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Abstract

This thesis concerns inferring core collapse supernova physics using gravitational

waves. The mechanism through which the supernova is re-energised is not well

understood and there are many theories of the physical processes behind the so

called supernova mechanism. Gravitational waves provide an opportunity to see

through to the core of a collapsing star. This thesis provides an algorithm that

will analyse a detected gravitational waveform from a core collapse supernova and

identify the supernova mechanism. This is achieved through the use of Bayesian

model selection and a nested sampling algorithm. This Bayesian data analysis

algorithm is called the Supernova Model Evidence Extractor (SMEE). SMEE is

designed to classify detected gravitational waveforms from core-collapse supernovae

and 3 different versions which employ different types of data have been developed.

These 3 versions utilise time domain (which has been fast Fourier transformed into

the frequency domain), power spectrum domain and spectrogram data and the

success of each version is investigated.

Firstly, results for a simplified idealised version of SMEE are discussed. In this

scenario only a single gravitational wave detector is considered and the effect of the

sky position of the source are ignored. Next, techniques which can be employed to

improve SMEE are investigated. Finally, SMEE is tested using 3 gravitational wave

detectors and the full effect of the time delay between detectors and the antenna

response on each detector is included. As well as this, recoloured detector noise

from the Science runs from both LIGO and Virgo are utilised here. This thesis

demonstrates that each version of SMEE is successful and are able to infer the

supernova mechanism for a galactic supernova. The spectrogram version of SMEE

is deemed the most accurate and it is recommended that this technique should be

further explored in the future.
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Chapter 1

Introduction

For most of its history, the field of astrophysics has been limited to observations in

the electromagnetic spectrum. While this has led to countless scientific discoveries

there are still many mysteries waiting to be solved. The detection of gravitational

waves will open up a completely new and complementary way of understanding the

universe. Astrophysical source properties which were previously imperceptible in

the electromagnetic spectrum will be detectable in the gravitational wave spectrum.

One possible source are core collapse supernovae and the motivation of this thesis

is to demonstrate how gravitational waves can be used to better understand these

events. This Chapter provides a brief introduction to gravitational waves and the

instruments which are used to detect them. There is an introduction to the likely

sources of gravitational waves, in particular supernovae, which will be the focus of

this thesis.

1.1 Introduction to Gravitational Radiation

Gravitational waves (GW) are ripples in the curvature of spacetime that carry

information about changing gravitational fields. They were predicted in one of the

greatest scientific breakthroughs of the 20th century made by Einstein when he

developed his General Theory of Relativity in 1915 [36]. This theory revolutionised

the way in which physicists perceived the nature of spacetime. It described gravity

in terms of the geometry of spacetime curved by the presence of massive objects.

1
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Figure 1.1: A gravitational wave travelling into the page stretches and compresses spacetime along
perpendicular axes. Upper diagram: For free masses initially arranged in a circle, a gravitational
wave with a period, T, stretches and then compresses space along the vertical axis and vice versa
along the horizontal axis. This is called the ”+” polarization state of the wave. Lower diagram:
The ”×” polarisation state stretches and compresses space along axes tilted 45 degrees from
vertical [67].

This is often described by the phrase “matter tells spacetime how to curve, and

spacetime tells matter how to move” [129]. Many consequences of this theory have

since been proved such as the bending of light in a gravitational field, shown by

Eddington in 1919 [35] and the precession of the perihelion of Mercury [124].

Gravitational waves are a consequence of small perturbations to the local space-

time metric in the linearised Einstein Equations, a weak-field approximation of a

more general relation between the matter and energy distribution and the curvature

of spacetime known as the Einstein Equations. The solution is simply expressed as

a plane wave with a propagation speed equal to the speed of light.

An illustration of the effects of gravitational waves can be shown in the defor-

mation of a ring of particles in perfectly flat space. When a gravitational wave

propagating perpendicular to the plane of the ring passes through this space it

causes spacetime to oscillate i.e. it will make the test particles become closer or

further apart from each other, as shown in Figure 1.1. As in the case for electro-

magnetic signals; gravitational radiation has two independent polarisation states.

However, the angle between the two states is π/4 rather than π/2 [99]. These two

polarisations are labelled plus (+) and cross (×). The gravitational strains (a di-

mensionless measure of the magnitude of the spacetime perturbation in terms of

the proper distance between particles) are denoted h+ and h×.
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1.1.1 Amplitude of Gravitational Waves

The Einstein field equations are often solved numerically with post-Newtonian ap-

proximations to infer the amplitude of gravitational waves due to the fact they are

too complicated to be solved analytically. The lowest order post-Newtonian approx-

imation for the emitted radiation is the quadropole formula [99]. This depends on

the mass density, ρ, and the velocity fields of the Newtonian system. The amplitude

at its lowest order is then the tensor,

hjk =
2

r

d2Qjk

dt2
, (1.1)

where r is the distance from the source and Qjk is the second moment of the mass

distribution,

Qjk =

∫
ρxjxkd

3x. (1.2)

The internal dynamical motion of the source produces gravitational waves de-

pendent on how spherically asymmetric the system is. For example, a symemetric

star pulsating spherically would not produce any gravitational radiation, whereas a

non-radial oscillation or a spinning non-asymmetric object would generate gravita-

tional radiation. How much the shape of the system changes can be measured from

the non-spherical part of the kinetic energy, Ens
kin i.e the energy which is converted

into gravitational wave emission. Thus the shape changing dynamical motions of

the system provoke gravitational wave to oscillate with an amplitude (for each po-

larisation) [117],

h ∼ G

c4
Ens

kin

r
∼ 10−20

( Ens
kin

Msc2

)(10Mpc

r

)
, (1.3)

where Ms is the mass of the Sun and 10 Mpc is the approximate distance scale

for the local group of galaxies. This demonstrates the small amplitudes of the

gravitational field that needs to be detected on Earth, typically on the order of

10−20Hz−1/2 .

1.1.2 Observed Evidence for Gravitational Waves

The first observed evidence of the existence of gravitational radiation came from

radio measurements of the binary pulsar PSR B1913+16, a binary consisting of two
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neutron stars closely orbiting each other at relativistic speed [126]. For this particu-

lar binary, tracking the evolution of their orbital period can be achieved through the

analysis of radio pulses emitted from one of the neutron stars. The shrinkage of the

orbit was accurately established after eight years of measurements. This data was

then compared to that predicted by general relativity as a consequence of energy

loss through the emission of gravitational waves. There was only a discrepancy of

< 0.5% between the measurement and prediction thus providing strong evidence to

support the existence of gravitational radiation albeit through the use of indirect

evidence i.e where the gravitational waves have not been measured through the use

of a detector. Since then, this study has been repeated with various binary pulsar

systems and the shrinkage of their orbits due to gravitational wave emission has

been confirmed [127].

1.2 Gravitational Wave Detectors

It has been nearly a century since gravitational waves (GWs) were first theorised

but no direct detections have been made. The first GW detectors typically consisted

of a cylinder of aluminium of around 3 metres in length with a mass of 1000 kg.

These “bar detectors” [122, 12] had a narrow resonant frequency of 500 Hz - 1.5

kHz, thus a passing GW at this frequency would cause the detector to vibrate.

This type of detector is affected by noise that greatly exceeds the amplitude of the

vibrations caused by the GW so coincident detections from two or more detectors

are required to make reliable claims of detection. Despite a great deal of work to

resolve the limitations of bar detectors, no definitive evidence exists of a significant

event. While this type of detector is still being used [5], they have fallen out of

favour and the use of ground based interferometers has come to be the dominant

type of detector. These interferometers are preferred over bar detectors due to the

fact they are sensitive over a wide band of frequencies, so they can be used to detect

GWs from various sources. These detectors are predominantly made up of two arms

of the same length, perpendicular to each other, where laser light is sent down each

arm and reflected off test masses (Figure 1.2). As a GW travelling through space

passes through the detector it will slightly alter the lengths of the interferometer

e.g. making one longer and the other shorter in the same fashion as for the ring

of particles described in Figure 1.1. This relative change in lengths can then be

measured and the characteristics of the GW, and thus the source that emitted the
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Figure 1.2: Schematic of a laser interferometer [130]

GW, can be determined.

In this case, if two test masses were picked a length L apart a GW will cause a

strain
∆L

L
=
h

2
(1.4)

between the masses of approximately 10−21 metres, so for a distance of say 1 kilo-

metre a change in length of 10−18 metres would need to be measured. This demon-

strates the difficulty of gravitational wave detection and why detectors need to be

able to perform extremely precise measurements if they are to make a significant

detection.

GWs are made of two different polarisation states, plus and cross, denoted by h+

and h×. The directional sensitivity of a detector depends on the polarisation of the

incoming wave, thus, two antenna patterns (one for each polarisation state) need to

be taken into account, see Figure 1.3 for an example of a typical interferometric GW

detector antenna pattern. The total gravitational wave strain is then a combination

of these two polarisation states, adjusted by the antenna responses to reflect the

directional sensitivity,

h = F+h+ + F×h×, (1.5)

where h is the GW signal, F+ and F× are the antenna responses.
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Figure 1.3: Antenna patterns for GW detector [4]. Interferometer antenna response for (+)
polarization (left), (×) polarization (middle), and unpolarized waves (right). Here the colours
represent the scale of the antenna response with red indicating where it is at the maximum i.e
where the source is perpendicular to the plane of the detector. Blue represents where the source
is parallel to detector and the antenna response is at its minimum.

The antenna response, F+ and F× are given by:

F+ =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ

− cos θ sin 2φ sin 2ψ (1.6)

F× =
1

2
(1 + cos2 θ) cos 2φ sin 2ψ

+ cos θ sin 2φ cos 2ψ (1.7)

where θ is the polar angle of the sky position of a source of gravitational waves and

φ is the azimuthal angle of the sky position of the source. ψ is the local polarisation

angle of the source [96].

Figure 1.4 demonstrates this by showing the polar angle, θ, and azimuthal angle,

φ, at which the waveform arrives at the detector. On the left hand plot the decector

plane represents an interferometer with two arms, x-arm and y-arm with unit vectors

êx and êy. This plane of the sky, representing the direction a GW is travelling from,

is offset by θ and φ from the detector plane. In the case of the left plot the two

vectors êRx and êRy are parallel to êx and êy i.e the plane of the sky has no rotation

relative to the detector plane. However in the right hand plot, a rotation angle,ψ,

has been applied and êRx and êRy are now offset to the directions represented by α

and β. This angle is the polarisation angle, ψ, in Equation 1.7.
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Figure 1.4: Left The relative orientation of the sky and detector frames Right The effect of a
rotation by the angle ψ in the sky frame [99]

1.3 Network of Gravitational Wave Detectors

1.3.1 First Generation of Ground Based Interferometers

Over the last 2 decades a worldwide network of detectors has been established.

This network is necessary due to the fact that laser interferometers have a poor

directional sensitivity as they only measure a projection of the wave passing through

the detector. A network of detectors can then be used to locate the source’s sky

position by triangulation as well as increasing the potential signal-to-noise ratio.

Detectors of different size and sensitivity are spread all over the world. The

largest current detectors are the LIGO detectors in Livingston, Louisiana and Han-

ford, Washington in the United States of America. Both of these sites house GW

detectors with 4km arms with Hanford also having a second detector with 2km arms

[92]. In Cascina, Italy, there is the French Italian detector called Virgo which has

arm length of 3km [52]. There is also the 600m arm length GEO detector in Ruthe,

Germany [29], see Figure 1.5.

The LIGO Scientific Collaboration (LSC), which consists of members from around
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Figure 1.5: The noise spectral density as a function of frequency for the LIGO, Virgo and GEO600
detectors [51].

the world and coordinates operation of both the LIGO detectors as well as GEO600,

measured science quality data from 2002 until 2007 through a series of Science Runs.

Throughout this period the Virgo and GEO600 detectors also conducted Science

Runs. Figure 1.5 shows the noise amplitude spectral density of these detectors i.e

the frequency band and strain that the detectors were sensitive. A discusion of the

noise and its sources can be found in Section 1.4. No detection of GWs were made

and the LIGO and Virgo detectors were taken offline to undergo an upgrade to the

Advanced detectors.
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1.3.2 Second Generation of Ground Based Interferometers

In the coming years both LIGO and Virgo will be upgraded to the so called 2nd

generation detectors, Advanced LIGO [121] and Advanced Virgo [30], which will

both use existing sites and infrastructure. They will both have many improve-

ments over their predecessors such as implementing higher laser power, new optics,

monolithic suspensions and improved seismic isolation. There is a plan to move

the second interferometer from Hanford to India which will greatly improve source

localisation [118].It is expected that a five detector network comprising of the in-

terferometers at Livingston (L) and Hanford (H), Virgo (V), the Indian detector

known as LIGO India [118], as well as a Japanese detector known as KAGRA which

is currently under construction in the Kamioka mine in Japan which will have 3km

arm length [11], will reach full sensitivity over the next decade, (see Figure 1.6).

For Advanced LIGO there will be an increase of sensitivity of a factor of 10 which

will increase the the number of GW emitting sources by a factor of a 1000. This is

due to the fact that the distance to which a detection can be made will increase in

every direction and will enable the study of a significant number of astrophysical

sources.

1.3.3 Third Generation of Ground Based Interferometers

Looking further into the future there is a proposal to build a 3rd generation detector

called the Einstein Telescope (ET) somewhere in Europe [42]. ET is expected to

be composed of three 10km arm length detectors arranged in a triangle formation

in three underground tunnels. The idea is that it will utilise new technologies to

improve sensitivity, such as cryogenics, to reduce thermal noise.

This would greatly improve upon the sensitivity of the Advanced detectors, by

approximately a factor of 10 as well as expanding the frequency band. This means

that ET will be first detector expected to allow astrophysicists to begin regular

gravitational wave astronomy [98].
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Figure 1.6: The amplitude noise spectral density as a function of frequency for the Advanced
LIGO, Advanced Virgo and KAGRA (labelled as LGCT) detectors [99].
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1.3.4 Future Space Based Detectors

One of the limitations of ground based interferometers is that of seismic and gravity

gradient noise, (Section 1.4). The only way to avoid these sources of noise is to

build space-based interferometers. This would allow signals at low frequencies to

be detected. The latest design for such a detector is eLISA, the Evolved Laser

Interferometer Space Antenna.

The detector will consist of two interferometer arms with three spacecraft in

a triangular formation with arm lengths of 106 km [6]. The aim is to put the

arrangement of spacecraft in a solar orbit at the the same distance from the Sun as

the Earth. It would trail Earth’s orbit by 20 degrees. The test masses which reflect

the laser light are designed so that the spacecraft floats around the mass using

extremely precise thrusters to ensure the mass can float freely in space. eLISA

will have a frequency bandwidth of 0.1 mHz to 1 Hz and is expected to detect

GWs from sources such as the merging of super-massive black holes and possible

stochastic signals from the early universe [43], (see Section 1.6).

1.4 Noise Sources for Ground Based Interferom-

eters

The typical bandwidth of ground based interferometric detectors range from 40 Hz

to 6 kHz. Across this detection bandwidth the spectrum of the noise is not flat

but shows three distinct regions, (see Figure 1.7 for the noise curves for Advanced

LIGO). At lower frequencies (<50Hz), the dominant noise source comes from Seis-

mic noise, represented by the brown curve in Figure 1.7, due to motion on the

surface of the Earth as well as fluctuations underground. In the range of around 50

- 150 Hz thermal noise, represented by the blue curve in Figure 1.7, due to Brown-

ian motion in the optics and suspensions dominates. At frequencies above 150 Hz

the shot noise is the dominant cause of noise, represented by the purple curve in

Figure 1.7.
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Figure 1.7: Plot of amplitude spectral density contributions representing each source of noise [57].
These contributions can be combined to calculate the total noise shown in the black curve.
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1.4.1 Seismic Noise

Vibrations in the ground can come from seismic activity, man made objects such

as trains or cars and the waves crashing into the continents. This will limit the

sensitivity of interferometers at lower frequencies. A system of complicated isolation

systems are used to suspend the main optics within the interferometer in an attempt

to reduce the effects of seismic noise. Multi-stage pendulums, which are good filters

for reducing motion above their natural frequency, are used and are located on

isolation platforms [90]. Technologies such as Hydraulic External Pre-Isolators are

now being employed in Advanced LIGO to further improve sensitivity at small

frequencies [95].

1.4.2 Thermal Noise

In the interferometers most sensitive region, that of a few hundred Hz, vibrations of

the optics or suspensions due to Brownian motion is the dominant source of noise.

To reduce this noise the resonant frequency of the suspensions systems and optics

are made to be far away from the frequencies of interest, on the order of a few Hz

for the suspensions and several kHz for the optics. By using material with a high

quality factor the noise can be reduced by confining it to a narrow bandwidth around

the resonant frequency. This allows interferometers to operate at room temperature

however thermal noise could also be reduced by employing cryogenic cooling which

will be employed by the Japanese KAGRA detector [110].

1.4.3 Shot Noise

Above a few hundred Hz the noise caused by the random arrival time of the pho-

tons within the laser beam, which causes fluctuations in the intensity of the light

detected, will dominate. Using a higher power laser which increases the number of

photons would help reduce this source of noise. Shot noise can also be reduced by

using power recycling techniques which increase the amount of power within the

interferometer [9]. Advanced LIGO will employ a laser which is more powerful than

that used in initial LIGO as well as installing a signal recycling mirror which will

aid in reducing shot noise.
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1.4.4 Radiation Pressure Noise

Increasing the power of the laser causes the momentum transferred to the mirrors,

as photons are reflected by them, to increase. Therefore there must be a trade-off

between this radiation pressure noise and shot noise. To do this the quadrature

sum of the two is minimised which occurs when the two noise sources are of equal

amplitude at some target frequency [44].

1.4.5 Gravity Gradient Noise

This is a form of noise is caused by the direct gravitational coupling of mass density

fluctuations as well as noise from changes in air pressure [89]. This form of noise

will limit the sensitivity of the Advanced detectors with a frequency limit of around

1 Hz and below. A possible option to eliminate this effect is to put detectors in

space such as the proposed eLISA mission (Section 1.3.4). However, there are two

solutions which reduce this effect on Earth. One is to build the detector underground

where most of the gravitational field effects will be reduced as they mostly occur

at the surface [14]. The Japanese KAGRA detector is currently being built in the

Kamioka mine and this technique has also been proposed for the Einstein telescope.

Another solution is to build seismometers and place them around the detector. By

calculating the effect of motion it can be subtracted from the detector output [89].

1.5 Multi-messenger approach to detection

A network of GW detectors will greatly improve our understanding of many astro-

physical phenomenon but there are many sources that will emit electromagnetic or

neutrino signals as well. Thus the detection of a GW will complement and add to

the data accumulated from a source.

In the case of a coalescing black hole binary, perturbations of huge magnetic

fields could emit EM radiation. What is expected to be far more common is a

variety of EM radiation such as radio and gamma rays being emitted from neutron

star binaries, magnetars or core-collapse supernovae, see Section 1.6.
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As discussed, GWs are difficult to detect and any correlation in direction with

neutrino or EM telescopes would therefore greatly improve inferences of the source’s

sky position and possibly its host galaxy [45]. The reverse could also occur: if the

triangulation of the source’s position could be inferred accurately from the GW

signal, optical telescopes could then be pointed in that direction and much more

information about the source could be found. Similarly the light from a supernova or

a gamma ray burst (GRB) could indicate the time of the event drastically reducing

the amount of data needed to be searched over from the GW detectors.

The multimessenger approach will not just help in determining the time or

arrival and sky position of the signal but will also complement the different types

of physics that can be learned. For example, any GW detected will not be blocked

by interstellar dust or any other light from the event thus allowing a direct probe

of the internal physics of a system. This would greatly improve the understanding

of events such as core collapse supernova and the mechanism behind the event, (see

Section 1.6.4).

1.6 Sources of Gravitational Waves

GWs are caused by the acceleration of masses and ground based detectors are well

suited to detect four different types of GWs: continuous wave, compact binary

coalescence (CBC), stochastic and burst. These can be roughly separated into two

categories. Burst and CBC signals are short duration signals of around a second for

the first generation of detectors. In the case of second generation detectors, CBC

signal may be a few minutes in length. The second category consists of continuous

wave and stochastic signals which are long term signals. These different types of

signal will be discussed in more detail in the following sections.

1.6.1 Continuous Emission

Sources of continuous emission come from Neutron Stars which are the products of

a core collapse supernova, (see Section 1.6.4), and typically have a mass of around

1.4M� and a radius of 10 km. Because of this they have an extremely high density
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and a very high rotation speed due to the conservation of angular momentum with

periods of a few seconds right up to a few milliseconds. Due to the conservation

of magnetic flux they have very strong magnetic fields ranging from 104 T for

recycled millisecond pulsars to 1011 T for magnetars. To emit a GW signal a

Neutron Star must be deformed or aspherical. These deformities could be due

to precession, different vibrational modes such as fundamental modes excited by

glitches, nuclear explosions which would lead to a short burst emission or by non-

uniform heating of the crust through accretion in low-mass x-ray binary systems

causing non-axisymmetric density perturbations. Continuous emission could be

caused if the source is triaxial meaning they have bumps or mountains on the surface

caused during its formation or by magnetic fields. If these triaxial neutron stars are

detected via GW emission they could help determine the equation of state and the

number of galactic millisecond pulsars that currently cannot be seen. Vibrational

modes could also help constrain the equation of state and explain glitch mechanisms

and the energetics during a soft gamma ray repeater and an anomalous X-ray pulsar

flare [40, 39].

1.6.2 Stochastic

Stochastic GWs can be split into two possible sources. The first type of signal is

thought to be from the early moments of the Universe, like the Cosmic Microwave

Background Radiation in the electromagnetic spectrum. It is a flux of gravitons

left over from when the Universe became optically thin to gravitons, just before

Big Bang Nucleosynthesis occurred. It would show up as a flat spectrum and offer

observations of the earliest possible moments in our Universe [94].

The second type of signal comprises a large number of weak, discrete GW signals

which are too small and too numerous to be separately detected by ground based

detectors. These signals could come from white dwarf binary systems or from extra-

galactic black hole binary systems.

These signals are extremely difficult to detect by ground based detectors but

future interferometers such the eLISA may have success in finding stochastic GWs

[3]. This would allow a new field of study into the background of local sources as

well as the early time cosmology of the Universe.
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1.6.3 Compact Binary Coalescence

Compact Binary Coalescences occur in binary systems that contain two neutron

stars or theoretically a neutron star and a black hole or two black holes [37]. Black

Holes are the final stage of massive stars which have collapsed to the point that

they form a singularity. They are so dense that even light cannot escape their

gravitational field and can come in many different sizes. The smallest are as much as

100 times the mass of the Sun and occur either by themselves or in a binary system.

Intermediate mass black holes [38] are still to be confirmed but are predicted to have

masses ranging from 100− 1000s M� and could be the cause of Ultra-luminous X-

ray sources in other galaxies. They are thought to be caused by mergers with other

black holes and so they could be sources of GWs during these mergers although it

is still not known what the best approach is to model these collisions. The most

massive black holes are Super Massive Black Holes which exist at the centre of

galaxies. They can have masses greater than 104 M� and are expected to be strong

emitters of gravitational waves during galaxy mergers [103].

Many double neutron star systems are known to have a decay in their orbit

which agrees with what would be seen in gravitational wave emission [125]. As their

orbits decay they will eventually coalesce in a process composed of three stages; the

inspiral, merger and ringdown phases which can all be modelled, albeit with many

approximations. In particular the inspiral phase could be useful in cosmology as

they can be used as “standard sirens”. The amplitude of the wave only depends on

its distance and the chirp mass,

Mchirp =
(m1m2)

3
2

M
1
5

(1.8)

where M is the sum of their masses. If there is an EM observation made the system’s

redshift can also be measured and these two values can be used to constrain cosmic

acceleration much more accurately than other methods [59].

1.6.4 Bursts-Supernovae

One source of burst emission (non-repeating events that occur in the order of mil-

liseconds) are supernovae. These are enormous stellar explosions which can briefly
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outshine an entire galaxy which happen when a star is no longer able to support

itself gravitationally and so undergoes a violent collapse. Supernovae are classified

into different groups depending on the spectral lines found in their light curves.

Type I show no hydrogen lines but do have helium or silicon lines and are caused

by the collapse of a White Dwarf which undergoes a thermonuclear explosion af-

ter accreting mass from a star in orbit with it. This causes a mostly spherically

symmetrical explosion and so will not emit gravitational waves, however they are

very useful for use as standard candles in the cosmological distance ladder. Type

II show hydrogen absorption lines and occur when a massive star is no longer able

to support itself through nuclear fusion and undergoes a core collapse into either a

neutron star or a black hole depending on its mass and are predicted to be good

sources for gravitational waves [109]. They occur at a rate of about 0.1 to 0.01 per

year for a Milky Way equivalent galaxy. This may seem like a very small number

but due to the vast number of galaxies there are many of these every year, for

example there are about 30 per year in the Virgo cluster.

The processes that occur during a supernova are described through the use

of many complex theories including General Relativity, Magnetohydrodynamics

(MHD) and nuclear physics. The first step is the core collapse of the iron core

to form a protoneutron star followed by a supersonic infall of material onto the

core. This material will then bounce off the core but does not have enough energy

to escape its gravity and there are different theories as to what gives the material

the extra boost it needs including neutrinos re-energising the material. All of these

processes will show up in the gravitational waveform but different mechanisms will

give a range of amplitudes for different stages of the supernova as well as having a

different shape depending on the physical processes happening during the collapse,

thus the chances of detection vary depending on the mechanism being used. The

analysis of GWs along with neutrinos will enable us to discover what is happening

in the core collapse and so if they are detected it could allow us to explain each

stage of a supernova for the first time.
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1.7 Gravitational Waves from Supernovae

1.7.1 Neutrino Mechanism

The gravitational collapse of the iron core and the subsequent evolution of the

nascent hot puffed-up protoneutron star to a cold compact neutron star releases of

order 300 B (1 B = 1051 erg) of energy, ∼99% of which is emitted in the form of

neutrinos of all flavors [15]. If only a small fraction of the energy released in neu-

trinos is re-absorbed behind the stalled shock, leading to net heating, an explosion

could be launched and endowed with the energy to account for the observed range

of asymptotic explosion energies of 0.1-1 B of a typical core-collapse supernovae [53].

This is the main theory behind the neutrino mechanism of core-collapse supernovae,

which, in its early form was proposed by Arnett [10] and Colgate & White [28], and

in its modern form by Bethe & Wilson [16].

While this mechanism appears relatively simple, the neutrino mechanism, in its

purest, spherically-symmetric (1D) form, fails to revive the shock in simulations

for all but the lowest-mass massive stars with O-Ne cores [69, 93, 115, 61]. There

is now strong evidence from axisymmetric (2D) [19, 74, 76, 111, 132, 86, 78] and

first 3D [50, 80, 66, 77, 63, 60, 113, 54] simulations that the breaking of spherical

symmetry is key to the success of the neutrino mechanism. In 2D and 3D, neutrino-

driven convection in the region of net heating behind the shock, and the standing-

accretion-shock instability (SASI) [18, 46, 47, 100] increase the efficiency of the

neutrino mechanism [78, 80, 66, 113].

Apart from rapid rotation, the dominant multi-dimensional GW-emitting dy-

namics in neutrino-driven core-collapse supernovae are convection in the protoneu-

tron star (e.g., [71, 75]) and SASI-modulated convection in the region behind the

stalled shock. GW emission from convection and SASI has been extensively studied

in simulations in 2D [71, 64, 75, 79, 132] and to some extent in 3D [49, 77, 62, 63].

