04 8.7 22.3 2 156.3 104.3 58.7 0.75 81.2 10.1 107.7 13.5

5 2.0E-09 0.17 19.3 1.2E-03 0.14 0.04 4.2 20.4 1 214.7 126.0 73.1 0.80 95.6 12.4 118.8 15.4

6 3.0E-09 0.22 49.5 1.6E-03 0.36 0.06 14.3 53.2 2 171.7 101.5 58.8 0.76 105.4 12.4 139.4 16.5

Cor. Age (Ma)
Ft

e

(Ma) (Ma)
Tb Raw Age (Ma)147Sm238U

Sample Grain #
235U 232Th

 

Table 6-2: Continued. 
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4He eUa Lc Wc R*d Raw Age ±Est. UCf Cor. Ageg ±Est. UCf

(cc) (ng) (ppm) (ng) (ppm) (ng) (ppm) (ng) (ppm) (ppm)  (μm)  (μm)  (μm) Average St. Dev Average St. Dev

GGO2 5 1.2E-08 0.77 101.0 5.6E-03 0.73 0.70 91.4 123.2 1 149.9 142.6 72.5 0.80 101.7 11.2 127.6 14.0 87.8 16.8 111.2 22.2

6 4.6E-09 1.08 91.1 7.9E-03 0.66 1.00 83.6 111.4 1 153.6 176.3 84.0 0.82 28.3 3.1 34.3 3.8

8 2.3E-08 1.52 323.4 1.1E-02 2.35 1.30 273.0 389.9 1 190.9 99.5 59.2 0.75 102.4 11.2 136.1 15.0

9 2.0E-08 0.14 18.5 1.0E-03 0.13 0.66 84.6 38.5 2 205.0 122.7 70.8 0.78 528.9 60.1 679.0 77.2

11 2.2E-08 1.30 236.4 9.4E-03 1.71 2.69 487.0 352.6 2 182.8 109.7 63.3 0.76 91.7 10.2 120.5 13.5

12 2.2E-08 1.36 161.8 9.8E-03 1.17 0.08 9.5 165.2 2 264.5 112.7 69.7 0.80 128.2 14.3 160.9 18.0

13 4.4E-09 2.28 376.9 1.7E-02 2.73 2.32 381.7 469.4 1 158.8 123.5 66.7 0.78 12.9 1.4 16.6 1.8

14 7.7E-09 0.94 183.3 6.8E-03 1.33 0.11 21.0 189.6 1 170.5 110.0 62.4 0.77 65.3 7.3 84.6 9.4

15 0.00 0.5 2.6E-05 0.00 0.02 2.0 0.9 1 156.1 140.4 72.6 0.79

16 2.9E-08 3.08 268.6 2.2E-02 1.95 2.75 238.1 326.5 1 255.5 134.1 79.7 0.82 64.1 7.0 78.6 8.6

17 1.5E-08 1.23 199.3 8.9E-03 1.45 0.26 41.0 210.4 1 141.0 132.5 67.6 0.79 95.3 10.5 120.9 13.3

18 0.00 0.3 1.3E-05 0.00 0.01 1.2 0.5 1 192.4 120.1 68.6 0.77

19 2.9E-08 3.19 319.5 2.3E-02 2.32 4.58 455.2 428.8 1 238.3 129.6 76.4 0.80 56.2 6.2 69.8 7.7

20 2.9E-08 2.88 169.6 2.1E-02 1.23 1.47 85.9 191.0 2 316.4 146.8 89.4 0.84 73.9 8.1 88.2 9.7

21 1.1E-08 0.69 110.0 5.0E-03 0.80 0.70 110.6 136.7 1 124.3 142.3 67.9 0.78 103.9 11.4 132.8 14.6

22 2.9E-08 2.58 235.4 1.9E-02 1.71 0.91 82.4 256.4 1 234.5 136.9 79.5 0.82 85.3 9.4 104.2 11.4

23 1.9E-08 1.43 244.5 1.0E-02 1.77 2.20 373.5 334.0 1 109.8 146.0 65.8 0.77 78.6 8.7 101.7 11.3

24 1.25 150.1 9.1E-03 1.09 2.30 274.2 215.6 1 231.3 120.1 71.5 0.79

25 1.3E-08 1.02 134.9 7.4E-03 0.98 0.78 102.3 159.9 1 156.4 139.2 72.2 0.80 86.8 9.5 108.9 11.9

26 2.9E-08 2.28 264.0 1.7E-02 1.91 2.12 243.5 323.2 1 204.9 129.9 74.0 0.80 85.0 9.4 106.1 11.7

27 3.4E-09 0.20 28.8 1.4E-03 0.21 0.57 81.8 48.2 1 139.7 140.4 70.1 0.78 84.2 9.5 107.9 12.1

28 2.3E-08 1.54 234.7 1.1E-02 1.70 2.03 307.9 308.7 1 157.7 129.1 68.7 0.78 92.0 10.2 117.5 13.0

29 8.9E-09 0.73 77.9 5.3E-03 0.57 0.25 26.0 84.6 1 201.3 136.9 76.6 0.81 91.9 10.1 113.1 12.4

30 1.7E-08 1.14 213.3 8.3E-03 1.55 1.24 230.0 268.9 1 127.4 129.7 64.5 0.77 94.6 10.4 122.8 13.5

FS1605 1 1.7E-09 0.03 4.3 2.0E-04 0.03 0.05 8.0 6.2 1 143.6 134.2 68.6 0.78 333.2 37.7 427.1 48.3 173.7 95.9 221.8 120.9

2 4.7E-10 0.05 5.1 3.3E-04 0.04 0.04 4.3 6.2 2 238.3 121.7 72.7 0.80 70.8 7.9 88.7 9.8

3 2.9E-09 0.08 9.4 5.6E-04 0.07 0.07 8.2 11.4 2 202.0 128.3 73.0 0.80 248.7 27.4 311.2 34.3

5 1.3E-09 0.06 9.4 4.3E-04 0.07 0.02 3.0 10.1 1 142.5 133.5 68.2 0.79 171.1 22.1 216.7 28.1

7 7.7E-10 0.03 4.9 2.3E-04 0.04 0.01 1.2 5.2 1 170.6 122.0 67.4 0.79 188.6 45.7 239.4 58.1

9 5.1E-10 0.03 4.7 1.9E-04 0.03 0.02 3.2 5.5 0 132.5 128.1 64.8 0.77 139.9 17.8 180.5 23.0

10 2.0E-10 0.02 6.0 1.4E-04 0.04 0.03 7.9 7.8 0 167.2 89.2 52.8 0.72 63.7 7.3 88.7 10.1

PRU106 4 9.8E-09 0.74 62.0 3.3E-01 0.45 0.33 27.7 68.9 1 153.6 176.3 84.0 0.83 97.7 10.7 117.9 12.9 89.7 11.2 111.5 9.1

5 4.2E-09 0.33 49.1 3.9E-01 0.36 0.39 57.6 63.0 1 205.2 114.1 67.0 0.78 81.8 9.0 105.0 11.6

147Sm238U
Sample Grain #

235U 232Th Cor. Age (Ma)
Ft

e

(Ma) (Ma)
Tb Raw Age (Ma)
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(c. 19% and 55%) is large. That being said, the mean age does provide a useful 

frame of reference to compare against AFT ages and the wider geological 

context. The oldest single grain age of 333.2 ± 37.7 Ma is obtained from sample 

FS1605 while the youngest of 16.6 ± 1.8 Ma is from SA12-11. AHe ages are 

subject to extreme variation due to their eU content, grain size and crystal 

fragmentation. Therefore the AHe ages alone cannot be interpreted based only 

on the observed ages (see Chapter 4 – Section 4.4). 

6.4.2 Data quality assessment 

67% of AFT ages are older than their corresponding mean AHe ages and are 

within error of all mean AHe ages (Fig. 6-5). However, a significant number of 

single grain analyses are older than their respective fission track age. The most 

extreme sample is FS1605 where the oldest single grain age is more than twice 

the AFT age. Although a major discrepancy exists here between the AHe and AFT 

data, this old age cannot be easily discarded. There were no analytical problems 

during the analysis of these samples; the sample itself was selected and 

screened carefully for inclusions; and the dispersion of the remaining single grain 

analysis in the sample data set are not so reproducible that this old age can be 

excluded statistically. There is a positive correlation between age and grain 

radius and none with eU. The eU values are also quite low (< 12 ppm) and this is 

validated by an average U content of 10 ppm from AFT analysis. It should be 

noted that this sample has a relatively short track length and broad TLD. These 

old ages may have been caused by long residence times at relatively hot 

temperatures combined with slow cooling or partial resetting of helium ages 

following an initial cooling event. In short, although the data look incompatible 

with AFT data they should not be dismissed immediately. 

In general, samples do not show any strong positive age-R* relationships (Fig. 6-

8). Considering the discussion in Chapter 4 and the data presented in Chapter 5, 

caution is required when looking for correlations in data sets with relatively few 

data points. As such only SA12-06B; SA12-13A; SA12-14 and GGO2 can be 

interrogated properly. Only SA12-06B shows any correlation between AHe age 

and R*, and this is a negative one. Correlations are also absent in plots of eU  
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Figure 6-8: Plot of AHe age against spherical equivalent grain radius (R*). AHe ages are mean AHe ages uncorrected for alpha-ejection. Uncertainties on 

AHe ages are 1 analytical uncertainty (typically 1-3%) + 1 standard deviation of Durango standards (10%). R* is calculated using the formula 
(3*(RL))/(2*(R+L)) where R = the measured radius of the apatite crystal and L = measured length of the apatite crystal. 



Chapter 6: Intracontinental deformation of the South African plateau 

210 

 

Figure 6-9: Plot of AHe age against effective uranium (eU). AHe ages are mean AHe ages uncorrected for alpha-ejection. Uncertainties on AHe ages are 1 

analytical uncertainty (typically 1-3%) + 1 standard deviation of Durango standards (10%). eU is calculated using the formula [Uppm]+(0.235*[Thppm]) and is 
used as a proxy for accumulated radiation damage. 
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against AHe age (Fig. 6-9). This is not to suggest that grain size and radiation 

damage are not having an effect on measured AHe age but instead that there is 

no clear signal that one is dominating over the other.  

6.4.3 Summary of AHe Data 

The AHe ages presented here range between Mid Jurassic to Late Oligocene. This 

does not dictate that major cooling occurred during either of these time periods 

but instead highlights the complex nature of AHe dating in geologically old 

regions.  Ultimately, AHe ages alone only provide an estimate on the timing of 

cooling. In order to understand the thermal history in a more quantitative 

manner, thermal histories consistent with the measured ages need to be derived 

while taking into account the effects of radiation damage and grain size. 

Quantitative thermal history modelling including these data is the focus of the 

following section. Qualitatively, the helium data appears consistent with major 

cooling occurring across southwest Africa during the Cretaceous. However, there 

appears to be some evidence that Cenozoic cooling may be expressed locally. 

These data further highlight the problems that arise with analysing only a small 

number of grains (i.e. <10). If dispersion is high within a sample, then only a 

large number of single grain analyses will confirm this. Moreover, if samples are 

dispersed and an outlier still exists then a large number of single grain analysis 

will be required to confidently and statistically exclude this outlier from the 

data. Multiple single grain analysis not only provides more information on the 

samples AHe age but also on the influence of radiation damage and grain size on 

that age. 

6.5 Thermal History Modelling 

6.5.1 Approach 

The modelling approach adopted here is described in detail in Chapter 4 - 

Section 4.5. Two of the samples collected were clasts from within the Dwyka 

glacial tillite. SA12-05 was a granite dropstone and SA12-06B was a gneissic 

boulder within a fine grained, weathered, cream coloured matrix. As such these 

samples, when modelled are assigned a specific initial constraint of 300±10 Ma, 



Chapter 6: Intracontinental deformation of the South African plateau 

212 

20±10°C (stratigraphic age consistent with the Dwyka formation). As described 

for samples from the NQH study area, basement rocks were assigned an initial 

constraint of 350±10 Ma and 100±100°C to allow freedom for the initial model 

conditions. For many samples, maximum palaeo-temperatures are significantly 

elevated so that the AFT and AHe thermochronometers were almost completely 

reset and this is reflected in samples which have long MTLs and narrow TLDs. 

There are, however, samples with low MTLs and high MTL-SD. These samples 

possess a significant number of partially annealed tracks arising from partial 

resetting of the AFT system at palaeo-temperatures <110±10°C. Therefore, 

different initial constraints will be tested to allow for the preservation and 

annealing of very old tracks. For all samples the present-day temperature value 

is assumed to be 20±10°C. The lack of any further independent geological 

stratigraphic evidence prevents the use of additional constraints being placed on 

the thermal histories. Where sporadic Cretaceous and Cenozoic geological 

features are present, the influence of speculative constraints on the thermal 

history can be tested. In the same manner as described in Chapter 5 – Section 

5.5.1, thermal history profiles are modelled for samples which yield similar age 

and track length parameters and thermal histories and do not appear to be 

separated by major structures. This approach is employed to increase the 

amount of information used to generate thermal history models which may 

satisfy the observed data of many samples. 

6.5.2 Modelling results 

Thermal histories were obtained for all 14 outcrop samples along the BMP 

transect. While many samples across the NQH study area could be grouped and 

discussed together based on their common thermal history styles, but for 

samples from the BMP transect, this is more difficult. Heterogeneous thermal 

histories across the study area may arise because of a combination of factors 

such as the presence of known and unknown structures; complex and spatially 

variable surfaces processes caused by migration of the Orange River which 

dissects the study area; or local thermal perturbations by intrusive bodies 

sufficiently close to samples so that they are thermally reset. Although the style 

of cooling may be variable across the BMP study area the timing of major cooling 
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events is consistent with what has been recorded in the NQH. Each of the major 

cooling intervals: (i) 150 – 130 Ma; (ii) 110 – 90 Ma and (iii) 80 – 60 Ma, are also 

recorded here to some extent. 

6.5.2.1 Early Cretaceous cooling (150 – 130 Ma) 

At the eastern boundary of the BMP study area, near the town of Douglas, two 

samples were collected from granitic gneiss boulder clasts within the Dwyka 

group glacial tillite. These models are constrained to be at the surface in the 

Permian. In both thermal histories the samples are heated to temperatures of c. 

110 – 115°C by the Late Jurassic – Early Cretaceous before cooling initiates. 

SA12-05 cools slowly at a rate of c. 0.78°C/Myr until present day. However, 

SA12-06B cools more rapidly at c. 130 Ma until c. 95 Ma at a rate of c. 

1.86°C/Myr (Fig. 6-10a). Following this period of enhanced cooling the rate drops 

to 0.21°C/Myr until present day. The style of cooling history shown by SA12-06B 

is mimicked by SA12-09 (see Appendix 7). Further west and northwest SA12-14 

and GGO2 show the onset of cooling at this time with an initial rapid pulse of 

cooling at rates of c. 1 to 1.6°C/Myr followed by slower cooling rates of c. 0.2 to 

0.6°C/Myr (Fig. 6-10b). The initial pulse of cooling is replaced by a slower 

cooling phase by c. 100 – 80 Ma, depending on which radiation damage model is 

used. The data fit for Early Cretaceous cooling models is generally good, 

particularly for the AFT data. AHe data is more complex but shows a good data 

fit when the resampled observed age is compared with the predicted age rather 

than the actual measured age. 

6.5.2.2 Mid-Cretaceous cooling (110 – 90 Ma) 

Almost half of the samples from the BMP transect record the onset of cooling 

during the Mid-Cretaceous from c. 110 to 90 Ma. Four samples are characterised 

by rapid cooling at this time at rates of c. 1.5 to 2.5°C/Myr. SA12-13A shows the 

most rapid cooling at this time with cooling rates at almost 5°C/Myr for a period 

of 20 Myr (Fig. 6-11a). SA12-08 however is slightly more ambiguous (Fig. 6-11b). 

Without including radiation damage effects, the model shows relatively slow 

cooling of c. 0.74°C/Myr with a timing of onset difficult to pin down but appears 

c. 20 Myr earlier than the time interval discussed here. Incorporating radiation 
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Figure 6-10: Thermal history models that represent samples which cooled (a) rapidly and (b) 
slowly, over the interval 150 – 130 Ma. The expected model is represented by a dashed black 
line with 95% credible intervals (solid black lines). The maximum likelihood model is also 
presented (yellow line). The black box represents the initial constraint on the model. The red 
box represents general ranges for the prior (see Chapter 4 – Section 4.5.1). The colour scale 
represents the probability distribution of the thermal history. The blue histograms represent 
the measured TLD; red line represents the predicted TLD from the expected model with 95% 
credible intervals (grey curves). The blue circles illustrate the relationship between the 
observed and predicted AHe age. The dark grey circle represents the mean measured AHe 
age (uncorrected for alpha-ejection). The light grey circle represents the 1σ standard 
deviation on the mean AHe age. 

damage into the models steepens the cooling profile and brings the onset of 

cooling forward to c. 100 Ma. The episode of cooling is best constrained as the 

sample passes through temperatures cooler than 80 – 90°C. The model is poorly 

constrained before this time and no comment can be made as to whether the 

sample was at sufficiently elevated temperatures to reset the AFT data. This is 

not likely to be the case as the TLDs show a distinct tail of old, partially 

annealed, HCT lengths. The track length data is fitted reasonably well in all 
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Figure 6-11: Thermal history models that represent samples which cooled (a) rapidly and (b) 
slowly, over the interval 110 – 90 Ma. The expected model is represented by a dashed black 
line with 95% credible intervals (solid black lines). The maximum likelihood model is also 
presented (yellow line). The black box represents the initial constraint on the model. The red 
box represents general ranges for the prior (see Chapter 4 – Section 4.5.1). The colour scale 
represents the probability distribution of the thermal history. The blue histograms represent 
the measured TLD; red line represents the predicted TLD from the expected model with 95% 
credible intervals (grey curves). The blue circles illustrate the relationship between the 
observed and predicted AHe age. The dark grey circle represents the mean measured AHe 
age (uncorrected for alpha-ejection). The light grey circle represents the 1σ standard 
deviation on the mean AHe age. 

models however the AFT age and AHe ages are fitted less well. The AHe ages are 

fitted best when radiation damage is incorporated but the AFT data is fitted 

better without including the effects of radiation damage. For all other samples 

the data fit is generally good. Maximum likelihood models either followed the 

general shape of the expected model or minor perturbations are within the 95% 

credible intervals of the expected models. SA12-08 is again the exception to this 

as the maximum likelihood model when the RDAAM radiation damage model  
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Figure 6-12: Thermal history models that represent samples with poorly constrained or ambiguous cooling histories. The expected model is represented by 
a dashed black line with 95% credible intervals (solid black lines). The maximum likelihood model is also presented (yellow line). The black box represents 
the initial constraint on the model. The red box represents general ranges for the prior (see Chapter 4 – Section 4.5.1). The colour scale represents the 
probability distribution of the thermal history. The blue histograms represent the measured TLD; red line represents the predicted TLD from the expected 
model with 95% credible intervals (grey curves). The blue circles illustrate the relationship between the observed and predicted AHe age. The dark grey 
circle represents the mean measured AHe age (uncorrected for alpha-ejection). The light grey circle represents the 1σ standard deviation on the mean AHe 
age. 
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after Flowers et al. (2009) is incorporated suggests two enhanced cooling 

episodes; one at c. 150 Ma and a second at 80 Ma. While the maximum likelihood 

model will not be taken as the preferred model for further discussion it is 

important to appreciate the possible complexity that a model may exhibit 

despite having no independent geological constraints to validate it.  

Slower cooling initiating at this time is recorded by SA12-10 and for SA12-15 

when no radiation damage effects are considered (Fig. 6-12). However, for both 

of these samples limited track length data was obtained (9 and 17, respectively) 

and for SA12-10, limited single grain FT ages were obtained (12 crystals). SA12-

15 is supplemented with two AHe ages although these are wildly incoherent 

spanning a range of 100 Ma. However, inverting SA12-15 with these irregular AHe 

ages and including either radiation damage model changes the implied thermal 

history dramatically. Instead of protracted cooling from c. 110 Ma the thermal 

history becomes rapidly cooled at c. 70 Ma. In short, the data for both of these 

samples is relatively poor and the models are poorly constrained. The dominant 

cooling style over 110 – 90 Ma at this time is still suggested to be fairly rapid. 

6.5.2.3 Late Cretaceous cooling (80 – 60 Ma) 

Much like its presence in the NQH, a Late Cretaceous cooling episode is poorly 

recorded in samples from the BMP transect. SA12-11, however, regardless of how 

radiation damage is treated in the modelling approach, consistently shows 

cooling beginning at 75 Ma at quite a fast rate of 1.4°C/Myr to the present day 

(Fig. 6-13). On one hand the reliability of the model is questioned by the quality 

of the SA12-11 AFT dataset which consists of only 15 HCTs and 16 single grain 

ages and therefore leaves the TLD poorly defined. On the other hand a young 

cooling episode is supported by young AHe single grain ages from SA12-11 

ranging from c. 16 – 38 Ma. Both the FT age and AHe ages are reproduced fairly 

well by the model. The only other occurrence of an 80 – 60 Ma cooling episode is 

in a thermal history model for SA12-15 using the radiation damage model of 

Flowers et al. (2009) where cooling initiates at 70 Ma and is more rapid than 

observed for SA12-11 (Fig. 6-12). However, as discussed above this sample also 

has limited track length information and the AHe ages available add additional  
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Figure 6-13: Thermal history models that represent samples which cooled during the interval 80 – 60 Ma. The expected model is represented by a dashed 
line with 95% credible intervals (solid black lines). The maximum likelihood model is also presented (yellow line). The black box represents the initial 
constraint on the model. The red box represents general ranges for the prior (see Chapter 4 – Section 4.5.1). The colour scale represents the probability 
distribution of the thermal history. The blue histograms represent the measured TLD; red line represents the predicted TLD from the expected model with 
95% credible intervals (grey curves). The blue circles illustrate the relationship between the observed and predicted AHe age. The dark grey circle 
represents the mean measured AHe age (uncorrected for alpha-ejection). The light grey circle represents the 1σ standard deviation on the mean AHe age.
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complexity to the dataset rather than help to resolve it. As such, the true nature 

of Late Cretaceous – Early Cenozoic cooling remains uncertain. 

6.5.3 Alternative scenarios 

6.5.3.1 Profile modelling 

SA12-05 and SA12-06B, located near to the town of Douglas, are separated by a 

distance of c. 70 km and elevation range of only 60m. The surrounding region is 

relatively free of major structures. More importantly, the samples share common 

thermal history features, namely near surface temperatures at c. 300 Ma, 

heating until c. 150 – 130 Ma before the onset of protracted cooling. These 

samples are treated as a profile and modelled together to investigate whether a 

common thermal history can satisfy both data sets (Fig. 6-14). The composite 

thermal history is similar to the individual model for SA12-06B, however, the 

model still fits the data for SA12-05 well. The data fit is poorest for the AHe 

data from SA12-06B but predicted AHe ages still overlap with the resampled 

observed AHe age. The thermal history suggests cooling at a rate of c. 2.4°C/Myr 

beginning in the Early Cretaceous before gradually slowing down from c. 105 – 70 

Ma to a rate of 0.4°C/Myr until the present day. 

On the western side of the transect SA12-15 is less than 10km NW from sample S-

20 obtained by Brown (1992). Moreover, both of these samples lie to the west of 

the Hartbees River Thrust fault and may, together, represent the exhumation of 

a block of crust (BMP West profile; Fig. 6-15). An additional consideration is how 

to deal with S-20 being a sample from the Permian Ecca Group and SA12-15 

being from the NMP basement. Individual temperature time constraints are 

specified for each sample which allows them to cool independently during the 

early part of the thermal history (S-20constraint = 280±10Ma, 20±10°C; SA12-

15constraint = 350±10Ma, 100±100°C). Care must be taken with modelling this data 

because sample S-20 is characterised by a broad TLD with a significant number 

of short track lengths. As such a variety of thermal histories, some simple, some 

complex, may satisfy the observed data. The approach adopted here of 

modelling multiple samples as one, should help to resolve the uncertainties in 

such samples. Unfortunately in this case, sample SA12-15 contains limited AFT  
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Figure 6-14: Bushmanland East profile (SA12-05 and SA12-06B) thermal history models. Expected model of the top and bottom sample is represented by a 
thick blue and red line, respectively, with 95% credible intervals (cyan and magenta lines). Black box represents initial constraint on the model. Red box 
represents general ranges for prior (see Chapter 4 – Section 4.5.1). Yellow square/bar = Measured/predicted Dpar; blue circle/light blue bar = 
Measured/predicted AFT age; red diamond/magenta bar = measured/predicted MTL; green triangle/light green bar/dark green bar = measured/resampled 
observed/predicted AHe age. Histograms represent the measured TLD; red line represents the predicted TLD with 95% credible intervals (grey curves).



Chapter 6: Intracontinental deformation of the South African plateau 

221 

 

Figure 6-15: Bushmanland West profile (S-20 and SA12-15) thermal history models. Expected 
model of the top and bottom sample is represented by a thick blue and red line, respectively, with 
95% credible intervals (cyan and magenta lines). Black box represents constraints on the model. 
Red box represents general ranges for prior (see Chapter 4 – Section 4.5.1). Yellow square/bar = 
Measured/predicted Dpar; blue circle/light blue bar = Measured/predicted AFT age; red 
diamond/magenta bar = measured/predicted MTL; green triangle/light green bar/dark green bar = 
measured/resampled observed/predicted AHe age. Histograms represent the measured TLD; red 
line represents the predicted TLD with 95% credible intervals (grey curves). Res. UC. = Resampled 
uncertainty model. 

single grain ages and HCT lengths as well as only two, highly dispersed AHe ages. 

Including all AFT and AHe data available for both of these samples produces models 

which reach temperatures greater than 120°C during the Early Cretaceous. 

Modelling the BMP West profile using the radiation damage model of Flowers et al. 

(2009) and modelling without radiation damage predicts cooling to have initiated at c. 

100 Ma with the former model cooling faster than the latter. The thermal history 
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obtained using radiation damage after Gautheron et al. (2009) implies that rapid 

cooling initiates closer to 80 Ma. The previous discussion regarding the uncertainty 

surrounding radiation damage models should be noted here and the highly dispersed 

but limited AHe data should be acknowledged. Moreover, although the AFT data is 

reproduced during the modelling reasonably well, the poorest fit is the MTL for S-20 

using the RDG (Gautheron et al., 2009) model. The AHe data may be incorrect due to 

a combination of analytical error, poorly understood radiation damage effects or 

some other factor as discussed in Chapter 4 and yet exert a significant influence on 

the thermal history. The influence of the AHe data on the thermal history is also 

explored (Fig. 6-15). By removing the AHe ages completely, the AFT data is well 

reproduced and the thermal history is rapidly cooled at c. 100 Ma, similar to the No 

RD and RDF models. So that AHe data is not being discarded purely on the basis that it 

doesn‘t look right, the data are included once more but in this scenario the 

uncertainty on the AHe age is treated as an unknown and rescaled during the 

modelling process. In this scenario the thermal history model is again rapidly cooled 

at c. 100 Ma with an improved data fit than that of the original RDG model. This 

model is the preferred model for the BMP East profile.  

Three samples separated by nearly 50 km were taken from basement rock types 

within a block bounded by the Hartbees River Thrust fault to the west and the 

Brakbos fault to the east (BMP Central profile). The dataset of these samples is 

variable with SA12-13A having high quality AFT data and many single grain AHe ages, 

SA12-12 having a quality AFT dataset and no AHe ages and SA12-10 having limited 

HCTs and no AHe data. Each of these samples, however, is characterised by the same 

style of thermal history. This thermal history is one which is rapidly cooled at c. 100 

Ma. It is no surprise then that integrating these samples together and inverting the 

data produces a rapidly cooled thermal history at c. 100 Ma (Fig. 6-16). This cooling 

history appears fairly robust across this fault bounded block and is distinct from the 

cooling episodes recorded by the two previous composite models discussed above.
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Figure 6-16: Bushmanland Central profile (SA12-13A, SA12-12 and SA12-10) thermal history models. Expected model of the top and bottom sample is 
represented by a thick blue and red line, respectively, with 95% credible intervals (cyan and magenta lines). Black box represents initial constraint on the 
model. Red box represents general ranges for prior (see Chapter 4 – Section 4.5.1). Yellow square/bar = Measured/predicted Dpar; blue circle/light blue bar = 
Measured/predicted AFT age; red diamond/magenta bar = measured/predicted MTL; green triangle/light green bar/dark green bar = measured/resampled 
observed/predicted AHe age. Histograms represent the measured TLD; red line represents the predicted TLD with 95% credible intervals (grey curves). 
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In the region between the eastern BMP profile samples and the central BMP 

profile samples are five samples that are within 50 km or less of each other and 

have distinct thermal histories. As the region is dissected by numerous large and 

small scale faults defining the boundary between the Archean Kaapvaal craton 

and Neoproterozoic NMP, caution is taken when grouping samples together in 

one crustal block. Sample SA12-09 and S-21 are 10km apart and reside in a 

region between the Brakbos Fault and Dadep Thrust (BMP Centre-East profile). 

