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ABSTRACT 

As the feature sizes in VLSI technology shrink to less than 100 nm the effects 

due to the quantisation of electronic charge begin emerge. There are a small 

number of carriers and impurities and the statistical variation in their number 

have significant effects on the threshold characteristics of the devices that 

hampers their large scale integration into future ULSI. 
These considerations imply that a full three dimensional simulation need 

to be carried out where the charges are treated as discrete objects and all 
the electrostatic interactions between them must be modelled. This procedure 

provides a more realistic description of ionised impurity and carrier-carrier 

scattering than conventional methods. Particle based simulations are very 

computationally intensive and so this work presents a new method based on 

the theory of Brownian motion that is particularly useful for studying systems 

near equilibrium conditions where drift-diffusion models are applicable. It is 

considerably cheaper to implement than conventional Monte Carlo methods 

(being up to 70 times faster) and does not suffer from the large statistical 

fluctuations due to infrequent scattering processes. A practical demonstration 

of the Brownian method is demonstrated through the study of a short diode 

where the simulation gave the correct value for the built in potential and a good 

agreement in the I-V characteristics to the Shockley model and a commercial 
drift-diffusion simulator. 

The complex potential landscape arising from the Coulomb force, with its 

sharp localised peaks and troughs, faces problems due to band limiting in 

meshes and places heavy burdens on the integration techniques. A compu­
tationally efficient solution to the problem of band-limiting is presented and 

is shown to provide an accurate description of the electrostatics. This work 

also introduces a highly efficient and numerically stable multigrid solver, for 

Poisson's equation, that can cope with the complex potential distributions on 
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large meshes. 

The study of ionised impurity scattering is used to validate these molec­

ular dynamics simulations. Results have shown that the Brownian method 

- despite precluding the use of adaptive integration schemes - gives a good 

approximation to the standard results and has the advantage of smoothing 

away errors that can build up during the integration of motion and drives the 

system towards thermal equilibrium. 

The greatest hurdle to be cleared before these three-dimensional simula­

tions can be practicable is the sheer computational effort that is required. The 

implementation of the problem on parallel architectures has been explored and 

discussed. 
The methods developed in this work are demonstrated through the simula­

tion of an 80 nm dual-gate MESFET. The results were verified by comparing 

them with those from a commercial drift-diffusion simulator. 

The threshold behaviour of devices has been investigated through the study 

of the formation of conduction channels in blocks. The percolation threshold 

gives the point when conductive paths form across the gate barrier. The results 

from the FET simulation was found to be in agreement with the earlier studies 

on the blocks. 
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1. INTRODUCTION 

The main aim of this work is to develop the simulation methods that can 
be used to model ultra-submicron devices. It will be shown that the discrete 

nature of carriers and impurities need to be considered in order to study struc­
tures with feature sizes below 0.1 pm. The main thrust of the work is to 

examine the methods of dealing with particulate carriers in the complex and 
sharply varying potential landscapes due to the discrete charges. 

This section aims to introduce the problem, while highlighting the major 

issues, and set out an outline for the body of the work. Firstly there will be 
an overview of the current trends in miniaturisation, followed by an outline of 

the issues when scaling devices down to the order of tens of nanometres. The 

possible limits to this scaling will be discussed while paying specific attention 

to the underlying device physics. The following section proposes the need 

to consider the particulate nature of carriers and impurities. And finally a 

summary of the remainder of this work will be given. 

1.1 Trends in miniaturisation 

The demand for faster microprocessors and larger memories has driven the 

semiconductor industry towards the fabrication of devices with smaller feature 
sizes. As a rough rule of thumb, Moore's law predicts a shrinkage of an or­
der of magnitude in the feature sizes in VLSI technology every decade. The 

gate length is the most important feature size, as far as FET performance is 

concerned. Current state of the art integrated circuits using gate lengths of 
0.35 pm have enabled processors, such as the PowerPC 604e [1] and the Pen­

tium Pro [2], to be clocked at 200 MHz and have made 64 Mbit DRAM ICs 

possible. Next year, 0.25 pm technology will allow clock speeds over 800 MHz 

and push memory capacities to 256 Mbit. By around the year 2000, ICs should 

appear with gates that are shorter than 0.1 /-lm [3] and so pushing clock speeds 
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into the Gigahertz range and memory capacities into the order of Gigabits. 

MOSFETs with gate lengths of 40 nm have been fabricated [4] using novel 

lithographic techniques such as resist thinning [5]. They have been found to 

display transistor action at room temperature and so raising the possibility of 

128 Gbit DRAMs. This translates into a time-scale of a further 16.5 years of 

miniaturisation, by Moore's law. 

This process of continuous miniaturisation begs the question whether there 

is a fundamental limit to this exercise. The following section discusses the 

behaviour of these small devices and looks at any pitfalls that may arise in the 

fabrication of integrated circuits using these devices. 

1.2 Scaling submicron devices and possible limits to 
miniaturisation 

There has been much speculation as to whether there is a fundamental limit 

to this trend in miniaturisation. Many times in the past people have claimed a 

lower limit on the size of a FET, and many times this limit has been exceeded. 

For the case of the MOS transistor, Hoeneisen and Mead [6] estimated the 

minimum oxide thickness to be 14 nm in order to prevent tunnelling; that the 

channel lengths should exceed 400 nm to avoid drain-source punch-through; 

and a maximum substrate doping level of around 2 X 1027 m-3 due to field 

emission in the source and drain junctions. There may well be other factors 

which may impose limitations on the extent of this miniaturisation process 

such as the fluctuations in the threshold characteristics. These limits have 

clearly been breached by today's mass production technology. 

The first concern when shrinking PETs is how to scale the lengths, doping 

and potentials so that the proper transistor action is observed under normal 

operating conditions. The first problem is due to the short channel effects: as 
PETs get smaller their channel lengths become comparable to the widths of the 

depletion regions at the source and drain, and thereby reducing the influence 
of the gate and increasing the likelihood of punch-through. Short channel 

effects can cause severe degradation of subthreshold characteristics and an 

unacceptable dependence of threshold voltage on channel length. The simplest 

approach that minimises this effect is constant field scaling [7], that uses a 



1. Introduction 3 

Tab. 1.1: The constant field scaling of a typical MOSFET for a scaling factor of,... 
Quantity Scaled by Limitation 
Threshold Voltage 1/,.. Off leakage 
Bias Voltages 1/,.. VT, speed 
Capacitances 1/ /'i, Packing density 
Doping /'i, Junction leakage, mobility 
Saturation Currents 1/ /'i, power dissipation 
Current densities /'i, Electromigration 
Maximum operating frequency /'i, 

Switching power 1/ /'i,2 

Power dissipation 1/ /'i,2 

scaling factor (,.. > 1) that shrinks the lengths and potentials by 1/,.. to preserve 

the electric field distribution in the scaled device. The doping has to be scaled 

by /'i,. Table 1.1 shows how this scaling affects the physical characteristics of 

a typical FET. It shows that miniaturisation is highly advantageous because 

it gives higher transconductances and higher operating frequencies (which are 

further enhanced by velocity overshoot in submicron devices) with no increase 

in power dissipation per unit area on a wafer where the packing density has 

been increased by /'i,2. 

However not all characteristics scale linearly with this approach. An im­

portant exception is diffusion - being dependent on the temperature and 

mobility of carriers - which controls the subthreshold characteristics of the 

device. The built in junction potentials do not scale and so become larger 

Tab. 1.2: The use of two scaling factors - ,.. for the potentials and), for the lengths. 
Quantity Scaled by 
Threshold Voltage 1/ /'i, 
Bias Voltages 1/,.. 
Capacitances 1/ >. 
Doping >. 2 / ,.. 

Saturation Currents )../,..2 
Current densities )..3/,..2 

Maximum operating frequency ).. 2 / /'i, 

Power dissipation )../,..3 
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in comparison to the smaller applied biases, as a consequence of this scaling 

law, and so give rise to higher fields and larger depletion regions and so a 

more elaborate scaling law (see table 1.2 using separate constants (/'i, for the 

potentials and>' for the lengths) has been proposed [8]. 
There are limitations to this rather simplistic approach. Electromigra­

tion places an upper limit on the maximum acceptable current density (e.g. 
109 Am-2 for AI) [9]. The magnitude of the operating levels must be large in 

comparison to the thermal energy (kBT ~ 25meV at room temperature) for 

the sake of noise immunity. Increasing the channel doping - in the face of high 

transverse fields- leads to a reduction in channel mobility and so degrading 

the transconductance and maximum operating frequency. 
An empirical formula has been found for the minimum gate length (Lmin) 

that still exhibits long channel behaviour [10]. 

Lmin = Aytdtox(Ws + WD)2, (1.1 ) 

where d is the junction depth, tox is the oxide thickness and the widths deple­

tion region are Ws and WD respectively. A is a fitting parameter. The results 

from equation 1.1 seem to give intuitively obvious results since it predicts a 

larger Lmin when either the junction depth or oxide thickness is increased where 

the influence of the gate is reduced. However the minimum gate length cannot 

shrink to zero as this equation may imply since there has to be some limiting 

value. 

These empirical rules must only been seen as a rough guide and are no 

substitute for the proper modelling of these devices, especially under conditions 

where diffusion is likely to be important. The models themselves need to be 

fast and have to be validated against experimental results, in order for them 
to gain widespread acceptability. A new method based on Brownian motion, 

which meets these criteria, will be presented in chapter 2. 

The prevailing view is that tunnelling through the oxide places a lower limit 
of 3nm [11, 12], but devices with an oxide thickness of 1.5nm have been fab­

ricated [13] that have demonstrated transistor action at room temperature [4]. 

The reason for this may be that the tunnelling current - being proportional 

to the gate area - would become smaller in comparison to the source-drain 

current as the gate-length is reduced (to a greater degree than the width). 
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Tunnelling can also be assisted by traps and the charge transported through 

the oxide accumulates a 'charge to breakdown' [14, 15, 16]. Gate induced drain 

leakage (GIDL) is another major problem [17] that occurs when there is some 

overlap between the gate and highly doped drain. The thinner the oxide, the 

higher the capacitance and so a large charge is induced in the drain. The 

minority carriers in this non-equilibrium depletion region can be drained via 

the substrate. The high electric fields across the oxide promote tunnelling that 

can be facilitated by traps near the surface. Traps resulting from hot electron 

damage [18] and Fowler-Nordheim leakage [19] exacerbate gate induced drain 

leakage by introducing additional tunnelling. This problem requires the care­

ful fabrication of these devices, so as to minimise the formation of traps, and 
the use of lower drain voltages as the oxide thickness is reduced. 

The high fields give rise to hot electrons that increases the likelihood of 

injection into the oxide - inducing threshold voltage shifts and degradation 

in transconductance - and so shortening the lifetimes of the device. This 

effect is most marked in the region around the drain where the electric fields 

are very high. Great attempts have been made to overcome this very serious 

problem by rendering the oxide more immune to hot carrier damage [20, 21, 22] 

or by attempting to reduce the fields. The largest fields occur between the 

gate and the drain and the use of a lightly doped drain (LDD), with a spacer 

layer between the gate and drain, is becoming common practice [23, 24, 25, 

26, 27, 28]. The reduction in the large lateral electric fields is more effective 

when the LDD region extends under the gate, but there is a penalty [29, 30] of 

increased channel resistance and an increased parasitic gate-drain capacitance. 

Extending the doping under the gate also increases the susceptibility to GIDL. 
High electric fields can lead to Zener-Bloch oscillations (of electrons between 

the top and bottom of the conduction band) and band to band tunnelling (of 

electrons from the valence to the conduction band) [31, 32]. 
The problems due series resistances and parasitic capacitances are exac­

erbated as a result of miniaturisation and higher operating frequencies. Self 

aligned contacts ameliorate the problem of series resistances by facilitating 

the formation of large area contacts and placing the metallised contacts over 

the field oxide greatly reduces the junction-substrate capacitances while also 

allowing looser tolerances on mask alignment. The use of self aligned silicide 
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has been shown to reduce contact resistances as well as parasitic capacitances. 

However the resistivity of the silicide is large for small patterns (less than 

200 nm and the silicide process is difficult to control for shallow junctions less 

than 50 nm [33]. Thicker silicide layers produce larger contact resistances. One 

of the limitations to miniaturisation may come from interconnects [34]. Shrink­

age results in increased resistance and the closer separation leads to increased 

capacitance that lengthens the [RC] propagation delay and worsens the prob­

lem of cross-talk. The interconnects start to look like tall pillars at these small 

scales since the resistance is determined by the cross sectional area and so the 

scope for reducing the heights is restricted as the lines become narrower. The 

use of copper and its alloys would help because of its low series resistance and 
immunity to electromigration [35, 36, 37]. 

Isolation becomes a serious problem as packing densities are increased as a 

result of miniaturisation. The influence of the gate is reduced near the edges of 

the channel as the field lines spread apart. The narrow width effect is said to 

occur in this region where the threshold voltage is higher than in the middle. 

This region becomes a lager fraction of the total channel width as the device 

is shrunk and so can cause an increase in threshold voltage. 

The impact of processing errors are expected to increase as devices are 

shrunk [38, 39, 40, 41,42]. Fluctuations in the gate length and oxide thickness 

produce significant changes in the threshold voltage [43, 44,45,46]. The small 

size of current and future semiconductor devices introduces further compli­

cations because of the discrete nature of electronic charge. The next section 

maps out these problems and gives the motivation for this present work. 

1.3 The need to consider the discrete nature of dopants and 
earners 

The previous section reviewed the possible pitfalls in the process of minia­

turisation resulting from the physics of small devices. This section serves as 

in introduction to the main thrust of this work which argues that the small 

numbers of carriers and impurities in these mesoscopic devices will have a 

significant impact on their incorporation into future integrated circuits. 

When devices are scaled down to less than 100 nm, there are only a few tens 
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or hundreds of impurities in the active region and the statistical variation in 

their number n (which varies as Vn) becomes comparable to the numbers that 

are actually present. This has the effect of producing significant fluctuations in 

the I - V characteristics between devices that are fabricated even on the same 

piece of substrate and poses some difficulty in the fabrication of integrated 

circuits using such small devices. 

The first attempt to study this problem was made by Keyes in 1975 [47], 

who used a statistical approach and percolation theory to investigate the for­
mation of conductive paths between two electrodes that represented a simple 

FET. He divided his devices into cubes - with dimensions that were the thick­

ness of the depletion layer [48] - whose state of conduction was determined 
by their impurity concentration. As the threshold voltage is approached, the 
cubes with the lowest number of impurities turned on first, and as more and 

more of these turn on a conducting channel is formed form the source to the 

drain. The number of impurities in a cube follows a Poisson distribution, and 

from this the probability of this region being conductive can be calculated. And 

so, by estimating the probability of there being a conductive path between the 

source and drain, the random fluctuation in threshold voltage can be studied. 

In order to keep the algebra manageable, Keys only considered straight line 

paths between the contacts and calculated the fluctuations in threshold po­

tentials from the variation in space charge due to the impurity numbers in the 

device. He extended his idea to to include more complex paths [49] through 

the use of percolation theory [50]. One limitation with this approach is that 

the cells have been assumed to have no influence from their neighbours. This 

is clearly not the case from the solution of Poisson's equation. For the case of 
a n-MOSFET, a cell with a smaller than average number of ionised acceptors 

represents a hill in the potential map and increases the chances that a neigh­

bouring cell would conduct by increasing the local mean potential, and vice 
versa. In other words the charges also have a more global influence on the 
potential distribution. 

Early simulations of MOSFETs using a two-dimensional drift-diffusion sim­

ulation, by Hagiwara et al. [51] demonstrated that the significance of the fluc­

tuations in threshold voltage, due to variations in local doping, increased as the 

gate length was reduced. He deduced that the variance of the threshold voltage 
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fluctuations was inversely proportional to the volume of the depletion layer. 

After applying constant field scaling, he estimated the standard deviation in 

the threshold voltage (~Vth) as a fraction of drain bias (Voo) as, 

~Vth L-ii 
--~ 2 

Voo 
(1.2) 

Later Nishinohara used a combination of two- and three-dimensional simu­

lations to study the effects of shrinking on the threshold voltage [52]. A Poisson 

distribution was used to obtain an integer multiple of electronic charge for the 

charge density ascribed to each mesh point. They found both a reduction in 

threshold potential and an increase in its fluctuation as the MOSFET was 
shrunk. 

Variations in the subthreshold characteristics and threshold voltages in 

sub-micron MOSFETs caused by random fluctuations in the local impurity 
distributions have been clearly demonstrated in simple 3D drift-diffusion sim­

ulations. H. Wong and Y. Taur, at I.B.M [53], used a 3-dimensional drift­

diffusion simulator to investigate the effects of different random dopant dis­

tributions on silicon MOSFET's. The ionised dopants were represented as 

discrete entities on the nodes of a uniform mesh. Closer attention was paid 

to three device characteristics - the threshold current, the subthreshold gate 

voltage that produced a current of 2 nAj Jim and the subthreshold slope. 

They found a spread of I-V curves along the gate voltage axis and a general 

reduction in threshold voltage, along with a slight degradation and fluctuation 

of the subthreshold slope. These effects appeared to increase with decreasing 
gate-controlled channel volume. The fluctuation of the number of dopants in 

the depletion region could not fully account for the variations in the threshold 

voltage and the average threshold voltage shift, in the simulation, was much 
larger than that expected due to the fluctuation in the number of dopants. This 

led them to the conclusion that these effects were caused by the discrete nature 

of the dopant charge, producing an inhomogeneous channel potential, which 
allowed for early turn-on in parts of the channel and resulted in the threshold 

voltage shift and sub threshold slope degradation. The asymmetry of the I-V 

characteristics, seen after interchanging the source and drain terminals, was 

taken as further evidence of the importance of this discrete microscopic dopant 

distribution. 
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Studies of MOS capacitors [54] have shown significant contributions to 

the the spreading of the capacitance-voltage curves due to fluctuations in the 

dopant distributions in the space charge region. This effect is most marked 

at higher doping concentrations, but at lower doping levels the random inter­

face charges [55] playa more important role along with fluctuations in oxide 

thickness. 

Measurements on 8192 0.1 pm n-MOSFETs by Mizuno et aI. [56,57] have 

demonstrated these fluctuations in threshold voltage. The devices had been 

patterned on a small piece of the wafer (0.7 mm) to minimise the other sources 

of fluctuation, such as variations in oxide thickness or doping levels. By study­

ing the variation of the threshold voltage with position and its autocorrelation, 
they showed that the magnitude fluctuations were completely random and not 
related to the location of the device. Moreover the fluctuations were shown 

to follow a Gaussian distribution whose width was larger for devices with a 
shorter gate. 

A rough calculation showed that the fluctuation in the number of dopants 

in the channel contributed to 60 % of the threshold fluctuations. A later anal­

ysis of the experimental results [57] showed that the standard deviation of 

fluctuation in dopant number (na) was actually ....;n;/2. They considered the 

variation in dopant distribution in the channel as a combination of a lateral and 

vertical component as seen by the relationship between the threshold voltage 

fluctuations and the drain and substrate biases respectively. The experimental 

results indicated that including the fluctuations in the distribution of impuri­

ties as well as the variation in their number in the analytic model could give 

a good approximation to the magnitude of the threshold voltage fluctuations. 

J.-R. Zhou and D. K. Ferry looked at sub- O.1pm MESFETs [58], of total 
length 360 nrn and depth 100 nrn, with a 24 nrn gate. They investigated the 

dependence of the I-V characteristics on the device widths for widths in the 
range of 42 nm to 162 nm, using a hydrodynamic model. The doping in the 

channel was 1.5 X 1024 m-3 and so, for a width of 42 nrn, they found a mean 
of 36 impurities under the gate with a standard deviation of 5.99. 

Not surprisingly, they found significant fluctuations in the I-V characteris­

tics which depended on both the number of impurities under the gate and their 

positions. These fluctuations were more pronounced whenever a large nega-
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tive gate bias was applied since even fewer impurities were present in narrowed 

conducting channel. 

J. H. Davies et al. [59] have showed the random distribution of donors 

in the J-doped layer above a two-dimensional electron gas can give rise to 

noticeable fluctuations in threshold voltage. However, the length scales of 

these fluctuations were too large for them to be caused by individual dopants. 

This reflects the physical separation of the confined electrons from the donors 

by the spacer layer. 

A two dimensional analogy (for a flow of electrons) can be a dried up river 

bed where the ionised acceptors can be viewed as peaks and donors as pits. 

The landscape is also not completely flat since the height of the ground is a 

little elevated in regions containing more than an average density of donors (or 
where there are fewer acceptors) and depressed where the donors are scarce or 

acceptors are clustered. As the water level (ie the Fermi level) rises the the 

hollows and pits are the first to fill and they begin to merge. Little trickles 

(or conducting paths) form as the percolation threshold is approached. As the 

level rises these paths become larger and merge. They are also augmented by 

additional pathways that appear as a result of the rising level. The total rate 

of flow then rapidly increases above the conduction threshold. 

In a real device (as threshold is approached) 'bubbles' of conducting re­

gions form in the device which expand, following their local equipotential lines, 

and coalesce as threshold is approached to form these conducting paths. The 

shorter the device the fewer these regions that are needed to form a conducting 

path. A small cross sectional area reduces the statistical averaging and so the 

subthreshold level is smeared to a greater extent. As a result this effect is 

expected to increase in smaller devices. 

The particulate nature of carriers is also expected to have a significant 

influence in the behaviour of mesoscopic devices. There are a small number 
of carriers in the channel and so the trapping and de-trapping of individual 

carriers can produce an appreciable random telegraph noise [60, 61, 62, 63]. 

The oxide traps affect the charge transport by altering the number of carriers 

and by introducing additional Coulomb scattering centres (whose effect are 

exacerbated by their small numbers). The distribution and number of these 

traps and defects vary from one device to another and so this effect varies 
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considerably for different devices. Individual carriers can induce modulations 

in the potential landscape, of very small devices, that can significantly affect 

the blocking characteristics of the barrier - especially between the source 

and channel [64, 65, 66, 67]. This effect is small as it appears only at liquid 

helium temperatures for a 100 nm MOSFET and in a 1 nm MOSFET at room 

temperature [64]. 

The small number of carriers raises other considerations. The separation 

between carriers is often larger than the Debye screening length (for example, 

in GaAs where the electron density is 1024 m3 the screening length LD = 4.3 nm 

while the average electron separation is 10 nm). Popular models that are used 

to represent screening consider the screening carriers as a continuous distribu­
tion of charge. This is often not true when there is less than one intervening 
electron, on average, that can contribute to screening and when transit times 

are short. Carriers have to be treated as individual entities and all electrostatic 

interactions must be considered. 