The top panel in Fig. 1.8 shows a typical example waveform drawn from the cat-

alogue of Murphy et al. [79]. Right after core bounce, an initial burst of GWs is

emitted by strong, so-called prompt convection [84], driven by the negative entropy

gradient left behind by the stalling shock. Subsequently, the GW signal settles

at lower amplitudes, then picks up again as the SASI reaches its non-linear phase

and high-velocity accretion downstreams penetrate deep into the region behind the
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Figure 1.8: Linearly polarized GW signal predictions for a core collapse event located at 10 kpc
from matter dynamics in axisymmetric simulations that can be associated with the neutrino
mechanism (top panel, taken from [79]), the magnetorotational mechanism (center panel, taken
from [34]), and the acoustic mechanism (bottom panel, taken from [84]). Note the varying ranges
of the time and strain axes. Also note that the simulations of [34] did not include magnetic fields,
since the GW signal from core bounce in magnetorotational explosions is due to rapid rotation
and not influenced by magnetic fields. This, however, did not allow them to capture the expected
secular rise of the waveform expected to occur once an explosion sets in [112]. See text for further
discussion.
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shock, where they are decelerated, leading to pronounced spikes in the wave sig-

nal [79]. The secular rise in the signal amplitude towards the end of the waveform

is due to the onset of an aspherical explosion [79, 132, 77], but occurs at too low

characteristic frequencies to be visible to Advanced LIGO-class detectors.

Overall, the detectable GW signal from a neutrino-driven nonrotating or slowly

rotating core-collapse supernova will have random polarization, a broadband spec-

trum from∼100−1000 Hz and typical strain amplitudes |h| of order 10−22 (D/10 kpc)−1,

with individual peaks reaching 10−21 (D/10 kpc)−1 [84, 77]. The typical duration of

emission is the time from core bounce to the launch of the explosion, 0.3− 1 s, but

convection inside the cooling protoneutron star can continue to emit GWs at lower

amplitudes and higher frequencies for many seconds afterwards [71, 84]. Typical

total emitted GW energies are in the range 10−11 − 10−9M� c
2 [84, 79, 132].

The effects of rotation on the neutrino mechanism and its GW signature are

not yet fully understood (see, e.g., [48, 111, 74, 76, 86, 120, 83]) and it cannot be

excluded that contributions from rotational dynamics may modify the GW signal

of neutrino-driven core-collapse supernovae. However, results from the systematic

rotating core collapse studies of [34, 120, 20, 112] suggest that once rotation rates

become sufficiently high to alter the dynamics, the explosion is actually more likely

to occur via the magnetorotational mechanism discussed in §1.7.2. This, however,

is under the provision that the magnetorotational instability (e.g., [13, 82]) works

robustly and builds up the required strong magnetic fields to drive an explosion.

Therefore, for the purpose of this thesis, the assumption is made that the GW

signature of neutrino-driven core-collapse supernovae is unaffected by rotational

effects.

GW Signal Catalogues

In this study, the catalogue of Murphy et al. [79] is used. The Murphy et al.

catalogue (in the following, these waveforms from this catalogue are labelled as

Mur waveforms) encompasses 16 waveforms that were extracted via the quadrupole

formula (e.g., [116]) from Newtonian axisymmetric core collapse simulations that

used a parameterized scheme for electron capture and neutrino heating/cooling and

included only the monopole component of the gravitational potential as described

in [78, 79]. The Murphy et al. simulations are nonrotating and the parameter space
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covered is spanned by progenitor ZAMS (zero age main sequence) mass ({12, 15,

20, and 40} M�) and by the total electron and anti-electron neutrino luminosity.

Yakunin et al. [132] performed self-consistent axisymmetric Newtonian (with

an approximate-GR monopole term of the gravitational potential [73]) radiation-

hydrodynamics simulations of neutrino-driven core-collapse supernovae. They pro-

vide three waveforms at [25], obtained from simulations using progenitors of (12,

15, and 25) M�. The Yakunin waveforms (denoted, in the following, as Yak wave-

forms) are used to test the robustness of the supernova mechanism determination

algorithm which is the focus of this thesis.

Due to the limitations of the provided catalogues, only linearly polarized signals

are considered. Gravitational waveforms with + and × polarizations from 3D simu-

lations of neutrino-driven core-collapse supernovae [62, 63, 77] will not be considered

in this thesis.

1.7.2 Magnetorotational Mechanism

The conservation of angular momentum in core collapse to a protoneutron star leads

to a spin-up by a factor of ∼1000 [87]. Starting from a precollapse angular velocity

distribution that may be expected to be more or less uniform in the inner core (e.g.,

[55]), homologous collapse preserves the uniform rotation of the inner core while the

supersonic collapse of the outer core leads to strong differential rotation in the outer

protoneutron star and in the region between protoneutron star and shock [87].

A rapidly spinning precollapse core with a period of order 1 s results in a ms-

period protoneutron star, with a rotational energy of order 10 B, which is about ten

times greater than the typical core-collapse supernova explosion energy. If only a

fraction of this energy was tapped, a strong explosion could be triggered.

Theory and simulations (e.g., [128, 17, 65, 81, 104, 20, 32, 26, 112]) have shown

that magnetorotational processes are efficient at extracting spin energy and can

drive collimated outflows, leading to energetic bipolar jet-like explosions. Recent

work [104, 20, 32, 26, 112] suggests that magnetic fields of the order of 1015 G with

strong toroidal components are required to yield the necessary magnetic stresses to

drive a strong bipolar explosion. If 1015 G fields were to arise from flux compression
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in collapse alone, precollapse core fields would have to be of order 1012 G [20, 104],

which is about 3 orders of magnitude larger than predicted by stellar evolution

models (e.g., [55, 131]). It is more likely that the most significant amplification

occurs after core bounce via rotational winding of poloidal into toroidal field (a

linear process), the non-linear magnetorotational instability (MRI, which is not yet

fully understood in the core collapse context [13, 82]). Both processes operate on

the free energy stored in differential rotation, which is abundant in the outer core.

For the magnetorotational mechanism to work, precollapse spin periods . 4−5 s

appear to be required [20]. Such rapid rotation leads to a strongly centrifugally-

deformed inner core with a large quadrupole moment (` = 2; due to its oblateness),

which rapidly changes during core bounce, leading to a strong burst of GWs. The

GW signal from rotating collapse and bounce has been studied extensively and the

most recent general-relativistic simulations have shown it to be of rather generic

morphology with a single strong peak at bounce and a subsequent ringdown as the

protoneutron star core settles into its new equilibrium [33, 34, 88]. A typical ex-

ample GW signal taken from the catalogue of Dimmelmeier et al. [34, 24] is shown

in the center panel of Fig. 1.8. The core collapse and bounce phase proceeds es-

sentially axisymmetrically even in very rapidly spinning cores [88, 101, 102] and its

GW signal is linearly polarized with vanishing amplitude seen by an observer lo-

cated along the symmetry axis and maximum amplitude for an equatorial observer.

Typical emission durations for the linearly polarized GWs from core bounce are of

order 10 ms and peak GW amplitudes for rapidly spinning cores that may lead to

magnetorotational explosions are of order 10−21 − 10−20 at 10 kpc with most of the

energy being emitted around 500 − 800 Hz in cores that reach nuclear density and

bounce due to the stiffening of the nuclear equation of state. Cores with initial spin

periods shorter than ∼0.5 − 1 s experience a slow bounce at sub-nuclear densities

strongly influenced or dominated by the centrifugal force. They emit most of the

GW energy at frequencies below ∼ 200 Hz [34, 84]. Typical emitted GW energies

are in the range 10−10−10−8M� c
2. The GW signal from rotating collapse and core

bounce is unlikely to be affected by MHD effects, since the build up to dynamically

relevant field strengths occurs only after bounce [65, 81, 112, 20].

Due to the strong rotational deformation of the protoneutron star, neutrinos

decouple from the matter at smaller radii and hotter temperatures in polar regions

than near the equator. This leads to the emission of a larger neutrino flux with

a harder neutrino spectrum in polar regions (e.g., [86]). This globally asymmetric
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neutrino emission results in a secularly rising low-frequency GW signal [84]. Similar

low-frequency contributions will come from the bipolar outflow characteristic for

a magnetorotational explosion and from magnetic stresses [65, 81, 112]. The low-

frequency waveform components are not shown in the center panel of Fig. 1.8 and are

not detectable by the upcoming second-generation earthbound GW observatories.

GW Signal Catalogs

The large (128 waveforms) GW signal catalogue of Dimmelmeier et al. [34, 24] (Dim

in the following) is employed in this thesis. Dimmelmeier et al. performed 2D

general relativity simulations of rotating iron core collapse for (11.2, 15, 20, and

40) M� progenitors and two different nuclear EOS, varying initial rotation rate and

degree of differential rotation. They approximated the effects of electron capture

during collapse by parametrizing the electron fraction Ye as a function of density,

which yields inner core sizes that are very close to those obtained with full neutrino

transport [68]. The inner core size determines the amount of mass and angular

momentum that can be dynamically relevant during core bounce and, hence, is a

determining factor in the GW signal [33]. The Dim catalogue was also used by

the previous parameter estimation work of Röver et al. [97]. For testing, the three

additional Dim waveforms computed for [97] are used that are not part of the original

Dim catalogue and were used to test their algorithm. This set of extra waveforms is

labelled as DimExtra.

For studying the robustness of the mechanism-determination approach, gravi-

tational waveforms of rotating models are drawn from the catalogue of Scheideg-

ger et al. [102, 23], (Sch in the following) who performed 3D Newtonian-MHD

rotating iron core collapse calculations with a spherical approximate-GR gravita-

tional potential and employed the same EOS and electron capture treatment as

Dimmelmeier et al. [34], but used different progenitor models.

Furthermore, the GW signal catalogue of Abdikamalov et al. [1] is used (Abd

in the following) who used the same numerical code as Dimmelmeier et al. [34],

but studied the rapidly spinning accretion-induced collapse (AIC) of massive white

dwarfs to neutron stars. This process yields a GW signal very similar to rotating

iron core collapse and explosions in AIC may occur also via the magnetorotational

mechanisms [31]. This catalogue of 106 waveforms is included to see if the algorithm
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described in Chapter 3 can differentiate between rotating iron core collapse and

rotating AIC assuming the Dim and Abd catalogues correctly predict the respective

GW signals.

1.7.3 Acoustic Mechanism

The core-collapse supernova evolution in the acoustic mechanism proposed by Bur-

rows et al. [21, 22, 85] is initially identical to the one expected for the neutrino

mechanism. Neutrino heating, convection and the SASI set the stage, but no explo-

sion is triggered for &500 ms after bounce. At this point, the SASI is in its highly

non-linear phase and modulates high-velocity accretion downflows that impact on

the protoneutron star and excite core pulsations (primarily ` = {1, 2} g-modes).

Over hundreds of milliseconds, these pulsations reach large amplitudes and damp

via the emission of strong sound waves. Traveling down the steep density gradient

in the region behind the shock, the sound waves frequenices steepen to shocks and

dissipate their energy behind and in the shock. This mechanism is robust in the

simulations by Burrows et al. [21, 22, 85], but requires &1 s to develop, thus leads

to massive NSs, and tends to yield explosion energies on the lower side of what is

observed.

The GW signature of the acoustic mechanism is dominated by the strong emis-

sion from the quadrupole components of the protoneutron star core pulsations that

are quasi-periodic (their frequency shifts secularly along with the changing pro-

toneutron star structure) and become very strong &800−1000 ms after core bounce

[85, 84]. The lower panel of Fig. 1.8 depicts a typical example waveform from

Ott et al. [84, 85], who studied the GW signature of the acoustic mechanism based

on the simulations of Burrows et al. [21, 22]. At early times, the GW signal is

essentially the same as expected for the neutrino mechanism, but once the pro-

toneutron star core pulsations grow strong, they are hard to miss. The simulations

of Burrows et al. [21, 22, 85] were axisymmetric and the resulting GW signals

are linearly polarized, though in 3D, one would expect oscillation power also in

non-axisymmetric components. Typical maximum strain amplitudes are of order

few× 10−21 − 10−20 and multiple modes with frequencies between ∼ 600− 1000 Hz

contribute to the emission. Since the pulsations last for many cycles, the emitted

GW energies may be large and are predicted to be of order 10−8 − 10−7M�c
2 and

extreme models reach few × 10−5M�c
2 [85, 84].
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There are multiple caveats associated with the acoustic mechanism that must

be mentioned. Most importantly, the acoustic mechanism has been found in sim-

ulations of only one group with a single simulation code, but others have not yet

ruled out the possibility of strong protoneutron star pulsations at late times (e.g.,

[74]). In a non-linear perturbation study, Weinberg & Quataert [123] found that the

protoneutron star pulsation amplitudes may be limited by a parametric instability

involving high-order modes that damp efficiently via neutrino emission and are not

presently resolved in numerical simulations. This would limit the protoneutron star

pulsations to dynamically insignificant amplitudes. Moreover, the simulations of

Burrows et al. were axisymmetric and nonrotating or only very slowly rotating.

It is not clear to what amplitudes individual protoneutron star pulsation modes

would grow in 3D. Rapid rotation, due to its stabilizing effect on convection and

SASI [86, 83], may likely inhibit the growth of pulsations. Both 3D and rotational

effects remain to be explored.

GW Signal Catalogs

A set of 7 waveforms from the models of [22] analyzed by Ott [84] are employed here.

This catalogue is referred to as the Ott catalogue in the following Chapters. All

waveforms were computed on the basis of the Burrows et al. [21, 22, 85] simulations

and differ only in the employed progenitor model, covering a range in ZAMS mass

from 11.2 to 25M�.

Three additional waveforms of an earlier study of Ott et al. [85] are used. This

small set is labelled as OttExtra and is used for testing the capability of correctly

identifying them as coming from stars exploding via the acoustic mechanism.



Chapter 2

Bayesian Inference Techniques

As discussed in Sections 1.6.4 and 1.7 there is no agreed upon mechanism which

drives a supernova and there are many theories of the physical processes behind

the supernova mechanism. GWs, along with neutrinos, provide an opportunity to

see through to the core of a collapsing star. Thus if a gravitational wave from a

core collapse supernova is detected it could provide information as to which su-

pernova mechanism is reenergising the supernova. The challenge is to design an

algorithm that will analyse a detected GW and identify the mechanism responsible

for the observed GW. Achieving this would immediately provide inference on the

physics behind a core collapse supernova, which would be a great advancement in

the understanding of one the most important processes in the universe.

To achieve this goal the technique of Bayesian model selection is employed as a

method for comparing data with a choice of different models. This chapter intro-

duces Bayesian Inference in Section 2.1 and follows with an explanation of the dif-

ferent analysis techniques to perform bayesian model selection and infer the physics

behind a core collapse supernova.

2.1 Bayesian Inference

Bayesian Inference [106] has been widely used throughout the astrophysics com-

munity and has become a powerful tool used to analyse data. The most powerful

27
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and useful derivation from Bayesian Inference is Bayes’ Theorem. Bayes’ Theorem

provides a learning process in which the probability of each hypothesis is consid-

ered and adjusted according to any new data that is acquired. It can be thought of

as relating the probability that a hypothesis is true to the more useful probability

that the measured data has been observed given that the hypothesis is true and I

represents all the information, or

prob(hypothesis|data, I) ∝ prob(data|hypothesis, I)× prob(hypothesis|I). (2.1)

The terms in Bayes’ Theorem have been given names which reflect their pur-

pose. The term prob(hypothesis|I) = p(H|I) is called the prior probability and

relates the state of knowledge about the truth of the hypothesis before any data

has been analysed. The prior can then be modified by the experimental measure-

ments through the likelihood function, prob(data|hypothesis, I) = p(D|H, I). This

then yields the posterior probability, prob(hypothesis|data, I) = p(H|D, I) which

represents the state of knowledge about the truth of the hypothesis considering the

data. There is an extra term, p(D|I) = prob(data|I) which has been omitted due

to the use of a proportionality and in most cases of parameter estimation this is

treated as a normalisation term. However when considering model selection this

term becomes extremely important. To reflect this importance it is given the name

evidence. Thus Bayes’ Theorem can be written as,

p(H|D, I) =
p(H|I)p(D|H, I)

p(D|I)
, (2.2)

given a set of data, D.

When considering all hypotheses the sum of all the posterior probabilities must

equal to one i.e.
∫
θ
p(θ|D,H, I)dθ = 1. Thus by rearranging Bayes’ Theorem the

evidence, Z, can be obtained by,

Z = p(D|H) =

∫
θ

p(θ)p(D|θ,H) dθ, (2.3)

where θ represents the hypothesis parameters. This integral often cannot be solved

analytically and is, instead, evaluated using numerical methods such as the nested

sampling algorithm, (see Section 2.2).
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As is often the case with any experimental result, there may be multiple hy-

potheses that can describe the data and there is a question which hypothesis, or

model, best fits the measured data. The ratio of the posterior probabilities is used

to compare two models, i.e. H = Mi or Mj. This is known as an Odds Ratio,

Oij =
p(Mi|D, I)

p(Mj|D, I)
=
p(Mi|I)

p(Mj|I)

p(D|Mi, I)

p(D|Mj, I)
. (2.4)

If neither model prior is preferred over the other, the prior ratio is set to unity and

the Odds Ratio reduces to the ratio of the likelihoods,

Oij = Bij =
p(D|Mi, I)

p(D|Mj, I)
, (2.5)

where Bij is known as the Bayes Factor. By marginalising over a set of model

parameters, the Bayes Factor becomes the ratio of the marginalised likelihoods for

the 2 models. Thus the Bayes Factor becomes,

Bij =

∫
p(θi)p(D|θi,Mi)dθi∫
p(θj)p(D|θj,Mj)dθj

. (2.6)

From Eq 2.3, the Bayes Factor can then be expressed as a ratio of the evidence

calculated for each competing model,

Bij =
p(D|Mi)

p(D|Mj)
. (2.7)

The Bayes’ Factor will then be greater than or less than one depending on whether

Mi or Mj is the favoured model. If it is of order unity, then the current data

is insufficient to make an informed judgement. However for the majority of the

results it is the logarithm of the evidence which is found by the nested sampling

algorithm, so instead the logarithm of the Bayes Factor will be used to compare

different models. Thus instead of using the equation above, the expression

logBij = log(p(D|Mi))− log(p(D|Mj)). (2.8)

is needed. In this case choosing between the two models will depend on whether

logBij is less than or greater than zero. logBij > 0 will mean Mi is the preferred

model whereas logBij < 0 will point to Mj being favoured [119].

The evidence will be greater for a model that is supported by the data. There-
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fore, the Bayes Factor indicates which of the two competing models best describes

the data and thus infer which mechanism is being employed in a core collapse su-

pernova.

2.2 The Nested Sampling Algorithm

For evaluating logBij, first the evidences log(p(D|Mi)) and log(p(D|Mj)) for the

two models Mi and Mj need to be calculated. In some cases, or for some set of

parameters, the integral in Equation 2.3 can be computed analytically. But, more

generally, it can be discretised so that the evidence is the sum of the likelihood

times the prior determined for all possible parameter values of the desired model.

For likelihoods dependent on more than a few parameters a brute force approach to

evaluate the integral on a grid of values becomes computationally prohibitive. It is

also an inefficient way of determining the evidence since the likelihood values will be

most significant, and therefore contribute most to the evidence, for a small subset of

parameter values which best models the data for a desired model. For most other

combinations of the model’s parameters, the likelihood will be insignificant and

will not contribute to the evidence. Therefore, the approach of Veitch et al. [119]

is chosen and nested sampling [108, 106] is employed to efficiently calculate the

evidence integral.

The nested sampling algorithm determines the evidence integrals by calculating

the likelihood for a selected sample of parameter values for the desired model. From

Eq 2.3 the evidence can be written as,

Z =

∫
L(θ)π(θ)dθ =

∫
LdX, (2.9)

where L(θ) is the likelihood and π(θ) represents the prior. Here, dX = π(θ)dθ and

is the element of probability mass associated with the prior density π(θ). Z can be

calculated using the nested sampling algorithm by using the prior mass, X, directly.

Prior mass, X, is defined as the cumulant prior mass covering all likelihood values

greater than ν,

X(ν) =

∫
L(θ)>ν

π(θ)dθ. (2.10)

As ν increases, the prior mass, X, will decrease from 1 to 0. The inverse of this
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function is then L(X(ν)) ≡ ν and so the evidence becomes a one-dimensional

integral over unit range

Z =

1∫
0

L(X)dX (2.11)

in which the integrand must always be positive and decreasing.

Initially, the model’s parameter values are randomly selected with respect to

the prior. The algorithm then iterates over different sets of the model’s parameter

values, calculating the likelihood for each of the parameter values obtained and

moves towards regions of higher likelihood. This is done through the use of a

Markov Chain Monte Carlo (MCMC) algorithm [7] which randomly picks a point

and moves towards another point with the highest likelihood. A description of the

MCMC used in this analysis can be found in [119]. This point is then replaced by

one with a higher likelihood found by the MCMC and the nested sample repeats.

Therefore, as the algorithm stochastically samples the parameter space, it iteratively

converges on the set of parameter values that produce the most significant likelihood

values and smallest values for X, see Figure 2.1.

For every new iteration, there are m objects (called live points) which are re-

stricted to the prior mass such that X < X∗ where X∗ is the prior limit from the

previous iteration. The object with the largest X and therefore the lowest like-

lihood is the largest of m numbers uniformly distributed in X = 0 to X∗. This

point is then taken as the new limit on the likelihood and prior space (X∗, L∗) and

a new point within this space is created. For each iteration, i, a contribution to

the evidence is calculated by finding Liwi where wi is the width and is equal to

wi = Xi−1 −Xi. This then accumulates for every iteration,

Zi = Zi−1 + Liwi. (2.12)

During this process the desired regions of parameter space will be found and the

increasing likelihood will start to flatten off and reach a maximum. Thus most of

the evidence, Z, will have been found and the algorithm will need to be terminated.

This is done at the iteration where no more contribution to the evidence can be

made. This can be done by using the limit that the nested sampling algorithm will

continue iterating until the number of iterations, i, exceeds mHi where m is the
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Figure 2.1: Figure representing the evolution of the nested sampling algorithm. Contours enclose
shrinking prior mass regions and evidence is found by adding areas under the graph for each
iteration. For example the point x1 here has the smallest likelihood and so the MCMC finds a
point with a higher likelihood and replaces x1. This reduces the parameter space and shrinks the
prior mass, from [107].
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number of live points and,

H =

∫
log
( dP
dX

)
dP. (2.13)

H is known as the information and is the logarithm of the fraction of the prior

mass, X, that contains the bulk of the posterior mass, P, and is calculated for every

iteration. So that when i > mH the majority of the evidence (and therefore the

majority of the posterior) has been found and continuing the iterations will provide

no extra value. In this work, m = 50 unless otherwise stated and has been chosen as

the number of live points as well as the number of points in the MCMC chain used

to create a new point for each iteration. Using as many objects as possible would

improve accuracy but would greatly increase the computation time. Thus, a value

was chosen to keep the algorithm running quickly while still calculating evidence

values which were sufficient to do model selection. For a study on the number of

live points to use, see Section 5.1.

2.3 The Likelihood Distribution

For every iteration of the nested sampling algorithm a likelihood, L, is found. This

likelihood compares the input data, which for this thesis is taken as a GW signal plus

the detector noise, to the trial gravitational waveform calculated for each iteration

which is known as the reconstructed waveform. If the trial waveform is successful

and matches the input data, it will be when the likelihood is at its maximum. In

the analysis pipeline that will be described in the next Chapter, three different

types of signal are used which employ two different likelihood functions. Firstly,

the likelihood for a gravitational waveform in the time domain in Gaussian noise

that has undergone a Fast Fourier Transform and is considered to have a Gaussian

distribution. The likelihood for a single data sample, n, is given as,

p(Dn|θ,M) =
1

σn
√

2π
exp

(
− (|Dn − µn)|2

2σ2
n

)
, (2.14)

where D is the input data, µ is the theorised data calculated in the nested sampling

algorithm and σ represents the detector noise i.e the standard deviation of the

Gaussian detector noise. Therefore the likelihood for a series of points comes from
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the multiplication of all the individual probabilities,

p(D|θ,M) = L =

N/2∏
n=1

1

σn
√

2π
exp

(
− |(Dn − µn)|2

2σ2
n

)
. (2.15)

It is often convenient to work with the logarithm of the likelihood and this is

what will be used in this thesis:

logL =
−N

2
log(2π)−N log(σ)−

N/2∑
n=1

|(Dn − µn)|2
2σ2

n

(2.16)

The other two forms of data employed are in the power spectrum and spectro-

gram domains which have independent, Gaussian distributed random variables with

a nonzero mean and variance. In this case the random variable

d =
k∑
i=1

(Di

σi

)2
, (2.17)

where D contains a vector of independent, Gaussian distributed variables, is said

to be distributed according to a noncentral χ2 distribution where k represents the

number of degrees of freedom. Associated with this is a noncentrality parameter,

λ, which is related to the mean, µ, by

λ =
k∑
i=1

(µi
σi

)2
. (2.18)

The probability density function for a noncentral χ2 distribution [8] is written

as,

p(y|λ) =
1

2
exp

(
− (d+ λ)

2

)d
λ

(k/4−1/2)
I(k/2−1)(

√
λd), (2.19)

where I(k/2−1) represents a Bessel function. For data in the power spectrum and

spectrogram domains there are two degrees of freedom, the real and imaginary part

of the data, so k = 2 and the above equation simplifies to

p(y|λ) =
N

2
exp

(
− (d+ λ)

2

)
I0(
√
λd). (2.20)

This can then be rewritten using Equations 2.17 and 2.18 and the logarithm of the
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likelihood is found, thus

logL = log(1/2) +
N∑
n=1

−(D2
n + µ2

n)

2σ2
n

+ log
(
I0

(√Dnµn
σ2
n

))
. (2.21)

2.4 The Posterior Distribution

The primary output of the nested sampling algorithm is the evidence, Z. The poste-

rior probability for each parameter can be calculated from the outputs of the Nested

Sample in logarithm space as,

log(posterior) ∝ log(prior) + log(likelihood) (2.22)

which is weighted by the evidence. Thus, for any reconstruction of a waveform

obtained through the use of the nested samples, a posterior distribution for each

parameter can be found. While this is not necessary for model selection it can be a

useful tool to guage how successful the algorithm is at parameter estimation which

could be used to infer information about the source such as the mass of the core.

2.5 Principal Component Analysis

Each core-collapse supernova waveform catalogue consists of a number of gravita-

tional waveforms obtained for different initial conditions and simulation parameters

(e.g., progenitor star mass, Equation of State, rotational configuration etc.). While

individual waveforms of one catalogue are different in detail, they generally exhibit

strong common general features. This can be exploited by principal component

analysis (PCA) [72], which isolates the most common features of waveforms in lin-

early independent principal components (PCs) ordered by their relevance. The first

few PCs may already be sufficient to efficiently span their entire catalogue, as was

shown in [56] and [97] for the Dim catalogue (see Sect. 1.7).

The PCs are obtained via singular value decomposition (SVD) (e.g., [72]). In

singular value decomposition, a set of waveforms are decomposed into an orthonor-

mal basis. Each waveform catalogue is arranged into a m × n matrix A, where
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m is the number of waveforms each of length n. The covariance matrix for A is

calculated by

C =
1

m
AAT . (2.23)

By finding the normalised eigenvectors of C, a set of basis vectors which span the

linear space of each column in A are found. This means that each waveform can

now be uniquely represented as a linear combination of these eigenvectors. How

well each eigenvector spans this space is determined by the eigenvalues of C and so

each eigenvector can be ranked by their corresponding eigenvalue. The eigenvector

which corresponds to the largest eigenvalue is known as the first principal component

(PC) which consists of the most significant common features of all waveforms in the

catalogue. It follows that the PC with the second largest corresponding eigenvalue

is the second PC and of the second most significant common features and so on.