The results from inverse modelling are very consistent regardless of how 

radiation damage effects are treated (Fig. 6-17). The cooling history is one 

which begins at temperatures > 120°C at c. 150 Ma and cools reasonably quickly 

to below 40°C by 80 Ma. Once again the AHe data of SA12-09 is limited and 

dispersed and the influence of AHe ages on the thermal history is investigated in 

the same manner as for the BMP West profile. However, there is no major 

modification to the thermal history when the AHe data is removed or when the 

error is rescaled. This is likely due to there being enough AFT single grain ages 

and HCTs from both samples to constrain the model with or without the AHe 

data. 

SA12-08 and FS1605 are further apart geographically (c. 35 km), but a profile 

scenario is tested for these samples as they appear, at the 1x106 scale, to be 

within a tectonic block bounded by the Dadep Thrust and Blackridge 

Thrust/Doringberg Lineament (BMP Centre-East-2). Because FS1605 has an AHe 

age of 333.2±37.7 Ma a Dwyka aged constraint with a relatively low temperature 

range (i.e. 100±100°C) may not be appropriate. To allow for partial resetting of 

AHe ages since the Permian, an initial constraint which reflects post-peak 

metamorphic conditions during the Proterozoic (900±100Ma, 300±300°C) was 

tested (Fig. 6-18). Long residence times within the PAZ are predicted so that 

older tracks can be generated and partially annealed as required by the TLD. At 

c. 110 – 90 Ma there is an increase in the rate of cooling which is gentle or 

abrupt depending on the radiation damage model used. However, the AHe data 

is still as poorly reproduced for FS1605 as for the individual sample model. This 

influence of the complex AHe data set is assessed as before by (i) removing it 

entirely and (ii) by rescaling the error. The resultant thermal histories predict 

cooling to be fairly protracted from c. 200 Ma to 120 – 110 Ma before a gentle  
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Figure 6-17: Bushmanland Centre-East profile (S-21 and SA12-09) thermal history models. 
Expected model of the top and bottom sample is represented by a thick blue and red line, 
respectively, with 95% credible intervals (cyan and magenta lines). Black box represents 
constraints on the model. Red box represents general ranges for prior (see Chapter 4 – 
Section 4.5.1). Yellow square/bar = Measured/predicted Dpar; blue circle/light blue bar = 
Measured/predicted AFT age; red diamond/magenta bar = measured/predicted MTL; green 
triangle/light green bar/dark green bar = measured/resampled observed/predicted AHe age. 
Histograms represent the measured TLD; red line represents the predicted TLD with 95% 
credible intervals (grey curves). Res. UC. = Resampled uncertainty model. 

increase in the cooling rate until near surface temperatures are reached at c. 80 

Ma. 

6.5.3.2 Speculative constraints 

Well dated geological features which can be used to independently constrain the 

thermal histories are rare. Samples SA12-05 and SA12-06B are constrained at the  
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Figure 6-18: Bushmanland Centre-East-2 profile (FS1605 and SA12-08) thermal history 
models. Expected model of the top and bottom sample is represented by a thick blue and 
red line, respectively, with 95% credible intervals (cyan and magenta lines). Black box 
represents constraints on the model. Red box represents general ranges for prior (see 
Chapter 4 – Section 4.5.1). Yellow square/bar = Measured/predicted Dpar; blue circle/light 
blue bar = Measured/predicted AFT age; red diamond/magenta bar = measured/predicted 
MTL; green triangle/light green bar/dark green bar = measured/resampled 
observed/predicted AHe age. Histograms represent the measured TLD; red line represents 
the predicted TLD with 95% credible intervals (grey curves). Res. UC. = Resampled 
uncertainty model. 

surface during the Permian as the samples were taken from basement clasts 

within the glacial diamictite Dwyka unit. This unit forms the base of the 

extensive Karoo Supergroup lithological unit which dominates much of central 

South Africa. It is known that the thickness of these sediments, which were 

deposited in a foreland basin setting, decreases to the north. However, their 

maximum distribution and thickness in the past is unknown. It can be speculated 
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that samples from basement lithologies were at or close to the surface during 

Dwyka glaciations and prior to the deposition of the Karoo Supergroup 

sedimentary units deposited during the Permian – Late Triassic. For most 

samples this constraint is largely insignificant as the AFT and AHe data requires 

that the sample reach temperatures of c. 100 – 120°C prior to cooling and 

therefore both thermochronometers will have been completely or almost 

completely reset. 

Examples where the initial T-t constraint may significantly impact the thermal 

history are for sample PRU106 and the BMP Centre-East-2 profile model. Each of 

these samples have track length distributions which are negatively skewed or 

very broad with a low MTL. This suggests that there is an appreciable portion of 

short partially annealed tracks alongside more recent, less annealed, long track 

lengths. For simplicity the influence of changing the initial starting condition of 

PRU106 and the BMP Centre-East-2 model is assessed using only the radiation 

damage model after Gautheron et al. (2009).  

PRU106 is one of the most interesting thermal histories in the entire dataset as 

it has features that are not observed in any other sample. There is no evidence 

to suggest that the data themselves are unreliable so the features in the model 

should be interpreted as being real. However, such interpretations should be 

made with caution as the thermal history is anomalous relative to the 

surrounding samples; AHe data is limited; and, although a large number of HCTs 

have been measured, TLD are broad and may have ambiguous interpretations. 

The interesting and unique features observed in the original ―unconstrained‖ 

model are a period of modest heating from 150 – 100 Ma, long residence times at 

temperatures c. 70 – 80°C and a period of rapid cooling to surface temperatures 

at c. 30 – 20 Ma. This structure remains if the sample is simply given an initial 

constraint reflecting post-intrusion/metamorphism of the sample (900±100Ma, 

300±300°C) (Fig. 6-19a). This implies that zero net exhumation or burial 

occurred while the Karoo supergroup was being deposited through the Permian 

and Triassic. Forcing the sample to be near surface temperatures during the 

Permian does not greatly change the thermal history of the sample from the 

Early Cretaceous. While there is no apparent analytical reason to discredit the  
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Figure 6-19: Thermal history models testing the influence of imposing an initial constraint 
on the (a) PRU 106 and (b) BMP Centre-East-2 thermal history models (see text for details). 
Expected model of the top and bottom sample is represented by a thick blue and red line, 
respectively, with 95% credible intervals (cyan and magenta lines). Black box represents 
constraints on the model. Red box represents general ranges for prior (see Chapter 4 – 
Section 4.5.1). Yellow square/bar = Measured/predicted Dpar; blue circle/light blue bar = 
Measured/predicted AFT age; red diamond/magenta bar = measured/predicted MTL; green 
triangle/light green bar/dark green bar = measured/resampled observed/predicted AHe age. 
Histograms represent the measured TLD; red line represents the predicted TLD with 95% 
credible intervals (grey curves). Res. UC. = Resampled uncertainty model. 

AHe ages for PRU106, they do seem largely incompatible with the AFT data and 

modelled thermal history. For this reason, the uncertainty on each single grain 

AHe age is rescaled and the sample modelled again with the same thermal 

history constraints. However, this does not impact the overall structure of the 
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model. The current thermal histories imply that PRU106 may have been buried 

under a relatively thin (c. 2 – 3 km) Karoo sedimentary cover and then 

experienced zero exhumation during the Cretaceous. The main exhumation 

phase occurred during minor uplift during the Miocene. The BMP Centre-East-2 

profile is also forced to the surface prior to the deposition of the Karoo 

Supergroup (Fig. 6-19b). Heating then occurred until c. 150 Ma which equates to 

burial of the sample under c. 2 – 3 km of overburden. The thermal history 

predicts protracted cooling over the next 100 Myr until the sample has again 

reached near surface temperatures. 

Post-rift constraints are found as preserved crater-lake deposits in the Marydale 

region. The Strompoor intrusive suite has crater facies with fossil evidence 

which is comparable in age with the fossil record found in crater-lake deposits at 

Banke in Namaqualand (Smith, 1986; de Wit et al., 2009). Hence, the fossil frogs 

and flora found at Strompoor is suggested to be Late Cretaceous – Earliest 

Tertiary in age. The preservation of these deposits suggests that erosion over the 

region has been limited since the Late Cretaceous and that the basement was 

close to or at the surface at this time. This constraint could only be applied to 

the samples which are closest to the evidence (i.e. central BMP samples). 

However, the unconstrained thermal history models for these samples predict 

that major cooling was completed prior to the Late Cretaceous and therefore 

incorporating this tentative constraint explicitly does not significantly influence 

the expected thermal history. 

6.5.4 Summary of modelling results 

The presence of extensive outcrops of Dwyka and Ecca group rocks suggests that 

the Karoo sedimentary sequence progressively covered the entire study area 

during the Permian and Triassic. Models which suggest burial to or residence at 

elevated temperatures is preferred to models which suggest cooling during the 

Permian and Triassic. However, for samples which have been completely reset, 

the Permian-Triassic history does not have an influence on the later portion of 

the thermal history. For the following discussion on the timing of cooling 
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episodes and magnitudes of denudation the models implementing the radiation 

damage model of Gautheron et al. (2009) are used as the primary reference. 

6.6 Temperature-time spatial relationships: Cooling and 
magnitudes of denudation 

6.6.1 Cooling 

Three cooling episodes were proposed in the previous chapter: 150 – 130 Ma; 110 

– 90 Ma; and 80 – 60 Ma. These three cooling episodes can be used in this study 

area to group samples that share similar timings for the onset of cooling (Fig. 6-

20). Five samples record cooling during the first cooling event in the Early 

Cretaceous as do two ―profiles‖ that were modelled (e.g. BMP East and BMP 

Centre-East). The second cooling episode is recorded by five individual samples, 

three of which have been modelled simultaneously to highlight their common 

thermal history (BMP Central). Samples which began cooling in the Early 

Cretaceous have reached relatively low palaeotemperatures of c. 40 – 70°C by c. 

110 – 90 Ma and cooling rates begin to decrease. This highlights the local 

enhancement of cooling across the transect which is not recorded by some 

samples. The third cooling episode, is tentative with only two samples showing 

significant cooling from temperatures >100°C and one showing a slight increase 

in cooling rate following prolonged residence in the PAZ (PRU 106). Both SA12-11 

and SA12-15 are interpreted with caution and further data should be acquired 

for both. Neither sample has robust fission track length data; SA12-11 has an 

anomalously high Dpar value and SA12-15 has limited and extremely dispersed 

AHe data. SA12-11 however does reside in a zone of significant structural 

complexity and therefore the measured data may be a true reflection of the 

thermal history experienced by the sample. 

6.6.2 Denudation 

Magnitudes of denudation are calculated using the T-t history predicted by the 

expected thermal history model and assuming geothermal gradients of 15, 25 

and 35°C/km as described in Chapter 5 (Fig. 6-21). The plateau transect is 300 

km in length and cuts through the basement rocks of the NMP and across major  



Chapter 6: Intracontinental deformation of the South African plateau 

231 

 

Figure 6-20: Plot represent the expected age and uncertainty (coloured bars) of key temperature points in each thermal history. These “key” points include 
the onset of cooling; changes in cooling rate causing inflections in the T-t path and the time when surface temperatures were reached. The colour of the 
bars is representative of the temperature of the thermal history at that time. 
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Figure 6-21: Section xx-xx’ with predictions on magnitudes of denudation over discrete time 
intervals since 150 Ma. Data within 7.5km either side of the section trace was projected at 
90° onto the line of section. Denudation estimates are made directly from thermal history 
models generated by inverting data from this study and from Brown (1992). Denudation is 
estimated using three estimates of the geothermal gradient (15, 25, 35°C/km) with 25°C/km 
being the preferred estimate. 

NW-SE trending structures. Data within 20km either side of the line of section is 

projected at 90°.  

Interpolating predictions of denudation across the section is difficult during the 

Early Cretaceous because many samples do not record cooling over this time. 

During the 150 – 130 Ma interval, the amount of denudation recorded in sample 

thermal histories is predicted to be less than 1 km and appears to be fairly 

constant across the entire transect, however, only a few samples record cooling 

at this time. For some models cooling initiates closer to c. 130 Ma and therefore 

there is a lot of uncertainty on palaeotemperatures before this time. In many 

samples, the removal of overburden may have cooled samples through 
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temperatures higher than c. 110±10°C for much of this time interval and 

therefore it has not been recorded. From 130 – 110 Ma, denudation is predicted 

to be c. 1 – 1.5km by four thermal history models across the entire transect. 

Denudation is predicted to be less than 1km in the region between the Dabep 

Thrust and Doringberg Lineament at the craton edge. 

A more complete record is preserved during the Mid – Late Cretaceous (110 – 70 

Ma) which highlights the heterogeneity of denudation across the margin. On the 

western craton margin denudation is predicted to be less than 1km with 

denudation being greater during the 90 – 70 Ma time interval. The largest 

magnitudes of denudation are recorded by three samples taken from a block 

between the Hartbees and Brakbos faults. Here denudation is predicted to have 

occurred at an average rate of 0.05 km/Myr for both the 110 – 90 and 90 – 70 Ma 

interval equating to a total thickness of 2km.  

The Doringberg Lineament is a convenient structural boundary for the eastern 

section of the margin, characterised by low denudation rates during the Mid-Late 

Cretaceous. Similarly, the Brakbos Fault provides a western boundary for the 

heavily denuded central block of the transect. Between these structural 

boundaries are five samples which are spread over an area of c. 35 km2 and 

dissected by the Dabep Thrust. From these five samples two pairs of samples 

were modelled as profiles (i.e. BMP Centre-East; and BMP Centre-East-2). 

Smaller normal faults are observed west of Grobershoop but more faults 

between the BF and KF are not identified at the 1:1x106 map scale. The lack of 

rock exposure and hence stratigraphic constraints in this region inhibits 

identification of such structures. The incompatible nature of thermal histories 

obtained from the samples suggests distinct denudation histories have occurred 

in individual fault blocks. West of the BMP Central block a single sample residing 

between two mapped thrust faults that are part of the Hartbees Thrust belt, 

predicts denudation to be as low as that observed on the eastern section. The 

most westerly samples S-20 and SA12-15 have been modelled together and 

produce a composite thermal history that predicts enhanced denudation 

beginning at c. 110 Ma and exceeding 2km of denudation through 90 – 70 Ma. 

Enhanced denudation during the Mid to Late Cretaceous is also predicted by two 
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samples to the west that are off section including SA12-22 which is the most 

easterly sample in the NQH study area.    

For most samples, Cenozoic (< 70 Ma) denudation is predicted to be on the order 

of a few hundred metres. From 70 – 50 Ma, three samples suggest that 

denudation was closer to or greater than 1km. High denudation predicted by 

SA12-08 and the BMP West profile is likely a continuation of enhanced 

denudation rates which initiated in the Mid-Late Cretaceous. In contrast, SA12-

11 however suggests that this time interval is when the sample last cooled below 

c. 110±10°C and therefore implying several kilometres of denudation since this 

time. In fact, the estimates of denudation for this sample suggest that 

denudation continues at a rate of 50 – 70m/Myr until present day. It should be 

remembered that while both AFT and AHe age data suggest a young cooling 

event, the lack of track length data makes constraining the nature of cooling 

difficult and the current thermal history is a very simple model which best fits 

the available data. 

6.7 Discussion 

6.7.1 Low temperature thermochronology across the southwest 
African continental interior 

The new data presented here forms the first thermochronology study to 

specifically investigate the influence of major tectonic fault zones on the long 

term evolution of the South African interior plateau. Previous work in the region 

has included data from the Augrabies Falls area (Kounov et al., 2013) and from 

sporadic data from along the Orange River valley (de Wit, 1988; Brown, 1992). 

AFT and AHe data from Augrabies Falls and from the Fish River Canyon in 

southern Namibia records enhanced cooling from c. 100 to 65 Ma (Kounov et al., 

2013). This is in good agreement with the age range presented here and is 

interpreted by Kounov et al. (2013) as representing the effects of regional uplift 

increasing river gradients and hence erosion rates. Comprehensive modelling of 

all data presented by Kounov et al., (2013) from this area is not possible due to 

the lack of track length measurements for many samples and is made more 

difficult due to ―incompatible‖ AHe ages that are greater than their 
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corresponding AFT ages; although in most cases overlap within 2σ. Kounov et al. 

(2013) do not invoke regional tectonic reworking as the dominant mechanism 

enhancing denudation at this time but do suggest that a record of localised fault 

reactivation is preserved in their study areas. In the Fish River Canyon an AFT 

age of 67±26 Ma in the hangingwall is adjacent to AFT ages of 81±12 – 84±17 Ma 

in the footwall of a major thrust fault and is used to invoke almost 1km of offset 

around c. 70 Ma. This interpretation on this data alone has to be treated with 

caution as the AFT ages have a large uncertainty which could allow them to be 

part of the same cooling event. These data also do not have track length 

information and therefore there is no indication whether these younger samples 

represent rapid cooling following major tectonic uplift or thermal event or 

whether they represent slower rates of erosion in response to an earlier uplift 

event.  

No such observation is made for data from the Augrabies Falls region which is 

interpreted as representing a single block that has experienced enhanced 

denudation in the Mid-Late Cretaceous. The cluster of AFT ages with Mid to Late 

Cretaceous ages combines with data presented in this study to form a strong 

NW-SE trend of c. 80 – 100 Ma AFT ages which falls between the prominent 

Hartbees and Brakbos faults (Fig. 6-22). New data and models presented here 

however show that east and west of this fault zone, older syn-rift cooling is 

preserved suggesting this large block may have experienced discrete uplift and 

erosion relative to surrounding areas during the Mid-Late Cretaceous. Although 

the limited data from Kounov et al. (2013) does not provide strong evidence for 

structural reactivation at c. 70 Ma, data from Raab et al. (2002) and Brown et al. 

(2014) in northwestern Namibia lends support to this as a regionally significant 

tectonic event at this time. These authors infer from their data and 

complimentary forward thermal history modelling that c. 2km of vertical 

displacement has occurred across the Omaruru-Waterberg Lineament since the 

Early Cretaceous with a major period of enhanced denudation occurring at c. 70 

Ma. 

A transect of samples from the coast (near Kleinsee) to Kenhardt was collected 

by de Wit (1988). The majority of the samples collected in this transect yield 
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Figure 6-22: Map generalising the trend of regional AFT data from the Bushmanland Plateau based on the data of de Wit (1988), Brown, (1992) and Kounov 
et al., (2009) and this study. Fault names are the same as in Figure 6-3. A more detailed contour map of AFT data from SW Africa is presented in the 
Chapter 7 – Figure 7.5. 
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ages between 108 and 129 Ma with MTLs ranging from 13.3 – 14.0 μm. This data 

is comparable with other data from the continental margin and plateau (e.g. 

Brown, 1992; Kounov et al., 2009; this study) and it is discussed in a regional 

context in Chapter 7. Two samples from the de Wit (1988) study are from 

Kakamas and Kenhardt and have yielded AFT ages of 70±5 Ma and 73±4 Ma and 

MTL of 13.98±0.1 μm and 14.23±0.1 μm, respectively. The MTL-SD for these 

samples is low and therefore it can be assumed that the TLD is narrow, however, 

no track length histograms are presented. de Wit, (1988) interpret these AFT 

data as evidence for thermal overprinting due to Late Cretaceous magmatism. 

The Stompoor intrusion discussed previously has been described as being Late 

Cretaceous in age (Smith, 1986) but other intrusive bodies of this age in this 

study area are relatively rare; the Stompoor intrusion itself is c. 30 – 40 km SW 

of the young AFT ages of de Wit (1988). 

The vast majority of other intrusive bodies in the region are considerably older 

than the Stompoor intrusion (c. 115 – 130 Ma). Moreover, the regional data 

surrounding these samples do not agree with a widespread thermal event at c. 

70 Ma; either the thermal event was extremely localised (i.e. an intrusion) or 

another mechanism is required. It is proposed that the data of de Wit (1988) can 

also be explained by rapid cooling driven by compression related uplift along the 

Hartbees River Thrust at during c. 80 – 60 Ma. This cooling episode is weakly 

observed in the data presented here (e.g. SA12-15) but the c. 70 Ma ages can be 

traced to follow the trend of the Hartbees Thrust into southern Namibia and 

then west, following the Groothoek Thrust, to match up with ages <80 Ma 

observed by Brown (1992).  

6.7.2 Intracontinental deformation of the South African plateau 

The regional tectonic setting of the Bushmanland Plateau study area is 

dominated by major structural discontinuities which mark the boundary between 

the Archean Kaapvaal craton terrane and Namaqua-Natal mobile belt (Altermann 

and Hälbich, 1991; Nguuri et al., 2001; Griffin et al., 2003; Sodoudi et al., 

2013). These tectonic lineaments are clearly visible on aeromagnetic images of 

South Africa (Fig. 6-23). Ancient cratonic terranes and adjacent mobile belts 
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Figure 6-23: Map illustrating the relationship between the South African structural framework and magnetic anomalies. Strong positive magnetic anomalies 
mark the boundary between the Kaapvaal Craton and adjacent NMP. Labelling and positioning of major features was done after Tankard et al., (2009). 
Abbreviations of fault names are the same as Figure 6-3 and 6-4 (above), Magnetic data was taken from global EMAG2 2–arc min resolution Earth Magnetic 
Anomaly Grid (Maus et al., 2009). 
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have recently been the subject of much study regarding their formation (Shirey 

et al., 2001; Lee et al., 2008; Cooper and Miller, 2014) accretion (Eriksson et al., 

2009; Zeh et al., 2009), internal structure (Fishwick et al., 2005; Müller et al., 

2012) and long-term stability (Peslier et al., 2010; Wang et al., 2014).  

These studies have largely been undertaken using geophysical methods to image 

the lithosphere and underlying mantle; geochemical analysis of basement 

lithologies and intrusive igneous bodies to investigate the composition, rheology 

and metamorphic history of the region; and geodynamical models designed to 

integrate these observations and predict the nature and interaction of mantle 

flow and lithospheric deformation (e.g. Guillou-Frottier et al., 2012; Cloetingh 

et al., 2013; Burov et al., 2014). A growing number of these studies are 

concluding that, ultimately, the concept of continental interiors being 

tectonically ―stable‖ over long geological periods is no longer universally 

appropriate (e.g. Moucha et al., 2008). Understanding how the topography of 

continental interiors has evolved in response to thermal and structural 

perturbations will help to constrain thermo-mechanical models which advocate 

major topographic undulations in cratonic regions. The thermochronology data 

and thermal history inversions presented support enhanced denudation driven by 

intracontinental deformation during the Mid-Late Cretaceous. 

6.7.2.1 Structural record 

The BMP study area is dominated by metamorphic basement lithologies and 

entirely lacking Mesozoic and early Cenozoic units. The lack of stratigraphic 

information severely inhibits constraining recent tectonic displacements on 

major faults which dissect the area. An additional problem is the lack of 

exposure across the flat lying plateau which creates uncertainty about cross 

cutting relationships of lithological and structural boundaries. The majority of 

structures mapped at the 1:1x106 scale are confined to the NMP where they 

define terrane boundaries and lithological discontinuities (Fig. 6-3). Exceptions 

to this are the southern extents of the Brakbos and Doringberg faults which 

displace NMP basement against Dwyka Group rocks. SW of the town of 

Bucklands, a fault is also mapped which displaces Archean Transvaal Group rocks 
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against Dwyka Group rocks. It is clear that some degree of fault reactivation 

occurred post-Permian and is therefore unrelated to terrane accretion or Pan-

African Orogenic activity. High angle reverse faults and tight folding has also 

been identified within the Dwyka Group unit near the town of Douglas (Andreoli, 

2014, pers. Comm.). 

Geological evidence for Mesozoic tectonic activity is also rare in southern 

Namibia but sporadic examples of Karoo dolerite suite rocks with a faulted 

contact with Dwyka Group, Nama Group and/or NMP rocks exist. Fault dissected 

Karoo dolerites suggest tectonic activity less than c. 180 Ma. Cenozoic faulting is 

suggested to have been instrumental in carving out the Fish River Canyon, South 

Namibia (Mvondo et al., 2011). Two phases of extension are advocated by 

Mvondo et al. (2011) with N-S grabens shaping the lower Fish River Canyon due 

to E-W extension in the Late Eocene and NE-SW grabens shaping the upper Fish 

River Canyon due to younger NW-SE extension in the Plio-Pleistocene. However, 

the constraints used to determine the timing of such faulting (e.g. displacements 

of the African surface) are highly qualitative and uncertain. In Northwest 

Namibia, late Mesozoic tectonism is constrained by the preservation of Etendeka 

volcanic rocks, associated with Early Cretaceous rifting in the southern Atlantic, 

in coast-parallel, half grabens (Raab et al., 2002; Brown et al., 2014). These 

grabens are bounded by NNW-SSE trending normal faults which displace 

Etendeka lavas against NMP basement (Brown et al., 2014). Further evidence is 

provided by syn-tectonic conglomerate units comprised of Etendeka volcanic 

material which dip to the east into a westerly dipping normal fault (Ward and 

Martin, 1987).  

These examples from NW Namibia indicate tectonic activity occurred c. ≤130Ma 

however, as with the previously described examples no younger constraint is 

available. Due to these limited constraints, the possibility of an episode or 

episodes of tectonic activity following the major phase of continental extension 

cannot be ruled out. Moreover, seismic data has suggested that the tectonic 

boundary between the Kaapvaal craton and NMP mobile belt is still active 

(Tankard et al., 2009). Offshore seismic reflection data from the Orange, 

Luderitz and Walvis Basins adjacent to the South African and Namibian 
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Figure 6-24: Landsat ETM+ RGB:742 satellite image which highlights the relief variation of the region as well as several drainage pattern features. Red lines 
represents faults which may have experienced significant displacement during the Mid – Late Cretaceous and induced differential fault block uplift and 
subsequent erosion. 
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continental margins have shown regional deformation in the Upper Cretaceous 

sequences and segmentation of the margin by faults which can be traced 

onshore (Dingle et al., 1983; Clemson et al., 1997; Viola et al., 2005; de Vera et 

al., 2010). The structures that may have accommodated large amounts of 

displacement during the Mid – Late Cretaceous, inferred from the 

thermochronological data and limited structural information, are highlighted in 

Figure 6-24. 

6.7.2.2 Intraplate deformation at the craton boundary 

Models that attempt to reconstruct the western Gondwana continental block 

prior to the opening of the South Atlantic identify gaps and overlaps between 

the African and South American plates (e.g. Vink 1982; Unternehr et al. 1988; 

Nürnberg & Müller, 1991; Eagles, 2007; Torsvik et al., 2009). These misfits have 

been used to invoke crustal thinning, basin formation and importantly, in the 

context of this study, intraplate deformation (Eagles, 2007; Aslanian et al., 

2009; Torsvik et al., 2009; Aslanian and Moulin, 2013).  

Intraplate deformation of the continental crust is poorly understood and may be 

accommodated by local and regional tectonic events (Cloetingh and Burov, 2011; 

Gaina et al., 2013). As discussed in Chapter 3 – Section 3.8, intraplate 

deformation is controlled by mantle-lithosphere interactions and how they 

respond to the propagation of far-field stress within the lithosphere and/or 

thermal perturbations in the convecting mantle (Heine et al., 2008, Burov and 

Cloetingh, 2009). The BMP transect cuts across the tectonic boundary between 

the Archean craton and Namaqualand mobile belt. It has been suggested that 

the large crustal thickness and high strength of the cratonic lithosphere adjacent 

to thinner, weaker crust of the neighbouring mobile belt will focus deformation 

at the craton boundary (Lenardic et al., 2003; Burov et al., 2007; Baptiste et al., 

2012). Seismic data indicate that the NMP lithospheric mantle is indeed thinner 

and warmer than that underlying Kaapvaal craton (Baptiste and Tommassi, 2013; 

Sodoudi et al., 2013). Geochemical studies of intrusive igneous material provide 

insights into the thermal and compositional structure of the mantle lithosphere 

over time. These investigations have suggested that prior to the Mesozoic the 
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thermal state and thickness of the off and on-craton lithosphere was roughly the 

same with subsequent erosion of the off-craton lithosphere causing thinning by 

c. 30 km (Janney et al., 2010).  