Methods of studying systems using particulate carriers have been proposed 

by some authors to study deep submicron MOSFETs. The early work used 

2D simulations [68] since the major problem was the computational expense. 

Monte Carlo simulations - where all Coulomb interactions are considered as 

interactions between discrete point-like particles - have been performed by 

Ferry et al [65]. They used the method of Ewald summation to calculate the 

electrostatics in their samples with periodic boundaries. Molecular dynamics 

simulations of actual MOSFETs have been performed by Tarnay et at [69] who 

solved Laplace's equation on a mesh to resolve the slowly varying fields from 

the boundaries and electrodes, while analytically calculating all forces between 

the point charges. This method adequately copes with the boundaries while 

preserving the discreteness of electronic charge. The major concern is that the 

electric field, resulting from the discrete charges, must be included for the von 

Neumann boundaries and the corresponding potentials added to the Dirichlet 

boundaries in order to treat the electrostatics properly. This method suffices 

for 2D or small 3D meshes with relatively few particles, but becomes very 

expensive for larger meshes. It will be shown (in chapter 3) that the mesh 

derived forces are accurate for particle separations that are greater than three 

or four mesh spacings and so much of this additional effort is unnecessary. 
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1.4 A brief prospectus 

The aim of this work is to develop methods that can be employed to investigate 

the effects caused by these discrete impurities and to look at the results from 

using discrete carriers. It will be shown that the discrete impurities can have 

significant effects on the potential map in their immediate vicinity. I will also 

address the problem of ionised impurity scattering. This is a complex many­

body problem that is not well understood. 

This is a new field and the aim of this work is to study the various ap­

proaches to modelling these small devices and highlighting their pitfalls. The 
simulation of carrier dynamics has three main components: 

1. implementing scattering, 

2. resolving the forces acting on the carriers, 

3. integrating these sharply varying forces. 

Modelling the scattering processes lies at the heart of all semiconductor 

modelling. The standard approach is based on the solutions to the Boltzmann 

transport equation and the next chapter will deal with this matter. It will 

be argued that the main problem with this equation is that it only applies to 

continuous charge distributions and does not represent the stochastic nature 

of the collision events. Models based of the solution of partial differential 

equations (arising from the first few moments of the Boltzmann equation) will 

be reviewed briefly. Particulate models (such as the Monte Carlo method and 

Cellular automata) will then be outlined briefly. Monte Carlo methods have 
a long history and provide an accurate semiclassical representation of carrier 
movement [70, 71]. However they are costly to implement, despite the efforts 

to improve their speed using variance reducing techniques [72] and reducing 

'wasted' effort from self-scattering [73]. Cellular Automata have been used for 

device simulations only fairly recently [74, 75, 76, 77, 78]. Their proponents 
claim that this method is much faster than traditional Monte Carlo techniques 

[79], but however the large memory requirements of these methods make them 

less favourable on distributed computing architectures and on systems with 

limited caches. 
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In the next chapter, I will describe a new approach to device simulation 

- based on Brownian dynamics and the Langevin equation - that does view 

scattering as a continuous and random process. It is very useful when a par­

ticulate representation of carriers is required but where the full-blown Monte 

Carlo method is not necessary or too expensive. Apart from its simplicity 

our method may be particularly useful for isolating and studying some specific 

aspects of the carrier dynamics related to the 'atomistic' nature of carriers 

and impurities. It may be more transparent than the Monte Carlo technique 

in distinguishing the effects due to the discrete nature of particles and their 

interaction with impurities, because these effects are not obscured by structure 

arising from the other scattering rates. I shall start with a formal description 

of the Langevin theory and its discrete time approximation. The practical 

implementation of the Brownian dynamics approach is outlined and tested in 

a simulation of a p-n junction diode. The results of this test are in excel­

lent agreement both with the ideal diode equation and with the drift-diffusion 

results obtained from the commercial simulator MEDICI. 

The following chapter concentrates on the important question of resolving 

the forces that drive the carriers and highlights the problems caused by the 

electrostatic forces between the discrete charges. This problem is the major 

challenge because the forces have to be calculated in a simulation domain that 

can contain a large number of particles and have complicated boundaries. It 

would be impractical to calculate all inter-particle forces directly because of 

their large numbers and, worse still, there can be an infinite number of im­

age charges resulting from the boundary conditions. Attempting to save on 

computational effort by solving Poisson's equation on a mesh poses more prob­

lems. The sharp spikes resulting from the discrete nature of the charges impede 

the convergence of most solvers and as the charges move, a fresh solution is 

needed every time-step. Traditional simulation methods evolve towards a con­

stant steady state distribution and so less effort is needed to as convergence 

is reached, but this does not happen here. I have developed a very efficient 
multigrid method for the solution of Poisson's equation that can cope with 

large three-dimensional meshes containing discrete charges which can also be 

implemented on massively parallel computers. 

It will be shown that the solution of Poisson's equation on a mesh band 
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limits the force and underestimates the force between particles when they 

approach within around three mesh spacings. This can be a problem when de­

scribing the scattering between discrete charges and so a new heuristic method 

has been devised to correct the erroneous force that has been derived from the 

mesh. The cubic symmetry of the mesh has been exploited to create a set of 

interpolating functions to estimate the inaccurate component of the mesh force 

between the particles. This wrong result can be corrected with an analytic de­

termination of the forces between the particles in close proximity. Therefore 

analytic calculations of the inter-particle force has been restricted to only those 

charges that are within four grid spacings. 

Chapter 4 will concentrate on the influence of the discrete ionised impurities 

on the dynamics of carriers. Three standard models will be reviewed (which are 

the Conwell-Weisskopf, the Brooks-Herring and Ridley's third body exclusion 

technique) and the effects of considering the asymptotes between the incoming 

and outgoing trajectories - despite the fact that the separation between the 

ions is finite - will be discussed. Firstly the ability of the simple techniques, 

for obtaining the forces from a mesh, that are used in standard Monte Carlo 

simulations to model ionised impurity scattering will be investigated. The 

short range forces are the most important in ionised impurity scattering and 

so the method of Ewald summation was used to obtain analytic estimated of 

the forces between charges so that the effects due the errors introduced by the 

finite mesh spacing can be studied. 

The difficulties of integrating the r- 2 forces will also be discussed. It is im­

portant to integrate the sharply varying forces accurately and that the energy 

of a particle is conserved when using free dynamics. An adaptive Runge-Kutta 

method has been implemented to study the motion of free carriers. This is not 

such a great problem in Brownian dynamics since the combination of the fric­
tional and stochastic terms tend to erode any errors in integration and drive· 

the system toward thermal equilibrium. 

The last part of chapter 4 has great relevance in describing the character­
istics of devices at threshold. The development of conductive pathways across 

the channel, as threshold is approached, can be treated as a percolation prob­

lem. The random distributions of charges in a material produce variations in 

the threshold potential throughout the sample. This means that some regions 
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are turned on before others and so, as threshold is approached, these regions 

would expand and fuse with one another forming tortuous pathways that snake 

across the gate barrier. The standard view was to divide the sample into arrays 

of independent cells - each of which has a turn on potential that is deter­

mined by its doping level. This discrete percolation model will be shown to be 

incorrect since there is a degree of interaction between different regions of a 

material because local fluctuations in doping can also influence the long range 

potential profile. The reduction in the percolation threshold in the samples, 

due to the presence of random arrangements of particulate impurities, will be 

compared with the results from FET simulations. 

The penultimate chapter is concerned with the practical implementation 

of a device simulator with particulate charges. The major obstacle to the 
molecular dynamics simulation of these ultrasmall FETs is the heavy com­

putational overhead inherent in this problem. Therefore, the implementation 

of these simulations on supercomputers is outlined with particular emphasis 

placed on the massively parallel processing (MPP) architectures of the de­

partment's Parsytec systems. Efficient methods of partitioning the problem 

onto a network of computing nodes will be explored and their influence on 

the implementation of the solution will be discussed. Finally, the study of an 

80 nm dual-gate MESFET is given as a practical demonstration of the general 

concepts and methods developed in this work. The results will be validated by 

comparing them with those from a commercial drift-diffusion simulator. The 

influence of the atomistic impurities will also be considered. 

Finally the conclusions reached during the course of this PhD will be pre­

sented and suggestions will be made into how this work could be extended. 



2. A SIMPLE METHOD FOR DISCRETE ELECTRONS 

In this chapter a new method computationally efficient method based on the 

theory of Brownian motion is presented. Firstly the current approaches will 
be discussed in order to elucidate the need for this approach. 

A broad range of methods are used for simulating semiconductor devices, 

varying widely in their accuracy, predictive power and computational needs. 

The simplest approach is to construct an equivalent circuit model and to obtain 

the required parameters by fitting the model to the measured characteristics of 

actual devices. Such models are very fast, requiring little computational effort 

and are commonly employed in packages such as SPICE. They are essential 

for circuit design but their physical predictive capability is very restricted. 

In order to enhance the predictive capabilities of the simulations, where 

new physical phenomena start to influence the device characteristics, one must 

pay attention to the carrier dynamics in response to the potential distribution 

across the device. The foundation of the semi-classical approach for the simu­

lation of devices is the Boltzmann transport equation (BTE) which states that 

the carrier distribution function f(r, kj t), in phase space and time, obeys the 

following differential equation, 

~f +v,Vrf+k,Vkf= (~{) . 
t colI 

(2.1) 

The right hand side of this equation represents the overall rate at which the 

carriers enter the state (r, k) from the rest of phase space, at a given time, due 

to scattering processes to which they are subjected. 

(~) <oil = (2~)3 j [J(k')(l - f(k))W(k', k) - f(k)(l - f(k'))W(k, k')] dk' 

(2.2) 
where V is the total volume of the sample and W(kb k2) is the total transition 

rate from state (r, kd to (r, k 2) from all scattering processes. The first set of 
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terms account for the scattering rate into the state (r, k) while the second 

indicate the total rate out of this state. The Pauli exclusion principle requires 

the (1 - f) factor but in non-degenerate semiconductors where f « 1 this is 

often neglected. This model, therefore, neglects the stochastic nature of the 

scattering and replaces them with flow rates between the different points in 

phase space. 

The quantities of interest, such as the current density across the device, 

can be extracted from this distribution function. The BTE, however, is com­

plicated and difficult to solve by conventional numerical techniques. (Iterative 

methods have been proposed by some authors [80, 81, 82].) It also requires 

considerable input in the form of band structure and scattering rates for ac­

curate results. Indeed these input parameters are often doctored by many 

device modelers so as to obtain good agreement between simulation results 

and experiment. 

In large devices the carriers can be represented as a continuous distribution 

of charge whose flow is described by partial differential equations. In this case 

the BTE within the relaxation time approximation is often simplified by taking 

its first few moments. 

The simplest of these approximations to the BTE is the drift-diffusion (DD) 

approach [83]. It arises from the zero and first moments of the BTE, which 

are basically statements of particle and momentum conservation. 

an at - V . (nv) = G - R, (2.3) 

where G and R are the generation and recombination rates respectively. 

J(r, t) = qnj.lE(r, t) - qDVn(r, t). (2.4) 

As the name implies, the current arises from a diffusive component driven by 
the local density gradients and a drift component driven by the local electric 

fields. It is assumed that the carriers are close to thermal equilibrium, and 

that their velocity depends only on the local electric field (Le. they have 

the same drift velocity as in a large sample with a constant electric field of 

that value). Although it is unsophisticated, the DD approach rarely gives 

qualitatively wrong results since it is derived from conservation laws. The 

exceptions are when the fine details of the scattering rates are important such 
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as in the Cunn effect. Because of the local relationship between the mobility 

and the electric field, even in extensions with field-dependent mobility, the drift 

diffusion approach also cannot describe overshoot effects with great accuracy 

in small devices. 

A more sophisticated approximation to the BTE yields the hydrodynamic 

approach [84]. It can be derived from the BTE by retaining the full momentum 

conservation equation and by adding the equation for energy conservation, 

derived from the second moment of the BTE. This gives small sets of partial 

differential equations which are amenable to numerical solution. 

aaP + (v. \7)p + qE + .!.\7(nkBT) 
t n 

P (2.5) 

ae 1 1 at - V· \7£ + qE· v + ~\7. (kBTnv) - ~\7. (K:.\7T) 

The carrier distribution function has been replaced with the carrier concentra­

tion and P is the momentum and £ is the total energy of the carriers. T is the 

carrier temperature and Tp and TE are the momentum and energy relaxation 

times respectively. These relaxation times need not be constants but can be 

functions of momentum or energy that can be physically measured. They can 

also be extracted from Monte Carlo simulations. JC is the thermal conductivity. 

In the hydrodynamic (HD) approach the momentum relaxation time and 

consequently the mobility are related to the average energy of carriers rather 

than to the local electric field. As a result, non-equilibrium effects like spatial 

and dynamic overshoot are included in the lID simulations. Phenomenological 

energy-dependent relaxation times - often extracted from steady-state Monte 

Carlo simulations or from experiment - are used. 

These PDE methods, and especially the more elaborate modifications of 

the HD approach, can result in complicated sets of equations which are diffi­
cult to solve and whose boundary conditions are difficult to define. Also, we 

are concerned with devices containing a small number of carriers whose dis­
crete nature is expected to be important and so a particulate representation 

of carriers is required. 

The ensemble Monte Carlo method [72,85] provides an exact solution to the 

Boltzmann transport equation [86] by following the phase-space trajectories of 

an ensemble of fictitious particles through the simulated device. The scattering 
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processes are treated as discrete events separated by 'times-of-flight' which are 

chosen at random, using the total scattering rate. Many such flights for all 

fictitious particles in the device are used to build up a statistical picture of 

the device. This is a computationally intensive process because the statistical 

uncertainty after N measurements varies as Vii. Thus a high density of data is 

required throughout phase space although variance-reducing techniques allow 

some effort to be saved. As well as its application to strongly non-equilibrium 

transport effects, MC is the only approach to provide ab initio information on 
the intrinsic noise properties of a device. 

Phase space can be subdivided into cells and the BTE can be integrated 

over these to yield transition rates between them. This is the essence of the 
cellular automaton approach [75] to direct solution of the BTE. By choosing 
finite time steps, phase space can be restricted to a finite set of cells with a 

finite number of allowed transitions between them. This enables the use of 

look-up tables to determine a possible final state for each initial state after 

every time step, and so can result in the saving of much computational effort. 

The problem is that transitions for a state with energy £ are not localised in 

phase space since the final state can lie anywhere within a shell of bounded by 

£ - £l£. and £. + £l£.. The sheer volume of data associated with this approach 

requires huge computer memories. 

Our interest in ultra-small structures necessitates an 'atomistic' approach 

that follows the dynamics of individual particles in three dimensions. Clearly 

this is computationally expensive even before any description of scattering 

has been considered. Fortunately there are several situations where a simple 

model for scattering is adequate, we need not have recourse to the detailed 

treatment of typical MC programs, and a much more economical approach 

can be used. For example, the electric field is small and carriers are only 
weakly perturbed from equilibrium in large regions of conventional devices. 

Moreover, the particular focus is on new features due to the discrete nature 

of carriers, and these should not depend qualitatively on the precise form of 

scattering. I therefore propose the use of a Langevin equation, which satisfies 

most of these requirements for accurate dynamics while treating scattering in 

an extremely straightforward way. 

The Brownian simulation approach described here is essentially an ensem-
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ble Monte Carlo method with a greatly simplified scattering term. This makes 

it much cheaper to implement, while retaining a good description of the dy­

namics of individual carriers and their scattering from randomly distributed 

individual charges. The Brownian approach also retains to some extent the 

ballistic description of particle dynamics, which is essential as length scales 

approach the mean free path. The Langevin equation on which this method 

is based shall now be described and two approximations in discrete time, one 

in velocity space and the other in real space. 

2.1 The Langevin Equation and its Discrete Time 
Approximation 

The motion of carriers in the semiconductor device can be modelled as that of 
a collection of particles undergoing Brownian motion (as described physically 

back in 1828 by R. Brown [87] and mathematically in 1905 by A. Einstein [88]). 

This approach is based on Langevin theory [89, 90, 91] can then be used to 

describe the motion of carriers in the semiconductor device. It assumes that 

the acceleration of a carrier, of mass m and charge q, is due to two forces: 

the electric field E within the device and a force Fsc(t) which represents the 

scattering. The latter force may itself be resolved into two parts, an average 

frictional part -mv/T (which can instead be written as -ev/fl where fl is the 

mobility of the carriers), and a rapidly fluctuating random force F(t) which 

averages to zero over a long time. The Langevin equation is then 

m dvd(t) = qE(r, t) _ mv(t) + F(t) . 
t T 

(2.7) 

An important feature of this approach is that the impurity and the carrier­

carrier scattering can be treated 'atomistically' by assuming that F(t) repre­
sents only the phonon scattering; the impurities and other carriers exert their 

influence on the motion of the individual particle through modulations of the 

electric field E(r, t). 
Using the Langevin approach the complicated scattering mechanisms of 

the Monte Carlo have been reduced to two terms. The frictional term that 

is used to model the dissipative effects of the scattering process employs the 

momentum relaxation time T m, that can be obtained from the mobility fl. 
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The random fluctuating force F(t) represents the stochastic kicks received 

by the particle from the phonon bath. This random acceleration is usually 

represented as a white noise having a mean of zero and being delta-correlated 

(i.e. its autocorrelation function is some constant times a delta function). Its 

magnitude is set by the equipartition theorem. 

The balance between the frictional and the fluctuating forces leads to a 

Boltzmann distribution of velocity in thermal equilibrium. There is already 

some averaging inherent in this method, associated with the frictional force 

and incorporated in the momentum relaxation time, and so fewer flights in the 

simulations may be required to get statistically acceptable measurements. 

The ensemble average of Equation 2.7 can be solved in a constant electric 

field to give the time dependence of the expected carrier velocity given that 

v = Vo at t = 0, 

(v(t)) = /-lE + (vo - /-lE) exp ( -~) . (2.8) 

After a sufficiently long time the average velocity relaxes to /-lE as expected 

from Ohm's law. 

In order to derive a discrete-time approximation to the Langevin equation, 

which could be employed in practical simulations, equation 2.7 is integrated 

over a short time interval ~t. The simplest approach is Euler integration which 

gives 

v(t + ~t) = v(t) + [q~t) _ v~t) ]6t + ~ V(t) (2.9) 

where 
1 It+~t 

~ V(t) = - F(t')dt'. 
m t 

The random force F(t) requires special treatment and has to be integrated 

separately because it is rapidly varying on any time scale. It averages to zero 

((~ V(t)) = 0) and is o-correlated 

(6 V(t)6 V(t + s)) = 0'20(S). (2.10) 

This auto-correlation function indicates the degree of influence that a value, at 

any instant in time, has on the future and so it can be viewed as a measure of 

the duration of the 'memory' of the fluctuating force. The o-function clearly 
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indicates that the value of ~ V at any instance is totally unrelated to its value 

at any other point in time. This is the property of 'white noise'. 

The statistical properties of the integral ~ V(t), called a Wiener process, 

can be obtained through the central limit theorem. This states that the sum 

of an infinite number of uncorrelated random events follows a Gaussian dis­

tribution. The random force induces a random walk in velocity space, and 

the associated diffusion coefficient Dv (in velocity space) must be related to T 

through the fluctuation-dissipation theorem. The variance of the distribution 

of ~ V(t) can therefore be written in the two forms 

(2.11) 

where k8 is Boltzmann's constant and T is the equilibrium temperature of 

the particles. This equation also relates the diffusion coefficient in real space 

Dr to Dv via the Einstein relation 

(2.12) 

The time integrated version of the Langevin equation can be written as 

a finite difference equation. Introducing a discrete time tn = n~t and the 

notation Vn = v(n~t), 

(2.13) 

where En = E( n~t) and I = 1-~t / T. It can be shown that this discrete-time 

approximation to the Langevin equation can be solved in a constant field for 

the expected velocity at the nth time step to give 

(2.14) 

The analogy with equation 2.8 in continuous time is clear. For this system 

to relax towards the true solution, it is required that I < 1 (i. e. ~t < T). For 

~t « T the discrete-time result approximates very well the transient in the 
continuous-time solution since 

(2.15) 
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as n ---+ 00. This expression verifies that (v n) ---+ pE when n ---+ 00 in the 

correct manner. 

The treatment above used the simplest approach to integrating the equa­

tion of motion. A better discrete time approximation would use the average 

velocity during the time-step, (vn + vn +t)/2, in the frictional term of equa­

tion 2.9. This gives 

(2.16) 

where,B = 1+~t/(2T). This improved approximation to the Langevin equation 
has a similar solution for the expected velocity exactly as equation 2.14 but 

with a different factor 
I , (1-~) 

, = (j = (1 + t~)' 
This gives a better approximation for the exponent in the continuous time 

solution with half the error due to discretisation. 

The discrete time formalism described above, based in velocity space, is 

only valid for time steps smaller than the momentum relaxation time T m' This 

physically obvious result is confirmed by equation 2.15. Over time-scales longer 

than the momentum relaxation time, the velocity would have largely relaxed 

to its equilibrium distribution and so (v) ~ O. The motion may then be viewed 

as a random walk in real space and the Brownian motion of the carriers can 

then be described by a stochastic equation in position 

x(t) = pE(x, t) + V(t) (2.17) 

which can be derived from the Langevin equation 2.7 by letting (v) = O. Now 

the particle's velocity has only two components. The drift pE contains both 

the acceleration due to the electric field and the average retarding force, while 

V(t) provides stochastic diffusion. This is close to the drift-diffusion picture; 

the random walk induced by V(t) leads to diffusion, and the balance between 

this and JLE ensures that the particles acquire a Boltzmann distribution of 
velocities in equilibrium. 

Integration of equation 2.17 over a time interval ~t leads to 

~x = JLE~t + ~X (2.18) 
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where ~X is another Wiener process, a random displacement which aver­

ages to zero and has a Gaussian distribution with a variance given by 

(2.19) 

Here Dx is the diffusion coefficient in real space. Introducing a discrete time 

t = ntlt as before, equation 2.18 can be written in terms of finite differences, 

(2.20) 

This is a discrete analogue of the drift-diffusion equation and can be used 

in device simulation, but all description of ballistic processes has been lost. 

The time step ~t is no longer limited by the momentum relaxation time but 
by the scale on which E(x, t) varies: a 'jump' Xn+l - Xn must be smaller than 

the spatial scale of E, and ~t should itself be small on the temporal scale of 

E. Note that the jump contains contributions from both E and ~XM which 

itself grows as tlt is increased. 

