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Summary 

Herpes simplex virus type 1 (HSV -1), like other members of the Herpesviridae, 

has the ability replicate in different cell types and cause latent infection. Replication of 

the viral genome requires a multitude of reactions that require protein catalysts. 

Herpesviruses in general encode many of their own replication enzymes in the viral 

genome allowing the efficient production of progeny virus. The reason why 

herpesviruses, and many other viruses, encode enzymes that essentially duplicate the 

function of cellular enzymes is presumably to increase the efficiency of virus 

replication in host tissues. This may be especially important to the herpesviruses 

during latent infection. HSV -1, for example, must replicate in both mucosal and 

neuronal tissues. For productive infection and spread to a new host the virus must 

reactivate from resting neurons where the availability of cellular replication machinery 

is limited. 

To ensure the efficient transfer of genetic information to the next generation the 

fidelity of genome replication must be high. Many enzymes are involved in the 

replication of DNA although the number of these functions that are virally encoded 

varies dramatically between different virus families. DNA polymerase provides the 

main catalytic function for the replication of DNA and, despite its high processivity, 

retains the ability to faithfully replicate the DNA template with considerable fidelity. 

This accuracy is only possible if there is a balanced pool of the four 

deoxyribonucleotides necessary for DNA synthesis: dATP, dCTP, dGTP and dTTP. 

Disruption of the nucleotide pool can lead to increased mutation rates and DNA 

fragmentation. Transfer of intact genetic information is crucial and in order that these 

pools are maintained, many viruses encode their own version of specific nucleotide 

metabolism enzymes. 

This thesis deals with the investigation of one of these enzymes, deoxyuridine 

triphosphatase (dUTPase). This highly specific enzyme converts dUTP to dUMP thus 

reducing the available pool of uracil for DNA misincorporation. Uracil can also occur 

in DNA by the deamination of cytosine which is potentially mutagenic. To counteract 

this, a repair mechanism has evolved mediated by uracil DNA glycosylase. This 

excision repair process involves a local strand break in the DNA backbone. Excessive 

uracil incorporation induces multiple rounds of excision repair and can lead to DNA 

fragmentation. dUTPase also acts to supply dUMP for the synthesis of dTTP. 

dUTPase is ubiquitous in nature and found in both prokaryotic and eukaryotic 

organisms. Many, but not all, viruses encode their own dUTPase. This is also true of 

the herpesviruses where members of the a- and y-subfamilies encode a dUTPase 

whereas members of the r3-subfamily do not. The dUTPase of HSV-l was originally 

found to be non-essential in tissue culture. Only recently has interest in the herpesvirus 

dUTPase increased when experiments using the mouse model demonstrated that HSV-
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1 mutants which lacked dUTPase activity had over a 1000-fold reduction in 

neurovirulence, neuroinvasiveness and reactivation from latency (R. B. Pyles, N. M. 

Sawtell & R. L. Thompson, Journal of Virology 66:6706-6713, 1992). There have 

been several subsequent reports of dUTPase- mutant viruses replicating with wild type 

kinetics in tissue culture but being severely impaired during growth in vivo. These 

include dUTPase- mutants ofFIV, EIA V, CAEV and visna virus. 
Analysis of primary sequence data revealed a subset of open reading frames that 

were predicted to encode dUTPases based on five areas of local primary sequence 
conservation (Motifs 1-5) (D. J. McGeoch, Nucleic Acids Research 18:4105-4110, 

1990). This was subsequently confirmed by the characterisation of several of these 

predicted protein products. The differences in the primary sequence organisation of 

these motif regions allowed the description of two distinct dUTPase classes. The class 

I dUTPases are encoded by a diverse range of organisms and are characterised by a 

trimeric arrangement with subunit protein lengths approximating 150 amino acids. The 

class II dUTPases are specific to the herpesviruses and are characterised by a 

monomeric arrangement with a protein chain length approximately double that of their 

class I counterparts. It has been proposed that the class II dUTPases arose by the 

intragenic duplication of the class I open reading frame. 
The first structure of a dUTPase was published with the crystallisation of the 

E.coli version (E. S. Cedergren-Zeppezauer, G. Larsson, P. O. Nyman, Z. Dauter & K. 

S. Wilson, Nature 355:740-743, 1992). Subsequently structures of FIV, EIA V and the 

human dUTPase have now been published. To date there is no available structure of a 

class II dUTPase. In this thesis the class I structures were used as a basis to investigate 

the HSV -1 class II dUTPase in terms of structural and evolutionary relationships. 
To allow a defined approach to functional analysis of the HSV-l dUTPase a 

tertiary structural model was generated for the class II enzymes. Following intensive 

primary sequence analysis a method was devised from comparing class I and class II 

sequences directly. Secondary structure prediction programs were utilised to judge the 
basic structural similarities between the two classes allowing the proposition of several 

defined hypotheses. The available class I structural information was utilised in order to 

characterise highly conserved structural elements within the class I group. It was then 

possible to relate this data set to class I primary sequences and subsequently to the 

generation of a class II model. Various modelling techniques were used based on the 

constraints on the structural organisation that could achieve a functionally active 

monomer plus the set of hypotheses defined in the earlier work. 
Mutagenic analysis of the HSV -1 dUTPase was then possible using the class II 

model as a reference. Several targets were investigated based on predicted functionally 

important regions. Analysis of these mutant enzymes was performed using purified 

recombinant HSV-l dUTPase expressed from the T7 E.coli expression system. The 

results are discussed with regard to the evolution of structure and function in the class 

II enzymes. 
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Non-Standard Abbreviations 

A 

APS 
ATP 

B.subtilis 

BSA 

bp 

C 

cpm 

dAMP 

dATP 

dCMP 

dCTP 

dGMP 

dGTP 

dTMP 

ddATP 

ddCTP 

ddGTP 

ddTTP 

dTTP 

dUMP 

dUTP 

dUTPase 

DNA 

DNase 

DMSO 

ds 

DTT 

E.coli 

EDTA 

EGTA 

EtBr 

FPLC 

G 

HEPES 

IPTG 

adenine 

ammonium persulphate 

adenosine 5'-triphosphate 

Bacillus subtilis 

bovine serum albumin 

base pair 

cytosine or carboxy terminal end of protein 

counts per minute 

2'-deoxyadenosine 5'-monophosphate 

2'-deoxyadenosine 5'-triphosphate 

2'-deoxycytidine 5'-monophosphate 

2'-deoxycytidine 5'-triphosphate 

2'-deoxyguanosine 5'-monophosphate 

2'-deoxyguanosine 5'-triphosphate 

2'-deoxythymidine 5'-monophosphate 

2',3' -dideoxyadenosine 5'-triphosphate 

2',3'-dideoxycytidine 5'-triphosphate 

2',3'-dideoxyguanosine 5'-triphosphate 

2',3'-dideoxythymidine 5'-triphosphate 

2'-deoxythymidine 5'-triphosphate 

2'-deoxyuridine 5'-monophosphate 

2'-deoxyuridine 5'-triphosphate 

deoxyuridine triphosphatase 

deoxyribonucleic acid 

deoxyribonuclease 

dimethylsulphoxide 

double stranded 

dithiothreitol 

Escherichia coli 

ethylenediamine tetra-acetic acid 

ethylene glycol-bisCj3-aminoethyl ether)N,N,N',N'-tetraacetic acid 

ethidium bromide 

fast protein liquid chromatography 

guanme 

N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid 

isopropyl thiogalactoside 
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Kb 

Kbp 

KDa 

MAb 

MCR 

Mr 

MW 

N 

OD 
ORF 

PBS 

PCR 

PEG 

pfu 

PMSF 

RNase A 

rpm 

RNA 

RT 
S.cerevisiae 

SDS 

ss 

T 

Taq 

TEMED 

TK 

TLC 

Tris 

ts 

/-1 

UV 

wt 

kilobase( s) 

kilobase pair( s) 

kilodalton 

monoclonal antibody 

multiple cloning region 

relative molecular mass 

molecular weight 

unspecified nucleotide; amino terminal end of protein; asparagine 

optical density 

open reading frame 

phosphate butTered saline 

polymerase chain reaction 

polyethylene glycol 

plaque forming units 

phenylmethylsulphonyl fluoride 

ribonuclease A 

revolutions per minute 

ribonucleic acid 

room temperature 

Saccharomyces cerevisiae 

sodium dodecyl sulphate 

single stranded 

thymine 

Thermus aquaticus DNA polymerase 

N,N,N,N tetramethyl ethylenediamine 

thymidine kinase 

thin layer chromatography 

tris(hydroxymethyl )aminomethane 

temperature-sensitive 

mIcro 

ultra-violet radiation 

wild type 
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Table of Amino Acids 

Amino acid Three letter code Single letter code 

Alanine Ala A 

Arginine Arg R 

Asparagine Asn N 

Aspartic acid Asp D 

Cysteine Cys C 

Glutamic acid Glu E 

Glutamine GIn Q 
Glycine Gly G 

Histidine His H 

Isoleucine He I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Phenylalanine Phe F 

Proline Pro P 

Serine Ser S 

Threonine Thr T 

Tryptophan Trp W 

Tyrosine Tyr Y 

Valine Val V 

Mutation Abbreviations 

Each mutant dUTPase enzyme that was constructed was given a specific code. 

The first number indicates the motif involved (see section 1.4.8). The next 

letter/number/letter combination indicates the amino acid single letter code (above) and 

position of the wt residue followed by the single letter code of the mutant residue. 

For example, mutant enzyme 3Y100A has the tyrosine residue, at position 100 

in the motif 3 region, mutated to an alanine. An 'N' replacing the first number 

indicates a non-motif mutation. For example, NC76A has the cysteine mutated to an 

alanine at a locus outside the motif regions. 
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Virus Abbreviations 

BHV-I 

BHV-2 

BHV-4 

CAEV 

CCV 

EBV 

EHV-I 

EHV-2 

EHV-4 

EIAV 

FIV 

GCMV 

HCMV 

HHV-6 

HHV-7 

HIV 

HSV-I 

HSV-2 

HVS 

lAP-HI 8 

KSHV 

MCMV 

MDV 

MHV-68 

MMTV 

MPMV 

PRY 

SHV-2 

SRV-I 

VZV 

bovine herpesvirus I 

bovine herpesvirus 2 

bovine herpesvirus 4 

caprine arthritis-encephalitis virus 

channel catfish virus 

Epstein-Barr virus 

equine herpesvirus I 

equine herpesvirus 2 

equine herpesvirus 4 

equine infectious anaemia virus 

feline immunodeficiency virus 

guinea pig cytomegalovirus 

human cytomegalovirus 

human herpesvirus 6 

human herpesvirus 7 

human immunodeficiency virus 

herpes simplex virus type 1 

herpes simplex virus type 2 

herpesvirus saimiri 

hamster intracisternal A particle 

Kaposi's sarcoma associated herpesvirus 

(also referred to as human herpesvirus 8) 

murine cytomegalovirus 

Marek's disease virus 

murine herpesvirus 68 

mouse mammary tumour virus 

Mason-Pfizer monkey virus 

pseudorabies virus 

salmonid herpesvirus 2 

simian type D retrovirus 

varicella-zoster virus 
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Chapter 1 - Introduction 

1.1 Overview 
The research presented in this thesis concerns the herpes simplex virus type 1 

(HSV-1) enzyme deoxyuridine triphosphatase (dUTPase). The introduction is designed 

to give an overview of the herpesviruses and summarise the current state of knowledge 

on dUTPases. The first chapters deal with background information on the more 

general aspects of the Herpesviridae including classification, role in human 

pathogenicity and replication. Further chapters are concerned specifically with the 

function of the dUTPase enzyme in a wide variety of organisms and in relation to 

potential antiviral targets and cancer therapy. The Escherichia coli enzyme, which 

forms the basis for the molecular modelling of the HSV-1 dUTPase, is dealt with in a 

separate chapter. The introduction concludes with details of the HSV-1 dUTPase and 

provides the starting point for the work presented in this thesis. 

1.2 The Biology of the herpesviruses 

1.2.1 Characteristics and classification of the Herpesviridae 

The Herpesviridae is a large family with almost 100 members characterised to 

date. Herpesviruses infect a wide range of higher eukaryotic hosts and most animal 

species studied have yielded at least one member. The family is defined by the 

architecture of the virion which is composed of four morphologically distinct 

components termed the core, capsid, tegument and envelope (reviewed by Rixon, 

1993). The virion core contains the virus genome ranging in size from 125 to 230kb 

and present as linear double-stranded DNA (Epstein, 1962). Initial studies based on 

electron microscopy described the DNA arrangement as a toroid structure around a 

central protein (Furlong et al., 1972; Nazarian, 1974). Later studies indicate that the 

viral DNA is in a liquid crystalline form within the capsid (Booy et al., 1991). The 

capsid is icosahedral in shape, approximately 100nm in diameter and consists of 162 

capsomeres (Wildy et al., 1960). The tegument is an amorphous proteinaceous region 

that surrounds the capsid and is in turn surrounded by the envelope (Roizman & 

Furlong, 1974). The envelope consists of a lipid bilayer derived from the host cell 

membranes and exhibits glycoprotein spikes on the surface (Spear & Roizman, 1972). 

Historically the herpesviruses have been classified according to their biological 

properties and divided into three subfamilies, designated the a-herpesvirinae, 13-
herpesvirinae and y-herpesvirinae (Roizman et al., 1992). With few exceptions, this 
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classification corresponds with the genetic relationships determined by comparisons of 

amino acid sequences and gene organisation (McGeoch, 1989). Genomic analysis also 

provides a basis for assigning potential functions to homologous genes in related 

subfamilies (McGeoch & Davison, 1986~ McGeoch et at., 1993). There are now 14 

complete herpesvirus sequences available (Table 1.1) which has allowed the 

determination of evolutionary relationships. 

Virus Size (bps) Reference 

Epstein-Barr virus 172282 (Baer et a/., 1984) 

Varicella-zoster virus 124884 (Davison & Scott, 1986) 

Herpes simplex virus 1 152261 (McGeoch et a/., 1988a) 

Human cytomegalovirus 229354 (Chee et aI., 1990) 

Equine herpesvirus 1 150223 (Telford et aI., 1992) 

Channel catfish virus 134226 (Davison, 1992) 

Herpesvirus saimiri 112921 (Albrecht et aI., 1992) 

Equine herpesvirus 2 184427 (Telford et aI., 1995) 

Human herpesvirus 6 159321 (Gompels et aI., 1995) 

Human herpesvirus 7 144861 (Nicholas, 1996) 

Human herpesvirus 8 140500 (Russo et aI., 1996) 

Murine cytomegalovirus 230278 (Rawlinson et aI., 1996) 

Murine herpesvirus 68 118237 (Virgin et aI., 1997) 

H~!]~~s simplex virus 2 154746 (Dolan et aI., 1998) 

Table 1.1 Fully sequenced genomes of the herpesviruses. 
The above table shows the herpesviruses that have been sequence with the respective genome size and 
author reference. 

These sequenced genomes vary widely in a number of aspects including length 

(Table 1.1), gene content and overall arrangement which are discussed in Section 1.2.4. 

However, there is a subset of approximately 40 genes which are conserved between all 

the a-, ~- and y-herpesviruses implying a common ancestry (Davison & Taylor, 1987~ 

McGeoch, 1989). In general, classification using genome analysis is in agreement with 

previous studies employing biological properties, although there are exceptions. EHV-

2 and EHV -5 were originally classified as ~-herpesviruses (Plummer et ai., 1969), 

however analysis of fragments from their genomes demonstrated their correct 

classification as distinct y-herpesviruses (Telford et ai., 1993). Genomic analysis of 

MDV showed that it was more closely related to the a-herpesviruses rather than the y_ 

herpesviruses with which it was originally classified (Buckmaster et ai., 1988). 

Similarly, HHV-6, originally classified as a y-herpesvirus on the basis of its biological 
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properties, has since been shown to be more related to the (3-herpesviruses, in particular 

to HCMV (Gompels et al., 1995; Lawrence et ai., 1990). 

The sequencing of channel catfish virus (CCV) has yielded information on a 

herpesvirus from a lower vertebrate species. It was initially defined as a herpesvirus 

based on the morphological characteristics of its virion and as a member of the (X

herpesvirinae based on its biological properties (Roizman, 1982). Analysis has shown 

that it does not possess the subset of genes that is common to the other herpesviruses. 

It has been suggested, based on this lack of similarity, that CCV may have evolved 

independently from the mammalian herpesviruses (Davison, 1992). Sequence data 

from salmon herpesvirus 2 (SaIHV-2) support a relationship with CCV and it is likely 

that both fish viruses may have to be assigned to a separate subfamily (Bernard & 

Mercier,1993). Recent investigation of the genome ofsalmonid herpesvirus 1 (SaIHV-

1) has shown that this virus also shares homology with CCV at the amino acid primary 

sequence level and is again unrelated to the mammalian herpesviruses supporting the 

classification of fish herpesviruses as a distinct subfamily (Davison, 1998). 

The wealth of sequence information from complete and partially sequenced 

members of the Herpesviridae has allowed phylogenetic analysis. It has been found 

that certain genes are highly conserved between evolutionary closely related members 

(McGeoch, 1990a). Gene sets within each subfamily, although closely related to each 

other, are substantially divergent from the other subfamilies. Using various gene sets 

as markers for evolutionary relatedness, it has been possible to construct phylogenetic 

trees and infer evolutionary timescales. This analysis closely groups the herpesviruses 

into the three recognised subfamilies (x, (3, and y. These three subfamilies are clearly 

defined even when using diverse gene sets such as those from the viral DNA 

polymerase, DNA helicase and glycoprotein gB. In actual fact, these studies have 

allowed substantial resolution of evolutionary relatedness beyond the three subfamily 

categories (Figure 1.1). Sub lineages within each subfamily reveal how individual 

members are related to one another with far greater resolution than the biological 
classification system alone. 
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Figure 1.1 Phylogenetic distance trees from various gene sets_ 
Trees were derived from aligned amino acid sequence comparisons using the neighbour-joining distance 
method_ (A) Tree derived from the DNA helicase gene set (UL5). (B) Tree derived from the DNA 
polymerase gene set (UL30). (C) Tree derived from a combined group of 10 members with 8 gene sets. 
The approximate root position is indicated by an arrow (see text below). Adapted from (McGeoch et ai., 
1995). 

Studies on the molecular phylogeny of the a-herpesviruses revealed that the 

branching pattern of their phylogenetic tree could be efficiently transposed onto their 

corresponding host tree (McGeoch & Cook, 1994). This strongly indicates that these 

viruses co-speciated with their host organisms. This finding makes it possible to 

calculate an evolutionary timescale for all the herpesviruses using the palaeontological 

data available from their hosts. The radiation of the three subfamilies has been 

suggested to occur approximately 180-200 million years ago with the major 

sublineages being generated about 60-80 million years ago (McGeoch et aI., 1995). 

These figures are based on the assumption that all members in the group have 

experienced a constant molecular clock and that there are no strong biasing effects 
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from base composition variations. The approximate root position is shown as an arrow 

on Figure 1.1(C). From this root position it can been seen that the initial radiation 

occurred between the a-herpesvirus and the precursor of the J3 and y subfamilies. 

Each of the three defined subfamily groupings exhibits characteristic biological 

properties. The members of the subfamily a-herpesviruses are characterised by 

variable host range, relatively short reproductive cycle (usually less than 24 hours), 

rapid spread and cytolytic infection of cells in culture. Latent infection is frequently 

established in sensory ganglia. Members of this subfamily include herpes simplex 

virus 1 (HSV-I), herpes simplex virus 2 (HSV-2), varicella-zoster virus (VZV), 

pseudorabies virus (PRV) and equine herpesviruses I and 4 (EHV-I and -4). 

In general the J3-herpesviruses have a restricted host range with slow viral 

replication and lytic progression. The infected cells frequently become enlarged. 

Latent infections are usually established in secretory glands, lymphoreticular cells and 

the kidneys. Members of this subfamily include human cytomegalovirus (HCMV), 

murine cytomegalovirus (MCMV), human herpesvirus 6 (HHV-6) and human 

herpesvirus 7 (HHV -7). 

The y-herpesviruses also have a restricted host range and cannot infect 

experimental animals outside the family or order of their natural host. Replication 

occurs typically in T or B lymphocytes and latent infection is frequently established in 

lymphoid tissue. Members of this subfamily include Epstein-Barr virus (EBV), 

herpesvirus saimiri (HVS), equine herpesvirus 2 (EHV-2) and murine herpesvirus 68 

(MHV-68). 

1.2.2 Pathogenicity of the human herpesviruses 

Herpesviruses cause a range of clinical disorders in humans and are 

characterised by the establishment of latent infection. The virus is generally spread by 

direct contact between infected individuals and uninfected individuals, particularly at 

mucosal tissues. Herpesvirus infection has received a higher profile in recent times due 

to increased numbers of immunocompromised individuals. This is mainly through 

drug therapy, as in transplant patients, or as a result of AIDS. 

HSV-I is the most studied herpesvirus and is widespread with over 90% of 

western population seropositive by the age of sixty (Nahmias et ai., 1970). Infection of 

epithelial tissue generally causes vesicular lesions at mucosal membranes around the 

mouth, lips and nose. The distinction between the two serotypes HSV-l and HSV-2 

was historically on the basis that HSV -1 was responsible for the common 'cold-sore' 

and HSV-2 for genital lesions. However, it is noted that up to 50% of genital infections 

can be caused by HSV-l (Kinghorn, 1993) and inversely up to 20% of oral infections 
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by HSV-2, therefore this distinction is no longer clear cut (Wiedbrauk: & Johnston, 

1993). 

In general, HSV-l establishes latency in the trigeminal ganglia and HSV-2 in 

the sacral ganglia. Both serotypes can periodically reactivate causing recurrent lytic 

infection and leading to lesions at peripheral sites (reviewed by Nash & Lohr, 1992). 

Herpes simplex viruses can also cause conjunctivitis, herpetic whitlow and ocular 

keratitis, particularly in immunocompromised individuals. Clinically, the most severe 

situation is infection of the central nervous system (CNS) causing acute necrotising 

encephalitis (Corey & Spear, 1986). Neonatal infection also has a high mortality rate 

and is usually due to a primary HSV -2 infection in the mother where no maternal 

antibody is present for protection (Sullivan-Bolyai et at., 1983). 

VZV is the causative agent of chickenpox (varicella), a disease resulting from 

primary infection, generally in children. Following infection, the virus spreads through 

viraemia and ascends to the dorsal root ganglia of sensory nerves supplying the affected 

skin. Symptoms are in the form of a rash 14-15 days after infection and are often 

accompanied by fever. Reactivation of latent virus from neural ganglia in later life 

results in a localised vesicular condition known as shingles (herpes zoster). This 

condition is often accompanied by severe pain which can persist for months after the 

lesions have healed (Gelb, 1990). In contrast to HSV, VZV reactivation either does not 

occur in most individuals or is limited to a single recurrence of infection (Straus, 1989). 

HCMV affects the majority of the population asymptomatically although in 

certain cases HCMV infection results in the development of a mononucleosis 

syndrome. Primary infection is characterised by cytomegaly (the enlargement and 

fusion of macro phages). In immunocompromised individuals HCMV can cause a wide 

range of diseases in many organs including the lungs, gastrointestinal tract and CNS 

(Britt & Alford, 1993~ Gallant et at., 1992). HCMV respiratory infection in AIDS 

patients can lead to potentially fatal pneumonia (Meyers et aI., 1986). Retinitis is the 

most common HCMV disease of the nervous system and affects up to 20-25% of long

lived AIDS patients. HCMV is also associated with neurological damage in neonates 

(Alford et at., 1990). 

EBV is usually acquired during childhood when it is generally asymptomatic, 

however primary infection in later life results in infectious mononucleosis, commonly 

known as glandular fever (Niederman et aI., 1968). EBV has a strong association with 

a variety of malignant diseases. Nasopharyngeal carcinoma (NPC) was first linked to 

EBV on the basis of epidemiological studies showing elevated levels of antiviral 

antibody titres in NPC patients (Old et at., 1966~ Mansoor et aI., 1997). There is also 

an association with Hodgkin's disease after the key finding that monoclonal viral 

genomes could be detected in tumour biopsies and that EBV DNA was localised to 
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malignant cells (Anagnostopoulos et al., 1989; Weiss et al., 1987). Burkitt's lymphoma 

has also been linked to EBV infection (Gunven et al., 1970; Khanna et al., 1997; 

Magrath et al., 1992). EBV is associated with various T cell and B cell lymphomas 

(Jones et al., 1988; Su et al., 1991). In AIDS patients, EBV infection can cause oral 

hairy leukoplakia (Greenspan et al., 1985). 

HHV -6 is known to affect up to 90% of the population although comparatively 

little is know about the virus. Primary infection generally occurs in infants and can be 

asymptomatic or cause the skin rash roseola (exanthem subitum) (Yamanishi et al., 

1990). The significance of HHV-6 as a pathogen is unclear but its tropism for CD4+ 

lymphocytes has led to speculation that it may have an adjunct role in AIDS (Takahashi 

et al., 1989; Levy et al., 1990). 

HHV-7 was isolated from peripheral blood lymphocytes (Frenkel et aI., 1990) 

and has been associated with roseola in infants (Ablashi et al., 1995). llliV-7 shows 

limited hybridisation with probes derived from llliV -6 but has significant antigenic 

dissimilarity to allow seroepidemiological discrimination between the two viruses 

(Wyatt et al., 1991). 

An eighth human herpesvirus, related to HVS and now classified as a y

herpesvirus, has been associated with the neoplasm, Kaposi's sarcoma (Chang et al., 

1994; Chang & Moore, 1996; Moore et al., 1996). The virus has been given the trivial 

descriptive name KS-associated herpesvirus (KSHV) but is likely to be given the 

formal classification of human herpesvirus 8. 

1.2.3 Herpesvirus replication 

The lytic replication cycle of HSV -1 can be divided into attachment of the virus 

particle, entry into the host cell, DNA replication, and virion production. Initial events 

involve the attachment of the virus to the cell and fusion of the viral envelope to the 

plasma membrane. There have been ten surface glycoproteins identified in HSV-I, 

five of which are dispensable in cell culture. It is likely that HSV -1 can utilise more 

than one attachment pathway and there appears to be more than one viral protein-cell 

interaction. Studies have been complicated by the fact that in vivo HSV-I infects two 

very different cell types, epithelial and neuronal. Unlike the continuous cell lines used 

for many of the attachment studies, both of these cell types are polarised in vivo, 

sorting membrane and secreted proteins to different surfaces (Dotti & Simons, 1990; 

Rodriguez-Boulan & Pendergast, 1980). 

Heparan sulphate has been identified as a major component of HSV-l cell 

surface binding although even on removal of the molecule from cells there is still some 

infectivity (Shieh et al., 1992; Shieh & Spear, 1994). It is likely that heparan sulphate 

is one of a number of receptors or acts as a cofactor in glycoprotein binding. Following 
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attachment, entry into the cell is probably mediated by fusion of the viral envelope and 

the plasma membrane. Data from analysis of mutated viruses suggest that this process 

requires participation of several gene products (Brandimarti et al., 1994). Infection 

results in an immediate drop in host DNA and protein synthesis (Read & Frenkel, 1983; 

Roizman & Roane, 1964). Following entry, viral capsids are transported to the nuclear 

pore where viral DNA is released into the nucleus (Batterson et al., 1983). This 

process is thought to be mediated by the cellular cytoskeleton (Kristensson et a/., 

1986). 

HSV gene expression occurs in a coordinately regulated cascade with genes 

classified as immediate-early (IE), early (E) and late (L) (Clements et a/., 1977) or a, f3 
and y (Honess & Roizman, 1975). Genes are transcribed in the nucleus by the cellular 

RNA polymerase II with the participation of viral factors (Ben-Zeev & Becker, 1977; 

Costanzo et a/., 1977). The mRNAs that are produced are capped at the 5'-terminus, 

polyadenylated at the 3'-terminus and internally methylated (Bachenheimer & 

Roizman, 1972; Moss et al., 1977; Silverstein et a/., 1973). Translation occurs on both 

free and bound polyribosomes producing the viral proteins. Modifications to these 

proteins can then occur such as cleavage, poly(ADP) ribosylation, phosphorylation, 

sulphation and glycosylation (reviewed by Roizman & Sears, 1990). 

The HSV-l tegument protein, Vmw65, is necessary for the transactivation of 

the five IE genes (Campbell et al., 1984). In a cascade mechanism, at least three of 

these IE gene products are required for expression of E and L genes. The synthesis of 

the IE proteins reaches a peak at approximately 2 to 4 hours post infection although 

they continue to be produced at non-uniform rates until late on in infection 

(Ackermann et a/., 1984). The E polypeptides reach peak synthesis at about 5 to 7 

hours post infection and include most of the enzymes involved in nucleotide 

metabolism (Honess & Roizman, 1975). Viral DNA synthesis begins shortly after the 

E genes are expressed. The L genes have been further classified into leaky-late (Yl) and 

true-late (Y2) (Holland et a/., 1980). The Yl genes are expressed at a low level before 

the onset of viral DNA replication, reaching maximal levels after replication. The Y2 

genes are expressed exclusively after the onset of DNA replication. The process of 

DNA replication is discussed further in Section 1.3.1. 

The L genes code primarily for the structural proteins of the virion including the 

capsid. Much of the understanding of capsid assembly comes from the analysis of the 

three distinct capsid forms found in HSV-l infected cells (Gibson & Roizman, 1972). 

Current classification defines the capsid types as A, empty, B, intermediate, containing 

a proteinaceous scaffolding and C, containing DNA. B capsids are known to be the 

progenitors of A and C capsids. It is likely that A capsids are formed as the result of 

abortive packaging of DNA. Capsids, which are made from seven viral proteins, are 
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assembled in the infected cell nucleus (reviewed by Rixon, 1993). The replicated 

concatemeric DNA is cleaved at the 'a' sequence (Section 1.2.4) into genome length 

molecules which are then packaged into the pre-formed capsids. Studies with L gene 

mutant viruses indicate that the processes of cleavage and packaging are tightly 

coupled (reviewed by Roizman & Sears, 1990). 

The final events leading to the maturation and release of the virion are not well 

characterised. Two pathways relating to the formation of the tegument and envelope 

have been proposed (reviewed by Rixon, 1993). The capsids may bud through the 

inner nuclear membrane, fuse with the outer nuclear membrane and then enter the 

cytoplasm. This would allow the tegument to be assembled in the cytoplasm and the 

mature virion would be produced by budding through the plasma membrane. An 

alternative model has been described where the tegument is formed in the nucleus. 

This would require the capsid to bud through the inner nuclear membrane and enter the 

cytoplasm in a vacuole formed by the outer nuclear membrane. Fusion of the vacuole 

and plasma membrane would allow virion egress. Although the sites of tegumentation 

and envelopment have not been defined it is seems likely that the virion passes through 

Golgi derived cytoplasmic vesicles on the journey from the nucleus, through the 

cytoplasm and finally to the plasma membrane. 

1.2.4 Structure and content of herpesvirus genomes 

The herpesvirus genomes are diverse in a number of aspects. They vary in 

length (from about 125 to 240kbp), number of genes (from around 70 to 200) and base 

composition (from 31 to 75% G+C). The herpesvirus genomes also exhibit variation in 

the pattern of unique and repeated sequence elements. Figure 1.2 shows a 

diagrammatic representation of the human herpesvirus genome arrangements as 

described by McGeoch (1989). 
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Figure 1.2 Structure of the genomes of the human herpesviruses (not to scale). 
Unique regions are shown as horizontal lines and repeat regions as rectangles. The orientation of each 
repeat is shown by an arrow. The following abbreviations have been used: LTR (left terminal repeat), 
RTR (right terminal repeat), MIR (major internal repeat), DL (direct repeat left), DR (direct repeat right), 
T~ (terminal repeat long), UL (unique long), IRL (internal repeat long), IRs (internal repeat short), Us 
(unique short) and TRs (terminal repeat short). The orientations of the 4 possible isomers of the group 
(d) genome are represented below as long arrows. The four isomers are labelled P (prototype), IL 
(inversion of L), Is (inversion of S) and ILS (inversion of both L and S). Diagram was adapted from 
McGeoch (1989). 

The group (a) genome arrangement is the simplest consisting of a unique 

sequence flanked by large direct repeats. This type of genome structure has been 

described for HHV-6 and also for the non-human herpesviruses, CCV, EHV-2 and 

MCMV. The group (b) arrangement is characteristic of the VZV genome and consists 

of two unique regions with the UL region flanked by inverted repeats. VZV has four 

sequence-orientation isomers (not shown), two of which are 20-fold more abundant 

than the other two (Davison, 1984). Other a-herpesvirus such as PRY and EHV-l also 

have this arrangement. In these examples the two orientations of the Us region are 

present in equimolar amounts but the UL region is found completely (EHV -1) or 

predominately (VZV, PRY) in a single orientation. The group (c) arrangement 

represents the structure of the EBV genome where the DNA termini are formed by 

several direct repeats (TR). The genome also carries a set of major internal repeat 

elements (MIR) which vary in copy number. There are two other internal repeats, Dr
and~, which are almost identical and lie in the same orientation. 
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The group (d) arrangement represents the genome structure ofHSV-l and HSV-

2 and is also found in BHV-2 and HCMV. Two unique sequences, UL and Us are 

flanked by pairs of oppositely orientated repeat elements (TRL and IRd and (IRs and 

TRs). The RL repeats and the Rs repeats are distinct apart from a short (400bp) direct 

repeat element at the genome termini named the 'a' sequence. In HSV-l this 'a' 

sequence is also found between the junction of the Land S segments in the opposite 

orientation to the genome termini copies (Wadsworth et ai., 1975; Wagner & Summers, 

1978). The recombination between the inverted repeats results in the formation of four 

sequence-orientation isomers. Each isomer is generated by inversion of the L and S 

components and are found in equimolar quantities in DNA preparations ofHSV-1. The 

direction of the unique sequences for each isomer is shown in the diagram. 

HSV -1 is the best studied of the herpesviruses and is the main focus of analysis 

in this thesis. The complete sequence of the HSV-l strain 17syn+ has been determined 

and the total size is 152261bp with a G+C content of68% (McGeoch, 1997; McGeoch 

et ai., 1988a). The total sequence length varies due to small reiterations and the 

presence of a variable copy number of the 'a' sequence. So far approximately two

thirds of the ORFs have had functions assigned to their products (Table 1.2 and Figure 

1.3). 

The diagram in Figure 1.3 representing the HSV -1 genome was complied by 

McGeoch et al. (1988a). Since that time additional ORFs have been reported including 

UL26.5, UL49A, RLI and US8A. UL26.5 encodes an internal capsid protein required 

for the formation of the capsid shell around the scaffold (Liu & Roizman, 1991; 

Kennard et al., 1995). UL49A (also referred to as UL49.5) encodes an envelope 

protein (Barker & Roizman, 1992; Barnett et ai., 1992) and RLI encodes the 

neurovirulence factor, ICP34.5, first discovered in HSV-l strain F (Chou & Roizman, 

1986; 1990) then confirmed in strain 17 (Dolan et aI., 1992; McKie et aI., 1994). 

US8A lies between US8 and US9 and appears to be a y gene which is found in the 

nucleoli of HSV-l infected cells (Georgopoulou et aI., 1995). The position of these 

genes is given in Table 1.2. 

There have been further potential ORFs reported including ORF-P, UL8.5, 

UL9.5 and UL43.5 although these are much less validated. ORF-P lies antisense to 

gene RL I and although there have been experiments with over-producing virus 

mutants, the function is not clear (Lagunoff & Roizman, 1995; Lagunoff et ai., 1996). 

UL8.5 and UL9.5 ORFs were reported during a mapping study of HSV-l although no 

function has been attributed to either of the potential genes (Baradaran et aI., 1994). 

UL43.5 has been reported lying antisense to gene UL43 and encoding a protein 

dispensable in cell culture which colocalises with capsid proteins (Ward et aI., 1996). 
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Figure 1.3 The layout of genes in the genome of HSV -1. 
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The HSV-l genome is shown on four successive lines. Unique regions are represented by solid lines and 
major repeat elements as open boxes. The lower scale represents kilobases, numbered from the left 
terminus, and the upper scale represents fractional map units. The sizes and orientations of the proposed 
ORFs are shown by arrows. Overlaps of adjacent, similarly orientated ORFs are not shown explicitly. 
Locations of proposed transcriptional polyadenylation sites are indicated as short vertical bars. Locations 
of origins of DNA replication are shown as X. In the UL region, on the first three lines, genes UL 1 to 
UL56 are labelled. In the US region, on the bottom line, genes US} to US12 are labelled. The locations 
of introns in the coding regions of gene UL 15 and the two copies (TRL and IRd of the IE 11 0 gene are 
indicated. Copied from McGeoch et aJ. (1988a). 
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Table 1.2 

Gene Start Stop Codons Mr Status Function of Protein 

RLI 513 1256 248 26194 NE Neurovirulence factor (ICP34.5) 
RL2 775 78452 NE IE protein; modulator of cell state and gene 

expression 
exon 1 2261 2317 19 (lCPO, VmwllO) 
exon2 3083 3749 222 
exon 3 3886 5486 534 
LATC NE Latency-associated transcript; probably not 

protein-coding 
(UL starts at 9213) 

ULl 9337 10008 224 24932 E Glycoprotein L;complexes with glycoprotein H 
(UL22) 

UL2 9884 10885 334 36326 NE Uracil-DNA glycosylase 
UL3 10957 11661 235 25607 NE Function unknown 
UL4C 12422 11826 199 21516 NE Function unknown 
UL5C 15131 12486 882 98710 E Component of DNA helicase-primase complex; 

possesses helicase motifs 
UL6 15130 17157 676 74087 E Minor capsid protein 
UL7 17135 18022 296 33057 E? Function unknown 
ULSC 20476 18227 750 79921 E Component of DNA helicase-primase complex 
UL9C 23259 20707 851 94246 E Ori-binding protein essential for DNA replication 
ULlO 23204 24622 473 51389 NE Virion surface glycoprotein M 
ULll C 25091 24804 96 10486 NE Myristylated tegument protein; role in virion 

envelopment 
UL12 C 26887 25010 626 67503 (E) Deoxyribonuclease; role in maturation/packaging 

of DNA 
UL13 C 28502 26949 518 57193 NE Tegument protein; protein kinase 
UL14 C 28915 28259 219 23454 E Function unknown 
UL15 735 80918 E Role in DNA packaging; putative terminase 

component 
exon 1 29020 30048 343 
exon2 33635 34810 392 
ULl6 C 31295 30177 373 40440 NE Function unknown 
ULl7 C 33497 31389 703 74577 E Function unknown 
ULl8 C 36051 35098 318 34268 E Capsid protein (VP23); component of 

intercapsomeric triplex 
UL19 C 40528 36407 1374 149075 E Major capsid protein (VP5); forms hexons and 

pentons 
UL20 C 41488 40823 222 24229 EINE Integral membrane protein; role in egress of 

nascent virions; host range phenotype; syn locus 
UL21 42074 43678 535 57638 NE Tegument protein 
UL22 C 46382 43869 838 90361 E Virion surface glycoprotein H; complexes with 

glycoprotein L (UL 1); role in cell entry 
UL23 C 47802 46675 376 40918 NE Thymidine kinase 
UL24 47737 48543 269 29474 NE Function unknown; syn locus 
UL25 48813 50552 580 62664 E Capsid-associated tegument protein 
UL26 50809 52713 635 62466 E Protease, acts in virion maturation; N-terminal 

portion is capsid protein (VP24) 
UL26.5 51727 52713 329 33758 (E) Internal protein of immature capsids (VP22a); 

processed by UL26 protease 
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Table 1.2 continued. 

Gene Start Stop Codons Mr Status Function of Protein 

UL27 C 55794 53083 904 100287 E Virion surface glycoprotein B; role in cell entry; 
syn locus 

UL28 C 58159 55805 785 85573 E Role in DNA packaging 
UL29 C 62053 58466 1196 128342 E Single-stranded DNA-binding protein (ICP8) 

(Centre of oriL is at 62475/62476) 
ULJO 62807 66511 1235 136413 E Catalytic subunit of replicative DNA polymerase; 

complexes with UL42 protein 
UL31 C 67379 66462 306 33951 E Function unknown 
UL32 C 69162 67375 596 63946 E? Function unknown 
ULJ3 69161 69550 130 14436 E Role in DNA packaging 
ULJ4 69633 70457 275 29788 E? Membrane-associated phosphoprotein; substrate 

for US3 protein kinase 
ULJ5 70566 70901 112 12095 E? Capsid protein (VP26); located on tips ofhexons 
ULJ6 C 80543 71052 3164 335841 E Very large tegument protein 
ULJ7 C 84084 80716 1123 120549 E? Tegument protein 
ULJ8 84531 85925 465 50260 E Capsid protein (VPI9C); component of 

intercapsomeric triplex 
ULJ9 86444 89854 1137 124043 EINE Ribonucleotide reductase large subunit (ICP6, 

Vmw136, Rl) 
UL40 89926 90945 340 38017 E/NE Ribonucleotide reductase small subunit (Vmw38, 

R2) 
UL41 C 92637 91171 489 54914 NE Tegument protein; host shut-off factor 
UIA2 93113 94576 488 51156 E Subunit of replicative DNA polymerase; increases 

processivity; complexes with UL30 protein 
UL43 94748 96049 434 44905 NE Function unknown; probable integral membrane 

protein 
UL44 96311 97843 511 54995 NE Virion surface glycoprotein C; role in cell entry 
UL45 98032 98547 172 18178 NE Tegument/envelope protein 
UL46 C 100952 98799 718 78239 NE Tegument protein; modulates IE gene 

transactivation by UL48 protein 
UL47 C 103116 101038 693 73812 NE Tegument protein; modulates IE gene 

transactivation by UL48 protein 
UL48 C 105079 103610 490 54342 E Tegument protein; transactivates IE genes (VPI6, 

Vmw65, a-TIF) 
UL49 C 106391 105489 301 32252 NE? Tegument protein 
UL49A C 106993 106721 91 9201 NE? Envelope protein disulphide-linked to tegument 
UL50 107010 108122 371 39125 NE Deoxyuridine triphosphatase 
UL51 C 109011 108280 244 25468 (E) Function unknown 
UL52 109048 112221 1058 114416 E Component of DNA helicase-primase complex 
UL53 112179 113192 338 37570 (E) Glycoprotein K 
UL54 113734 115269 512 55249 E IE protein; post-translational regulator of gene 

expression (lCP27, Vmw63) 
UL55 115496 116053 186 20491 NE Function unknown 
UL56 C 116925 116224 234 25319 NE Function unknown 
(IRL starts at 117160) 

LAT NE Latency-associated transcript; probably not 
protein-coding 
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Table 1.2 continued. 

Gene Start Stop 
RL2 

Codons Mr Status Function of Protein 
775 78452 NE IE protein; modulator of cell state and gene 

expression (ICPO, Vmwll0) 
exon3 C 122485 120885 19 
exon2 C 123288 122622 222 
exonl C 124110 124054 534 
RLI C 125858 125115 248 26194 NE 

(Left end of a' sequence is at 125972) 
(Internal c sequence starts at 126373) 

RSI C 131128 127235 1298 132835 E 

(Centre of oris is at 131999) 
(US starts at 132605) 

US 1 132644 133903 420 

US2C 
US3 
US4 
US5 
US6 
US7 

US8 

134928 134056 291 
135222 136664 481 
136744 137457 238 
137731 138006 92 
138419 139600 394 
139785 140954 390 

141243 142892 550 

US8A 142744 143220 159 
US9 143313 143582 90 
USI0 C 145095 144160 312 
USl1 C 145246 144764 161 

US12C 145577 145314 88 

(TRs starts at 145585) 
(Centre of oris is at 146235) 

RSI 147105 150998 1298 

(Last nucleotide is 152261) 

46521 EINE 

32468 NE 
52831 NE 
25236 NE 
9555 NE 
43344 E 
41366 NE 

59090 NE 

16801 NE 
10026 NE 
34053 NE 
17756 NE 

9792 NE 

132835 E 

Neurovirulence factor (ICP34.5) 

IE protein; transcriptional regulator (lCP4, 
Vmw175) 

IE protein; function unknown (ICP22, Vmw68); 
host range phenotype 
Function unknown 
Protein kinase; phosphorylates UL34 protein 
Virion surface glycoprotein G 
Proposed glycoprotein J 
Virion surface glycoprotein D; role in cell entry 
Virion surface glycoprotein I; complexed with 
glycoprotein E (US8) in Fc receptor 
Virion surface glycoprotein E; complexed with 
glycoprotein I (US7) in Fc receptor 
Function unknown 
Tegument protein 
Virion protein 
Virion protein; ribosome-associated in infected 
cell 
IE protein; inhibitor of peptide transport by TAP 
and of antigen presentation(lCP47, Vmwl2) 

IE protein; transcriptional regulator (ICP4, 
Vmw175) 

Table 1.2 Features of the genes of herpes simplex virus type 1 (strain 17) 
Locations of protein-coding regions are given from the first residue of the translation initiation codon to 
the last residue of the last coding codon, omitting the stop codon. Leftward oriented genes are marked C. 
Bold genes are conserved in the three herpesvirus subfamilies. The status of each gene in cell culture is 
indicated: E = essential, NE = non-essential, E? = probably essential, NE? = probably non-essential, (E) = 
a mutant is viable, but very disabled, EINE = non-essential under certain conditions, ? = unknown. E 
genes are those for which mutants have been constructed that require complementing cell lines or those 
for which attempts to generate insertion mutants using the cosmid system have yielded only wild type. E? 
genes are those where attempts to derive a mutant by plasmid recombination have failed. NE? genes are 
those where data are available for aIphaherpesviruses other than HSV-l. IE = immediate early. 

This listing was compiled by A.J. Davison with help from C. MacLean and D.l McGeoch. The 
table was updated by A. Dolan in March 1997. 
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From Figure 1.3 it can be seen that the genes are arranged about equally on the 

two coding strands. There are a number of overlaps between coding regions in 

different reading frames. Genes are densely packed (89% ofUL codes for protein), and 

in many cases transcriptional control elements overlap with the coding regions of 

adjacent genes (Wagner, 1985). The majority of genes have their own promoters and 

are expressed as single exons although groups of adjacent genes in the same orientation 

may share a single polyadenylation site downstream of the most 3' gene (Wagner, 

1985). Genes contained in the repeat elements, such as IEIlO and IE175, are present in 

two copies in the genome (Perry et aI., 1986~ Rixon & Clements, 1982). The HSV-l 

genome has few spliced genes which include IEIlO (Perry et al., 1986), USI and USl2 

(Rixon & Clements, 1982) and UL15 (Costa et al., 1985~ McGeoch et al., 1988a). 