If regional stresses have become focused along the craton boundary then faults 

may become reactivated. However, the reactivation of faults and magnitude of 

displacement will be dependent on the steepness of the original fault structure; 

the relative orientation of the fault and regional stress field and the frictional 

resistance along the fault plane (Sibson, 1985; Turner and Williams, 2004). In a 

structural setting such as is observed in the BMP study area which includes both 

steep normal and reverse faults of differing orientations as well as major shear 

zone faults, the crust may have deformed extremely heterogeneously in 

response to a regional stress field (e.g. Janssen et al., 1995; Ziegler et al., 1995; 

Bonini et al., 2012; Salomon et al., 2014). If there has been a change in the 

regional stress field from an extensional regime during 110 – 90 Ma to a 

compressional regime from 80 – 60 Ma (Viola et al., 2012; Gaina et al., 2013) 

then resolving the surface response to this deformation will prove incredibly 

difficult. However, it is proposed that while the data presented here may not 

have the resolution to define multiple tectonic events with great precision the 

data do support that tectonically induced uplift and erosion occurred in discrete 

fault bounded blocks during the Mid – Late Cretaceous. 

6.7.2.3 Plume Upwelling: Mantle – Lithosphere interactions 

The longevity of high elevation continental interiors is frequently ascribed to 

dynamic uplift related to vertical stresses induced by mantle upwelling (e.g. 

Australia: Czarnota et al., 2013, Antarctica: Anderson et al., 2012, North 

America: Forte et al., 2010b, Southern Europe: Boschi et al., 2010, South 

America: Shephard et al., 2012). The South African continental interior is 

frequently used as the archetypal example of dynamically supported topography 

with the presence of a well-imaged zone of low seismic velocity beneath the 

African plate being cited as evidence for an African Superplume (Nyblade and 

Robinson, 1994; Lithgow-Bertelloni and Silver, 1998; Brandt et al., 2012). Recent 

thermo-mechanical modelling has investigated the impact of plume upwelling on 



Chapter 6: Intracontinental deformation of the South African plateau 

244 

 

Figure 6-25: (a) Thermo-mechanical models of the interaction between cratonic and non-
cratonic lithosphere and plume upwellings (i) Illustration of the Visco-Elastic-Plastic (VEP) 
thermo-mechanical model (Cloetingh et al., 2013). Model investigates the effect of a 
stratified lithosphere, defined by different rheological properties, deforming over an 
upwelling plume. Lower crust can deform under ductile conditions causing long wavelength 
deformation while the upper crust deforms over shorter wavelengths in a brittle manner. 
Due to the presence of the upwelling plume mantle lithosphere may become down-thrusted. 
(ii) Model for plume head–cratonic blocks interactions (after Guillou-Frottier et al., 2012). In 
this model continuous plume activity can result in partial erosion of the base of cratonic 
blocks which can focus plume pathways along the base of the craton. (b) Possible models 
for the deformation of the Bushmanland Plateau, driven by a combination of in-plane and 
vertical stresses induced by mantle plume upwelling. Prior to the impingement of any 
mantle plume, regional stresses are already focused at the craton margin. Plume upwelling 
imposes vertical stresses at the base of the lithosphere inducing dynamic uplift. The strong 
craton uplifts as a single block however the adjacent crust is prone to rupture due to a 
combination of regional in-plane stresses and pre-existing structure. (i) Uplift of the 
continental interior promotes flexure induced in-plane extension due to doming of the 
lithosphere focused over the mantle plume. (ii) Mantle plume upwelling becomes focused at 
the craton margin and induce subduction of colder mantle lithosphere creating horizontal 
stresses along the base of the lithosphere back towards the craton. 

a mechanically decoupled upper crust and lithospheric mantle (Cloetingh et al., 

2013). This modelling suggests that for a stratified viscous-elastic-plastic 

continental lithosphere, vertical motions of the surface do not directly mimic 
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the long wavelength undulation of the lithosphere-mantle boundary (Burov and 

Guillou-Frottier, 2005; Burov et al., 2007; Guillou-Frottier et al., 2012). Instead, 

during mantle upwelling, bending of the brittle crust induces lateral stresses and 

instabilities which may promote short-wavelength topographic features (i.e. 

fault block movement) (Fig. 6-25a) (Chen et al., 2013, Burov and Guillou-

Frottier, 2005). As described above, craton edges and in particular the 

southwestern edge of the Kaapvaal craton are characterised by abrupt variations 

in lithospheric thickness which may induce edge-driven convection or focus 

upwellings in the mantle around the craton (Fig. 6-25b; Guillou-Frottier et al., 

2012). This, in turn, can influence surface topography over different length 

scales (King and Ritsema, 2000; Priestley et al., 2008; Reusch et al., 2010; 

Fishwick and Bastow, 2011).  

The interaction between mantle convection and the continental lithosphere at a 

cratonic boundary setting has been investigated at the present day active rift 

zone in East Africa. Structural features have become preferentially focused in 

the weak Proterozoic lithosphere adjacent to the Archean Tanzanian craton 

(Petit and Ebinger, 2000; Corti et al., 2007; Guillou-Frottier et al., 2012). The 

location and magnitude of vertical motions of the lithosphere in craton boundary 

settings will be influenced by a combination of rheology, tectonic inheritance, 

contrasts in lithospheric thickness but also thermal perturbations (Guillou-

Frottier et al., 2012). Despite this it seems apparent that vertical motions are 

focused at cratonic margins while the cratons themselves may remain relatively 

flat and undeformed (Burov and Guillou-Frottier, 2005; Wallner and Schmeling, 

2010). 

6.8 Summary and Conclusions 

The occurrence of intraplate deformation is required by plate reconstruction 

models attempting to refit South American and African plates and thermo-

mechanical models have suggested that craton edges may be suitable sites for 

deformation. Key to resolving this is understanding how an upwelling plume 

interacts with cratonic regions and their inherently weak neighbouring crust that 

is currently residing in a regional stress field. The data presented here is taken 
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from such a tectonic setting and suggests that significant denudation occurred 

during the Mid and Late Cretaceous. 

The data also has implications for the development of the rift-related 

topography of the continental margin. The presence of samples which record 

major cooling during 150 – 130 Ma suggest that significant magnitudes of 

denudation persisted far inland during the time of rifting. The sporadic 

preservation of the Early Cretaceous record of cooling supports the hypothesis 

that later Cretaceous denudation was confined to reactivated tectonic blocks. In 

short, intraplate deformation induced periods of enhanced denudation during 

the 110 – 90 Ma and, possibly, 80 – 60 Ma. The type of intraplate deformation 

(i.e. extension/compression) (Fig. 6-25c) is not resolved in this study due to the 

uncertainty surrounding the timing of plume upwelling beneath Southern Africa; 

the overall form (i.e. extension/compression) of the regional Mid – Late 

Cretaceous stress field prior to and after plume impingement; and the 

orientation of this stress field relative to pre-existing structures and hence their 

probability of becoming reactivated. 

Further sampling could be undertaken to improve the resolution of the 

thermochronological data set in the region. However, further structural 

observations and identification of post-Karoo geological evidence will help to 

constrain thermal history models and the interpretation of them. In the absence 

of such geological constraints the present data set can be used to help constrain 

surface processes acting in response to intraplate deformation and therefore 

help to resolve the dominant mechanisms driving deformation. 

The conclusions from this study are that rift-related denudation (c. 150 – 130 

Ma) extended from the margin to well inland, at least to the craton boundary. 

Subsequent intracontinental deformation induced fault block uplift and a 

renewed phase or phases of denudation over the intervals 110 – 90 Ma and 80 – 

60 Ma. Cenozoic denudation is generally low, however, locally it is observed to 

be greater than 1km. Based on the current data this appears to be rare and 

requires further investigation. 
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CHAPTER 7 

THE POST-RIFT LANDSCAPE EVOLUTION OF 
SOUTHWEST AFRICA 

 

7.1 Introduction 

Understanding South Africa‘s topographic development has been a major 

challenge for geologists and geomorphologists for over a century (King, 1942; Du 

Toit, 1954; Partridge and Maud, 1987; Burke and Gunnel, 2008). A major 

hindrance in this effort has been the paucity of reliably dated onshore post-rift 

lithologies combined with a poor understanding of the tectonic and surface 

process that control the creation and destruction of relief over time. Over the 

past thirty years or so, low temperature thermochronology has provided insights 

into the nature of crustal cooling in South Africa, pointing to the Cretaceous as a 

time that is characterised by major regional denudation of the landscape.  

However, the limited resolution of low temperature thermochronology 

techniques and the scope for alternative interpretations of the data has 

permitted other workers to advocate that South Africa‘s topography is a ―young‖ 

mid-late Cenozoic feature (Partridge and Maud, 1987; Ollier and Pain, 1997; 

Burke and Gunnel, 2008; Paul et al., 2014). This chapter provides a regional 

summary of all available AFT and AHe data across South Africa to highlight the 

dominance of a Cretaceous cooling signal but also to address the spatial 

complexity of these data. Thermal histories obtained from inverting data 

collected in this study and from Brown (1992) are then converted to estimates of 

denudation of the western South African margin over time, and compared with 

sedimentation rates and total accumulated volume in the adjacent Orange 

Basin. Both data sets invoke large-scale mass transfer from the onshore to 

offshore domain throughout the Cretaceous with a dramatic decrease in 

denudation and accumulation in the Cenozoic. The Cenozoic therefore remains a 

contentious period in southern Africa‘s geomorphic history largely due to the 
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lack of accessible and well-dated material that can be used to infer the regional 

tectonic or geomorphic environment. A summary of the available cosmogenic 

nuclide, paleontological, geological and geomorphic studies that have been used 

to investigate South Africa‘s Cenozoic development is provided and discussed in 

the context of the LTT data presented in this thesis. 

7.2 Low temperature thermochronology data from SW 
Africa 

Apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) data presented in 

Chapter 5 and Chapter 6 is crucial as it covers regions where data were 

previously sporadic or absent entirely. More than this, in the case of the NQH 

study area, the data were obtained at a higher spatial resolution than previous 

studies to target and investigate fault reactivation within the margin escarpment 

zone. The new AFT data contribute to and enhance what is now an extensive 

regional AFT dataset. AHe data, by comparison, is still severely lacking in 

southern Africa. As such the AHe data, obtained through multiple single-grain 

analysis, provides much needed independent, empirical evidence to augment 

and to corroborate insights obtained from the AFT analysis. The following 

section will review the regional AFT and AHe datasets and discuss them in the 

context of conclusions drawn from the previous chapters. Prior to this discussion 

two final thermal history models are presented. Both of these models are 

produced through the joint inversion of multiple samples collected from their 

deep borehole profiles. 

7.2.1 Borehole profiles 

7.2.1.1 AFT data from KC1/70 and QU1/65 

Two borehole sample profiles from KC 1/70 and QU 1/65 (Fig. 7-1) are an 

important addition to the current dataset as they provide information on the 

present day thermal structure of the upper crust; can provide insights into how 

quickly a vertical column of rock has cooled, and due to their location on the 

inland plateau can constrain the amount of crustal cooling that has occurred far  
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Figure 7-1: Map of southwestern Africa showing the location of two borehole locations from 
which samples were dated using AFT analysis. Offshore sediment thicknesses are shown 
(after Rouby et al., 2009). The two lines of section correspond to the cross sections drawn in 
Figure 7-8 (after Guillocheau et al., 2012). 

from the continental margin. The data were collected by Brown, (1992) but have 

not, before now, been modelled in a manner where each sample is inverted 

simultaneously and all aspects of the data relating to the samples thermal 

history are taken into account. These data include AFT parameters (AFT age, 

MTL and TLD), the stratigraphic age of (i.e. initial condition) of each sample, 

present day temperature of the sample and vertical temperature offset between 

the samples. The latter two parameters are based on the geothermal gradient of 

the upper crust. Uncertainty limits accounting for the uncertainty on the 

geothermal gradient are also incorporated into calculations of the vertical offset 

and present day sample temperature. 
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Figure 7-2: Plots of AFT age (filled circles) and MTL (open circles) against borehole depth 
for KC 1/70 (green symbols) and QU 1/65 (purple symbols). AFT ages are central AFT ages 
with 1σ standard error. MTL are uncorrected for their orientation to c-axis and have 1σ 
standard error. 

The data are summarised in Figure 7-2 and are documented fully in Appendix 6. 

Eleven samples from QU 1/65 were collected over a vertical range of 2534 m and 

show a clear negative relationship between depth and both AFT age and MTL at 

depths > 1000 m; the bottom sample has an AFT age of 11±1 Ma and MTL of 9.83 

± 0.42 μm. At depths shallower than c. 1000 m, there is no correlation between 

depth and AFT and or MTL with five samples having AFT ages within the range of 

112 – 130 Ma and MTLs between 13 and 14 μm. A qualitative interpretation of 

this data would be that the rock column cooled reasonably quickly during or just 

prior to the 110 – 130 Ma interval recorded by AFT ages. Prolonged residence of 

the deeper samples at elevated temperatures has caused track lengths to 

become partially annealed creating the negative correlation with depth (and 

temperature).  

Fewer samples (n = 5) were obtained from the KC 1/70 borehole profile. 

Independently, the data do appear to be negatively correlated with depth; 

however, defining the structure of the correlations for KC 1/70 is more difficult 
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due to the limited number of data points. When plotted on the same axes as 

QU1/65 a remarkable similarity in the data sets is evident. At depths greater 

than c. 1000 m AFT ages and MTLs progressively decrease with depth. At depths 

shallower than c. 1000 m the KC 1/70 AFT ages are consistent with one another 

(KC-1 – 142±12 Ma and KC-3 – 142±16 Ma) and overlap with the oldest ages from 

QU1/65. Track lengths in the upper section of the KC1/70 profile are also 

reasonably long with MTL of 13.77 ± 0.38 μm and 13.90 ± 0.39 μm, respectively. 

It is therefore likely that both KC 1/70 and QU 1/65 experienced similar cooling 

histories. An additional piece of information unique to KC1/70 is obtained due to 

the bottom sample in the profile having a zero age and zero mean track length. 

From this it can be surmised that the temperature at the sample depth (6190 m) 

is > c. 110 – 120°C and therefore tracks are not being preserved in the sample. 

7.2.1.2 Borehole thermal history models 

Modelling the borehole profile data follows the same procedure adopted for 

modelling pseudo-vertical profiles in previous chapters (see Chapter 5 – Section 

5.5.3.1). As the profiles cover a large vertical range it is important to make and 

initial estimate on the temperature difference between samples both at the 

present day and over geological time. For this purpose, an estimated geothermal 

gradient of 25°C/km was used to determine an initial offset and present day 

temperature value. Using an upper and lower estimate of 35 and 15°C/km, 

respectively, upper and lower limits on the temperature offset and present day 

temperature were obtained. As there is a large degree of uncertainty on the 

estimates of the geothermal gradient, particularly in the geological past, the 

temperature offset value was allowed to vary over the model run (i.e. the offset 

was resampled from within the uncertainty limits). A limitation to the borehole 

datasets is the lack of any compositional parameter used to constrain the 

compositional influence on annealing (i.e. Dpar). This information was not 

collected by Brown (1992) as it was not common procedure to do so. To ensure 

that the compositional aspect of annealing was incorporated into the t-T models 

an initial ‗standard‘ Dpar value of 2.04 ± 1.5 μm was assigned (approximate Dpar 

value of Durango apatite, Sobel and Seward, 2010) and the MCMC inversion was 
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allowed to search for viable Dpar values within this range that were consistent 

with all the other observed parameters and stratigraphic constraints. 

Both boreholes are located within the Karoo basin and therefore penetrate 

through the major lithologies of the Karoo Supergroup. For this reason 

stratigraphic ages can be incorporated into the model as an added constraint. 

Each sample was assigned two constraint points (with bounds) reflecting their 

stratigraphic age and present day downhole temperature. The deepest samples 

from QU1/65 and KC1/70 are Cambrian granites and Proterozoic basement, 

respectively. For this reason, the thermal history model begins a significant time 

before the age of sedimentary units and therefore allows for the possibility of 

old, inherited, tracks to be preserved in detrital apatites within the sedimentary 

rocks. For display purposes, the thermal history shown and discussed (Fig. 7-3) is 

illustrated only from the Carboniferous to present day; prior to this time, the 

model is essentially unconstrained. 

As predicted from the initial inspection of the AFT age/MTL vs. depth plot, there 

are similarities in the thermal histories obtained for KC 1/70 and QU 1/65. These 

include burial heating from surface temperatures initiating at c. 260 – 270 Ma 

with the top sample in the profile reaching temperatures > 120°C by c. 170 Ma. 

Monotonic cooling from this time is predicted by the KC 1/70 model with near 

surface temperatures being reached by c. 50 Ma. The QU 1/65 model predicts an 

initial phase of rapid cooling between 170 and 100 Ma at a rate of 1°C.Myr 

reaching temperatures of c. 60°C. Subsequent cooling through the Tertiary until 

present day then proceeded at a slower rate of c. 0.4°C.Myr. 

7.2.2 South African apatite fission track data 

An extensive database of apatite fission track data is now available across 

southern Africa. Much of this data has been collected from the Namibian and 

South African continental margins with fewer data available from the South 

African interior and border areas between South Africa, Botswana and 

Zimbabwe. The regional database presented here includes all AFT data from 

outcrop samples (number of samples = 655) collected south of 18°S (Fig. 7-4). 
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Figure 7-3: KC 1/70 and QU 1/65 thermal history models. Expected model of the top and bottom sample is represented by a thick blue and red line, 
respectively, with 95% credible intervals (cyan and magenta lines). Black box represents initial constraint on the model. Red box represents general ranges 
for prior (see Chapter 4 – Section 4.5.1). Yellow square/bar = Measured/predicted Dpar; blue circle/light blue bar = Measured/predicted AFT age; red 
diamond/magenta bar = measured/predicted MTL; green triangle/light green bar/dark green bar = measured/resampled observed/predicted AHe age. 
Histograms represent the measured TLD; red line represents the predicted TLD with 95% credible intervals (grey curves). 
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Figure 7-4: Database of apatite fission track data which shows (a) Sources of AFT data (b) Mean AFT age and (c) MTL where available. DEM data is a 
combination of STRM30plus (1km data derived from the SRTM 3 arc sec (90m) global data) and the ETOPO2 global data (for ocean areas). 
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The sources of this data are listed in the caption to Figure 7-4a with most of the 

data being fully published. AFT ages range from 38±3 to 547±95 Ma (Fig. 7-4b) 

with younger ages typically found at the continental margins and older ages in 

the interior. However, as can be seen in the SW corner of Figure 7-4b, younger 

ages exist far inland and, on a more local scale (10s of km), abrupt variations in 

AFT age can be observed.  

A smaller number of outcrop samples with reliable MTLs are available (n = 572) 

due to track length measurements not being routine in earlier studies (e.g. 

Haack, 1983) or occasional samples being devoid of tracks suitable for measuring 

(Fig. 7-4c). As this data was generated over several decades additional 

parameters which are now routinely measured to help constrain fission track 

annealing (e.g. angle of track to c-axis and kinetic parameters like Cl content 

and Dpar) are occasionally absent. For this reason, the database consists of the 

raw measured MTL which was reported (i.e. not corrected for orientation). MTLs 

range from 9.8 ± 0.3 µm to 18.1 ± 0.4 µm. This maximum value seems overly 

long considering the maximum etchable length of a fission track under 

experimental conditions is 16 ± 1 µm; it is not a volcanic rock (i.e. it has not 

cooled instantly); and there are only 8 measured track lengths with a large MTL-

SD. In this sample, if only a few tracks were over-measured or features within 

the crustal were incorrectly measured as long tracks, then the MTL would be 

overestimated. Similar to the distribution of AFT ages, there is quite a lot of 

spatial variation in MTLs. In general, however, MTLs which are long (> 14 µm) are 

found along the coastal margins. Shorter track lengths are spread across both 

the margins and continental interior. 

To better visualise the spatial distribution of AFT ages and MTLs interpolation 

maps where produced using a natural neighbour interpolation technique (Fig. 7-

5). AFT ages older than c. 250 Ma, indicated by blue to dark blue parts if the 

colour map, are entirely confined to the continental interior, landward of the 

coast parallel escarpment zone. In places, high resolution clusters of data points 

have recorded the transition from older Permo-Carboniferous ages to younger 

syn or post-rift ages (e.g. northern Namibia, south eastern South Africa, north 

eastern South Africa, and southern Zimbabwe). Based on the distribution of the  
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Figure 7-5: Map interpolating (a) AFT ages and (b) MTL across southern Africa using. The Interpolation was performed using a “spline in tension 
technique” in GMT (Smith and Wessel, 1990; Wessel et al., 2013). A mask of radius 1.5° latitude/longitude was used around each data point to hide the 
interpolation map where it is unconstrained due to an absence of data points.  
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data points, the transition is marked by a drop of c. 200 – 300 Ma in less than 

100km. In northern Namibia, some samples record a similar drop in age over 

horizontal distances of 15 km.  

The AFT age interpolation map (Fig. 7-5a) shows a clear asymmetry in the 

distribution of ages that are Jurassic in age or younger. Whereas in the south 

east corner of South Africa, post-Mid-Jurassic AFT ages are confined to the 

region (c. 150 – 300 km wide) between the continental margin and elevated 

plateau; along the south and western margins, post-Mid-Jurassic AFT ages 

extend at least 700 km inland from the continental margin. This implies that 

enhanced denudation of the crust occurred over both the present day 

continental margin and the interior plateau. This is an important observation as 

it indicates that the major escarpment zone, prominent in the present 

topography, does not represent a clear boundary between a deeply eroded 

coastal plain and an inland plateau characterised by minimal post break-up 

erosion; at least not on the southern and westerm margin of southern Africa. 

The transition to Palaeozoic AFT ages which appear to characterise the cratonic 

interior regions of the plateau, is poorly defined due to a lack of data but it 

seems to be coincident with the southwestern tectonic boundary of the Kaapvaal 

craton. Along the continental margin of northern Namibia post-Mid-Jurassic ages 

are again confined to the c. 150 km wide coastal plain. The eastern margin of 

South Africa and Zimbabwe has a much wider coastal plain (c. 700 km) but again 

the younger ages are only found seaward of the escarpment zone in this region. 

No easily definable trend in AFT ages is apparent moving inland from the 

western and southern South African margins. The majority of ages across the 

Cape Fold Belt are c. 110 – 140 Ma with only a few samples yielding ages ±30 Myr 

older or younger than this interval. Along the western margin abrupt age 

variations occur between samples that yield ages greater than 100 Ma and ages 

that are c. 80 – 100 Ma. Moreover, the schematic age trend through the Kenhardt 

and Augrabies region presented in Chapter 6 – Figure 6-22, is seen more 

prominently in the interpolation map. In this region, the zone of ages c. 60 – 100 

Ma trend NW – SE and are constrained by a fairly substantial number of samples.  
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A similar zone of young Mid – Late Cretaceous ages which extend anomalously far 

inland is present in northern Namibia and trends NE-SW. Much like the zone of 

young ages in southwest Africa, Cretaceous ages in Namibia appear to follow the 

major craton bounding structures present in the Namaqua mobile belt. A region 

of young ages in Namibia extended inland through the escarpment following the 

trend of the Damara mobile belt and has been attributed to reactivation of NE-

SW trending faults (Raab et al., 2002; Brown et al., 2014). 

On a continental scale, simple conceptual models of passive margin evolution 

envisage, enhanced (rapid and large magnitude) denudation focused at the 

continental margins and minimal denudation occurs on the continental interior 

(Ollier and Pain, 1997; Gilchrist et al., 1994; Van der Beek et al., 2002). In the 

fission track record, this should result in old pre-rift AFT ages in the continental 

interior having short MTLs while younger syn or post-rift samples on the coastal 

plain have long MTLs. On the MTL interpolation map (Fig. 7-5b) it can be 

observed that in south east Africa and in northern Namibia zones of long MTL 

generally correlate with zones of young AFT ages. In keeping with the expected 

relationship at passive continental margins, most of the zones with short MTLs 

are found in the continental interior and correlate with older AFT ages. On the 

continental interior in south western interior MTLs are mainly 13.5 – 14.5 µm 

indicative of fairly rapid cooling over the region at a time indicated by the AFT 

age. The long wavelength pattern in the South African data set is indeed 

consistent with these simple models. However, the very significant deviations to 

this simple expected pattern, as described above, indicate a more complex 

pattern of post break-up landscape evolution is superimposed on the continental 

scale response. 

7.2.3 South African apatite (U-Th-Sm)/He data 

The coverage of apatite (U-Th-Sm)/He data in southern Africa is severely 

limited. At present only three studies have published AHe results from a small 

number of samples (Flowers and Schoene, 2010; Kounov et al., 2013; Stanley et 

al., 2013) and only one of these have presented the AHe data alongside 

complimentary AFT data from the same samples (Kounov et al., 2013). 
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Additional unpublished data (Beucher and Brown, pers. commun.) were available 

and are included in the regional database. Including all of these data, as well as 

new AHe data presented in this thesis, there are 70 samples which have been 

dated using a multiple single-grain approach. Details on the source of this data 

and the mean AHe age are summarised in Figure 7-6. However, following 

previous discussions on the significance of a mean AHe age, the value of each 

data point should treated with caution and the full single grain age dataset 

should be inspected to investigate how much dispersion is present and what the 

main control on this dispersion may be (e.g. grain size, eU, fragmentation). In all 

of the published studies, only a limited number of single grain ages (n ≤ 5) were 

obtained. These datasets all show variable amounts of dispersion (approximated 

by the standard deviation of the mean AHe age) which can be significant (0 – 

56%). The cause of this dispersion is often attributed to the effects of radiation 

damage based on positive eU correlations but it is often the case that these 

relationship are absent or inverted and, when only a limited number of grains 

are analysed, correlations are almost always poorly defined (e.g. Flowers and 

Schoene, 2010; Stanley et al., 2013). To provide a broad overview of the 

available AHe data, the dispersion on single grain ages is put to one side for 

now, as is the effect of alpha ejection which is influenced by the samples 

cooling history (Meesters and Dunai, 2002a,b; Gautheron et al., 2013). 

Data from the south eastern margin has mainly focussed on the coastal plain and 

escarpment zone in and north of Swaziland. Mean AHe ages range between 50 

and 120 Ma with no clear pattern emerging with distance from the coast or 

elevation. Further east, AHe ages from samples collected closer to the South 

Africa – Botswana border and likewise samples collected near to Johannesburg, 

are older (c. 190 – 300 Ma) than samples seaward of the escarpment. 11 samples 

from this region are from Flowers and Schoene (2010) study of the erosion 

history of the eastern Kaapvaal craton. Thermal history modelling of this data 

predicts rapid cooling initiating at c. 120 – 110 Ma which is attributed to a rapid 

erosional response to regional uplift. By identifying the coincident timing of 

enhanced cooling with kimberlite intrusive activity, emplacement of the 

Etendeka Lavas and continental rifting of the western margin Flowers and 

Schoene, (2010), suggest that uplift is driven by buoyancy in the deep mantle. 
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Figure 7-6: Database of apatite (U-Th)/He data which shows (a) Sources of AHe data (b) 
Mean AHe age. DEM data is a combination of STRM30plus (1km data derived from the SRTM 
3 arc sec (90m) global data) and the ETOPO2 global data (for ocean areas). 
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However, rift-related uplift and erosion would have occurred during the break-

up of Eastern Gondwanaland during the Early – Mid Jurassic. The thermal history 

models are also limited due to the small number of AHe grains. As evidenced by 

the data presented in this study there is a large degree of uncertainty in AHe 

measurements and many similar looking AHe datasets may agree with different 

thermal histories when complimentary AFT data are included. 

Focussing more directly on the relationship between mantle processes and 

tectonic activity, Stanley et al. (2013) present AHe data from kimberlite 

xenoliths and adjacent basement rock. Mean uncorrected AHe ages from four 

samples range from c. 45 – 98 Ma. Thermal history inversion of this data 

interpreted alongside the emplacement age and preserved facies of the sampled 

kimberlites led to the conclusion that kilometre scale erosion of the plateau 

occurred during the period 120 – 90 Ma. The driving mechanism behind uplift is 

again attributed to dynamic processes in the mantle. However, like the data 

from the eastern South African margin from Flowers and Schoene (2010) AFT 

data is not available and this creates uncertainty in the thermal history models 

which have been produced by inverting AHe data only. Additional thermal 

history information may be available in eU – age relationships which are 

suggested by Stanley et al. (2013) to explain single grain age dispersion. 

However, as discussed in Chapter 4 – Section 4.4.5, there still exits considerable 

uncertainty in how radiation damage influences AHe diffusion and therefore how 

inverse modelling approaches treat radiation damage effects over a particular t-

T history. AFT data would provide additional independent information to 

constrain the nature of cooling. An example of this is the AHe data collected 

next to the Markt kimberlite (Stanley et al., 2013). The AHe data is highly 

dispersed (20 – 60%) and is modelled using the radiation damage of Flowers et al. 

(2009) resulting in a model which predicts prolonged residence at temperatures 

between 40 and 50°C until after c. 30 Ma. The implications of this being that up 

to 1.5 km of Late Cenozoic erosion may have occurred at this location. 