This method can be computationally expensive as n can be typically 1000 to

10000 samples long. This can be avoided by calculating the eigenvectors, Σ, of ATA

such that

ATAΣi = uiΣi, (2.24)

where ui is the corresponding eigenvalue for each eigenvector. Each side is then

pre-multiplied with A to obtain

AATAΣi = uiAΣi. (2.25)

If equation 2.23 is rewritten as C = AAT then U = AΣi are the eigenvectors of the

covariance matrix. So the eigenvectors of the covariance matrix can be determined

by calculating the eigenvectors of ATA which is a smaller m×m matrix, therefore

significantly reducing computing costs [56].

The main advantage of this technique is that only a small number of principal

components are required to reconstruct any of the waveforms used to create the

matrix A. This means that any of the waveform catalogues discussed in Section 1.7

can be decomposed into a set of basis vectors and only the first few principal com-

ponents are required to reconstruct any injected waveform. The waveforms in A

can be reconstructed by taking a linear combination of PCs,

hi ≈
k∑
j=1

Ujβj , (2.26)
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where hi is the desired waveform from the catalogue, Uj is the j’th PC and βj

is the corresponding PC coefficient, which can be obtained by projection of hi onto

Uj. The sum of k PCs produces an approximation of the desired waveform since

k ≤ m.

So to successfully reconstruct an injected waveform using a selected set of prin-

cipal components and obtain a maximum value for the evidence, the correct values

for β must be found by the nested sampling algorithm. This is the process used by

the analysis pipeline SMEE (Supernova Model Evidence Extractor) by which the

physics behind a core collapse supernova can be inferred and will be described in

detail in Chapter 3.



Chapter 3

Supernova Model Evidence

Extractor

In the following chapter, the components of a Bayesian data analysis algorithm

called the Supernova Model Evidence Extractor (SMEE) are described. SMEE

is designed to classify detected gravitational waveforms from core-collapse super-

novae. A block diagram of the analysis algorithm is shown in Fig. 3.1. SMEE is

implemented in MATLAB1.

In a first step, SMEE performs principal component analysis (PCA) (Section 2.5)

via singular value decomposition (SVD) on the waveforms in each catalogue to create

sets of orthogonal basis vectors, the principal components (PCs). Using a complete

set of PCs, each waveform can be reconstructed as a linear combination of PCs for

the corresponding catalogue, allowing each waveform to be simply parameterized

by the PC coefficients, β, in the linear combination. Non-catalogue waveforms (i.e.,

waveforms which have not been used in creation of the principal components) may

be identified as belonging to the same class of waveforms as catalogue waveforms if

they can be approximately matched with the first few PCs of a catalogue.

SMEE then uses Bayesian model selection and computes the logarithm of the

Bayes Factor (Section 2.1) to distinguish between the waveform catalogues which

represent different supernova waveform models. This requires summing up the like-

1The MathWorks Inc., Natick, MA 01760, USA. http://www.mathworks.com/products/matlab/.

38
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lihood function multiplied by the prior across all possible waveform parameters (in

our case, values of PC coefficients) to determine the evidence for two different wave-

form models. SMEE accomplishes this efficiently via the nested sampling algorithm

(Section 2.2).

3.1 GW Preparation and PCA

In the development of the Supernova Model Evidence Extractor (SMEE) three

separate versions have been investigated. These three versions depend on which

type of data is used to create the principal components, the idea being that each

signal should be analysed in multiple ways so as to learn as much as possible about

the source. The three versions of SMEE are as follows: firstly a version where

the PCs are created in the time domain (TD SMEE), a version where the PCs are

created in the power spectrum domain (PSD SMEE) and finally a version where

the PCs are constructed in the spectrogram domain (Spec SMEE). Having the data

in the time domain was chosen as this is the form that the waveform catalogues

were created in and so would need the least manipulation before being analysed. As

can be seen in Figure 1.8, gravitational waveforms from supernovae vary greatly in

the time domain thus potentially aiding the ability of SMEE to accurately perform

Bayesian model selection. The power spectrum domain (PSD) is chosen to explore

SMEE’s ability in the frequency domain as well as the effect of removing any phase

information from the waveforms. Finally, the spectrogram domain is chosen as this

combines both time and frequency information and allows SMEE to analyse both

previous types of information about any given waveform at the same time. In this

section there will be a discussion on how each one of these sets of PCs are created

as well as how the gravitational waveform is prepared before being analysed in the

nested sampling algorithm.

All of the waveform catalogues were initially generated in the time domain so

the model catalogues must first be prepared in this form. It must be ensured that

the longest available core-collapse supernova GWs can be used. To do this all

waveforms are buffered with zeroes to be of length n, which is chosen to correspond

to 3 s as this will ensure that each waveform file is the same length and comfortably

contains the whole length of any waveform. A sampling rate of 4096 Hz is chosen

to reduce the length of the waveforms, thus decreasing the time it takes to analyse
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Figure 3.1: Block diagram of the Supernova Model Evidence Extractor (SMEE). A desired core-
collapse supernova gravitational waveform is injected into noise, and the algorithm compares it to
the principal components (PCs) of a given waveform catalogue representing a particular model.
The PCs are constructed via singular value decomposition (SVD). The sign of the log Bayes Factor
between two PC sets indicates which model is favored by the data.
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a waveform, while still having a large enough resolution that will contain sufficient

information about the waveform. This is completed before carrying out PCA and

adding detector noise to the waveforms. While the Advanced LIGO sampling rate is

16 kHz the reduced sampling rate chosen saves computation time and is sufficient to

capture the frequency content of the core-collapse supernova waveforms considered

here, which have most of their power at ∼50− 1000 Hz.

Waveforms from the Dim catalogue are aligned at their maximum (the spike

at core bounce, see Figure 1.8). Waveforms from the Mur and Ott catalogues are

aligned so that the onsets of emission coincide. All waveforms are shifted so that

they are aligned to the 4000-th point in the SMEE input data file. This corresponds

to about the 1 s mark in the 3 s interval and is done to leave ample space to the left

and right of the waveform. Once each waveform from a corresponding catalogue

is aligned and made the same length they are organised into a matrix where every

column contains one waveform. Thus we are able to create a matrix of waveforms

for each of the catalogues we want to use to create PCs. Each of these catalogues

thus represent a model that SMEE is set up to compare.

3.1.1 Time Domain

The simplest family of PCs to create is in the time domain. For this the time

domain catalogues that were created are used to produce a set of PCs for each of

our models using the method discussed in Section 2.5. The first three PCs computed

for the Dim (magnetorotational mechanism; left panel), Mur (neutrino mechanism;

center panel), and Ott (acoustic mechanism; right panel) catalogues are presented

in Fig. 3.2. Before generating PCs for the Mur catalogue the secular low-frequency

drifts present in the Mur waveforms (see Fig. 1.8) are filtered out by high pass

filtering the signal above 30 Hz. Since the low-frequency components are hidden in

detector noise even when the source is nearby, removing them improves the efficiency

of our subsequent Bayesian analysis and waveform reconstruction. This is repeated

for all trial waveforms utilising the neutrino mechanism before they are added to

detector noise.
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Figure 3.2: The first three principal components (PCs) for the waveforms from the Dimmelmeier
(Dim) [34, 24], Murphy (Mur) [79], and Ott [84] catalogues, which is taken to be representative
of the magnetorotational, neutrino and acoustic mechanisms, respectively (see Section 1.7). In
calculating the PCs, the waveforms of each catalogue are placed in a systematic way in a 3 s
interval and padded left and right by zeros. The vertical axis is a dimensionless scale which
represents the amplitude, which is normalized by the maximum amplitude over all 3 PCs of each
catalogue shown here, from Logue et al. [70].
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3.1.2 Power Spectrum Domain

In the power spectrum domain before creating the PCs we first perform a Fast

Fourier Transform (FFT) on each of our catalogues. We then only take the first

half of our FFT’d catalogue as it will be repeated due the input catalogue being

real. Finally the FFT’d catalogue is scaled by a normalisation factor,

nnorm =

√
1

LFs
(3.1)

where Fs = 4096Hz is the sampling frequency and L is the length in samples of

the time domain waveform before the waveform has been zero padded. This is

done to ensure the waveforms in each catalogue have the correct dimensions of

(Hz)−1/2. Once this has been done the absolute value squared of each of our Fourier

transformed waveforms is found thus converting them into the power spectrum

domain. To be clear, we have gone from having a catalogue of waveforms in the

time domain to one in the power spectrum domain. We then use the same technique

to create a set of PCs for each catalogue thus creating a set of models in the power

spectrum domain that can be tested in SMEE, (see Figure 3.3).

3.1.3 Spectrogram Domain

For the spectrogram domain, we select each waveform in a catalogue and use the

MATLAB spectrogram function and calculates a short-time Fourier transform of

each waveform. This function allows the choice of window, FFT length, overlap and

sampling frequency. For simplicity, the standard Hamming window is used with the

sampling frequency of 4096 Hz and an overlap of 90% is adopted. The FFT length

is kept as a free parameter that the user can input. For the results shown in this

thesis a FFT length of 128 is used, thus creating spectrograms with a frequency

resolution of 32 Hz and a time resolution of approximately 3 microseconds. These

values were chosen to ensure that there is sufficient time and frequency information

for each waveform. We then introduce a frequency cutoff so that the first 32 Hz of

data is ignored as ground based interferometers do not perform well at these lower

frequencies, any part of the waveform at this frequency would be undetectable.

Since the spectrogram function takes the waveforms from a catalogue, which is
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Figure 3.3: The first three principal components (PCs) in the power spectrum domain for the
waveforms from the Dimmelmeier (Dim) [34, 24], Murphy (Mur) [79], and Ott [84] catalogues,
which is taken to be representative of the magnetorotational, neutrino and acoustic mechanisms,
respectively (see Section 1.7). The vertical axis is a dimensionless scale which represents the
amplitude, which is normalized by the maximum amplitude over all 3 PCs of each catalogue
shown here.
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a vector, and creates a spectrogram which is essentially a matrix, each column in

the catalogue needs to be organised into a vector so the PCs can be created. This

is simply done by taking the columns in the spectrogram matrix of a waveform and

adding the beginning of a column onto the end of preceding column. This means

that for every waveform in the catalogue a vector can be created with a length that

is the number of frequency bins multiplied by the number of time bins.

As in the power spectrum domain the outputs of the spectrogram function need

to be normalised to ensure they have the correct dimensions as we want them to

have the same dimensions as the power spectrum ((Hz)−1/2). The normalisation

is a real scaler value, nnorm, where the waveform in the dimensions of the power

spectrum domain (PSD) equals,

P = (nnorm|S|)2 (3.2)

and S is the output of the spectrogram function. For the spectrogram domain,

nnorm =

√
1

Fs
∑j

i=1 |w(i)|2
(3.3)

where j is the number of frequency bins and w(n) represents the window function

which is kept as a Hamming window. Fs is the sampling frequency which is kept as

4096 Hz. Once this has been done the PCs are created for each catalogue and thus

a set of models in the spectrogram domain are made which can be tested in SMEE,

(see Figure 3.4).

3.1.4 Priors for the PC coefficients

The nested sampling algorithm which is the bulk of SMEE is set up to calculate

the PC coefficients that are used to reconstruct a given gravitational waveform, see

Equation 2.26. To find these coefficients a parameter space for the nested sample

to search over must be established. This is known as the prior as it contains any

previous knowledge about what each PC coefficient should equal. The prior for

each PC coefficient, βk, is taken to be flat and uniform meaning that any value in

a given range is given equal weight. The prior range for each βk is determined by

first reprojecting all waveforms of a given catalogue back onto the PCs to compute



3.1. GW Preparation and PCA 46

Figure 3.4: The first three principal components (PCs) in the spectrogram domain for the wave-
forms from the Dimmelmeier (Dim) [34, 24], Murphy (Mur) [79], and Ott [84] catalogues, which is
taken to be representative of the magnetorotational, neutrino and acoustic mechanisms, respec-
tively (see Section 1.7). The vertical axis is a dimensionless scale which represents the amplitude,
which is normalized by the maximum amplitude over all 3 PCs of each catalogue shown here.
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the correct value, β̂kl, for each PC k and waveform l of the catalogue. The range of

expected possible values of βk is then found by taking the minimum and maximum of

β̂kl over all l. To account for uncertainty due to the noise, motivated by the findings

of [97], 10% of the maximum added to the maximum and 10% of the minimum

is subtracted from the minimum β̂kl. This ensures that the value calculated by

the nested sample will lie within the desired range. This is repeated for each PC

catalogue and so a global maximum and minimum value over all three PC catalogues

can be found.

This technique is used for each version of SMEE ensuring that there is a set

of priors for the time domain, power spectrum domain and spectrogram domain

version of SMEE.

3.2 Time Delays and Antenna Response with Mul-

tiple Detectors

It was shown in Figures 1.3 and 1.4 that a GW detector is sensitive to the direction

of the source, in this case a core collapse supernova. It is most sensitive when

the GW is travelling perpendicular to the detector and least sensitive when it is

parallel. This effect is called the antenna response and can be calculated using

Equation 1.7. However the supernova data employed in this thesis only contains

the plus polarisation so only F+ is needed,

F+ =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ

− cos θ sin 2φ sin 2ψ, (3.4)

where θ is the local polar angle of the sky position of a source of gravitational waves

and φ is the local azimuthal angle of the sky position of the source. ψ is the local

polarisation angle of the source [96].

This can be simulated in SMEE by calculating the antenna response for a chosen

right ascension, declination (which can be converted into polar angle and azimuthal

angle) and the polarisation angle of the source. It is expected that a Galactic su-

pernova will be an extremely bright event and so finding its right ascension and
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declination will be trivial so these are kept as fixed parameters in SMEE. This

polarisation angle, ψ, is more difficult to predict as it will not be immediately cal-

culated from EM observations and so it treated as a free parameter. This means

that in addition to marginalising over the PC coefficients, the polarisation angle is

also marginalised in the nested sampling algorithm. This means that for every iter-

ation there will be a trial antenna response which scales the reconstructed waveform

and will be closest to the chosen waveform (which has been scaled by the correct

antenna response) when the polarisation angle matches the correct value. The prior

for this is uniform over the range 0 to π and is chosen to encompass all possible

angles in the sky frame.

Due to the fact that GWs are travelling at the speed of light there will be a small

time delay (Td)when the signal arrives at different detectors around the world. Thus

for every interferometer which successfully detects a gravitational waveform there

will be a different time of arrival. These can be adjusted to a single frame of reference

by using the time at which the GW reaches the centre of the Earth. To successfully

reconstruct a GW this Earth centre time must be known so that for each detector

the PCs can be correctly aligned with the GW which has been detected by an

individual detector. Because of this, when SMEE is run using detected waveforms

from multiple detectors the Earth centre time is kept as a free parameter and is

marginalised in the nested sampling algorithm. For the purposes of improving the

efficiency of SMEE this is achieved by first creating a set of PCs for each detector

that have been shifted by Td from the GW arriving at the centre of the Earth.

This is done by shifting each of the waveforms in the time domain by the number

of samples that are equal to Td i.e each waveform is 3 seconds long and is 12288

samples long, so each sample represents 2.4× 10−4 seconds. Once this is done PCA

is performed using the techniques discussed in Section 3.1. In the nested sampling

algorithm a trial Earth centre time is chosen and Td for each detector is calculated

and the chosen waveform is shifted by this value before being added to the detector

noise. When dealing with real data where Td does not need to be simulated this

process can be reversed and the PCs will be shifted for every trial Earth centre time.

This would greatly slow down SMEE as a new set of PCs would be required for

each iteration of the nested sampling algorithm so this technique is not used when

using simulated waveforms. Thus a prediction of the Td and therefore the Earth

centre time is found when the maximum likelihood is found and the reconstructed

waveform is aligned with the desired waveform. It is expected that there will be

some information about when the GW arrives at Earth and that a Earth centre
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time will be inferred so the priors for the Earth centre are kept fairly tight over

a uniform range. The maximum time is 50 ms above the inferred value and the

minimum time is 50 ms below the inferred value. If there is less confidence in the

prediction of Earth centre time the prior would be expanded over a wider range.

3.3 Generation of Simulated Noise

Assuming a single Advanced LIGO detector, Gaussian coloured noise is generated

in the proposed broadband configuration (the so-called “zero detuning, high-power”

mode). The data file ZERO DET high P.txt is employed, provided by [105], which

contains
√
S(f), the square root of the one-sided detector noise power spectral

density in units of (Hz)−1/2.

This function reads in the amplitude spectral density and resamples it to match

the sampling rate of the data (4096 Hz). This noise vector is then used as the

variance in the likelihood function i.e. σ =
√
S(fk). When running SMEE in the

power spectrum and spectrogram domains the data also has dimensions (Hz)−1/2 so

the function outputs Fourier domain random Gaussian noise which is generated as,

<(n̂(fk)) =

√
S(fk)

2
× RANDN, (3.5)

=(n̂(fk)) =

√
S(fk)

2
× RANDN (3.6)

where RANDN denotes a random number drawn from a Gaussian probability dis-

tribution with zero mean and unit variance. By extension, this term will then also

have dimensions of (Hz)−1/2. This technique works for both PSD and spectrogram

versions of SMEE however one difference needs to be made for the spectrogram do-

main. Here a single power spectrum of the noise is created with the same frequency

resolution as the spectrogram data (32 Hz). This data is then repeated r times,

where r is the number of time bins, and is added together in the same manner as

the spectrogram data, see Section 3.1.3. This ensures that the length of the noise

file is the same as the signal.

When using SMEE with principal components generated in the time domain, the

injected waveform has dimensions of (Hz)−1 thus the noise added to the waveform
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must have the same dimensions. This can be done by considering the definition of

S(fk) as

〈ñ(f)ñ∗(f ′)〉 =
1

2
S(f)δ(f − f ′), (3.7)

where

〈|ñ(fk)|2〉 =
T

2
S(fk). (3.8)

T is the total observation time, fk = k∆f is the frequency in the kth frequency

bin, where ∆f denotes the frequency resolution, and 〈.〉 denotes ensemble average.

The real and imaginary components of the Fourier domain noise can be expressed

as

〈|ñ(fk)|2〉 = 〈|x̃(fk)|2〉+ 〈|ỹ(fk)|2〉, (3.9)

where x̃(fk) ∈ < and ỹ(fk) ∈ =. The noise variance σ2
k can be defined in terms of

ñk where,

ñk =
ñ(fk)

∆t
. (3.10)

∆t is the time resolution and has units (Hz)−1, so

σ2
k = 〈|ñk|2〉,

=
TS(fk)

2∆t2
,

=
NS(fk)

2∆t
(3.11)

where N = T/∆t is the number of samples. Since σ2
k is dimensionless, the real and

imaginary components of the simulated Gaussian detector noise can be expressed

in terms of σ2
k/2, such as

<(ñ(fk)) = ∆t

√
σ2
k

2
× RANDN,

= ∆t

√
NS(fk)

4∆t
× RANDN,

=

√
NS(fk)∆t2

4∆t
× RANDN,

=

√
TS(fk)

4
× RANDN,

=

√
S(fk)

4∆f
× RANDN, (3.12)



3.4. SNR and Distance Scaling 51

and

=(ñ(fk)) =

√
S(fk)

4∆f
× RANDN. (3.13)

This results in ñ(fk) having units of (Hz)−1 as required.

For convenience, the matched filter signal-to-noise ratio (SNR) of a GW, h, is

defined as

SNR2 = 4

∫ ∞
0

∣∣∣h̃(f)
∣∣∣2

S(f)
df (3.14)

= 4∆f

Nf∑
k=1

∣∣∣h̃(fk)
∣∣∣2

S(fk)
, (3.15)

where the term 4∆f ensures that this term is dimensionless as the term in the sum

as dimension (Hz)−1 and 4∆f has dimension (Hz)1

3.4 SNR and Distance Scaling

The results of SMEE’s computations will depend on the SNR of the waveform, i.e.

the distance to the core collapse event, and on the amount of information that can be

provided to SMEE about expected waveforms in the form of principal components.

The SNR (and distance) of the waveform can be adjusted in SMEE to test this

dependence. This is done by introducing a scale factor which is equal to 1 when

the waveform is at 10kpc. The scale factor is then the chosen SNR divided by the

network SNR of the waveform at 10kpc. When scaling by distance the scale factor

is 10 divided by the chosen distance. The waveform (before any detector noise has

been added) and the PCs are then multiplied by this value.

This scale factor, sf , can be used as a free parameter in SMEE when the distance

to the source is treated as an unknown value. Thus, instead of multiplying sf by the

PCs, a trial sf is chosen for each iteration of the nested sample. Any reconstructed

trial waveform will then give a maximum likelihood when the true sf that was used

to adjust the chosen waveform and the correct signal parameters are found. If this

sf can be predicted accurately, the distance to the source can be predicted. The

prior range for this value is chosen as the given distance of the simulated signal
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+/− 10% i.e. if the distance is 10 kpc, sf will be 1 and so the prior will be over

the range of 0.9 to 1.1. This makes the assumption that the distance to the source

is measured accurately before any GW data is analysed i.e an EM counterpart has

been measured.

3.5 Signal and Noise Models

For the analysis described here, two types of models are considered. The first model

which tests the presence of a waveform h(β) in the data, where β represents the PC

coefficients, is called the signal model, Ms. To test this model an evidence must be

calculated thus a likelihood function is required.

In the time domain the Gaussian likelihood function was shown to be,

logL =
−N

2
log(2π)−N log(σ)−

N/2∑
n=1

|(Dn − h(θ)n)|2
2σ2

n

(3.16)

in Section 2.3 with the sum performed only over positive frequencies. The terms

(−N/2) log(2π) and N log(σ) will always be constant so these terms can be ignored

and σ2 is the one sided detector noise, S(f). D here is the sum of the detector noise

which was generated in Section 3.3 and the time domain signal, which has been first

shifted by a trial Td in the nested sampling algorithm for a particular detector, and

then FFT’d and normalised such that,

D = d̃(fk) = (sfF+ × h̃(fk)∆t) + ñ(fk), (3.17)

where ∆t ensures the waveform and noise have the same dimensions of (Hz)−1.

F+ is the antenna response andsf is the scale factor which adjusts the waveform

to a particular distance. As in Eq. 3.15 the term 4∆f is used to ensure that the

likelihood is dimensionless. Thus the likelihood is given as,

logL = −4∆f

N/2∑
n=1

(|d̃n − (s′fF
′
+h̃(β)n)|2

2S(fn)
(3.18)

where h̃n(β) is the desired waveform reconstructed from the PCs which, as dis-
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cussed in Section 3.2 have already been shifted by Td, and the PC coefficients β,

and N is the length of the data with a corresponding index n. F ′+ is the estimation

of the antenna response from the desired polarisation angle. s′f is the estimation of

the scale factor. When considering combining data from multiple detectors a logL
is found for each detector and a final likelihood is found from finding the sum,

logLM =
M∑
m=1

logLj =
M∑
m=1

−4∆f
N∑
n=1

(|(d̃n)m − s′f (F ′+h̃(β)n)m)|2
2S(fn)m

. (3.19)

Due to the fact that we are adding real and imaginary parts of the signal in

the PSD and spectrogram versions of SMEE we choose to utilise a non-central χ2

likelihood distribution (Section 2.3) for the signal model. logL in this case was

shown to be

logL = N log(1/2) +
N∑
n=1

−(|Dn|2 + |h(θ)n|2)
2σ2

n

+ log
(
I0

(√Dnh(θ)n
σ2
n

))
. (3.20)

As in the Gaussian likelihood, σ2 = S(f) and D is the sum of the detector noise

and the injected signal, which has been first shifted by a trial Td in the nested

sampling algorithm for a particular detector before being transformed into the PSD

or spectrogram domain, such that,

D = d̂(fk) = |(sfF+ × ĥ(fk)× nnorm) + n̂(fk)|, (3.21)

and nnorm is a normalisation constant used to ensure the signal has the same di-

mensions as the detector noise. These are the same terms used to normalise the

principal components in equations 3.1 and 3.3. h(θ) = ĥ(β) and again is the desired

waveform reconstructed from the PCs which, as in the case for time domain PCs,

have already been shifted by Td. By ignoring the term N log(1/2) which remains

constant, the likelihood function is as follows,

logL =
N∑
n=1

−(d̂2n + |(s′fF ′+ĥ(β)n)|2)
2S(f)

+ log
(
I0

(√d̂n|(s′fF ′+ĥ(β)n)|
S(fn)

))
. (3.22)
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Thus when employing multiple detectors the final likelihood is,

logLM =
M∑
m=1

N∑
n=1

−((d̂n)2m + s′f |F ′+ĥ(β)n|2m)

2S(fn)m

+ log
(
I0

(√(d̂n)ms′f |F ′+ĥ(β)n|m
S(fn)m

))
. (3.23)

To determine the evidence (in logarithm space) for the signal model, Ms, the

integral in Eq. 2.3 is solved numerically, using uniformly-distributed priors over a

chosen number of PCs, (see Section 3.1.4). The priors for the extra parameters,

sf , Td and ψ are also included. So, summing up over multiple detectors,

logZsignal =
M∑
m=1

log(p(D|Ms))m =
[ M∑
m=1

N∑
n=1

(log(p(β, sf , Td, ψ|Ms)n)m

]
+ logLM .

(3.24)

The second model considered is the noise model, Mn, which tests the data’s

consistency with detector noise. The likelihood function for the noise model is the

same as that in Eq. 3.18 and 3.22, but with h(β) = 0. It is then straightforward to

perform the integration in Eq. 2.3 and obtain an analytic form for the noise evidence

function when summing up over multiple detectors,

logZnoise =
M∑
m=1

log(p(D|Mn))m =
M∑
m=1

4∆f
N∑
n=1

− (|d̃2|n)m
2S(fn)m

, (3.25)

when a Gaussian likelihood is used and

logZnoise =
M∑
m=1

log(p(D|Mn))m =
M∑
m=1

N∑
n=1

− (d̂2n)m
2S(fn)m

, (3.26)

when a non-central χ2 likelihood is used.

To compare the signal model to the noise model the natural logarithm of the

Bayes Factor, see Equation 2.8, is then used and is simply,

logBSN = logZsignal − logZnoise, (3.27)

where a positive logBSN indicates Ms is favoured and a negative value indicates
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that Mn is favoured.

3.6 Signal Injection and Model Selection

Trial GWs are added to detector noise such as simulated Gaussian Advanced LIGO

noise and SMEE is used to determine which signal model (e.g., which core-collapse

supernova explosion mechanism) a given waveform belongs to. This is done via the

evaluation of the logarithmic Bayes Factors logBSN (Eq. 3.27) for an injected signal

for each signal model S and the noise model N . Comparing two signal models S = i

or S = j is then accomplished by computing logBij = logBiN − logBjN .

SMEE’s model selection operates in either the frequency domain, power spec-

trum domain or spectrogram domain. In the version of SMEE where PCA is per-

formed in the time domain, trial GW and the PCs belonging to the signal model

under consideration are transformed into the frequency domain via DFT and the

trial GW is added to the complex frequency-domain noise, retaining phase informa-

tion. This version of SMEE will still be referred to as time domain SMEE as this

the form the principal components are created in. The PSD version is the same

except that it is a power spectrum of the trial GW that is used so we lose all phase

information. As for the spectrogram version, signals are prepared and normalised

in the same way described in Section 3.1 to create the PCs. The PC coefficients

βk, polarisation angle, Earth centre time and distance (through the use of a scale

factor) are marginalised by invoking the nested sampling algorithm.

The maximum number of PCs at SMEE’s disposal is limited by the number of

waveforms used to determine the set of PCs. While each catalogue used in this

study has a different number of waveforms, analysis is simplified by using the same

number of PCs for all catalogues. Hence, the maximum number of PCs used is 7

and is set by the number of waveforms in the Ott catalogue (see §1.7). This gives

SMEE complete information about waveforms belonging to the Ott catalogue. It

also gives significant, but incomplete information about waveforms from the Dim

and Mur catalogues. This limits SMEE’s ability to precisely reconstruct waveforms

from the Dim and Mur catalogues, but it represents the real-life situation that the a

priori information about a detected signal is severely limited.
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Reconstructions of a waveform along with plots of the posterior distribution for

each PC coefficient are shown for the same Dim waveform for all versions of SMEE

with 7 PCs at a distance of 10kpc using a single Advanced LIGO detector in Figures

3.5 (time domain), 3.6 (power spectrum domain) and 3.7 (spectrogram domain).