1.3 Replication of the herpesvirus genome 

1.3.1 HSV DNA replication 
Herpesviruses and other double stranded DNA viruses such as poxvlruses, 

adenoviruses, papovaviruses, and iridoviruses, all exploit replication mechanisms 

which are utilised by the host cell. This is in contrast to the RNA viruses whose 

replication requires processes not available in the uninfected cell. Despite this, most 

DNA viruses encode much of their own replication machinery even though many of 

these viruses (herpes-, adenoviruses) replicate in the nucleus where the cellular 

processes are localised. The dsDNA viruses have a wide range of genome sizes from 

about 5kbp in polyomaviruses up to 300kbp in poxviruses. The number of virally 

encoded proteins bears a direct relation to the dependence the virus has on the host 

cellular functions for successful replication. The herpesviruses are at the larger end of 

the dsDNA virus scale in terms of genome size, and encode a substantial number of 

their own functions (Table 1.2). 

There are two mechanisms by which the infecting virus can provide the 

functions required for its replication. The virus can utilise the host enzymes and impart 

a degree of regulation over them. However, even if there is a host enzyme supplying 

the basic function required, its properties may not be optimally adapted to the process 

of viral replication. Alternatively the virus can encode its own set of enzymes. A 

combination of regulating host enzymes and inducing viral enzymes ensures that the 

virus carries only those proteins which are advantageous for its own replication. The 

set of virally encoded enzymes is not constant throughout the Herpesviridae as shown 

in Table 1.3. We are principally concerned with the genes involved in DNA replication 
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and those required for nucleotide provision. Each of the enzymes listed in Table 1.3 

are dealt with in relation to HSV-l and the homologues in the other subfamilies. 

Enzyme/protein HSV-l (a) VZV(a) HCMV(6) EBV (y) 

Replication: 

DNA polymerase (catalytic) UL30 28 UL54 BALF5 

(accessory) UL42 16 UL44 BMRFI 

helicase/primase complex (I) UL5 55 UL105 BBLF4 

(II) UL8 52? UL102? BBLF3? 

(III) UL52 6 UL70 BSLFI 

DNase ULI2 48 UL98? BGLF5 

DNA repair: 

uracil DNA glycosylase UL2 59 UL114? BKRF3? 

Nucleotide provision: 

thymidine kinase UL23 36 none BXLFI 

ribonucleotide reductase (L) UL39 19 UL45 BORF2 

ribonucleotide reductase (S) UL40 18 none BaRF 1 

deoxyuridine triphosphatase UL50 8 UL72? BLLF2 

thymidylate synthase none l3 none none 

Table 1.3 Homologues of virally encoded enzymes between various herpesviruses. 
The HSV-l homologues in VZV, HCMV and EBV which show a low level of similarity are marked '?'. 
Details of each enzyme are given in the text below. Table was adapted from lM. Morrison (1991). 

1.3.1.1 DNA replication 

HSV-I DNA replication occurs by a rolling circle mechanism and head-to-tail 

concatemers accumulate in the nucleus (Roizman & Sears, 1990). There are two 

identical origins of replication, oriS1 and oriS2' which map to the Rs inverted repeat of 

the S segment of the genome (Stow, 1982; Stow & McMonagle, 1983) (Figure l.2). A 

third origin of replication, oriL, maps to the UL segment of the genome. Replication of 

the genome is dependent on seven major gene products as determined by the plasmid 

replication assay of Challberg (Challberg, 1986; McGeoch et aI., 1988b; Wu et aI., 

1988). The replication enzymes of HSV -I are generally the most highly characterised 

of all the Herpesviridae members. 

DNA polymerase 

HSV -I DNA polymerase was one of the first animal virus induced enzymes to 

be discovered (Keir & Gold, 1963) and has been studied extensively particularly in 

relation to antiviral therapy (see Section 1.4.5). The DNA polymerase is made up of a 

26 



catalytic subunit, the UL30 product, and an accessory subunit, the UL42 product 

(reviewed by Challberg, 1991). 

Sequence analysis of the UL30 gene predicted a protein product of 1235 

residues and approximately 136kDa (Gibbs et al., 1985; Quinn & McGeoch, 1985). 

The DNA polymerase activity from the UL30 ORF was found to be sufficient for 

catalysis when analysed by various methods (Dorsky & Crumpacker, 1988; Haffey et 

al., 1988). The UL30 protein also has a proof-reading 3'-5' exonuclease activity 

(Knopf, 1979) and a 5'-3' exonuclease activity. The later function can act as an RNase 

H presumably removing RNA primers (Crute et al., 1989). The product of the UL42 

gene, a dsDNA binding protein, acts as an accessory function and has been reported to 

stimulate the DNA polymerase activity (Gallo et al., 1988; Gottlieb et al., 1990). 

DNA polymerase activity as been described in other u-herpesviruses (including 

PRY, EHV-l and VZV), in the ~-herpesvirus, HCMV, and also in the y-herpesvirus 

EBV (reviewed by Morrison, 1991). 

Helicase/primase complex 

The helicase unwinds the dsDNA in an ATP-dependent reaction and the 

primase catalyses the synthesis of the oligoribonucleotide which initiates DNA 

replication on the lagging strand. The primase and helicase complex ofHSV-l is made 

up from the products ofUL5, UL8 and UL52 (Crute et aI., 1989). The presence of the 

UL8 protein appears to be unnecessary for either the helicase or A TPase activities 

although it may have a role in the nuclear localisation of the complex and the binding 

ofHSV-l DNA polymerase (Barnard et al., 1997; Calder & Stow, 1990; Marsden et al., 

1997). Specific binding to the origin is accomplished by the product of UL9 and the 

UL29 gene product binds single stranded DNA (Elias et aI., 1986; Powell et aI., 1981). 

Homologues of the HSV-l helicase/primase complex have been found in VZV although 

the UL8 homologue, gene 52, has homology of only 28% (Davison & Scott, 1986). 

HCMV homologues for UL5 and UL52 have been assigned to gene 105 and gene 70 

respectively (Chee et al., 1990). The homologue of HSV-l UL8, gene 102, is based on 

genome position only although it is similar in length. A similar situation exists with 

EBV where there are strong homologues of HSV -1 UL5 and UL52 but only a positional 

homologue ofUL8 (McGeoch, 1989). 

DNase 

The role of DNase in the viral life cycle was not well understood until recently. 

The enzyme is also referred to as an alkaline exonuclease due to its optimal activity at a 

high pH. The DNase of HSV -1 can hydrolyse both ssDNA and dsDNA and acts mainly 

on the 3'-terminus but can also act on the 5'-terminus. It was originally proposed that 
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the hydrolysis of cellular DNA helped provide the virus with a source of preformed 

nucleotides or had a role in the cleavage of viral DNA concatemers (Hoffmann, 1981). 

Subsequent analysis has shown that DNase has a role in HSV -I capsid egress. 

An HSV -I DNase deletion mutant was found to induce almost wild type levels of viral 

DNA but was deficient in the production of infectious virions (Shao et aI., 1993). 

HSV-I DNase has been shown to be essential in vivo and it has been proposed that it 

plays a role in the processing of complex DNA intermediates (Goldstein & Weller, 

1998). The HSV -1 DNase is encoded on gene UL 12 producing a protein of 626 amino 

acids and 67.5kDa (McGeoch et aI., 1986b). 

A ULI2 homologue with 29% sequence homology, gene 48, is induced in VZV 

(Cheng et aI., 1980). The UL98 gene of HCMV has only low sequence similarity to 

HSV-l but has recently been shown to allow functional complementation of the HSV-I 

UL121acZ deletion mutant in tissue culture (Gao et aI., 1998). EBV has been shown to 

induce a DNase which is similar to the HSV-l enzyme even though the EBV gene 

BGLF5 exhibits a low degree of sequence similarity to HSV-l UL12 (Baylis et al., 

1989; Cheng et al., 1980; McGeoch et aI., 1986b). 

1.3.1.2 DNA repair 

Uracil DNA glycosylase (UDGase) 

UDGase catalyses the removal of uracil from DNA. Its role in viral replication 

is described in Section 1.4.1. HSV-l gene UL2 encodes a UDGase which has been 

shown to be dispensable for growth in cell culture (Worrad & Caradonna, 1988; 

Mullaney et aI., 1989). VZV gene 59 has a 39% sequence homology with the HSV-I 

gene. No UDGase activity has been reported for HCMV or EBV although gene 114 and 

gene BKRF3 show limited homology to the HSV-I enzyme respectively (McGeoch, 

1989). 

1.3.1.3 Nucleotide provision 

Successful replication of the viral DNA in the host cell requires an additional 

group of virally encoded proteins involved in nucleotide metabolism. The substrates 

for the DNA polymerase reaction are the four deoxyribonucleoside triphosphates 

(dATP, dGTP, dCTP and dTTP) which must be supplied in sufficient quantity to allow 

efficient DNA synthesis, cell growth and metabolism (Reichard, 1988). In normal 

cellular DNA replication, small imbalances in the levels of each dNTP can lead to DNA 

mutation and fragmentation. Furthermore, cellular levels of dNTPs are cell-cycle 

regulated and only reach their maximal level during the S phase. The provision of 

virally encoded nucleotide metabolism enzymes may be necessary to allow 
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independence from the cell-cycle (Morrison, 1991). The role of each of the following 

enzymes in the de novo production of dNTPs can be seen in Figure 1.4. 

Thymidine kinase (TK) 

The TK of HSV -1 has been studied extensively due to its function as a gene 

transfer marker and its role in antiviral therapy (see Section 1.4.5). HSV-l TK, 

encoded on gene UL23, phosphorylates deoxycytidine and thymidylate in addition to 

thymidine (Jamieson & Subak-Sharpe, 1974). This enzyme is not essential for virus 

growth in tissue culture but virus mutants in the enzyme show significantly reduced 

pathogenicity (Field & Wildy, 1978). VZV gene 36 encodes an active TK with 28% 

sequence homology to the HSV-I enzyme (Cheng et aI., 1980). There appears to be no 

sequence homologue for the TK gene in HCMV although it may encode another type of 

nucleoside kinase and also appears to induce the cellular TK (Chee et al., 1989). It has 

been found that HCMV UL97 encodes a protein capable of phosphorylating 

ganciclovir, a function performed by TK in HSV-l (Littler et ai., 1992). In the y

herpesvirus, EBV -encoded TK activity has been demonstrated in transformed 

mammalian cell lines (Littler et aI., 1986). 

Ribonucleotide reductase (RR) 

RR catalyses the reduction of all four ribonucleoside diphosphates to their 

corresponding deoxyribonucleoside diphosphates. The HSV-l enzyme is composed of 

two pairs of subunits (large and small) which are encoded by the neighbouring genes 

UL39 and UL40 (Cohen, 1972; Frame et aI., 1985; Ingemarsson & Lankinen, 1987; 

McLauchlan & Clements, 1983). Inhibition of the enzyme by peptide disruption of the 

subunit interaction has focused attention on the possibility of antiviral therapy (Dutia et 

al., 1986; McClements et al., 1988). The synthetic nonapeptide which was found to 

cause inhibition of HS V -1 RR (equivalent to the nine C-terminal residues of the small 

subunit) was also found to cause similar inhibition ofEHV-l RR (Conner et aI., 1993; 

Telford et aI., 1990). The two VZV genes, 18 and 19, show homology to the HSV-l 

genes UL40 and UL39 respectively. HCMV gene 45 has homology to the large subunit 

gene UL39 but no convincing homologue of UL40. It has been suggested that the 

cellular version of the small subunit may be utilised by HCMV to produce an active RR 

(Chee et al., 1989). Genes BaRFl and BORF2 show homology to HSV-I UL40 and 

UL39 respectively. 

Deoxyuridine triphosphatase (dUTPase) 

HSV-l specific dUTPase activity was discovered by Wohlrab and Francke 

(1980) and later mapped to gene UL50 by Preston and Fisher (1984). The enzyme 
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catalyses the hydrolysis of dUTP to dUMP and inorganic phosphate. The herpesvirus 

dUTPases are discussed separately in Section 1.4.8. It is noted here that the 13-
herpesvirus plus HHV6 and HHV7 do not contain a convincing homologue of the 

dUTPase enzyme (see Results Section 4.7). 

Thymidylate synthase (TS) 

In the generation of thymine, dUMP is methylated to dTMP by the enzyme TS 

(see Figure 1.4). The enzyme TS was discovered in HVS based on 70% homology with 

the human gene (Honess et aI., 1986). HSV-I, HCMV and EBV do not possess a TS 

however a copy was found during sequencing of the VZV genome (gene 13) and this 

was later shown to be active (Davison & Scott, 1986~ Thompson et al., 1987). It has 

been suggested that TS is only required by viruses with high A+T genomes (Honess et 

al., 1986). This is backed up by the relatively high A+T genomes ofHVS and VZV and 

the discovery of a TS in herpesvirus ateles (Richter et al., 1988). 

Dihydrofolate reductase (DHFR) 

Previous to 1988, possession of a DHFR had only been described in the T -even 

and T5 bacteriophages and not for any mammalian virus. Subsequently a virally 

encoded DHFR was described for HVS and herpesvirus ateles and more recently for 

HHV8 (Trimble et al., 1988; Nicholas et aI., 1998). The coding of a DHFR in HVS 

may be again related to the possession of an A + T rich genome although the reason for 

coding DHFR in HHV8 is still unclear. 

1.3.2 Nucleotide metabolism 

There are two pathways utilised by the mammalian cell for the production of 

RNA and DNA precursors (NTPs and dNTPs), the de novo and the salvage pathways. 

The de novo pathway is the main route where nucleotides are built up stepwise from 

small metabolic precursors such as ribose and amino acids. In the salvage pathway, 

free bases and nucleosides released from nucleic acid breakdown are recycled. 

Nucleosides can also be taken up from extracellular fluids by active transport across 

the cell membrane (Reichard, 1988). Specific kinases phosphorylate these nucleosides 

to yield nucleotides. 

We are principally concerned with pyrimidine metabolism and the role of 

dUTPase in this pathway. DNA differs from RNA in both the sugar moiety and the set 

of bases utilised. In DNA, uracil is replaced with thymine. This has direct 

consequences for nucleotide provision since dTTP has a more complex synthesis 

pathway compared to dATP, dGTP and dCTP (Figure 1.4). The de novo synthesis of 

NTP's and dNTP's is linked by the enzyme ribonucleotide reductase which acts on 
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ribonucleotides at the diphosphate level to produce deoxyribonucleotides (Reichard, 

1993). 

1 6 
ADP dADP .-.. ------.~ dATP 

1 6 
GDP dGDP .-.. ------.~ dGTP 

1 6 
CDP -------.~ dCDP .... ----.~ dCTP 

~ 
dCMP 

Y 
356 

dUMP ..... -__ --_ -_ -._~_d_T_M_P_.-.. _ -_-_-"':~ld_T_D_P __ ~" =--+~ dTTP 

-
UDP --------'--------+~ dUDP _~6,----.~ dUTP 

Figure 1.4 The later stages of the de novo pathway of pyrimidine deoxyribonucleotide 
synthesis in mammals. 
The enzymes are labelled as follows: (l) ribonucleotide reductase, (2) dCMP deaminase, (3) thyrnidylate 
(dTMP) synthase, (4) (d)CMP kinase, (5) thymidylate kinase, (6) nucleoside diphosphate kinase, (7) 
dUTPase. This diagram was adapted from (Reichard, 1988). 

The synthesis of dTTP occurs at great cost to the cell with enzymes encoded 

exclusively to deal with the replacement of uracil with thymine in DNA. A supply of 

dUMP is maintained by the action of two enzymes, dCMP deaminase and dUTPase. In 

mammals, the deamination of dCMP provides over 80% of the dUMP substrate for 

thymidylate synthase and the remaining amount arises from the activity of dUTPase 

(Nicander & Reichard, 1985~ Reichard & Nicander, 1985). In contrast, E.coli produces 

about 75% of dUMP for dTMP synthesis by the action of dUTPase. Unlike 

mammalian cells, E. coli possesses a deaminase which generates dUTP by the 

deamination of dCTP (Danielsen et al., 1992). 

Thymidylate synthase (TS) links dNTP synthesis to folate metabolism and is 

dependent on the activity of dihydrofolate reductase (Reichard & Nicander, 1985). TS 

catalyses the methylation of dUMP to dTMP. The methyl donor in this reaction is N5, 

NI0-methylenetetrahydrofolate which is oxidised to dihydrofolate. This molecule is 

recycled back to tetrahydrofolate by the enzyme dihydrofolate reductase using NADPH 

as the reductant. Phosphorylation of dTMP to dTDP is performed by thymidylate 

kinase which also phosphorylates dTDP, dUMP and dUDP (Pearl & Savva, 1996). The 
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final reaction in this pathway is carried out by the non-specific nucleoside diphosphate 

kinase which phosphorylates the dNDP's to their corresponding dNTP's. 

The maintenance of dNTP levels by these enzymes is crucial to the genetic 

stability of the cell. The results of an imbalance can have widespread effects including 

mutation, recombination, enhanced sensitivity to mutagens and carcinogens, 

chromosome breakage, exchange or loss, and oncogenic transformation (reviewed by 

Kunz et ai., 1994). 

1.4 The enzyme deoxyuridine triphosphatase (dUTPase) 

1.4.1 The function of dUTPase 

Deoxyuridine triphosphatase (EC 3.6.l.23) is also referred to as deoxyuridine 

triphosphate nucleotidohydrolase and dUTP pyrophosphatase in the literature. The 

position of dUTPase in the de novo pathway of nucleotide synthesis is shown in Figure 

1.4. The enzyme plays a crucial role in the regulation of dNTP synthesis by catalysing 

the hydrolysis of dUTP to form dUMP and pyrophosphate (Figure 1.5) (Bertani et ai., 

1961). 

o 
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Figure 1.5 The dUTPase reaction. 
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This diagram was adapted from (Bergman, 1997). The number of protons released in the reaction 'n' is 
dependent on pH and Mg2+ concentration (Rogers et aI., 1997). 

The reaction mechanism of the E. coli dUTPase has been investigated and the 

substrate for the reaction appears to be a complex of dUTP with a divalent metal ion, 

preferably Mg2+ (Hoffmann et ai., 1987). The number of protons released in the 
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reaction has been shown to be determined by the concentration of metal ions and the 

pH of the reaction buffer (Rogers et aI., 1997). The enzyme has a high specificity for 

its substrates and discriminates efficiently between the base, sugar and phosphate 

moieties. This is a necessary capability for the enzyme since the hydrolysis of other 

nucleotides required for DNA and RNA synthesis would be highly detrimental. This is 

exemplified in the E.coli enzyme by discrimination against other highly structurally 

related molecules such as dUDP, UTP, dCTP and dTTP where phosphate, sugar and 

base are discriminated against with remarkable efficiency (Bjornberg & Nyman, 1996; 

Larsson et aI., 1996a). All dUTPases characterised to date show a high degree of 

specificity for dUTP although there are subtle differences between organisms 

(Bjornberg & Nyman, 1996). This may be a reflection of the evolutionary adaptation 

of the enzyme in different environments driven by a trade off between specificity and 

catalytic efficiency. 

The reactions involved in the provision of nucleotides must be controlled to 

ensure a balance is maintained. Disruption in this balance has direct consequences for 

DNA replication and the continued growth of the cell (Reichard, 1988). An increase in 

the ratio of dUTP compared to dUMP leads to large quantities of uracil being 

incorporated into the newly synthesised DNA chain. DNA polymerase, in contrast to 

dUTPase, does not distinguish between dUTP and dTTP (Shlomai & Kornberg, 1978; 

Focher et aI., 1990). Incorporation of uracil into DNA in place of thymine is not in 

itself mutagenic since both base pair with adenine. However, uracil also arises in DNA 

by the spontaneous deamination of cytosine which, if not corrected, will result in a 

point mutation in newly replicating DNA. Replacement of uracil for thymine in DNA 

can also disrupt sequence-specific DNA recognition by gene-regulatory proteins (Verri 

et at. 1990). 

I I 
G-C 
I I 

Deamination ~ 
I I 
G-U 
I I 

Replication 

I I 
G-C 
I I 

I I 
A-U 
I I 

Figure 1.6 Effect of unrepaired deamination of cytosine in replicating DNA 
The deamination of the cytosine residue in the G-C base pair results in an A-V base pair after replication. 
Further rounds of replication will result in the transition to an A-T base pair. 
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Cytosine is the most sensitive of the bases to nucleophilic attack even in 

physiological conditions and deamination is estimated to create about 100 uracil 

residues per day in an average sized mammalian genome (Lindahl, 1993). To cope 

with this potentially mutagenic situation an excision repair mechanism has evolved, 

utilising the enzyme uracil DNA glycosylase (UDGase) (Lindahl, 1982). The enzyme 

hydrolyses the glycosidic bond between the uracil and deoxyribose moiety in DNA 

creating an abasic site. An AP endonuclease (where AP represents an apurinic or 

apyrimidinic site) recognises the abasic site and nicks the phosphodiester backbone at 

an adjacent position. The residual deoxyribose phosphate is removed by an 

exonuclease and DNA polymerase I inserts the complementary base on the undamaged 

strand. DNA ligase completes the repair by rejoining the nicked backbone (reviewed 

by Friedberg et a/., 1995). 

The instability of cytosine may help to explain why thymine, and not uracil, is 

the standard constituent of DNA. UDGase specifically removes uracil and not thymine 

from DNA by discriminating against a single methyl group. The methyl group on 

thymine may therefore act as a tag to distinguish it from deaminated cytosine. In this 

context, it is likely that thymine is utilised in DNA to increase fidelity. RNA in 

comparison is a short lived genetic molecule where uracil, the less energetically 

expensive building block, is sufficient for information transfer. 

Excessive uracil incorporation as a consequence of an elevated dUTP/dTTP 

ratio results in excessive levels of UDGase mediated repair. Since this process 

involves a transient strand break in the DNA backbone, multiple repairs in close 

proximity can result in DNA fragmentation (Tye et a/., 1977; Ingraham et at., 1986). It 

has been suggested that the misincorporation of uracil into DNA has direct 

consequences for neuronal ageing (Mazzarello et at., 1990). Inhibitors of TS, such as 

fluorouracil, create a dramatic reduction in the dTTP pool and the resulting cytotoxic 

effect has been called 'thymineless death'. It has been proposed that the cytotoxic effect 

of these inhibitors is due to extensive uracil incorporation and excision repair 

(Ingraham et at., 1986). 

In summary dUTPase has two functions; 

1. As evident from the nucleotide pathway in Figure 1.2, dUTPase is a necessary 

component in the de novo synthesis of dTTP by supplying the substrate, dUMP, 

for dTMP synthase. 

2. The misincorporation of dUTP results in over stimulation of a natural repair 

mechanism which is highly detrimental to the cell. dUTPase must act to limit 

the amount of dUTP available to DNA polymerase and maintain the critical 

balance between dUTP and dTTP. 
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A further consideration concerns the physical organisation of dUTPase relative 

to other nucleotide metabolism enzymes (Wheeler et 01., 1992). In the bacteriophage 

T4 a non-covalently linked dNTP synthesising complex with a mass of l300kDa was 

isolated from infected E.coli cells. This complex contained at least ten enzymes, two 

of which were encoded by the host cell and the rest by the viral genome, and exhibited 

dUTPase activity (Mathews, 1993). It has been further suggested that this complex is 

in tum linked to the replication machinery, allowing dNTPs to be delivered directly to 

the replication fork (Mathews, 1993). The complex may be based on a common 

affinity of all proteins in the complex for the bacteriophage encoded gene 32 protein 

(Wheeler et ai., 1996). The perceived potential of such a complex is that physical 

connection of enzymes carrying out sequential steps in a metabolic sequence could 

allow significant kinetic advantage. Similar complexes have not been reported in other 

systems although the weak interactions involved would make this a difficult area of 

study. It would be interesting to discover if any eukaryotic viruses had evolved such a 

mechanism for the formation of complexes with both host and virally encoded 

enzymes. Such organisation would help to account for the variety of nucleotide 

metabolism enzymes which are specifically virally encoded since physical interaction 

with a host enzyme may overcome the requirement to encode a viral copy. 

1.4.2 Distribution and control of cellular dUTPases 

The enzyme dUTPase is ubiquitous in nature and many representatives have 

been substantially characterised. In prokaryotes examples include E.coli (Larsson et 

ai., 1996a) and Bacillus subtilis (Dunham & Price, 1974). In eukaryotes examples 

include Saccharomyces cerevisiae (Gadsden et al., 1993), Drosophila melanogaster 

(Nation et al., 1989), rat (Hokari & Sakagishi, 1987), human (Williams & Cheng, 

1979; Ladner et 01., 1996b), Allium cepa (onion) (Pardo & Gutierrez, 1990) and 

Lycopersicon esculentum (tomato) (Pri-Hadash et aI., 1992). Many viral dUTPases 

have also been characterised and are discussed separately in Section 1.4.3. With such a 

large range of organisms encoding an active dUTPase it has been suggested that this 

enzyme is indispensable to all cells (McIntosh et 01., 1992). The structural and 

functional relationships between dUTPases from diverse organisms provide an insight 

into the evolution of a cellular nucleotide metabolism enzyme. Representatives from 

distantly related organisms, such as those from E.coli and human cells, show 

remarkable structural similarity in terms of their trimeric arrangement and active site 

cavities (Mol et ai., 1996). 

The herpesvirus dUTPase proteins represent a distinct subset of the dUTPase 

enzymes as a whole. In order to easily distinguish between these two groups the 
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standard trimeric dUTPases (representing all those mentioned above) are referred to as 

class I dUTPases while the herpesvirus monomeric enzymes are referred to as class II 

dUTPases. This distinction addresses the structural differences between these two 

groups. It should be noted however that the dUTPase of the herpesvirus, CCV (and 

probably other fish herpesviruses) are clearly members of the class I group. The class 

II dUTPases are approximately double the chain length of their class I counterparts and 

are active as monomers as opposed to trimers (Caradonna & Adamkiewicz, 1984). The 

class II dUTPases are discussed separately in Section 1.4.8 and are the main subject of 

Chapter 4. Active dUTPases have also been discovered in Leishmania and 

Trypanosoma species which appear to show no sequence similarity to either the class I 

or class II enzymes. It appears likely that these examples represent an additional 

distinct subset of dUTPases (Camacho et al., 1997). Different organisms not only 

present different structural versions of the same enzyme but they also utilise the 

enzyme in subtly different ways. 

dUTPases have been found to be essential in E.coli (EI-Hajj et al., 1988) and 

yeast (Gadsden et al., 1993) although a viable double mutant of E.coli has been 

constructed which lacks both dUTPase and UDGase activities (Warner et aI., 1981). 

This mutant accumulates large amounts of uracil in its DNA but is presumed to survive 

due to the removal of the uracil extracting repair mechanism (Hochhauser & Weiss, 

1978). 

A conditional temperature sensitive dUTPase mutant (dut Ts) has been 

constructed in E.coli (EI-Hajj et al., 1992). It was found that phenotypic revertants of 

dut Ts restored viability without restoring the enzymatic activity of dUTPase. This 

secondary mutation was designated dus for dut suppressor. Further studies mapped, 

cloned, and identified the dus locus which was found to encode a dCTP deaminase 

(Wang & Weiss, 1992). As mentioned in Section 1.3.2., in E.coli, the major source of 

dUMP for dTTP synthesis is from the action of dUTPase (as opposed to the 

deamination of dCMP). The pathway utilised by E. coli involves the following 

intermediates: dCTP~dUTP~dUMP~dTMP. Mutation of the dCTP deaminase gene 

is likely to suppress the lethality of the dUTPase mutation by reducing the formation of 

dUTP. 

A multiple E.coli mutant with additional mutations to dut and dus including ung 

(UDGase), deoA (thymidine/deoxyuridine phosphorylase) and thyA (TS) has been 

created (EI-Hajj et al., 1992). It has been proposed that mutation in ung would prevent 

uracil excision from DNA, mutation in deoA would allow more efficient use of 

exogenous deoxyuridine and mutation in thyA would prevent synthesis of dTMP from 

any remaining dUMP. This multiple mutant displayed up to 93 to 96% substitution of 

uracil for thymine in new DNA. Growth of this mutant ceased after cellular DNA had 
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increased 1.6 to 1.9 fold and the cell mass had increased 1.7-2.7 fold suggesting an 

overall failure of macromolecular synthesis. 

From this evidence it may be suggested that dUTPase is a necessary enzyme 

which must be actively reducing the dUTP/dTTP ratio and supplying dUMP for dTTP 

synthesis at all times. However, it has been shown that the cell may regulate dUTPase 

activity to a high degree. In the root meristem cells of the plant Allium cepa, dUTPase 

activity has been shown to correlate closely with cellular proliferation (Pardo & 

Gutierrez, 1990). Activity is higher at optimal growth conditions and decreases as cells 

begin to differentiate. There is strong evidence for cell-cycle regulation in Allium cepa 

cells with a large increase in dUTPase activity at the G}/S boundary and continuing 

throughout the S phase. No activity could be detected at any other point in the cell 

cycle indicating a strong cellular control mechanism. A similar cell cycle dependent 

activity has been shown in Chinese hamster cell temperature sensitive mutants (Duker 

& Grant, 1980). 

In Drosophila melanogaster, cellular control of dUTPase activity has been 

attributed to a developmentally expressed protein inhibitor (Nation et al., 1989). 

dUTPase has been purified from Drosophila embryos and has been shown to be active 

only at early times in first-instar larvae (Giroir & Deutsch, 1987). A heat stable protein 

with a subunit molecular mass of 61kDa has been partially purified from the embryo 

and has been shown to be an active inhibitor of the embryonic dUTPase (Nation et aI., 

1989). This direct method of cellular control may be indicative of another utilisation of 

dUTPase. Controlled reduction in cellular dUTPase activity may result in uracil 

incorporation into DNA and UDGase mediated strand breakage. In the developing 

embryo this strategy could be used to increase DNA degradation during the 

histolysation process in the pupae where internal organs are dissolved before new 

growth of imaginal tissue. 

The role of dUTPase in the proliferation and maturation of human T cells has 

been investigated and it appears that the human enzyme is also dependent on the cell 

cycle (Strahler et al., 1993). There appears to be at least two forms of the human 

dUTPase, nuclear and mitochondrial. The mitochondrial form possesses an extended 

region at the amino terminus compared to the nuclear form (Ladner et al., 1996b). The 

nuclear form can be phosphorylated and a cyclin-dependent kinase phosphorylation site 

has been identified (Ladner et aI., 1996a). It has been suggested that the 

phosphorylation of the human dUTPase results in regulation of enzyme activity (Lirette 

& Caradonna, 1990). However, disruption of the phosphorylation site prevents 

phosphorylation but has no significant effect on enzyme activity in vivo (Ladner et al., 

1996a). Other possible roles for the phosphorylation of the human enzyme are 

multimerisation and cellular localisation (Ladner et al., 1996a). Whether the control 
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mechanism is translational, post-translational or mediated by a Drosophila-like 

inhibitor protein, it endows the human cell with regulation of dUTPase activity. 

1.4.3 The distribution of viral dUTPases 

Many, but not all viruses, encode a dUTPase. The discovery that a wide variety 

of viruses genomes encode a dUTPase was originally based on a number of sequence 

analysis studies. McClure et al. (1987) identified a supposedly protease-like gene 

segment specified in two distantly related groups, the lentiviruses and oncoviruses, 

although it was not present in all retroviruses. The gene segment was originally 

identified in the polymerase region of the lentiviruses, visna virus and equine infectious 

anaemia virus (EIA V). Homologous sequences were identified in a simian retrovirus 

type 1 (SRV-l) and its close relative, hamster intracisternal A particle (IAP-HI8) 

although these gene segments were located adjacent to the protease gene. On the basis 

of position and low level sequence homology, it was proposed that these gene segments 

originated by tandem duplication and subsequent divergence of the retroviral protease 

coding sequence (McClure et ai., 1987; McClure et ai., 1988). No function was 

ascribed to these polypeptides which were termed 'protease-like' domains. Subsequent 

studies found related genes in the poxviruses, vaccinia virus and orf virus (Slabaugh et 

al., 1989; Mercer et al., 1989). These related genes, termed 'pseudoproteases' were 

found to comprise an independent ORF and possess transcriptional control signals, 

rather than as a subunit of a larger polypeptide as in retroviruses. 

McGeoch (1990b) following on from these studies, correctly identified these so 

called 'protease-like' or 'pseudoprotease' genes as dUTPases. The gene segments 

identified from retroviruses and poxviruses were compared to the dUTPase sequences 

from E.coli and the herpesviruses, HSV-l, VZV and EBV. All sequences in the 

alignment were found to contain five highly conserved, short amino acid motifs. This 

work is discussed in detail in Section 1.4.8. This finding has allowed the subsequent 

identification of dUTPases from other viruses based on the conservation of these five 

motif regions. The viral dUTPases characterised to date include members of the 

Herpesviridae, Retroviridae, and Poxviridae (Table 1.4). 
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Family Virus Reference 
Herpesvirus Herpes simplex virus type 1 (HSV -1) (Wohlrab & Francke, 1980) 

Herpes simplex virus type 2 (HSV-2) (Wohlrab et aI., 1982) 

Epstein-Barr virus (EBV) (Williams et aI., 1985) 

Bovine herpesvirus 1 (BHV -) (Liang et aI., 1993) 

Pseudorabies virus (PRV) Ooos & Mettenleiter, 1996) 

Varicella-zoster virus (VZV) (Ross et ai, 1997) 

Poxvirus Vaccinia virus (Broyles, 1993) 

Retrovirus Mason-Pfizer monkey virus (MPMV) (Elder et aI., 1992) 

Simian type D retrovirus (SRV-l) (Elder et aI., 1992) 

Feline immunodeficiency virus(FIV) (Wagaman et al., 1993) 

Equine infectious anaemia virus (EIA V) (Threadgill et aI., 1993) 

Mouse mammary tumour virus (MMTV) (Koppe et aI., 1994) 

Caprine arthritis-encephalitis virus (CAEV) (Turelli et al., 1996) 

Visna virus (Turelli et aI., 1996) 

Table 1.4 Viral dUTPases which have been confirmed to be functional 

From Table 1.4 is evident that most of the current research in viral dUTPases is 

focused on members of the Herpesviridae and Retroviridae which are both discussed in 

later sections. Sequence homologues of dUTPase have also been found in the 

Adenoviridae, and the unclassified African swine fever virus (previously in the 

Iridoviridae family) but these have yet to be characterised. Many viruses which possess 

the dUTPase enzyme are sure to be identified in the near future from these families and 

others. 

1.4.4 The role of dUTPase in viral life cycles 

In this section a variety of viral life cycles are reviewed which exhibit different 

nucleotide metabolism pathways. These life cycles range from bacteriophages which 

utilise non-standard bases to those which encode a multiple array of enzymes to allow 

reversal of normal cellular functions. The retroviruses are also described here in 

relation to the possession of a dUTPase whereas the herpesviruses are described 

separately in Section 1.4.8. 

The replication mechanisms of many organisms differ with regard to nucleotide 

metabolism but none more so than bacteriophages of E.coli and B.subtilis. The cl>e 

bacteriophages of B.subtilis contain 5-hydroxymethyluracil (HMU) in place of thymine 

and possess dTTPase and dUTPase activities. Partial purification suggests that both 

activities are attributable to one, dual function enzyme. This dTTPase-dUTPase is 

thought to be responsible for excluding both uracil and thymine from phage DNA and 
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providing dUMP, the substrate for the cl>e-induced dUMP hydroxymethylase (Price & 

Warner, 1969). 

The T-even phages of E.coli replace cytosine with 5-hydroxymethylcytosine 

(HMC) in their DNA and encode a hydroxymethylase (Adams et al., 1981). They 

encode a dCTPase-dUTPase whose dCTPase activity prevents the incorporation of 

cytosine and produces dCMP, the substrate for dCMP hydroxymethylase. A kinase is 

encoded to phosphorylate the HMC to the diphosphate level and a host enzyme 

converts the diphosphate to the triphosphate. The return for encoding these extra 

enzymes is the advantage of promoting degradation of the host DNA by 

deoxyribonuclease. Specificity for the host DNA is attributed to the lack of cytosine 

clusters in the phage DNA due to replacement with HMC (Stryer, 1988). Another 

phage encoded enzyme catalyses the glycosylation ofHMC molecules which appears to 

further facilitate survival of the viral genome by reducing degradation by cellular 

enzymes (Cohen, 1968). 

The two examples above reveal how subtle changes to the chemical 

constituents of the viral DNA can be advantageous by allowing the replication and 

survival of viral DNA in preference to host DNA. Another replication mechanism 

variation is that of the PBS-2 phage of B.subtilis which has DNA containing uracil 

instead of thymine. To enable this phage to replicate in the host cell it must encode a 

number of proteins including a dTTPase (Price & Fogt, 1973). To allow accumulation 

of dUTP for incorporation into newly replicating DNA it encodes a dUTPase inhibitor 

protein (Price & Frato, 1975). PBS-2 must also encode a UDGase inhibitor to prevent 

purposely incorporated uracil molecules being excised (Wang & Mosbaugh, 1989). 

The UDGase inhibitor has been crystallised and characterised kinetically revealing that 

its mechanism of action is based on nucleotide mimicry (Bennet et al., 1993; Savva & 

Pearl, 1995). The purification and crystallisation of the dUTPase inhibitor protein to 

reveal its mechanism of action would be extremely interesting. The question as to 

what advantage can be gained from such a complex replication cycle remains unclear. 

Since the uracil rich DNA will be resistant to many restriction endonucleases this may 

have incurred an evolutionary advantage for this genome. 

Given the importance of dUTPase in general cellular metabolism it is not 

surprising that many viruses encode their own copy of the enzyme. It is interesting 

however that possession of a virally encoded dUTPase varies between viruses, even 

those closely related. One of the most striking examples of this variation is found in 

the Retroviridae where the lentivirus FIV encodes a dUTPase whereas its human 

counterpart mv does not. Existence of this gene in such a small, 10kb genome is 

indicative of its functional importance. It has been found that only distinct subsets of 

retroviruses encode a dUTPase gene (Elder et al., 1992) probably attributable to their 
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distinct life cycles. Retroviruses possess a single-stranded, RNA genome in the region 

of 8-10kb in length. The viral RNA is converted to DNA by virus encoded reverse 

transcriptase. Integrase, another virally encoded enzyme, performs integration of the 

viral DNA into the host cell chromosome. The retroviral genome is made up of three 

major genes, gag, pol and env. The gag region encodes structural proteins,pol encodes 

reverse transcriptase and integrase and env encodes a transmembrane glycoprotein 

which allows attachment and entry into the host cell. In the lentiviruses, the dUTPase 

gene is located in the pot gene between the reverse transcriptase and the integrase 

(McClure et al., 1987). In the type D retroviruses, MMTV, the dUTPase is expressed 

as an uncleaved transframe protein with the nucleocapsid protein (Bergman et at., 
1994; Koppe et at., 1994). 

Many of the retroviral dUTPase genes have been analysed by mutation studies 

and it is apparent that the replication of these dUTPase-deficient (dUTPase-) viruses is 

highly dependent on the state of the host cell. In many cases replication was close to 

wild type levels in certain dividing host cells. Studies with FIV dUTPase- mutants in 

vitro have shown that replication occurred with close to wild type levels in actively 

dividing host cells but was greatly reduced in non-dividing cells such as primary 

macrophages (Wagaman et at., 1993). A similar situation is seen with in vitro studies 

on EIA V (Threadgill et at., 1993), CAEV and visna virus (Turelli et at., 1996) where 

again there was reduced replication in primary macrophages but not in actively 

dividing cells. Studies with these mutants in vivo show that dUTPase does have an 

essential role in virus replication. Using FIV dUTPase- mutants in vivo, several key 

discoveries were made: 1) mutants infect their host with similar kinetics to wt, 2) 

mutants elicit a similar humoral antibody response to wt and 3) the virus burden is 

reduced in the mutants. Furthermore, it was found that the mutation rate of mutant 

FIVs integrated in the DNA of primary macrophages after 9 months was five fold 

greater than the mutation rate of mutant FlY's integrated in the DNA of T -lymphocytes. 

Comparative mutation rates of the wt virus between cell types were the same (Lerner et 

at., 1995). This is a clear indication that a virally encoded dUTPase becomes 

advantageous in non-dividing cells. This is backed up with similar in vivo data from 

studies with CAEV showing an increased mutation rate in dUTPase- mutants (Turelli 

et at., 1997). dUTPase- mutants of EIA V also shows increased incorporation of uracil 

into viral DNA (Steagall et aI., 1995) and replication deficiencies in macrophages 

(Lichtenstein et at., 1995). 

From these studies it is clear that dUTPase has a role in vivo in non-dividing 

cells where levels of host dUTPase activity may be low. The fact that HIV does not 

carry a dUTPase while other lentiviruses do may simply be because HIV does not 

encounter significantly high levels of dUTP during infection of the natural host. 
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However, since the FIV dUTPase is actually packaged into the virion (Elder el aI., 

1992) it has been suggested that mv may have developed a mechanism for the 

incorporation of the host dUTPase within its own mature virion (McIntosh et aI., 1992). 

Based on the discovery that human endogenous retrovirus-like elements (HERVs) also 

carry a gene with similarity to dUTPase (Cordonnier el aI., 1995) another possibility 

exists. If these viruses encode a functional copy of the dUTPase gene it may be 

possible for IDV to utilise this host-based source of the enzyme during replication 

(McIntosh et aI., 1992). 

1.4.5 dUTPase as an antiviral target 

There are relatively few successful antiviral therapies available at present. The 

main reason for this is that because viruses replicate in cells and employ much of the 

host's biosynthetic machinery, highly specific viral targets are hard to find. Many of the 

current antivirals suffer from low therapeutic indexes due to non-specific disruption of 

host cell components. The main areas of research into potential antiviral targets are 

historically nucleotide metabolism and DNA replication. As discussed previously, 

many viruses encode their own enzymes to allow efficient replication of viral DNA in 

the host cell. Identification and characterisation of these enzymes has allowed some 

success in the development of viral specific inhibitors. There are very few antiviral 

drugs licensed for use and most of them are nucleoside analogues (Table 1.5). The 

other antiviral drugs work in a variety of ways. 

Amantadine targets the process of endosome acidification and thus prevents 

release of the viral genome into the cytoplasm. Rimantadine has a similar mechanism 

and is less toxic than amantadine. Phosphonoformic acid, an analogue of 

pyrophosphate, inhibits DNA polymerase and viral reverse transcriptase (Blackburn & 

Gait, 1995). 
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Dru2 Virus 
Nucleoside analogues 
5-Iodo-2'-deoxyuridine HSV 
5-Trifluoromethyl-2'-deoxyuridine HSV 
Adenine arabinoside HSV 
5-Ethyl-2'deoxyuridine HSV (in Germany) 
5-Iodo-2'-deoxycytidine HSV (in France) 
Acyclovir (ACV, guanosine analogue) HSV,VZV 
(E)-5-(2-Bromovinyl)-2'-deoxyuridine HSV, VZV (in Germany) 
3'-Azido-2',3'-dideoxythymidine (AZT) HIV 
2',3'-Dideoxyinosine HIV 
2',3'-Dideoxycytidine HIV 
Ganciclovir (guanosine analogue) HCMV 
Ribavirin (purine nucleoside analogue) Respiratory syncytial virus 

Other 
Amantadine Influenza A 

Phosphonoformic acid HCMV 
Rimantadine Influenza A (in Russia) 

Table 1.5 Drugs approved for use against viral infection In humans In 1993 

(Blackburn & Gait, 1995) 

The most successful antiviral drugs in recent years include acyclovir (ACV) for 

herpesviruses and 3'-azido-2',3'-dideoxythymidine (AZT) for HIV-l. Referring to Table 

1.5 it can been seen that many of the licensed drugs are active against herpesvirus. The 

reason for this is twofold: Firstly, many of the herpesviruses enzymes have been 

substantially characterised allowing greater scope for directed drug development and 

secondly, many of the active drugs against herpesviruses are nucleoside analogues 

which are a by-product of extensive anti-cancer drug programs. 

The variation between the viral and host enzyme provides a basis for designing 

specific, non-toxic drugs. The majority of the herpesvirus antivirals rely on the virally 

encoded enzyme, thymidine kinase (TK). TK selectively phosphorylates nucleoside 

analogues, such as ACV, allowing conversion to the triphosphate state which is the 

active form. Since this reaction is not performed by the cellular host enzymes it 

provides a basis for specificity. Direct inhibition of the viral DNA polymerase has also 

been possible although the differences from the cellular version are limited (reviewed 

by Cohen, 1992). 
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ACV GCV 

Figure 1.7 Structure of Acyclovir (ACV) and Ganciclovir (GCV) 

ACV has the highest therapeutic index of any antiviral drug. Unlike many of 

the antivirals, the mechanism of action of acyclovir is well characterised. The structure 

of ACV is based on a deoxyguanosine which lacks part of the sugar ring (Figure 1.7). 

ACV is activated by the virally encoded TK which can phosphorylate a variety of 

nucleoside analogues. The mechanism of action is shown in Figure 1.8. 

ACV --. ACV-MP --. ACV-DP --.ACV-TP 
I Viral TK I I Cellular enzymes I 

Viral DNA polymerase 

Figure 1.8 The mechanism of Acyclovir action (Cohen, 1992) 

ACV is phosphorylated by the virally encoded TK converting it to ACV

monophosphate. Subsequent conversion to ACV-diphosphate and -triphosphate is 

performed by cellular enzymes. The triphosphate form of ACV acts as a competitive 

inhibitor with dGTP and also as a substrate for the viral DNA polymerase which 

incorporates the analogue into the growing DNA chain. Because there is no 3'

hydroxyl on the acyclo-GTP, the viral polymerase cannot add another dNTP. 