The practical implementation of the Brownian Dynamics method shall now 

be considered. 

2.2 Practical Implementation 

The implementation of the Brownian simulation approach based on the dis­

crete time approximation of the Langevin equation is straightforward. The 

only input parameters required are the mobilities and effective masses of the 

carriers and the lattice temperature, as in the drift-diffusion method. The 

procedures involved in the simulation are very similar to those used in the 

ensemble Monte Carlo approach. The Brownian simulation is an ensemble 

technique where the particles are moved at each time step in response to local 

electric fields. The simplest way of obtaining the fields is to subdivide space 

into a mesh and solve Poisson's equation, after assigning the charges to the 

appropriate nodes, using some weight function. The resulting potential map 

can be differenced to get the local electric fields and so, while the motion is 

continuous, the fields are calculated from discrete values. In very small de­

vices, each of those particles may represent an individual carrier. Otherwise 
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the concept of 'superparticles' should be used, where each superparticle be­

haves dynamically like a single carrier but represents multiple charges in the 

solution of the Poisson's equation. After some transition time required for 

equilibrium to be established, the quantities of interest are extracted and the 

whole process is repeated until all measurements have been made. 

For the time step ~t < T, the formalism based in velocity space can be 

used. The velocity Vn+l of a particle at the end of the nth time step can 

be calculated from the velocity Vn at the beginning of the step using the 

finite difference equation 2.16. The trapezoidal integration in time (where the 

average velocity is used to determine the drag) gives a much improved result 

for very little computational expense (as shown in figure 2.1). The components 

of the random velocity ~ V n are randomly chosen from a Gaussian distribution 

of variance 2Dv~t. This procedure gives the correct statistical distribution of 

~ V n immediately and so it is beneficial in the simulation of very small devices 

where particles take a small number of time steps to traverse the active region. 

Tab. 2.1: The shape of the velocity distribution with time-step for (a) fixed mag­
nitude (±v'2Dv~t) and (b) Gaussian Weiner process. 

Gaussian 
Abs. dev. Mean 0' Skew Kurtosis (-3) 

J~ ~ 0.7979 0 1 0 0 

(a) 
D.t/r Abs. dev. Mean x 1O-l:l 0' Skew x10-J Kurtosis (-3) 

1 0.9458 1.438 1.006 2.403 -1.604 
! 0.8360 3.016 0.9966 -12.68 -0.9409 
1 0.8266 1.422 1.004 -5.406 -0.6615 
3 
1 0.8022 2.289 0.9994 11.21 -0.1293 20 
1 0.7973 -0.1144 1.000 1.961 -0.01149 ~24 

(b) 
~t/T Abs. dev. Mean x10 1:.1 

0' Skew x10-3 Kurtosis (-3) 
1 0.7984 -0.4105 0.9997 5.355 -0.01063 
1 0.7983 -2.323 1.002 -22.74 0.009409 
~ 0.7946 2.127 0.9927 -5.047 0.008555 m 

The last term in equation 2.16 is a random walk in velocity space and can 
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Fig. 2.1: The relaxation of velocity towards equilibrium as determined by the two 
integration methods. Tp has been chosen as the unit of time and At = T, 

At = T /2, At = T /3 and At = T /10 have been graphed. 

be represented by any distribution with the correct variance, such as steps of 

constant magnitude. The central limit theorem ensures that the sum of veloci­

ties will approximate a Gaussian distribution after a large number of steps and 

so the components of ~ V n can be chosen at random from the set {±yl2Dv LSt}. 
The frictional term is helpful here since it smoothes these stochastic jumps. 

The simplicity of this approach pays great dividends when ~t / T becomes small. 

In fact the smallest time scale is the energy relaxation time (Te = Tp /2) and in 

practice any time step ~t ~ Tp /2 suffices. Table 2.1 shows the advantageous 

of choosing the random term from a normal distribution. 

The new positions of the particle at the end of the nth time step can be 

obtained from the average velocity, 

1 
xn+l = xn+l + '2(vn + vn+dAt. 

This is consistent with equation 2.16. In very small devices, where there are 

at most only a few particles at a node on the Poisson mesh, the movement of a 
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particle out of the cell can result in a significant change in the potential map. 

Therefore the time steps must be smaller than the time taken for a particle to 

cross the width of a cell. 

Alternatively the description in real space can be used which allows a time 

step larger than T. Its implementation is simpler, requiring only the position 

of the particle. The position of an individual particle at the end of the nth 

time step Xn+1 can be calculated from the position at the beginning of the 

step Xn using equation 2.20. Again AXn should be chosen from a Gaussian 
distribution whose variance is given by equation 2.19. 

To model small devices, including the fluctuating potential of randomly 

distributed impurities and interacting carriers, it is advisable to use the ve­

locity representation of the Brownian simulation rather than the spatial one. 

The scattering from randomly distributed ionised impurities can then be in­

corporated into the electric field E through their potential obtained from the 

solution of the Poisson's equation. This allows such scattering to be studied in 

detail, rather than averaged as in the usual approach where it would be lumped 

into an overall mobility. In this case the 'mobility' or relaxation time in the 

simulation should include only the phonon scattering and can be deduced from 

the phenomenological mobility at low doping concentration. 

A source of concern is that the relaxation time approximation is not strictly 

applicable to inelastic scattering events, which dominate at room temperature 

in moderately doped semiconductors. However it provides a reasonable ap­

proximation where the system is not driven far from equilibrium. Methods 

based on partial differential equations also rely on relaxation time approxima­

tions and obtain remarkably accurate results. The Brownian method, like the 

drift-diffusion model, is applicable where a relaxation time can be defined. In 

practice this covers a wide range of operating conditions. 

2.3 Verification 

A series of tests was performed to confirm the validity and accuracy of the 
Brownian simulation method. 

It is obviously essential that the method gives the correct behaviour at 

equilibrium. The central limit theorem is expected to produce a Gaussian 
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distribution of velocities. This Figure 2.2 shows the distribution of velocities 

for the model based in velocity space (equation 2.16) after it has come to a 

steady state. 
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Fig. 2.2: Distribution of velocities in the simulation at equilibrium (0) and under 
a constant electric field of IMVm-1 (-). For comparison, the full curve 
is a Maxwell-Boltzmann distribution at 300 K, while the broken curve is 
the same distribution shifted to the expected drift velocity of 850 km s-l. 
Note that an electric field displaces the distribution but does not broaden 
it within this model. The error bars denote the VN statistical error 

It is clearly in excellent agreement with a Maxwell distribution at the ex­

pected temperature of 300 K. The particles' temperature represents the equi­

librium point where the power delivered by the fluctuating force matches the 

losses due to the frictional term. The diffusion coefficient in real space was 

also checked to have had the correct value (equation 2.19). 

Constant electric fields were applied to verify that drift was predicted cor­

rectly and Ohm's law was clearly obeyed with the correct mobility. This is 

in keeping with the analytic calculations. Figure 2.2 also shows the distribu­

tion of velocities in a field of 1 MV m- l for the model based in velocity space. 
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The distribution is centred on the drift velocity but has the same width as 

before. Note that the temperature of the electrons does not increase with 

electric field in this model. This is to be expected from its close relation to 

the drift-diffusion approximation, and contrasts with other approaches such as 

the relaxation-time or drifted-Maxwellian approximation. The calculations in 

appendix A show that the distribution is unaffected by the electric field. 

The simulation therefore confirms the correct choice for the magnitude 

of the Wiener process. The spatial diffusion coefficient was evaluated from 

the variance of the position vector and the correlation between the velocity 

and position vectors. The simulations predict the correct diffusion coefficient 

in real space, properly related through the Einstein relation to the mobility 

which is an input parameter in the simulations. This reconfirms the correct 

choice of b. V as diffusion is entirely related to the fluctuating force. Thus we 

have confidence that this simulation gives the correct results in equilibrium. 

The simulation of a pn-junction diode provides an excellent test for the 

Brownian approach because both drift and diffusion are critical. At equilib­

rium, the width of the depletion region and the built in potential are established 

by the balance between drift and diffusion. In forward bias at low current level 

the diode characteristic is dominated by the diffusion of the minority carriers 

away from the depletion layer edges. This leads to an exponential current 

voltage characteristic (the Shockley equation). At high current level the series 

resistance and the drift current in the un depleted regions of the diode lead 

to a linear (Ohmic) behaviour. Hence the diode operation can be described 

satisfactorily using drift-diffusion simulations. The comparison of standard 

drift-diffusion results with the Brownian simulations for a simple diode will 

establish further the credibility of the new simulation approach. 

A 1 Jlm long, symmetrical Si diode, with doping concentrations of 1022 m-3 

on both sides of the metallurgical junction, was studied as a further test of 

the Brownian method. The ID simulation domain was uniformly subdivided 

into 100 blocks with width b.x = 10 nm over which Poisson's equation was 

discretized and the charge assignment carried out. This ensures that there are 

around 20 mesh points over each half of the depletion region. A cross sectional 

area was selected so that there would be a manageable number of particles 

(arbitrarily chosen to be 100) in each block. The time step must satisfy two 
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constraints: it must be small compared with the momentum relaxation time, 

and should ensure that the particles are only likely to travel between adja­

cent blocks; this is determined by the thermal velocity rather than the drift 

velocity. tl.t = 0.01 ps was used, compared with T = 0.2 ps, which allows the 

exponential relaxation of the average velocity to be adequately characterised 

(equation 2.15). A typical time to travel between adjacent blocks at the ther­

mal velocity is 0.1 ps so the second condition is also satisfied. The solution 

domain and the ohmic contact regions are illustrated in figure 2.3. A width of 

4 blocks was chosen for the contacts on the both sides. The tridiagonal system 

of equations arising from the discretization of Poisson's equation was solved 

directly. 

-L-C -L 

n 

0--0 -31~ -+---0 A 
..-, +-.... 0 0,,--+-.... 0 B 
~- --------------~ 

,0 0 C 
1. _____ --------

Contact Device 

L L+C 

Fig. 2.3: (a) Domain of the simulation, showing a symmetric diode between ±L 
with additional regions of thickness C for the contacts. (b) Expanded view 
of the left contact region, showing the processes that occur when a particle 
meets the boundary. (A) A particle entering the contact from the device 
is counted and annihilated. (B) When a particle from the contact enters 
the device, a replica is created and returned to the far edge of the contact 
using periodic boundary conditions. (C) Particles hitting the far edge 
of the contact are returned using periodic boundary conditions. These 
processes ensure that the contact retains a constant number of particles 
and remains in equilibrium. 

Special care must be taken when the modelling of the contacts. In a good 

model of an ohmic contact the carriers should have an infinite recombination 
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rate and should remain in thermal equilibrium during the whole simulation. 

If, however, finite ohmic contact regions are introduced in the simulation, en­

ergetic carriers are more likely to leave the contact than less energetic ones 

and there would be a contact cooling effect. To overcome this problem, the 

following procedure, illustrated in figure 2.3(b), is used. The ohmic contact 

regions were considered separately from the domain in which Poisson's equa­

tion is solved. They contain no electric field and have periodic boundaries. If 
a particle enters the contact from the device it is immediately removed from 

the simulation and counted (A). When a particle leaves the contact region 

into the device, a duplicate is created in the contact using periodic boundary 

conditions (B). Procedure (A) ensures that there is no heating from incoming 

particles and along with the periodic boundary conditions (B and C) ensures 

that the contacts are always in thermal equilibrium while conserving the num­

ber of particles. This contact also gives the correct projection profile into the 

device with particle velocity: particles of higher velocity can penetrate more 

deeply than those that are slower. 

The widths of these contact blocks must be greater than the mean free paths 

of the carriers in order to avoid introducing any correlations in the motions 

of the particles injected into the device. This procedure allows equilibrium 

conditions in the device to be established. 

The balance between the carriers which are removed from the simulation 

domain through the contact boundary and the carriers injected from the con­

tact region through the same boundary constitute the total contact current. 

A sufficient number of time steps must elapse after any change in bias before 

any such current can be reliably measured. 

First the development of the depletion layer from charge neutrality was 

simulated, with one boundary of the solution domain (at x = -L) fixed to OV 

and the other (at x = L) allowed to float free. The von Neumann boundary 

should be treated very carefully since there is now less control in the injection 

rates or in the numbers of carriers in the device. The presence of both positive 

and negative mobile carriers can cause problems if recombination is ignored. 

A slight excess of carriers of a given charge in any region will set up an electric 

field that will attract carriers of opposite charge because the solution of Pois­

son's equation depends only on the net charge in each block. This can lead to 
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an incessant accumulation of carriers in the device. The contact at the float­

ing boundary must not cause any unwanted injection or absorption effects, 

and must be at thermal equilibrium at all times. The procedure for ohmic 

contacts described on page 30 satisfies these requirements. Recombination is 

necessary for a depletion region to form, but does not affect its profile and so 

it is not necessary to model it very accurately. The depletion region is formed 

such that the thermal diffusion currents are countered by the drift currents 

due to the proper magnitude of the built in potential (0.69 V for this doping). 

However this is a slow process with a exponential relaxation to the equilibrium 

condition and prone to large fluctuations (see figure 2.4). This was because 

the number of carriers that can cross the depletion forms decreases markedly 

as it develops. The simulation was repeated with initial condition where the 

carriers had been removed in the cells lying within the depletion region and 

the results for a 400 ps simulation are shown in figure 2.5 and clearly indicate 

that the appropriate built in potential is maintained. This shows the advan­

tages of the Brownian method (for the modelling of steady state conditions) 
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Fig. 2.4: The development of the built in potential. 
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Fig. 2.5: VT studied over a 0.4 ns. (The line represents the initial condition.) Note 
that the value stays around the correct value. This is a very good test of 
the Brownian method and the efficacy of the method of dealing with the 
contacts. 

where the large infrequent changes in momenta arising from the Monte Carlo 

scattering are replaced by numerous and much smaller terms. This result also 

demonstrates that the procedure for the treatment of the contacts meets all 

these required criteria. The error bars show the magnitude of the standard 

deviation in the potential at each cell. Figure 2.6 shows the the equilibrium 

distribution over this long interval. The width of the depletion region arising 

from the Brownian model is in good agreement with the simple abrupt view. 

The differences are due to the spreading of the charge distribution caused by 

diffusion. 
The temperature distribution across the diode provides further verification 

of the Brownian method but it gives an idea of the range of kinetic energies 

across the device - a result that cannot be obtained from drift-diffusion. The 

large fluctuations in the depletion region are due to the low numbers of carriers 

and the fluctuations in high fields due to noise. Much of the potential difference 
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Fig. 2.6: The electron and hole numbers /(10 nm). (The lines represent the initial 
condition.) Note the large fluctuations in the depletion regions. 

is dropped across the depletion region and so when VT is more positive more 

carriers can diffuse further into the depletion region but when VT drops they 

experience a larger electric field and so can be accelerated to higher energies. 

The flustuations in VT can therefore act as another random fluctuating force 

that heat the carriers. Electron energies within the depletion region can be as 

high as 1700 K. 

The I(V) characteristics in forward bias were simulated using Dirichlet 

boundary conditions on both sides of the solution domain. Recombination was 

neglected since the length of the diode was much shorter than the minority 

carrier diffusion lengths on both sides of the depletion region. The results 

(see figure 2.8) were compared with the Shockley equation for an ideal short 

diode and found to be in good agreement for small forward currents. The 

commercial device simulator MEDICI was also used in drift-diffusion mode 

to simulate the same diode at higher current levels where the series resistance 

limit applies. The agreement between the Brownian approach and the MEDICI 
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Fig. 2.7: The temperature distribution across the diode. (The lines represent the 
initial condition.) Note the large fluctuations in the depletion regions. 

drift-diffusion simulation is excellent both at low and high current levels and 

shows that the new method properly describes the effects due to diffusion at 

low bias and those due to drift at higher applied voltages. The statistical 

noise due to the discreteness of carriers is apparent during the small injection 

rates that are present when a small forward bias is applied. The very small 

discrepancy at large forward bias may be due to insufficient injection rates at 

the contacts, which were modelled as reservoirs at thermal equilibrium with 

no external fields. 

The Brownian method has therefore been shown to provide a good descrip­

tion of both drift and diffusion throughout its region of applicability. 
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Fig. 2.8: Current-voltage characteristics of a short diode, comparing the Brownian 
simulation (circles) with results from MEDICI (full line) and the ideal 
diode equation (broken line). Agreement is excellent both at low bias 
where diffusion dominates and at high bias when drift is important. 



3. CALCULATION OF THE ELECTRIC FIELD FROM 
DISCRETE RANDOM CHARGES 

Now that we have a computationally efficient method of dealing with phonon 

scattering, the next important step is to integrate the equations of motion 

resulting from the complicated electrostatic forces arising from these discrete 

charges. The crux of the problem is that the presence of discrete point-like 

charges result in sharply varying electrostatic forces that are numerically dif­

ficult to calculate and integrate through space and time. These forces can be 

split into an internal component, due to the electrostatic force between the 

particles, and an external component, resulting from the applied potentials 

and boundaries. The internal forces show the rapid spatial variation (i.e. they 

have high spectral components), while the external forces provide a slowly 

varying background. 

The solution of Poisson's equation on a mesh is the mainstay of device 

modelling. It is an efficient method that can deal with complex boundaries 

and large numbers of carriers. It obviates the need to sum what are often 

infinite sets of image charges at boundaries. However, the act of sampling 

the charge density and the potential distribution on a finite sized mesh places 

an upper limit on the spacial frequency of these quantities. The finite size of 

each mesh point means that it cannot truly represent the pointlike nature of 

individual ions and carriers or the spikes in the potential from these discrete 
charges. 

The direct analytic evaluation of the electrostatic forces does not suffer 

from the problem of band limiting but is not practical for real devices. The 

Coulomb force obeys the inverse square law and so the high spatial frequency 

components are only significant around the vicinity of each pointlike charge. It 
then becomes only necessary to calculate the forces directly when the particles 

are close enough for the mesh to have a significant effect on the measurements. 
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Now since the more slowly varying long range forces are extracted from the 

mesh, a suitable and efficient method is required to estimate the erroneous 

contributions to the force from nearby charges. Estimating the force that is 

obtained from the mesh is a tricky problem because it depends on both the 

positions of the charges within the mesh cells and the orientation of the vector 

that separates them. (A mesh cell is the volume enclosed by eight adjacent 

abscissae for the case of a rectangular mesh.) Therefore the main objective is 

to use a scheme that gives forces that are simple to predict. This problem has 

been studied by other authors [92, 93] who used 'optimised' Green's functions 

to make the force obtained from the mesh approximate that which occurs be­

tween spherical distributions of charge. Their method gives forces that are not 

affected by the coordinate of the particles with respect to the mesh nor their 

relative orientations. However, this procedure places limits on the choice of 

Poisson solver since the use of Green's functions require the use of methods 

based on Fourier transforms. They used an efficient FACR algorithm [91] in 

their work [93, 95]. Section 3.2 introduces a novel and computationally inex­

pensive method, that has been devised as part of this work, which adequately 

determines the mesh-derived force for point charges in close proximity. It uses 

the symmetry of the problem to estimate the mesh force and so divorces prob­

lem of solving Poisson's equation from estimation of the mesh derived force. 

This makes the Poisson solver simpler to set up and allows the most suitable 

method to be used. 

This chapter will firstly review the standard technique for the resolution 

of forces - the solution of Poisson's equation on a mesh. Attention will be 

paid to the problem of band-limiting because this determines the volume over 

which the interparticle interactions have to be directly evaluated, for a given 

mesh. Now since the number of interactions varies as the square of the number 
of charges which in turn varies as the cube of the length of the cell, this is an 

important consideration when designing a method to follow the equations of 

motion. 

The use of weighting functions to assign the discrete charges to the mesh 

and to obtain the resulting forces will be discussed. The important point here 

is that the same weights must be used for both these processes to avoid any 

unphysical or 'fictitious' forces. 
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The solution of Poisson's equation will then be discussed. Three methods 

have been developed and applied to typical structure. The first is the simple 

SOR scheme; the second is the BiCGSTAB(2) which is a combination of a 

two-step bi-conjugate gradient method and a GMRES method; and finally a 

highly efficient multigrid method with several enhancements is presented. It 
will be shown that the nature of these large problems with discrete charges is 

subtly different from those found in standard device modelling. A comparison 

of the SOR, BiCGSTAB(2) and multigrid methods for a typical case show that 

relaxation methods are best suited for these very large problems containing dis­

crete charges because they can tolerate rounding errors better. The multigrid 

method will be shown to be the most efficient for large problems containing 

discrete charges and so making it the method of choice. The I3iCGSTAD(2) 

and SOR methods have been further enhanced to allow them to run on a rect­

angular array of transputers of arbitrary size and configuration. Chapter 5 

discusses the implementation of these methods on parallel architectures. 

The following section deals with the calculation of forces between discrete 

pointlike charges. The new method of estimating the mesh derived force is 

central to this work. 

3.1 The solution of Poisson's equation 

The most common way to resolve the forces acting on the carriers is through 

the estimation of the local electric field following the solution of Poisson's 

equation. The use of a mesh allows does not suffer from the the problems 

caused by the need to sum infinite sets of image charges boundaries and is 

generally faster for systems with a large number of particles. 

There are three steps to this procedure: 

1. The assignment of charges to the mesh points using some weight function. 

2. Solve Poisson's equation to get the potentials at the mesh points. 

3. Difference the potentials and interpolate the fields for each particle. 

The operations count for this process can be written as em + f3( Np) for a 

system on n particles on a mesh with Np abscissae. Q' is det~rmined by the 
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total number of operations required for charge assignment and for differencing 

and interpolation of the forces. j3 gives the count for the solution of Poisson's 

equation. One can compare this to the n(n-l) operations required to calculate 

the forces between n particles - assuming that one division and one squaring 

operation is required for each evaluation. 

Unfortunately, the use of a mesh introduces inaccuracies in the calculated 

force due to band-limitation. For a mesh of spacing h, the sampling theorem 

limits the minimum wavelength of any fluctuations in the mesh values to 2h. 
This has the effect of introducing large errors in the short-range force between 

point-like particles with separations that are smaller than h. In fact the par­

ticles behave as though they are clouds of charge with a radius of h/2. It is 
probably more accurate to represent them as cubes of dimensions h x h x h. 

The band limitations imposed by the mesh can be unacceptable for study­

ing correlated systems, requiring meshes that are fine enough to resolve the 

close encounters that can occur between the particles, due to the exorbitant 

computational loads. However, this can be a boon in uncorrelated systems 

where this cut-off introduces the properties required to destroy the unphysi­

cal correlations between a limited number of superparticles in the simulation. 

