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Abstract 

With a rising demand for nanomaterials and their continual increase in 

production, the release of nanoparticles (NPs) into the environment is inevitable 

(Petosa et al., 2010). Problematically, NPs can have a wide range of toxic 

effects, which are exacerbated by their size (at least one dimension smaller 

than 100 nm)(Engineering., 2004).  Detrimental effects include brain, intestinal 

and respiratory injury, delayed embryonic development, DNA damage which 

ultimately lead to increased mortality (Trouiller et al., 2009), (Handy et al., 

2008).  Natural and manufactured NPs also have the ability to bind and transport 

chemical pollutants, thus enhancing their toxicity (Moore, 2006).  

While an array of techniques are available for in situ remediation of 

numerous groundwater contaminants, there are currently none for in situ 

remediation of nanoparticles.  This fundamental technology gap means we are 

poorly prepared to deal with nanoparticle pollution events.  The aim of this PhD 

was to develop mechanisms to immobilise and remove nanoparticles from water 

and waste water in order to prevent the transport of nanoparticles to sites 

where they have the potential to cause harm.  

Experiments conducted demonstrate the potential of microbially 

mediated mineral formation to immobilise nanoparticles from water.  The 

ureolytic bacteria Sporosarcina pasteurii was used to induce calcium carbonate 

precipitation in batch and column experiments. Nanoparticle immobilisation was 

tested as a function of nanoparticle size and surface charge. The results 

demonstrate the successful immobilisation of negatively charged nanoparticles 

(both large and small, 150 and 35 nm respectively), while failing to remove 

positively charged nanoparticles from solution. In order to capture positively 

charged nanoparticles a second mineral, struvite, was tested. The precipitation 

of struvite successfully immobilised positively charged nanoparticles. However, 

in comparison to the calcite precipitation experiments the removal of positively 

charged nanoparticles was found to be pH and ionic strength dependant. Finally, 

the ability of Bacillus subtilis, a common groundwater bacterium and 

wastewater treatment biofilm to adsorb and remove nanoparticles from solution 

was examined. Here both biosorbent materials were highly efficient at removing 

positively charged nanoparticles from solution whilst negatively charged 

nanoparticles remained in suspension. 
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The research presented here demonstrates that microbially induced 

mineral precipitation may be used as a tool to immobilise nanoparticles from 

contaminated groundwater. In addition, bacteria and wastewater treatment 

biofilm were found to be highly efficient biosorbents of positively charged 

nanoparticles. These findings hold implications for the fate and transport of 

nanoparticles through environmental systems and wastewater treatment plants.    
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1 Introduction 

1.1 Nanoparticles  

Nanoparticles (NPs) are defined as particles with at least 2 dimensions less 

than 100 nm (Peralta-Videa et al., 2011). NPs can either occur naturally, or they 

can be manufactured for specific tasks.  Natural NPs have existed on Earth since 

the beginning of time, being formed by both geogenic and biogenic mechanisms 

(Handy et al., 2008b, Nowack and Bucheli, 2007). 

Geologic processes include physiochemical weathering, where by abrasion 

and dissolution weather rock fragments which naturally contain particles within 

the nano size range (Handy et al., 2008b, Hochella et al., 2008). In addition 

mechanical grinding within earthquake fault zones can create ultrafine grained 

rock fragments down to 10 to 20 nm in size (Hochella et al., 2008, Wilson et al., 

2005). Furthermore, volcanic processes, including geothermal/hrdrothermal 

activity produce a vast array of nanoparticles. For example Esquivel and Murr 

(2004) found aggregates of carbon nanotubes and silica NPs (thought to be 

volcanic in origin) trapped within a Greenland ice core dating back to 10,000 

years ago. Whilst Rietmeijer (1997) examined upper stratospheric dust which 

contained bismuth oxide NPs formed from fumarolic volcanic gases. Rietmeijer 

(1997) linked these NPs to volcanic eruptions which occurred in the 1980’s such 

as Mount St. Helens and El Chicon. Other natural atmospheric NPs include sea 

salt aerosols formed from the mechanical disruption of the ocean surface 

(Hochella et al., 2008, O'Dowd et al., 1997). Whilst interplanitary dust particles 

and meteorites also contain small concentrations of diamond nanoparticles, 

thought to be produced by supernova sources (Hochella et al., 2008, Verchovsky 

et al., 2006). 

Biological processes often function at a nano-level. For example proteins, 

peptides and viruses all exist within the nano size range (Handy et al., 2008b).  

Furthermore, humic and fulvic acids (50-200 nm in size) may also be released 

into the natural environment  by the degradation of biological matter (Handy et 

al., 2008b). In addition the process of biomineralisation produces minerals on a 

nano-scale. This includes biogenic iron and manganese (oxyhydr)oxide NPs 

(Nowack and Bucheli, 2007, Handy et al., 2008b, Hochella et al., 2008). For 

more information on biogenic mineral formation see section 1.3.1.  
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NPs have also been unintentionally produced via anthropogenic processes 

for thousands of years, primarily as a consequence of combustion (Nowack and 

Bucheli, 2007). For example nano-sized black carbon forms due to the 

incomplete combustion of fossil fuels whilst carbon black NPs can be found in 

industrial soot formed from the manufacturing of automobile tires (Nowack and 

Bucheli, 2007). In addition, platinum and rhodium NPs are produced as a by 

product of automotive catalytic converters (Zereini et al., 2001, Nowack and 

Bucheli, 2007).  

 

1.1.1 Natural and anthropogenic nanoparticle toxicity 

Life on Earth has been exposed to natural NPs throughout evolution and so 

organisms are assumed to have adapted to living with these materials (Handy et 

al., 2008b). However toxicity occurs as a function of exposure and dose (Handy 

et al., 2008b). For example the lungs have adapted mechanisms to clear small 

amounts of airborne particles (Handy et al., 2008b). They have not evolved to 

operate under more extreme environmental conditions such as a volcanic 

eruption. Prolonged exposure to NPs in volcanic ash can cause respiratory 

problems such as asthma, bronchitis, silicosis and chronic obstructive pulmonary 

disease (Horwell and Baxter, 2006).  

Anthropogenic NP toxicity has generated much attention over recent 

years. Atmospheric NPs produced via the combustion of fossil fuels have shown 

enhanced toxicity due to their enhanced residence time (Kumar et al., 2010). 

This means that atmospheric particles which fall within the nano-size range are 

more likely to persist within the atmosphere, increasing the likihood of 

penetration in respiratory and cardiovascular systems (Kumar et al., 2010). 

When inhaled nano-carbon (formed form vehicle emissions) can cause oxidation 

stress, pulmonary inflammation and cardiovascular events (Kumar et al., 2010, 

Nel et al., 2006). Whilst with regards to the natural environment, platinum NPs 

produced from catalytic converters have found to cause increased toxicity to 

kiwifruit pollen (Speranza et al., 2010). Speranza et al. (2010) discovered that 

platinum NPs of 5-10 nm altered kiwifruit pollen morphology and penetrated the 

grains rapidly and to a greater extent than compared to soluble platinum. In 

addition the grains underwent plasma membrane damage, resulting in the 

cessation of pollen tube emergence (Speranza et al., 2010). These findings hold 
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implications for in vivo pollen function with the potential for ecosystem level 

impacts (Speranza et al., 2010).   

 

1.1.2 Manufactured nanoparticles  

The nanotechnology industry is now a multibillion dollar industry, 

estimated to be worth 3.1 trillion by 2015 (Network, 2010). With large 

investment into this sector, a diverse array of NPs are now being produced on an 

industrial scale with consumers using nano-containing products daily (Shi et al., 

2011). As we look to the future, nanomaterials are becoming increasingly 

complex as we push to discover novel products to meet our consumer and energy 

demands (Maynard et al., 2011). 

A diverse array of nanomaterials currently exist, based on their chemical 

form Li et al. (2006) classified them into 4 categories: 1) carbon based materials 

such as carbon nanotubes and fullerenes (see Figure 1.1), 2) metal based 

particles such as nano gold, silver and metal oxides, 3) dendrimers which 

encompass many forms of nano-scale polymers and 4) composites which involve 

the production of NPs with more than 1 material (such as gold-silver composite 

nanoparticles, Figure 1.2). The applications of NPs are endless and are found in 

almost every aspect of society. A selection of nano-containing products currently 

on the market today can be seen in Figure 1.3. In the UK existing nano-

containing products include:  

 Sunscreens - contain zinc and titanium dioxide NPs due to their high UV 

light sorbing capacity (Weir et al., 2012).  

 Antimicrobial wound dressings - contain silver NPs due to their enhanced 

antimicrobial, antifungal and antiviral properties(Rai et al., 2009). In 

addition wounds treated with silver NPs exhibit scarless healing (Rai et 

al., 2009).   

 Self-cleaning windows – hydrophobic surfaces act to clean the window 

through the action of water whilst the hydrophobic layer carries away dirt 

by a process called sheeting (Parkin and Palgrave, 2005).   
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 stain resistant clothing – hydrophobic surfaces allow contaminants to 

adhere to the water droplets which repels the textile surface (Coyle et 

al., 2007). 

 paints - contain titanium and zinc oxide NPs which enhance the light 

scattering properties of paint (Pilotek and Tabellion, 2005). 

 

Figure 1.1: Diagram of a single-wall carbon nanotube (Allotropes, 2013). 

 

 

Figure 1.2: Silver - gold core – shell NPs (Yee, 2007).  
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Figure 1.3: A selection of current nano-containing products currently on the market 
(Chatterjee, 2008).  

 

In addition to commercial manufacturing, nanotechnology research and 

development has seen continual global growth over recent years (Chen et al., 

2013). Emerging research and development areas include: 

 Human health – NPs may be used in targeted drug delivery reduces patient 

side effects (Pautler and Brenner, 2010). Advances are also being made in 

the design of medical instruments; for example lysozyme-silver NP 

coatings on medical instruments offer sustained antimicrobial activity 

over a wide range of microorganisms (Eby et al., 2009). 

 Defence – carbon nanotubes spun into fibres in a polymer matrix have the 

potential to create electrically conductive fibres, sensors, 

electromagnetic shielding, microwave absorption and electrical energy 

storage (Kurahatti et al., 2010).  Nanocomposites in body armour allow 

for more flexible armour with reduced weight and an enhanced capacity 

to absorb energy (Kurahatti et al., 2010).   

 Energy – magnetic NPs and nanofluids have the potential enhance the 

performance of an array of solar engineering systems (Mahian et al., 2013, 

Frey et al., 2009) whilst nanogenerators have the capability of harvesting 

large scale mechanical energy such as footsteps, rolling wheels, wind 

power and ocean eaves (Zhu et al., 2013).    
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 Agriculture – nano-fertilisers have the potential to minimise nutrient loss 

in fertilisation, protect against photodegredation and increase production 

rates through enhanced reactivity (Gogos et al., 2012). Nano-pesticides 

offer effective, targeted control of pests and reduce the environmental 

footprint compared conventional pesticides (Gopal et al., 2012). NPs also 

offer advances in contaminant remediation. This is discussed further in 

section 1.1.5. 

Nanotechnology has the potential to greatly improve communication, 

increase data storage, advances in medicine and make an array of technological 

applications faster and cheaper (Wang et al., 2013). 

 

1.1.3 Manufactured nanoparticle toxicology 

The continual increase in the production of NPs and nano-containing 

products has sparked debate between the public, scientific and regulatory 

bodies as to the fate and toxicity of nanoparticels in environmental systems.  

Elevated concentrations of NPs in the environment are extremely likely due to 

the unintentional release of NPs via production, use and disposal of NPs and 

nano-containing products (Board, 2009, Petosa et al., 2012). Additionally, NPs 

are also intentionally released into the environment for the in-situ remediation 

of many ground water contaminants.  This is discussed further in section 1.1.5.  

Many problems are faced when assessing NP toxicology due to the diverse 

array of NPs which are currently produced. This makes it extremely difficult for 

toxicologists to adequately assess the ecotoxicity of nanoparticles.  Indeed, 

relatively inert materials  may exhibit toxic effects when produced at the 

nanoscale due to the unique physiochemical properties exhibited by 

nanoparticles, in particular their large surface area to volume ratio (Ju-Nam and 

Lead, 2008). As particle size decreases, surface area increases (Figure 1.4), this 

means that more atoms exist on the surface relative to the inside of the NP (Nel 

et al., 2006). Hence, NPs regardless of their composition, are biologically more 

reactive (Dhawan and Sharma, 2010). In addition to this NPs have access to 

biological regions where larger particles would be inhibited (Dhawan and 

Sharma, 2010). For example NPs may attach to cellular membranes and enter 
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cells, causing the disruption of cellular functions (Bystrzejewska-Piotrowska et 

al., 2009).  

 

Figure 1.4: This graph displays the inverse relationship between particle size and the 
percent of surface molecules (Nel et al., 2006). 

 

In addition manufactured NPs are chemically complex in nature, being 

composed of a vast array of materials. They can be carbon based, metal based, 

composite layered NPs and/or coated with an external stabilising agent (Handy 

et al., 2008b). This will affect NP size, shape, stability and ultimately their 

potential toxicity to human health and the environment (Dhawan and Sharma, 

2010). For example NPs composed of cadmium selenide exhibit toxicity due to 

the release of Cd2+ ions from the particle surface (Bystrzejewska-Piotrowska et 

al., 2009).  

NPs may be transported via air and water, and as such this will impact their 

toxicological effects. For the purpose of this study only waterborne NPs are 

discussed.  The toxicological affects of some widely used waterborne NPs are 

discussed below: 

 Carbon nanotubes – freshwater trout exposed to single walled carbon 

nanotubes experienced gill injuries, respiratory distress and an increased 

risk of mortality with prolonged exposure (Smith et al., 2007).  

 Gold NPs – Bar-Ilan et al. (2009) discovered that gold NPs are taken up by 

the embryos of exposed zebrafish. However the presence of gold NPs 
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caused minimal toxic effects, producing less than 3 % mortality at 12 

hours post-fertilisation.   

 Silver NPs – Bar-Ilan et al. (2009) found that silver NPs were also taken up 

by the embryos of exposed zebra fish. In contrast silver NP exposure 

produces almost 100 % mortality at 12 hours post fertilisation due to a 

variety of embryonic morphological malformations. Silver NPs have also 

shown ecosystem level impacts in field experiments. Colman et al. (2013) 

applied environmentally relevant concentrations of silver NPs via sewage 

biosolids to terrestrial mesocosms. Long-term analysis showed an increase 

in nitrous oxide fluxes, changes in microbial community composition, a 

reduction in microbial biomass by 35 % as well as bioaccumulation of 

silver NPs in the tissue of above ground plants such as Microstegium 

vimineum and Lobelia cardinalis.  

 Quantum dots – Kim et al. (2010a) found that quantum dots become 

unstable when exposed to UV light, releasing toxic metals from the core 

and generating reactive oxygen species resulting in lethal toxicity to 

Daphnia magna.  

 Metal oxide NPs – waterborne zinc oxide NPs exhibited significant effects 

on the survival, growth and reproduction in the marine amphipod 

Corophium volutator at concentrations as low as 1 mg/l (Fabrega et al., 

2011). Jiang et al. (2009) tested the toxicity of aluminium, silicon, 

titanium and zinc oxide NPs to 3 bacteria strains (Bacillus subtilis, 

Escherichia  and Pseudomonas fluorescents). Zinc oxide NP exhibited 

superior toxicity, causing 100% mortality to all tested bacteria. Whilst 

aluminium oxide NPs were lethal to 57% Bacillus subtilis, 36% Escherichia 

and 70% Pseudomonas fluorescents and silicon oxide NPs to 40% Bacillus 

subtilis, 58% Escherichia and 70% Pseudomonas fluorescents.  

 

1.1.4 Physiochemical properties of Nanoparticles  

Manufactured NPs exhibit a wide range of physiochemical properties due 

to their diverse and complex nature. The physiochemical properties of NPs are 

dependant and influenced by NP size, shape and surface properties. Of these, NP 

size is critical.  It has long been known that material properties change as a 
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function of size, however, within the nano range (1-100 nm) an unfamiliar 

transition zone is approached between the bulk and quantum laws of material 

science (Hochella Jr, 2002). Here, the atomic and electronic structures of 

particles are altered resulting in enhanced catalytic, optical and magnetic 

properties which are not exhibited by that same material at the macroscale 

(Guczi et al., 2012, Maillard et al., 2007, Hochella Jr, 2002). For example, gold 

is an inert material at the macroscale, however in NP form it is far more 

reactive, being utilised for its enhanced catalytic properties, allowing for the 

oxidation of CO and methane and the reduction of O2 (Yang et al., 2003, Della 

Pina et al., 2008, El-Deab and Ohsaka, 2003). Such phenomena occur as particles 

approach the nanometre range as a higher percentage of atoms are exposed on 

the surface relative to the particle interior (Figure 1.4), (Roduner, 2006). For 

instance, a NP with a diameter of 1 nm exhibits 100% of its atoms on the surface 

whilst a NP of 10 nm displays only 15 % of its atoms on the surface (Rao et al., 

2002).  

At first, size seems a simple parameter to determine.   However in reality 

this is complicated as size can change throughout the lifetime of a nanoparticle. 

Many are prone to aggregation, thus increasing NP size (Levard et al., 2012).  

Equally some are stabilised and so are inhibited form aggregation (Illés and 

Tombácz, 2003, Kvitek et al., 2008, Stankus et al., 2010). This is where NP 

surface properties come into play.  NPs are thought to follow the laws of 

colloidal science demonstrated by the classical Derjaguin, Landau, Verwey and 

Overbeek (DLVO theory). DLVO theory attempts to describe and explain the 

stability of charged surfaces in solution. DLVO combines the electrostatic 

repulsion and the van der Waals attraction to create a total interaction energy 

which explains why some charged surfaces agglomerate while other remains 

stable.    

To understand electrostatic repulsion an understanding of the electronic 

double layer (EDL) model is required. Figure 1.5 shows a highly negatively 

charged NP or colloid. Surrounding this is a layer of strongly bound immobile 

positively charged ions (counter-ions), termed the stern layer. Beyond this is the 

diffuse layer, here positive ions exist being attracted by the negative charge of 

the nanoparticle. The magnitude of positive ions decreases with distance from 

the colloid until an equilibrium with the bulk solution is reached.  Ions in the 

diffuse layer are mobile but are under the influence of the negative charge of 
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the colloid and so move as one with the colloid. It is the attached stern layer 

and charged diffuse layer that creates the double layer surrounding the charged 

surface.  

 

 

Figure 1.5: Schematic representation of the electronic double layer. 

 

In DLVO theory electrostatic effects come into play when two charged 

surfaces approach each other and their double layers begin to overlap. If the 

two surfaces are similarly charged an energy barrier is required to overcome the 

electrostatic repulsion for attachment to occur, this is demonstrated by an 

electrostatic repulsion curve. A maximum energy exists as the charged surfaces 

are almost touching, reducing to zero beyond the EDL. The magnitude of the 

energy barrier is related to the zeta potential of the charged surface. Indeed, 

two surfaces of opposite charge will exhibit no electrostatic repulsion and 

therefore no energy barrier (assuming attractive Van der Walls forces). 

Van der Waals attraction results from the force between two permanent 

dipoles (Keesom force), the force between a permanent dipole and an induced 

dipole (Debye force) and instantaneously induced dipoles (London dispersion 

forces). The Keesom force occurs when two polar molecules approach each 

other. The partially negative side of one molecule is attracted to the partially 

positive side of the other. This is often referred to the dipole-dipole interaction.  

Debye or induced dipole interactions occur when a polar molecule induces a 

dipole moment in a nonpolar molecule by creating an uneven electronic 

configuration in the nonpolar molecule. Whilst the London dispersion forces arise 
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from the orbit of electrons around atoms and molecules, creating an uneven 

distribution of electrons. This uneven distribution of electrons induces weak 

dipole moments between atoms and molecules. The combination of these two 

opposing forces (van der Waals attraction and the electrostatic repulsion) 

creates a total interaction energy curve (Figure 1.6). In order for attraction to 

occur the charged surfaces must have sufficient energy to overcome the energy 

barrier. The energy barrier may be altered by changing the zeta potential of the 

charged surface. 

 

 

Figure 1.6: Total (net) interaction energy curve produced combination of the van der Waals 
attraction from the electrostatic repulsion curve. 

 

Zeta potential is a measure of the electric potential at the share plane 

which separates the stern and diffuse layer (Vidojkovic et al., 2011). At this 

point the electric potential begins to decrease exponentially away from the NP 

surface, controlling particle mobility and thus influence zeta potential of the 

particle. Generally NPs with a zeta potential of either +30 or -30 mV exhibit 

extremely stable suspensions, above this range particles will strongly repel one 

another, offering a stable suspension (Instruments, 2011).  However, below this 

range NPs are prone to aggregation. Particle charge is strongly influenced by 

solution pH and ionic strength (Fang et al., 2009). As pH increases, the NPs 

surface deprotonates (i.e. releases H+ ions)  generating an increase in negative 
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surface charge (Figure 1.7). Solution ionic strength also affects particle zeta 

potential due to the compression of the EDL at high ionic strengths. In addition 

the valency of the ions also has to be taken into consideration. For example a 

trivalent ion such as Fe3+ will compress the EDL to a greater extent compared to 

a monovalent ion such as K+.   

Aggregation may be avoided by modifying the surface of the NP by the 

addition of surface coatings.  This offers a long range steric repulsion even in 

conditions of high ionic strength (Tiraferri and Sethi, 2009). Recent studies have 

shown success with surface coatings of guar gum, humic acid, tween, potato 

starch to name but a few (Tiraferri and Sethi, 2009, Kanel et al., 2007, He and 

Zhao, 2005). 

 

 

Figure 1.7: A typical zeta potential vs pH plot (Silver-Colloids, 2012).  

 

1.1.5 Nanoparticles used in remediation  

The physiochemical properties of NPs make them excellent candidates for 

use in environmental clean up strategies. They offer key advantages to 

traditional methods, such as pump and treat. Due to their nanometer size and 

unique surface coatings, NPs may be transported to both the pollutant source 

and plume, thus enabling the in-situ remediation of large contaminated areas 

(Kanel et al., 2007).  NPs are also excellent catalysts, greatly reducing the clean 

up time of contaminated systems (Handy et al., 2008b).  Nanotechnology has the 
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potential to provide faster, cost effective environmental clean-up strategies 

whilst reducing many common groundwater contaminants to near zero, all in-

situ (Wong et al., 2009).  

NPs proposed for use in contaminant remediation include various metal 

oxides, carbon nanotubes and tatinium dioxide and nano zero valent iron (nZVI, 

Karn et al., 2011).  Of these nZVI is the most commonly used. nZVI has shown 

high success rates for the remediation of various organic and inorganic soil and 

groundwater contaminants ranging from chlorinated solvents to a wide range of 

heavy metal ions (Misra et al., 2011, Fein et al., 2005, Mueller et al., 2012). The 

versatility of nZVI to treat a wide range of environmental contaminants is a 

result of oxidation of the zero valent iron core, forming an oxide shell (Wong et 

al., 2009). This core shell structure allows enhanced chemical removal via two 

mechanisms. The zero valent iron core provides a reducing agent due to its 

electron donating properties whilst the oxide shell exhibits a strong sportive 

character via electrostatic interactions and surface complexation mechanisms 

(Kanel et al., 2007).  Presently nZVI is being used extensively in the US for 

contaminant remediation whilst a few cases exist in Europe, namely Czech 

Republic, Italy and Germany (Wong et al., 2009). The results of nZVI treated 

sites look promising, for example a contaminated site in Bornhein, Germany saw 

a 90% reduction of total chlorinated compounds (Wong et al., 2009). No adverse 

environmental problems have been reported thus far, however the long term 

affects of nanoremediation are poorly understood. As a result continual 

environmental monitoring of nZVI-remediated sites is essential in order to 

prevent any adverse environmental impacts (Karn et al., 2011, Wong et al., 

2009). 

 

1.1.6 Environmental exposure to nanoparticles  

Evidence suggests that the uncontrolled release of nanomaterials through 

the use and disposal of nano-containing products has led to the emergence of 

NPs within the natural environment (Musee, 2011).  As the volume of nano-

containing products increases this will inevitably lead to their accumulation in 

the environment (Simonet and Valcárcel, 2009).  To this point, no published data 

exist for nano-waste volume, however, reasonable estimates can be inferred by 

the production volumes of NPs and nano-containing products (EEA, 2002). In 
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2004 1000 tonnes of nanomaterials were produced globally. This figure is 

estimated to increase to 58,000 tonnes annually between the years 2011 and 

2020 (Musee, 2011, Engineering, 2004).  A significant source of nano-waste to 

the natural environment may occur via point sources such as landfill, 

wastewater treatment works and industrial waste streams, whilst nonpoint 

sources include wear and tear of nano-containing products (Musee, 2011, Powell 

et al., 2008). Figure 1.8 highlights the potential routes of exposure and 

transformations of NPs in environmental systems. In addition, NPs may be 

intentionally released into the environment for contaminant remediation 

purposes, (see section 1.1.5).  Once released into the environment, NPs may 

undergo a variety of transformations such as redox reactions, aggregation and 

dissolution (Figure 8, Lowry et al., 2012b). For example when exposed to a large 

scale microcosm, replicating a freshwater wetland, silver NPs underwent almost 

complete sulfidation over a period of 18 months (Lowry et al., 2012a). This 

altered the particles aggregation state, surface chemistry and charge (Lowry et 

al., 2012b). However under the experimental conditions tested here Lowry et al. 

(2012a) found that Ag ions remained bioavailable to the plants and biota living 

within the microcosm.  In addition NPs may be intentionally stabilised with a 

variety of surface coatings such as guar gum and humic acid (Simonet and 

Valcárcel, 2009, Tiraferri and Sethi, 2009) which will inhibit particle aggregation 

(see section 1.1.4). NP surface properties will ultimately determine the fate, 

transport and toxicity of NPs in environmental systems.  
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Figure 1.8: Routes of exposure and transformations of NPs in the environment (Simonet and 
Valcárcel, 2009). 

