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Abstract 

Rett Syndrome (RTT) is an X-linked genetic disorder and a major cause of 

intellectual disability in girls. Mutations in the methyl-CpG binding protein 2 

(MECP2) gene, are the primary cause of the disorder. Despite the dominant 

neurological phenotypes that characterise RTT, MECP2 is expressed ubiquitously 

throughout the body and a number of peripheral phenotypes such as growth 

retardation (reduced height and weight), skeletal deformities (scoliosis/kyphosis), 

reduced bone mass and low energy fractures are also common yet under-reported 

clinical features of the disorder.  

In order to explore whether MeCP2 protein deficiency results in altered structural 

and functional properties of bone and to test the potential reversibility of any such 

defects, I have conducted series of histological, imaging and biomechanical tests 

of bone using an accurate genetic (functional knockout) mouse model of RTT. 

Initial experiments using a GFP reporter mouse line demonstrated the presence of 

MeCP2 in bone cells and the effective silencing on the gene in functional knockout 

mice. Different aspects of the study were conducted in different types of bone 

tissues that were especially suited for individual assays. For instance, 

biomechanical three point bending tests were conducted in long bone (femur) 

whilst trabecular geometry measures were measured in spinal vertebrae. 

Both hemizygous Mecp2stop/y male mice in which Mecp2 is silenced in all cells and 

female Mecp2stop/+ mice in which Mecp2 is silenced in ~50% of cells as a 

consequence of random X-chromosome inactivation (XCI), revealed, lighter and 

smaller long bones and significant reductions in cortical bone mechanical 

properties (~ 39.5% reduction in stiffness, 31% reduction in ultimate load and 37% 

reduction in Young’s modulus respectively in Mecp2stop/y male mice; %) and 

material properties (microhardess reduced 12.3% in Mecp2stop/y male mice and 

14% inMecp2stop/+ female mice) as compared to age wild type control mice. Micro 

structural analysis conducted using µCT also revealed a significant reduction in 

cortical (54% reduction in cortical thickness, 30% in bone volume, 20% in total 

area, and 38% in marrow area) and trabecular (~30% in trabecular thickness) 

bone parameters as compared to age matched wild-type controls MeCP2-deficent 

mice. Histological analysis using Sirius red staining as a marker of collagen 
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revealed a ~25% reduction in collagen content in MeCP2 deficient mice as 

compared to age matched wild type controls.  

In experiments designed to establish the potential for reversal of MeCP2-related 

deficits, unsilencing of Mecp2 in adult mice by tamoxifen-induced and cre-

mediated excision of a stop cassette located at the endogenous Mecp2 locus 

(male; Mecp2stop/y, CreER and female; Mecp2+/stop, CreER), resulted in a 

restoration of biomechanical properties towards the wild-type levels. Specifically, 

Male Mecp2stop/y, CreER mice displayed improvement in mechanical properties 

(stiffness 40%, ultimate load 10%, young’s modulus 61% and micro hardness 

12%) and structural bone parameter (trabecular thickness 80%) as compared to 

Mecp2stop/y male mice. Female Mecp2+/stop, CreER, displayed a significant 

improvement (19%) in microhardess measures as compared to Mecp2 deficient 

mice.  

Overall, the results of my studies show that MeCP2-deficiency results in overt, but 

potentially reversible, alterations in the biomechanical integrity of bone and 

highlights the importance of targeting skeletal phenotypes in considering the 

development of pharmacological and gene-based therapies for Rett Syndrome.  

 

 

 



5 
 

Table of Contents 

Acknowledgement ................................................................................................... 2 

 
Abstract ................................................................................................................... 3 

 
List of Figures ....................................................................................................... 12 

 

List of Tables......................................................................................................... 14 

 

Author’s Declaration .............................................................................................. 15 

 

Abbreviations ........................................................................................................ 16 

 

Chapter 1 .............................................................................................................. 20 

 

General Introduction ............................................................................................. 20 

 

1.1 Clinical picture of Rett syndrome ............................................................. 21 

 

1.2 Rett syndrome and the MECP2 gene ...................................................... 26 

 

1.3 MeCP2 Structure, Expression and Function ............................................ 28 

 

1.3.1 MeCP2 Structure ............................................................................... 28 

 

1.3.2 MeCP2 Expression ............................................................................ 30 

 

1.3.3 MeCP2 molecular mechanism and function ...................................... 31 

 

1.4 Bone phenotypes in Rett syndrome ......................................................... 35 

 

1.4.1 MeCP2 expression and bone development` ..................................... 35 

 

1.4.2 Factors affecting bone remodelling and their relevance to Rett 
syndrome Patients ......................................................................................... 36 

 

1.5 Bone Structure and Composition ............................................................. 39 

 



6 
 

1.5.1 Bone tissue ....................................................................................... 39 

 

1.5.2 Bone Matrix ....................................................................................... 40 

 

1.5.3 Bone Cells ......................................................................................... 42 

 

1.5.4 Osteoblast and Osteocyte ................................................................. 42 

 

1.5.5 Osteoclast ......................................................................................... 47 

 

1.6 Bone homeostasis, remodelling and mechanobiology ............................. 49 

 

1.6.1 Mechanotransduction in bone tissue ................................................. 51 

 

1.7 Bone development and growth ................................................................ 54 

 

1.7.1 Intramembranous ossification ........................................................... 56 

 

1.7.2 Endochondral ossification ................................................................. 56 

 

1.8 Animal models of Rett Syndrome ............................................................ 57 

 

1.9 Reversibility of RTT-like phenotype ......................................................... 59 

 

1.9.1 Rescue of RTT like phenotype in Mecp2 knockout animal models ... 60 

 

1.10 Therapeutic interventions for RTT ........................................................ 61 

 

1.10.1 Reactivation of the normal allele .................................................... 61 

 

1.10.2 Pharmacological approaches ......................................................... 62 

 

1.10.3 Gene therapy ................................................................................. 63 

 

1.11 Summary and Aims .............................................................................. 64 

 

Chapter 2 .............................................................................................................. 66 

 

General materials and methods ............................................................................ 66 



7 
 

2.1 Experimental Animals Models .................................................................. 66 

 

2.2 Design of Mecp2 stop and rescue mouse mode ...................................... 66 

 

2.2.1 lox- stop cassette and Mecp2 stop models ....................................... 66 

 

2.2.2 Rescue of Mecp2 stop models .......................................................... 68 

 

2.3 Breeding strategy of Mecp2- Stop mice ................................................... 72 

 

2.4 Age of experimental animals .................................................................... 73 

 

2.5 Establishment of expression of MeCP2 on bone cells ............................. 73 

 

2.5.1 Methodology ...................................................................................... 74 

 

2.6 General solutions ..................................................................................... 76 

 

2.6.1 0.2 M PB ........................................................................................... 76 

 

2.6.2 0.1 M PB ........................................................................................... 76 

 

2.7 Dissection ................................................................................................ 76 

 

2.7.1 Material ............................................................................................. 76 

 

2.7.2 Method .............................................................................................. 77 

 

2.8 Morphometric measurements .................................................................. 79 

 

2.8.1 Whole body weights .......................................................................... 79 

 

2.8.2 Individual bone weights ..................................................................... 80 

 

2.8.3 Individual bone lengths ...................................................................... 80 

 

2.9 Data handling and analysis ...................................................................... 81 

 

Chapter 3 .............................................................................................................. 82 



8 
 

Biomechanical tests revealed genotype differences in bone properties ................ 82 

 

3.1 Introduction .............................................................................................. 82 

 

3.1.1 Fracture risk epidemiology in RTT patients ....................................... 82 

 

3.1.2 Fracture site in RTT patients ............................................................. 83 

 

3.1.3 Determinants of Fracture risk in RTT patients ................................... 83 

 

3.1.4 Low energy fractures in RTT patients ................................................ 85 

 

3.2 Biomechanical properties of bone ............................................................ 86 

 

3.3 Animals models and bone biomechanics ................................................. 92 

 

3.3.1 Load Types ....................................................................................... 93 

 

3.3.2 Aim of the study................................................................................. 95 

 

3.4 Material and Methods .............................................................................. 95 

 

3.4.1 Three-point bending test ................................................................... 96 

 

3.4.2 Micro indentation hardness test ........................................................ 97 

 

3.4.3 Femoral neck fracture test ................................................................. 98 

 

3.5 RESULTS .............................................................................................. 100 

 

3.5.1 No difference in whole body weights of male and female cohorts ... 101 

 

3.5.2 Reduced weight of femur and tibia in Mecp2-Stop male mice ......... 102 

 

3.5.3 No significant difference in long bone (femur and tibia) weights in 
Mecp2-Stop female mice ............................................................................. 102 

 

3.5.4 Significant reduction in tibial length of Stop male mice .................... 102 

 



9 
 

3.5.5 No significant difference in long bone (femur and tibia) length 
measures in Mecp2-Stop female mice ......................................................... 102 

 

3.5.6 Significant reduction in biomechanical properties in Stop male mice 
and improvement in bone integrity of Rescue male mice............................. 103 

 

3.5.7 Female mice tibia showed no difference in biomechanical properties 
of bones ....................................................................................................... 104 

 

3.5.8 Male and Female Rescue mice showed a significant improvement in 
bone hardness ............................................................................................. 104 

 

3.5.9 Male and Female Stop mice showed no significant difference in femur 
biomechanical properties ............................................................................. 105 

 

3.6 Discussion ............................................................................................. 107 

 

Chapter 4 ............................................................................................................ 112 

 

Radiology based structural studies to assess trabecular and cortical bone 
parameters in a mouse model of Rett Syndrome ................................................ 112 

 

4.1 Introduction ............................................................................................ 112 

 

4.1.1 Bone structure and Bone strength ................................................... 114 

 

4.1.2 µCT use in skeletal phenotypes ...................................................... 114 

 

4.1.3 Aim of the study............................................................................... 115 

 

4.2 Material and Methods ............................................................................ 115 

 

4.2.1 Micro-computed tomography (µCT) ................................................ 115 

 

4.2.2 Micro-computed tomography (µCT) for cortical bone measures ..... 117 

 

4.2.3 Scanning Electron Microscopy (SEM) ............................................. 118 

 

4.2.4 5th Lumbar vertebrae, µCT scan for trabecular parameters............. 119 

 

4.3 Results ................................................................................................... 122 



10 
 

4.3.1 Micro CT revealed male Mecp2-Stop mice to display altered cortical 
bone properties. .................................................................................................. 122 

 

4.3.2 Micro CT scans of heterozygous female Mecp2-Stop and Rescue 
mice showed no significant differences in cortical structure parameters ..... 124 

 

4.3.3 Scanning electron microscopy revealed altered trabecular structure in 
Stop male mice ............................................................................................ 125 

 

4.3.4 Micro CT scans showed improvement in trabecular bone thickness in 
Rescue male mice ....................................................................................... 126 

 

4.3.5 Bone density measurements from μCT did not revealed any 
significant difference in Mecp2 stop mice. ................................................... 128 

 

4.4 Discussion ............................................................................................. 129 

 

Chapter 5 ............................................................................................................ 134 

An analysis of the material composition of bone in an mouse model of Rett 
Syndrome ........................................................................................................... 134 

 

5.1 Introduction ............................................................................................ 134 

 

5.1.1 The material composition of bone: collagen and mineral ................ 134 

 

5.1.2 The Cellular Machinery for bone homeostasis and turnover ........... 136 

 

5.1.3 Aim of the study............................................................................... 136 

 

5.2 Methods and Material ............................................................................ 137 

 

5.2.1 Preparation of histological sections of bone .................................... 137 

 

5.2.2 Quantitative measurement of collagen in bone ............................... 138 

 

5.2.3 TRAP staining for osteoclast ........................................................... 144 

 

5.2.4 Ash weight density .......................................................................... 146 

 

5.3 Results ................................................................................................... 147 

 



11 
 

5.3.1 Mecp2 stop mice showed decrease in collagen content ................. 147 

 

5.3.2 Osteoclast number did not showed any significant difference in Mecp2 
stop mice ..................................................................................................... 149 

 

5.3.3 Ash density analysis of bone tissues in Mecp2 stop mice ............... 150 

 

5.4 Discussion ............................................................................................. 152 

 

Chapter 6 ............................................................................................................ 159 

 

General discussion ............................................................................................. 159 

 

6.1 Major findings of the study ..................................................................... 159 

 

6.2 Significance of the study ........................................................................ 167 

 

6.3 Future studies ........................................................................................ 168 

 

References.......................................................................................................... 170 



12 
 

List of Figures 

Figure1-1  Systemic manifestations of Rett syndrome .......................................... 23 

 
Figure1-2  The MECP2 gene location and MeCP2 protein structure with the most 
frequent sites of mutations .................................................................................... 27 

 
Figure1-3  Splicing and composition pattern of MECP2 gene ............................... 29 

 
Figure 1-4  Several different dysmorphic skeletal features of Rett syndrome. ...... 37 

 
Figure1-5    Bone structure ................................................................................... 41 

 
Figure1-6  Bone cells and contributing factors ...................................................... 44 

 
Figure1-7  The ossification process in long bone .................................................. 54 

 
Figure 1-8   Microscopic view of an epiphyseal disc showing cartilage production 
and bone replacement .......................................................................................... 55 

 
Figure2-1 Representative diagram showing, the Cre ER/loxP system. ................. 69 

 
Figure2-2  Experimental design of Tamoxifen regime (rescuing) of Mecp2stop/y mice
 .............................................................................................................................. 71 

 
Figure 2-3  MECP2-GFP mouse model GENOTYPE CONSTRUCT .................... 74 

 
Figure 2-4 MeCP2 is expressed widely in bone tissues ........................................ 75 

 
Figure2-5  Dissection of femur and tibia ............................................................... 78 

 
Figure2-6  Dissection of 5th Lumbar vertebrae ...................................................... 79 

 
Figure2-7  Morphometric length measurements of femur and tibia ....................... 81 

 
Figure3-1  Load-displacement curve for bone ...................................................... 88 

 
Figure3-2 Load displacement curve showing various bone pathologies ............... 89 

 
Figure3-3  Summary of contributing factors towards the bone strength ................ 90 

 
Figure3-4  The Stress-strain curve for bone ......................................................... 91 

 
Figure 3-5  Load Types (Compression, Tension, Torsion, Shear, Bending) ......... 93 

 
Figure3-6  Three point bending test on right tibias ................................................ 96 

 
Figure3-7  Microindentation Test for hardness ..................................................... 99 

 
Figure3-8  Femur neck test ................................................................................. 100 

 
Figure3-9  Bodyweight measurements in male and female mice cohort. ............ 101 



13 
 

Figure3-10  Three point bending test results in male mice cohort....................... 103 

 
Figure3-11  Three point bending test measures in female cohorts ..................... 104 

 
Figure3-12   Microindentation results in male and female cohorts ...................... 105 

 
Figure3-13  Fracture neck test results of male and female cohort ...................... 106 

 
Figure4-1  Micro CT scanning of Tibia ................................................................ 116 

 
Figure4-2 Screen shot of image analysis while using the CT analyser software, 
displaying region of interest at mid diaphysis of tibia .......................................... 117 

 
Figure4-3  Micro CT scan of 5th Lumbar vertebrae ............................................. 119 

 
Figure4-4 Cortical bone parameter in Mecp2 Stop and Rescue male mice ........ 123 

 
Figure4-5 Cortical bone parameters in Mecp2 Stop and Rescue Female mice. . 124 

 
Figure 4-6 Scanning electron microscopy reveals pitted cortical bone and altered 
trabecular structure in distal femur of male MeCP2-deficient mice. .................... 125 

 
Figure4-7 MicroCT scans of L5 vertebrae revealed thinner trabecular mass in 
MeCP2-deficient mice ......................................................................................... 126 

 
Figure4-8 Trabecular bone parameters bar graphs of Mecp2 stop mice ............ 128 

 
Figure4-9  Micro CT derived bone mineral density in Mecp2 stop mice 5th lumbar 
vertebrae ............................................................................................................. 129 

 
Figure 5-1 Selection of image through image j Colour- ....................................... 141 

 
Figure 5-2 Selection of different pixel colour clusters .......................................... 142 

 
Figure 5-3   Percentage area measurement by Colour segmentation plugin ...... 143 

 
Figure5-4  Region of interest selection for osteoclast count in male stop mice ... 145 

 
Figure5-5 Collagen content analysis in Mecp2 stop mice ................................... 147 

 
Figure 5-6  Comparison of %collagen content .................................................... 148 

 
Figure5-7  Osteoclast number quantification analysis in Mecp2 Stop mice ........ 149 

 
Figure5-8  Ash Content analysis in male and female stop mice.......................... 151 

  



14 
 

List of Tables 

Table1-1 Revised diagnostic criteria for RTT 2010 ............................................... 25 
 
Table1-2  Clinical criteria for diagnosis of “Classic and Atypical” RTT .................. 26 
 
Table1-3   Bone hierarchical structure .................................................................. 39 
 
Table3-1  Morphometric measurements of stop male and female mice .............. 102 
 
Table 4-1: Trabecular bone parameters .............................................................. 120 
 
Table 4-2: Density range calibration ................................................................... 122 
 
Table 4-3    Lumbar vertebrae trabecular bone parameters ................................ 127 



15 
 

Author’s Declaration 

I declare that the work presented in this thesis is entirely my own with all 

exceptions being clearly indicated or/ and properly cited in the context. 

 

Signature............................................................................................ 

                                            Bushra Kamal 

 

The work has not been presented in part or alone for any other degree 

programme. Some of the work contained here has been submitted in part to be 

published: 

Bushra Kamal, David Russell, Anthony Payne, Diogo Constante, K. Elizabeth 
Tanner, Hanna Isaksson, Neashan Mathavan, Stuart R. Cobb, ( October 2014) 
“Bio-material properties of bone in a mouse model of Rett Syndrome”.  Bone 
Journal, 71, pp 106-114. (doi:10.1016/j.bone.2014.10.008).                
 