The usual solution to this problem is to use a varying mesh spacing across 

the simulation domain with the finest mesh in areas where there are sharp 

variations in electric field. In standard FET simulations, this region is under 

the gate near the drain. The presence of discrete and mobile charges add to 

this problem because they induce spikes in the potential map whose positions 

vary with time. 

Screening causes potentials to decay more rapidly and so the scale of the 

mesh is determined by the Debye length 

10 = J(kST 
e2n 

(3.1) 

The processes involved in the solution of Poisson's equation will now be 

discussed. 

3.1.1 Charge assignment 

The first step in the solution of Poisson's equation is to place the discrete 

charges on a mesh. The simplest solution is to place each charge on the 
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nearest grid point which preserves its pointlike nature as far as possible on 

the mesh. This crude method gives a discontinuous electric field and potential 

during the motion of the carriers and so it is of little practical use. The 

need for a smoothly varying potential and electric field requires the use of an 

interpolation scheme that divides up the charge and assigns the components 

to nearby mesh points. A couple of problems can arise if care is not taken 

during this procedure. An important consideration is that the mesh should 

not give rise to fictitious forces. The resulting equation of motion must conserve 

both energy and momentum. This problem arises when the discrete charges 

are ascribed to several mesh points through some weighting function. This 

condition requires that the same weight functions be used when assigning the 

charges to the abscissae and when interpolating the particle forces [95]. 

A simple approach would be to use a piecewise linear scheme to interpolate 

the values to the nearest 8 abscissae (in three dimensions). This cloud-in cell 

(CIC) method is very widely used. A triangle shaped cloud (TSC) using a 

quadratic weighting function, used to ascribe the particulate charge to the 

nearest 27 abscissae, also has a continuous first derivative. One can continue 

onwards using more abscissae to give an n-point scheme that is continuous on 

the first (n - I)-derivatives. The penalty for this is that the weights must be 

ascribed - on a three dimensional grid - to n3 abscissae, resulting in a rapid 

increase in computational effort for fewer gains. In practical situations the 

TSC is found to be adequate. 

Spreading the charges on to a small number of mesh points can result in 

large tails in their Fourier spectrum that leads to the phenomenon of aliasing. 

To illustrate this problem, first consider ID problem where a band limited 

function that is sampled by a train of a-functions and its Fourier transform 

00 

fo(x) = L: 6(x - nh)f(x) (3.2) 
n=-oo 

00 

¢=} Fo(k) = h L a(k - nkm ) 0 F(k) 
n=-oo n=-oo 

(¢=} represents the Fourier transform operation and 0 the convolution 

integral). 
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fo{x) Fo{k) 

fl(X) 

Fig. 3.1: Aliasing in meshes. 

The shift theorem can be used to remove the first harmonics 

00 1 
h(x) = E o(x - (n + -)h)f(x) (3.3) 

n=-oo 2 
00 1 

¢=:} Fl(k) - h I: o(k - (n + 2)km ) 0 F(k) 
n=-oo 
00 

- L (-l)nF(k - nkm ). 
n=-oo 

A veraging the 2 together causes all the odd images to cancel and so largely 

removes the problem of aliasing, as shown in figure 3.1. 
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The 3D case can be treated as a product of 3 spatial functions 

f(x,y,z) = fx(x)fy(y)fz(z) (3.4) 

and so requires eight interlaced meshes. However, the magnitude of the error 

is most significant along the [100] directions and so one can use two interlaced 

meshes that are displaced by (hj2,hj2,hj2) (as seen from figures 3.9-3.11). 
Obviously these arguments are an oversimplification: the quantities repre­

sented on the mesh are not truly band limited and so the second and higher 

harmonics are also present, but interlacing only removes the contributions from 

the first. 

The use of interlacing is not the same as sampling the potential or charge 

distribution using a finer mesh. It is a device for reducing the influence of the 

particle's position, relative to the mesh points, on the mesh derived force. This 

will be discussed in section 3.2. 

3.1.2 The solution of Poisson's equation 

The solution of Poisson's equation is often the most time consuming part of 

a three dimensional simulation. In our simulations, over 80% of the cpu time 

for a time step is spent solving Poisson's equation since there are a relatively 

few number of particles on very large meshes. Optimising this stage would, 

therefore, pay back great dividends. Three different iterative methods were 

considered: the successive over-relaxation method, the bi-conjugate gradient 

method and the multigrid method. 

Firstly, the three methods will be outlined [96] and their relative merits 

will be discussed. 

Successive over relaxation methods [97, 98, 99] are one of the most widely 

used techniques for solving boundary value problems in science and engineering 
due to their simplicity and reasonable speed. Essentially, they are Gauss-Seidel 

methods with overcorrection. Consider the system of linear equations 

A·x=b (3.5) 

The SOR method can be written down as 

(3.6) 
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where Land D are the lower triangle and main diagonal of A respectively, 

and the residual ri = AXi - h. 

For a problem of size N, an optimal choice for the overrelaxation parameter 

(1 < W < 2) can reduce the number of iterations required to obtain a solution 

from the order of N 2
, of the Gauss-Seidel, to that of N. This optimal value is 

given by 
2 

W= , 
1 + y1- PGS 

(3.7) 

where the spectral radius PGS is the magnitude of the largest eigenvalue of the 

Gauss-Seidel iteration matrix (-(L + Dtl . U). (U is the upper triangle of 

A.) Its value is just the square of the Jacobi iteration matrix _D-l . (L + 
U). The spectral radius of the Jacobi iteration, for a N:r; X Ny X N% mesh 

with spacing (ox,oy,oz) and either Dirichlet or von Neumann homogeneous 

boundary conditions, is given by 

(oy2oZ2) cos -k + (OX20Z2) cos N; + (ox2oy2) cos ir; 
pJ = ox2oy2 + ox2oz2 + oy2oz2 • (3.8) 

Overrelaxation often results in the increase in the error by more than an 

order of magnitude in the early iterations. However this problem can be easily 

alleviated by the use of Chebyshev acceleration. Here the mesh is subdivided 

into black and white nodes, as in a chessboard pattern, which are updated 

alternatively using data from the opposite colour at each half-sweep. The 

updating of points in this manner also facilitates the the implementation of 

the SOR method on massively parallel computers because the data required 

to update each point does not change during each half sweep. This will be 

discussed further in chaper 5. 

The overrelaxation parameter is initially set to unity (i.e. starting from 

the Gauss-Seidel iteration) and gradually refined toward the optimal value 

over each half-iteration step. 

Wo = 1 
1 

1 1 2 
- "2PJ 

1 

1 1 2 ' - -;,PJwn 
n--.cp 

Wn --t Woptimal 

n> 1/2 (3.9) 
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Chebyshev acceleration always results in the decrease of the norm of the 

error and this method converges to the correct result eventually, even when 

the meshes are irregular. This fact, coupled with its simplicity and ease of 

parallel implementation, makes it the mainstay of many device simulators. 

Conjugate gradient methods [100] are widely used for the solution of dif­

ferential and sets of linear equations Ax = b. Their essence lies in the min­

imisation of an error function 

1 T T f(x)=-x Ax-x b+c 
2 

(3.10) 

to which this problem provides the gradient. Now J(x) is a quadratic function 

if A is symmetric and so if there exists a stationary point (i. e. a solution) at 

Xo then 
1 T 

J(x) = J(xo) + 2(x - xo) A(x - xo) (3.11) 

If A is positive definite then 

f(x) > f(xo) \/x f. Xo, (3.12) 

in other words there is a unique stationary point which is at the minimum. 

Now take a set of parallel lines along a direction p in an n-dimensional 

vector space, then the minimum of f(x) along these lines at intersection of 

these lines with a (n - 1 )-dimensional hyperplane 7r n-l. This plane is normal 

to Ap and so any vector q in 7rn -l is conjugate to p (qT Ap = 0). The 

obvious choice for p is along the direction of steepest descent. Furthermore, 

the solution Xo must lie on this hyperplane and so the dimensionality of the 

problem has been reduced by one. The next step will be along the vector of 

steepest descent in this hyperplane and so forth giving the solution in at most 

n steps - assuming exact arithmetic of course. 

The important question that has to be resolved now is the size of these 

steps. Since A is symmetric then equation 3.10 becomes 

f(x + p) 
1 

- f(x) + pT (Ax - b) + 2pT Ap (3.13) 

1 
- f(x) + pT f'(x) + 2pT J"(x)p 

and a residual (r = - f'(x)) can be defined. 
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Let X2 be the position of the minimum along the line in the direction of p 

from an initial point Xl so that 

If 

then it is evident that 

d = [[ 
h 

f(xi + 2p) = f(xt} - 2d(g - dh) = f(xt} 

(3.14) 

(3.15) 

and so this prescription does indeed give the position of the minimum since 

f(x) is a quadratic function. 

Unfortunately A is neither symmetric nor positive definite in many cases. 

There are several solutions to this problem. Preconditioning can be used in 

these cases where a matrix K = KI . K2 can be defined which approximates 

A. The original problem can now be transformed into a more symmetric one 

after pre-multiplication by Ki"l 

(3.16) 

The problem here is to choose KI and K2 to provide a rapid convergence. 

There are many choices (such as KI = Land K2 = U [101]) and there is no 

universal choice for all types of problems. For large sparse three dimensional 

systems some authors have proposed the use of incomplete Cholesky decom­

position as a preconditioner [102, 103, 104]. This method used KI = LU and 

K2 = I. 
The topic of preconditioning is very large and there is a fine art to choosing 

the appropriate method, and the small number of discrete charges mean that 

the solutions to Poisson's equation can vary greatly during the simulation. 

Therefore, the variants of the conjugate gradient scheme that can be applied 

to non-symmetric problems have been considered. The bi-conjugate gradient 
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method [105, 101] in conjunction with a generalised minimal residual method 

(GMRES) [106, 107], (BiCGSTAB(2)) [108] has been chosen. This method, 

while still being able to cope with complex unsymmetric problems, is very 

fast and is amenable to parallel implementation. (See appendix B for a fuller 

description. ) 

Figure 3.2 shows the results for a set of simulations carried out on a three­

dimensional cubic mesh and with von Neuman boundary conditions. The 

values of b were set to zero but the central point set to a value of 1. One 

of the corner points was fixed (i.e. having a Dirichlet boundary condition) in 

order to provide a unique solution. It is clear that the bi-conjugate gradient 

method is about eight times faster than the SOR method with Chebyshev 

acceleration. 
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Fig. 3.2: The BiCGSTAB(2) method vs the SOR method for a 3D cube with von 
Neumann boundaries. One corner was fixed to OV to prevent the solution 
from drifting. 

Multigrid methods [109, 110, 111, 112] are among the quickest of Poisson 

solvers, requiring only of O(N) iterations for the solution of a mesh with N 
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abscissae. They are ofter faster than the so called 'rapid methods' that use 

fast Fourier transforms and cyclic reductions (FACR) [113, 114, 94]. Poisson's 

equation can be written as a set of linear equations after expressing the Lapla­

cian as a finite difference operator and discretising the potential and charge 

density on a grid. Considering a linear differential operator £1 applied to a 

mesh labelled l, if the exact solution is given by 

£'X' = b' , (3.17) 

then the correction that is required for the nth iterate for this solution, as 

denoted by x~, is simply 
c' = x, - x' n n (3.18) 

The residual, or defect, is then given by 

d' - £x' - b' n n 

- £(x' - c~) - b' 
- -£e' n (3.19) 

One can proceed by obtaining the defect and solving this for the correction 

to the next iterative solution. The use of a relaxation method for solving 

this system of equations leads to a much greater efficiency in reducing the 

components in the upper half of the spectral band of the mesh than those 

in the lower half. Sampling the defects in the mesh using coarser grids will 

be advantageous in eliminating the low frequency components. This is called 

restriction and there is a corresponding prolongation of the correction to the 

finer grid. The aforementioned label I can now be used to denote the level of 

the current mesh. This can be written as the following algorithm: 

1. Apply smoothing operations to the problem (pre-smoothing). 

2. Compute the defect. 

3. Restrict the defect onto a coarser mesh. 

4. Solve defect for correction on coarser mesh. 

5. Prolong correction to the finer mesh. 
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6. Update solution. 

7. Apply more smoothing (post-smoothing). 

A multigrid method can be used to solve for the correction on the coarser 

mesh and so this results in a recursive algorithm. This process (see figure 3.3), 

of smoothing and restriction going down to the coarsest mesh where an exact 

solution to the correction is found and the resulting prolongation and smooth­

ing back to the finest mesh, is called a V-cycle. More effort is required to 

reduce the low frequency components and so in order to reduce some effort, 

one may descend 'Y times before ascending to a higher level. This results in the 

W-cycle. There is also a variant of the multigrid method that starts with the 

coarsest mesh and cycles through to the finer meshes. This is very useful the 

potential within the domain is not known a priori, but in our simulations the 
potential map is very similar, as far as the low spatial frequency components 

are concerned. It is convenient to use the Gauss-Seidel scheme as a smooth­

ing operation, but over-relaxation must never be used because it destroys the 

smoothing of the high frequency components and may introduce oscillations. 

(A recent publication [115] questions this belief and claims a 34 % increase in 

speed when using a modified V-cycle method for very little computational over­

head.) Many authors use the Jacobi method and this is the method of choice 

when muItigrid methods are implemented on massively parallel architectures. 

In the case of a regular mesh, linear interpolation functions may be used 

to derive the restriction (1(.) and prolongation (P) operators. Therefore the 

defect on the coarser grid of double the mesh spacing, on a three dimensional 

mesh, is given by 

III 1 
d~-l(i,j,k) = 8" EEL 2-(li'I+lj'I+lk'l)d~(2i+i',2j+j',2k+k') (3.20) 

i'=-l ]'=-1 k'=-l 

and the corresponding prolongation of the correction on to the finer mesh is 

c~(2i + a, 2j +,8, 2k + () = (3.21 ) 
a {3 , 

2-(la l+It3I+ICI> E E E c~-l(i + i',j + j',k + k') 
i'=O ]'=0 k'=O 

a,,8,( E {-1,0,1} 
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The V-cycle 'Y = 1 The W-cycle with 'Y = 2 

Fig. 3.3: An illustration of the multigrid method. The circles represent the lev­
els of the multigrid iterations and []D the exact solution at the coarsest 
mesh. The smoothing is applied at (S). ~ represents the calculation and 
su bsequent restriction of the defect. /' denotes the prolongation of the 
correction followed by its application. 

It is much clearer to write these equations in the form of a stencil as follows 

[1 2 1 2 4 2 1 2 

n n=~ 2 4 2 4 8 4 2 4 
64 

1 2 1 2 4 2 1 2 

(3.22) 

[1 2 1 242 1 2 

~ ] 'P=~ 2 4 2 484 2 4 

1 2 1 242 1 2 
(3.23) 

The main problem with this method is that one must be always able to 

define the differential operator for all meshes. This can lead to problems 

when inhomogeneous boundary conditions are used or if the mesh is irregular, 

or equivalently if there are materials with different dielectric constants, are 

present. Fixed (Dirichlet) points must be treated with some care since any 

correction terms to these points must be zero. Therefore any abscissae on the 

coarser mesh that map to a fixed point are forced to have a zero defect. 

The multigrid method was validated using the FET structure in figure 3.4. 

The solver was written so that the number number of levels and the num-
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Fig. 3.4: The MESFET structure that was used to test and compare the solvers. 
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Fig. 3.6: A comparison of the Poisson solvers for a FET structure with particulate 
donors and electrons scattered at random. Double precision arithmetic has 
been used. 

formed at each level, but no post smoothing was carried out as it did not 

have the same impact on the rate of convergence as presmoothing. Table 3.1 

indicates the discretisation of the problem. The multigrid method was com­

pared with other methods through the simulation of a simple FET containing 

discrete charges, to indicate its effectiveness and the results are shown in fig­

ure 3.6. The results for the SOR and the double step biconjugate gradient 

method with GMRES (BiCGSTAB(2) are shown below for comparison. The 

methods for calculating the cross products were kept as similar as possible and 

only the free abscissae were updated in order to ensure fairness. 

Note that the conjugate gradient method (lliCGSTAB(2)) stalls for the 

complex potential landscape resulting from the point-like charges, despite be­

ing initially faster than the SOR scheme. Reducing the highly localised errors 

seems to be the major problem since only a small fraction of points are affected 

and so there are small changes in the norms of the vectors. This problem is 
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Tab . 3.1: The discretisation of the MES FET 
number of levels 5 
Coarse mesh 5x5x3 
fine mesh 65 x 65 x 33 
mesh spacing 1.25nm 

still apparent despite the use of double precision arithmetic because of the very 

large problem size (of 274625 abscissae), although the initial error falls faster 

than that for the SOR method. In the earlier comparison (see figure 3.2), the 

potential fell away to zero away from the discrete impurity and all the other 

nodes had no charge assigned to them. Therefore a small number of nodes 

around the discrete charge contributed significantly to the dot products. The 

multigrid method is unaffected and performs excellently. Since only smoothing 

operations are required it (along with the SOR method) is less reliant on arith­

metical precision when the problem becomes large. In other words, relaxation 

methods seem to be more reliable for studying these more realistic problems 

containing (both positive and negative) discrete charges and biased contacts. 

3.1.3 Obtaining the Electric Field 

The discussion outlined below refers to a rectangular grid of constant spacing. 

The simplest method of getting the forces is to use a centred two-point finite 

differencing scheme. 

( 

V(i + I,j, k) - V(i - I,j, k) ) 
E = - 2Ih V(i,j + 1, k) - V(i,j -1, k) 

V(i,j,k+ 1) - V(i,j,k-l) 

(3.21) 

This is accurate to second order and, using Taylor expansion for the difference 

operator, it gives the leading term in its truncation error to be: 

c = h
2 (83

V 8
3
V 83

V) 
6 8x3 ' 8y3' 8z3 (3.25) 

More complicated schemes of higher order can be obtained by extending 

the differencing scheme to include more distant abscissae. A 2n-point scheme, 
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using the nearest neighbours up to a distance of nh is equivalent to fitting a 

polynomial of degree 2n to this neighbourhood and calculating its gradient. 

n ( V(i + c;,j, k) - V(i - c;,j, k) ) 
E 2n = - ?; 2:~ V(~,~ + c;, k) - V(~,~ - c;, k) . 

V(z,), k + c;) - V(z,J, k - c;) 

(3.26) 

(a) (b) (c) 
•• 00 •• •• • 0 • 000 • • 0 • 0 • 

0 

0 
00 

Fig. 3.7: Extrapolation at the boundary (x = O).(a) Dirichlet, (b) von Neumann 
and (c) Periodic. 

The high order difference schemes can still be applied at or near the bound­

aries by using the appropriate extrapolation, as shown in figure 3.7. For Dirich­

let boundaries, the image charges and so the potentials have the opposite sign 

and thereby giving V(-x) = -V(x). The images have the same sign for von 

Neumann boundaries where there is no electric field and so V(-x) = V(x). 
Cells of length L with periodic boundaries just have V(-x) = V(L - x). 

There is a balance between the need for accuracy and that of expediency. 

The 4-point scheme is found to be adequate for the purpose of this work, 

although most authors use the 2-point scheme. The 4-point difference scheme 

resul ts in an error of 

(3.27) 

Figure 3.8 shows the two differencing schemes, in comparison with the Coulomb 

force. The 100 direction has been chosen as it represents the worst case. The 

2-point scheme differs significantly from the true result even when the charges 

are separated by four mesh spacings. 
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Fig. 3.8: The force between two charges, along the [100] direction, on a mesh using 
a 2-point and 4-point finite differencing scheme. The r- 2 Coulomb force 
has been shown for comparison. Distances are in mesh spacings. 

3.2 The short range forces 

The previous section dealt with the traditional method of obtaining the elec­

trostatic forces on charged particles. I shall now introduce a new method for 

estimating the mesh force that is both simple to implement and relatively 

accurate. 

It is clear from figure 3.8 that the mesh gives accurate results when the 

separation of the particles is greater than around three mesh spacings. The 

results deviate significantly from the inverse square law when the charges ap­

proach to within three mesh spacings, and so it would be better to evaluate 

these forces analytically rather than use a mesh for these distances. The mesh 

would still be used to obtain the forces resulting from charges that are more 

than this distance and the boundary conditions, so the main task is to sub­

tract the erroneous component from the mesh determined force. The problem 

is that this short range force varies with the relative position of the charges 



Ci) -'2 
::J 

.e 
CII -Q) 

~ 
0 -.r:. en 
Q) 

:E 

3. Calculation of the electric field from discrete random charges 56 

0.55 

0.5 

0.45 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 
0 0.5 

(0,0,0 -

~
1/4'O,O •••••. 
0,1/4,0 ....... 

~
1 4 1/4 0 ----­
o,li4,li4 _._._ .. 

(1 4,114,1/4 •.•.•. 
(O,O,O)[2j • 

(0,1/4,0)[8 + 
0,114,1/4)[8 III (1~4,1/4,1/4)(8 )( 

1.5 2 2.5 3 3.5 
Separation (mesh spacings) 

4 

Fig. 3.9: The effects of using a mesh, and two [2] and eight [8] interlaced meshes 
on the mesh derived force along the [100] direction. The coordinate of the 
first charge is given. 

with respect to the grid points and is determined by the range and relative 

orientations of the charges in space with respect to each other. This is then a 

problem of six variables to which an nth-order polynomial approximation can 

be made as represented below : 
n n n n n n 

p(rlJ r2) = ~ ~ ~ ~ L L XabcdeJ8i8~838:8~8~ (3.28) 
a=Ob=Oc=Od=Oe=OJ=O 

where the labelling of the position vectors are chosen so that Irtl ::; Ir21 and 

81 = Xl mod h, 

82 = Yl mod h, 
83 = Zl mod h, 

84 = X2 - Xl! 

85 = Y2 - Yl! 

Equation 3.28 has {n + 1)6 terms and since a sixth order polynomial is 

required for a good fit there turns out to be 117649 terms. This scheme is 

obviously impractical for our purposes. 
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Fig. 3.10: The effects of using a mesh, and two [2] and eight [8] interlaced meshes 
on the mesh derived force along the [110] direction. The coordinate of the 
first charge is given. 

The symmetry of the cubic lattice may be used to devise a simpler solution. 