 

1.2 Bacteria 

Bacteria consist of a large group of prokaryotic microorganisms that are 

ubiquitous to every environment on Earth. They are an extraordinarily diverse 

group of microorganisms that differ in size, shape, habitat and metabolism 

(Britannica, 2014). Bacteria have the ability to metabolise an array of organic 

and inorganic compounds and in doing so they have a crucial role to play in the 

biogeochemical cycling of elements in all our ecosystems (Banfield and Nealson, 

1997). For example nitrogen fixing bacteria convert atmospheric nitrogen into 

useable fixed nitrogen compounds (such as ammonia, nitrates or nitrites). 

Without them, soils would no longer be fertile. Bacteria are also found in Earth’s 

most extreme environments. Their adaptability means they can withstand 

extreme temperatures, pressures and aqueous chemistry allowing them to 

colonise mid ocean ridges (Kelley et al., 2001), polar ice caps (Price, 2000) and 

acid mine drainage streams to name but a few (Baker and Banfield, 2003).  
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1.2.1 Biofilm 

  Biofilms can be described as aggregated communities of microorganisms 

(O'Toole et al., 2000, Stoodley et al., 2002). Biofilms differ greatly to their 

individual planktonic counterparts, having key advantages of antimicrobial 

resistance, better availability to nutrients and are capable of withstanding 

greater environmental stress (Donlan, 2002, Palmer et al., 2007, Stanley and 

Lazazzera, 2004). They can form on solids, liquids and on living tissue (such as 

animal and plant tissues), (Britannica, 2014). Biofilm formations may be 

composed of a single bacterial species or a multiple community including 

eukaryotic organisms such as algae and fungi (O'Toole et al., 2000, Palmer Jr and 

White, 1997). However mixed communities are more common in environmental 

systems whilst single species more likely to occur as an infection or on the 

surface of medical implants (O'Toole et al., 2000). Biofilm growth is initiated by 

attachment to a surface; however the attachment mechanism is of much 

contention. Many factors may affect bacterial attachment to surfaces, such as 

mass transport, surface charge, surface roughness and surface micro-topography 

(Palmer et al., 2007). Once attachment has been made biofilm growth and cell 

division may occur.  During growth, extracellular polymeric substances (EPS) are 

secreted, this is crucial to the structure of the biofilm, comprising 50 to 90% of 

the total organic carbon of the biofilm (Donlan, 2002).  In addition EPS prevents 

biofilm desiccation and contributes to the antimicrobial resistance of biofilm 

(Donlan, 2002).  

 

1.2.2 Biofilm – nanoparticle interactions 

Bacteria – NP interactions hold implications for the transport of NPs within 

environmental systems. Their presence may facilitate the degradation, sorption 

and/or generation of NPs (Peulen and Wilkinson, 2011). Ultimately, the mobility 

and bioavalibility of NPs will depend on diffusion coefficients as this is the 

dominant transport mechanism of NPs into biofilm communities (Peulen and 

Wilkinson, 2011). Hence, the structure and composition of the biofilm hold 

important implications for biofilm – NP interactions. Peulen et al. (2011) found 

that the pore size within the biofilm is crucial to determine whether NP diffusion 

into the biofilm occurs. Here, NPs larger than 50 nm were excluded from biofilm 
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formations, suggesting their presence in environmental systems would not affect 

the transport of larger NPs. In addition, the physiochemical characteristics of 

NPs are crucial. For example, Li et al. (2013) found that biofilm coated sand 

grains retained bare NPs through sand column experiments, whilst polymer 

coated NPs showed high mobility with little retention within the column due to 

steric repulsion. The physiochemical interactions of NPs are discussed in detail in 

section 1.1.4. 

Biofilms are formed by a variety of microorganisms, under differing growth 

conditions which produce communities that vary widely in physiology and 

biochemistry.  Coupled with the diverse array of NPs produced bacteria – NP 

interactions within the natural environment is a complex process which is 

currently not well understood.  

 

1.3 Microbially mediated mineral formation 

1.3.1 General microbial mineral formation 

Microorganisms are key players in the precipitation and dissolution of 

numerous minerals. Mineral formation may be induced or controlled by the 

microorganism. Biologically induced mineralisation occurs as a by product of the 

organisms metabolic processes where as biologically controlled mineralisation 

occurs to serve a physiological purpose to the microorganism (Konhauser, 2009).  

For example ferrihydrite is a common biologically induced mineral forming in an 

array of environments ranging from aquifers to mine waters (Konhauser, 2009). 

This mineral can be precipitated by microbial oxidation of Fe(II) to Fe(III). 

Mineralisation can be assisted by the adsorption of iron by the cell surface, 

followed by nucleation and consequently growth until the cell becomes 

completely encrusted in the mineral precipitate (Konhauser, 2009). Warren and 

Ferris (1998) demonstrated that ferrihydrite precipitation was enhanced by the 

presence of bacteria, with precipitation occurring at a lower pH and in greater 

quantities compared to the abiotic (no bacteria) controls. Here the bacterial 

cells acted as heterogeneous nucleation templates for ferrihydrite precipitation 

(Warren and Ferris, 1998). In contrast biologically controlled mineralisation 

occurs as the microorganism exerts control over the nucleation and growth of 

the mineral (Bazylinski and Frankel, 2003). For example, magnetotactic bacteria 
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control the formation of magnetite. The mineral may form on or within the 

organism or within vesicles inside the cell (Devouard et al., 1998). This allows 

the organism to exert a high degree of control over biomineralization, forming 

well ordered crystals which have a narrow size distribution and well defined 

morphologies (Devouard et al., 1998).      

 

1.3.2 Ureolytically-driven calcium carbonate precipitation 

Urea hydrolysis occurs via the urease enzyme (urea amidohydrolase). This 

enzyme is possessed by numerous bacteria, enabling the enzymatic precipitation 

of calcium carbonate minerals (calcite, aragonite and vaterite) in a variety of 

soil and groundwater communities (Tobler et al., 2011, Lesley A. Warren et al., 

2001, Martin et al., 2012). As demonstrated by the series of reactions below, this 

process is initiated by the hydrolysis of urea to ammonia and carbonic acid (Eqn, 

1), equilibrating in water to form bicarbonate, ammonium and hydroxide ions 

(Eqn. 2 and 3). This causes a rise in pH, which combined with the production of 

bicarbonate, increases the saturation state with regards to calcium carbonate if 

soluble calcium exists, thus precipitating calcite out of solution (Eqn. 4, Tobler 

et al., 2011, Warren et al., 2001, Mitchell and Ferris, 2005). 

CO(NH2)2 + 2H2O  2NH3 + H2CO3  (Eqn. 1) 

H2CO3    HCO3
- + H+  (Eqn. 2) 

2NH3 + 2H2O   2NH4
+ + 2OH-  (Eqn. 3) 

Ca2+ + HCO3
-   CaCO3 + H+  (Eqn. 4) 

 

1.3.3 Ureolytically-driven calcium carbonate precipitation 
technologies  

Ureolytically-driven calcium carbonate precipitation has been extensively 

studied due to its potential in a diverse array of applications including the 

remediation of heavy metals and radionuclides (Lesley A. Warren et al., 2001, 

Fujita et al., 2004, Mitchell and Ferris, 2005), soil stabilisation (Whiffin et al., 

2007), wastewater treatment (Hammes et al., 2003) and carbon capture and 

storage (Mitchell et al., 2010) Martin et al., 2012. 
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1.4 Research objectives  

This PhD research examines microbially mediated processes which reduce 

NP mobility and ultimately immobilise NPs  within water and waste water.  

Nanotechnology is a rapidly growing field which shows no signs of slowing in 

the future. Concern arises due to the toxicological effects displayed by some 

nanoparticles. As NP production increases, so too will human and environmental 

exposure to nanoparticles, resulting in detrimental effects to human health and 

the natural environment. However, in order for NP toxicity to present a real 

threat, a route of exposure must exist. Some NPs  which are electrostatically 

and electrosterically stabilised are highly mobile within environmental systems 

and so it is these NPs  which present the greatest risk with regards to toxicity.  

This thesis looks to explore microbially mediated processes which can prevent 

the transport of NPs  to sites where they have the potential to cause harm.  

Much of this thesis explores the ability of microbial precipitated minerals 

to immobilize nanoparticles.  While, microbially driven mineral precipitation has 

already been shown to have potential for immobilization of dissolved heavy 

metals, the capture of NPs  has yet to be examined.   In addition to this, NP 

sorption onto planktonic bacteria and granular biofilms is also assessed. This was 

done to assess the capacity for current municipal wastewater treatment works 

to remove NPs conventionally through biological treatment.       

The key research chapters in this thesis are as follows: 

 Chapter 2 - utilizes batch reactions to test the ability of ureolytic calcite 

precipitation to capture highly stable nanoparticles.  This is tested as a 

function of NP surface charge and size. 

 Chapter 3 - builds upon chapter 2, but here the capture of NPs is 

undertaken inside packed sand columns to explore how this process works 

inside porous media.  This understanding is key if this process were to be 

scaled up to natural aquifers and soils. 

 Chapter 4 – tests the ability of struvite to remove positively charged NPs 

from water as these were poorly captured by the process of ureolytic 

calcite precipitation (Chapter 3). The ability of struvite mineral formation 

to remove ammonia (an undesirable by product of ureolysis) was also 

tested.  



  35 
 

 Chapter 5 – determines the ability of bacteria (Bacillus subtilis) and 

wastewater treatment biofilms to adsorb and remove NPs from solution. 

The ability of both biosorbent materials to remove (adsorb) NPs is 

examined as a function of bacterial concentration, pH and ionic strength. 
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2 Immobilisation of nanoparticles by microbially 
mediated calcite precipitation 

2.1 Summary 

Microbial driven mineral precipitation has the potential to capture 

dissolved heavy metals, impacting the transport and fate of metals in the 

natural environment.  However, the capture of NPs by microbial mineral 

precipitation has yet to be examined.  In this study, the ureolytic bacteria 

Sporosarcina pasteurii was used to induce calcium carbonate precipitation in the 

presence of organo-metallic manufactured NPs.  As calcium carbonate crystals 

grew the NPsin the solution became trapped within these crystals.  Critically, 

further growth caused the NPs-crystal composite to settle out of suspension.  

NPs with a negative surface charge were captured with greater efficiency than 

those with a positive surface charge, likely resulting from stronger attachment 

of negative NPs to the positively charged calcite surfaces.  Thermodynamic and 

kinetic analysis, however, did not reveal a significant difference in kp (calcite 

precipitation rate constant) or the critical saturation at which precipitation 

initiates (Scrit), indicating the presence of different charged NPs did not 

influence calcite precipitation at the concentrations used here.  Overall, these 

findings demonstrate that bacterially driven solid-phase capture has potential to 

immobilize NPss, and thus may potentially be utilized to immobilize NPs in 

contaminated groundwater systems. 

 

2.2 Introduction 

Microorganisms have the ability to drive the precipitation of a wide range 

of minerals (Chapter 1.3).  This process can lead to the immobilisation of 

dissolved metals, either within the crystalline structure of the mineral or bound 

to the mineral surface.  For example, oxidation of Fe(II) and Mn(II) generates 

metal (hydr)oxides which can absorb a diverse array of dissolved heavy metals 

and metalloids (Martinez et al., 2004, Martinez and Ferris, 2005, Villalobos et 

al., 2014, Pei et al., 2013) while enzymatic precipitation of phosphate produces 

hydroxyapatites which bind significant quantities of dissolved heavy metals and 

have potential in engineered permeable reactive barriers (Handley-Sidhu et al., 
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2011).  Ureolysis-driven calcium carbonate precipitation has been extensively 

studied due to its potential in a diverse array of applications including soil 

stabilisation (Whiffin et al., 2007), concrete crack remediation (De Muynck et 

al., 2010),  fracture and porosity sealing to inhibit pollutant flow (Tobler et al., 

2012), wastewater treatment (Hammes et al., 2003), and carbon capture and 

storage (Mitchell et al., 2010). This process also has potential for solid phase 

capture of heavy metals and radionuclides, which are incorporated into the 

calcium carbonate mineral as it crystallizes, thus preventing their mobility in the 

subsurface.  In particular, this approach has been investigated for the solid 

phase capture of 90Sr ions from contaminated groundwaters; the strontium 

replacing Ca2+ in the crystal lattice (Warren et al., 2001).  In this process, 

ureolysis occurs via the hydrolysis of urea by the urease enzyme generating 

ammonia and carbonic acid (Eqn. 1).  This then equilibrates in water to form 

bicarbonate, ammonium and hydroxide ions (Eqn. 2&3), causing a rise in pH and 

an increase in the saturation state with regards to calcium carbonate if soluble 

calcium is available. Once saturation is reached the precipitation of calcium 

carbonate minerals such as calcite occurs (Eqn. 4, Tobler et al., 2011). 

 

CO(NH2)2 + 2H2O  2NH3 + H2CO3  (Eqn. 1) 

H2CO3    HCO3
- + H+  (Eqn. 2) 

2NH3 + 2H2O   2NH4
+ + 2OH-  (Eqn. 3) 

Ca2+ + HCO3
-   CaCO3 + H+  (Eqn. 4) 

 

Calcium carbonate precipitation may also be driven via chemical 

(abiogenic) precipitation; however biologically driven precipitation of calcium 

carbonate offers a key advantage of slower precipitation rates.  This enables the 

treatment of a larger target area of the subsurface, as reagents can be injected 

throughout the target zone before significant precipitation occurs (Tobler et al., 

2011).  Conversely, rapid abiogenic precipitation is likely to cause blocking of 

the injection well.   

While a diverse array of microbial mineral precipitation pathways have 

potential to immobilize heavy metals, their ability to capture NPs has yet to be 

examined.  With a rising demand for nanomaterials and continual growth in 
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production, increased environmental exposure to NPs (NPs) is inevitable (Petosa 

et al., 2010, Musee, 2011, Luo et al., 2006, Moore, 2006, Nowack and Bucheli, 

2007). This has brought NP toxicity to the forefront of research and 

governmental concern, with the UK government alone spending £10 million 

during 2005-08 to identify and manage the risks posed by the nanotechnology 

industry (DEFRA, 2011).  Problematically, NPs can have a wide range of toxic 

effects, exacerbated by their size (at least one dimension smaller than 100 nm, 

Engineering., 2004).  Detrimental effects include brain, intestinal and 

respiratory injury, delayed embryonic development, DNA damage and increased 

mortality (Trouiller et al., 2009, Handy et al., 2008a). See Chapter 1.1.3 for 

further discussion on NP toxicity. 

Such findings raise concern with regards to the fate and transport of NPs 

within the environment. Owing to their small size NPs are highly reactive, 

making them excellent catalysts (Luo et al., 2006). Increasingly, applications of 

NPs require them to be highly dispersed, stable suspensions and so NP systems 

are increasingly being designed to exhibit enhanced stability via modifications of 

NP surfaces with capping agents and surfactants (Lecoanet et al., 2004, Kanel et 

al., 2007, Petosa et al., 2012). Such NPs have the ability to be transported more 

readily within the natural environment (Kanel et al., 2007, Lecoanet et al., 

2004).  Aside from enhancing NP mobility, stable NP dispersions also exhibit 

increased toxicity compared to agglomerated NPs due to their large surface area 

to volume ratio (Levard et al., 2012). For example, Kvitek et al. (2008) 

demonstrated that increasing the stability of silver NPs enhanced their 

antibacterial activity. Aside from this highly stable, mobile surface modified NPs 

also have the ability to bind and transport chemical pollutants, thus enhancing 

the dispersal of pre-existing contaminants within the environment (Moore, 

2006).  

It is clear that some NPs are highly stable and therefore mobile under 

environmental conditions, presenting a route of exposure of NPs to humans and 

the natural environment (Lecoanet et al., 2004, Ben-Moshe et al., 2010, Petosa 

et al., 2012).  The ability of microbial driven mineral precipitation to immobilise 

NPs should therefore be examined.   

In this study, ureolysis driven calcium carbonate precipitation by the 

urease positive bacterium Sporosarcina pasteurii (S. pasteurii) was investigated 
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as a means of immobilising NPs through solid-phase capture in aqueous systems.  

Experiments were performed as a function of NP surface charge and size to 

determine if these factors impacted capture efficiency.  Thermodynamic and 

kinetic interpretation of results were undertaken to determine whether these NP 

properties had a significant impact on precipitation kinetics and the saturation 

state required for precipitation. 

 

2.3 Materials and methods 

2.3.1 Nanoparticles 

The NPs used in this study were chosen as they exhibit exceptionally high 

stability, even under high ionic strength, and thus do not aggregate. This is 

important here as this study aims to demonstrate that NPs can be removed from 

suspension by solid-phase capture as opposed to aggregation processes. Three 

different types of NPs were used, large and small negatively charged NP and 

small positively charged NPs (l-negNP, s-negNP and s-posNP respectively, all 

purchased from BioPAL, USA). They all have a 10nm nano-magnetite core 

surrounded by dextran.  Different size and surface charge result from differing 

thickness of dextran and differing functional groups upon the dextran (Table 

2.1). This allowed testing the effect of surface charge and particle size on the 

NP removal efficiency of the proposed method.   

Because all NPs types contained identical iron-oxide (nanomagnetite) 

cores, Fe was used as a proxy for NP concentration.  This enabled NP 

concentrations to be determined by acid digestion followed by analysis of Fe 

concentration by atomic adsorption spectroscopy (AAS). The NP concentration 

for each experiment was 10 mg L-1 Fe. This corresponded to approximately 1016 

NPs per litre.  

Table 2.1: Characteristics of NPs used in this study. 

Nanoparticle Diameter 

(nm) 

Zeta potential 

(mV) 

l-negNP (FeREX) 150 -30.8 

s-negNP (Molday ION carboxyl terminated) 35 -38 

s-posNP (Molday ION C6Amine) 35 +48 
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2.3.2 Experimental design 

Batch experiments where performed using the gram positive ureolytic 

bacterium S. pasteurii (strain ATCC 11859). Cultures were grown at 25°C in brain 

heart infusion broth supplemented with filter-sterilised urea (20g L-1). Cells in 

exponential phase growth were harvested by vacuum filtration (using sterile 

0.2µm membrane filters) and rinsed twice with sterile deionised water (SDW). 

The bacterial pellet was re-suspended in SDW to a cell count (OD) of 0.14 as 

determined spectrophotometrically at 600nm (this equates to 2.3 x 106 cells ml-

1, based on the S. pasteurii OD to cell conversion in (Levard et al., 2012)) and 

then pH adjusted to 6.5 using HCl to ensure that the system was undersaturated 

with respect to calcium carbonate precipitation (Analar grade). For each 

nanoparticle immobalisation (NP-I) experiment, a solution containing 100 mM 

CaCl2 and 100 mM urea was prepared and then mixed at a ratio of 1:1 with the 

bacterial suspension before the addition of nanoparticles. The final 

concentrations were 50mM CaCl2, 50mM urea, 10 mg/L NPs (Fe concentration) 

and 0.07 OD S. pasteurii. Biotic controls (S. pasteurii + urea + NP) and abiotic 

controls (CaCl2 + urea + NP) were also run. Double dosing experiments were 

undertaken with l-negNPs to determine if any non-captured NPs could be 

trapped by a second phase of calcium carbonate precipitation. For the double 

dosing experiment, reactions were set up as described above (using l-negNPs), 

but once ureolysis and calcite precipitation were completed, urea and CaCl2 

were added once again (to yield final concentrations of 50 mM each), which then 

induced a second phase of calcium carbonate precipitation.  

All nanoparticle immobilisation experiments were carried out in triplicate 

in glass beakers that were covered with parafilm® to prevent evaporation.   

 

2.3.3 Chemical analysis  

Analyses of solution pH, NH4
+, Ca2+ and Fe were determined at time zero 

and at regular intervals thereafter. At each sampling time, 10 ml aliquots were 

removed from the experiment; 5ml were used for pH measurement using a 

Mettler Toledo MA 235 pH/ion analyser, 0.5 ml to determine NH4
+ by the Nessler 

assay (analysis was performed using a Hach Lange DR 5000 spectrophotometer) 

and 4.5 ml were mixed with 0.5 ml of concentrated HCl for Ca2+  and Fe 
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concentration measurements using AAS. For Fe analysis calibration standards 

(0.1, 1, 5 and 10 mg/l) were prepared prior to each analysis by dilution of a 

single element standard for AAS which contained 1000 ppm Fe in nitric acid 

(purchased from fisher Scientific). An air-acetylene flame was used for all Fe 

determinations at a flow rate of 0.8 – 1 l/min. The spectrometer was operated 

at a wavelength of 248.3 nm and a spectral band pass of 0.2 nm with the lamp 

current running at 75%. The analytical limit detected under these conditions is 

0.06 mg/l. For Ca2+ analysis standards of 0.1, 1, 2, 3 mg/l were prepared prior to 

each analysis using CaCl2. A nitrous oxide – acetylene flame was used at a fuel 

flow rate of 4 – 4.4 l/min for all Ca2+ analysis. The spectrometer was operated at 

a wavelength of 422.7 nm and a spectral band pass of 0.5 nm with the lamp 

current running at 100%. The analytical limit detected under these conditions is 

0.015 mg/l.  

 

2.3.4 Transmission Electron Microscopy (TEM) 

TEM imaging, selected area electron diffraction (SAED) and chemical 

analysis was undertaken on thin foils that were extracted from calcite grains 

using the Focused Ion Beam (FIB) lift-out technique using a FEI Nova 200 

Dualbeam.  Calcite crystal surfaces were first sputter coated with gold to 

prevent charging of the mineral surface and ion-implantation into the calcite, 

followed by further deposition of platinum from an organometallic precursor 

within the FIB.  Foils were thinned using a 30 kV Ga+ ion beam to a thickness of 

~1 µm prior to being removed from their parent grain using an in-situ 

micromanipulator, and were then welded to the tines of an Omniprobe copper 

support using electron and ion beam deposited platinum. Final thinning was then 

performed using lower accelerating voltages and beam currents on these 

supported thin foils to reduce the total thickness to less than ~60 nm in the 

thinnest areas in order to facilitate EELS (Electron Energy Loss Spectroscopy), 

without compromising the crystallinity.  Initial characterisation of these foils by 

diffraction-contrast imaging and SAED was performed using a FEI T20 TEM 

operated at 200 kV. EELS analysis was performed using a JEOL ARM200F 

equipped with a Gatan GIF Quantum Electron Energy Loss Spectrometer; the 

EELS work was undertaken at an accelerating voltage of 80 kV in scanning TEM 

(STEM) mode using line scans with a nominal step size of about 1 nm. 
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2.3.5 Kinetic analysis and calcite precipitation  

A kinetic and thermodynamic analysis to determine calcite precipitation 

rate constants and the critical saturation state at which calcite precipitation 

initiates was performed as detailed by Tobler at al. (2011).  This work was done 

to determine if these parameters were affected by NP properties (size and 

surface charge), either through NPs acting as nucleation sites for CaCO3 

precipitation, or by interacting with crystal growth during NP occlusion.  Details 

of these calculations are described below.   

The precipitation of calcite can be fitted to the following saturation-

dependent kinetic expression (Lasaga, Teng et al., 2000): 

n

p Sk
dt
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where kp represents the rate constant for calcite precipitation, S the saturation 

state and n the reaction order. Based on the findings from Tobler et al. (2011), 

the data presented here was fitted to first-order (n=1, (Dupraz et al., 2009) rate 

laws. 

The saturation state, S, with respect to calcite is defined by: 
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where {Ca2+} and {CO3
2-} are the activities of dissolved Ca2+ and CO3

2-, 

respectively, and KSO is the equilibrium calcite solubility product. The 

geochemical code PHREEQC (version 2.13.3; (Parkhurst and Appelo, 1999) and 

the wateq4 database (Ball and Nordstrom, 1992) were utilised to calculate S 

values for each step. Here, dissolved inorganic carbon (CT), i.e., total dissolved 

carbonate species (as produced by urea hydrolysis), increased over time 

according to the following mass balance relationship: 

TcalciteTureaTinitialT CCCC      (3) 

where CTinitial corresponds to the initial dissolved inorganic carbon 

concentrations, CTurea is the amount of dissolved carbon produced by ureolysis 

(CTurea = [NH4
+]t / 2) and CTcalcite equals the dissolved carbon removed from 

solution by calcite precipitation (CTcalcite = [Ca2+]intial - [Ca2+]t). 
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The change in saturation state with respect to time (dS /dt) can be described 

using following first-order mass action: 

Sk
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From integration of equation 4, the change in calcite saturation state over 

time can be described using: 

tk

t
seSS


 0       

(5) 

where St is the saturation state at time t, S0 is the apparent saturation state if 

precipitation is expected at time zero, and ks is a first order rate constant for 

the change in saturation state. S values were calculated for each time step using 

PHREEQC and the wateq4 database (W. and K., 1992)(W. and K., 1992)(W. and 

K., 1992). S0 and ks were then determined from a plot of Ln S(t)  vs. Ln S0 - kst.  

The rate constant for calcite precipitation (kp) and Scrit, the critical 

saturation at which precipitation initiates, can be determined from the following 

first order reaction (Tobler et al., 2011). 
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where Scrit is the critical saturation state at which precipitation starts, kp is the 

calcite precipitation rate constant, and [Ca2+]crit is the dissolved Ca 

concentration at Scrit (i.e., initial dissolved Ca2+ concentration).  

To estimate Scrit and kp, Equation 2 was fitted to the experimental data 

(i.e., S and [Ca2+] over time) using unconstrained nonlinear regression and a 

quasi-Newton optimization routine for parameter estimation in the STATISTICA 

v.6.0 software package(Ferris et al., 2004). 