Furthermore, for reasons that are not yet clear, the polymerase becomes inactivated and 

viral DNA replication ceases. Non-infected mammalian cells do not phosphorylate 

ACV efficiently, imparting a high degree of specificity for HSV infected cells (Cohen, 

1992). Ganciclovir has a similar structure to ACV although by possessing the C-3' 

moiety on the sugar ring it is closer to the natural substrate. This may account for the 
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fact this is more toxic than ACV. Ganciclovir has the same basic mechanism of action 

as ACV and is commonly used to treat HCMV infection. 

The first report of ACV resistance in an immunocompromised HSV-infected 

patient was in 1982 (Crumpacker et al., 1982). Cases of resistance have been 

particularly common in patients suffering from AIDS or undergoing transplants. It is 

thought that the increased viral burden, characteristic of severely immunocompromised 

patients, increases the likelihood of resistance (Chatis & Crumpacker, 1992). There 

are three mechanisms of resistance including the selection of TK deficient mutants 

which lack the enzyme (Schmipper et al., 1980) and selection of mutants which 

produce an TK with a substrate specificity excluding ACV (Darby et al., 1981). 

Alternatively a mutated polymerase is selected for which is capable of elongating DNA 

in the presence of high concentrations of ACV (Knopf et al., 1981). Ganciclovir 

suffers from a similar set of resistance mechanisms (Chatis & Crumpacker, 1992). 

It is clear that there is a very limited number of selective antivirals available to 

treat herpesvirus infections and there are resistance problems with those in common 

use. There are, however, ongoing studies with other approaches such as disruption of 

viral or viral-cellular protein interactions and inhibition of proteases to block viral 

assembly. Antisense oligonucleotides are being developed to inhibit viral gene 

expression and work is continuing in the production of soluble receptors which block 

herpesvirus attachment and entry. 

It is possible to disrupt specific protein subunit interactions by peptide 

inhibition (reviewed by Marsden, 1992). The peptide is engineered to correspond to 

one of the two subunits, whether it is of viral or cellular origin. The best studied 

peptide inhibition of a viral protein subunit interaction is that of HSV ribonucleotide 

reductase (RR) (Outia et al., 1986). RR is a functionally important enzyme in viral 

replication and is discussed in Section 1.3.1. The HSV RR is a heterodimer composed 

of two molecules of a large subunit and two molecules of a small subunit (Ingemarsson 

& Lankinen, 1987). A nonapeptide was synthesised, corresponding to the carboxy

terminal region of the large subunit. This nonapeptide was able to specifically inhibit 

the viral RR by competing with the binding site on the large subunit to which the small 

subunit normally associates (Outia et at., 1986). The specificity for the viral enzyme 

appears to be from the difference in amino acid sequence at this binding region 

between the viral and mammalian RRs. The approach has also had some success in 

other herpesvirus protein interaction such as that between the polymerase (UL30) and 

the dsONA binding protein (UU2) (Marsden et at., 1994). 

Although these studies have proved to be useful in vitro, there are obstacles to 

overcome before they become clinically useful, such as delivery of the peptide into the 

target cell and degradation by cellular enzymes. Antisense oligonucleotides have 
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similar problems to peptides in terms of clinical use. The strategy involves the design 

of oligonucleotides that are complementary to a unique viral sequence. These 

molecules then hybridise to the viral DNA or RNA and interfere with the target 

sequence (reviewed by Bischofberger & Wagner, 1992). 

A relatively new target for a herpesvirus drug is the virally encoded dUTPase. 

Evidence suggesting an important role for the enzyme plus structural studies on related 

dUTPases has generated further interest. The herpesvirus encoded dUTPases are 

substantially different from the mammalian versions yielding the potential of selective 

inhibition of the viral enzyme. Elucidation of the active site region of the herpesvirus 

dUTPases may allow analogues to be developed that act specifically against the viral 

enzyme. HSV and EBV dUTPases have now been accepted as serious contenders for 

novel drug design (Williams, 1988~ Sommer et af., 1996). Sequence analysis studies 

have identified a conserved motif present in the herpesvirus dUTPases but not in other 

dUTPases (McGeoch, unpublished work). This is discussed fully in the Results 

(Section 4.7). Clearly, if a function can be attributed to this conserved region of the 

viral enzyme, it may be possible to design drugs targeted at this area. To adequately 

design selective inhibitors for the herpesvirus dUTPase it is first necessary to 

characterise the enzyme thoroughly both structurally and functionally. This thesis deals 

with the preliminary results of this characterisation. 

A substrate analogue has been developed which is a potent inhibitor of both the 

E.coli and the HSV-l dUTPases (Bergman et aI., 1997; Persson et aI., 1996). The 

dUDP analogue, 2'-deoxyuridine 5'-( a,f3-imido )diphosphate (dUPNPP) was chemically 

synthesised and the active triphosphate was prepared enzymatically using the enzyme 

pyruvate kinase and phosphoenolpyruvate as a phosphate donor. This method was also 

used to phosphorylate the imidodiphosphate analogue of 2'-deoxythymidine to 2'

deoxythymidine 5'-( a,f3-imido )triphosphate (dTPNPP). Replacement of the a,f3-

bridging oxygen in dUTP with an imido group results in a non-hydrolysable substrate 

analogue (Figure 1.9). 
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Figure 1.9 Structure of pyrimidine analogues 
The chemical structures of the following compunds are shown: (A) dUPNPP, (B) dTPNPP, (C) dUTPaS 
and (D) BM-dUTP. 

Both dUPNPP and dTPNPP compounds were developed for use in 

crystallisation experiments but also demonstrate that inhibitors can be readily 

produced. The structure of analogue benzyl-(2'-deoxy-5'-uridinyl-hydroxyphosphinyl

methylenyl-hydroxyphosphinyl-oxo )-phosphonate (BM-dUTP) is also shown in Figure 

1.9. This substrate analogue has been synthesised and found to be a useful inhibitor of 

dUTPase in cancer cell lines (see Section 1.4.6). The molecule dUTPa.S has two 

enantiomers of which only one is hydrolysed by dUTPase in the presence of Mg2+. 

The non-hydrolysable enantiomer can be hydrolysed upon the addition of C02+ thus 

providing evidence for the participation of the a-phosphate with a metal ion in the 

reaction mechanism (Bergman, 1997). 

1.4.6 Human dUTPase and chemotherapy 

It is clear that dUTPase plays a key role in many viral replication cycles. It is 

also clear that dUTPase is an essential enzyme to mammalian cells specifically those 

cells which are actively growing or dividing. The variation in requirement for cellular 

dUTPase appears to be dependent on the cell state, with actively dividing cells 

producing much larger quantities of the enzyme than resting cells (Nation et ai., 1989). 
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This makes dUTPase a useful target for cancer therapy since its inactivation may 

selectively inhibit rapidly dividing cells (McIntosh et aI., 1992). 

It was widely considered that cell death due to inhibition of thymidylate 

synthase (TS) was a direct result of low levels of intracellular dTTP. It was not, 

however, understood why such a transient nucleotide imbalance could result in 

irreversible cell damage and death. It has been found that induction of cell death by 

inhibition of TS involves an increase of intracellular dUTP resulting in 

misincorporation into DNA and fragmentation due to excision repair (Curtin et al., 

1991 ). This enzyme is a key target for cancer chemotherapy and several inhibitory 

drugs have been developed including methotrexate and fluorodeoxyuridine (FdUrd). 

FdUrd gives a significant benefit to cancer patients but a large percentage of tumours 

exhibit intrinsic or acquired resistance. Many of the mechanisms of resistance of the 

group of fluoropyrimidine drugs have been identified as mutations of the cellular TS 

resulting in reduced inhibition. Further studies with FdUrd have implicated dUTPase 

in the resistance mechanism of the drug (Canman et aJ., 1993). It appears that in 

response to high dUTP levels induced by FdUrd the cell can increase dUTPase activity 

to compensate (Lirette & Caradonna, 1990). This increase in dUTPase activity allows 

the intracellular dUTP levels to be reduced thereby lowering the potentially cytotoxic 

misincorporation of uracil into DNA (Beck et al., 1984). This is backed up by older 

studies which show that inhibition of dUTPase with nucleoside analogues increases 

the cytotoxicity of methotrexate in cell culture (Beck et al., 1985 ~ 1986). 

The role of dUTPase in resistance to FdUrd induced cytotoxicity has been 

confirmed by expressing E.coli dUTPase in a mammalian cell line prior to drug 

treatment (Canman et aJ., 1994). Cells expressing the recombinant E.coli enzyme 

showed a 4-5 fold increase in overall dUTPase activity. These cells were found to be 

protected against the action of FdUrd compared to cells expressing standard levels of 

dUTPase activity (Canman et al., 1994). Although the in vivo situation has not been 

investigated, these results support the theory that the action of anti-tumour drugs such 

as FdUrd may be enhanced by combining them with dUTPase inhibitors thus 

maximising uracil incorporation into DNA and the consequent strand breakage. In 

terms of resistance to drugs such as FdUrd, dUTPase inhibitors may become extremely 

useful. Studies on the human enzyme indicate that there are at least two distinct 

versions of the enzyme of which one may be activated by phosphorylation (Section 

1.4.2). Further characterisation of the human dUTPase will allow greater potential to 

regulate the enzyme in tumour cells and may provide a degree of specificity. 
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1.4.7 The dUTPase of Escherichia coli 

The E.coli enzyme is the most highly characterised dUTPase to date in terms of 

both structure and function. After large scale purification was successful, E.coli 

dUTPase was the first to be crystallised (Hoffmann et al., 1987; Cedergren-Zeppezauer 

et aI., 1992). The E.coli enzyme is used as a working model for a typical class I 

dUTPase and as a basis for the molecular modelling of the class II HSV-l dUTPase in 

this thesis. There are now four class I enzymes for which a crystal structure has been 

solved: E.coli (Cedergren-Zeppezauer et al., 1992), FIV (Prasad et aI., 1996), EIA V 

(Persson et aI., 1997) and a human (Larsson et aI., 1996b; Mol et al., 1996) dUTPase. 

The crystal structure of the E.coli enzyme with bound dUDP has also been solved 

allowing identification of functionally important residues within the structure (Larsson 

et al., 1996c). 

The E.coli dUTPase was originally described as a tetramer (Shlomai & 

Kornberg, 1978) but in the course of crystallographic analysis was found to be a homo

trimer (Cedergren-Zeppezauer et al., 1992). The structure of the E.coli dUTPase is 

presented in Figure 1.10(a) with each of the three subunits coloured individually. Each 

subunit comprises a globular region with an extended tail which is formed by the C

terminal region of the protein. The extended arm of each subunit crosses the adjacent 

subunit. In the E.coli crystal structure the last 16 residues of this arm are not visible in 

the electron density map even when dUDP is bound and it has been proposed that the 

arm is flexible (Larsson et al., 1996c). Subsequent studies using non-hydrolyzable 

substrate analogues have demonstrated that the E.coli arm closes over the active site 

following the binding of 2'-deoxyuridine 5'-(a.,j3-imido)triphosphate (diphosphate 

shown in Figure 1.9A) in complex with Mg2+ and then opens after catalytic cleavage 

(Vertessy et al., 1998). 

Primary sequence comparisons of the class I and class II dUTPases revealed 

five distinct regions of local sequence similarity which have been named motifs 1-5 

(McGeoch, 1990b). These conserved regions are dealt with in detail in Chapter 4. 

Analysis of the E.coli dUTPase-dUDP co-crystal demonstrated that at least four of 

these motifs regions condense to form an active site pocket (Figure 1. lOb and c). The 

trimer has three such active sites, with each one positioned at the interface region 

between adjacent subunits (Larsson et al., 1996c). Motif 5 is positioned at the end of 

the C-terminal tail and is not visible even in the dUDP co-crystal structure. 
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(a) 

(b) (e) 

Figure 1.10 Structure of the E.coli trimer (top) and active site region (bottom). 
(a) The E.coli trimer. Each of the three identical subunits is coloured: 'A ', cyan, ' B', red and 'C', 
yellow. There are three active sites in the trimer positioned at the interface between adjacent subunits. 
An arrow indicates the position of one of the three active sites. (b) Side view of the trimer looking in the 
direction of the arrow in (a). (c) Active site region. View as in (b) with all three subunits coloured white 
and the motif regions highlighted. Subunit 'A' contributes motif 3 (red). Subunit 'B' contributes motifs 
1 (green), 2 (blue) and 4 (pink). Motif 5 is not visible in this structure but is proposed to be contributed 
by subunit 'c' at the end of the C-terminaI arm. The last visible residues, 134-136, of the 'c' subunit 
(yellow) can be seen approaching the active site area in figure (b). 
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Figure 1.11 The secondary structure of the E.coli trimer (Bergman, 1997). 

Each subunit is composed of 10 J3-strands and one short a-helix (see Section 

4.4.2 for a detailed description). The 7 main J3-strands from one subunit plus an eighth 

extended J3-strand from a neighbouring subunit form a secondary structure resembling 

the Jelly-roll' often found in viral coat proteins. Three such folds condense to fonn the 

trimer depicted in Figure 1.11. The last visible residue of the enzyme, Phe-136, lies at 

the end of the ann and points in the direction of the active site. The structure of the 

human dUTPase trimer reveals that motif 5 also participates in the active site area and 

it is likely that a similar situation exists in the E.coli enzyme (Mol et aI. , 1996). It has 

been suggested that this region becomes ordered only upon binding a nucleoside 

triphosphate in complex with a metal ion (Larsson et ai., 1996c). Motif 5 is rich in 

glycine residues and has similarity to phosphate binding sequences in other nucleotide 

binding proteins (Moller & Amons, 1985; Bossemeyer, 1994). 

One of the most interesting discoveries is that with the participation of motif 5, 

each active site is made up from motifs from all three subunits. This can be visualised 

in Figure 1.10 where subunit 'A' contributes motif 3, subunit 'B' contributes motifs 1, 2 

and 4, and subunit 'C' is likely to contribute motif 5 at the end of the arm structure. 

This has important implications in the modelling of the HSV -1 enzyme and will be 

discussed in some detail in the Results Chapter 4. 
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The most important residues involved in the specificity for dUTP are contained 

in motif 3. This region may be a general uridine binding motif since homologues have 

been found in both dCTP deaminases and pseudouridine synthases (Koonin, 1996). 

There are, however, no structural data to determine if these homologous sequences are 

in fact involved in uridine binding. Motif 3 has a p-hairpin loop structure with 

discrimination against ribose achieved by a tyrosine (Tyr-93) which lies at the comer of 

this loop. This residue is highly conserved between dUTPases and is also found in the 

majority of class II enzymes. There is chemical evidence that acetylation or nitration 

of this residue in E.coli inactivates the enzyme (Vertessy et al., 1996; Vertessy et aI., 

1994; Vertessy & Zeppezauer, 1994). The structure of the active site and the 

mechanism employed for discrimination against sugar, base and phosphate are 

discussed in Section 4.2. 

Kinetic studies with the E.coli enzyme and other dUTPases have resulted in 

widely different values even for the most standard measurements. The KM for the 

E.coli enzyme has been reported as 1.5J,tM (Bertani et al., 1961), 12J,tM (Shlomai & 

Kornberg, 1978), 22J,tM (Hoffmann et al., 1987) and recently as 0.2J,tM (Rogers et al., 

1997). The most recent measurement, carried out by stopped-flow analysis, has shown 

that by excluding Mg2+ from the reaction, an almost 100-fold higher KM was obtained 

and metal-free dUTP was shown to be an inhibitor of the reaction (Larsson et aI., 

1996a). It is possible that Mg2+ concentration was not taken into account in earlier 

experiments. It is also possible that the discontinuous measurement of dUTPase 

activity (as measured by reaction product quantification using TLC separation) is not 

accurate enough to measure KM in the submicromolar range. 

The stopped-flow technique measures the release of protons and subsequent pH 

change in a weakly buffered solution containing a pH indicator dye. This system 

allows real-time measurement of the hydrolysis reaction and was utilised for a detailed 

kinetic analysis of the E.coli enzyme (Larsson et aI., 1996a). It was found that the 

enzyme was highly specific for its substrate dUTP, with the next best substrate, dCTP, 

hydrolysed 105 times less efficiently (by comparison of specificity constants, kcatfKM). 

This vast difference is mainly attributable to a higher KM for dCTP. A catalytic 

mechanism has been interpreted from these data and involves the magnesium binding 

to the a-phosphate, rate-limiting hydrolysis by an activated water molecule and fast 

ordered desorption of the products. The turnover (kcat) for the E.coli dUTPase, in the 

range of 6 to 9 s-l, is considered to be slow and it has been suggested that this is a 

consequence of the high specificity the enzyme has for dUTP. 
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1.4.8 The dUTPases of herpesviruses 

The dUTPase ofHSV-l is the focal enzyme in this thesis. It is encoded by gene 

UL50, a rightward oriented ORF of 371 codons. The position of the gene in the HSV-I 

genome was correctly identified by (Preston & Fisher, 1984) although there were 

earlier reports describing a different location (Williams & Parris, 1987; Wohlrab et aI., 

1982). It lies head to head with UL49A and tail to tail with UL51. The close proximity 

ofUL50 and UL49A means that they overlap their respective promoter regions. 

Fisher & Preston (1986) generated the HSV-l mutant dufl218 which contains 

an insertion of 12 base pairs at the KpnJ site within the UL50 ORF (see Section 5.3.2 & 

5.3.3). Inactivation of the HSV-l dUTPase gene had no effect on growth of the virus in 

tissue culture and demonstrated that the virally encoded dUTPase was non-essential in 

vitro (Fisher & Preston, 1986; Barker & Roizman, 1990). This is not surprising since 

the natural cellular hosts of HSV-l include nondividing cells such as neurons. It has 

been reported that infection with HSV -1 down regulates the host cell dUTPase whereas 

infection with a dUTPase- mutant does not (Lirette & Caradonna, 1990). In the latter 

case it is likely that the virus can rely on the host dUTPase in cell culture. Again, this 

study was carried out with actively dividing HeLa cells and therefore does not represent 

the true picture in vivo. 

Later studies using the mouse model indicated that infection with HSV-l 

dUTPase- mutants results in a marked reduction in neurovirulence, neuroinvasiveness 

and reactivation from latency (Pyles et al., 1992). This gives a better perspective of the 

role of the enzyme in neural tissue. The HSV-l insertion mutant, dufl218 (Fisher & 

Preston, 1986) and a deletion mutant, 17Bl, were tested in vivo (Pyles et aI., 1992). 

Neuroinvasiveness, as measured by footpad inoculation, was over 1,000 fold less than 

wt HSV-l. A complication results from the deletion of the UL49A promoter in mutant 

17B 1. This mutant was constructed with a deletion between base pairs 107028 and 

107956 (UL50 represents bp 107010 to 108123) which includes the promoter region for 

UL49A. Analysis of this mutant demonstrated that UL49A was not transcribed. This 

may have had an effect on invasion and replication in the CNS since UL49A has been 

reported to be a virion membrane protein (Barnett et al., 1992; Jons et at., 1996). 

Furthermore, the restoration of the dUTPase gene in mutant 17B 1 did not restore 

neuroinvasiveness in some isolates suggesting that a second mutation may have been 

inadvertently selected. The insertion mutant dufl 218 was also shown to be over 1,000 

fold less neuroinvasive following footpad inoculation as compared to the wt 17 syn + 

virus. Restoration of the dUTPase gene to this mutant resulted in fully wt viruses. 

Concern that the small, four residue, in-frame insertion may be leaky is unlikely given 

that it disrupts the highly conserved motif 3 which is crucial to substrate binding 

(Section 4.2.5). Further confidence is given in that several groups have not found any 
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HSV -1 specific dUTPase activity in mutant dun 218 (Fisher & Preston, 1986; 

Williams, 1988). 

Even with the reservations in the in vivo study by Pyles et al. (1992) it is likely 

that the virally encoded dUTPase has a role in allowing reactivation from latency and 

viral replication in neuronal cells. HSV-l mutants in thymidine kinase and 

ribonucleotide reductase show reduced replication in neuronal tissue as well as a 

reduction in the capacity to establish latency (Katz et al., 1990; Kosz-Vnenchaak et al., 

1990). It is possible that in adult neurons HSV-l requires dUTPase to redress the 

nucleotide balance before initiating its own DNA replication. 

One of the distinct characteristics of herpesviruses is their ability to establish 

latent infection. EBV has been shown to encode an active dUTPase during infection 

and this enzyme may be required for reactivation and replication in resting epithelial 

tissue or resting B cells (Sommer et aI., 1996). Just as mammalian cells may switch off 

dUTPase to promote nucleotide imbalance and apoptosis (Section 1.4.2), viruses may 

switch on dUTPase to push dTTP synthesis from dUMP thus allowing viral replication 

in otherwise resting cells (Pyles et al., 1992). Studies with PRY and BHV-l indicate 

the presence of active dUTPases and mutants have been constructed and tested in cell 

culture (Jons & Mettenleiter, 1996; Liang et aI., 1993). As expected, in both cases 

dUTPase is dispensable in cell culture. In vivo studies utilising these mutant viruses is 

likely to result in reduced replication and/or reactivation from latency. 

The herpesvirus dUTPases vary in length particularly between the three 

subfamilies of herpesviruses. The longest polypeptide chains are found in the u
herpesvirus with VZV the largest at 396 residues. The y-herpesviruses include shorter 

chains with EBV at 278 residues and HVS at 287 residues. The f3-herpesvirus, HCMV, 

has been suggested to carry a dUTPase (UL 72) on the basis of its location in the 

genome compared to the other herpesviruses (Chee et al., 1990). There are no 

convincing homologues of the five motifs found in other dUTPases although it 

possesses a herpesvirus exclusive motif (McGeoch, unpublished). This protein is the 

subject of further discussion in the Results section. 

All dUTPases which have been characterised to date (excluding the dUTPase of 

Leishmania major), share five short regions of amino acid similarity termed motifs 1-5 

(Figure 1.12) (McGeoch, 1990b). Excluding the herpesvirus enzymes, all dUTPases 

contain these five motifs in the same order over a roughly similar length protein chain 

around 150 residues. The only major variation from this primary structure in the class I 

enzymes is found in the retrovirus MMTV where the nucleocapsid domain is fused to 

the N-terminus of the dUTPase (Bergman et al., 1994). The herpesvirus dUTPases, or 

class IT dUTPases, share the five common motifs found in class I dUTPases but in a 

different linear order on the polypeptide chain. Motif 3 is displaced to the N-terminal 
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half of the class II protein with regard to the other four motifs. The class II dUTPases 

are approximately double the protein chain length of the class I enzymes and exhibit 

greater length variation. The distance been motifs 4 and 5 is also enlarged compared to 

the class I enzymes (Figure 1.12). 

Figure 1.12 Comparison of the order of the five motifs in a subset of class I (MMTV, 

EIA V, Human and E.coli) and class II (HSV-1 and EBV) dUTPases. 

HSV -1 dUTPase is the best studied of the class II enzymes and unlike the 

trimeric class I enzymes has been shown to be active as a monomer (Caradonna & 

Adamkiewicz, 1984; Persson, 1999, personal communication). EBV dUTPase has also 

been shown to be a monomer and it is likely that the other class II enzymes which share 

this primary structure arrangement are also monomers (Persson et al., 1999). It has 

been suggested that the class II enzymes have arisen by an intragenic duplication of a 

class I enzyme (McGeoch, 1990b). The proposed evolutionary process linking the two 

classes of dUTPase is depicted in Figure l.13. The top figure represents a typical class 

I dUTPase, such as that of E.coli, with five conserved motifs in the class I linear order. 

Intragenic duplication of this gene creates a double length protein chain with two 

copies of the conserved motif regions 1-5. Subsequent loss of motifs 1,2,4 and 5 from 

the N-tenninal half plus motif 3 from the C-tenninal half results in the motif 

arrangement found in the class II dUTPases. 
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Figure 1.13 Schematic representation of a class I intragenic duplication. 
(a) represents the standard class I dUTPase with its conserved motifs 1-5. (b) represents a duplication of 
the class I gene resulting in a double length protein, possessing two copies of motifs 1-5. (c) represents 
the genuine arrangement of the class II dUTPases. The transition from (b) to (c) requires the loss of 
motifs 1,2,4 and 5 in the N-terminal half of the protein and motif 3 in the C-terminal half There must also 
be an insertion of novel sequence between motifs 4 and 5 to account for the extension. 

A model accounting for the observed motif rearrangement in the class II 

enzymes was proposed by (McGeoch, 1990b). This model was based on the 

assumption that the E.coli dUTPase class I enzyme was a tetramer (Shlomai & 

Kornberg, 1978). As described in Section 1.4.7. it is now clear that the E.coli dUTPase 

is, in fact, a trimer. This does not, however, affect the basic idea of the original model 

since the principles are easily transposed onto a trimeric class I molecule. 

A NI1 2 3 4 5 Ie Nt 3 1 2 4 5 Ie 

B 

Figure 1.14 Arrangement of motifs and model for dUTPase quaternary structure. 
A. Linear arrangement of the motifs of class I (left) and class II dUTPases (right). 
B. The left cartoon represents the model ofMcGeoch (1990b), assuming a tetrameric structure for the 
class I dUTPase. The proposed motif positions are shown on two of the four subunits. Each of the two 
active site regions depicted is composed of motifs 1, 2, 4, and 5 from one subunit and motif 3 from the 
other. The right cartoon represents a class II dUTPase monomer, with the C-terminal region in white and 
the N-terminal region shaded. Diagram from McGeoch (1990b). 
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In this model (Figure 1.14), it is proposed that the motifs from each of the class 

I subunits condense to fonn an active site region, creating two active sites per dimer 

(equivalent to four active sites per tetramer). It is proposed that an equivalent 

condensation of the five motifs would result in the fonnation of two active sites in the 

monomer. Loss of one of these active site regions, and subsequent loss of one set of 

motifs would result in the observed class II arrangement. The structural modelling and 

molecular analysis presented in the Results section of this thesis provide insight into 

how the transition from a class I to a class II enzyme could be achieved. This is based 

on the current knowledge that the E. coli and other class I enzymes are trimeric and 

each of their three active sites is composed of motifs from all three subunits. 
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Chapter 2 - Materials 

2.1 Chemicals and reagents 
All chemicals and reagents were purchased from BDH Chemicals UK or Sigma with 

the exception of those listed below and referred to specifically in the Methods section. 

Amersham Life Science 

Beecham Research 

Bio-Rad Laboratories 

Boehringer Mannheim 

Fluka 

FMC Bioproducts 

Gibco BRL Life 

Technologies 

Melford Laboratories 

National Diagnostics 

Pharmacia Biotech 

Prolabo 

Rainbow coloured protein MW markers 

Ampicillin sodium B.P. (Penbritin) 

Ammonium persulphate, Coomassie brilliant blue R250, 

TEMED 

leupeptin, pepstatin, PMSF, agarose MP, 

Tris (2-amino-2(hydroxymethyl )-1 ,3-propanediol) 

Formamide 

NewSieve GTG agarose 

IPTG 

CsCI 

Ecoscint A scintillation fluid 

7-deaza-dGTP, dNTPs, ddNTPs 

Boric acid, butanol, chloroform, ethanol, glacial acetic 

acid, glycerol, hydrochloric acid, isopropanol, methanol 

United States Biochemical Glycerol tolerant gel buffer 

Whatman International Pll cellulose phosphate 

2.2 Solutions 
2.2.1 Standard solutions 

Coomassie stain 

Destain 

DF dyes 

dNTPs 

Formamide dyes 

Kinase buffer (5X) 

Ligation butTer (5X) 

0.2% (w/v) Coomassie Brilliant Blue R250 in 

methanol:water:acetic acid in a 50:50:7 ratio 

5% (v/v) methanol, 7% (v/v) acetic acid in water 

50% (v/v) TBE, 50% (v/v) glycerol, 0.1 % (w/v) 

bromophenol blue 

1.25mM stock (312.5 !JM of each of dATP, dCTP, dGTP, 

dTTP) 

10mM EDT A, 1 mg/ml xylene cyanol FF, 1 mg/ml 

bromophenol blue, 80% (v/v) formamide, pH 8.0 

350mM Tris-HCI (pH 7.5), 50mM MgC12, 25mM DTT 

250mM Tris-HCI (pH 7.6), 50mM MgC12, 5mM DTT, 

5mM ATP, 25% (w/v) PEG 8000 
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PCR buffer (lOX) 

PBS(A) 

PBS-complete 

SEQ buffer (SX) 

Sequencing buffer 

(for Sequenase) 

TAE (SOX) 

TBE (lOX) 

TE 

TFB 

100mM Tris-HCI, ISmM MgCI2, SOOmM KCI, pH 8.3 

170mM NaCl, 3.4mM KCI, 10mM Na2HP04, 

1.8mM KH2P04, pH 7.2 

PBS(A) plus CaC12.2H20 and MgC12.6H20 at 19l1 

200mM Tris-HCI, 80mM MgCI2, pH 7.S 

200mM Tris-HCI, 100mM MgCI2, pH 7.S, 2S0mM NaCl 

0.2M Tris, O.OS EDTA (pH8.0), pH to 8.0 with glacial 

acetic acid 

0.8M Tris, 0.3M boric acid, 0.2mM, EDT A 

lOmM Tris-HCI, ImM EDTA, pH 8.0 

lOmM MES, 100mM RbCI, 4SmM MnCI2.4H20, 

lOmM CaCI2.2H20, 3mM hexammine cobaltic chloride, 

pH6.3 

2.2.2 Glycine SDS PAGE buffers: 

Loading buffer (3X) 29% (v/v) SGB, 6% (w/v) SDS, 2M J3-mecaptoethanol, 

29% (v/v) glycerol, Imglml bromophenol blue 

Resolving gel buffer (RGB) I.5M Tris-HCI, 0.4% (w/v) SDS, pH 8.9 

Stacking gel buffer (SGB) O.SM Tris-HCI, 0.4% (w/v) SDS, pH 6.7 

Tank buffer O.OSM Tris, O.OSM glycine, 0.1% (w/v) SDS 

2.2.3 Lysis Buffers for plasmid sequencing 

Lysozyme solution 0.4% (w/v) Lysozyme, 50mM sucrose, 25mM Tris, 

pH 8.0 

NaOHlSDS 0.2MNaOH, 1% (w/v) SDS 

Potassium acetate solution 3M KAc, 2M acetic acid 

STET 8% sucrose, O.S% triton x-toO, 50mM EDTA (pH 8.0), 

SOmM Tris-HCI, pH 8.0 

2.2.4 Extraction / purification buffers 

illI extraction buffer A SOmM Tris-HCl (pH 8.0), SmM EDTA, 0.2Smg/ml 

lysozyme, SOJ,lg/ml sodium azide 

illI extraction buffer B l.SM NaCI, O.IM CaCI2, O.IM MgC12, 

0.02 mg/ml DNAse I, SOJ,lg/ml sodium azide 

illI periplasmic EB O.SM sucrose, 0.03M Tris, ImM EDTA at a final 

pH of 8.0 after resuspension 
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pET extraction buffer 

FPLC buffer I 

(Phosphocellulose) 

FPLC buffer IT 

(Mono S) 

2.3 Plasmids 

20mM Hepes(pH 7.3), 50mM NaCI, lO%(v/v) glycerol, 

ImM EDTA, ImM EGTA, ImM DTT, ImM PMSF, 

2Jlg/mlleupeptin, 2Jlg/ml pepstatin A, 

O. 1 % polyoxyethylene-l O-tridecyl ether 

20mM Hepes(pH 7.3), 50mM NaCl, lO%(v/v) 

glycerol, ImM EDTA, ImM EGTA, ImM DTT, 

ImM PMSF, 2Jlg/mlleupeptin, 2Jlg/ml pepstatin A, 

0.01 % polyoxyethyiene-IO-tridecyl ether 

50mM MES(pH 6.5), 100mM NaCl, lO%(v/v) 

glycerol, ImMEDTA, ImMEGTA, ImMDTT, 

ImM PMSF, 2Jlg/mlleupeptin, 2Jlg/ml pepstatin A, 

0.01% polyoxyethyiene-IO-tridecyl ether 

Commercially available plasmid, pFLAG.A TS, was used in the Kodak IBI 

expression system and plasmids, pET3a and pET23a, in the Novagen pET expression 

system. The plasmid construct pET3a1UL50, containing the HSV-I dUTPase ORF, was 

a kind gift from 0. BjOmberg, Dept. Biochemistry, University of Lund, Sweden. 

Details of this construct are given in Section 5.1.3.2. 

2.4 Enzymes 
Restriction enzymes were obtained from Boehringer Mannheim or New England 

Biolabs. DNase I and lysozyme were purchased from Sigma. T4 DNA ligase, T4 

polynucleotide kinase, calf intestinal phosphatase, DNA polymerase I (Klenow 

fragment) T7 DNA polymerase and Taq polymerase were purchased from Boehringer 

Mannheim. Gene 32 protein was purchased from Pharmacia. 

2.5 Synthetic oligonucleotides 
Oligonucleotides were synthesised for PCR, sequencing and mutagenesis on a 

Cruachem PS250 automated synthesiser mainly by myself but also by Mr R. Van 

Deursen and Mr R. Reid. A detailed description of their synthesis is given in section 

3.l.l. 
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2.6 Peptides 
Peptides were prepared by Mrs K. McAulay and Miss G. McVey using a 

Shimadzu PSSM-8 peptide synthesiser. Peptides with purities below 70% were purified 

by HPLC (Beckman System Gold). 

2.7 Bacteria 
E. coli strains 

DHSa [F-,supE44 AlacUI69 (q,80lacZ AMIS) hsdRI7 recAI endAI gyrA96 fhi-l 

relAI] 

Used for maintenance and propagation of plasmid DNA 

BL2I(DE3)pLysS [hsdS gal (AcIts8S7 indl sam7 ninS lacUVS-T7 gene 1)] 

Used for expression of recombinant proteins using the pET T7 system 

(Novagen, Inc.) T7 RNA polymerase is carried on bacteriophage ",DE3 which 

is integrated into the chromosome ofBL21 (Studier et aI., 1990). 

CHS26 DAM- [F-, araB/(lac pro) thi, strA] 

Used for propagation of plasm ids with DAM methylation sites allowing efficient 

restiction digestion. 

NMS22 [recA+, supE, thi, A(lac-proAB), hsdS(F',proAB, lacIQ, lacZAMI5)] 

Used as a recipient host for mutagenic plasmids during Kunkel mutagenesis. 

BW313 [dur, ung-, recAI, thi-I, relA spoTIIF'lysA, Hfr KLI6(P04S)] 

Used for the production of uracil enriched plasmid DNA during Kunkel 

mutagenesis and as a dUTPase negative host and control strain. 

2.8 Bacteria Culture Media 
L-Broth 

2YT Broth 

IOgll NaCI, IOgil Difco Bactotryptone, Sg/l yeast extract, pH 7.S 

5g1l NaCI, 16g/1 Difco Bactotryptone, 109/I yeast extract, pH 7.0 

L-Broth Agar 1.5% (w/v) agar in L-broth 

Antibiotics were used at the following concentrations as required~ 

Ampicillin IOOJlg/ml for bacteria containing pFLAG.ATS and pET plasmids 

Chloramphenicol 25Jlglml for strain BL2I(DE3) harbouring the pLysS plasmid 

Kanamycin 70Jlg/ml was used for propagation of the K07 helper phage 

Tetracycline 20Jlg/ml was used for VZV dUTPase donor plasmid KpnC29 
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2.9 Radiochemicals 
Radiochemicals were purchased from Amersham International pIc. with the 

following specific activities: 

Seguencing label: 

[a-35S] deoxyadenosine thiotriphosphate, 1000Cilmmol (lOJ.!CilJ.!l) 

[a-35S] deoxycytosine thiotriphosphate, 1000Cilmmoi (lOJ.!Ci/J.!l) 

Terminator cycle sequencing labels: 

[a_33p] ddGTP 1 
[a_33p] ddA TP I all at 1500Ci/mmol, 450J.!Ci/ml 

[a_33p] ddTTP I 
[a_33p] ddCTP J 

dUTPase assay label: 

deoxy[5-3H] uridine 5'triphosphate, 19Cilmmol (lJ.!Ci/J.!l) 

2.10 Other materials 

DNA purification 

Pharmacia Biotech Sephaglas Band Prep Kit 

DNA seguencing 

Amersham Life Science, United States Biochemical (USB) 

-Sequenase Version 2.0 DNA Sequencing Kit 

-Sequenase Quick-Denature Plasmid Sequencing Kit 

Amersham Life Science 

-Thermo Sequenase Cycle Sequencing Kit 

-Thermo Sequenase Radiolabelled Terminator Cycle Sequencing Kit 

High efficiency ligation 

Amersham T 4 Ligation Kit 

Preparation of plasmid DNA 

Qiagen QIAprep Spin Plasmid Mini-Prep Kit (small scale) 

Promega Wizard DNA Maxi-Prep Kit (large scale) 

Protein concentration 

Amicon Centriplus Concentrators 

Spectrum SpectraIPor 3 dialysis membrane 
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Chapter 3 - Methods 

3.1 DNA manipulation 

3.1.1 Oligonucleotide synthesis and purification 
Chemical Synthesis 

Synthesis was by cyanoethyl phosphoramidite chemistry on controlled pore 

glass (CPG) columns. The first nucleoside which forms the 3' end of the synthetic DNA 

is attached to the CPG surface via an ester linkage and a hydrocarbon spacer. To allow 

the correct polarity of chemical synthesis (3' --+ 5') the 5'OH is protected with a 

dimethoxytrityl group (DMT). Mononucleotides are added sequentially using the 

following method: 

1. Deprotection - the 5' DMT acid labile protecting group is removed producing the 

5' OH to react with the next base. 

2. Coupling - phosphoramidite is activated by tetrazole and covalent bond formed 

3. Capping - chains with failed additions are capped 

4. Oxidation - the phosphite internucleotide bond is oxidised. 

Steps 1-4 are repeated for each base addition. 

The ester linkage to the CPG can then be cleaved with ammonium hydroxide (0.88 

specific gravity) leaving the DNA with a free 3' OH. The protecting groups of A, G and 

C are removed by incubation for 5hr at 55°C and the DNA is lyophilised under vacuum. 

For standard sequencing reactions, oligonucleotides were resuspended in water and 

used directly. For more stringent applications such as mutagenesis, oligonucleotides 

were resuspended in deionised formamide and TBE then gel purified. 

Oligonucleotide purification 

Purification was performed by denaturing polyacrylamide gel electrophoresis on 

a 12% gel (acrylamide:bisacrylamide 19:1) with 8M urea, and IX TBE. Polymerisation 

was by addition of O.Olvol 10% APS and O.OOlvol TEMED. Samples were heated at 

100°C for Imin with an equal volume of formamide before loading. Formamide dyes 

were loaded in adjacent wells. Samples were electrophoresed in gels (1.5mm thick x 

25cm long) at 250 V for 3-5hr in IX TBE running buffer. Bands were visualised under 

short wave UV light by shadowing with an intensifying screen and excised from the gel. 

Urea was removed from the slices by washing for 2min in 3ml of water. DNA was 

passively eluted by washing the slice in 3ml TE buffer overnight at 37°C with shaking. 
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Fragments of acrylamide were removed from the solution by spinning for 5min in a 

microfuge and transferring the supernatant to a 30ml siliconised glass Corex tube. 

DNA was precipitated with 2.5vol of 100% ethanol plus O.Ivol of 3M sodium acetate 

(pH 4.6), incubated on dry ice for Ihr and spun at 10K (Sorvall, SS34 rotor) for 10m in. 

Pellet was recovered in IOOJ.lI of water and diluted accordingly based on the absorbance 

at 260nm. 

3.1.2 Polymerase chain reaction (peR) amplification of DNA 
PCR was carried out using various primer pairs designed to amplify the chosen 

target sequence, give restriction sites for cloning and introduce stop codons in the target 

open reading frame. Taq DNA polymerase was employed in the majority of PCR 

reactions. Pfu DNA polymerase, which lacks terminal transferase activity, was used 

occasionally depending on the cloning protocol. A standard 50J.lI reaction was as 

follows: 

Reagent 

Buffer (lOX) 

Template DNA 

Primers 

dNTPs 

Taq DNA polymerase 

H20 

Final concentration 

IX 

< IJ.lg/100ml 

O.1-1.0J.lM each 

20-200J.lM each 

0.5-2.5U 

up to 50J.lI 

The standard lOX PCR buffer supplied by Boehringer Mannheim contains 15mM 

MgC12. PCR buffer was prepared from stock chemicals when titrating Mg2+ levels 

down to ImM. All samples were overlaid with 50J.ll mineral oil to prevent evaporation. 

A standard set of cycling temperatures is as follows: 

(95°C, 4min / 55°C, 2min / 72°C, 3min) x 1 

(95°C, Imin / 55°C, 2min / 72°C, 3min) x 25 

These reaction concentrations and cycling conditions were varied for each template / 

primer set in order to obtain a good product yield without non-specific primer 

annealing. Titration of template DNA, primers, and Mg2+ concentrations proved to be 

the most useful. 
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3.1.3 Agarose gel electrophoresis 

DNA fragments generated by PCR or restriction digests were analysed on 0.8-

1.5% agarose gels containing 0.5J..1.g/ml ethidium bromide in IX TBE. Samples were 

prepared in loading buffer (DF dyes) and electrophoresis was performed at 100V for 1-3 

hr. DNA bands were visualised using short wave UV light and photographed with 

either Polaroid film (type 667) or using a digital camera. 

3.1.4 Purification of DNA fragments 

DNA fragments were separated by electrophoresis using 3% NuSieve GTG 

Agarose to allow good separation and easy melting of the gel. Fragments were 

visualised under long wave UV light for very short periods to minimise DNA damage. 

Appropriate bands were excised and purified using the Sephaglas Band Prep kit 

(Pharmacia). In this method DNA was bound to a silica matrix in the presence of a 

high concentration of sodium iodide (Vogel stein & Gillespie, 1979). 

Excised agarose blocks were dissolved with IJ.lI of gel solubiliser (NaI solution) 

per mg of agarose. The Sephaglas (silica matrix) was added (5J.lI per J..I.g DNA), 

vortexed and left to bind at room temperature for 5min. Three rounds of brief 

centrifugation and washing with wash buffer (8X volume of Sephaglas added) were 

performed before a final elution in 20J..l.l (or 4X volume of Sephaglas) of elution buffer 

at RT for 5min. The matrix was then pelleted by a brief centrifugation and the 

supernatant, containing the purified DNA, was recovered and stored at -20°C. 

3.1.5 DNA restriction digests 

Restriction enzyme digestion was carried out in 20J.lI volumes at 37°C (or 

temperature specified by the supplier). Samples were digested in the appropriate buffer 

(Boehringer Mannheim system) using approximately 1 unit of enzyme per 0.5J..1.g DNA 

for I-3hr. Generally 0.5J..1.g of DNA was digested for agarose gel analysis and up to 

IOJ..l.g for the isolation of specific restriction fragments. Samples prepared using the 

miniprep method (section 3.1.10) were digested in the presence of RNaseA at I o J..I.g/m I. 

Digestion with the restriction enzyme KpnI was performed with the addition of 

100J..l.g/ml BSA. 

3.1.6 DNA cloning 

Plasmid DNA was linearised for cloning using the appropriate restriction 

enzymes. Double digestion was monitored by checking the efficiency of each 

restriction enzyme separately and also testing for the re-ligation of double digested 

vectors. End repair (phosphate removal from 5' ends) was performed as necessary using 

calf intestinal phosphatase (30min, 37°C) followed by phenoVchloroform extraction 
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and ethanol precipitation. Restriction fragments generated by enzymes that produce 5' 

extensions were made blunt ended by incubating with 50JJM of each dNTP and 0.5 unit! 

J..lg of Klenow polymerase for 30min at room temperature. Again, samples were 

extracted with phenoUchloroform and ethanol precipitated. Ligation was performed in 

20J..lI volumes at 16°C for 3hr using 2 units of T4 DNA ligase in ligation buffer with 

various ratios of vector:insert. Alternatively the Amersham T4 Ligation system was 

employed allowing higher ligation efficiency with an incubation time of approximately 

30min (Hayashi et ai., 1986). 

3.1.7 Transformation for growth and maintenance of plasmid DNA 

The method of Hanahan (1983) was used to make competent E.coli giving up to 

100 times the number of recombinants obtained compared to standard calcium chloride 

methods. An individual colony from a streaked plate of bacteria was picked into 10ml 

of 2YT broth and grown up overnight at 37°C with shaking. 100m I of 2YT was 

inoculated with 1 ml of the overnight culture and grown at 37°C, with shaking, to an 

OD600 of 0.4-0.6. 30ml of culture was spun at 2K rpm (Sorvall SS34 rotor) for 10min 

at 4°C. The pellet was gently resuspended in 2.5ml cold TFB and incubated on ice. 

100J..l1 of DMSO was added after 15min, followed by 100J..l1 DTTlKAc solution after a 

further 10m in. A final 100J..lI aliquot of DMSO was added after a further 5min. Cells 

were used directly and not stored. Generally 10J..lI of the ligation mix, about lOng 

plasmid (section 3.1.6), was added to 200J..lI of competent cells and incubated on ice for 

45min. Cells were heat shocked for 3min at 42°C before spreading on L-broth agar 

plates containing appropriate antibiotics. Plates were incubated overnight at 37°C and 

screening was performed by picking single colonies and extracting DNA by the 

miniprep method (section 3.1.10). Clones were then analysed by mobility change or 

restriction profile using agarose gel electrophoresis (section 3.1.3). Positive clones 

were sequenced to determine the correct positioning of the insert in the vector and to 

check for the absence of mutations. 

3.1.8 Transformation for protein expression 

A modification to the protocol in 3. 1.7 was used when transforming bacteria for 

expression of recombinant proteins in the pET system. Glycerol stocks of 

BL21(DE3)pLysS were streaked to single colonies on LB-agar plates with antibiotics 

and grown overnight at 37°C. One isolated single colony was picked and streaked on 

another LB-agar plate and grown at 37°C overnight. This step was repeated again. 

Several single colonies were picked into 200J..l1 cold TFB and incubated for 30min 

before addition of the transforming plasmid. No DMSO or DTTlKAc solutions were 
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used. Transformation was as in section 3.1.7. Repeated streaking of bacteria to single 

colonies improved expression and reduced variation between different cultures. 