  

http://dx.doi.org/10.1016/j.bone.2014.10.008


16 
 

Abbreviations 

 
AAV Adeno-associated virus 

ANOVA Analysis of variance 

B-ALP Bone specific alkaline phosphatase 

BMC Bone mineral content 

BMD Bone mineral density 

BMP Bone morphogenic protein 

BSU Basic  structural unit 

Ca 
 
 
CAM                                 

Calcium 
 
 
Calmodulin 
 
 

CP Cerebral Palsy 

CpG 
 
 
COX 

Cytosine-guanine dinucleotides 
 
 
Cycloxygenase   
 
 

CTD C terminal domain 

CTRs Calcitonin recptors 

CTX 
 
 
CX                                      

C – terminal telopeptide cross links  
 
 
Connexion 
 
 

DNA 4’,6-diamindino-2-phenylindole 

DXA 
 
 
ECM           

Dual-energy X-ray absorptiometry 
 
 
Extracellular matrix 



17 
 

EDTA 
 
 
ERK 
 
 
FAK 

Ethylenediaminetetraacetic acid 
 
 
Extracellular signal regulated kinase 
 
 
Focal adhesion kinase 
 
 

GFP 
 
 
HDAC1 
 
 
MAP 
 
 
M-CSF           

Green fluorescent protein 
 
 
Histone deacetylase inhibitor 
 
 
Mitogen activated protein 
 
 
Macrophage colony stimulating factor 
 
 

ID Inter domain 

KO knock out 

MBD Methyl binding domain 

MECP2 Human Methyl-CpG-binding protein 2 gene 

Mecp2 Mouse Methyl-CpG-binding protein 2 gene 

MeCP2 Human Methyl-CpG-binding protein 2 protein 

Mecp2 Mouse Methyl-CpG-binding protein 2 protein 

MECP2_e1 Methyl-CpG-binding protein 2 isoform e1 

MECP2_e2 Methyl-CpG-binding protein 2 isoform e2 

NLS 
 
 
NO                                     

Nuclear localising signal 
 
 
Nitric oxide 
 
 

NTD N- terminal domain 



18 
 

OC Osteocalcin 

ODF  
 
 
OI 
 
 
OPG 

Osteoclast differentiation factors 
 
 
Osteogenesis imperfecta 
 
 
Osteoprotegerin 
 
 

PBS 
 
 
PGE2 

Phosphate buffer solution 
 
 
Prostaglandin E2 
 
 

PINP N- terminal propeptides of collagen type 1 

PTH Parathyroid hormone 

RANK Receptor activator of nuclear factor- kB 

RANKL Receptor activator of nuclear factor- kB ligand 

RNA Ribonucleic acid 

ROI Region of interest 

RTT 
 
 
SA-CAT 

Rett syndrome 
 
 
Stretch activated cation channel 
 
 

SAXS Small-angle X-ray scattering 
 
 

SD 
 
 
SUV39H 

Standard deviation 
 
 
Suppressor of variegation 3-9 homolog1 
 
 

SEM Scanning electron microscopy 

TGF-β Tissue growth factor-β 



19 
 

TRAP 
 
 
TRANCE 

Tartrate-resistant acid phosphatase 
 
 
Tumour necrosis factor related activation induced 
cytokine 
 
 

TRD 
 
 
VEGF 
 
 

Transcription repression domain 
 
 
Vascular endothelial growth factor 

XCI X chromosome inactivation 

µCT 
 
 
 

X-ray microtomgraphy 



20 
 

Chapter 1  

General Introduction 

  

Andrea Rett, an Austrian physician, first noticed Rett syndrome (RTT) in 2 young 

girls as they sat in the waiting room of his clinic. He observed that the children 

were making the same repetitive hand-washing motions. In 1966, he conducted a 

comparative review of 22 young females exhibiting similar symptoms and 

compulsive stereotyped behaviours (Rett, 1966). He proposed the unusual brain 

atrophy of RTT affected girls is linked to the hyper ammonia in childhood. Later on 

after a gap of 17 years (in 1983)  similar finding were described by Hagberg et al 

(Hagberg et al., 1983). Dr Hagberg highlighted the findings presented by Andrea 

Rett including the classical normal growth followed by developmental delay, 

autism, gait abnormalities, atypical hand movements and microcephaly. He also 

proposed that the particular occurrence of this syndrome in girls could be linked to 

the X-linked genetic inheritance of this syndrome. However, of inspite of his great 

interest, the cause of Rett syndrome remained unknown (Hagberg et al., 1983). Dr 

Hagberg paper did manage to enhance the awareness of Rett syndrome in 

worldwide scientific community. Three years later in 1986, Suzuki et al found same 

clinical picture of RTT in their study of seven girls. They agreed with Rett’s and 

Hagberg’s description of signs and symptoms of the disorder but they could not 

found any abnormalities in blood chemistry of these young patients and found 

ammonia levels to be normal in these females (Suzuki et al., 1986). 

From 1983 until late 1990s, many studies were conducted not only to discover the 

root cause of syndrome but also to define the clinical picture and different 

treatment options especially in scientific communities of countries like Spain, 

Germany, United Kingdom, Norway, Japan and Tunisia (Glaze et al., 1987; 

Campos-Castelló et al., 1988; Keret et al., 1988; Roberts and Conner, 1988; Loder 

et al., 1989; Holm and King, 1990; Yano et al., 1991; Witt Engerström, 1992; 

Budden, 1995; Plöchl et al., 1996; Haas et al., 1997; Glasson et al., 1998). 

Nearly three decades after the first discovery of RTT, in 1999 the disorder was   
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shown to be caused primarily by mutations in the X-linked gene, MECP2 (Amir et 

al., 1999). Amir et al used a systemic gene screening approach and identified 

mutations in the gene (MECP2) encoding X-linked methyl –CpG-binding protein 2 

(MeCP2) as the primary cause of RTT. Their study also suggested aberrant 

epigenetic regulation as potential mechanism underlying the RTT pathology. 

The discovery of the genetic cause of RTT enhanced the scientific research 

interest and number of groups had developed Mecp2 knockout mouse models 

(Chen et al., 2001; Guy et al., 2001; Shahbazian et al., 2002b) in order to explore 

the underlying biology and pathophysiology of Rett syndrome. 

In addition to neurological phenotypes, a number of overt ‘peripheral’ phenotypes 

are also common in RTT. For instance spinal deformity (principally scoliosis and 

excessive kyphosis) is a very common feature with approximately 50-90% of 

patients developing severe scoliosis, (Keret et al., 1988; Huang et al., 1994; 

Lidström et al., 1994; Percy et al., 2010) many of whom require corrective surgery. 

Other prominent skeletal anomalies include early osteoporosis, osteopenia, 

increased risk of low energy fracture and hip deformities (Keret et al., 1988; 

Roberts and Conner, 1988; Harrison and Webb, 1990; Leonard et al., 1999c; 

Cepollaro et al., 2001; Downs et al., 2008a; Hofstaetter et al., 2010; Leonard et al., 

2010). 

In my thesis I have used Mecp2 knockout mice to analyse these skeletal 

anomalies. Various anatomical and biomechanical techniques have been 

employed to evaluate the bone structure and strength. Additionally, I have tested 

the reversibility of biomechanical phenotypes following un-silencing of the Mecp2 

gene. Evaluation of the outcomes of these experiments should provide information 

about challenges, benefits, drawback and prospects of gene-based therapies in 

targeting bone phenotypes in Rett syndrome. 

1.1 Clinical picture of Rett syndrome 

Rett syndrome (RTT) is a severe neurodevelopmental disorder which almost 

exclusively affects females, with prevalence between 1in 10,000 and 1 in 15,000 

female births (Hagberg et al., 1983; Neul et al., 2010). Rett syndrome is an X-

linked dominant disorder as more than 95% of RTT cases arise de novo (Webb 
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and Latif, 2001). RTT is lethal in hemizygous males, who die around birth, and if 

they do survive beyond birth then males present a different clinical picture from 

that shown in young females with Rett syndrome (Hagberg et al., 1983; Webb and 

Latif, 2001). 

The uncertainty of diagnosis of Rett syndrome associated with the occasional 

presence of apparently affected males, is further  complicated by the very wide 

clinical spectrum presented by females, which ranges from the severely affected 

‘classical’ cases through a wide range of disability to a milder variant forms. This 

variability has been partly ascribed to the particular type of mutation (Neul et al., 

2010) but also the degree to which skewing of X chromosome inactivation favours 

the expression of the normal MECP2 allele (Webb and Latif, 2001).  

The Rett syndrome not only affects the neurological system but also the 

respiratory, gastrointestinal and skeletal systems (figure 1-1).  

RTT was sometimes co-classified with other autism spectrum disorders with 

features differentiating Rett syndrome from the former including an initial period of 

6-18 month of apparently normal growth (low mean birth weight and head 

circumference were also observed in few cases) (Leonard and Bower, 1998; 

Huppke et al., 2003), followed by rapid destructive phase between 1-4 years 

during which patients display loss of hand skills, impaired mobility and speech, 

development of stereotypic hand movement (continuous repetitive wringing, 

twisting, clapping hand automatism during wakefulness) and difficulties in social 

interactions (figure 1-1). 

This rapid deterioration phase is followed by plateau stage during which patients 

get no worse or their intensity lessens. Late motor deterioration starts between 5 

and 25 years of age and can last for decades (Engerström, 1992; Neul et al., 

2010).  

Autistic features also form the frequent part of RTT clinical spectrum including 

hypersensitivity to sound, expressionless face, and indifference to the surrounding 

environment and un responsiveness to the social cues (Nomura, 2005) and mental 

retardation (Chahrour and Zoghbi, 2007).  
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                  Figure1-1  Systemic manifestations of Rett syndrome 
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Musculoskeletal abnormalities of RTT includes scoliosis, which starts at an early 

school age, and distal lower limb abnormalities (Hagberg et al., 2002). In a recent 

study in an Australian cohort, investigators also showed the development of 

scoliosis in majority (85.5%) of cases (Anderson et al., 2014).Radiographic studies 

on RTT patients have demonstrated osteopenia (Leonard et al., 1995; Leonard et 

al., 1999c; Cepollaro et al., 2001).  

Females with Rett syndrome are at increased risk of fracture as it is stated that 

about one third had sustained a fracture by the age of 15 years, compared with 

only 15% of control population of age 20 years (Leonard et al., 1999c). In another 

population based study the fracture risk in RTT patients was found to be nearly 

four times the population rate (Downs et al., 2008a). Decrease in bone volume has 

been reported in RTT patients, and it was concluded that the slow bone creation at 

a young age eventually causes low bone density, pointing towards the possible 

direct effect of MECP2 mutations on bone development (Gonnelli et al., 2008; 

Leonard et al., 2010). 

Rett syndrome patients also suffer from breathing difficulties including episodic 

hyperventilation and apnoea during wakefulness (Kerr et al., 1997; Julu et al., 

2001). In a study on Australian cohort, abnormal breathing pattern were reported 

for two thirds of women (66.4%) including 74.2% who suffered from 

hyperventilation and 88.7% with apnoeic episodes (Anderson et al., 2014) 

Epilepsy also occurs commonly during the plateau phase (Hagberg et al., 

2002).Risk of epilepsy is also thought to be genotype related (Jian et al., 2006). 

Gastrointestinal problems including swallowing dysfunction, gastro oesophageal 

reflux, constipation and distension are also observed in RTT patients (Reilly and 

Cass, 2001; Hagberg, 2002; Oddy et al., 2007; Motil et al., 2012; Anderson et al., 

2014). 
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According to Neul et al RTT diagnostic criteria is as below: 

  Table1-1 Revised diagnostic criteria for RTT 2010 

 

Clinical presentation and severity of RTT display a wide variation and patients may 

exhibit all the essential features necessary for the RTT diagnosis or they may 

show differences leading to their assignment in atypical RTT diagnosis (Neul et al., 

2010) See table below ( table1-2).



26 
 

Table1-2  Clinical criteria for diagnosis of “Classic and Atypical” 
RTT 

 
 

1.2 Rett syndrome and the MECP2 gene 

The search for the genetic cause of Rett syndrome was seriously hampered by a 

lack of familial cases as majority of cases of the syndrome were found to be 

sporadic but with series of linkage analysis on the few familial cases the region of 

interest was found to be Xq28 in 1998 (Lewis et al., 1992; Sirianni et al., 1998; 

Webb et al., 1998; Xiang et al., 1998; Berg and Hagberg, 2001) (figure 1-2). 

This discovery lead to intense screening of the Xq28 region for likely candidate 

genes until in 1999 Amir et al finally published first report, establishing mutations in 

MECP2 gene in 5 out of 21 cases of Rett syndrome (Amir et al., 1999). 

Rett syndrome is not a heritable disorder and most common mutations in MECP2 

arises de novo in germ cells, commonly on the paternal side (Trappe et al., 2001). 

Since the original report by Amir et al, there have been a multiple confirmatory 

studies to detect mutations in the MECP2 gene in the young girls with Rett 

syndrome from worldwide and found that the more than 95% of RTT cases are 

usually the result of dominantly acting , de novo (Girard et al., 2001) mutations in 

the X-linked  gene MECP2, which encodes methyl-CpG-binding protein 2 (MeCP2) 

(Wan et al., 1999; Bienvenu et al., 2000; Cheadle et al., 2000; Girard et al., 2001; 

Guy et al., 2011b; Zhang et al., 2012) other variant includes FOXG1,CDKL5 etc. 

More than 600 pathogenic MECP2 mutations have been reported, including 

missense, nonsense, frameshift and large deletion mutations (RettBase: 

http://mecp2.chw.edu.au/mecp2/). 

 

http://mecp2.chw.edu.au/mecp2/
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Studies have shown a genotype-phenotype relationship between phenotype and 

MECP2 mutation and it is fascinating because it gives the opportunity to explore 

mutations in a single gene (Amir et al., 2000; Ben-Ari and Spitzer, 2010). 

Truncation mutations within the MECP2 gene for example show relation with more 

severe RTT phenotypes (Weaving et al., 2003). Since MECP2 gene  is an X-linked 

gene, the X-chromosome inactivation patterns ( whether they are skewed or 

random or whether the mutant allele is of paternal or maternal origin ) are linked to 

the severity of RTT phenotypes and this has been established by various groups 

(Ishii et al., 2001; Gibson et al., 2005; Xinhua Bao et al., 2008).     

 

Figure1-2  The MECP2 gene location and MeCP2 protein structure 
with the most frequent sites of mutations 
(A) MECP2 gene is located in X-chromosome (Xq28), flanked by the RCP and 

IRAK genes. (B) The schematic figure showing the distinct functional domains of 

MeCP2. Apart from the N terminus, both MeCP2 isoforms are identical and 

contain several functionally distinct domains: NTD, N-terminal domain; MBD, 

methyl binding domain; ID, inter domain; TRD, transcription repression domain; 

CTD, C-terminal domain; NLS; nuclear localisation signals. Most common point 

mutations are also shown (red arrows). 
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Males typically inherit a mutant MECP2 allele, resulting in more severely affected 

phenotype, presenting with infantile encephalopathy and usually not surviving 

infancy. These differences between the heterozygous female and hemizygous 

male RTT phenotype are due to the proportion of cells in the nervous system 

expressing the mutant allele. 

1.3 MeCP2 Structure, Expression and Function 

 

1.3.1 MeCP2 Structure 

MeCP2 is basically a nuclear protein with high affinity for DNA sequences 

containing methylated 5’-CpG-3’ dinucleotides (Lewis et al., 1992). MeCP2 

belongs to Methyl-CpG binding protein family that binds to methylated DNA 

through their unique Methyl Binding Domain (MBD) (Singh et al., 2008). 

In both human and mouse the MECP2/Mecp2 gene is composed of four major 

exons (exon 1-4) and three introns (Intron 1-3). MeCP2 protein structure is 

composed of five important domains, N-terminal Domain (NTD), Methyl Binding 

Domain (MBD), Inter Domain (ID), Transcription Repression Domain (TRD) and C-

terminal Domain (CTD) and is approximately 53 kDa to 75 kDa in size (Nan et al., 

1996; Jones et al., 1998; Zachariah and Rastegar, 2012; Olson et al., 2014). 

These domains combine to form a tertiary structure and this structural 

arrangement of MeCP2 provides a better understanding of MeCP2 

multifunctionality in vitro and in vivo (Adams et al., 2007) (Figure 1-2) MeCP2 has 

two major splice isoforms, e1 and e2, that encode the proteins with different N-

termini. MECP2_e2, which is the first discovered isoform uses a translational start 

site within exon 2, whereas the newer (and more abundant) isoform MECP2_e1 

derives from mRNA in which exon 2 is found to be excluded (Mnatzakanian et al., 

2004) (figure 1-3). 
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Figure1-3  Splicing and composition pattern of MECP2 gene 
(A) Figure showing the splicing of Human MECP2 gene. Two mRNA isoforms are 

generated; MECP2_e1 and MECP2_e2(B) The two isoforms generate two protein 

isoforms of MeCP2 with differing N-termini due to the use of alternative translation 

start sites (bent arrows). Yellow and green shadows refer to the amino acid 

differences in the N-terminal of both MeCP2_e1 (GenBank accession no. 

NM_001110792.1) and MeCP2_2 isoforms respectively (GenBank accession no. 

NM_004992.3). 
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1.3.2 MeCP2 Expression 

MeCP2 is widely expressed in many organs and its highest expression is found in 

brain, lung and spleen, compared to the expression levels in liver, heart, kidney 

and small intestines (Shahbazian et al., 2002b). 

Mecp2 mRNA transcripts are highly expressed in skeletal muscle and heart, lung, 

moderate in brain and low in liver and spleen (D'Esposito et al., 1996; Reichwald 

et al., 2000; Adachi et al., 2005; Zhou et al., 2006). 

The expression of MeCP2 in brain has been extensively studied, as the majority of 

Rett syndrome phenotypes are neurological. However MeCP2 mis-expression 

results in peripheral phenotypes as well for example the bone phenotype 

(scoliosis/ limb movements), breathing and respiratory abnormalities, cardiac 

problems, difficulty in feeding (Matarazzo et al., 2004; Smrt et al., 2007; Alvarez-

Saavedra et al., 2010). Over expression of MeCP2 in the mouse heart leads to 

cardiac septum hypertrophy and the mutated expression of MeCP2 in the skeletal 

tissue produces detrimental deformities (Alvarez-Saavedra et al., 2010). 

In brain, both the distribution and levels of MeCP2 show regional variation as 

recently demonstrated by studies in the adult murine brain regions, specifically in 

the cortex, striatum, olfactory bulb, hippocampus, thalamus, cerebellum, olfactory 

bulb and brain stem (Olson et al., 2014). The highest MeCP2 expression was 

found in the cortex and cerebellum among the studied brain regions (Zachariah 

and Rastegar, 2012). 

Among the MeCP2 expressing cells, neurons show the highest MeCP2 

expression, while lower amounts of MeCP2 are found in glial cell types (Ballas et 

al., 2009; Zachariah and Rastegar, 2012). For normal maturation (Kishi and 

Macklis, 2004; Singleton et al., 2011) and proper function of neurons a normal 

MeCP2 expression is required (Shahbazian et al., 2002b; Nguyen et al., 2012). 

MeCP2 expression has also been demonstrated in astrocytes, oligodendrocytes 

and microglia (Ballas et al., 2009; Zachariah and Rastegar, 2012; Liyanage et al., 

2013; Olson et al., 2014).    
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1.3.3 MeCP2 molecular mechanism and function 

MeCP2 is found to be a multifunctional protein as different domains of MeCP2 

have been assigned to facilitate multiple functions either by direct DNA binding, or 

by interaction with protein partners or recruiting other factors (Guy et al., 2011b). 

Cells undergo differentiation mostly without alternating the sequence of the DNA 

but rather the changes in their transcriptional activity. In mammals, the joint action 

of chromatin remodelling complexes and epigenetic modifications at the level of 

DNA and histones sets the different cell- and development-specific transcriptional 

programs. Also the mammalian DNA is found to be covalently modified by the 

supplementation of a methyl group to cytosines that occur predominantly in CpG 

dinucleotides (Bird, 2002). Over the years lots of evidence has been gathered that 

DNA Methylation plays a very important role in normal mammalian development 

and also for the survival of differentiated cells (Jackson-Grusby et al., 2001; Goll 

and Bestor, 2005). The methyl mark is interpreted by the family of methyl-CpG 

binding proteins via a methyl-CpG-binding domain (MBD) (Hendrich and Bird, 

1998). MeCP2 which is the founding member of the MBD family (Nan et al., 

1998a) mediates its interaction with chromatin remodelling complexes including 

Swi-independent 3a (Sin3a) and Histone deacetylase inhibitor (HDAC1/2) ( (Jones 

et al., 1998; Nan et al., 1998a), the histones methyltransferase, Suv39H (Fuks et 

al., 2003), the DNA methyltransferase I (Kimura and Shiota, 2003) and the 

silencing mediator for retinoid and thyroid hormone receptors (SMRT) (Stancheva 

et al., 2003) through transcriptional repressor domain (TRD). 

Over twenty years ago MeCP2 was first identified as a transcriptional repressor 

that binds to methylated CpG dinucleotides (Lewis et al., 1992; Wakefield et al., 

1999). MeCP2 binds DNA directly through its N-terminal methyl-CpG binding 

domain (MBD), whereas its C-terminal transcriptional repression domain (TRD) 

allows it to interact with co repressors such as Sin3a, HDAC1, and HDAC2 (Nan et 

al., 1998b). Recent studies have shown that MeCP2 is expressed at higher levels 

than expected for classical site-specific transcriptional repressors. MeCP2 binds 

as abundantly and widely throughout the genome as histone H1, which suggest 

that the protein might have additional functions in chromatin biology (Skene et al., 

2010). Transcriptional studies in mouse brains as well as human embryonic stem 

cell-derived neurons, have shown that most genes are actually down regulated in 



32 
 

RTT models that lack MeCP2 (Ben-Shachar et al., 2009; Li et al., 2013b). One 

possible explanation to this is that MeCP2 acts as a “transcriptional noise 

dampener”, such that loss of MeCP2 function results in the diversion of basal 

transcriptional machinery to repetitive elements, indirectly leading to global 

transcriptional down regulation (Skene et al., 2010). 