 

2.4 Results  

2.4.1 Immobilisation of small negatively charged nanoparticles(s-
negNP)  

Solid-phase capture was first tested on the s-negNPs (zeta potential -38 

mv). In all experiments apart for the abiotic control, urea hydrolysis was 
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complete within 10 hours (Figure 2.1a). This was accompanied by a sharp rise in 

pH for the NP-I (nanoparticle immobilisation) and biotic control experiment 

(Figure 2.2a). As a result, the solution in the NP-I experiment became highly 

saturated with respect to calcium carbonate, resulting immediately in the 

precipitation of calcite, as indicated by the rapid decrease in dissolved Ca2+ 

(Figure 2.3a). As calcium carbonate precipitated, the Fe concentration in 

solution decreased asymptotically indicating the removal of suspended NPs 

(Figure 2.4a). Importantly, once Ca2+ removal ceased after 10 hours, no further 

decrease in Fe concentration, i.e., NP removal, was observed. Over 80% of the s-

negNPs were removed within 1 day, with the majority of this occurring within 

only 6 hours.  By contrast no NP removal was observed in the biotic (S. pasteurii 

+ NP + urea) or abiotic (NP + CaCl2 + urea) control for the s-negNP experiments 

(Figure 2.4a and b), confirming that NP removal occurred only due to calcium 

carbonate precipitation (as opposed to, for example, aggregation or attachment 

to bacteria or the reaction vessel walls).   
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Figure 2.1: Time series showing changes in NH4
+
.
  

Graph (a) shows changes for the for the s-negNP, (b) s-posNP and (c) l-negNP.  “NP-I”, 
“biotic” and “Abiotic” refer to the nanoparticle immobilization experiment and the biotic and 
abiotic control respectively. Each data point represents the average of triplicate 
experiments with associated standard deviation (σ = 1, shown as error bars). 
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Figure 2.2: Time series showing changes in pH
 
for the for the (a) s-negNP, (b) s-posNP and 

(c) l-negNP. Each data point represents the average of triplicate experiments with 
associated standard deviation (σ = 1, shown as error bars). 
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Figure 2.3: Time series showing changes in dissolved Ca
2+

 and NP concentration for 
nanoparticle immobilization (NP-I) experiments:  
(a) small, highly negative NP (s-negNP) , (b) small, highly positive NP (s-posNP) and (c) 
large negative NP (l-negNP). Fe is used to as a proxy for NP concentration in all figures. 
Each data point represents the average of triplicate experiments with associated standard 
deviation (σ = 1, shown as error bars). 
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Figure 2.4: Time series showing changes in Fe (NP) concentration for the (a) biotic and (b) 
abiotic control for all NP types tested. 

 

2.4.2 Immobilisation of small positively charged nanoparticles (s-
posNP) 

In order to compare the capture efficiency of NPs with different surface 

charges, s-posNPs were also tested (zeta potential: +48 mV).  Apart from surface 

charge, these NPs were identical to the s-negNPs discussed above. In these 

experiments, rates of urea hydrolysis, pH increase and removal of dissolved Ca2+ 

(as a result of calcite precipitation) were almost identical to those observed for 

the s-negNP experiment (Figure 2.1 - 3). However, the Fe trajectory for the s-

posNP remediation experiment exhibited intriguingly different results (Figure 

2.4b). Poor NP capture was observed with only 26% of the s-posNPs removed 

compared to the removal of 83% of the s-negNPs (Figure 2.4a - b). The 

contrasting results of s-neg and s-pos NPs capture are further illustrated in 

Figure 2.5, where the % NP capture is compared against % precipitated calcium 
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carbonate.  Here, almost 50% of the s-neg NPs were removed by the first 15% of 

calcium carbonate precipitation, while in the s-posNP experiment at the same 

time point only 5% of s-posNPs were removed within 25% of the calcium 

carbonate precipitate.  This highlights that a higher percentage of s-negNPs are 

incorporated into a lower percentage of calcium carbonate.  Moreover, 

examination of Figure 2.5 shows that s-neg NP removal appears to be more 

efficient during the early stages of precipitation (i.e. the first 50% of s-negNPs 

are captured by just 15% calcite precipitation, whilst the next 33% of NPs to be 

captured require ~35% calcite precipitation). 

 

 

Figure 2.5: Percentage of precipitated Ca
2+

 compared to % NP captured from solution for s-
neg and s-posNPs.  
In terms of chronological order of data points, the origin of the graph corresponds to time 
zero, and the finish of each experiment is labelled F. Each data point represents the average 
of triplicate experiments with associated standard deviation (σ = 1, shown as error bars). 

 

2.4.3 Immobilisation of large negatively charged nanoparticles  

This approach was then tested on a third NP type, again with an organic 

capped nanomagnetite core (also 10 nm), but with a larger total diameter (50-

150 nm, just above the nano range of 1-100nm) and slightly less negative surface 

charge (zeta potential -30.8 mV). This large negative nanoparticle is referred to 

as l-negNP. Again, ureolysis, pH and Ca2+ removal rates were very similar to 

trends observed for the small, highly positive and negative NP remediation 

experiments (Figure 2.1 – 3). Over 90% of dissolved Ca2+ was removed within 10 
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hours capturing 75% of the l-negNPs (Figure 2.3c), which was 8% less than for the 

s-negNP experiment. As shown in Figure 2.4a and c, a large percentage of 

negative NPs were captured with a small percentage remaining in solution. 

Following this, another experiment was devised to determine whether the 

remaining l-neg NPs in solution could be captured if the system was re-doped 

with CaCl2 and urea to stimulate further calcium carbonate precipitation. Figure 

2.6 shows that with a second injection of CaCl2 and urea (yielding final 

concentrations of 50 mM each), further calcium carbonate precipitation 

occurred thereby capturing the remaining suspended NPs by solid phase capture. 

Notably, this suggests that 100% NP removal may be achieved with repeated 

injections of CaCl2 and urea. 

 

 

Figure 2.6: Time series showing Fe (NP) concentration during the double dose experiment 
for the l-negNP. 
The red arrow highlights when the second dose of CaCl2 and urea was injected. 

 

2.5 Mineral analysis by Transmission Electron 
Microscopy (TEM) 

Calcium carbonate precipitated in the NP-I experiments adhered to the 

walls of the glass beakers and any surfaces within them (such a glass slides to 

capture precipitates for SEM and TEM analysis). With negative NPs precipitates 

formed were brown-orange in colour due to the incorporation of the red 

coloured NPs (Figure 2.7a).  In contrast, calcite precipitated by the same 

method but in the absence of NPs produced a near-white precipitate (Figure 
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2.7b). SEM analyses showed that calcite was the dominant mineral phase in all 

experiments as indicated by the rhombohedral morphology of the crystals 

(Figure 2.8).  Figure 2.8a shows bacterial cells part embedded within the calcite; 

the bacteria becoming embedded within the calcite as they drive the reaction 

forward. Despite the presence of bacteria within the crystal, they have not 

altered the crystal’s shape. TEM images of thin foils cut from single crystals of 

calcite confirmed that the NPs occurred as inclusions (Figure 2.8b); the crystal 

lattice is distorted around them producing strain contrast in bright-field images 

(Figure 2.8c). Figure 2.9a shows the area used for the analysis and indicates the 

line scan taken across this area.  Figure 2.9b shows spectra from the calcite and 

from the NPs: the calcite spectra, unsurprisingly, show edges for carbon, 

calcium and oxygen; the NP spectra, on the other hand, show reduced levels of 

carbon and calcium, but a clear extra signal of iron, which is consistent with 

them being an iron oxide.  No quantitative evaluation of the chemistry was 

attempted, since, even under very fast acquisition (0.02 s per spectrum) and low 

accelerating voltage, the sample was damaged during the acquisition and the 

calcite was partially decomposed under the irradiation. Nevertheless, the results 

shown in Figure 2.9 are a representative sample of the results shown in about 10 

EELS line scans across different nanoparticle clusters.  This demonstrates 

unambiguously that the magnetite NPs are being effectively encapsulated in the 

growth of calcite crystals. 
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Figure 2.7: Photographs of glass slides placed at the bottom of the microcosms  
showing (a) brown – orange coloured calcium carbonate precipitates in the presence of 
negatively charged NPs (l-negNPs in this example), and (b) white calcium carbonate 
precipitated in the absence of NPs and. Scale bars both 10 mm.  
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Figure 2.8: SEM and TEM images of captured NPs. 
(a) SEM image illustrating a typical rhombohedral calcium carbonate grain precipitated in 
the presence of NPs with S. pasteurii attached to its surface. Scale bar 2 µm (b, c) Bright-
field TEM images of foils milled from a bacterially precipitated calcium carbonate crystal 
using the focused ion beam FIB technique. Sample is from the l-negNP experiment.  Image b 

was obtained with the crystal oriented close to its [  401] zone axis and the indexed selected 
area electron diffraction pattern is inset. Under these imaging conditions the local elastic 
strain induced in the calcite crystal structure by the NP inclusions is highlighted by small 
areas of high contrast, giving the crystal a ‘speckled’ appearance. The black band along the 

top edge of the image is the platinum strap that was deposited on the {10  4} parallel crystal 
surface prior to FIB milling, and the vertical streaks are ion milling artifacts. Scale bar 1 µm. 
(c) Higher magnification of the interior of a calcite crystal in the same crystallographic 
orientation as in b highlighting the ‘butterfly’-like areas of strain contrast surrounding the 
NPs. Scale bar 500 nm. Analysis of these inclusions by Electron Energy Loss Spectroscopy 
(EELS) has confirmed that Fe is present in the NP inclusions but is absent from their calcite 
matrix (Figure 2.9). 
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Figure 2.9: (a) STEM image of an area of calcite crystal containing a cluster of NPs (black 
dots).  
An EELS line scan was taken along the line indicated; (b) two EELS spectra calculated from 
the data in the line scan, the blue spectrum comes from summing the spectra for the blue 
part of the line scan indicated in (a) in the calcite, the orange spectrum comes from 
summing the spectra in the orange part of the line scan indicated in (a) in the NP region.  

 

2.6 Discussion  

In this study, NPs with a negative surface charge (s-neg NPs and l-neg) were 

successfully captured, whilst the immobilisation of positively charged NPs (s-

posNP) was less effective. Unlike solid-phase capture of dissolved ions such as 

Sr90, NPs will not be incorporated into the crystal lattice by isomorphic 

replacement of calcium.  Instead, NPs must be smothered and trapped within 

the mineral as it precipitates, immobilising the NP within the precipitate.  

The large variations in capture efficiency between the positive and 

negative NPs may be attributed to electrostatic interactions controlling either 

nucleation, nanoparticle occlusion, or indeed both. The immobilisation of 

negative NPs is extremely efficient.  This could, for example, be due to Ca2+ ions 

binding to their charged surfaces.  The bound Ca2+ could then react with 

carbonate anions, facilitating calcium carbonate nucleation upon the NP. The 

negative NPs would therefore facilitate nucleation of mineral phases by 

providing preferential nucleation sites which act to lower the activation energy 

for nucleation.  However, the calculated critical saturation (Scrit) required for 

calcite nucleation yielded similar values for all NP types tested (Table 2.2). If 

NPs were acting as nucleation sites it would be expected that Scrit values for the 

s-neg and l-negNPs would be lower than for the s-posNPs. This, however, was not 

observed.  Certainly, where fits (R2 values) are better than 0.9, Scrit values are 

similar and considering the spread of values (note that some of the spread of Scrit 
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values is due to poorer fits), no significant evidence of NP type impacting Scrit is 

evident using this approach. Instead, it is suggested here that due to the 

oversaturation of calcium carbonate under these experimental conditions (high 

pH and excess of Ca2+ and CO3
2- ions), it is likely that homogenous nucleation 

(i.e., nucleation without a surface catalyst) was the predominant route for 

calcium carbonate nucleation to occur.  

 

Table 2.2: Summary of kinetic parameters. 
 For calcite precipitation rate constant (kp, in mM d

-1
) and critical saturation state at which 

calcite precipitates (Scrit)  

NP  Exp kp (R
2 values) Scrit (R

2 values) 

s-negNP 1 0.11 (0.93) 2.02 (0.93) 

s-negNP 2 0.02 (0.66) 2.17 (0.66) 

s-negNP 3 0.09 (0.73) 2.21 (0.73) 

    

s-posNP 1  -a  -a 

s-posNP 2 0.09 (0.96) 2.12 (0.96) 

s-posNP 3 0.04 (0.81) 2.25 (0.81) 

    

l-negNP 1 0.12 (0.92) 2.11 (0.92) 

l-negNP 2 0.02 (0.55) 2.45 (0.55) 

l-negNP 3  -a  -a 

a Parameter estimation failed 

 

As nucleation of calcium carbonate upon NPs does not appear to be key to 

the capture process, then NP capture is likely dominated by NP attachment onto 

growing calcite surfaces; the NP eventually becoming overtaken by the growing 

solidification front and thus occluded. This process has been explored in non-

biologically driven encapsulation of foreign particles, motivated by the desire to 

develop novel composite materials and control mineral growth (Kim et al., 

2010b, Lu et al., 2005). The successful incorporation of a foreign particle is 

determined by the interactions which occur between a particle and the 
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advancing solidification front (Asthana and Tewari, 1993, Rempel and Worster, 

1999).  These interactions determine whether a particle becomes occluded by 

the solid or whether it is pushed ahead of the solid-liquid interface and thus 

remains untrapped.  At the pH range in this study, calcite exhibits a positive 

surface charge (Eriksson et al., 2007). Here, electrostatic attraction between 

the negative nanoparticle and positive calcite surface would facilitate occlusion, 

while electrostatic repulsion between positive NP and positive calcite surface 

would inhibit occlusion. The finding here that negative NPs were captured with 

greater efficiency is consistent with previous studies that have examined 

occlusion of functionlised latex colloids (220 – 250 nm in diameter) into non-

biogenically precipitated calcite (Kim et al., 2010b).  Their work reported 

greater incorporation of particles with higher abundances of anionic surface 

groups. In addition to electrostatic interactions, viscous drag (generated by the 

particle being pushed ahead of the solidification front) and van der Waals forces 

play an important role in mediating occlusion.  Viscous drag on the particle and 

attractive van der Waals forces facilitate particle entrapment, while repulsive 

van der Waals forces inhibit entrapment (Kim et al., 2010b).  In the case of the 

negatively charged NPs in this study, electrostatic attraction combined with 

viscous drag must have dominated over repulsive forces to facilitate occlusion of 

negatively charged NPs.  Conversely, the dominance of electrostatic repulsion 

ensured the positive NPs were incorporated less effectively.  Any removal of 

positively charged NPs must be attributed to viscous drag and attractive van der 

Waals forces.   

The potential for NP attachment to calcite precipitates can be evaluated 

using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) model. The total 

interaction (Vtotal) between two charged surfaces can be described as the sum of 

the van der Waals (VvdW) and electrostatic energy (Velec): 

                      

The equations presented here assume that the NP is a sphere of dextran as 

opposed to magnetite because the 10 nm magnetite core is surrounded by a 25 

nm thick layer of dextran, thus surface interactions will be between calcite and 

dextran.  Moreover, the carboxyl and amine functional groups which impart the 

nanoparticle charge are on the dextran, not the magnetite.  The system 

modelled here is represented by the Lifshitz-van der Waals attraction energy for 
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a sphere – plate interaction with the NP assigned as a sphere and calcite 

precipitate the flat plate as the NP is infinitely smaller than the calcite 

precipitate. The Debye length (   ) is inversely related to the thickness of the 

diffuse double layer and was calculated using the equation adapted from 

(Bradford and Torkzaban, 2008):  

      
       

      
 

here    is the permittivity of free space (8.854x10-12F/m),   is the dielectric 

constant of water (78.5),    is the Boltzmann constant,   is the temperature 

(298 K),    is the Avogadro’s number,   is the electronic charge(1.6 x10-23C), 

and   is the ionic strength of the medium (as the ionic strength of the medium 

changed throughout the duration of the experiment, only the starting ionic 

strength was calculated as 150 M/m3).  

The sum of the interaction energies is described bellow as  documented by 

(Hong et al., 2009): 

                    
          

          
     

    
                    

       
      

  
    

   

 
 
  

 

 where    is the NP radius,    and    are the zeta potentials of the NP and 

calcite precipitates respectively and   is the characteristic wavelength of the 

medium (100 nm).       denotes the Hamaker constant for the system described 

as follows:  

     = (                           

where     is the Hamaker constant of NPs,     is the Hamaker constant for 

calcite and     is the Hamaker constant for water. All tested parameters can be 

seen in   
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Table 2.3. 
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Table 2.3: Summary of the parameters for used in DLVO equations 

Parameter Unit Value Reference 

S-neg/pos NP 

radius (  ) 

m 1.75 x10-8 Manufacturers 

guidelines 

(Biopal, Inc.™) 

L-negNP radius 

(  ) 

m 5.25 x10-8 Manufacturers 

guidelines 

(Biopal, Inc.™) 

S-negNP zeta 

potential 

V -0.038 Manufacturers 

guidelines 

(Biopal, Inc.™) 

S-posNP zeta 

potential 

 

 

 

V 

 

 

 

0.048 

 

 

 

Manufacturers 

guidelines 

(Biopal, Inc.™) 

S-negNP zeta 

potential 

V -0.030 Manufacturers 

guidelines 

(Biopal, Inc.™) 

Calcite zeta 

potential 

V 0.04 (Eriksson et al., 

2007) 

Ionic strength  M/m3 150 Calculated 

Debye length ( ) m-1 7.93 x 10-10 Calculated 

Hamaker 

constant of NPs 

(   ) 

J 1.8 x 10-19 (Hu et al., 2010) 

Hamaker 

constant of 

calcite (   ) 

J 8.02 x 10-20 (Tufenkji and 

Elimelech, 2003) 

Hamaker 

constant of water 

J 3.07 x 10-20 (Tufenkji and 

Elimelech, 2003) 
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(   ) 

Combined 

Hamaker 

constant for NPs, 

calcite and water 

(    ) 

J 2.11 x 10-20 Calculated 

 

Figure 2.10 displays attractive interaction energies between s-negNPs and 

positively charged calcite surfaces.  Electric double layer, Van der Waals  and 

total interactions are attractive.   Here no energy barrier exists implying that 

NPs are strongly and irreversably attached to the calcite mineral, being 

deposited in the primary energy well (no secondary energy well exists). DLVO 

theory confirsms that electrostatic attraction and Van de Waals attraction 

irreversably attaches negatively charged NPs onto growing calcite surfaces 

where by they become engulfed by the advancing solidifation front, embedding 

negatively charged NPs within the mineral matrix. In contrast, Figure 2.11 

displays interaction energies between s-posNPs and calcite.  Here, van der Waals 

interactions are again attractive but electrical double layer interactions are 

repulsive.  The combination of double layer and Van der Waals interactions 

serves to generate a weak attractive secondary energy minima centred at 

approximatly 4 nm with a repulsive energy barrier centred around 2 nm. The 

primary energy minima then occurs below 1 nm.  Strong irreversable deposition 

of s-posNPs to calcite surfaces may be less likely here as an energy barrier has to 

be overcome in order for deposition to take place in the primary energy well 

(Figure 2.11). Despite this some s-posNP removal did occur (Figure 2.4b). Figure 

2.11 suggests that attractive van der Waals forces may be responsible for the 

removal of posatively charged NPs. Here attractive van der Waals forces briefly 

dominate over electrostatic repulsion, allowing for the reverable deposition of 

NPs within the secondary energy minima. Once deposited in the secondary 

energy well the s-posNPs may become engulfed within the mineral precipitate, 

permentaly immobalising posatively charged NPs within the mineral, resulting in 

the removal of 26% posatively charged NPs compared to 83% when the total 

interaction energy is attractive (Figure 2.4, Figure 2.10 and Figure 2.11). 
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Figure 2.10: Interaction energy profile which displays the attractive force which exists 
between the s-negNP and the positive calcite surface.  
Note (b) is an enlargement of graph (a).   
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Figure 2.11: Interaction energy profiles for the attachment of s-posNPs to positively charged 
calcite surfaces.  
Note (b) is an enlargement of graph (a).   
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Figure 2.12: Interaction energy profiles for the attachment of l-negNPs to positively charged 
calcite surfaces.  
Note (b) is an enlargement of graph (a).   
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In this study, the l-negNP was incorporated marginally less effectively 

than the s-negNP.  75% of the l-negNPs were removed through solid phase 

capture versus 83% for the s-negNP (Figure 2.4a and c). This difference may be 

due to the smaller negative charge on the l-negNP (-30.8 mV) compared to the s-

negNP (-38 mV). However, according to the DLVO model presented here, (Figure 

2.12) does not agree with the observed findings. Instead, attraction between the 

l-negNPs and the positive calcite surface is stronger under these conditions, with 

attraction occurring from as far as 25-30 nm separation distance compared to 5-

10 nm for the s-negNP. This combined with greater viscous drag acting on the 

larger NP which acts to facilitate occlusion fails to account for why fewer l-

negNPs were incorporated compared to s-negNPs. Some other unknown 

mechanism must be operating here.   

Despite the greater occlusion of negative NPs into calcite compared to 

positive NPs, this did not appear to have a notable impact on kp, the calcite 

precipitation rate constant.  Considering only those with fits (R2 values) better 

than 0.9, the kp values are broadly similar between NP types (Table 2.2).  This is 

consistent with the lack of notable difference in Scrit.  Again, it would appear 

calcite supersaturation is sufficiently high enough to drive precipitation 

uninfluenced by NP presence. 

In this study, kp and Scrit which describe CaCO3 precipitation show little or 

no dependence on NP type.  While this must be explored at higher NP 

concentrations and for other NP types, the relative invariability between 

systems could make implementation in the field simpler.  Calcite precipitation 

would be independent of NP type and therefore easier to predict.  

The observation that s-negNPs are removed at a faster rate during the 

early stages of calcium carbonate precipitation (Figure 2.5) may be explained by 

invoking a shift from homogeneous to heterogeneous nucleation during the 

experiment.  During the early stages, calcite nuclei are forming homogenously 

and consequently growing in suspension. It is during this early stage of 

crystallisation that most NPs are being removed. However, during the later 

stages of the experiment, the saturation state with respect to calcite is greatly 

reduced (due to calcite precipitation) and thus precipitation may occur 

preferentially on pre-formed precipitates, i.e. those crystals that have already 

settled to the bottom of the reaction flask or adhered to its walls.  Thus 
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homogenous nucleation and growth in suspension is greatly reduced, leaving 

uncaptured NPs in solution.  At this point a reinjection of calcium carbonate and 

urea is required allowing for further calcite precipitation to occur 

homogeneously in suspension.  Figure 2.6 shows that stimulating another 

homogeneous nucleation event results in 100% removal of l-negNPs through solid 

phase capture.  If this hypothesis is correct, it has implications for possible in-

field application of this method, i.e. NP immobilisation would be improved by 

multiple injections.   

Ureolytic bacteria such as S. pasteurii have been proposed as being 

suitable for a number of subsurface applications.  The urease enzyme (urea 

amidohydrolase) can be produced by many groundwater bacteria and as a 

consequence the natural indigenous community may be manipulated for such 

applications (Tobler et al., 2011).  However, where bacterial communities are 

not sufficiently active to produce the rates of ureolysis required to precipitate 

sufficient volumes of calcite, the indigenous ureolytic community may be 

stimulated by a carbon source to increase biomass and encourage ureolysis.  

Such an option has been explored for the solid-phase capture of 90Sr from 

contaminated aquifers (Fujita et al., 2008).  Alternatively, an ex-situ cultured 

ureolytic bacterium such as S. pasteurii may be injected into the site of interest 

(Cuthbert et al., 2012, Tobler et al., 2011).  

Notably, biotic and abiotic controls all remained stable, with regards to 

NP removal, except for the biotic control of the s-posNP (Figure 2.4). In those 

control experiments where no NP removal occurs, NPs are free from aggregation 

and do not adhere to the bacterial surface. Whilst in the biotic control of the s-

posNP, despite the lack of calcite precipitation (due to the absence of Ca2+), 

rapid loss of NPs occurred with over 60% being removed within 12 hours. The cell 

surface of S. pasteurii and almost all bacteria is negatively charged over the pH 

range of these experiments (Yee et al., 2004), which evidently led to a strong 

electrostatic attraction for positive nanoparticles.  As the bacteria settled from 

solution they concomitantly removed s-posNPs. This process highlights the 

potential of bacterial surfaces to immobilize NPs in the natural environment and 

engineered wastewater treatment systems (Limbach et al., 2008, Brar et al., 

2010).  We speculate similar attachment of positive NPs did not occur in the 

reaction where calcite precipitation occurred due to masking of the bacterial 

surface, either by bound Ca2+ or precipitated calcite.   
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While this study has focused upon bacterially driven calcite precipitation, 

there are numerous other microbially driven mineral precipitation systems which 

have the potential for solid phase capture of NPs, such as the oxidation of Mn(II) 

(Sujith and Bharathi, 2011) and Fe(II) (Glasauer et al., 2002), or enzymatic 

precipitation of phosphate minerals (Schulz and Schulz, 2005).  Critically, the 

variety of minerals that can be precipitated by bacteria display a range of 

surface charges at typical groundwater pHs (Harding et al., 2005, Gray et al., 

1978, Glasauer et al., 2001) enabling them to interact with a wide variety of NP 

surface charges.  Thus it may be possible to choose a remediation system to 

specifically target the NPs surface character. 

2.7 Conclusion 

The results presented here demonstrate that microbially mediated calcite 

precipitation successfully captured negatively charged NPs whilst positively 

charged NPs were captured much less successfully. DLVO theory indicated this 

was due to electrostatic attraction generating a strong primary energy minima 

between calcite and negative NPs, while electrostatic repulsion generated a 

week secondary energy minima and repulsive energy barrier between calcite and 

positive nanoparticles. kp and Scrit values were broadly similar for all NP types 

tested suggesting NPs were not acting as nucleation sites for calcium carbonate 

and that NP type did not impact precipitation rate S-posNPs were removed from 

solution due to the sorption of NPs to the negative charge of the bacterial 

surface. Microbially mediated calcite precipitation has the potential to 

immobilise NPs, impacting their transport and fate in environmental systems.    
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3 Immobilisation of nanoparticles through porous 
media by calcium carbonate precipitation   

3.1 Summary  

Experiments presented in Chapter 2 demonstrated that microbially 

mediated calcium carbonate precipitation successfully removed negatively 

charged nanoparticles (NPs) through solid phase capture in batch reactors. Here 

we demonstrate the potential for microbially mediated calcium carbonate 

precipitation to remove negatively charged NPs in porous media. Negatively 

charged NPs were shown to be highly mobile through sand and glass packed 

columns when suspended in sterile deionised water.  Inducing calcite 

precipitation within the columns resulted in reduced NP mobility in all porous 

media types tested. It is hypothesised that as ureolysis commenced, calcium 

carbonate precipitation occurred around the NPs, on grain boundaries and also 

possibly heterogeneously in solution.  Continual calcite growth occluded NPs.  