Reconstructions for the extra parameters are shown in Section 6.1. While these

reconstructions are adequate, the goal here is not to ideally reconstruct waveforms

but to show that determining the underlying physical model of an observed signal is

possible with limited advance knowledge. For a complete study on how the number

of PCs used affects the results see Chapter 5.
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Figure 3.5: Top Plot: Plot of a Dim waveform with the reconstruction from TD SMEE. Note that
the waveform has been shifted and padded with zeroes so that the first peak occurs at around 1
second. Bottom Plot: Posterior distributions for the 7 PCs used to reconstruct a Dim waveform
using time domain SMEE. The dashed line shows where the correct value for each PC coefficient
lies.



3.6. Signal Injection and Model Selection 58

10
2

10
3

10
−26

10
−25

10
−24

10
−23

Frequency, Hz

S
tr

a
in

, 
h

 

 

Injected Waveform
Reconstruction

(1
/√
Hz
)

10 20 30 40
0

0.1

0.2

1st PC

P
ro

b
. 

d
e

n
s
it
y

−35 −30 −25
0

0.1
0.2

2nd PC

2 4 6

0.2
0.4
0.6
0.8

3rd PC

P
ro

b
. 

d
e

n
s
it
y

0 10 20
0

0.1

0.2

4th PC

−10 −5 0
0

0.5

5th PC

P
ro

b
.d

e
n

s
it
y

−3 −2 −1 0 1

0.2
0.4
0.6

6th PC

4 6 8
0

0.2
0.4
0.6

7th PC

P
ro

b
. 

d
e

n
s
it
y

Figure 3.6: Same as Figure 3.5 but using PSD SMEE to reconstruct the waveform.
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Figure 3.7: Top Plot: On the left is a spectrogram of a Dim waveform with the reconstruction
on the right. Note that the Dim waveforms have been zero buffered in the time domain and
appears dark blue when zero. The PCs will contain time domain information and will attempt to
reconstruct areas which are at zero for this particular waveform. In both these plots the colour
represents the strain, h. Bottom Plot: Posterior distributions for the 7 PCs used to reconstruct
a Dim waveform using Spec SMEE. The dashed line shows where the correct value for each PC
coefficient lies.



Chapter 4

SMEE with One Detector

Chapter 3 described a Bayesian model selection pipeline known as the Supernova

Model Evidence Extractor (SMEE). The purpose of SMEE is to determine if a

detected gravitational wave from a supernova resembles any of the waveform mech-

anisms described in Section 1.7. Any gravitational wave detected will have been

emitted directly from the core of the collapsing star which is entirely blocked from

view in the electromagnetic spectrum. If SMEE is successful an inference can be

made on the supernova mechanism which drives the explosion, and would therefore

provide an enormous leap forward in the understanding of the physics of supernovae.

In this Chapter, the results for a simplified idealised version of SMEE is dis-

cussed. All results shown use 7 PCs (see Section 3.6) unless otherwise stated for

one gravitational wave detector. In this chapter the detector is chosen to be an

Advanced LIGO detector and all effects of sky position and the time of arrival of

the signal are ignored i.e. F+ = 1 and Td = 1 in Equations 3.18 and 3.22. The scale

factor sf used to scale the distance or SNR of a waveform is kept as a fixed param-

eter and is not marginalised in the Nested Sampling Algorithm. As well as this,

only the linear polarisation of the waveform is employed here as most supernova

catalogues only contain this data.

In Section 4.1, SMEE will be tested with only noise (no signal is injected),

the purpose of this being to investigate how SMEE works when it should agree

with the model that there is only noise in the data. In Sections 4.2.1 to 4.2.4 the

performance of time domain SMEE (TD SMEE) is characterised through a series

60
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of tests using simulated detector noise and gravitational waveforms. These tests

are then repeated for the power spectrum (PSD SMEE) and spectrogram domain

(Spec SMEE) versions of SMEE to investigate the strengths and limitations of each

version of SMEE.

4.1 Response to Simulated Noise

It is necessary to quantify and understand SMEE’s response to pure Gaussian detec-

tor noise without a signal being present in order to interpret the results of SMEE’s

bayesian model selection on the basis of Eq. 2.8. To this end, all three versions of

SMEE are run on 10,000 randomised instances of Advanced LIGO detector noise

(generated as described in Section 3.3) without the addition of a waveform. logBSN

(Eq. 3.27) is then computed in the absence of a waveform for each waveform model,

S, with each model representing a different supernova mechanism.

4.1.1 Time Domain

The results for TD SMEE, shown in Fig. 4.1, follow a Gaussian distribution with a

mean corresponding to the expected value −4∆f
∑N/2

i=1
hi(β)

2

2σ2
i

, where N is the length

of the time domain data. This equation follows from equation 3.18 where the data

is equal to zero and s′f , F
′+ and T ′d are equal to 1. The average logarithmic Bayes

Factors obtained for 10,000 instances of noise indicate that noise, or any signal fully

consistent with noise, is most likely to have a logarithmic Bayes Factor of -54.0

when TD SMEE is run with 7 PCs of the Dim catalogue. For the Ott and Mur

catalogues, the expected logarithmic Bayes Factors for pure Gaussian noise and 7

PCs are −52.1 and −52.3, respectively. The observed expectation values are very

comparable to those calculated for the Dim (−53.9), Ott (−52.2), and Mur (−52.3)

catalogues, respectively, verifying that TD SMEE is operating as expected.
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Figure 4.1: Results from running TD SMEE with 7 PCs of the Dim catalogue and without an
injected signal on 10,000 randomized instances of Gaussian Advanced LIGO noise, generated as
described in Sec. 3.3. A signal consistent with noise is most likely to have a logarithmic Bayes
Factor of ∼−54.0. The red line plots a fit to the data with a mean of −53.96 and a standard
deviation σ = 0.17, from Logue et al. [70].

4.1.2 Power Spectrum Domain

In the case for PSD SMEE, shown in Fig. 4.2 are a non-central χ2 likelihood is used

which has a mean corresponding to the expected value −∑N/2
i=1

hi(β)
2

2σ2
i

where N is

the length of the data seen in the time domain. This is the same as Equation ??

where the data term is equal to zero and s′f , F
′
+ and T ′d are all equal to one. Thus

the distribution will appear to follow a Gaussian distribution as in the case of time

domain data which has undergone a FFT. In the case of the power spectrum domain

a signal fully consistent with noise is expected to give logarithmic Bayes Factor of

−31.1, −30.6 and −30.8 when PSD SMEE is run with 7 PCs of the Dim, Ott and

Mur catalogues respectively. The observed values are consistent to those calculated

for the Dim (−31.6), Ott (−30.8) and Mur (−30.8) catalogues so PSD SMEE is

operating as expected.
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Figure 4.2: Results from running SMEE in the power spectrum domain with 7 PCs of the Dim

catalogue and without an injected signal on 10,000 randomized instances of Gaussian Advanced
LIGO noise, generated as described in Sec. 3.3. A signal consistent with noise is most likely to
have a logarithmic Bayes Factor of ∼−31.6. The red line plots a fit to the data with a mean of
−31.11 and a standard deviation σ = 0.3.

4.1.3 Spectrogram Domain

The results for Spec SMEE, shown in Fig. 4.3, a signal fully consistent with noise

is expected to give logarithmic Bayes Factor of −40.5, −40 and −40 when SMEE

is run with 7 PCs of the Dim, Ott and Mur catalogues respectively. The observed

values are consistent to those calculated for the Dim (−39.6), Ott (−39.1) and Mur

(−39.3) catalogues so Spec SMEE is operating as expected.

4.1.4 Threshold for Detection

Since the logarithmic Bayes Factors appear to follow a Gaussian distribution for

all versions of SMEE, a threshold can be set using the standard deviations as an

indicator for the expected false alarm rate. Ideally, for the Dim catalogue, a 1%

false alarm rate would correspond to a threshold that is ∼2.6 times the standard

deviation, corresponding to ∼0.44 above the mean. However, it is noted that the
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Figure 4.3: Results from running Spec SMEE with 7 PCs of the Dim catalogue and without an
injected signal on 10,000 randomized instances of Gaussian Advanced LIGO noise, generated as
described in Sec. 3.3. A signal consistent with noise is most likely to have a logarithmic Bayes
Factor of ∼−39.6. The red line plots a fit to the data with a mean of −40.49 and a standard
deviation σ = 0.22.

expected logarithmic Bayes Factor value varies between different catalogues as well

as the fact that different likelihood distributions are used. Because of this, for a

fixed false alarm rate, a different threshold would be required for each catalogue.

Since the focus here is to distinguish between different waveforms catalogues and

not to perform a study on the detection efficiency of GWs, a conservative approach

of simply setting a higher threshold is chosen. Therefore, to identify a waveform

as being distinct from noise its logBSN is first recalibrated such that logBSN = 0

when only noise is injected. This means that results from each version of SMEE

can be easily compared. A logBSN ≥ 5 is then chosen as the threshold where a

confident statement that a waveform has been added to the noise. This threshold

can then be carried forward to the case when comparing two waveform models Mi

and Mj, i.e. Mi is favoured if logBij ≥ 5 and Mj is favoured if logBij ≤ 5.
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4.2 Characterising SMEE in the Time Domain

4.2.1 Signal Model versus Noise Model

The minimal GW strength required for SMEE to be able to select the core-collapse

supernova mechanism is an important question. The primary prerequisite for an

incident GW to be useful for model selection is that SMEE can distinguish it from

detector noise, i.e., the minimum signal strength (i.e., SNR) so that logBSN ≥ 5

must be found (when 7 PCs are used; Eq. 3.27 and Section 4.1). The waveform

SNR when the waveform can distinguish itself from the other models (supernova

mechanisms) being tested can also be found. For the majority of results shown

in this chapter, three models are used (the Dim PCs for the magnetorotational

mechanism, Mur PCs for the neutrino mechanism, and Ott PCs for the acoustic

mechanism), so to find the minimum signal strength we use Eq. 2.8 twice i.e. when

i = Dim and j = Mur followed by i = Dim and j = Ott. Out of the two Bayes

Factors calculated the minimum one is chosen to ensure the signal is distinguished

from both of the other models, this value is labelled as logB.

All waveforms from the Dim, Mur, and Ott catalogues are processed by TD SMEE

where the SNR increases by 1 from 0 up to an SNR of 10, using 7 PCs generated

from the model to which each waveform belongs. This is done in order to determine

the range of minimum SNR required across and within core-collapse supernova GW

types. The result of this exercise is shown in the in Figure 4.4 for TD SMEE. In

general a SNR of & 3 − 5 is required for TD SMEE to find logBSN ≥ 5 in the

idealized setting that is considered here. This is also the case for logB when all of

the sets of PCs are compared in the bottom plot in Figure 4.4. This indicates that

TD SMEE can comfortably distinguish between the waveforms representing the 3

supernova mechanisms. In a more realistic scenario where there is no information

about the sky position and there is an unknown arrival time along with the non-

Gaussianity of real detector noise, a SNR in excess of 8 would be required for a

detection statement (e.g., [41]).

In Figure 4.4, the waveforms associated with the acoustic mechanism (Ott cata-

logue) require the smallest SNR, followed by those of the magnetorotational mecha-

nism (Dim catalogue) and the neutrino mechanism (Mur catalogue). This hierarchy

in minimum SNR is not fundamental but a consequence that this test has been
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Figure 4.4: Top panel:Mean logBSN as a function of signal-to-noise ratio (SNR; Eq. 3.15) for
all waveforms from the Mur, Ott and Dim catalogues using 7 principal components (PCs) with
TD SMEE. The shaded areas represent the standard error in the mean value of logBSN for each
waveform catalogue computed as σ = ±N−1(Σi(x̄− xi)2)1/2, where x̄ is the mean and xi are the
individual SNRs and N is the number of waveforms. Values of logBSN below 5 in the 7-PC case
indicate that the algorithm considers it more likely that there is no signal detectable in the noise.
Bottom panel: This shows results for the same waveform catalogues when the results from the
top panel are compared with the logBSN found when attempting to reconstruct the supernova
waveform with the other two sets of PCs. The log Bayes Factor is then found i.e. in the case of
the Dim catalogue, logB is found for the Dim PCs versus the Mur and the Ott PCs. Out of the two
results the minimum is plotted here to ensure that TD SMEE can distinguish between all sets of
PCs.
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carried out using 7 PCs for each waveform catalogue. Since the Ott catalogue

comprises only 7 waveforms, the set of 7 PCs completely spans it and allows near

perfect reconstruction, maximizing p(D|Ms) (Eq. 3.18). In the case of less than

perfect knowledge of the signal, the minimum SNR will always be greater. This is

why the Dim and Mur catalogues, which have many more than 7 waveforms, require

larger minimum SNR than the Ott waveforms.

4.2.2 Distinguishing the Supernova Mechanism

The basic assumption of this work is that the neutrino, magnetorotational, and

acoustic core-collapse supernova explosion mechanisms have robustly distinct GW

signatures. This assumption can be tested by injecting waveforms into simulated

noise and running TD SMEE on the data using PCs of waveform catalogues rep-

resentative of the neutrino, magnetorotational, and acoustic mechanisms. If this

assumption is correct and the GW signatures of these mechanisms are truly dis-

tinct, then TD SMEE should firstly yield the largest value of logBSN when the set

of PCs is used that corresponds to the mechanism the waveform is representative

of. Secondly logBij (Eq. 2.8) should be positive (and larger than ∼5; see §4.1) if

the injected waveform is most consistent with mechanism i, negative if it is most

consistent with mechanism j, and near zero if the result is inconclusive.

TD SMEE calculations are carried out for events located at 2 kpc, and 10 kpc

and with 7 PCs. 2 kpc is nearby on the galactic scale, but the Galactic volume out

to this radius already contains hundreds of supergiants, one of which may make the

next galactic supernova [58]. 10 kpc is the fiducial Galactic distance scale and is

considered to state what can be inferred throughout the Milky Way.

In Figure 4.5, results are shown for injection studies of all waveforms from the

Dim, Mur, and Ott catalogues run through TD SMEE and analysed with the Dim,

Mur, and Ott PCs at a source distance of 10 kpc. The top left panel depicts the

logBDimMur result for waveforms from the Dim and Mur catalogues, that are taken to

be representative of the magnetorotational and neutrino mechanism, respectively.

Even at 10 kpc all waveforms characteristic for magnetorotational explosions are

clearly identified as belonging to this mechanism. For the neutrino mechanism, the

evidence is generally significantly weaker and only ∼44% of the Mur waveforms are

identified with logBDimMur < −100 and none have logBDimMur < −1000, while ∼19%
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Figure 4.5: Histograms describing the outcome of signal model comparisons in the time domain by
means of the Bayes Factors logBij = log p(D|Mi)− log p(D|Mj), where i 6= j and Mi and Mj are
signal models described by the Dim (magnetorotational mechanism), Mur (neutrino mechanism),
and Ott (acoustic mechanism) waveform catalogues. The Bayes Factors are computed with 7 PCs
and for a source distance of 10 kpc. A positive value logBij indicates that the injected waveform
most likely belongs to model Mi, while a negative value suggest that model Mj is the more
probable explanation. The bars are color-coded according to the type of injected waveform. The
results are binned into ranges of varying size from < −10000 to > 10000 and the height of the
bars indicates what fraction of the waveforms of a given catalogue falls into a given bin of logBij .
A range of (−5, 5) of logBij is considered as inconclusive evidence (see §4.1), from Logue et al.
[70].

are in the inconclusive regime of −5 < logBDimMur < 5.

In the top right panel of Fig. 4.5, results are shown for logBDimOtt for waveforms

corresponding to the magnetorotational (Dim) and the acoustic (Ott) mechanisms.

All waveforms are correctly identified as most likely belonging to their respective

catalogue/mechanism. Finally, the bottom panel of Fig. 4.5 presents logBMurOtt
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Figure 4.6: Same as Fig. 4.5, but computed for a source distance of 2 kpc, from Logue et al. [70].

for waveforms representative of the neutrino (Mur) and acoustic (Ott) mechanism.

As in the previous panel, TD SMEE associates the waveforms corresponding to

the acoustic mechanism with high confidence to the Ott catalogue. The evidence

suggesting correct association of the neutrino mechanism waveforms is considerably

less strong, but logBMurOtt is still conclusive for ∼88% of the Mur waveforms.

Figure 4.6 shows the results for logBDimMur, logBDimOtt, and logBMurOtt obtained

by TD SMEE with 7 PCs at a source distance of 2 kpc. Here, all acoustic mecha-

nism waveforms (Ott catalogue), all magnetorotational mechanism waveforms (Dim

catalogue), and all neutrino mechanism waveforms (Mur catalogue) are correctly

identified as belonging to their respective catalogue and explosion mechanism.
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Figure 4.7: Plot of an Abd waveform on top of a Dim waveform. Both waveforms have a very
similar length and shape. This will potentially make it more difficult for SMEE to distinguish
these two catalogues.

4.2.3 Rotating Accretion-Induced Collapse or Rotating Iron

Core Collapse?

The waveforms of the Dim catalogue are representative of the GW emitted by

rotating collapse and bounce of iron cores of massive stars with ZAMS masses

& 8 − 10M�. In the accretion-induced collapse (AIC) of rapidly rotating O-Ne

white dwarfs, very similar dynamics occur and the corresponding GWs, as pre-

dicted by Abdikamalov et al. [1], share many of the basic features of the rotating

iron core collapse and bounce waveforms of, e.g., the Dim catalogue (see the discus-

sion in Sec. IV.C. of [1]). Hence, it is interesting to see if the SMEE model selection

algorithm can tell them apart.

The PCs for the Abd catalogue are computed in the same fashion as done pre-

viously for the Dim, Mur, and Ott catalogues for each version of SMEE. All Abd

and Dim waveforms are then injected into simulated Advanced LIGO noise. Since
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the Abd and Dim catalogues are very similar (see Fig 4.7), the results found for Dim

waveforms in Sec. 4.2.1 carry over directly to Abd waveforms. TD SMEE is then run

with 7 PCs to calculate logBAbdDim. The result for TD SMEE is shown in Fig. 4.8

for source distances of 10 kpc and 2 kpc.

In spite of the strong general similarity of rotating iron core collapse and rotating

AIC waveforms, TD SMEE correctly identifies the majority of waveforms as most

likely being emitted by a rotating iron core collapse or by rotating AIC. However,

for a source at 10 kpc (top panel of Fig. 4.8), ∼6% of the Dim and ∼5% of the Abd

are incorrectly identified as belonging to the respective other catalogue. For an

additional 2% of the Dim waveforms and ∼14% of the Abd waveforms, logBAbdDim is

in the inconclusive region. At a source distance of 2 kpc (bottom panel of Fig. 4.8),

88% of the AIC (Abd) and 93% of the rotating core collapse (Dim) waveforms are

correctly identified.

If one placed trust in the reliability of less dominant and more particular features

of waveforms in the underlying catalogues, one could use a larger number of PCs in

the analysis. In order to study the effect of using an increased number of PCs, the

Abd vs. Dim comparison is repeated in the time domain with 14 PCs and it is found

that the result is significantly worse than with 7 PCs: ∼61% of the Abd waveforms

and ∼23% of the Dim catalogue are now incorrectly attributed to the respective

other catalogue at 10 kpc. This counter intuitive and at first surprising result is

readily explained by the overall great similarity of the AIC and iron core collapse

waveforms and the nature of PCA and SMEE’s bayesian model selection. The most

robust features of each waveform catalogue are encapsulated in its first few PCs.

The first Dim and Abd PCs are indeed significantly different, but subsequent Abd and

Dim PCs exhibit rather similar secondary features. Since each PC carries the same

weight in SMEE’s evidence calculation, including a larger number of PCs dilutes

SMEE’s judgment in this case and leads to the observed false identifications.

4.2.4 Testing Robustness of SMEE using Non-catalogue Wave-

forms

In the previous sections, TD SMEE’s ability to identify a trial GW as belonging to

a particular physical model (i.e., emission mechanism and/or explosion mechanism)
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Figure 4.8: Outcome of the SMEE analysis in the time domain of injected rotating iron core
collapse (Dim catalogue) and rotating accretion-induced collapse (AIC, Abd catalogue) waveforms.
The top panel shows results for a source distance of 10 kpc and the bottom panel depicts the results
for a distance of 2 kpc. The Bayes Factors logBAbdDim are computed on the basis of 7 PCs from
the Abd and Dim catalogue. A positive value of logBAbdDim indicates that an injected waveform is
most likely associated with rotating AIC and a negative value suggests it to be more consistent
with rotating iron core collapse. The results are binned into ranges of varying size from < −10000
to > 10000 and the height of the colour-coded bars indicates what fraction of the waveforms of a
given catalogue falls into a given bin of logBAbdDim. A range of (−5, 5) of logBij is considered as
inconclusive evidence (see §4.1).
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has been demonstrated. In this, however, the injected waveforms has been drawn

directly from the catalogues used to generate the PCs. In other words, TD SMEE

has been given (limited) advanced knowledge about the injected waveforms.

Here, a much more stringent test of TD SMEE’s ability is carried out by injecting

waveforms that were not employed in the initial PC generation and/or stem from

completely independent catalogues.

Magnetorotational Mechanism

For the magnetorotational mechanism, three additional Dim waveforms (DimExtra,

Sec. 1.7), are employed that were not included in the calculation of the Dim PCs.

Furthermore, waveforms from rotating models of the Sch catalogue of Scheideg-

ger et al. [102, 23] are tested (see Sec. 1.7). The results of both the logBSN calcu-

lation for the magnetorotational, neutrino, and acoustic mechanism signal models

are summarised in Tab. 4.1. DimExtra waveforms are identified as being most con-

sistent with the Dim catalogue and, hence, the magnetorotational mechanism for all

DimExtra signals out to distances &10 kpc.

The Sch waveforms were generated with a completely different numerical code

and thus allow for a truly independent test of TD SMEE. Also, unlike the Dim

waveforms, the Sch waveforms are based on 3D simulations. Hence, they are not

linearly polarized. For consistency with our current approach, h× is neglected and

only h+ as seen by an equatorial observer is injected. Results of TD SMEE logBSN

calculations for all Sch waveforms are summarized in Tab. 4.1. TD SMEE correctly

identifies all injected Sch waveforms as indicative of magnetorotational explosions

at a source distance of 2 kpc. At 10 kpc, still 91% of the injected Sch waveforms

are attributed to the magnetorotational mechanism, which is an indication of the

robustness of the GW associated with rapid rotation and magnetorotational explo-

sions. The very few Sch waveforms that TD SMEE is not able to clearly associated

with the magnetorotational mechanism have such weak SNRs that they are more

consistent with noise than with any of the catalogues at 10 kpc.
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Table 4.1: logBSN for gravitational waveforms that were not included in the catalogues used
for PC computation using TD SMEE. The DimExtra, Sch, OttExtra, and Yak waveforms are
discussed in §1.7. Results are shown for source distances of 2 kpc and 10 kpc and for evaluations
using 7 PCs. Larger values indicate stronger evidence that the waveform is matched to the model
catalogue from which the PCs were constructed. logBSN < 5 when 7 PCs are used indicates
that the injected signal is likely consistent with noise while larger values suggests that the signal
belongs to the signal model whose PCs were used in the analysis.

Waveform logBSN logBSN logBSN
Dim PCs Mur PCs Ott PCs

2 kpc 10 kpc 2 kpc 10 kpc 2 kpc 10 kpc

DimExtra [97]
s20a1o05 shen 31227 1322 1952 85 78 5
s15a1o03 LS 95280 3933 2627 108 434 22
s40a1o10 LS 189967 7593 7054 243 139 7

Sch [102]
R1E1CA 336 15 1 2 3 1

R1E1CA L 163 9 1 2 2 0
R1E1DB 276 13 1 1 3 0
R1E3CA 456 22 3 2 4 1
R1STCA 120 7 4 2 1 0
R2E1AC 4489 204 13 2 15 1
R2E3AC 4105 187 15 1 9 1
R2STAC 8000 346 16 2 21 2
R3E1AC 37787 1592 121 6 116 7

R3E1AC L 25817 1099 117 5 63 4
R3E1CA 30743 1301 119 6 91 5
R3E1DB 30862 1305 160 9 87 5
R3E2AC 27743 1180 82 6 86 5
R3E3AC 39922 1683 81 3 157 9
R3STAC 50646 2113 176 7 121 7
R4E1AC 103019 4259 259 10 429 21
R4E1CF 533131 21506 22451 827 1537 70
R4E1EC 81799 3401 248 11 380 20
R4E1FC 411834 16671 5404 186 1362 62

R4E1FC L 95939 3968 233 8 370 19
R4STAC 127311 5233 669 27 408 20
R5E1AC 74266 3078 492 18 377 19

OttExtra [85]
m15b6 14 0 4 1 296 17

s11WW 66 0 20 2 353 9
s25WW 88 4 3719 160 127736 5157

Yak [132]
s12 matter 3 0 28 4 0 0
s15 matter 5 0 28 3 0 0
s25 matter 8 0 13 2 0 0
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Figure 4.9: Mean and 1-σ range of logBSN as a function of signal-to-noise ratio SNR comparing
the waveform with noise evidence using TD SMEE. The horizontal lines mark the threshold values
of logBSN above which it is considered a waveform to be distinct from Gaussian noise. Top panel:
Results for the Sch and DimExtra in green and blue. These two were both reconstructed with 7
Dim PCs. Results for the Yak in mauve and OttExtra waveforms in black as reconstructed with
7 Mur for the first and 7 Ott PCs for the latter. The Dim PCs very efficiently reconstruct the Sch

and DimExtra waveforms at moderate SNRs while the Yak and OttExtra require very high SNRs
to be distinguished from noise by the Mur and Ott PCs, respectively. Bottom panel: This shows
results for the same waveform catalogues when the results from the top panel are compared with
the logBSN found when attempting to reconstruct the desired waveform with the other two sets
of PCs. The log Bayes Factor is then found i.e. in the case of the Yak catalogue logB is found
for the Mur PCs versus the Dim and the Ott PCs. Out of the two results the minimum is plotted
here to ensure that SMEE can distinguish between all sets of PCs. As in the results shown in the
left panel the Dim PCs very efficiently reconstruct the Sch and DimExtra waveforms at moderate
SNRs while the Yak and OttExtra require very high SNRs to be distinguished from both the noise
and the other two sets of PCs.
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Acoustic Mechanism

TD SMEE’s ability to identify core-collapse supernovae exploding via the acoustic

mechanism is tested by utilising the three OttExtra waveforms (see Sec. 1.7). The

results of this test are again summarized in Tab. 4.1. They suggest that the a-

priori unknown OttExtra waveforms can be identified as belonging to the acoustic

mechanism out to 2 kpc with great confidence when 7 PCs are used in the analysis.

At 10 kpc, the waveforms are still correctly attributed to the acoustic mechanism,

but the evidence is much weaker. The OttExtra 3 waveform (labelled as s25WW),

which is clearly identified at 10 kpc, has an extreme SNR of ∼2530 at this distance,

while the two other waveforms have SNRs of ∼50. TD SMEE’s difficulty is illus-

trated in the bottom panel of Fig. 4.9, which indicates that the OttExtra waveforms

reach the threshold of logB ≥ 5 only for SNRs &35, whereas Ott waveforms are

identified already at SNRs &4, if the full set of 7 PCs is used, see Figure 4.4 for

the Ott results. This is a strong indication that the range of possible waveform

features associated with the acoustic mechanism is not efficiently covered by the 7

PCs generated from the Ott catalogue. This could simply be attributed to the very

small number of waveforms in this catalogue. However, when studying the Ott and

OttExtra waveforms, one immediately notes that the time between the first peak

(associated with core bounce) and the second peak (the global maximum, associated

with the non-linear phase of the protoneutron star pulsations) varies significantly

between waveforms. Since PCs are computed in the time domain, such large-scale

features are imprinted onto the PCs and make it difficult to identify waveforms

whose two peaks are separated by significantly different intervals. An alternative

method that may work much better for waveforms of this kind is to compute PCs

based on waveform power spectra, which would remove any potentially problematic

phase information.