Previous research has shown that membrane depolarization induces de novo 

phophorylation of MeCP2 at serine amino-acid residue 421 (S421) that may 

regulate Bdnf transcription (Chen et al., 2003; Zhou et al., 2006) although activity-

dependent DNA Methylation involving dissociation of the MeCP2 repression 

complex may also regulate Bdnf transcription (Martinowich et al., 2003).  Neuronal 

activity induces differing phosphorylation states of MeCP2 and may be an 

important mechanism through which MeCP2 regulates neuronal plasticity through 

activity-dependent gene transcription. Tao et al have suggested that MeCP2 

phosphorylation may provide a regulatory switch such that at rest S80 

phosphorylation binds MeCP2 to chromatin but during depolarization S421 

phosphorylation allows MeCP2 to dissociate from chromatin thereby providing a 

transcriptionally permissive state (Tao et al., 2009).  

MeCP2 is implicated as a key regulator of activity-dependent gene expression; 

there is still much work needed to do, to identify the target genes involved in these 

critical processes. Moreover there is a possibility of identification of other 

phosphorylation sites on MeCP2, impacting its activity and ultimately gene 

expression that mediates effects on short- and long term synaptic plasticity as well 

as behavioural processes (Tao et al., 2009). 

Significant insight into the functional consequences of MeCP2 in the brain has 

come from the study of transgenic mice. Studies of mice with various temporal and 

spatial deletions of Mecp2 have revealed numerous morphological changes and 

alterations in synaptic transmission and plasticity that likely underlie the observed 

cognitive and behavioural deficits reminiscent of human Rett syndrome (Moretti 

and Zoghbi, 2006; Calfa et al., 2011; Na and Monteggia, 2011).  

Various studies have identified and explored a role of MeCP2 in specific brain 

areas. The anxiety and impaired motor coordination phenotypes observed in 
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Mecp2 mutant mice point to the amygdale and cerebellum as particular regions of 

interest (Gemelli et al., 2006; Pelka et al., 2006). 

1.3.3.1 MeCP2 as a Transcriptional Regulator 

Although traditionally considered a global transcriptional repressor, the precise 

role of MeCP2 as a transcriptional repressor (Nan et al., 1998a) or transcriptional 

activator (Chahrour et al., 2008) is paradoxical. Therefore recent studies have 

categorized MeCP2 as a genome-wide epigenetic modulator rather than a 

transcriptional regulator (Della Ragione et al., 2012). As mentioned previously, 

MeCP2 is a methyl binding domain protein which binds to DNA following the 

addition of a methyl group to carbon-5 of the cytosine pryimidine ring (DNA 

Methylation); principally at CpG dinucleotides (cytosine and guanine separated by 

a phosphate). Once bound, the proteins are traditionally thought to involve a larger 

repressor complex and chromatin remodelling proteins such as HDAC proteins 

which suppresses gene transcription by chromatin compaction (Jones et al., 

1998). However, it is suggested the transcriptional repression of MeCP2 could be 

chromatin independent too by means of inhibiting the basal transcriptional 

machinery through interaction with general transcription factors IIB (Kaludov & 

Wolffe 2000). Furthermore, repression is also thought to occur by MeCP2 

mediated chromatin remodelling. This involves MeCP2 acting to form a loop of 

inactive, methylated chromatin which regulates gene expression by containing 

deacetylated histones which condense the DNA and restrict transcription (Horike 

et al. 2005). Either way, mutations in MECP2 could affect any area of this process 

resulting in a partially functioning protein or a complete breakdown of operation 

MeCP2 involvement in chromatin structure. 

In 2008 Chahrour et al decided to analyse the gene expression profiles in the 

hypothalami of mice that have no Mecp2 present (Mecp2 null) or those that over 

express MECP2 under the control of its endogenous promoter (MECP2-Tg) in the 

hope of deciphering more information into the molecular mechanism of MeCP2 

(Chahrour et al., 2008). Through the use of microarray analysis, a variety of genes 

expressions were found misregulated in both mouse models.  Surprisingly around 

eighty five percent of these genes expressions were found upregulated in 

transgenic hypothalami and dowregulated in Mecp2-null hypothalami suggesting 
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that many of these genes expression are likely activated by increased MeCP2 

activity. 

ChIP work with the antibody for Mecp2 confirmed that Mecp2 bound to the 

promoter region of six of the activated genes (Sst, Oprk1, Mef2c, Gamt, Grpin1 

and A2bp1). The same group also identified Mecp2 to bind to the promoter region 

of the transcriptional activator CREB1 and also associate with this protein at the 

promoters of activated target gene (Chahrour et al., 2008). This data collected 

suggested in favour of the idea that MeCP2 has a role in activating target genes 

and not just repressing them. One explanation for these results might be that 

MeCP2 is repressing a transcriptional repressor therefore activation of the target 

of this repressor would occur. However there is a possibility that changes 

observed might be secondary to the physiological properties of the hypothalamus. 

Overall these results propose a more complex mechanism of transcriptional 

regulation by MeCP2 with a variety of genes being either positively or negatively 

regulated. 

MeCP2 has also been found to be involved in controlling chromatin structure 

(Zlatanova, 2005; Chadwick and Wade, 2007). Significant differences have been 

found in the chromo centres in Mecp2 –deficient and Mecp2-WT neurons, further 

supporting role of MeCP2 in organisation of chromatin (Singleton et al., 2011). 

MECP2 mutation causing Rett syndrome have been found to disrupt the functions 

of higher order chromatin structure (Nikitina et al., 2007). 

Recent studies have demonstrated that the DNA Methylation-dependent binding of 

MeCP2 to the exons sequences modulates alternative splicing (Miyake et al., 

2013) . Altered RNA splicing of synaptic genes have been found in autism as well 

as Rett syndrome (Smith and Sadee, 2011). MeCP2 plays a role to regulate the 

alternative splicing of NMDA receptors subunit NR1 (Young et al., 2005). 

1.3.3.2 MeCP2 role in other biological functions 

Recent research has demonstrated now that the MeCP2 plays a role in regulating 

protein synthesis and it is postulated that the reduced protein synthesis in MeCP2-

deficient cells is contributing to the RTT phenotypes detected in these cells (Li et 

al., 2013b). This finding confirmed the involvement of MeCP2 in Rett syndrome 
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pathogenesis, the aforesaid functions are deteriorated in RTT patients (Kim et al., 

2011). 

Recent biophysical studies have probed the binding specificity of MeCP2 and have 

reported the interaction (via hydration within the major groove) with methylated 

DNA and also the interaction with nucleosomes (Ho et al., 2008). Despite this 

knowledge, the precise biological function of MeCP2 remains unclear. As 

described previously proposed additional or alternative functions include selective 

enhancement/activation of gene expression (Chahrour et al., 2008), chromatin 

regulation (Nikitina et al., 2007), and RNA processing (Young et al., 2005).  

In summary MeCP2 is distributed across the genome very much in parallel with 

Methylation density, and to the exclusion, in neurons, of histon H1 (Skene et al., 

2010). This conclusion suggest that MeCP2 play a major role in the suppression of 

transcription throughout very large scale genome-wide actions; in this way it may 

be best to ascribe MeCP2’s function in terms of global dampening of 

transcriptional noise. 

1.4 Bone phenotypes in Rett syndrome 

The frequent occurrence of bone anomalies like osteoporosis (Haas et al., 1997; 

Leonard et al., 1999c), scoliosis (Amir et al., 2000; Ager et al., 2006; Bebbington et 

al., 2012), increase risk of fracture (Downs et al., 2008a; Hofstaetter et al., 2010) 

and generalized growth failure (Schultz et al., 1993) has raised questions between 

the possible links of MECP2 gene mutations at chromosome Xq28 on bone growth 

and attainment of peak bone mass.   

1.4.1 MeCP2 expression and bone development` 

Alternation of the normal pattern of expression of MeCP2 in skeletal tissues can 

lead to detrimental effects on normal bone development and later on results into 

severe malformations (Alvarez-Saavedra et al., 2010). 

Although accumulating evidence suggests that the most of the RTT-like 

phenotypes are caused specifically by dysfunction of mature neurons (Matarazzo 

et al., 2004; Smrt et al., 2007) resulting from mis-expression of MeCP2 target 

genes in the brain, however a role for MeCP2 in peripheral cells has not been 
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ruled out. For example in case of bone tissue, their usually observed decreases in 

bone mineral density have been ascribed to abnormal activity of osteoblasts. The 

commonly observed dysmorphic features (scoliosis/kyphosis) of MeCP2 

duplication patients (Van Esch et al., 2005; Friez et al., 2006; Smyk et al., 2008) 

could stem from MeCP2 dysfunction in peripheral tissues. 

 The slow bone creation at a young age in Rett syndrome patients may eventually 

cause low bone density, showing that the influence of MECP2 is not restricted to 

damaging brain tissues, but has a direct effect on bone development (Budden and 

Gunness, 2001). 

1.4.2 Factors affecting bone remodelling and their relevance to 
Rett syndrome Patients 

Most of the females with RTT suffer from growth retardation (early deceleration of 

head growth, followed by weight and height deceleration) (Schultz et al., 1993; 

Reilly and Cass, 2001; Oddy et al., 2007; Jefferson et al., 2011). Inspite of this 

description, other bone related symptoms such as fractures and bone mass are 

not included in clinical scales evaluating severity scores in Rett syndrome 

(Bebbington et al., 2008) . 

In 1999, an Australian, population based study revealed that girls with Rett 

syndrome showed a 4 times higher rate (Downs et al., 2008a) of fracture as 

compare with a sample of control children (Leonard et al., 1999c). Moreover nearly 

one third had sustained a fracture by the age of 15 years as compared with only 

15% of girls and women in the general population of 20 years age (Cooley and 

Jones, 2002).    

Factors effecting the bone mineral density and increase fracture risk in the general 

population include genetic predisposition (subjects with p.R168 and p.R270 

mutations in MECP2 gene) (Downs et al., 2008a), hormonal factors (Huppke et al., 

2001), previous fractures, lack of soft tissue padding, lack of bone strength 

(Zysman et al., 2006), weight bearing exercise, vitamin D levels (Motil et al., 2011) 

and use of antiepileptic drugs (AECs) (Downs et al., 2008a; Leonard et al., 2010; 

Jefferson et al., 2011).  
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Greater frequency of fractures of lower limb fractures have been reported within 

RTT (Leonard et al., 1999c; Jones et al., 2002; Cooper et al., 2004; Downs et al., 

2008a; Roende et al., 2011b) and vertebral fractures were not found commonly 

(Roende et al., 2011b). 

 

 
Figure 1-4  Several different dysmorphic skeletal features of Rett 

syndrome: (A, B) Bruxism and pragmatism in an adult patient; (C) severe 

scoliosis in a 14-year-old patient; (D) segmental dystonia; (E, F) the same peculiar 

dystonic feet posture in two different patients aged 2 and 16 years, respectively; 

(G) dystonia of the left inferior limb that interferes with gait; (H, I) two different 

patients with feet dystonia; (J) severe fixed feet in an adult patient; (K) dystonia of 

the hands in a 12-year-old patient (L); hand athetosis in a 14-year-old patient. 

(Temudo et al., 2008). Figure included with permission. Copyright © 2008, 

Movement Disorder Society. License Number obtained after permission: 

3510771178758. Licensed publish content by John Wiley and Sons. 
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Individuals with RTT are at risk of developing osteoporosis (Haas et al., 1997; 

Leonard et al., 1999b; Motil et al., 2006) and mild hypercalciuria in Rett syndrome 

has been reported (Motil et al., 2006). This suggests that the RTT-pathogenesis 

might lie in bone resorption contributing to osteopenia. 

Radiological studies on RTT patients (Carter et al., 1992; Cepollaro et al., 2001; 

Gonnelli et al., 2008; Motil et al., 2008; Nazarian et al., 2008; Shapiro et al., 2010; 

Jefferson et al., 2011; Roende et al., 2011a) have shown low bone mass from an 

early age, with fewer studies showing similar findings in patients over 30 years of 

age (Zysman et al., 2006; Motil et al., 2008; Shapiro et al., 2010). 

Several different dysmorphic skeletal features have also been observed in 

individuals suffering from Rett syndrome including severe scoliosis (Percy et al., 

2010; Riise et al., 2011), bruxism and pragmatism in an adult patient,  (Temudo et 

al., 2007), facial features at infancy and childhood includes microcephaly, flat 

occiput/brachycephaly, broad face, hypertelorism, wide mouth and pointed chin 

(Allanson et al., 2011) (figure 1-4 A-L). 

Scoliosis is exceedingly common in Rett syndrome developing 50-90% of 

individuals with the condition (Keret et al., 1988; Bassett and Tolo, 1990; Harrison 

and Webb, 1990; Holm and King, 1990; Guidera et al., 1991b; Huang et al., 1994; 

Lidström et al., 1994; Brunner and Gebhard, 2002; Ager et al., 2006; Downs et al., 

2009; Koop, 2011; Gabos et al., 2012). Scoliosis becomes apparent at an early 

age and worsens rapidly during adolescence and continue to deteriorate further 

even after the skeletal maturation (figure 1-4C).  

Risk of Scoliosis is appeared to be link to specific chromosomal changes and 

among the numerous mutations of MECP2, only two mutations (R294X and 

R306C) are found to have reduced risk of developing scoliosis (Ager et al., 2006; 

Percy et al., 2010). Rett syndrome patients tend to have long single curves in 

which the pelvis might act as an end vertebra, resulting in pelvic obliquity (Riise et 

al., 2011). Cases of milder skeletal phenotype found associated with balancing 

double curves, usually of smaller magnitude (Riise et al., 2011). 

Skeletal deformities and increased likelihood of fractures may reflect abnormalities 

in adult bone structure or in the process of bone formation or in the cells and 
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mechanisms linked to bone turnover and remodelling. In next section I will briefly 

review the basic biology of bone and its formation. 

1.5 Bone Structure and Composition 

Bone is a highly specialized and dynamic connective tissue and its properties 

depend largely on the unique nature of its extracellular matrix. Throughout life, it is 

being continuously removed and replaced. 

1.5.1 Bone tissue  

Bone is composed of a hierarchical structure and can be divided as follow (Yuan 

et al., 2011): 

Table1-3   Bone hierarchical structure 

 
At the macroscopic level, bone is divided into cortical and cancellous bone 

Trabecular bone in comparison to cortical bone is more active metabolically, is 

remodelled more often than the cortical bone and on this basis considered 

younger on average than the cortical bone. Every year 25% of trabecular bone is 

replaced compared to only 2-3% of cortical bone (Swaminathan, 2001). 

At the microscopic level, bone can be either described as lamellar or non-lamellar. 

All the mature bone is mostly lamellar. Non lamellar bone is rarely present in the 

normal human skeleton after the age of 4 or 5 years old (Buckwalter, 1995). 
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1.5.1.1 Cortical bone 

The cortical bone forms the hard bone shell at the outer surface of each bone and 

composed of a thick and a dense layer of calcified tissue (compact bone tissue) 

(Fratzl, 2007). It is also known as compact bone tissue due to its minimal gaps and 

spaces. In humans and many other mammals, the porosity of normal cortical bone 

is below 3% at the optical microscopic level. Cortical bone is composed of 

haversian systems known as osteons. Osteons are circular or oval in cross section 

and contain central blood vessels in a cylindrical canal known as a Haversian 

canal. The blood vessels are surrounded by three to eight concentrically arranged 

lamellae. Osteons run parallel to the long axis of the bone (major loading 

direction). Along their way they give off branches, Volkmann canals, which join 

adjacent haversian canals. The most commonly suggested arrangement of 

collagen fibres in lamellae of an osteon is that they lie in parallel in each lamella to 

the next as a twisted helicoidally structure. Between the individual lamellae are 

small spaces called lacunae and each contains a cell called an osteocyte. Each 

central canal, with its surrounding lamellae, lacunae, osteocyte and a canaliculi, 

forms a Haversian system (Giraud-Guille, 1988) (figure 1-4). 

1.5.1.2 Trabecular bone 

In contrast to cortical bone, trabecular bone (also known as cancellous bone) does 

not contain osteons, although like cortical bone it is lamellar in structure. The 

microstructure of the trabecular bone is made of a series of interconnecting rods or 

occasionally plates of bone called trabeculae. As in cortical bone, the trabeculae 

contain osteocytes that lie in lacunae and again radiating from the lacunae are 

canaliculi containing osteocyte processes. Unlike osteocytes in the cortical bone, 

those in trabeculae normally receive their nourishment directly from the blood 

circulating through the marrow cavity. Haversian canals occur in very thick 

trabeculae (Fratzl, 2007).  

1.5.2 Bone Matrix 

Bone matrix is composed of organic (collagens and non-collagenous proteins) and 

inorganic (mineral crystals). The primary organic component of the bone matrix is 

type 1 collagen, although minor amounts of other collagen types such as types III 

and V have been reported as well (Niyibizi and Eyre, 1989, 1994). Type 1 collagen 
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comprises approximately 95% of the entire collagen content of bone and about 

80% of the total proteins present in bone (Niyibizi and Eyre, 1994). The inorganic 

component of bone matrix is known to consist largely of hydroxyapatite [Ca10 

(PO4)6 (OH)2] and small but significant amounts of substitution ions such as HPO2
-
, 

Na+, Mg2+, citrate, carbonate, K+ and others whose positions and configurations 

are not completely known yet (Ziv and Weiner, 1994). 

 

 

 

 
 

Figure1-5    Bone structure 
(A) Mouse tibia bone showing cortical shaft and trabecular part towards the 

periphery. (B) Trabecular part of the bone composed of rods and plates. (C) 

Transverse section of a typical long bone’s cortex. Modified and adopted Gray’s 

anatomy 20th Edition. 
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1.5.3 Bone Cells 

Bone cells are responsible for producing, modifying and maintaining a continuous 

cellular layer that covers all available extracellular matrix surfaces. The majority of 

these cells are in turn, connected in a network of cells which is dispersed thought 

out the matrix (figure1-5). Four types of cells are commonly recognised, three 

(osteoblast, osteoclast and bone lining cells) of which cover the surfaces of bone 

tissue while the fourth type of cells (osteocyte) are encased within the mineralised 

extracellular matrix (Miller and Jee, 1987; Burger and Klein-Nulend, 1999; 

Hadjidakis and Androulakis, 2006). 

The processes of cellular differentiation that gives rise to the skeleton are 

regulated by genes, which first establish the pattern of skeletal structure in the 

form of cartilage and mesochyme and then replace them with bone through the 

differentiation of osteoblasts (Wellik and Capecchi, 2003). 

1.5.4 Osteoblast and Osteocyte 

Osteoblasts are a cuboidal, polar, basophilic cells covering (Lian and Stein, 1995) 

the bone matrix at sites of active matrix formation. Undifferentiated mesenchymal 

stem cells that have the potential to become osteoblasts usually reside in bone 

canals, endosteurm, periosteum and marrow. Osteoblasts remain in their 

undifferentiated form until they are stimulated to proliferate and differentiate into 

mature osteoblasts. Osteoblasts produce extracellular matrix proteins and are 

regulators of matrix mineralization during initial phase of bone formation and later 

bone remodelling. In addition to bone formation, osteoblasts regulate osteoclast 

differentiation and resorption activity by the secretion of cytokines or by direct cell 

contact (Lian and Stein, 1995). 

Osteoblast derives from pluripotent mesenchymal stem cells (Caplan, 1991; 

Pittenger et al., 1999). Several specific transcription factors are responsible for the 

commitment of pluripotent mesenchymal cells into the osteoblast cell lineage. One 

of the most important of these is Cbfa1 (core-binding factor α1), a transcription 

factor belonging to the runt-domain gene family, which plays a critical role in 

osteoblast differentiation (Hoshi et al., 1999). Cbfa1-deficient mice are completely 

lacking in bone formation (Hoshi et al., 1999). Another runt-related gene that plays 

an important role in the commitment of multipotent mesenchymal cells to the 
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osteoblastic lineage and for osteoblast differentiation at an early stage is Runx-2. 