Gravitational settling from suspension of NP-mineral composites resulted in the 

cementation of NPs within the column. These findings demonstrate that 

microbially mediated calcium carbonate precipitation may be used as a tool to 

reduce NP mobility in environmental systems.  

 

3.2 Introduction 

The mobility of NPs through porous media has been intensely studied due 

to the possibility of NP pollution in the subsurface. Research has shown that 

particle specific properties (e.g. size, shape, surface charge and the presence of 

capping agents) as well as solution chemistry (e.g. pH, ionic strength, ionic 

strength and natural organic content) strongly influence NP mobility through 

environmental systems, see Chapter 1.1.4 for further details (El Badawy et al., 

2013, Petosa et al., 2010, Franchi and O'Melia, 2003). Other factors influencing 

NP mobility include Brownian diffusion (Dunphy Guzman et al., 2006), 

gravitational sedimentation and straining effects (Bradford et al., 2002). Under 

favourable, i.e. non-repulsive conditions, NP-NP and NP-surface interactions 

result in the deposition of NPs onto collector surfaces, thus significantly reducing 

NP mobility. Despite this, long-range transport within the subsurface is possible 
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(Wiesner et al., 2006). NPs are increasingly designed to exhibit enhanced 

stability through surface modifications such as capping agents (see chapter 1.1.4 

for more details on stabilising NPs, Kvitek et al., 2008, Lecoanet et al., 2004). 

NPs with enhanced stability have greater potential for exposure to aquatic 

organisms and humans (Wiesner et al., 2006). Furthermore, NPs have the ability 

to bind and transport pre-existing contaminants within the subsurface, 

dispersing contaminants over a large area (Moore, 2006). 

Much work is being done to determine the fate and transport of NPs within 

the environment. However, none have looked at the possibility of reducing NP 

mobility or indeed immobilising NPs within the subsurface.  This knowledge gap 

requires attention as technologies which can prevent pollutant NPs from 

migrating through groundwater and contaminating natural and drinking water 

resources is required.  In this study we investigate the potential for biologically 

induced calcite precipitation to immobilise NPs within porous media.  Chapter 2 

demonstrated that ureolysis driven calcite precipitation was extremely effective 

in immobilising negatively charged NPs in batch reactors. Here, we wish to 

examine the potential of ureolysis driven calcite precipitation to immobilise NPs 

in porous matrices thereby inhibiting further transport.  

 

3.3 Materials and methods 

3.3.1  and porous media 

Here, the transport and immobilisation of negatively charged NPs (these 

are the s-negNPs referred to in Chapter 2) in porous matrices as a function of 

grain size and type was tested. Note that the positively charged NPs (as used in 

chapter 2) were not tested here as they are poorly captured by ureolysis driven 

calcite precipitation.  

Four different porous media were investigated which included 3 different 

size fractions of glass beads (fine: 0.1-0.25 mm, medium: 0.6-1.8 mm, and 

coarse: 2 mm) and a quartz sand (0.1-0.4 mm). SiO2 – based porous matrices 

were chosen as they exhibit negatively charged surfaces (Behrens and Grier, 

2001), thus the electrostatic repulsion between the SiO2 grains and the 

negatively charged NPs would enhance NP mobility through the columns, and 

reduce attachment to grains. The relatively high mobility of NPs in these systems 
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would thus enable us to detect any immobilisation by solid-phase capture.  

Moreover, the SiO2 based porous matrices used here are analogous to the sands 

and sandstones of many aquifer systems. 

Spherical glass beads (Retsch, Germany) with different grain sizes were 

utilised. The grain size was measured using a light-scattering particle size 

analyzer (Coulter LS 2300). The glass beads ranged from fine with a size range of 

0.1-0.25 mm with a mean size of 0.17 mm, medium range from 0.6-1.8 mm with 

a mean of 1 mm and coarse beads 2 mm (too large to be measured by the 

particle size analyser, these were instead sieved to determine grain size). The 

beads were cleaned with 50 % hydrochloric acid, washed repeatedly with sterile 

deionised water (SDW) and oven dried at 40°C overnight.  Quartz sand was 

obtained from Fisher Scientific with a grain size ranging from 0.1-0.4 mm, with a 

mean of 0.26 mm. The sand was washed thoroughly with SDW and oven dried 

overnight at 40°C. All porous media types exhibited a porosity of approximately 

34% as determined by comparing water saturated versus dry mass. 

 

3.3.2 Nanoparticle transport experiments 

Experiments were first performed to determine the mobility of NPs within 

the different porous media types.  10 mg/l NPs (Fe concentration) were 

suspended in 10 ml of either sterile deionised water (SDW) or 50 mM CaCl2 

solution. As ionic strength impacts NP mobility, experimentally relevant ionic 

strength values were chosen, that is 50 mM CaCl2 at the start of the experiment 

reducing to 0 mM with the completion of urea hydrolysis in the NP 

immobilisation (NP-I) experiments. Column experiments for each porous media 

type were set up vertically in 15 ml plastic tubes (diameter 2 cm, length 7.5 cm) 

with a sintered glass disk (100-160 µm pore size) placed at the bottom of the 

tube to prevent porous media from falling out. First, one pore volume (8 ml) of 

the NP solution was added to the empty column (with closed off inlet), followed 

by about 15 ml of either glass beads or quartz sand. This was left in a vertical 

position for 24 hours. Sterile deionised water (SDW) was then pumped through 

the columns for approximately half an hour at 1 ml min-1, with bottom to top 

flow (Figure 3.1). Samples were collected from the outlet every 4 minutes for 

later NP analysis with atomic absorption spectroscopy (AAS). Note that in these 

transport experiments, the NPs were mixed in with the porous media, rather 
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than injected in the inlet, to more closely mimic the nanoparticle immobilisation 

experiments presented in Chapter 2. 

 

Figure 3.1: Schematic drawing of the experimental set-up for column experiments. 
(a) 1 pore volume (8 ml) of reaction mixture is poured into the column (diameter 2 cm, length 
7.5 cm) (b) before the addition of either glass beads or quartz sand to fill the pore space. 
The prepared columns are left in a vertical position to react for 24 hours (c) before 
deionised water is pumped through the columns at a rate of 1 ml/minute with the effluent 
collected at the outlet for analysis   

 

3.3.3 Nanoparticle immobilisation experiments  

Experiments were performed to determine the ability of ureolytic calcite 

precipitation to immobilize NPs within the different porous media types.  

Experiments were performed using the gram positive ureolytic bacterium 

Sporosarcina pasteurii (strain ATCC 11859). Details of the bacterial preparation 

process can be found in Chapter 2.3.2. For each nanoparticle immobilisation 

(NP-I) experiment, a stock solution containing 100 mM CaCl2 and 100 mM urea 

was prepared and then mixed at a ratio of 1:1 with the bacterial suspension 

(0.14 OD) before the addition of nanoparticles. The final concentrations were 

therefore 50mM CaCl2, 50mM urea, 10 mg/L NPs (Fe concentration) and 0.07 OD 

S. pasteurii. Biotic controls (S. pasteurii + urea + NP) and abiotic controls (CaCl2 

+ urea + NP) were also run to ensure that NP removal was due to calcium 

carbonate precipitation as opposed to aggregation or deposition onto the 

bacterial cell and/or collector surfaces.  

Column experiments were set up identically to the above described NP 

transport experiments (3.3.2), i.e., 8 ml (1 pore volume) of the reaction solution 
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was added to the empty column first and immediately followed by about 15 ml 

of glass bead or quartz sand (Figure 3.1). The column was left in a vertical 

position overnight for the reaction to complete. After 24 hours (the time taken 

for total urea hydrolysis to occur as determined by batch experiments, see 

Chapter 2.4) SDW was pumped continuously at a rate of 1 ml min-1 for half an 

hour with bottom to top flow. Samples were collected at the outlet every 4 

minutes to determine concentrations of NH4
+ (by the Nessler assay), dissolved 

Ca2+, and Fe; the Fe used as a proxy for NP concentration  (both Ca2+ and Fe 

were determined by AAS). pH was analysed at the beginning and end of all 

experiments. 

The stock solution pH, dissolved Ca2+ and NP concentrations were determined 

before setting up the column experiments.  

 

3.4 Results  

3.4.1 Nanoparticle transport experiments  

With the onset of pumping after 24 hrs, NPs were immediately detected 

at the outlet in all systems where NPs had been suspended in SDW (Figure 3.2a-

d).  Grain size and porous media type caused relatively little difference in the 

transport of NPs through the column for SDW suspended NPs. 100% of the NPs 

added were recovered at the outlet for the glass beads (all sizes) while 93 % 

were recovered in the quartz column (Figure 3.2a-d). The shape of the 

breakthrough curves indicates some retardation of NP transport; i.e. the NP 

concentration quickly decreased during the first 8 minutes of pumping (1 pore 

volume), then after 1 pore volume was flushed through there was a gradual 

decrease in NP concentration, approaching zero in all columns, after 16 minutes 

(~2 pore volumes).  Without retardation, one would expect a more square or 

top-hat shaped breakthrough curve. In the experiments where the NPs were 

suspended in 50 mM CaCl2, notable differences in transport were observed 

compared to NPs suspended in SDW (Figure 3.2a-d). In glass bead systems, the 

percentage of NPs detected at the outlet decreased by 8-28 % compared to SDW 

suspended NPs, whilst a drastic decrease was observed in the quartz sand with 

only 18 % NPs being detected at the outlet (Figure 3.2d). NP retention followed 

the order of quartz sand > medium glass beads> fine glass beads > coarse glass 
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beads for NPs dispersed in 50 mM CaCl2. For all glass bead columns, NP 

concentrations at the outlet in general took longer to reach zero concentration 

(i.e. they exhibited a longer tail) in CaCl2 suspended systems compared to SDW 

suspended system. This is suggestive of greater retardation in the CaCl2 

suspended system. The quartz sand exhibited an entirely different NP recovery 

curve. Here, no NPs were detected at the outlet with the onset of pumping. 

After 4 minutes of pumping NP concentration increased slightly until 8-10 

minutes before gradually decreasing again.  

 

Figure 3.2: Transport of NPs suspended in SDW (diamonds) and 50 mM CaCl2 (squares) 
through: 
 (a) fine, (b) medium, and (c) coarse glass beads and (d) quartz sand (equivalent in size to 
fine glass beads). (8 minutes = 1 pore volume) 

 

3.4.1.1 Nanoparticle immobilisation through glass bead packed columns  

NH4
+, Ca2+ and NP concentrations in the effluent of the glass bead packed 

columns allowed the progress of ureolysis, calcite precipitation and NP mobility 

within the columns to be monitored. After 24 hours reaction time, SDW was 

pumped through the columns, immediately NH4
+ was detected in the effluents of 

all NP-I experiments and biotic controls (Figure 3.3). NH4
+ recovery for the NP-I 
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experiment was broadly similar for all glass bead types, with 78 %, 72 % and 75 % 

recovery for the fine, medium and coarse grained glass beads respectively, 

(Figure 3.3a-c). Note, calculation of NH4
+ recovery is based upon the assumption 

that all urea is hydrolysed.  Therefore, the observation that less than 100 % NH4
+ 

was recovered may be due to either incomplete hydrolysis of all urea and/or 

some NH4
+ retained within the column). The biotic control saw similar rates of 

elution with 87 %, 65 % and 75 % recovery for the fine, medium and coarse 

grained glass beads respectively, (Figure 3.3a-c). A summary of the results for all 

experimental conditions can be seen in Table 3.1. 

With the onset urea hydrolysis the solution became highly saturated with 

respect to calcium carbonate, thus inducing precipitation. Successful calcium 

carbonate precipitation is demonstrated by the breakthrough curves for Ca2+ 

(Figure 3.4). Ca2+ breakthrough curves for the abiotic controls (no calcium 

carbonate precipitation) follow similar profiles for all glass bead types, with Ca2+ 

breakthrough ranging from 71-76 %. However, in the NP-I experiments (where 

calcium carbonate precipitation occurred), Ca2+ breakthrough was significantly 

lower.  The fine and medium grained glass beads showed almost identical break 

through profiles with just 18 % and 16 % Ca2+ recovery respectively. However, 

significantly more Ca2+ (33 %) was detected in the effluent of the coarse grained 

column.  

The breakthrough curves for NPs exhibit intriguingly different results, 

depending on solution chemistry and grain size of the porous media (Figure 3.5; 

Table 3.1).  In each experiment NP breakthrough followed the order Biotic 

control > abiotic control > NP-I.   The highest rates of NP mobility were observed 

in the biotic controls (no calcite precipitation due to absence of Ca2+) for all 

porous media types with 71-76 % of NPs eluted. The breakthrough curves for the 

abiotic control exhibit greater immobilisation with 38-58 % NPs detected in the 

effluent. In the columns where calcium carbonate precipitation was promoted 

(NP-I), NP immobilisation was greatest, with just 8-31 % detected in the 

effluent. It is noted here that the small difference in NP breakthrough between 

NP-I and abiotic control in the fine bead system (31 % and 38 % respectively) 

cannot be considered significant due to significant error bar overlap (Figure 

3.5a).  However, the difference between NP-I and abiotic control in the medium 

and course system must be real (error bars do not overlap in the course system 

(Figure 3.5c) while in the medium system the abiotic control data points are 
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consistently higher than the NP-I with barely touching error bars (Figure 3.5b).  

Overall this suggests NP-I experiments do immobilize NPs more than abiotic 

controls. 

NP transport in the NP-I experiments did not appear to be related to bead 

size.  The medium grained porous media saw the lowest rates of NP transport, 

with only 8 % NPs detected in the effluent, followed by 14 % in the coarse 

grained media (both profiles fall within the margin of error). Whilst significantly 

higher rates of NP transport was observed in the fine grained media with 31 % 

NPs eluted.  
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Figure 3.3: Breakthrough curves for the transport of NH4
+

 through the (a) fine, (b) medium 
and (c) coarse grained glass beads.  
Each data point represents the average of triplicate experiments with associated standard 
deviation (σ = 1, shown as error bars). 8 minutes = 1 pore volume. 
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Figure 3.4: Breakthrough curves for the transport of Ca
2+

 through the (a) fine, (b) medium 
and (c) coarse grained glass beads.  
Each data point represents the average of triplicate experiments with associated standard 
deviation (σ = 1, shown as error bars). 1 pore volume = 8 minutes. 
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Figure 3.5: Breakthrough curves for the transport of (NPs) through the (a) fine, (b) medium 
and (c) coarse grained glass beads.  
Each data point represents the average of triplicate experiments with associated standard 
deviation (σ = 1, shown as error bars). 1 pore volume = 8 minutes. 
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3.4.1.2 Nanoparticle immobilisation through packed sand columns 

Although trends were broadly similar, breakthrough profiles for quartz 

sand columns exhibit somewhat different results compared to glass beads. In the 

NP-I experiment 53 % NH4
+ was detected in the effluent, whilst 63 % was 

detected in the effluent for the biotic control; although overlapping errors bars 

indicate these were not significantly different (Figure 3.6a). Both values are 

lower than those of the glass bead experiments (Table 3.1). Figure 3.6b exhibits 

the breakthrough curves for dissolved Ca2+ concentration. In the NP-I experiment 

only 9 % of the added Ca2+ was detected at the outlet compared to 75 % in the 

abiotic control, again indicating Ca2+ removal due to precipitation. The NP-I 

experiment saw the greatest reduction in the mobility of NPs through the 

column. Here, only 2 % NPs were detected at the outlet compared to 13 % in the 

abiotic control (note, however, that the error bars for the the NP-I and abiotic 

control overlap and so this difference is not statistically significant).  The biotic 

control saw the highest rates of NP mobility with 50 % NP recovery (Figure 3.6c). 

Similar to the glass bead experiments, the order of NP breakthrough followed 

the order Biotic control > abiotic control > NP-I.   A comparison of all porous 

media types can be seen in Table 3.1. 
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Figure 3.6: Breakthrough curves for the transport of (a) NH4
+
, (b) Ca

2+
 and (c) NPs sand 

packed columns.  
Each data point represents the average of triplicate experiments with associated standard 
deviation (σ = 1, shown as error bars). 8 minutes = 1 pore volume. 
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Table 3.1: Total recovery of NH4
+
, Ca

2+
 and NPs as calculated from the area under the 

recovery curve.   

Porous 

media 

(mm) 

pH NH4
+ (%) Ca (%) NP (%) 

NP-

I 
Biotic Abiotic 

NP-

I 
Biotic Abiotic 

NP-

I 
Biotic Abiotic 

NP-

I 
Biotic Abiotic 

Fine 

(0.1-

0.25) 

8-9 9-9.5 6.5-8 78 87 - 18 - 73 31 76 38 

Medium 

(0.6-

1.8) 

8-9 9-9.5 6.5-8 72 65 - 16 - 77 8 71 43 

Coarse 

(2) 
8-9 9-9.5 6.5-8 75 79 - 33 - 82 14 75 58 

Sand 

(0.1-

0.4) 

8-9 9-9.5 6.5-8 63 53 - 9 - 75 2 50 13 

 

3.5 Discussion  

Particle transport through porous media is governed by interception by the 

porous media, sedimentation due to gravity, advection and diffusion via 

Brownian motion (Dunphy Guzman et al., 2006). For the first 24 hours advection 

does not influence NP transport, as during this static phase no fluid flow 

occurred. However with the onset of pumping advection will impart a strong 

influence on the transport of NPs throughout the column during this time. 

Furthermore, due to their small size and the absence of aggregation in these 

highly stable NPs, the effect of gravity induced sedimentation can be considered 

insignificant. However Brownian motion highly influences particle-particle and 

particle-collector interactions, especially in the case of very small particles (< 

50nm, Schrick et al., 2004).  Therefore in these experiments Brownian motion is 

responsible for NP-NP and NP-collector collisions during the first 24 hour static 

phase.  The frequency of collisions is known to increase as particle size 

decreases, increasing the probability of NP-NP and NP-collector collisions, 
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regardless of external factors such as pH, ionic strength etc (Iijima and Kamiya, 

2009). If such collisions during the static phase result in permanent attachment 

(deposition) NP transport will be reduced during the flushing phase. 

Physiochemical interactions acting between the NPs and collector surface govern 

particle attachment (see Chapter 1.1.4 for further detail on NP physiochemical 

interactions). Attractive van der Waals forces have a strong influence on NP 

attachment; hence a potential barrier is required to maintain dispersed highly 

mobile NPs (Iijima and Kamiya, 2009). This may come in the form of 

electrostatic interactions where by the electric double layer (EDL) provides 

electrostatic repulsion between particles. However, electrostatic interactions 

are greatly affected by solution chemistry and cannot necessarily prevent 

attachment or NP-NP aggregation alone.  To overcome this issue NPs are capped 

with various surface coatings which provide long ranged, robust electrosteric 

repulsion even at high ionic strengths (Saleh et al., 2008). The NPs used in this 

study display both electrostatic (zeta potential of -38 mv due to the 

carboxylated terminations repel from the negative quartz or glass surface) and 

electrosteric repulsions (provided by the dextran coating).  

The first set of experiments aimed to investigate the attachment behaviour 

of negatively charged NPs in porous media as a function of grain size (fine, 

medium, and coarse grained) and grain type (quartz vs glass). NPs dispersed in 

SDW displayed high mobility upon flushing as indicated by 100% and 93% NP 

recovery in glass beads and quartz sand columns, respectively (Figure 3.2). 

Under these conditions the highly negative NPs (-38mV) are electrostatically 

repelled from the negative charge of the collector surfaces (both glass beads 

and sand grains, Behrens and Grier, 2001). In contrast, in the presence of 50 mM 

CaCl2 significantly reduced NP mobility under all tested conditions (Figure 3.2). 

This is best explained by a reduction in repulsive EDL forces between NPs and 

grain surfaces in the presence of divalent electrolyte such as Ca2+ (see chapter 

1.1.4). As a result, the energy barrier required for particles to attach is lower, 

allowing for enhanced particle-particle and particle-collector interaction 

(Lecoanet and Wiesner, 2004). Such interactions promote NP aggregation within 

the pore spaces and deposition onto the collector grains. It is important to note 

that during batch experiments (Chapter 2) NP aggregation did not occur in the 

abiotic control (contains 50 mM CaCl2). Thus deposition onto collector grains 

rather than aggregation is likely the key mechanism here. 
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In the NP transport experiments for NPs suspended in SDW, NP retention 

was highest in the quartz sand column (18% eluted), followed by the coarse 

grained (72% eluted), then fine grained (84% eluted), and medium grained (92% 

eluted) glass bead columns (Figure 3.2, Table 3.1). Significantly more NPs were 

retained in the column containing quartz sand grains (18% eluted) compared to 

the fine glass beads (84% eluted; the sand grains are closest in size to the fine 

glass beads). Natural sand will inherently exhibit a larger degree of physical 

heterogeneity compared to the manufactured glass beads. The irregular size, 

shape and roughness of the sand grains providing more deposition sites compared 

to the smooth profile of the beads (Figure 3.7, Zhang et al., 2012). In addition to 

this sand grains may also contain geochemical heterogeneities such as naturally 

occurring metal oxide precipitates (Petosa et al., 2010). These are likely to not 

have been eliminated during washing. If metal oxides are present this may 

provide a slightly positive surface charge, promoting electrostatic attraction of 

NPs to the sand grains (Godinez et al., 2013). Indeed, surface charge 

heterogeneity has been shown to strongly control NP transport through sand 

packed columns, for example, Dunphy Guzman et al. (2006) found that NPs have 

limited mobility through natural sandy media rich in metal oxyhydroxides due to 

deposition.  

Results from the transport experiments indicate a combination of both 

permanent and non-permanent attachment occurs.  The observation that less 

than 100% NPs are recovered from the outlet indicates some permanent 

attachment (deposition) within the packed sand and glass beads.  Furthermore, 

the presence of a tail in the breakthrough curves also suggests some non-

permanent attachment (retardation) is occurring. 
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Figure 3.7: Scanning electron microscope images of porous media. 
 Illustrating the smooth nature of the (a) fine (scale bar 100 µm), (b) medium (scale bar 200 
µm) and (c) coarse gained glass beads compared to the irregular nature of the quartz sand 
grains (both scale bars 200 µm) (d). 

 

In the NP immobilization experiments, the lowest rates of NP mobility were 

found in columns where calcite precipitation was promoted (NP-I experiments), 

suggesting solid-phase-capture had enhanced NP immobilization. As urea 

hydrolysis commences the bacterium create a micro-environment around the cell 

which is oversaturated with respect to calcium carbonate, owed to the 

formation of NH4
+ (increasing pH) and the production of HCO3

-
; (Stocks-Fischer et 

al., 1999). As calcium carbonate nuclei form in the vicinity of the bacterium the 

NPs become electrostatically attracted to its positive surface charge and 

occluded (Chapter 2). The resulting nano-mineral composite is prone to 

gravitational settling, as seen in the batch experiments performed in Chapter 2. 

Aided by gravitational settling the nano-mineral composite is cemented to the 

grain boundaries within the column, preventing further NP transport. See 

Chapter 2.6 for more details on NP capture mechanisms.  Furthermore, it is 
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important to note that 100% Ca2+ elution from the column does not occur in the 

abiotic control for all experiments, (see Table 3.1) this suggests that Ca2+ ions 

bind to collector surfaces negative charge. Therefore calcite may also nucleate 

directly on grain boundaries and occlude NPs as it grows away from the grains.  

Bacteria (which possess a negative surface charge) may become entombed 

within the mineral precipitate (Tobler et al., 2012), as do the NPs.  However if 

any bacterial entombment did occur this did not significantly impact urea 

hydrolysis as the breakthrough curve profiles for NH4
+ for the NP-I and biotic 

control experiments are almost identical for all porous media types (Figure 3.3 

and Figure 3.6a).The process of NP immobilisation is illustrated in Figure 3.8.   

It is important to note that the effluent samples were not filtered prior to 

analysis. Therefore the observation that small amounts of Ca2+ and NP eluted 

form the column in the NP-I experiments (Figure 3.5, Table 3.1) may be due to 

the flushing out of small NP-containing precipitates which were not cemented to 

the collector surfaces. The aim of this research was to immobilise NPs within 

bacterially mediated calcium carbonate in order to prevent NP transport.  

Therefore NPs which are sufficiently mobile, whether trapped within calcite or 

not, are deemed as unsuccessfully captured. Despite this, the process of 

occlusion would cover the surface of any toxic NPs in a benign calcite coating, 

isolating the NPs toxic surface from the environment.  Thus we speculate here 

that even mobile NPs, if coated in calcite, may have reduced toxicity. 
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Figure 3.8: Simplified sketch detailing the immobilisation of NPs within porous media.  
(a) Bacterial cells exist within the pore spaces, being electrostatically repulsed by the NPs 
and collector surfaces. Ca ions are attracted to the negative charge of the NPs and collector 
surfaces. As carbonate is produced by ureolysis, calcite precipitates onto available 
surfaces (b), i.e. the NPs, collector surfaces and the bacteria cells. NPs are also 
electrostatically attracted to the growing calcite surface (c) With further calcite precipitation 
NPs and bacteria cells become entrapped within the mineral precipitate, immobilised within 
the pore spaces and on the collector surfaces.  