3.1.9 Glycerol stocks 

Glycerol stocks were prepared by inoculating 10ml of L-broth containing 

appropriate antibiotics with a single bacterial colony and incubating overnight at 37DC 

in an orbital shaker. Aliquots of 1.5ml were spun briefly in a microfuge and pellets 

were resuspended in 0.75ml of 2% Bactopeptone plus 0.75ml of 80% glycerol. Stocks 

were kept at _20DC and -70DC. All glycerol stocks were streaked to single colonies 

before use. 

3.1.10 Miniprep plasmid DNA preparation 

Small scale preparation of plasmid DNA was performed using three methods 

depending on the final quality of DNA required. 

Method 1 - for bulk screening 

lOml of bacteria were grown up at 37°C with shaking overnight. A 1.5ml 

aliquot was pelleted by spinning in a microfuge for 20sec at 13,000 rpm and 

resuspended in 350J.11 of STET buffer plus 25J.11 (lOmg/ml) of freshly prepared 

lysozyme solution. Tubes were vortexed and then placed in a boiling water bath for 

40sec. Cell debris was pelleted by centrifugation for 15min. Pellets were removed with 

a toothpick and discarded. DNA was precipitated by addition of 40J.11 2.5M NaOAc 

plus 420J.11 isopropanol and samples were incubated on dry ice for 30min. The solution 

was then spun at 13K in a microfuge for 10min and pellets were recovered, air dried 

and dissolved in 1O-20J.11 of IX TE or water. Approximately 25% of sample was 

electrophoresed and visualised on an agarose gel. 

Method 2 - for sequencing 

15ml of bacteria were grown up at 37°C with shaking overnight. Bacteria were 

spun at 10K rpm (Sorvall SS34 rotor) for 15min, resuspended in lmllysozyme solution 

and left at room temperature for 5min. 2ml of NaOHlSDS solution was added and 

incubated for 5min on ice. The solution was neutralised by the addition of 1.5ml KAc 

solution, left on ice for 5min then spun at 10K for 15min at 4°C. The supernatant was 

extracted with phenol/chloroform then precipitated for 30min after the addition of two 

volumes of ethanol. The sample was spun at 10K for IOmin at 4°C and the pellet was 

washed with 70% ethanol, dried and dissolved in 100J.11 TE. 2J.11 of IOmg/ml RNase A 

was added and incubated at 37DC for 30min. DNA was precipitated by the addition of 

60J.1120% PEG/2.5M NaCI and left on ice for Ihr. Sample was spun in a microfuge for 
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5min then washed with 70% ethanol and dried. Pellet was resuspended in 18J.1.1 TE and 

DNA was denatured by adding 2).l1 of 2M NaOH and incubating at room temperature 

for 5min. Solution was neutralised by the addition of 8).l1 5M ammonium acetate and 

precipitated with 100J.l.I of ethanol on dry ice for 5min. The sample was spun in a 

microfuge for 10min then washed again with 70% ethanol and dried. The pellet was 

dissolved in 20).l1 TE and 2).l1 were used per sequence reaction. 

Method 3 - for sequencing 

Plasmid DNA was also prepared using Qiagen mini-columns using the 

manufacturer's standard protocol. Basically overnight cultures were pelleted, 

resuspended and lysed with NaOHlSDS. The cleared lysate containing the DNA was 

then adsorbed to a silica-gel membrane which was washed and eluted. In the case of 

low copy number plasmids the starting culture was increased from the standard 1.5ml 

up to 10ml to increase the yield of plasmid DNA. DNA produced from these columns 

was suitably clean to allow sequencing after denaturation. 

3.1.11 Large scale plasmid DNA purification 

Most large scale preparations of plasmid DNA were done using the Promega 

Wizard kit which has the advantage of speed and reproducibility and does not involve 

the large quantity of ethidium bromide used in CsCI purification. The Qiagen large 

scale plasmid purification system was also tried but was slower and produced a 

significantly lower yield (lOX) of plasmid DNA per litre of bacterial culture. 

Purification by Wizard Maxipreps 

Method was performed using the standard commercial protocol. Briefly: 

A 500ml culture was grown up at 37°C overnight with shaking. Cells were pelleted by 

centrifugation at 8K rpm (Sorvall GSA rotor) for 10min, 4°C and resuspended in 15ml 

of resuspension buffer containing 100).lglml RNase A. Cells were lysed with 15ml lysis 

solution (O.2M NaOH, 1% SDS) for up to 20min until solution was clear and viscous. 

15ml neutralisation solution was added (l.32M KAc, pH 4.8) and the sample was 

centrifuged at 8K rpm (Sorvall GSA rotor) for 15min, 4°C. The supernatant was 

decanted and O.6vol isopropanol were added. Sample was centrifuged at 8K rpm 

(Sorvall SS34 rotor) for 15min, 4°C and the DNA pellet resuspended in 2ml TE. The 

DNA solution was then bound to lOml of the Wizard DNA binding resin and poured 

into a column. The bound DNA was washed several times with ethanol solution before 

elution with 1.5ml of preheated (65-70°C) TE. Up to Img of plasmid DNA was 

obtained from 500ml of bacterial culture. 
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3.1.12 Preparation of ssDNA by phage rescue 

The basic method involves infecting a culture with single stranded phage and 

allowing replication of the plasmid carrying a single stranded origin of replication. 

Phage is then recovered, precipitated and ssDNA extracted. 

A single bacterial colony was inoculated into 5ml 2YT broth with antibiotics 

and K07 helper phage at 108pfu/ml. The culture was grown for 1-2hr at 37°C with 

vigorous shaking. Kanamycin was added to a final concentration of 70J..Lglml and the 

culture was grown at 37°C for a further 16-24hr. 1.5ml aliquots of bacterial culture 

were centrifuged for 10min and 1 ml supernatant collected in a fresh Eppendorf Phage 

particles were precipitated by the addition of300J..L1 of 20% (w/v) PEG / 2.5M NaCI and 

incubation on ice for 15min. Samples were microfuged for 5min at 9K rpm and 

supernatant discarded. This step was repeated to remove all traces of PEG which can 

produce background smearing during sequencing. The pellet was resuspended in 400J..LI 

0.3M sodium acetate, pH 6.0 / ImM EDTA and vortexed. DNA was extracted with one 

vol phenol/chloroform for 1-2min, ethanol precipitated and resuspended in 10J..L1. 

Generally 5J..LI was used per sequence reaction. 

3.1.13 DNA sequencing 

Sequencing of DNA was performed using several different commercial kits all 

based on the dideoxy chain termination method of Sanger et al. (1977). 

Sequenase 2.0 kits (United States Biochemical) 

This method is split into four sections: template preparation, annealing, labelling and 

termination. 

Template preparation: 

Single stranded template DNA was prepared either as in section (3.1.10) or in one of 

the following ways: 

1. NaOH denaturation 

Purified plasmid DNA (0.5-3J..Lg) was denatured at 37°C for IOmin in an IIJ.lI 

reaction volume containing IJ..Ll primer (5pmol) and 2J..LI 1.0M NaOH. The sample was 

then cooled on ice and neutralised by the addition of2J..L1 1.0M HCI. 

2. Glycol heat denaturation 

Purified plasmid DNA (0.5-3J..Lg) was combined with primer (5pmol) and a 

denaturing mix (IOmM Tris-HCI, pH 7.5, ImM EDTA, 50% glycerol, 50% ethylene 

glycol) up to a total volume of 13J..L1. Samples were incubated at 90-100°C for 5mins 

then cooled on ice. 

3. Preparation of ssDNA using bacteriophage (See section 3.1.12) 
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Annealing: 

Plasmid reaction buffer (400mM Tris-HCI, pH 7.5, 100mM MgCh, 250mM NaCl) was 

added to a total volume of 15J.lI and the primer/template/buffer mix was annealed at 

37°C for 10min. 

Labelling: 

The commercial labelling mix was diluted to 1.5J.1M 7-deaza-dGTP, 1.5J.1M dCTP, 

1.5J.1M dTTP and the following solution was made up: 

Ice cold annealed DNA mixture 

DTT,O.IM 

Diluted labelling mix 2J.lI 

5J.lCi [a._35S]-dATP 0.5J.lI 

Sequenase T7 DNA Polymerase 2J.lI (3U) 

Solution was mixed and incubated for 2-5min (5-lOmin for glycol denatured plasmid) 

atRT. 

Termination: 

Four aliquots of 4.5J.11 from the labelling reaction were transferred into 2.5J.lI of each of 

the four termination reactions (containing 3 dNTPs and one ddNTP) and incubated at 

37°C for 5min. Termination solutions contain: 80J..lM of three dNTPs, 8J.lM of the 

remaining ddNTP and 50mM NaCl. Reactions were stopped by the addition of 4J.11 of 

stop solution (95% formamide, 20mM EDTA, 0.05% bromophenol blue, 0.05% xylene 

cyanol FF) or freezing at -20°C before subsequent loading. 

Thermo Sequeoase 

Thermo Sequenase is a thermostable DNA polymerase used with the cycle 

sequencing method. This method uses repeated cycles of thermal denaturation, 

annealing and extension/termination for increased signal levels relative to standard 

sequencing. Advantages include the very small amount of template required and the 

complete denaturing afforded at each cycle allows greater readability of high G+C 

areas. Two different kits were used. 

1. Standard cycle sequencing 

Labelling: 

An oligonucleotide primer is designed which will allow a brief extension in a reaction 

mix containing one labelled dNTP and only two non-labelled dNTPs. This results in 

termination of the labelling step when the missing base is reached in the template. The 
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reaction is thermally cycled (typically 60°C-90°C, 30-50 times) and results in the 

production of labelled, extended primer whose length is dependant on the template 

sequence. 

Chain termination: 

In the second step the concentration of all the dNTPs is increased and the reaction is 

split into four tubes each with a different ddNTP. The reactions are thermally cycled 

(typically 95°C-72°C, 30-60 times) until all the growing DNA chains are terminated by 

a ddNTP. The final products are denatured with formamide and heating before 

subsequent loading. 

2. Radiolabelled terminator cycle sequencing 

The methodology behind this technique is based on standard cycle sequencing with the 

exception that label is incorporated into the sequencing reaction by the use of four 

[a-33P]ddNTP terminators in a one-step reaction. Four reactions are set up containing 

all four dNTPs with a lower concentration of one of the four labelled ddNTPs. 

Reactions are thermally cycled until all chains have terminated. Efficiency is greater 

than other methods because only terminated chains are labelled therefore there are no 

stop artifacts and a there is a reduction of background bands. There is also a greater 

flexibility as there is no constraints on the primer sequence as in the standard cycle 

sequencmg. 

Visualisation of sequenced products 

Denaturing electrophoresis for all sequencmg methods was performed 

essentially as in section 3.1.1 with the following modifications. Sequencing gels 

(0.35mm thick and 35cm long) were prepared using 6% acrylamide and 0.5X TBE. 

Samples were heated at 100°C in formamide dyes and loaded on a pre-run gel (20m in) 

and then electophoresed at lOOW for Ihr. This is a higher wattage than most protocols 

recommend as it was found that the subsequent increase in temperature in the gel 

allowed better denaturation and elucidation of compressions. Glycerol tolerant gel 

buffer (taurine replaces boric acid) was used when the glycol method of plasmid 

denaturation was performed. Plates were separated and gel was washed on one plate 

with 10% acetic acid (X3) thus removing the urea. Gels were transferred onto paper 

and dried under vacuum at 80°C for 1 hr. Gels were exposed to film from between 1 

and 5 days depending on the intensity of the signal. Autoradiographs were developed 

for reading using an automatic X-Omat machine. 
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3.1.14 Kunkel mutagenesis 

This method is a version of that of Kunkel (1985; 1987). Uracil enriched DNA 

was made by transforming the E.coli strain BW313 with a recombinant pET-23a 

plasmid carrying a single stranded origin of replication. BW313 lacks dUTPase and 

uracil DNA glycosylase allowing incorporation of uracil into newly replicated plasmid. 

Single stranded uracil enriched DNA is produced by infection and precipitation of the 

M13 R408 helper phage. A mutagenic olionucleotide was annealed to the recovered 

plasmid DNA and a new strand was synthesised in vitro. This double stranded plasmid 

was transformed into the E.coli strain NM522 which carries an active uracil DNA 

glycosylase (Mead et ai., 1985). This enzyme catalyses the destruction of the uracil 

containing strand leaving the synthesised mutagenic strand to act as a template for 

replication. dsDNA plasmid mutants were then recovered from the bacteria using the 

miniprep method (section 3.1.10). 

Preparation of uracil enriched ssDNA: 

10mi of2YT broth plus 100J.1g/ml ampicillin and IOOJ.1g/ml uridine was inoculated with 

50J.11 glycerol stock of E.coli BW313 and grown overnight at 37°C with shaking. The 

overnight culture was added to 200ml 2YT plus lOOJ..1g/ml uridine in a 21 baffled flask. 

The culture was grown at 37°C to an OD600 of 0.3 prior to addition of M13 R408 

helper phage to 5.04x109 pfulml. Growth was continued for 8hr at 37°C with shaking. 

The culture was centrifuged for 20min at 7K rpm (Sorvall GSA rotor), 4°C. 

Supernatant was collected and the spin was repeated. Supernatant was collected in a 

300ml glass bottle and stored at 4°C overnight. Phage was precipitated by addition of 

0.25vol 3.75M ammonium acetate / 20% PEG and incubation on ice for 30min. Sample 

was centrifuged at 9K rpm (Sorvall GSA rotor) for 30min, supernatant discarded and 

the pellet resuspended in 200ui TE. DNA was recovered by two chloroform 

extractions, six phenol/chloroform extractions and one final chloroform extraction. The 

aqueous layer was removed and DNA precipitated with 0.36vol 7.5M ammonium 

acetate and 2.5vol ethanol and incubated on ice for 20min. Sample was spun for 20m in 

at full speed in a microfuge, and pellet was washed with 70% ethanol and dried before 

resuspension in 50J..11 water. DNA was visualised by agarose gel electrophoresis and 

concentration determined by measuring the OD at 260nm. 
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Mutagenic strand synthesis: 

Mutagenic oligonucleotides were kinased at 37°C for 30min, followed by 15min at 

65°C to stop the reaction. A typical reaction with final concentrations was as follows: 

Oligonucleotide 

Ligation buffer 

T4 Kinase 

H20 

500pmol 

IX 

IOU 

up to 20J..lI 

80J..lI of water was added to the stopped reaction to give a kinased oligonucleotide stock 

of5pmoVJ..l1. 0.1 pmoVJ..l1 of the prepared uracil enriched ssDNA was annealed to IJ..lI of 

the kinased oligonucleotide stock with 2J..lI TM buffer in a lOJ..lI total volume. Samples 

were annealed at 37°C for 30min. T7 DNA polymerase was found to be the most 

efficient enzyme for second strand synthesis. A typical reaction is as follows: 

Annealing mix (above) lOJ..lI 
SEQ buffer (5X) 2J..lI 

dNTPs(5mM) lJ..l1 

ATP(5mM) 1 J..lI 

DTT(lOOmM) IJ..lI 

Acetylated BSA (lJ..lglul) 2J..lI 
Gene 32 protein 0.51l1 

T4 DNA ligase 31ll (3U) 

T4 kinase 0.51l1 (5U) 

T7 DNA polymerase IJ..lI (lU) 

The reactions were incubated at 37°C for Ihr then stored at -20°C before transformation 

into the E.coli strain NM522. Single colonies were picked and screened by the 

miniprep method (Section 3.1.10). Initial mutations were designed to allow screening 

by restriction digest allowing optimisation of the technique. Subsequent mutations 

were screened by single track sequencing. 

3.2 Polypeptide analysis 

3.2.1 Expression of recombinant proteins 

It was found that the quality of the bacteria carrying the recombinant expression 

plasmid was vital to maintain consistent and stable expression of recombinant protein. 

Care was taken to streak host strain several times after recovery from glycerol stocks. 
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Plasmids were transformed immediately before expression and overnight cultures were 

avoided as much as possible. Two bacterial expression systems were utilised: 

(a)Kodak mI system 

The initial system for the production of recombinant proteins was the Kodak illI 

FLAG system. This system was based on a tac promotor (a hybrid between the trp 

promoter and the lac operator) allowing induction of expression under the standard lac 

system via IPTG. Transcripts were generated as fusion proteins to the FLAG peptide. 

This octapeptide marker was designed to allow detection and purification of the 

recombinant fusion protein with specific FLAG monoclonal antibodies. This peptide 

had an enterokinase cleavage site for removal of the fusion to yield the native protein. 

The OmpA signal peptide could also be fused to the protein to allow secretion of the 

protein to the peri plasmic space (see Section 5.1.2). 

(b) pET system 

The majority of proteins were expressed in the pET vector system originally 

constructed by Studier (1990) and now sold by Novagen Inc. This system utilises the 

strong bacteriophage T7 promoter. Expression was induced by providing a source of 

T7 RNA polymerase which is not present in the normal host cell. This allowed 

propagation of recombinant plasmids without the selective pressure associated with low 

levels of uninduced expression in other systems. Plasmids were then transferred into 

the BL21(DE3)pLysS strain which carries a chromosomal copy of the T7 RNA 

polymerase under lacUV5 control. Induction was then performed with the addition of 

IPTG. 

General protocol for expressing recombinant dUTPase 

Ampicillin was used at 150J.!g/ml to maintain the pET construct and 

chloramphenicol was used at 25J.!glml to maintain the pLysS plasmid. A 10ml culture 

was prepared by inoculation with a single colony of freshly transformed 

BL21(DE3)pLysS bacteria containing the appropriate pET construct. This culture was 

then used to inoculate 300ml ofL-broth containing the above antibiotics. Cultures were 

grown at 30-37°C until they reached an OD of 0.7 at 600nm. Induction of recombinant 

protein synthesis was performed by the addition of IPTG at concentrations ranging 

from 0.1-1.0mM. Cultures were grown at temperatures ranging from 20-37°C 

depending on the construct used. Lower temperatures were found to increase protein 

solubility in some cases. 
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3.2.2 Protein extraction 

Proteins were extracted in buffers appropriate to the expression system being 

used. Generally 250ml aliquots of culture were chilled on ice for 10min and then 

centrifuged for 15min at 10K rpm (Sorvall GSA rotor), 4°C. Supernatant was discarded 

and the pellet resuspended in 50ml extraction buffer. In the Kodak mI system, lysis 

was performed by the incorporation of lysozyme and detergent in the extraction buffer 

(section 2.2). In the pET system, detergent and freeze thawing (X3) was sufficient to 

disrupt the cell membrane releasing the indigenous lysozyme of the BL21 (DE3 )pLys 

E.coli strain resulting in efficient lysis. Variations on the constituents of the extraction 

buffers and their effects are discussed in the Results section. The viscosity of the lysed 

solutions was reduced by passing through a thin syringe needle (X3) before 

centrifugation for 60-90min at 10K rpm (Sorvall SS34 rotor), 4°C. Supernatants 

containing the soluble protein fraction were stored at -20°e. Samples were centrifuged 

again immediately prior to purification by FPLC. Protease inhibitors were maintained 

throughout the extraction process. 

3.2.3 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

For analysis of proteins single concentration slab gels between 9-12.5% 

acrylamide were used. Stock solutions of 30% acrylamide were prepared using a ratio 

of 39: 1 acrylamide to N,N'-methylene bisacrylamide in water, filtered through 

Whatman No. 1 filter paper and stored at 4°C. Gels were prepared at the appropriate 

concentration from this stock solution with freshly made buffer to a final concentration 

of 375mM Tris-Hel (pH 8.9) and 0.1 % sodium dodecylsulphate (SDS). Polymerisation 

was instigated with the addition of freshly made ammonium persulphate and TEMED 

to a final concentration of 0.06% and 0.04% respectively. 

For large gels (20 x 22cm) the gel solution was poured between two thoroughly 

washed glass plates separated by 1.5mm thick spacers and sealed with rubber tubing. 

The gel was left to polymerise at room temperature under a thin layer of butan-2-01. 

The butan-2-01 was removed and the stacking gel was poured consisting of 5% 

acrylamide in 122mM Tris-Hel (pH 6.7), 0.1 % SDS with wells formed using a teflon 

comb. 

SDS-PAGE was also performed using the Bio-Rad miniprotean II apparatus 

allowing faster resolving times and smaller volumes. These gels were not appropriate 

for the resolution of some recombinantly expressed proteins in a background of closely 

migrating E. coli proteins. 

Samples were boiled for 5min in denaturing buffer with sufficient bromophenol 

blue to visualise the dye front. Electrophoresis was carried out in a buffer containing 

52mM Tris, 53mM glycine and 0.1% SDS. Gels were run at 100V until dye front had 
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reached the bottom, approximately 3hr for large gels and Ihr for mini gels. Proteins 

were visualised by fixing and staining in Coomassie brilliant blue R250 solution and 

destained with several washes in 5% methanol and 7% acetic acid. 

3.2.4 Purification by FPLC 

Samples prepared as in section 3.2.2 were purified by phosphocellulose and 

Mono S chromatography using the Pharmacia FPLC system. Phosphocellulose 

(Whatman Pll) columns were prepared fresh according to the manufacturers 

instructions. Phosphocellulose was pretreated with 25vol 1M NaOH for 5min and 

washed 3 times with water. The phosphocellulose was then washed with 25vol 1M HCI 

and washed three times in IX PBS before packing into the columns. Equilibration was 

performed overnight in the appropriate buffer. Mono S cation exchange columns were 

from Pharmacia LKB and were used according to the manufacturers instructions. 

Columns were washed thoroughly and equilibrated before use. 

Generally 10-50ml of sample was applied to the phosphocellulose column at a 

flow rate of ImUmin. A gradient ofO-1.0M NaCI was used to separate protein species 

by ion-exchange chromatography and fractions of 1.5ml were collected and analysed 

for activity. 4ml of the most active fractions were diluted 1/10 in Mono S loading 

buffer and loaded directly onto the Mono S columns. A gradient of 0-1. OM NaCI was 

used to separate proteins and fractions of 1-1.5ml were collected. Samples were 

analysed for activity by enzyme assay (section 3.2.6) and purity by SDS-PAGE (section 

3.2.3). 

3.2.5 Protein quantification 

The total protein concentration was measured using the Bradford assay with 

BSA as a standard (Bradford, 1976). Reactions were performed in flat bottom 

microwell plates with a Labtech Anthos HT2 plate reader. This equipment allows 

instant determination of a standard curve by absorbance at 620nm and calculates the 

protein concentration of the samples. To quantitate the amount of soluble dUTPase in 

each purified sample it was necessary to use SDS-PAGE (section 3.2.3). A dilution 

series of each purified sample was examined by SDS-PAGE and compared with other 

samples and to standard dilutions of BSA. As each sample contained a different 

proportion of dUTPase protein compared to the total protein, this allowed quantitation 

of the dUTPase enzyme specifically. This method was also used as a measure of 

relative enzyme purity. 
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3.2.6 Analysis of enzyme activity 

Analysis of dUTPase activity was performed using two methods, both utilising 

tritiated dUTP as a substrate marker. TLC was the preferred method as both substrate 

(dUTP) and reaction product (dUMP) could both be measured. 

dUTPase reaction 

A typical reaction solution was as follows: 

Potassium phosphate, pH 6.5 

MgCl2 

DTT 

dUTP 

[3H]dUTP 

H20 

0.4M 

20mM 

20mM 

2mM 

0.5J.lCi 

up to 10J.lI 

Reaction mix was preheated to 37°C and 10J.lI enzyme sample is added. Note that the 

final dUTP concentration was ImM. Reaction was stopped after lOmin by the addition 

of 2J.ll 80% formic acid. 

Filter disk assay 

This is a version of the method by Williams and Cheng (1979). Samples were spotted 

onto Whatman DE81 paper disks and washed thoroughly in 4M formic acid / ImM 

ammonium formate three times with a final wash in 95% ethanol. Disks were then 

dried and the bound, non-decomposed [3H]dUTP was quantified by scintillation 

counting. 

TLCAssay 

This is essentially the method of Tye et al. (1977). Polyethyleneimine-cellulose sheets 

(Polygram, Machery-Nagel, Germany) were pre-washed with 1M formic acid and dried. 

Samples were spotted (4x 0.5J.lI) onto the sheets with markers (dUTP and dUMP) and 

TLC was performed in a tank with 1M formic acid and O.5M LiCl. Plates were dried 

and spots were visualised under short wave UV light. Spots were excised and 

quantified by scintillation counting. 

Scintillation counting 

Quantification of radiolabeled samples was performed by immersing either the DE81 

disks or the PEl spots in Ecoscint A. Samples were counted on either a Packard 

1600TR or Beckman LS 5000CE liquid scintilation counter. 
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3.3 Computer-based analysis 

3.3.1 Sequence analysis programs 

Amino acid primary sequence data was examined using various programs in the 

GCG program set running under V AXlVMS. Sequences of dUTPases were obtained 

from the Swiss-Prot database except HSV-2 dUTPase which was sequenced in the 

MRC Virology Unit. Sequence alignments were performed using Pileup, a 

simplification of the method of Feng and Doolittle (1987). The program SAGA was 

also used for alignment comparisons (Notredame et al., 1996). TBALSTX (Altschul el 

al., 1990), available online at the National Centre for Biotechnology Information 

(NCBI), was used for primary sequence searches in the Brookhaven Protein Databank 

(Bernstein et al., 1977). This server can be accessed at www.ncbi.nlm.nih.gov. 

3.3.2 Structure prediction 

Secondary structure prediction was performed using the PredictProtein server at 

the Protein Design Group, EMBL (www.embl-heidelberg.de/predictprotein).This 

server can automatically generate sequence alignments using the MaxHolm method 

(Sander & Schneider, 1991) although most sequences were pre-aligned using the 

programs above (section 3.3.1). The program PHDsec (Rost & Sander, 1993 ~ Rost & 

Sander, 1994~ Rost, 1996) was employed to predict secondary structure. 

Threading based analysis of specific sequences was performed using the 

program Threader available at the Biomolecular Structure and Modelling Unit at 

University College London (Jones et al., 1992). The program Threading Analyst 

(encompassing the front-end graphical interface, tan.tel) was used for interpretation of 

the Threading data (Miller & Thornton, 1995). 

Generation of 3D models based on the HSV-l dUTPase primary amino acid 

sequence was performed using the ProMod program at the Swiss-Model Protein 

Modelling Server (peitsch, 1995; Peitsch, 1996). This server is available online at 

www.expasy.ch!swissmod/SWISS-MODEL.html. 

The calculation of molecular surfaces was performed using the programs 

NewArea (Lee & Richards, 1971) and Sleuth (Dudek & Ponder, 1995) available at 

Washington University (ftp://dasher. wustl.edu/pub/sleuth!). Secondary structure 

assignment based on PDB structural coordinates was performed using the program 

STRIDE (Frishman & Argos, 1995) with details at the EMBL website, (www.embl

heidelberg. de/argos/stride ), available at ftp.ebi.uk/pub/software/unixlstride. 
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3.3.3 Molecular visualisation tools 

The programs that were used in order to generate diagrammatic representations 

of the molecules analysed in this thesis are listed below. Both the programs Insight II 

and '0' were run on a Silicon Graphics Workstation under the Unix operating system. 

All other viewing programs were run in the PC Windows environment. 

- Insight n by BIOSYM / MSI 

(www.msi.com) 

- WebLab ViewerPro by Molecular Simulation Inc. 

( www.msi.comlweblab/) 

- Swiss-PdbViewer by Glaxo Wellcome Experimental Research 

(www.expasy.ch./spdbv/mainpage.html) 

- Rasmol by R. Sayle (1994) 

(ftp.dcs.ed.ac. uk:/pub/rasmol) 

- CN3D by NCBI 

(www.ncbi.nlm.nih.gov/Structure/cn3d.html) 
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Chapter 4 - Results of Computer Modelling 

4.1 General Introduction 
The main goal of the work presented in this chapter was the construction of a 

model for the HSV-l dUTPase. The main reason for embarking on such a project was 

the absence of structural data for any of the class II dUTPases. Since the primary 

objective of this study was to characterise a member of this group, the HSV-l dUTPase, 

a working model was considered to be an important parallel to complement 

mutagenesis studies. Section 1.4.8 introduced the five motif regions found in both 

class I and class II dUTPases and the intragenic duplication model proposed by DJ. 

McGeoch (1990b). This study, based on primary amino acid sequence analysis, 

constitutes the starting point for modelling of the HSV-l dUTPase. Crystallographic 

data became available for E.coli dUTPase and was used as the original template for the 

class II model. 

In order to construct this model it was necessary to follow a set of logical steps 

which are set out in this chapter as individual sections. Compilation of the available 

information revealed a wealth of primary sequence data for both class I and class II 

dUTPases. The first step was therefore to utilise the class I primary sequences to 

determine common elements within this group. This in turn was used to identify key 

structural elements in the E.coli structure that were likely to be consistent throughout 

the class I group. During the course of this study additional class I structures of FIV, 

human and EIAV dUTPases were solved by X-ray crystallography and allowed 

subsequent refmement of these data. 

The next step was to use extensive alignments with primary sequence data to 

identify areas of homology and variance within the class II group. Finally the data from 

both the class I and class II groups were compiled utilising the set of defined 

hypotheses detailed in Section 4.3.3. 

The primary sequence work was expanded to include secondary structure 

predictions and homology modelling between the two dUTPase classes. Using this 

basis it was possible to model distinct structural elements of the class II group enzymes 

from solved crystallographic data from the class I group. 
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4.2 Class I dUTPases 

4.2.1 Introduction 

The key to creating a model for the HSV-l dUTPase was the understanding of 

the class I enzymes and how they relate to the class II group. To do this, it was first 

necessary to defme the areas of consistent homology within the class I group. 

4.2.2 Comparison of class I primary sequences 

Class I dUTPases from a wide variety of both prokaryotic and eukaryotic 

organisms share remarkably distinct homologous features. The most obvious of these 

features is the presence of the five motif regions identified by OJ. McGeoch (1 990b ). 

These regions of localised homology allow diverse class I sequences to be lined up 

effectively. Figure 4.1 shows an alignment of a selection of class I sequences including 

mammalian, yeast, plant, poxvirus, retrovirus and bacterial species. The Swiss-Prot 

protein database contains many more homologous class I sequences which have yet to 

be validated as functional dUTPases. 

There are several key observations which are apparent from class I sequence 

alignments. The first is the presence of extremely homologous copies of all five motifs 

in the same order. In Figure 4.1, comparison of the highlighted motifs (34 residues in 

total) between the tomato plant, Lyeopersieon eseulentum and the yeast, Candida 

albieans yields a sequence identity of 94%. Even more distantly related species such as 

E. coli and human share 79% identity over these motif regions. The high conservation 

of these loci suggest that not only do they playa vital role in dUTPase functionality but 

that all class I dUTPases operate by a homologous mechanism. This is supported by the 

structural data available so far. 

The second observation is the overall conservation of protein chain length. 

There is some variation at the sequence termini with the retroviruses possessing the 

smallest sequences. The exact N-terminus for some of these dUTPases is not clear and 

is consistent with the retrovirus dUTPases being translated as a polyprotein and 

subsequently cleaved. What is important to note is the variation between the start of 

motif I and the end of motif 5. In this selection of sequences this core distance varies 

by a maximum of 10% between species. This is consistent with all the class I 

sequences analysed. 

Finally it is apparent that although the interlying regions between the motifs are 

substantially divergent between species at the sequence level, the distance between each 

motif is highly conserved. Structural data demonstrate that the active site consists 

almost exclusively of motif residues. 
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1 
Mpmv .....•........ SLWGSQ ......... .. LCSSQQKQPlSKLTRATPGS 
Srv1 . . ...•........ SLWGGQ ..... . ... . . LCSSQQKQPlSKLTRATPGS 
J.rv .... . •..... . .. MLWG .............. NTAGSKRTIADLCRATRGS 
Mmtv .....•..... . .. GVKGSG . . ... . ..... LNPEAPffPlHDLPRGTPGS 
fi v .....•................... . ......... . MIIEGDGILDKRSED 

Omv. . ....•.......................... SEl fLAREGSGlLPKRAED 
Visn . ..... .. .. . .. .. .. . ... . .. .. ...... SEl fLAKEGRGlLQKRAED 
Caev .....•... .. ..................... SElFLAKEGEGILPKREE 
Eiav .....•.......................... . .. MLAYQGTQlKEKRDE 
Coxb .......... . .. MTHSVQLK ........ . . lLDKRLGSEFPLPAYATTGS 
Eeo1 .....•...... MMKKIDVK ..... . ..... ILDPRVGKEfPLPTYATSGS 

Vaccc ............ MfNMNINSP .......... VRfVKETNRAKSPTRQSP 
VarY ... . . . . .. .. . MfNMNlNSP ....... .. . VRfVKETNRAKSPTRQSPY 

Human .....•......... MQ .............. LRfARLSEHATAPTRGS 
Orfv ............. MEfCHTET .......... LQVVRLSQNATIPARGSP 
fadv .......... MDPfGSSSVPPCSTSDLPEPKLYfVRLSPHAVPPVRATH 
Ca1b ............. MTSEDQSLKKQKLESTQSLKVYLRSPKGKVPTKGS 
Seer ......... . ... MTATSDKV . .. ....... LNlQLRSASATVPTKGSAT 

Lyees MAENQlNSPElTEPSPKVQKLDHPENGNVPffRVKKLSENAVLPSRASS 
Cev MDfNTDRGSAlPTGDDRGYQCGVIGDSVRfSVFTGYDAADVSlPKISSPGS 

DL .. CSTSHTVLTPEMGPQALSTGIYGPLPPNTfG.LlLG 
DL .. SSTSHTVLTPEMGPQALSTGlYGPLPPNTfG.LILG 
DL .. CATSYTVLTPEMGVQTLATGVfGPLPPGTVG.LLLG 
DL . . SSQKDLILSLEDGVSLVPTLVKGTLPEGTTG.LllG 
DL . . LAAKElHLL.PGEVKVIPTGVKLMLPKGYWG.LIIG 
DL .. ICPQEVCIP.AGQVRKIPINLRINLKEDQWA.MVGT 
DL . . ICPQEISlP.AGQVKRIAlDLKINLKKDQWA.MIGT 
DL . . ICPEEVTIE.PGQVKCIPIELRLNLKKSQWA.MIAT 

FDL .. CVPYDIMlP.VSDTKIIPTDVKIQVPPNSfG.WVTG 
DLRACLDEPLKIE.PDETCLISTGLAIYLGHSNVAATILP 
DLRACLNDAVELA.PGDTTLVPTGLAIHIADPSLAAMMLP 
DL .. YSAYDYTIP.PGERQLIKTDISMSMPKICYG.RIAP 
DL .. YSAYDYTIP.PGERQLIKTDlSMSMPKFCYG.RIAP 
DL .. YSAYDYTlP.PMEKAVVKTDlQ1ALPSGCYG.RVAP 
DL .. CSAYDCVlP.SHCSRVVFTDLLIKPPSGCYG.RIAP 
DL .. fSAYDIKVP.ARGRALVPTDLVFQfPPGCYG.RI AP 
DL .. YSAEAATlP .AHGQGLVSTDlSIIVPIGTYG. RVAP 
D1 .. YASQDITlP. AMGQGMVSTDISFTVPVGTYG. RIAP 
DL .. SSAAETKVP.ARGKALVPTDLSIAVPQGTYA.RIAP 

fDL .. SVLEDREfI.RGCHYRLPTGLAIAVPRGYVG.IITP 

100 

Motif 1 Motif 2 

101 197 
Mpmv K.GLQVYP .. GEIKlMA.KAVNNIVTVSQGNR l LLPLlETDNKV .... . .. QQPYRGQGSfGSSDl .................. . 
Srv1 K.GLQVYP .. GEIKlMA.KAVNNIVTVPQGNR I LLPLlETDNKV ....... QQPYRGQGSfGSSDlYW . ............... . 
Jsrv K.GILIHP .. GEIKlLA . SAPNKIIVl NAGQR LLVPLVIQGKTI. .. . .... NRDRQDKGfGSSDAYW . .. .. ...•...• .. .. 
Mmtv KKGLEVLP .. ElKVMV. KAAKNAVIIHKGERl LLLPYLKLPNPVl ....... KEERGSEGfGS PSHVHW .. . .. . ........•. 

Fiv K.GLDVLG .. GEIGVIMINVSRKSITLMERQK l lLPCKH.EVLEQG . . KVVMDSERGDNG¥GSTGVFSSW ......•. . .. .. .. 
Omvs K.GVFVQG .. GI I IQVVVYNSNDKEVI I PQGRKF I LMPLIH.EDLEAW .. GETRRTERGNQGfGSTGAY . ................ . 
Visn NKGVFVQG .. GI TIQVVIYNSNNKEVVI PQGRKF l LMPLIH.EELEPW . . GETRKTERGEQGfGSTGMYW ..... .. ......•... 
Caev K.GVFTQG .. Gl lQVlMYNSNKlAVVl PQGRKF l LMDKKH.GKLEPW .. GESRKTERGEKGfGSTGMY ... . ............. . 
Eiav KQGLLlNG .. G GElQVlCTNlGKSNlKLl EGQKF l lLQHHS . NSRQPW .. DENKlSQRGDKGfGSTGVFW .. . ............. . 
Coxb KHGlVLGNLVG PLMVSCWNRGKEPYTlNPGDR VVLPILK. AQfAVV .. EEFELTERGAGGfGSSGQN .. . ......••. . •• . .. 
Ecol KHGIVLGNLVG LMlSVWNRGQDSFTlQPGER I FVPVVQ.AEfNLV .. EDFDATDRGEGGFGHSGRQ . ......... . ... . .. . 

Vaccc K.GIDIGG .. GNIGVlLINNGKCTFNVNTGDR I YQRlYY.PELEEV .. QSLDSTNRGDQGFGSTGLR ......•... . ....... 
VarY K.GIDIGG .. GNlGVlLlNNGKYTFNVNTGDR I YQRlYY.PELKEV .. QSLDSTDRGDQGFGSTGLR .......... . ...... . 

Human KHfIDVGA .. GNVGVVLfNfGKEKfEVKKGDRI l CERlfY.PElEEA .. QALDDTERGSGGFGSTGKN ................. . 
Orfv KHFIDVGA .. GNVGVVLfNfGNSDFEVKKGDRl l CERlSC. PAVQEV .. NCLDNTDRGDSGFGSTGSGACGGRDTAWnS ..... . 
Fadv KFFIDVGA .. GNVSVVLfNFSESSfNlRRGDRV I LERIMV.PELSEL .. TQLGETDRGASGFGFTGMGAVDRNQRSVLEWLTPGSR 
ca1b KHGlSTGA .. GEVKVVLfNHSEKDFElKEGDRl VLEQlVN .ADIKEISLEELDNTERGEGGFGSTGKN .......... . ...... . 
Seer KNGlQTGA .. GEVKVVLfNHSQRDfAlKKGDRV ILEKlVDDAQlVVV .. DSLEESARGAGGFGSTGN ... . ... .. ......... . 

Lyees KYSIDVGA .. GPVGVVLfNHSEVDfEVKVGDR IVQKlVT. PEVEQV .. DDLDSTVRGSGGFGSTGV .................. . 
Ccv KNFVST . ... Gl GHlHIMV .. SAlADfSVKKNQRl VVT PCLTQSEVVPY .. ETLERTRRGTGGFGSSGQ .................. . 

---------
Motif 3 Motif 4 Motif 5 

Figure 4.1 Alignment of class I sequences 
Over 100 dUTPase homologues are produced from a blastp search of the Swiss-Prot database probed 
with the E.coli sequence. A standard alignment using a selection of 19 class I sequences is shown. Motif 
regions are highlighted in yellow. Green highlights refer to those residues which make contact directly or 
indirectly with the substrate in the E.coli-dUDP structure (see Section 4.2.5). The following sequences 
were used: Mpmv (Mason-Pfizer monkey virus), Srv! (Simian type D retrovirus), Jsrv (Sheep 
pulmonary adenomatosis virus, Lentivirus), Mmtv (Mouse mammary tumor virus), Fiv (Feline 
immunodeficiency virus), Omvs (Ovine lentivirus), Visn (Visna lentivirus), Caev (Caprine arthritis
encephalitis virus), Eiav (Equine infectious anaemia virus), Coxb (Coxiella burnetii, Eubacteria), Ecol 
(E.coli), Vaccc (Vaccinia virus), Vary (Variola virus), Human (Human), Orfv (Orf virus), Fadv 
(AvianlFowl adenovirus CELO), Calb (Candida albicans), Scer (Saccharomyces cerevisiae), Lyces 
(Lycopersicon esculentum, Tomato), Ccv (Channel catfish virus). 

4.2.3 Comparison of trimeric class I structures 

There are presently structures available for four class I dUTPases: E.coli 

(lDUP), FlV (1 DUT), EIA V (lDUC) and human (not yet in Brookhaven PDB 

database). The main features of the E.coli dUTPase structure are described in the 

introduction (Section 1.4.7). This section deals with the comparison of overall 

structures between these four class I dUTPases. 
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(a) E.coli (b) FIV 

(c) human (d) EIAV 

Figure 4.2 Comparison of class I trim eric structures 
The four class I trimers are rendered as ribbons using the Swiss-PDB Viewer. Each trimer is orientated 
approximately down the three fold axis of symmetry. In the human structure the extended tail is shown 
on two subunits (blue and green) and removed from the other (red) for comparison to the other trimers. 

From Figure 4.2 it is clear that the structure detailed for E.coli dUTPase in 

Section 1.4.7 is repeated in other distantly related class I species. Each subunit 

structure shows an almost identical a-carbon backbone trace allowing the generation of 

almost identical trimers. Not only is the globular region conserved but also the visible 

region of the extended C-terminal arm. 

Figure 4.2 shows these four structures positioned approximately down the 3-

fold axis of symmetry. Each subunit is represented by a different colour. It is clear that 

in terms of overall quaternary structure these dUTPases are highly homologous. This is 

an important observation for the modelling of a class II structure. Given that the only 

areas of primary sequence conservation lie within the motif regions it suggests that 

inter-motif chain length is an important factor in the overall structure. Interestingly the 
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final tail residues which were found to be disordered in the E. coli structure are also 

disordered in FIV and EIAV. This was found even with the co-crystallisation of dUDP 

with the E. coli and EIA V structures. 

In the human structure however the C-terminal tail is visible. It is shown for 

two of the three subunits in the figure. From the structure shown it can be seen that the 

tail region curls round to cap the active site. A more detailed investigation of this 

region is given in Section 5.8.2 in relation to mutational analysis and demonstrates that 

motif 5 is in intimate contact with the substrate. Given the conservation of motif 5 in 

the class I sequence alignment and the similarity in chain length between motifs 4 and 5 

(Figure 4.1) it is proposed that the other class I trimers all share the extended arm fold 

visible in the human dUTPase. 

4.2.4 Substrate docking model of the E.coli active site 

Preceding publication of the structure of E.coli dUTPase with dUDP, I made 

attempts to identity the major components of the active site region by substrate docking 

experiments. This was done in collaboration with L. Pearl at University College, 

London, who had experience in the crystallisation and active site modelling of 

UDGases. This proved to be a fruitful exercise demonstrating a close relationship 

between the proposed active site interactions and those seen by subsequent co

crystallisation. These docking experiments had the advantage of modelling the natural 

substrate as opposed to the non-hydrolyzable inhibitor, dUDP. 

The method was to identity the key residues in motif areas which were likely to 

interact with dUTP. Residues were graded on importance by assessing their 

conservation between the class I species, their relative position in the E. coli structure 

and their properties such as hydrophobicity and charge. Figure 4.3 shows the proposed 

position of dUTP in a solvent surface and wireframe representation of the E.coli active 

site. The key residues are highlighted with their respective sequence numbers and the 

wireframe is colour coded in relation to charge. Blue represents positive charge, red is 

negative and yellow is neutral. 

The observations on this model are discussed with reference to the following 

section (4.2.5) which details the crystal structure of E.coli dUTPase with dUDP. One 

of the major difficulties with the modelling exercise was the inherent flexibility of the 

natural dUTP substrate molecule. It was realised that the various torsion angles of the 

dUTP molecule could be significantly altered if the active site produced an 

energetically favourable environment. 
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(a) 

(b) 

Figure 4.3 Active site docking model of dUTP and E.coli dUTPase 
Figure (a) shows the wireframe and dot surface representation of E.coli dUTPase active site which was 
created using the molecular graphics program '0' . The dUTP substrate was positioned in the active site 
cavity with respect to residues of stabilising charge (numbered). The uracil ring is shown stacking on the 
highly conserved residue tyro ine 93. Figure (b) shows the actual position of dUDP in the E.coli co
crystal . A solvent surface was created using the WebLab molecular viewer. Residues are coloured by 
charge: positive in blue and negative in red. 
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Figure 4.3 shows the docking model prediction of dUTP in the E.coli active site 

(a) compared to the actual structural data from bound dUDP in the E.coli dUTPase co

crystal (b). Both diagrams show the active site cavity in the same orientation to allow 

direct comparison. Charged residues shown as coloured wireframe representations in 

(a) can be seen as correspondingly coloured molecular surfaces in (b). The cavity area 

which can be seen in both diagrams was proposed to be the substrate binding area based 

solely on the condensation of the conserved motif regions in this area. The subsequent 

co-crystal of E.coli dUTPase with bound dUDP demonstrated that this was predicted 

correctly. The overall shape of this cavity constrained the number of possible substrate 

orientations in the docking model. The deepest area of the cavity (on the left of the 

diagrams) was predicted to accommodate the nucleoside portion of the substrate which 

generated an overall predicted orientation close to the real structure. 

The substrate was aligned within the active site cavity with the phosphate 

groups close to areas of neutralising charge. The ring of Tyr 93 was proposed to 

generate a stable stacking conformation with the pyrimidine ring of dUTP and was 

positioned accordingly. It was later found in the crystal structure that Tyr 93 does 

indeed form a parallel stacking structure but with the sugar moiety of dUDP and not 

with the pyrimidine as proposed by the docking model. This can be more clearly 

visualised in Figure 4.5 in the following section. Apart from this error the overall 

position of the substrate in the proposed active site was reasonable. The sugar ring and 

a-phosphate was correctly located close to negatively charged Asp 90. This residue 

interacts directly with the hydroxyl group on the sugar and through a water molecule, 

indirectly with the a-phosphate. The a-phosphate was also correctly positioned close 

to Ser 72 (on the upper side of dUTP in the model). This residue was shown to interact 

with the a-phosphate through a second water molecule in the crystal structure. 