Runx-2 is involved in the production of bone matrix proteins (Otto et al., 1997), as 

it is able to up-regulate the expression of major bone matrix protein genes, such 

as type 1 collagen, osteopontin, bone sialoprotein and osteocalcin (Miyoshi et al., 

1991; Ogawa et al., 1993). Runx-2 deficient mice are completely lacking in bone 

formation, because of an absence of osteoblasts.  

The progressive development of the osteoblast phenotype from an immature cell 

to a mature osteoblastic cell synthesizing specific bone proteins is characterized 

by a definite sequential expression of tissue specific genes that identifies three 

periods of osteoblast development: proliferation, maturation and extra-cellular 

matrix synthesis, and matrix mineralization. 

During active proliferation phase, pre-osteoblasts express genes that support 

proliferation and several genes encoding for extracellular matrix proteins such as 

type 1 collagen and fibronectin. During this phase bone morphogenic proteins 

(BMP), BMP-2 and BMP-5 play a significant role in increasing alkaline phosphatise 

activity, osteocalcin synthesis (Takuwa et al., 1991; Yamaguchi et al., 2000) and 

parathyroid hormone (PTH) responsiveness (Kodama et al., 1982; Takuwa et al., 

1991). 

During the post proliferative phase, which is characterized by the high synthesis of 

alkaline phosphatise, the extracellular matrix progresses into the mineralization 

phase in which osteoblasts synthesize several proteins that are associated with 

the mineralized matrix in vivo (Hauschka et al., 1989), including sialoprotein, 

osteocalcin and osteopontin (Gerstenfeld et al., 1987; Owen et al., 1990). 

Osteopontin is expressed during the active proliferation phase (Lian and Stein, 

1995), and highest level of expression is achieved during mineralization. 

Osteopontin might be involved in the control of the relationship between the cells 

and extra-cellular matrix (Oldberg et al., 1986). Osteocalcin is maximally 

expressed during the phase of mineralization in (Hauschka et al., 1989) and it is 

involved in the regulation of mineral deposition and that it acts as a bone matrix 

signal that promotes osteoblast differentiation and activation (DeFranco et al., 

1991; Chenu et al., 1994). Osteocalcin synthesis is regulated by various 

hormones, 1, 25 OH Vitamin D, and growth factors e.g (Tissue growth factor -β.) 

TGF-β.  
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Figure1-6  Bone cells and contributing factors 
Representative diagram showing different factors affecting bone cell’s 

differentiation and regulation. Osteoblast derives from pluripotent mesenchymal 

stem cells. Osteoblasts express receptors for various hormones including PTH, 1, 

25(OH) 2D3, oestrogens, and glucocorticoids which are involved in the regulation 

of osteoblast differentiation and activity. Vitamin D affects the metabolic activity of 

osteoblasts through a series of Vitamin-D-responsive genes that reflect a more 

mature osteoblast phenotype. Osteocytes are metabolically quiescent osteoblasts 

embedded in bone matrix; they communicate with other bone cells through cell 

processes and function as strain and stress sensors. Osteoclasts cells are 

terminally differentiated multinucleated cells that are the principal, resorptive cells. 

These multinucleated cells derived from hematopoietic stem cells. Factors 

including vitamin D, PTH, oestrogen, calcitonin, thyroxin, and vitamin A are 

involved in the regulation of Osteoclast differentiation and activity. 
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At the end of the synthesis and mineralization of the extracellular matrix, 50%-70% 

of mature osteoblasts undergo apoptosis, whereas the remainder can differentiate 

into lining cells or osteocytes or into the cells that deposit chondroid bone (Franz-

Odendaal et al., 2006). Osteocytes are metabolically quiescent osteoblasts 

embedded in bone matrix; they communicate with other bone cells through cell 

processes and function as strain and stress sensors (Lozupone et al., 1996) 

(figure 1-6). 

Osteoblast also synthesizes IGF-1, interleukin-1 (IL-1) and IL-6. IL-1 can affect 

proliferation, collagen and osteocalcin synthesis and alkaline phosphatise 

production (Kim et al., 2002). 

Osteoblasts express receptors for various hormones including PTH (Demiralp et 

al., 2002), 1,25(OH)2D3 (Lian et al., 1999), oestrogens (Boyce et al., 1999) and 

glucocorticoids (Ishida and Heersche, 1998) which are involved in the regulation of 

osteoblast differentiation and activity. Vitamin D affects the metabolic activity of 

osteoblasts through a series of Vitamin-D-responsive genes that reflect a more 

mature osteoblast phenotype (figure 1-6). 

Activation and regulation of bone resorption requires an interaction between 

osteoblasts and osteoclasts (Grano et al., 1990). In order to obtain mature 

osteoclasts, the presence of osteoblasts was necessary and this phenomenon 

was explained with the identification of RANK (receptor activator of nuclear factor 

κB)/RANKL (RANK ligand)/OPG (osteoprotegerin) system (Yasuda et al., 1998). 

RANKL is an essential factor for the recruitment, differentiation, activation and 

survival of osteoclastic cells through binding to its specific receptor RANK, on the 

surface of osteoclast. OPG is a soluble receptor of RANK and is synthesized by 

osteoblasts. OPG inhibit osteoclast differentiation and activity (Lacey et al., 1998). 

OPG-deficient mice exhibit an osteoporotic phenotype and presents an increased 

number of osteoclasts (Bucay et al., 1998). Through the modulation of RANKL and 

OPG, osteoblasts can control osteoclast differentiation and activity and 

consequently bone remodelling. 

Osteocytes are terminally differentiated cells of the osteogenic lineage that are 

derived from mesenchymal precursor cells. Important markers of osteocytes 

includes matrix extracellular phophoglycoprotein (Gowen et al., 2003), sclerostin 
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(Balemans et al., 2001), dentin matrix protein and phex protein (Feng et al., 2006). 

The osteocytes are the most abundant cells in adult bone and are constantly 

spaced throughout the mineralized matrix. 

Mature osteocytes have a characteristic dendritic cell shape with processes 

radiating from the cell body through the canaliculi in different directions. These 

processes of osteocytes form an intercellular network through gap and adherent 

junctions with surrounding osteocytes, the cells lining the bone surface and bone 

marrow (figure 1-6). Osteocytes through this unique 3D network, are anatomically 

placed in a prime position not only to sense deformations driven by stresses place 

upon bone, but also to respond with passage of signal to the neighbouring 

osteocytes (Vatsa et al., 2007). 

Although it has not been determined which of the osteocyte cell parts are most 

important for the function of the osteocyte as mechanosenor, it has been 

suggested that fluid flow over dendritic processes in the lacunar canalicular 

porosity can induce strains in the actin filament bundles of the cytoskeleton that 

are more than an order of magnitude larger than tissue level strains (Han et al., 

2004). In single osteocytes mechanical stimulation of both cell body and cell 

process resulted in up-regulation of intracellular NO production (Vatsa et al., 

2006). These results indicate that both cell body and cell process might play a role 

in mechanosensing and Mechanotransduction in bone (Vatsa et al., 2006). 

Furthermore it was shown that a mechanically stimulated single osteocyte can 

pass on the information of local mechanical stimulus to the neighbouring cells in 

the vicinity independent of intercellular connections, suggesting that this 

communication happens through extracellular soluble factors (Vatsa et al., 2007). 

Other studies have suggested an alternative mechanosensing structure i.e., 

osteocytes project a single cilia from their cell surface (Xiao et al., 2006). 

Osteocyte cilia can translate fluid flow stimuli into a cellular response, indicating 

that primary cilia might act as a mechanosensitive structure within the osteocytes 

(Malone et al., 2007). 

Osteocytes also play a pivotal role in bone remodeling. The final step of the 

mechanical signal transduction pathway towards bone remodeling is the 

transmission of molecules produced by osteocytes to the effector cells i.e., 
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osteoblasts and osteoclasts. Due to the close physical proximity of osteocytes to 

local osteoblasts and periosteal fibroblasts, it is highly plausible that soluble 

factors produced by osteocytes act in a paracrine manner to affect these cells. 

Soluble mediators released by osteocytes may regulate the properties of 

neighbouring bone cell populations including their proliferation and differentiation. 

Studies have supported the hypothesis that the osteocyte is an orchestrator of 

different cell populations in bone in response to mechanical loading (Vezeridis et 

al., 2006). 

1.5.5 Osteoclast 

Osteoclasts are terminally differentiated multinucleated cells that are the principal, 

resorptive cells of bone, and play a critical role in the development of the skeleton 

and regulation of its mass. These multinucleated cells derived from hematopoietic 

stem cells (Suda et al., 1999; Teitelbaum, 2000; Nakamura et al., 2003) (figure 1-

6). Thus a premyeloid precursor can differentiate into either an osteoclast a 

macrophage or a dendritic cell, depending on whether it is exposed to receptor 

activator of NF-kBB ligand (RANKL; also called tumor necorsis factor-related 

activation-induced cytokine (TRANCE), osteoprotegerin ligand (OPGL) or 

osteoclast differentiation factor (ODF) macrophage colony-stimulating factor (M-

CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), 

respectively (Kong et al., 1999; Nutt et al., 1999; Suda et al., 1999). Osteoclast 

lack many of the antigens that are characteristic of macrophages and inflammatory 

polykaryons, in particular Fc and C3 receptors and express very high levels of 

Tartrate-resistant acid phosphatase (TRAP) and vitronectin receptor (VNR). They 

also express calcitonin receptors (CTRs) that are absent from macrophages. Most 

uniquely osteoclasts ex vivo excavate bone within hours, but macrophages show 

no excavation whatsoever, even on extended incubation on bone surfaces. 

Many of Osteoclast responses are dependent on cells of the osteoblastic lineage; 

osteoblastic cells, after diverse stimuli express osteoclast-resorption-stimulating 

activity (ORSA) as the common pathway for osteoclast stimulation. Although 

ORSA has been detected in culture supernatants from hormone stimulated 

osteoblastic cells it has also frequently been detectable only when osteoblasts are 

in contact with osteoclasts (Chambers, 1982; Chambers et al., 1984; Thomson et 

al., 1986; Wesolowski et al., 1995). Studies have shown that osteoclasts formed in 
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vitro similarly depend on osteoblastic cells for activation of bone resorption 

(Wesolowski et al., 1995; Jimi et al., 1996) 

Several cytokines and hormones, including macrophage colony-stimulating factor 

(M-CSF)(Yoshida et al., 1990; Fuller et al., 1993), interleukin 1 (IL-1)(Jimi et al., 

1995), RANKL (Lacey et al., 1998; Yasuda et al., 1998) and tumour necrosis factor 

(TNF-a)(Kobayashi et al., 2000), regulate the differentiation, activation and survival 

of osteoclast. They are essentially responsible for the mineralized matrix 

degradation during physiological and pathological bone turnover. 

Osteoclast resorption consists of several complicated processes: (1) the 

proliferation of osteoclast progenitors; (2) differentiation of the progenitors into 

mononuclear perfusion osteoclast (pOCs); (3) fusion of pOCs into multinucleated 

osteoclasts; (4) adherement of osteoclasts to calcified tissue; (5) polarization; that 

is, the development of a ruffled border and clear zone (actin ring), followed by the 

secretion of acids and lysosomal enzymes into the space beneath the ruffled 

border ; (6) finally apoptosis (Grano et al., 1990). 

Presence or absence of mechanical stimulation is known to affect formation, 

absorption, and maintenance of the bone, especially in association with multiplier 

effects such as the systemic or hormonal disorders (Bourrin et al., 1995; Xie et al., 

1997). Animal studies have shown that the bone resorption is observed in the 

palate of rats after experimental loading device and that the osteoclast resorption 

is potentially a pressure threshold-regulated phenomenon (Mori et al., 1997; Sato 

et al., 1998).  

Bone resorption under compressive strain is attributed to the accumulation of 

micro-damage that exceeds the bone’s capacity for repair and certain thresholds 

of strains induced in bone govern its response (Nicolella et al., 2005). Interestingly 

one of the recent studies has suggested that the osteoclastic resorption is 

location-dependent and is sensitive to the local strain intensity (Fujiki et al., 2013). 

Bone histomorphometric analysis from this study showed that osteoclasts were 

localized in the bone subsurface adjacent to the loading site and the in the 

periphery of the bone marrow space of the intracortical region. More than 90% of 

the osteoclasts were observed in the areas with strain intensity higher than 85.0 μ 

strain for the high stimulation group. 
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1.6 Bone homeostasis, remodelling and mechanobiology 

Bone accumulates damage throughout life and is continuously removed and 

replaced. The ongoing replacement of old bone tissue by new bone tissue is called 

remodelling. The regulation of bone resorption serves two important functions 

firstly the maintenance of the skeleton as a structural support system which is 

constantly being remodelled and secondly a metabolic role in mineral homeostasis 

as bone provides a reservoir of calcium and phosphate for the body. Remodelling 

helps in removal of damaged and injured bone, replacing it with new tissue and 

freeing up reservoirs of calcium required by other tissues. The premise of 

mechanobiology, which includes the interaction of mechanical stimuli and 

biological responses, is that biological processes, including bone remodelling, are 

regulated by signals to cells generated by mechanical loading. Exactly how 

external and muscle loads are transferred to the tissue, how the cells sense these 

loads, via either through stress or strain levels, and how the signals are translated 

into the cascade of biochemical reactions to produce cell expression are still 

unknown. 

Bone replacement is started with orthoclastic bone resorption followed soon after 

by osteoblastic bone formation. These are usually regarded as independent 

processes, but, in reality, resorption and formation are closely linked within 

discrete temporary anatomic structures (Rho et al., 1998). These structures were 

first named by Frost (Frost, 1969), who gave them the term ‘basic muticellular 

units’ usually abbreviated to BMU. A fully developed BMU consists of a team of 

osteoclasts in front forming the cutting cone, a team of osteoblasts behind forming 

the close cone, some form of blood supply and associated connective tissue 

(Parfitt, 1994). The lifespan of a single BMU is about 6-9 months during which 

several generations of osteoclasts (average life of about 2 weeks) and osteoblasts 

(average life of about 3 months) are formed. 

The BMU basically moves in three directions, excavating and refilling a tunnel 

through cortical bone or trench across the surface of trabecular bone. A cortical 

bone BMU travels at about 20μm per day (Parfitt, 1994) while the cancellous BMU 

travels about half this distance at about half the speed, thus functioning similar 

timings as compact bone (Parfitt et al., 1996). 
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Two types of bone remodelling have been suggested: One that is not site 

dependent and second that is targeted towards the specific sites (Parfitt et al., 

1996). The re-establishment of mineral content does not require that bone is 

removed or replaced in a specific area. However, the repair of both fractures and 

microfractures or any damage in bone by fatigue loading requires site dependent 

remodelling. Whether this remodelling occurs, and if indeed it does how much of 

bone turnover is targeted and how much is non-targeted is still unknown (Burr, 

2002). 

In adulthood the activities of osteoblasts and osteoclasts are balanced in adults 

and remodelling has no overall effect on the amount of bone. However during 

childhood there is more modelling than remodelling. Modelling helps in the 

maintenance of the normal shape of bones during growth and is responsible for 

the increase in bone circumference during growth. In late adulthood, bone loss 

occurs as in menopausal osteoporosis, when the amount of bone resorption is 

higher than the amount of bone formation. Trabecular bone is more active in 

remodelling than the cortical bone. Bone modelling and remodelling are influenced 

by parathyroid hormone (PTH), oestrogen, calcitonin, serotonin and leptin growth 

factors which primarily act on osteoblasts modifying RANKL and OPG expression 

but minimally affecting RANK expression. Other factors like cytokines, and 

prostaglandins, hereditary and nutritional factors and physical activity also affects 

bone remodelling (Seeman and Delmas, 2006; Shapiro, 2008). 

Both PTH and 1,25 (OH)2D3 increase RANKL mRNA expression and decrease 

OPG mRNA expression but these changes vary with maturation of osteoblast cells 

(Thomas et al., 2001). Oestrogen acting directly on osteoblasts, has a dual effect; 

it increase bone formation and reduce bone resorption by enhancing osteoblast 

proliferation (Majeska et al., 1994), and further reduce osteoclast activity by 

increasing OPG production in osteoblasts (Hofbauer et al., 1999). Calcitonin, a 

known inhibitor of bone resorption, can act directly on osteoblasts by enhancing 

proliferation, increasing OPG mRNA expression and inhibiting RANKL mRNA 

(Tian et al., 2007). Leptin has also been reported to be expressed by osteoblasts 

(Reseland et al., 2001). Leptin is a cytokine like hormone also secreted by 

adiposities and controls food and energy expenditure. Leptin is a potent inhibitor of 

bone formation and possibly act through a central relay (Elefteriou, 2008). 

Destruction of Leptin receptors leads to an increased cancellous bone mass. This 
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finding confirms that leptin can control bone formation through the central nervous 

system (Takeda et al., 2002). Following these observations, a number of central 

nervous mediators which are able to modulate bone remodelling have been 

identified in animal studies. Among these researches, the Neuropeptide Y system 

(Baldock et al., 2002) supports the idea that the central nervous system is involved 

in the control of bone remodelling. 

1.6.1 Mechanotransduction in bone tissue 

Several researches with different loading mechanisms showed that mechanical 

stimuli have an influence at the cellular level of bone tissue. Prerequisite for this 

influence is the transduction of mechanical signals into the cell; this phenomenon 

is termed as Mechanotransduction. The mechanotransduction process is essential 

for the maintenance of skeletal homeostasis in adults. This phenomenon is 

considered to be regulated by hormones, osteoblastic cells and mechanical 

stimuli. Mechanotransduction involves mechanoreceptors, such as integrins, 

cadherins and stretch-activated Ca2+ channels, together with various signal 

transduction pathways and ultimately regulates gene expression in the nucleus.  

1.6.1.1  Cellular mechanism of Mechanotransduction 

Initially transfer mechanism of the mechanical signal, deformation of the cell 

membrane by stretch as well as shear stress mediated by the fluid flow in the 

canaliculi is detected by the osteoblasts and osteocytes respectively (Duncan and 

Turner, 1995; Pavalko et al., 2003). Osteoblasts are directly activated by loading, 

which leads to matrix synthesis and proliferation, as well as being indirectly 

activated by growth factors, and by the release of prostaglandins and NO by the 

osteocytes (Mikuni-Takagaki, 1999). 

Glycocalix is a primary sensor of mechanical loading signals that can transmit 

force to plasma membrane or the submembrane cortex (actin cortical skeleton) 

(Tarbell et al., 2005). Mechanotransduction sites within the plasma membrane 

include lipid rafts, calveolae or at more remote regions of the membrane including 

intercellular junctions (adherens junctions) and cell matrix contacts (Pavalko et al., 

2003).  Mechanical strain also enhanced expression of cadherins, proteins of the 

adherens junctions which interlink the cytoskeleton between neighbouring cells 

(Rezzonico et al., 2003). Adhesion kinase interacts with the large conductance 
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calcium-activated hSlo K+ channel in the focal adhesion complexes of human 

osteoblasts (Rezzonico et al., 2003). Previous research has shown GTPases, 

such as RAS are activated by mechanical strain in osteoblast-like cells. Stretch-

activated Cation channels (SA-CAT) are also thought to be responsible for 

Mechanotransduction in osteoblasts. It has also been studied that expression of 

connexion (Cx) 43, a major component of gap junctions, is increased by 

mechanical strain and regulated by prostaglandin E2 (PGE2) in an autocrine 

manner (Cherian et al., 2005). 