 

Aside from the NP-I experiments the abiotic control saw significantly low 

rates of NP transport compared to the biotic controls.  Here, ionic strength 

(50mM CaCl2) in the pore water had a marked influence on the retention of NPs 

in the column (as demonstrated my NP transport experiments, Figure 3.2). The 

high salt concentration exhibited in the abiotic control acts to reduce the 

repulsive EDL forces, allowing for more particle-collector interaction, resulting 



86 
 

in the deposition of NPs on collector surfaces (Figure 3.2a-c). This electrokinetic 

effect may also come into play for the NP-I experiments. However the ionic 

strength of the solution, where calcite precipitation is occurring, will change as 

hydrolysis progresses. The ionic strength ( ) of the solution was calculated 

according to the following equation: 

  
 

 
     

 where c is the molar concentration and z is the charge of each of the ions in 

solution. The total ionic strength of the reaction solution at the start of the 

experiment is 150 M/m3 due to the presence of 50 mM CaCl2. However, as the 

bacteria hydrolyse urea, ammonium and bicarbonate ions are produced. The 

bicarbonate ions will immediately bond with the calcium to form calcium 

carbonate nuclei in solution. Hence the concentration of calcium in solution will 

decrease as hydrolysis progresses, decreasing the ionic strength of the solution. 

Whilst the concurrent production of ammonium ions will act to increase the ionic 

strength of the solution.  It is important to note that calcium is a divalent ion, 

whilst ammonium is monovalent. Hence, a reduction in the calcium 

concentration imparts a strong influence on the EDL forces acting on the NP and 

collector surfaces compared to the monovalent ammonium ion. By the time 

column solution chemistry is analysed, after 24 hours, the net ionic strength has 

decreased to 100 M/m3, that is if total urea hydrolysis occurs, i.e. 100 mM NH4
+ 

produced. A reduction in the total ionic strength in the NP-I experiments 

promotes electrostatic repulsion, aiding NP transport through the column. 

Hence, NP attachment via solid phase capture must be the dominant removal 

mechanism in columns where calcite precipitation is promoted. 

The highest rates of NP transport for all porous media types were found in 

the biotic control experiments. Here the concentration of NPs eluted range from 

50-76%. The high rates of NP transport exhibited here are in part due to 

electrostatic repulsion between the negatively charged NPs, bacterium and 

collector surfaces. More importantly, this electrostatic repulsion is maintained 

due to the low ionic strength of the solution (no CaCl2). Despite this NP retention 

did occur. NP transport through porous media is highly influenced by Brownian 

motion (Dunphy Guzman et al., 2006). Importantly as particle size decreases the 

rate of Brownian motion increases, hence particle-collector collisions are highly 
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likely for very small NPs (<50nm) (Schrick et al., 2004). In addition to this NPs 

may be transported to collector surfaces due to advection which occurs when 

pumping commences. Here NPs move with the bulk movement of the fluid, 

transporting NPs to collector surfaces. It appears that a proportion of the NPs 

had the ability to overcome the energy barrier required for deposition, becoming 

attached to collector surfaces. Aside from this a physical straining mechanism 

may act on the NPs, even though the NPs are significantly smaller than the 

media pore space. If physical straining is the dominant mechanism of NP removal 

here it would be expected that the fine grained glass beads would show the 

highest rates of NP removal. However this was not the case, instead the medium 

grained beads slowed the lowest rates of NP removal with 71% elution whilst the 

fine grained beads saw the highest rates of NP transport with 76% elution. 

Furthermore, the spread of data for the glass bead experiments is very narrow 

with the breakthrough profiles all falling within error of each other.  Therefore 

straining mechanisms are not supported by the data. 

Electrokinetic effects play a major role in determining the fate of NPs 

within the environment. Importantly the ionic strength used here is not 

representative of the chemistry of natural waters. Instead this was chosen to 

allow a direct comparison to the chemistry of the NP-I experiments. Typical 

groundwaters display 1-10 mM monovalent cations (Na+, K+) and 0.1-2 mM 

divalent cations (Ca2+, Mg2+) (Saleh et al., 2008). Under such conditions Saleh et 

al. found polymer-modified particles to be highly mobile. In such instances 

induced calcite precipitation may be employed to immobilise NP pollutants 

within the subsurface. This may be implemented by drilling strategic injection 

points where by one well injects the bacterial suspension and another urea and 

CaCl2. When the two fluids mix within the target zone (NP plume) urea 

hydrolysis will commence stimulating the precipitation of calcium carbonate, 

resulting in the in-situ immobilisation of NPs. 

 

3.6 Conclusion  

In this study ureolytically driven calcium carbonate precipitation was 

shown to successfully immobilise negatively charged NPs within porous media. 

Although NP mobility was reduced under all experimental conditions tested, the 

lowest rates of NP mobility were consistently found in columns where calcium 
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carbonate precipitation was promoted. The results presented here suggest that 

bacterially induced calcite precipitation may be used as a tool to significantly 

reduce NP mobility in environmental systems.  
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4 Immobilisation of nanoparticles by bacterially 
precipitated struvite 

While an array of techniques are available for in situ remediation of 

numerous groundwater contaminants, there are currently none for in situ 

remediation of nanoparticles (NPs).  Experiments presented in chapter 3 showed 

that bacterially driven calcite precipitation can be used as a tool to immobilise 

nanoparticles within calcite crystals through solid phase capture.  In this 

process, electrostatic interactions between the growing calcite surface and the 

NP greatly controlled the degree of NP capture; NPs with a negative surface 

charge were captured with greater efficiency than those with a positive surface 

charge, due to stronger electrostatic attachment of negative NPS to positive 

calcite surfaces. This indicated that in order to immobilise NPs with a positive 

surface charge, a mineral with a negative surface charge would be required. 

Struvite (MgNH4PO4
.6H2O) is such a mineral, commonly forming in high nutrient 

waters, leading to the deposition of scale deposits on wastewater pipes (Ali, 

2007). The struvite precipitating system tested here showed high success rates 

at capturing positively charged NPs. However, the key mechanism of 

immobilization appeared to be attachment to the stuvite surface, as opposed to 

occlusion within the growing mineral (as reported for calcite in chapter 3).  

Results indicated that changes in pH and ionic strength have considerable impact 

on NP attachment and detachment due to their impact on the surface charge of 

the mineral and NP with less attachment occurring as pH decreased and ionic 

strength increased. Overall, these findings suggest that the mineral precipitating 

system can be specifically tailored to suit the surface character of the NP 

targeted. NP attachment onto mineral matrices has the potential to be used as a 

tool to prevent NP mobility in contaminated groundwaters and to remove NPs 

from wastewater treatment systems.  

 

4.1 Introduction 

The potential of bacterially driven solid phase capture to immobilise NP 

pollutants within the subsurface has yielded promising results. Chapter 2 showed 

that calcite precipitation driven by bacterial ureolysis is very effective at 

capturing highly stable and negatively charged NPs within the growing calcite 
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crystal. This process was underpinned by attractive forces between oppositely 

charged calcite (positive) and NP (negative) surfaces. Conversely, NPs with a 

positive surface charge showed poor attachment to calcite surfaces due to 

electrostatic repulsion and remained in suspension, i.e., could not be 

immobilised using this approach. Here, we hypothesise that for capturing 

positively charged NPs within a growing crystal, a mineral possessing a negative 

surface charge is required.  

Struvite (MgNH4PO46H2O) has been specifically selected as a possible 

candidate for such a system as it exhibits a negative surface charge (Bouropoulos 

and Koutsoukos, 2000). In addition to this, it is also used as a remediation 

technique for excess nitrogen (ammonia) and phosphorus in industrial 

wastewater (Zhou and Wu, 2012, Ryu and Lee, 2010, Ryu et al., 2008, Pastor et 

al., 2008, Doyle and Parsons, 2002). This is of particular interest here as the 

process of bacterial ureolysis (as used to induce calcite precipitation), 

undesirably, produces ammonia as a by-product, thus the precipitation of 

struvite could potentially be used in conjunction to ureolysis-driven technologies 

to remove excess ammonium from environmental systems.  

Struvite (MgNH4PO46H2O) is a white orthorhombic mineral containing 

equimolar concentrations of magnesium, ammonia and phosphate (Eqn.1). 

Struvite precipitation is strongly dependant on pH, the ratio of NH4
+:Mg2+:PO4

3-, 

temperature and the presence of foreign ions such as calcium (Doyle et al., 

2003, Doyle and Parsons, 2002). Generally, the solubility of struvite decreases 

with increasing pH up to pH 9 (Nelson et al., 2003). Above this, struvite 

solubility increases proportionally with phosphate concentration, but inversely to 

ammonia concentration (Doyle and Parsons, 2002).  

Mg2+ + NH4
+ + PO4

3- + 6H2O  MgNH4PO46H2O  (Eqn. 1) 

Historically struvite precipitation has been extensively studied due to its 

formation on waste water pipes form industrial wastewater.  The hard deposit 

causes a range of operational problems ranging from increased pumping costs to 

the replacement of sections of pipe work (Doyle and Parsons, 2002, Ohlinger et 

al., 1998, Doyle et al., 2003).  Recently the problem mineral has gained positive 

attention due to its potential use a slow release fertiliser (Desmidt et al., 2013, 

Doyle et al., 2003).  Traditionally the agricultural industry produces fertiliser 

from mined phosphate rock (Desmidt et al., 2013). However increasing global 
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demand for fertiliser is putting pressure on this finite resource and so alternative 

sources of phosphate are required (Uludag-Demirer et al., 2005). This has 

provided an economic incentive to recover phosphate from nutrient rich 

wastewater though controlling the precipitation struvite.  Sales of struvite 

within the UK have the potential to provide revenue of up to £20,000 a year 

(Jaffer et al., 2002). In addition struvite precipitation has received attention 

from a wide range of fields, including such as the veterinary (Osborne et al., 

1999), medical (Clapham et al., 1990) and the food and beverage industry 

(Foletto et al., 2013, Johns, 1995).  

In this study we investigate the potential of struvite precipitation to 

immobilise positively charged NPs while simultaneously removing excess NH4
+ 

produced by bacterial ureolysis.  It is expected that positively charged NPs 

electrostatically bind to the negatively charged growing struvite surfaces. As 

mineral growth proceeds, these NPs become immobilised within the mineral 

matrix, thereby removing them from the aqueous phase.  

 

4.2 Materials and methods 

4.2.1 Nanoparticles 

The positively charged NPs (S-posNPs) were prepared in the same manner 

as in Chapter 2.3.1. 

4.2.2 Struvite precipitation experiments 

First, struvite precipitation experiments were undertaken in the absence 

of NPs.  These experiments were performed to determine optimal conditions for 

struvite precipitation.  A summary of all the tested experimental conditions are 

shown in Table 4.1. 

Two different types of batch experiments were carried out: S1) struvite 

precipitation during bacterial ureolysis, i.e., Mg2+ and PO4
3- are added at the 

beginning and NH4
+ is being continuously produced through ureolysis, and S2) 

struvite precipitation following ureolysis, i.e., all NH4
+ is produced first by 

ureolysis, before Mg2+ and PO4
3- are added in four steps.  
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Both types of experiments were performed using the gram positive 

ureolytic bacterium Sporosarcina pasteurii (strain ATCC 11859). Details of the 

preparation of bacteria are given in Chapter 2.3.2. For S1a experiments the 

bacterial pellet was re-suspended in a solution containing 20 mM K2HPO4, diluted 

to an optical density (OD) of 0.14 (as determined spectrophotometrically at 600 

nm).  Separately, a solution containing 10 mM urea and 20 mM MgCl2 was 

prepared. To start the experiment, the urea and MgCl2 solution were mixed at a 

ratio of 1:1 with the bacterial and K2HPO4 suspension. The final concentrations 

for experiment S1a were 5 mM urea, 10 mM K2HPO4 and MgCl2 and 0.07 OD S. 

pasteurii. Biotic controls, S1b (S.pasteurii + urea + K2HPO4; the absence of MgCl2 

preventing struvite precipitation) were done to track the progress of ureolysis, 

while abiotic controls S1c (K2HPO4 + MgCl2) were run to ensure that Mg2+/PO4
3- 

removal would result only as a consequence of NH4
+ production. Concentrations 

of K2HPO4 and MgCl2 were intentionally kept low in order to prevent the 

precipitation of magnesium phosphate minerals instead of struvite.  

For the S2 experiment the bacterial pellet was re-suspended and diluted 

in sterile deionised water (SDW). The bacterial solution (0.14 OD S.pasteurii) 

was mixed with a 100 mM urea solution to give a final concentration of 50 mM 

urea and 0.07 OD S. pasteurii. These concentrations were chosen to follow the 

concentrations used for calcite precipitation in Chapters 2 and 3. This mix was 

left for 24 hours for urea hydrolysis to complete, giving a final concentration of 

100 mM NH4
+.  A concentration of 100 mM NH4 was chosen to simulate the level 

of NH4
+ produced by bacterial ureolysis in Chapter 3 and 4. To initiate struvite 

precipitation, 25 mM Mg2+ and PO4
3- injections were added as dry solids (using 

MgCl2 and K2HPO4 salts) in 4 stages. Adding Mg2+ and PO4
3- sources as dry solids 

and in 4 stages prevented the premature precipitation of magnesium phosphate 

minerals.  

 

4.2.3  Nanoparticle capture by struvite precipitation 

S2 experiments (staged approach) yielded best conditions for struvite 

precipitation (see section 4.3.1), thus an identical set-up was chosen for the 

nanoparticle remediation experiments (N1 and N2, both experiments are 

identical other than solution pH is maintained between 8 and 9 in the N2 

experiment).  These were the same as the S2 experiments except that prior to 
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the addition of the Mg2+ and PO4
3-

 salts, the solution was filtered (using sterile 

0.2µm membrane filters) to remove bacterial cells that could immobilise the 

positively charged NPs (as observed in Chapter 2). This was done to ensure that 

NP removal could only result from struvite precipitation.  Following filtration, 10 

mg/l NPs were added to the experiment. Biotic and abiotic control experiments 

were also run (see Table 4.1). All nanoparticle remediation experiments were 

carried out in triplicate in glass beakers that were covered with parafilm® to 

prevent evaporation.   

 

Table 4.1: Summary of tested experimental conditions. 

Run S. 
pasteurii 
(OD600)  

Urea/NH4
 

(mM) 
MgCl2 

(mM) 
K2HPO4

 

(mM) 
NP 
(mg/l) 

Struvite precipitation experiments  
S1a 0.07 5/10 10 10 - 
S1b 0.07 5/10  - 10 - 
S1c - - 10 10  
S2 0.07 50/100 25*  25* - 
NP immobilisation experiments 
N1a 0.07 50/100 25* 25* 10 
N1b 0.07 50/100 - 25* 10 
N1c - - 25* 25* 10 
N2a 0.07 50/100 25* 25* 10 
N2b  0.07 50/100 - 25* 10 
N2c - - 25* 25* 10 
*concentrations of MgCl2 and K2HPO4 added 4 times to give a final concentration of 100 mM. 
The N2 experiments were controlled between pH 8 and 9.  

 

4.2.4 Nanoparticle removal by pre-formed struvite 

A NP sorption experiment was devised to determine the effect of ionic 

strength on the attachment of positively charged NPs on to the struvite surface.  

For this, struvite was precipitated using the same approach as for S2 

experiments.  Once precipitated the mineral was separated via centrifugation 

and washed 3 times in SDW to remove excess salts. Equal quantities (0.6 g wet 

weight) of struvite were weighed and suspended in 10 ml KCl solutions at 4 

different concentrations (0, 50, 150 and 250 mM). KCl was used as these are the 

ions that remain in solution once struvite has precipitated in experiments tested 

here. NPs were then added to give a concentration of 5 mg/l (Fe concentration). 

The concentration of NPs was reduced here to save on experimental costs.  
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4.2.5 Chemical analysis 

Solution pH and concentrations of NH4
+, Mg2+, PO4

3- and Fe (iron used as a 

proxy for nanoparticle concentration) were determined at time zero and at 

regular intervals thereafter. At each sampling time 10 ml aliquots were removed 

from the experiment; 5 ml were used for pH measurement, 0.5 ml to determine 

NH4
+ by the Nessler assay and 4.5 ml were mixed with 1 ml 50% HCl for Mg2+, PO4

- 

and Fe measurements. PO4
- concentrations were determined using the 

molybdenum blue method (Murphy and Riley, 1958) whilst Mg2+ and Fe 

concentrations were analysed using atomic absorption spectroscopy. For Mg2+ 

analysis calibration standards of 0.3, 0.5, 0.7 and 1 mg/l were prepared prior to 

each analysis using MgCl2. An air-acetylene flame was used for all Mg2+ 

determinations at a flow rate of 0.9 – 1.2 l/min. The spectrometer was operated 

at a wavelength of 285.2 nm and a spectral band pass of 0.5 nm with the lamp 

current running at 75%. The analytical limit detected under these conditions is 

0.003 mg/l. For details on Fe analysis by AAS see Chapter 2.3.3. 

4.2.6  Zeta potential analysis 

The zeta potential of struvite was investigated as a function of pH and 

ionic strength. Preformed struvite crystals (struvite was precipitated using the 

same approach as for S2 experiments) were separated via centrifugation and 

washed 3 times in SDW to remove excess salts. The cleaned struvite crystals 

were separated via centrifugation before equal quantities (0.6 g wet weight) of 

struvite were weighed and suspended in 10 ml KCl solutions at 4 different 

concentrations (0, 50, 150 and 200 mM). KCl was used as these are the ions that 

remain in solution once struvite has precipitated in experiments tested here. 

The pH of the reaction solution was then adjusted using NaOH and HCl over the 

pH range of 6 to 12. Zeta potential measurements were immediately run using 

Zetasizer Nano ZS (Malvern Instruments) at 25°C. 

4.2.7  Scanning Electron and Raman Microscopy  

Mineral identification was performed by SEM and Raman analysis. Once the 

reactions were completed, precipitates were removed by centrifugation, washed 

three times with SDW, and then dried for 24 hours at 30°C. Dried precipitates 

were mounted on aluminium stubs, carbon coated and imaged using a Zeiss 

Sigma Field-Emission Scanning Electron Microscope with a beam intensity of 20 
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kV.  Raman spectroscopy was carried out to gather additional chemical 

information of the struvite crystals. Uncoated precipitates were analysed using 

Renishaw Invia Raman Microscope with Wire 3.2 software. Samples were excited 

using a 514-nm edge green laser, and spectra were obtained using a static scan 

with a centre of 920 xm-1.  

 

4.3 Results  

4.3.1 Struvite precipitation experiments 

In the first set of struvite precipitation experiments (S1: struvite 

precipitation during ureolysis) bacterial ureolysis led to an increase in NH4
+ in 

both the struvite precipitation experiment (S1a) and biotic control (S1b, 4.1b-c, 

Table 4.1). With the onset of ureolysis in S1a, it was expected that the increase 

in NH4
+ would lead to struvite supersaturation and hence struvite precipitation. 

This in turn would result in a decrease in NH4
+, Mg2+ and PO4

3-.  However, this 

was not observed. Instead, NH4
+ increased at almost identical rates in the 

struvite precipitation and in the biotic control experiment (4.1b-c), 95% of the 

initially added urea was hydrolysed within only 8 hours. The absence of NH4
+ 

removal showed that struvite precipitation did not occur. Nevertheless, a white 

coloured precipitate was observed at the bottom of the reaction vessel. The 

simultaneous decrease in dissolved Mg2+ and PO4
3- from 100 to 40% over the 

duration of the experiment (4.1b) indicated this precipitate was some form of 

Mg-phosphate.   In the biotic control (S1b; 4.1c) no precipitation was observed 

due to the absence of Mg2+. Similarly, no precipitation was observed in the 

abiotic control (S1c; 4.1d) despite the presence of both Mg2+ and PO43- ions 

(although Mg2+ and PO4
3- concentrations did decrease slightly over the duration of 

the experiment).   
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4.1: Time series showing changes in pH, NH4
+, Mg2+, PO4

3- concentration for the S1 
experiment.   
(a) pH over time for the struvite precipitation experiment, the biotic (S1b) and the abiotic 
control (S1c). (b,c and d) NH4

+, Mg2+ and PO4
3- concentration profiles for (b) S1a struvite 

precipitation experiment which contained 0.07 OD S.pasteurii, 5 mM urea giving 10 mM 
NH4

+, and 10 mM Mg2+ and PO4
3- (c) S1b contained all components except MgCl2 and (d) S1c 

contained all components except bacteria and urea. For the S1 experiment each data point 

represents the average of triplicate experiments with associated standard deviation (σ = 1, 
shown as error bars). 

 

In the second struvite precipitation experiment (S2; struvite precipitated 

after ureolysis, Table 4.1), urea hydrolysis was completed before adding Mg2+ 

and PO4
3- sources.  Upon S.pasteurii addition urea hydrolysis was completed 

within 24 hours producing 100 mM NH4
+. In order to prevent precipitation of 

magnesium phosphate phases, Mg2+ and PO4
3- were added in 4 stages of 25 mM 

(added as dry solids to prevent dilution of the NH4
+ solution) to equal the NH4

+ 

concentration of 100 mM. After the first addition of Mg2+ and PO4
3- an immediate 

decrease in NH4
+ by 25% was observed (Figure 4.2). The concentration of Mg2+ 

and PO4
3- was also noted to return to zero (Figure 4.2), indicating a 

stochiometric 1:1:1 ratio of NH4
+, Mg2+ and PO4

3- had been removed from 

solution. This was accompanied by the formation of a white coloured precipitate 

(4.5a), which considering the 1:1:1 stoichiometry was likely to be struvite. After 

the second Mg2+ and PO4
3- addition, no decrease in NH4

+ was observed. However, 

after the third addition, NH4
+ decreased to 60% (Figure 4.2). Following the fourth 

addition, NH4
+ continued to decrease to give a final concentration of 2% NH4

+, 

indicating that almost all NH4
+ was removed.  By this stage, all Mg2+ and PO4

3- 
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had also been removed, again indicating a stochiometric removal of 1:1:1 for 

NH4
+, Mg2+ and PO4

3-, consistent with struvite formation. It is important to note 

that the concentration of Mg2+/PO4
3- at each sample point shown in Figure 4.2 is 

a percentage of the total Mg2+/PO4
3- that was added prior to the sampling point. 

For example sample point 2 reads 3 % Mg2+, that is 3 % of the 25 mM Mg2+ added 

remained in solution. Similarly the sample point at 1.5 hrs reads 20 % Mg2+, 

meaning that 20 % of the total 100 mM Mg2+ added remained in solution. The 

erratic removal of NH4
+ may be explained as Mg2+/PO4

3- salts were added as dry 

solids (in order to prevent dilution), and so all of the added Mg2+/PO4
3- may not 

have fully dissolved before the subsequent sampling point (this would be 

difficult to observe due to the immediate precipitation of struvite creating a 

cloudy appearance to the reaction solution). Therefore, as the experiment 

progresses more Mg2+/PO4
3- is becoming available through dissolution, allowing 

for the continual precipitation of struvite. This method of struvite precipitation 

has shown much better success compared to the S1a experiment, where no 

struvite formed. This experimental approach was therefore used for the NP 

immobilisation experiments. 

 

 

Figure 4.2: Time series showing changes in pH, NH4
+
, PO4

3- 
and Mg

2+
 concentration for 

experiment S2. 
Experiment S2 contained 0.07 OD S.pasteurii and 50 mM urea, giving 100 mM NH4

+
, once 

total urea hydrolysis was achieved 25 mM K2HPO4 and MgCl2 were added 4 times to give a 
final concentration of 100 mM. The graph here shows data points after total urea hydrolysis 
had occurred (i.e. it shows the period of time during which K2HPO4 and MgCl2 were added). 
The Mg

2+
/PO4

3- 
concentration at each sample point is a percentage of the total Mg

2+
/PO4

3- 

that was added prior to that sampling point. The purple circles represent the time points at 
which PO4

3- 
and Mg

2+
 sources were added giving a total Mg

2+
/PO4

3-
 concentration of (*1) 25 
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mM Mg
2+

/PO4
3- 

(*2) 50 mM Mg
2+

/PO4
3-

 (*3) 75 mM Mg
2+

/PO4
3-

 (*4) 100 mM Mg
2+

/PO4
3-

.  Each 
data point represents the average of triplicate experiments with associated standard 
deviation (σ = 1, shown as error bars). 

 

4.3: Photo graph of struvite precipitated in the absence of NPs (experiment S2). 

 

4.3.2 Nanoparticle capture by struvite  

Identical to the S2 experiment all urea was first hydrolysed over a period 

of 24 hours. The solutions were then filtered to remove bacterial cells and 

amended with 10 mg/l Fe NPs. Following this, 25 mM Mg2+ and PO4
3- was added 

to the struvite precipitation (N1a) experiment in 4 stages, leading to 

supersaturated conditions with respect to struvite, which immediately resulted 

in the precipitation of struvite. This is demonstrated by the trends in NH4
+, Mg2+ 

and PO4
3- concentrations (Figure: 4.4b).  Throughout the duration of the 

experiment NH4
+ concentration decreased in a stepped like manner mirroring the 

time points at which Mg2+/PO4
3- salts were added. With each 25 mM addition a 

decrease between 10 – 35% NH4
+ was observed, resulting in the total removal of 

80% NH4
+, initially produced by ureolysis.  Mg2+/PO4

3- trajectories, remained low 

throughout the duration of the experiment, indicating they were immediately 

removed by struvite precipitation.  The final amount of NH4
+, Mg2+ and PO4

3- 

precipitated had a stochiometry close to 1:1:1 suggesting the precipitate was 

likely struvite. 
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Figure: 4.4: Time series showing changes in pH, NH4
+, Mg2+, PO4

3- and Fe (NP) concentration 
(%) for experiment N1.  

(a) Change in pH for the struvite (N1a), biotic (N1b) and abiotic (N1c) experiments. (b) 
Experiment N1a contained 0.07 OD S.pasteurii and 50 mM urea, giving 100 mM NH4

+
. Once 

total urea hydrolysis was achieved, bacteria were removed by filtration and 10 mg/l Fe (NPs) 
were injected before 25 mM MgCl2 and K2HPO4 were added 4 times to give a final 
concentration of 100 mM; The graph shown here shows data points after total urea 
hydrolysis had occurred (i.e. it shows the period of time during which K2HPO4 and MgCl2 

were added) (c) N1b contained all components except MgCl2; (d) N1c contained all 
components except bacteria and urea. The Mg

2+
/PO4

3- 
concentration at each sample point is 

a percentage of the total Mg
2+

/PO4
3- 

that was added prior to that sampling point. The purple 
circles represent the time points at which PO4

3- 
and Mg

2+
 sources were added giving a total 
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Mg
2+

/PO4
3-

 concentration of (*1) 25 mM Mg
2+

/PO4
3- 

(*2) 50 mM Mg
2+

/PO4
3-

 (*3) 75 mM 
Mg

2+
/PO4

3-
 (*4) 100 mM Mg

2+
/PO4

3-
.   For the N1 experiment each data point represents the 

average of triplicate experiments with associated standard deviation (σ = 1, shown as error 
bars). 