In the crystal structure the ~-phosphate is highly mobile and the stabilising 

interactions are not clear. In the proposed model the ~- and y-phosphates are positioned 

towards the conserved residues Arg71 and Argl16 which, being positively charged, 

would have the ability to neutralise the phosphate groups directly without the 

interaction on further water molecules. This area of positive charge can be seen in both 

diagrams in Figure 4.3 by comparing the position of the blue wireframe residues Arg71 

and Argl16 in (a) and the corresponding blue surfaces in (b). It is likely that this area 

of the model will not be resolved until a non-hydrolyzable substrate containing the a-, 

~-, and y-phosphates is co-crystallised with the enzyme. This type of docking analysis 

is useful at providing a constrained set of possible residue-substrate interactions which 

can then be tested by mutagenesis studies. 
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4.2.5 Interactions of the E.coli active site with bound dUDP 

Two properties of the active site area were highlighted by the docking model: 

the accommodation of the pyrimidine and sugar rings in a visible cavity and the 

accommodation of the phosphate tail by neutralising charge. There are however 

additional attributes necessary for functionality. For modelling purposes it is useful to 

identify the specific residues involved in substrate specificity and those involved in 

catalysis. This information became available with the co-crystallisation of E.coli 

dUTPase with dUDP. The main interactions are shown in Figure 4.4 and 4.5. 

Seven of the residues in Figure 4.4 appear to be of key functional importance to 

the enzyme. Four residues (He 89, Asp 90, Tyr 93, Gin 119) make direct contact with 

dUDP in the active site and three residues (Gly 30, Ser 72, Met 98) make indirect 

contact mediated through water molecules. These residues are almost completely 

conserved throughout the class I group (highlighted in green in alignment Figure 4.1) 

with the exception of Met 98. Since this residue hydrogen bonds to the uracil ring of 

dUDP through main chain atoms it is likely that the conservation of its position is of 

more consequence than conservation of its side chain. This main chain interaction can 

be seen in the motif 3 loop shown in Figure 4.5. The water molecule responsible for 

nucleophilic attack of the a.-phosphate has not been determined but it is likely that the 

conserved residues (Ser 72, Asp 90, Gin 119) play a role by contributing to the 

hydrogen bonding pattern around the phosphorus atom. 

Figure 4.4 Interactions of the E.coli active site with bound dUDP. 
A diagram of the main interactions of dUDP with the active site in the E.coli co-crystal structure is 
shown (from Larsson et ai., 1996). Hydrogen bonds are shown as dashed lines and distances are given 
(in A). Residues from different subunits are marked as 'a' or 'c' respectively. 
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E. coli dUTPase is highly discriminatory with respect to base, sugar and 

phosphate and does not significantly hydrolyse dCTP, dTIP, UTP or any of the 

diphosphate relatives. This specificity is accomplished almost entirely by the l3-hairpin 

formed by the highly conserved motif 3 (Figure 4.5). In terms of base specificity it is 

likely that the main chain of Met 98 provides discrimination between cytosine and 

uracil. Discrimination against thymine is proposed to be steric given the lack of space 

available to accommodate a C5 methyl group. Specificity for the sugar is achieved by 

the positioning of the pentose ring between the conserved residues Ile 89 and Tyr 93 

thus removing space to accommodate a 2' OH. The mechanism for triphosphate 

specificity is not clear at present. The key residues identified as interacting with dUDP 

are highly conserved within the class I group and are highlighted in the sequence 

alignment in Figure 4.1. 

Figure 4.5 Interactions of E.coli l3-hairpin loop with bound dUDP 
The structure of the E.coli ~-hairpin loop with bound dUDP is shown. The ~-hairpin loop structure is 
formed by the conserved motif 3 region. The main residues involved in the specific recognition of the 
substrate are indicated in addition to the structurally bound water molecule (Wat). Hydrogen bonds are 
shown as black lines. Uracil recognition is accomplished by hydrogen bonding to the main chain (Met-
98) and the bound water molecule through the side chain of Asn-84 and backbone of Ser-IOO. 
Discrimination against ribose is provided by Tyr-93 which faces the deoxyribose moiety. The 3' 
hydroxyl group of the sugar donates a proton to the side chain of Asp-90. Graphic representation was 
generated using the Insight II molecular viewer. 
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4.2.6 Comparison of class I active sites 

Since data became available for the EIAV, FlV and human dUTPases it was of 

interest to compare the active site regions to identify areas of homology. The 

condensation of the 4 motif regions visible in Figure 4.6 is remarkably consistent 

between species. Motif 3 forms the main interaction platform and, as seen in the 

previous section, forms the ~-hairpin loop allowing high substrate specificity. All four 

active sites shown expose this motif 3 region (red) and utilise motifs 1, 2 and 4 to create 

the other 3 sides of the active site cavity. The interacting residues of the E.coU 

dUTPase with dUDP depicted in diagram 4.5 represent only one third of the total 

residues contained in motifs 1-4. Although there are few interactions from motifs 1, 2 

and 4, it is clear from these diagrams that they have a role in creating a specific active 

site environment. 

This is a key observation for interpretation of the class II model. Although 

specific residues have been identified as interacting with the substrate, for this to be 

achieved it is necessary to conserve surrounding residues. Although only a small 

minority of the motif residues interact directly with the substrate (see Figure 4.1) it is 

the motif regions as a whole that produce the architectural design. It appears that 

conservation of non-interacting motif residues is just as important as interacting 

residues in order to create an efficient, discriminating active site. It will be shown that 

the class II molecules contain highly conserved versions of both types of motif residue. 

Again this is an indication that the class II active site is structurally homologous to the 

class I active site. 
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(a) E.coli (b) FIV 

(c) Human (d) EIAV 

Motifs 

Species 1 2 3 4 5 

E.coli 29-33 71-77 87-100 114-121 141-150 

FlV 16-20 55-61 68-81 95-102 122-131 

Human 23-27 62-68 76-89 103-110 130-139 

EIAV 17-21 56-61 69-82 96-103 123-132 

Figure 4.6 Comparison of class I proposed active site regions 
For each molecular species an enlarged view of a single active site is shown. The following colour 
coding has been used for the motif regions composing the active site area: I-blue, 2-purple, 3-red and 4-
green. The spacefilling representations were created using RasMol. Note that the C-terminal tail has 
been removed from the human structure to allow an unimpeded view of the active site. The table 
indicates the residue numbers which constitute the motifs in each species. 
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4.2.7 Discussion 

In summary it is clear that in tenns of overall structure and active site 

confonnation, the class I dUTPases are highly similar. The motif regions condense to 

fonn an active site cavity with conserved residues providing key functional roles. The 

conservation of inter-motif distances, observed in the class I alignments, is likely to 

help defme the position of the 5 motifs. Structural comparison of the four available 

structures highlighted that the inter-motif regions can generate similar confonnations 

even with low sequence conservation. It will be shown in the forthcoming sections that 

these inter-motif regions possess more homology than is first evident with primary 

sequence analysis. Although there is only a relatively small percentage of the molecule 

that actually achieves substrate binding and catalysis, the active site confonnation is 

dependant on the secondary and tertiary structure of the entire molecule. This is an 

important observation for the class II modelling since there is almost no primary 

sequence homology out with the motif regions. 

Modelling of the E.coli active site helped to identify the key residues now 

apparent in the dUDP co-crystal structure. Comparison of active sites from diverse 

class I species shows a remarkable conservation of structural elements. Homologous 

cavities are visible in all the structures with key residues being similarly positioned. 

The attribution of function and high conservation of these residues provide an ideal 

probe for investigating the class II enzymes. 
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4.3 Class I dUTPases as a basis for modelling class II dUTPases 

4.3.1 Introduction 

In terms of motif arrangement, gene size and general structural arrangement, the 

class I dUTPases are highly homologous. The class II dUTPases however are a much 

more heterogeneous group. Members share a common motif arrangement but vary 

considerably in motif spacing and gene size. It is predicted that this group share a 

similar structural arrangement although these genetic variations will provide some 

variations and will be considered with respect to the class II model. This section 

tackles the class II dUTPases and how to best utilise the data from the class I enzymes 

for comparison. 

4.3.2 Comparison of class II primary sequences 

Alignment of the class II sequences was more difficult than the class I relatives 

due to the heterogeneity outside the motif regions. The motifs themselves are highly 

conserved throughout the class II group and provide a starting point for sequence 

alignments. In order to achieve a non biased set of alignments different programs were 

utilised. 

Initially class II sequence alignments were performed using GCG Pileup, a 

simplification of the method of Feng and Doolittle (1987). This is a very quick and 

reasonably efficient alignment program and is commonly used. It performs well on 

sequences with reasonable conservation but is less efficient at aligning multiple 

sequences with significant variation. Variability in sequence length for example, can be 

potentially difficult for the program to judge, especially if it occurs in areas of low 

sequence conservation. The program itself aligns the two most conserved sequences 

first and subsequently adds additional sequences to the lineup one by one. This means 

that if there are any significant mistakes in the initial or intermediate alignments they 

cannot be corrected later as further sequences are added. 

In the context of the class II alignments this was thought to pose a potential 

problem. As will be shown, the C-terminal halves of the class II enzymes are 

reasonably conserved relative to motif sequence and inter-motif distance. Conversely 

the N-terminal halves are significantly divergent within class II group. Since this half 

contains only one motif region (motif 3) this variability is judged by measuring two 

direct variables: the distance from the N-terminus to the beginning of motif 3 and 

secondly, the distance between motif 3 and motif I (the first motif in the C-terminal 

half). Figure 4.7 shows such a measurement. 

92 



Distance A '" Distance B ... 
"" 0 

::< 

EBV 72 50 

EHV-2 77 

HVS 74 49 

HSV-l 93 116 

HSV-2 93 114 

EHV-l 104 64 

EHV-4 104 64 

BHV-l 

PRY 

VZV 

Figure 4.7 Determination of class II variability by inter-motif distances 
Two sequence lengths have been calculated for each species: "A", the distance between motif 3 and the 
N-terminus and "B", the distance between motif 3 and motif 1. The N-terminus is represented as a 
vertical line, motif 3 by a red box and motif 1 as a blue box. The lines are drawn to scale to allow a 
graphical as well as numerical visualisation. Sequences are arranged in the same order as Figure 4.8 for 
comparison. 

The fIrst measurement "A", from the N-termini to motif 3, shows a general 

variability between dissimilar species. Closely related pairs such as HSV-IIHSV-2 and 

EHV -llEHV -4 have identical distances. The largest "A" distance is that of VZV while 

EBVIEHV-2IHVS have the smallest. This overall pattern is mimicked in the second 

distance "B" between motif 3 and motif 1. Similar species have closely related "B" 

distances while more distant species show wide variability. HSV-l and HSV-2 have 

the longest "B" distance closely followed by VZV. 

The key point to note is that distance "A" is not predictive of distance "B". For 

example, EHV-l and EHV-2 have a long "A" and a short "B" while EBV and HVS 

have a short "A" and a short "B". Furthermore, these distances are not conserved 

between species. For example, HSV-l and EHV-l differ by only 11 residues in "A" 

but differ by 52 residues in "B". A very simple conclusion can be drawn from this data, 

namely that there is variability with respect to insertions in both regions "A" and "B". 

However, in terms of sequence alignment this is not a simple problem. As can be seen 
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from the following alignments, there is almost no sequence conservation ill the N

termini outwith motif 3. In any alignment therefore, there will have to be extensive use 

of padding characters in the N-terminal half. What is difficult to predict is the exact 

position of these gaps in this half of the alignment. 

The results from using the Feng and Doolittle program on the class II sequences 

is shown in Figure 4.8. Although there is a low background use of padding characters 

throughout the alignment, there are four main areas of extensive gaps. These variable 

regions, labelled Var 1-4, are highlighted in blue text. 

EBV 
EHV-2 
HVS 
HSV-l 
HSV-2 
EHV- l 
EHV-4 
BHV-l 
PRY 
VZV 

EBV 
EHV-2 
HVS 
HSV-l 
HSV-2 
EHV-l 
EHV-4 
BHV- l 
PRY 
VZV 

1 100 
· . .. . ....... MEACPHIRYAFQNDKLLL. QQASVGRLTLVNKTTILLRPMKTTT . . ..•.. . ... . .. . ... . .. .. . . . .. . . .. VDLGLYARPPE. 
. . ..... . . MTLRKQRQEIYYEFTSSSFEITSPPESSKITLTNLYPILVRPYVPAV . . . . .... . . ..... . . .. . .. .. ..... . .. IPLGIRIIYGNK 
· ... . .. . ... MPYKVPEIYYRFEPQTITITSPARASNLQLINHNNILVKAGQVTI ... .. ... .. .. . .... ... . .. . . . . . . . . . VSTGI . I FPKET 
... MSQWGSGAILVQPDSLGRGYDGDWHTAVATRGGGVVQLNLVNRRAVAFMPKVSGDSGWAVG . . . . .. . . . . . ... . .. . .. . . . RVSLDLRMAMPA. 
· .. MSQWGPRAI LVQTDSTNRNADGDWQAAVAI RGGGVVQLNMVNKRAVDFTPAECGDS EWAVG . ...... . . . ..... . .. . .... RVSLGLRMAMPR. 
... . .... MASVTNLVDSIVVVECGERWRARAEAAGRLLVLINNHTVELSGEHGSAGEFYSVL . . .. . ........... . .. .. . . .. TDVGVRVACSS. 
· .. . .. . . MASATNLADNIVVVECSNGWEARAEADGRLL VLINNHTVELSAGLGSAGE FYSVL ....... . ........ . .. . ... . . TDVGVRVACSS . 
MANSAAATTATMSGDRGILVVELNAEAAPWRLESCCEPDSLALWGPIAPAAKRDETAPSGSLLYSR .. .. . ...... ... . .. .. . . LINLNMKAAAPG. 
MEESAGATSA . .. .. . .. . ... . . QSAATSVSESPAE . ...... ETILVCASEPVTVDGGRLLVCRSPGPEGF . .. . . ..... ... YKVPLGLKVALPT. 
. .. MNEAVIDPILETAVNTGDMFCSQTIPNRCLKDTILIEVQPECADTLQCVLDDKVSRHQPLLLRNHKKLELPSEKSVTRGGFYMQQLELLVKSAPPN. 

VAR 1 

101 200 
GHGLMLWGSTSRPVTSH . ...... . .... .. .. .. .. VGIIDPGYTGELRLILQNQRRYNSTLRPSELKIHLAAFRYATPQMEEDKGPINH .. . . . .. . . 
GQGFILAGSSQKKVFCH . ....... . .... . .... . . TGLIDPGYRGEI KLIVLNTTKYNVTLFAGELRVSLFSFFFSTPII . YDYDLLNR .... . . . . . 
SFAFILYGKSAKSIFCH .. .. ... .. . . .. ... . ... TGLIDPGFQGELKLIVLNKTEDDITLFENDLRVSVTAFVYGVPKL. HDYSDLCP . . . ..... . 
DFCAIIHAPALASPGHH ..... .. . ... . . . . . .. VILGLIDSGYRGTVMAVVVAPKR . TREFAPGTLRVDVTFLDILATPPALTEPISLRQF . . . PQLA 
DFCAIIHAPAVSGPGPH . ... . .. . ..... . . . .. VMLGLVDSGYRGTVLAVVVAPNG.TRGFAPGALRVDVTFLDlRATPPTLTEPSSLHRF .. . PQLA 
GYAIVL TQI SGLLPVEPEPGN FSNVT FPENSAKYYTAYG IVDSGYRGVVKA VQFAPGI . NTSVPPGQMSLGL VL VKLARKS I HVTS IGSTRDG . . . RTSE 
GYAIVLAQISGLPHVGREPGNFSNITFTGNLANYYTAYGIVDSGYRGVVKAVQFANGV.NTVVPPGCMSLGLVLVKLSTETINVTNINLTENG . . . RSPR 
GYAIIMSQMRSGDTHMPRPPAVAV .... . . .. . ..... GIVDSGYSGILRAIVWAPES.AAAAPPAGL . .. ALRLTLARLTTTLPRLIAVDDD . .. ANAG 
GYAMLVAQRGGGRT . ... . . . . TN . . ..... . ..... . GIVDAGFRGEVQAIV ...... APGRPRAQFYCTPLRL .... .. . . . . ..... . . . . . . . .. A 
EYALLLIQCKDTALADED . . . . . .. . . . . . . . NFFVANGVIDAGYRGVISALLYYRPG . VTVILPGHLTIYLFPVKLRQSRLLPKNVLKHLDPIFKSIQV 

VAR 2 MOTIF 3 VAR 3 . .. 

201 300 
EBV . ... . ...• . .... .. . . . .. . .. . . ... .. . . ........ . . . • .. . ... . . . .. .. ... PQYPGDVGLDVSLPKDLALFPHQTVSVTLTV .. P. PPSI 
EHV- 2 ... . ... . ... . .. ... .... . ... . . .... . .. . ....... . . . . . . .. . .. .. . .... . PQYSDDAGYDLYLQEDLMLFPQASTTVTIDS . . RVPTTT 
HVS ... . .. ... ......... . .. ... .. . .... . ... . .... . . .... . .... . .•. .... . . PRYSKDAGFDLYLPTDVTVKPRVPNRYSVN1. . CCPAQL 
HSV-1 PPPPTGAGlREDPWLEGALGAPSVTTALPARRRGRSLVYAGELTPVQTEHGDGVREAIAFL PKREEDAGFDIVVRRPVTVPANGTTWQPS. LRMLHADA 
HSV- 2 PSPL . . AGLREDPWLDGALATAGGAVALPARRRGGSLVYAGELTQVTTEHGDCVHEAPAFLPKREEDAGFDI LI HRAVTVPANGATVIQPS . LRVLRAAD 
EHV-1 ANL . . .. . FYD ...... .. .. . .. .. . . .. . . . . . •.. . . . . .... . ........ . .. YFAPKRVEDAGYDISAPEDATIDPDESHFVDLP. 1. VFANSN 
EHV- 4 VNI ... .. FYD .. . . .. . . . . . .. .. ... . ........ . . . .. . ...... .. ... . .. YFAPKRDE YD1SAQTNATIEPDESYFVELP. I. VFSSSN 
BHV- l TEAGVEVPFFA ............ . .. . ... . . . . .. .... . . .. . . . ... .. . .. ... TFAPKRDEDAGYDIAMPYTAVLAPGENLHVRLP.V.AYAADA 
PRY PG1ATDVPFFE . . . . . .. . .. . .. . ...... . ...... . . .. ... . .... . .... .. . VFAPKRDE DAGYDIPCPRELVLPPGGAETVTLP.V.HRTDGR 
wz QPLSNSPSNYEKPVIPEFADISTVQQGQPLHRDSAEYHIDVPLT .. . . .. .... . YKHIINPKRQEDAGYDICVPYNLYLKRNEFIKIVLPIIRDWDLQH 

VAR 3 continued MOTIF 1 

301 400 
EBV PHHRPTI FGRSGLAMQGlLVKPCRWRRGGV. DVSLTNFSDQTVFLNKYRRFCQLVYLHKHHLTSFYSPHSDAGVLGPRSLFRWASCTFEEVPSLAM .... 
EHV-2 KFFKPWFGRSGLATRGVWDVVKWTHSPL .TLKIYNFTDNTLRYSAGTRICQWFVHRRHFPSKLKHFFTY lNLNSKTSFYWANVSFVDCQNDAYRSLV 
HVS KSYKPVL FGRSGLAAKGLT I KVS RW . QNQL . Q1 I FYNYTKSQITYTARTRIAQWFMHKKHLPTTLTRLKPTMHLSEN I KYSWARVS FODl KT FPVQDEK 
HSV- l GPAACYVLGRSSLHARGLLWPTRWLPGHVCAFVVYNLTGVPVTLEAGAKVAQLLVAGADALPWl . .. . PPDNFHGTKALRNYPRGVPDSTAEPRNPPLL 
HSV-2 GPEACYVLGRSSLNARGLLVMPTRWPSGHACAFVVCNLTGVPVTLQAGSKVAQLLVAGTHALPW1 .... PPDNIHEDGAFRAYPRGVPDATATPRDPP1L 
EHV- l PAVTPC1 FGRSSMNRRGLlVLPTRWVAGRTCCFFILNVNKYPVSITKGQRVAQLLLTEDlDDAL1 . ... PP .TVNYDNPFPTYSPS .. ESTKAPQSPVLW 
EHV- 4 PAVTPCI FGRSSMNRRGLlVLPTRWVTGRTCCFFILNINKYPVYITKGQRVAQLVLTEDIDEALI . .. . PT. NVNYNTPFPTYSPT . . GAVKHNPTPILW 
BHV-1 HAAAPYV FGRSSCNLRGLIVLPTAWPPGEPCRFVLRNVTQEPLVAAAGQ RVAQLLLLARRLE.WL .. . . PS .GLNDREPFPTSPRA .. APPAPGAPRLRW 
PRY HWA .. YVFGRSSLNLRGIWFPTPWESG. PCRFRlQNRGAHPVTLESGQRVAQLVLTREPLG. WI . .. . T . .... GRSPFPATPRA .. PMQHRPAWLFAR 
VZV PSINAYI FGRSSKSRSGIIVCPTAWPAGEHCKFYVYNLTGDDIRIKTGDRLAQVLLIDHNTQIHL . .. . . KH NVLSNIAFPYAIRGKCGIPG ... . . VQW 

MOTIF 2 MOTIF 4 VAR 4 

401 436 
EBV ... GDSGLSEALEGRQGRGFGSSGQ . ......... . 
EHV-2 TLPCQEDTDRG .. YRGDSGFGSSGMR ......... . 
HVS LYSSSKDTSDSQMSRGDAGLGSSGLM . . ... .. .. . 
HSV-l VFTNEFDAEAPPSERGTGGFGSTG1. .... .. ...• 
HSV- 2 VFTNEFDADAPPSKRGAGGFGSTG1. ....... . . . 
EHV- 1 KFTTDFDREAPSSLRADGGFGSTGL .... .. ....• 
EHV-4 KFTEAFDHDAPSSARSEGGFGSTGL . ... . . . ... . 
BHV-1 RRVADLAAAVPPSARGPRGFGSTGL ....•.. ... . 
PRY DFVA . ... .. PSSARGARGFGSTGL . ... • . .. . .. 
VZV YFTKTLDLIATPSERGTRGFGSTDKETNDVDFLLKH 

MOTIF 5 

Figure 4.8 Class II sequence alignment by Feng and Doolittle method 
This alignment was generated by GCG Pileup using the method of Feng and Doolittle with standard 
default values (gap weight: 3.0, gap length weight: 0.1). Motif regions are highlighted in yellow. 
Variable regions are shown as blue text. 
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To allow a more objective approach to the class II alignments a different 

program was used to process identical input data. A multitude of alignment programs 

are available but many of them utilise similar progressive methods to that of Feng and 

Doolittle (FD). The program SAGA (sequence alignment by genetic algorithm) was 

chosen since it employed a novel approach to sequence alignment. 

The program works on an evolutionary basis, generating a large population of 

alignments and gradually improving them by measuring their quality. The calibre of 

each alignment is measured by an objective function which is generated by assigning a 

cost for each column of aligned residues and a cost for each gap. Using this objective 

function it is then possible to apply a selection process to the population of alignment 

solutions. Parental alignments which score highly generate more children than 

alignments of poor quality. The overall size of the population is kept constant creating 

a selection pressure for better alignments. Over many generations the regions of high 

quality are conserved until the alignment can no longer be improved. The results of 

such an alignment is shown in Figure 4.9. 

The alignment generated by SAGA has been highlighted in the same way as the 

original alignment of FD to allow direct comparison. In overall terms the alignments 

were generally similar despite using two different methods. This was encouraging and 

gave some assurance that the alignments were close to optimal. 

The C-terminal half of the alignments, from motif 1 to motif 5, was aligned 

efficiently by both methods. Although the inter-motif regions share only scarce 

sequence conservation, their lengths are highly conserved. Once motifs 1, 2, 4 and 5 

are aligned, there are few gapped regions necessary to generate a reasonable alignment 

in the C-terminal half. 

As was shown graphically in Figure 4.7, there is considerable variation in 

sequence length in the N-terminal half of the alignments. Both programs readily 

recognised motif 3 but had difficulty with the regions to either side. There is very little 

sequence homology in these regions which is complicated by the fact that some 

individual species have substantial deletions and insertions. The two methods used 

generated similar alignments for the N-terminal half in terms of overall structure. There 

were however distinct differences. 

The main difference was the splitting of variable region I into two parts in the 

SAGA alignment. This is interesting in terms of how these two methods interpret 

overall conservation. The key feature of this region is that both programs are obviously 

constrained by the excessive length of the VZV sequence compared to the others. In 

both cases the VZV sequence is run almost straight through this region with very few 

gaps. In the FD alignment it can be seen that additional gaps were added to each 

additional species from top to bottom in order to accommodate the VZV sequence. The 
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SAGA program has allowed refmement of this region providing a greater number of 

paired alignments. This can be measured in terms of the quantity of gaps inserted 

within the bounds of variable region 1. The FD program created 221 gaps compared to 

162 from SAGA. Even with these differences, the overall consensus for this region is 

reasonably high between the two alignments. 

EHV-2 
HVS 
EBV 
EHV-1 
EHV-4 
BHV-1 
HSV-1 
HSV-2 
PRV 
vzv 

1 100 
......• . ..• . ... MTLRKQRQEIYYEFTSSSFEITSPPESS . . . KITLTN .... LYPILVRPYVPA . ................ VIPLGIRIIYGNKGQ 
.. . ... . . . ..... .. . MPYKVPEIYYRFEPQTFYITSPARAS ... NLQLIN .... HNNILVKAGQVT . ................ IVSTGIIFP.KETSF 
.. . ............... MEACPHIRYAFQNDKLLLOQASVGR .... LTLVN .... KTTILLRPMKTT .... . ............ TVDLGLYAR.PPEGH 
· ... ... .. .. ... MASVTNLVDSIVVVECGERWRARAEAAGR . .. LLVLIN .... NHTVELSGEHGSAGEFYSV ... .. . . ... LTDVGVRVA. CSSGY 
· ..... . ....... MASATNLADNIVVVECSNGWEARAEADGR ... LLVLIN .... NHTVELSAGLGSAGEFYSV .......... LTDVGVRVA.CSSGY 
............... MANSAAATTATMSGDRGILVVELNAEAA ... PWRLES.CCEPDSLALWGPIAPAAKRDETAPSGSLLYSRLINLNMKAA.APGGY 
· •• .. ..... HSQWGSGAILVQPDSLGRGYDGDWHTAVATRGGGWQLNLVN .... RRAVAFMPKVSGDSGWAVG .......... RVSLDLRMA. MPADF 
.. . ....... HSQWGPRAILVQTDSTNRNADGDWQAAVAIRGGGWQLNMVN .... KRAVDFTPAECGDSEWAVG .......... RVSLGLRMA.MPRDF 
· ......... MEESAGATSAQSAATSVSESPAEETILVCASEP . . .. VTVDG ... . GRLLVCRSPGPEGFY ..... . ........ KVPLGLKVA.LPTGY 
MNEA VI DP I LETA VNTGDMFCSQT I PNRCLKDTILI EVQPECADTLQCVLDDKVSRHQPLLLRNHKKLELPSEKSVTRGG FYMQ . QLELLVKSA. P PNEY 

VAR 1A VAR 1B 

101 200 
EHV-2 GFlLAGSSQKKV . ............ . ... . .. FCHTGLIDPGYRGEIKLIVLNTTKYNVTLFAGELRVSLFSFFFSTPIIY .......•........... 
HVS AFILYGKSAKSI . ................ .. . FCHTGLIDPGFOGELKLIVLNKTEDDITLFENDLRVSVTAfVYGVPKLH .... . . ....... . .... . 
EBV GLMLWGSTSRPV . .. ................. TSHVGIIDPGYTGELRLILQNQRRYNSTLRPSELKIHLAAFRYATPQME .................. . 
EHV-1 AIVLTQISGLLPVEPEPGNFSNVTFPENSAKYYTAYGIVDSGYRGVVKAVQFAPGI.NTSVPPGQMSLGLVLVKLARKSIH . ............•..... 
EHV- 4 AIVLAQISGLPHVGREPGNFSNITFTGNLANYYTAYGIVDSGYRGVVKAVQFANGV . NTVVPPGCMSLGLVLVKLSTETIN . ................. . 
BHV-1 AIIMSQMRSGDTHMPRPP .... . ....... . . AVAVGIVDSGYSGILRAIVWAPES.AAAAPPAGLALRLTLARLTTTLPR . .. . ..... . ........ . 
HSV-1 CAIlHAPALASPGH .................. HVILGLIDSGYRGTVMAVVVAPKR.TREFAPGTLRVDVTFLDlLATPPALTEPISLRQFPQLAPPPPT 
HSV-2 CAIIHAPAVSGPGP ............•... . . HVMLGLVDSGYRGTVLAVVVAPNG. TRGFAPGALRVDVTFLDIRATPPTLTEPSSLHRFPQLAP .. SP 
PRV AMLVAQRGGG ..... . ...... . ... . ... . . RTTNGIVDAGFRGEVQAIVAPGRP.RAQFYCTPLRLA . . . ... PGIATD . . . . .............. . 
VZV ALLLIQCKDTALADEDNF ............ . . FVANGVlDAGYRGVISALLYYRPG . VTVILPGHLTIYLFPVKLRQSRLL . .. . .... PKNVLKHLDPI 

VAR 2 MOTIF 3 VAR 3 .•• 

201 300 
EHV-2 .... . .. . ... . ....... . .... . .. . ............. . ....... DYDLLNRPQYSDDAGYDLYLQEDLMLFPQASTTVTIDSRV .. PTTTKfFKP 
HVS ... . ..... . . . ...... . .... . ....... . ..... . ........... D'lSDLCPPR'lSKDAG FDL'lLPTDVTVKPRVPNRYSVNICC .. PAQLKSYKP 
EBV .. ... . . ...••......••. . .... . ... .. ... . ...... . ..... EDKGPINHPQYPGDVGLDVSLPKDLALfPHQTVSVTLTVP ... PPSIPHHRP 
EHV-1 ........................ . ........ VTSIGSTRDGRTSEANLFYD'lFAPKRVE YDI SAPEDATIDPDESHFVDLPIVf .. ANSNPAVTP 
EHV-4 .......... . .................... . . VTNINLTENGRSPRVNIFYDYfAPKROE YDISAQTNATIEPDESYFVELPIVf .. SSSNPAVTP 
BHV-1 .. .. .. . . . . ..................... LIAVDDDANAGTEAGVEVPfFATFAPKRDEDAGYDIAMPYTAVLAPGENLHVRLPVAY .. AADAHAAAP 
HSV-1 GAGlREDPWLEGALGAPSVTTALPARRRGRSLVYAGELTPVQTEHGDGVREAIAFLPKREEDAG FDIVVRRPVTVPANGTTVVQPSLRML . HADAGPAAC 
HSV-2 LAGLREDPWLDGALATAGGAVALPARRRGGSLVYAGELTQVTTEHGDCVHEAPAfLPKREEDAG FDILIHRAVTVPANGATVIQPSLRVL.RAADGPEAC 
PRV ........... . .....•.. ... ......... .. ......... . .... VPFfEVfAPKRDE GYDI PCPRELVLPPGGAETVTLPV . .. . HRTDGRHWA 
VZV rKSIQVQPLSNSPSNYEKPVIPEFADISTVOOGQPLHRDSAEYHIDVPLTYKHIINPKRQEDAGYDICVPYNLYLKRNEfIKIVLPIIRDWDLQHPSlNA 

VAR 3 continued Motif 1 

301 400 
EHV-2 VVFGRSGLATRGVVVDVVKWTHS . PLTLKIYNFTDNTLRYSAGTRICQVVfVHRRHFPSKLKH . FFTYINLNSKTSFYWANVSFV .. DCQNDAYRSLVTL 
HVS VLFGRSGLAAKGLTIKVSRWQN . . QLQIIFYNYTKSQIT'lTARTRIAQVVFMHKKHLPTTLTR.LKPTMHLSENIKYSWARVSFQDIKTFPVQDEKL'lSS 
EBV TI FGRSGLAMQGILVKPCRWRRG.GVDVSLTNFSDQTVFLNKYRRFCQLVYLHKHHLTSFYSP.HSDAGVLGPRSLFRWA ....... SCTFEEVPSLAMG 
EHV-1 CI FGRSSMNRRGLIVLPTRWVAGRTCCFFILNVNKYPVSITKGORVAQLLLTEDIDDALIPPT.VNYDNPFPTYSPSEST . .. .. .. KAPQSPVLWKFTT 
EHV-4 CI FGRSSMNRRGLIVLPTRWVTGRTCCFFILNINKYPVYITKGQRVAQLVLTEDIDEALIPTN.VNYNTPfPTYSPTGAV . . .... . KHNPTPILWKFTE 
BHV-1 YVFGRSSCNLRGLIVLPTAWPPGEPCRFVLRNVTQEPLVAAAGQRVAQLLLL.ARRLEWLPSG.LNDREPFPTSPRAAPP . ..... . APGAPRLRWRRVA 
HSV-1 YVLGRSSLNARGLLVVPTRWLPGHVCAFVVYNLTGVPVTLEAGAKVAQLLVAGADALPWIPPDNfHGTKALRNYPRGVPDST .... . AEPRNPPLLVFTN 
HSV-2 YVLGRSSLNARGLLVMPTRWPSGHACArvvCNLTGVPVTLQAGSKVAQLLVAGTHALPWIPPDNIHEDGAFRAYPRGVPDAT . .... ATPRDPPILVFTN 
PRV YVFGRSSLNLRGIVV,' PTPWESG. PCRFRIQNRGAHPVTLESGORVl'.QLVLT. REPLGWITGR ..... SPFPATPR . . ......... APMQHRPAWLfAR 
VZV YI FGRSSKSRSGIIVCPTAWPAGEHCKFYVYNLTGDDIRI KTGDRLAQVLLIDHNTQIHLKHN.VLSNIAFP'lAIRG .... .. .. . . KCGIPGVQW'lFTK 

MOTIF 2 MOTIF 4 VAR 4 

401 432 
EHV-2 PCOEDTDRG GDSGFGSSGMR .... .. ... . 
HVS SKDTSDSQH5RGDAGLGSSGLM ......... . 
EBV DSGLSEALEGRQGRGFGSSGQ . .... . .. . . . 
EHV-1 DFDREAPSSLRADGGFG GL ... . ...... . 
EHV-4 AFDHDAPSSARSEGGFGSTGL .. . ....... . 
BHV-1 DLAAAVPPSARGPRGFGSTGL . ......... . 
HSV-1 EFDAEAPPSERGTGGFGSTGI. ......... . 
HSV-2 EFDADAPPSKRGAGGFGSTGI. . ...... . . . 
PRV Of .. VAPSSARGARGFGSTGL . ... . . . . . . . 
vzv TLDLIATPSERGTRGFGSTDKETNDVDfLLKH 

MOTIF 5 

Figure 4.9 Class II sequence alignment using SAGA 
This alignment was generated by the program SAGA with the standard set of 10 class IT sequences. 
Motif regions are highlighted in yellow and variable regions in blue text. Note that the order of 
sequences is different than in Figure 4.8. 
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Variable region 2 is almost identical in both alignments. Alignment in this 

region is constrained by insertions in the EHV -1 and EHV -4 sequences. Region 3 is 

the main area of variability between class II species and of significant importance to the 

class II model. Both alignments show very similar resolutions, notably constrained by 

insertions in the HSV-l and HSV-2 sequences and to a lesser degree the VZV 

sequence. Between the two alignments the position of the gap regions varies by only a 

few residues in all the sequences. It is the position and length of this gap that is of 

importance and both alignments are in general consensus by these criteria. This region 

of class II variability is considered in depth in the following sections. 

Variable region 4 is found between motifs 4 and 5. In comparison to the FD 

result, the SAGA method favours the condensation of single gaps into one region. 

These gaps are fairly small compared with the other variable regions but will be taken 

into account in the model. Finally it is of consequence to note that there is variability in 

terms of sequence length at the N-terminus while at the C-terminus, only VZV has 

additional residues. 

4.3.3 Proposed relationship between class I and class II dUTPases 

The intragenic duplication model proposed by D.l. McGeoch (1990b) accounts 

for the genetic rearrangement of the five motifs in class II dUTPases compared to the 

class I group. The genetic evidence for this rearrangement in addition to the structural 

data from the class I enzymes supports the following hypotheses: 

- the five motifs which make up the active site in the class I dUTPases constitute a 

highly homologous active site in the class II dUTPases 

- the active site which is assembled from motifs donated by three subunits in the class I 

trimer can be successfully duplicated in the class II monomer by a single protein chain 

To further these hypotheses in a structural context it was necessary to provide a 

model to link the class I and class II dUTPases. It has been shown that the class I genes 

encode a subunit structure which subsequently assembles into a trimeric arrangement. 

Since the class II genes are approximately double the length of the class I genes and 

encode a monomer, a more defmed hypothesis was proposed: 

- duplication of the ancestral class I gene led to a duplication of the trimer subunit 

structure to create a double length class II monomer 

This hypothesis has implications for the class II model. In terms of overall 

structural arrangements, the class II dUTPase is proposed to be constructed by two 
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trimer subunits joined as a single protein chain. For this new structure to be viable it 

would have to be able to condense all five of its single copy motifs into one functional 

active site. 

To test this model it was necessary to provide sequence lineups between the 

class I and class II dUTPases. Since it was proposed that the class II arrangement 

originated by a duplication of the class I gene, the two classes were compared directly. 

This was achieved by duplicating the E.coli primary sequence to create a single chain 

doublet. This double length E. coli sequence was then used to align with the class II 

sequences. A representation of this alignment is shown in Figure 4.10. 

E.coli subunit sequence E. coli subunit sequence 

2 3 4 5 Ic + NI 2 3 4 5 Ic 

E. coli doublet sequence 

N'----I --2 - 3--4 - 5---'1::::::::::=1 1:==2===3 ==4==1 ::::::0 C 

3 2 x 4 5 IC 
HSV-l Class II sequence 

Figure 4.10 Comparison of class I and class II sequences utilising an E.coli doublet 
Figure shows a representation of the E.coli class I and the HSV-l class II sequences indicating the 
position of the motif regions. The class I sequence is effectively duplicated and joined to create a double 
length chain. To permit correct alignment of the motif regions, gaps must be inserted for the extended 
joining region and the extension between motifs 4 and 5 in the HSV -1 sequence. This allows direct 
sequence comparison between the two classes. The motif region labelled 'X' is discussed in Section 4.7. 

In this diagram the single copy of the five class II motifs is aligned with the 

respective E.coli motifs. What cannot be seen is how closely related these motifs are 

between the two classes. In fact when they are compared directly it can be seen that all 

of the key residues identified in the class I structures are present in the class II motifs. 

E.coli 
HSV-l 

1 2 3 
AGLDL PRSGL GLIDSDYQG 
AGFDI GRSSL GLIDSGYRG 

4 
GERIAQMI 
GAKVAQLL 

Figure 4.11 Direct comparison of E.coli and HSV-l motifs 

5 
RGEGGFG 
RGTGGFG 

E.coli motifs are shown on top with the equivalent HSV-I motifs below. The residues which interact 
directly with dUDP in the E.coli co-crystal are shown in yellow. Note that these residues are almost 
totally conserved throughout the class II group as well as the class I group. 
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4.3.4 Discussion 

The class II dUTPases have been shown to be more heterogeneous between 

species than their class I counterparts. The use of alignment programs has allowed 

them to be compared at the primary sequence level. By using different methods to 

analyse the same data set it was possible to identify distinct areas of homology and 

variability within the class II group with a degree of confidence. The use of the 

program SAGA for this purpose proved to be very useful. This type of alignment 

program has only become possible with the advances in computing power and even 

with a powerful VMS system, processor time for a single alignment was in the region 

of 10 hours. 

Finally a method has been developed to allow direct comparison of the two 

dUTPase classes at the primary sequence level. Although this method is based on the 

specific hypotheses in Section 4.3.3, an element of caution must be used. It should be 

noted that the intragenic duplication is likely to have occurred from a common ancestor 

of the class I and class II dUTPases. It is therefore probable that the class I enzymes 

have diverged to some degree since that time. This should be taken in the context of 

the available infonnation, and given that the structural conservation between diverse 

class I species is high, it is likely that significant changes are few. In tenns of this 

study, the doublet molecule generated from the E.coli gene must be considered to be at 

least partially divergent from the original ancestral doublet. This is considered more 

thoroughly in Section 4.6 but at this stage only major structural elements which are 

more likely to have been conserved through time will be examined. The extended 

regions present in the HSV-l sequence compared to the E.coli doublet are discussed in 

the next section. 
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4.4 Secondary structure prediction 

4.4.1 Introduction 

As will be shown, the class I subunit structures all possess a signature secondary 

structure arrangement. If the hypothesis in the previous section holds true then it is 

likely that each half of the class II enzyme will contain some of these secondary 

structural elements. This was tested by using computer analysis to predict secondary 

structure from primary sequence lineups of the class II dUTPases. The predicted class 

II ~-sheet arrangement was then compared with the class I doublet of known structure. 

4.4.2 Class I ~-sheet structure 
E.coli dUTPase was the fIrst class I structure to be solved by crystallography 

and the secondary structure is depicted in the introduction Figure 1.11. Given the low 

inter-motif sequence homology between the class I enzymes it was of interest to 

compare these structural elements with the other subsequently solved structures. It was 

immediately obvious, as in the comparison of quaternary structures in Section 4.2.3, 

that the class I group share highly homologous secondary structure arrangements. This 

section details these conserved secondary structural elements in order to obtain a 

consensus to probe the class II enzymes. 

It was fIrst noted in the E.coli structure that the arrangement of ~-strands 

conforms approximately to a 'jelly roll' fold (Cedergren-Zeppezauer et al., 1992) which 

is depicted in Figure 4.12. Each subunit possesses 1 0 ~-strands and a short a-helix. 

Eight ~-strands form two ~-sheets and create an overall ~-barrel arrangement. The two 

remaining short anti-parallel ~-strands are not part of the ~-barrel. The eighth ~-strand 

in the 'jelly roll' fold confIguration is donated by an adjacent subunit (more clearly 

visualised in the introduction Figure 1.11). 
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(a) Idealised jelly roll fold 

C N 

8 1 2 7 4 5 6 3 

C' 

(b) E.coli secondary structure 

-------1----- - - --2-- ---9--- ------3------- ---4--- HELIX 
EIAV MLAYQGT QIKEK RDEDAGFDLCVPYD IMIPVS DTKIIPTDVKIQVP 
FlV MIIEGD GILDK RSEDAGYDLLAAKE IHLLPGEVKVIPTGVKLMLP V r..V'Wr..l· . T 

Human MQLRFARL SEHATAPTRGSARAAGYDLYSAYD YTIPPMEKAVVKTDIQIALP 
E. col i MMKKI DVKI KEFPLPTYATSGSAGLDLRACLNDAVELAPGDTTLVPTGLAln .Lr\Ur~""""""l"l.U'''' 

Motif 1 Motif 2 

-a---S--b-- ---6- - ---- -10- - - - --7 - --- - - - -8----
ElAV LLlN GGll DEGYTGE IQVlCTNI GKSNI KL IEGQKFAQLIILQHHSNSRQPWDENKISQRGDKGFGSTGVF 
FlV LDVL GGVI DEGYRGEIGVIMINVSRKS ITLMERQKIAQLIILPCKHEVLEQGKVVMDSERGDNGYGSTGVF 
Human IDVG AGVIDEDYRGNVGVVLFNFGKEKFEVKKGDRIAQLICERIFYPEIEEAQALDDTERGSGGFGSTGKN 
E . coli I VLGNLVGLI DSDYQGQLMISVWNRGQDSFT IQPGERIAQMIFVPVVQAEFNLVEDFDATDRGEGGFGHSGRQ 

Motif 3 Motif 4 Motif 5 

(c) Comparison of four class I secondary structures relative to primary sequence 

Figure 4.11 Comparison of the class I secondary structure to a "jelly roll" fold 
Two topological diagrams are shown: (a) an idealised 'jelly roll ' fold and (b) the structure of E.coli 
dUTPase. p-strands are depicted as arrows representing their direction and the a-helix as a cylinder. A 
direct comparison of p-strand positions in relation to primary sequence is given in (c). The eight p
strands composing the jelly roll fold are highlighted in yellow with the additional strands in grey. a
helices are highlighted in red. A four residue insertion in the E.coli sequence is highlighted in cyan (see 
text below for details). p-strands are numbered 1-10 for comparison. 
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All four class I enzymes follow a homologous ~-sheet profile as depicted in 

Figure 4.12 (b) with the following exceptions. In E.coli, FIV and human dUTPases, the 

C-terminal region provides the eighth ~-strand in the 'jelly roll' fold. This means that 

each globular domain contains polypeptide chains from two different subunits which 

are tightly interlocked. In EIA V dUTPase the C-terminal strand donated by the 

neighbouring subunit does not take part in the ~-sheet structure but still makes intimate 

contact with the adjacent subunit. The only other deviations from the pattern are a 

result of splitting long ~-strands into two smaller strands. This is apparent in Figure 

4.12(c) where strand 1 and 3 are split in the retroviruses, EIAV and FIV and strand 5 is 

split in all but the E.coli dUTPase. 

Although there are subtle differences between each species the general pattern 

of ~-strands is highly conserved. This can be seen in the comparison of the 3D 

structures in Figure 4.13. The four available class I subunit structures closely resemble 

one another demonstrating that the splitting of ~-strands has little structural 

consequence. This can been seen visually in the figure by comparing the bottom right 

area (N-terminus) of each structure. Each subunit has been positioned relative to the 

orientation of the extended C-terminal tail for comparison. From this view it can be 

seen that the overall ~-sheet arrangement in each species is highly conserved relative to 

this position. The small a-helix is also in an almost identical position in each species. 