Signal transduction of mechanical stimuli is dependent on the structural integrity of 

the microfilament component of the cytoskeleton. Research has shown that cyclic 

forces induce an enhanced cytoskeleton anchorage of tyrosine-phosphorylated 

proteins and an increased activation of FAK and mitogen-activated protein (MAP) 

kinase. Attractive candidates for integrating mechanical signals includes, nuclear 

matrix proteins including nuclear matrix protein (NMP) 4/cas interacting zinc finger 

protein (CIZ). These transcription factors localize at adhesion plaques, transfer 

into the nucleus, bind to consensus DNA sequences, and can activate promoters 

of mechanosensitive genes. Mechanical stimulation leads to upregulation of 

growth factors, such as insulin-like growth factor (IGF) I and II, vascular 

endothelial growth factor (VEGF), transforming growth factor (TGF) β1 and bone 

morphogenetic protein (BMP) 2 and 4, which act via autocrine and paracrine 

mechanisms, through their tyrosine and serine/threonin receptors (Mikuni-

Takagaki, 1999; Hughes-Fulford, 2004). Furthermore BMP-2 induced signalling 

pathway, leads to the expression of the three osteogenic master transcription 

factors including Osterix, Runx2, and Dlx5 (Lee et al., 2003). Previous studies 

have provided evidence of signal pathways interacting, such as for IGF-I with the 

estrogen receptor (ER) signaling pathway in the proliferative response to 

mechanical strain (Lau et al., 2006). A crosstalk among anabolic, intercellular 

pathways may enhance the upregulation of these pathways, eventually leading to 

the cellular response on mechanical loading. 

Osteoblast differentiation is triggered by mechanical stimulation, which induces the 

secretion of hormones and growth factors, thus affecting the differentiation and 

proliferation potential of osteoblasts. Osteocytes are the mechanotransducer cells 

of bone. It is osteocytes that combine actions of hormones and growth factors and 

promote osteoblastogenic events in response to a range of mechanical stimuli, 
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including (oscillating) fluid flow, substrate strain membrane deformation, vibration, 

altered gravity and compressive loading. 

Nitric oxide (NO) secretion is another key load-sensing event. Research has 

demonstrated secretion of NO by cyclically stretched primary osteoblasts. NO 

binds to a regulatory site on Ras and potentially stimulates proliferation and ECM 

production through the Ras-Raf-mitogen-activated protein kinase (MEK)-

extracellular signal-regulated kinase (ERK) cascade. Cyclo-oxygenase (Cox) 1,2 

activation downstream of NO and ERK1,2 activation is also necessary for 

induction of anabolic functional changes in osteoblast (Kapur et al., 2003). 

Studies have shown that osteocytes are very sensitive to stress applied to intact 

bone tissue. Imaging research involving computer simulation models have shown 

that mechanosensors lying at the surface of bone, as osteoblasts and bone lining 

cells do, would be less sensitive to changes in the loading pattern than the 

osteocytes, lying within the calcified matrix (Skerry et al., 1989; el Haj et al., 1990; 

Dallas et al., 1993; Lean et al., 1995; Terai et al., 1999; Tatsumi et al., 2007). 

Furthermore targeted ablation of osteocytes in mice disturbs the adaptation of 

bone to mechanical loading (Tatsumi et al., 2007).  

When bones are loaded, the resulting deformation will cause a thin layer of 

interstitial fluid surrounding the network of osteocytes to flow from regions under 

high pressure to regions under low pressure (fluid flow hypothesis). This flow of 

fluid is sensed by the osteocytes which in turn produce signalling molecules that 

can regulate bone resorption through the osteoclasts, and bone formation through 

osteoblasts leading to adequate bone remodeling (Cowin et al., 1995; You et al., 

2000). Previous study has shown that the cell shape and distribution of actin and 

paxillin staining in osteocytes of mouse tibiae and calvariae were orientated 

accordingly to the respective mechanical loading patterns applied in these bones, 

suggesting that osteocytes might be able to directly sense matrix strains in bone 

(Vatsa et al., 2008).  

The conversion of physical force into biochemical information is essential to overall 

development and physiology and goes beyond the skeletal system. Bone is 

naturally designed to respond to and adapt to changes in mechanical loads. The 

mechanisms by which overloading or underuse in mechanical stimuli cause bone 
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formation or resorption are the same, although the direction of changes is 

different. There are no absolute levels of activity that constitute overuse or 

underuse for example it is worth noting that overloading and underuse should be 

defined as the increase and decrease respectively, in activity relative to that in 

which skeleton is currently habituated (Skerry, 2008). One of important 

manifestations of aberrant mecahncotransduction “cross talk” between osteoblasts 

and osteoclasts is osteoporosis, in which an increased rate of bone resorption and 

reduced bone formation per se is observed. RTT bone phenotype has been 

frequently linked with osteoporosis. Osteoporosis can originate from disease, 

hormonal or dietary deficiency and show a clinical spectrum of loss of bone 

density, thinning of bone tissue and increased vulnerability to fractures. Similar 

bone loss can also result from decreases in mechanical loading owing to inactivity/ 

extended bed rest or exposure to microgravity (Bucaro et al., 2004). 

1.7 Bone development and growth 

Bone development (ossification) involves two types of processes; 

intramembranous ossification (flat bones) and endochondral ossification (long 

bones). The main difference between the two types of development is the 

presence of the cartilaginous phase in endochondral ossification (figue 1-7). 

 

 

 

Figure1-7  The ossification process in long bone 
Progression of ossification from the cartilage model of the embryo to young adult. 
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Figure 1-8   Microscopic view of an epiphyseal disc showing 
cartilage production and bone replacement 
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1.7.1 Intramembranous ossification 

A group of mesenchymal cells, under the influence of the local growth factors, 

forms a condensation within the highly vascularised area of the embryonic 

connective tissue by proliferating and differentiating directly into pre-osteoblasts 

and then on osteoblasts(Shapiro, 2008). The osteoblasts then join together to form 

an ossification centre. Subsequent mineralisation of the osteoid matrix begins 

working outward from the ossification centre (figure 1-7). This leads to the early 

trabeculae formation and the periosteum develop resulting in the formation of 

woven bone. 

1.7.2 Endochondral ossification 

Most bones of the skeleton, including those of the limbs, vertebral column, pelvis 

and base of skull, develop by endochondral ossification. In this process of 

ossification the primitive mesenchymal cells differentiate into chondrocytes and 

produce crude cartilage models of the adult bone destined to form at that site. An 

avascular fibrous layer, the perichondrium, surrounds each cartilage model. 

Chondrocytes near the centre becomes hypertrophic and matrix undergoes 

mineralization (Boyce et al., 1999). Perichondrium then converts into periosteum 

by invasion of capillaries and osteoclast, which later on establish a vascular 

network. Pro osteoblasts also enter with the invading capillaries and differentiate 

into osteoblasts, which deposit osteoid on remnants of the mineralized cartilage, 

creating a primary ossification centre. Secondary ossification centres appear at 

one or both ends and expand by endochondral ossification to form the epiphyses 

of long bones (figure 1-7). As the epiphyses expand, they remain separated from 

the primary ossification centre, now occupying the diaphysis and metaphysic of 

the developing bone, by the physis or growth plate. Very limited growth in size of 

epiphysis continues by endochondral ossification beneath the articular cartilage at 

the articular-epiphyseal cartilage complex (Boyce et al., 1999). The epiphyseal 

side ofthe growth plate soon becomes capped by a layer of trabecular bone, which 

prevents further growth from that side but proliferation of chondrocytes in the 

growth plate and endochondral ossification on the metaphyseal side continues till 

maturity (Jubb, 1993) (figure 1-8). 
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1.8 Animal models of Rett Syndrome 

Rett syndrome being a monogenic disorder has raised an interest in the scientific 

community to investigate further the pathogenesis, causative factors and 

therapeutic interventions (Neul and Zoghbi, 2004). Since Rett syndrome is caused 

by MECP2 mutations, RTT can be modelled using Mecp2 knockout mice. Several 

models of RTT have been created and many of them have shown RTT phenotype 

similar to the one found in Rett syndrome patients. Summary of animal models 

that have been used is as below: 

1. One of the early mouse models was created by Chen et al by the deletion 

of exon 3. In this Mecp2-/y (null) male mice model Mecp2 was knocked out 

either globally or specifically in central nervous system (CNS)(Chen et al., 

2001). The mouse model showed nervousness, pila erection, body 

trembling, and occasional hard respiration around age of 5 weeks but 

showed a normal growth before that period. The heterozygous females, 

Mecp2-/+ with mosaic network of cells expressing WT Mecp2 allele and cells 

expressing mutant Mecp2 allele (absent Mecp2) displayed many of the 

cardinal features that characterise RTT in humans, with initial period of 

approximately 4 months of normal growth followed by weight gain, reduced 

activity, ataxia and gait abnormalities during the later stage (Chen et al., 

2001). The same group of researchers created another mouse model by 

knocking out Mecp2 specifically in postnatal neurons and the mouse model 

displayed the similar milder phenotype as compared to the germ line Mecp2 

deletion. Both of these models showed that RTT phenotype is caused 

primarily by lack of functional copy of Mecp2. 

2. Guy and colleagues (Guy et al., 2001) also have developed mouse models 

mimicking the human RTT phenotype. In 2001 they created a Mecp2-/y 

(null) mouse model in which Mecp2-exon3 and exon4 were deleted. This 

mouse, unlike the mice created by Chen et al (Chen et al., 2001), did 

display an apparent normal development in first 3-4 weeks after birth 

corresponding to the characteristic normal growth in first 6-18 months in 

RTT patients. After 4 weeks, the henizygous KO male mice developed gait 
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abnormalities, hypoactivity, and respiratory problems followed by premature 

death around 12-14 weeks. Heterozygous female mice, Mecp2-/+ show 

normal developmental period of 3 months followed by inertia development 

and hind limb clasping. Some of the females remain symptomless as long 

as one year while majority developed RTT like phenotype between 6-9 

months which grew more severe but then stabilised.  

3. More mouse models have been developed as well  including Mecp2308 

mouse model (Shahbazian et al., 2002a). This mouse model was created 

with a truncated version of Mecp2 and recapitulated many features of RTT 

phenotype but display an extended survival of up to one year as compared 

to early morbidity and mortality shown in Stop mouse model.  

4. In 2006, another group of researchers have generated a mouse line by 

insertion of missense mutation in Mecp2 to replace amino-acid threonin 

T158 with methionine to mimic one of the most common missense mutation 

in human (Bienvenu and Chelly, 2006). This mouse model displayed a 

milder RTT phenotype in comparison to Null mouse models and a slightly 

extended survival (Goffin et al., 2012). The analysis of this mouse model 

suggested that a single MECP2 mutation could be almost as lethal as the 

absolute absence of the protein. 

5. Guy et al in 2007 created a functional knockout mouse model through 

silencing the endogenous Mecp2 gene by the insertion of a lox-stop 

cassette (Dragatsis and Zeitlin, 2001) into intron 2 of Mecp2 gene (Guy et 

al., 2007). Mecp2Stop/y male mice displayed tremor, hypoactivity, breathing 

problems, gait problems, and general deterioration with death around 11 

weeks of age. The same group of researchers used a modified approach of 

this model to create a mouse model in which Cre recombinase and 

modified oestrogen receptor (Cre-ER) were combined with the Mecp2lox/stop 

allele. This combination allowed conditional activation (un-silencing) of 

endogenous Mecp2 under its own promoter and regulator elements (Guy et 

al., 2007). This Stop mouse model (Guy et al., 2007) mirrors the human 

disease in that the inactivation is lethal in males and leads to delayed but 

enduring phenotypes in females, making them a good model to test efficacy 
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of new therapeutic interventions. I have used this mouse model in my 

current project and will be described in more detail in next chapter. 

6. Another mouse model was created by Samaco et al (Samaco et al., 

2008)by silencing Mecp2 in tyrosine hydroxylase containing neurons. These 

mice displayed motor abnormalities and respiratory problems with an 

increased rate of apnoea. The observations obtained from this mouse 

model points towards the possible link between dysfunction in aminergic 

systems may be responsible for the breathing problems of RTT. 

7. More recently a subtle RTT phenotype including autistic like repetitive 

behaviours was observed in a mouse model created by Chao et al. In this 

mouse model a Mecp2 was silenced specifically in inhibitory GABAergic 

cells (Chao et al., 2010). 

1.9 Reversibility of RTT-like phenotype 

It is generally accepted that the abnormalities in brain development lead to 

permanent neurological and psychiatric features due to the limited ability of brain 

to generate new neurons or radically repair itself. However during the past decade 

a number of animal models of such diseases including  Down syndrome, fragile X 

syndrome and Angelman syndrome (Dolen et al., 2007; Fernandez et al., 2007) 

have started showing that some disease phenotypes can be rescued even in adult 

mice (Ehninger D, 2008). The similar trend has been reported in RTT (Guy et al., 

2007; Derecki, 2012; Derecki NC, 2012). 

Rett syndrome has been found to result from failure of neurons to mature or failure 

to maintain a mature phenotype (Kishi and Macklis, 2004; Palmer et al., 2008). 

Although MeCP2 is also present in astrocytes (Schmid et al., 2008) a deletion and 

neuron specific expression of Mecp2 studies in mice showed a dominant mutant 

phenotype is principally due to absence of MeCP2 in neurons (Chen et al., 2001; 

Guy et al., 2001; Luikenhuis et al., 2004). 

Whether RTT phenotype is reversible or even preventable needs much 

consideration. Since neurons seems to require MeCP2 throughout their lives, 

there is possibility that the introduction of normal MeCP2 or treatment strategies 
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targeting MeCP2-related signalling might restore function and thereby reverse 

RTT phenotype. Another possibility is based on the assumption that may be 

MeCP2 is essential for neuronal development during a specific time frame and 

after which damage caused by its absence is permanent and are thus insensitive 

to simple restoration of MeCP2 or other intervention beyond a critical period. 

1.9.1 Rescue of RTT like phenotype in Mecp2 knockout animal 
models 

Several mouse model studies have been conducted in order to test the reversibility 

of RTT-like phenotype.  

1.9.1.1 Global reintroduction of Mecp2 in mouse model studies 

In one study it was shown that modest over expression of Mecp2 transgene under 

a generic neuron-specific (tau) promoter in the Mecp2-null mice could prevent RTT 

like phenotype on the other hand the severe overexpression of Mecp2 transgene 

(2-4 fold of the WT level) in the same mouse model showed a profound motor 

dysfunction (Luikenhuis et al., 2004). This study highlighted the importance of 

maintain MeCP2 protein expression at an appropriate level. This is especially 

important when considering potential gene therapies. 

Similarly another study using an early brain-specific activation of Mecp2 under 

either nestin (drive Mecp2 expression on pre-mitotic cells) or tau (drive Mecp2 

expression on post mitotic neurons) promoter, suggested that the introduction of 

Mecp2 to the nervous system under artificial promoter is sufficient to enable a 

modest amelioration of RTT- like phenotype (Giacometti et al., 2007). 

Guy and colleagues (Guy et al., 2007) have created a mouse model in which 

endogenous Mecp2 gene is silenced by insertion of a lox-stop cassette but can be 

conditionally activated. These mouse models showed robust symptom reversal 

and dramatically enhanced survival if treated once symptoms had developed. 

Another study by the same authors has shown an improvement in wide range of 

respiratory and locomotors phenotypes along with the structural remodelling in the 

brain following Mecp2 activation (Robinson et al., 2012a). 
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Another interesting study (McGraw et al., 2011) in which an adult mouse model of 

RTT was created (tamoxifen-induced excision of a floxed Mecp2) suggested that 

MeCP2 is critical for maintenance of neurological function in the adult nervous 

system. Studies conducted by Robinson & colleagues and McGraw & colleagues 

suggested, that potential therapies for RTT are likely to be required throughout life. 

1.9.1.2 Restricted re expression of Mecp2 in mouse model studies 

Studies, on more restricted expression of Mecp2, in which promoters other than 

the endogenous Mecp2 promoter have been used, have shown a more modest 

effect. Study conducted by Alvarez Saavedra et al in which they have used 

Ca2/calmodulin dependent protein kinases II (CamKII) or enolase promoter in the 

forebrain and cerebellum/striatum respectively, didn’t rescue the RTT like 

phenotype in Mecp2-/y  male mice (Alvarez-Saavedra et al., 2007). However 

Mecp2-/+ female mice shown improvement in mobility and locomotors activity to 

WT levels (Jugloff et al., 2008). The sustained deficits found in these mouse 

models could be due to dysfunction of region or cell types in the brain still devoid 

of Mecp2 or enhanced expression of exogenous promoters or other unknown 

mechanism. 

1.10 Therapeutic interventions for RTT 

Currently several treatment strategies are employed in order to combat the 

underlying pathology of Rett syndrome. MECP2 target approaches broadly 

includes, activating a silent copy of MECP2, gene therapy, and pharmacological 

approaches. 

Guy et al (Guy et al., 2007) demonstrated reversibility of the Mecp2 knockout 

phenotype, as described in previous section and raised interest in exploring 

therapeutic approaches designed to reverse existing pathogenesis of  RTT and to 

prevent its onset. 

1.10.1 Reactivation of the normal allele 

As described earlier, MECP2 is located on the X chromosome and is subject to X 

chromosome inactivation (XCI). Each cell in a heterozygous female RTT patient 

expresses either the normal or mutant MECP2 allele, never both. The process of X 
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chromosome inactivation is random and results in an approximately 50:50 mixture 

of cells, although there might be variations between individuals. Studies have 

shown a mosaic pattern of brain cells expressing normal and mutant Mecp2 alleles 

(Guy et al., 2007). The likely strategy will involve re activation of the inactive X to 

allow expression of the normal allele in the same cells (Mohandas et al., 1981). 

However this approach is unlikely applicable, as the re activation of entire inactive 

X can lead to pathological levels of gene expression at many loci. Re-activation 

needs to be targeted only at the MECP2 locus but currently no obvious resources 

are there to target re-activation. 

1.10.2 Pharmacological approaches 

Identifying factors that are downstream of MeCP2 function and tackle those 

pharmacologically seems to be a sensible approach to develop therapeutic 

interventions in RTT. Nevertheless it is unlikely for drug molecules to replace the 

yet unknown, function of MeCP2. For example brain biopsies from RTT patients 

have reported decrease in monoamines (noradrenalin, serotonin and dopamine) 

levels (Lekman et al., 1989). This reduction was also observed in Mecp2-null mice 

(Roux et al., 2010). The in vitro application of noradrenalin to the brainstem in 

Mecp2 null mice, which displayed irregular rhythms, stabilized the respiratory 

network rhythmogenesis (Van Esch et al., 2005) suggesting a potential role of 

monoamine in RTT therapy.  

Similarly loss of MeCP2 is associated with other neurotransmitters like glutamate 

(Maezawa and Jin, 2010), GABA (Chao et al., 2010) and various pharmacological 

approaches have been employed for therapeutic benefits in RTT patients. 

Another pharmacological approach would be to target immediate consequences of 

the specific mutation responsible for the MeCP2 abnormal functions in the 

particular patient. Many patients carry nonsense mutations in MECP2 (e.g 

p.R168X, p.R255X, p.R270X) which are associated with premature stop codons 

(PSCs). Antibiotics like aminoglycoside, which permit ribosomal read-through of 

PSCs during translation, would enable production of full length functional protein 

(Martin et al., 1989). Forty percent of typical Rett syndrome patients with MECP2 

mutations have one of the nonsense mutations (Philippe et al., 2006), 

aminoglycosides seem a promising avenue to achieve a full length functional 
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MeCP2. However the low read through efficiency together with the known toxicity 

of these drugs indicates that currently available aminoglycoside drugs are unlikely 

to represent a new therapeutic approach at present. 

1.10.3 Gene therapy 

Gene therapy is a promising approach for treating multiple disorders including 

neurological, genetic and cancers (Blömer et al., 1996). Overall the gene therapy 

involves delivering of new genetic instructions into target tissues to compensate 

for missing or aberrant genes or to convey a new function. Gene therapy for 

genetic disorders provides treatment at the molecular level to fix the primary 

underlying cause of the disorder instead of tackling variable secondary effects. 