Considering the large degree of single age dispersion insights from AFT data or 

modelling radiation damage after Gautheron et al. (2009) may help to support or 

cast doubt on this conclusion. 
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The remaining AHe data obtained by Kounov et al. (2013) have previously been 

discussed in Chapter 6. This data is integrated with AFT and, in short, supports 

erosion driven cooling initiating between 120 and 90 Ma driven by regional uplift 

with less than 1km of erosion occurring over the entire Cenozoic. However, no 

radiation damage model is included in this thermal history inversion despite age 

dispersion in some samples being 20% or greater. 

The detail of Cenozoic erosion across southern Africa remains enigmatic. 

However, most studies that have employed AHe analysis have concluded that 

only minor amounts of Cenozoic erosion (<1km) are possible and only in rare 

circumstances is it greater than 1km. AHe analysis has been more successful, it 

appears, at refining the record of cooling during the time interval of 110 – 90 Ma 

constraining both the large magnitude of cooling and its regional occurrence. 

When there is no AFT data to compliment AHe analysis and the number of single 

grain AHe ages from a particular sample is low, the limitations of thermal history 

inversion should now be apparent. AHe data presented in this thesis corroborates 

the regional nature of cooling during 110 – 90 Ma but it also helps to constrain an 

early Cretaceous cooling episode, extending inland to the Kaapvaal craton, and 

early Cenozoic erosion which locally may exceed 1km. 

7.3 Denudation of the SW African continental margin and 
interior plateau 

To better investigate the spatial and temporal variations in the denudation 

levels across all of southwestern Africa, the AFT data of Brown (1992) were 

inverted using the modelling approach described in Chapter 4 – Section 4.5.1, 

and denudation estimates were derived for each of these samples based on the 

expected thermal history path as described in Chapter 5 – Section 5.6.2. These 

estimates were combined with those made from the new data presented in 

Chapter 5 and Chapter 6 to provide greater coverage of the region. Using all 

these data points, separate interpolation maps were constructed over discrete 

time intervals from 150 Ma until present day (Fig. 7-7). 
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Figure 7-7: Interpolation maps based on denudation estimates extracted from thermal histories models. Estimates were made using a geothermal gradient 
of 25°C/km and the change in temperature of the expected thermal history model over the specified time interval. DEM data is taken from the ETOPO2 
global dataset. The Interpolation was performed using a “spline in tension technique” in GMT (Smith and Wessel, 1990; Wessel et al., 2013). A mask of 
radius 1.5° was used around each data point to hide the interpolation map where it is unconstrained due to an absence of data points. 
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7.3.1 150 – 130 Ma 

Estimates of denudation at this time (Fig. 7-7a) are based on fewer data points 

(n = 62) than subsequent time intervals (n = 119). This is due to almost 50% of 

thermal history models predicting that cooling initiated from temperatures 

greater than c. 110±10°C after 130 Ma. There is also a degree of uncertainty in 

the amount of denudation estimated at this time from samples which are both 

unconstrained prior to the onset of cooling and which begin to cool towards the 

younger end of the time interval (i.e. closer to c. 130 Ma). In these cases, 

cooling of the sample from 150 Ma through temperatures hotter than c. 

110±10°C will be unresolved by the model and as such the amount of denudation 

calculated will be a minimum estimate. Across the entire region an average 

thickness of 700m has been eroded and removed from the surface. Peaks in 

denudation, where magnitudes are between 2 and 3 km, are found in isolated 

patches seaward of the present day western and southern margin escarpments. 

Inland of the Cape Fold Belt levels of denudation progressively decrease from c. 

1.5 to 0.5 km northward. Along much of the western margin denudation amounts 

are between 0.5 and 1 km, In the Namaqualand region however, it is estimated 

that less than 1000m of denudation occurred across the margin but may have 

been > 2km in local zones. However, the low levels of margin denudation may be 

subject to the uncertainties mentioned above. 

7.3.2 130 – 110 Ma 

The average denudation thickness at this time (Fig. 7-7b) is slightly higher than 

the previous interval at c. 800m. At the most southerly point on the map rapid 

cooling recorded in a single sample (sample 8732-36) beginning at c. 130 Ma 

predicts denudation amounts of just less than 4km. Denudation of the 

surrounding area is estimated to be much lower than this (c. 250 – 700 m), 

increasing eastward. Further north, a large region of minimal denudation (< 

500m) is bound to the east and west by regions where denudation exceeds 750m. 

The eastern boundary of this zone of low denudation is fairly abrupt and 

coincides with the presence of the Hartbees River Fault (c.f. Chapter 6 – Figure 

6-3). To the west, the transition from low denudation to high denudation is more 
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gradual. South of the Groothoek Thrust and Buffels River Shear Zone and south 

of the NQH, denudation is estimated to exceed 2km.  

7.3.3 110 – 90 Ma 

The highest magnitudes of average denudation (1.15 km) occur during the 110 – 

90 Ma time interval (Fig. 7-7c). However, this time interval is also characterised 

by much more variability both in the amount of denudation and spatial 

distribution. Low amounts of denudation (< 500m) occur behind the Cape Fold 

Belt and at the coast near to Cape Town. In the southwest Cape region 

denudation greater than 1km is found between NW – SE trending faults. 

Denudation is generally greater in the north of the study area than in the south. 

Denudation is commonly greater than 2 km and in places exceeds 3km. The 

zones of high denudation are found coincident with the NW-SE lineaments of the 

Bitterfontein region, in the heavily dissected NQH basement terrain and between 

the Hartbees and Doringberg faults on the Bushmanland plateau. In the NQH 

region, denudation varies abruptly by a kilometre or two. The lowest levels of 

denudation are found on the elevated plateau near Vaalputs; the low-lying 

coastal plain between Buffelsrivier and Kleinsee; and the valley at Garies.  

7.3.4 90 – 70 Ma 

Following the episode of regionally enhanced denudation during 110 – 90 Ma (Fig. 

7-7d), the average denudation thickness during 90 – 70 Ma falls to c. 800m. 

However, there still exists a high degree of spatial variability in the amount of 

denudation predicted. 1 – 2 km of denudation are still predicted to have 

occurred in fault bounded blocks in the south west; between the Hartbees and 

Doringberg faults in the north east; and in discrete locations in the NQH. While 

denudation in the surrounding area is generally less than 1 km, high levels of 

denudation (1 – 2.5 km) still persist inland of the present day escarpment in the 

north of the study area but do not further south. The highest levels of 

denudation on the continental interior are recorded by two samples (samples S-

20 and SA12-15) on the southwestern side of the Hartbees fault. 
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7.3.5 70 – 50 Ma 

Major kilometre scale denudation across the SW Cape is largely complete by this 

time period (Fig. 7-7e) with a regional average of just under 400m. Areas where 

denudation is higher than the average and exceeds 1km are the southwestern 

side of the Hartbees Fault and within the NW – SE trending faults at Bitterfontein 

and Vanrhynsdorp. Interpolating denudation estimates between these two areas 

defines a NE – SW trending zone of c. 1 km of denudation however this feature is 

based on relatively few data points. Enhanced denudation perpendicular to the 

main structural trend may be an indication that ongoing activity on these 

structures was influential in maintaining erosion during the Late Cretaceous and 

earliest Cenozoic.  

7.3.6 50 – 0 Ma 

From c. 50 Ma until present day, the average denudation across SW Africa is c. 

200m and is fairly uniform across the region (Fig. 7-7f). Only occasional samples 

have thermal histories which suggest kilometre scale erosion in the Cenozoic and 

these mainly occur in the same structural zones that have appeared to control 

the location enhanced denudation during previous time periods. Models which 

suggest significant Cenozoic cooling are very much a minority within the dataset 

and are frequently obtained from samples which have limited track length data, 

single grain AFT ages, AHe data or a combination of all three. As such, any 

interpretations based on the inference of denudation estimated from these 

samples, needs to be done with a great deal of caution. The prevailing scenario 

based on all other available data is that erosion was minimal during the 

Cenozoic; limited to less than 1km. 

7.4 Correlating onshore denudation with offshore 
accumulation: Insights from the Orange Basin 

7.4.1 The Orange Basin 

Offshore basins adjacent to the western and southern margins of southern Africa 

have been extensively studied using seismic reflection, seismic refraction and 



Chapter 7: The post-rift landscape evolution of southwest Africa 

267 

borehole investigations in part due to their hydrocarbon potential (Emery et al., 

1975; Dingle and Hendey, 1984; Brown et al., 1995; Paton et al., 2007; Rouby et 

al., 2009; Kuhlmann et al., 2010; Guillocheau et al., 2012). However, there still 

exists considerable uncertainty surrounding the deep crustal structure of the 

offshore margin (e.g. Hirsch et al., 2009, 2010); the distribution of post-rift 

sediment accumulation over time both along strike of the margin and in distal 

parts of the offshore domain (e.g. Guillocheau et al., 2012); the post-rift 

structural evolution of the margin (e.g. de Vera et al., 2010); and correlations 

between major offshore unconformities and periods of enhanced sediment 

accumulation with regional tectonic processes and denudation of material from 

the adjacent continent (e.g. Rouby et al., 2009). 

The Orange Basin is a major sedimentary basin in the South Atlantic extending 

along the entire western margin of South Africa and southern Namibia (Fig. 7-1). 

Sediments have progressively accumulated in the Orange Basin from the Late 

Jurassic (i.e. onset of rifting) through to present day and cover an area of 

approximately 1.3x105 km2 and achieve a thickness up to 7 – 8 km in the north 

and 3 km in the south (Gerrard and Smith, 1982; Dingle and Hendey, 1984; 

Séranne and Anka, 2005; Paton et al., 2008; de Vera et al., 2010; Kuhlmann et 

al., 2010). These sediments thin out further away (c. 800 – 1000 km) from the 

coastline and overly a 45 km thick pre-rift basement, which decreases to c. 25 

km, 100 km oceanward of the margin (Séranne and Anka, 2005; Rouby et al., 

2009). 

The present day delivery of sediments from the continental interior to the 

Orange Basin is facilitated by the westward flowing Orange River which has a 

catchment area of 952, 200 km2 (Goudie, 2005). While it is suggested that 

westward drainage of Southern Africa has persisted since continental break-up, 

internal reorganization may have altered the position of the major drainage 

outlet over this time (Dingle and Hendey, 1984). 

It is suggested by de Wit (1999) that in the Early Cretaceous two major rivers 

existed: the Kalahari River, which drained southern Botswana and southern 

Namibia and had its outlet in a position similar to that of the present day Orange 
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River or closer to the present day Buffels River (e.g. Stevenson and McMillan, 

2004); and the Karoo River which drained the South African continental interior 

and entered the Atlantic at the mouth of the present day Olifants River. The 

establishment of the present day drainage network is suggested to have occurred 

by the end of the Miocene through progressive capture of smaller tributaries by 

the Orange River (Goudie, 2005). However, it has been suggested that during the 

Cretaceous and Early Cenozoic drainage reorganizations may have been episodic 

and related to periods of tectonic uplift of the continent in the Late Cretaceous 

and Oligocene (Dingle and Hendey, 1984; Partridge and Maud, 1987; Dollar, 

1998; Goudie, 2005). These internal drainage reorganisations would not have 

greatly altered the total volume of sediment delivered to the entire Orange 

Basin (Rouby et al., 2009) but may influence the lag time between onshore 

erosion and offshore accumulation. Sediment would also have been supplied to 

the Orange Basin by smaller rivers along the coast which would have been 

influential in progressively eroding high elevation rift-flanks formed during 

continental break-up (e.g. Gilchrist et al., 1994; Kooi and Beaumont, 1994; Van 

der Beek et al., 2002). Because of the long-term stability of the southwest 

African drainage system, major episodes of denudation across the catchment 

should be reflected in the offshore record as periods of increased sediment 

accumulation (e.g. Gallagher and Brown, 1999b; Tinker et al., 2008b; Rouby et 

al., 2009). 

7.4.2 Stratigraphy of the Orange Basin 

7.4.2.1 Syn-rift sequence (c. 160 – 130 Ma) 

Extension of the western Gondwanan continental lithosphere at c. 160 Ma, 

initiated a complex, multi-phase, period of continental rifting involving thinning 

and subsidence of the lithosphere (Bauer et al., 2000; Eagles, 2007; Paton et al., 

2008; Torsvik et al., 2009; Moulin et al., 2010). Syn-rift volcanic rocks and 

continental sediments were deposited unconformably over pre-Cambrian 

basement in graben and half-graben structures (Brown et al., 1995; McMillan, 

2003; Hirsch et al., 2010; Franke et al., 2010) (Fig. 7-8). Wedges of volcanic 

rocks, possibly interbedded with sedimentary layers, are inferred by the 

presence of seaward dipping reflectors in seismic profiles (e.g. Franke et al., 
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Figure 7-8: Summary of the stratigraphy of the Orange Basin. (a) Stratigraphic column showing major lithological units and timing of major erosional 
unconformities (after Kuhlmann et al., 2010). (b) Offshore cross sections through the Orange Basin (see Figure 7-1 for location) (after Guillocheau et al., 
2012).
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2007; de Vera et al., 2010; Koopmann et al., 2014). These volcanic rocks are 

thought to have been emplaced coevally with the Parana-Etendeka continental 

flood basalts at c. 135 – 130 Ma (Reid et al., 1990; Reid and Rex, 1994) and mark 

the onset of continental break up and sea floor spreading in the South Atlantic 

(Bauer et al., 2000; Hirsch et al., 2010; Koopmann et al., 2014).  

Seismic interpretations and sporadic well data suggest the presence of several 

kilometres of volcanic, volcano-clastic and terrestrial sediments but the total 

volume, distribution and geometry of these deposits is still largely unknown 

(Jackson et al., 2000; Van der Spuy, 2003; Hirsch et al., 2010; Guillocheau et 

al., 2012). The timing for the development of the South Atlantic syn-rift 

succession is from the onset of rifting during the Late Jurassic (Oxfordian, 160 

Ma) until the Late Hauterivian – Early Barremian (c. 130 Ma) which is marked by 

the well-defined break-up unconformity (Braun and Beaumont, 1989; Franke, 

2013). This timing overlaps with the 150 – 130 Ma period of denudation predicted 

from LTT data from adjacent continent. A detailed chronology of the timing of 

deposition and thickness of overlying drift successions based on their 

biostratigraphy is given by McMillan (2003). The following section will discuss the 

Cenozoic - Cretaceous drift succession in terms of four key intervals which 

broadly overlap with the time periods used in discussions of denudation and 

which are bounded by major tectonically controlled unconformities (Broad et 

al., 2006; de Vera et al., 2010; Kuhlmann et al., 2010). 

7.4.2.2 Late Hauterivian/Early Barremian – Early Aptian (c. 130 – 115 Ma) 

The first drift succession forms a ramp-like contact with the underlying syn-rift 

sediments and marks the rift to drift transition (Fig. 7-8) (Broad et al., 2006). 

The sediments are predominantly marine sandstone and shales and fluvial red 

beds (Gerrard and Smith, 1982; Broad et al., 2006; Kuhlmann et al., 2010). The 

succession is estimated to be up to 800 m thick but spatially variable based on 

borehole measurements with isopach maps suggesting a total thickness of up to 

1500 m in the northwest of the basin (McMillan, 2003; Hirsch et al., 2010). The 

presence of a diverse assemblage of marine fossils within these sediments 
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suggests that distal parts of the Orange Basin were submerged under the 

developing Atlantic Ocean (McMillan, 2003). 

7.4.2.3 Early Aptian to Late Cenomanian/Early Turonian (115 – 90 Ma) 

The Early Aptian to Early Turonian sediments are deposited on the 13At1 

unconformity, which defines the transition to full marine conditions of the 

margin, and represents the thickest succession in the Orange Basin (c. 2800m) 

(Fig. 7-8) (Muntingh and Brown, 1993; McMillan, 2003; Hirsch et al., 2010). Major 

progradation of the shelf occurred during the deposition of these sediments 

which was focused on the middle shelf rather than the inner shelf (Dingle and 

Robson, 1992; Brown et al., 1995; Broad et al., 2006; de Vera et al., 2010; 

Hirsch et al., 2010). The sediments are predominantly fluvial-deltaic sandstones 

interbedded with clays and shales (McMillan, 2003). The bulk of this interval 

accumulated through the Albian (c. 115 – 100 Ma) but the maximum thickness of 

c. 2000 – 2200 m is achieved only in the main depocentre of the Orange River 

and thins towards the continental shelf and southern reaches of the basin 

(McMillan, 2003; Hirsch et al., 2010). Up to 600m of Early Cenomanian 

successions are preserved in the middle shelf but erosion has occurred locally on 

the inner and outer shelves. The Late Cenomanian (c. 97.2 – 93.5 Ma) is 

characterised by a period of non-deposition offshore and the development of a 

regionally observed unconformity (15At1) at the base of the Turonian (McMillan, 

2003). 

7.4.2.4 Early Turonian to Late Maastrichtian (c. 90 – 65 Ma) 

Aggradational sequences dominate the sedimentary succession above this 

unconformity (Fig. 7-8) (Broad et al., 2006). However, multiple unconformities 

and occasional prograding sequences suggest fluctuations in sea-level and/or 

uplift of the continent (McMillan, 2003; Séranne and Anka, 2005; de Vera et al., 

2010). Sedimentary successions throughout the Turonian and Coniacian were 

deposited with a relatively uniform thickness (c. 200 – 500m) in the distal outer-

shelf, thinning towards the inner shelf (McMillan, 2003; Hirsch et al., 2010). A 

thicker (1 – 2 km) Santonian to Early Campanian (c. 85 – 75 Ma) succession is 

present in the northern part of the Orange Basin which has experienced listric 
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faulting at the slope break (McMillan, 2003). These units are sandstones, grits, 

and interbedded shales that represent the last fluvially influenced Cretaceous 

sedimentary deposits (McMillan, 2003; Van der Spuy, 2003; Paton et al., 2008). 

During the Maastrichtian thin (>500m) chalks were deposited on the upper slope 

of the margin (McMillan, 2003). Two unconformities in the Maastrichtian mark 

the onset (17At1, 80 Ma) and termination (22At1, 65 Ma) of erosion of the 

proximal parts of the margin which have been attrbituted to uplift of the 

adjacent margin (Hirsch et al., 2010). 

7.4.2.5 Cenozoic sequences (c. 65 – 0 Ma) 

The depocentre shifts seaward during the Cenozoic and accumulates relatively 

limited terrestrial sediments (Fig. 7-8) (Broad et al., 2006). The maximum 

thickness of sediments accumulated during the Cenozoic is c. 1200m over the 

outer shelf and only a few hundred metres on the inner shelf (Hirsch et al., 

2010). Lower Cenozoic sandstones and claystones and Oligocene – Early Miocene 

Carbonate sequences were eroded during periods of intervening sea-level 

regression and/or localised tectonic instability of the margin (Gerrard and Smith, 

1982; McMillan, 2003; Wigley and Compton, 2006; de Vera et al., 2010; McMillan 

et al., 2010). Tectonically driven uplift and subsidence controlling the 

development of erosional unconformities are suggested to have occurred during 

the late Eocene/Early Oligocene, Mid-Miocene and possibly in the Pliocene 

(Partridge and Maud, 1987; McMillan, 2003; Wigley and Compton, 2006).  

However, the thermochronology data presented in this study suggests that 

erosion onshore was relatively limited throughout the Cenozoic (total being 

<1km) and therefore any uplift event must have been of relatively low 

magnitude, or focused within the offshore regions rather than onshore. It should 

also be remembered that Cenozoic successions in the offshore basins are poorly 

understood due to a lack of equivalent onshore deposits, limited sampling from 

oil exploration wells, low sedimentation rates and restricted distribution (Wigley 

and Compton, 2006). 
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7.4.3 Structural features in the Orange Basin 

During continental rifting, the shallow lithosphere thins by extensional faulting 

creating graben and half-graben structures in the pre-rift basement (Ziegler and 

Cloetingh, 2004; Lavier and Manatschal, 2006; Huismans and Beaumont, 2008). 

As discussed in Chapter 2, recent investigations of rifted margins have revealed 

that they experience a complex structural development involving inward 

migration of active faulting towards the main rift axis (e.g. Corti et al., 2013; 

Brune et al., 2014); extensional deformation far afield (c. 300km) from the main 

centre of rifting (Huismans and Beaumont, 2008, 2011; Autin et al., 2013); and 

prolonged or multi-phase rifting histories (Lundin and Doré, 2011; Péron-Pinvidic 

et al., 2013).  In the offshore basin, the presence of overlying extrusive volcanic 

rocks hinders the identification of basement structures (Franke et al., 2013). 

The presence of syn-rift basins are inferred from modern day active rifts such as 

the East African rift zone (Ebinger and Scholz, 2011), analogue (Corti, 2012) and 

numerical modelling (Huismans and Beaumont, 2011) and the deposition of 

siliclastic sediments and volcanics (Gerrard and Smith, 1982; Light et al., 1992; 

Brown et al., 1995; Van der Spuy, 2003; Hirsch et al., 2010). 

Within the drift successions gravitational tectonics is frequently described 

involving slumping driven extension in the proximal margin and toe-thrusting in 

the outer-shelf (Brown et al., 1995; Paton et al., 2008; de Vera et al., 2010, 

Hirsch et al., 2010). de Vera et al. (2010) describe in detail the 145 km long 

gravity driven system across the Orange Basin which occurs in the Upper Aptian – 

Santonian (c. 115 – 83 Ma) sequence. This structural system is comprised of three 

domains: (i) a 90 km long extensional domain up-dip of the major basin slope 

characterised by listric faults dipping east; (ii) a 10 km long transitional domain 

with both extensional and contractional structures; and (iii) a 55km long 

contractional domain with low-angle thrusts and folds dipping landward. There is 

a lack of correlation of these structures between adjacent seismic lines 

suggesting that they terminate abruptly along strike of the margin (Brown et al., 

1995; de Vera et al., 2010). The major zone of extension and compression has a 

basal detachment in the marine shales of the Turonian-Cenomanian boundary 

(Muntingh and Brown, 1993; Séranne and Anka, 2005; de Vera et al., 2010). 
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Normal fault displacement involves steep vertical displacement and rotation of 

fault block promoting growth strata up to 2.5km thick to be deposited. Lower 

amounts of vertical displacement and structural relief (<1km) are observed on 

thrust faults in the compressional domain (de Vera et al., 2010). 

The development of growth strata and stratigraphic relationships led de Vera et 

al. (2010) to conclude that gravitational tectonics were periodically active in 

short-lived episodes. The wider mechanisms which trigger movement on these 

faults are still uncertain and has been related to the influx of high volumes of 

sediment to the basin (Jungslagger, 1999; Paton et al., 2007; Kuhlmann et al., 

2010), basin inversion and the development of enhanced structural relief; or 

margin uplift (Séranne and Anka, 2005; Paton et al., 2008; de Vera et al., 2010). 

The timing of gravitational failure episodes (c. 100 – 80 Ma) overlaps with the 

timing of major denudation of the continental margin inferred from low 

temperature thermochronology. This period of denudation is interpreted here to 

be structurally controlled and involve the removal of several kilometres of 

material from the continental margin and interior. A combination of each of the 

three possible mechanisms triggering gravity sliding mentioned above may have 

occurred either in tandem or over different periods during the 100 – 80 Ma 

interval. Moreover, the regional in-plane, predominantly extensional, stress field 

across the margin at this time (e.g.  Bird et al., 2006; Andreoli et al., 2009; Viola 

et al., 2012; Salomon et al., 2014) may have made the offshore sequences 

susceptible to faulting. 

Towards the coast, faults in the extensional domain extend into and offset 

Cenozoic sequences suggesting later reactivation of pre-existing earlier faults 

(de Vera et al., 2010).  A discrete shallower system of gravitational structures is 

also observed in Cenozoic successions, detaching at the Late Maastrichtian – 

Early Cenozoic unconformity (Jungslager, 1999; Séranne and Anka, 2005). 

Further evidence for later Cenozoic (neotectonic) fault activity comes from the 

identification of inversion structures on normal faults and presence and 

alignment of mud volcanoes in the Orange Basin (Ben-Avraham et al., 2002; 

Viola et al., 2005). 
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7.4.4 Linking onshore denudation with offshore accumulation 

The timing and magnitude of offshore sediment accumulation has been used in 

previous studies to approximate the amount of material removed from the 

adjacent continental margin (e.g. Emery et al., 1975; Dingle et al., 1983; Rust 

and Summerfield, 1990; Rouby et al., 2009). However, many of these studies 

focused on sedimentation in the proximal part of the margin over broad time 

intervals. A recent study into the development of the offshore basin along the 

entire southwestern African margin, south of the Walvis Ridge has refined the 

major timings and magnitudes of sediment accumulation volumes and rates since 

150 Ma (Guillocheau et al., 2012). This study also estimates the amount of 

sediments in the poorly constrained distal parts of the margin. The results from 

this study are compared with the denudation record estimated from LTT data 

presented in this thesis. The chart of total volume accumulation reflects the 

entire southwestern margin offshore basin and therefore is subject to 

uncertainties in the spatial distribution of sediments over time (Fig. 7-9a). Two 

charts of sedimentation rate correspond to the lines of section shown on Figure 

7-8 and provide a more detailed account of the region of the Orange Basin 

relevant to the study area onshore (Fig. 7-9b). 

High sediment volumes (c. 1x1015 km3) are calculated for the syn-rift period until 

c. 130 Ma, with high sedimentation rates recorded in the Orange Basin. The 

amount of denudation and estimated denudation rate over the syn-rift period is 

consistent with the volumes and rates of offshore accumulation at this time (Fig. 

7-9c and 7-9d). However, correlating both sources of data is subject to 

uncertainty inherited within them. The offshore record of syn-rift sediment 

accumulation is often difficult to resolve due to the presence of extrusive 

volcanics masking underlying sedimentary and structural features in seismic 

profiles. Moreover, sediments interbedded with volcanics may be under-

estimated during seismic interpretation. The denudation record is uncertain 

because denudation driving sample cooling through temperatures greater than 

110°C prior to, or during, the 150 – 130 Ma interval is not quantified but would 

contribute to offshore sedimentation. Indeed some samples suggest that cooling 

has been ongoing since c. 170 – 160 Ma (e.g. JN2, FS-1605, KC 1/70). 
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Figure 7-9: Histograms summarising the offshore clastic sediment accumulation history in the Orange Basin and the denudation history of the SW African 
margin. Total Accumulated Volume histogram (after Guillocheau et al., 2012) is based on five margin perpendicular sections from the Walvis Ridge to SW 
Cape (including OB Section 1 and OB Section 2) which are extrapolated linearly and interpolated laterally. Sedimentation Rates (after Guillcoheau et al., 
2012) for OB Section 1 and 2 correspond to Section 1 and Section 2 from Figure 7-1 and Figure 7-8. Red lines indicate the uncertainties on both 
accumulated volume and sedimentation rate estimates which propagate from uncertainties in interpolating and extrapolating the sections and from 
correcting sediment volumes for carbonate fraction. Denudation thicknesses are averages of all calculated values during each time interval. Denudation 
rate is calculated by the denudation thickness divided by the length of the time interval. Red lines are the uncertainty on denudation estimates and reflect 
1σ std. dev. Light blue and dark blue lines are the minimum and maximum denudation estimate, respectively, recorded by a sample during a particular time 
interval.
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Between c. 125 – 120 Ma there is a moderate decrease in sedimentation rate in 

the Orange Basin which persists for c. 15 Myr. The total sediment volume across 

the entire margin falls dramatically over this time but in two stages: first to c. 

3x1014 km3 through the Barremian and Aptian (130 - 112 Ma) and then to less 

than 1x1014 km3 in the lower Albian (112 – 108 Ma). This period of decreasing 

sedimentation overlaps with the 130 – 110 Ma period of onshore denudation. 

Average denudation at this time is approximately the same as the previous 

interval but in reality may be considerably less than the amount of denudation 

which has occurred during the syn-rift phase that is simply unconstrained in the 

current thermochronology data. The estimates of denudation thickness and rates 

are therefore consistent with a decrease in sedimentation volume and rate.  

During the Albian through to lower Campanian (c. 110 – 80 Ma) sedimentation 

rates progressively increase in the Orange Basin to near syn-rift levels before 

decreasing again through the Upper Campanian and Maastrichtian (c. 80 – 70 

Ma). Sediment volumes across the margin increase almost exponentially for the 

Middle Albian to Upper Maastrichtian (c. 110 – 70 Ma). Average denudation is 

greatest over 110 – 90 Ma and is still moderately high through 90 – 70 Ma. 

Average denudation during the 110 – 90 Ma interval is also associated with a 

large standard deviation; high maximum denudation value and zero minimum 

denudation value. This is a reflection of the high spatial variability of the 

intensity of denudation across the margin which is here interpreted as being 

controlled by structural reactivation across discrete fault zones and blocks. 