The E.coli dUTPase possesses a small additional bulge which corresponds to the 

insertion of four residues at positions 11 to 14 (Figure 4.I2c in blue). This chain 

extension (visible in Figure 4. 13 (a) and (e)) loops back towards the main body and does 

not affect the ~-sheet pattern. 

Figure 4.13(e) shows all four class I structures superimposed without any 

structural modifications. Apart from the small extended loop visible in the E.coli 

dUTPase and to a lesser degree in the human dUTPase the structural backbones match 

almost exactly. This is a fascinating observation given the diversity of these four 

speCIes. It highlights the relative unimportance of inter-motif primary sequence 

conservation in comparison to conservation of polypeptide chain length to the 

maintenance of the subunit structure. 
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(a) E.coli (b) FIV 

(c) Human (d) EIAV 

(e) Superimposed ribbon traces 

Figure 4.13 ~-sheet homology between class J dUTPases 
Comparison of secondary structure of the class I dUTPases. Each subunit is depicted as an a-carbon 
ribbon. p-strands are shown as yellow arrows depicting their direction while a -helical regions are in red. 
In part (e) all four species are superimposed in the following colours: E.coli-yellow, FIV-green, human
red, EIA V -cyan. The Swiss-PDB Viewer was used to generate these ribbons and to superimpose the four 
class I species by aligning a-carbon backbones. 
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Given the strong conservation of these secondary structural elements in the class 

I dUTPases it was of interest to compare this pattern to the class II enzymes. Since 

there was no structural data available for any member of the class II group it was 

necessary to employ secondary structure prediction programs. The results of this 

analysis are given in the following sections. 

4.4.3 Secondary prediction of class II dUTPases 

The program used for secondary structure prediction of the class II group was 

PredictProtein at the automated server at EMBL, Heidelberg. This program is stated to 

give expected 3 state accuracies (helix, strand, other) of over 72% depending on the 

input data (Rost and Sander, 1993 and 1994). This program is based on a system of 

trained neural networks which allows greater reliability than single sequence or 

statistical alignment inputs. 

The basis behind the prediction method is the utilisation of multiple sequence 

alignments. This program was therefore appropriate for comparing the class I and II 

dUTPase using the previously refmed alignments. The program can use a single query 

sequence or a multiple alignment can be supplied. For single sequence input the 

program scans the Swiss-Prot database for homologues and generates an alignment 

using the MaxHolm method (Sander and Schneider, 1991). 

The main objective of this work was the secondary structure prediction of HS V -

1 dUTPase. Initial experiments were therefore carried out using whole or part of the 

HSV -I primary sequence as single input data. This allowed the PredictProtein program 

to calculate its own alignments with the MaxHolm program. Given the potential for 

alignment problems using single sequence input this strategy was improved. 

Experiments using the HSV -I sequence as single input data were unreliable. 

This was due to the lack of conserved sequences detected and aligned with the HSV-l 

sequence by the automated MaxHolm program. Improved alignments could be 

generated by splitting the HSV-l sequence into smaller fragments. This allowed the 

MaxHolm program to align the C-terminal half of the HSV-l protein to class I species 

due to the local similarities in motifs 1,2,4 and 5. However, the N-terminal half could 

not be satisfactorily aligned by the MaxHolm program. The lack of conserved 

sequences found in this area was below the criteria recommended for secondary 

structure prediction. This is not surprising given that there is no sequence homology 

with the class I structures outside motif 3 in this half of the HSV-I sequence. 

The PredictProtein program has the ability to utilise ready made alignments for 

its prediction. Although it was specifically the HSV-I sequence which was of interest, 

a better prediction would be realised with refined class II lineups. Given the primary 

sequence differences between the class II dUTPases it was decided to use a bank. of 
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alignments including all the available class II sequences and subsets based on 

phylogenetic relationships. This was deemed appropriate since the Feng and Doolittle 

alignment program had successfully partitioned each of the class II dUTPase into the a 

and y subfamilies directly from dUTPase primary sequences. 

An example prediction using pre-aligned sequences as input data is given in 

Figure 4.14. The most obvious observation from the ProteinPredict output data is the 

abundance of predicted ~-strands throughout the lineup. It is important to note that this 

is not a prediction of the EHV -1 sequence alone and this sequence is given only as an 

alignment marker. The prediction is in fact from an alignment of 8 class II sequences. 

An overall reliability index is shown (Rei sec) and is relatively high in areas of 

predicted ~-strands ('E'). This reliability index is broken down into helix, strand and 

loop and again the majority of ~-strand are predicted with a high probability. Further 

confidence is given by the fmal line of output data which indicate areas where the 

prediction is likely to be over 82% accurate. Predicted ~-strands have been highlighted 

in yellow for clarity. 

It must be noted that the reliability index is based on an efficient alignment with 

sequence conservation varying from 80% identity down to 20% and any deviation from 

these criteria will result in a lower reliability. Since the sequences used here do not 

align with great efficiency it is likely that the secondary structure predictions will be 

several percentage points lower than the 72-82% accuracy range. Even so, although the 

alignment is constructed from the class II group exclusively, species are included from 

the two different subfamilies a and y. Members from these groups differ substantially 

at the primary sequence level which is actually advantageous to the prediction program 

as it more closely satisfies the ProteinPredict variability criteria. Additionally greater 

weight can be inferred from the predictions by using several independent alignments. 

In addition to the ~-strand prediction shown, there are several predicted 

extended loop regions. Interestingly these areas correspond approximately to variable 

regions 2 and 3 (see previous section) which are highlighted in blue. This observation 

supports the theory that variation in sequence length between the class II species is 

caused by the insertion of additional loop regions and not by a change in the overall ~

sheet arrangement. 
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AA 
PHD sec 
Re1 sec 
prH sec 
prE sec 
prL sec 
SUB sec 

AA 
PHD sec 
Rel sec 
prH sec 
prE sec 
prL sec 
SUB sec 

AA 
PHD sec 
Rel sec 
prH sec 
prE sec 
prL sec 
SUB sec 

AA 
PHD sec 
Re1 sec 
prH sec 
prE sec 
prL sec 
SUB sec 

AA 
PHD sec 
Re1 sec 
prH sec 
prE sec 
prL sec 
SUB sec 

1 100 
I ..... .. .. . ... . . MTLRKQRQEIYYEFTSSSFEITSPPESS . . . KITLTN ... . LYPILVRPYVPA .............. . .. VIPLGIRIIYGNKGQI 
1 E E EE EEEE EEEEEE EEEEEEE EEEEE HHHHHHEEEEEEEEE E I 
196611473112251445531235421321366517899526998699998467676522575247788877543467775234321225455662587621 
100100001211111222111011211110011100000000000000000001001110000000000010100001112555544321000000001111 
101144212343564111124321134554311147888631001789988611111135677521100001123211000001233446666775210141 
197744675434324556654556644334577641000257898200000377777653212367888877666677876332112122222224787631 
ILLL . .. L . . ... E ... LL .... L . . . .. . . LLL. EEEEE. LLLLEEEEEE .LLLLLL .. EEE .. LLLLLLLL ... LLLLL ........ E. EEEE .LLLL. 1 

101 VAR 2 VAR 3... 200 
IGFlLAGSSQKKv FCHTGLIDPGYRGEIKLIVLNTTKYNVTLFAGELRVSLFSFFFSTPII 1 
IEEEEEE EEEEEEEE EEEEEEEE E EEEEEEEEEE 
189999437999999999988998689751121266578745753599999965888851214672269998885224768689988768889979999871 
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Figure 4.14 Typical output from ProteinPredict program 
The 8 sequence alignment generated by SAGA in Figure 4.8 was used as input data to the ProteinPredict 
program. This bypassed the MaxHolm alignment method which is the program default. The output data 
are arranged with respect to the EHV -2 sequence, corresponding to the first entry in the SAGA 
alignment. ~-strands over 3 residues in length are highlighted in yellow and variable regions 2 and 3 are 
highlighted in blue. Further annotations from the ProteinPredict program are as follows: 
AA - amino acid sequence of first entry in lineup (in this case EHV-2) 
PHD sec - Profile network prediction Heidelberg: H=helix, E=extended (sheet), blank=other (loop) 
ReI sec - Reliability index of prediction (0-9) 
prH - 'probability' for assigning helix 
prE - 'probability' for assigning strand 
prL - 'probability' for assigning loop 
SUB sec - a subset of the prediction, for ail residues with an expected average accuracy > 82% 
For the latter subset the following symbols are used: L is loop and 1t . 1t means that no prediction is made 
for this residue, as the reliability is less than 5. 

4.4.4 Comparison of class I structure to class II predictions 

Each data set obtained from the ProteinPredict program contained large amounts 

of data similar to that in Figure 4.14. All of these predictions were compared directly to 

the E.coli doublet sequence using a new alignment. This was achieved by aligning the 

class II sequences to the E.coli doublet by the standard Feng and Doolittle method. The 

position of the predicted strands was noted and transposed onto this new lineup for 

comparison. An example of such a comparison is shown in Figure 4.15. 
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Figure 4.15 Comparison of class II predicted secondary structure to the E.coli doublet 
The class II sequences shown were aligned with the E.co/i doublet sequence using the GCG Pileup 
program. Three lines of secondary structure information are sandwiched between the class II group and 
the E.coli doublet. Secondary structures are indicated as an 'E' for extended ~-strand and 'H' for helix, 
'PHSV-I ' indicated the secondary structure prediction using the HSV-l sequence as single input data. 
'Ptotal ' indicates a prediction using a lineup of all available class II sequences as input data. ' Cryst' 
indicates the solved secondary structure in the E.coli crystal structure. Homologous ~-strands are 
highlighted in yellow and numbered. The joining region and extension region (between motifs 4 and 5) 
are highlighted in blue. 
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Given the complexity of the data set generated by the ProteinPredict program it 
is useful to look at an overall summary. Each known ~-strand in the E.coli structure 
was analysed for the presence of a homologous class II ~-strand in various predictions. 
Table 4.1 shows prediction summaries for HSV-l and EHV-l single input sequences, 
the a subfamily and the total class II group (see legend for details). 

Section Strand HSV-1 EHV-1 Alpha Total 
1 • • 
2 • • • • 
9 • • 
3 • • • • 

N-terminal 4 • • • • 
5 • • • • 

Half 6 • • • • 
10 • • 
7 • • • • 
8 
1 
2 ? ? ? ? 
9 ? • • 
3 • • • • 

C-terminal 4 • • • ? 
5 • • • • 

Half 6 • • • • 
10 • • • • 
7 H H H • 
8 ? ? 

Table 4.1 Summary of Protein Predict data 
The results of four predictions, 2 single sequences and 2 alignments, were compared to the E.coU doublet 
sequence. ~-strands are numbered according to how they appear in the primary sequence (same as Figure 
4.13). Detection of a ~-strand homologue is shown by a circle '.'. Those homologues which have less 
than 50% of the E. coli doublet strand length are marked as '?'. Prediction of a helix in place of an E. coli 
doublet ~-strand is indicated by an 'H'. Class II species included in the two alignments are as follows: 
Alpha: HSV-1, HSV-2, EHV-l, BHY-I, PRY and VZV 
Total: Alpha plus HYS (y) and EBV (y) 

From these data it can be seen that the ~-sheet arrangement in the E. coli 

dUTPase is predicted to be approximately duplicated in the class II dUTPases. This 

should be taken in the context of the alignment between the two classes represented in 

the previous section (Figure 4.10). There are two obvious gapped regions which are 

indicated on this figure and can also been seen highlighted in blue in the sequence 

comparison Figure 4.15. The latter of these gapped regions lies between motifs 4 and 5 

corresponding to the region between ~-strands 7 and 8. This extension is present in all 

the class II species analysed. It is clear that there is some divergence between the 

classes in this area and this is reflected in the low ~-strand homologue predictions for 

strands 7 and 8. This is a key feature of the class II model discussed below. 
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Similarly, the region representing the join between the two class I subunits to 

fonn the monomeric class II molecule is extended with respect to the E.coli doublet. 

This region spans j3-strands 8 from the N-tenninal half to strand 2 from the C-tenninal 

half. Comparison of class II sequences alone has demonstrated that this region is highly 

variable between species (Section 4.3). Again this is reflected in the absence of 13-
strand homologues predicted for this region. This is discussed with reference to the 

model below. 

4.4.5 Proposed class II dUTPase structural arrangement 

Several key observations were assembled to construct the class II structural model: 

the class I group are trimers while the class II group are monomers of 

approximately double the protein chain length 

each half of the class II molecule has a congruent j3-strand arrangement to the 

class I subunit (by secondary structure prediction) 

a variable extended joining region exists between the two halves of the class II 

monomer 

a relatively conserved additional chain length exists between motifs 4 and 5 in 

the class II molecule 

each of the three class I active site regions is fonned by motifs donated by all 

three subunits of the trimer 

the class II monomer has only one copy of each motifwith which to fonn an 

active site. 

In order to model the class II structure all of the above points must be accommodated in 

order to arrive at a structure which has the potential to be active, monomeric and have 

evolved through intragenic duplication. It is proposed that the class II active site will 

be constructed by the condensation of the five motif regions and as such will mirror the 

class I active site in tenns of arrangement and enzymatic mechanism. Figure 4.16 

shows a diagrammatic representation of the class II model. 

This model was constructed using the Glaxo Wellcome Swiss-PDB Viewer. 

The starting point in the modelling process was the E. coli dUTPase structure 

complexed with dUDP (a). The trimer is shown with the 3 subunits coloured blue, 

green and yellow and rendered as ribbons. The dUDP molecules are coloured red and 

for clarity rendered as Van der Waals surfaces. Three dUDP molecules occupy the 

three active sites situated at the subunit interfaces. The visible motif regions 1-4 are 

highlighted in pink for the top-right active site. The motif 3 loop is clearly visible and 

is donated by the blue subunit. Motifs 1, 2 and 4, donated by the green subunit, are just 

visible behind the dUDP molecule. The C-tenninal 16 residues containing motif 5 are 
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not visible in the E.coU crystal structure but extend from the yellow subunit tail. This 

tail can be seen pointing in the direction of the active site and is proposed to fold akin to 

the human dUTPase structure where motif 5 interacts with the substrate molecule and 

caps the active site. The model is progressed in four stages. 

Diagram (b) shows the E.coU structure with the yellow subunit removed. This 

dimeric structure represents the approximate chain length equivalent of the class II 

dUTPases. The blue subunit represents the N-terminal half of the class II molecule 

while the green subunit represents the C-terminal half. The four motifs which 

constitute the active site in diagram (a) are conserved in structure (b) shown here 

interacting with a single dUDP molecule. 

In the class I enzymes the active site is composed of motifs donated by all three 

subunits. A model is proposed to generate a homologous active site using only the two 

subunits available in structure (b). Motifs 1, 2 and 4 from the green subunit plus motif 

3 from the blue subunit are forming an active site pocket mirroring the trimeric 

ancestor. In order to complete the active site, motif 5 is proposed to be donated from 

the extended arm of the green subunit. Structure (c) shows how this can be easily 

accomplished. To position motif 5 the extended arm is allowed to rotate by 

approximately 90° in the plane of the paper. The green subunit arm now occupies a 

homologous position to the yellow subunit arm in the original trimer. 

This rearrangement is accomplished with minimal disruption to the overall 

structure and generates the possibility to condense all 5 motifs in a monomeric 

molecule. All that is required is an extension of this C-terminal arm to position motif 5 

over the active site. As seen in the primary sequence studies, all class II dUTPases 

possess an extra chain length between motif 4 and 5 as compared to the class I group. 

This additional chain, of approximately 30-35 residues, is conserved exclusively within 

the class II group and is now proposed to allow correct positioning of motif 5. This 

extra chain is demonstrated in structure (d) where motif 5 is depicted in pink at the end 

of the C-terminal arm. 

The only remaining rearrangement necessary is the connection of the two 

subunits to form a single chain. The last visible C-terminal residue of the blue subunit 

and the N-terminus of the green subunit are highlighted in yellow. Structure (e) shows 

the joining of these ends to complete the transformation in a monomer. A small loop is 

shown for this joining region but there is a large chain length variability between the 

class II species. This structure is therefore more representative of the shorter species 

such as EBV, EHV-2 and PRY. To arrive at a model more closely representing the 
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(a) (b) 

(c) (d) 

(e) 
Figure 4.16 Modelling of the class II dUTPase structure from a class I template 
The figures are hybrid models based on the original E.coli dUTPase 3D coordinates (a and b) plus 
regions of diagrammatic predictions (c-e). See main text for details. 
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longer species like HSV -1 and VZV this loop would have to be extended. Given the 

location of the joining region on the opposite side from the active site, an extended loop 

could be efficiently accommodated without disrupting the active site or interfering with 

the conserved j3-sheet arrangement. 

This model satisfies the criteria given at the beginning of this section and gives 

a graphical interpretation of the structural consequences of an intragenic duplication of 

the class I dUTPase. The fmal model shown in (e) represents a monomer formed 

directly by the joining of two trimer subunits. It therefore possess a copy of the subunit 

structure in each half of the molecule and in this context can be seen as a visualisation 

of the secondary structure predictions in the previous section. For clarity this model 

does not highlight the extended sequence found between motifs 4 and 5 in the class II 

dUTPases. This is discussed in detail in Section 4.5. 

4.4.6 Discussion 

DNA and protein sequence data have the ability to highlight relationships 

between distantly related molecules. In the case of dUTPases these data has been 

utilised to propose the intragenic duplication which links the two distinct classes. The 

absence of any crystallographic data for the class II dUTPases prevented further 

investigation at the structural level. Utilising sequence analysis with computer 

prediction methods it was possible to continue the investigation into interclass 

relationships. Results from secondary structure prediction work allowed the generation 

of class II model which provides insight into the structural evolution of these 

molecules. 

Secondary structure prediction was carried out using the ProteinPredict 

program. This allowed multiple sequence alignments to be used to predict an overall 

class II secondary structure. Various alignments were used to decrease any biasing 

effects. The first observation was the large quantity of predicted j3-strands in the class 

II group. Alignment of these predictions with the E.coli doublet sequence demonstrated 

a high degree of congruency. It appears that each half of the class II molecule is a 

structural relative of the class I subunit structure. 

A model was constructed accommodating all previous data plus the secondary 

structure predictions and demonstrates how the class I trimer could evolve into the class 

II monomer. The variable length joining region between the two halves of the class II 

molecule plus the extended region found between motifs 4 and 5 are explained 

structurally. The model satisfies all the criteria necessary for an intragenic duplication 

creating an active monomeric dUTPase from an ancestral trimer. 
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4.5 Hydrophobic modelling of HSV -1 dUTPase 

4.5.1 Introduction 

To test the class II model further an investigation into molecular surfaces was 

carried out. It was proposed that if the class II dUTPases assembled as predicted from 

the model then specific hydrophobic regions would be conserved between the two 

groups. Experiments were carried out to test this conservation firstly on the internal 

hydrophobic regions and secondly on the subunit interacting regions. The methodology 

was to identify conserved regions of hydrophobicity within the class I group, generate a 

data set of conserved residues and use this to probe the class II molecules. 

4.5.2 Identification of class I hydrophobic regions 

Several hydrophobic regions are proposed to be conserved throughout the class 

I dUTPases. This assumption is based on the extremely conserved class I subunit and 

trimer structures identified in previous sections. Two regions of potential hydrophobic 

interaction were investigated: the subunit core and the trimer core. 

The subunit secondary structure is made up mainly of /3-strands (Figure 4.13) 

and it is clear that these structural elements contribute to the folding of a stable tertiary 

structure. It is proposed that in addition to this mechanism there is a hydrophobic bias 

in the subunit core generating energetically favourable conditions for folding. It is also 

proposed that a similar hydrophobic bias exists in the trimer core and increases the 

efficiency of subunit assembly. This was examined using the E.coli crystal structure to 

identify hydrophobic residues within the subunit and trimer cores. 

There are various defmitions for measuring hydrophobicity based either on 

amino acid positions in known 3D structures (Janin, 1979; Rose et aI., 1985) or the 

specific physicochemical properties of their side chains (Wolfenden et at., 1981; Kyte 

& Doolittle, 1982). The residues chosen here represent a compromise between these 

different scales. Four scales were used (two from each measurement method) and 

residues were chosen that were found to be the most hydrophobic in all four. The 

hydrophobic subset used for this investigation was therefore Ala, Cys, Leu, G ly, lie, 

Met, Phe and Val. 
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(a) (b) 

(c) (d) 

Figure 4.17 Distribution of hydrophobic residues in the E.coli trimer and subunit 
Residues based on the defined hydrophobic subset are coloured in red. All other residues are coloured 
blue. (a) and (b) show the E.coli trimer as a surface view and a 50% slice through the middle 
respectively. (c) and (d) show the subunit as a surface view and a 50% slice through the middle 
respectively. The subunit is orientated with the C-terminal tail pointing away from the viewer. The 
angle of this view relative to the trimer is shown by an arrow in (a). 

Molecular viewing programs permit efficient identification of internal 

hydrophobic residues. Each residue was coloured based on the above hydrophobic 

subset and slices were taken through the structure. Figure 4.17 gives a general 

indication of the distribution of hydrophobic residues in the E.coli trimer and subunit 

structures. The trimer is made up of a mixed outer surface with a strongly hydrophobic 

core (red). The subunit structure shows a similar pattern again with a mixed outer 

surface and a hydrophobic core. The subunit however has two regions of surface 

hydrophobicity which lie at the subunit-subunit interfaces and are shown in Figure 4.20. 
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4.5.3 Generation of the class I internal hydrophobic data set 

To allow direct comparison between the two dUTPase classes, the hydrophobic 

regions identified had to be expressed in terms of primary sequence data. This was 

achieved with the surface accessibility program Sleuth (Dudek & Ponder, 1995). All 

water molecules were removed from the E.coli subunit coordinates and the program 

was used to calculate the surface accessibility of each atom in the structure. This was 

averaged over the atoms of each amino acid in order to categorise those residues which 

were on the surface and those which were buried. The set of buried residues was then 

refmed to hydrophobic buried residues. Finally these residues were compared in a class 

I alignment to identify buried hydrophobic residues which were highly conserved 

within the group. Figure 4.18 shows such an alignment where the E.coli internal 

hydrophobic residues are shown in red and conserved inter-species hydrophobic loci are 

shown in yellow. Note that data are missing from the C-terminal portion due to the lack 

of structural data available from the crystal structure in this area. 

Hpmv ... . .. . .... . .. SLWGSQ ... . ....... LCSSQQKQPI SKLTRATPGSAGLDL .. CSTSHTVLTPEMGPQALSTGIYGPLPPNT FG . LILGRSS I .T 
Srvl .. .. ...... . ... SLWGGQ . .. ... . .... LCSSQQKQPI SKLTRATPGSAGLDL .. SSTSHTVLTPEMGPQALSTGIYGPLPPNT FG . LILGRSSI. T 
Jsrv .. .. ......... . MLWG ..... .. .•.. . . . NTAGSKRTIADLCRATRGSAGLDL .. CATSYTVLTPEMGVQTLATGVFGPLPPGTVG. LLLGRSSA.S 
Mmt v ... . .....•. . .. GVKGSG . .... . ... . . LNPEAPffPI HDLPRGTPGSAGLDL . . SSQKDLl LSLEDGVSLVPTLVKGTLPEGTTG. LIIGRSS .. N 

f1 v ...... . . .. ..... ... . .. ...... . . . ...... HII EGDGILDKRSEDAG YDL .. LAAKEI HLL. PGEVKVI PTGVKLML PKGYWG. LIIGKSSI. G 
Omvs ............. . . .. ....... . ...... . SElfLAREGSGILPKRAEDAG YDL .. lCPQEVCI P. AGQVRKI PlNLRINLKEDQWA. MVGTKSS F.A 
Visn ............ . .. . ............... . SElFLAKEGRGlLQKRAEDAGYDL .. lCPQEI SI P.AGQVKRIAlDLKINLKKDQWA.HIGTKSS F .. 
Caev .... . .. .. ..... . .... . ...... . ... .. SEl FLAKEGEGILPKREEDAG YDL . . ICPEEVTI E. PGQVKCI PI ELRLNLKKSQWA. HIATKSSH .... 
E1av .. . •...•.... . . . ........... . .. . ... .. HLAYQGTQlKEKRDEDAG E'DL .. CVPYDl MI P. VSDTKIIPTDVKI QVPPNSFG . WVTGKSSH .. 
Coxb . . .. .. .. . ... . HTHSVQLK ..... . . . . . ILDKRLGSEFPLPAYATTGSAGLDLRACLDEPLKI E.PDETCLI STGLAIYLGHS NV ...... TILPRSGL.G 
Eeol ............ HMK40VK .. ......... ILDPRf:;KElPLPTYATSGSAit CWD . PGDTT P PRS .• 

Vaeee ............ HfNMNINSP .......... VRfVKETNRAKSPTRQSPGAAGYDL .. YSAYDYTl P.PGERQLI KTDISHSHPKICYG.RIAPRSGL.S 
VarY ........ . .. . HfNMNINSP . ...... . .. VRfVKETNRAKSPTRQSPYAAGYDL . . YSAYDYTI P. PGERQLI KTDI SHSMPKFCYG. RIAPRSGL. S 

Human ........... . ... HQ . . .. . ... . ..... LRFARLSEHATAPTRGSARAAGYDL . . YSAYDYTI P. PMEKAVVKTDIQIALPSGCYG. RVAPRSGL.A 
Orfv ............ . MEFCHTET . ...... . .. LQVVRLSQNATIPARGSPGAAGLDL .. CSAYDCVI P. SHCSRVVFTDLLI KPPSGCYG. RlAPRSG .. A 
Fadv . . ........ MDPFGSSSVPPCSTSDLPEPKLYfVRLSPHAVPPVRATHGAAGYDL .. FSAYDIKVP.ARGRALVPTDLVFQFPPGCYG.RIAPRSGL.A 
Calb ........ . .... HTSEDQSLKKQKLESTQSLKVYLRSPKGKVPTKGSALAAGYDL .. YSAEAATI P . AHGQGLVSTDISIIVPIGTYG. RVAPRSGL. A 
Seer .... .. ....... HTATSDKV ....... . .. LNlQLRSASATVPTKGSATAAGYDI . . YASQDI TI P.AMGQGMVSTDI SFTVPVGTYG.RIAPRSGL.A 

Lyee. MAENQINSPEITEPSPKVQKLDHPENGNVPFFRVKKLSENAVLPSRASSLAAGYDL .. SSAAET KV P.ARGKALVPTDLSIAVPQGTY ... . RIAPRSGL.A 
Cev MDFNTDRGSAIPTGDDRGYQCGVIGDSVRFSVFTGYDAADVSIPKlSSPGSAGfDL . . SVLEDREFl.RGCHYRL PT IAVPRGYVG . lITPRSS .. Q 

Motif 1 Motif 2 

Hpmv HK. GLQVYP .. GVIDNDYTGEI KIMA . KAVNNlVTVSQGNRIAQLlLLPLlETDNKV . . ..... QQPYRGQGSFGSSDI. .... . .. .. . . .. . ... . 
Srvl IK. GLQVYP . . GVIDNDYTGEI KlMA . KAVNNIVTVPQGNRIAQLILLPLIETDNKV .... . .. QQPYRGQGSFGSSDIYW .. . .........•.... 
Jsrv LK. GlLIHP .. GVIDSDYTGEIKILA . SAPNKIIVl NAGQRIAQLLLVPLVIQGKTI . ....... NRDRQDKGFGSSDAYW .... . . . . . ... . ... . 
Hmtv YKKGLEVLP . . GVIDSDFQGEIKVMV . KAAKNAVI I HKGERIAQLLLLPYLKLPNPVI ...... . KEERGSEGFGSPSHVHW .. .. .. . .... . ... . 

Fiv SK. GLDVLG .. GVIDEGYRGEIGVIHINVSRKS I TLMERQKIAQLIILPCKH. EVLEQG .. KVVMDSERGDNGYGSTGVFSSW . ............. . 
Omvs SK. GVfVQG .. GI I DSGYQGI IQVVVYNSNDKEVI IPQGRKFAQLILHPLIH.EDLEAW .. GETRRTERGNQGFGSTGAY . .............. . . . 
Visn ANKGVfVQG . . GI I DSGYQGT IQVVIYNSNNKEVVIPQGRKFAQLILHPLIH.EELEPW .. GETRKTERGEQGFGSTGHYW .. . . . ........... . 
Caev AK. GVFTQG .. GII DSGYQGQIQVIHYNSNKIAVVIPQGRKFAQLILHDKKH. GKLEPW .. GESRKTERGEKGFGSTGHY . ........... . •... . 
Eiav AKQGLLING .. GII DEGYTGEIQVI CTNIGKSNIKLI EGQKFAQLIILQHHS. NSRQPW .. DENKISQRGDKGFGSTGVFW .... . .......•.... 
Coxb HKHGIVLGNLVGLI DSDYQGPLHVSCWNRGKEPYTI NPGDRIAQLVVLPI LK. AQFAVV .. EEFELTERGAGGFGSSGQN .............•.... 
Eeol H L~SDY D~PlE PlVa .AEfNLV .. £DFDATDRGEGGFGHSGRQ .............•.... 

Vaeee LK. GIDIGG .. GVI DEDYRGNIGVILINNGKCT FNVNTGDRIAQLIYQRI YY . PELEEV .. QSLDSTNRGDQGFGSTGLR . . ... . .......•.... 
VarY LK. GI DI .. GVI DEDYRGNIGVILINNGKYTFNVNTGDRIAQLIYQRI YY.PELKEV . . QSLDSTDRGDQGFGSTGLR ................. . 

Human AKH FIDVGA .. GVI DEDYRGNVGVVL FNFGKEKFEVKKG DRIAQLICERI FY.PEIEEA .. QALDDTERGSGGFGSTGKN . ............ . ... . 
Orfv VKH FIDVGA . . GVIDEDYRGNVGVVL FN FGNSDFEVKKGDRIAQLICERI SC.PAVQEV .. NCLDNTDRGDSGFGSTGSGACGGRDTAWYIS ..... . 
fadv AKFFIDVGA . . GVIDPDYRGNVSVVLFNFSESSFNIRRGDRVAQLILERIMV.PELSEL .. TQLGETDRGASGFGFTGHGAVDRNQRSVLEWLTPGSR 
Calb VKHGISTGA .. GVI DADYRGEVKVVLFNHSEKDFEl KEGDRIAQLVLEQI VN . ADIKEISLEELDNTERGEGGFGSTGKN . . . . . .. .... .. .... . 
Seer VKNGIQTGA .. GVVDRDYTGEVKVVLfNHSQRDFAIKKGDRVAQLILEKIVDDAQIVVV . . DSLEESARGAGGFGSTGN . . . ... . ........... . 

Lyees WKYS I DVGA • . GVI DADYRGPVGVVLFNHSEVDFEVKVGDRIAQLIVQKIVT.PEVEQV .. DDLDSTVRGSGGFGSTGV .................. . 
Cev AKNFVST .... GI I DSDFRGH I HIMV .. SAIADFSVKKNQRIAQLVVT PCLTQSEVVPY .. ETLERTRRGTGGFGSSGQ .................. . 

Hotif 3 Motif 4 HotH 5 

Figure 4.18 Conservation of internal hydrophobic loci within the class I group 
Internal hydrophobic residues in the E.coli structure are highlighted in red. Conserved hydrophobic 
residues in the other class I species are highlighted in yellow. Strongly conserved hydrophobic loci are 
marked with an asterisk (*). 
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It can be seen that internal hydrophobic loci are highly conserved within the 

class I sequences. This is especially interesting since many of these loci lie outside the 

conserved motif regions. Motifs 1 and 4 however contain a large percentage of internal 

hydrophobic residues. This is consistent with motif 4 having only one residue in direct 

contact with dUDP in the co-crystal (Q1l9) and motif 1 having no direct substrate 

interactions. I propose that these internal residues are conserved for a structural role 

rather than substrate binding or catalysis. Given their relative position it is likely that 

these motif residues stabilise the condensation of motifs from different subunits. Since 

the class I dUTPases are the only trimeric enzymes known to date in which the active 

site is made up from 3 different subunits it is not surprising that internal residues are 

conserved to maintain this unusual coordination. 

Despite the variation in inter-motif primary sequences there is a high degree of 

hydrophobic conservation. This is consistent with the homologous nature of the class I 

structures. The most highly conserved loci are highlighted on the alignment with an 

asterisk (Figure 4.18) and it is these positions that were used to probe the class II 

molecules. 

4.5.4 Comparison of class I and II subunit bydropbobic cores 

The internal hydrophobic loci identified in the class I group were compared 

directly to the class II group with the standard E.coli doublet alignment used for 

secondary structure comparisons. A diagrammatic representation of this alignment is 

shown in Figure 4.19. The positions of the hydrophobic residues was obtained by 

superimposing the data form Figure 4.18 onto the alignment shown in Figure 4.15. 

E. coli doublet sequence 

N 1rrr-nlll ll.....-rrIIl~--".--yIII...........,.11 ~ I....-r.-II F~IIIIII,..---,-5 I :::::::::: rrTf""""11 111 1 1........-n111l~211 ~1131 rr-rn-IIII~-,y--"Ti I ::::: ::[IE] c 

1 1 
N I I 111111311111 1181111 5 1111112111 131 1181 1115 I C 

Alignment of 10 class II sequences 

Figure 4.19 Comparison of the class I hydrophobic loci to the class II sequences 
A diagrammatic representation of the hydrophobic sequence alignment is shown (not to exact scale). The 
E.coli doublet sequence is represented as a box with the position of each motif shown. The 31 class I 
conserved hydrophobic loci (identified with an asterisk in Figure 4.18) are represented by red bars. 
These were aligned with 10 class II sequences and the position of congruent hydrophobic loci is shown in 
the bottom diagram (22/31 in the N-terminal half and 20/31 in the C-terminal half). 
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A positive hit was defmed as an E. coli locus which had 5 or more conserved 

hydrophobic loci out of the ten species in the class II lineup. There was 31 E. coli loci 

aligned with each half of the class II lineup. In the C-tenninal half there was 20 

positive hits (64%) while in the N-tenninal half there was 22 positive hits (71%). This 

yields an average of over 67% positive hits over the entire class II lineup. 

This gives an indication that internal hydrophobic loci are well conserved 

between class I and II dUTPases. More significantly it demonstrates that each half of 

the class II structure has a similar hydrophobic distribution to the class I subunit 

structure. It follows that each half of the class II molecule has an internal hydrophobic 

core corresponding to the class I subunits core. This supports the class II model 

supplying further evidence that the class II monomer approximates a condensation of 

two class I subunit structures. 

4.5.5 Identification of the class I interface hydrophobic data set 

It is not only the subunit core which has an internal bias for hydrophobic 

residues but also the trimer itself (Figure 4.17b). The internal core of the trimer is 

partly composed of hydrophobic subunit surfaces. These surfaces can be readily 

identified mathematically by defming their accessibility in two coordinate data sets. 

First the surface is calculated for a single subunit. The surface is then calculated from 

the entire trimer. Subtraction of the subunit surfaces from the trimer surface yields the 

internal subunit interfaces. It is these surfaces which allow subunit-subunit interaction 

in the fonnation of the trimer. 

To allow graphical interpretation of these interfaces it was useful to transpose 

the mathematical data onto a spacefilling model of the E.coli dUTPase. Figure 4.20 (a) 

shows a single subunit with the C-tenninal tail pointing directly towards the viewer at 

the bottom of the diagram. The residues identified from the mathematical calculations 

are highlighted in red and green. These two colours represent the two subunit surfaces 

which interact to fonn the trimer. The same residues are highlighted in all three 

subunits of the trimer in (b). To improve the visualisation of how the subunit surfaces 

interact with one another (c) shows the same trimer sliced in half. White lines indicate 

the approximate boundaries of each subunit. 
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(a) (b) 

(c) (d) 

Figure 4.20 Identification of E.coli subunit interfaces 
Spacefilling diagrams are shown for the E. coli subunit (a), trimer (b) and trimer 50% slice (c). The class 
II model is shown in (d). Interacting surfaces are shown in red and green. Diagrams were created with 
RasMol. See text for details. 

It can be seen that each subunit possesses two major interacting surfaces 

coloured red and green. What is interesting is the fate of these surfaces in the class II 

molecule. Referring back to the model in Figure 4.16, the class II molecule is 

composed of two class I subunits joined in one chain. This model is represented as a 

space filling diagram in Figure 4.20 (d). One of the three trimer subunits has been 

removed to represent the class I monomer. Subunit 'A' represents the N-terminal half 

of the protein while subunit 'B' represents the C-terminal half. 

What becomes apparent is that while three subunit interfaces are required to 

generate the trimer, only one subunit interface is required to generate the monomer. 

The N-terrninal half requires only the red surface (2) while the C-terminal half requires 

only the green surface (3). The remaining two surfaces (1 and 4) are now in solvent 

contact. It is proposed that hydrophobic residues in the interacting region (2 and 3) will 
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be conserved while hydrophobic residues in the solvent accessible regions (1 and 4) 

will be substituted by energetically more favourable hydrophilic residues. This was 

tested at the primary sequence level. 

4.5.6 Comparison of class I and II hydrophobic subunit interfaces 

An identical approach to the previous section was used. From the E.eoli subunit 

interface regions, 10 residues were classed as hydrophobic using the previously defmed 

subset. These residues were lined up in the class I alignment as before in Figure 4.18 

and 8 residues were found to be highly conserved throughout the group. This is shown 

diagrammatically in Figure 4.21 where the position of the residues was obtained by 

superimposing the 8 residue positions onto each half of the alignment in Figure 4.15. 

E. coli doublet sequence 

NIIII 11 12 13 31 I 
_ ... _- .. --

1111 11 12 13 311 ~:~:~~~QJ e 5 
------ -- --

1 1 
NI 1 II 2 13 41 5 ~Il 12 3 41 5 

Alignment of 10 class II sequences 

Figure 4.21 Comparison of hydrophobic interfaces at the primary sequence level 
Alignment of the class I sequences identified eight highly conserved hydrophobic loci at the subunit 
interfaces. Four loci were found for each subunit surface and are coloured either red or green for 
comparison to Figure 4.20. The diagrammatic alignment shows that only loci from the red surface are 
conserved in the N-tenninal half of the class II sequences while only loci from the green surface are 
conserved in the C-terminal half. This is proposed to indicate the conservation of hydrophobic surfaces 2 
and 3 in Figure 4.20(d) and the loss of hydrophobic surfaces 1 and 4. 

Four residues were identified on the red surface and four on the green surface. 

These residues were highlighted in the E.eoli doublet sequence and aligned with the 

class II dUTPase sequences as before. A positive hit was defmed as an E. coli 

hydrophobic locus which had 6 or more homologous loci out of the ten species in the 

class II lineup. The following results refer to Figures 4.20( d) and 4.2 1. 

Surface Colour in figure Donor subunit Class II region Conservation 

1 Green A N-terrninal half 0/4 = 0% 

2 Red A N-terrninal half 4/4 = 100% 

3 Green B C-terrninal half 4/4 = 100% 

4 Red B C-terrninal half 0/4 = 0% 

119 

Ie 



The data shown above support the theory that only those hydrophobic loci 

which are situated on the class II subunit interface (2 and 3) are conserved between the 

classes. The remaining surfaces (1 and 4) are solvent exposed in the class II model and 

are not necessary for structural interactions. Caution must be used with this 

interpretation of the results given the small data set available: only 8 hydrophobic loci 

are highly conserved throughout the class I group. In order to put these data in 

perspective the probability of an E. coli probe locus matching a random hydrophobic 

locus in the class II alignment was calculated. From 388 loci in the alignment 85 were 

classed as hydrophobic (conserved between at least 6 species). The chance of matching 

a hydrophobic locus by chance is just below 22%. This was deemed a reasonable 

background error. 

4.5.7 Discussion 

Hydrophobic modelling was found to be a useful tool for analysing the class II 

model. Sequence alignments in combination with structural data identified highly 

conserved hydrophobic loci within the class I group. This follows on from the 

structural analysis in previous sections and demonstrates the close relationship between 

primary sequence and tertiary structure. It was of particular interest that regions of 

internal hydrophobicity were found within the motif regions. Previous studies have 

concentrated on the binding or catalytic role of the residues contained within the five 

motif regions. These studies support an additional structural role for the motifs in the 

consolidation of three subunit surfaces to form each active site. 

It is clear that there are interacting surfaces between the main body of the trimer 

and the extended tail regions. Small alterations in the position of the tail would 

rearrange hydrophobic loci in the primary sequence to a high degree and this was 

judged to be incompatible with the methods used. Only the globular regions of the 

subunits were therefore analysed. Comparison of the internal hydrophobic residues 

between the classes demonstrated a high degree of congruency. This supports the view 

that the class II molecules approximates two class I subunits joined in a single chain. It 

appears that the hydrophobic core supporting each subunit in the trimer has been 

conserved in duplicate in the class II enzymes. 

Analysis of subunits within the trimer identified two surfaces containing 

conserved hydrophobic residues. Using these loci to probe the class II molecules a 

distribution pattern was revealed which again supports the class II model. These 

studies have the same fundamental constraints as the secondary structure predictions, 

namely the accuracy of inter-class primary sequence alignments. Although this analysis 

uses the same underlying comparisons as the secondary structure predictions the 

methods used are sufficiently divergent to strengthen support for the class II model. 
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4.6 Structural evolution of the class II dUTPases 

4.6.1 Introduction 

Previous sections have addressed the relationships between the class I and II 

dUTPases both at the primary sequence level and at the structural level. Although 

secondary structure prediction and hydrophobic modelling support the class II model it 

is also necessary to assess evolutionary relationships. The class II model is based on 

the intragenic duplication model proposed by DJ. McGeoch (1990b) plus the structural 

modelling data presented here. It is clear from the model that not only must the class I 

subunit gene be duplicated but also there must be a structural rearrangement to produce 

an active enzyme. It is therefore possible that a functional evolutionary intermediate 

existed between the class II monomer and the class I trimeric ancestor. 

The class II model shown in Figure 4.16 demonstrates that a single active site 

cavity can be formed from the joining of two subunit structures. This cavity produced 

from motif 3 in the N-terminus and motifs 1, 2, and 4 in the C-terminus constitutes the 

majority of a functional active site. Now that structural data has become available for 

the human dUTPase C-terminal region it seems likely that motif 5 is necessary for 

catalytic function in the class I enzymes. A homologous situation for the class II 

enzymes is supported by HSV-l mutagenesis data in the following chapter. Based on 

this fmding an intragenic duplication cannot, by itself, create an active class II 

monomer. As can be seen in the class II model (Figure 4.16) an extension chain is 

necessary between motifs 4 and 5 to allow the correct positioning of motif 5 over the 

active site. The result of this structural constraint on the evolution of the class II 

dUTPases was investigated. 

4.6.2 Maintenance of enzyme function during class II evolution 

Chapter 1 introduced the role of the dUTPase enzyme demonstrating its 

importance in a variety of biological life cycles (Section 1.4.4). Clearly an intermediate 

between the class I and class II structures which lacks function could compromise an 

organism that is required to generate dUTPase activity. In short, the evolution of the 

class II dUTPase must be realised without the loss of dUTPase function at any stage. A 

model was generated which successfully meets this criterion. 

Figure 4.22 demonstrates the genetic rearrangements necessary to generate a 

class II dUTPase. Each stage is set out with a genetic arrangement and a corresponding 

structure in order that all intermediates may be easily visualised. The evolutionary 

ancestor of the class II molecule is proposed to be structurally homologous to the 

present class I dUTPases. 
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(a) NI 1 2 3 4 S Ie X3 

(b) NI 1 2 3 4 5 Ie X2 

(c) NI 1 2 3 4 Isle X 2 

(d) 
N I 1 2 3 4 I Isle X 2 

(e) 

NI 1 2 3 4 [1 sl 1 2 3 4 [] sic 

Figure 4.22 Structural and genetic evolution of the class II dUTPase 
The left hand diagrams represent the structural consequences of the corresponding genetic 
rearrangements depicted on the right. The quantity of each protein chain required to construct the 
structure is indicated to the right of diagrams (a-d). The final diagram (e) represents the class II 
monomer as a single chain structure. Details are given in text. 
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The most complete class I structure available is the human dUTPase which was 

therefore used as the starting point in this model. Part (a) shows the human trimer with 

each subunit highlighted in a different colour. The position of the active site is 

represented by spacefilling molecules of dUDP. The C-terminal arms from each 

subunit can be seen to extend over the active site areas. This allows efficient 

positioning of motif 5, at the end of these arms, to interact with the substrate. The class 

I genetic arrangement is depicted as three identical subunit chains, each with a full 

complement of all five motifs. As seen previously each active site is made up from 

motif 3 from the first subunit, motifs 1, 2 and 4 from the second subunit and motif 5 

from the third subunit. 

Part (b) represents the quandary with the standard intragenic duplication theory. 

The potential interaction of two standard subunits is shown demonstrating the 

possibility to form the majority of the active site region. In this case motif 3 from the 

blue subunit and motifs 1, 2 and 4 from the green subunit form the basic active site 

cavity. Unfortunately motif 5 at the end of the green subunit arm cannot substitute 

motif 5 from the missing subunit due to a shortage in protein chain length. These two 

subunits cannot be easily rearranged to accommodate positioning of motif 5 without 

significant disruption to the overall structure and consequently the active site cavity. It 

is therefore likely that the joining of two subunits, as in the intragenic duplication 

model, cannot efficiently generate a functional active site by itself. There is however an 

additional chain length insertion between motifs 4 and 5 in the class II molecules. 

Since it is unlikely that an intragenic duplication created a non-functional enzyme 

which required a subsequent insertion to restore activity, the following theory is 

proposed. 

Parts (c) and (d) demonstrate that insertion of an extra chain length between 

motifs 4 and 5 before the intragenic duplication allows maintenance of functionality. It 

is clear that this insertion would destroy the activity of the trimer due to the incorrect 

positioning of motif 5. However, it is possible that an insertion between motifs 4 and 5 

(show in red) allowed the instant formation of a functional dimer. This dimer would be 

made from two identical subunits produced from the single length gene containing an 

insertion. The insertion would allow the green subunit to supply motif 5 in the correct 

position due to the extension of the C-terminal arm. The corresponding extension in 

the blue subunit would not have significant effect since it points away from the active 

site region. This dimer containing a single functional active site is proposed to be the 

intermediate molecule between that class I and class II families. 