As previously explained Rett syndrome is caused mainly by the MECP2 gene 

mutations whose encoding sequences, isoforms and resultant protein products are 

well studied. The lack of effective conventional therapeutic approaches and a lack 

of understanding of the downstream effects of MeCP2 highlight the importance of 

tackling RTT at the genetic level. Also the reported phenotype reversibility of RTT-

like phenotypes in Mecp2 knockout mice models makes it a very important 

candidate for gene therapy. In RTT the major objective of this therapy will be to 

deliver a working copy of MECP2 to as many affected brain cells as possible to 

raise function (at both the molecular and cellular level) above a threshold required 

for improvement of the clinical picture. One study has demonstrated the potential 

for lentiviral transgene delivery to improve the phenotype of Mecp2 null neurons 

derived from neuronal stem cells in culture (Rastegar et al., 2009). 

Recently an improvement in survival and severity profile was reported in a Mecp2 

null male mice (Gadalla et al., 2013). The researchers have used a neonatal 

intracranial delivery approach of a single-stranded (ss) AAV9/chicken β-actin 

(CBA)-MECP2 vector resulting into a significant improvement in the phenotype 

severity score, in locomotor function and in exploratory activity. In another recent 

study using a female mouse models it was shown that self-complementary AAV9, 

bearing MeCP2 cDNA under control of a fragment of its own promoter 

(scAAV9/MeCP2), is capable of reversing and stabilising RTT phenotype (Garg et 

al., 2013). However encouraging these results may be, there are many challenges 

to overcome for this approach to be successful. Some of these challenges include 
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finding an appropriate vector, transducing sufficient cells, avoidance of transgene 

repression and over expression of exogenous MeCP2 in the mosaic female brain. 

It will be important to assess how such novel therapies impact on non-CNS 

aspects of RTT and thus it is important to characterised and investigate inherent 

reversibility of bone phenotypes in animal models of Rett syndrome. 

1.11 Summary and Aims 

Rett syndrome (RTT), traditionally considered a neurodevelopmental disorder, 

mainly affects girls and is due principally to mutations in the X-linked gene methyl-

CpG-binding protein 2 (MECP2). Whilst it is well established that the majority 

(>95%) of classical RTT cases are due to mutations in the MECP2 gene, the 

underlying function and regulation of MeCP2 protein remains unclear. MeCP2 is a 

nuclear protein and is especially abundant in the brain. However, it is also 

expressed throughout the body and in addition to the neurological phenotypes, a 

number of overt peripheral phenotypes are also common in RTT. For instance, 

spinal deformity (principally scoliosis) is a very common feature with ~50-90% of 

patients developing severe scoliosis, many of whom require corrective surgery.  

Other prominent skeletal anomalies include early osteoporosis, osteopenia, bone 

fractures and hip deformities. Previous studies have found that Rett syndrome 

patients have reduced bone mass. As a result, RTT patients have an increased 

risk of fractures and commonly sustain low-energy fractures. Whilst MeCP2 is 

known to be expressed in bone tissues and studies have suggested a role of the 

protein in osteoclastogenesis, the role of MeCP2 in bone homeostasis is poorly 

defined.  

The exact mechanism by which disrupted MeCP2 function affects bone tissue is 

not yet defined. Therefore the main aim of my PhD was to assess skeletal 

phenotypes in a mouse model of Rett syndrome and to explore whether aspects of 

bone-related pathologies were amenable to genetic recue of the Mecp2 gene. 

Specific goals were as follow: 

 To establish whether silencing of the Mecp2 gene results in biomechanical 

bone phenotypes in a Mecp2stop/y  mouse model of Rett syndrome. 
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 To establish if postnatal reactivation (genetic rescue) of MeCP2 gene  

results in any reversal or prevention of RTT-related biomechanical bone 

phenotypes. 

 Explore the effects of MECP2 protein mutation on bone structure, bone 

mineral, bone collagen or bone cells. 

The overall objective of my thesis research is thus to analyse the biomechanical 

and anatomical properties of bone tissue in a mouse model of Rett syndrome and 

explore whether such features are potentially reversible using gene-based 

therapeutic approaches.  
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Chapter 2 

General materials and methods 

 

2.1 Experimental Animals Models 

The Mecp2-stop mouse model [Mecp2stop/y (male) and Mecp2+/stop (female)] and 

Mecp2 genetic rescue mice [Mecp2stop/y, CreER (male) and Mecp2+/stop, CreER 

(female)] were created and supplied by Prof Adrian Bird’s laboratory at the 

University of Edinburgh, Edinburgh, United Kingdom (UK) (Guy et al., 2007, 

Robinson et al., 2012). These mice together with wild-type littermates were used 

as part of a larger study to assess various neurological and brain morphological 

phenotypes (Robinson et al., 2012). After the completion of such behavioural 

phenotyping studies, adult male and female mice were killed by cervical 

dislocation and were transcardially perfused with 4% paraformaldehyde (0.1M 

phosphate buffered saline, pH 7.4) prior to shipping to the University of Glasgow, 

Glasgow, UK for use in my PhD studies. Another subset of mice was used to 

establish the expression of Mecp2 in bone cells (see section 2.5 for details) 

 

2.2  Design of Mecp2 stop and rescue mouse mode 

Guy and colleagues (Guy et al., 2007) created a mouse model in which the 

endogenous Mecp2 gene was silenced by insertion of a lox-stop cassette flanked 

by loxP sites. By crossing this line with mice expressing an inducible Cre 

recombinase fused to a modified oestrogen receptor (CreER) (Hayashi and 

McMahon, 2002), an additional cohort of mice enabled the conditional reactivation 

of MeCP2 under the control of its endogenous promoter and regulatory elements 

by Stop cassette deletion (figure 2-2) (Guy et at., 2007; Robinson et al., 2012). 

2.2.1 lox- stop cassette and Mecp2 stop models 

A strategy has been adopted in studies (Nagy, 2000)  aiming to characterise the 

function of gene products by rescuing lineage or developmental stage specific 
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knockout phenotypes by conditional gene repair. This approach is based on the 

targeted insertion of a positive selection gene cassette (typically the neomycin 

phosphotransferase gene, neo) flanked by loxP sites into an intron. Positive 

selection cassettes have been known to have the potential to interfere with normal 

expression of the targeted allele by promoter interference, disruption of normal 

splicing patterns or by premature transcript termination (Meyers et al., 

1998).Insertion of neo (neomycin phosphotransferase) within an intron has its 

potential drawbacks on the expression level of the target gene, including unaltered 

expression, a reduction in targeted gene expression (generating a hypomorphic 

allele), or complete inactivation (Meyers et al., 1998; Nagy et al., 1998; Dietrich et 

al., 2000; Wolpowitz et al., 2000). 

Usually conditional gene inactivation employs the Cre/loxP site-specific 

recombination system, which provides a means to control the development and 

tissue specific gene disruption, thus circumventing the early lethality found in 

knockouts of developmentally critical genes (Sauer, 1998). The Cre/loxP system 

has also been employed to activate conditionally transgene expression by 

employing a floxed synthetic transcriptional/translational ‘stop’ cassette (STOP) 

(Lakso et al., 1992). The STOP cassette consists of the 3’ portion of yeast His3 

gene, an SV40 polyadenylation sequence and a false translation initiation codon 

followed by a 5’ splice donor site. The floxed STOP cassette is inserted between 

the promoters and coding sequences of a transgene, ensuring that few, if any, 

transcripts containing the coding region are generated. In presence of Cre, 

recombination at the loxP sites, Tamoxifen excises the STOP cassette, and there 

by activating expression of the transgene (Lakso et al., 1992; Wakita et al., 1998) 

(figure 2-1). 

In summary, the one powerful use of Cre/loxP technology is in the conditional 

removal or activation of gene function. In the former, Cre mediated recombination 

leads to the precise excision of an essential region within a gene so that a 

functional product is not produce and in the latter, Cre-mediated recombination 

removes a functional barrier to the production of an active gene product, thereby 

switching on gene activity. 

Mecp2-stop mice [Mecp2stop/y (male) and Mecp2+/stop (female)] (Guy et al., 2007) 

were created using a lox-stop cassette (Dragatsis and Zeitlin, 2001) which was 
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inserted into intron 2 of Mecp2  to generate an incomplete Mecp2 mRNA that 

precludes translation of Mecp2 protein. Guy and colleagues performed the 

western blots and in situ immunofluorescence to confirm the absence of 

detectable MeCP2 protein in Mecp2lox-Stop/y (Stop/y) animals. 

 

2.2.2 Rescue of Mecp2 stop models 

Guy and colleagues (Guy et al., 2007) controlled the activation of Mecp2 by 

combining a transgene expressing a fusion between Cre recombinase and a 

modified oestrogen receptor (cre-ER) with the Mecp2lox/Stop allele (Hayashi and 

McMahon, 2002). 

2.2.2.1 Cre recombinase and modified oestrogen receptors 

 
As described previously in section 2.3.1, Cre integrase from bacteriophage P1 to 

catalyze recombination between its loxP target sites has gained popularity as an 

essential tool for conditional gene activation or inactivation in mouse models 

(Rossant and Nagy, 1995; Rossant and McMahon, 1999; Nagy, 2000). 

Scientific community thought about the way in which the utility of Cre/loxP system 

approach can be enhanced is by developing ways in which Cre activity can be 

controlled and a number of groups has described various approaches to control 

the spatial and temporal expression of the enzyme (Rossant and McMahon, 1999; 

Nagy, 2000).  

A fusion gene is created between Cre and mutant form of the ligand-binding 

domain of the oestrogen receptor (ERTM). This mutation prevents binding of its 

natural ligand (17b-estradiol) at normal physiological concentrations, but renders 

the ERTM domain responsive to 4 hydroxyl (OH)-TM (Fawell et al., 1990; 

Littlewood et al., 1995). Fusion of Cre with ERTM leads to the ERTM dependent 

cytoplasmic sequestration of Cre by Hsp90 (Picard, 1994) and thus preventing 

Cre-mediated recombination, a nuclear event. 
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Figure2-1 Representative diagram showing, the Cre ER/loxP 

system. 

CreER is tamoxifen inducible Cre recombinase. The Cre-ER protein in rescue 

models remained in the cytoplasm unless exposed to the oestrogen analog 

tamoxifen (TM), which causes it to translocate to the nucleus. Cre-mediated 

recombination removes a functional barrier (loxP-Stop cassette) to the production 

of an active gene product, thereby switching on gene activity. 

 

Guy and colleagues rescue model was created by adopting the techniques used 

by Hayashi et al in which they had created a more broadly useful strain of mouse 

to generate a line in which Cre-ERTM is ubiquitously expressed. Crossing these 

mice to an appropriate target strain permitted TM-dependent recombination in all 

tissues, with precise temporal control, at embryonic and adult stages (Hayashi and 

McMahon,2002).
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2.2.2.2 Tamoxifen treatment 

The Cre-ER protein in rescue models remained in the cytoplasm unless exposed 

to the oestrogen analog tamoxifen (TM), which causes it to translocate to the 

nucleus (figure 2-1). Guy and Colleagues verified this in their Stop mouse models 

by southern blotting that the Cre-ER molecule did not spuriously enter the nucleus 

in the absence of TM and cause unscheduled deletion of the lox-Stop cassette in 

Mecp2lox-Stop/+, cre-ER (Stop/+, cre) females. Even after 10 months in the presence 

of cytoplasmic Cre-ER, there was no sign of deleted allele found (Guy et al., 

2007).  

The absence of spontaneous deletion of the lox-Stop cassette was evaluated 

independently confirmed by the finding that Stop/y males showed identical survival 

profiles in the presence or absence of Cre-ER. Therefore it was evaluated that in 

the absence of TM, the Cre-ER molecule does not cause detectable deletion of 

the lox-Stop cassette. The ability of Tamoxifen (TM) to delete the lox-Stop 

cassette in Mecp2lox-Stop/y, cre-ER (Stop/y, cre) male mice rescue was also tested 

and showed high levels of recombination efficiency (Guy et al., 2007).  

 
2.2.2.3 Tamoxifen injection regime 

The unsilencing of the mice (removal of Stop cassette) was achieved by tamoxifen 

(100mg/kg; Sigma, UK) treatment, administered via intrapertoneal injection at an 

injection volume of 5ml/kg (dissolved in corn oil) body weight. A treatment regime 

of one injection of tamoxifen per week for 3 weeks followed by four daily injections 

on consecutive days in the fourth week was employed (Guy et al., 2007; Robinson 

et al., 2012a) (figure 2-3). 
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Figure2-2  Experimental design of Tamoxifen regime (rescuing) of 
Mecp2stop/y mice 
Experimental design of the current study showing treatment (A) and sampling 

phases (B) in male mouse comparison cohorts. Wild-type (Wt) , Mecp2stop/y ( non-

rescue) and Mecp2stop/y,CreER (rescue) were given one injection of tamoxifen 

(100mg/Kg) per week for 3 weeks (age 6-8 weeks) then  followed by 4 daily 

injections in consecutive days in the 4th week (age 9 weeks). Mice were then 

culled at 14 weeks and bones were sampled for imaging, histology and 

biomechanical tests. 

 

2.2.2.4 Behavioural testing after tamoxifen treatment 

After the tamoxifen treatment, Guy and colleague (Guy et al., 2007) performed 

observational test to monitor the specific features of the RTT-like mouse 

phenotype. These tests include inertia, gait, hind-limb clasping, tremor, irregular 

breathing, and poor general condition. Each symptom was later on scored weekly 

as absent, present or severe (scores 0, 1, and 2 respectively). Wild type mice 

always showed the zero score, whereas Stop/y animals typically showed 

aggregated symptoms and hence the higher scores (3-10) during the last 4 weeks 

of life. On the other hand majority of symptomatic Stop/y, cre were rescued by TM 

treatment.  
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These mice did showed milder symptoms and score (1-2) and were thought to 

survive for up to 4 weeks from the date of first injection, instead they survived well 

beyond the maximum recorded life span of Mecp2lox-Stop/y (17 weeks). 

Heterozygous females may be the most accurate model for human RTT 

(Kriaucionis and Bird, 2003) because both knockout Mecp2+/- and silenced 

Mecp2Stop/+ females develop RTT like symptoms, including inertia, irregular 

breathing, abnormal gait, and hind-limb clasping at 4-12 months of age. Similar to 

the RTT patients, the phenotype stabilizes, and the mice have an apparently 

normal life span. The mice do become obese with time which is not seen in RTT 

patients. 

Similar to the Stop/y, cre male mice, Guy et al, TM-treated Stop/+ females with 

clear neurological symptoms were also used for behavioural testing. These mice 

progressively reverted to a phenotype that scored at or very close to wild type. The 

report from this study (Guy et al., 2007) demonstrated that the late onset 

neurological symptoms in mature adult Stop/+,cre heterozygotes are reversible by 

de novo expression of MeCP2. 

Behavioural studies performed by Robinson and colleagues on these Stop/y, cre 

and Stop/+, cre showed an improvement in structural deficits in cortical neurons, 

rescue of respiratory phenotype and improvement in sensory motor tasks 

(Robinson et al., 2012a). In my PhD project I have used these cohorts of these 

mice to explore putative RTT-related bone phenotypes (see next chapters 3, 4 and 

5). 

 

2.3 Breeding strategy of Mecp2- Stop mice 

Local Mecp2-Stop colonies at University of Aberdeen were established by 

breeding heterozygous Mecp2Stop/+ mice in which the endogenous Mecp2 allele is 

silenced by a targeted stop cassette (Mecp2tm2Bird, Jackson Laboratories Stock No. 

006849) were crossed with hemizygous Cre ESR transgenic mice (CAG-

Cre/ESR1*, Jackson Laboratories Stock No. 004453) to create experimental 

cohorts (Guy et al., 2007) ( table 2-1)  
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A breeding strategy of crossing C57BL6/J/CBA F1 animals and using the F2 

offspring (Robinson et al., 2012a) was used. The genotype of the mice was 

determined by polymerase chain reaction (Guy et al., 2007). Mice were housed in 

groups with littermates, maintained on a 12-h light/dark cycle and provided with 

food and water ad libitum. Experiments were carried out in accordance with the 

European Communities Council Directive (86/609/EEC) and a project licence with 

local ethical approval under the UK Animals (Scientific Procedures0 Act (1986). 

2.4 Age of experimental animals 

Age matched male mice cohort (Wild-type, Stop/y, Stop/y,cre) of mean age14 

weeks ± 4 days and female mice cohort (Wild-type, Stop/+, Stop/+,cre) of mean 

age of 20 months ±  5days were used in my PhD project experiments.  

All mice were treated were treated by a single injection of tamoxifen (see section 

2.3.2.3) at 6 week postnatal age followed by 2 further weekly does at 7 week age  

and 8 week age with subsequent  4 consecutive daily doses in 9 week (figure 2-1) 

. The mice were culled after 4 weeks of tamoxifen treatment. 

Female (Stop/+, cre) mouse models were rescued with injection of tamoxifen at 18 

months of age followed by 3 weekly injection and 4 consecutive daily doses. The 

mice were culled 2 months after the tamoxifen treatment. Wild type control mice 

were treated with tamoxifen in parallel with their Mecp2stop/y and Mecp2stop/y, Cre ER 

littermates. 

2.5 Establishment of expression of MeCP2 on bone cells 

To establish MeCP2 expression in bone tissues, we have used an MeCP2-GFP 

reporter line (McLeod et al., 2013). The heterozygous female mice aged 10-13 

weeks were engineered to express a Mecp2-EGFP fusion by a targeted gene 

knock-in in mouse ES cells (generated in Adrian Bird’s laboratory at the University 

of Edinburgh; Mecp2tm3.1Bird, Jackson Laboratories stock no. 014610). Mecp2 

status was detected in cells by the presence or absence of fluorescence in living 

or fixed cells. Further on the experimental cohort was produced by breeding 

Mecp2+/- females with Mecp2 GFP/Y males (supplied by Adrian Bird’s laboratory) on 

a C57BL6/j background). 
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2.5.1 Methodology 

In these mice, MeCP2 has a GFP tag cloned into the 3’ end of exon 4 to create a 

C terminal GFP fusion product which enables the straightforward localisation of 

endogenous MeCP2 protein via epifluorescence or laser scanning confocal 

microscopy (figure 2-3).  

 

Figure 2-3  MECP2-GFP mouse model GENOTYPE CONSTRUCT 
Schematic diagram showing GFP tagged MECP2 mouse model design. A GFP 

tag is cloned into the 3’end of exon 4 to create a C terminal GFP fusion product. 

NTD, N-terminal domain; MBD, methyl binding domain; ID, inter domain; TRD, 

transcription repression domain; CTD, C-terminal domain; NLS; nuclear 

localisation signals (red line). 

Femur bone from male and female mice were dissected out and decalcified in 

10% EDTA Solution (7.4 pH) (280g EDTA, 1.5 L of distilled water, 180ml of 

ammonium hydroxide), for two weeks in a refrigerator at 4°C. The fresh 10% 

EDTA solution was changed every other day, until the bones are properly 

decalcified. Midshaft transverse section of 20μm thickness were carefully cut by 

using a Leica VT1000 microtome (Leica Milton Keynes, UK) which is maintained 

by Robert Kerr, West Medical Building, University of Glasgow, Glasgow, UK.  

Images were taken by using laser scanning confocal microscopy (Zeiss LSM710, 

Bio-Rad Radiance 2100, UK) using 20x and 40x objectives. Laser scanning 

confocal microscopy is maintained by Andrew Todd, west medical building, 

University of Glasgow, Glasgow, UK. 

After the laser scanning confocal microscopy, we observed that all bone cells 

express nuclear GFP fluorescence in wild type male (figure 2-4 Ai-iV) and female 

mice. In contrast, GFP fluorescence is found absent in hemizygous Stop 
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(Mecp2stop/y) mice (figure 2-4 Bi-iv), in which Mecp2 is silenced by a stop cassette, 

and is observed only in ~50% of bone cells nuclei in female heterozygous Stop 

(Mecp2+/stop) mice in which one Mecp2 allele is silenced to mimic the mosaic 

expression pattern seen in human Rett syndrome (Guy et al., 2007; Robinson et 

al., 2012a).  