Neutrino Mechanism

TD SMEE’s ability to identify GWs emitted by core-collapse supernovae exploding

via the neutrino mechanism is tested using the waveforms of the Yak catalogue (see

Sec. 1.7) that were obtained with a completely different numerical code. The three

available Yak waveforms are injected into Advanced LIGO noise and TD SMEE is

run on them to compute logBSN . The results are listed in Tab. 4.1. TD SMEE
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correctly and clearly associates the Yak waveforms with the Mur PCs at 2 kpc.

However at 10 kpc the Yak waveforms appear to be most consistent with noise. The

bottom panel of Fig. 4.9 shows that the Yak waveforms require an SNR to be clearly

associated with the neutrino mechanism that is more than ∼18 times higher than

for Mur waveforms. This rather disappointing result can be explained as follows:

While the Yak waveforms are qualitatively very similar to the Mur waveforms, they

differ significantly in quantitative aspects. The Yak waveforms are generally only

half as long (∼1 s for Mur and 0.5 s for Yak, whose models explode much earlier than

the Mur models). This may be due to the more simplified treatment of gravity and

neutrino microphysics and transport in the study of Murphy et al. [79] underlying

the Mur catalogue compared to the work of Yakunin et al. [132] that led to the Yak

catalogue.

4.3 Characterising SMEE in the Power Spectrum

Domain

4.3.1 Signal Model versus Noise Model

The results shown in Section 4.2.1 are repeated for the power spectrum domain

version of SMEE (PSD SMEE), see Fig. 4.10. In this case a larger SNR compared

to the time domain is required for PSD SMEE to find logBSN ≥ 5 in the idealized

setting that is considered here. The Dim waveforms requires the smallest SNR of 18

followed by those of the Mur catalogue with 24 and finally the Ott catalogue which

requires a SNR of 27.

The SNR required to correctly determine the correct model increases with the

Dim and Mur catalogues. This indicates that logBSN may be greater than zero when

the wrong set of PCs is used to reconstruct the signal. In this case logBSN is always

greatest when the correct set of PCs is used meaning that all waveforms can still

be matched to the correct explosion mechanism.

As in the case of the time domain the Ott catalogue comprises only 7 waveforms,

so it is expected that they will be accurately reconstructed. However in this case

the Ott waveforms are the last catalogue to reach the detection threshold. This
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Figure 4.10: Top panel: Mean logBSN using the PSD SMEE as a function of signal-to-noise ratio
(SNR; Eq. 3.15) for all waveforms from the Mur, Ott and Dim catalogues 7 principal components
(PC). The shaded areas represent the standard error in the mean value of logBSN for each
waveform catalogue computed as σ = ±N−1(Σi(x̄− xi)2)1/2, where x̄ is the mean and xi are the
individual SNRs and N is the number of waveforms. Values of logBSN below 5 indicate that
the algorithm considers it more likely that there is no signal detectable in the noise. Bottom
panel: This shows results for the same waveform catalogues when the results from the top panel
are compared with the logBSN found when attempting to reconstruct the injected waveform with
the other two sets of PCs. The log Bayes Factor is then found i.e. in the case of the Dim catalogue
logB is found for the Dim PCs versus the Mur and the Ott PCs. Out of the two results the
minimum is plotted here to ensure that SMEE can distinguish between all sets of PCs.
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is due to the fact that when calculating the power spectrum all time and phase

information is lost which means the waveforms are no longer as distinct. As well as

this the waveforms peak at around 103 Hz where Advanced LIGO noise is higher,

see Fig 4.11. This also applies to the Mur catalogue where losing the phase data has

diminished PSD SMEE’s ability to distinguish the waveform from the noise as well

as the fact that due to using only 7 PCs there is less than perfect knowledge of the

waveform. The Dim catalogue on the other hand performs the best out of all three

catalogues due to the fact that even with only 7 PCs there is enough information

to satisfactorily reconstruct the injected signals thus giving a larger value for the

evidence.

4.3.2 Distinguishing the Supernova Mechanism

Following the same process as described in Section 4.2.2, results are shown in

Fig. 4.12 using PSD SMEE. The top left panel depicts the logBDimMur result and

like TD SMEE, the vast majority of waveforms characteristic for magnetorotational

explosions are clearly identified as belonging to this mechanism. For the neutrino

mechanism, the evidence is significantly weaker and none of the Mur waveforms are

outside the inconclusive regime of −5 < logBDimMur < 5. This is due to the low

SNR of the waveforms at 10 kpc, neither the Dim nor Mur PCs can distinguish the

waveform from the noise.

In the top right panel of Fig. 4.12, results are shown for logBDimOtt. Most

waveforms are correctly identified as most likely belonging to their respective cat-

alogue/mechanism. Finally, the bottom panel of Fig. 4.12 presents logBMurOtt. As

in the previous panel, PSD SMEE associates the waveforms corresponding to the

acoustic mechanism with high confidence to the Ott catalogue. The evidence sug-

gesting correct association of the neutrino mechanism waveforms is considerably less

strong, with logBMurOtt being in the inconclusive region for all of the Mur waveforms.
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Figure 4.11: Top panel: Plot showing an Ott waveform with a SNR of 30 at 10kpc. This
highlights the point that there are no distinct features in this signal until a frequency of around
103 Hz which makes it difficult for PSD SMEE to distinguish signals from the noise at SNR values
smaller than 30. Bottom panel: Plot showing a Mur waveform with a SNR of 20 at 10kpc.
This shows that there are few distinct features in the PSD making it difficult for PSD SMEE to
distinguish the signal from the noise at this SNR.
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Figure 4.12: Histograms describing the outcome of signal model comparisons in the power spec-
trum domain by means of the Bayes Factors logBij = log p(D|Mi)− log p(D|Mj), where i 6= j and
Mi and Mj are signal models described by the Dim (magnetorotational mechanism), Mur (neu-
trino mechanism), and Ott (acoustic mechanism) waveform catalogues. The Bayes Factors are
computed with 7 PCs and for a source distance of 10 kpc. A positive value logBij indicates that
the injected waveform most likely belongs to model Mi, while a negative value suggest that model
Mj is the more probable explanation. The bars are colour-coded according to the type of injected
waveform. The results are binned into ranges of varying size from < −10000 to > 10000 and the
height of the bars indicates what fraction of the waveforms of a given catalogue falls into a given
bin of logBij . A range of (−5, 5) of logBij is considered as inconclusive evidence (see §4.1).

Figure 4.13 shows the results for logBDimMur, logBDimOtt, and logBMurOtt obtained

by PSD SMEE with 7 PCs at a source distance of 2 kpc. Here, all acoustic mecha-

nism waveforms (Ott catalogue) and the majority of all neutrino mechanism wave-

forms (Mur catalogue) are correctly identified as belonging to their respective cat-

alogue and explosion mechanism however ∼12.5% still do not have a large enough

SNR to be distinguished from the noise. In the case of the magnetorotational mech-
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Figure 4.13: Same as Fig. 4.12, but computed for a source distance of 2 kpc.

anism, ∼13% of the Dim waveforms incorrectly favour the neutrino mechanism. This

is due to the fact that we do not have complete information on either of these cata-

logues. These Dim waveforms have features which are not reconstructed well using

the Dim PCs so that the Mur PCs are able to reconstruct the waveform with a higher

evidence, see Fig 4.14.
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Figure 4.14: Figure showing the reconstruction of a Dim waveform using the Mur and Dim PCs.
In the frequency band that Advanced LIGO is most sensitive, between 102 and 103 Hz the recon-
struction using the Mur PCs is closer in scale to the injected waveform. Because of this it has a
higher evidence value and thus PSD SMEE incorrectly favours this over the reconstruction using
the Dim PCs.

4.3.3 Rotating Accretion-Induced Collapse or Rotating Iron

Core Collapse?

In the power spectrum domain, SMEE performs significantly worse than in the

time domain version of SMEE. In this case, for a source at 10 kpc (top panel of

Fig. 4.15), the majority of the Dim are correctly identified as most likely being

emitted by a rotating iron core collapse with only ∼10% being in the inconclusive

region or incorrectly identified as belonging to the Abd catalogue. However, for the

Abd waveforms ∼40% of the Abd are incorrectly identified as belonging to the

respective other catalogue or have a Bayes Factor between -5 and 5.
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Figure 4.15: Outcome of the SMEE analysis in the power spectrum domain of injected rotating
iron core collapse (Dim catalogue) and rotating accretion-induced collapse (AIC, Abd catalogue)
waveforms. The upper panel shows results for a source distance of 10 kpc and the lower panel
depicts the results for a distance of 2 kpc. The Bayes Factors logBAbdDim are computed on the
basis of 7 PCs from the Abd and Dim catalogue. A positive value of logBAbdDim indicates that an
injected waveform is most likely associated with rotating AIC and a negative value suggests it to
be more consistent with rotating iron core collapse. The results are binned into ranges of varying
size from < −10000 to > 10000 and the height of the color-coded bars indicates what fraction
of the waveforms of a given catalogue falls into a given bin of logBAbdDim. A range of (−5, 5) of
logBij is considered as inconclusive evidence (see §4.1).
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Figure 4.16: Reconstruction of an Abd waveform (injected waveform shown in black) using the Abd
PCs in red and the Dim PCs in blue. Both waveforms occur across a very similar frequency band,
especially in the frequency band between 10 and 400 Hz where there are no obvious distinct features
between the two catalogues. This highlights the increased difficulty for SMEE to distinguish these
two catalogues in the power spectrum domain.

At a source distance of 2 kpc (bottom panel of Fig. 4.15), 100% of the rotating

core collapse (Dim) waveforms are correctly identified. However, ∼65% of the AIC

Abd waveforms are incorrectly identified. Figure 4.16 highlights the difficulty in

separating these two catalogues, even more so than in the time domain.
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4.3.4 Testing Robustness of SMEE using non-catalogue wave-

forms

Magnetorotational Mechanism

As in the time domain, Dim Extra and Sch waveforms are employed here. The

results of the logBSN calculation for the magnetorotational, neutrino, and acoustic

mechanism waveform models are summarized in Tab. 4.2. DimExtra waveforms

are identified as being most consistent with the Dim catalogue and, hence, the

magnetorotational mechanism for all DimExtra waveforms out to distances &10 kpc.

Results of PSD SMEE logBSN calculations for all injected Sch waveforms are

summarized in Tab. 4.2. PSD SMEE correctly identifies all injected Sch waveforms

as indicative of magnetorotational explosions at a source distance of 2 kpc. At

10 kpc, still 72% of the injected Sch waveforms are attributed to the magnetorota-

tional mechanism, which is an indication of the robustness of the gravitational wave

associated with rapid rotation and magnetorotational explosions. The very few Sch

waveforms that PSD SMEE is not able to clearly associate with the magnetorota-

tional mechanism have such weak SNRs that they are more consistent with noise

than with any of the catalogues at 10 kpc.

Acoustic Mechanism

As in the time domain the three OttExtra waveforms (see Sec. 1.7) are utilised

here. The results of this test are again summarized in Tab. 4.2. They suggest that

the a-priori unknown OttExtra waveforms can be identified as belonging to the

acoustic mechanism out to 10 kpc with great confidence when 7 PCs are used in the

analysis. PSD SMEE’s improvement is illustrated in the bottom panel of Fig. 4.17,

which indicates that the OttExtra waveforms reach the threshold of logB ≥ 5 only

for SNRs &28 compared to &35 for the time domain. This SNR is very close to

the SNR required to reach the detection threshold when testing the Ott waveforms,

see Section 4.3.1. This is a strong indication that the range of possible waveform

features associated with the acoustic mechanism is much more efficiently covered

by the 7 PCs generated from the Ott catalogue in the power spectrum domain

confirming that any problems seen with the time domain results has been removed.
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Table 4.2: power spectrum: logBSN for gravitational waveforms that were not included in the
catalogues used for PC computation. The DimExtra, Sch, OttExtra, and Yak waveforms are
discussed in §1.7. Results are shown for source distances of 2 kpc and 10 kpc and for evaluations
using 7 PCs. Larger values indicate stronger evidence that the waveform is matched to the model
catalogue from which the PCs were constructed. logBSN < 5 when 7 PCs are used indicates
that the injected signal is likely consistent with noise while larger values suggests that the signal
belongs to the signal model whose PCs were used in the analysis.

Waveform logBSN logBSN logBSN
Dim PCs Mur PCs Ott PCs

2 kpc 10 kpc 2 kpc 10 kpc 2 kpc 10 kpc

DimExtra [97]
s20a1o05 shen 50449 736 52608 712 7646 1
s15a1o03 LS 105158 3493 110111 3236 17572 59
s40a1o10 LS 100357 5016 91035 3900 867 0

Sch [102]
R1E1CA 1352 0 1307 0 0 0

R1E1CA L 288 0 268 0 18 0
R1E1DB 969 1 958 0 0 0
R1E3CA 2811 1 2245 0 25 0
R1STCA 775 1 450 0 0 1
R2E1AC 5935 1 2804 0 4776 1
R2E3AC 6520 1 2389 0 4384 0
R2STAC 19357 27 8308 1 13610 20
R3E1AC 73018 1125 56375 540 55395 586

R3E1AC L 105650 4233 79334 2087 73921 2204
R3E1CA 68186 848 51175 377 51972 476
R3E1DB 69328 886 52032 402 52980 504
R3E2AC 58258 555 41131 228 47143 332
R3E3AC 80412 1346 66150 815 55327 559
R3STAC 191988 11585 160628 5817 160295 7606
R4E1AC 137118 5030 125902 3846 76042 1411
R4E1CF 425485 54724 464719 53862 24441 575
R4E1EC 117529 3648 108240 2853 63920 905
R4E1FC 325979 35035 348117 33004 21984 430

R4E1FC L 216629 15722 174432 7499 183179 10956
R4STAC 185035 10170 175705 7820 109781 3632
R5E1AC 109576 4605 123752 4160 14162 18

OttExtra [85]
m15b6 10010 143 2145 0 14670 202

s11WW 9998 100 2608 0 13737 166
s25WW 560645 84571 165602 10275 1143494 201570

Yak [132]
s12 matter 4669 1 2550 0 2696 0
s15 matter 11290 2 5387 0 7134 1
s25 matter 4289 1 1272 0 3424 0
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Neutrino Mechanism

As in the time domain case the waveforms of the Yak catalogue (see Sec. 1.7)

that were obtained with a completely different numerical code are tested. The

results are listed in Tab. 4.2. PSD SMEE correctly and clearly associates the Yak

waveforms with the Mur PCs at 2 kpc but at 10 kpc the Yak waveforms appear to

be most consistent with noise. However the results found show that logBSN for

the Dim and Ott PCs is considerably higher than those of the Mur PCs indicating

that PSD SMEE favours the incorrect models. The bottom panel of Fig. 4.17

confirms this by showing that logB decreases with SNR which shows that the

logBSN is higher for the other two sets of PCs. This rather disappointing result

can be explained as follows: The Yak waveforms have considerably more power at

frequencies above ∼800 Hz and their energy spectra peak at ∼1000 Hz while most

of the emission in the Mur waveforms occurs at or below ∼400 Hz, see Figure 4.18.

This peak in frequency occurs at a similar peak in both the Dim and Ott PCs which

may be the reason they provide larger log Bayes Factors. This may be due to the

more simplified treatment of gravity and neutrino microphysics and transport in

the study of Murphy et al. [79] underlying the Mur catalogue compared to the work

of Yakunin et al. [132] that led to the Yak catalogue.
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Figure 4.17: Mean and 1-σ range of logBSN as a function of signal-to-noise ratio SNR comparing
signal with noise evidence for non-catalogue waveforms for power spectrum domain Top panel:
Results for the Sch and DimExtra in green and blue. These two were both reconstructed with 7
Dim PCs. Results for the Yak in mauve and OttExtra waveforms in black as reconstructed with
7 Mur for the first and 7 Ott PCs for the latter. The Dim PCs very efficiently reconstruct the Sch

and DimExtra waveforms at moderate SNRs while the Yak and OttExtra require very high SNRs
to be distinguished from noise by the Mur and Ott PCs, respectively. Bottom panel: This shows
results for the same waveform catalogues when the results from the left panel are compared with
the logBSN found when attempting to reconstruct the injected waveform with the other two sets
of PCs. The log Bayes Factor is then found i.e. in the case of the Yak catalogue logB is found
for the Mur PCs versus the Dim and the Ott PCs. Out of the two results the minimum is plotted
here to ensure that SMEE can distinguish between all sets of PCs. As in the results shown in the
top panel the Dim PCs very efficiently reconstruct the Sch and DimExtra waveforms at moderate
SNRs while the Yak and OttExtra require very high SNRs to be distinguished from both the noise
and the other two sets of PCs.
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Figure 4.18: Reconstruction of a Yak waveform (injected waveform shown in black) using the Mur

PCs in red and the Dim PCs in blue. This shows that the Mur PCs are unable to reconstruct the
peak of the Yak waveform at 103 Hz whereas the Dim PCs are able to reconstruct this part of the
waveform.

4.4 Characterising SMEE in the Spectrogram Do-

main

4.4.1 Signal Model versus Noise Model

The results shown in Section 4.2.1 are repeated in the spectrogram domain version of

SMEE (Spec SMEE), see Fig. 4.19. In this case a larger SNR compared to the time

domain is required for Spec SMEE to find logBSN ≥ 5 in the idealized setting that

is considered here. However there is a large improvement from the power spectrum

results (Section 4.3.1). In this case the Dim waveforms require the smallest SNR
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of 5 followed by those of the Ott catalogue with 7.5 and finally the Mur catalogue

which requires a SNR of 9.5.

In the case where all three sets of PCs are compared, the Dim and Ott waveforms

are easily distinguished from the other models. However with the Mur waveforms,

the reconstructed waveform initially agrees with another one of the models (in this

case the Dim PCs) and only begins to agree with the Mur PCs at an SNR of 13. The

Bayes Factor below this SNR never goes below -5 so all results are still within the

inconclusive region of between 5 and -5 where it is concluded that the models can

not be distinguished. This highlights the need for such a conservative threshold as

if it was smaller an incorrect result could have been registered in this case.

The Ott catalogue is much improved here over the power spectrum case as time

domain information is included here. However, due to the frequency information

also being included, the threshold for detection is larger than in the time domain

case. For this same reason the results for the Mur catalogue has improved however

Spec SMEE is still limited due to having only 7 PCs to reconstruct the waveform.

In the case of the Dim catalogue it performs very well for the same reasons as before

i.e. that we are including the time domain information where the Dim waveforms

have a simple structure which can be very successfully distinguished from the noise.

The Dim catalogue also doesn’t suffer as much from the limitations of the power

spectrum domain so the results are not hampered by including this information.
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Figure 4.19: Top panel:Mean logBSN using Spec SMEE as a function of signal-to-noise ratio
(SNR; Eq. 3.15) for all representative waveforms from the Mur, Ott and Dim catalogues using 7
principal components (PC). The shaded areas represent the standard error in the mean value of
logBSN for each waveform catalogue computed as σ = ±N−1(Σi(x̄ − xi)

2)1/2, where x̄ is the
mean and xi are the individual SNRs and N is the number of waveforms. Values of logBSN

below 5 indicate that the algorithm considers it more likely that there is no signal detectable in
the noise. Bottom panel: This shows results for the same waveform catalogues when the results
from the top panel are compared with the logBSN found when attempting to reconstruct the
injected waveform with the other two sets of PCs. The log Bayes Factor is then found i.e. in the
case of the Dim catalogue logB is found for the Dim PCs versus the Mur and the Ott PCs. Out
of the two results the minimum is plotted here to ensure that SMEE can distinguish between all
sets of PCs.
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4.4.2 Distinguishing the Supernova Mechanism

In Fig. 4.20, results are shown for injection studies of all waveforms from the Dim,

Mur, and Ott catalogues run through Spec SMEE and analyzed with the Dim, Mur,

and Ott PCs at a source distance of 10 kpc. The top left panel depicts the logBDimMur

results and at 10 kpc all waveforms characteristic for magnetorotational explosions

are clearly identified as belonging to this mechanism. For the neutrino mechanism,

the evidence is generally significantly weaker and only ∼30% of the Mur waveforms

are identified with logBDimMur < −100 and none have logBDimMur < −1000, while

∼7% are in the inconclusive regime of −5 < logBDimMur < 5. Most damning of all

is that ∼44% of Mur waveforms are incorrectly identified as Dim waveforms. This

is due to the fact that at SNRs, typically less than 10, these waveforms favour the

magnetorotational mechanism and only start agreeing with the neutrino waveforms

at higher SNRs.

In the top right panel of Fig. 4.20, results are shown for logBDimOtt for in-

jected waveforms corresponding to the magnetorotational (Dim) and the acoustic

(Ott) mechanisms. All waveforms are correctly identified as most likely belonging

to their respective catalogue/mechanism. Finally, the bottom panel of Fig. 4.20

presents logBMurOtt for waveforms representative of the neutrino (Mur) and acoustic

(Ott) mechanism. As in the previous panel, Spec SMEE associates the waveforms

corresponding to the acoustic mechanism with high confidence to the Ott catalogue.

The evidence suggesting correct association of the neutrino mechanism waveforms

is not as strong, but logBMurOtt is still conclusive for ∼93% of the Mur waveforms

with the other ∼7% being in the inconclusive region.

Figure 4.21 shows the results for logBDimMur, logBDimOtt, and logBMurOtt obtained

by Spec SMEE with 7 PCs at a source distance of 2 kpc. Here, all acoustic mech-

anism waveforms (Ott catalogue) and all magnetorotational mechanism waveforms

(Dim catalogue) are correctly identified as belonging to their respective catalogue

and explosion mechanism. Only 1 neutrino mechanism waveforms (Mur catalogue)

still incorrectly identifies with the magenetorotational mechanism which highlights

that even at 2kpc some Mur waveforms still do not have a high enough SNR to start

agreeing with the correct mechanism.
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Figure 4.20: Histograms describing the outcome of signal model comparisons in the spectrogram
domain by means of the Bayes Factors logBij = log p(D|Mi)− log p(D|Mj), where i 6= j and Mi

and Mj are signal models described by the Dim (magnetorotational mechanism), Mur (neutrino
mechanism), and Ott (acoustic mechanism) waveform catalogues. The Bayes Factors are computed
with 7 PCs and for a source distance of 10 kpc. A positive value logBij indicates that the injected
waveform most likely belongs to model Mi, while a negative value suggest that model Mj is the
more probable explanation. The bars are color-coded according to the type of injected waveform.
The results are binned into ranges of varying size from < −10000 to > 10000 and the height of the
bars indicates what fraction of the waveforms of a given catalogue falls into a given bin of logBij .
A range of (−5, 5) of logBij is considered as inconclusive evidence (see §4.1).
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Figure 4.21: Same as Fig. 4.20, but computed for a source distance of 2 kpc.
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4.4.3 Rotating Accretion-Induced Collapse or Rotating Iron

Core Collapse?

For this test, Spec SMEE performs better than both the time domain and power

spectrum versions of SMEE. In this case, for a source at 10 kpc (top panel of

Fig. 4.22), all of the Dim are correctly identified as most likely being emitted by

a rotating iron core collapse. For the Abd waveforms, only ∼13% of the Abd are

incorrectly identified as belonging to the respective other catalogue or have a Bayes

Factor between -5 and 5.

At a source distance of 2 kpc (bottom panel of Fig. 4.22), 100% of the rotating

core collapse (Dim) waveforms are correctly identified. However, ∼8% of the AIC

Abd waveforms are incorrectly identified.

4.4.4 Testing Robustness of SMEE using non-catalogue wave-

forms

Magnetorotational Mechanism

Once again the (DimExtra waveforms, Sec. 1.7), are employed that were not in-

cluded in the calculation of the Dim PCs as well as waveforms from rotating models

of the Sch catalogue of Scheidegger et al. [102, 23] are injected (see Sec. 1.7). The

results of the logBSN calculation for the magnetorotational, neutrino, and acoustic

mechanism signal models are summarized in Tab. 4.3. DimExtra waveforms are

identified as being most consistent with the Dim catalogue and, hence, the magne-

torotational mechanism. This is true with high confidence signals out to distances

&10 kpc.

Results of Spec SMEE logBSN calculations for all injected Sch waveforms are

summarized in Tab. 4.3. Spec SMEE correctly identifies all injected Sch wave-

forms as indicative of magnetorotational explosions at a source distance of 2 kpc.

At 10 kpc, still 91% of the injected Sch waveforms are attributed to the magnetoro-

tational mechanism, which is an indication of the robustness of the GW associated

with rapid rotation and magnetorotational explosions. The very few Sch waveforms
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Figure 4.22: Outcome of the SMEE analysis in the spectrogram domain of injected rotating
iron core collapse (Dim catalogue) and rotating accretion-induced collapse (AIC, Abd catalogue)
waveforms. The left panel shows results for a source distance of 10 kpc and the right panel depicts
the results for a distance of 2 kpc. The Bayes Factors logBAbdDim are computed on the basis of 7
PCs from the Abd and Dim catalogue. A positive value of logBAbdDim indicates that an injected
waveform is most likely associated with rotating AIC and a negative value suggests it to be more
consistent with rotating iron core collapse. The results are binned into ranges of varying size
from < −10000 to > 10000 and the height of the color-coded bars indicates what fraction of the
waveforms of a given catalogue falls into a given bin of logBAbdDim. A range of (−5, 5) of logBij is
considered as inconclusive evidence (see §4.1).
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that Spec SMEE is not able to clearly associated with the magnetorotational mech-

anism have such weak SNRs that they are more consistent with noise than with any

of the catalogues at 10 kpc.

Acoustic Mechanism

For the three OttExtra waveforms (see Sec. 1.7), the results of this test are again

summarized in Tab. 4.3. They suggest that the a-priori unknown OttExtra wave-

forms can be identified as belonging to the acoustic mechanism out to 2 kpc with

great confidence when 7 PCs are used in the analysis. At 10 kpc, the waveforms

are still correctly attributed to the acoustic mechanism, but the evidence is much

weaker.

Spec SMEE’s difficulty is illustrated in the bottom panel of Fig. 4.23, which

indicates that the OttExtra waveforms reach the threshold of logBSN ≥ 5 only for

SNRs &38, whereas Ott waveforms are identified already at SNRs &8, if the full set

of 7 PCs is used. This is a strong indication that, as in the case of the time domain,

the range of possible waveform features associated with the acoustic mechanism is

not efficiently covered by the 7 PCs generated from the Ott catalogue and that since

we retain the time domain information when computing the spectrogram PCs, such

large-scale features are again imprinted onto the PCs.

Neutrino Mechanism

For the Yak catalogue (see Sec. 1.7) the results are listed in Tab. 4.3. Spec SMEE

correctly and clearly associates the Yak waveforms with the Mur PCs at 2 kpc. At

10 kpc the Yak waveforms appear to be most consistent with noise for Spec SMEE.

The bottom panel of Fig. 4.23 shows that the Yak waveforms require an SNR to

be clearly associated with the neutrino mechanism of 37. This is a significant im-

provement on the time and power spectrum versions of Spec SMEE. This indicates

that including the frequency information improves the reconstruction but by also

having the time domain information the errors seen in the power spectrum domain

are removed.
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Table 4.3: Spectrogram: logBSN for gravitational waveforms that were not included in the cata-
logues used for PC computation. The DimExtra, Sch, OttExtra, and Yak waveforms are discussed
in §1.7. Results are shown for source distances of 2 kpc and 10 kpc and for evaluations using 7
PCs. Larger values indicate stronger evidence that the waveform is matched to the model cata-
logue from which the PCs were constructed. logBSN < 5 when 7 PCs are used indicates that the
injected signal is likely consistent with noise while larger values suggests that the signal belongs
to the signal model whose PCs were used in the analysis.