An intragenic duplication at this stage effectively converts the functional dimer 

into a functional double length monomer. This is shown in part ( e) where the joining 

region has been teased out for clarity. Minimal structural rearrangement is necessary to 
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link the two subunits since additional chain length has already been supplied by the 

duplication of the insertion region. Conservation pressure is no longer maintained for 

the additional copies of the motifs which do not form part of an active site. In terms of 

primary sequence analysis these extra motifs are seen to be lost although a class II 

specific motifhas replaced the C-terminal copy of motif 3. 

4.6.3 Discussion 

It order for the class II model to be viable, a mechanism had to be demonstrated 

showing the genetic and structural evolution from the class I ancestor. This model was 

constrained by the fact that any structural rearrangement from intragenic duplication 

must result in a functional dUTPase. In the proposed model an insertion between 

motifs 4 and 5 destroys trimer activity but allows the assembly of a functional dimer. 

This dimer structure is proposed to be the functional intermediate between the class I 

and class II families. 

The reason why a dimeric dUTPase has not been discovered may be due to the 

efficiency of subunit assembly. As shown from the evolutionary model, the genetic 

rearrangement necessary to generate a double length monomer from the dimer 

intermediate is a simple intragenic duplication. This allows a single gene to produce a 

single protein chain without the need for subsequent subunit assembly. It may be that 

this method of enzyme construction is energetically more favourable since the 

production of single subunits does not guarantee functionality. The question may then 

be asked: why is the trimeric version seen so widely in nature? Subunit assembly in the 

trimer generates three functional active sites whereas dimer assembly only generates a 

single active site. Clearly a trimeric dUTPase has a lower energetic cost to the 

organism per active site. 

The fmal question is the most difficult to answer: why does the herpesvirus 

family utilise a double length monomer and not the class I trimer? From an energetic 

standpoint it appears that the trimer is more efficient. The trimer produces 3 active sites 

per three subunits compared to the monomers equivalent of one active site per two 

subunits. It may be that subunit assembly is so inefficient in the herpesvirus host 

environment that production of a single folding protein allows large scale enzyme 

production in a shorter time period. It may be that given the complex nature of the 

trimer organisation with all three subunits contributing to each active site that even a 

slight error in one of the subunits folding renders the entire trimer useless. There may 

be another reason however. The next section investigates the possibility that the class II 

monomer produces a secondary element which may endow a secondary accessory 

function. 

124 



4.7 Investigation of a class n specific motif 

4.7.1 Introduction 

Sequence analysis of the class II dUTPases revealed a C-tenninal conserved 

region occupying the corresponding position of the class I motif 3. This conserved 

region was named motif X and represents the only major region of primary sequence 

conservation specific to the class II dUTPases. Although no function has been assigned 

to motif X as yet, its potential significance is discussed below. 

4.7.2 Sequence analysis ofthe class II motif X 

The motif X region of the class II dUTPases occupIes the corresponding 

position of motif 3 in the class I group. In the intragenic duplication model the original 

copy of motif 3 is lost as it no longer constitutes part of the class II active site. This is 

best visualised in Figure 4.10 (Section 4.3.3). One of the intriguing properties of motif 

X is that it is found not only in the a- and y-herpesvirus dUTPases but also in the p-

herpesvirus dUTPase homologues. These homologues share little sequence 

conservation with the class II dUTPases and possess no convincing copies of motifs 1-

5. Although there are small areas of local conservation (typically no more than two 

consecutive residues) these homologues are not thought to be functional dUTPases. 

Their classification in the Swiss-Prot database as putative dUTPases is based on the 

congruent position of their ORF in the p-herpesvirus genome compared to a- and y

herpesvirus. Figure 4.23 shows the motif X region in both a- and y-herpesvirus aligned 

with four J3-herpesvirus species. 

SS Predict E 
(y) EBV 
(y) EHV- 2 
(y) HVS 
(a ) HSV- l 
(a ) HSV- 2 
(a ) EHV- l 
(a ) EHV- 4 
(a ) BHV-l 
( a ) PRY 
( a ) VZV 

EEEEE 

Motif 2 Motif X Motif 4 
( ~ ) HCMV GVRQFSQS DLIIRPTI PGTAAGVTi SHTTVCISPHTTVAKAV 
( ~ ) MCMV PCRHLATKRVLLDPT RPNSLAVLRV SDEHVDLEAGMAMAKII 
(P ) HHV- 6 PSKEIAK LIETYI KDTIPSIKI STRKTIYIPTGICIARII 
(P ) HHV-7 ANKEILCH VVETNI KNTTPSVKI PTSQRIFVQAGICIATII 

Figure 4.23 Class II alignment showing relative position of motif X 
Ten class II dUTPases from the 0.- and y-herpesvirus are aligned on the top of the diagram with four p
herpesvirus dUTPase homologues on the bottom. The position of motif X (yellow) is shown relative to 
motifs 2 and 4 (cyan). Residues completely conserved in the 0.- and y- herpesviruses are indicated in 
green. Note that the p-herpesvirus species do not possess full copies of the flanking motifs 2 and 4 
although there are small regions of sequence conservation. Secondary structure predictions from the 
ProteinPredict program are shown at the top of the alignment ('E' represents a predicted p-strand). 

125 



The motif X region contains several highly conserved residues (highlighted in 

green) which are also reasonably well conserved in the j3-herpesvirus homologues. The 

majority of the other non-conserved loci in each motif X have largely similar residue 

substitutions. This is true of both the (l- and y-herpesvirus dUTPases and also the j3-

herpesvirus dUTPase homologues. 

4.7.3 Secondary structure prediction of the class II motif X 

The fact that the class I dUTPases do not possess a motif X is intriguing. It 

opens up the possibility that the class II dUTPases share a new structure which may 

endow them with a novel secondary function. This theory is compounded by the 

fmding that a group of j3-herpesvirus proteins share only this motif X region and not the 

other 5 motifs which constitute the dUTPase active site. It is conceivable that these j3-

herpesvirus proteins share only a function supported by motif X. 

Experimental work is required to test the function of the j3-herpesvirus proteins 

and any potential role of the conserved motif X region. In the class II dUTPases, motif 

X can be mapped on various models to yield structural predictions. Although these 

predictions cannot identify functional significance they do reveal some interesting 

points. Several prediction methods were employed including ProteinPredict, Threader 

and Swiss-Modeller. 

The class II motif X region was initially analysed with the ProteinPredict 

program during the study of the class II j3-strand predictions (Sections 4.4.3 & 4.4.4). 

The secondary structure predictions for this region are shown in Figure 4.23 at the top 

of the class II alignment. Motif X is predicted to contain two j3-strands with the 

conserved Trp residues close to the middle of the joining sequence. This is interesting 

because it resembles the class I motif 3 structure which is composed similarly of two 13-
strands with a highly conserved Tyr in the middle of the joining sequence. It may not 

be surprising that motif X is similar to motif 3 in overall structure given that motif 3 

originally occupied this position after the initial intragenic duplication. To further test 

this theory, more detailed modelling approaches were used. 

4.7.4 Structural fold recognition by protein sequence threading 

The program Threader (Jones et al., 1992) was used to predict the local 

structure of the class II motif X region. Protein threading employs a different 

methodology than the previously used ProteinPredict program. Basically a library of 

unique protein folds is obtained from the database of known protein structures. 266 

folds were present in the library used for these predictions. These folds are defined as 

3D chains and the original primary sequences are ignored. The test sequence, in this 

case motif X, is then optimally fitted or 'threaded' onto each 3D fold in the library. The 
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energy of each possible fit is then calculated by the addition of each pairwise interaction 

between the test sequence and each known fold. These energy or 'threading' values are 

then ranked in order. The library fold with the lowest energy (easiest fit) is predicted to 

be the closest match to the test sequence. Threader gives each fold a pairwise energy 

score (Z) which is based on the following scale: 

Z - Score Explanation 

Z < -3.5 Very significant - probably a correct prediction 

Z < -3.0 Significant - good chance of being correct 

-2.7 < Z < -3.0 Borderline - possibly_ correct 

-2.0 < Z < -2.7 Poor - needs other confirmation 

Z > -2.0 Very poor - probably no suitable folds in the library 

Table 4.2 Interpretation of Threader Z-scores 
Each structure which is threaded against the test structure is given a Z-score which relates to the 
significance of the match. Taken from the Threader user notes (D.T. Jones, 1994). 

At the time of using Threader there were no dUTPase structures present in the 

fold library. Both the E.coli and HSV-l motif 3 regions were both analysed by 

Threader in order to determine how closely they matched the known E.coli structure. 

Threader predicted a loop structure for motif 3 with two flanking S-strands which is 

essentially the correct structure for the class I motif 3 region. The closest match was a 

S-loop-S region of a fatty acid binding protein (lMDC) of the Tobacco Homworm 

(Manduca sexta). The Z-score for the IMDC loop as a structural homologue motif 3 

was -3.69. This score is extremely low and represents a highly significant Threader 

prediction. This was encouraging since the program did not have a dUTPase motif 3 

loop in its fold library. 

(a) (b) 

Figure 4.24 Comparison of E.coli motif 3 structure to Threader prediction 
The structure of the E.coli motif 3 structure is shown in (a). Figure (b) shows the Threader predicted 
structural homologue, a ~-loop-~ structure in the fatty acid binding protein IMDC. ~-strands are shown 
as yellow arrows. The red region in the IMDC structure indicates where Threader predicts an insertion 
of two residues. This insertion would increase the similarity between (a) and (b). 
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Note that the IMDC structural homologue is predicted to have a two residue 

insertion in the loop region (shown in red in Figure 4.24). This insertion would 

essentially lever the two ~-strands apart and generate a much more homologous 

structure to motif 3 than that shown in the figure. Although there is no functional 

relationship between motif 3 and the predicted homologue, the structural relationship is 

clear. 

Since reasonable data were obtained from the motif 3 predictions, Threader was 

subsequently used to predict the structure of the motif X region of HSV -1. The closest 

related fold to the motif X test sequence was again IMDC. The Z-score for this 

structural homologue was -2.84. This score is inferior to the prediction for the motif 3 

loop and represents only borderline significance. However, when alignments are made 

of the top ten Z-scores for both HSV -1 motif 3 and motif X, the consensus predictions 

are highly similar. This is seen in Figure 4.25 where the best threaded homologues are 

given in descending order from top to bottom. 

consensus 

1MDC 

1SHAA 

2CTVA 

2MNR 

2CBA 

135L 

2BBKH 

1STP 

1S1M 

1RA1B 

10 20 
HHV1LGL1DSGYRGTVMAVVVA 
__ ..... ~ _ • consensus 

• 

• 
(a) Motif 3 

1MDC 

1TTAA 

3BLM 

1NSCA 

2DNJA 

1ATR 

1PKP 

1FUS 

1HSBA 

1CAUA 

10 20 
ARGLLVVPTRWLPGHVCAFVVYNL 

- . -

• • • • • • • • 
• • 

(b) Motif X 

Figure 4.25 Comparison of Threader predictions for HSV-l motif3 and motif X 
The ten best Threader predictions are shown for HSV-l motif 3 (a) and motif X (b). The structural 
homologues (PDB codes at right) are ranked in order with the best (lowest) Z-score at the top. p-strands 
are shown as blue arrows, helices as red and white spirals and loops as solid black lines. Note that 
predicted insertions in the structural homologues are shown as gaps. The consensus sequence is an 
unweighted compilation of the top ten homologous folds. 

Although the best Threader prediction for HSV -1 motif X is not as good as 

motif 3, the comparison of the consensus results plus the previously determined 

ProteinPredict results suggests that the two structures may be related. In order to 
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generate a 3D structure based on the primary sequence (as opposed to a structural 

homologue) a new modelling approach was used. 

4.7.5 Three dimensional modelling of HSV-l motif X 

The previous data demonstrate the possibility that the class II motif X may have 

evolved from the ancestral motif 3 and has retained a similar basic structure. In order to 

achieve a more direct relationship between the HSV-1 primary sequence and the 

predicted structure a local model was created for motif X. This work was done in 

collaboration with N. Arbuckle in the MRC Virology Unit. The HSV -1 motif X 

sequence was used to probe the PDB database for primary sequence homologues using 

the TBLASTX program (Altschul et aI., 1990). The top five structures corresponding 

to the primary sequence matches were used as input to the modelling program, ProMod 

(Peitsch, 1995; Peitsch, 1996). This program basically creates an average structure 

based on the structures with the best primary sequence similarity and produces a 3D 

model. The predicted structure of motif X utilising the actual HSV-1 amino acid 

sequence is shown in Figure 4.26(a). 

(a) (b) 

Figure 4.26 Modelling ofHSV-l motif X using the Swiss-Model Pro Mod program 
Figure (a) shows the predicted structure of the HSV -J motif X based on known structures with primary 
sequence similarity. Figure (b) shows the structure of the E.coli morin loop for comparison. 

Comparison of the predicted structure of the HSV -1 motif X to the structure of 

E.coli motif 3 reveals several similarities. The overall fold is generally homologous 

although the arms of the motif X loop (which fonn two anti-parallel ~-strands in motif 
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3) are spread further apart. Notably there is a Trp at the base of motif X occupying a 

similar position to the highly conserved Tyr in motif 3. 

The limitations of this type of modelling are clear. The prediction relies on the 

PDB database containing structures with primary sequence which closely match the test 

sequence. This modelling approach also assumes that similar primary sequences have 

similar folds which is not always the case. Surrounding protein interactions can 

influence local folding and cannot be predicted from this type of program. Despite 

these reservations it is encouraging to see that three different methods, ProteinPredict, 

Threader and Swiss-Modeller, are all in general agreement on the overall structure of 

the motif X region. 

4.7.6 Discussion 

Interest in the motif X region of the class II dUTPases was generated when 

primary sequence analysis by 0.1. McGeoch at the MRC Virology Unit revealed 

sequence conservation outwith the known dUTPases. Several ~-herpesvirus ORFs 

which occupy congruent genome positions to the a- and "(-herpesvirus dUTPases were 

shown to possess a copy of the class II motif X. These ~-herpesvirus ORFs are 

unlikely to encode functional dUTPase given that they do not possess any of the five 

motifs which constitute the standard dUTPase active site. The fact that the only 

conserved region in the ~-herpesvirus ORFs is motif X, lays open the possibility that 

this motif encodes a specific function. In terms of the class II dUTPases this function 

would be additional to dUTPase activity while in the ~-herpesvirus homologues it could 

potentially constitute the sole function. 

Three different approaches were used to predict the structure of the class II 

motif X region. Looking at the overall consensus between the ProteinPredict, Threader 

and Swiss-Modeller data there is evidence to support an anti-parallel ~-strand loop 

structure with similarity to the motif 3 structure. This does not give a direct indication 

of potential function but it does support the theory that motif X structure originated 

from the motif 3 ancestor and retains some of these characteristics. In the class II 

model, the position of motif X relative to the rest of the protein is on the opposite side 

to the dUTPase active site. This is shown in the later Figure 5.17(a) which highlights 

motif X in the class II model. If this prediction is correct then it would be possible for 

motif X to possess a binding or catalytic function for example, without disrupting 

dUTPase activity. 

The significance of an additional structure similar to motif 3 in the class II 

dUTPases is not clear. What is apparent is that the motif 3 ~-hairpin structure is the 

basis for nucleotide recognition in the dUTPase active site allowing discrimination 
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between sugar and base. It is even possible that motif X retains this discriminatory 

function and is itself involved in nucleotide binding although this remains to be tested. 

A secondary function supplied by motif X would be consistent with the class II 

evolutionary model proposed in the previous section (4.6). From an energetic 

perspective the class I dUTPases contain three active sites from three subunit chains. 

The class II dUTPase have only one active site for the equivalent of two subunit chains. 

This apparent inefficiency in the amount of protein synthesis required per active site 

would be redressed if the class II enzyme had an additional function besides dUTPase 

activity. These theories require to be tested experimentally and it is probable that not 

only the class II dUTPases need to be investigated but also the ~-herpesvirus dUTPase 

homologues. Given that this motif X is specific to herpesviruses and therefore 

represents a potential drug target, the grounds for expanding research in this area are 

clear. 
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Chapter 5 - RESULTS OF EXPERIMENTAL WORK 

5.1 Recombinant expression of HSV-1 dUTPase 

5.1.1 Introduction 

In order to perfonn detailed analysis of the HS V -1 dUTPase it was necessary to 

devise a system capable of generating a reliable supply of active enzyme. The major 

considerations were the ease of manipulation of the ORF, the quality and quantity of 

over-expressed enzyme and the potential for rapid purification. Several bacterial 

expression systems were investigated for their ability to meet these criteria. 

5.1.2 The Kodak FLAG Biosystem 

5.1.2.1 Overall Strategy 

The Kodak: FLAG system was employed to provide high expression levels 

combined with efficient detection and purification of the recombinant dUTPase. This 

system offered two main advantages compared to standard bacterial expression 

systems. The ORF could be cloned into the pFLAG vector resulting in a fusion protein 

with the OmpA signal peptide for secretion to the periplasmic space and the FLAG 

marker peptide for detection and purification. Generation of pure native enzyme could 

then be achieved with affmity purification using murine anti-FLAG IgG monoclonal 

antibodies followed by enterokinase digestion. 

Signal peptide 
pennits secretion 

-

i 
FLAG peptide pennits 
affinity column purification 

Figure 5.1 The illI FLAG™ system components 

HSV - 1 dUTPase 

FLAG peptide is cleaved to 
generate intact native dUTPase 

The OmpA signal peptide - a 21 amino acid fusion peptide to allow secretion to the periplasmic space 
and resultant cleavage as it crosses the inner cytoplasmic membrane. Benefits included i olation of the 
recombinant protein from the cytoplasmic proteases and an efficient extraction protocol (Movra el al., 
1980). 
The FLAG marker - a hydrophilic, 8 amino acid fusion peptide (DYKDDDDK) with a high surface 
probability representing good accessibility on the protein surface. The FLAG marker would allow 
column affinity purification using the anti-FLAG monoclonal antibody covalently linked to an agarose 
support. 
The tac promoter and lacI repressor - the tac promoter is a combination of the trp promoter and the lac 
operator to allow strong controllable expression under the lacI repressor (Amann et al. , 1983). 
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The strategy was to insert the HSV-l UL50 ORF into the MCS of the 

pFLAG.ATS vector to express a fusion protein with an N-tenninal OmpA signal 

sequence and the FLAG octapeptide tag for binding anti-FLAG antibodies. 

5.1.2.2 Results using the Kodak IBI System 

The UL50 ORF was successfully amplified from purified HSV-l (strain 17+) 

DNA by PCR using primers (FIIF2) designed to generate a 5' HindIII site and a 3' 

EcoRI site with 8bp overhangs. 

Fl. 5' GTG TGT GTA AGC TTA GTC AGT GGG GAT CCG GGG CGA TC 3' 
HindII! 

F2. 5' GTG TGT GTG AAT TCT CTA AAT ACC GGT AGA ACC AAA ACC 3' 
EcoRI 

Figure 5.2 Oligonucleotides synthesised for IBI FLAG system 
Oligonucleotides Fl and F2 were designed to amplify HSV-l UL50 by peR generating a 5' HindIII site 
and a 3' EcoRl site. Note that each primer is flanked by a (GTh tail to allow efficient restriction 
digestion of the fragment. 

The PCR reaction was optimised until a sufficient quantity of product could be 

obtained at 25 cycles without contaminating products. Titration of MgCb was found to 

have a large effect with a 2rnM concentration providing at least 2X the product quantity 

than the standard 5rnM concentration. The PCR product was gel purified and digested 

separately with HindIII and EcoRI. The pFLAG.ATS vector was successfully digested 

with HindIII in buffer B and EcoRI in buffer H as detennined by agarose gel 

electrophoresis. 

The HindIIllEcoRI digested PCR product and pFLAG.A TS vector were ligated 

and transfonned into E.coli DH5a. Prospective clones were analysed by restriction 

digestion, PCR and fmally sequencing. Clones were isolated with the HSV-l UL50 

ORF in the correct reading frame (pFLAG.ATSIUL50). 

Expression of recombinant HSV -1 dUTPase fusion protein was perfonned 

according to Section 3.2.1. Plasmid pFLAG.ATSIUL50 was transfonned into E.coli 

strain DH5a and cultures were grown up. Bacteria transfonned with the host plasmid, 

pFLAG .ATS, were used as a control. Protein expression was induced by the addition 

of IPTG and extraction was perfonned according to Section 3.2.2. 

Expression of the dUTPase-FLAG fusion protein was monitored by SDS-PAGE 

analysis of the bacterial protein extracts. A fusion protein of the predicted size was 

observed amongst the background of bacterial proteins (Figure 5.3 A). Further analysis 

of the bacterial extracts con finned that this fusion protein was found exclusively in the 

insoluble fraction (Figure 5.3 B). Various changes in the expression conditions were 
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tested, aimed at increasing the solubility of the recombinant protein. The bacterial 

culture temperature was lowered down as far as 15°C in an attempt to moderate protein 

expression but there was no increase in the solubility of the recombinant dUTPase. 

Various experiments were performed changing conditions such as temperature (3 7Co, 

30°C, 26°C or 15°C), induction time (I-20hr), IPTG concentration (O.S-O.OSmM), 

bacterial media (L-broth or 2YT-broth) and bacterial host strain (DHSa or BW313) but 

the recombinant dUTPase protein remained insoluble. 

Markers 
Gel A kDa GelB 

3 4 5 

200 

97.4 

69 

46 

30 

21.5 

Lane Sample Lane Sample 

1 High MW Markers 1 High MW Markers 

2 Crude extract Clone l~e-induction 2 Insoluble periplasmic fraction 

3 Crude Extract Clone 1 post induction 3 Soluble periplasmic fraction 

4 Crude extract Clone 2 ~e-induction 4 Insoluble whole cell extract 

5 Crude Extract Clone 2 !>Ost induction 5 Soluble whole cell extract 

6 Control vector only post induction 

Figure 5.3 Expression and solubility of FLAG-tagged recombinant HSV-l dUTPase 
Gel A shows the expression of 2 pET3a!UL50 positive clones tagged with the OmpA signal sequence 
and the FLAG tag as is Figure 5.1. Comparison of pre- and post-IPTG induced expression (Lanes 2-5) 
demonstrates the appearance of a novel band of 40kDa corresponding to the tagged HSV -1 dUTPase 
(black arrows). Lane 6 shows the IPTG induced host plasmid control, pET3a, inclicating the novel band 
is produced by the inserted UL50 gene. 
Gel B shows the fractionation of a crude extract of Clone 1 as prepared according to Section 3.2.2. 
Comparison of the periplasmic fractions (Lanes 2 and 3) inclicates that the tagged HSV -1 dUTPase is 
transported to the peri plasmic space but remains insoluble. Comparison of the whole cell fractions 
(Lanes 4 and 5) confirms that the recombinant dUTPase is insoluble. 
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5.1.3 The pET T7 expression system 

5.1.3.1 Overall Strategy 

The plasmid pET-3a/UL50 was obtained as a kind gift from Dr. O. Bjomberg, 

Lund University, Sweden. This construct contained the UL50 ORF in the pET-3a 

vector to allow expression under the control of the T7 promoter. This system was 

shown to allow efficient expression of active soluble HSV-l dUTPase by Bjomberg et 

al. (1993). 

The UL50 gene was sub cloned from pET-3a/UL50 into the more recently 

developed pET-23a vector (Novagen, Inc.). The strategy was to maintain the successful 

expression obtained in the pET -3 a/UL5 0 and in addition supply an fl origin to facilitate 

mutagenesis and sequencing in the same plasmid. 

5.1.3.2 Subcloning of UL50 

The pET-3a/UL50 construct was transformed into Ecoli DH5a. for the 

propagation of plasmid DNA. The plasmid was harvested using the Promega Wizard 

system (Section 3.1.11) to obtain a large quantity of purified pET-3a/UL50 DNA. The 

fragment containing the UL50 gene was excised by double restriction digests using 

HindIII and Xbal and gel purified (Sections 3.1.4 and 3.15). The pET23a plasmid was 

harvested from transformed Ecoli DH5a. and digested with HindIli and Xbal as before. 

The DNA fragment containing the UL50 gene was ligated into the pET-23a vector and 

transformed into E coli DH5a.. Potential clones were screened by restriction analysis 

and agarose gel electrophoresis. 
Xbal Xbal 

T1 prom()~ter~t=aI ........... 

pET-3a/ULSO pET -23a1ULSO 

Figure 5.4 Plasmid map ofpET-3a/UL50 and pET-23a/UL50 
The pET-3a1UL50 vector contains the T7 promoter and a ribosome binding site (rbs). Plasmid election 
in bacteria is achieved with the bla gene expressing ampicillin. The ULSO ORF was transferred to the 
newer plasmid pET-23a using the Xba I and Hind ill restriction sites. 
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5.1.3.3 Expression and extraction of HSV-l dUTPase 

The method for expression of the pET23a1UL50 construct and extraction of 

HSV-l dUTPase was performed essentially according to O. Bjomberg et al. (1993) (see 

Sections 3.2.1 and 3.2.2). There were two main differences from the methods used in 

the Kodak IBI system. Lysis of the induced bacteria was performed by freeze/thawing 

in the presence of detergent as opposed to the addition of lysozyme. Detergent (Triton 

X-I00 or polyoxyethyiene-IO-tridecyl ether) was used at a concentration of 0.1 % in the 

extraction buffer and at 0.01% in all subsequent purification and storage buffers. 

Experiments had previously shown that although the addition of detergent did not 

increase the release of protein from the bacteria, it did result in an increased recovery of 

recombinant dUTPase activity (Bjomberg et aI., 1993). 

Extracts were analysed for the expression of HSV-l dUTPase from the 

pET23a1UL50 construct by SDS-PAGE (Section 3.2.3). Soluble HSV-l dUTPase was 

detected and shown to possess activity although there was still a significant amount of 

insoluble enzyme. This was in agreement with previous experiments with the donor 

construct, pET3a1UL50, which still allowed successful purification (Bjomberg et al., 

1993). With a source of active recombinant dUTPase in the vector of choice it was 

decided to continue to the purification stage. 

5.1.4 Discussion 

The original Kodak IBI bacterial expression system was chosen before 

experiments by O. Bjomberg et al. (1993) had shown that bacterially expressed HSV-l 

dUTPase was extremely insoluble. It is possible that the fusion of the OmpA signal 

peptide and the FLAG marker peptide decreased the solubility of the expressed protein 

even further. However, the potential benefits of the FLAG marker in the detection and 

purification of the HSV -1 dUTPase merited further experiments to try to resolve the 

insolubility problem. 

Expression of eukaryotic proteins in bacterial systems often leads to problems 

with solubility. In some cases this property can be used to advantage and the 

aggregated recombinant protein can be purified in inclusion bodies and subsequently 

refolded. Given the nature of this project, where a reliable and consistent source of the 

HSV-l dUTPase was required, this option was considered to be unsatisfactory. It was 

reasoned that there was potential for site directed mutations to alter the efficiency of the 

protein refolding. In such a case, it would be extremely difficult to determine whether a 

mutation was modifying enzyme activity by interfering with active site interactions or 

as a consequence of altered refolding. 

It is known that a reduction in the bacterial culture temperature during 

expression of recombinant proteins increases solubility in some cases. It is presumed 
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that by slowing the metabolism of the bacterial cell, and consequently the expression of 

the recombinant protein, correct folding is more likely to be achieved. This is 

exemplified in the bacterial expression of vaccinia virus ribonucleotide reductase (RR) 

(Slabaugh et ai., 1993). At 37°C bacterial expression of vaccinia virus RR large 

subunit yielded a completely insoluble product. Reduction of temperature to 15°C and 

IPTG concentration down from O.4mM to 0.05mM produced up to 70% of the 

recombinant RR subunit in a soluble form. Attempts at reducing the expression of 

HSV -I dUTPase by lowering temperature, reducing IPTG concentration and using less 

rich media (L-broth instead of2YT-broth) did not increase the solubility of the enzyme. 

It was known at this point that HSV-l dUTPase had been successfully 

expressed in the pET system as an untagged protein (Bj<>rnberg et ai., 1993). In this 

study it was discovered that the method of extraction was crucial to the recovery of 

active enzyme. For example Veda pressing, which was successfully used to extract 

overproduced E.coli dUTPase (Hoffman et at., 1987), was found to be unsatisfactory at 

extracting HSV -I dUTPase. A considerable quantity of protein was obtained by this 

method but the activity was very low. This problem was partially overcome by adding 

detergent to the extraction buffer. Following this example, detergent was used when 

lysing bacteria expressing the HSV-I dUTPase FLAG fusion protein, but again, there 

was no increase in solubility. 

It was decided in the light of the solubility problem that a new expression 

system should be tried. Various systems were considered but it seemed reasonable to 

choose the pET system which had been shown to produce partially soluble, untagged, 

HSV-I dUTPase. The expressing construct, pET3a1UL50, was kindly donated by Dr 

O. Bj<>rnberg, Lund University, Sweden. This construct was transformed into E.coli 

strain BL21 and found to produce active dUTPase. Unfortunately this construct did not 

contain an fl origin of replication and therefore the ORF would have to be shuttled 

between two vectors, one for mutagenesis and one for expression. To circumvent this 

problem, the UL50 ORF was successfully subcloned into the newer vector, pET23a, 

which contained an fl origin of replication. 

The reason why HSV -I dUTPase is more soluble in the pET system is probably 

twofold. Firstly, the enzyme is expressed in its native form with no additional amino 

acid residues. Secondly, from previous studies on the extraction of HS V -I dUTPase, it 

is likely that the method of extraction plays a large role in the recovery of soluble 

enzyme. In the pET system, freeze/thawing of the bacterial cells disrupts the cell 

membrane thus releasing the indigenous lysozyme present in the E. coli strain 

BL21 (DE3)pLysS. This technique may be instrumental in the release of a higher 

proportion of soluble enzyme. 
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The use of the pET system allowed the production of active, soluble HSV-l 

dUTPase. However, the production of untagged enzyme, one of the functions of the 

system which is necessary for its effectiveness, created a more complex problem for 

purification. The original plan for purification, based on affinity for a fusion tag, could 

not be applied therefore the native enzyme had to be purified on the basis of its specific 

biochemical characteristics. Although this was a major disadvantage when purifying a 

large number of enzyme constructs it allowed greater inference into the effect of site

directed mutations in the context of the native enzyme. In short, there is a trade-off 

between preserving the protein close to the natural condition and devising a system 

whereby the recombinant protein can be easily manipulated and examined. 

The transfer of the HSV-I ORF into the pET23a vector combines the benefits of 

a soluble expression system with the potential for generating mutations in the same 

construct without subcloning. 

5.2 Purification of HSV -1 dUTPase 

5.2.1 Introduction 

The aim of this stage of work was to develop a reliable and consistent method 

applicable for the production of wild type and mutant HSV -I dUTPase in a pure state. 

Initially purification of the HSV -1 dUTPase was based on a two stage system 

employing phosphocellulose and Mono S cation exchange columns. This protocol was 

later rermed to allow a one step Mono S purification utilising the selective solubility of 

the HSV -I dUTPase in the presence of chelators. 

5.2.2 FPLC purification by cation exchange 

Phosphocellulose followed by Mono S cation exchange column chromatography 

had been previously shown to allow successful purification of HSV-l dUTPase 

expressed from the pET3a1UL50 construct dUTPase (Bjomberg et at., 1993). Initial 

experiments demonstrated that this protocol was also efficacious at purification from 

my own construct, pET23a/UL50 (Section 3.2.4). However, consistent with the 

Swedish study, the end product of this purification was not homogeneous and was 

degraded over time even in the presence of protease inhibitors. 

5.2.3 Selective buffer extraction 

A new purification protocol was investigated based on the selective solubility of 

HSV -I dUTPase in various buffers (A.-C. Bergman, personal communication). It was 

found that a high degree of purification could be achieved by altering the initial 

extraction buffers used immediately after recombinant expression. Following bacterial 
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lysis, cells were spun as normal and then resuspended in modified extraction buffer. 

This buffer differed from the standard pET extraction buffer (Section 2.2.4) by the 

exclusion of the chelators EDTA and EGTA normally present each at ImM. This had 

the effect of partitioning up to 90% of the HSV -1 dUTPase to the pellet. Re-extraction 

of this pellet was then performed with the standard pET extraction buffer containing 

ImM EDTA and ImM EGTA. The sample was allowed to re-extract overnight at 4°C 

followed by centrifugation. The supernatant contained about 40% of the HSV-l 

dUTPase from the pellet in an active and almost homogeneous state. 

This method was employed in preference to the original extraction method. 

Further purification was deemed necessary and column chromatography was used a 

final step. Several extracts were tested using various column and buffer combinations. 

Mono S chromatography was found to be the most reliable and consistent method using 

standard buffers containing 0.01% detergent and ImM EDTA and EGTA. Many of the 

mutant enzymes were repurified using this superior method. 
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Figure 5.5 FPLC and SDS-PAGE of recombinant HSV-l dUTPase 
The graph above is the gradient section of an FPLC trace taken directly from the Unicorn operating 
system of the Pharmacia FPLC machine. It shows an example of the fmal Mono S chromatography 
purification stage. The starting material is semi-purified HSV-l dUTPase from the modified buffer 
extraction method detailed above. Cleared supernatant was injected into a prewashed Mono S HR 5/5 
column and washed at a flow rate of Imllmin. A NaCI gradient from O.lM to 1M was applied to the 
column at the same flow rate. Fractions were collected and analysed by SDS-PAGE and dUTPase assays. 

The SDS-PAGE gel (M=MW markers, PF=peak fraction) shows the peak fraction (black arrow 
on trace) as a single band which corresponded to the peak dUTPase activity. The gel shows the ab ence 
of the low MW impurities found in the previous phosphocelluloseIMono S purification sy tern. 
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5.2.4 Discussion 
Initial purification based directly on the method of O. Bjornberg et al. (1993) 

proved to be problematic at producing homogeneous HSV -1 dUTPase from the pET 

bacterial expression system. Low molecular weight bands could be visualised by SDS

PAGE and, as reported in the Swedish study, degradation products could also be seen 

over time. A further problem was the variability of the phosphocellulose columns. 

These were made up freshly in the lab and although every effort was taken to ensure 

consistent handling it was likely that inconsistencies in the packing of the 

phosphocellulose matrix caused overall variability. In practical terms this meant that 

these runs could not be automated and that there was a large variability in enzyme 

recovery and purity. For consistent purification in order to allow direct comparison of 

different mutant enzyme preparations this system was deemed unacceptable. To get 

round this problem a one stage Mono S purification was attempted. It was hoped that 

the pre-packed Mono S columns would allow more consistent purification. This was 

unsuccessful due to the low percentage of recombinant dUTPase compared to E coli 

proteins in the bacterial extract. 

The modified extraction method was a major advance in purification. The 

majority of Ecoli proteins were removed in the supernatant after the first spin with the 

HSV -1 dUTPase being forced to fractionate to the pellet. Recovery by resolubilising 

this pellet in the presence of chelators was almost entirely specific for HSV -1 dUTPase. 

This material proved to be ideal for FPLC chromatography. It was decided in the light 

of previous experiments to use Mono S in preference to phosphocellulose columns. 

Due to the relative purity of the starting material, the Mono S chromatography 

performed very well. Although it is likely that the bacterial dUTPase was removed in 

the soluble fraction of the buffer extraction, this further purification step gave added 

confidence that dUTPase activity was entirely due to recombinant HSV-I dUTPase. 

Cation exchange chromatography was ideal for this purpose since the Ecoli dUTPase is 

an acidic protein and would not be retarded on the column. 
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5.3 Site-directed mutagenesis of HSV-l dUTPase 

5.3.1 Introduction 

The method of Kunkel et al. (1987) was chosen to perform site-directed 

mutagenesis. This method was considered practical to allow a large number of mutants 

to be generated from a single batch of HSV-l UL50 ssDNA template. Each specific 

mutation required a single oligonucleotide to be synthesised thus providing an efficient, 

low cost system. A substantial amount of time was dedicated to optimising the 

mutagenesis system so that any future mutations could be made quickly. 

5.3.2 Mutagenesis rationale 

Initially the tyrosine at position 100 in the motif 3 region of the HS V-I 

dUTPase was chosen to mutate to an alanine (3YlOOA). This was an ideal first target 

because this residue appears to be of major importance in the E.coli enzyme (Vertessy 

et al., 1995) and is highly conserved in both class I and class II dUTPases (Sections 4.2 

& 4.3). The DNA sequence change required to make this mutant involved the loss of a 

unique KpnI restriction site which allowed fast screening of potential mutated plasm ids 

by restriction analysis. 

Wild type UL50 

3Y100A mutant 

5' ..... TCG GGG TAC CGC GGA ..... 3' 

,J.. 

5' ..... TCG GGG GCT CGC GGA ..... 3' 

Figure 5.6 Position of3Y100A mutation in relation to wt KpnI restriction site 
The changed nucleotides are underlined and the Kpnl restriction site is coloured yellow (recognition site 
GGTAC·C where the star indicates the cutting position). Mutation of the wt UL50 coding sequence 
from T AC (tyrosine) to GeT (alanine) disrupted the Kpnl site allowing for fast mutation screening. First 
nucleotide shown is 292 bases from the 5' end ofUL50. 

5.3.3 Mutagenesis results for 3YIOOA 

Kunkel mutagenesis was performed according to Section 3.1.14. It was found 

that the preparation of high purity uracil enriched ssDNA template was a key factor for 

efficient mutagenesis. The mutagenesis reactions were eventually refmed to yield over 

10% positive mutant colonies from those picked and analysed. This was an acceptable 

level to allow generation of approximately 20 mutant constructs. Figure 5.7 shows 

restriction digest analysis of ten plasmids generated by the mini-prep method. digested 

with KpnI and visualised by gel electrophoresis (Sections 3.1.10 & 3.1.3). Note that 

the wt plasmid, pET23a1UL50, contains only one KpnI site which lies in the motif 3 

region of the UL50 gene. Efficient restriction with this enzyme therefore produces 

linear DNA from the circular plasmid which can be visualised as a single band. 
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Plasmids which have lost the KpnJ site remain intact and are visualised as multiple 

bands corresponding to the various forms of plasmid DNA. 

Figure 5.7 Scanning for 3YIOOA mutation by restriction digestion 
10 potential colonies from the Kunkel method were grown up and mini-prepped ( ection 3.1.1 0). 
Standard restriction digests were performed with KpnI restriction enzyme (Section 3.1.5) and products 
visualised by agarose gel electrophoresis. Lanes 5 and 7 show undigested plasmid as a result of site
directed mutagenesis within the KpnI site. All other lanes represent wt plasmids linearised by digestion 
with KpnI. 

To confIrm that this was indeed the correct mutation the area in the region of the KpnI 
site was sequenced. Figure 5.8 shows the nucleotide sequence of the wild type HSV-1 
UL50 gene with the corresponding nucleotide changes in the 3YIOOA mutant. 
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Figure 5.8 Sequencing of the wt HSV-l UL50 and corresponding mutant 3YIOOA 
Figure shows the result of sequencing the complementary DNA strand. Note the base change from GT A 
(reverse complement TAC) coding for tyrosine to AGe (reverse complement G T) coding for aJanine 
(highlighted in yellow). 
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5.3.4 Large scale mutagenesis of HSV-I UL50 

The targets for mutagenesis were based primarily on two criteria: those residues 

which were highly conserved between class I and class II dUTPases (Section 4.3) and 

specific areas of interest within the HSV-l dUTPase tertiary model (Section 4.4.S). 

All the oligonucleotides were designed to yield a single amino acid change in 

the HSV-I dUTPase protein. Each one was designed to give a specific codon change 

with the exception of primer IS which was synthesised to give a mixed population. 

This primer was included to test the efficiency of generating multiple mutants at a 

specific locus with a single mixed primer synthesis. Table S.I shows the mutant 

oligonucleotides which were synthesised for the specific mutagenesis of the HSV-I 

ULSO ORF. 

No Mutant Nucleotide Oligonucleotide Sequence 
Change 

1 3YI00A TAC-+GCT 5' CAT AAC GGT TCC GCG AGe CCC CGA GTC GAT AAG 

2 3YI00S TAC-+AGT 5' CAT AAC GGT TCC GCG ACT CCC CGA GTC GAT AAG 

3 3YI00F TAC-+TIT 5' CAT AAC CGT TCC GCG AAA CCC CGA GTC GAT AAG 

4 3D97A GAC-+GCC 5' TCC GCG GTA CCC CGA GGC GAT AAG ACC CAG TAT 

5 3D97E GAC-+GAA 5' TCC GCG GTA CCC CGA TTC GAT AAG ACC CAG TAT 

6 XW275A TGG-+GCG 5' TAC GTG CCC GGG GAG CGC GCG CGT AGG AAC GAC 

7 XW275F TGG-+TIT 5' TAC GTG CCC GGG GAG AAA GCG CGT AGG AAC GAC 

8 XT273S ACG-+TCC 5' CCC GGG GAG CCA GCG GGA AGG AAC GAC CAG GAG 

9 XT273A ACG-+GCG 5' CCC GGG GAG CCA GCG CGC AGG AAC GAC CAG GAG 

10 4Q303N CAG-+AAC 5' CCC CGC AAC CAG GAG GTT GGC GAC CTT GGC GCC 

11 4Q303D CAG-+GAC 5' CCC CGC AAC CAG GAG GTC GGC GAC CTT GGC GCC 

12 4Q303E CAG-+GAG 5' CCC CGC AAC CAG GAG CTC GGC GAC CTT GGC GCC 

13 4Q303T CAG-+ACG 5' CCC CGC AAC CAG GAG CGT GGC GAC CTT GGC GCC 

14 NC76A TGC-+GCC 5 ' GGC GTG AAT AAT CGC GGC AAA GTC AGC CGG CAT 

15 4Q303L CAG-+TTG 5' CCC CGC AAC CAG GAG SNN GGC GAC CTT GGC GCC 

16 5F366Y TIT-+TAT 5' AAT ACC GGT AGA ACC ATA ACC CCC GGT CCC GCG 

17 5F366A TIT-+GCT 5' AAT ACC CGT AGA ACC AGe ACC CCC GGT CCC GCG 

18 4K300A AAG-+GCG 5' CAG GAG CTG GGC GAC CGC GGC GCC GGC CTC GAG 

19 2R260A CGG-+GCA 5' GGC GTT GAG CGA CGA TGC CCC CAA CAC ATA GCA 

20 ID222A GAC-+GCC 5' GCG ACG GAC GAC AAT GGC GAA ACC GGC ATC CTC 

Table 5.1 Oligonucleotides synthesised for site-directed mutagenesis ofHSV-1 ULSO 
Mutagenic primers are the reverse complement of the 5'-+3' UL50 nucleotide sequence due to the 
direction of the Fl origin in pET23a. Primer 15 was synthesised to produce a mixed population of the 
following bases: S=G/C, N=T/A/G/C. The first mutant sequenced from this primer was 4Q303L 
(CAG~TTG). 

Due to the nature of the Kunkel mutagenesis system it was decided to fully 

sequence all of the ULSO mutant constructs. It was essential to have confidence that 

there was no secondary mutations anywhere in the HSV -1 dUTPase coding region. A 

primer set was generated to cover the entire ULSO gene allowing good overlap between 

each successive sequence reading. These oligonucleotides are shown in Table S.2. 
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Code Distance from UL50 Direction Oligonucleotide sequence 
Number A TG start codon (bps) 
P1 98 R 5 ' GCC CCC GCG AGT AGC GAG GG 3 ' 
P2 31 F 5 ' TCC AGC CGG ACA GCT TGG GT 3 ' 
P3 131 F 5 ' CGC GGT GGC TTT TAT GCC GA 3 ' 
P4 221 F 5 ' CTT TTG CGC GAT TAT TCA CG 3 ' 
P5 331 F 5 ' CTA AAA GGA CGC GGG AAT TT 3 ' 
P6 421 F 5 ' CGA TTT CCC TGC GGC AGT TC 3 ' 
P7 518 F 5 ' AAG CGT GAC TAC GGC CCT AC 3 ' 
P8 630 F 5 ' TTC CTT CCA AAA CGC GAG GA 3 ' 
P9 721 F 5 ' CAT CCC TCC GCA TGC TCC AC 3 ' 
P10 846 F 5 ' TTT GTT GTT TAC AAC CTT AC 3 ' 
Pll 966 F 5 ' ACC AAA GCG CTT CGA AAC TA 3 ' 
P12 1038 F 5 ' GTG TTT ACG AAC GAG TTT GA 3 ' 
P13 424 R 5' ATC GGC TCG GTG AGG GCC GG 3 ' 
P14 1030 R 5 ' GGC GGG TTC CTG GGT TCG GC 3 ' 
P15 810 R 5' CGA CCA GGA GGC CGC GGG CG 3 ' 

Table 5.2 Oligonucleotides synthesised for sequencing HSV-I UL50 
Oligonucleotides denoted with an 'F' were designed to sequence in the forward direction (5'~3') and 
'R ' in the reverse direction (3'~5'). Distances are calculated from the first nucleotide in the ATG start 
codon to the 5' terminal nucleotide of the primer. All primers are 20 nucleotides in length 

This primer set was used extensively since the majority of subsequent mutations 

did not change the restriction profile of the UL50 gene and therefore had to be screened 

by sequencing. This led to the development of small volume single track sequencing. 

This method differed from the standard sequencing method (Section 3.1.13) in that 

reactions were performed in microwell plates using only l/Sth of the standard reaction 

volumes. The same single dideoxynucleotide was chosen to terminate each reaction 

based on one base change expected from the mutagenic oligonucleotide. 

Figure 5.9 Mutation screening by single track sequencing 
Prospective mutant plasmids were analysed by single track sequencing. This gel hows a typical 
screening for mutant ID222A. The expected nucleotide changes in this mutant were GA ~G 
Plasmids were sequenced in single reactions using ddA TP as a chain tenninator. Lane 5 represents a 
mutant with the expected substitution of an adenine nucleotide. 
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This allowed the rapid screening of potential mutant plasmids by sequencing 

while being very economical with reagents and Sequenase enzyme. It proved to be very 

useful since mutations could initially be picked out clearly by eye without the need to 

produce large numbers of linear nucleotide sequences. Figure 5.9 shows a typical 

example of this method. 