 * Note key shown at the bottom of d refers to Figures b-d. 

  

As struvite precipitated, the percentage of suspended NPs initially 

decreased similarly to the NH4
+ trend. After the second Mg2+/PO4

3- injection 60% 

of the NPs were successfully immobilised (Figure: 4.4b). However, unexpectedly 

the third and fourth injections led to an increase in NP concentration by 40% 

despite the continuation of struvite precipitation (Figure: 4.4b). Thus, at the 

end of the experiment 80% of the positive NPs were re-suspended while only 20% 

NPs were immobilised through struvite precipitation.  The re-suspension of NPs 

in the latter half of the experiment may be influenced by the decrease in pH 

over the duration of the experiment. Figure: 4.4a demonstrates that after the 

first Mg2+/PO4
3- addition little pH change was observed in the struvite 

precipitation (N1a) experiment. However, the second and third addition led to a 

pH drop from pH 9 to pH 7 and 6.5, respectively. The final addition induced 

little decrease in pH, remaining at around 6.5. Interestingly, the pH decrease 

from 9 to 7 corresponded with a slower removal of NPs: only 25% NP removal was 

observed compared to 35% when the pH was highest at pH 9. Critically, once the 

pH drops below 7, an increase in NP concentration was observed, coinciding with 

the re-suspension of 40% of the previously immobilised NPs. These variations in 

NP removal may relate to pH dependent changes in the zeta potential of the 

struvite surface, as discussed later in 4.3.4. 

In the biotic control (N1b) experiment, NPs and ammonium were not 

removed during the course of the experiment (Figure: 4.4c) and no precipitates 

were observed.  There was also no PO4
3- removal by the end of the experiment 

(despite unexplained fluctuations).  The lack of precipitate and lack of NP 

removal indicates NPs are not removed by, for example, aggregation or 

attachment to reaction vessel walls.  This supports the suggestion that NP 

removal in experiment N1a occurred due to struvite precipitation. In the abiotic 

control (N1c) 85% and 58% of the added Mg2+ and PO4
3- (respectively) were 

removed over the course of the experiment (Figure: 4.4d). This corresponded 

with the removal of 49% NPs after the second Mg2+/PO4
3 addition. As with the NP 

immobilisation experiment, N1a, the third and fourth Mg2+/PO4
3 additions saw 
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the resuspension of all the previously captured NPs. By the end of the 

experiments 100% of the NPs remained in solution despite the precipitation of 

some form of magnesium phosphate.  

In order to improve NP immobilisation this experiment was re-run with the 

aim to maintain pH between 8 and 9, as it appeared that lower pHs may inhibit 

NP removal by struvite. In this experiment (N2a), struvite precipitation was more 

efficient, removing 92% NH4
+ (Figure 4.6b) compared to 80% NH4

+ in N1a 

experiment. Mg2+ and PO4
3- concentrations also remained low, indicating 

efficient removal.  Again removal of NH4
+, Mg2+ and PO4

3 displayed a 

stochiometry close to 1:1:1, indicating the precipitate was likely struvite. 

Struvite precipitation was accompanied by the removal of significantly more NPs 

during the first two Mg2+/PO4
3- additions, immobilising 80% of the suspended NPs 

(Figure 4.6b), compared to just 60% in the N1a experiment where pH was not 

adjusted.  However, the third Mg2+/PO4
3- addition saw no further decrease in NP 

concentration, whilst the fourth saw an NP increase by 30% (Figure 4.6b).  At the 

end of the experiment, struvite precipitation immobilised 50% of the NPs. Figure 

4.6: Time series showing changes in pH, NH4
+, Mg2+, PO4

3- and Fe (NP) 

concentration.b portrays struvite precipitates removed after the second 

Mg2+/PO4
3- injection where maximum NP removal occurred, note the dark 

orange-brown colour indicating the presence of NPs. Whilst Figure 4.6: Time 

series showing changes in pH, NH4
+, Mg2+, PO4

3- and Fe (NP) concentration.c 

depicts struvite precipitates removed at the end of the experiment. The struvite 

precipitates here are much whiter in colour indicating that less NPs are present. 

SEM combined with Raman analysis showed that struvite was the dominant 

mineral phase (Figure 4.7a and Figure 4.8a).  

Again, no precipitation occurred in the biotic control (N2b; Figure 4.6c), 

however a small decrease in NP concentration was observed. Here, 20% NP 

removal was observed however as no precipitation occurred it is not clear what 

the removal mechanism may be (note this drop has not been seen in biotic 

control before). In contrast the abiotic control (N2c; Figure 4.6d) saw the 

precipitation of some form of magnesium phosphate. The first addition of 

Mg2+/PO4
3- sources saw no decrease in Mg2+/PO4

3-, however the following 

additions saw a drastic decrease in Mg2+/PO4
3- by 92%/88% respectively (Figure 

4.6d). This was accompanied by the instantaneous precipitation of magnesium 

phosphate as indicated by the continual low levels of Mg2+/PO4
3- concentration, 
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(Figure 4.6d). By the end of the experiment approximately 10% of the Mg2+/PO4
3- 

ions added remained in solution (Figure 4.6d). SEM and Raman analysis was 

performed for these precipitates (Figure 4.7b and Figure 4.8b). Identical to the 

struvite precipitation experiment (N2a), this form of magnesium phosphate 

mineralisation concurrently removed NPs from solution in a step like manner 

(Figure 4.6d) throughout the duration of the experiment, producing a lightly 

orange coloured precipitate (4.5c). By the end of the experiment almost 

identical removal rates were recorded, the struvite precipitation experiment 

(N2a) removed 52% NPs, whilst the abiotic control which precipitated magnesium 

phosphate (N2c) saw the removal of 49% NPs (Figure 4.6b and d).  Figure 4.7b 

highlights the morphological differences between the minerals struvite and 

magnesium phosphate sampled from these sets of experiments. 
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4.5: Photographs of struvite and magnesium phosphate precipitates. 
(a) struvite precipitate in the presence of NPs sampled after the second Mg

2+
/PO4

3- 
addition 

for the N2 experiment where NP removal was greatest, (b) struvite precipitated in the 
presence of NPs at the end of the N2a experiment and (c) magnesium phosphate 
precipitated in the presence of NPs at the end of experiment N2c. Scale bar 10 mm. 
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Figure 4.6: Time series showing changes in pH, NH4
+, Mg2+, PO4

3- and Fe (NP) concentration. 

(a) Change in pH for the struvite (N2a), biotic (N2b) and abiotic (N2c) experiments. For the 
duration of the experiment solution pH was maintained between 8 and 9. (b) Experiment N2a 
contained 0.07 OD S.pasteurii and 50 mM urea, giving 100 mM NH4

+
, once total urea 

hydrolysis was achieved 10 mg/l Fe (NPs) were injected before 25 mM MgCl2 and K2HPO4 

were added 4 times to give a final concentration of 100 mM; (c) N2b contained all 
components except MgCl2; (d) N2c contained all components except bacteria and urea. The 
Mg

2+
/PO4

3- 
concentration at each sample point is a percentage of the total Mg

2+
/PO4

3- 
that 

was added prior to that sampling point. The purple circles represent the time points at 
which PO4

3- 
and Mg

2+
 sources were added giving a total Mg

2+
/PO4

3-
 concentration of (*1) 25 

mM Mg
2+

/PO4
3- 

(*2) 50 mM Mg
2+

/PO4
3-

 (*3) 75 mM Mg
2+

/PO4
3-

 (*4) 100 mM Mg
2+

/PO4
3-

.  For the 
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N2 experiment each data point represents the average of triplicate experiments with 
associated standard deviation (σ = 1, shown as error bars). 

 * Note key refers to Figures b-d. 

 

Figure 4.7: Scanning Electron Microscope (SEM) image illustrating  

(a) typical orthorhombic struvite crystals (scale bar 3µm) and (b) magnesium phosphate 
minerals (scale bar 10µm). 
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Figure 4.8: Raman spectra of struvite and magnesium phosphate minerals. 
(a) struvite showing a distinct single peak at 944 cm

-1
, (b) magnesium phosphate exhibiting 

a peak at 983 cm
-1

  and another smaller peak at 889 cm
-1

.  

 

4.3.3  Nanoparticle removal by pre-formed struvite crystals 

Figure 4.9 shows the impact that ionic strength has on NP removal onto 

preformed struvite surfaces. Here struvite precipitates and NPs were suspended 

in SDW with varying KCl concentrations. Generally, increasing ionic strength 

resulted in a decrease in percentage of NPs attached onto the mineral surface 

although not in a linear fashion. Increasing the ionic strength from 50 to 150 mM 

KCl led to a drastic decrease in NP attachment by 15 %, while increasing the 

ionic strength by a further 100 mM led to little change in NP attachment, 

decreasing by only 1 %.  
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Figure 4.9: Percentage of Fe (NPs) electrostatically attached to struvite mineral surfaces 
when suspended in increasing concentrations of KCl. 

 

4.3.4  Zeta potential of struvite 

Zeta potential measurements were determined as a function of both pH 

and ionic strength (KCl concentration; KCl was used as these are the ions left in 

solution once struvite precipitates). Increasing ionic strength resulted in a 

decrease in surface charge of struvite, rendering it less negative (Figure 4.10). 

For example, at pH 12 struvite displayed a surface charge of -20 mV in 0 mM KCl, 

decreasing to -6 mV at 150 mM KCl. Furthermore, an increase in solution pH 

resulted in an increase in the negative surface charge of struvite. For example 

struvite crystals suspended in 0 mM KCl exhibited a zeta potential of -20 mV at 

pH 12 whilst at pH 6 this values decreased to -10 mV (Figure 4.10).  

Zeta potential measurements were attempted over the pH range of 6 to 

12 for ionic strengths of 0 to 200 mM KCl.  However, due to particle aggregation 

accurate zeta potential measurements were not obtained for some of the lower 

pH ranges and higher ionic strengths. The dotted line on Figure 4.10 indicates 

conditions that induced struvite aggregation. This indicates that under these 

conditions the precipitates were approaching a zeta potential of zero to allow 

for particle aggregation. (See section 1.1.4 for further discussion on how zeta 

potential affects aggregation). 



108 
 

 

Figure 4.10: Zeta potential of struvite crystals measured as a function of pH and KCl 
concentration.  

 

4.4 Discussion 

In this study pH exerted a control over struvite supersaturation. In 

experiment S1a (where Mg2+ and PO4
3- sources were added prior to urea 

hydrolysis), magnesium phosphate minerals precipitated instead of struvite, 

despite the production of NH4
+. This is due to urea hydrolysis inducing an 

extremely rapid pH rise from 6.5 to 8 (4.1a). Figure 4.11a, demonstrates that 

above pH 7.25, both struvite and magnesium phosphate minerals are 

supersaturated. Above pH 8 Mg3(PO4)2 exhibits a higher saturation index than 

struvite (Figure 4.11a). Therefore as the reaction solution rapidly increases from 

6.5 to 8, the pH were struvite exhibits the greatest saturation is passed and the 

system quickly enters and then remains at a pH where Mg3(PO4)2 exhibits the 

greatest saturation.  Hence the dominance of magnesium phosphate 

precipitation in this experiment.  In the case of the biotic control experiment, 

no Mg2+ was added and no precipitation (e.g., struvite, Mg-phosphates) was 

observed (4.1b). In contrast the abiotic control (S. 1c) contains both MgCl2 and 

K2HPO4, yet magnesium phosphate precipitation did not occur. Here, due to the 

absence of bacteria and urea, ammonium production did not occur and thus 

solution pH remained low (between pH 6 and 6.6, 4.1a), keeping the solution 
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undersaturated (or very weakly saturated) with respect to struvite and Mg-

phosphates.  Figure 4.11 demonstrates that at 2 forms of magnesium phosphate 

are oversaturated under the experimental conditions experienced here (see 

Table A1 for a list of minerals which could potentially be formed from the 

components of the S1 experiment). Mg3(PO4)2 saturation increases rapidly with 

increasing pH, being undersaturated between pH 6-7 and oversaturated above 

pH 7. Whilst MgHPO4:4H2O is oversaturated above pH 6, increasing slightly to pH 

7 before levelling off. However, above pH 7.5 Mg3(PO4)2 is far more 

oversaturated than MgHPO4:4H2O precipitation. Experiment S1a exhibited a pH 

of above 8 where Mg3(PO4)2 is extremely oversaturated, hence, this form of 

magnesium phosphate should preferentially be precipitated over MgHPO4:4H2O. 

However, 4.1b demonstrates an almost identical decrease in Mg2+ and PO4
3- (i.e. 

a near 1:1 stochiometry) which would suggest the formation of MgHPO4:4H2O. If 

Mg3(PO4)2 was precipitated one would expect the removal of more Mg2+ relative 

to as PO4
3- in order to successfully precipitate Mg3(PO4)2.  In addition no 

magnesium phosphate precipitation occurred in the abiotic control despite 

MgHPO4:4H2O being oversaturated (experimental pH remained above pH 6). 

Without further in-depth analysis it is difficult to say which form of magnesium 

phosphate is precipitated here. However as magnesium phosphate precipitation 

was found to be pH dependant it is likely Mg3(PO4)2 and that the decrease in PO4
- 

was not highlighted possibly due to experimental error.        
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Figure 4.11: Saturation index values for Mg3(PO4)2, MgHPO4:3H2O and struvite. 
(a) 10 mM NH4

+, Mg2+ and PO4
3- as a function of pH (b) as a function of increasing NH4 (this is 

to replicate the S2a experiment, here NH4
+ increases but Mg2+ and PO4 remain at 25 mM as 

these sources are immediately removed via struvite precipitation) and (c) as a function of 
increasing Mg

2+
 and PO4

3-
 concentration (as to replicate experiment S2c). Visual MINTEQ, 

version 3.0. 
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In order to promote struvite precipitation more NH4
+ ions must be present 

relative to Mg2+ and PO4
3- to ensure struvite exhibits a higher saturation index 

than magnesium-phosphate (as in experiment S2). Figure 4.11b demonstrates 

that at >50 mM NH4
+ struvite exhibits a higher saturation index than magnesium 

phosphate at pH 8. Bellow this threshold, theoretically, magnesium phosphate 

minerals should preferentially precipitate over struvite. Notably, however, 

Figure 4.2 demonstrates that all of the 100 mM NH4
+ produced by ureolysis was 

removed by struvite precipitation.  This is surprising as one may expect struvite 

precipitation to occur until just under 50 mM NH4
+ is left in solution, at which 

point Mg-phosphate would precipitate.   A possible explanation for the total 

removal of NH4
+ may be that preformed struvite crystals already exist, acting as 

templates for the precipitation of struvite rather than magnesium phosphate. 

Struvite precipitation was extremely effective in removing positively 

charged NPs from solution during the initial stages of the experiments. However, 

by the third Mg2+/PO4
3- addition, i.e., precipitation event, NP resuspension 

occurred. As with a calcite precipitating system electrostatic interactions 

control the success of NP immobilisation (Chapter 2). However, the re-

suspension of NPs elucidates an important process of NP immobilisation via 

struvite precipitation. In both cases NPs are electrostatically attracted to the 

mineral surface. However, the ability of NPs to be released at increasing ionic 

strength and decreasing pH in the struvite system, suggests they are merely 

attached to the struvite surface, rather than occluded within the struvite 

crystal. This is likely because the calcite precipitating system is driven during 

bacterial ureolysis, and so the process of precipitation is much slower. Slower 

mineral growth allows the NP to be overtaken by the advancing solidification 

front, entrapping the NP within the mineral precipitate.  Conversely, the 

struvite precipitation system developed and applied here leads to instantaneous 

homogeneous nucleation of struvite crystals through which struvite precipitation 

was observed within matter of seconds (after Mg2+/PO4
3- additions). As such NPs 

have not had time to attach and become occluded within the quickly forming 

crystals. Instead NPs simply sorb onto the surface of the mineral once they 

formed and start to settle out. This process occurs with every addition of 

Mg2+/PO4
3-, initiating struvite precipitation followed by NP sorption. This occurs 

until a certain pH/ionic strength is reached where the mineral and NP surface 
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charge are dulled to the point where NPs are no longer attracted to the mineral 

surface, and start to desorb.  

This phenomenon is demonstrated by the changes in pH induced by the 

removal of NH4
+ via struvite formation induced by the addition Mg2+/PO4

3- salts 

(Figure: 4.4a). In the N1a experiment the solution pH decreased from pH 9 at 

the start of the experiment to pH 6.5 after the removal of 82% NH4
+ (Figure: 

4.4a). Solution pH has long been known to exert a strong control on mineral 

surface charge in aqueous solution (Van Cappellen et al., 1993, Carre and 

Lacarriere, 2006, Hazen and Sverjensky, 2010). Typically, at lower pH mineral 

surfaces become protonated, thus becoming increasingly positively charged (or 

less negatively charged). Conversely, with increasing pH mineral surfaces 

become progressively more negative due to deprotonation (Hazen and 

Sverjensky, 2010). This is demonstrated by Figure 4.10.  Here the zeta potential 

of struvite decreases from -20 mV to -10 mV when the pH of the solution is 

reduced from pH 12 to 6 respectively (when suspended in 0 mM KCl). With this 

the mineral becomes less negative, resulting in a weakening of the electrostatic 

attraction of the positively charged NP to the mineral surface and thus 

facilitating the release of nanoparticles back into solution. It should be noted 

here that the amine groups on the positively charged nanoparticle likely exhibit 

pKa’s between 8-9 (Phoenix et al., 2002). From this we can approximate that as 

pH drops through pH 8 or 9, the amine groups are protonating and becoming 

more positively charged.  This may counteract the loss of negative charge on the 

struvite, to assist electrostatic attraction, although evidently not sufficiently 

enough to prevent NP remobilization. 

With the aim of increasing the electrostatic attraction between the 

positively charged NP and the negatively charged mineral surface, the NP 

immobilisation experiments were repeated with solution pH controlled between 

pH 8-9. Maintaining a high pH showed a marked improvement by enhancing NP 

removal by 30%. This is likely due to an increased surface charge on the mineral 

(struvite) surface enhancing electrostatic attraction (this also indicates that at 

these pHs the NP was still positively charged and had not deprotonated).  

However, this increase in NP capture may also be attributed to the formation of 

a larger mineral surface area, due to the formation of more crystallites.   As pH 

increases, the saturation index for struvite also increases (Figure 4.11a), and so 

at pH 9, 98% of the NH4
+ produced by ureolysis was removed through struvite 
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precipitation compared to 80% when the pH dropped below 7 (compare Figure: 

4.4b and Figure 4.6b).  Here, an increase in the mineral surface area available 

for NPs to attach may also explain the increase in NP immobilisation. Either way, 

a higher pH was favourable for increased NP attachment. 

Intriguingly, despite maintaining a high pH NP re-suspension still occurred. 

Aside from pH, solution ionic strength also exerts a strong control on surface 

charge with increasing ionic strength reducing surface charge (see Chapter 

1.1.3). Here, it is the increase in ionic strength, which accounts for the re-

suspension of NPs in the NP immobilisation experiment (N2a, Figure 4.6b). Each 

addition of Mg2+/PO4
3- leads to an increase in the ionic strength of the solution, 

as the K+ and Cl- ions are left over from the added salts,(MgCl2 and K2HPO4) 

whilst Mg2+ and PO4
3- ions are removed by struvite precipitation. With each 

addition, dissolved K+ and Cl- concentration increases by 50 mM, giving a final 

concentration of 200 mM KCl. Increasing solution ionic strength results in a 

decrease in the EDL for the mineral surface and the NP, weakening the 

electrostatic attraction between these two surfaces leading to the re-suspension 

of previously immobilised NPs. Figure 4.10 highlights this phenomenon. Here 

preformed struvite precipitates were suspended in 50, 100, 150mM and 200 mM 

KCl and zeta potential was measured using Zeta Potential Analyser (Zetasizer 

Nano ZS, Malvern). With increasing KCl concentration the zeta potential of the 

mineral surface decreased from -20 to -6 with an increase in KCl from 0 to 

150mM KCl respectively when measured at pH 12. Figure 4.6b shows significant 

re-suspension of NPs after the final addition of Mg2+/PO4
3-, here the 

concentration of K+ and Cl- increases from 150 to 200 mM, with this final 

addition a tipping point is reached, compressing the EDL to such an extent that 

NPs are no longer bound to the mineral surface by electrostatic attraction. This 

is further confirmed by Figure 4.10 as an accurate zeta potential measurement 

could not be obtained at this ionic strength and pH (200 mM KCl, pH 8-9) due to 

aggregation of struvite crystals. This indicates that the precipitates were 

approaching a zeta potential of zero which led to particle aggregation (during 

the zeta potential measurement) and resuspension of NPs (in the NP 

immobilisation experiments).  The role that ionic strength plays in influencing 

the sorption of NP onto the mineral surface is displayed in Figure 4.9 which 

shows NP sorption onto struvite.  Here, with increasing ionic strength the 

percentage of attached NPs decreases.  
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The potential for NP attachment to struvite precipitates was modelled 

using the calssical Derjaguin-Landau-Verwey-Overbeek (DLVO) model. This is 

described in full in Chapter 2.6. The tested parameters used are identical for 

those used in Chapter 2 aside from the Hamaker constant for struvite (A22) which 

was calculated as 1.54x10-20 using the Hamaker constant calculator published by 

Overney (2009), see Appendix B.  This generates a combined NP-struvite-water 

(A132) Hamaker constant of -1.58 x10-20. The DLVO model was run for the N2 

experiment where the pH was maintained between pH 8 and 9.  Figure 4.12 

demonstrates interaction energy profiles between the positively charged NPs and 

the negatively charged struvite precipitates. Here, a repulsive van der Waals 

interaction is counteracted by an attractive electrical double layer resulting in a 

complex total interaction energy profile (Figure 4.12). As the two surfaces 

approach, a small repulsive energy exists. Once this repulsive interaction energy 

is passed an attractive well exists at less than 5 nm separation distance. This 

results from the dominance of the attractive electrical double layer, that is, 

until a few 10ths of an nm are reached where a very strong repulsive interaction 

energy exists due to the dominance of the repulsive van der Waals interaction.  

The Debye length used for Figure 4.12 was calculated based on the second 

Mg2+/PO4
3- addition, i.e. 50 mM KCl and 75 mM NH4

+.  Under these conditions NP 

sorption onto struvite precipitates is observed. Based on the DLVO model 

observed here, this would suggest NPs are attached due to the small energy 

well. Whilst Figure 4.13 demonstrates that with increasing ionic strength (due to 

the addition of K+ and Cl- ions left over from the added salts, MgCl2 and K2HPO4) 

the depth of the attractive energy well decreases until at 200 M/m3 the total 

interaction energy profile becomes repulsive. This agrees with what is observed 

experimentally for the N2a experiment where after the final Mg2+/PO4
3- addition 

NP concentration increased by 30% Figure 4.6b. Confirming that increasing 

solution ionic strength results from a weakening of the electrostatic attraction 

resulting from the attractive EDL between the mineral and the NPs, leading to 

the re-suspension of previously immobilised NPs.  Overall, the DLVO model 

produced here is interesting in that the interaction energies are largely repulsive 

(apart from the energy well), despite NP and mineral surfaces exhibiting 

opposite charges. This repulsive interaction energy results from a negative 

combined Hamaker constant (A132) of -1.58 x10-20 produced from the interaction 

of the positively charged NPs, struvite precipitates and the dispersing medium 
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(water). As the Hamaker constant is a measure of the strength of the van der 

Waals force, a negative Hamaker constant results in a positive van der Waals 

interaction, thus producing a repulsive van der Waals interaction which 

dominates over the attractive EDL interaction.  

 

Table 4.2 Summary of the experimental parameters for each Mg
2+

/PO4
3- 

addition 

NH4
+ (mM) KCl (mM) Total ionic 

strength (M/m3) 

Inverse Debye 

length  

(M/m2) 

75 50 87.5 9.63 x10+08 

50 100 125 1.15 x10+09 

25 150 162.5 1.31 x10+09 

0 200 200 1.46 x10+09 
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Figure 4.12 Interaction energy profiles calculated for the positively charged NPs and the 
negatively charged struvite surfaces (using a Hamaker constant for struvite of 1.54x10

-20
). 

Note (b) is an enlargement of graph (a).   
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Figure 4.13: Total interaction energy profile for positively charged NPs interacting with 
struvite surfaces as a function of increasing KCl concentrations from 87.5 to 200 M/m

3
. 

 

 

Unexpectedly the abiotic control resulted in the precipitation of magnesium 

phosphate minerals in both NP immobilisation experiments (N1c and N2c). Here, 

with every addition of Mg2+/PO4
3- magnesium phosphate is becoming increasingly 

oversaturated, (Figure 4.11c) resulting in the precipitation of magnesium 

phosphate. The precipitation of magnesium phosphate also resulted in a 

decrease in NP concentration, indicating the magnesium phosphate also exhibits 

a negative surface charge and thus can capture NPs. As with the struvite 

precipitating system, NP resuspension occurred in the latter half of the 

experiment for the first NP immobilisation experiment, N1c (Figure: 4.4d). This 

suggests NPs were captured by surface adsorption rather than occlusion.  Here, 

all of the immobilised NPs desorbed from the Mg-phosphate mineral surfaces 

resulting in no NP removal by the end of the experiment. However, in the 

second NP immobilisation experiment, N2c, maintaining solution pH between 8 

and 9 showed a noticeable improvement in NP capture. By the third addition 65% 

NPs were removed by electrostatic attraction onto the Mg-phosphate surfaces 

(Figure 4.6d). However, with the fourth addition 15% of the adsorbed NP 

desorbed again, resulting in the immobilisation of 49% NPs (Figure 4.6d). Under 

these conditions almost identical rates of NP immobilisation occurred under both 

the struvite (immobilised 52% NPs) and magnesium phosphate (immobilised 49% 

NPs) precipitation systems. 
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4.5 Conclusion 

Struvite has shown to not only immobilise positively charged NPs from 

solution but also successfully remove close to 100% NH4
+ produced by bacterial 

ureolysis. NP immobilisation was found to be highly dependent on both pH and 

ionic strength. Maintaining solution between pH 8 and 9 showed a marked 

improvement in NP immobilisation, removing 80% Fe NPs. However once the 

ionic strength exceeds 100 mM KCl NP resuspension occurs, indicating that NPs 

are reversibly attached to the mineral surface by electrostatic attraction. Under 

certain environmental conditions struvite may be used as a tool to immobilise 

toxic NPs from environmental and wastewater treatment systems.  