Waveform logBSN logBSN logBSN
Dim PCs Mur PCs Ott PCs

2 kpc 10 kpc 2 kpc 10 kpc 2 kpc 10 kpc

DimExtra [97]
s20a1o05 shen 308019 11426 48143 1555 6104 88
s15a1o03 LS 692386 26678 72783 2848 12645 326
s40a1o10 LS 1071939 41768 274761 11476 6223 119

Sch [102]
R1E1CA 2132 17 192 0 0 0

R1E1CA L 747 0 0 0 0 0
R1E1DB 1816 10 150 0 0 0
R1E3CA 3927 49 102 0 8 0
R1STAC 584 1 6 0 0 0
R2E1AC 25596 676 1031 0 152 0
R2E3AC 25771 695 761 0 103 0
R2STAC 48548 1520 1490 0 296 0
R3E1AC 223107 8028 9492 180 2690 6

R3E1AC L 185255 6521 15058 179 2909 0
R3E1CA 193652 6834 10300 197 2408 1
R3E1DB 193551 6832 10046 200 2354 1
R3E2AC 165738 5836 7945 128 1931 0
R3E3AC 226466 8256 11326 244 3145 14
R3STAC 307251 11478 9521 184 3269 12
R4E1AC 578951 22155 29808 918 9706 214
R4E1CF 3360314 133582 973865 41947 37731 1384
R4E1EC 469671 17914 24678 701 8097 160
R4E1FC 2359780 93751 423488 18189 33782 1263

R4E1FC L 567813 21520 28521 737 9611 165
R4STAC 736102 28202 30179 1002 11996 302
R5E1AC 493971 19224 33402 1199 8453 203

OttExtra [85]
m15b6 635 0 1940 0 6447 6

s11WW 2449 19 3475 0 12269 74
s25WW 2530 18 563253 17102 6577133 264683

Yak [132]
s12 matter 104 0 1839 0 0 0
s15 matter 361 0 6380 0 0 0
s25 matter 76 0 2985 0 0 0
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Figure 4.23: Mean and 1-σ range of logBSN as a function of signal-to-noise ratio SNR comparing
signal with noise evidence. The horizontal lines mark the threshold values of logBSN above which
it is considered an injected waveform to be distinct from Gaussian noise. Top panel: Results for
the Sch and DimExtra in green and blue. These two were both reconstructed with 7 Dim PCs.
Results for the Yak in mauve and OttExtra waveforms in black as reconstructed with 7 Mur for
the first and 7 Ott PCs for the latter. The Dim PCs very efficiently reconstruct the Sch and
DimExtra waveforms at moderate SNRs while the Yak and OttExtra require very high SNRs to
be distinguished from noise by the Mur and Ott PCs, respectively. Bottom panel: This shows
results for the same waveform catalogues when the results from the top panel are compared with
the logBSN found when attempting to reconstruct the injected waveform with the other two sets
of PCs. The log Bayes Factor is then found i.e. in the case of the Yak catalogue logB is found
for the Mur PCs versus the Dim and the Ott PCs. Out of the two results the minimum is plotted
here to ensure that SMEE can distinguish between all sets of PCs. As in the results shown in the
left panel the Dim PCs very efficiently reconstruct the Sch and DimExtra waveforms at moderate
SNRs while the Yak and OttExtra require very high SNRs to be distinguished from both the noise
and the other two sets of PCs.
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4.5 Summary

The aim of this Chapter was to characterise a bayesian model selection pipeline

known as the Supernova Model Evidence Extractor (SMEE). SMEE is designed to

infer the physics behind a core collapse supernova by searching for features in the

gravitational waveform indicative of one of three hypothesised supernova explosion

mechanisms. This chapter has shown that SMEE is extremely successful at this in

the simple case where only a single Advanced LIGO detector is used and the effect

of the antenna response is ignored.

The time domain version of SMEE is very accurate and can correctly assign a

waveform to the correct model (supernova mechanism) even in the case when com-

paring two models which employ the same supernova mechanism but differ in the

type of source (Section 4.2.3). In the case where waveforms are tested which were

not used to create the principal components (Section 4.2.4), time domain SMEE

remains accurate when testing waveforms associated with the magnetorotational

mechanism due to the large and varied parameter space provided for this mech-

anism. Time domain SMEE is less successful when testing waveforms associated

with the neutrino and acoustic mechanisms and requires extremely large SNRs be-

fore model selection can be performed. This is due to the lack of accurately modelled

waveforms meaning TD SMEE does not have access to complete information about

these mechanisms.

The power spectrum domain version of SMEE performs the poorest out of the

3 versions tested. This is due to the fact that higher SNRs are required to correctly

perform model selection. The reason that a higher SNR is needed is because of the

nature of the supernova waveforms in the power spectrum domain in that features

that differ between mechanisms occur in a frequency band where the detector is

less sensitive, see Figure 4.11. Despite this limitation, this version of SMEE is

still able to correctly assign waveforms from the magnetorotational and acoustic

mechanisms to a distance of at least 10kpc. It is also successful at separating

the majority of waveforms from the Abd and Dim catalogues. PSD SMEE fails to

correctly determine the mechanism behind the Yak catalogue due to the fact that

these waveforms contain features not seen in the Mur catalogue, see Figure 4.18.

The spectrogram domain version of SMEE is very successful over all the tests
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performed in Section 4.4. By combining data from time and power spectrum do-

main, SMEE contains as much information as possible about each supernova mech-

anism. While it performs less well than TD SMEE at smaller SNRs (Section 4.4.1)

it has improved on the ability to correctly assign non-catalogue waveforms to their

associated supernova mechanisms (Section 4.4.4).

The next test of SMEE is to characterise its ability in the more realistic scenario

where data from multiple detectors is utilised and the effects of the antenna response

is taken into account. This is done in Chapter 6. However, before this is done a series

of steps are taken to attempt to improve model selection in SMEE, see Chapter 5.



Chapter 5

Improving Model Selection in

SMEE

In this chapter techniques which can be employed to improve the Supernova Model

Evidence Extractor (SMEE) are investigated. Firstly, how changing the inputs of

the nested sampling algorithm improve the reconstruction of the injected waveform

as well as the Bayes Factors will be tested. Next the effectiveness of shifting from

global priors which encompass all supernova models to local priors which are de-

pendent on the PC catalogue used to reconstruct the waveform is examined. The

majority of this chapter will then focus on the different techniques used to determine

the ideal number of PCs to use for each waveform model.

5.1 Refining Signal Reconstruction in the Nested

Sampling Algorithm

It was stated in Section 2.2 that the number of live points in the nested sampling

algorithm was chosen to be 50. These live points are, for every new iteration of

the nested sampling algorithm, objects which are restricted to the parameter space

defined by the priors [108, 106]. For each of these objects a likelihood is calculated

and the object with the smallest likelihood is replaced. This number can be changed

by the user and it is a useful exercise to investigate how using different values for the

103
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Figure 5.1: Posterior densities for reconstruction of the first 7 PC coefficients using time domain
SMEE and 10 live points in the nested sampling algorithm. The dashed line represents the correct
value and only appears at the very edges of the posterior distributions or not at all.
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Figure 5.2: Same as Figure 5.1 but using 50 live points in the nested sampling algorithm. Note here
that the dashed line which represents the correct answer always lies with the posterior distribution.
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Figure 5.3: Same as Figure 5.1 but using 500 live points in the nested sampling algorithm. Note
here that the dashed line which represents the correct answer always lies with the posterior dis-
tribution but there does not appear to be any significant improvement over Figure 5.2.

number of live points could potentially improve the accuracy of the reconstruction.

Thus a qualitative investigation is performed where a Dim waveform is chosen and

run using TD SMEE with 7 PCs as before. The number of live points is increased

in steps of 10 from 10 to 500. The Bayes Factor comparing the signal model to the

noise model, logBSN , is calculated for each variation of the number of live points

and a set of these Bayes factors is shown in Table 5.1. The posteriors for the 7

PC coefficients are plotted and compared with the expected values. The posterior

distributions for a range of live points is plotted in Figures 5.1 to 5.3.

Over the range of live points used there is no significant change in logBSN ,

however there is an improvement in SMEE’s ability to estimate the PC coefficients

when the number of live points increases. This can be seen when Figures 5.1 and

5.2 are compared. While there is a significant improvement when the number of

live points is increased from 10 to 50, there is less improvement when the number

of live points is increased to 500 (Figure 5.3). This is reflected in Table 5.1 where

logBSN does slightly improve when the number of live points is increased from 10

to 50.

Due to the fact that using a higher number of live points increases the computing
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Table 5.1: logBSN for a single Dim waveform with an increasing number of live points utilised
in the nested sampling algorithm. This shows that after 50 live points there is no significant
improvement in logBSN to the first decimal point.

No. live points logBSN

10 248.6
50 251.2
100 251.4
200 251.8
300 251.6
400 251.3
500 251.2

cost as well as the fact there are no improvements in Bayes Factors or reconstructions

the number of live points will remain at 50.

5.2 Refining Priors

In Section 3.1.4, priors for the PC coefficients were chosen so that they would

encompass the parameter space for all of the different supernova models. This

ensured that only using a single prior for each coefficient would be required. A

potential drawback of this technique is that the nested sampling algorithm may

search an area of the parameter space that is not necessary for a particular model.

Adjusting the priors such that each set of PCs would have an associated set of

priors would ensure that only the parameter space associated with a particular set

of PCs would be searched. This change is implemented in SMEE and a waveform

from the Dim, Mur and Ott catalogues is tested using TD SMEE using the global

set of priors and the local priors for each set of PCs. 7 PCs are used at a distance

of 10kpc with F+ = 1. The posterior distributions for each waveform is shown in

Figures 5.4 to 5.6 and show that there is a minimal improvement in SMEE’s ability

to estimate the PC coefficients. This is because whilst the parameter space has

been reduced for each model the parameter space for each model is still large and

SMEE still has to search over a large parameter space for each PC.
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Figure 5.4: Posterior densities for reconstruction of the first 7 PC coefficients using time domain
SMEE on a Dim waveform. The dashed line indicates the correct value. Top Plot shows posteriors
using the global priors which encompass the parameter space for all of the different supernova
models. Bottom Plot Same as the top plot utilising local priors which only cover the parameter
space for the Dim PCs are used. There does not appear to any qualitative improvement between
each set of priors.
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Figure 5.5: Same as Figure 5.4 but for a Mur waveform. As before, there is no significant improve-
ment.
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Figure 5.6: Same as Figure 5.4 but for a Ott waveform. Once again there is no significant
improvement.
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Table 5.2: Results for a waveform from Dim, Mur and Ott catalogue for the time taken to run
SMEE and logBSN using global priors and local priors. This shows that there is no improvement
in logBSN however the time taken to run SMEE has reduced.

Waveform Global Priors Local Priors
Time (seconds) logBSN Time (seconds) logBSN

Dim 189 2223 163 2223
Mur 114 317 51 317
Ott 106 24511 85 24511

Table 5.2 shows how logBSN changes when the priors are changed as well as the

time taken for the nested sample to find the maximum likelihoods. Whilst logBSN

does not change, the time taken to run the nested sampling algorithm does reduce

due to the fact that a smaller parameter space is being searched over. Having a

version of SMEE that is faster but is still accurate is desirable thus the local priors

are used for the results shown in the rest of this thesis.

5.3 Ideal number of PCs used in SMEE?

5.3.1 Match Method and Limitations of Small Catalogues

To find the number of PCs required to adequately reconstruct each waveform in a

given catalogue a metric known as the match parameter, µ, is used [56]. This value

is used to determine how well a set of principal components (PCs) reconstructs a

waveform. The match parameter is calculated by the addition of the projections of

the chosen number of PCs, k, onto the waveform such that

µi =

∣∣∣∣∣∣∣∣ k∑
j=1

(hi, Uj)Uj

∣∣∣∣∣∣∣∣. (5.1)

hi represents a chosen waveform and Uj are the PCs for a chosen supernova mech-

anism with the brackets denoting an inner product. If the catalogue of waveforms

is normalised with no detector noise added to the waveform, then µi will be equal

to 1 if the sum of the projection of the PCs match a particular waveform exactly.

The use of all PCs representing a particular supernova mechanism would clearly
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Figure 5.7: Minimum match parameter for each waveform catalogue with increasing number of
PCs where no detector noise is added for each version of SMEE. Abd results are shown in the top
left, Dim results are shown in the top right, Mur results are shown in the bottom plot and Ott

results are shown in the bottom right. Note that for the Mur and Ott catalogues, every PC is
required to ensure that the match for every waveform in the catalogue is greater than 0.9.

give a match of 1 for any waveform from the corresponding catalogue. However,

using all PCs may not be feasible due to the increased computing costs. Therefore, a

threshold is chosen such that the match need only equal 0.9. This value ensures that

the reconstruction of a waveform is achieved to an acceptable level but computing

costs are reduced. Thus for every catalogue of waveforms which are used to create

PCs (the Abd, Dim, Mur and Ott catalogues) the match where no detector noise

has been added to the waveform is found. For example, when the Dim catalogue is

tested, for every PC, 128 matches are calculated. The minimum value out of these

128 values is chosen and is labelled as the minimum match. This is repeated for

each waveform catalogue and the minimum match is plotted in Figure 5.7 for each

version of SMEE.

For the case of the Ott catalogue, all 7 PCs are required to find a minimum

match of 0.9 for each waveform in the catalogue. The reason for this is due to the
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Figure 5.8: Match parameter for each Ott waveform with increasing number of PCs. Time domain
results are shown in the top left, PSD results are shown in the top right and spectrogram results
are shown in the bottom plot. Each coloured line represents a single waveform from the Ott

catalogue. The match tends to increase only once a certain PC has been added implying that a
single PC contains information about a specific waveform in the catalogue. This means that 7
PCs from the Ott catalogue will be used in all future results.

small size of the Ott catalogue meaning that a large and varied parameter space

has not been provided. This is demonstrated in Figure 5.8 where, for each version

of SMEE, the match for each waveform is shown. Each line represents a single

waveform and shows that the match will increase rapidly once a corresponding PC

has been added, i.e. the match for the 3rd waveform increases when the 3rd PC is

added. This implies that the information for each waveform is embedded in a single

PC and that a waveform will not reach a match of 0.9 until the corresponding

PC is included. Because of this, to ensure that each waveform is satisfactorily

reconstructed all 7 Ott PCs will continue to be used.

This same effect of the limitations of a small parameter set is evident in the Mur

catalogue which requires all 16 PCs in the time and spectrogram domains to reach

a minimum match of 0.9. The individual matches for each waveform is shown for

each version of SMEE in Figure 5.9. The same scenario seen with the Ott catalogue

is also seen here. Again, certain features only seen in individual waveforms are
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Figure 5.9: Same as Figure 5.8 but with the Mur catalogue. Time domain results are shown in the
top left, PSD results are shown in the top right and spectrogram results are shown in the bottom
plot.The match tends to increase only one a certain PC has been added implying that a single
PC contains information about a specific waveform in the catalogue. This means that all 16 PCs
from the Mur catalogue will be used in all future results.

encoded in a single PC meaning that to reach a minimum match of 0.9 all 16 PCs

are required.

The limitations of a small catalogue with a small parameter space is overcome

with the use of a larger catalogue with contains as much variation as possible. This

is evident in the case of the Abd and Dim catalogues where a number significantly

smaller than the total number of PCs is required to ensure a match of 0.9 for every

waveform in each catalogue. For example, in the spectrogram domain, 23 PCs are

required with the Dim catalogue and 35 PCs for the Abd catalogue. Whilst these

numbers are small compared to the total number of waveforms in each catalogue,

using these numbers in SMEE would greatly add to the computing cost. As SMEE

is designed to run quickly, a smaller number of PCs is desirable. To find a smaller

number, the number of PCs required to allow SMEE to run quickly but still provide

Bayes Factors which are adequate for Bayesian model selection must be found.
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5.3.2 How many PCs to use with Magnetorotational Mech-

anism?

To find the number of PCs to use with the Dim and Abd catalogues, SMEE’s ef-

fectiveness at successfully using Bayes Factors to select which catalogue a chosen

waveform belongs to with an increasing number of PCs is investigated. As was

first shown in Chapter 4 in Section 4.2.3, SMEE’s ability to tell apart 2 catalogues

which share the same mechanism but have different sources is a useful metric for

the success of SMEE.

Thus for an increasing number of PCs, each version of SMEE is tested for all of

the Dim and Abd waveforms on both the Dim and Abd PCs and a value for logBAbdDim

is found. To ensure all waveforms have an SNR large enough to be detected over

detector noise, each waveform is scaled to a distance of 2 kpc. In this case, the

scale factor, sf , is kept as a fixed parameter that is not marginalised in SMEE. The

results of this are shown in Tables 5.3 to 5.5.

Time Domain

Results for the time domain are shown in Table 5.3. A maximum of 10 PCs to test

is chosen as the computing costs above this value are deemed to be too high. For

simplicity, it is decided to give the Abd and Dim catalogues equal weight therefore the

same number of PCs will be used with each catalogue. As the number of PCs used

increases, SMEE is better able to correctly assign the waveform to its corresponding

catalogue. Using 10 PCs, time domain SMEE is successful for over 90% of both

the Dim and Abd catalogues and thus this is chosen as the ideal number of PCs

to use when using either of the PC sets made using catalogues created from the

magnetorotational mechanism.

Power Spectrum Domain

Results for the power spectrum domain are shown in Table 5.4. As in the time

domain, a maximum of 10 PCs to be tested is chosen as the computing costs above

this value are deemed to be too high. As the number of PCs used increases, SMEE
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is better able to correctly assign the waveform its corresponding catalogue. When

increasing from 7 to 10 PCs, the number of Dim waveforms assigned correctly de-

creases from 124 to 120. The number of Abd waveforms assigned correctly does not

significantly change when going from 7 to 10 PCs. As the aim is to have has many

waveforms assigned correctly as possible while reducing computing costs, 7 PCs are

chosen to be used in this case.

Spectrogram Domain

Results for the spectrogram domain are shown in Table 5.5. A maximum of 7 PCs

to be tested is chosen as the computing costs above this value are deemed to be

too high as this version of SMEE has increased computing cost from calculating

the spectrogram of each iteration in the nested sampling algorithm. As the number

of PCs used increases, SMEE is better able to correctly assign the waveform its

corresponding catalogue. Using 7 PCs, spectrogram SMEE is successful for over

90% of both the Dim and Abd catalogues and thus this is chosen as the ideal number

of PCs to use when using either of the PC sets made using catalogues created from

the magnetorotational mechanism.

Thus, the number of PCs to be used for each supernova mechanism for all 3

versions of SMEE has been found and is summarised in Table 5.6. These changes

along with the change of priors discussed in Section 5.2 will be applied to SMEE in

all results shown in Chapter 6.
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Table 5.3: Number of Abd and Dim waveforms (with percentage of the catalogue in brackets)
which time domain SMEE correctly matches to the correct catalogue using increasing numbers of
PCs at 2kpc. Results which agree with the wrong catalogue are labelled Incorrect, results where
logBAbdDim is between −5 and 5 are labelled as Inconclusive and results which agree with the
correct catalogue are labelled Correct. Here, 10 PCs is chosen as the ideal number of PCs to be
used in future results.

num. PCs Catalogue Incorrect Inconclusive Correct
3 Abd 10 (9.4%) 2 (1.9%) 94 (88.7%)
3 Dim 14 (10.9%) 0 114 (89.1%)
5 Abd 13 (12.3%) 1 (0.9%) 92 (86.8%)
5 Dim 9 (7%) 1 (0.8%) 118 (92.2%)
7 Abd 10 (9.4%) 2 (1.9%) 94 (88.7%)
7 Dim 7 (5.5%) 0 121 (94.5%)
10 Abd 7 (6.6%) 1 (0.9%) 98 (92.5%)
10 Dim 3 (2.3%) 0 125 (97.7%)

Table 5.4: Number of Abd and Dim waveforms (with percentage of the catalogue in brackets)
which power spectrum domain SMEE correctly matches to the correct catalogue using increasing
numbers of PCs at 2kpc. Results which agree with the wrong catalogue are labelled Incorrect,
results where logBAbdDim is between −5 and 5 are labelled as Inconclusive and results which agree
with the correct catalogue are labelled Correct. Here, 7 PCs is chosen as the ideal number of PCs
to be used in future results.

num. PCs Catalogue Incorrect Inconclusive Correct
3 Abd 24 (22.6%) 3 (2.8%) 79 (74.6%)
3 Dim 12 (9.4%) 0 116 (90.6%)
5 Abd 18 (17%) 3 (2.8%) 85 (80.2%)
5 Dim 6 (4.7%) 0 122 (95.3%)
7 Abd 15 (14.2%) 3 (2.8%) 88 (83%)
7 Dim 4 (3.1%) 0 124 (96.9%)
10 Abd 11 (10.4%) 6 (5.6%) 89 (84%)
10 Dim 8 (6.2%) 0 120 (93.8%)
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Table 5.5: Number of Abd and Dim waveforms (with percentage of the catalogue in brackets) which
spectrogram domain SMEE correctly matches to the correct catalogue using increasing numbers
of PCs at 2kpc. Results which agree with the wrong catalogue are labelled Incorrect, results where
logBAbdDim is between −5 and 5 are labelled as Inconclusive and results which agree with the
correct catalogue are labelled Correct. Here, 7 PCs is chosen as the ideal number of PCs to be
used in future results.

num. PCs Catalogue Incorrect Inconclusive Correct
3 Abd 17 (16%) 0 89 (84%)
3 Dim 2 (1.9%) 0 126 (98.1%)
5 Abd 17 (16%) 0 89 (84%)
5 Dim 0 0 128 (100%)
7 Abd 7 (6.6%) 1 (0.9%) 98 (92.5%)
7 Dim 0 0 128 (100%)

Table 5.6: Number of PCs now implemented in each version of SMEE for results shown Chapter 6.

PC catalogue Time Domain Power Spectrum Domain Spectrogram Domain
Abd 10 7 7
Dim 10 7 7
Mur 16 16 16
Ott 7 7 7



Chapter 6

SMEE with Multiple Detectors

In Chapter 4 the Supernova Model Evidence Extractor (SMEE) was shown to be

effective at inferring the physics behind a detected gravitational waveform from a

supernova through the use of Bayesian model selection. However, Chapter 4 dealt

only with the overly simplified case where only one GW detector is used and the

effect of the antenna response is not included.

In this Chapter, SMEE is tested using 3 detectors (the Advanced LIGO detec-

tors, labelled as H and L and Advanced Virgo, labeled as V) and the full effect

of the time delay between detectors and the antenna response on each detector is

included. As well as this, detector noise from the Science runs from both LIGO and

Virgo are utilised here. These noise files have been adjusted to better match the

sensitivity of the Advanced detectors and are known as ’recoloured’ noise files [114].

These noise files are used as they provide a closer resemblance to the total noise

that will be seen in the Advanced detectors. The improvements to SMEE discussed

in Chapter 5 are also employed in this case. Finally, only the linear polarisation is

used.

6.1 Reconstruction of Additional Parameters

The full versions of equations 3.19 and 3.23 are used here with Earth centre time

of arrival, the polarisation angle and distance kept as free parameters. Before

118
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the success of SMEE using multiple detectors can be assessed, the effectiveness of

SMEE’s ability to adequately reconstruct these additional 3 parameters must be

determined. Only then can SMEE with multiple detectors be fully tested.

To do this a polaristation angle of 0.3046 radians, an Earth centre GPS time

of arrival of 981940624 and the distance of 10 kpc is selected. The right ascension

used is 4.464 radians with a declination of -0.5063 which are the coordinates of the

Galactic Centre. These values are chosen to reduce the effect of the antenna response

in the Advanced LIGO detectors thus ensuring the Network SNR remains large

enough so that the parameters can be reconstructed. With these coordinates F+ =

−0.88 for H, 0.99 for L and −0.26 for Virgo, V. As the value for V is small the SNR

of the signal at this detector will be reduced however since this detector is only used

alongside the 2 Advanced LIGO detectors it should still provide enough information

to aid the reconstruction of the chosen waveform, see Figure 6.1. Descriptions for

the priors for these paramters can be found in Sections 3.1.4 to 3.4.

To analyse SMEE’s ability to reconstruct these parameters, each version of

SMEE is employed on a single Dim waveform using a detector configuration of H,

followed by HL and finally HLV. The results for each version of SMEE are shown

in the following sections. As per the results from Chapter 5, 10 PCs are used when

the TD SMEE (time domain) is used and 7 PCs are used when PSD SMEE (power

spectrum domain) or Spec SMEE (spectrogram domain) are employed.
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Figure 6.1: Plots of catalogue waveforms scaled by F+ for Advanced LIGO (H) and Advanced
Virgo (V). Top Waveform from Dim, Mur and Ott catalogue scaled by the antenna response
F+ = 0.99 in Advanced LIGO noise. Bottom Same waveforms are plotted scaled by the antenna
response F+ = −0.26 in Advanced Virgo noise.
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Figure 6.2: Posterior distribution of polarisation angle in the time domain. In each plot the dashed
line indicates the value chosen by the user. Top Left Using 1 detector (H). Top Right Using 2
detectors (HL). Bottom Using 3 detector (HLV).

6.1.1 Time Domain

Plots of the posterior distributions for the polarisation angle, Earth centre arrival

time (which has been shifted so that the correct time is at 0 seconds) and the

distance when using TD SMEE are shown in Figures 6.2 to 6.4. The dashed line

indicates the value chosen by the user. These Figures demonstrate that TD SMEE

is satisfactorily able to determine the values chosen by the user. The addition of

other detectors improves the ability to estimate these values. This can be seen by

either the increased density (in the y-axis of each plot) as detectors are added as

well as the narrowed range of values in the posterior distribution (in the x-axis).



6.1. Reconstruction of Additional Parameters 122

−0.1 −0.05 0 0.05 0.1
0

2

4

6

8

10

12

14

P
o

s
t.

d
e

n
s
it
y

Trig time (seconds)
−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0

2

4

6

8

10

12

14

16

P
o

s
t.

d
e

n
s
it
y

Trig time (seconds)

−0.1 −0.05 0 0.05 0.1
0

2

4

6

8

10

12

P
o

s
t.

d
e

n
s
it
y

Trig time (seconds)

Figure 6.3: Posterior distribution of Earth Centre time used in TD SMEE. In each plot the dashed
line represents where the correct value chosen by the user is placed. Top Left Using 1 detector
(H). Top Right Using 2 detectors (HL). Bottom Using 3 detector (HLV).
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Figure 6.4: Posterior distribution of distance which is chosen as 10kpc used in TD SMEE. In each
plot the dashed line indicates the distance chosen by the user. Top Left Using 1 detector (H).
Top Right Using 2 detectors (HL). Bottom Using 3 detector (HLV).
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Figure 6.5: Posterior distribution of polarisation angle, same as Figure 6.2 but using PSD SMEE.
There are 2 dashed lines which indicate the two possible polarisation angles, the angle chosen by
the user and this angle+π/2. Due to the fact that the data here is squared, both these values
will yield equivalent values for F+. Thus, PSD SMEE is working as expected. Top Left Using 1
detector (H). Top Right Using 2 detectors (HL). Bottom Using 3 detector (HLV).