 
   Figure 2-4 MeCP2 is expressed widely in bone tissues 
          
(Ai) Low power and (ii-iv) high power micrographs of transverse sections taken 

from mid shaft mouse femur showing GFP expression in all DAPI-labelled nuclei in 

a male wild type (Mecp2+/y) mouse in which the native MeCP2 is tagged with a C-

terminal GFP. Note that MeCP2 is restricted to the nucleus of osteocytes as 

indicated by the complete overlap with DAPI staining but present in all nuclei. (B) 

GFP expression is not observed in stop mice in which MeCP2 expression is 

functionally silenced by a neo-stop cassette. (C) Low power (i) and (ii-iv) high 

power micrographs showing mosaic expression of GFP-tagged MeCP2 protein in 

~ 50% of DAPI positive nuclei in a female heterozygous stop (Mecp2+/stop)  mouse 

in which one Mecp2 allele is functionally silenced. All scale bars: 100μm.  
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2.6 General solutions 

All chemicals below without specified origins were supplied from Merck Ltd. (BDH 
Laboratories, UK) or Sigma-Aldrich Company Ltd, (Sigma, UK). 
 

2.6.1 0.2 M PB 

 
Materials 

 Solution A: 37.44 g of NaH2PO (2H2O) in 1200 ml ultrapure H2O 

 Solution B: 84.90 g of NaH2PO4 in 3000 ml ultrapure H2O  

Methods 
 
Add 1120 ml of solution A to 2880 ml of Solution B and mix well. Adjust PH to 7.4 
with either HCL or NaOH. Add 3000 ml distilled water to the final solution. 
 
 

2.6.2 0.1 M PB 

0.1 PB was made by 50/50 (v/v) dilution with distilled water. 
 

2.7 Dissection 

2.7.1 Material 

Dissection of mice was carried out to obtain, right and left femur, tibia, humerus 
and lumbar 5 vertebrae from each mouse (n=6 per genotype). 
 

 50 mL Falcon tube containing 70% ethanol ( EtOH ) for sterilizing surgical 

equipment. 

 Dissection board 

 Pins 

 Scissors 

 Plain and tooth forceps 
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2.7.2 Method  

 
2.7.2.1 Tibia and Femur dissection 

Each Mouse was pinned to the dissection board, lying on the dorsal back with 

ventral surface of the body facing up. Hind limbs were sprayed down with 70% 

ethanol / 30% H20.  For each right and left leg, first nails were trimmed off with 

small dissecting scissors. Then a cut is made in the skin around the full 

circumference of the ankle. A second cut down the inside of the leg is made, 

starting at the ankle cut and ending at the tip of the 3rd metatarsal. With the help of 

small teethed forceps skin was peeled from the ankle towards the phalanges. 

Another cut is made inside the leg, starting at the original ankle cut and continuing 

along the tibia and femur. Skin was peeled off to the level of the hip. The medial 

thigh muscles are dissected 2mm proximal to and along the course of the deep 

femoral branch.  

Dissection is continued laterally in 2 mm distance to and along the bundle of the 

femoral nerve, artery and vein. The tendinous insertion sites of the medial thigh 

muscles are clipped and the entire medial thigh muscle package excised. Excision 

of calf muscle composed of gastrocnemicus, soleus and plantaris from the fascia. 

To keep the bones in natural environment freshly dissected bones were 

transferred in labelled tubes filled with 0.1 M Phosphate buffer solution (figure 2-5).  
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Figure2-5  Dissection of femur and tibia 
Images showing stepwise dissection of lower limb long bones (femur and tibia). 

(A-D) dissection of mouse femur and tibia. (A); white arrow point towards the start 

of incision area for dissection on left lower limb. (B); Skin and subcutaneous tissue 

removed around femur and tibia (C); Skin, subcutaneous fat and muscle removed 

around femur and tibia to expose the underlying bones; white arrow points toward 

the skin, subcutaneous fat and medial thigh muscles (D); Image showing 

dissected femur (blue arrow) and tibia (red arrow). 

2.7.2.2 Lumbar vertebrae 5 dissection 

Each Mouse was pinned to dissection board, with ventral surface of the body 

facing up. Ventral body surface was sprayed down with 70% ethanol / 30% H20. 

After the fur, skin and soft tissue removal, vertebrae were identified. With the help 

of forceps, scissors and scalpel, Lumbar 5 vertebrae were carefully dissected out 

from the rest of vertebrae. Excision of vertebral surrounding structure consists of 

Para spinal ligaments and muscles (figure 2-6). 
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Figure2-6  Dissection of 5th Lumbar vertebrae 
Images showing stepwise dissection of 5th lumbar vertebrae (A-C). (A) image 

taken after the dissection and removal of skin, subcutaneous tissue and organs. 

(B);Image taken after removal of muscles and ligaments around the vertebral 

column. (C); Image showing lumbar vertebrae. White arrow points towards the hip 

bone as the identifying anatomical point for the lumbar vertebral dissection. 

 
 

2.8 Morphometric measurements  

After the dissection both right and left femur and tibia along with the 5th lumbar 

vertebrae from each experimental genotype group were subjected to 

morphometric measurement (see below) before further biomechanical, radiological 

and histological analysis.  

2.8.1 Whole body weights 

Whole body weight measurements were taken using analytical balance (APX60, 

Denver Instruments, UK) and accuracy was taken to be 0.0001g. These 

measurements were required for the normalisation of individual bone weight 

measurement. For results, see chapter 3 result section. 
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2.8.2 Individual bone weights 

Femur, tibia and lumbar vertebrae wet weight measurements were obtained using 

analytical balance (APX60, Denver Instruments, and UK) and accuracy was taken 

to be 0.0001g. These measurements were taken to analyse if there are any gross 

differences in individual weights of the bones of three comparison genotypes. For 

results see chapter 3 and 4 result section. 

2.8.3 Individual bone lengths 

In order to obtain the individual bone lengths, femur and tibia were imaged in an 

anteroposterior position and posteoranterior position, using a WolfVision VZ9.4F 

(WolfVision Ltd, Maidenhead, UK). 

Images were analysed for subsequent measurements using Axiovision 4.8 

Software (Carl Zeiss Ltd, Cambridge, UK). Femur gross length measurement was 

taken from the proximal anatomical point of the greater trochanter to the distal 

anatomical point of  medial condyle (Di Masso et al., 1998). Tibial gross length 

measurements were taken from proximal anatomical point of centre of the 

condyles to the distal anatomical point of medial malleolus (Di Masso et al., 2004) 

(figure 2-7). 

Right femurs were used for mechanical testing (the proximal part for the femoral 

neck test and the midshaft part of femur bone was used for microindentation), see 

details in chapter 3.  

Left femurs were used for the bone histology (the proximal femur for Sirius red and 

TRAP staining, the distal femur for scanning electron microscopy), see details in 

chapter 4 and 5.  

Right tibias were used for μCT, see chapter 4 and three-point bending tests, see 

details in chapter 3 and left tibias used for the ash weight density measures, see 

full text in chapter 3.  

The 5th lumbar vertebrae were used for trabecular bone structure measures, see 

chapter 4 for full detail. 
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Figure2-7  Morphometric length measurements of femur and tibia 
(A) Image of femur and tibia obtained using a WolfVision VZ9.4F Visualizer to 

obtained length measurements (WolfVision Ltd, Maidenhead, UK). (B) Images 

were analysed for subsequent length measurements using Axiovision 4.8 Software 

(Carl Zeiss Ltd, Cambridge, UK). Femur gross length measurement was taken 

from the proximal anatomical point of the greater trochanter to the distal 

anatomical point of medial condyle. Tibial gross length measurements were taken 

from proximal anatomical point of centre of the condyles to the distal anatomical 

point of medial malleolus. 

 

2.9 Data handling and analysis 

For each biomechanical, structural and histological analysis data results have 

been summarized using descriptive statistics. These were presented as mean ± 

standard deviation (SD) values and compared by using one way ANOVA followed 

by Tukey’s post hoc test.  All statistical analyses were performed with the aid of 

Prism 5.0 (Graph pad) software.  

I have performed a series of biomechanical, morphological and histological on the 

above mentioned dissected bones which will be described in detail in the next 

three result chapters.



82 
 

Chapter 3 

Biomechanical tests revealed genotype differences 
in bone properties 

  

3.1 Introduction  

The majority of females with Rett syndrome are growth retarded (Schultz et al., 

1993; Neul et al., 2010; Roende et al., 2011b) and this postnatal pattern of altered 

growth is one of RTT’s earliest clinical expressions. Head growth typically 

decelerates during the first year of age and this further followed by a decline in 

somatic (height and weight) growth (Armstrong et al., 1999; Neul et al., 2010). 

Although not included in the clinical scales for diagnosis of Rett syndrome, 

patients nevertheless do suffer from bone related symptoms such as increased 

risk of fractures, spinal deformity (eg. scoliosis) (Roberts and Conner, 1988; 

Guidera et al., 1991a; Cepollaro et al., 2001; Neul et al., 2010) and bone mass 

anomalies (Leonard et al., 1999c; Budden and Gunness, 2001, 2003; Bebbington 

et al., 2008; Shapiro et al., 2010; Jefferson et al., 2011; Roende et al., 2011a). The 

effects of this high fracture incidence on the quality of life, care needs, and 

outcome for RTT patients, are likely to be of importance. Children having fracture 

episodes was reported to be one of the most strongly negative associations with 

mother’s mental health status (Laurvick et al., 2006).  

In my current study, I have looked at the bone biomechanical properties in an 

accurate genetic mouse model of Rett Syndrome in order to establish the possible 

impact of MeCP2 insufficiency on bone strength and propensity of fractures. 

3.1.1 Fracture risk epidemiology in RTT patients 

As described in the introductory chapter, multiple clinical studies suggest that 

patients with Rett syndrome suffer from an increased risk of fracture (Leonard et 

al., 1999c; Bebbington et al., 2008; Downs et al., 2008a).  
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It was found in one study that nearly one third of RTT patients had sustained a 

fracture by the age of 15 years(Leonard et al., 1999c), compared with only 15% of 

girls and women in the general population by the age of 20 year (Cooley and 

Jones, 2002). Similar finding were found by Downs and Colleagues, who reported 

38% of RTT patients in their study suffered from fracture episodes.  

The incidence of any facture episode was 43.3 episodes per 1000 patient per 

years and thus the fracture rate was found to be around 4 times higher in RTT 

patients as compared to the girls of similar age (Downs et al., 2008a). Recently in 

a case control study of a Danish RTT patient cohort, the investigators reported an 

approximately 36% fracture events occurrence among cases as compared to the 

27% in controls of same age. The first fracture event typically occurred (77.3% of 

cases) below 15 years of age (Roende et al., 2011b).  

Studies have been conducted in past to establish the site, cause (Leonard et al., 

1999c; Jones et al., 2002; Cooper et al., 2004; Downs et al., 2008a) and 

mechanism (Roende et al., 2011b) of fractures within Rett syndrome patients but 

exactly how and why RTT patients suffer from bone symptoms remains poorly 

defined. 

3.1.2 Fracture site in RTT patients 

Greater frequency of fractures was found in lower limb long bones (Leonard et al., 

1999c; Jones et al., 2002; Cooper et al., 2004; Downs et al., 2008a; Roende et al., 

2011b) within RTT patients as compared to the controls, although fractures have 

been reported in all regions (spine, ribs, sternum, clavicle, humerus, radius, ulna, 

wrist bones, fingers, femur, tibia, fibula, patella, ankle bones, foot), including face. 

The bone found most commonly to be fractured was femur followed by tibia, 

humerus, ankle and wrist bones respectively (Downs et al., 2008a). Vertebral 

fractures were not found to be common in Rett syndrome young population and 

mostly found in elderly patients aged ~60 years (Roende et al., 2011b). 

3.1.3 Determinants of Fracture risk in RTT patients 

Genetic predispositions as the cause of RTT bone symptoms have been observed 

by Downs and colleagues. In their study they categorized the cases according to 

mutation types, including p.R106W, p.R133C, p.T158, p.R168X, p.R255X, 
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p.R270X, p.R294X, p.R306C, C-terminal deletion, early truncating and large 

deletion mutations. The study found a threefold increased risk of fracture in 

patients with p.R270X mutation and nearly twofold increase in patients with 

p.R168X mutations. Individuals with p.R270X were found to be particularly 

susceptible (Downs et al., 2008a). Interestingly this mutation in the nuclear 

localization signal region of the transcription repression domain is the one that was 

found to be most severe in a number of studies (Huppke et al., 2003; Colvin et al., 

2004). However no association between the mutation types and fracture 

distribution was found by Roende and colleagues and they attributed this due to 

the lack of actual number of different MECP2 mutations in their study cohort 

(Roende et al., 2011b) as compared to Downs and colleagues. The issue 

regarding genotype and fracture occurrence within RTT are in dire need of further 

studies.  

Low bone mass is seen in RTT (Haas et al., 1997; Leonard et al., 1999c; 

Cepollaro et al., 2001; Motil et al., 2006; Zysman et al., 2006; Gonnelli et al., 2008; 

Shapiro et al., 2010) and an association between low bone mass and fractures in 

RTT has been found. 

In Rett syndrome 80% of patients suffer from seizures (Jian et al., 2006), 

prompting widespread use of antiepileptic drugs (AEDs). In a recent study it was 

observed that 64% of the Rett syndrome patients are taking anti-epileptic drugs 

(Anderson et al., 2014). Interestingly it has been observed that the risk of fracture 

increases with antiepileptic drugs and was found elevated for valporate (anti-

epileptic drug) in particular, prescribed on its own or in combination with other 

AEDs after one or more years (Leonard et al., 2010). In another case control study 

RTT subjects with a diagnosis of epilepsy were found to have nearly 3 times the 

risk of fracture and those receiving more than two AEDs had nearly twice the risk 

of those who were receiving no medication (Downs et al., 2008a). 

Risk of epilepsy in itself and development of scoliosis(Ager et al., 2006), in RTT 

patients is also thought to be genotype related (Jian et al., 2006), pointing towards 

the potential relationship between genotypes and bone strength acquisition.  

Physical activity is often limited in RTT with patients have difficulty in standing and 

walking, which declines further with age (Downs et al., 2008b). Association of risk 
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of fracture with mobility is less clear in RTT population (Leonard et al., 1999c; 

Downs et al., 2008a). It was also found that years without anticonvulsant 

medication and learning to walk were both separately protective against fractures, 

but when both variables were combined, only the absence of medication remained 

significant (Leonard et al., 1999c). Maintaining mobility, particularly in those RTT 

patients with high-risk mutations, has potential as an environmental modification to 

optimize bone health(Roende et al., 2011b). 

Reduced serum 25 hydroxyvitamin D levels [25-(OH) D] <50nmol/L, have been 

found in Rett syndrome patients. This reduction in vitamin D levels could be, 

associated with less exposure to sunlight, inherently dark skin, an indoor life style, 

the latitude at which they live. Among all these above stated factors, only race and 

ethnicity influenced 25-(OH)D levels in the RTT. Ambulatory status of girls and 

women with RTT did not show an association with 25-(OH)D concentration (Motil 

et al., 2011). On the other hand biochemical analysis of serum calcium, 

phosphate, alkaline phosphate, and Parathyroid hormone levels in RTT were not 

shown to differ from controls (Jefferson et al., 2011). The normal biochemical 

findings suggest that vitamin D deficiency, if present is not severe and other 

factors responsible for decrease in bone strength and fractures should be taken 

into consideration. 

Individual with severe physical and intellectual morbidities like RTT patients often 

live in protected environments and usually are not subject to fractures by falls, 

trauma, childhood games and other sports activities (Cass et al., 2003). Hence the 

high fracture rate in young Rett syndrome population may represent the effects of 

other risk factors, such as genotype and the presence of epilepsy. 

3.1.4 Low energy fractures in RTT patients 

Recently Roende and colleagues (Roende et al., 2011b) found in their study that 

“low energy fractures” (Spontaneous fractures of bones that occur without any 

external trauma or falls) to be the common characteristic of fractures in Rett 

syndrome patients.  

In their case control study, the majority of Rett cases suffered from low-energy 

fractures as compared to the controls that experienced significantly high-energy 
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fractures (fractures due to falls from one level to another or because of activities 

involving speed). Cases tended to fracture mostly the lower limb by low energy 

mechanisms, whereas controls tended to fracture mostly the upper limb by high 

energy mechanisms.  

In order to understand the mechanisms underlying the bone fractures an 

enhanced knowledge of biomechanical properties is required. In the next section 

of this chapter I am going to discuss a brief review of bone biomechanics. 

3.2 Biomechanical properties of bone 

As described in chapter 1, the organic and inorganic constituents together give 

bone its unique properties. In general the mineral phase provides the “stiffness”. 

The viscoelastic properties and resistance to fracture are attributed to the collagen 

phase (Currey, 1979). 

There is clinical and laboratory evidence that, in addition to bone mineral density, 

the mechanical properties of bone tissue may play a critical role in bone strength 

(Currey, 1979; Chavassieux et al., 2007). Alterations in these mechanical 

properties would be expected to play a significant factor in bone fracture risk, even 

though it has not been clear what mechanical properties are most important 

(Currey, 2004). 

Bone is a composite hierarchical material, therefore investigation of the 

relationship between the materials properties and the geometry and mechanical 

behaviour of whole bone is challenging and very complicated.  
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A thorough understanding of this relationship is of importance as it helps to 

understand the normal behaviour of whole bones during physiological loading as 

well as identifying areas of peak stresses which are more likely to fracture during 

intense activity, and allows the prediction of effects of various pathological 

processes and drug treatments (Sharir et al., 2008). 

The hierarchical structure of bone material changes at different length scales. It is 

also a graded material, as its composition, structure and mechanical properties 

may vary continuously or in discrete steps from one location to another (Suresh, 

2001).The mechanical behaviour of bone is determined by its geometry and the 

properties of the material of which it is made. 

There are a number of biomechanical parameters that can be used to characterize 

the integrity of bone. One of the key relationships is between applied load to bone 

and displacement in response to the load-displacement curve (figure 3-1). The 

extrinsic stiffness or rigidity of the bone (S) is represented by slope of the elastic 

region of the load-displacement curve. Other biomechanical properties of the bone 

can be derived from the same graph including ultimate force (Fu ), work to failure 

(area under the load-displacement curve , U) and ultimate displacement (du). Each 

of these biomechanical parameters reflects a different property of bone. Ultimate 

force also called ultimate load reflects the general integrity of the bone structure; 

stiffness measure is closely related to the mineralization of the bone (figure 3-1). 
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Figure3-1  Load-displacement curve for bone  
The Load displacement curve displaying stiffness (S) or rigidity (slope of the 

curve); Ultimate force (Fu) (the height of the curve); area under the curve is work to 

failure (U); and Ultimate displacement (du) (total displacement to fracture). Red 

Cross represents the fracture (breaking point). Figure modified and adopted from 

(Turner, 2006). 

 

Work to failure is the amount of energy necessary to break the bone; and ultimate 

displacement is inversely related to the brittleness of the bone. Biomechanical 

status of bone cannot be described by just one of these properties; in order to 

understand the biomechanical status of a bone fully, the range of these properties 

need to be considered. For example in young children bone tends to be poorly 

mineralized and weak, but very ductile (increased ultimate distance), resulting in 

increased work to failure. On the other hand bones can be very stiff as in 

osteopetrotic patient but also very brittle, resulting in increased risk of fracture and 

reduced work to failure (Turner, 2006)(figure 3-2). 
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Figure3-2 Load displacement curve showing various bone 
pathologies 
Brittle bones displayed a reduced work to failure and inversely proportion to the 

displacement. Young children bones are usually ductile, showing increased work 

to failure and large ultimate displacement. Red Cross represents the fracture event 

(breaking point). Figure modified and adopted from (Turner, 2006). 