Tectonic reactivation of major structures may have an interesting but as yet 

unclear relationship with regional tectonic uplift during this relatively short time 

interval. For example, fault block offsets may have occurred during the earliest 

drift phase inducing localised erosion but also disrupting the transportation of 

material to the offshore basin. Subsequent regional uplift of the entire SW 

margin and continental interior, possibly driven by dynamic uplift arising from 

deep mantle flow, with possible westward tilting (e.g. Partridge and Maud, 

1987; McMillan, 2003; Braun et al., 2014a) would then have promoted enhanced 

sedimentation during the Late Cretaceous. The small volumes of sediment which 

accumulated during the Albian (c. 112 - 99 Ma) and Cenomanian (99 – 93.5 Ma) 
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may also reflect erosion of these sediments from the proximal margin and 

redistribution to distal parts in the Late Cretaceous (McMillan, 2003).  

Extremely low sediment volumes are calculated for the entire Cenozoic and 

reflect low rates of sediment accumulation in the Orange over this time. 

Average denudation rate over the three Cenozoic time intervals discussed here 

(70 – 50 Ma; 50 – 30 Ma; and 30 – 0 Ma) progressively decreases, however local 

maximum values can still remain high. However, the detail of the offshore 

stratigraphic record over this time is poorly documented and, except for a 

handful of samples, no major Cenozoic cooling (particularly late Cenozoic 

cooling), is observed in thermal history models.  

The correlation of offshore sediment accumulation and onshore denudation can 

only be used as a general overview of the relationship between erosion and 

sedimentation (e.g. Rouby et al., 2009). This is because the offshore domain and 

corresponding erosion domain (i.e. coverage of data points) is not entirely 

complimentary. For example, estimates of total accumulated volumes in the 

Orange Basin include sediment thickness observed further north along the 

Namibian margin and therefore may smooth out the absence or variable 

thickness of sedimentary sequences which may have significance in terms of the 

evolution of the margin (e.g. McMillan, 2003). Another example is that the 

onshore data set includes samples from the southern margin which may have 

recorded the removal of material that has been deposited in the southern 

Outeniqua Basin (Tinker et al., 2008a, b). However, the timing of peak sediment 

volume accumulation and sedimentation rate is comparable to that observed in 

the Orange Basin (Tinker et al., 2008b). Two peaks in volume accumulation are 

observed at c 120 – 140 Ma and c. 70 – 95 Ma with an intervening period of low 

accumulation and low sedimentation rates. This period of low accumulation 

during the Cretaceous still greatly exceeds that observed in the Cenozoic further 

supporting limited regional denudation during the Cenozoic. 
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7.5 The Cenozoic evolution of SW Africa 

7.5.1 Cenozoic erosion as permitted by low temperature 
thermochronometry and cosmogenic nuclide analyses 

The current AFT and AHe dataset largely supports the view that major cooling of 

the upper crust occurred during the Cretaceous, with most samples reaching 

temperatures equal to, or below, c. 60°C prior to the Cenozoic. At low 

temperatures such as these the AFT thermochronometer lacks sensitivity 

because rates of fission track annealing at temperatures lower than c. 60°C is 

exponentially reduced (Gleadow and Duddy, 1981; Gleadow et al., 1986b; 

Wagner et al., 1989; Gleadow and Fitzgerald, 1987). Studies which have 

combined AHe and AFT analysis potentially extend the temperature sensitivity of 

the dating approach to c. 35 - 40°C. However, as has been previously discussed, 

the temperature sensitivity of AHe analysis increases for larger grain sizes and 

greater amounts of accumulated radiation damage. Radiation damage has likely 

influenced AHe closure temperatures in samples analysed from the NQH study 

due to high concentrations of U and Th. For this reason, denudation throughout 

the Cenozoic remains poorly constrained across southern Africa. Despite these 

uncertainties, thermal history models inverting AFT and/or AHe data have been 

used to estimate the amounts and rates of Cenozoic denudation (Table 7-1). 

These studies generally conclude that Cenozoic denudation is limited to less 

than 1.5 km and, in many cases; hundreds of metres rather than kilometres of 

material have been removed over the last 30 – 50 Myr. The rate at which 

denudation has occurred as inferred from these models is at most 40 m/Myr but 

typically has been lower than 5 m/Myr. 

Cosmogenic nuclide analysis involves the accumulation of daughter nuclides over 

time generated by the interaction of cosmic radiation and rock-forming minerals 

(Lal, 1991). As incoming cosmogenic particles cannot penetrate beyond the 

upper few metres of the Earth‘s surface, in-situ dating has been effectively used 

to constrain recent (c. 103 – 107 years) rates of erosion across South Africa 

(Fleming et al., 1999; Cockburn et al., 2000; Kounov et al., 2007; Decker et al., 

2011; Erlanger et al., 2012; Scharf et al., 2013). These analyses are consistent 

with the main conclusions drawn from AFT and AHe analysis; that depths of  
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Method Source Region
Average Denudation 

Rate (m/Myr)

Time 

Interval

Brown (1992) Namaqualand & SW Cape 8 70 - 0 Myr

Raab et al. (2002, 2005) Northern Namibia 1.5 - 30 52 - 0 Myr

Cockburn et al. (2000) Northern Namibia 10 - 40 150 - 36 Myr

Brown et al. (2002) SE Africa (Drakensberg) 10 64 - 0 Myr

Kounov et al. (2009) Namaqualand & Calvinia 9.8 - 37.3 45 - 0 Myr

Brown et al. (2013) Southern Namibia 15 - 25 65 - 0 Myr

M. Wildman (This Study)
Namaqualand & Bushmanland 

Plateau
15 70 - 0 Myr

Kounov et al., (2013)
Augrabies Falls, South Africa & 

Fish River Canyon, Namibia
6 - 18.7 60 - 0 Myr

Stanley et al. (2013) Western Karoo Basin 1 - 17 60 - 0 Myr

Flowers and Schoene (2010) Eastern Kaapvaal Craton 14 65 - 0 Myr

Fleming et al. (1999) SE Africa (Drakensberg Plateau) 1.4 - 10 1 - 0 Myr

Fleming et al. (1999)
SE Africa (Drakensberg 

escarpment)
26.9 - 62.3 1 - 0 Myr

Cockburn et al. (2000) Northern Namibia 0.4 - 10 36 - 0 Myr

Bierman and Caffee (2001) Northern Namibia 5 - 16 3 - 0 Myr

Van der Wateren and Dunai (2001)
Northern Namibia (Central 

Namib inselbergs)
0.5 - 1 15 - 0 Myr

Van der Wateren and Dunai, (2001)
Northern Namibia (Kuiseb River 

Valley)
40 - 160 5 - 0 Myr

Bierman et al. (2014) Cape Fold Belt 3.4 - 6 3 - 0 Myr

Codilean et al. (2008, 2014) Northern Central Namibia 8 - 18 3 - 0 Myr

Decker et al. (2011)
Cape Fold Belt, SE Karoo 

Basin, NE KwaZulu-Natal
0.5 - 4 1 - 0 Myr

Erlanger et al. (2012) SE Africa (Port Elizabeth) 15 - 17 4 - 0 Myr

Kounov et al. (2007) Calvinia and Cape Fold Belt 1 - 3 1 - 0 Myr

Scharf et al. (2013) Cape Fold Belt 2 - 8 1 - 0 Myr
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Table 7-1: Denudation rates for southern Africa based on apatite fission track, apatite (U-Th-
Sm)/He and cosmogenic nuclide studies. 

erosion have been relatively minor during the Cenozoic. Present day erosion 

rates are estimated to be as low as 0.4 m/Myr (Cockburn et al., 2000; Decker et 

al., 2011) and over the recent geological past (c. < 30 – 40 Ma)  likely been less 

than 20 m/Myr. Extrapolating these values over the entire Cenozoic (c. 65 Myr) 

yields similar estimates (c. 1 – 1.5 km) of total vertical section being removed as 

obtained from AFT and AHe analysis. Where these studies have revealed much 
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higher rates of erosion (e.g. Fleming et al., 1999: 26.9 - 62.3 m/Myr; Van der 

Wateren and Dunai, 2001: 40 – 160 m/Myr) they have reflected incision of 

individual rivers channels or the escarpment face as opposed to the erosion of 

interfluves and flat surfaces. 

7.5.2 Late Cretaceous to Cenozoic palaeontology 

Geological markers of Late Cretaceous or Cenozoic age are extremely rare across 

southwestern Africa and therefore resolving the geological history over this time 

period is extremely difficult. Fossil flora and fauna in southwestern African are 

found in thin Tertiary cover sediments; lacustrine sediments in palaeo-crater- 

lakes; and on the inner continental shelf. However, the fossil record is rather 

poor in terms of the abundance of preserved material and in its genealogical 

diversity which can be used to define a relative chronology (Rage et al., 2013). 

For this reason a single isolated and poorly dated fossil should not be used to 

infer a regional environment but can be used as an indicator of the local setting 

which can be used to provide some constraint to geological models. However, 

the fossil data set when viewed as a whole can be provide crucial insights into 

the erosion history of the region and the environment which prevailed at the 

time of fossil deposition (Fig. 7-10). 

Cretaceous fauna is extremely rare and found only in three localities in the 

region of interest. Two of these sites, the Arnot pipe at Banke and the Stompoor 

pipe near Marydale have been briefly discussed in Chapter 5 and 6, respectively, 

as additional constraints for thermal history models. The third fossil site is 

located at Kangnas farm on the Koa River where dinosaur teeth and bones 

assigned to the Early Cretaceous (Haughton, 1915; Cooper, 1985) were 

described. These specimens include species of Pipidae (frogs) which were 

described by Haughton (1931) and Estes (1977) from the lacustrine mudstones in 

the Arnot pipe and by Smith (1986) and Trueb et al. (2005) in similar crater-lake 

sedimentary succession at Stompoor. The common occurrence of angiosperm 

pollen (Kirchhheimer, 1934), fossil wood (Adamson, 1931) and fossil leaves 

(Rennie, 1931) at both localities developed in a similar manner (Smith, 1986). 

Haughton (1931) initially assigned a speculative Cretaceous – early Tertiary age 
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Figure 7-10: Map collating various datasets used to infer Cenozoic landscape development in SW Africa. These datasets include: Palaeontological 
evidence, cosmogenic nuclide studies (c.f. Table 7-1), geological units (c.f. Chapter 5 – Section 5.2.7) and erosion surfaces (after Partridge, 1998). 
References for cosmogenic nuclide studies are in the figure legend. Other references are: 1 = Stromer, 1926; 2 = Mein and Pickford, 2008; 3 = de Broin, 
2003; 4 = Hopwood, 1929; 5 = Haughton, 1930; 6 = Mein and Senut, 2003; 7 = Rage et al., 2013; 8 = Pickford, 2008; 9 = Pickford and Mein, 2011; 10 = Corbett, 
1989; 11 = Guerin, 2000; 12 = Rage, 2003; 13 = Pickford, 2005; 14 = Corvinus and Hendey, 1978; 15 = Bamford and Corbett, 1994; 16 = Bamford and Corbett, 
1995; 17 = Bamford and Stevenson, 2002; 18 = Cooke, 1968; 19 = Cooper, 1985; 20 = Pickford et al., 1999; 21 = Senut et al., 1997; 22 = Tankard, 1974; 23 = 
Haughton, 1931; 24 = Scholtz, 1985; 25 = Estes, 1977; 26 = Adamson, 1931; 27 = Smith, 1986; 28 = Trueb et al., 2005; 29 = Roberts et al., 2011; 30 = Hendey, 
1970; 31 = Coetzee and Rodgers, 1982; 32 = Coetzee and Muller, 1984; 33 = Coetzee and Praglowski, 1986; 34 = Helgren and Butzer, 1977; 35 = Partridge, 
1998. 
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to the Pipidae and the host sediments. This age has been better constraind by 

radiometric dating of the underlying kimberlite and surrounding intrusions giving 

ages of c. 50 – 70 Ma (Davis, 1977; Moore and Verwoerd, 1975). The sediments in 

the surface depression at the intrusion are suggested to have been deposited 

fairly soon after emplacement (c. 0.3 – 4 Myr) (Scholtz et al., 1985) and 

therefore a Late Cretaceous – Early Cenozoic age for the lacustrine sediments 

and fossils is probable. The preservation of these fossils and the crater-lake 

sediments implies that the present day surface was established in the Late 

Cretaceous – Early Cenozoic with only very minor amounts of erosion since this 

time. 

In-situ fossil wood in Pleistocene deposits were collected from the Namaqualand 

coastline and offshore in Late Cretaceous sediments on the inner continental 

shelf have been dated as Aptian to Coniacian in age (Bamford and Corbett, 1994, 

1995; Bamford, 2000, 2004; Bamford and Stevenson, 2002). The presence of this 

fossil wood is suggested as evidence for an extensive forest on the palaeo-

coastal plain which extended along the southern Namibian and western South 

African margin (Bamford and Corbett, 1994, 1995; Bamford, 2000, 2004; 

Bamford and Stevenson, 2002). Late Cretaceous palynological data from the 

same species of plant was identified in an offshore borehole 150km southwest of 

Cape Town (McLachlan, 1974) and in the lacustrine sediments of the Arnot pipe 

(Scholtz et al., 1985).  

The early to mid Cenozoic fossil record is similarly poor; however recent fossil 

specimens have been obtained from the southwest Namibia margin. Vertebrate 

faunas, terrestrial and marine gastropods, terrestrial molluscs and plants have 

been identified in small limestone outcrops (Pickford et al., 2008 a, b). Rage et 

al. (2013) also reported amphibians and squamates (lizards and snakes) from the 

same localities. These studies concluded that the fossils are Eocene in age and 

are representative of a terrestrial environment with a long-lived freshwater 

source (Pickford et al., 2008 a, b; Rage et al., 2013). 

A larger number of Late Cenozoic (post-Oligocene) fossils have been recovered 

from the coastal margin and continental interior. In southern Namibia early 
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Miocene to Pliocene abundant Pedetid (rodent) (Pickford and Mein, 2011) and 

Chelonian (turtle) (de Broin, 2003) fossils have been obtained suggesting a 

terrestrial environment with local freshwater sources or one close to the 

shoreline. On the Namaqualand coast, Ceratotherium (Rhino) (Tankard and 

Rodgers, 1978) and Hominoid (Gorilla) teeth have been used as evidence for a 

well-vegetated sub-tropical environment (Senut et al., 1997). The presence of 

shark teeth along the margin suggests that the coastline was close to its present 

day location in the Miocene (Senut et al., 1997). This environment is also 

postulated for the SW Cape with an assemblage of vertebrate faunas of Miocene 

to Pleistocene age being identified at Langebaanweg near Saldhana combined 

with palynological data from area (Coetzee and Rodgers, 1982; Coetzee and 

Muller, 1984; Coetzee and Praglowski, 1986). Evidence of larger mammals 

(Pickford, 2005), chelonians (de Broin, 2003) and squamates (Rage, 2003) of a 

similar age were identified at Arrisdrift on the Orange River and slightly younger 

(Pliocene) Hipparion (Horse) teeth at Areb (Pickford et al., 1999). This supports 

an environment which has been relatively stable in terms of erosion and the 

development of topography since the Miocene with limited erosion occurring 

across Southern Namibia and southwestern Africa. 

7.5.3 The Cenozoic geomorphological development of 
southwestern Africa 

It is postulated here that much of the southwest African topography was created 

during the Cretaceous by a combination of syn-rift uplift of the continental 

margin, post-rift fault reactivation of pre-existing structures and possibly 

regional dynamic uplift. While insights from low temperature thermochronology 

and cosmogenic nuclide analysis do not imply significant rates or magnitudes of 

Cenozoic erosion, several geomorphological studies have advocated that the 

present day topography of South Africa is a young feature formed by a Cenozoic 

phase (or phases) of uplift and erosion (e.g. Partridge and Maud, 1987; Burke, 

1996; Burke and Gunnel, 2008; Roberts and White, 2010). The notion that 

erosion or planation surfaces (previously discussed in Chapter 3 – Section 3.4) 

can be identified, assigned an age, correlated and mapped regionally has been a 

common but controversial (Chorley, 1965; Phillips, 2002) approach to resolving 
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large scale geomorphological development of the African continent. As stated by 

Burke and Gunnel (2008) resolving Africa‘s geomorphological history through the 

use of erosion surfaces is a “well-trodden and treacherous path”. However, 

these authors still maintain that the approach has merit and strongly support the 

existence of the infamous African Surface. 

Erosion surfaces are formed by the destruction of relief over time to a regional 

base level, typically but not exclusively sea level, leading to the development of 

a low-lying, low-relief planation surface, or ―peneplain‖ (Partridge and Maud, 

1987; Phillips, 2002; Watchman and Twidale, 2002; Burke and Gunnel, 2008). 

The development of such a surface is possible if tectonic stability persists over 

long timescales (Palmquist, 1975; Grimaud et al., 2014). If these surfaces are 

subsequently uplifted and dissected by incising rivers, the remnant surfaces (i.e. 

their present day form) can be correlated based their topographic concordance 

or similar weathering profiles (e.g. Partridge and Maud, 1987; Ollier and Pain, 

2000; Burke and Gunnel, 2008; Japsen et al., 2012; Green et al., 2013; Lidmar-

Bergström et al., 2013). By constraining an upper and lower limit on the 

development of this and successive surfaces using sedimentary or volcanic 

deposits then the timing of erosion, and intervening phases of uplift can be 

inferred. 

The discussion on South African erosion surfaces has, for over half a century, 

been a source of much debate (e.g. Dixey, 1955; King, 1955; Wellington, 1955; 

de Swardt and Bennet, 1974; Ollier and Marker, 1985; Partridge and Maud, 

1987), criticism (Van der Beek et al., 2002; Brown et al., 2002) and confusion 

(Burke and Gunnel, 2008). The occurrence and significance of erosion surfaces 

has been continually scrutinised due to advancements in our knowledge of plate 

tectonics, isostasy and mantle dynamics; the development of dating techniques 

to constrain the timing, magnitude and rates of erosion and; the surfaces 

themselves being reclassified and redefined to fit regional models of uplift and 

erosion (see Burke and Gunnel, 2008 pp. 13 – 19). The most recent synopses of 

South African erosion surfaces have been provided by Burke and Gunnel (2008) 

and Partridge et al. (2006), which summarises the work of Partridge and Maud 

(1987), Partridge (1998) and other works by these authors (Fig. 7-10). These 
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works describe the regionally extensive African erosion surface as a continent 

wide composite surface which developed over a time period of c. 150 – 20 Ma 

(Partridge and Maud, 1987) or 130 – 30 Ma (Burke and Gunnel, 2008). It is 

described as a composite surface as its development involved the amalgamation 

of smaller erosion surfaces which evolved separately due to local climatic or 

tectonic factors (Burke and Gunnel, 2008). Burke (1996) and Burke and Gunnel 

(2008) suggest that the African Surface was a regionally low-lying surface which 

was uplifted and incised due to mantle driven vertical uplift at c. 30 Ma. 

Partridge and Maud, (1987) alternatively suggest that several topographic 

features remained above the developing African Surface which was uplifted in 

the Early Miocene. They also advocate the existence of the undulating Post-

African Surface I and II erosion surfaces; attributed to renewed river incision in 

response to Early Miocene uplift (150 – 300m) and Pliocene (100 – 900 m) uplift, 

with greater uplift on the eastern coast relative to the west.  

The use of erosion surfaces to infer cyclic episodes of uplift and erosion is 

fraught with uncertainty concerning many aspects from the correlation of 

remnant surfaces (Summerfield, 1985; Van der Beek et al., 2002; Burke and 

Gunnel, 2008) to the more fundamental issue of whether or not it is plausible 

that an evolving landscape is permitted the time and tectonic stability to 

become a peneplain (e.g. Phillips, 2002). The uncertainty in topographic 

correlation of erosion surfaces induced by local climatic, tectonic and 

lithological factors was somewhat circumvented by both Burke and Gunnel 

(2008) and Partridge and Maud (1987) in their ―composite‖ description of the 

African Surface. However, the development of local planar surfaces because of 

such environmental factors or as a result of marine planation, etchplanation or 

lateral stream erosion provides alternative explanations to the dissection of 

regionally extensive peneplanes (Phillips, 2002). As stated above the 

development of a large scale planation surface is dependent on long-periods of 

tectonic stability.  

Numerical modelling has suggested that tectonic stability maintained over 50 

Myr coupled with a sea level rise of at least 250m over this time would be 

required to form a peneplane (Pitman and Golovchenko, 1991). Discussions in 
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previous chapters highlight the important role structural reactivation and 

dynamic uplift may have had over South Africa‘s post-rift evolution. This 

combined with on-going isostatic fluctuations to onshore denudation and 

offshore accumulation, eusatic sea-level variations and climate shifts throughout 

the Cretaceous and Cenozoic suggests that it is unlikely that southern Africa has 

been afforded the stability over time to develop a single, extensive, flat and 

low-lying surface. 

Recent numerical approaches have attempted to unravel the uplift history of 

Africa by inverting the physiography of drainage networks over time (e.g. 

Roberts and White, 2010; Paul et al., 2014). In this way, Africa‘s present day 

topography is suggested to have evolved during the Cenozoic, predominantly 

after c. 30 Ma. The physical model used in these studies is subject to important 

assumptions and uncertainties which are largely only qualitatively constrained. 

The underlying assumption is that when a tectonically stable and lithologically 

homogenous setting is uplifted dendritic drainage networks form and erode the 

surface to sea level (Roberts and White, 2010). In order to use present day 

drainage networks to infer the uplift, the extent to which erosion has modified 

the original form of the river profile needs to be constrained. However, this 

component is notoriously difficult to define due to variations in lithology, 

channel width, climate, discharge and upstream drainage area over time and 

space (Hovius, 1998; Whipple and Tucker, 1999; Peizhen et al., 2001; Sklar and 

Dietrich, 2001; Brocard and van der Beek, 2006). These uncertainties are 

addressed in these studies through forward modelling of synthetic river profiles 

or through mathematical inference to conclude that uplift is a primary control 

on the form of river profiles (Roberts and White, 2010; Paul et al., 2014). A 

more problematic assumption is that which is made on the initial conditions of 

the model: that Africa was a low-lying surface with no notable topography (i.e. 

peneplain) in the Early Cenozoic. This assumption is largely based on the work, 

discussed above, by Burke and Gunnel (2008) and Partridge and Maud (1987) and 

is therefore subject to the same degree of uncertainty. 
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7.6 Dynamic topography 

Thermochronology and cosmogenic nuclide dating are used to investigate the 

evolution of landscapes by inferring the timing and magnitude of erosion from 

cooling histories cosmogenic nuclide concentrations; while many 

geomorphological studies use elevated landforms such as erosion surfaces, river 

terraces and raised beaches to infer timing and magnitudes of uplift. While 

enhanced erosion is often a direct consequence of a period of uplift (moderated 

by lithology and climate) identifying the mechanism which has driven uplift is 

more difficult, and relies on our understanding of the regional tectonic history of 

the study area. It is also important to note here that the link between uplift and 

erosion is a complex one, and it is not inevitable that a landscape experiences 

an immediate erosional response to an increase in elevation. The high Tibetan 

plateau, for example, is at a mean elevation of 5km and yet large parts of it are 

characterised by internal drainage and sediment accumulation, not erosion (e.g. 

Summerfield and Brown, 1998). The key to establishing a direct erosional 

response to regional uplift seems to require that major catchments are 

established, or evolve quickly, and scale spatially to the region of uplifted 

terrain (e.g. Braun et al., 2013b). In such cases the large size of the catchments 

compensates for the moderate slope increase in the channel and ensures that a 

significant erosional response is temporally and spatially correlated with the 

phase of uplift. 

In South Africa, uplift of continental margins is believed to have occurred during 

lithospheric thinning and mantle upwelling during the breakup of Gondwana 

(Braun and Beaumont, 1989; Gilchrist and Summerfield, 1991; Van der Beek et 

al., 2002; Séranne and Anka, 2005). Uplift is suggested to have been maintained 

following continental break-up by the isostatic response to the erosion of rift-

related topography (Tucker and Slingerland, 1994; Rouby et al., 2013) with 

additional support provide by underplating beneath the margin (Hirsch et al., 

2010). However, discussion of viable mechanisms for regional uplift during South 

Africa‘s post-rift phase, particularly during the Cenozoic, have been more 

speculative or neglected entirely (King, 1955; Partridge and Maud, 1987; Moore 

et al., 2009).  
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Since the observation of a major zone a low seismic velocity beneath South 

Africa and the interpretation of this as an upwelling of hot buoyant material 

from the lower mantle, vertical stresses imposed at the base of the lithosphere 

has provided a convenient mechanism for generating long wavelength uplift (i.e. 

dynamic uplift) (Nyblade and Robinson, 1994; Lithgow-Bertelloni and Silver, 

1998; Gurnis et al., 2000; Moucha et al., 2008; Forte et al., 2010a). In the past, 

mantle driven dynamic uplift has been used as a mechanism for explaining uplift 

in the Mid-Cretaceous (c. 115 – 90 Ma, Kounov et al., 2009); Late Cretaceous (c. 

90 – 70 Ma, Braun et al., 2014a); Oligocene (c. 30 Ma, Burke, 1996; Burke and 

Gunnel, 2008) or Pliocene (c. 5 – 3 Ma, Partridge, 1998). Geophysicists debate 

the origin of the upwelling both in terms of its timing and source in the mantle 

and its longevity over geological timescales. The vertical stresses associated 

with dynamic uplift have been ascribed to convective flow in the lower mantle 

(Lithgow-Bertelloni and Silver, 1998; Ritsema et al., 1999) and driven by positive 

buoyancy in the mid-lower mantle beneath southern Africa (Gurnis et al., 2000).  

Supporters of a youthful South African topography have suggested that the 

topography has been carved following Africa becoming stationary over a long-

lived lower mantle superplume during the early Cenozoic (c. 60 – 30 Ma) (Burke 

and Wilson, 1972; Scotese et al., 1988; Garnero et al., 2007). Local upwellings in 

the upper mantle are proposed to have created a ―basin and swell‖ topography 

over Africa since the late Eocene (Burke and Gunnel, 2008; Roberts and White, 

2010; Paul et al., 2014). 

LTT and CN dating can provide constraints on erosion while surface uplift can 

only be inferred as a mechanism for triggering these erosion events. This 

therefore prompts the question: Does dynamic uplift produce an erosional 

response on the surface? For LTT to be effective this erosion would have to be of 

the order of several kilometres in magnitude. On one hand, because of the long 

wavelength, low amplitude and slow rate of dynamic uplift it should not trigger 

a large erosional response (Braun, 2010; Braun et al., 2013b). On the other hand, 

recent modelling by Braun et al., (2013b) has shown that dynamic topography 

may be efficiently eroded if uplift significantly increases the drainage areas, as 

this parameter has a control over fluvial erosion rate. These insights are only 
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obtained, however, when an initially flat topography is assumed therefore 

neglecting the effect of a pre-existing topographic relief and drainage network 

(Braun et al., 2013b). Estimates of erosion of dynamic topography are also 

severely influenced by the erosional parameter in the stream power law (see 

equation below) which varies depending on climate and lithology and are 

therefore poorly constrained over space and time: 

        

Where e = erosion rate (m/yr), A = upstream drainage area (m2), S = gradient of 

the channel slope, K = coefficient of erosion (m0.2/yr), m and n are positive 

parameters which depend on climate and lithology. 

The surface process model outlined by Braun et al., (2013b) was used by Braun 

et al. (2014a) to propose a model for uplift of Southern Africa in the Late 

Cretaceous which involved westward tilting of the continent as it passed over a 

fixed mantle upwelling (Fig. 7-11) (e.g. Torsvik et al., 2010; Torsvik and Cocks, 

2013). This model proposes a mechanism for the increased sediment influx in the 

Orange Basin during the Late Cretaceous and limited accumulation during the 

Cenozoic, while the pattern of kimberlite intrusion ages (Fig. 7-12) (Jelsma et 

al., 2004; Moore et al., 2008) is indicative of eastward plate movement over the 

mantle anomaly. The climate during this Late Cretaceous period of erosion is 

proposed to be predominantly humid and therefore promoting a more erosive 

environment (Smith, 1986; Bamford and Stevenson, 2002; Braun et al., 2014). 

While the regional prevelance of such a climate would be consistent with the 

episode of Late Cretaceous denudation advocated in this thesis, it should be 

acknowledged that the timing and regional extent of the continental climate is 

largely uncertain. As climate has an important influence on the erosion 

parameters in the stream power law, this uncertainty must be appreciated when 

considering the erosional response to dynamic uplift. Moreover, the model 

assumes an initial flat topography at sea-level, neglecting the influence of the 

pre-existing relief generated and eroded during rifting. While the magnitude and 

timing of erosion inferred by the model is consistent with previously published 

AFT and AHe studies it does not explain the detail of the spatial and temporal  
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Figure 7-11: Passage of the African plate over the low seismic velocity region in the mantle, 
suggested to be evidence of a hot mantle upwelling, from 130 Ma to present day (after 
Braun et al., 2014a). 