There are three main axes of symmetry, which are the [100], [110] and the [111] 
directions of this lattice. The main aim is to reduce the dimensionality of the 

problem and to devise a computationally inexpensive solution to the mesh 

force. 
The first three variables (S1l 82, 83) are the coordinates of the first charge 

in the mesh cell, bounded by the nearest eight grid points. The first step is to 

see how the mesh derived force is affected by the coordinate vector (within a 

cell) and the separation vector between the charges. Figures 3.9-3.11 show the 

magnitude of force with the charge separation when they are aligned along each 

of the axes of symmetry. It is evident that the largest variation in the curves 

occurs when the charges are separated along the [100] direction. The variation 

is very much reduced for the other two directions with the separation along 

[111] showing the least dependance on the cell coordinates. A closer inspection 
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Fig. 3.11: The effects of using a mesh, and two [2] and eight [8] interlaced meshes 
on the mesh derived force along the [111] direction. The coordinate of the 
first charge is given. 

reveals that the effects of aliasing are more pronounced for displacements in 

the cell that are in line with the separation. This manifests itself as a reduction 

in the magnitude of the peak and a shift in the position of the maximum force 

towards larger separation as the test charge moves further from the mesh point. 

The largest contribution to the variation in the mesh force with this position 

is expected to be due to aliasing effects as described in page 41. Recall that it is 

the first harmonic that contributes to a large fraction of the problem. The use 

of an interlaced set of meshes reduces these effects and thereby reducing the 

problem to one of three variables. Note that the use of eight interlaced meshes 

gives little improvement in the estimates of force despite the quadrupled effort 

involved. This is in keeping with the simplified description where only the first 

harmonics contribute significantly to the potentials and that they are separable 

functions in x ,y and z. 
The electric field lEI is tabulated as a function of the relative displacc-
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Fig. 3.12: The force as derived from the mesh when the line joining the two charges 
lie on the [100], [110] and [111] directions. 

ment between the two charges, rij, along each of these directions of symmetry 

(figure 3.12) and simple polynomial functions are used to interpolate betwe('n 

them to get the mesh force. The assumption that has been made here is that 

the mesh force is in the direction of the separation vector of the particles (rij). 

Although this assumption is not absolutely correct, the method does give re­

sults that are reasonably accurate for the 4-point differencing scheme. The 

first step is to sort the components of rij by decreasing order of magnitude 

and label them 11, 12 and 13• Since we are dealing with magnitude it would be 

advantageous to deal with squares of numbers as this minimises the operations 
count. 

The quantity 

(3.29) 

can be used both to interpolate between the forces along the [100] and [111] 
directions, and also for the interpolation between the [100] and [110] directions. 
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Finally, 
• 2 A.. I~ 

SIn 'f' = 12 12 
2 + 3 

(3.30) 

is used to interpolate the net force from these two quantities. The magnitude 

of the mesh force, for when the charges are separated by 1.0625 mesh spacings, 

is shown in figure 3.13 as a function of cos2 
() and sin2 cPo (This is the range 

where the mesh forces differ the most along the directions of symmetry.) 

It turns out that there is less than a 2.5 % difference in the force between 

cos2 () = 1/2 and cos2 () = 1/3 and so in order to simplify the calculations 

and gain some increase in speed, a lower limit of 1/2 was chosen. Figure 3.14 

shows the quadratic approximations to the weights for cos2 0 that is used for 

the [100] - [111] and [100] - [110] interpolations and the linear approximation 

is used for sin2 cPo 

The ideal test is to compute the forces along the [411] direction as this is 

furthest away from the three directions of symmetry and so this result is shown 

in figure 3.15. It is clearly evident that my method approximates the actual 

mesh force to within 2%. 

It is only necessary to correct the mesh derived force for separations less 

than around three mesh spacings and so for these short range interactions, 

the simulation domain is subdivided into a series of cells, and the appropriate 

correction was applied to the mesh force between any two particles (within 

the same cell or in two neighbouring cells) that are within this distance. This 

procedure is very similar to the use of chaining mesh by IIockney in his particle­

particle-mesh method [93, 95] except that an array of pointers, to the index 

of the particles, are used here instead of a linked list. The choice for the size 

of these cells is a fine art. If they are too large then too much of the cpu 

time is spent on rejecting particles that are sufficiently far away. Reducing the 

size of the cells increase the memory requirement for the storage of pointers 
and also begins to waste effort in seeking particles from non-neighbouring cells 

(this is especially true when the problem is placed on a distributed network as 

discussed in section 5.2.3). 

This chapter considered the intricacies of studying the electrostatics in 

systems with discrete charges. The solution of Poisson's equation on a mesh, 

although being very efficient, suffers from the problem of band limiting due the 
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Fig. 3.15: The test for the approximation to the mesh force along the [411] direction. 

the sampling of the potential at discrete intervals. A novel method has been 

proposed to overcome this limitation using the symmetry of the rectangular 

mesh. The next logical step is to show that the use of the Brownian approach 

with a mesh can reasonably reproduce the scattering by ionised impurities. 

The results will provide a qualitative estimate of the errors introduced by the 

band limiting arising from the use of a mesh. 



4. THE DYNAMICS OF CARRIERS IN MEDIA WITH 
DISCRETE IMPURITIES: A TEST OF THE EQUATIONS 

OF MOTION 

The simulation of sub-D.I J.lm devices requires the integration of the Coulomb 

force between individual particles. In very small devices, both the number 

of dopants and their distribution in space vary significantly. This chapter 
focuses on the study of scattering by ionised impurities and considers efficacy 

of using simple mesh based schemes, that is the mainstay of conventional Monte 

Carlo models. The' ab initio' calculations presented here will demonstrate the 

effects of including all the ions in the electrostatics, instead of viewing these 

interactions simply as just another random scattering process. One of the aims 

is to answer the question whether the precise distribution of ions affects the 

overall scattering of carriers. 

In semiconductor physics, the electrons are represented by 13loch wave func­

tions that occupy the whole of the crystal, but this picture runs into trouble 

when describing scattering due to ionised impurities. The first issue is the 

fact that these interactions are relatively well localised in space, especially 

for particles of high energy. This fact can be clearly seen in the differential 

cross-section, given by the Rutherford formula 

0'(0) = b db 
sin 0 dO 

( 4.1) 

where 0 is the angle between the asymptotes of the incident and the scattered 
trajectories of a particle with energy c. The impact parameter b is shortest 

distance between each asymptote and the impurity of charge Ze (see figure 4.1). 

The number of particles that are scattered through an angle between 0 and 
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0+ dO, per unit time, can be calculated using the differential cross-section. 

dn = nv N u( O)dO (4.2) 

for incident particles, of density n and velocity v passing through a medium 

with N scattering centres per unit volume. 

' . 

............... 

...•.........•. 

........ . . ............ . 

o----.".,., ... ~····=··· .. ·· .. ··· .... ··························· ................. :.::.::.:::.::>: .. ~ .... .. 
Fig. 4.1: The trajectory of an electron around an ionised donor. 

A full quantum mechanical calculation (through the solution of the Schro.. 

dinger equation, using the boundary conditions of incident plane waves and 

spherical scattered waves) gives the same result [116]. The l/r potential in­

fluences the wavefunction throughout the whole of space and the cross-section 

tends to infinity as the carrier's energy tends to zero. What is being said here 

is that the motion of the carriers is continuously influenced by the discrete 

charges in the sample and this fact is often neglected in conventional Monte 

Carlo simulations where ionised impurity scattering is represented as discrete 

collision events. This potential can be viewed as a combination of sharp lo­

calised peaks due to the ion cores and an undulating background due to the 

more distant charges. The background potential is also significantly influenced 

by the precise distribution of the ions and other carriers in space. The random 

scattering events through space and time that is used in conventional Monte 

Carlo simulations are simply inappropriate when there are few charges that 

affect the motion of carriers. The fact that shapes of the wavefunctions and 

their position in space influences the potential distribution which in turn has 
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repercussions on the wavefunctions indicates that a full quantum transport 

model may be required to study this problem. The simulations that were un­

dertaken all used classical dynamics and agreed well with experimental results, 
which indicates this effort may not be necessary. 

In this chapter I will firstly review the standard models of scattering by 

ionised impurities [117, 118]. They provide useful approximations to the scat­

tering rate under various conditions: the Conwell-Weisskopf model best de­

scribes the limit of weak screening and light doping while the Brooks-Herring 

is most appropriate in the limit of strong screening. Ridley's third body exclu­

sion, that attempts to reconcile these approximations, will also be included. 

This will be followed by the practical considerations in obtaining the elec­

trostatic forces acting on the carriers and ways of integrating these rapidly 

varying forces in space. The latter will be dealt with in the study of the 

trajectory of a carrier around a single impurity. 

The dynamics of the carriers in bulk samples will then be investigated by 

using samples with periodic boundary conditions. Following single carriers in 

these samples would give the results for un screened scattering and would serve 

as a baseline to study the effects of screening. The comparison between these 

results and the Conwell-Weisskopf model [119] would indicate the significance 

of the more distant impurities on the dynamics, since this model only considers 

the interactions between carriers and the nearest impurity. The inclusion of all 

the carriers in the simulation will introduce screening and the accuracy of the 

Brooks-Herring model [120, 121] and Ridley's statistical screening [122] can be 

studied. 

Careful attention will be paid to the effects of the constraints imposed 

by the physical model on the results such as the size of the sample, the size 

and distribution of the impurities and the calculation of forces and method 
of their integration. A comparison between the use of Brownian dynamics 

and free flights will be made to ensure that the introduction of the frictional 

and stochastic forces do not interfere with the integration of the electrostatic 

forces. 
Finally the effects of the discrete ions on the percolation level will be in­

vestigated. This will be of great importance in practical simulations of small 

devices where the precise distribution of ions can have a significant effect on 
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the shape of the gate barrier potential. 

4.1 Scattering models 

The dynamics of carriers in the a doped semiconductor is a complex many 

body problem but the physical models simplify the dynamics to that of two­

body or three-body problems. Three basic types of model that have been 

formulated to look at the scattering of carriers by ionised impurities will now 

be outlined. These are the Conwell-Weisskopf, Brooks-herring and Ridley's 

'third body exclusion' approach. 

4.1.1 The Con well-Weisskopf model 

The Conwell-Weisskopf model [119] is the simplest model and treats electron 

impurity interactions as a two-body problem (i.e. between the electron and 

the nearest impurity). It treats the carrier as a point charge that is scattered 

by the ion core as in the classical Rutherford model (figure 4.1). The angle 

through which it is deflected can be estimated from the asymptotes of the 

trajectory. 

~ = arctan (~) (4.3) 
2 87rfb£ 

where b is the impact parameter for a carrier deflected by in impurity of charge 

Ze. (This formula is valid for both attractive and repulsive interactions.) 

This procedure gets around the problem of infinite cross-section by limiting 

the maximum impact parameter to 1/2 the average impurity separation 

1 
bmax = 2 \ffifi' ( 4.4) 

and thereby placing a lower limit on the scattering angle 

Omin (
ze2\1Ni) -2- = arctan 41Tf£ (4.5) 

The momentum relaxation cross-section for the Conwell-Weisskopf model 

is 

(4.6) 
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The scattering rate (as defined by -r;l where Tp is the momentum relaxation 

time) is just vuNr and so for parabolic bands this rate is 

(4.7) 

4.1.2 The Brooks-Herring model 

Electron-impurity interactions are not just a merely two-body problem. The 

incoming carrier can transfer some momentum to other mobile carriers and 

so, in effect, be partially screened from the impurity's electrostatic field. The 

resulting electrostatic potential around the impurity decays much more rapidly 

than 1/r 
Ze 

V(r) = -exp(-f3r) 
411"fr 

and (3 is the inverse screening length 

(4.8) 

(4.9) 

This Debye-IIiicknel potential best describes non-degenerate semiconductors, 

that are not heavily doped, at low temperatures. The exponential factor re­

solves the problem of the infinite cross-section of the bare Coulomb potential. 

The Dorn approximation is used to calculate the scattering rate and so for a 

crystal of volume V, 

r = ~ f 211" l(k'leV(r)lk}12 <5(£' - £) dk'. 
811"3 n 

Since the carriers are represented as plane waves : 

( 4.10) 

(k'leV(r)lk) f . Ze2 exp(-f3lrl} . 
_ exp(-tk'. r) I I exp(tk· r)dr (4.11) 

411"f r 
Ze2 1 

Vt: Ik - kl 2 + 132
' 

( 4.12) 

The transfer of energy to the ion is negligible since it is so much heavier than 

the carrier and so Ik'i = Ikl = k and so some simple trigonometry yields 

(4.13) 
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This eventually gives the scattering rate to be 

(4.14) 

The Born approximation assumes that the screened electrostatic potential 

has negligible effects on the carrier wavefunction and so can be viewed as a 

small perturbation. This is only valid if 

-- -V(r)dr« 1 m f e
ik

.
r I 

27rn? r 
(4.15 ) 

So for the Debye-IIiicknel potential 

1» 

( 4.16) 

This argument is in keeping with the intuitive notion that the validity of 

the Dorn approximation is enhanced when the momentum is very large and 

where there is strong screening. The right hand side of equation 4.16 has been 

evaluated for GaAs and Si to determine the justification for the use of the Dorn 

approximation in typical cases. (A sample at room temperature and doped to 

1024 m-3 was considered for each case.) 

GaAs Si 

k 2.13 x 108 m- I 4.72 x 108 m- I 

f3 2.30 x 108 m- I 2.43 x 108 m- I 

Eq. 4.16 0.6 2.1 

Eq. 4.16 indicates that the Dorn approximation is not very safe for GaAs at 

room temperature and not valid for Si. IIowever, the calculations approximate 

the observed values and so they are used in many device simulations. 



4. The dynamics of carriers in media with discrete impurities 70 

The screening carriers have finite masses and cannot react instantly to 

the test particle. The dielectric relaxation time, Te = fP, gives a measure 

of how fast the screening charges can respond in a sample with permitivity 

f and resistivity p. If the scattering rate (r) is so low that [(rTe)2 « 1] 
then a many-body treatment is required to include correlation effects. The 

inverse screening length should then be modified and so for non-degenerate 

semiconductors the scattering rate is given by Takimoto [123] as 

( 4.17) 

where 
1 100 

2 X + y ,= . '- xexp(-x ) log -- dx 
Yv 11' 0 X - Y 

(4.18) 

and 
lilk' - kl Iih!l - cosO 

x- -
- 2v'2mksT - 2v'mksT 

( 4.19) 

4.1.3 Statistical Screening 

Statistical Screening, by Ridley, attempts to reconcile the Conwell-Weisskopf 

and Brooks-Herring models by taking a probabilistic view of screening. This 

model still treats impurity scattering as a two-body process (between the car­

rier and its nearest impurity), but rather than using the mean impurity sepa­

ration as in the Conwell-Weisskopf model, it uses probability of finding a third 

scattering centre to weight the differential cross-section for each impact pa­

rameter. The probability of finding another impurity for an impact parameter 

lying between band b + db is 211' NJab db, where a ~ (2rr NJ)1/3 [124] is the 

average separation of the ions. If P(b) is the probability that there was no 

other impurity within a radius of b then 

P(b + db) = (1 - 211'NJabdb)P(b), ( 4.20) 

i.e. 
dP 
db + 2rr N[abP = O. (4.21 ) 

Since P ::; 1, this has the solution 

( 4.22) 
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This exponential decay in probability effectively imposes an upper limit on the 

impact parameter. Screening is introduced through the use of the differential 

cross-section of the Brooks-Herring model 

[ 

Z2e2 1 ]2 
0"(0) = 1611'E£ sin2 (~) + 1i:!~' ( 4.23) 

and so after noting that 

( 4.24) 

the new weighted differential cross-section becomes 

0"(0) [ Z2 e
4 1 ]2 (4.25) 

= 167rf2£ sin2 (~) + 1i:!~C 

( 

Z2e4 cos2 (~) ) 

exp -11' N]a 1611'E2£ (sin2 (~) + h:!~') (1 + h:!~') . 
This expression gives the scattering rate to be 

where 

( 
Z2e2)2 1 

f - 11' N]a 811'E£ 1 + h:!~' 

( 
Z2e2m )2 

9 = 411'N]a 47r~1i2f32 

and the exponential integral 

E1{x) = 100 

exp( -t) dt. 
x t 

It approaches the Conwell-Weisskopf result for weak screening (i.e. f3 -+ 0) 

and the Brooks-Herring result for strong screening, specifically when N] -+ O. 
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Fig. 4.2: The electron mobility for a neutral sample of bulk GaAs as predicted my 
the Brooks-Herring, Conwell-Weisskopf and third body exclusion models. 
Note that the third body exclusion formula produces very similar results 
to the the Brooks-Herring approach. At low impurity concentrations the 
results start to move closer to the Conwell-Weisskopf model. 

For non-degenerate semiconductors a Maxwell-Boltzmann distribution of 

particles can be a reasonable approximation. Then the density of states is 

given by 

211" 1 ( £) dn = 3 £ 2 exp - -- d£ 
(7rkaT)2 kaT 

( 4.27) 

and the expected value of an observable is given by 

27r 1000 

1 ( £) (A) = 3 A(£)£2 exp -k T d£ 
(1I"kaT) 2 0 a 

( 4.28) 

Figure 4.2 gives the momentum relaxation time as predicted by the Conwell­

Weisskopf, Brooks-Herring and third-body exclusion models for an electrically 

neutral sample of GaAs. Note that Ridley's third-body exclusion model lies 
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between the Brooks-Herring and Conwell-Weisskopf results and closely ap­

proximates the Brooks-Herring as the doping is increased. Ridley defines a 

dimensionless constant which indicates whether third body exclusion approx­
imates the Brooks-herring or Conwell-Weisskopf 

1 

1'] = 4ZNl RH 
{3 E 

For GaAs at room temperature, 

'r/ (pm) 
a (pm) 

{3-1 (pm) 

{
«I 

»1 

Brooks-Herring 

Conwell-Weisskopf 

NJ (m-3 ) 

1018 1021 1024 

2.3 0.74 0.0024 

0.54 0.054 0.0054 

4.3 0.14 0.0043 

( 4.29) 

and so (neglecting the influence of the electron's energy) it can be seen that 

two length scales influence the behaviour of Ridley's third body exclusion 

method. Not surprisingly these are the lengths that cut off the influence of 

the ion's electrostatic potential. The mean impurity separation becomes much 

smaller than the Debye screening length when the screening is weak and so 

this dominates and makes the result appear similar to the Conwell-Weisskopf 

model and vice versa. 

The value of "7 is smaller than unity across the doping range where ionised 

impurity scattering becomes significant for GaAs and so the third body elimi­

nation method approximates the Brooks-Herring model. The third body exclu­

sion method approaches the Conwell-Weisskopf model as the doping is reduced, 

but does not converge towards exactly the same value because the Conwell­

Weisskopf model uses a different value for the mean separation than Ridley's 

model. This is not very important at low doping since the scattering rates are 

small and all three models give quite similar results. 

4.2 The dynamics of carriers in a Coulomb potential 

The main objective of this part of the work is to investigate the validity of using 

the simple methods that are employed in many conventional simulations and 
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to determine whether they can give a reasonable approximation to scattering 

by ionised impurities. These methods, using simple linear interpolation and 

differencing, serve to accentuate the problems associated with a mesh. 

The standard models only consider the angle between the asymptotes of 

the incoming and outgoing trajectories. The use of asymptotes to describe 

scattering is only valid when the initial and final ranges of the scattered carrier 

is much larger than the impact parameter. An analytic formula for the path of 

a carrier around a solitary ion can be obtained by considering the conservation 

of its angular momentum and total energy under a conservative central force. 

An angular momentum per unit mass h can be defined as 

h = .!: = r x v = rv sin ¢ 
m 

( 4.30) 

where ¢ is the angle between the electron's relative position and velocity vec­

tors and h = Ihl is a constant of motion. 

The energy of a particle under the influence of this force is 

1 . 
-m(r2 + r2(}2) + V(r) = E 
2 

(4.31 ) 

Upon making a change of variable u = 1/r and noting that equation 4.30 yields 

iJ = hu2 , the energy equation for the orbit becomes 

( 4.32) 

when V(r) = -klr = -ku. 
The range can be computed, as a function of angle, after separating the 

the variables and integrating, 

mh2k-1 

r= . 
1 + /(1 + 2Emh2 k- 2

) cos(O - 00 ) 

( 4.33) 

Therefore, assuming that the initial direction of travel was in the positive 

x-direction, then 

( 4.34) 
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Fig. 4.3: The geometry of the orbit of an electron around a donor. The angle 
between incident and final scattered positions (where Irinl = Irscl) is 200 + 
<p- 7r • 

The geometry of the problem (figure 4.3) can be used to determine the 

angle of scatter (between the incident and scattered velocity vectors) to be 

Ov = 2(Bo + 4>0) - 7r ( 4.35) 

when the final range reaches the initial value. The corresponding angle between 

the initial and final position vectors is 

( 4.36) 

These analytic formulae can be used to verify the procedures for the resolu­

tion of the electrostatic forces and the integration of the equations of motion. 

The inclusion of all electrostatic interactions between the 'charged impurities 

and carriers lies at the heart of this work. The complex geometries and bound­

ary conditions necessitate the use of a mesh for the electrostatics, but this re­

sults in band-limiting of the forces. In order to cut down on the computational 

eifort, the electric fields were obtained using the simple first order differencing 
of the mesh 

Ex = - * ((1-,8) (V(i + I,j) - V(i,j)) ( 4.37) 

+ ,8 (V(i+l,j+l)-V(i,j+l») 



where 
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Ey = - * ((1 - a) (V(i,j + 1, k) - V(i,j, k» 

+ a (V(i + 1,j + 1) - V(i + 1,j))) 

a x mod hx 

f3 - y mod hy 

( 4.38) 

are the coordinates of the particle within a cell bounded by eight adjacent 

grid points in a regular rectangular mesh with spacings hx , hy and hz • This 

method of force estimation is cruder that the 4th-order finite difference scheme 
that is used in the actual device simulations and so gives an upper bound on 

the errors incurred when using a mesh. These first set of experiments had 

the aim of investigating the errors due to the differencing scheme and so the 

values at each mesh point was just the analytic evaluation of the Coulomb 

force between point charges. The impurity ion was placed on the centre mesh 

point. The Euler method is used to integrate the acceleration due to the 

electrostatic forces as in the Brownian simulations. The comparison with 

simulations using direct analytic estimates for the Coulomb force are used to 

investigate the errors introduced by the differencing scheme for both attractive 

(figures 4.4) and repulsive fields (figure 4.5). The analytic results (for finite 

ranges) have not been shown for the repulsive field because there were no 

significant differences between them, as expected. It is clear that the results 

differ significantly from the Rutherford formula as the carrier energy is reduced 

for both attractive and repulsive interactions. This is because there is a more 

significant change in momentum at lager distances away from the ion then the 
carrier is travelling more slowly. 