6.1.2 Power Spectrum Domain

Plots of the posterior distributions for the polarisation angle, Earth centre arrival

time (which has been shifted so that the correct time is at 0 seconds) and the

distance when using PSD SMEE are shown in Figures 6.5 to 6.7. The dashed line

indicates the value chosen by the user. As in the time domain Figures 6.6 and 6.7

demonstrate that PSD SMEE is satisfactorily able to determine the values chosen

by the user. The addition of other detectors improves the ability to estimate these

values. This can be seen by either the increased density (in the y-axis of each plot)

as detectors are added as well as the narrowed range of values in the posterior

distribution (in the x-axis).
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Figure 6.6: Posterior distribution of the Earth centre time, same as Figure 6.3 but using
PSD SMEE. In each plot the dashed line indicates the distance chosen by the user. Top Left
Using 1 detector (H). Top Right Using 2 detectors (HL). Bottom Using 3 detector (HLV).
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Figure 6.7: Posterior distribution of the distance chosen to be 10kpc, same as Figure 6.4 but using
the PSD SMEE. In each plot the dashed line indicates the distance chosen by the user. Top Left
Using 1 detector (H). Top Right Using 2 detectors (HL). Bottom Using 3 detector (HLV).
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In Figure 6.5 two peaks can be seen. The reason for this is due to the nature

of the data being used. In Equation 3.23 it is the square of the data and the re-

constructed signal that is compared and every value becomes positive. This implies

that the sign on F+ is not important as the reconstructed signal will be made pos-

itive. Thus F+ can be either positive or negative so that there are two values for

the polaristion angle which can be used to successfully reconstruct the signal, the

value chosen by the user and that value added by π/2. The two dotted lines in

Figure 6.5 represent these two values. PSD SMEE is able to focus on one of these

values and a value for the polarisation angle which will adequately reconstruct the

desired waveform.

6.1.3 Spectrogram Domain

Plots of the posterior distributions for the polarisation angle, Earth centre arrival

time (which has been shifted so that the correct time is at 0 seconds) and the

distance when using Spec SMEE are shown in Figures 6.8 to 6.10. The dashed line

indicates the value chosen by the user. As in the time domain Figures 6.9 and 6.10

demonstrate that Spec SMEE is satisfactorily able to determine the values chosen

by the user. The addition of other detectors improves the ability to estimate these

values. This can be seen by either the increased density (in the y-axis of each plot)

as detectors are added as well as the narrowed range of values in the posterior

distribution (in the x-axis).

In Figure 6.8 two peaks can be seen for the same reason discussed in Sec-

tion 6.1.2. The two dotted lines in Figure 6.8 represent the two possible values

for F+. Spec SMEE is successfully able to focus on one of these values and a value

for the polarisation angle which will adequately reconstruct the desired waveform.

It has been demonstrated that each version of SMEE is able to adequately

infer the values for the polarisation angle, Earth centre arrival time and distance

chosen by the user. The estimates on these values could be improved by narrowing

the priors on these terms if more accurate information on the correct values from

astrophysical measurements can be inferred. This is especially important when

using either the power spectrum or spectrogram versions of SMEE where two values

for the polarisation angle can be given equal weight. If the range could be reduced

from 0 to π to one that has a range of less than π/2 the accuracy could be greatly
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Figure 6.8: Posterior distribution of polarisation angle, same as Figure 6.2 but using Spec SMEE.
There are 2 dashed lines which indicate the two possible polarisation angles, the angle chosen by
the user and this angle+pi/2. Due to the fact that the data here is squared, both these values will
yield equivalent values for F+. Spec SMEE is successfully able to reconstruct one of these values
when data for 3 detectors is added. Thus, Spec SMEE is working as expected. Top Left Using
1 detector (H). Top Right Using 2 detectors (HL). Bottom Using 3 detector (HLV).
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Figure 6.9: Posterior distribution of the Earth centre time, same as Figure 6.3 but using
Spec SMEE. In each plot the dashed line indicates the distance chosen by the user. Top Left
Using 1 detector (H). Top Right Using 2 detectors (HL). Bottom Using 3 detector (HLV).

improved. The success of this test means that SMEE with multiple detectors is

working as expected and will be able to calculate accurate Bayes Factors and thus

allow Bayesian model selection to be performed. The rest of this Chapter will

present results with SMEE run with multiple detectors at two different sky positions

and distances. The distance at which each version of SMEE can still successfully

separate the three different supernova mechanisms will also be determined.
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Figure 6.10: Posterior distribution of the distance chosen to be 10kpc, same as Figure 6.4 but
using Spec SMEE. In each plot the dashed line indicates the distance chosen by the user. Top
Left Using 1 detector (H). Top Right Using 2 detectors (HL). Bottom Using 3 detector (HLV).

6.2 Multiple Detector SMEE in the Time Do-

main

6.2.1 Distinguishing the Supernova Mechanism with Mul-

tiple Detectors

As discussed in Section 4.2.2 the assumption that each supernova mechanism has

robustly distinct GW signatures can be tested by the addition of simulated wave-

forms into recoloured S5 detector noise and running SMEE on the data using PCs of

waveform catalogues representative of the neutrino, magnetorotational, and acous-

tic mechanisms was proven to be true in the simple case used in Chapter 4.

Here, this assumption is tested in the more realistic scenario where multiple

detectors (HLV) with different antenna responses are used. SMEE calculations are
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Figure 6.11: Histograms describing the outcome of signal model comparisons in the time domain by
means of the Bayes Factors logBij = log p(D|Mi)− log p(D|Mj), where i 6= j and Mi and Mj are
signal models described by the Dim (magnetorotational mechanism), Mur (neutrino mechanism),
and Ott (acoustic mechanism) waveform catalogues. This is done using 3 detectors (HLV) and the
Bayes Factors are computed with 10 PCs for the Dim catalogue, 7 PCs for the Ott catalogues and
16 PCs for the Mur catalogue at a source distance of 10 kpc using the sky position of the Galactic
Center. A positive value logBij indicates that the injected waveform most likely belongs to model
Mi, while a negative value suggest that model Mj is the more probable explanation. The bars
are colour-coded according to the type of injected waveform. The results are binned into ranges
of varying size from < −10000 to > 10000 and the height of the bars indicates what fraction of
the waveforms of a given catalogue falls into a given bin of logBij . A range of (−5, 5) of logBij

is considered as inconclusive evidence (see §4.1).
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carried out for events located at 10 kpc, and 50 kpc using 7 PCs when the PCs

created from the Ott catalogue are used, 10 when PCs from the Dim PCs are used

and 16 when the Mur PCs are used. The same values for polarisation angle, Earth

centre arrival time, right ascension and declination used in Section 6.1 are used here

when signals are located at a distance of 10 kpc. At 50 kpc the right ascension and

declination of the Large Magallenic Cloud are selected, right ascension is 1.3158

and the declination is -1.2175 radians. A polarisation angle of 0.6446 radians and a

Earth centre arrival time of 981990824 seconds are chosen. With these coordinates

F+ = −0.919 for H, 0.759 for L and −0.374 for Virgo, V.

As in Fig. 4.5, results are shown for injection studies of all waveforms from

the Dim, Mur, and Ott catalogues run through TD SMEE and analysed with the

Dim, Mur, and Ott PCs at a source distance of 10 kpc. The results of this are

shown in Figure 6.11. The top left panel depicts the logBDimMur result for injected

waveforms from the Dim and Mur catalogues, that are taken to be representative of

the magnetorotational and neutrino mechanisms, respectively. Even at 10 kpc all

waveforms characteristic for magnetorotational explosions are clearly identified as

belonging to this mechanism. For the neutrino mechanism, the evidence is generally

weaker and ∼70% of the Mur waveforms are identified with logBDimMur < −100, while

only 1 waveform (∼6%) is in the inconclusive regime of −5 < logBDimMur < 5.

In the top right panel of Fig. 6.11, results are shown for logBDimOtt for waveforms

corresponding to the magnetorotational (Dim) and the acoustic (Ott) mechanisms.

In this case, all waveforms are correctly identified as most likely belonging to their

respective catalogue/mechanism. Finally, the bottom panel of Fig. 6.11 presents

logBMurOtt for waveforms representative of the neutrino (Mur) and acoustic (Ott)

mechanisms. As in the previous panel, TD SMEE associates the waveforms cor-

responding to the acoustic mechanism with high confidence to the Ott catalogue.

The evidence suggesting correct association of the neutrino mechanism waveforms

is once again less strong, but logBMurOtt is still conclusive for ∼94% of the Mur

waveforms. Only 1 waveform is in the inconclusive region as this waveform does

not have the required Network SNR to be detected in any of the 3 detectors.

Figure 6.12 shows the results for logBDimMur, logBDimOtt, and logBMurOtt obtained

by TD SMEE at a source distance of 50 kpc. Even at this increased distance all

acoustic waveforms (Ott) are correctly separated from both the magnetorotational

and neutrino mechanisms. The Dim waveforms also perform very well and only
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Figure 6.12: Same as Fig. 6.11, but computed for a source distance of 50 kpc using the sky position
of the Large Magallenic Cloud (LMC).
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Figure 6.13: Distance to which SMEE using multiple detectors can successfully distinguish one
catalogue from two others using the sky position for the Galactic Centre. This shows results for the
waveform catalogues when the logBSN for the expected correct mechanism is compared with the
logBSN found when attempting to reconstruct the injected waveform with the other two sets of
PCs. The log Bayes Factor is then found i.e. in the case of the Dim catalogue logBMagnetorotational

is found for the Dim PCs versus the Mur and the Ott PCs. Out of the two results the minimum
is plotted here to ensure that SMEE can distinguish between all sets of PCs. The mean log
Bayes Factor for every waveform in the catalogue is shown here. Top Plot Results for the Dim

catalogue. In the time domain using 3 detectors, the maximum mean distance that signal can be
distinguished from both the Mur and Ott PCs is ∼ 170 kpc. Middle Plot Results for the Mur

catalogue. In the time domain using 3 detectors, the maximum mean distance that signal can be
distinguished from both the Dim and Ott PCs is ∼ 40 kpc. Bottom Plot Results for the Ott

catalogue. In the time domain using 3 detectors, the maximum mean distance that signal can be
distinguished from both the Dim and Mur PCs is ∼ 550 kpc.
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∼12% of the waveforms in this catalogue do not have the required SNR to be

distinguished from the noise. However, the Mur waveforms perform less well and

only ∼31% are correctly matched to the correct mechanism.

It is scientifically interesting to determine to what distance SMEE is successfully

able to not only detect a waveform within detector noise but also infer which mech-

anism it most resembles. To find this distance for each mechanism all waveforms are

tested at an increasing distance using all 3 sets of PCs and the coordinates used for

the Galactic Centre. For each distance tested a mean value from every waveform in

the catalogue is calculated. Results for the Dim, Mur and Ott catalogues are shown

in Figure 6.13. As expected both the Dim and Ott are successful at distances over

50kpc whereas Mur is effective to distances of ∼40 kpc. The maximum distance im-

proves when more detectors are added however there is minimal improvement from

adding Advanced Virgo. This is due to the fact that F+ is a lot smaller here and so

the waveforms have a smaller SNR. Therefore they do not contribute as much as the

2 Advanced LIGO detectors. If a different sky position was chosen where F+ was

larger then the contribution from Advanced Virgo would increase, see Figure 6.28 .

Thus it has been shown that TD SMEE can successfully perform Bayesian model

selection to distances throughout the Milky Way and to at least one of its satellite

galaxies in the case where different mechanisms are compared. As in Section 4.2.3,

TD SMEE can be tested when two catalogues with similar dynamics are compared.

6.2.2 Rotating Accretion-Induced Collapse or Rotating Iron

Core Collapse?

As in Section 4.2.3 all Abd and Dim waveforms are added to recoloured S5 noise, in

this case noise from 2 Advanced LIGO detectors and Advanced Virgo. TD SMEE

is then run with 10 PCs to once again calculate logBAbdDim. The results are shown

in Figure 6.14 for source distances of 10 kpc and 50 kpc.

SMEE correctly identifies the majority of injected waveforms as most likely being

emitted by a rotating iron core collapse or by rotating accretion induced collapse

(AIC) in TD SMEE at both 10 and 50 kpc. At 10 kpc ∼5% of the Dim waveforms

and ∼18% of the Abd waveforms are incorrectly identified as belonging to the wrong
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Figure 6.14: Outcome of the SMEE analysis in the time domain of injected rotating iron core
collapse (Dim catalogue) and rotating accretion-induced collapse (AIC, Abd catalogue) waveforms
using 3 detectors (HLV). The top panel shows results for a source distance of 10 kpc (at the
Galactic Centre) and the right panel depicts the results for a distance of 50 kpc (at the Large
Magallenic Cloud). The Bayes Factors logBAbdDim are computed on the basis of 10 PCs from the
Abd and Dim catalogue. A positive value of logBAbdDim indicates that an injected waveform is most
likely associated with rotating AIC and a negative value suggests it to be more consistent with
rotating iron core collapse. The results are binned into ranges of varying size from < −10000 to
> 10000 and the height of the colour-coded bars indicates what fraction of the waveforms of a
given catalogue falls into a given bin of logBAbdDim. A range of (−5, 5) of logBij is considered as
inconclusive evidence (see §4.1).
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Figure 6.15: Distance to which SMEE using multiple detectors can successfully distinguish the
Abd and Dim catalogues using the sky position for the Galactic Centre. Top Plot Results for the
Abd catalogue. In the time domain using 3 detectors, the maximum mean distance that signal can
be distinguished from the Dim PCs is ∼ 110 kpc. Bottom Plot Results for the Dim catalogue. In
the time domain using 3 detectors, the maximum mean distance that signal can be distinguished
from the Abd PCs is ∼ 105 kpc.
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catalogue. In addition none of the Dim waveforms and ∼3% of the Abd are in the

inconclusive region. At 50 kpc TD SMEE is still very accurate and over 70% of the

Dim and over 65% of the Abd waveforms are correctly identified.

In Figure 6.15, distance plots are shown to identify the mean distance TD SMEE

can still separate the 2 waveform catalogues. While less successful than in the case

where the magnetorotational mechanism is compared to the neutrino and acoustic

mechanisms the Dim and Abd catalogues can still be correctly identified to distances

greater that 100 kpc.

6.2.3 Testing Robustness of SMEE using non-catalogue wave-

forms

As in Section 4.2.4, TD SMEE can be tested using waveform catalogues that share

the same supernova mechanism but were not used in the creation of the PCs. The

same catalogues used in Section 4.2.4 are analysed using TD SMEE with the im-

provements described in Chapter 5 and Section 6.1 using the same distances and

coordinates used in previous sections. Results for logBSN are shown in Table 6.1.

Plots like those shown in Figure 6.13 are shown in Figure 6.16.

Magnetorotational Mechanism

For the magnetorotational mechanism, three additional Dim waveforms (DimExtra,

Sec. 1.7) are employed that were not included in the calculation of the Dim PCs.

Furthermore, waveforms from rotating models of the Sch catalogue of Scheideg-

ger et al. [102, 23] are injected (see Sec. 1.7). The results of both the logBSN calcu-

lation for the magnetorotational, neutrino, and acoustic mechanism signal models

are summarized in Tab. 6.1. DimExtra waveforms are identified as being most con-

sistent with the Dim catalogue and, hence, the magnetorotational mechanism for

all DimExtra signals at both 10 kpc and 50 kpc. The Distance plot in Figure 6.16

shows that DimExtra waveforms can be correctly identified up to a mean distance

of ∼ 170 kpc.

The Sch waveforms were generated with a completely different numerical code
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Table 6.1: Time domain:logBSN for gravitational waveforms that were not included in the cata-
logues used for PC computation. The DimExtra, Sch, OttExtra, and Yak waveforms are discussed
in §1.7. Results are shown for source distances of 10 kpc and 50 kpc and for evaluations using
7 PCs for the Ott PCs, 10 for the Dim PCs and 16 for the Mur PCs . Larger values indicate
stronger evidence that the waveform is matched to the model catalogue from which the PCs were
constructed. logBSN < 5 indicates that the injected signal is likely consistent with noise while
larger values suggests that the signal belongs to the signal model whose PCs were used in the
analysis.

Waveform logBSN logBSN logBSN

Dim PCs Mur PCs Ott PCs
10 kpc 50 kpc 10 kpc 50 kpc 10 kpc 50 kpc

DimExtra [97]
s20a1o05 shen 4315 155 102 35 71 32
s15a1o03 LS 9680 348 225 56 184 52
s40a1o10 LS 3105 107 383 1 103 0

Sch [102]
R1E1CA 23 4 8 3 8 3

R1E1CA L 10 1 7 2 9 0
R1E1DB 19 3 3 2 6 2
R1E3CA 34 0 3 0 5 0
R1STCA 8 0 5 0 7 0
R2E1AC 477 24 37 17 37 16
R2E3AC 512 17 41 13 44 11
R2STAC 966 38 45 18 46 18
R3E1AC 4819 170 121 51 127 51

R3E1AC L 3394 86 372 0 343 0
R3E1CA 4064 146 141 51 139 51
R3E1DB 4008 147 141 53 141 53
R3E2AC 3551 132 106 44 100 43
R3E3AC 4590 158 114 40 94 38
R3STAC 6720 232 117 59 113 58
R4E1AC 11345 331 146 40 118 36
R4E1CF 21841 753 615 71 223 66
R4E1EC 9184 315 109 32 81 33
R4E1FC 23934 833 395 54 192 49

R4E1FC L 10670 371 209 82 192 79
R4STAC 14793 467 294 33 259 30
R5E1AC 7629 276 178 19 143 17

OttExtra [85]
m15b6 166 56 165 57 166 56

s11WW 171 43 177 43 188 43
s25WW 1489 1400 2165 2163 20235 2264

Yak [132]
s12 matter 159 4 159 4 158 4
s15 matter 105 2 106 3 106 3
s25 matter 69 12 67 13 67 12
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and thus allow for a truly independent test of SMEE. Also, unlike the Dim wave-

forms, the Sch waveforms are based on 3D simulations. Hence, they are not linearly

polarized. For consistency with our current approach, h× is neglected and only h+

as seen by an equatorial observer is injected. Results of TD SMEE logBSN cal-

culations for all injected Sch waveforms are summarized in Table 6.1. TD SMEE

correctly identifies the majority of the Sch waveforms as indicative of magnetorota-

tional explosions at a source distance of 50 kpc. At 10 kpc, still 92% of the injected

Sch waveforms are attributed to the magnetorotational mechanism, which is an

indication of the robustness of the GW associated with rapid rotation and magne-

torotational explosions. The very few Sch waveforms that TD SMEE is not able to

clearly associate with the magnetorotational mechanism have such weak SNRs that

they are more consistent with noise than with any of the catalogues at 50 kpc. The

distance plot in Figure 6.16 shows that Sch waveforms can be correctly identified

up to a mean distance of ∼ 220 kpc.

Acoustic Mechanism

TD SMEE’s ability to identify core-collapse supernovae exploding via the acoustic

mechanism is tested by injecting the three OttExtra waveforms (see Sec. 1.7). The

results of this test are again summarized in Tab. 6.1. They suggest that the a-

priori unknown OttExtra waveforms can be identified as belonging to the acoustic

mechanism out to 50 kpc for 1 of the waveforms with great confidence when 7 PCs

are used in the analysis. At 10 kpc, the waveforms are still correctly attributed

to the acoustic mechanism, but the evidence is much weaker. The OttExtra 3

waveform (labelled as s25WW), which is clearly identified at 10 kpc, has an extreme

SNR of ∼2530 at this distance, while the two other waveforms have SNRs of ∼ 50.

TD SMEE’s difficulty in this was illustrated in Section 4.2.4 and can be seen in the

distance plot in Figure 6.16 where the mean distance model selection is successful

has decreased from ∼ 550kpc when Ott waveforms are tested to ∼ 180kpc. As in

Section 4.2.4, large-scale features such as the time between peaks are imprinted onto

the PCs and make it difficult to identify waveforms whose two peaks are separated

by significantly different intervals. As in the 1 detector case an alternative method

that may work much better for waveforms of this kind is to compute PCs based

on waveform power spectra, which would remove any potentially problematic phase

information.
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Figure 6.16: Distance to which SMEE using multiple detectors can successfully distinguish one
catalogue from two others using the sky position for the Galactic Centre. This shows results
for the waveform catalogues when the logBSN for the expected correct mechanism is compared
with the logBSN found when attempting to reconstruct the injected waveform with the other
two sets of PCs. The log Bayes Factor is then found i.e. in the case of the DimExtra catalogue
logBMagnetorotational is found for the Dim PCs versus the Mur and the Ott PCs. Out of the two
results the minimum is plotted here to ensure that SMEE can distinguish between all sets of PCs.
The mean log Bayes Factor for every waveform in the catalogue is shown here. Top Left Plot
Results for the DimExtra catalogue. In the time domain using 3 detectors, the maximum mean
distance that signal can be distinguished from both the Mur and Ott PCs is ∼ 170 kpc. Top
Right Plot Results for the Sch catalogue. In the time domain using 3 detectors, the maximum
mean distance that signal can be distinguished from both the Mur and Ott PCs is ∼ 220 kpc.
Bottom Left Plot Results for the OttExtra catalogue. In the time domain using 3 detectors,
the maximum mean distance that signal can be distinguished from both the Dim and Mur PCs
is ∼ 180 kpc. Bottom Right Plot Results for the Yak catalogue. In the time domain using 3
detectors, the maximum mean distance that signal can be distinguished from both the Dim and
Ott PCs is ∼ 5 kpc.
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Neutrino Mechanism

TD SMEE’s ability to identify GWs emitted by core-collapse supernovae exploding

via the neutrino mechanism is tested using the waveforms of the Yak catalogue

(see Sec. 1.7) that were obtained with a completely different numerical code. The

three available Yak waveforms are added to Advanced LIGO and Advanced Virgo

noise and TD SMEE computes logBSN . The results are listed in Tab. 6.1. Even

at 10 kpc the Yak waveforms appear to give very similar results for logBSN which

implies that no one set of PCs can successfully reconstruct the waveform. The

bottom right panel of Figure. 6.16 shows that the Yak waveforms require a distance

of less than 5kpc to be clearly associated with the neutrino mechanism that is more

than ∼ 8 times less than for Mur waveforms. As discussed in Section 4.2.4, while

the Yak waveforms are qualitatively very similar to the Mur waveforms, they differ

significantly in quantitative aspects. The Yak waveforms are generally only half as

long (∼ 1 s for Mur and 0.5 s for Yak, whose models explode much earlier than the

Mur models). This may be due to the more simplified treatment of gravity and

neutrino microphysics and transport in the study of Murphy et al. [79] underlying

the Mur catalogue compared to the work of Yakunin et al. [132] that led to the Yak

catalogue.

Results in this Section have been made from TD SMEE and limitations on the

ability to correctly identify waveforms from the OttExtra and Yak waveforms have

been found. In the next section PSD SMEE will be tested and compared with the

results using TD SMEE.

6.3 Multiple Detector SMEE in the Power Spec-

trum Domain

6.3.1 Distinguishing the Supernova Mechanism with Mul-

tiple Detectors

Here results are shown using the same method utilised in Section 6.2.1 using power

spectrum domain SMEE (PSD SMEE). PSD SMEE is run for all waveforms from
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the Dim, Mur and Ott catalogues using 3 detectors (HLV) at 10 and 50 kpc using

the same coordinates for each distance that were used in Section 6.2.1. In this case

7 PCs are used for both the Dim and Ott PCs and 16 for the Mur PCs.

Results for 10 kpc are shown in Figure 6.17. The top left panel depicts the

logBDimMur result for injected waveforms from the Dim and Mur catalogues. At 10 kpc

all but ∼7% of waveforms characteristic for magnetorotational explosions are clearly

identified as belonging to this mechanism. For the neutrino mechanism, the evidence

is significantly weaker and all of the waveforms remain in the inconclusive regime of

−5 < logBDimMur < 5. This is the same outcome that was seen in Figure 4.12 where

∼19% were in the inconclusive region. As in the 1 detector case, this is because of

the low SNR of the signals at 10kpc, neither the Dim nor Mur PCs can distinguish

the waveform from the noise.

In the top right panel of Fig. 6.17, results are shown for logBDimOtt for waveforms

corresponding to the magnetorotational (Dim) and the acoustic (Ott) mechanisms.

In this case, all waveforms from the Ott catalogue are correctly identified as most

likely belonging to the acoustic mechanism, albeit with a smaller certainty than

what was seen with TD SMEE. The same ∼7% of Dim waveforms remain in the

inconclusive region and the rest have smaller Bayes Factors than those seen with

TD SMEE. The waveforms in the inconclusive region do not have the necessary

SNR to be distinguished from the added noise.

Finally, the bottom panel of Fig. 6.17 presents logBMurOtt for waveforms repre-

sentative of the neutrino (Mur) and acoustic (Ott) mechanism. As in the previous

panel, PSD SMEE associates the waveforms corresponding to the acoustic mecha-

nism with high confidence to the Ott catalogue. The evidence suggesting correct

association of the neutrino mechanism waveforms is once again lacking with all

waveforms in the inconclusive region.

When the PSD version of SMEE was tested at a distance of 50 kpc all but 2 Ott

waveforms of the simulated waveforms tested from any of the 3 catalogues gave a

Bayes Factor greater than 5. This is confirmed in the distance plots in Figure 6.18

where only the Ott waveforms can reach a mean distance greater than 50 kpc. The

Dim waveforms reach a mean distance of ∼ 35 kpc where Bayesian model selection is

still successful. The Mur catalogue, as expected, is significantly poorer and Bayesian

model selection is successful only to a mean distance of ∼ 7.5 kpc. As was shown
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Figure 6.17: Histograms describing the outcome of signal model comparisons in the power spec-
trum domain by means of the Bayes Factors logBij = log p(D|Mi)− log p(D|Mj), see Figure 6.11.
This is done using 3 detectors (HLV) and the Bayes Factors are computed with 7 PCs for the Dim

and Ott catalogues and 16 PCs for the Mur catalogue at a source distance of 10 kpc using the sky
position of the Galactic Center.
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Figure 6.18: Same results shown as in 6.13 using the power spectrum version of SMEE. Top Plot
Results for the Dim catalogue. In the power spectrum domain using 3 detectors, the maximum
mean distance that signal can be distinguished from both the Mur and Ott PCs is ∼ 34 kpc.
Middle Plot Results for the Mur catalogue. In the power spectrum domain using 3 detectors,
the maximum mean distance that signal can be distinguished from both the Dim and Ott PCs is
∼ 7.5 kpc. Bottom Plot Results for the Ott catalogue. In the power spectrum domain using 3
detectors, the maximum mean distance that signal can be distinguished from both the Dim and
Mur PCs is ∼ 100 kpc.
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in Section 4.3.1, losing the phase data means the waveforms are less distinct from

the noise so even with the improvements made in Chapter 5 PSD SMEE is less

successful than TD SMEE.

6.3.2 Rotating Accretion-Induced Collapse and Rotating

Iron Core Collapse?

As in Section 6.2.2 all Abd and Dim waveforms are then added to noise, in this case

noise from 2 Advanced LIGO detectors and Advanced Virgo. PSD SMEE is then

run with 7 PCs to calculate logBAbdDim. The results are shown in Figure 6.19 for a

source distances of 10 kpc, using the coordinates for the Galactic Centre.

PSD SMEE correctly identifies the majority of injected waveforms as most likely

being emitted by a rotating iron core collapse or by rotating AIC. However, these

results are poorer than what was seen in TD SMEE. At 10 kpc ∼5% of the Dim

waveforms and ∼22% of the Abd waveforms are incorrectly identified as belonging

to the wrong catalogue. In addition ∼14% of the Dim waveforms and ∼23% of the

Abd are in the inconclusive region.