Using this method it was possible to isolated plasmids positive for all of the 20 

targets shown in Table 5.1. Each of these constructs was then fully sequenced using the 

primer set in Table 5.2. 

5.3.5 Results of sequencing mutant constructs 

Due to the large number of sequence reactions required to fully sequence all the 

mutant UL50 genes a similar method to the mutation screening was employed. For each 

primer, modified 1/8th volume reactions were set up for all 19 mutants plus the wt 

control. Narrow wells were used to allow 80 reactions to be run on each gel. The 

samples were loaded in groups of 20 with the same tennination dideoxynucleotide 

(Figure 5.10). This allowed secondary mutations to be identified easily. 

Figure 5.10 Screening for secondary mutations by multiple track sequencing 
Section of autoradiograph shows 80 sequencing reactions split into 4 groups of 20. ach group 
represents 19 mutant plasmids and one wt sequenced with a single dideoxynuc\eotide. Mutations can be 
see as the absence and presence of single bases (arrows). 

It was found at this stage that some constructs possessed additional mutations. 

These were generally single base mutations at sites distal from the annealing area of the 

mutagenic oligonucleotide. Six out of the nineteen starting mutants were found to 

contain additional mutations. It was decided to carry on to the analysis stage with the 

thirteen remaining constructs. 

5.3.6 Discussion 

The Kunkel method of site-directed mutagenesis proved to be useful at 

producing UL50 mutant constructs but did have some unexpected problems. It was 

hoped that this method would have the advantages of reproducibility and accuracy 

compared to other methods. Site-directed mutagenesis by peR had also been 

investigated but was ruled out at an early stage due the possibility of polymerase errors 
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causing secondary mutations. In the light of the Kunkel mutagenesis results, with 6 out 

of 19 mutants synthesised with additional mutations, this rationale was unjustified. It 

was hoped that because each mutation was produced from the same batch of uracil 

emiched ssDNA, with the mutagenic oligonucleotide the only variable, that secondary 

mutations would be uncommon. It was expected that any additional mutations which 

did occur would be in the annealing region of the mutagenic primer caused by poor 

synthesis of the oligonucleotide. It was therefore surprising to find that all of the 

secondary mutations occurred at sites distal from the mutagenic oligonucleotide. 

These mutations were either a single base change, single base insertion or single 

base deletion. The most likely explanation for such random mutations was T7-DNA 

polymerase errors during the in vitro second strand synthesis. It is unlikely that the 

uracil emiched ssDNA template was at fault since no two mutations occurred at the 

same site. The reason for the T7 DNA polymerase errors is unknown. What remains 

clear is that for any mutagenesis reaction using similar methods it is essential to 

perform complete sequencing of the gene of interest for every construct synthesised. 

5.4 Crude extract analysis of HSV -1 dUTPase mutant enzymes 

5.4.1 Introduction 

Experiments were conducted to test the feasibility of analysing the dUTPase 

mutant enzymes in crude extracts. It was recognised that the bacterial host dUTPase 

would exhibit background activity in this type of analysis but at this stage it was 

reasonable to suggest that this could be measured effectively in control experiments. 

5.4.2 Expression 

The 16 sequenced UL50 mutant constructs were transformed into the E.coli 

BL21 (DE3)pLysS strain allowing expression under the T7 promoter (see Section 

5.1.4.4). 100ml cultures were grown up from glycerol stocks of transformed bacteria. 

These were induced and expressed according to Section 3.2.1(b). Lysis was performed 

by freeze thawing and extracts were assayed for dUTPase activity by the TLC method 

(Section 3.2.6). 

146 



5.4.3 Crude extract results 

Initial expression experiments produced a range of dUTPase activity in the 

various mutants. It was shown that the specific activity calculated for individual mutant 

constructs was variable between assays and within a narrow range compared to the 

controls. 
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Figure 5.11 Comparison of dUTPase activity in crude extracts 
Activity measurements are given for 6 mutant constructs plus a positive (pET23a1UL50) and negative 
(pET23a) control. Three readings are given for each sample representing three separate expression 
experiments. dUTPase activity is calculated as the amount of dUTP converted to dUMP in one minute 
per mg of total protein. 

Attempts were made to produce consistent activity values for the mutants by 

regulating expression. Culture growth was followed closely and IPTG induction was 

performed only when exact OD600 readings were reached. Although some progress was 

made, it became clear that crude extract analysis was not an acceptable method to 

measure small differences between mutant dUTPase constructs. 

Figure 5.11 shows data for three such expression experiments. The background 

activity from the negative plasmid only control was relatively consistent, however, 

cultures expressing recombinant HSV -1 dUTPase varied considerably between 

different expression experiments. The wt positive control could not be standardi ed by 

this method with activities ranging from 10 Onrn 01 mg-Imin°l (Assay 1) down to 

44nmol mg"lmin-1 (Assay 2). There is a reasonable level of consistency in many of the 

mutants assayed such as 3YIOOA and 3YlOOS. Unfortunately these data are not 

sufficient to analyse the mutant enzymes with any degree of precision due to the small 

range between the negative and positive controls. 
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In every assay a control was set up containing all the reaction components 

except enzyme. This was used to calculate any background degradation of the dUTP 

substrate and was subtracted from the results shown. In this respect, the activity 

measured for the negative control is due entirely to the E.coli host dUTPase. This 

background is high compared to the positive control representing approximately 30% of 

the wt value on average. This results in a relatively small measurement window for the 

mutant enzymes. Although sampling errors would be reduced by multiple assays the 

apparent lack of range is not applicable to the measurement of mutants, especially those 

expected to generate only modest activity changes. This is compounded by instability 

in the top range of the measurement window as seen in mutant XT273S and the wt 

control. 

From the results shown it is apparent that the mutant XT273S consistently 

exhibits activity greater than the wt HSV-l dUTPase. However, it was later determined 

that this result was a product of the sampling method and not a mutation which was 

more efficient than the wt. Purification studies show this mutant actually exhibits 85% 

ofwt activity (Section 5.5.4). Similarly mutant XW275A consistently exhibited activity 

close to background whereas detailed purification and quantification of this mutant 

demonstrated that it possesses 29% ofwt activity (Section 5.5.4). 

The most significant difference between the crude assay data presented here and 

the detailed analysis presented later in Section 5.5 was the method by which specific 

activity is calculated. In crude extract analysis, enzyme activity is measured in terms of 

total bacterial protein. In order to compare extracts in this way it must be presumed that 

the fraction of total protein which is HS V-I dUTPase remains constant between 

expression experiments. Subsequent comparison of activities calculated from crude 

extracts compared to purified enzyme demonstrated that this was not the case. 

5.4.4 Discussion 

The literature contains many examples of experiments where the activity of 

mutant enzyme constructs expressed in E. coli are measured directly in crude extracts. 

The initial line of investigation in this study was to employ a similar methodology for 

the HSV-I dUTPase mutants allowing a fast resolution of results. Although efforts 

were made to overcome the problems, clearly crude extract analysis is not compatible 

with this expression system. 

It was noted that E.coli transformed with only the control plasmid, pET23a, 

grew faster than cultures expressing recombinant HSV -I dUTPase from plasmid 

pET231UL50. This gave a direct indication that recombinant expression was mildly 

toxic to the host bacteria. This could potentially create positive selection pressure for 

any bacteria harbouring plasmids which are deficient at expressing the recombinant 
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protein. It is likely in large bacterial cultures grown over long periods that these non- or 

low-expressing bacteria would outgrow the high expressing bacteria to some degree. 

This effect would be amplified by the use of starter cultures. 

This problem arose due to the fact that even in the absence of IPTG, there was 

still a low level of recombinant expression. This leaky expression was caused in this 

system by low level expression of T7 RNA polymerase from the lacUV5 promoter in 

the pLysS lysogen and subsequent transcription of the UL50 gene. This may explain 

why several rounds of selective single colony isolation, fresh transformation plus the 

discontinued use of overnight starter cultures improved culture growth consistency. 

Cultures grown to saturation, such as overnight cultures, contain large amounts 

of ~-lactamase from the bla gene in the pET plasmid (Studier et aI., 1990). If such a 

culture is then used to inoculate a larger flask, much of the ampicillin in the media can 

be destroyed. Since there is selection for bacteria carrying the pET plasmid only when 

there is a source of ampicillin there may be a resultant outgrowth of bacteria deficient in 

the pET plasmid completely. 

It is likely that these effects contributed significantly to the variability seen in 

the crude extract analysis. Aside from expression itself, further effects would be 

incorporated due to the variation in soluble enzyme recovery. It is probable that this 

property resulted in the misleading mutant data shown in Figure 5.11. Mutant XT273S 

showed consistently higher activity than the wt enzyme. Subsequent purification and 

quantification of this mutant revealed that there was up to a 3 times greater recovery of 

soluble enzyme compared to the wt HSV-I dUTPase. This suggests that the mutant 

dUTPase from this construct may be either expressed to a higher percentage of total 

bacterial protein or is more soluble than the wt enzyme. The activity result is therefore 

explained since crude extract comparison calculates activity in terms of total soluble 

protein. Likewise mutant XW275A appears to have a lower recovery than the wt 

enzyme and may be expressed to a lower degree or is more insoluble than the wt. 

Crude extract analysis is therefore measuring three distinct variables: enzyme activity, 

enzyme expression and enzyme solubility. To separate these three factors it was 

necessary to perform activity analysis on purified quantifiable enzyme. 

Since purification of the wt HSV-I dUTPase had been reasonably well 

optimised (Section 5.2) it was decided to employ the same methodology with a 

selection of mutant enzymes. 

149 



5.5 Detailed analysis of HSV -1 dUTPase mutant constructs 

5.5.1 Introduction 

In order to perform activity analysis in a more controlled environment, attempts 

were made to purify and quantify the recombinant HSV-I dUTPase enzymes. 

Purification of the mutant enzymes was based on the methodology used for the wt 

enzyme (Section 5.2). These enzymes were then quantified by SDS-PAGE allowing 

accurate comparison between each mutant. 

5.5.2 Purification of HSV -1 dUTPase mutants 

To produce sufficient quantities of the mutant HSV-I dUTPase constructs for 

purification, multiple 300ml cultures were grown up in 21 flasks. It was noticed that 

bacterial growth varied considerably for different mutant cultures inoculated at the 

same time and in the same incubator. After consultation with A.-C. Bergman on this 

matter it was discovered that three rounds of single colony selection of E.coli 

BL21(DE3)pLysS followed by fresh transformation with the appropriate mutant 

plasmid improved growth consistency. This method, although time consuming, was 

effective and therefore used for all subsequent expression experiments. 

Initially extraction and purification was performed according to the method of 

O. Bjomberg et al. (1993). The low purity of the recombinant enzymes purified in this 

way presented a major problem. SDS-PAGE revealed multiple bands and evidence of 

protease activity. The majority of mutants purified by this method were deemed 

unacceptable for activity analysis. As attempts were being made to improve the 

existing method, details of the new method became available. Five mutant enzymes 

plus a wt control were extracted and purified according to the modified method as 

detailed in Section 5.2.2. The combination of the highly selective chelator extraction 

plus Mono S chromatography allowed these samples to be purified to a high degree. 

5.5.3 Quantification of HSV -1 dUTPase mutants 

Correct measurement of specific enzyme activity was shown to be highly 

significant in this analysis. There were many variables which had to be considered. 

Firstly expression levels varied between mutants therefore total protein calculation 

could not be used. Standard Bradford assays of the purified sample could not be used 

due to the variability of the extraction, solubility and overall purification of the mutant 

extracts. In order to achieve direct comparison between purified mutant extracts it was 

decided to use SDS-PAGE visualisation. Purified samples were mixed with a standard 

quantity of BSA. Doubling dilutions of these solutions were loaded and run on SDS

PAGE gels. The proteins were visualised by staining the gels with Coomassie brilliant 
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blue R250 solution (Section 3.2.3). Purified enzyme was then directly compared to the 

BSA standards by eye and quantified on this basis (Figure 5.12). 

Gel A GelB 
2 3 4 5 6 7 2 3 4 5 6 

Figure 5.12 Quantification ofHSV-1 dUTPase by SDS-PAGE 
Gel A shows SDS-PAGE of HSV-l dUTPase mutant 5F366Y compared to BSA standards. Lanes 2-7 
show doubling dilutions of BSA standards (black arrow) compared to purified dUTPase (red arrow). Gel 
B shows quantification of mutant XT273S by the same method. The green arrow highlights additional 
bands in this extract indicating a reduction in purity compared to Gel A. This method allows the 
quantification of both the pure sample, Gel A, and the impure sample, Gel B, by allowing a direct vi ual 
comparison of the recombinant dUTPase against the BSA standards. 

The SDS-PAGE method allowed direct quantification of soluble HSV-1 

dUTPase. The two samples shown in Figure 5.12 have a large variation in overall 

purity. Determination of total protein content in these two extracts would not give a 

true indication of the amount of recombinant dUTPase present. This visual method 

allowed direct quantification and therefore correct calculation of specific activity even 

when samples had contaminating protein. 

5.5.4 Specific activity of HSV-l dUTPase mutants 

The method described above for quantifying recombinant enzyme requires the 

production of a good quantity of pure samples. Unfortunately with many of the enzyme 

extracts this was difficult to achieve. The majority of mutants purified by the original 

two-stage column method could not be quantified by the SDS-PAGE method. 

Although enzyme activity was measurable and could be calculated in terms of activity 

per mg of protein, these values were regarded as unreliable. As mentioned previously, 

the relative amount of recombinant HSV-1 dUTPase compared to total protein was 

variable between extracts. The new method for purification based on selective buffer 
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solubility and Mono S chromatography provided enzyme quality much more applicable 

to this quantification method. 

Six HSV-I dUTPase samples were in a state pure enough to allow 

quantification by the SDS-PAGE method. These enzymes expressed well and could be 

easily visualised by SDS-PAGE after purification. Their activity was measured and 

expressed as units per mg of soluble enzyme. Direct comparison between these 

enzymes is given as a percentage ofwt activity (Table 5.3). 

HSV-ldUTPase Code Specific activity • %wt 

construct J.UIlol mg·1 min' I 

WT 18-56 18.7 100 

NC76A 36-11 16.3 87 

XT273S 27-5 15.9 85 

5F366Y 28-5 5.8 31 

XW275A 33-5 5.4 29 

5F366A 34-6 0.17 0.9 

Table 5.3 Activity of purified HSV -1 dUTPase mutants compared to wt 
Activities were calculated by measuring the conversion of [ 3H]dUTP to [ 3H]dUMP (Section 3.2.6) and 
quantification of soluble enzyme was performed as in Figure 5.12. In the nomenclature of NC76A, "N" 
refers to Non-motif since this mutation lies out with any of the conserved motif regions. 
• Note specific activity is measured as the amount of dUMP formed per mg of recombinant HSV-l 
dUTPase per minute. 

The activities of these mutants occupies a wide range from close to wt levels 

down to less than 1 % of wt. Mutant NC76A lies out with the expected active site 

region and was used as a control while the remaining four mutants were designed to 

affect what were thought to be key residues in the HSV-I dUTPase enzyme. These 

mutations are described graphically in the following Section 5.8. 

5.5.5 Discussion 

Efficient separation of the mutant dUTPase enzymes from the bacterial host 

enzyme was achieved by the purification method. E.coli dUTPase is highly soluble in 

the extraction buffers used and would be separated by the chelator fractionation. 

Further confidence is gained from the Mono S purification stage where the E. coli 

dUTPase would not be retarded on the column. Activities calculated can therefore be 

attributed directly to the recombinant enzymes. 

As proposed with the crude extract results, expression levels between individual 

mutants varied considerably. In order to study these enzyme preparations on 

comparable level it was necessary to devise a method of quantification. SDS-PAGE 
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visualisation allowed not only a direct comparison of the enzymes as a single band, it 

also provided an indication of purity directly before activity was measured. This later 

point was of obvious importance since purified enzyme could fall out of solution on 

storage. 

5.6 Truncation of the HSV -1 dUTPase C-terminal region 

5.6.1 Introduction 

Truncation of the HSV -I C-terminal region was used as a quick method to test 

the potential function of the conserved motif 5 region. Data from these experiments 

preceded the site directed mutagenesis studies and gave the first indication of the 

importance of the C-terminal tail in the class II dUTPases. A summary of the methods 

and results is given. 

5.6.2 Truncation of HSV -1 UL50 by peR 

Truncation of the C-terminal portion of HSV-l dUTPase and subsequent 

deletion of the motif 5 region was accomplished by PCR mutagenesis. Four 

oligonucleotide primers were designed to amplify two truncated forms of the UL50 

ORF (-16 and -32 uu) and one full length control. 

~----------------------------------~ I HSV-l UL50 

Tl. 5' (GT)3 CAT ATG AGT CAG TGG GGA TCC GGG GCG 3' 
NdeI 

T2. 5' (GT)3 AAG CTT eTA AAT ACC GGT AGA ACC AAA ACC 3' 
HindIII 

T3. 5' (GT)3 AAG CTT eTA CTC CGC GTC AAA CTC GTT CGT AAA 3' 
HindIII 

T4. 5' (GT)3 AAG CTT eTA TTC GGC GGT TGA GTC CGG AAC ACC 3' 
HindIII 

Figure 5.13 Oligonucleotide design for HSV-I UL50 truncations 
Four oligonucleotides were designed with (GT)3 tails for efficient restriction digestion. Tl corresponds 
to the 5' end ofUL50 and incorporates an NdeI site (underlined) at the start ATG codon. T2 corresponds 
to the 3' end of UL50 with the natural stop codon (bold) followed by a HindIII site. T3 and T4 
correspond to the deletion of 16 and 32 C-tenninal residues respectively by the insertion of an engineered 
TAG stop codon into the ORF (reverse complement CTA shown in bold). These oligonucleotides were 
also flanked by a HindIll restriction site. 
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PCR products were successfully obtained for the primer pairs TIff2 full length 

UL50 (Trunc-O), TIff3 deletion of 16 residues (Trunc-16) and Tlff4 deletion of 32 

residues (Trunc-32). These were digested with NdeI and HindlII, ligated into the 

vector pET23a and transformed into E.coli DHa. Prospective colonies were grown up 

and plasmids harvested. Restriction digest analysis confirmed that the UL50 fragments 

had been inserted correctly. 

Trunc-16 

Trunc-32 

. .... APPSERGTGGFGSTGI (C-term) 

..... PRNPPLL VFTNEFDAEAPPSERGTGGFGSTGI (C-term) 

Figure 5.14 Regions deleted by PCR truncations 
Figure shows the residues deleted from the HSV -1 dUTPase by the insertion of an engineered stop codon 
into the UL50 ORF. The position of motif 5 is shown in yellow. 

5.6.3 Expression and analysis of truncated constructs 

The truncated constructs plus the wt PCR control were transformed into 

BL21(DE3)pLysS bacteria and expressed according to Section 3.2.l(b). To determine 

the initial activity of these mutants, dUTPase assays were performed on crude extracts 

of the two truncated enzymes plus the wt PCR control. No measurable activity was 

found in either of the truncated proteins Trunc-16 or Trunc-32. The wt HSV-l 

dUTPase generated by this PCR method, Trunc-O, exhibited activity corresponding to 

the original pET23a. 

Extracts of Trunc-O and Trunc-16 were semi-purified using the selective buffer 

method (Section 5.2.3) and visualised by SDS-PAGE. Bands were identified 

corresponding to the full length HSV -1 dUTPase for Trunc-O plus a smaller band 

corresponding to the Trunc-16 construct. 

The position of truncation, Trunc-16, can be visualised in the human dUTPase 

structure in Section 5.8 (Figure 5.16a). The 11 terminal residues are shown as a 

wireframe representation and constitute the homologous area that is deleted in the 

shorter of the two truncations (5 C-terminal residues not visible in human structure). 

Using this structure as a model for the HSV-l dUTPase, removal of this portion of the 

enzyme can be seen to expose the substrate to the solvent. It is likely that a catalytic 

environment cannot be achieved without motif 5 and therefore accounts for the 

complete activity loss seen in both truncated HSV -1 dUTPases. 

5.6.4 Discussion 

Truncation of the C-terminal region was performed before data were available 

for the motif 5 mutants. Analysis of one such mutant, 5F366A, in Section 5.5.4 

demonstrated that it possessed less than 1 % of wt activity. Given that this effect was 
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realised by the substitution of a single amino acid in motif 5, it is not surprising that 

deletion of the entire motif 5 region resulted in the expression of truncated proteins with 

no detectable activity. 

Although these truncations proved to be crude in the light of the single residue 

mutations, they were advantageous in highlighting the importance of motif 5 at an early 

stage. The PCR method employed to generate these truncations by deletion of coding 

nucleotides at the terminal end of UL50 proved to be very efficient. Using the same 

strategy it would be of interest to generate more subtle deletions of the C-terminal 

region ranging from 1 to 15 C-terminal residues. This would be a quick way to 

investigate how much of the C-terminal region was required for efficient binding and 

hydrolysis of dUTP. It is likely that a specific truncation would give partial activity. 

This would be a very interesting mutation to obtain kinetic data by stopped-flow 

analysis in order to determine the role of this region in binding and/or catalysis. Further 

experiments were explored with the truncated proteins generated in this study and are 

detailed in the following Section 5.7. 

5.7 Analysis of the C-terminal region with oligopeptides 

5.7.1 Introduction 

A facility in the MRC Virology Unit existed for the synthesis and purification of 

oligopeptides. It was decided to utilise this technology to generate peptides for the 

analysis of the C-terminal region of HSV -1 dUTPase. Previous studies by SDM and 

PCR truncation had demonstrated that this region was important by modifying the 

activity of the enzyme (Sections 5.5 & 5.6). 

The rationale behind the use of peptides was based on the model created for the 

HSV-l dUTPase detailed in Chapter 4. It was envisaged that the C-terminal region acts 

as a flexible clamp, only adopting defmed tertiary structure when the substrate is 

situated in the binding site. If this was indeed the case it is possible that short peptides 

corresponding to the C-terminal tail could disrupt this clamping action by competing for 

the site normally occupied by the tail. It was envisaged that soluble peptides might 

interact at the active site region containing bound dUTP thus preventing the C-terminal 

arm adopting the tertiary structure necessary to complete hydrolysis of the dUTP. 

5.7.2 Design and synthesis ole-terminal peptides 

Five peptides were synthesised corresponding to the C-terminal region of 

HSV-l dUTPase. Each peptide was 16 residues in length and overlapped the adjacent 

peptide by 8 residues (Figure 5.15). The peptides were analysed by HPLC to determine 
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their purity. Peptides 1,2 and 4 had initial purities of 92%, 95% and 96% respectively. 

Peptide 3 (60%) and 5 (69%) were re-purified to over 90% by HPLC. Peptide 3 was 

found to be insoluble in water and although it could be successfully solubilised in 

ammonia it was not used in this study. Lysophilised stocks of the other 4 peptides were 

frozen and reconstituted in water at a concentration of Imglml before use. 

--------.,------------------------------, 
C-terrninal region of HSV -1 dUTPase 

------- -'---------------------,-----------1 
APPS ERGTGGFGSTGI 

Peptide 1 

Figure 5.15 Oligopeptide design for HSV-l UL50 C-terminal region 
Five oligopeptides were synthesised corresponding to the primary sequence of the HSV -1 dUTPase C
terminal region. Peptides were 16 residues in length and overlapped the adjacent peptide by 8 amino 
acids. The motif 5 region is highlighted in yellow showing that the entire motif is present in Peptide 5. 

5.7.3 Analysis of peptides with HSV -1 dUTPase 

Purified wt HSV-l dUTPase was used to determine the effect of the generated 

peptides. Several approaches were used in an attempt to modify enzyme activity by the 

addition of the peptides in solution. Initially wt enzyme was assayed by standard 

methods (Section 3.2.6) to give a stable activity of 50% conversion of dUTP to dUMP 

in 10min at 37°C. The assay was then performed with single peptides added to a fmal 

concentration between 0.5-50 ~glml. No effect was found in these experiments. 

Experiments were then performed at much increased peptide concentrations. 

Purified wt enzyme was diluted to give dUTP conversion values in the region of 10-

15%. Single peptides were then added at a concentration of 800~glml. Control 

experiments were carried out without peptide and also with the substitution of peptide 

with BSA at 800~glml. Again no effect was detected with the peptides at this higher 

concentration. 

5.7.4 Analysis of pep tides with HSV-1 dUTPase C-terminal truncations 

An experiment was designed to test the effect of peptides in truncated versions 

of the HSV -1 wt. The rationale behind this was based on supplying the truncated 

enzyme with peptides in solution corresponding to the deleted sections. It was 

envisaged that if the peptides could mimic the C-terminal section of the HSV-l 

dUTPase in solution then they might restore a low level of enzyme activity. Various 
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concentrations of the mutant Trunc-16 and the peptides were tested but there was no 

detectable restoration of enzyme activity. 

Peptide 5, containing the motif 5 region, was tested in similar experiments 

combined in solution with mutant 5F366A. This mutant had been purified to such a 

degree that although it only exhibited 1 % of wt activity this could be easily measured in 

standard reactions. It was thought that the addition of a correct version of motif 5 in the 

form of a peptide in solution might increase the activity of the mutant. Again no 

activation was seen at peptide concentrations up to 500Jlg/ml. 

5.7.5 Discussion 

Peptide inhibition studies have generally been targeted at the disruption of 

interactions between distinct protein subunits. In this type of study there is usually a 

clear and identifiable region of protein-protein interaction for which peptides can be 

generated to interact. In the case of HSV-l dUTPase it is not clear if there is a real 

protein-protein or protein-substrate interaction between the C-terminal region and the 

active site area. However the crystal structure of the human dUTPase showing the C

terminal arm clamping down on the substrate in the active site merited these peptide 

experiments. Given the high homology of motif 5 between the human and HSV-I 

dUTPases, and indeed all the other class I and II dUTPases, it is not unreasonable to 

predict a similar mechanism. 

The peptides used in these experiments were all 16 amino acids in length. It 

was hoped that this would allow high quality synthesis yet still provide an adequate 

length for the formation of a tertiary conformation. From the E.coli crystal structure 

data it is presumed that the C-terminal 16 residues are disordered and only form a 

dermed structure when dUTP is bound in the active site. Since the reaction products of 

the hydrolysis of dUTP could not leave the active site until this arm becomes disordered 

again, it is likely that the formation of a tertiary clamping structure is an extremely 

fleeting event. Ifa similar case exists in the HSV-I dUTPase then the probability ofa 

peptide ordering itself over the newly bound substrate before the C-terminal arm has a 

chance to clamp may be extremely small. This would essentially mean that any 

modification of enzyme activity would be undetectable by standard methods. 

It is unfortunate that these peptide studies did not produce any insight into the 

mechanism of the HS V -I C-terminal region especially since previous experiments 

demonstrated the importance of this region in catalysis. It may prove worthwhile to test 

these peptides using the more rigorous methods of stopped-flow analysis. 
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5.8 Interpretation of HSV -1 dUTPase mutant data 

5.8.1 Introduction 

The results from Chapter 4 on the modelling of the class II dUTPases allow the 

interpretation of the mutagenesis data in a structural context. The HSV -I mutant 

dUTPase data given in the previous sections stem from two distinct target regions: the 

C-terminal tail containing motif S and the class II specific motif X. The specific 

activity data allow a basic indication of the importance of the mutated residues relative 

to the reduction in activity compared to the wild type enzyme. It does not however 

offer any insight into the mechanism of this effect. To address this, the class II 

modelling data were amalgamated with the experimental mutagenesis data. This 

section is divided between the motif 5 mutants and the motif X mutants. 

5.8.2 Interpretation of the motif 5 mutagenesis data 

Chapter 4 demonstrated the likelihood of the class II active site closely 

mirroring the class I active site. Based on this assumption the class I structural data 

were used as a basic model for the class II active site. Previous to the publication of the 

human dUTPase structure there was no data available for the C-terminal region 

encompassing motif S. Its role in the function of dUTPase was not clear and the HS V-I 

mutagenesis target Phe366 was chosen based on its high sequence conservation 

between the two classes. In the class I dUTPases the motif S Phe is conserved almost 

completely throughout the group (see class I alignment Figure 4.1). The only notable 

exception to this is the FIV dUTPase where the motif 5 Phe has been substituted for a 

Tyr. The motif S Phe is also highly conserved in the class II dUTPases. This is seen in 

the class II alignment shown in Figure 4.7. From the ten species shown only HVS does 

not carry a Phe in motif S where it is substituted by a Leu. 

Based on the primary sequence data two mutations were selected at the HS V -I 

Phe366 locus. A conservative mutation to Tyr (SF366Y) was made on the basis that 

this substitution already exists in nature in the class I FIV dUTPase. In order to assess 

the possible role of a the Phe aromatic ring structure in the functioning of the active site 

it was decided to remove the entire side chain by substitution to Ala (5F366A). To gain 

a visual perspective of the likely function of this residue the human dUTPase structure 

was used to represent the HSV-I mutations. Figure 5.16 shows the position of the 

conserved Phe in relation dUDP bound in the active site. 
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(a) (b) 

(c) (d) 

Figure 5.16 The human dUTPase active site as a model for HSV-l mutagene i 
Four diagrams of the human dUTPase co-crystallised with dUDP. Figure (a) shows the position of the -
terminal tail in relation to the active dUDP. The 11 terminal residues are hown in wir frame 
representation. Figures (b, c and d) are all shown from the same perspective with the viewer looking out 
from the active site cavity towards the bound substrate. Figure (b) shows the wild type ituation where 
the C-terminal tail (yellow) reaches over to cap the active site. The side chain of the motif 5 re idu 
Phe135 (equivalent to HSV-l Phe366) can be seen stacking over the uracil ring of dUDP. Figure (c) 
shows the mutation of this Phe to a Tyr (equivalent to HSV-1 mutation 5F366Y) and (d) to an Ala 
(equivalent to HSV-l 5F366A). 

The human dUTPase structure is a useful model given the main section of the 

C-terminal tail, including motif 5, becomes ordered in the crystal structure with bound 

dUDP. The terminal 5 residues remain unordered but since the fmal residue, Gly136, 

constitutes the C-terrninal span of motif 5, the structure encompasses the mutation sites. 

Figure 5.16(a) shows the position of the C-terrninal tail relative to the substrate. Figure 

(b) shows the side chain ofPhe135 (top left in yellow) acting as a 'Phe-lid' by stacking 

on the uracil ring of dUDP. It was proposed by C. Mol et al. (1996) that this 

conformation may hold the uracil in the appropriate position for cataly is while 

excluding water from the active site. In support of the importance of this interaction the 

same group reported that mutation ofPhe135 to an Ala in the human dUTPase re ulted 

in greatly reduced activity. Based on the class II model in Chapter 4 it is pre urned that 

this conserved motif 5 Phe has a homologous function in the HS V-I active site. 
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Figure 5 .16( c) represents the mutagenic substitution of the HS V-I motif 5 Phe 

to a Tyr (5F366Y). The precise torsion angle of the Tyr side chain cannot be 

detennined in this model but it is proposed to stack on the uracil ring in a homologous 

position to the wt Phe. In physicochemical tenns the difference between the wt and 

mutant side chains is the addition of a hydroxyl group in Tyr compared to Phe. Since 

the aromatic ring is conserved, only minimal disruption to enzyme activity was 

predicted by this substitution. It was therefore surprising that the 5F366Y mutation 

resulted in an activity drop of almost 70% compared to wt. There are several possible 

mechanisms for this reduction. It is clear that Phe is an important residue for the 

correct functioning of the active site. It is possible that even a small torsion angle 

change as represented by the shifted aromatic ring in Figure 5.l6(c) is sufficient to 

incorrectly position the uracil ring of the substrate and therefore reduce catalytic 

efficiency. The additional hydroxyl group of Tyr may also create a steric clash with the 

surrounding cavity edge and disrupt ordering of the tail. Given that the hydroxyl group 

of Tyr is potentially reactive it is also possible that the hydroxyl may participate in 

hydrogen bonding and hinder the release of cleaved substrate. This latter point is of 

potential significance since the reaction product dUMP is a competitive inhibitor. 

Figure 5.16(d) represents the mutation 5F366A where the stacking aromatic ring 

structure is removed completely. The resultant activity drop to under 1% of wt was 

expected in the light of the substantial activity reduction in the more conservative Tyr 

substitution. Loss of the aromatic ring most likely results in positional instability of the 

substrate due to the absence of the uracil moiety clamping mechanism. Figure 5.16(a) 

shows the position of the conserved Phe in the human active site viewed from the 

solvent. From this angle it can be visualised that removal of the bulky Phe side chain 

may also increase the likelihood of solvent penetration into the active site. In fact what 

is most interesting about this mutation is that it results in an enzyme with any activity at 

all. This supports the role of the conserved Phe as a secondary effector and not as part 

of the cleavage mechanism. Overall these data highlight the role of motif 5 in capping 

the active site and creating an efficient catalytic environment. 

5.S.3 Interpretation of motif X mutagenesis data 

Mutagenesis of the motif X region was based on primary sequence conservation 

within the class II dUTPases. The motif X alignment in Figure 4.23 demonstrates that 

HSV-I residue Trp275 is totally conserved between the ten class II species shown. 

Since the functional significance of motif X is unknown it was decided to substitute 

Trp275, the largest conserved side chain in motif 5, to an Ala. The thinking behind this 

mutation was to disrupt any function of motif X while maintaining the correct 

confonnation of the dUTPase active site region. 
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The other target in the motif X region was Thr273 which is conserved among 

seven of the ten class II species in alignment Figure 4.23. This residue is substituted 

by Val, Cys and Ser in EHV-2, EBV and HVS respectively. The mutation XT273S was 

chosen in order to substitute the conserved Thr273 with the residue Ser already found in 

nature. This target was selected in order to make a more subtle change to motif X. 

There was a potential hazard with making a large substitution, as in Trp275 to Ala 

since the structural significance of the residue could not be determined. Motif X lies 

between motifs 4 and 5 and therefore any dramatic local structural change could 

potentially cause misfolding. Based on these assumptions it was decided to select one 

radical change (XW275A) and one conservative change (XT273S) for comparison. 

Motif X is specific to the class II dUTPases and therefore cannot be visualised 

using the class I structures. In order to get some representation of the function of motif 

X and its relation to the mutagenesis data it is necessary to utilise the class II model. 

Figure 5.17(a) shows the predicted position of motif X (coloured red) in the class II 

model. Secondary structure predictions using the Threader program demonstrated that 

this motif region is structurally related to motif 3 (Section 4.7.4) and is shown as such 

in the model. Figure 5.17(b) gives a more detailed representation of the Swiss-Model 

ProMod prediction of the motif X loop region (Section 4.7.5) and the position of the 

two mutation targets XT273S and XW275A. 

(a) (b) 

Figure 5.17 Graphical visualisation ofthe HSV-l motif X mutations 
Figure (a) shows the class II model with the position of motif X highlighted in red. Note that it i in th 
opposite side of the molecule from the active site region. Figure (b) shows the motif X region as 
predicted by the wiss-Model ProMod program. The backbone is highlighted in yellow with the ide 
chains of Thr273 and Trp275 highlighted in green. 

The data gained from the Threader and Swiss-Model programs in Section 4.7 

provide some e idence that the motif X region forms a loop structure. Using these 
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predictions directly the position of the mutations can be superimposed on a model loop. 

The Swiss-Model prediction for the motif X region is shown in Figure 5.17(b). In this 

model, residue Trp275 is situated at the bottom of the loop in the equivalent position to 

Tyr at the base of the motif 3 loop. The residue Thr273 would therefore occupy a 

position on one of the ~-strands close to the bottom of the loop. As mentioned in 

Section 4.7, the predicted motif X loop is quite similar to the class I motif 3 loop 

(Figure 4.4) with a bulky ring side chain pointing inwards at the base of the loop. 

The mutagenesis data demonstrate an activity reduction of 15% for XT273S and 

70% for XW275A compared to wt HSV-l dUTPase. This result is consistent with a 

dramatic residue substitution and a conservative substitution respectively. 

Interpretation of these results in the structural model is difficult. It is however 

interesting that the removal of the largest side chain in motif X results in an enzyme 

which still produces 30% ofwt activity. Comparing this to the motifS mutations above 

suggests that motif X does not play any role in the conversion of dUTP to dUMP. The 

reason for the activity reductions may be due to minor alterations in the folding of the 

protein although further investigation is necessary. 

5.8.4 Discussion 

The data gained from the mutational analysis of the HSV-l dUTPase were 

investigated in a structural context. This allowed a basic insight into the possible 

mechanisms for the reduced activity seen in these mutants. The class I human dUTPase 

structure was used to model the class II motif 5 mutations. This was based on the 

assumption that a homologous active site region is shared between the two classes. 

This is backed up by the mutational analysis of the highly conserved Phe residue in the 

motif S region. From the data it is likely that the HSV -1 C-terminal arm, encompassing 

motif 5, possesses a similar active site capping mechanism to the class I dUTPases. 

Further mutagenesis is required to test the functions of other highly conserved motif 5 

residues but it is likely that a full understanding of this region will only become 

possible with the addition of a class II crystal structure. 

This latter point is also true of the class II specific motif X. Although modelling 

can be used to enhance the mutagenic data, without a structure or defmed function the 

details of this area of the class II dUTPases remain unresolved. There is not yet a 

sufficient quantity of mutagenesis data to determine if the motif X region is a separate 

functional locus from the dUTP hydrolysis site. The data show however that 

substitution of the highly conserved Trp residue, constituting the removal of the largest 

side chain in this motif, results in an active enzyme possessing 30% ofwt activity. It is 

tempting to suggest therefore that the motif X region has a separate function, but again 

further investigation is required. 
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Chapter 6 - Final Discussion 

The dUTPase of HSV-I belongs to a distinct structural subset encoded 

specifically by the (l- and y-herpesviruses. Although four members from the class I 

dUTPase trimers have been crystallised there is no available structure for any member 

of the class II monomers. Attempts to crystallise the HSV-l dUTPase have been 

severely compromised by the poor solubility of the recombinant enzyme expressed in 

E.coli. Several groups are now involved in recombinant expression and crystallisation 

trails of VZV and EBV dUTPases. 

In order to investigate the HSV -I dUTPase it was decided that a structural 

model was necessary. Since no structural data was available for the class II dUTPases 

the model was based on the evolutionary relationships with the class I enzymes. The 

model therefore encompasses the class I structures of E.coli, FIV, EIAV and human to 

arrive at a general structural arrangement for the class II dUTPases. Analysis of the 

class I enzymes allowed not only the characterisation of elements which produced 

overall tertiary structure but also the functional roles of specific residues at the active 

site. The structural similarity within a group containing dUTPases from such diverse 

species was startling especially since no other enzyme has yet been described with an 

active site consisting of regions from all three subunits of a trimer. It can be concl uded 

that these enzymes have evolved to maximise structural integrity, catalytic efficiency 

and substrate specificity. The class I dUTPase therefore provides a strong basis for the 

modelling of the class II enzymes which are most likely variants which have diverged 

from an ancestor common to both classes. 

The class II dUTPases proved to be substantially heterogeneous compared to 

the class I enzymes and the model had to be flexible enough to accommodate these 

differences. Analysis at the primary sequence level provided a method for directly 

comparing the two classes. This was achieved by generating a class I doublet sequence 

and applying different alignment methods. Secondary structure predictions revealed 

that the overall structure of the class II monomer approximated two copies of the class 

I subunit structure joined as a single protein chain. This led to the hypothesis that the 

intragenic duplication had effectively duplicated the class I subunit structure to produce 

a functionally active monomer. This model was supported by hydrophobic modelling 

data. An evolutionary pathway was described whereby dUTPase functionality could be 

maintained utilising a dimer intermediate. Although this model satisfies the criteria for 

assembly of a functional active site it does not directly address the question as to why 

the herpesviruses have adopted a different structural arrangement compared to the 

diverse class I species. 
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Investigation into a conserved region between the class II dUTPases and the p

herpesvirus homologues (motif X) provides a possible solution. From a general 

energetic point of view it appears that the provision of a trimer with three active sites is 

more favourable that a monomer representing the mass two subunits generating only 

one active site. Additionally it is noted that the p-herpesvirus do not encode their own 

dUTPase and are presumed to utilise the cellular class I enzyme. As previously 

discussed, the replicating environment is presumably critical in terms of the necessity 

for a virally encoded enzyme. What is interesting is that not only do the (l- and y

herpesviruses not utilise the cellular class I dUTPase, or encode a class I enzyme like 

several other virus families, but they encode a substantially variant form. The 

properties of this enzyme that make it evolutionarily more advantageous remain 

unclear. What is apparent is that the class II variant takes up double the genome space 

and is predicted to be less energetically favourable that the class I version. 

It is possible that the class II dUTPases perform an unknown function 

specifically related to the replication of these herpesviruses. It is also possible that the 

motif X region in the p-herpesvirus dUTPase homologues represents a functional site 

in a protein without dUTPase activity. If this was indeed the case the class II molecule 

could potentially possess dual functionality, satisfying the conservation pressure 

inherent in the double length monomer. To investigate this theory further, this region 

was targeted for modelling and mutagenesis studies. 

The absence of any class II structural data make local prediction difficult. The 

three methods used (secondary structure prediction, protein fold threading and primary 

sequence homology modelling) arrived at a general consensus but this is not enough in 

itself to predict potential function. Motif X was predicted to be structurally related to 

the ancestral motif 3 despite the almost complete lack of primary sequence similarity. 

In the dUTPase active site, the motif 3 loop is the basis for nucleotide binding and 

specificity. If there was an additional function attributable to motif X, nucleotide 

binding would be a potential candidate. Mutagenesis of this region modulated 

dUTPase activity relative to the severity of the residue substitution and although a 

structural prediction exists, the effect of these mutations on general folding were not 

determined. Without further mutagenesis data, and ideally a class II crystal structure, 

the disassociation of the motif X region from dUTPase activity cannot be substantiated. 

Investigation of the replication machinery of HSV -1 has revealed many 

interactions between specific enzymes. An extension of this localisation is seen in 

bacteriophage T4 in which enzymes involved in nucleotide metabolism are linked in a 

dNTP synthesising complex which may in turn be linked directly to the enzymes 

localised at the DNA replication fork. The advantages of such co-localisation are clear, 

generating DNA building blocks for replicative enzymes in a confined physical space. 
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An evolutionary step forward could be envisaged as a single enzyme involved in 

nucleotide metabolism with dual functionality. Future work involving a more detailed 

analysis of the motif X region in the class II enzymes would prove interesting, 

especially if paralleled with investigation into the J3-herpesvirus homologues. Even if 

the class II dUTPases do not posses a secondary function it would be interesting to 

reveal the function of the J3-herpesvirus homologues. 

The mutagenesis studies in this course of study highlight several potential areas 

of homologous function between the class I and class II enzymes. The class II model 

predicts an overall structural consensus for the active site regions between the two 

classes. Truncation of the C-terminal arm containing motif 5 demonstrated that this 

region was necessary for the function of the HSV -I dUTPase. Site-directed 

mutagenesis allowed these data to be refined by identifying the importance of a key 

residue which is highly conserved between the class I and class II dUTPases. Phe 366, 

the HSV -I equivalent of Phe 135 in the human dUTPase, is predicted to provide a 

homologous function to the class I enzymes. Even conservative substitution of the 

residue produced a dramatic reduction in catalytic activity. The position of this 

mutation, only six residues from the C-terminus, gives some confidence that it is not 

disrupting the overall folding of the enzyme. It is likely that this residue is conserved 

for its capping function, interacting directly with the uracil moiety of the bound 

substrate. It would be interesting to apply the circular dichroism (CD) techniques used 

by Vertessy et af. (1998) to investigate the conformational shift in the C-terminal arm 

of the E. coli dUTPase during substrate binding. Utilising CD techniques, 

conformational change of the HSV-l C-terminal arm induced by substrate binding 

could be determined. Furthermore, using the HSV -1 mutants, it could be tested 

whether this mechanism was disrupted by mutation of a single motif 5 residue. 

The existence of a substrate capping mechanism homologous to that revealed in 

the class I dUTPases prompted the investigation into peptide inhibitors. The potential 

for conformational disruption of the C-terminal arm structure was investigated. Short 

peptides corresponding to the HSV-I C-terminal sequence were combined in solution 

with HSV -1 dUTPase under varying conditions. No inhibition was found, which may 

reflect the inability of the peptides to adopt a structural conformation capable of 

disrupting the capping mechanism. However, peptide inhibitors have traditionally been 

used to disrupt subunit interaction rather than conformational folding within a single 

protein species. There are energetic barriers which must be considered since the local 

protein chain is competing with a peptide in solution. In the absence of a class II 

structure it would be interesting to apply this experiment to the class I human dUTPase. 

The structural information available for the human dUTPase C-terminal arm would 

allow a more defined approach to the design of peptide inhibitors for this region. 
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The original experimental strategy combining site-directed mutagenesis with 

crude assay analysis proved to be inappropriate for the analysis of HSV-l dUTPase. 

This substantially reduced the number of recombinant enzymes which could be tested. 

The original strategy was compromised by the inherent insolubility of the recombinant 

enzyme expressed in bacterial systems. This unfortunate property of the HS V-I 

enzyme has now been well documented by a number of groups, not least those involved 

in crystallisation trials. It is possible that continued site-directed mutagenesis studies 

will eventually produce a recombinant mutant with a higher solubility although 

crystallisation of a native class II enzyme is more valued. It may be useful in parallel 

experiments to clone and express the HSV -2 dUTPase. Although this enzyme has high 

sequence conservation with the HSV-l dUTPase, this does not preclude the possibility 

that it may be more soluble in bacterial expression systems. The advantages of a highly 

soluble class II dUTPase for general experimental analysis are clear, allowing easier 

expression, extraction, purification and kinetic analysis. 

Overall, the analysis of the HSV -1 dUTPase proved to be a useful model for the 

class II enzymes. The modelling work has allowed a more in-depth evaluation of the 

evolutionary relationships between the two classes. Although the mutagenesis studies 

did not yield as much information as was initially anticipated, the common 

functionality predicted between the two dUTPase classes by structural modelling was 

supported. 
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