The attractive force proves to be difficult to integrate, using the simple Eu­

ler method, because both the velocity and the magnitude, and rate of change, 

of the Coulomb force increase much more rapidly as the carrier nears the im­
purity. The strength of the force is underestimated as the carrier approaches 

the impurity and is overestimated as it speeds away and so energy is not con­

served during the collision. The oscillations that are evident in the attractive 
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Fig. 4.4: The angle of deflection of a particle, as a function of impact parameter, 
using Euler integration in an attractive field using (a) an analytic estimate, 
and (b) a 2 nm mesh. The results are for total energies of 1 meV (top), 
lOmeV (middle) and lOOmeV (bottom). 
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Fig. 4.5: The angle of deflection of a particle, as a function of impact parameter, 
using Euler integration in an attractive field using (a) an analytic estimate, 
and (b) a 2 nm mesh. The results are for total energies of 1 meV (top), 
10 meV (middle) and 100 meV (bottom). 
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potential when a mesh is used results from the electron approaching to within 

a few mesh spacing. These oscillations are also present (at the same impact 

parameters) at very small time-steps and so are not due to to errors in the 

integration of the equations of motion over time. The gradient of a linear 

interpolation function has been used and so this results in discontinuities in 

the electric field between adjacent pairs of mesh-points. The magnitude of 

these discontinuities increase as you get closer to an impurity and the lower 

the kinetic energy the closer the approach for a given impact parameter and 

so these effects are most marked for low energy electrons. 

4.3 The unscreened impurity scattering 

The main purpose of this work is to study the dynamics of carriers through 

the complex potential distribution due to the discrete charges. The major 

computational burden is in the determination of the forces acting on a carrier 

and the integration of the resultant force through time. The infinite crystal 

can be modelled by a cell with periodic boundary conditions. Solving Poisson's 

equation can prove to be an efficient way of obtaining the force on each carrier, 

but the components of the force with shorter wavelengths than twice the mesh 

spacing cannot be represented. However it is these components that result 

in scatterings with large angular deflections and so playa significant role in 

ionised impurity scattering. Chapter 3 dealt with the task of calculating forces 

using a mesh and a possible method of calculating the short range force. The 

method of Ewald summation [125] proves to be a useful alternative for studying 

the electrostatics of this problem. It does not use a mesh and so does not cut 

off the strong high frequency components of the inter-particle force. 

Carriers don't just feel the electrostatic forces from the nearest impurity 
ion, as envisaged in the standard models that treat these scattering processes 

as a two-body problem. The carriers are continuously experiencing the elec­

trostatic forces due to all the ions and so the simple descriptions involving free 

flights that separate discrete scattering events may not valid. Therefore, this 

work also includes the contributions from the other impurities by following 

the paths of individual carriers through the complex potential distributions 

due to all the impurities in bulk samples. This work will investigate the rela-
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tionship between mobility and the impurity concentration for non-degenerate 

systems and the results will be compared to those of the Conwell-Weisskopf, 

Brooks-Herring and third-body exclusion models. 

The trajectories of the carriers will be studied using the Brownian dynamics 

model and also by integrating the free flights using an adaptive Runge-Kutta 

method [96]. The former model includes the phonon scattering and would sim­

ulate the measurements that can made from actual substrates. Matthiessen's 

rule can be used to extract the ionised impurity scattering rate. The validity 

of Matthiessen's rule can be checked by studying the free dynamics and since 

the phonon scattering and impurity scattering rates are independent in this 

model, then there should be good agreement between the two results. 

The first step is to get the initial distribution of carriers in the test sample 
and this will now be discussed. 

4.3.1 The initial distribution 

This work will focus on non-degenerate semiconductors and so it is adequate 

to describe the carrier distribution using the Maxwell-Boltzmann distribution 

(that results from the use of Brownian dynamics). The probability distribution 

function can be written as 

f( ) = A (_ !mlvl2 + V(r)) v,r exp kBT ( 4.39) 

where A is the normalisation constant. Equation 4.39 seems to provide simple 

technique for the initial state since f(v, r) is a separable function in v and r. 

The particles can be placed within the sample using an exponential weighting, 

in accordance to the potential distribution, and their velocities can be chosen 

at random from a Maxwell-Boltzmann distribution. The problem with this 

approach is that the spatial component cannot be normalised since 

f V(r)f(V(r))d3r = Ze
2 

roo -r exp ( Ze
2 

) dr (4.40) 
f. 10 41rf kBT r 

= 2rrM (4rr~~:T r {[e::[ -[e:1 + J~ e:u
dU } 

after making a change of variable to the dimensionless quantity, 

Ze2 

u - ---:---=-
- 47rfkBTr' 



4. The dynamics of carriers in media with discrete impurities 81 

This cannot be evaluated at u = 0 and so after considering a small <> -t 0 the 

terms in the curly brackets approximate 

e-5 
82 - El (0) -+ 00 as 0 -t 0 

The solution to this quandary lies in the fact that the vast majority on the 

electrons are trapped within the potential well and only the finite number of 

free electrons in the conduction band are of any interest. Furthermore the 
conduction band energy is the average value throughout space and this can be 

set as the zero level in the sample. 

Unfortunately, excluding the trapped carriers is not a simple matter since 

the potential spikes due to the individual donors in a 1 nm mesh are very 

much bigger than kBT and so there would be a vast number of rejections with 

this simple procedure. In order to cut down on the computational effort, no 

attempts were made to place the electrons on points where the potential ex­

ceeded some threshold value - which would result in an excessive number of 

rejections. This threshold has to be as low as possible to obtain a closer ap­

proximation to the Maxwell-Boltzmann distribution but not unduly increasing 

the cost of the initialisation procedure. 

The use of the Brownian dynamics model to follow the particle's trajectory 

has the advantage that it ensures that the carriers are in thermal equilibrium 

with the crystal lattice. Therefore it is sufficient to place the carriers at random 

in the sample but chose the velocity with the appropriate thermal distribution. 

The correct spatial distribution will be attained through the balance between 

the drift due to the potential fluctuations and diffusion. 

4.3.2 The numerical results 

The first point that will be addressed is whether the overall mobility of a carrier 

is affected by the precise distribution on impurities in a bulk sample. In a 

physical sample the random placement of the ionised impurity charges results 

in local density fluctuations that result in varying scattering rates throughout 

the medium. The effect of this increases as the sizes are scaled down. The 

impurity distributions can have a more subtle influence on the carrier dynamics 

by creating channels in the equipotential profile that facilitate travel along 
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certain orientations. The figure 4.10 shows these patterns for some typical 

distributions in a (50 nm)3 sample doped to 1024 m-3• (Note that the total 

number of donor impurities have been kept constant as it is the particular 

distributions that are of interest at the moment.) The significance of these 

channels diminish rapidly with increasing energy. 

Ideally the objective is to simulate the infinite crystal, but practical lim­

itations forces the use of a small sample. The momentum relaxation time 

indicates the the time scale over which the particle 'forgets' its initial state (as 
demonstrated from the velocity auto-correlation function) and the mean free 

path gives the expected distance travelled over this time. For doping levels of 

1024 m-3 and electron mobility J.le ~ 0.4m2y-1s-l the mean free path is given 

by 
LD = VthTp ~ 40nm. 

The number of charges scales as the cube of the length of the simulation domain 

and so a cubic sample of (80nm)3 was chosen. 

An estimate of the mobility is calculated from the diffusion coefficient re­

sulting from the trajectories of the carriers. Let the displacement of a particle 

(i) from its initial position, at time t be ri(t) = Xi(t) - Xi(O), then the spatial 

diffusion coefficient is 

(4.41) 

Therefore, a good method of calculating the diffusion coefficient is to perform 

a least squares fit to the variance in this displacement as it varies with with 

time and to extract it from the gradient. The Einstein relation can be used to 

obtain the mobility 

The results from the simulations following the dynamics of free electrons, 

using a 1 nm mesh-spacing, all agreed very well (giving 0.417 ± 0.008 m2y- 1s-l 

for the mobility) indicating that the size of the sample is not really an issue. 
What this indicates is that the overall mobility is not dependent on the precise 

distribution of impurities in the sample. These results were as expected since 

these are time averaged results (over tens of picoseconds) and most particles 
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Fig. 4.6: The relationship between the mobility of non-interacting carriers in a 
bulk sample, with 125 randomly placed donors in each periodic cell, and 
the doping level. The results for a 503 mesh and the Ewald sum, using 
Brownian dynamics with J.te = 0.85m2V-1s-1 are given. Mesh (b) refers 
to a simulation that was carried out for 200 ps on a 643 mesh. 

would have visited much of the sample and so all the results would be similar. 

Samples ranging from (lOnm? to (200nm? gave very similar results. The 

(10 nm? sample represented an ordered periodic square lattice and the larger 

the sample the more disordered the lattice and so this result reinforces the fact 

that the overall mobility of a bulk sample is not affected by any microscopic 

fluctuations in the density of ionised impurities. 

The next step is to verify the dependence of mobility on the ionised impurity 

concentration. In order to save on computational effort the ionised impurities 

are placed on randomly chosen points of a mesh and Poisson's equation is 

solved. During the simulation the electric field is computed by taking the gra­

dient of a first-order interpolation of the potential. 125 donors were scattered 
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Fig. 4.7: The mobility of non-interacting carriers in a bulk sample (due to ionised 
impurity scattering only), with 125 randomly placed donors in each peri­
odic cell, and the doping level. Mattheissen's rule has been used to remove 
phonon scattering from the Brownian results and experimental data. 

at random in a 503 mesh and the doping level was determined by the mesh 

spacing. Brownian dynamics were used to follow the trajectories of 10, 000 

non-interacting electrons in these meshes. (Non-interacting means that the 

simulation results were the ensemble average of 10,000 one-electron systems.) 

The results, shown in figure 4.6, are in good agreement with experimental 

results for doping levels in the range 1021 -1024 m-3
• 

The sizes of the potential spikes at the impurity sites are dependent on 

the mesh size. The diameter of the ions is of the order of the mesh-spacing in 

these simulations and so care must be taken to ensure that these results are not 

merely due to the decrease in the size of the potential spikes. Therefore, the 

simulation was repeated using Ewald summation (using the 8th-order polyno­

mial approximation [126]) to obtain the forces on the electrons. This provides 
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Mesh spacing Mobility (m 2V IS 1) 

O.lnm 0.337 ± 0.004 
1.0nm 00417 ± 0.008 
Ewald sum 0.321 ± 0.001 

Tab. 4.1: The effect of mesh spacing on ionised impurity scattering for a doping of 
l024 m-3 

a very accurate estimate of the short-range forces (between the electron and 
nearby donors) but is much slower and slightly less accurate for the long-range 

components. The error is under 2 % for much of the sample. The results are 

also shown for comparison in figure 4.6. These results agreed with the mesh 

at low concentrations there the probability of a small impact parameter was 

very small and small angle deflections accounted for most most scattering. 

The mesh results gave an overestimate for the mobility at high doping levels. 

This was most likely due to the band-limiting in the mesh. Table 4.1 shows 

that reducing the mesh size results in a better agreement between the Ewald 

sum and the mesh and so confirming effects due to artifacts introduced by the 

mesh. 
The ionised impurity scattering rate has been extracted from the Brownian 

results and plotted in figure 4.7 for comparison with the standard models. The 

use of Mattheissen's rule to extract the extract the ionised-impurity scattering 

rate, from the overall mobility, may seem questionable since relaxation time for 

this process is not a constant but varies with energy. It must be ascertained 

whether the two scattering processes (phonon and impurity scattering) are 

truly independent and whether the inclusion of frictional and stochastic terms 

in the Brownian model has any significant affect on the scattering by ionised 

impurities. The answer to these questions lies in the study of free carriers in 
the same potential distribution, which are also included in figure 4.7. 

The study of free carriers proved to be problematic, despite the use of adap­

tive integration methods. Checks were made to ensure that the total energy 

of each particle remained constant in order to verify the integration scheme. 

Now that there is no longer any mechanism that drives the system towards 

thermal equilibrium, any small errors in the initial distribution can have a 

significant influence on the results. The results from the Ewald summation 
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were increasingly underestimated for higher impurity concentrations and this 

is probably due to trapping of carriers in the deep potential wells at the sites 

of the donors. 
It was expected that mobilities should best approximate the Conwell-Weiss­

kopf model and there should be good agreement at low doping levels but at 

higher doping the Conwell-Weisskopf model should give too Iowa mobility. 

This is because the impact parameter can get large before the contribution to 

the electric field from the next nearest impurity becomes significant in lightly 

doped media and the scattering angle diminishes rapidly with impact param­

eter. In heavily doped materials the electric field experienced by the electron 
falls more rapidly than envisaged in the Conwell-Weisskopf model, due to the 

influence of the neighbouring ions, and so the actual scattering rate is lowered 

and the magnitude of this discrepancy is related to the minimum scattering 

angle of this model. The simulations seem to support this hypothesis. At 

these doping levels screening dominates in neutral semiconductors and so the 

Brooks-Herring model would have been used in any, case. 

4.3.3 Screened carrier-impurity scattering 

The central premise of this work has been to take a particulate view of both 

carriers and dopants. Most simplified scattering models represent the screening 

charges by continuous charge distributions (from the solutions to Poisson's 

equation in the case of the models described above). Screening from discrete 

mobile charges is a much more complex process that has to be modelled by 

following all these charges, paying close attention to all their interactions. All 

these charges have to be independent and so the periodic images from the 

finite simulation domain do pose problems. The size of the cell has to be 

chosen so that the electrostatic force from the periodic image of any charge is 

negligible. For a cubic cell of length L, the electric field scales as L -2 while 

the number of charges varies as L3 and so the number of interactions increases 

as L6. This fact leads to a very large computational burden. As a reasonable 

compromise, the results presented here are for cells containing 512 electrons 

and 512 impurities. The force due to the next nearest image is 1/64th of the 

nearest charge. 

A simulation was carried out using Brownian Dynamics and the mobility 
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Fig. 4.8: The Molecular Dynamics simulation of electron dynamics in GaAs at 
300 K using Brownian dynamics and Ewald summation. The periodic cell 
contains 512 donors and 512 electrons. 

was obtained from the diffusion constant extracted by using a least squares 

fit on the variance of the particle distribution in space. The results shown in 

graph 4.8 broadly agree with the unscreened results but do show a much lower 

than expected set of mobilities. One probable cause of this was the small size 

of the periodic cell, but unfortunately there was insufficient time to perform a 

larger simulation. This experiment does validate the methods used and given 

enough time and computational resources a full set of results can be obtained. 

4.4 The threshold equipotentials in samples with discrete 
impurities 

Now that the treatment of ionised impurity scattering has been validated, 

the next step is to study the ways that these discrete impurities influence 
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the percolation of carriers in very small samples at threshold. This is a very 

important topic as far as the study of threshold characteristics is concerned 

since the movement of carriers across the gate region, as the channels open, can 

be viewed as a percolation problem. The distribution of the particulate charges 

make different regions of the channel turn on at different potentials. Therefore 

little islands of conducting regions form in the channel, according to the local 

charge distribution, as threshold is approached. These islands increase in size 

and begin to merge. Complete paths begin to form - that traverse the gate 

barrier - as the percolation threshold is reached. The channel should now 

begin to conduct. Percolation describes the device just as it turns on and its 

effects should show up in the subthreshold current as turn-on is approached. 

Simple geometries were considered so as to exclude other extraneous effects 

resulting from the complex fields that can occur in a real FET. No potential 

gradients due to external biasing have been included and cubic samples were 

used - so as to model three instances of ion distributions by exploiting the 

symmetry of the problem. (The source and the drain could be between any of 

the three pairs of opposing faces.) The precise distribution of ionised impurities 

in a small finite sample would affect the potential distribution in the medium 

so that the percolation threshold varies from sample to sample. This effect 

was studied for a (50 nm? sample containing 125 donors (corresponding to a 

doping of 1024 m-3
• 

The first problem is to find the percolation threshold for free electrons. 

The total energy of the electrons is constant during their travels, and so they 

(a) (b) 

Fig. 4.9: A 2D example of a sample with periodic boundaries. (a) shows allowable 
free paths and (b) demonstrates a closed loop that must not be classed as 
open. 
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follow their own geodesic, on their equipotential surface, through the periodic 

boundaries. For the electron to be classed as free then this geodesic (that lies 

on the energy surface that corresponds to the electron's energy) must connect 

with itself through the periodic boundary in such a way as to form an open 

loop. There is a simple criterion for a cubic sample which is that the path 

must connect two faces on the opposite sides. It is permissible to make use of 

the periodic boundaries when defining the path, with the two conditions that 

any planar slice (that is parallel to the faces) through the sample must contain 

a segment of this path (as shown in figure 4.9) and the path must cross it an 

odd number of times. Obviously the percolation threshold must be greater or 

equal to the lowest potential energy that is found on one of these faces and on 

a plane cut half way between the two faces. (Note that the periodic boundary 

conditions give a very potential distribution on these opposing faces and so 

any two planes can only be separated by half the length of the sample at the 

most.) 

Tab. 4.2: The threshold potentials in a (50 nm)3 block. The values for each pairs 
of faces, labelled 1,2 & 3, are given along with the average of the three. 
f' f" h d' 1 h The ractlOn 0 pomts m t e con uctmg state are a so sown. 

Threshold potential Fraction conducting 
1 2 3 mean 1 2 3 mean 

-0.02224 -0.02977 -0.00958 -0.02053 0.1603 0.1056 0.2972 0.1752 
-0.02992 -0.01754 -0.02494 -0.02413 0.1576 0.2537 0.1921 0.1982 
-0.04246 -0.03463 -0.02293 -0.03334 0.1000 0.1423 0.2321 0.1514 
-0.00291 -0.05722 -0.01280 -0.02431 0.3849 0.0607 0.2763 0.1840 

Table 4.2 shows the threshold values for the four samples used in the il­
lustration in figure 4.10. These were four randomly selected cases from the 

thirty used in the study. The mean potential in the sample was taken as the 

zero and it turns out that this is the threshold value for a periodic rectangular 

lattice. It is apparent that (for samples of this size) the threshold potential is 

lowered by the same order of magnitude as the electron's thermal energy at 

room temperature. This should give a noticeable fluctuation in the threshold 

level in a real device of this size. The percolation threshold is reached when 

the fraction of abscissae in the conducting state reaches 0.19 ± 0.03. The site 

percolation threshold for a cubic lattice is 0.31 and the simulation results are 
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Fig. 4.10: The average threshold potentials in (50 nm )3 samples containing ra n­
domly placed 125 donors. 

much lower than this value. This percolation thre!:ihold value a5S Ulll '5 that th ' 

states of the points are independent of each other but this is not tru for th 

potential map because of the longer range flu ct uation!:i indu ' J by each ion. 

An ion sitting at a site lowers the threshold potential in neighbouring ells an I 

make them more likely to conduct and so a lower fra tion o[ sites ne d to be 

in the conducting state for a conductive path to [onn. 
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4.5 summary 

This section has demonstrated that the Brownian method adequately describes 

the electrostatic interactions between discrete charges. It has the great advan­

tage of driving the system towards equilibrium and so dampens down the 

errors in the initial distribution and those that are accrued during the inte­

gration of motion. The standard methods of differencing and interpolation, 

used in conventional Monte Carlo simulations seem to be adequate enough to 

give a reasonable approximation to ionised impurity scattering. The methods 

that were developed in chapter 3 should do much better since higher order 
interpolation and differencing schemes have been used that produce a much 

smoother and continuous force. The new method for estimating the mesh force 

between closely separated particles can be used to calculate and thus correct 

the erroneous force derived from the mesh. 

The numerical experiments have shown that the precise distribution of 

impurity ions do not have a significant affect on the carrier mobility but the 

discreteness of ions and carriers do have an appreciable affect the potential 

distribution in a small sample. This indicates that the discrete impurities exert 

their influence mainly through their influence on the potential distribution 

in the channel by producing different patterns of conductive channels near 

threshold. 

The next chapter deals with the main obstacle to carrying out numerical 

studies of actual devices. This is the large computational burden of these three 

dimensional molecular dynamics simulations. 



5. ATOMISTIC DEVICE SIMULATION 

So far the, the main components of device simulation have been discussed. An 

efficient solution for the description of carrier dynamics incorporating lattice 

scattering and electrostatic scattering have been presented in chapter 2. the 

solution of Poisson's equation was explored in chapter 3 and it is clear that 

this is the major computational burden that must be borne. 

The main obstacle to the molecular dynamics simulation of small semicon­

ductor devices is due to the limitations in computational resources: a great 

number of operations need to be carried out on very large sets of data. This 

necessitates the use of "supercomputers" to model realistic three-dimensional 

structures. The computer architecture has a great bearing on the implemen­

tation of the simulation and so this will be the starting point of the discussion. 

This will be followed by a discussion of the practical points of device simulation 

using the architectures available in the department. 

5.1 The types of supercomputers 

There are three broad categories that describe typical computer systems, as 

first described by Flynn. The first is the single instruction stream, single data 

stream (SISD) where the cpu can issue only one instruction at anyone time 

on a given data input. This simple architecture was used in most desktop 

computers until very recently. The second is the single instruction stream, 

multiple data stream (SIMD) that can apply their instructions to many data 

values at a given point in time. Older systems had many arithmetic logic units 

that can perform the same instruction on many data elements at once such 

as the DAP or Thinking Machines' Connection Machine. The third type is 
the multiple instruction stream, multiple data stream (MIMD) architecture 

that could execute many independent instructions simultaneously on many 

[different] data inputs. The simplest way to implement this is through the use 
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of multiple processors and these parallel architectures will be discussed later. 

The earliest machines relied on vector processors. These machines were op­

timised to handle data arranged in arrays and streamed their elements through 

a pipeline architecture to obtain their impressive performances. The same op­

eration (or sets of operations) was carried out on each element of the input 

streams. They worked most efficiently on contiguous sets of data. Anything 

that disrupts the smooth operation of the pipeline, such as conditional state­

ments or branches, could severely affect the overall performance. 

The greatest limitation on the speed of current machines is the speed at 

which data can be fetched and stored from the CPU. The limiting factor is 

the bandwidth of the bus and access times of the memory. Current thinking 

favours the use to MIMD architectures to divide the problem among many 

computing nodes and this will be discussed in the following section. 

The performance of CPUs has risen exponentially over the past decades but 

so has the scale of the computational problems. Fortunately most applications 

involve the application of independent instructions on large arrays of data and 

so great benefits can be gained through the use of parallel computing. 

Most workstations use symmetric multi-processing (SMP) where there are 

more than one CPUs that share all the system resources using the same bus. 