 

Figure 7-12: Map illustrating the age distribution of intrusive igneous bodies from the pre-
Cambrian. Database of intrusion ages was taken from Jelsma et al. (2004). Age distribution 
shows a decrease towards the SW Cape and a general trend of older intrusion ages being 
found within the boundaries of the Kaapvaal craton relative to off-craton intrusions. 
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complexity of the thermal histories obtained from joint AFT and AHe inversion 

presented in this thesis. 

The major issue with this work and many previous models is that the lithosphere 

is often treated as a single coherent slab and therefore does not take account of 

the influence of heterogeneous rock erodability (e.g. Braun et al., 2014b), 

brittle lithospheric deformation (e.g. Burov, 2011) or complex crustal rheology 

(e.g. Armitage et al., 2013). At present, dynamic uplift appears to be an 

important element in the history of southern Africa‘s topographic evolution, but 

the exact role it has played in the formation of South Africa‘s topography is still 

enigmatic because its influence will be masked by the effects of in-plane 

lithospheric deformation and the isostatic response to complex surface process. 

To help understand the interplay of these processes high quality low 

temperature thermochronology datasets should be incorporated as explicit 

constraints to these numerical landscape models to help improve the robustness 

of predictions about patterns of uplift derived from them. 

7.7 Conclusion 

The inversion of two borehole profiles reinforces that a major cooling episode, 

driven by denudation, occurred during the Early Cretaceous. The regional AFT 

and AHe dataset shows that Late Jurassic (c. 180 Ma) to Early Cenozoic (c. 60 

Ma) dominated the Namibian and SE African continental margins while similarly 

young ages in SW Africa extend 100s km inland to the SW margin of the Kaapvaal 

craton (see Fig. 7-7). Old pre-rift AFT and AHe ages are confined to the interior 

craton. This trend in LTT data is interpreted to have been produced by a 

combination of the erosion of topography generated during rifting and 

continental break-up followed by a phase or phases of tectonic reactivation 

during the middle and late Cretaceous caused by in-plane horizontal stresses 

possibly combined with an additional vertical dynamic forcing arising from flow 

within the deep mantle. Kilometre scale denudation at this time is in broad 

agreement with the timing of enhanced sediment accumulation in offshore 

basins.  
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The period of enhanced denudation which is proposed to have occurred at c. 110 

– 90 Ma precedes a peak in offshore accumulation beginning at c. 80 Ma. This is a 

rather long lag-time for the transportation of eroded sediments however the 

creation of structural relief over c. 110 – 90 Ma may have disrupted the drainage 

network and resulted in material being deposited in interior basins or distal 

parts of the offshore domain. Cosmogenic nuclide data suggest that in the 

Cenozoic regional erosion was extremely low but higher rates of channel incision 

are recorded within some individual river valleys (e.g. Kuiseb River, Namiba; 

Sundays River, South Africa). The preservation of crater-lake deposits hosting a 

wide range of terrestrial fossils on the continental plateau and the preservation 

of terrestrial flora and fauna fossils at the continental margin are in good 

agreement with landscape characterised by low rates of regional erosion (c. < 5 – 

10 m/Ma) throughout the Cenozoic. 
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CHAPTER 8 

REASSESSING THE NAMAQUALAND SECTOR OF 
THE SOUTH AFRICAN CONTINENTAL MARGIN 

 

8.1 The pre-rift setting of SW Africa: pre-Cretaceous 
(>150 Ma) 

Before the onset of continental rifting, South Africa and South America formed 

the western remnant of the supercontinent Gondwana. During the Permo-

Triassic, compression driving the development of the Cape Fold Belt promoted 

the deposition of the Karoo Supergroup unit. The deposition of these sediments 

marks the last time when the continental interior was unambiguously below sea-

level (Gilchrist et al., 1994). Beyond this, the Early Mesozoic pre-rift topography 

is largely uncertain. Doucouré and de Wit, (2003) suggest that South Africa was 

low-lying (c. 100 – 400m) with low relief but that the first order bimodal 

structure of the continent was in place. The emplacement of Karoo flood basalts 

and associated dykes may have helped to produce a relatively flat topography. It 

has been suggested that thermal upwelling and underplating occurred during 

rifting of Eastern and Western Gondwana at this time causing magmatism and 

uplift (White and McKenzie, 1989).  

However, remnant relief created during Carboniferous and Permian orogenies 

and isostatic readjustments to denudation of these features and the removal of 

Dwyka ice-sheets may have created perturbations in the flat topography. The 

Archean Kaapvaal craton has likely remained a positive topographic feature at 

this time due to the presence of underlying thick lithosphere and low density 

mantle root (Boyd, 1989; le Stunff and Ricard, 1995; Niu et al, 2004; Baptiste 

and Tommasi, 2013). Thermochronology data from the KC1/70 and QU1/65 

boreholes predict that cooling initiates between c. 180 – 160 Ma and continues 

throughout the Cretaceous. It is difficult to define the initial trigger for the 

onset of cooling. Possibilities include thermal relaxation following Karoo 
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magmatism at c. 180, a denudational response to thermally driven uplift during 

the opening of the South Indian Ocean or tectonic uplift in related to the 

earliest phase of south Atlantic rifting. 

8.2 Continental rifting and break-up in the Southern 
Atlantic: Late Jurassic – Hauterivian (150 – 130 Ma) 

Continental break-up and the separation of East and West Gondwana is 

suggested to have occurred by c. 160 – 150 Ma due to the presence of the M33 

(159Ma), M25 (154.4 Ma) and M22 (150.2 Ma) magnetic anomalies (Chrons) in the 

Somali and Mozambique basins (Coffin and Rabinowitz, 1987; Eagles and König, 

2008; Leinweber and Jokat, 2012). Initial continental rifting predating break-up 

was likely underway at the time of Karoo magmatism (c. 180 Ma) (White and 

McKenzie, 1989; Maslanyj et al., 1992; Duncan et al., 1997; Elliot and Fleming, 

2000). The detail of the rifting history of the South Atlantic margin is still 

unresolved but is proposed to have initiated in the south during the Late Jurassic 

– Early Cretaceous (c. 160 – 140 Ma) with break-up occurring at c. 135 Ma (chron 

M11) (Jackson et al., 2000; Eagles, 2007; Heine et al., 2013). The style of South 

Atlantic rifting was likely akin to simple shear rifting with the Southern Africa 

acting as the ‗upper plate‘ (e.g. Unternehr et al., 2010; Blaich et al., 2013; 

Péron-Pinvidic et al., 2013).  

The rifting history was likely prolonged and poly-phase leading to crustal 

thinning occurring over several hundreds of kilometres (e.g. Huismans and 

Beaumont, 2011). This poly-phase scenario involved initial extensive thinning 

during non-volcanic type rifting followed by volcanic type rifting involving 

interactions between the lithosphere and the Tristan de Cunha plume (Blaich et 

al., 2013; Franke, 2013; Koopmann et al., 2014). This latter phase resulted in 

the emplacement of the Parana-Etendeka lavas (Hawkesworth et al., 2000; 

Marsh et al., 2001). Moreover, the emplacement of low density crust beneath 

the margin (e.g. Hirsch et al., 2010) due to underplating or presence of 

metasomatised lithosphere (Franke, 2013) may have been coeval with rifting.  
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Rifting created significant relief across SW Africa due to tectonic and thermally 

driven uplift triggering an erosional response of the surface as rivers adjust to 

base level lowering. This erosion led to the removal of several kilometres of rock 

(most likely from an unknown thickness of Karoo Supergroup and Karoo Flood 

Basalts) (see Chapter 7 - Figure 7-7). This erosion is reflected in the 

thermochronology and offshore record with samples recording the onset of 

major cooling at c. 150 – 130 Ma across the entire study area and the presence of 

thick wedges of syn-rift deposits in fault-bounded graben, respectively (Jackson 

et al., 2000; Paton et al., 2008). 

8.3 The post rift phase (i): Barremian – Albian (130 – 110 
Ma) 

In the offshore sedimentary record, this period has been referred to as a 

transitional phase between the rift and drift phases were the sedimentary record 

changes from a terrestrial to marine depositional environment (de Vera et al., 

2010; Kuhlmann et al., 2010) while the amount of sediment accumulating in the 

offshore basins is progressively decreasing (Guillocheau et al., 2012). Also 

occurring during this period is continental break-up at the Central and Equatorial 

Atlantic rift (Heine et al., 2013) and a global climatic shift from ice-house to hot 

house conditions (Scotese et al., 1999). Thermal history models suggest that 

denudation of SW Africa continued through this period but with the rates being 

highly variable across the margin in space and time due to the extent of relief 

reduction which occurred during the syn-rift phase, lithology of the substrate, 

onset of a more erosive climate and the surface response to vertical motions 

such as thermal subsidence and isostatic uplift.  

8.4 The post rift phase (ii): Albian – Santonian (c. 110 – 80 
Ma) 

At the beginning of this time interval, referred to as the Mid-Cretaceous in 

previous chapters, break-up in the southern Atlantic had completed and Africa 

resided in its ―drift‖ phase (Kuhlmann et al., 2010; Heine et al., 2013). This is 

traditionally seen as a time when major fault activity ceased and the margin 

becomes ―passive‖ (White and McKenzie, 1989; Gladczenko et al., 1997; Jackson 
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et al., 2000). However, the LTT presented here has been used to infer rapid, 

km-scale denudation in discrete locations, controlled by reactivation of pre-

existing basement structures. This is consistent with recent structural evidence 

obtained from the continental margin (see Chapter 5) (Brandt et al., 2005; Viola 

et al., 2012; Salomon et al., 2014) and offshore basins (See Chapter 7) (Paton et 

al., 2008; de Vera et al., 2010). Denudation at this time is manifested at both 

the continental margin and in the interior plateau at the craton boundary. 

Increases in relative plate velocity (Torsvik et al., 2009; Heine et al., 2013) and 

the relative westward passage of the Falkland-Agulhas Fracture Zone south of 

southern Africa (Uenzelmann-Neben et al., 1999; Parsiegla et al., 2008) imposed 

an extensional stress regime across SW Africa similar to the present day (Bird et 

al., 2006; Andreoli et al., 2009; Viola et al., 2012; Gaina et al., 2013). Despite 

being subjected to the same lateral stress-field, the manner of lithospheric 

deformation at the continental margin and craton margin may have been quite 

different due to the contribution of vertical motions to in-plane stresses, the 

orientation and geometry of pre-existing structures and differences in mantle-

lithosphere rheology (See Chapter 5 and 6). 

Over this time offshore sedimentation rates and accumulation volumes 

progressively increase to a maximum at c. 80 Ma which may reflect an initial 

period of relief generation perturbing drainage networks followed by rapid 

removal of the relief by erosion. The humid climate prevailing over much of SW 

Africa (Fawcett and Barron, 1998; Scotese et al., 1999; Bamford and Stevenson, 

2002) at this time would have encouraged more intense weathering and faster 

rates of erosion. The role of mantle convection at this time is still unclear but 

lateral convection beneath the margin (e.g. Huismans and Beaumont, 2011; 

Beaumont and Ings, 2012) and/or the onset of dynamic uplift driven by plate 

movement over a region of upwelling mantle (e.g. Gurnis et al., 2000; Moucha et 

al., 2008; Forte et al., 2010a; Braun et al., 2014a) could enhance the in-plane 

stress field. Dynamic uplift, in particular, may have played a major control on 

the regional nature of denudation at this time (e.g. Flowers and Schoene, 2010; 

Stanley et al., 2013) and the timing of sediment transport to the Orange basin 

(Braun et al., 2014a). Significant uncertainty still remains with the predictions of 
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both the spatial and temporal pattern of dynamic uplift across Africa. The 

empirical constraints on surface evolution such as those derived in this thesis 

will hopefully enable progress to be made in resolving some of the outstanding 

problems facing the theoretical aspects of understanding mantle convection 

models and improve predictions of dynamic uplift. 

8.5 The post rift phase (iii): Campanian to Maastrichtian 
(80 – 65 Ma) 

Determining whether or not there has been a discrete episode of 

intracontinental deformation during the Late Cretaceous which is separate from 

that which occurred in the Mid-Cretaceous (e.g. Viola et al., 2012) is difficult 

with the current spatial and temporal resolution of LTT data. Estimates of 

denudation suggest that hundreds of metres of erosion continued to occur in the 

Late Cretaceous and Early Cenozoic with only a few samples suggesting km-scale 

denudation at this time. A stress regime of regional compression is suggested to 

have been in place at this time causing deformation in northern and western 

Africa (Guiraud and Bosworth, 1997; Raab et al., 2002, 2005). A combination of 

far-field stresses linked to plate kinematic changes in the Atlantic and Indian 

oceans and the ongoing passage of the African plate over a large mantle 

upwelling may have prolonged deformation at the southwestern craton boundary 

and in other discrete locations. By this time South Africa had attained much of 

its present elevation and major topographic features (i.e. low-lying coastal 

plain, broad escarpment zone, low-relief plateau) as supported by the 

preservation of crater-lake sediments, terrestrial fossils and in-situ cosmogenic 

nuclide studies (see Chapter 7). The major drainage network of southwestern 

Africa, dominated by the Orange River and its tributaries, was established by 

this time (Partridge and Maud, 1987; Dollar, 1998; de Wit, 1999). 

8.6 The post rift phase (iv): Paleogene (65 – 25 Ma) 

The Early Palaeogene, in comparison to the Cretaceous, appears to be a 

relatively stable period in South Africa‘s history. African plate velocities rapidly 

decreased (Torsvik et al., 2009, Nürnberg and Müller, 1991), the Indian Ocean 

mid-ocean ridge became extinct (Ganerød et al., 2011) and strike-slip motion 
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along the Agulhas-Falkland Plateau ceased (Gaina et al., 2013). A major 

decrease in sediment accumulation volumes and rates in tandem with decreasing 

magnitudes of denudation suggests that kilometre scale erosion was completed 

by the end of the Cretaceous. The lower erosion rates during the Early Cenozoic 

likely reflect the change to a less tectonically active period as well as additional 

moderation by the exposure of more resistant basement rock (e.g. Cockburn et 

al., 2000) and the onset of a more arid climate (e.g. de Wit, 1999) following the 

Cretaceous. A warm, very humid climate likely prevailed during the Palaeocene-

Eocene thermal maximum (c. 55 Ma) (Zachos et al., 2001) until becoming semi-

arid in the middle Eocene (Gutzmer and Beukes, 2000; Bamford, 2000). During 

this time thick weathering profiles may have developed across Southern Africa. 

By the late Palaeogene (Oligocene) the African plate became fixed in its present 

position and the volcanic rifting in the East African Rift Zone initiated (Berhe et 

al., 1987; Baker et al., 1996; Hofmann et al., 1997; Chorowicz, 2005). Extension 

propagated southward and may have contributed significantly to the regional 

stress field and stability of the southern continent however its influence on 

lithospheric deformation in SW Africa was probably minor (Ebinger et al., 2000; 

Bird et al., 2006). 

8.7 The post rift phase (v): Neogene (25 – 0 Ma) 

The late Cenozoic has frequently been quoted by geomorphologists as a period 

when a phase or phases of major uplift and erosion have occurred. This uplift is 

proposed to have formed major features of the South African landscape from 

deep river valleys such as the Orange River Valley (Bluck et al., 2007) and the 

Koa River Valley (Dollar, 1998, de Wit, 1999) to the entire great escarpment 

(Partridge and Maud, 1987; Burke and Gunnel, 2008). Thermochronology data, 

including that presented in this thesis, suggests that, regionally, there has been 

less than 1km of erosion during the Late Cenozoic. While it can be argued that 

AFT and even AHe analysis do not have the temporal resolution to resolve late 

Cenozoic erosion, insights from cosmogenic nuclide analysis and the preservation 

of river terraces and in-situ terrestrial fossils supports the inference made from 

LTT.   
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To be clear, the available evidence does not support major erosion during the 

Cenozoic and so excludes the possibility that the large scale topography (i.e. 

escarpment zone separating a coastal plain from an elevated interior) was 

created during this time, but this does not exclude the possibility of Cenozoic 

changes in elevation. The data in this thesis and the literature indicates that any 

Cenozoic uplift of southern Africa was not accompanied by major, regional 

erosion and any geomorphic response must be restricted to moderate, local 

channel incision. Dated river terrace sequences on both the lower Orange river 

(west coast) and from the Sundays river (south east coast) provide the likely 

scale of Cenozoic rock uplift during the Neogene (c. 4.4 – 16 m/Ma) (Erlanger et 

al., 2012; Bierman et al., 2014; Dauteuil et al., 2014).  

Prior to the onset of the present day semi-arid climate (Pickford and Senut, 

1997), a humid climate prevailed during the Early – Middle Miocene. This erosive 

climate may have intensified river incision; enhancing relief on the scale of tens 

to hundreds of metres (Mvondo et al., 2011; Dauteuil et al., 2014). However, 

late Cenozoic erosion cannot be completely ascribed to major climate changes 

alone because sea level fluctuations (Roberts et al., 2011), neotectonic fault 

activity (de Beer, 2012) and small-scale mantle convection (e.g. Moucha et al., 

2008) could have contributed to uplift and erosion of the surface. Improvements 

in quantitative dating techniques combined with a better resolution of the 

Cenozoic offshore sedimentary record will help to resolve how the South African 

landscape has evolved during this time. 

8.8 Wider implications of this work 

This study of the South African Atlantic margin uses two low temperature 

thermochronometry techniques to derive crustal cooling histories across the 

continental margin. By interpreting these thermal histories alongside 

independent geological information from both the on and offshore domain new 

insights into the syn and post-rift topographic development of the continental 

margin and interior are obtained. The laterally extensive phase of denudation 

during the syn-rift phase and occurrence of at least one phase of tectonically 

controlled, kilometre scale, denudation during the post-rift phase can be 
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compared and contrasted to other high elevation continental margins 

traditionally viewed as ―passive‖ margins. These include the continental margins 

of western Norway, eastern Greenland, SW India and southwestern Australia. For 

example recent work along the North Atlantic margins have also invoked a post-

rift origin for topography. Post-rift surface uplift is suggested to have been 

driven by mantle upwellings or in-plane stresses induced by lithospheric 

resistance to plate motions or convection in the upper mantle; particularly at 

settings such as craton margins where large crustal thicknesses exist (Japsen et 

al., 2014). While similar mechanisms are cited in this thesis, the model proposed 

here for the development of the South African margin differs in two main ways 

to that proposed by recent studies in Scandanavia: (i) geological and 

thermochronological data do not require a landscape evolution model involving 

multiple phases of regional planation, burial and re-exhumation (e.g. Japsen et 

al., 2009; Green et al., 2013; Lidmar-Bergström et al., 2013) and (ii) involves 

more localised vertical movements on discrete fault blocks due to a combination 

of the pre-existing tectonic fabric of the margin, isostatic adjustments to the 

removal of rift-related topography and regional tectonic stresses (e.g. Redfield 

et al., 2004, 2005 a, b). A more direct comparison is ready to be made with the 

continental margin further north of this study area (i.e. Namibia and Angola) and 

on the composite margin along eastern South America. Recent LTT from the 

Brazilian passive margin has also invoked reactivation of basement structures in 

the post-rift phase of a margins evolution (e.g. Cogné et al., 2012; Karl et al., 

2013). It is likely that most ―passive‖ continental margins are inherently prone 

to post-rift deformation however the timing, style and magnitude of deformation 

will be determined by the margins pre-existing tectonic fabric and regional 

tectonic setting. The data will also be of interest to future studies of interior 

cratonic areas far from active plate boundaries which have long been considered 

stable and the effect mantle upwelling may have on the deformation of these 

platforms and their margins. 

More locally to the study area, the revised model for the long-term geomorphic 

development of SW Africa proposed in this thesis suggests that considerable 

topography and relief has existed to various extents throughout the Cretaceous. 

Reconstructing this palaeotopography based on quantitative data will have major 
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implications for reconstructing palaeoclimates, palaeodrainage networks and 

well as providing constraints for surface, tectonic and mantle convection 

models. 

From an industrial point of view, the timing, magnitude and regional distribution 

of denudation the continental margin and interior plateau will help to refine our 

understanding of offshore sedimentary record in the Orange Basin and the nature 

of hydrocarbon generation and trapping (e.g. Paton et al. 2008, de Vera et al., 

2010, Hartwig et al., 2010, Kuhlmann et al., 2010). Additionally, the 

interpretation that the Mid – Late Cretaceous phase of denudation was 

controlled by structural reactivation has implications for studies which are 

attempting to understand the long-term stability of the South African upper 

crust for the purposes of radioactive waste storage (e.g. Andersen et al., 1986, 

Andreoli et al., 1990); seismic monitoring (e.g. Scheepers and Andreoli, 2004; 

Malephane et al., 2013) and shale-gas exploration (Geel et al., 2013; Scheiber-

Enslin et al., 2013). Finally, recent interest in dry-rock geothermal energy in the 

apparent elevated heat-flow region of the Namaqualand basement (Dhansay et 

al., 2014; Tshibalo et al., 2015) would benefit from the temperature-time (T-t) 

insights obtained on the region by the high density thermochronology dataset 

presented here. 

This work will also find relevance to future low temperature thermochronology 

studies, particularly those wishing to apply LTT techniques to geologically old (c. 

>100 Myr) geological settings or who wish to combine AHe and AFT datasets. This 

new data presented here highlights the importance of directly measuring Sm 

content for AHe dating; the uncertainty surrounding the influence of radiation 

damage on fission track annealing and helium diffusion and thus closure 

temperature and the importance of modelling LTT data in a manner which best 

treats the large uncertainty on individual measurements. Future studies should 

acknowledge the large degree of single grain AHe age dispersion which is evident 

in many samples but also lack simple correlations with eU or grain size. The 

need for larger datasets of single grain AHe ages for individual samples should be 

apparent and adopted. 
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8.9 Future Work 

In order to continually improve our knowledge of the SW African rifted 

continental margin and rifted continental margins and continental interiors 

worldwide, several avenues of further study are available. This future work 

could include additional low temperature thermochronology work to resolve 

variations in margin development along strike of the coast and the location of 

the inland boundary between young (syn-rift or younger) AFT ages and old 

(Karoo) AFT ages. More effort should be made to quantitatively date the 

development of the Cenozoic landscape of Southern Africa. Due to the high 

uranium content of many samples the closure temperature of the AHe system is 

elevated and therefore, in many cases, there is only a minor improvement on 

the minimum amount of denudation that can be recorded beyond AFT analysis 

alone. A significant period in time is either unresolved or poorly constrained 

before cosmogenic nuclide analysis provides more recent insights on erosion 

rates. Obtaining additional thermochronometry data from borehole profiles 

across southern Africa will also provide much needed information on geothermal 

gradients today and in the past. New quantitative data can then be integrated 

with numerical modelling studies attempting to link surface processes to models 

of continental rifting and dynamic uplift. Further field-based studies in NQH and 

BMP should aim to improve our knowledge of the post-rift structural history of 

both the continental margin and margin of the Kaapvaal craton while 

geomorphic studies should interpret landforms in the framework of short-term 

landscape stability and consider the variability of climate, lithology and 

tectonics over space and time.  

There also remains much scope for improving low temperature 

thermochronometry techniques. Our understanding in how radiation damage 

enhances helium retention and possibly fission track annealing is still limited and 

as such creates uncertainty when interpreting and modelling AFT and AHe data. 

Improving our understanding of how radiation damage effects helium diffusion 

will help thermochronologists decipher the cause of highly dispersed single grain 

AHe ages. Other aspects which promote dispersion in AHe single grain ages such 

as zonation, variations in chemical composition and the effect of analysing 
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fragmented apatites also warrant further investigation. As many single grains 

analysed in this study are 1 termination fragments a future study using the 

HelFrag modelling approach (Beucher et al., 2013) is a logical next step. 

8.10 Conclusions  

The impetus behind this study was to investigate the long-term landscape 

evolution of the western continental margin and interior plateau of South Africa. 

In particular, the study was designed to address whether the present day 

topography was formed during phases of Cenozoic uplift and erosion or whether 

the topography is a remnant of Cretaceous topography formed shortly after the 

break-up of Gondwana. 

Insights on the cooling history of the upper crust from AFT and AHe analysis were 

interpreted alongside onshore structural, geological and geomorphological data 

and the offshore sedimentary record in the Orange Basin to infer the timing and 

magnitude of major phases of onshore denudation. The following geological 

conclusions were drawn: 

(i) A major phase of erosion (causing up to 3km of denudation) prevailed 

across the developing continental margin and inland to the SW margin 

of the Kaapvaal craton during the Early Cretaceous rift-phase (c. 150 – 

130 Ma).  

(ii) Average erosion rates remained relatively high during the late Early 

Cretaceous (c. 130 – 110 Ma; 42±8 m/Ma) but may have decreased with 

time and the removal of rift-related topography. 

(iii) A second phase of kilometre scale erosion was induced by regional 

uplift of southern Africa during the Mid – Late Cretaceous (c. 110 – 70 

Ma). Average erosion rates of c. 36±3 - 57±4 m/Myr over this period 

caused c. 1800m of regional denudation. However, this regional uplift 

was coupled with localised reactivation of basement structures at the 

continental margin and craton boundary and, therefore, large 

fluctuations in the amount of denudation recorded by samples is 

observed. The maximum amount of denudation is estimated to be c. 
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3.9 km, recorded in samples from the Namaqualand Highlands (see 

Chapter 5, Figure 5-20). 

(iv) Despite integrating AHe analysis with AFT analysis to improve the T-t 

resolution of the LTT approach, no clear evidence has been obtained 

for significant Cenozoic erosion of the margin or plateau. Estimates of 

Cenozoic erosion rates based on thermochronology data from this 

study, and previous thermochronology studies, are consistent with the 

extrapolation of erosion rates estimated by cosmogenic nuclide data 

(c. 1 – 5m/Ma) through the Cenozoic. Moreover, this quantitative data 

is consistent with offshore sediment volumes and the carbonate and 

mud dominated sedimentary facies (i.e. limited terrestrial input) in 

the Orange Basin at this time. This does not preclude surface uplift 

causing changes in elevation throughout the Cenozoic but signifies that 

this did not trigger deep erosion. 

By adopting a low temperature thermochronometry approach that combined 

AFT and AHe analysis (including large numbers of single grain analysis), it was 

possible to draw the following conclusions on AFT and AHe analysis: 

(i) Samples that yield single grain AHe ages older than their corresponding 

AFT age are common in geological settings where AFT ages are 

typically ―old‖ (i.e. older than c. >100 Myr) and/or rocks with high 

concentrations of U and Th. 

(ii) Highly dispersed single grain AHe ages are also common in such 

settings because of the combined effects of radiation damage, grain 

size, grain fragmentation and zonation of parent nuclides. However, 

resolving the dominant cause of dispersion from simple correlations 

with age are likely to be fruitless due to each effect acting to 

decouple the expected simple 2D graphical relationships. The severity 

of dispersion is also linked to the true thermal history of the sample 

and therefore analytical protocols should aim to maximise the 

observed dispersion. 

(iii) In order to extract useful information from complex AHe datasets a 

large number of analyses of single grains (c. 10 to 20) should be 
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performed. More importantly, however, AFT analysis should also be 

performed on the same sample to provide independent empirical 

constraints on the thermal history of the sample. 