Figure 6.20 distance plots are shown to identify the mean distance PSD SMEE

can still separate the 2 waveform catalogues. As expected, PSD SMEE is less

successful than in the case where TD SMEE was tested (Figure 6.15). The Dim

catalogue is correctly identified to a maximum mean distance of ∼ 35 kpc and the

Abd catalogues to ∼ 21kpc.
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Figure 6.19: Outcome of the SMEE analysis in the power spectrum domain of injected rotating
iron core collapse (Dim catalogue) and rotating accretion-induced collapse (AIC, Abd catalogue)
waveforms using 3 detectors (HLV). Results shown here are for a source distance of 10 kpc (at the
Galactic Centre). The Bayes Factors logBAbdDim are computed on the basis of 7 PCs from the Abd

and Dim catalogue, see Figure 6.14.
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Figure 6.20: Same as Figure 6.15 using power spectrum version of SMEE. Top Plot Results for
the Abd catalogue. In the power spectrum domain using 3 detectors, the maximum mean distance
that signal can be distinguished from the Dim PCs is ∼ 22 kpc. Bottom Plot Results for the Dim

catalogue. In the power spectrum domain using 3 detectors, the maximum mean distance that
signal can be distinguished from the Abd PCs is ∼ 34 kpc.
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6.3.3 Testing Robustness of SMEE using non-catalogue wave-

forms

As in Section 6.2.3, PSD SMEE is now tested using waveform catalogues that share

the same supernova mechanism but were not used in the creation of the principal

components. Results for logBSN are shown in Table 6.2. Distance plots like those

shown in Figure 6.13 are shown in Figure 6.21.

Magnetorotational Mechanism

As in the time domain Dim Extra and Sch waveforms are employed here. The re-

sults of the logBSN calculation for the magnetorotational, neutrino, and acoustic

mechanism signal models are summarized in Tab. 6.2. DimExtra waveforms are

identified as being most consistent with the Dim catalogue and, hence, the magne-

torotational mechanism out to distances &10 kpc. The distance plot in Figure 6.21

shows that DimExtra waveforms can be correctly identified up to a mean distance

of ∼ 30 kpc.

Results of PSD SMEE logBSN calculations for all injected Sch waveforms are

summarized in Tab. 6.2. At 10 kpc, 82% of the injected Sch waveforms are at-

tributed to the magnetorotational mechanism, which is an indication of the robust-

ness of the GW associated with rapid rotation and magnetorotational explosions.

At 50 kpc only 2 waveforms with large SNRs give a positive logBSN . The very few

Sch waveforms that SMEE is not able to clearly associate with the magnetorota-

tional mechanism have such weak SNRs that they are more consistent with noise

than with any of the catalogues at 10 kpc. This is confirmed in the distance plot

in Figure 6.21 which shows that Sch waveforms can be correctly identified up to

a mean distance of ∼ 62 kpc. This is due to the 2 waveforms which give positive

Bayes Factors above 50 kpc.

Acoustic Mechanism

As in the time domain the three OttExtra waveforms are utilised here. The re-

sults of this test are again summarized in Tab. 6.2. They suggest that the a-priori
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unknown OttExtra waveforms can be identified as belonging to the acoustic mecha-

nism out to 10 kpc with great confidence when 7 PCs are used in the analysis. As in

the 1 detector case, this is an improvement over the time domain results and shows

that there is a strong indication that the range of possible waveform features asso-

ciated with the acoustic mechanism is much more efficiently covered by the 7 PCs

generated from the Ott catalogue in the power spectrum domain confirming that

any problematic phase and time information has been removed. This is confirmed

in the distance plot in Figure 6.21 which shows that OttExtra waveforms can be

correctly identified up to a mean distance of ∼ 475 kpc. This is due to the extreme

SNR of the waveform labelled s25WW and in a more realistic scenario with a more

conservative SNR the distance would be closer to that seen in Figure 6.18.

Neutrino Mechanism

As in the time domain case the waveforms of the Yak catalogue (see Sec. 1.7) that

were obtained with a completely different numerical code are tested. The results

are listed in Tab. 6.2. At 10 kpc and 50 kpc, the Yak waveforms appear to be

most consistent with noise for PSD SMEE. The bottom right panel of Figure 6.21

confirms this by showing that logBNeutrino decreases with increasing distance which

shows that the logBSN is higher for the other two sets of PCs. This is for the same

reason as discussed in Figure 4.18 and is due to the more simplified treatment of

gravity and neutrino microphysics and transport in the study of Murphy et al. [79]

underlying the Mur catalogue compared to the work of Yakunin et al. [132] that led

to the Yak catalogue.
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Table 6.2: Power spectrum: logBSN for gravitational waveforms that were not included in the
catalogues used for PC computation. The DimExtra, Sch, OttExtra, and Yak waveforms are dis-
cussed in §1.7. Results are shown for source distances of 10 kpc and 50 kpc and for evaluations
using 7 PCs for the Ott and Dim PCs and 16 for the Mur PCs. Larger values indicate stronger evi-
dence that the waveform is matched to the model catalogue from which the PCs were constructed.
logBSN < 5 indicates that the injected signal is likely consistent with noise while larger values
suggests that the signal belongs to the signal model whose PCs were used in the analysis.

Waveform logBSN logBSN logBSN

Dim PCs Mur PCs Ott PCs
10 kpc 50 kpc 10 kpc 50 kpc 10 kpc 50 kpc

DimExtra [97]
s20a1o05 shen 1121 0 679 0 0 0
s15a1o03 LS 5624 0 1697 0 33 0
s40a1o10 LS 8749 0 2577 0 0 0

Sch [102]
R1E1CA 0 0 0 0 0 0

R1E1CA L 0 0 0 0 0 0
R1E1DB 0 0 0 0 0 0
R1E3CA 0 0 0 0 0 0
R1STCA 0 0 0 0 0 0
R2E1AC 0 0 0 0 0 0
R2E3AC 0 0 0 0 0 0
R2STAC 25 0 0 0 17 0
R3E1AC 1572 0 398 0 787 0

R3E1AC L 7206 0 1287 0 3534 0
R3E1CA 1154 0 340 0 616 0
R3E1DB 1214 0 352 0 616 0
R3E2AC 711 0 195 0 443 0
R3E3AC 1912 0 563 0 774 0
R3STAC 19328 0 2238 0 12594 0
R4E1AC 8056 0 1811 0 2071 0
R4E1CF 86723 1117 13272 34 847 0
R4E1EC 5766 0 1462 0 1326 0
R4E1FC 59192 299 9064 4 583 0

R4E1FC L 26912 6 2779 0 18788 4
R4STAC 16929 0 2930 0 5825 0
R5E1AC 7735 0 2385 0 3 0

OttExtra [85]
m15b6 215 0 0 0 314 0

s11WW 156 0 0 0 267 0
s25WW 140270 2699 4138 0 324640 8405

Yak [132]
s12 matter 0 0 0 0 0 0
s15 matter 1 0 0 0 0 0
s25 matter 0 0 0 0 1 0
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Figure 6.21: Same as Figure 6.16 using power spectrum version of SMEE. Top Left Plot Results
for the DimExtra catalogue. In the power spectrum domain using 3 detectors, the maximum mean
distance that signal can be distinguished from both the Mur and Ott PCs is ∼ 30 kpc. Top
Right Plot Results for the Sch catalogue. In the power spectrum domain using 3 detectors, the
maximum mean distance that signal can be distinguished from both the Mur and Ott PCs is ∼ 64
kpc. Bottom Left Plot Results for the OttExtra catalogue. In the power spectrum domain
using 3 detectors, the maximum mean distance that signal can be distinguished from both the
Dim and Mur PCs is ∼ 420 kpc. Bottom Right Plot Results for the Yak catalogue. In the
power spectrum domain using 3 detectors as in the case of the 1 detector case, the Yak catalogue
incorrectly favours the Dim and Ott PCs, see Figure 4.18

6.4 Multiple Detector SMEE in the Spectrogram

Domain

6.4.1 Distinguishing the Supernova Mechanism with Mul-

tiple Detectors

Here results are shown using the same method utilised in Section 6.2.1 using spec-

trogram domain SMEE (Spec SMEE). Spec SMEE is run for all waveforms from

the Dim, Mur and Ott catalogues using 3 detectors (HLV) at 10 and 50 kpc using

the same coordinates for each distance that were used in Section 6.2.1. In this case

7 PCs are used for both the Dim and Ott PCs and 16 for the Mur PCs.

The results of this are shown in Figure 6.22. The top left panel depicts the

logBDimMur result for injected waveforms from the Dim and Mur catalogues, that
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are taken to be representative of the magnetorotational and neutrino mechanism,

respectively. Even at 10 kpc all waveforms characteristic for magnetorotational

explosions are clearly identified as belonging to this mechanism. For the neutrino

mechanism, the evidence is generally weaker and ∼50% of the Mur waveforms are

identified with logBDimMur < −5, while ∼50% are either in the inconclusive regime

of −5 < logBDimMur < 5 or incorrectly identified. as in the 1 detector case, this is

due to the fact that at SNRs, typically less than 10, these waveforms favour the

magnetorotational mechanism and only start agreeing with the neutrino waveforms

at higher SNRs.

In the top right panel of Fig. 6.22, results are shown for logBDimOtt for waveforms

corresponding to the magnetorotational (Dim) and the acoustic (Ott) mechanisms.

In this case, all waveforms are correctly identified as most likely belonging to their

respective catalogue/mechanism. Finally, the bottom panel of Fig. 6.22 presents

logBMurOtt for waveforms representative of the neutrino (Mur) and acoustic (Ott)

mechanism. As in the previous panel, Spec SMEE associates the waveforms cor-

responding to the acoustic mechanism with high confidence to the Ott catalogue.

The evidence suggesting correct association of the neutrino mechanism waveforms

is once again less strong, but logBMurOtt is still conclusive for ∼50% of the Mur

waveforms. These waveforms in the inconclusive region do not have the required

Network SNR to be detected in any of the 3 detectors.

Figure 6.23 shows the results for logBDimMur, logBDimOtt, and logBMurOtt obtained

by Spec SMEE at a source distance of 50 kpc. Even at this increased distance all

acoustic waveforms (Ott) are correctly separated from both the magnetorotational

and neutrino mechanisms. The Dim waveforms also perform very well and only

∼20% of the waveforms in this catalogue do not have enough SNR to be distin-

guished from the noise. However, the Mur waveforms perform less well none are

correctly identified as belonging to the correct mechanism.

Results for the Dim, Mur and Ott catalogues at varying distances is shown in

Figure 6.24. As expected both the Dim and Ott are successful at distances over

50kpc whereas Mur is successful to distances of ∼21 kpc. The maximum distance

improves when more detectors are added however there is minimal improvement

from adding Advanced Virgo. This is due to the fact that F+ is a lot smaller here

and so the waveforms have a smaller SNR. Therefore they do not contribute as

much as the 2 Advanced LIGO detectors. If a different sky position was chosen
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Figure 6.22: Histograms describing the outcome of signal model comparisons in the spectrogram
domain by means of the Bayes Factors logBij = log p(D|Mi)− log p(D|Mj), see Figure 6.11. This
is done using 3 detectors (HLV) and the Bayes Factors are computed with 7 PCs for the Dim and
Ott catalogues and 16 PCs for the Mur catalogue at a source distance of 10 kpc using the sky
position of the Galactic Center.
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Figure 6.23: Same as Fig. 6.22, but computed for a source distance of 50 kpc using the sky position
of the Large Magallenic Cloud (LMC).

where F+ was larger then the contribution from Advanced Virgo was increase, see

Figure 6.28.
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Figure 6.24: Same results shown as in 6.13 using the spectrogram version of SMEE. Top Plot
Results for the Dim catalogue. In the spectrogram domain using 3 detectors, the maximum mean
distance that signal can be distinguished from both the Mur and Ott PCs is ∼ 135 kpc. Middle
Plot Results for the Mur catalogue. In the spectrogram domain using 3 detectors, the maximum
mean distance that signal can be distinguished from both the Dim and Ott PCs is ∼ 21 kpc.
Bottom Plot Results for the Ott catalogue. In the spectrogram domain using 3 detectors, the
maximum mean distance that signal can be distinguished from both the Dim and Mur PCs is ∼ 330
kpc.
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6.4.2 Rotating Accretion-Induced Collapse or Rotating Iron

Core Collapse?

As in Section 6.2.2 all Abd and Dim waveforms are then added to noise, in this case

noise from 2 Advanced LIGO detectors and Advanced Virgo. Spec SMEE is then

tested using 7 PCs to once again calculate logBAbdDim. The results are shown in

Figure 6.25 for source distances of 10 kpc and 50 kpc.

Spec SMEE correctly identifies the majority of injected waveforms as most likely

being emitted by a rotating iron core collapse or by rotating AIC at both 10 kpc

but is less successful at 50 kpc. At 10 kpc none of the Dim waveforms and ∼3% of

the Abd waveforms are incorrectly identified as belonging to the wrong catalogue.

In addition none of the Dim waveforms and ∼13% of the Abd are in the inconclusive

region. At 50 kpc spectrogram domain SMEE is still very accurate and ∼70% of

the Dim are correctly identified. However, Abd fairs less well and the majority do

not have the SNR necessary to give a Bayes Factor greater than 5.

Figure 6.26 distance plots are shown to identify the mean distance Spec SMEE

can still separate the 2 waveform catalogues. While less successful than in the case

where the magnetorotational mechanism is compared to the neutrino and acoustic

mechanisms the Dim catalogue can still be correctly identified to distances greater

that 100 kpc. As expected, the Abd catalogue can only be correctly identified

to a mean distance of ∼48kpc. This disappointing result is due to the nature of

Spec SMEE. It was shown in Section 4.4.1 that this version of SMEE is less sensitive

at smaller SNRs (or larger distances).
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Figure 6.25: Outcome of the SMEE analysis in the spectrogram domain of injected rotating
iron core collapse (Dim catalogue) and rotating accretion-induced collapse (AIC, Abd catalogue)
waveforms using 3 detectors (HLV). The top panel shows results for a source distance of 10 kpc
(at the Galactic Centre) and the right panel depicts the results for a distance of 50 kpc (at the
Large Magallenic Cloud). The Bayes Factors logBAbdDim are computed on the basis of 7 PCs from
the Abd and Dim catalogue, see Figure 6.14
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Figure 6.26: Distance to which SMEE using multiple detectors can successfully distinguish the
Abd and Dim catalogues using the sky position for the Galactic Centre. Top Plot Results for the
Abd catalogue. In the spectrogram domain using 3 detectors, the maximum mean distance that
signal can be distinguished from the Dim PCs is ∼ 48 kpc. Bottom Plot Results for the Dim

catalogue. In the spectrogram domain using 3 detectors, the maximum mean distance that signal
can be distinguished from the Abd PCs is ∼ 105 kpc.
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6.4.3 Testing Robustness of SMEE using non-catalogue wave-

forms

As in Section 6.2.3, Spec SMEE is now tested using waveform catalogues that share

the same supernova mechanism but were not used in the creation of the principal

components. Results for logBSN are shown in Table 6.3. Distance plots like those

shown in Figure 6.13 are shown in Figure 6.27.

Magnetorotational Mechanism

For the magnetorotational mechanism, three additional Dim waveforms (DimExtra,

Sec. 1.7) are employed that were not included in the calculation of the Dim PCs.

Furthermore, waveforms from rotating models of the Sch catalogue of Scheideg-

ger et al. [102, 23] are injected (see Sec. 1.7). The results of both the logBSN calcu-

lation for the magnetorotational, neutrino, and acoustic mechanism signal models

are summarized in Tab. 6.3. DimExtra waveforms are identified as being most con-

sistent with the Dim catalogue and, hence, the magnetorotational mechanism for

all DimExtra signals at both 10 kpc and 50 kpc. The distance plot in Figure 6.27

shows that DimExtra waveforms can be correctly identified up to a mean distance

of ∼ 170 kpc.

Results of Spec SMEE logBSN calculations for all injected Sch waveforms are

summarized in Tab. 6.3. Spec SMEE correctly identifies the 16 of the Sch waveforms

as indicative of magnetorotational explosions at a source distance of 50 kpc. At

10 kpc, still 23 of the injected Sch waveforms are attributed to the magnetorotational

mechanism, which is an indication of the robustness of the GW associated with

rapid rotation and magnetorotational explosions. The very few Sch waveforms that

Spec SMEE is not able to clearly associated with the magnetorotational mechanism

have such weak SNRs that they are more consistent with noise than with any of the

catalogues at 50 kpc. The distance plot in Figure 6.27 shows that Sch waveforms

can be correctly identified up to a mean distance of ∼ 215 kpc.
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Table 6.3: Spectrogram: logBSN for gravitational waveforms that were not included in the cata-
logues used for PC computation. The DimExtra, Sch, OttExtra, and Yak waveforms are discussed
in §1.7. Results are shown for source distances of 10 kpc and 50 kpc and for evaluations using 7 PCs
for the Ott and Dim PCs and 16 for the Mur PCs. Larger values indicate stronger evidence that the
waveform is matched to the model catalogue from which the PCs were constructed. logBSN < 5
indicates that the injected signal is likely consistent with noise while larger values suggests that
the signal belongs to the signal model whose PCs were used in the analysis.

Waveform logBSN logBSN logBSN

Dim PCs Mur PCs Ott PCs
10 kpc 50 kpc 10 kpc 50 kpc 10 kpc 50 kpc

DimExtra [97]
s20a1o05 shen 1349 181 1186 0 19 0
s15a1o03 LS 30223 644 2362 0 156 0
s40a1o10 LS 21627 583 5618 80 19 0

Sch [102]
R1E1CA 12 0 0 0 0 0

R1E1CA L 0 0 0 0 0 0
R1E1DB 8 0 0 0 0 0
R1E3CA 59 0 0 0 0 0
R1STCA 0 0 0 0 1 0
R2E1AC 746 0 0 0 0 0
R2E3AC 862 0 0 0 0 0
R2STAC 1853 0 0 0 0 0
R3E1AC 12014 59 184 0 0 0

R3E1AC L 9333 27 329 0 0 0
R3E1CA 10135 32 204 0 0 0
R3E1DB 10155 32 199 0 0 0
R3E2AC 8465 22 128 0 0 0
R3E3AC 17199 69 247 0 0 0
R3STAC 17125 123 234 0 0 0
R4E1AC 31307 447 1125 0 116 0
R4E1CF 102830 3008 13904 271 736 0
R4E1EC 25149 335 887 0 79 0
R4E1FC 95945 2728 10279 161 792 0

R4E1FC L 31767 410 991 0 85 0
R4STAC 40801 649 1313 0 191 0
R5E1AC 22932 487 1454 0 97 0

OttExtra [85]
m15b6 0 0 0 0 2 0

s11WW 15 0 2 0 99 0
s25WW 4 0 14260 36 479440 14118

Yak [132]
s12 matter 0 0 0 0 0 0
s15 matter 0 0 0 0 0 0
s25 matter 0 0 0 0 0 0
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Acoustic Mechanism

Spec SMEE’s ability to identify core-collapse supernovae exploding via the acoustic

mechanism is tested by injecting the three OttExtra waveforms (see Sec. 1.7). The

results of this test are again summarized in Tab. 6.3. They suggest that the a-

priori unknown OttExtra waveforms can be identified as belonging to the acoustic

mechanism out to 50 kpc for 1 of the waveforms with great confidence when 7

PCs are used in the analysis. At 10 kpc, 2 of the waveforms are still correctly

attributed to the acoustic mechanism, but the evidence is much weaker than in

the time domain case. The OttExtra 3 waveform (labelled as s25WW), which is

clearly identified at 10 kpc, has an extreme SNR of ∼2530 at this distance, while

the two other waveforms have SNRs of ∼50. From the Distance plot in Figure 6.27

the maximum mean distance that the OttExtra can be successfully matched to the

acoustic mechanism is ∼380 kpc.

While this distance is not as large as in PSD SMEE, it is an improvement over

TD SMEE. This is a strong indication that, as in the case of the time domain, the

range of possible waveform features associated with the acoustic mechanism is not

efficiently covered by the 7 PCs generated from the Ott catalogue and that since

we retain the time domain information when computing the spectrogram PCs, such

large-scale features are again imprinted onto the PCs. However, this limitation is

partly overcome by including the frequency information which has been shown in

the PSD to give a more accurate reconstruction of the OttExtra waveforms.
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Figure 6.27: Same as Figure 6.16 using spectrogram version of SMEE. Top Left Plot Results
for the DimExtra catalogue. In the spectrogram domain using 3 detectors, the maximum mean
distance that signal can be distinguished from both the Mur and Ott PCs is ∼ 170 kpc. Top Right
Plot Results for the Sch catalogue. In the spectrogram domain using 3 detectors, the maximum
mean distance that signal can be distinguished from both the Mur and Ott PCs is ∼ 215 kpc.
Bottom Left Plot Results for the OttExtra catalogue. In the spectrogram domain using 3
detectors, the maximum mean distance that signal can be distinguished from both the Dim and
Mur PCs is ∼ 380 kpc. Bottom Right Plot Results for the Yak catalogue. In the spectrogram
domain using 3 detectors,the maximum mean distance that signal can be distinguished from both
the Dim and Ott PCs is ∼ 7.5 kpc.

Neutrino Mechanism

As in the case for the time and power spectrum domains, the three available Yak

waveforms are added to Advanced LIGO and Advanced Virgo noise and Spec SMEE

computes logBSN . The results are listed in Tab. 6.3. Even at 10 kpc the Yak

waveforms appear to be most consistent with noise for Spec SMEE. The bottom

right panel of Figure. 6.27 shows that the Yak waveforms require a distance of

less than 7.5kpc to be clearly associated with the neutrino mechanism which is an

improvement over the time and power spectrum domain versions of SMEE.

This indicates that including the frequency information improves the reconstruc-

tion but by also having the time domain information the errors seen in the power

spectrum domain are reduced.
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6.5 Conclusions

In Chapter 4 it was shown that SMEE can effectively be used to infer the physics

behind core-collapse supernova in a simplified environment. The purpose of this

Chapter was to investigate SMEE’s reliability in a more realistic scenario closer to

what will be seen in the Advanced detector era. This includes taking the antenna

response and different times of arrival at each detector into account. It also means

using noise from a working GW detector which has been altered to better represent

the detector noise that will be seen in future detectors.

SMEE has been shown to be extremely successful in this scenario, especially in

the spectrogram and time domain versions of SMEE. Both are able to perform model

selection to large distances and a case could be made for either version being deemed

the most successful. However, in the test where waveforms which were not used to

create the principal components it is Spec SMEE which is most successful. For both

the neutrino and acoustic mechanisms it is able to correctly assign the Ott Extra

and Yak catalogues to a higher distance. The results for the magnetorotational

mechanism are equivalent to results seen using TD SMEE. This test is the closest

to the scenario which will be seen when a detection is made in the future i.e. where

no prior knowledge is known about the detected waveform. Because of this, the

spectrogram version of SMEE is chosen as the most successful version of SMEE.

However, the time domain version of SMEE should still be pursued and run as an

extra test, especially in the case where the SNR is less than 10, as TD SMEE is

more successful at smaller SNRs.

PSD SMEE is significantly poorer, especially in the case where complete knowl-

edge of the catalogues is known. In this case, the distance to which model selection

can be performed is much smaller than in the other two versions of SMEE. While it

does improve in the case of the Ott Extra waveforms the most damning evidence

for PSD SMEE is the inability to correctly assign waveforms of the Yak catalogue

to the neutrino mechanism. Therefore, it is not recommended that this version of

SMEE be used in future results.

The limitations discussed in Chapter 4 when dealing with waveforms that were

not used to create the principal components are still evident here. This is not due

to a fault in SMEE but a lack of reliable Supernova models with a large and varied
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Figure 6.28: Here, F+ is plotted using the coordinates of the Galactic Centre over a period of
24 hours. There are times where F+ is higher for Advanced Virgo than in Advanced LIGO e.g.
after 12 hours or where it is more equal such as after 17 hours. If one of these times was chosen
SMEE would improve when being tested with Advanced Virgo noise albeit at the expense of the
Advanced LIGO result.

parameter space. As more models are explored and simulated waveforms created

SMEE will be adapted and improved upon.

Throughout the results shown in this Chapter, the contribution from Advanced

Virgo has been minimal due to the fact that F+ is small at the coordinates chosen.

If a different Earth centre time of arrival was chosen where F+ was more equal over

the 3 detectors the addition of Advanced Virgo would have had more of an impact.

This can be seen in Figure 6.28 where F+ is plotted using the coordinates of the

Galactic Centre over a period of 24 hours. As can be seen in the plot there are

times where F+ is higher for Advanced Virgo than in Advanced LIGO or where it

is more equal. If one of these times was chosen SMEE would improve when being

tested with Advanced Virgo noise.



Chapter 7

Conclusions

The second generation of GW detectors, Advanced LIGO [121] and Virgo [30], are

due to come online in 2015 and they promise to bring the first direct detection of

GWs. One possible source is from a core collapse supernova which are rare events

within the Galaxy but could potentially occur during the next decade. Thus, it is

important to have algorithms set up that can analyse a GW emitted by a supernova

and provide information on the physics occurring during the core collapse. To this

end, the focus of this thesis has been a Bayesian model selection algorithm known

as the Supernova Model Evidence Extractor (SMEE). The necessity of such an al-

gorithm is due to the fact that there is no agreed upon mechanism which drives

a supernova and there are many theories of the physical processes behind the su-

pernova mechanism. GWs provide an opportunity to see through to the core of

a collapsing star. Thus if a gravitational wave from a core collapse supernova is

detected it could provide information as to which supernova mechanism is reener-

gising the supernova. Acheiving this goal would immediately provide inference on

the physics behind a core collapse supernova, which would be a great advancement

in the understanding of one the most important processes in the universe.

Three different versions of SMEE are tested in this thesis. Firstly a version

where principal component analysis is performed in time domain. Next a version

that uses principal components created in the power spectrum domain and finally a

version in the spectrogram domain. It has been shown in this thesis that all versions

of SMEE are successful and are able to infer the supernova mechanism for a galactic

supernova. The background and information for the implementation of SMEE is
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shown in Chapters 2 and 3 and results are first shown in Chapter 4 for a simplified

scenario. This Chapter demonstrated SMEE’s success in the simple case where only

a single Advanced LIGO detector is used and the effect of the antenna response is

ignored. Chapter 6 provides results for the more realistic scenario where data from

multiple detectors is utilised and the effects of the antenna response is taken into

account. It also utilises a series of steps that were taken to improve model selection

in SMEE, see Chapter 5.

In Chapter 6, SMEE proved to be extremely successful and is able to perform

model selection to large distances. Out of the 3 versions of SMEE tested, the

spectrogram version of SMEE is chosen as the most successful. However, the time

domain version of SMEE should still be pursued and run as an extra test, especially

in the case where the SNR is less than 10, as the time domain version of SMEE is

more successful at smaller SNRs. The power spectrum version of SMEE is signifi-

cantly poorer than the other two versions. Therefore, it is not recommended that

this version of SMEE be used in the future.

The dominant limitation of SMEE is due to a lack of reliable supernova models

with a large and varied parameter space. In future work, as more models are ex-

plored and simulated waveforms created, SMEE and the ability to infer the physics

behind a supernova will only improve. Another improvement will be the addition

of more detectors, mainly KAGRA [11] and LIGO India [118]. Initially SMEE will

only have access to Advanced LIGO and Advanced Virgo but both these two addi-

tional detectors will both come online in the next decade. With two extra detectors

SMEE will be able to successfully perform model selection and infer the mechanism

behind a detected gravitational wave signal to ever increasing distances.

SMEE has been adapted by others to solve other problems such as inferring the

angular momentum distribution of a core collapse supernova reenergised through

the magnetorotational mechanism [2]. The techniques employed in SMEE have

been applied to GWs from other sources such as the merging of Binary Black Holes

[27]. Currently, work is being done to apply SMEE to classifying glitches in future

detectors. Glitches are features in the detector noise which have a terrestrial origin

but could be mistaken for a gravitational wave. It is important to classify the

source of a glitch so that it can be removed in future analysis and this can be

done by comparing a detected glitch with catalogues of previously seen features. A

process similar to SMEE can be applied to this problem and at this time has proven
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successful [91].
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