The operating system shares the computational load through all the processors 

and so this system is transparent to the end user (i. e. the code does not have 

to be especially written for these systems). Unfortunately the bus bottleneck 

limits the number of processors to around eight and performance is severely 

degraded if large amounts of data need to be transferred across the bus. (The 

latter can be ameliorated through the use of caches.) 

In order to get large numbers of processors, the system resources can be 

divided onto many independent computational nodes (as in the massively par­

allel processing (MPP) architecture). Systems can be built with thousands 
of nodes, each having its own memory and communications hardware. The 

use RISC processors can offer good performance while keeping the cost of the 

whole system reasonable. The main problems in MPP systems are due to data 

synchronisation and communications bottlenecks when tasks are spread over 

the whole network. The problems occur when data is required from other 

nodes for the computation to proceed and since all nodes must reach the same 
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Fig. 5.1: The SMP architecture. 
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stage in the computation the overall performance of the system is limited by 

the slowest node. There is a fine art in balancing the load on each node. Code 
has to be specially written or modified in order to take full advantage of these 

parallel systems. Some compilers (such as High Performance Fortran (IIPF)) 

offer some help in this undertaking by handling the distribution, of the nom­

inated arrays, and synchronisation between the nodes. Of course, each node 

can have have a SPM architecture and the fastest machine at this moment is 

the 4536 node TFLOPS system [127] comprising of 9072 Pentium Pro crus 

and 283 Gbytes of RAM. 

Fig. 5.2: The MPP architecture. 
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It would be advantageous to have the simplicity of the SMP systems and 
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the scalability of the MPP architecture and so enter the scalable parallel pro­

cessing (SPP) machines such as the Convex Exemplar. This uses a two-tier 

memory architecture with each node having a SMP system with multiple pro­

cessors sharing the same memory, as before, but the second tier makes the 

memory that is distributed on all the nodes appear as a single global shared 

memory space. The data flow between the nodes is kept to a minimum by 

only exchanging updates to keep the memory coherent among the nodes. 

The Parsytec systems used in the Electronics and Electrical Engineering 

Department at Glasgow University are of the MPP architecture. The 64-node 

Supercluster and 32-node Multicluster networks have configurable links but 

they can only be initialised as a two-dimensional rectangular network of arbi­

trary size. However they can support a wide range of virtual topologies, such 

as the tree network. Each node comprises of a T805 transputer, 4 megabytes 

of memory and four serial links to the four nearest neighbours. More distant 

connections are routed through intermediate nodes. All communications to 

the outside world is carried out by a root transputer that sits separately from 

the allocated network of nodes. 

The newer X'plorer systems have fixed links and so have a much more 

restricted set of topologies available. There is no special root node in these 

systems. Each node comprises of an 80 MHz PowerPC 601 with 8 megabytes of 

RAM and a T805 transputer to manage the communications interface through 

the four serial links. Each node is much faster than the old T805 based nodes. 

5.2 The parallel implementation of our models 

The Parsytec's MPP architecture requires some modification to the serial code 

to enable its execution in parallel. The nodes are physically linked in a rect­

angular two-dimensional network and so it would be most efficient to map the 

same to the problem of interest. 

5.2.1 Partitioning the problem on a network 

The first problem is to distribute the problem on to the computing network. 
This task involves the slicing of large data arrays onto the network so as to 

give each node a similar computational load. It would also be beneficial if the 
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distribution scheme minimised the amount of data that needed to be trans­

ferred between the nodes during the computation. For a three dimensional 

rectangular array distributed on a three dimensional rectangular network of 

nodes the simplest solution is to divide up the data so that each node has 

a rectangular array of similar size. When a problem of size ni X nj x nk is 

distributed on to a Ni x Nj X Nk array of nodes, the number of elements held 

on each node, with coordinate (I, J, J<), is given by 

where 

(i - ni div Nj + H ((ni mod Ni) - I) 

(j nj div Nj + H ((nj mod Nj) - J) 

(k = nk div Nk + H ((nk mod Nk) - J<) 

and the step function 

II(x) = {o, x < ° 
1, x 2:: ° 

(Note that the indices start from zero and so 

z E {O,I, ... ,ni- I} 

J E {O,I, ... ,nj - I} 

k E {O,I, ... ,nk - I} 

and 

I E {O,I, ... ,Ni - I} 

J E {a, 1, ... , Nj - I} 

J< E {O,l, ... ,Nk -I}. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

The Parsytec systems at the Nanoelectronics Research Centre have two­

dimensional rectangular topologies the distribution is carried out in two di­

mensions. The total volume of data tends to be very large and so it would 

be most efficient to create algorithms that enable each node to generate its 
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own initial data based on its location. Each node would then deal with the 

sub-array which maps the indices 

z E {O, ... , ni -I} 

{ {J \;, ... , (J + 1 )\; } J<M· 
J E 

) 

{Mj + J(i!"" Mj + (J + l)(j} J>M· - ) 

k E { {K(k, ... , (J< + l)(k} if K < AJk 
{Mk + K(k, ... , Mk + (K + l)(k} J< ~ Mk 

on the main array, assuming that the problem is distributed over the j- and 

k-indices on an Nj x Nk network. 

where x = i,j, k 

In some instances, where the simulation has to be started with a specified 

initial condition, the data has to be read from an input file and one of the nodes 

is given the task of reading the file and distributing the data appropriately. 

This is a simple process where the data is read (a row at a time) and is dealt 

to each node in the manner of a croupier at the card table. This process 

proves to be invaluable when long simulations have stopped prematurely due 

to unforeseen problems. 

This simple distribution scheme has some drawbacks - as seen from fig­

ure 5.3 where node (0,0) has twice the load of node (3,4). (<=> represent the 

communications links between the computational nodes represented by the 

rectangles containing the mesh points denoted by the solid pips.) There have 

been many solutions to this problem of load balancing and the one favoured in 

this group is the use of simulated annealing [128, 129] to find the optimal dis­

tribution of data that minimises both the variations in the load and the volume 

of data traffic between the nodes. Figure 5.4 shows a better distribution of this 

problem. An additional prerequisite is to ensure that the data on each node is 

as rectangular as possible to keep the program as simple as possible and that 

data is only redistributed to adjacent nodes. These considerations minimise 

the amount of information that has to be stored in order to implement this 

problem and speeds up execution. 
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Fig. 5.3: The distribution of a 3D array on a 2D network is equivalent to mapping 
a 2D array of vectors on the network. The partition of a 10 x 10 array of 
vectors on a 3 x 4 mesh. 
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Fig. 5.4: The partition of the 10 x 10 array of vectors on a 3 X 4 mesh that achieves 
a better load distribution. 

[ill. ••• •.. [ill . .. {:} ... {:} ... {:} .. 
•• ••• ••• •• •• •• 
:(t :(t :(t :(t 

••• ¢} •• ¢} •• {:} ••• §J [ru. [ru. [§J ••• •• •• • •• • •• •• • 
~ ~ :(t :(t 

[ru• [ru. •• ••• ••• • • •• {:} ••• {:} ••• ¢} •• 
•• ••• ••• •• 

In real devices there is also the added complication due the fact that there 

is often a pronounced variation in the distribution of carriers. There are a high 

in the contact regions where the mesh tends to be relatively coarse since there 

is a small spatial variation in the electric fields and so a more complicated 

strategy may be required that also weights for this additional computational 

load. The simulation of small devices often requires the use of fine meshes to 
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study the trajectories of a small number of particles and so much of the CPU 

time is spent solving the Poisson equation. This fact makes the distribution 

of the Poisson mesh the main concern in these simulations. 

5.2.2 Topologies and Message passing 

Now that the problem has been partitioned onto the rectangular array of com­

puting nodes the present task is to consider the structure of the intercon­

nections between these nodes and the process of data transfer between them. 

The most useful topologies for implementing the solvers are the rectangular 

mesh and the torus (as shown in figure 5.5) because they make the best use 

of the physical interconnects between the Parsytec nodes. The SOR itera­

tions and Gauss-Seidel smoothing steps of the multigrid method can only be 

implemented in parallel because of the black-white ordering of the updates. 

(Updating only the alternate squares ensures that only the old value of the 

data is used during each update.) 

Fig. 5.5: The 2D mesh and torus 

In order to ensure the reliability of code, the structure of the serial ver­

sion was maintained and only the necessary portions were modified to enable 

concurrent execution. Cross products of column vectors with the square ma­

trices involve the exchange of boundaries from adjacent nodes. The data from 

diagonally opposing nodes can be exchanged after one set of horizontal and 

vertical exchange. Only 'white' squares are exchanged between the nodes when 

the new 'black' values are computed in order to keep down the volume of data 

traffic (figure 5.6). Since all the data is exchanged between local nodes this op-
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eration is not sensitive to the size of the network but only on the transmission 

rate of the links. 

Fig. 5.6: The data exchanged every partial update for the simple problem. 
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The bi-conjugate gradient method also uses the dot products between row 

and column vectors. This inner product can be computed for each node and 

because these values have to be summed across the entire network, this opera­

tion suffers some penalty in speed on very large networks. The most optimum 

topology to carry out this summation is the tree (figure 5.7). If there are L 

Fig. 5.7: The simple binary tree. 
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links per node then the number of levels (z) in a network of N nodes would be 

_ '1 (log(N(L - 1) + 1)) (5.5) 
z - cel log(L) . 
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The function 'ceil' just gives the lowest integer that is not smaller than its 

argument. The levels can be labelled 

lE{O,l, ... ,z-l} 

and so at each step the appropriate nodes would read the values from their 

more distal nodes and, after adding their own contribution would send the 

result to the proximal node. These steps are repeated until the root node has 

received the partial sum and this then sends the down through the tree. The 

total number of data transfers that are required to evaluate this inner product 

is 2(Z - 1). However, although the Parsytec systems can support arbitrary 

tree topologies, the actual data flow occurs through a rectangular network of 

links and so this may lead to bottlenecks during the routing of the messages. 

An efficient method (that has also been used by some authors [130, 131]) is to 
use data flow in the shape of an 'II' as shown in figure 5.8. 

Fig. 5.8: The 'H'-shaped data path that is suited for rectangular topologies .. 
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This method allows for the parallel accumulation of the sum while avoiding 
the bottleneck imposed by the physical topology. The number of steps taken 

by a Ni X Nj mesh is 2 [(Ni div 2) + (Nj div 2)]. (This calculation gives the 

number of steps required to get the intermediate result from the most distant 

node and then to return the total sum to that node.) The number of data paths 

to the central node can be increased to 4 using a swastika pattern (figure 5.9). 

The swastika requires the same number of steps as the 'I1'-shaped topology 
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Fig. 5.9: The fylfot offers more data paths to the centre than an 'II'-shaped topol­
ogy. 
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but by providing more data paths it is more useful where large quantities have 

to be moved. 

Fig. 5.10: The wholesale shifting of data across the network. 
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A toriodal topology (see figure 5.10) provides an alternate way of carrying 

out this sum. Data can be shifted both horizontally and vertically and all the 

nodes accumulate their own value for the total sum. This method is the most 

efficient if the nodes can send and receive data simultaneously through all their 

links. The number of transfer steps is now only max(Nil Nj). This pattern 

is also very useful when large amounts of data need to be updated across the 
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whole the network. 

It must be noted that although the discussion up till now has used a 

two-dimensional network for clarity, it is easy to extend these ideas to an 

n-dimensional hypermesh (or hyper-torus). 

The multigrid method faces some further problems on MPP architectures. 

As the defect is restricted onto coarser meshes, careful consideration has to be 

given to the size of the network so as to achieve the optimal balance between 

the advantages of parallelism and the costs of communication. The minimum 

size of mesh on each node will be particular to that particular machine and 

this number may be different for different mesh sizes of network dimensions. 

Fast processors and slow communication speeds would make it inefficient to 

have few mesh points per node. The obvious solution is to restrict the meshes 

as shown in figure 5.11. Communications between the nodes is now no longer 

Fig. 5.11: The multigrid method implemented on a rectangular network. The small 
circles represent the entire network that is used the finest meshes. 
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local, but the problem sizes are very much smaller and the volume of data 

traffic is greatly reduced for coarser meshes on the reduced topologies. 

A major concern with the transputer networks is the communications bot­

tleneck. An experiment was carried out to demonstrate the effects of latency 

on performance. Table 5.1 gives the timings for 30 x 30 x 20 block with von 

Neumann boundary conditions implemented on various network topologies. 

It is clear that distributing the problem on many nodes results in a loss of 
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Tab. 5.1: A 30 X 30 x 20 mesh with von Neumann boundary conditions [with the 
(0,0,0) corner fixed to 0 V] distributed on a 2D rectangular network over 
the first two indices 

Network t (s) Speed up Efficiency 
1 x 1 131.8573 1.0 1.0 
2 x 2 39.43108 3.34399413 0.83599853 
3 x 3 18.43339 7.15317693 0.79479744 
4 x 4 12.55658 10.501052 0.65631575 
5 x 5 8.228488 16.0244871 0.64097948 
6 x 6 6.444421 20.46069 0.5683525 
6 x 6 6.5306048 20.1906721 0.560852 
4 x 9 7.12109983 18.5164235 0.5143451 
3 x 12 7.0440892 18.7188572 0.51996826 
2 x 18 8.491329 15.5284644 0.43134623 
12 x 3 7.9004606 16.6898244 0.46360623 
18 x 2 8.78483375 15.0096523 0.41693479 

efficiency. The long latency of the interconnects in these transputer systems 

appears to account for much of this loss of efficiency. The study of the ran­

dom fluctuations in device characteristics require the characterisation of many 

devices in order to derive the statistical distribution of these quantities. There­

fore the optimal solution for networks with slow communications is to employ 

each node to simulate an entire device with a given distribution of impuri­

ties. The limitations in memory and speed necessitate a simple description of 

the device and the multigrid method was chosen because of its speed and low 

memory requirements. 

5.2.3 Partitioning and particles 

A significant problem in load balancing is due to the fact that the main com­
putational burden for most Poisson solvers occur in places where there are 

large variations in the potential distribution, such as under the gate toward 

the drain, but often there are few carriers in this region. The bulk of carri­

ers are in the contact regions. So the load imposed by the integration of the 

equations of motion must be considered when devising a partitioning scheme. 

This load obviously depends on the number of particles that are held in the 
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node. Other factors are also important since the scatt ring rates are higher 

where there are high electric fields and where the particl s have high energi s. 

Fig. 5.12: The use of buffers to exchange particles, in fou r steps, between nodes. 
The data is represented by four coloured squares. The arrows indicate tll 
direction of copying between the buffers (shown as thin rectangles) and 
the local data area. Note that the the corners and the sides have b en 
exchanged at the end of the process. 
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Transferring the particles b tw n th nod s is a simpl matt r if it i ar­

ried out through buffers. This is shown in figur 5.12 that sh ws four adja nL 

nodes whose data have b en given diffi r nt olours.'or a 2 r tangular ar­

ray 2 buffers (denoted by the the thin rectangl s) can b us d and at th nd 

of a time step any carri r having an x-coordinat outsid th rang for thaL 

node is placed in the appropriate bin. The bins ar th n xchang d along I;h 

horizontal direction. This procedur is then r peat d using th y- ompon nt 

before exchanging vertically. This m thod will corr ctly transf r parti 1 s b -

tween adjacent nod s, including those that ar diagonallyadja nt. ar must 

be taken to nsure that no parti 1 has trav 11 d mor than th dim nsi n of 

any node at ach time st p. 

The spatial device decomposition as d scribed abov also r qui!' s informa­

tion about the parti I s, to be exchanged to nabl prop r harg as ignm nt 

and differencing. This problem becom s more acut wh n high ord r clift r n -
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Fig. 5.13: The problem of high order differencing and assignment schemes is that 
each node may need data that is found deep in the mesh of an adjacent 
node. 
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ing schemes are used (s figur 5.13) and so trans~ rring th positions [th 

particles between the nod s is more cost :ft ctiv than x hanging th porLi ns 

of the Poisson grid. So ach nod pass s th positions of all part i 1 s LhaL a t' 

within n m sh points from th edg to its appropriat n ighb ur b ~ r harg 

assignment. Thes particles ar in Iud d in th assignm nt and t h parLial 

sums of th differencing scheme is th n r turn d wh n th m sh d riv d :C r s 

are calculated. Th 4-point diff r n ing s h m , that is us d 0 obtain t h 

forces, can necessitate the need to g t data that an b thr lay r in, [rom 

the surfac , on th facing and diagonally opposit nod s. 

The simulation is divid d into c lIs which ar us d to al ulaL th sh rL 

range fore. The particl s in cells on adjacent nod s n d to b a 

a cell may straddle two or mor nod s. H r it may b advisabl stor th 

contents of all adjac nt ells on each nod in ord r to minim is th data tra' ] 

betwe n th nodes (as shown in figur 5.14). 

5.3 The atomistic simulation of a dual-gat MESFET 

Th final part of thi s hapter is on rn d with bringing all th s various ap­

proaches together into a simpl F· T simulation. A full study f th of th .infiu­

enc of th random plac m nts of atomistic dopants on th IV- hara t risti 

will not be perform d du to insuffici nt tim avai labl to arry uL an ad -
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Fig. 5.14: It is advisable to keep a copy of the adjacent cells on adjacent nodes 
in order to alleviate com m u n ications bottlenecks. A 4 x 4 ar ray of lis 
mapped onto a 3 x 3 network on computing nodes resul ts in the following 
partition. 

quate number of simulations to obtain siaiisti ally a ptabl dat . im! I r 

problem is to compar th r suIts for simulations using ill standard niinu u 

doping, that is used in cony ntional d vi simulations, with th n w a mi st i 

tr atm nt that has been d v lop d ov r th ours f this work. Th main b­

jectiv is to verify the simulation m thods and 0 th r suI ts will b 

with those pro due d by a commercial drift-diffusion sirnulat r (M • 

Studies on doubl -gat 8i M08F · Ts [12, 132, 13 , 1 4, 1 5, 13 ,] 37] hav 

found an ideal subthr shold (8) factor, high trans ondu tan ,and a 1 W l' 

susceptibility to short chann I it ets. A doubl gat d i-M' •• T (s fig­

ure 5.15) was chosen beaus it provid s a much b tt I' ontrolov r th hann 1 
when using v ry short gat s. Th r is th add d advantag thai th a tiv r ­

gion of this structur occupies a larg fraction of th simulation domain. 

Th software was apable of simulating any r tangular d vi g om try 

which had contacts, for th sourc an d drain, on th opposing fa s n th xz­

plan s. Th width, I ngth, and d pth r £ rs to ih spatial m asur m nts along 

the x, y and z axes resp ctiv ly. Th simulation do ain was a r tangular 
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Fig. 5.15: The double gate MESFET. 
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block of dimensions 320 x 320 x 80 nm. The source and drain regions were 

doped to 2 X 1024 m-3 and were 40 nm wide. The 240 nm channel had a doping 

of 5 x 1023 m-3
• The gate was 80 nm in length. The aim of th simulation is 

to investigate the effects due to the precise distributions of th s impurity 

ions. The results from MEDICI was used as a baseline where all charges w r 

represented as continuous distributions. Brownian dynamics has been shown 

to be a good approximation to the drift-diffusion model and so it was used to 

model the dynamics of the particles. Two simulations w re carried out: th 

first where the dopants were represented by a uniform charge distribution, and 

the second that treated them at discrete entities. The same same mesh was 

used in both Brownian simulations. 

The source contact was grounded and the drain bias was 0.1 V. The lec­

trostatics were studied by solving Poisson's equation using a multigrid solv r 

on a 129 x 129 x 33 mesh with a mesh spacing of 2.5 nm. This mesh spacing is 

much smaller than 17.1 nm - the mean separation between the impurity ions 

in the channel - and so it is reasonable to assume that any effects que to the 

atomistic nature of the impurities would be evident. The carriers and ions (in 

the second simulation) were placed at random in the sample according to the 

doping profile but their numbers were in accordance with the 1 vel of doping 

in each of the source, channel and drain regions. There were 3072 donors in 

the channel impurities - with around 1024 under the gate - and 16384 ions 
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in the source and drain. 

The calculated threshold potential for this device was, 

VT -
(ltf qNr 

2f 
-0.61 V 

109 

(5.6) 

where Lz = 80 nm is the distance separating of the top and bottom gates. The 

shortage of time prevented a detailed analysis of the subthreshold characteris­

tics, because of the longer simulation times required to extract the small cur­

rents from the noise. Measurements were made of the IDs/VGs-characteristic 
for gate voltages between -0.6 V and 0 V. The first measurement was taken 

after 2 ps to ensure that the system had attained thermal equilibrium. The 

subsequent current measurements were made after 1 ps after the altering the 

gate bias to allow for the transients to decay. 
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Fig. 5.16: The I-V characteristics of the 80 nm dou hIe gated MESFET with a 
smeared doping. 

The simulation was verified by comparing its results with that of MEDICI 

(as shown in figure 5.16). Figure 5.16 shows the results for the doping repre-
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sented as a continuous distribution of charge. The error-bars show the stan­

dard deviation in the current due to thermal and shot noise. There is broad 

agreement between both sets of results as expected from the close relationship 

between the drift diffusion approach and Brownian dynamics as as shown in 

chapter 2. 

The statistical variation in the number of dopants under the gate is 32 (i. e. 

a standard deviation of 3 %) and so this is not expected to have a significant 

influence on the threshold characteristics. The fluctuation in threshold voltage 

due to variation in dopant number is expected to be only 0.02 V for this device 

- neglecting all other parameters. However the gate length is less than five 

times the donor separation and so there should be conducting channels forming 

due to their chance alignment in the channel. Chapter 4 has shown that the 

percolation threshold is reduced by the order of ksT for the samples containing 

125 impurities at a mean density of 1024 m-3
• 
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Fig. 5.17: The I-V characteristics of the 80nm double gated MESFET with atom­
istic donors. 

The results from figure 5.17, however, show very similar results to the 

continuous doping distribution. These results indicate that the use of partie-
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ulate ionised impurities has little effect on the overall IV characteristics of the 

device. The lack of time has prevented a more detailed examination of the 

subthreshold characteristics. Studies of the channel region over time, when 

the threshold gate bias is applied (see figures 5.18 and 5.19), show the devel­

opment of channels. The figures show the potential averaged over 20 ps and 

so blurring out the electrons. The results were accumulated after 2 ps so that 

only the steady state was included in the averaging. The conduction channels 

form at around -0.64 V which is 30 m V below the calculated threshold. This 

lowering of threshold approximates the value for the percolation threshold in 

section 4.4 but much longer simulation times may be needed to show up the 

small alterations in the subthreshold current. 