Across the Namaqualand continental margin and Bushmanland Plateau there is 

limited geological information to help constrain the geological history over the 

past 100 – 150 Myr. In settings such as these, low temperature thermochronology 

is a powerful tool which provides unique insights into the timing and evolution of 

large-scale topography. Being able to resolve long-term landscape evolution is a 

crucial step in refining tectonic models responsible for driving major changes to 

the landscape. Over the last 150 Ma, the South African landscape has responded 

to an assortment of drivers including regional uplift and local tectonic 

deformation driven by in-plane stresses, associated with the initial break-up of 

Gondwana and subsequent African plate motions, and vertical stresses imposed 

at the base of the lithosphere by buoyant mantle flow. In conclusion, the South 

African continental margin does not adhere to the traditional ―passive‖ 

classification of a continental margin. Other passive continental margins around 

the world are beginning to be interpreted in this vein with many researchers 

working towards the ultimate conclusion that passive continental margins should 

be considered much more dynamic and interesting geological settings. 
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A1 LOW TEMPERATURE THERMOCHRONOLOGY 
- METHODOLOGY 

A1.1  Sample Preparation 

A1.1.1 Mineral Separation 

To extract apatite crystals from host rock samples a five stage process is applied 

which involves (i) crushing, (ii) washing, (iii) vertical magnetic separation, (iv) 

heavy liquid separation and (v) horizontal magnetic separation. A percussion 

pulveriser was used to break c. 2 kg samples of the host rock into hand sized 

blocks which were then passed through a jaw crusher. This material was then 

sieved to separate out suitably sized material (90 – 500 μm) and the process 

repeated for material >500 μm. The range of acceptable grain size was chosen to 

give a large range of possible grain radius and fragment lengths to allow the 

maximisation of age dispersion if required. Only material that was > 500 μm but 

< c. 2 – 3 mm was passed through the disk mill for final separation. The samples 

were then washed using a Gemini shaking table which separated out minerals of 

different densities. Apatite has a reasonably high density of c. 3.2g.cm-3 and so 

the mineral separates containing the heavier minerals were taken for further 

processing. Samples were then passed through a Frantz magnetic separator 

orientated vertically allowing strongly magnetic minerals to be extracted, 

apatite is non-magnetic. Heavy liquid separation was performed using the 

inorganic LST solution at a density of 2.80g.cm-3 which allows apatite crystals 

(along with other heavy minerals) to sink. This material was then carefully 

decanted and washed thoroughly using de-ionized water and dried under a hot 

lamp for a short time before horizontal magnetic separation. During horizontal 

magnetic separation the sample was passed through a magnet inclined to a user 

defined slope allowing specific minerals which are weakly magnetic to be 

extracted. This process can be customised by altering the inclination and current 

of the magnet to allow specific minerals to be extracted. The approach used 

here was to maintain a side slope of 20° and use three stages of separation using 

a current of 0.5 A, 0.9 A, and 1.5 A. This produced satisfactory yielded of 

apatite from the mineral separate. 
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A1.1.2 AFT Sample Preparation 

Following mineral separation procedures, a polished grain mount is created using 

a small amount of the apatite separate. The amount of mineral separate used 

was sufficient so that enough apatite is present for multiple single grain analysis 

but is distributed with enough space between the grains such that they are 

easily distinguished from one another. The mount was polished to reveal flat 

internal surfaces of individual grains. The apatite grains were mounted in a small 

amount of epoxy resin, placed on a 50.8 mm by 25.4 mm slide and the mineral 

separate distributed evenly in the resin. Once dry, the grain mount was polished 

using a three step process. The first step used a coarse (26 μm) grinding paper to 

produce a flat surface with exposed apatite grains. This first stage produces 

severe scratching of the grain mount that can be removed in the second stage 

using a finer grinding paper (15 μm). The third stage used a soft rotating surface 

with covered with a 1 μm micro-polish solution of aluminium oxide and was 

designed to remove small divots an chipped marks on the apatite grains. 

Following polishing, slides containing the grain mount were cut to a size that 

allowed the glass to fit in a standard irradiation tubes. 

Before fission tracks could be observed under an optical microscope the grain 

mounts underwent a chemical etching (e.g. Green et al., 1986). The grain mount 

was submersed in 5.5 Molar HNO3 for 20 ± 1°C allowing the etchant to reveal 

spontaneous tracks that intersect the polished grain mount. Strict adherence to 

etching procedures is important as the recipe used to etch the grain mounts has 

an effect on the annealing calibrations used during thermal history modelling. 

A mica external detector (see Appendix 1.2.1) wass placed flat over the grain 

mount. Grain mount and mica were then wrapped in plastic film which was 

slightly heated and melted to produce a tight seal where the mica is flush 

against the grain mount. The sample packages were then loaded into an 

irradiation tube with standard glasses placed at the top, middle and bottom of 

the sample stack. Irradiation tubes were sent to the Oregon State University 

Radiation Centre, USA, where a low energy neutron flux was passed through the 

samples inducing fission of 235U. These induced tracks are picked up in the 
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external detector and can be counted in a similar manner to spontaneous tracks 

in the grain mount. As with the grain mount, the mica was then etched to reveal 

the etch pits of the induced tracks. After the irradiation only the mica is etched 

to reveal induced tracks. The grain mount and external detector are then 

mounted onto a slide such that the grain mount is a mirror image of the mica 

detector. 

A1.1.3 Apatite (U-Th-Sm)/He Sample Preparation 

Following mineral separation, samples are observed under a Zeiss Stemi 2000-C 

optical microscope and assessed in terms of their shape, size and clarity (i.e. 

devoid of large inclusions and fractures). Suitable individual crystals were then 

handpicked from the mineral separate and photographed using image capturing 

software. As well as selecting crystals based on their quality, the selection 

process also involved selecting a range of varying grain radius and a mixture of 

2T, 1T and 0T grains. Each selected grain was then observed under a 

petrographic microscope at higher magnification to identify small fluid and 

mineral inclusions which may be present in the apatite crystal and should be 

avoided. Following this assessment the crystals with the best quality were 

chosen for (U-Th-Sm)/He analysis and were measured using ImageJ image 

processing and analysis software. 

Prior to degassing apatite crystals during apatite (U-Th-Sm)/He analysis, the 

crystal is placed inside a platinum capsule. It is this capsule that is heated by a 

laser during analysis. Before these platinum capsules can be used they must first 

be leeched to remove any contaminants that may be present. This process 

involves placing the capsules in 10% HNO3 acid for 48 hours at 60°C. The 

capsules are then washed with deionised water and are ready to be packed. 

Each Pt capsule is a cylinder which is manually closed at one end; a single 

apatite crystal is then placed inside the half closed capsule. The capsule is then 

closed at the second end. 
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A1.2  Apatite Fission Track Analysis 

A1.2.1 Apatite fission track ages – External Detector Method 

As with all radiometric dating techniques, AFT analysis requires an estimate of 

the relative abundance of the parent to daughter product. However, unlike 

conventional radiometric dating methods the daughter product is not a particle 

but the physical damage to the crystal lattice (i.e. the spontaneous fission 

tracks). This daughter product is readily quantified by counting tracks which 

intersect the polished surface under an optical microscope within a defined 

area. To determine the abundance of parent isotopes (i.e. 238U), a mica external 

detector is used. The external detector method (EDM) (Hurford and Green, 1982) 

permits individual grains to be dated, even in the presence of heterogeneous 

uranium distribution (Fig. A1-1). The external detector picks up induced fission 

tracks in the grain produced during the irradiation of the 235U. As the neutron 

flux during irradiation is monitored using the standard glasses within the sample 

stack, the number of induced tracks in the mica can be counted and is 

representative of the 235U content of the grain. 238U can then be estimated as 

the ratio of 235U/238U is constant in nature (1/137.88). Using the relative track 

densities in the AFT age can be measured using the following equation: 

t=
1

 d
Ln( d

 s

 i
 d g+1) 

Where t = age; ρs = spontaneous track density; ρi = induced track density; ρd= 

track density in a dosimeter (a standard glass of known uranium concentration); 

g = geometry factor which defines the relationship between spontaneous tracks 

that intersect the polished surface and induced tracks; and ζ = a constant of 

proportionality which includes the fission decay constant. The value of ζ is 

calculated by each fission track analyst and provides a means of standardising 

the counting process. Details of the ζ value calculated for this study are detailed 

in Appendix 2. 
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Figure A1-1: External Detector Method after Gallagher et al. (1998). The apatite crystal is 
polished and etched as described in the text revealing spontaneous tracks which intersect 
the polished surface. Confined tracks are also revealed if the etchant has infiltrated the 
crystal via a surface track, cleavage plane or fracture. A uranium free external detector is 
placed over the crystal and the package irradiated inducing fission of 

235
U. Fission tracks 

induced in the crystal cross into the external detector which is then etched, revealing the 
tracks. 
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A1.2.2 Apatite fission track length data 

Fission tracks initially form with the same etchable length (c. 16.3±1μm) 

(Gleadow et al., 1986a). However, once a fission track forms the unetched 

damage trail gradually begins to repair itself at a rate primarily governed by 

temperature and to a lesser extent the chemical composition of the apatite. 

This process is referred to as thermal annealing and provides crucial thermal 

history information on a sample. The extent of fission track annealing over 

geological timescales increases rapidly at temperatures greater than c. 60°C up 

to 110±10°C at which point tracks are completely annealed after they are 

formed. Track length data is essential information required for accurate 

interpretation of an AFT age due to apparent fission track ages decreasing with 

increasing thermal annealing. For example, as mean track lengths decrease, 

fission tracks are less likely to intersect the polished surface and be visible to 

count; this effectively lowers ρs and, therefore, the apparent age. 

An estimation of the distribution of track lengths within the apatite is made by 

measuring c. 100 tracks that are entirely below the surface (i.e. confined 

tracks). Confined tracks are etched by the etchant infiltrating the crystal via 

conduits such as cracks, cleavage planes and other surface tracks. It is best 

practice to measure tracks that are horizontal so that the length is a true 

representation. Horizontal confined tracks have a prominent appearance in 

reflected light and should be simultaneously in focus along the track and are 

therefore readily identifiable under a high magnification microscope. The angle 

of tracks relative to the c-axis of the crystal is also measured to correct for 

anisotropic etching and annealing. 

Over geological time, at temperatures colder than 110 ± 10°C, fission tracks are 

continually produced and retained within the crystal lattice. Therefore, a 

sample residing at the present day surface will retain fission tracks that have 

formed at different points in the samples thermal history. Typically the 

preserved track lengths will be a combination of relatively long tracks that have 

formed since the sample has cooled and remained below c. 60°C and a 

proportion of shorter tracks that have formed early and have been subjected to 
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thermal annealing. A ‗true‘ apatite fission track (i.e. one which records the time 

the sample cooled below c. 110 ± 10°C) is only obtained if the sample has cooled 

rapidly, yielding long track lengths, and has then not been reheated. More 

complex patterns of cooling will produce more complex track length 

distributions and therefore measuring track lengths can help to infer 

denudational cooling histories. 

A1.2.3 Practical approach to AFT analysis 

Fission Track analysis was performed using a Zeiss HAL 100 microscope at a 

magnification of 1250x. Referencing information and track length data were 

recorded using FTStage software developed by Dumitru (1993). First, the apatite 

grain mount and external detector are fixed to a 50.8 mm x 25.4 mm slide in a 

manner such that the external detector and grain mount are mirror images of 

one another. This is aided by holes being punctured into the external detector 

and grain mount while they are still sandwiched together. The slide is then 

referenced using a central reference point, pinholes and individual grains.  

The grain mount was then scanned systematically for samples that have a 

polished surface which is parallel to the c-axis. This can be identified by a 

uniform orientation of etch pits within the crystal. Using a measured grid, an 

area over the grain was defined and the number of spontaneous tracks was 

counted. The field of view was then switched to the corresponding print on the 

external detector where the number of induced etch pits were counted over the 

same area and location as the crystal. This is done for as many grains as possible 

to obtain a suitable statistical average age. 20 grains per sample are typically 

reported in most studies. For each grain 3 to 5 Dpar measurements were made to 

constrain compositional variation within the individual apatite crystals. 

A systematic search was also adopted for track length measurements with 

measurements only taken on grains polished parallel to the c-axis of the crystal. 

If a confined track is identified it is assessed in terms of its horizontal 

orientation and structure. The orientation of the c-axis is then measured 

followed by the length of the confined track. 100 confined tracks, or as many 
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available, were measured to generate a robust distribution of track lengths. 

Tracks lengths are measured using a digitizing tablet which is calibrated against 

a stage micrometer. 

A1.3  Apatite (U-Th-Sm)/He Analysis* 

A1.3.1 Helium Extraction 

The aliquots of single crystals within Pt foil capsules were placed in 2 mm deep 

holes in a Cu planchet that sits within a stainless steel chamber. This chamber is 

closed, securely tightened and moved into position under the laser. As the 

chamber was open to atmospheric contamination the chamber and flexible steel 

tube connecting it to the extraction line must be pumped clean. This process 

uses a combination of turbo molecular and ion pumps which cleans the line of 

atmospheric H and He and generates a vacuum of pressure <10-9 torr. To remove 

background CH4 and H20, heating tape was placed around both the chamber and 

flexi-tube for at least 24 hours. During and following the cleaning procedure of 

the extraction system, tests are routinely carried out to ensure there is no leak 

in the system. 

Samples were heated using a diode laser system (  = 808 nm) at c. 800°C for 60 

seconds. This method heats the crystal indirectly to a temperature which will 

allow diffusive loss of He but will not melt the crystal itself. The temperature of 

the capsule was estimated visually using the colour of the Pt tube. Ensuring the 

apatite is not heated at too high a temperature or for too long is important as 

this could lead to volitisation of U and Th from the crystal (Foeken et al., 2006). 

After the initial heating, the extracted gas is left for 5 minutes to accumulate. 

The extraction system is then opened to the mass spectrometer with the gases 

                                         

*
 A total of 247 single grain AHe analyses were performed during this study. 175 were analysed at 
SUERC, Glasgow, and 72 analysed at UCL, London. The analytical procedure outlined is 
specifically that undertaken at SUERC. The analytical procedure followed at UCL was almost 
identical with minor variations in certain aspects such as laser heating time, dissolution time and 
spike concentration. However, similar ages of the Durango apatite standard were obtained from 
both facilities and therefore it is assumed that regardless of where the analysis was performed, 
reliable AHe ages were obtained. 
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becoming purified as they passed through two liquid nitrogen cooled charcoal 

traps. The gas is allowed to accumulate in a HidenHAL3F quadrupole mass 

spectrometer for 60 seconds where H, 3He, 4He and CH4 were measured. To 

ensure complete extraction of He, each sample is reheated using the same 

approach with reheat values ideally being close to or at blank level. Failure for a 

sample to reach blank level could be due to high volumes of He within the 

crystal or an indication that U-Th rich inclusions are present and are not being 

fully degassed at the applied temperature. He concentrations from samples are 

calculated against a calibration standard of 4He which is obtained by repeat 

measurements of the 4He standard throughout the analysis, typically with a 

reproducibility of (1 – 2%). Cold blanks were frequently run to ensure that no 

contamination of the extraction system had taken place. Hot blanks involved 

heating of an empty Pt capsule to ensure the capsule itself is not a significant 

source of He. 

A1.3.2 U, Th and Sm analysis 

Following helium extraction the chamber is opened and aliquots are removed 

from the Cu planchet and placed into Teflon beakers. The aliquots were then 

spiked with 0.03 ml of calibrated solution with a known concentration of 235U, 

230Th and 149Sm which allowed the relative abundances of 238U, 232Th and 147Sm to 

be determined. To the spike solution, 2 ml of HNO3 was added and placed on the 

hot plate for c. 48 hours to completely dissolve the apatite. Samples were then 

analysed using inductively coupled plasma mass spectrometry (ICP-MS). A blank 

vial of HNO3 was added to the ICP-MS run as were vials, placed after every third 

sample, with a known 238U concentration so that sample measurements can be 

calibrated. 

A1.3.3 Apatite (U-Th-Sm)/He age calculation 

Once the concentrations of He, U, Th and Sm have been measured, the (U-Th-

Sm)/He age can be calculated using the following equation: 

[He]=8 (
137.88

1+137.88
) [U](e 238t-1)+7 (

1

(1+137.88 
) [U](e 235t-1)+6[Th](e 232t-1)+0.1499[Sm (e 147t-1)  
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Where [U], [Th] and [Sm] are the concentrations of uranium, thorium and 

samarium respectively;   is the relevant U and Th decay constant ( 238 = 1.55x10-

10.yr-1;  235 = 9.85x10-10.yr-1;  232 = 4.95x10-11.yr-1,  147 = 6.54x10-12.yr-1 and t is 

the age. The value of 137.88 is determined from the ratio of U238 to U235, 

assumed to be constant in nature. 

A2 APATITE FISSION TRACK AND APATITE (U-Th-
Sm)/He STANDARDS 

A2.1  Zeta Calibration 

The zeta calibration factor used in the AFT age calculation is determined for an 

analyst by counting multiple apatite samples of known age (see Hurford and 

Green, 1983): Durango (31.4 ± 0.5 Ma; 9 measurements), Mount Dromedary (98.7 

± 1.1 Ma; 12 measurements) and Fish Canyon Tuff (27.9 ± 0.7 Ma; 12 

measurements). The zeta value will vary depending on the standard glass used 

during irradiation and is also designed to account for systematic errors in 

counting tracks by different operators. The following equation is used to obtain 

the zeta value: 

     
(       

 (
  

  
)  

 

Where   = the total decay rate of 238U, 1.55x10-4Ma-1; ρd = track density in a 

standard glass dosimeter; ρs = spontaneous track density in standard sample, ρi = 

induced track density in standard sample and t = the age of the standard sample 

(i.e. Durango, Fish Canyon or Mount Dromedary). 

Full details of individual zeta measurements are presented in Table A2-1 with 

their variation of over time shown in Figure A2-1. After discounting the first 

three zeta values based on the lack of counting experience of the analyst at the 

time, the mean zeta value obtained was 316.7 ± 10.5. This value will likely 

change, albeit very slightly, as additional standards will be counted with future 

sample analysis. Continually adding to and refining the zeta calibration factor is  
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Analysis Date Standard Ns Ni Ns/Ni Nd ρd (105cm2) ζ St. Dev.

1 22/5/12 Durango A 288 1412 0.204 14137 20.6 149.8 10.1

2 7/6/12 Durango B 365 2054 0.178 14137 20.5 172.8 10.3

3 18/6/12 FCT E 212 1119 0.189 13142 19.5 151.4 11.7

4 24/6/12 Mt. Drom. C 789 2449 0.322 12993 18.8 328.4 13.9

5 8/1/13 Durango A 272 2446 0.111 14137 20.6 274.8 18.3

6 11/1/13 Durango 1 282 2493 0.113 10272 14.6 338.6 22.4

7 21/1/13 Durango 1 250 2399 0.104 11381 17.5 345.2 23.8

8 22/1/13 Durango 2 321 2869 0.112 11381 16.5 321.0 19.8

9 29/1/13 Mt. Drom. 2 709 1448 0.490 11381 16.1 252.3 11.9

10 30/1/13 FCT 4 96 932 0.103 16703 18.5 293.5 34.6

11 22/2/13 FCT D 156 1102 0.142 13142 16.0 246.9 21.7

12 25/2/13 Durango 2 257 2713 0.095 10272 15.7 416.3 28.3

13 26/2/13 FCT B 168 1250 0.134 12993 15.8 263.3 22.3

14 26/2/13 Mt. Drom. 1 544 1843 0.295 11381 17.4 373.9 19.2

15 27/2/13 Mt. Drom. B 695 2615 0.266 9308 22.5 332.7 14.8

16 27/2/13 Mt. Drom. A 873 2354 0.371 9308 22.7 236.3 9.8

17 27/2/13 FCT C 160 1301 0.123 9308 19.9 228.5 19.7

18 27/2/13 FCT F 132 1312 0.101 9308 22.4 248.1 23.2

19 27/2/13 Durango B 324 3579 0.091 14137 20.5 339.2 20.7

20 27/2/13 Mt. Drom. 2A 423 1461 0.290 10272 15.6 440.4 24.9

21 27/2/13 Mt. Drom. B 506 2051 0.247 9308 22.5 358.4 18.3

22 28/2/13 Mt. Drom. A 562 1956 0.287 9308 22.7 355.2 18.1

23 1/3/13 FCT C 92 927 0.099 9308 19.9 283.1 31.5

24 4/3/13 FCT F 99 1053 0.094 9308 22.4 271.6 29.1

25 5/3/13 Durango 2 204 1939 0.105 10272 15.7 381.1 29.0

26 6/3/13 Mt. Drom. 2A 616 1809 0.341 10272 15.6 374.5 18.0

27 7/3/13 FCT D 67 665 0.101 13142 16.0 346.9 45.0

28 15/3/13 FCT 1 113 1037 0.109 16703 18.0 285.1 28.8

29 16/4/13 Mt. Drom. C 740 2191 0.338 12993 18.8 313.3 13.7

30 2/7/13 MtDrom2 742 2126 0.349 16527 18.2 313.2 13.7

31 3/7/13 FCT1 110 846 0.130 16527 17.6 244.4 25.2

32 3/7/13 FCT2 92 666 0.138 16527 14.4 281.1 31.8

33 5/7/13 MtDrom1 670 2065 0.324 16527 14.8 414.3 18.9

Mean ζ 316.7 St. Dev. 57.4 N 30

s.e. 10.5

Table A2-1: Results of zeta calibration for apatite fission track analysis (Hurford and Green, 
1983). Shaded analyses were excluded from the calculation of the mean zeta value as they 
were anomalously low. The reason for this error is likely due to the inexperience of the user 
during the first few analyses. 

important as it can reduce the error of the obtained zeta value and hence the 

error on the age. Samples JN2, JN3, FS1605, GGO2 and PRU 106 were counted 
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Figure A2-1: Plot of zeta calibration values over time. Error bars on individual zeta value 
measurements are 1 st. dev. derived from the individual single grain ages of the sample that 
was counted. Red dashed lines indicate ±1 st. dev. of the mean zeta value (blue dashed 
line). Apatite standards analysed: Durango (white circles); Fish Canyon Tuff (yellow circles) 
and Mount Dromedary (green circles).  

prior to zeta calibration analysis number 30. As such AFT ages for these samples 

were obtained using ζ = 317.3 ± 11.1. 

A2.2  Apatite (U-Th-Sm)/He analysis of Durango 
apatite 

As with AFT analysis, the AHe system is calibrated against a standard of known 

age, most commonly, Durango fluoroapatite. The near gem quality Durango 

apatite is occurs in hydrothermal or volcanogenic deposits at Cerro de Mercado, 

Mexico, and has a certified composition (Young et al., 1969). The surrounding 

volcanic rocks of the Durango apatite deposits have an age of 30.3 – 30.9±0.4 Ma 

obtained from K/Ar dating on sanidine (Naeser and Fleischer, 1975) and an age 

of 31.4±0.5 Ma from K/Ar dating of feldspars while direct fission track dating of 

Durango apatite yielded an age of 31.4 ± 0.5 Ma (McDowell and Keizer, 1977, 

Green, 1985). Table A2-2 shows the Durango ages obtained routinely during 



Appendix 

319 

Anaylsis
Durango 

Sample

4He 

(cc)

238U 

(ng)

235U 

(ng)

232Th 

(ng)

147Sm 

(ng)
Th/U

Age 

(Ma)
err.

Mean Age 

(Ma)
St. Dev

1 DUR1 1.3E-08 0.41 0.0029 11.9 10.8 29.4 31.5 0.4 31.0 3.1

2 DUR2 1.9E-09 0.06 0.0004 1.8 1.8 31.0 32.3 0.4

3 DUR3 5.4E-09 0.16 0.0012 5.1 5.1 31.2 31.4 0.4

4 DUR4 2.3E-09 0.08 0.0006 2.3 2.1 28.5 30.6 0.4

5 DUR5 2.0E-09 0.06 0.0005 1.9 1.8 29.2 31.2 0.4

6 DUR6 2.1E-09 0.07 0.0005 1.9 1.8 27.2 32.2 0.4

7 DUR7 2.9E-09 0.10 0.0007 3.1 3.1 30.2 28.2 0.3

8 DUR8 2.0E-09 0.07 0.0005 2.0 1.9 28.3 30.5 0.4

9 DUR9 2.3E-09 0.08 0.0006 2.2 2.2 29.5 30.0 0.3

10 DUR10 1.3E-09 0.05 0.0003 1.3 1.3 28.6 30.5 0.4

11 DUR11 3.1E-09 0.10 0.0007 3.0 2.9 29.6 30.4 0.4

12 DUR12 1.5E-09 0.05 0.0004 1.4 1.4 28.2 29.6 0.3

13 DUR13 8.2E-09 0.35 0.0026 7.9 7.5 22.4 29.6 0.3

14 DUR14 2.3E-09 0.07 0.0005 2.2 2.2 29.8 31.1 0.4

15 DUR15 5.5E-09 0.17 0.0012 5.2 4.9 30.1 31.4 0.4

16 DUR16 3.0E-09 0.18 0.0013 2.8 2.5 15.4 28.7 0.3

17 DUR17 3.4E-09 0.20 0.0014 4.4 5.4 22.3 21.7 0.2

18 DUR18 4.3E-09 0.13 0.0009 4.1 4.1 31.2 31.6 0.4

19 DUR19 4.4E-09 0.14 0.0010 4.3 4.0 31.1 30.5 0.4

20 DUR20 9.9E-09 0.31 0.0022 9.6 9.0 31.3 30.6 0.4

21 DUR21 5.5E-09 0.19 0.0014 4.8 4.4 25.4 33.3 0.4

22 DUR22 3.8E-09 0.12 0.0009 3.7 3.6 30.1 29.9 0.3

23 DUR24 7.7E-09 0.24 0.0017 7.3 6.1 31.0 31.4 0.4

24 DUR25 8.0E-09 0.21 0.0015 5.9 4.8 27.8 39.7 0.5

25 DUR27 4.7E-09 0.16 0.0011 4.8 4.7 30.2 29.1 0.3

26 DUR28 1.1E-08 0.32 0.0024 10.8 9.8 33.2 30.4 0.4

27 DUR30 8.4E-09 0.26 0.0019 8.1 7.7 31.2 31.0 0.4

28 DUR31 4.6E-09 0.18 0.0013 4.4 4.3 25.0 30.3 0.3

29 DUR32 4.9E-09 0.23 0.0017 6.3 5.5 27.2 22.8 0.3

30 DUR33 3.9E-09 0.10 0.0008 2.8 2.6 26.5 40.6 0.5

31 DUR34 3.8E-09 0.16 0.0012 4.0 3.9 24.7 27.2 0.3

32 DUR35 1.3E-08 0.41 0.0030 12.0 11.9 29.1 30.9 0.4

33 DUR38 1.7E-09 0.07 0.0005 1.7 1.6 24.1 29.8 0.3

34 DUR39 2.4E-09 0.08 0.0005 2.4 2.2 31.6 30.8 0.4

35 DUR40 1.5E-09 0.05 0.0004 1.4 1.4 27.8 30.7 0.4

36 DUR41 5.9E-09 0.18 0.0013 5.7 5.5 31.5 31.0 0.4

37 DUR42 5.0E-09 0.21 0.0015 4.7 22.2 30.7 0.3

38 DUR43 4.7E-09 0.19 0.0014 5.0 25.8 28.0 0.3

39 DUR44 9.6E-10 0.09 0.0006 1.9 22.3 14.8 0.2

40 DUR45 2.4E-09 0.08 0.0006 2.3 27.8 31.1 0.4

41 DUR46 2.0E-09 0.08 0.0006 2.1 26.5 28.4 0.4

42 DUR47 6.3E-09 0.21 0.0015 5.7 27.2 33.2 0.4

43 DUR48 2.3E-09 0.14 0.0010 3.7 26.7 19.0 0.2

44 DUR49 3.0E-10 0.16 0.0012 4.0 24.8 2.2 0.0

45 DUR50 4.2E-10 0.24 0.0017 5.0 21.1 2.5 0.0
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Anaylsis
Durango 

Sample

4He 

(cc)

238U 

(ng)

235U 

(ng)

232Th 

(ng)

147Sm 

(ng)
Th/U

Age 

(Ma)
err.

Mean Age 

(Ma)
St. Dev

46 UCL DUR 2 2.2E-09 0.10 0.0007 1.9 19.3 32.8 1.6 31.0 3.1

47 UCL DUR 3 1.9E-09 0.09 0.0006 1.7 19.2 32.1 1.5

48 UCL DUR 4 2.0E-09 0.09 0.0007 1.7 19.0 33.0 1.6

49 UCL DUR 5 3.2E-09 0.13 0.0010 3.0 22.0 31.2 1.5

50 UCL DUR 6 5.1E-09 0.21 0.0015 4.6 22.0 33.1 1.6

51 UCL DUR 7 5.9E-09 0.25 0.0018 5.6 22.7 31.1 1.5

52 UCL DUR 8 4.5E-09 0.18 0.0013 4.0 21.9 32.9 1.6

53 UCL DUR 9 7.6E-10 0.03 0.0002 0.7 20.7 30.9 1.5

54 UCL DUR 10 6.1E-10 0.03 0.0002 0.6 22.0 32.2 1.5

55 UCL DUR 11 9.5E-10 0.04 0.0003 0.8 20.4 32.4 1.5

56 UCL DUR 12 3.0E-09 0.13 0.0009 2.6 20.6 32.9 1.6

57 UCL DUR 13 3.8E-09 0.16 0.0012 3.4 21.0 32.4 1.5

58 UCL DUR 14 5.0E-09 0.21 0.0016 4.5 20.9 32.5 1.6

59 UCL DUR 15 1.0E-08 0.48 0.0035 9.0 18.6 32.5 1.5

60 UCL DUR 16 8.5E-09 0.36 0.0026 7.7 21.4 32.0 1.5

61 UCL DUR 17 8.2E-09 0.37 0.0027 7.3 19.8 32.1 1.5

62 DUR51 1.2E-09 0.04 0.0003 0.9 22.3 37.4 1.8

63 DUR52 2.3E-09 0.08 0.0006 2.2 28.0 31.8 1.5

64 DUR53 7.3E-09 0.24 0.0018 6.6 27.1 33.1 1.6

65 DUR54 1.2E-09 0.05 0.0004 1.2 23.0 29.8 1.4

66 DUR55 3.4E-09 0.13 0.0009 3.2 24.4 31.6 1.5

67 DUR56 2.5E-09 0.10 0.0007 2.4 23.4 31.1 1.5

 

Table A2-2: Apatite (U-Th-Sm)/He data generated for Durango apatite standards during 
sample analysis. Shaded samples yielded ages that were considerably younger than the 
standard Durango age (31.4 ± 0.5 Ma) and were not included when calculating the mean age 
and standard deviation. 

sample analysis throughout the entire study. These results yielded a mean age of 

31.0 Ma (number of grains = 67) and a standard deviation of 3.1. This is in good 

agreement with the Durango ages from earlier studies (e.g. 32.2 Ma – Zeitler et 

al., 1987, 34 Ma – Wolf et al., 1996, 32.1 Ma – Farley, 2000, 32.8 Ma – Persano, 

2003) and with independent age estimates described above. Three samples 

(shaded in Table A2-2) have been discounted as they have extremely low ages. 