119 
 

5 Bacterial biosorption of nanoparticles  

5.1 Summary 

Bacteria and biofilms are widely used to adsorb and degrade numerous 

contaminants and are commonly used as a treatment step in many wastewater 

treatments plants. Here, we test the ability of B. subtilis, a common 

groundwater bacterium, and wastewater treatment biofilms to adsorb and 

remove NPs from solution.  Both biosorbent materials were highly efficient at 

removing positively charged NPs from solution, while failed to adsorb negatively 

charged NPs.  Adsorption of positive NPs onto B. subtilis was found to be 

dependent on pH, with greater adsorption at higher pH.  This pH dependence 

must result from the greater negative surface charge exhibited by bacteria at 

higher pH.  Desorption studies, however, revealed adsorption was only partly 

reversible. In addition, the presence of slower adsorption kinetics in biofilms 

compared to planktonic biofilms suggests diffusion of NPs through the porous 

structure of the biofilm. Overall, these findings highlight that planktonic 

bacteria and biofilms are highly efficient biosorbants for NPs, this holds 

implications for NP transport in environmental systems and through wastewater 

treatment plants.      

5.2 Introduction 

The ability for bacteria to adsorb/immobilise NPs from solution was briefly 

highlighted when testing the ability of bacterially driven solid phase capture to 

immobilise NPs (Chapter 3). Here, positively charged NPs (S-posNPs) were shown 

to adsorb onto the negative bacterial surface of S. pasteurii while negatively 

charged NPs (S-negNPs) remained in suspension. To date, a significant amount of  

geomicrobial research has focused adsorption of cations by bacteria (Gorman-

Lewis et al., 2005, Yee and Fein, 2001, Yee et al., 2004, Ngwenya et al., 2003, 

Small et al., 2001, Fein et al., 1997). Despite this, the potential for bacteria to 

adsorb nanoparticles (NPs) has received little attention.   

Bacteria, ubiquitous to all ecosystems, have the ability to adsorb an array 

of cations from environmental systems. The cell wall of gram positive bacteria 

contain several organic functional groups; such as amine, carboxyl, hydroxyl and 

phosphoryl groups (Fein et al., 1997). The ionisation of these proton active 
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functional groups (namely carboxyl, phosphoryl and hydroxyl functional groups) 

creates a negative charge which surrounds the cell (Yee et al., 2004). The 

electric field surrounding the bacterium determines the distribution of the ions 

and counterions at the cell-water interface, strongly influencing the metal 

binding capacity of the cell wall (Yee et al., 2004). Potential bacterial 

biosorbents include the genre of Bacillus, Pseudomonas and Streptomyces 

(Vijayaraghavan and Yun, 2008). Such biosorbants have the ability to bind 

significant quantities of toxic metals from environmental systems, for example 

Ziagova (2007) saw the successful biosorption of 278 mg g-1 cadmium by the 

organism Pseudomonas sp.  

Currently municipal wastewater treatment plants (WWTP) take advantage 

of the biosorbent properties of bacteria, using them as part of their treatment 

system. Biofilm reactors such as fluidised beds, up flow sludge blankets and 

granular sludge blankets contain dense bacterial flocs (activated sludge) which 

sorb and degrade an array of pollutants (Nicolella et al., 2000, Lazarova and 

Manem, 1995, Vijayaraghavan and Yun, 2008). Bacterial flocs or granules are 

capable of operating both anaerobically and aerobically.  Anaerobic granulation 

has been extensively studied and is most commonly used by wastewater 

treatment plants (Liu et al., 2004, Liu and Tay, 2004). Hence, in this study only 

anaerobic granules were tested. Biogranules are more complex than their single 

celled counterparts, being composed of multiple communities bound by 

extracellular polymeric substances (EPS) via a process of self immobilisation (Liu 

and Tay, 2004).The process of self immobilisation is initiated by the introduction 

of inorganic nuclei and is carefully controlled by the reactors operating 

conditions (Tay et al., 2004, Liu and Tay, 2004). In addition the filamentous 

bacterium Methanothrix has been suggested to play a key role in binding the 

microbial components together, creating a dense floc composed of millions of 

organisms per gram of biomass (Quarmby and Forster, 1995, Liu and Tay, 2004). 

Flocs offer key advantages, such as high biomass retention, cell-liquid separation 

via sedimentation and can withstand high-strength wastewater and shock 

loadings due to their regular, dense and strong structural properties (Nicolella et 

al., 2000, Liu and Tay, 2004). With the increasing use of nanomaterials, WWTPs 

are likely to play a key role in determining pathways for NP pollutants. Indeed 

Kiser et al. (2010) reports the detection of titanium dioxide NPs of up to 3000 µg 

Ti/L in raw sewage at a full scale municipal WWTP in Arizona (USA).  Kiser et al. 
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(2009) analysed effluent samples collected from each unit process at four 

different times (7:00, 11:00, 15:00 and 18:00) each day in June. From this Keiser 

et al. (2009) found that on average 79%   23% of the titanium dioxide NPs that 

entered the plant were removed from the wastewater via biosorption to 

activated sludge. Despite this, environmentally relevant concentrations of up to 

100 µg/L Ti NPs were discharged to surface waters (Kiser et al., 2009).  

In this study we investigate the potential for the gram positive bacterium 

B. subtilis and wastewater bacterial flocs to immobilise (adsorb) positively 

charged and negatively charged NPs. The sorption of NPs is examined as a 

function of bacterial concentration, pH and ionic strength.  

5.3 Materials and Methods 

5.3.1 Nanoparticles 

The negatively and positively charged NPs (S-neg and S-pos respectively) 

were used in this study. Further details of NPs used here can be found in Chapter 

2.3.1. 

5.3.2 Bacillus subtilis adsorption experiments 

5.3.2.1 Growth of Culture 

B. subtilis cells cultures were grown from trypticase soy broth, at 30°C for 

24 hours on a rotary shaker at 120 rpm. After incubation, cells were harvested 

by centrifugation and washed 4 times in sterile deionised water before 

resuspension in 1, 10 or 100 mM NaCl to the desired optical density (OD, either 

0.25 or 0.5 OD) as determined spectrophotometrically at 600 nm.   

5.3.2.2 Bacterial concentration dependant adsorption experiments  

NP binding experiments were first preformed as a function of bacterial 

concentration. Bacterial suspensions were prepared at a concentration of 0.5 

and 1 OD and then mixed at a ratio of 1:1 with 20 mg/l NPs suspended in 20 mM 

NaCl. The final concentrations were 0.25 or 0.5 OD B. subtilis, 10 mM NaCl and 

10 mg/l NPs (S-neg or S-pos NPs). A control was also run containing NPs 

suspended in 10 mM NaCl. The analyses of NP concentration (using Fe as a proxy 

for NP concentration) were determined at time zero and regular intervals 

thereafter. 
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5.3.2.3 pH and ionic strength dependant adsorption experiments 

NP sorption experiments were preformed as a function of pH (pH 2-10) in 

1, 10 and 100 mM NaCl. A bacterial concentration of 0.25 OD and the S-pos NP 

were chosen for the pH experiments. The pH of the bacterial solution was 

adjusted using NaOH and HCl before addition of the NP-NaCl solution and left to 

react for 90 minutes before sampling (this sample period was chosen based on 

the kinetic data obtained from experiments presented in section 5.4.1.1. Note 

that the experiments were performed as batch reactions (each analysed pH is an 

individual experiment).    

5.3.2.4 Desorption experiments    

Desorption experiments were performed to determine the reversibility of 

NP adsorption onto the surface of B. subtilis. The pH of the bacterial - NaCl 

solution was adjusted to pH 10 using NaOH before addition of NPs. The solution 

was left to react for 20 minutes before the pH was dropped using HCl in a 

stepwise fashion, sampling at every pH, until pH 2. 

5.3.3 Wastewater biofilm adsorption experiments  

5.3.3.1    Wastewater Biofilm samples 

Anaerobic wastewater biofilms were sampled from 485 m3 expanded 

granular sludge bed treating distillery wastewater in Edinburgh, UK. The Biofilm 

flocs ranged from 1 to 3 mm in diameter and were composed of an 

agglomeration of several bacterial species (Figure 5.1). Biofilm flocs were 

washed 4 times with sterile deionised water SDW to remove any impurities.   
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Figure 5.1: Image of wastewater biofilm flocs. 

 

5.3.3.2 Concentration dependant adsorption experiments  

NP binding experiments were first preformed as a function of biofilm 

concentration. Two and 4 g of biofilm (wet weight) were weighed and added to 

10 mg/l S-pos NPs suspended in 10 mg/l NaCl. The biofilm-NP solutions were 

gently agitated on a rotary shaker at 50 rpm to ensure the biofilm flocs remain 

in suspension throughout the duration of the experiment, yet remained intact. 

The analyses of Fe (NP) concentration were determined at time zero and regular 

intervals thereafter. 

5.3.3.3 pH and ionic strength dependant adsorption experiments 

NP adsorption experiments were then preformed as a function of pH (pH 

3-10) in 1, 10 and 100 mM NaCl. pH and ionic strength dependent adsorption 

experiments were not preformed at pH 2 due to the release of Fe (possibly 

obtained from the distillery) from the biofilm under such acidic conditions.  A 

biofilm concentration of 2 g was chosen for the pH dependant experiments. The 

biofilm samples were suspended in the desired NaCl solutions and the pH of the 

solution was adjusted using NaOH and HCl. Once the desired pH was reached, 10 

mg/l Fe NPs were directly added to the biofilm-NaCl solution and left to react 

for 90 minutes before sampling. The biofilm-NP solutions were gently agitated 

on a rotary shaker at 50 rpm to ensure the biofilm flocs remain in suspension 
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throughout the duration of the experiment.  Note that each pH is an individual 

experiment (i.e. batch reaction).    

A summary of all the tested experimental conditions can be seen in   
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Table 5.1. 

5.3.4 Chemical analysis  

At each sampling time 5 ml aliquots were removed from the experiment. 

After pH measurement 3 ml of the sample was mixed with 1 ml 50% HCl for Fe 

(NP) measurement by atomic absorption spectroscopy.  

5.3.5 Transmission Electron Microscopy (TEM) 

Bacteria and biofilms were examined by Transmission Electron Microscopy 

(TEM) to confirm the presence of attached nanoparticles.  After reaction with 

NPs, bacteria and biofilms were first fixed overnight in 2.5% glutaraldehyde in 

0.05M HEPES buffer at pH 7.  These were then washed in phopshate buffer three 

times, dehydrated through an ethanol series (30%, 50%, 70%, 90%, 4x100%), then 

embedded in Epon812 resin and cured at 60oC.  Once the resin had cured, 

samples were section into ultra-thin sections using a diamond knife and 

ultramicrotome.  Note that during processing samples were split into three 

groups to receive different levels of contrast staining.  One set was pre-stained 

with 1% Osmium tetroxide (1 hour) followed by post-staining with 2% uranyl 

acetate (1 hour).  A second set was only post-stained in uranyl acetate, while a 

third set was not stained at all.  Note that pre- staining occurs before 

embedding in resin, while post-staining occurs after the embedded samples have 

been microtomed into ultra-thin sections.  Different levels of staining were done 

to provide different levels of contrast in the TEM.  Staining is useful as the heavy 

metal stains bind to the bacterial cell, giving it contrast in TEM and thus making 

cells easier to see.  However, as the NPs have magnetite cores, this mineral will 

already exhibit strong contrast and thus NPs will be easily visible, and indeed 

easier to spot, without staining.  Sections were viewed on a FEI Tecnai T20 TEM 

operating at 120 kv. 
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Table 5.1: Summary of tested experimental conditions. 

Run* Bacterial 
concentration 
(OD 600 or g)** 

NaCl (mM) pH  NP (mg/l) 

Bacillus subtilis experiments  

Bs1 0.25 10 - 10 (S-pos) 
0.5 10 - 10 (S-pos) 
0.25 10 - 10 (S-neg) 
- 10 - 10 (S-pos) 

Bs2 0.25 1 2-10 10 (S-pos) 
0.25 10 2-10 10 (S-pos) 
0.25 100 2-10 10 (S-pos) 

Bs3 0.25 10 2-10 10 (S-pos) 

Wastewater Biofilm experiments 

WB1 2 10 - 10 (S-pos) 
4 10 - 10 (S-pos) 
8 10 - 10 (S-pos) 
- 10 - 10 (S-pos) 

WB2 2 1 3-10 10 (S-pos) 

2 10 3-10 10 (S-pos) 

2 100 3-10 10 (S-pos) 

*Bs1 is the concentration dependant adsorption experiment, Bs2 is the pH and 

ionic strength dependant adsorption experiment and Bs3 represents the 

desorption experiment for Bacillus subtilis whilst WB1 is the concentration 

dependant adsorption experiment and WB2 is the pH and ionic strength 

dependant adsorption experiment for the wastewater biofilm flocs. 

** Bacterial density is OD600 for B.subtilis experiments and grams (wet weight) 

for biofilm experiments 

 

 

5.4 Results  

5.4.1 Bacillus subtilis adsorption experiments 

5.4.1.1 Concentration dependant adsorption experiments with B.subtilis 

NP adsorption experiments (Bs1) were first tested as a function of time 

with the gram positive bacteria B. subtilis. In experiments containing S-pos NPs, 

NP adsorption occurred within 10 minutes (Figure 5.2). Increasing the bacterial 

concentration from 0.25 OD to 0.5 OD resulted in an increase in the percentage 

of NPs adsorbed from 71% to 100% respectively (Figure 5.2). In both experiments, 
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further NP sorption was minimal after the first sampling point (10 minutes). In 

contrast S-negNP adsorption fluctuated between 0-10%, almost identical to the 

blank (containing S-pos NPs only) experiment (Figure 5.2).  

 

 

Figure 5.2: Percent NPs adsorbed by B. subtilis as a function of time in 10 mM NaCl. 
Concentrations of 0.25 OD (blue diamond’s) and 0.5 OD (purple crosses) were chosen for 
concentration dependant analysis of the sorption of S-pos NP suspended in 10 mM NaCl. 
The sorption of S-ned NPs was also tested (red squares) for a concentration of 0.5 OD B. 
subtilis. A blank experiment (green triangles) containing S-pos NPs without bacteria was 
also run. Each data point represents the average of triplicate experiments with associated 
standard deviation (σ = 1, shown as error bars). 

 

 
5.4.1.2 pH and ionic strength dependant adsorption experiments with 

B.subtilis 

A bacterial concentration of 0.25 OD was chosen for the pH and ionic 

strength dependant adsorption experiments (Bs2) as 100% NP removal was not 

observed at this bacterial density in the concentration dependent experiments 

(Figure 5.2, purple crosses). Hence, any change in bacterial adsorption due to 

pH and ionic strength effects would be observed. The concentration of NPs 

adsorbed onto B. subtilis was shown to be highly dependent on both pH and ionic 

strength. Generally, as pH increased so too did NP adsorption onto the surface of 

B. Subtilis. For example at pH 10, 95% of the S-pos NPs were removed from 
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solution when suspended 10 mM NaCl, whereas at pH 2 only 25% NP adsorption 

occurred (Figure 5.3, red squares). In addition to this, increasing the ionic 

strength of the solution resulted in a decrease in the percentage of NPs adsorbed 

by B. subtilis. At pH 8, 95% of the NPs added were adsorbed by B. subtilis, when 

suspended in 1 mM NaCl (Figure 5.3, blue diamond’s). In comparison only 55% NP 

adsorption occurred when suspended in a solution of 100 mM NaCl at the same 

pH (Figure 5.3, green triangles). Similarly the influence pH exerts on NP 

adsorption is controlled by ionic strength, resulting in pH dependent adsorption 

trends exhibiting a steeper slope at lower ionic strengths (at least between pH 2-

9, Figure 5.3). 

 

 

Figure 5.3: NP sorption as a function of pH and ionic strength. 
 NP sorption onto 0.25 OD B. subtilis was tested as a function of pH in 1 mM (blue triangles), 
10 mM (red squares) and 100 mM (green triangles) NaCl electrolyte concentration. Each data 
point represents the average of triplicate experiments with associated standard deviation (σ 
= 1, shown as error bars).   

  

5.4.1.3 Desorption experiments with B.subtilis 

Desorption experiments were performed to test the reversibility of NP 

adsorption onto the surface of B. subtilis. The bacteria-NaCl (10 mM) suspension 

was adjusted to pH 10 before addition of S-pos NPs. At this pH 91% S-Pos NPs 

were removed from solution; this is in excellent agreement with the adsorption 

experiment whereby 95% NPs were adsorbed from solution (Figure 5.4). 
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Decreasing the pH of the bacterial-NP solution imparted no notable change in 

the percentage of NPs adsorbed onto the cell wall of B. subtilis, that is until pH 

5. Here, 10% of the previously adsorbed NPs were resuspended with a pH drop 

from 6 to 5. The resuspension of a further 10% of the S-pos NPs occurred when 

decreasing the solution pH to 2 (Figure 5.4).  There is a clear difference 

between the adsorption and desorption trends. While there is 69% difference in 

NP removal between pH 2 and 10 in the adsorption experiment, there is only 16% 

difference in NP removal in the desorption experiment (Figure 4). 

 

 

Figure 5.4: NP desorption vs. adsorption experiments.  
NP desorption experiments (solid diamonds) were preformed in 10 mM NaCl with 0.25 OD B. 
subtilis.   The adsorption trend line is taken from figure 2. Each data point represents the 
average of triplicate experiments with associated standard deviation (σ = 1, shown as error 
bars). 

    

5.4.2 Wastewater biofilm sorption experiments  

5.4.2.1 Concentration dependant adsorption experiments with biofilm flocs 

NP adsorption experiments were then tested as a function of time using S-

pos NPs with wastewater biofilm flocs. In these experiments NP adsorption was 

complete within 10 minutes for the 4 g experiment, while at lower floc 

concentrations (2 g), NP adsorption was slower, reaching completion at 

approximately 90 minutes (Figure 5.5). Note that neither the 4 nor 2 g 
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experiment had reached equilibrium at the concentrations texted here. 

Increasing the bacterial concentration from 2 g to 4 g did not result in an 

increase in the final percentage of NPs adsorbed as total adsorption of NPs 

occurred with 98% and 96% adsorbed respectively (Figure 5.5). In contrast little 

removal was observed in the blank (containing S-pos NPs only), fluctuating 

between 0-10% for the duration of the experiment (Figure 5.5).  

 

 

Figure 5.5: Percent Fe (NPs) adsorbed by wastewater biofilm as a function of time in 10 mM 
NaCl. 
Biofilm concentrations of 2 g (blue diamond’s) and 4 g (red squares) were chosen to 
determine the impact of biofilm concentration on the sorption of S-pos NP suspended in 10 
mM NaCl. A blank experiment (green triangles) containing S-pos NPs without biofilm was 
also run. Each data point represents the average of triplicate experiments with associated 
standard deviation (σ = 1, shown as error bars).    

5.4.2.2 pH and ionic strength dependant adsorption experiments with 
biofilm flocs 

A biofilm concentration of 2 g was chosen for the pH and ionic strength 

dependant experiments. The concentration of NPs adsorbed onto the biofilm 

flocs was highly dependent on ionic strength, with greater adsorption occurring 

at lower ionic strengths (Figure 5.6).  In contrast, pH imparted no significant 

effect on the adsorption of NPs in solutions containing 1 mM and 100 mM NaCl 

(Figure 5.6). Notably, pH exerted a significant control on the adsorption of NP 

onto biofilm flocs when suspended in 10 mM NaCl. Generally as pH increased the 

percentage of NPs adsorbed onto the biofilm increased. However, as with the B. 

subtilis pH and ionic strength experiments, this was not a linear trend (Figure 
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5.3 and Figure 5.6). Figure 5.6 illustrates the pH dependence of the biofilm flocs 

suspended in 10 mM NaCl (red squares). At pH 10 95% NPs are adsorbed. 

Decreasing the pH to 8 results in a sharp decrease in the percentage of NPs 

adsorbed by 15%. Whilst decreasing the pH further to 5 caused little change, 

decreasing NP adsorption by a mere 5%. A final decrease by 10% occurred with a 

pH drop to 4, with no change thereafter.  

 

 

Figure 5.6: NP sorption onto 2 g wastewater biofim as a function of pH in 1 mM (blue 
triangles), 10 mM (red squares) and 100 mM (green triangles) NaCl electrolyte concentration. 
Each data point represents the average of triplicate experiments with associated standard 
deviation (σ = 1, shown as error bars).   

 

5.4.3 Transmission Electron Microscopy (TEM) 

TEM of B.subtilis cells reacted with s-posNPs are shown in Figure 5.7.  

Samples that are both pre- and post-stained (Figure 5.7a) and samples that are 

just post-stained (Figure 5.7b) show similarly good contrast of the cytoplasm and 

cell walls.   As expected, the cytoplasm and cell wall lacks contrast in the 

unstained samples (Figure 5.7c).  The cells appear to be surrounded by a layer of 

nanoparticles up to 200 nm thick.  In samples that were pre- and post-stained 

(Figure 5.7a), the nanoparticles do not stand out so clearly as they appear to be 

embedded in material that exhibits contrast.  However, when either just post-

stained or non-stained the nanopartices stand out more clearly as any material 
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they are embedded in exhibits no contrast (Figure 5.7b,c,d).  It is possible the 

nanoparticles are embedded in a diffuse extracellular polymeric substance (EPS) 

layer that is only picked up by the double staining approach.  Alternatively, the 

nanoparticles may have aggregated on the surface to form the thick layer of 

nanoparticles.  However, as these nanoparticles do not aggregate, this seems 

unlikely.  It is also notable that intracellular NPs were not observed, indicating 

the NPs could not be transported across the cell wall.   

 

 

Figure 5.7: TEM micrographs of B.subtilis cells reacted with s-posNPs. (a) pre- and post-
stained sample, (b) post staned sample, (c) and (d) unstained sample.  NPs = nanoparticles, 
CP = cytoplasm, CW = cell wall.   

 

TEM of biofilm reacted with s-posNPs is shown in Figure 5.8.  The biofilm is 

composed of a dense pack of cells, some intact and likely viable as evidenced by 

their intact cytoplasm and cell walls, while others had clearly lysed and only 
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distorted cell walls remained (Figure 5.8a,b).  Pre-and-post and just post-stained 

samples exhibited identical levels of contrast.  They also exhibited possible 

nanoparticles attached to EPS (Figure 5.8, c,d), however, as these could not be 

found in non-stained samples it is not possible to confirm if these were 

nanoparticles.  Problematically, the condition of the TEM filament at the time of 

analysis was not sufficient for chemical analysis by EELS, and thus further 

examination of these potential NPs was not possible.  The difficulty in finding 

nanoparticles in the biofilm compared to the B.subtilis cells is likely due to two 

reasons.  Either areas of the biofilm imaged did not come into contact with the 

NPs (possibly because the NPs could not diffuse to that region, e.g. NPs were 

bound to the biofilm surface and these images are not of the surface), or 

because the NPs were highly dispersed to a low density among the voluminous 

biofilm such that they were hard to find.    

 

 
Figure 5.8: TEM images of biofilm reacted with s-posNPs. All images are post-stained.  
Arrows indicate possible NPs. 

  

 

a) b) 

c) d) 
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5.4.4 Discussion  

In this study both the single celled bacteria B. subtilis and multi-

community wastewater biofilm flocs showed significant adsorption of the s-pos 

NPs under most conditions. In contrast no adsorption of s-neg NPs occurred. 

However the degree to which pH and ionic strength affects the biosorbant 

properties of each agent varied. Here, the B. subtilis system was found to be 

highly dependent on pH, with greater pH sensitivity at lower ionic strengths. In 

contrast the biofilm flocs were found to be highly ionic strength dependant with 

any change in pH having less influence on the adsorption properties of the 

biofilm.   

In the case of the B. subtilis system the bacterial cell wall is the first 

component that comes into contact with NPs.  The cell wall of B. subtilis and 

other gram positive bacteria are primarily composed of a thick peptidoglycan 

layer (Doyle et al., 1980, Vijayaraghavan and Yun, 2008). Several functional 

groups which exist on the outer surface of the bacterial cell wall have long been 

known to control metal cation adsorption by a variety of microorganisms (Fein et 

al., 1997, Doyle et al., 1980, Beveridge, 1989, Ngwenya et al., 2003). These 

include carboxyl, phosphoryl, amine and hydroxyl groups. It is the ionisation 

(deprotonation) of these functional groups which imparts a negative charge 

surrounding the cell. The reaction for the deprotonation of carboxyl, phosphoryl 

and hydroxyl groups are as follows:  

                     (1) 

                   (2) 

                  (3) 

                   (4) 

where R represents the bacterial membrane to which (from top to bottom) the 

carboxyl, phosphoryl, hydroxyl and amine functional groups are attached (after 

Fein et al. (1997).  

This process induces an electrostatic attraction between the positively 

charged NPs and the negatively charged bacterial cell, resulting in the 



135 
 

adsorption of up to 100% of the positively charged NPs, depending on pH, ionic 

strength and bacterial density. In the case of the s-neg NPs an electrostatic 

barrier between the bacterium and the NP exists due to electrostatic repulsion, 

preventing adsorption of the negatively charged NPs. TEM analysis of B. subtilis 

cells reacted with s-posNPs suggested the NPs may be embedded within a thin 

(up to 200 nm) layer of EPS surrounding the cell wall.  Similar to the cell wall, 

this EPS layer could also exhibit functional groups imparting it with a negative 

charge. 