It is evident that the initial channels are narrow and tortuous and so they 

are not easily crossed by particulate carriers. Carriers are expected to interact 

and impede each other's progress they try to pass through the channels. Their 

motion would then be akin to the kinematics of granular materials, such as 

sand travelling in a narrow funnel. There has not been sufficient time to 

carry out a proper study of this device but the good agreement between the 

simulation results and those obtained from a commercial simulation is sufficient 

to validate the methods that have been developed. 
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Fig . 5.18: A cross section of the centre of the channel through the xy-planc at 
threshold. 
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6. CONCLUSIONS 

The current trends in the semiconductor industry indicate that memories and 

CPUs will use FETs with gates that are shorter than 0.1 pm within the next 

five years. The main aim of this work has been to demonstrate viable methods 

to study the behaviour of these sub-0.1 urn devices, where the quantised nature 

of electronic charge begins to exert a significant influence on the threshold, and 

subthreshold, IV-characteristics. The introductory chapter outlined the new 

behavior that emerge as devices are scaled below 0.1 Jlm and their impact on 

the process of miniaturisation. The fluctuation in the numbers and distribu­

tions of dopants would results in an unacceptable variation in the threshold 

IV-characteristics between devices on a wafer and so impede the design of ICs. 

The past work carried out by others, in studying the effects of the random 

dopant fluctuations, have been discussed but they failed to treat carriers as 

discrete particles. Since there are a small number of carriers present in the 

channel region, the discrete nature of the carriers has to be considered in order 

to study effects such as screening or noise. Therefore, it is essential to use 

models that describe carriers as discrete particles over models which rely on 

the solution of the moment equations of the Boltzmann equation. The valid­

ity of the Boltzmann equation may be questioned in the time scales and fine 

spatial resolution of the device model. The standard 'Monte Carlo' models, 

whilst retaining the particulate view of the carriers, are computationally ex­

pensive and so ways of speeding up and simplifying the problem have been 

investigated. 

Conventional Monte Carlo simulations are very time consuming and so a 
new, and simpler, model- based on the theory of Brownian motion - has 

been introduced in the second chapter that is applicable in systems that are not 

driven far from equilibrium. The method has been validated through studies of 

bulk materials under constant electric fields and through the successful simu-
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lation of a short diode. Brownian dynamics has some similarities to the Monte 

Carlo method using the relaxation time approximation. The main difference 

here is that the large discontinuous changes in momentum, at the end of the 

free flights on the Monte Carlo method, are replaced by a continuous process. 

This computationally efficient method ensures that the system relaxes to wards 

the appropriate Maxwell-Boltzmann distribution (for the lattice temperature) 

and does not introduce any artefacts into the steady state distribution func­

tions - unlike typical Monte Carlo models. The application of the Langevin 

equation, with its <5-correlated stochastic force in conjunction with a frictional 

force, describes the motion of the ensemble and not any individual particle. It 
therefore requires fewer flights to get a statistically acceptable set of data -

it has been found to be around seventy times faster than a conventional two 
dimensional ensemble Monte Carlo model. The only input parameters are the 

mobility, effective mass and temperature. The first two can be derived from 

Monte Carlo simulations or experimental measurements and so this method 

has many similarities with the drift-diffusion model. The heavily doped con­

tacts can use up a large fraction of the computational resources in a Monte 

Carlo simulation, and so the Brownian model can be used to save much of this 

effort. 
The general aim of this work is to include all electrostatic interactions, with 

the exception of phonon scattering, in. the equations of motion. Much of the 

CPU time, in these molecular dynamics simulations, is spent calculating and 

integrating the electrostatic forces and so any improvements here would pay 

back great dividends. A very efficient multi-grid method is presented in chapter 

3 for the solution of Poisson's equation on very large meshes, while coping with 

the sharp variations in potential arising from the point like charge distributions. 

The problems arising from the use of a mesh are also discussed and a new 

efficient technique to overcome these problems is introduced. The force, as 
derived from the mesh, deviates significantly from the Coulomb force between 

two point charges when they approach to within about three mesh spacings 
and so a new and quick method has been developed to tackle this problem. 

The cubic symmetry of the Poisson grid has been used to devise a method that 

provides a reasonable solution to this problem without an excessive additional 

computational overhead. The discrepancy can be mapped along the thrpc 
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directions of symmetry and a simple interpolation can be made between them. 

The procedure has been verified by comparing the estimated mesh force with 

the actual results on large meshes. 

The verification of the molecular dynamics technique was carried out in 

chapter 4. This is a complex many body problem that cannot be described 

very accurately by the the standard models that have been reviewed at the 

start of the chapter. The study of an orbit around of an electron around a soli­

tary ionised donor shows the artifacts (showing up as oscillations in the angle 

of scatter) due to the simple differencing schemes that are used in many con­

ventional simulations. However these artifacts do not have any great effect on 

the mobilities of the carriers at room temperature as demonstrated by the the 

comparison of the results for meshes and Ewald summation. The results from 

Brownian dynamics adequately describe ionised impurity scattering across a 

wide range of doping levels. 

High order integration schemes have to be used when using 'fr('e flights' in­

tegrate the equations of motion in samples containing discrete charges. Brow­

nian dynamics has been shown to be very useful for integrating these sharply 

varying electric fields because it allows the carriers to reach thermal (~qui1ib­

rium and erodes errors that creep into integration of motion. This n\('tllod 

allows a for a simple initialisation procedure and provides results that broadly 

agree with experimental results. 

The final section of chapter 4 dealt with the percolation of carricrs through 

small samples. The influence of the distribution of the discrete ions 011 the 

percolation threshold was studied in section 4.4. The pcrcolation threshold is 

the value of the lowest energy surface where the carriers could cross the sample. 

It explains the reduction in threshold and partly explains the fluctuations in 

the gate threshold. Conducting paths appeared when around 19 % of the mesh 

points were in the conducting state, in a 503 sample containing 125 random 

donors, and this value was considerably lower than the percolation threshold 

value (of 31 %) for a cubic lattice. This was because the presence of an impurity 

has some influence over the long range potential and so makes neighbouring 

cells more likely to conduct. The random distribution of impurities results in a 

lowering of the percolation threshold by 24 ± 5 m V. This figure is of the same 

order of magnitude with the result (of 30 mY) from the MESFET simulations. 
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It must be noted that the region between the gate contacts had the dimensions 

320 x 80 x 80 nm3 and contained approximately 1024 ions. 

The final task was to put together the methods described previously and 

formulate an efficient simulation tool. This is a very large computational prob­

lem and so it would be beneficial to use parallel or vector computing and so 

the practical details of the implementation on these systems was discussed in 

the beginning of the last chapter. The study of the 80 nm dual-gate MESFET 

was used to validate the simulation approach. The results from the standard 

approach, that represented the doping profile using continuous charge distribu­

tions, were compared with those using the new atomistic treatment of ionised 

dopants. Studies of the channel showed that different parts regions turned on 

at different potentials and the conduction paths formed as described earlier. 

The simulations using discrete impurities showed a reduction in percolation 

threshold on 30 m V that agreed with the previous measurements on 50 nm3 

samples. This reduction in threshold is only a twentieth of the turn-on voltage 

of -0.6 V and so discernable effects were detected at threshold since any other 

effects would have been hidden in the uncertainty in the measurements. 

6.1 Scope for furtllcr study 

This work has taken developed and tested the techniques needed for the study 

of mesoscopic devices. The first step would be to carry out a comprehensive 

study of the threshold, and subthreshold, characteristics of this example device. 

This would require the simulation of about a thousand devic<'s with random 

dopant distributions to get statistically acceptable results. The numhC'r of 

dopants should follow the appropriate Poisson distribution for the mean doping 

level. 
The percolation threshold is affected by the precise distribution of impuri· 

ties in the channel and so it would be beneficial to investigate the effects of this 

on the threshold characteristics of the FET. Here the distributions would vary 

- in the region between the gates - between each simulation but the number 

of dopants would be kept constant. At around the threshold, one would expect 

the size, shape and tracks of the conducting channels to have some effects on 

the crossing of carriers and hence the observed current. 
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Other physical processes - such as interface charges and traps whose ef· 

fects become more pronounced as the number of carriers is reduced - can be 

incorporated into the model. The goal will be to model more realistic devices 

- a task that becomes increasingly affordable due to the increasing computa· 

tional resources. The staple of the semiconductor industry is the MOSFET and 

this would the the obvious candidate. The advantages of silicon-on-insulator 

(SOl) MOSFETs would be have to investigated. Accurate models of surface 

scattering may also be needed to account for the mobility in these small de· 

vices. 
Process simulations can be carried out, such as the implantation of ions to 

obtain realistic doping profiles, and variations in patterning or growth can be 

included. Dislocations can produce variations in strain which in turn produce 

undulations in the conduction band can be included in the electrostatics. 

The multigrid solver would have to be modified in order to include t.he 

different dielectric constants and more complex geometries. This can be ac· 

complished, in part, by the creation of arrays to label each grid point as fixed 

or free and to store the dielectric constants at or between each grid point. Re­

striction and prolongations have to be applied to these arrays so as to define 

the problem on the meshes of different scales. 

The solvers can be upgraded to use arbitrary meshes with nonuniform 

spacings and adaptive grid generation would be useful for complex geometries. 

This would also be useful in the presence of discrete particles where the grid 

can be locally refined near the vicinity of these charges. This would result in 

large savings in memory usage. The new method, developed for the treatment 

of short range forces, requires a constant mesh spacing but the mesh can be 

refined locally to obviate the need to treat these close interactions separatrly. 

The parallel implementation of the simulation methods may be studied 

in greater detail. It may be more efficient to implement a "task farming" 
model where each computing node simulates an entire device under differ­

ent operating conditions or with different device parameters in the systems 

that are currently available in the department. The main problem lies in the 

distribution of the problem on the computational nodes and then the main­

tenance of synchronisation and data exchange between the nodes. Modern 

compilers, such as the High Performance Fortran (IIPF), can perform these 
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functions - albeit with some help from the programmer. Smart compilers, 

found in workstations with multiple processors can distribute the load between 

the CPUs and, coupled to the fact that prices of these systems will eventually 

fall, this probably represents the future platform for carrying out these molec­

ular dynamics simulations. Massively parallel architectures will then become 

the preserve of specialist centres. 

The problem with Brownian dynamics is that it it is only applicable to 

systems in equilibrium, and this is not guaranteed in small devices with high 

electric fields fields. It does not describe ballistic transport due the presence of 

the fluctuating and frictional forces on any time scale. It must be noted that 

this method cannot be described as an 'ab initio' method since the dynamics 

are governed not by any physical description of the scattering processes but the 

fluctuation dissipation and the central limit theorems using input parameters. 

It would then be beneficial to implement a full Ensemble Monte Carlo model 

and validate the Brownian simulations. The combination of these two models 

would enable the investigation of these very small devices through the full range 

of their operating conditions. The Brownian method is unlikely to completely 

replace Monte Carlo simulations in the study of ultrasubmicron devices but it 

can provide a fast simulation tool where the cost of a full Monte Carlo method 

is unnecessary. In the longer run since the time duration of the collision events 

becomes no longer negligible, the high fields causing an appreciable change 

in energy - in comparison to the energy difference of the scattering event 

- over this time and distances (such as the gate length) approach the de 

Broglie wavelength of the electron a full quantum transport model may become 

necessary. 

In short this is an up and coming field of study with bright prospects whose 

results are needed within the next few decades as the sizes of devices shrinl, to 

the order of tens of nanometres. This work has covered the initial groundwork 

by addressing the key practical considerations that must be considered when 

tacking the huge computational task of modelling sma.ll devices: 

• simple and effective modelling of dynamics, 

• fast solution of Poisson's equation on very large meshes with discrete 

charges, 
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• overcoming the band-limiting of meshes. 
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A. THE LANGEVIN EQUATION 

The scattering of carriers by phonons in the Brownian model is represented by 

a drag force in conjunction with a fluctuating force. In practical simulations the 

basic task is to determine the Weiner process from the stochastic acceleration. 

The first part of this section shows that the distribution of velocities is not 

affected by the external forces resulting from interactions with other charges 

and boundary conditions. This simplifies the mathematics that is used later 

to determine the magnitude of the autocorrelation function (i.e. the standard 
deviation) of the Weiner process. 

The discrete-time Langevin equation, can be written as 

(A.I) 

for a time t = nLlt, where an is the acceleration due to the local electric field 

and V n is the Weiner process. If a simple Euler integration method is used then 

the frictional term is just -Vn/T, where T is the momentum relaxation time. A 

trapezoidal integration scheme would provide a better approximation by using 

the average velocity over the timestep for the frictional term ((vn+1 - Vn)/T). 

Variable Euler integration Trapezoidal integration 

fl.t 1- ~! , 1-- 2'T 

T 1 + ~! 
2'T 

1 
1 

a 
1 + ~! 

2'T 

Both methods are only accurate to second order in time. 

The general solution to this equation with the initial condition Vo is 

n-l 

Vn = ,nvo + a L ,n-i-l (ajLlt + Vi) (A.2) 
i=O 
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Assuming a constant electric field, so ai = a Vi this can be written as 

Vn = 
n-l 

aT + (vo - aT) At + 0: L (rn-i-1Vi) 
;=0 

(A.3) 

The deviation of velocities from the mean at time n ~t is 

n-l 
Vn - (vn ) = 0: L (-yn-i-1Vi ) (A.4) 

;=0 

since (Vi) = O. The electric field has no bearing on this distribution: it merely 

shifts it by the drift velocity. This is illustrated in figure 2.2 where the same 

set of random numbers were used and the distribution profiles for the zero field 

and 1 MVm-1 cases were identical. 

Since the motion along the three orthogonal directions are independent, a 

one dimensional approach will be taken for the sake of brevity. The magni­

tude of the acceleration due to the fluctuating force can be obtained from the 

variance of the velocity distribution (~Vn)2. 

(A.5) 

and 

(v!) ( ")"nv~ + 20vo ~ ,,),'n-'-1 (a,At + Vo) + 

0' {(At)' ~ (,,),n-'-, (a,At + Vo) ~ "1"-;-1 (a;A! + V;)] }) 
n-l 

- -y2n(v~) + 2a(vo) ~t E ,2n-i-l(ai) + 
i=O 

0:
2 [(~t)2 (E E -y2n-i-i-2(aiai») + I: -y2n-i-l (V?)] (A.6) 

1=0 )=0 1=0 

The correlation function of the stochastic term has the property 

(A.7) 
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and so only the diagonal term has remained in equation A.6. 

n-l n-ln-l 

(Vn}2 = 1'2n(vo}2 + 2a(vo) ~t L 1'2n-i-l(ai} + a2(~t? L L 1'2n-i-i -2 (aiaj) 
i=O i=O j=O 

(A.S) 
Hence 

(A.9) 

Equation A.9 gives the energy relaxation time for the Brownian particle as 

T /2. The particles relax towards thermal equilibrium and so 

kBT a 2 

lim (~vn)2 = -- = (12 1 2 
n-+oo m -I' (A.IO) 

with 
T 

Euler integration 
~t (2 - ~t/T) 

T 
Trapezoidal integration 

(A.11) 

2~t 

This gives the strength of the fluctuating acceleration to be 

Euler integration Trapezoidal integration 

(1 Jk:: ~t (2 _ ~t) J2koT Ilt 
m T 

This result is in keeping with the fluctuation-dissipation theorem, that relates 

the autocorrelation of the stochastic term to the deterministic frictional term. 

It is also clear that Dv = DxT-2. 

A final check on this method is to confirm that this fluctuating accelera.tion 

gives the correct diffusion coefficient in real space (Dr). Using the velocity 

a.utocorrelation function 

Dr = 100 

(v(t)v(t + s))ds = 10
00 

(v(O)v(s)}ds (A.12) 

The Euler integration scheme gives: 

n=O 
00 

- ~t L(VOl'nvn ) 
n=O 
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and the trapezoid integration results in 

where the Einstein relation has been used to express the final result in terms of 

mobility. It has been assumed that the particles were in thermal equilibrium 

at time t and that there was no external field. 

A.1 The relation to the Drift-diffusion equation 

One of the fastest and most widespread modelling techniques is the drift­

diffusion method. The simulation of the Si diode resulted in good agreement 

between Brownian dynamics and the drift-diffusion approach. Therefore it will 

now be shown that the Langevin equation is equivalent to the drift-diffusion 

model in the steady-state limit. When studying systems using time-scales 

greater than the momentum relaxation time, it can be assumed that v :::::: 0 

and v ~ pE. 

The Langevin equation in real space is just 

(A.l3) 

The occupation of space can be represented using a probability distribution 

function f(x, t) and a transition probability density (or propagation operator) 

f(Xl, tl I Xo, to) can be defined in order to study the evolution of the system 

from an initial state Xo, to). 

f(x, t + At) = ! f(x, tl I XO, to) f(xo, to) dxo (A.14) 
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The Fokker-Plank equation for equation A.13 is 

%tf(X, tlxo, to) + AV f(x, tlxo, to) = ~BV2 f(x, tlxo, to) 

A = lim : !(x' - x)f(x, tlxo, io)dx' = lim (~x) = aT 
.:It-+O wt .:It-+O wt 

B = lim : j(x' - x? f(x, tlxo, to)dx' = lim (~X2) = 2D:z; 
~t-+O wi ~t-+O t 
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(A.15) 

(A.16) 

(A.17) 

The probability density function at time t can be obtained after integrating 

this transition probability density over all the initial state. And so 

f) 
atf(x, t) + aTV f(x, t) = D:z; V 2 f(x, t) (A.18) 

The time derivative can be eliminated by considering the conservation of pa.r­

ticles. In the absence of generation or recombination 

af(x, t) + VF(x, t) = 0 
at 

(A.1n) 

where F(x, t) is the flux per unit area and F(x, t) = f(x, t)v. Therefore, after 

integrating over space we have 

- f(x, t)v + aT f(x, t) = D:z; V f(x, t) (A.20) 

and using n = N f(x, t)dx where N is the total number of particles 

-nv + nTa = DxVn (A.21) 

After multiplying by the carrier charge q and using a = qE/m, the current 

continuity equation is obtained, after a little rearranging. 

(A.22) 

This clearly demonstrates that the real-space Langevin equation is equiv­

alent to the drift-diffusion model. 



B. THE BICONJUGATE GRADIENT :METHOD. 

These methods, in general, try to solve the system of N linear equations in N 
variables 

Ax=b (n.l) 

in the case of A being symmetric and positive definite, by minimising the 

function 
f(x) = ~xT. A· x - b· x 

2 
whose minimum occurs when 

Vf=A·x-b 

(B.2) 

(B.3) 

The minimum is found by choosing a striking out in some direction Pk with 

a weighting Ok from each kth iterate Xk. 

(BA) 

At each iteration a residual, given by, 

(n.s) 

is obtained. These vectors must satisfy the bi-orthogonality condition 

rt . rj = 0, if i =f j (lUi) 

and the bi-conjugacy condition 

(B.7) 

This recurrence relation results in the termination of the series after N 
iterations, at most, since there cannot be more than N orthogonal directions in 

an N-dimensional vector space. However, this termination is only gua.ra.ntc('d 

when exa.ct arithmetic is used. 
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Unfortunately, A is rarely symmetric and so the generalised minimum 

residual (GMRES) algorithm is often employed to circumvent this problem, 

by pre-multiplying by AT. 
The particular bi-conjugate gradient method that was applied was the lli­

CGSTAB(2). The Bi-CGSTAB method relies on the fact that the residual can 

be constructed recursively as 

(D.S) 

Were Pk is a polynomial, of degree k, giving the residual of bi-conjugate gradi­

ent from the initial roo Qk is constructed from the product of k linear factors 

(1 - wjA) under the condition that Qk(O) = 1. The Wj are taken to minimise 

a residual locally, and so if it equals zero (or even becomes very small) at any 

point, this method breaks down. In fact, lli-CGSTAD can be viewed as the 

combined effect of bi-conjugate gradient and GMRES(l) steps, and so when 

the GMRES(l) step [nearly] stagnates, then the bi-conjugate gradient part in 

the next iteration cannot (or only poorly) be constructed. 

The optimal reduction polynomials for matrices with complex eigenvalues 

may also have complex roots, and so this construction for Q k can made to allow 

for this by obtaining the Q-polynomial, for each successive even-numbered 

iteration form the previous one, by using the quadratic expansion, 

1-wJA -w?)A2
• 

This Bi-CGSTAB2 algorithm does possess a better convergence, but it is still 

hampered by its reliance on the odd-numbered steps. In Bi-CGSTAB(2), tile 

Q-polynomial is constructed out of quadratic factors, and so obviates the lI('('d 

for the linear factor of the odd step. 

The Bi-CGSTAB(2) algorithm can be written as follows: 

Let Xo be an initial guess and ro = b - A . Xo. 

Choose an arbitrary vector q such that q. r =I 0, say q = r. 

po = 1 j a = OJ W2 = 1 j 
Uo = 0; 
for i = 0,2,4, ... 

po = -W2Poj 



B. The Biconjugate gradient method. 

even Bi-CG step: 

odd Bi-CG step: 

GCR(2) - part: 

Pl = q. r;{3 = ae.L jpo = Pl; 
Po 

U = ri - {3u; 

v=Au 
Po 

"y = V· q; a = -j 

r = ri - aVj 

s=Ar; 
x = Xi + au; 

"y 

Pl = q. s;{3 = ae.L jpo = Plj Po 

V = S - {3Vj 

v=Au 

w=Av 

"y = w . q; a = E2. j 
'Y 

V = S - f3Vj 

r = r- aVj 

s = s - aWj 

t = As; 
Wl = r . s; U = S • Sj 

, = s· tj A = t . t; 

W2 = r . t; A = A _ (2/ Uj 

W2 = (W2 - (WI/U)/Tj 

Wi = (Wi - (W2)/Uj 

Xi+2 = X + Wlr + W2S + au; 
ri+2 = r - WlS - W2tj 

if Xi+2 is accurate enough then exit! 

u = U -WiV -W2Wj 

end loop. 
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C. MATERIAL PARAMETERS 

This appendix gives all the rei avant material parameters that are used in the 

simulations using GaAs and Si. 

GaAs Si 
Tn" O.067a mb 0.98 - I 
ma 

mb 0.19 t 

fr 13.1sa 11.9C 

JL~ (m2 V-I S-I) 0.85 0.135 

ni (m-3
) 1.5 X 1016 1013 

where ni is the intrinsic electron number density and the references are 

(a) Ridley [117], 

(b) Reggiani [138], 

(c) Cooke [139]. 
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