This problem has likely been caused by an analytical error during the degassing 

stage. 
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A3 DATA QUALITY ASSESSMENT  

A3.1  AFT single grain ages 

Each sample was assessed in terms of its P(χ2) and single grain age variance. The 

χ
2, or Chi-Sq, test is a statistical test for homogeneity within a sample set. More 

specifically, this test is used to assess whether the observed data (i.e. single 

grain fission track counts) are consistent with a Poisson variation with a common 

mean value. In cases where the p-value of the χ2 test is less than 0.05, there is 

statistical evidence against the data being consistent with Poisson variation and 

therefore may be more consistent with more than one population of ages. 

However, this latter point cannot be inferred directly from a low χ2 value. For 

samples where P(χ2) < 0.05 and/or a variance > c. 10%, radial plots were used to 

identify any ―extreme‖ outliers which were dominating the results of these 

statistical tests. The threshold for defining outlier grains was arbitrarily set as 

grains which lie out with 2.5σ of the central AFT age. This allows for some 

―natural‖ over dispersion in the sample which may occur due to naturally 

occurring phenomena. Once ―outlier‖ grains were identified, both the polished 

grain and grain print were reassessed for their suitability for fission track dating 

and excluded if there were grounds to do so (Table A3-1). This process, in most 

cases, improved both the P(χ2) and dispersion values of samples without 

resorting to a ruthless elimination of data purely on statistical grounds. 

A3.2  AHe single grain ages 

A similar data quality assessment was performed for single grain AHe ages. 

Outliers were first identified and then investigated on a grain by grain basis to 

justify whether or not the data should be excluded. The majority of excluded 

single grain ages can be justified based on problems encountered during the 

analytical stage (Table A3-2). Such problems include incomplete degassing of the 

apatite crystal resulting in an anomalously young single grain age. A second 

common problem is the analysis of excess He relative to the measured U and Th 

of the grain. This problem can occur if there is an inclusion within the apatite 
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crystal which releases He during the degassing stage but does not dissolve with 

the apatite crystal prior to ICP-MS analysis. 
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Sample Name No. of Grains removed Reason for exclusion

NQ12-04 1 Age > 2.5σ; Large min. inclusion, lots of small fluid inclusions in grain mount; etch pits not completely parallel to c-axis; heterogenous track distribution in mica print.

NQ12-08 1 Age > 3σ; Etch pits are not clear on the mica print, possibly due to poor contact with grain mount during irradiation.

Age > 3σ; Poor polish and dirty looking grain mount, patches of high track density.

Age > 2.5σ; thick fracture running through grain mount.

NQ12-20 1 Age > 2.5σ; Lots of divets on grain mount, many fluid inclusions present.

Age > 4σ; Two possible inclusions, fluid inclusions, small area available to count; small chip on mica print.

Age > 3.5σ; Two inclusions in grain.

Age > 3σ; Lots of small fluid inclusions, etch pits may be entirely c-axis parallel.

NQ12-23 1 Age > 2.5σ; Inclusion in grain; patchy distribution of etch pits in mica print.

Age > 2.5σ; poor polish, fractures in grain mount; etch pits on mica print have an uneven distribution.

Age > 2.5σ; Inclusion in grain, some etch pits not c-axis parallel, poor polish; scratches on mica.

SA12-06B 1 Age >2.5σ; Grain has two large mineral inclusions and small fluid inclusions; Mica print has large scratch.

Age > 3σ; Large mineral inclusion in centre of grain.

Age > 3σ; Poor polish of grain mount and possible inclusions; patchy appearance in mica print.

Age > 3σ; Orange staining, poor polish on grain mount; scratches and patchy appearance on mica print.

SA12-27 1 Age > 2.5σ; Poor polishing, heterogenous distribution of tracks in grain mount.

SA12-14

NQ12-12

NQ12-21

NQ12-27

3

2

3

2

 

Table A3-1: Details of single grain apatite fission track ages excluded from further analysis. 
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Sample Name Grains removed Reason for exclusion

NQ12-04 3 Age > 4σ; Possible analytical error during the degassing stage.

10 No measurement of U, Th or Sm

11 Age > 5σ, excluded as statistical outlier, possible degassing problem

NQ12-07 23 Age > 4σ, excluded as statistical outlier, possible degassing problem

4 No measurement of He

13 Extreme outliet, incomplete degassing of crystal

NQ12-10 19 Extreme outlier, excess helium relative to U and Th, possible inclusion.

1 Ages obtained during an analysis were Durango standards were anomalously young. These sample ages are also anomalously young relative to other grains from the same sample.

2 Ages obtained during an analysis were Durango standards were anomalously young. These sample ages are also anomalously young relative to other grains from the same sample.

3 Ages obtained during an analysis were Durango standards were anomalously young. These sample ages are also anomalously young relative to other grains from the same sample.

4 Ages obtained during an analysis were Durango standards were anomalously young. These sample ages are also anomalously young relative to other grains from the same sample.

9 Incomplete degassing of apatite crystal

NQ12-13 17 Age > 6σ, excess helium relative to U and Th, possible inclusion.

1 Incomplete degassing of apatite crystal

4 Ages obtained during an analysis were Durango standards were anomalously young. These sample ages are also anomalously young relative to other grains from the same sample.

5 Incomplete degassing of apatite crystal

3 No measurement of U, Th or Sm

14 Age > 2σ, Ages obtained during an analysis were Durango standards were anomalously young. 

3 Extreme outlier, excess helium relative to U and Th, possible inclusion.

4 Age > 3σ, excluded as statistical outlier, possible degassing problem, Ages obtained during an analysis were Durango standards were anomalously young.

SA12-06B 10 No He measurement

12 Extreme outlier, excess helium relative to U and Th, possible inclusion.

13 Age > 4σ; Incomplete degassing of apatite crystal

27 No He measurement

SA12-30 4 Extreme outlier, excess helium relative to U and Th, possible inclusion.

3 Incomplete degassing of apatite crystal

8 Incomplete degassing of apatite crystal

2 No He measurement

8 Age > 3σ, Ages obtained during an analysis were Durango standards were anomalously young. 

12 Age > 3σ, Ages obtained during an analysis were Durango standards were anomalously young. 

14 Age > 2σ, Ages obtained during an analysis were Durango standards were anomalously young. 

6 Age > 3σ; Incomplete degassing of apatite crystal

9 Extreme outlier, excess helium relative to U and Th, possible inclusion.

13 Age > 4σ; Incomplete degassing of apatite crystal

15 No He measurement

18 No He measurement

24 No He measurement

16 Age > 5σ, excluded as statistical outlier.

22 Age > 7σ, excluded as statistical outliers.
JN2

NQ12-06

NQ12-09

NQ12-11

SA12-14

GGO2

NQ12-15

NQ12-17

SA12-35

SA12-36

SA12-05

 

Table A3-2: Details of single grain apatite (U-Th-Sm)/He ages excluded from further analysis.
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A4 SAMPLE DETAILS 

Long (°) Lat (°) Sample Elev. (m) Lithology Strat. Age

22.20 -29.22 FS1605 843 Granite Breccia NMP

20.30 -28.36 GGO2 846 Granite NMP

18.05 -30.68 JN2 376 Nabeep Gneiss NMP

17.38 -29.90 JN3 418 Streak Gneiss NMP

17.99 -30.55 NQ12-01 238 VCg Qtz-fdsp granite NMP

17.95 -30.46 NQ12-03 582 Cg. porphyrytic bt-granite NMP

17.93 -30.40 NQ12-04 720 Cg. Porphyrytic bt-hbl-granite gneiss. NMP

17.86 -30.34 NQ12-06 690 Mg.-Cg. Qtz-fdsp-bt gneiss. NMP

17.82 -30.32 NQ12-07 688 Mg.-Cg. Qtz-fdsp-bt gneiss. NMP

17.80 -30.34 NQ12-08 598 Mg. Bt-gneiss NMP

17.77 -30.34 NQ12-09 355 Mg. Banded Qtz-fdsp-bt gneiss. NMP

17.75 -30.36 NQ12-10 239 Fg-Mg banded Qtz-fdsp-bt gneiss NMP

17.72 -30.37 NQ12-11 416 F-Mg. Qtz-fdsp-bt gneiss NMP

17.68 -30.36 NQ12-12 388 Mg. Qtz-fdsp-bt "Tiger" gneiss NMP

17.62 -30.36 NQ12-13 354 Mg. Qtz-fdsp-bt "Tiger" gneiss NMP

17.30 -30.32 NQ12-15 38 Banded pelitic Mg. Bt-qtz-fdsp paragneiss NMP

17.27 -30.29 NQ12-16 11 Mg. Qtz-fdsp-bt "tiger" gneiss NMP

17.29 -30.36 NQ12-17 5 Mg. Pelitic qtz-fdsp-bt gneiss. NMP

17.28 -30.34 NQ12-18 5 Vcg. Bt-augen gneiss NMP

17.64 -30.28 NQ12-19 250 Mg. Qtz-fdsp "Tiger" gneiss NMP

17.72 -30.20 NQ12-20 473 Vcg. Bt-augen gneiss NMP

17.77 -30.21 NQ12-21 665 Mg-Cg. "Tiger" gneiss (qtz-fdsp-bt) NMP

18.52 -31.23 NQ12-23 300 Cg. Porphyryitic bt-gneiss NMP

18.35 -31.13 NQ12-24 400 Granite gneiss NMP

17.93 -30.21 NQ12-25 740 mg. Qtz-fdsp-bt gneiss NMP

17.93 -30.13 NQ12-26 850 Mg qtz-fdsp-bt-orthogneiss NMP

17.88 -30.03 NQ12-27 600 mg-fg banded qtz-fdsp-bt gneiss NMP

17.90 -30.17 NQ12-28 650 Mg. Qtz-fdsp gneiss +/- bt NMP

17.78 -30.09 NQ12-29 720 Mg. Qtz-feldspar-bt "tiger" gneiss NMP

17.83 -30.15 NQ12-30 550 Mg felsic bt-gneiss NMP

18.08 -30.17 NQ12-33 1050 Mg-bt granite gneiss NMP

18.16 -30.18 NQ12-34 1000 Gneiss dome NMP

19.52 -28.48 PRU 106 783 Navos Granite (Vioolsdrif) NMP

23.70 -29.15 SA12-05 1007 Granite dropstone (weathered cream coloured matrix Dwyka) Dwyka Group

23.14 -29.54 SA12-06b 1068 Bt. Gneiss ( weathered cream coloured matrix Dwyka) Dwyka Group

22.31 -29.52 SA12-08 1039 hbl-bt-granite-augengneiss NMP

22.12 -29.40 SA12-09 995 Qtz-fdsp-bt Gneiss NMP

21.94 -29.36 SA12-10 1075 Porphyroblastic Qtz-fdsp-bt gneiss NMP

21.94 -29.24 SA12-11 1057 Cg. Porphyritic bt Granite NMP

21.63 -29.30 SA12-12 981 Bt-Qtz-Fsdp orthogneiss NMP

21.47 -29.28 SA12-13a 962 Paragneiss NMP

21.15 -29.35 SA12-14 797 Banded pelitic gneiss NMP

20.98 -29.42 SA12-15 884 Cg. Felsic Bt-Gneiss NMP

19.53 -29.34 SA12-19b 1034 Felsic qtz-fdsp-bt gneiss NMP

19.08 -29.93 SA12-22 922 bt-hbl-augengneiss NMP

18.70 -30.23 SA12-27 987 Granite dropstone (Dwyka) Dwyka Group

18.00 -30.53 SA12-30 258 bt-qtz-fdsp orthogneiss NMP

18.06 -30.53 SA12-32 351 Granite NMP

18.06 -30.49 SA12-33 400 Granite NMP

18.06 -30.45 SA12-35 605 granite/granodiorite NMP

18.06 -30.45 SA12-36 707 granite/granodiorite NMP

18.06 -30.43 SA12-37 807 granite/granodiorite NMP

18.07 -30.40 SA12-38 959 granite/granodiorite NMP

18.23 -30.39 SA12-47 1064 granite/granodiorite NMP

18.42 -30.32 SA12-51 1066 bt-qtz-fdsp grantic gneiss NMP

18.46 -30.32 SA12-52 1065 Granodiorite NMP  

Table A4-1: Details on sample location and lithology 
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A5 APATITE FISSION TRACK DATA 

A5.1  Radial plots 

Single grain apatite fission track data are presented using radial plots as this 

method provides a means to display single grain age dispersion, taking into 

account the precision of each measurement (Galbraith, 2010). The plots were 

created using the Java application RadialPlotter (Vermeesch, 2009) by plotting a 

point, for each single grain measurement, where: 

xj=
1

σ(zj)
 and yj= 

(zj-z0)

σ(zj)
, for 1<j<n. 

Where zj is a transformation of the age data (in this case a logarithmic 

transformation) and σ(zj) being the corresponding measurement of uncertainty 

of the age measurement; z0 is the transformation of central AFT age. Less 

precise data will plot closer to the origin than more precise data. Each single 

grain age can be determined using a line which cuts through the origin and the 

corresponding data point. 

A χ2 test for statistical homogeneity was performed on every sample with the 

corresponding p-value shown each radial plot. When the p-value is < 0.05, there 

is the possibility that the sample set contains more than one population. In these 

cases a mixture model (Galbraith and Green, 1990) was used to investigate 

whether the single grain age distributions better represent more than one 

population of ages. Radial lines on the radial plot indicate peak centres and the 

age of the peaks and proportions of grains belonging to that population are 

beneath the radial plot. Details of the algorithm used for the mixture modelling 

can be found in Vermeesch, (2009). 

Single grain data for all apatite fission track samples can be found in the 

electronic supplementary material. 
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Figure A5-1: Radial plots of single grain apatite fission track analysis after (Galbraith, 2010). 
Radial plots were drawn using the Java application RadialPlotter (Vermeesch, 2009). 

A5.2  Track length distribution 

Track length distributions for all samples are presented below (Figure A5-2). Two 

histograms are presented for each sample. The first illustrates the raw measured 

track length distribution and the second illustrates the length distribution after 

measured tracks have been corrected for their orientation to the 

crystallographic c-axis (see Ketcham et al., 2007). 

A complete list of individual track length measurements can be found in the 

relevant section of the QTQt input file (see Appendix 7). 

Figure A5-2: (overleaf) Fission track length distributions for all analysed samples. Both raw 
track length distributions and track length distributions corrected for orientation to c-axis 
are shown. 
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A6 ADDITIONAL AFT DATA 

Long. Lat. Elev. ρs
a ρi

a ρd
a P(χ2)c AFT Aged ±1σ

(°) (°) (m) (106cm-2) (106cm-2) (106cm-2)  (%) MTL (μm) ±1σ Sde

8732-50 17.5 -29.7 50 0.7 756 1.3 1478 1.3 5435 80.7 115 6 15 14.08 0.2 1.0 36

8732-51* 17.8 -29.2 970 1.3 1824 4.7 6466 2.3 9958 0.3 117 6 20 13.70 0.2 1.5 63

8732-52* 17.7 -28.8 190 0.5 734 2.3 3052 2.3 9958 0 108 7 20 12.93 0.5 1.9 14

8732-86 19.3 -28.8 420 1.1 1573 4.1 6148 2.3 9958 0 114 7 22 13.47 0.2 1.4 85

8732-87 19.1 -29.2 870 0.6 551 1.4 1183 1.3 5435 23.6 105 6 15 14.07 0.2 1.2 44

8732-88 19.4 -29.1 900 1.9 1326 4.1 2856 1.3 5435 22.6 104 4 15 13.73 0.1 1.3 100

8732-93 21.1 -28.6 700 0.8 852 2.0 2111 1.3 5435 28.4 91 4 20 13.97 0.1 1.1 94

NF-008 19.8 -29.3 ~950 0.3 680 0.7 1611 1.3 7331 25 92 9 26 13.17 0.3 2.2 54

S-20 21.1 -29.5 900 1.8 1989 3.9 4235 1.1 5309 0 99 5 20 13.82 0.3 2.0 57

S-21 21.1 -29.5 1010 0.3 214 0.6 411 1.2 5309 75.1 104 9 20 13.97 0.4 1.7 20

8732-42* 18.5 -31.2 370 1.1 1741 2.5 3732 1.3 12343 0 105 4 20 13.36 0.3 2.5 100

8732-43* 18.1 -30.8 300 0.5 899 1.8 3027 2.3 9958 65.2 121 5 20 13.44 0.2 1.4 37

8732-44* 17.8 -30.8 100 1.7 2144 6.2 7990 2.3 9958 17.9 109 3 20 13.34 0.1 1.4 115

8732-45* 17.6 -30.9 0 1.3 652 2.7 1324 1.3 12343 92.3 111 6 19 12.75 0.3 2.5 100

8732-46* 17.9 -30.3 750 1.2 2094 3.1 5434 2.3 9958 0 154 7 21 13.30 0.2 1.6 116

8832-72 18.4 -30.5 1335 0.4 221 0.8 425 1.0 4441 68.2 88 3 20 13.68 0.5 1.6 11

8832-73 18.4 -30.5 1180 1.3 1082 2.6 2207 1.0 4441 9.1 83 4 20 13.62 0.2 2.1 102

8832-74 18.3 -30.5 1000 1.0 802 1.4 1148 1.0 4441 25.5 118 6 20 13.66 0.3 2.1 47

8832-75 18.5 -30.3 1030 1.4 1731 2.7 3278 1.0 4441 5.2 95 4 20 13.46 0.3 2.0 39

8832-78 18.1 -30.5 1620 1.7 1228 3.3 2349 1.0 4441 20.2 89 4 20 13.14 0.2 2.0 104

8832-79 18.1 -30.5 1500 0.8 1078 1.5 2048 1.0 4441 64.8 90 4 20 13.99 0.4 1.6 19

8732-34* 19.1 -33.8 450 2.7 3102 3.8 4442 1.3 12343 77.6 157 5 25 12.93 0.2 2.4 125

8732-35* 18.4 -33.8 300 1.7 1121 2.9 1934 1.3 12343 57 130 5 22 12.82 0.2 2.0 100

8732-36* 18.4 -34.1 150 4.3 4529 7.9 8365 1.3 12343 0.2 126 4 20 14.20 0.2 1.0 100

8732-37* 17.9 -32.8 0 0.6 746 1.0 1163 1.3 12343 87.7 144 7 25 13.38 0.2 2.0 75

8832-61 19.4 -33.6 290 0.4 332 0.9 694 0.1 4423 75.6 104 7 20 13.04 0.4 1.7 15

8832-71 18.1 -32.8 0 0.4 456 0.7 753 1.0 4441 61.9 102 6 20 13.60 0.3 2.4 65

DR3/86 21.0 -33.0 900 1.8 924 3.1 1608 1.4 7635 59.9 138 6 20 14.12 0.3 2.0 35

S-19 21.5 -31.2 1270 0.8 729 1.0 882 1.1 5309 20.9 163 9 20 13.37 0.3 3.0 100

FTCG 04 18.9 -33.7 670 0.6 1.5 1145 1.4 9637 30 119 9 20 12.53 0.4 1.6 18

FTCG 05 18.9 -34.0 130 2.4 2043 4.4 3763 1.4 9637 30 130 4 20 13.67 0.4 1.4 100

FTCG 06 18.8 -34.0 100 1.5 945 2.3 1502 1.4 9637 15 151 6 15 13.33 0.4 1.6 85

FTCG 08 18.5 -33.6 90 1.3 818 2.0 1225 1.4 9637 10 160 7 20 13.57 0.4 1.3 69

FTCG 09 18.0 -33.1 20 4.0 1391 6.6 2289 1.4 9637 < 1 147 10 10 12.90 0.4 1.5 100

FTCG 11 17.9 -33.0 10 2.8 1605 4.5 2615 1.4 9637 60 147 5 20 13.32 0.4 1.3 100

FTCG 14 18.0 -32.8 10 1.0 267 1.5 405 1.4 9637 80 157 12 7 13.61 0.4 1.3 100

FTCG 16 18.8 -33.5 210 1.1 952 2.2 1908 1.4 9637 15 120 5 20 12.86 0.4 1.6 100

FTCG 17 18.7 -33.5 300 2.2 2616 4.0 4732 1.4 9637 15 132 4 20 13.00 0.4 1.8 100

FTCG 18 18.4 -33.5 150 4.6 3554 7.8 6020 1.4 9637 <1 142 4 20 13.12 0.4 1.5 100

8832-62 18.9 -33.7 729 0.6 421 1.1 812 1.3 4423 9.2 119 9 20 13.46 0.4 1.7 18

8832-63 18.9 -33.7 630 0.8 426 1.9 1031 1.3 4423 72.4 93 6 20 14.63 0.2 0.6 7

8832-65 18.9 -33.7 450 0.5 369 1.4 945 1.3 4423 65.9 89 6 20 14.13 0.2 1.0 35

8832-66 19.0 -33.7 320 0.5 206 1.4 558 1.3 4423 82.5 86 7 15 13.32 0.4 0.5 2

8832-68 18.8 -33.5 125 0.4 324 1.0 845 1.4 4423 87.1 90 6 20 13.62 0.4 1.3 11

8832-54 20.6 -32.6 1658 1.0 848 1.6 1296 1.1 4423 25.3 126 6 20 13.73 0.3 1.6 55

8732-41* 20.6 -32.5 1550 0.9 1495 1.5 2534 1.3 12343 3.3 141 6 30 13.56 0.1 1.8 170

8832-55 20.6 -32.5 1430 1.3 786 2.0 1215 1.1 4423 93 127 6 20 13.02 0.3 2.1 48

8832-56 20.6 -32.5 1290 1.1 719 1.6 1013 1.2 4423 53.4 142 8 20 13.55 0.2 1.7 100

8832-57 20.6 -32.6 1190 1.8 966 3.0 1612 1.2 4423 0.5 131 8 20 13.18 0.3 1.6 32

8832-58 20.6 -32.6 1090 1.4 567 2.5 1057 1.2 4423 37.7 111 7 20 12.81 0.3 2.1 64

8832-59 20.5 -32.6 980 0.7 515 1.2 859 1.2 4423 77.5 126 8 20 13.30 0.3 1.8 35

8732-39* 20.2 -32.9 880 1.0 681 3.0 2098 2.3 9958 93.4 132 6 32 13.38 0.2 1.5 88

8832-60 20.5 -32.6 850 0.7 525 1.2 934 1.2 4423 84.1 120 7 20 13.10 0.3 2.2 65

8732-40* 20.5 -32.6 730 0.9 940 2.8 3086 2.3 9958 88 124 5 28 13.48 0.1 1.9 170

Borehole Samples
Depth 

(m)

QU 1/65 Quagga's Fontein

8732-95 21.4 -31.8 11 0.7 751 1.0 1030 1.0 3427 23.8 130 7 20 13.78 0.2 1.8 100

QU 335 21.4 -31.8 103 0.6 483 0.9 799 1.1 3427 25.4 112 7 20 13.48 0.2 1.9 100

QU 741 21.4 -31.8 228 0.5 186 0.9 304 1.1 3427 16.9 114 11 11

8732-96* 21.4 -31.8 397 1.1 520 1.2 872 1.3 7331 91.3 130 8 20 13.18 0.3 2.1 50

8732-98* 21.4 -31.8 925 1.5 685 2.9 1329 1.3 12343 29.0 116 6 22 13.03 0.3 2.1 52

8732-97 21.4 -31.8 1358 0.7 255 1.5 555 1.0 3427 27.2 83 7 17 13.00 0.4 1.8 21

8732-100 21.4 -31.8 1942 0.4 601 1.4 2246 1.0 3427 0.0 45 4 20 11.23 0.6 3.6 42

8732-101 21.4 -31.8 2148 0.2 231 0.9 1326 1.1 3427 0.0 30 8 20 9.64 0.4 2.8 56

8732-102 21.4 -31.8 2318 0.1 113 0.4 474 1.1 3427 65.3 44 5 20 10.72 0.5 2.8 27

8732-103 21.4 -31.8 2435 0.3 264 4.4 3650 1.3 5435 0.0 16 2 15 9.93 0.4 2.6 53

8732-105* 21.4 -31.8 2545 0.2 333 4.5 6602 1.3 7331 0.5 11 1 20 9.83 0.4 2.7 41

KC 1/70 Leeuweriet (Klip Cypher)

KC-1 20.6 -31.4 222 0.1 162 0.2 209 1.1 3427 97.9 146 16 18 13.77 0.4 2.3 35

KC-3 20.6 -31.4 838 0.3 262 0.4 348 1.1 3427 95.5 142 12 18 13.90 0.4 1.5 15

KC-6 20.6 -31.4 1608 0.3 246 0.6 579 1.1 3427 70.1 81 6 19 12.58 0.2 1.7 53

KC-8 20.6 -31.4 2178 0.5 846 1.6 2742 1.1 3427 18.1 60 3 20 11.94 0.1 1.4 101

KC-21 20.6 -31.4 6190 0.0 0 2.4 1125 1.1 3427 0 4

Sample Nd
bNi

b #HCTf#XtlsNs
b

Measured

(Ma)

 

Table A6-1: Results of apatite fission track analysis from Brown (1992). a: ρi,s,d are track 
density of induced, spontaneous, dosimeter tracks. b: Ni,s,d are the number of induced, 
spontaneous and dosimeter tracks counted. c: p-value of the chi-sq age homogeneity test 
(Galbraith, 2010; see appendix 3.1). d: Ages were calculated using a ζ = 350.2 ± 5 for a NBS 
glass SRM 612. e: SD is the standard deviation of measured horizontal confined track 
lengths. f: HCT = Horizontal Confined Track. 
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A7 ADDITIONAL THERMAL HISTORY MODELS 

Additional thermal history models and the original QTQt data files for all outcrop 

samples can be found in the supplementary electronic appendix. The models can 

be accessed by following the simple path: 

Appendix7 > SAMPLE NAME/PROFILE NAME > AFT/NoRD/RDF/RDG > Plots > 

#####.svg  

e.g. > Appendix 7 > NQ12-04 > RDF > Plots >  

NQ12-04_AFT_AHe_RDF_NoFrags_4_ExpectedTt.svg 

Plots are saved as unedited .svg or .pdf files generated by QTQt. 

The QTQt files were created using the following template: 

NQ12-04 sample name

17.929 -30.403 720 longitude, latitude, Elevation (m)

0 100 19 316.7 1660000 16348 no. of T-t points
1
, Nlengths, Ncounts, Zeta, ρd, Nd

105 code for annealing model
2

0 1.643 0.15 code for composition
3
, Value, error on value

1 16.3 code for initial track length
4

1 code for project track data
5

0 code for Cf tracks
6

0 code for etchant
7

#### ### #### ### Time, δTime, Temp, δTemp
8

#### ### #### ### Present Temp, δTemp
8

89.6 4.1 FT age, error on FT age (Ma)

13.85 0.1 MTL, error on MTL (μm)

0.98 0.098 MTL Std Dev, error on MTL Std Dev (μm)

92 207 Ns, Ni

" "

16.21 56.618 Individual track length, angle to c-axis

" "

9 No. of AHe ages

0 code for radiation damage model
9

1.36E+11 1.01E+12 3.32E+11 0 -96.42 10.58 328.62 106.08 0 He, U, Th, Sm
10

, Age (Ma)
11

, error on age, grain length, width, height
12

20 0.005 138000 α-ejection distance, Do (m2/s), activation energy (Jmol/K)

" " " " " " " " "

" " "

1 When this value = 0 no temperature-time constraints are set.
2 105 = Ketcham, 2007, multikinetic annealing model.
3 0 = Dpar

4 1 = calculate compositionally dependent initial length
5 1 = use projected length model
6 0 = No Cf tracks
7 0 = 5.5 Molar
8 These values represent T-t constaint points and are only present if no. of T-t points (see comment 1) does not equal 0.
9 0 – no Radiation Damage, 1 – Gautheron et al (2009), 2 – Flowers et al (2009)

10 He, U, Th, Sm are entered as atoms.
11 age set to a negative value to triggers sampling from a distribution centred on the observed age/input error.
12 grain dimensions are in μm, when height is set to 0, it is assumed height = width.

Table A 7-1: QTQt input file example and template guide. 
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