The adsorption of positively charged NPs onto the surface of B. subtilis 

was found to be highly pH and ionic strength dependant. Generally, NP 

adsorption increases with increasing pH, and decreases with increasing 

electrolyte concentration. The deprotonation of surface functional groups with 

increasing pH results in an increasingly negative cell surface charge at higher 

pH’s, increasing attractive electrostatic interactions between the NP and 

bacterial cell. Notably this is not a linear trend. For intermediate and low 

electrolyte concentration (1 and 10 mM NaCl) a steepening of the adsorption 

profile can be seen between pH 2 to 4 (Figure 5.3). The ionisation of carboxyl 

functional groups are likely responsible for NP adsorption within the lower pH 

range of 2 to 4. Carboxylic functional groups have been shown to become active 

over a pH range of 2 to 6, with a mean pKa of 4.5 (Cox et al., 1999). Within this 

range the carboxylic functional groups deprotonate, increasing the negative 

charge surrounding them. This would appear to result in an increased affinity for 

the positively charged NPs, as demonstrated by a steep increase in NP adsorption 

from 25% at pH 2 to 60% at pH 4 for intermediate and low electrolyte 

concentration (Figure 5.3). A similar trend is visible in the 100 mM NaCl 

experiment however here NP adsorption increased by only 10% when solution pH 

increased from pH 2 to 4 (Figure 5.3). The deprotonation of the carboxylic 

functional groups had less of an electrostatic effect here as the increased 

electrolyte concentration resulted in a dulling of the negative charge on the 

bacteria, hence weakening the electrostatic attraction between the NP and 

bacterial surface.  Increasing solution pH from 4 to 8 caused a smaller rate of 

change in NP adsorption. Within this range phosphoryl sites become active.  

Again higher ionic strengths caused the rate of change in NP adsorption to be 

reduced compared to at lower ionic strengths. It is important to note that the 

NPs are surrounded by amine functional groups, imparting a positive charge 
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around the particle. Since amine functional groups begin to deprotonate at pH 9 

(Cox et al., 1999), the positive charge surrounding the NP will decrease from 

around pH 9 upwards. However, there is no clear evidence from the adsorption 

profiles that this has any impact on NP adsorption (for example, while a 

decrease in NP adsorption is seen between pH 8-10 at 1 mM NaCl, an increase is 

seen at 10mM NaCl) 

Increasing solution ionic strength had a marked impact on the adsorption 

of NPs onto the cell surface of B. subtilis. Overall increasing electrolyte 

concentration resulted in a decrease in NP adsorption. Here, increasing solution 

electrolyte concentration masks the negative charge of the bacterium and the 

positive charge on the NP, resulting in a dulled electrostatic attraction between 

the NP and the bacterial cell wall. Figure 5.3 demonstrates that 95% NP 

adsorption occurred at pH 10 when suspended in 10 mM NaCl, however when the 

electrolyte concentration increased to 100 mM NaCl, NP adsorption onto the cell 

decreased to 53% due to the masking effect of the Na+ and Cl- ions acting on the 

NP and bacterial surface.  

It is important to note the ‘meeting’ point of the curves in Figure 5.3. 

Here all three curves cross at pH 3, this is close to the isoelectric point for B. 

subtilis bacterial cells which occurs at approximately pH 2.4 (Yee et al., 2004). 

This is consistent with work carried out by Yee at al. (2004) where metal 

biosorption experiments were performed using B. subtilis. Here, Ca2+ Sr2+ and 

Ba2+ ions suspended in three different electrolyte concentrations all converge at 

pH 3.   

However, unlike in most cation adsorption experiments, NP adsorption 

here was largely irreversible. Figure 5.4 displays the desorption of only 15% NPs 

when solution was dropped from pH 10 to 2.  These findings are notably 

different from desorption experiments using B.subtilis and metal cations.  When 

metal cations are bound to bacterial cell wall, desorption curves follow very 

similar profiles to the adsorption curves (i.e. almost no hysteresis) (Fowle and 

Fein, 2000).  It is clear then that while metal cation adsorption is fully reversible 

(Fowle and Fein, 2000), NP adsorption displays relatively little reversibility.   

Permanent attachment of NPs confirms that electrostatic interactions are not 

the only force controlling NP adsorption onto the bacterial surfaces. Another 

force must be responsible for the permanent attachment of NPs as if 
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electrostatic interactions were the sole force acting on the NP and bacterium 

then NP binding would be expected to be fully reversible.  NP uptake by B. 

subtilis is suggested to occur as a two step process. The first step involves 

electrostatic forces attracting the NP to the cell surface to allow for initial 

electrostatic attachment to take place. The second step results in the largely 

irreversible attachment of NPs onto the cell surface. A combination of electrical 

and non-electrical interactions occurring between the outer cell surface and the 

outer surface of the NP may be responsible for such attachment. These 

electrosteric interactions may be repulsive or attractive (Rijnaarts et al., 1999). 

Repulsive forces dominate if the cell surface is hydrophilic and has no affinity 

for the substratum whilst irreversible bridging may occur if attractive forces 

exist, this is likely to result if both particles are hydrophobic and some attractive 

force exist (Rijnaarts et al., 1999). The hydrophobic properties of microbial cells 

have been well reported. It is widely agreed that microbial cell surface 

hydrophobicity is the dominant control of microbial adhesion to surfaces, 

educing biofilm formation (Ahimou et al., 2000). Microbial adhesion has been 

found to be ionic strength dependant, with steric interactions becoming stronger 

as ionic strength increases, enhancing bacterial attachment to surfaces 

(Rijnaarts et al., 1999). Hydrophobic interactions may therefore account for NP 

adsorption under high ionic strength conditions (Figure 5.3Figure 5.6).  In 

addition , Ahimou et al (2000) determined that the production of lipopeptide by 

B. subtilis increases the hydrophobicity of the cell, increasing the attractive van 

der Waals interaction (van Loosdrecht et al., 1990). It is important to note that 

the NPs are also surrounded by hydrophobic amine terminations 

(cyclohexylamine), these may form bridges with the hydrophobic bacterial 

surface polymers, permanently attaching NPs to the cell surface of the bacteria.  

Indeed, based on TEM, this may not just occur upon the cell surface but possibly 

within a matrix of EPS which surrounds the cell.  Despite this some desorption 

did occur. Figure 5.4 highlights the resuspension of only 15% of previously 

adsorbed NPs due to decreasing solution pH from 10 to 2, indicating that not all 

NPs are permanently attached to the bacterial surface. Clearly some NPs are not 

influenced by the irreversible electrosteric interactions; instead they are 

electrostatically controlled, allowing for reversible adsorption onto the bacterial 

cell.  
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Wastewater biofiom flocs were shown to be highly successful bisorbents, 

showing 100 % NP adsorption for the 2 and 4 g/10 ml adsorption experiments 

(Figure 5.5).  As with the B. subtilis system NP adsorption first occurs through 

electrostatic attraction.  Then, based on the B.subtilis experiments, permanent 

attachment occurs on the cell wall of individual bacterium and EPS in the 

biofilm. In the case of the wastewater biofilm NP binding will occur on the 

bacteria on the outer perimeter of the floc.  In addition to this diffusion and 

advection of NPs into the bacterial pellet may also occur, embedding NPs within 

the bacterial floc. Evidence for diffusion of NPs into the flocs was revealed by 

determining the total quantity NPs immobilized per unit of biomass.  Results 

show that typically 0.057 mg NPs/mg dry mass of biofilm were adsorbed, while 

0.079 mg NPs/mg dry mass B. subtilis were adsorped. If only the surface of the 

flocs was available for NP binding, one would expect orders of magnitude less NP 

adsorption compared to B. subtilis, as the flocs are orders of magnitude larger 

than B. subtilis and therefore will have orders of magnitude less surface area. 

However, the fact that total NP immobilization is broadly similar in both B. 

subtilis and floc experiments, suggests NPs are diffusing into the flocs to access 

other surfaces (i.e. cells and EPS inside the biofilm). Diffusion is the dominant 

process for solute transport within biofilm flocs (Stewart, 2003, Stoodley and 

Lewandowski, 1994, de Beer et al., 1997). The production of EPS has been shown 

to be an important factor in the retention of colloids (Leon Morales et al., 2007). 

Leon Morales et al. (2007) determined that the production of extracellular 

proteins resulted in the increased retention of colloids through sand columns 

inoculated with Pseudomonas aeruginosa.  The porosity and diffusive properties 

exhibited by biofilm flocs are predominantly controlled by the production of EPS 

in a biofilm (Golmohamadi et al., 2013). NP transport studies determined that 

NP size is the dominant control for NP uptake by biofilms via diffusion 

(Golmohamadi et al., 2013, Peulen and Wilkinson, 2011). Peulen et al. (2011) 

found that NPs smaller than 50 nm were readily adsorbed by biofilm coated sand 

grains via diffusion, however those larger than 50 nm were poorly incorporated. 

This finding is in agreement with Golmohamadi et al. (2013) whereby 66 nm 

titanium dioxide NPs did not penetrate biofilms produced from a strain of 

Pseudomonas fluorescens, i.e. NPs were larger than the pore size exhibited by 

EPS, thus completely excluding the NPs from the biofilm. The porous structure of 

the biofilm flocs may be responsible for slow uptake of NPs by the 2g/10 ml 
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biomass system as the NPs used here fall within this size range (<66 nm, Figure 

5.6) i.e., they are small enough to diffuse into the biofilm but their transport is 

slow.  Slow uptake kinetics are not observed in the 4g system as there is more 

biomass and therefore NP immobilization is faster.  In addition, cellular uptake 

of NPs by the biofilm is possible via facilitated transport. This process occurs as 

channel like transmembrane proteins transport NPs across the membrane (Kiser 

et al., 2010). Crucially, the largest transmembrane porins exhibit an opening 

diameter of 6 nm (Kiser et al., 2010) and so the NPs used here are unlikely to 

exhibit cellular uptake by the biofilm. However, NPs <10 nm have been reported 

to penetrate bacterial cells (Choi and Hu, 2008). In contrast, NP adsorption 

exhibited here likely occurs via a process of self-diffusion where by the NPs are 

influenced by Brownian motion within the biofilm matrix, rather than the 

cellular uptake of NPs. Hence, diffusion aided by electrostatic attraction is 

thought to be the dominant transport mechanism for NP immobilisation by 

wastewater biofilms. 

 The adsorption of NPs onto the biofilm was found to be pH and ionic 

strength dependant for intermediate electrolyte concentration; however pH did 

not significantly influence NP adsorption for the low and high electrolyte 

concentration experiments (Figure 5.6). As with the single celled B. subtilis 

adsorption experiments NP adsorption increased with increasing pH (for 

intermediate electrolyte concentration) and decreased with increased ionic 

strength. The pH effect can be clearly seen in the intermediate electrolyte 

experiment (10 mM NaCl, Figure 5.6,). Here as pH increased NP adsorption 

increased due to the deprotonation of functional groups on the cell wall of the 

bacterium and EPS, resulting in an increase from 55% at pH 2 to 95% NP 

adsorption at pH 10. However any change in pH has little effect on the low and 

high ionic strength adsorption experiments. This may be expected in the high 

ionic strength experiments as the increased electrolyte concentrations masks the 

surface charge upon the NPs and biofilm flocs. However for NPs and biofilm 

suspended in 1 mM NaCl any change in pH should be clearly observed, however 

this was not the case with all sample points falling within error of each other 

(Figure 5.6, blue triangles).  This may be explained by the fact that the 1mM 

system exhibited close to100% adsorption at pH 2, and therefore there was 

insufficient ‘head-room’ in the system to demonstrate greater adsorption at 

higher pH’s.  
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5.4.5 Conclusion 

In this study the removal of NPs by B. subtilis and wastewater biofilm 

flocs was examined. Both biosorbent agents were highly efficient at removing 

positively charged NPs, whilst negatively charged NPs were poorly adsorbed by 

B. subtilis, being electrostatically repelled from the bacterial surface.  For both 

biosorbent materials the removal of positively charged NPs is facilitated by the 

electrostatic attraction of positively charged NPs to the negative bacterial 

cell/floc. In the case of single celled bacteria permanent attachment occurred 

due to attractive van der Waals interactions, combined with the strong bridging 

between the NP’s hydrophobic amine terminations (cyclohexylamine) and 

hydrophobic bacterial surface polymers. A key difference in the adsorption 

mechanism of NPs by B. subtilis and wastewater biofilm flocs is diffusion into 

the porous structure of the biofilm occurs. The results indicate that NP 

biosorption via B. subtilis was highly pH and ionic strength dependant. Whilst 

wastewater biofilm flocs were ionic strength dependant, whilst varying solution 

pH offered little change in the sorption properties of the flocs in 1 and 100 mM 

NaCl. The results presented here indicate that both single celled B. subtilis and 

wastewater biofilm flocs are successful biosorbents for positively charged NPs 

whilst negatively charged NPs are repelled from the cell of B. subtilis and would 

require alternative methods of immobilisation. Overall, these findings highlight 

that planktonic bacteria and biofilms are highly efficient biosorbants for NP’s, 

this holds implications for NP transport in environmental systems and through 

wastewater treatment plants.      
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6 Conclusion 

6.1 Summary 

The aim of this PhD was to develop mechanisms to reduce and ultimately 

immobilise nanoparticles within water and waste water in order to prevent the 

transport of nanoparticles to sites where they have the potential to cause harm. 

Over recent years intense research has focused on the toxicity of manufactured 

nanoparticles and their effects on human health and the natural environment.  A 

growing body of evidence indicates that nanoparticles have the potential to 

exhibit toxicity to aquatic organisms and have the potential for bioaccumulation 

in the food chain (Lasagna-Reeves et al., 2010, Zhu et al., 2010, Lee et al., 

2008). As the nanotechnology industry continues to expand NPs will inevitably be 

release into the natural environment. Hence, developing methods to deal with 

nano-pollution is essential to prevent future environmental pollution incidents 

and to ensure the safe development of the nanotechnology industry.  This was 

achieved by inducing mineral precipitation in the presence of NPs. The 

electrostatic interactions occurring between the NP and the mineral surface 

determined whether the NP became occluded within the mineral precipitate or 

whether they remained in solution. In addition to mineral precipitating systems, 

NP immobilisation by bacteria (B. subtilis and wastewater treatment biofilm) 

was also investigated.  

This chapter presents a summary of the main finding from each research 

chapter, highlighting potential future work in this area of research.  

 

6.2 Immobilisation of nanoparticles by mineral 
precipitating systems 

An array of techniques exists for the remediation of numerous groundwater 

contaminants yet none have been specifically designed to deal with NPs. Here 

we address this fundamental technology gap by developing mechanisms to 

immobilise and remove NPs from solution.  Microbially mediated calcite 

precipitation was first tested as this process has been extensively studied over 

recent years due to its potential in a diverse array of applications. These range 
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from soil stabilisation (Whiffin et al., 2007) to the solid phase capture of heavy 

metals and radionuclides (Warren et al., 2001). 

This method showed great success in removing negatively charged 

nanoparticles in batch experiments whilst positively charged nanoparticles 

remained in solution. Electrostatic interactions greatly controlled the degree of 

nanoparticle capture. It was hypothesised that negatively charged nanoparticles 

act as nucleation sights for the precipitating calcite. However the kinetic 

analysis of calcite precipitation rates determined that the nanoparticle type 

(surface charge) had no impact on nucleation. Instead nanoparticles attach to 

growing calcite surfaces in solution, eventually becoming overtaken by the 

growing solidification front and thus occluded. Negatively charged nanoparticles 

exert a strong electrostatic attraction to the positively charged calcite surface, 

facilitating particle entrapment. Whilst in the case of positively charged 

nanoparticles an electrostatic repulsion exists. DLVO modelling confirms these 

observations, with attractive energy well acting between the calcite and 

negative nanoparticles, whilst a repulsive energy barrier exists between the 

calcite and the positive nanoparticles.  

As electrostatic interactions acting between the mineral and nanoparticle 

determine whether or not the nanoparticle becomes occluded within the 

mineral, the mineral precipitating system could therefore be specifically 

tailored to suit the nanoparticle surface character. Thus, in order to capture 

positively charged nanoparticles, a mineral possessing a negative surface charge 

would be required. Struvite was chosen not only because it exhibits a negative 

surface charge but it also requires ammonia to form as it is a magnesium 

ammonium phosphate mineral. Hence the precipitation of struvite has the 

potential to remove the undesirable concentrations of ammonia produced as a 

by-product of ureolysis, whist also removing positively charged nanoparticles 

from solution.  

Struvite precipitation was first tested in the absence of nanoparticles in 

order to determine the optimal condition for struvite precipitation. Struvite 

precipitation was initially tested during ureolysis. That is magnesium and 

phosphorus are added at the beginning of the experiment so that when 

ammonium is produced by ureolysis struvite would immediately form. However 

this was not the case, instead some form of magnesium phosphate mineral was 
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precipitated despite the production of ammonium. Following this, struvite 

precipitation was tested again with total urea hydrolysis complete before the 

addition of magnesium and phosphorus sources in four stages of 25 mM each. 

This method showed great success, removing 100% of the ammonium produced 

by ureolysis. This approach was therefore used for the nanoparticle 

immobilisation experiments. As the mineral precipitates nanoparticles were 

concurrently removed from solution, up until a point. Nanoparticle removal was 

found to be highly pH and ionic strength dependant. As the solution pH 

decreased and ionic strength increased nanoparticle concentration increased. 

These findings suggest that nanoparticles are electrostatically attached to the 

mineral surface as opposed to occlusion within the growing mineral (as reported 

in the calcite precipitating system). Hence, any change in solution pH and ionic 

strength will greatly affect the surface charge of the nanoparticle and mineral 

surface. This has the potential to weaken the electrostatic attraction between 

the nanoparticle and mineral surface, allowing for the resuspension of previously 

immobilised nanoparticles from solution. The findings here suggest that struvite 

precipitation removes 100% of the ammonia produced by ureolysis. In addition 

struvite precipitation successfully removed positively charged nanoparticles from 

solution. Here the nanoparticles are reversibly attached to the mineral surface 

and so solution pH and ionic strength must be carefully controlled in order to 

ensure the removal of positively charged nanoparticles. The fact that 

nanoparticles are electrostatically attached to the mineral surface could be 

advantageous. This approach has the potential to be used to recycle 

nanoparticles by separating them from solution, altering the solution chemistry 

to resuspend the nanoparticles for secondary use.      

The results presented here indicate that the mineral precipitation system 

may be specifically tailored to treat the NP surface character. Inducing mineral 

precipitation has the potential to immobilise nanoparticles from contaminated 

groundwater systems, impacting their transport and fate in environmental 

systems.  
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6.3 Immobilisation of nanoparticles through porous 
media by calcium carbonate precipitation  

Following the successful immobilisation of negatively charged nanoparticles 

by calcium carbonate precipitation in batch experiments this method was tested 

again through porous media. This was done to in order to increase the 

complexity of the system, replicating a more real life scenario such as a sand 

aquifer. Immobilisation was tested as a function of porous media type (glass 

beads and sand) and grain size (fine, medium and large).  

Negatively charged nanoparticles displayed high mobility through all porous 

media types tested when suspended in deionised water. Nanoparticle mobility 

was reduced under all experimental conditions tested, however, the lowest 

rates of nanoparticle mobility were consistently found in columns where calcium 

carbonate precipitation was promoted. As ureolysis commenced, calcium 

carbonate precipitation occurred around the nanoparticles, on grain boundaries 

and within the pore spaces. As in chapter 3, nanoparticles become occluded 

within the mineral precipitate. In addition, gravitational settling of the nano-

calcite composite allows nanoparticles to become cemented to the grain 

boundaries within the column. The findings from this chapter suggest that 

microbially mediated calcite precipitation may be used as a tool to significantly 

reduce nanoparticle mobility in environmental systems.  

 

6.4 Bacterial biosorption of nanoparticles 

Bacteria and biofilms are commonly used to adsorb and degrade an array of 

pollutants, being commonly used as a treatment step in wastewater treatment 

plants. Here, we tested the ability of B subtilis, a common groundwater 

bacterium, and wastewater biofilm to remove nanoparticles from solution.  

The experiments presented here suggest that B. subtilis and wastewater 

biofilm are highly effective at removing positively charged nanoparticles whilst 

negatively charged nanoparticles remained in solution. The positively charged 

nanoparticles are electrostatically attracted to the negative charge of the 

bacterial cell/floc. A key difference in the adsorption mechanism of 

nanoparticles by B. subtilis and wastewater bioflm flocs is that nanoparticles 

have the ability to diffuse into the porous structure of the biofilm.  Both 
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biosorbent materials were found to be ionic strength dependant, with fewer 

nanoparticles being removed at higher ionic strength. B. subtilis was found to be 

highly pH dependant, with greater sorption at higher pH, due to the ionisation of 

surface functional groups increasing the negative charge on the bacterial 

surface.  In contrast any change in pH offered little difference in the sorption 

properties of the wastewater granules in solutions of 1 and 100mM NaCl.  

The results presented here highlight that planktonic bacteria and 

wastewater treatment biofilm are highly effective sorbents of positively charged 

nanoparticles. These findings suggest that current municipal wastewater 

treatment works have the potential to remove positively charged nanoparticles 

during the biological treatment stage of the process. Wastewater treatment 

biofilm and activated sludge are removed from the treatment process as 

settlement sludge. Currently settlement sludge is processed and in some cases is 

sold as fertiliser to farmers. In such instances it is crucial to monitor this sludge 

for toxic elements before handing it over to a third party. In the case of 

negatively charged nanoparticles alternative methods would be required. The 

removal of negatively charge nanoparticles may be facilitated by the 

precipitation of calcium carbonate where by the calcite-nano composites are 

settle and removed. They may then be treated separately or disposed of 

responsibly.  

 

6.5 Future work 

The research presented here demonstrates that nanoparticle 

immobilisation mechanisms may be specifically tailored to suit the nanoparticle 

surface properties. In addition current wastewater treatment technologies may 

be successful sorbents of positively charged nanoparticles whilst negatively 

charged nanoparticles have the potential to discharge from wastewater 

treatment works into environmental systems. To ensure the safe development of 

the nanotechnology industry the immobilisation methods developed throughout 

this thesis must be explored further. Future work must therefore focus on 1) 

establishing the current and predicted future environmental concentrations of 

NPs in the UK and globally; 2) the mineral precipitating systems discussed in this 

thesis must be scaled up to field scale application; 3) the mineral precipitating 

systems must be tested with a variety of NP types and concentrations. 
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Current NP concentrations may be investigated through 24 hour sampling at 

significant wastewater treatment works to determine the current NP 

concentration in waste streams. A major flaw of many NP toxicity and transport 

studies is that researchers do not perform their experiments with 

environmentally relevant concentrations NPs. This is due to a lack of information 

regarding the environmental concentration of NPs. However, some estimates of 

future NP concentrations have been published. These are based on models which 

look at information such as production volume of NPs, particle release from 

products and environmental conditions (Mueller and Nowack, 2008). Such studies 

have rarely been conducted due to the complexity nature of the nanotechnology 

industry. More needs to be done in this field for researchers and regulatory 

bodies to fully understand the risk associated with the expansion of the 

nanotechnology industry. 

The bench scale experiments presented here showed great success. 

However these need to be scaled up in order to increase the complexity of the 

systems, with the intention of deploying field scale tests. In the case of 

microbially mediated calcium carbonate precipitation it would be of interest to 

design a larger scale experiment which exhibits mixing of the reacting fluids, 

instead of simply bottom to top flow which occurred in the column experiments. 

A sand box for example could be used. Through this the optimum injection 

strategy of the reaction fluids could also be tested to ensure the maximum 

removal of negatively charged nanoparticles. Once an optimum strategy is 

developed field scale trials may be employed. Such trials may be performed in 

areas which already have bore holes emplaced such as a disused quarry. 

Performing field trials in locations such as this would reduce operational costs 

and to limit environmental damages.  

 In order to develop the immobilisation of positively charged nanoparticles 

by struvite precipitation, column experiments must be performed. Here a porous 

media exhibiting a positive surface charge (such as calcite or dolomite) would be 

required to ensure that the positively charged nanoparticles are sufficiently 

mobile. If the column experiments prove to be successful a similar escalation 

procedure could be followed for the struvite as precipitation experiments as was 

done for the calcite experiments.    
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The nanoparticle concentration remained constant at 10 mg/l for all 

experiments preformed in this thesis. It would be of interest to determine 

whether varying the nanoparticle concentration would impact the removal 

efficiency of nanoparticles for the methods tested.  It would also be of 

importance to test the technologies presented here with a variety of 

nanoparticle types, shapes and sizes. For example does nanoparticle shape 

influence nanoparticle immobilisation by microbially mediated calcium 

carbonate precipitation? The incorporation of carbon nanotubes for example 

could be compared to the results presented in chapter 2. In addition silver 

nanoparticles are specifically tailored for their antimicrobial properties (Rai et 

al., 2009). Thus it would be of interest to determine if their presence would 

exhibit toxicity to the bacterial strains utilised in this thesis.  
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Appendix A 

Table A 1: Saturation indices for minerals which could potentially be formed from 10 mM 
NH4, MgCl2 and K2HPO4 at pH 8 as exhibited in the S1 experiment. (Visual MINTEQ, version 
3.0). 

Mineral   Saturation Index 

Struvite 1.587 

Mg3(PO4)2 1.569 

MgHPO4:4H2O 0.606 

Brucite -3.672 

KCl -4.484 

Mg2+(OH)2 -5.366 

Mg2(OH)3Cl:4H2O -8.935 

Periclase -8.157 
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Appendix B  

The Hamaker constant for 2 phases interacting across a medium (3) was 

calculated according to the equation by Overney (2009): 

 

 

where    is the dielectric constant, n  the refractive indices and Ve the 

absorption frequency. 
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