 
When load is converted into stress and deformation converts into strain, by the 

relationship between stress and strain in bone follows a curve called the stress-

strain curve. The slope of the stress-strain curve within the elastic region is called 

the elastic or Young’s modulus (E). Young’s modulus is a measure of the intrinsic 

stiffness of the material (Turner, 2006)(figure 3-3). 
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Strength and stiffness are commonly used to define the bone health. Strength and 

stiffness are not directly proportional to risk of fracture but the amount of energy 

required to cause fracture is directly related to risk of fracture (Currey, 1979). 

 As described earlier, the bone tissue is a two-phase porous composite material 

composed primarily of collagen and mineral, with mechanical properties 

determined primarily by the amounts, arrangement, and molecular structure of 

both of these constituents. The mineral part provides strength and stiffness to the 

tissue (Turner, 2006). The collagen phase is tough and improves bone’s work to 

failure or toughness. The ratio of mineral to collagen in bone does affect bone’s 

strength and brittleness (Wang et al., 2002) (figure 3-3). 

 

                                             

Figure3-3  Summary of contributing factors towards the bone 
strength  
 



91 
 

 

Bone hardness is represented by the resistance of the material to the load as the 

structure is deformed. This response occurs in many material including bone, 

tendons and ligaments (Choi and Goldstein, 1992). A hard material will respond 

with a minimum deformation to the load increase. When the material fails in the 

end of the elastic phase, it is considered a fragile material. The higher the load 

imposed to the bone, the higher the deformation. In addition, if the load exceeds 

the elastic limits of the material, there will be a permanent deformation and failure 

of material (Choi and Goldstein, 1992) (figure 3-4). 

 

Figure3-4  The Stress-strain curve for bone  
The slope of the curve is called Young’s modulus (E). The yield point represents a 

transition, above which strains begin to cause permanent damage to the bone 

structure. Red Cross represents the fracture event (breaking point). Figure 

modified and adopted from (Turner, 2006). 
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3.3 Animals models and bone biomechanics 

Animal models, in particular mice, offer the possibility of naturally achieving or 

genetically engineering a skeletal phenotype and determining the resulting change 

in bone’s mechanical properties. In contrary to traditional strength tests on small 

animal bones, fracture mechanics tests display smaller variation and therefore 

offer the possibility of reducing sample size (Vashishth, 2008). 

 Many types of mechanical tests have been proposed for mouse bones. As mouse 

bones have the well-defined organizational hierarchy, mechanical tests scale the 

natural length scale from mineral and protein levels to whole bone tests. Nano and 

microindentation tests have been conducted on inbred or genetic knockout mouse 

bones to determine the local elastic and viscoelastic properties associated with 

bone protein and bone mineral modifications (Akhter et al., 2004a; Kavukcuoglu et 

al., 2007; Ng et al., 2007; Tang et al., 2007).  

At the whole bone level, three and four-point bending tests have been popular due 

to the inherent simplicity of such tests in determining the mechanical properties 

associated with changes in the structure and material due to exercise (Maloul et 

al., 2006; Wergedal et al., 2006; Wallace et al., 2007), variations among different 

inbred mouse strains (Wergedal et al., 2006) accelerated senescence and 

ovariectomy and growth factor (Maloul et al., 2006). Less common biomechanics 

tests for mouse bone includes femoral neck test which have been used in past to 

determine genetic influence on bone and whole bone fracture studies (Hessle et 

al., 2013). 

In Three-point bending test, the tested bone is positioned onto two supports, and a 

single-prolonged loading device is applied to the opposite surface at a point 

precisely in the middle between the two supports. The alternative 4-point bending 

method is similar except for the fact that the load is applied by two loading, located 

equi-distance from the midpoint (Brodt et al., 1999)The main advantage of this test 

is that the whole section of bone between two load-applying prongs is subjected to 

a uniform moment. Nevertheless, bones are mostly tested in 3-point bending, 

since their irregular surface geometry creates difficulty in having both prongs 

contact the bone simultaneously. 
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Along with bending tests, indention technique has been used in order to determine 

the mechanical properties in mouse bones (Hessle et al., 2013). The indentation 

technique allows determining the hardness of a material. The hardness is the 

resistance to the penetration of a hard indenter.  

 

 

Figure 3-5  Load Types (Compression, Tension, Torsion, Shear, Bending) 
 
 
Bone as a structure may be loaded in tension, compression, bending, shear, 

torsion, or a combination of these modes (figure 3-5). If the magnitude of applied 

load does not exceed the bone’ elastic limits, fracture does not occur and the 

bone, elastically deformed, returns to its prestrained state. The failure mode of 

bone under circumstances of catastrophic overload is directly related to the 

loading mode of the bone. That is, from an evaluation of the fracture 

characteristics, it is possible to speculate what loading modes produced the 

fracture. 

3.3.1 Load Types 

The skeletal system is subjected to a variety of different types of forces on such a 

way that the bone receives loads in different directions. There are loads produced 

by the weight sustentation, by the gravity, by muscle forces and by external forces. 



94 
 

The loads are applied in different directions producing forces that may vary from 

five different types: compression, tension, shear, curvature or torsion. 

TENSION 

Because bone as a structural component of the musculoskeletal system must 

withstand large axial loads (both compressive and tensile) to sustain weight 

bearing and locomotion, it by adaptation, exhibits greater strength when subjected 

to tension directed longitudinally versus tension directed transversely. This 

observation is essentially a restatement of Wolff’s law and helps to explain bone’s 

anisotropic mechanical behaviour (i.e., varying strength as a function of load 

direction) (figure 3-5). 

COMPRESSION 

Compressive forces on a structure tend to shorten and widen it. As in pure 

tension, maximal stresses occur on a plane perpendicular to the applied load; 

however, the stress distribution and resultant fracture mechanics in compressive 

failure are often very complicated. Unlike failure in tension, compressive failure in 

bone does not always proceed along the theoretic perpendicular plane of 

maximum stress, but rather once a crack is initiated it may propagate obliquely 

across the osteons following the line of maximum shear stress. 

SHEAR 

Tensile and compressive forces act perpendicular or normal to a structure’s 

surface. In contrast, shear forces act parallel to the surface and tend to deform a 

structure in an angular manner. 

BENDING 

Bending is a loading mode that results in the generation of maximum tensile forces 

on the convex surface of the bent member and maximum compressive forces on 

the concave side. Between the two surfaces, that is, through the cross section of 

the member, there is a continuous gradient of stress distribution from tension to 

compression. Because mature healthy bone is stronger in compression than in 

tension, failures usually begins on the tension surface. In very young animals or 
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severely osteoporotic bone, however folding or buckle fractures are sometimes 

noted on the concave or compression side of the bone, indicating in a 

compressive mode subsequent to bending. 

TORSION 

Torsion loading is a geometric variation of shear and acts to twist a structure about 

an axis (the neutral axis). The amount of deformation is measured in terms of 

shear angle, alpha. As in bending, in which maximum tensile and compressive 

stresses occur on the surface and distant from the neutral axis, torsional loading 

produces maximum shear stresses over the entire surface, and these stresses are 

proportional to the distance from the neutral axis. 

The skeletal system injury can be produced by applying a high-magnitude single 

strength of one these types of load or by repeated application of low-magnitude 

single strength of one these types of load or by repeated application of low-

magnitude loads over a long period. The second type of injury in the bone is called 

stress fracture; fatigue fracture or bone distension. These fractures occur because 

of cumulative microtrauma imposed on the skeletal system, when the placement of 

loads on the system is so frequent that the process of bone repair cannot be equal 

to the breakdown of the bone tissue(Egan, 1987). 

 

3.3.2 Aim of the study 

Given that Rett syndrome patients have a demonstrated increased risk of fracture 

and reduced bone strength, the aim of this study was to analyse the 

biomechanical properties of bones in  Mecp2-Stop mice modelling Rett Syndrome 

compared to wild-type and genetically rescued mice. We aimed to explore 

potential genotype-related deficiencies in mechanical properties of bone and 

hypothesize reduced bone strength in Mecp2-Stop mice with improved functional 

integrity following genetic rescue. 

3.4 Material and Methods 

Right tibial and femoral shafts from each comparison genotypes of male and 

female cohorts were subjected to mechanical testing (three point bending and 
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microindentation tests) after they are scanned by Sky scan 1172/A X-ray 

computed microtomgraphy (μCT). The mechanical tests were selected to test the 

cortical and cancellous parts of the bone. The tests were performed using a 

Zwick/Roell z2.0 testing machine (Leominster, UK) with a 100N load cell. 

3.4.1 Three-point bending test 

For three-point bending test (Hessle et al., 2013), tibias were placed on the lower 

supports, at 8 mm separation, with the posterior surface of the tibia facing down. 

Load was applied on the shaft of the tibia using the Zwick/Roell testing machine 

until the fracture occurred (figure 3-5) 

 

Figure3-6  Three point bending test on right tibias  
(A)Tibia was placed on the lower supports, with posterior surface facing down. 

Load was applied until the fracture occurred. Supports were separated 8mm. (B) 

Test was performed using the Zwick/Roell testing machine with a 100N load cell 

until fracture occurred. These tests were performed in Mechanical Engineering 

Lab, Rankine Building, Department of Engineering University of Glasgow. 

 

From each bone tested, a load-displacement graph was obtained using the 

testXpert® II software installed in computer linked to the Zwick/Roell z2.0 testing 

machine. The stiffness was calculated by measuring the slope in the graph of 

force-displacement and the ultimate load by measuring the maximum force that 
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the bone was able to resist. The second moment of area was calculated using the 

equation that considers the bone as a hollow cylinder: 

                                                 
 

  
         )        (eq.1) 

Where I is the second moment of area, the    is outside diameter and the    is the 

internal diameter; both of these measurements were taken from the μCT 

Young’s modulus measure was also estimated from the geometry of the loading 

device and the measured stiffness of the bone. Such an estimate is based on 

beam theory and the approximation of the shaft of the tested bone as a uniform 

hollow tube.  

For Young’s modulus following equation was used: 

                                           
          

    
      ................................... (eq.2) 

Where          is the stiffness, determine from the load-displacement curve.     is 

the separation of the supports and   is the second moment of area of the tibias. 

This is a commonly used method to estimate the mechanical properties of the 

material bone within the whole bone (Sharir et al., 2008). 

3.4.2 Micro indentation hardness test 

Right femur diaphysis from male and female mice cohort were cut transversely at 

midpoint of each bone shaft, using a diamond saw (IsoMet Plus Precision Saw; 

Buehler Ltd.). The midpoint of each bone was measured using venire calliper. 

Distal mid-shaft sections were used for the micro indentation test in each mouse 

bone. Proximal part of each right femur per mouse per genotype was used in 

femur neck test (see below). 

Bone sections were air dried and embedded in metallurgical mounting resin 

prepared by using, VARI-SET Acrylic powder/liquid system (VARI-SET 10/20 

liquid, Meta Prep, UK). The moulds were then allowed to solidify at room 

temperature for 24 hours. The bone cross-section surface was subsequently hand 

polished using silicon carbide papers with decreasing grain size (240, 400, 600, 
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800, and 1200) impregnated with diamond pastes (15, 6 and 1µm) to produce a 

smooth polished surface. 

Vickers test method (Dall’Ara et al., 2007; Hessle et al., 2013) was employed while 

using the microindentation hardness test. Seven indentations with an applied load 

of 25gf were done, along the transverse section of each specimen, using a Wilson 

Wolport Micro-Vickers 401MVA machine UK (figure 3-6). The indenter of the 

machine is held in place for each indentation for 10 or 15 seconds according to the 

average value found in the literature. Furthermore, to avoid overlapping of 

deformation from one indentation to another a minimum distance of 2 diagonals 

between indentations was established (ASTM E384).The Vickers pyramid number 

(HV) was calculated with an equation where the load (L) is in grams force and the 

average of the two diagonals (d) is in millimetres:                                        

HV=1.854 
 

  
        ...................................................... (eq.3) (figure 3-7) 

3.4.3 Femoral neck fracture test 

The femoral neck fracture test was used to test the mechanical properties 

(stiffness and ultimate load) at the proximal part of femur. The shaft of the femur 

was fixed in a mechanical chuck and placed in the Zwick/Roell z2.0 mechanical 

testing machine (Akhter et al., 2004b). The bone sample was clamped at a 9˚ 

angle lateral to the vertical axis of the bone (Hessle et al., 2013). Load was applied 

to the femoral head until fracture occurred. After each bone being tested the load-

displacement graph is obtained by using the testXpert® II software installed in 

computer linked to the Zwick/Roell z2.0 testing machine Stiffness and ultimate 

load measurement were calculated in a similar method as described earlier (see 

section3.4.2 above) (figure 3-7). 
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Figure3-7  Microindentation Test for hardness 
(A) Image showing Wilson Wolport Micro-Vickers 401MVA machine used for the 

micro indentation test. (B) Resin mould, with embedded bone tissue, white arrow 

pointing towards the bone sample held in clippers. (Ci) mouse femur, dotted line 

black line showed the midpoint of femur, distal half was used for the 

microindentation test. (Cii) transverse section of the bone sample showing the 

diamond shape indentation marks on the bone samples (arrows). (Ciii) Insert 

shows higher power image of region indicated by box in Cii. Scales bars as 

shown.  



100 
 

 

 

 

Figure3-8  Femur neck test 
(A) Image showing proximal femur mounted at 9° to the horizontal plane in the 

mechanical chuck. Load was applied on the head of the femur until the fracture is 

produced. (B) Image showing Zwick Roell testing machine used for the femur neck 

test.Results 

 

3.5 RESULTS 

In order to determine any gross skeletal abnormalities caused by MeCP2 

deficiency, the tibia and femur of male Mecp2stop/y mice together with wild-type 

littermates were examined for gross morphometric analyses; measurements are 

summarized below (table 3-1).  

Morphometric measurements revealed no significant difference in average body 

weights of male and female genotypes. Weight measures of femur and tibia 

showed a significant reduction in Stop mice and Rescue mice showed a significant 

treatment effect and improvement in weight of femur bone. No difference in femur 

length was observed. All data given as mean ± SD for each group of samples (n=5 
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per genotype). Significance was assessed by one way ANOVA with Tukey’s post 

hoc test. Abbreviations: * p<0.05, ** p<0.01. Symbol¶ (a comparison is made 

between Wild-type control and Stop).Symbol ɸ (a comparison is made between 

Stop and Rescue). Symbol ψ (a comparison is made between Wild-type control 

and Rescue). For ease of understanding, the male mice comparison genotypes 

will be addressed as Wt (control); Stop (Mecp2stop/y); and Rescue (Mecp2stop/y, 

CreER) mice and female genotypes cohort as Wt (control); Stop (Mecp2+/stop); and 

Rescue (Mecp2+/stop, CreER) mice in subsequent chapters. 

3.5.1 No difference in whole body weights of male and female 
cohorts 

No difference in whole body weights was observed genotypes in male mice (figure 
3-9). 

 

Figure3-9  Bodyweight measurements in male and female mice 
cohort. 
Bar graphs showing, male (A) and female (B) mice cohort analysis results for 

whole body weight measurements (A) In male mice whole body weight 

comparison among genotypes showed no significant difference (WT= 30.73 ± 3.75 

g; Stop = 28.50 ± 3.75g; Rescue= 28.21 ± 2.37g; n=6 per genotype; p<0.05, 

ANOVA with Tukey’s post hoc test) (p<0.05). (B) Similar trend was seen in female 

mice cohort (p<0.05) (WT= 32.72 ± 5.59g; Stop= 41.70± 7.15g; Rescue= 39.47 ± 

9.77g; n=6 per genotype; p<0.05, ANOVA with Tukey’s post hoc test). 

Abbreviation: ns = not significant, Plots show mean ± SD. 
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3.5.2 Reduced weight of femur and tibia in Mecp2-Stop male mice 

Mecp2stop/y mouse femurs showed a significantly (p<0.05) reduced weight in 

comparison with wild-type (Wt) littermate controls and Mecp2stop/y, CreER. A 

similar trend of reduction in whole bone weight was observed in Mecp2 Stop mice 

tibias, weight measures (table 3-1). 

Table 3-1  Morphometric measurements of stop male and female 
mice 

 

 
 

3.5.3 No significant difference in long bone (femur and tibia) 
weights in Mecp2-Stop female mice 

In contrast of the measurements made in male tissues, the female comparison 

cohort did not show any significant p>0.05 difference in femur weight measures 

between genotypes and similarly no reduction in female tibia weight was found 

(table 3-1). 

3.5.4 Significant reduction in tibial length of Stop male mice 

There was an accompanying reduction p<0.05 in tibial length in male Mecp2 Stop 

mice but no significant difference in femoral length between comparison groups 

(table 3-1). 

3.5.5 No significant difference in long bone (femur and tibia) 
length measures in Mecp2-Stop female mice 

Female Mecp2 Stop mice showed no significant difference in tibial and femur 

length among the comparing genotypes (table 3-1). 
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3.5.6 Significant reduction in biomechanical properties in Stop 
male mice and improvement in bone integrity of Rescue 
male mice. 

Following the morphometric analysis, mechanical tests were applied in order to 

explore possible differences in the biomechanical properties of MeCP2-deficient 

mice bones. Results from this test revealed a reduced structural stiffness (p<0.01), 

ultimate load (p<0.01) and Young’s modulus (p<0.05) measures in male 

Mecp2stop/y mice.  Samples from Rescue mice revealed that stiffness, ultimate load 

and Young’s modulus measures were not different from wild-type values (figure 3-

10).  

Figure3-10  Three point bending test results in male mice cohort                

Male mice measures of (A) cortical bone stiffness (WT= 106.8 ± 17.88 N/mm; Stop 

= 64.7 ± 10.50 N/mm; Rescue= 90.7 ± 14.83 N/mm , n=5 per genotype; p<0.01, 

ANOVA with Tukey’s post hoc test) (B) Ultimate load (WT= 17.50 ± 2.45 N; Stop= 

12.09 ± 1.94 N; Rescue=15.7 ± 0.08 N; n=5 per genotype; p<0.01, ANOVA with 

Tukey’s post hoc test) and (C) Young’s modulus (WT= 12.1 ± 2.37 kN/mm²; Stop= 

7.6 ± 1.60 kN/mm²; Rescue = 12.4 ± 3.49 kN/mm2;  n=5 per genotype; p<0.05, 

one way ANOVA with Tukey’s post hoc test) were significantly reduced in 

Mecp2stop/y (Stop) mice as compared to wild-type (WT), and genetically rescued 

Mecp2stop/y; CreER (rescue) mice. Abbreviation: ns = not significant; * p<0.05, ** 

p<0.01. Plots show mean ± SD. 
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3.5.7 Female mice tibia showed no difference in biomechanical 
properties of bones  

The same tests when conducted on tibia from female Mecp2 Stop mice showed no 

significant difference in stiffness, ultimate load and Young’s modulus (measure of 

stress-strain relationship) measures (figure3-11). 

 

 
 
 

Figure3-11  Three point bending test measures in female cohorts 
Bar plot showing measures of (A) cortical bone stiffness, (WT= 98.62 ± 7.24 

N/mm; Stop = 84.48 ± 10.07 N/mm; Rescue= 85.17 ± 13.00 N/mm , n=5 per 

genotype;, ANOVA with Tukey’s post hoc test) (B) ultimate load (WT= 16.60 ± 

3.77 N; Stop= 12.68 ± 1.86 N; Rescue=12.63 ± 3.25 N; n≤5 per genotype; 

p0>0.05, ANOVA with Tukey’s post hoc test)  and (C) Young’s modulus (WT= 

12.29 ± 4.33 kN/mm²; Stop= 13.94 ± 2.50 kN/mm²; Rescue = 14.67 ± 0.70 

kN/mm2;  n=3-5 per genotype; p0>0.05, one way ANOVA with Tukey’s post hoc 

test)  in female wild-type (Wt), Mecp2Stop/+ (Stop) and Mecp2stop/+ (Rescue) mice. 

Abbreviation: ns = not significant; Plots show mean ± SD. 

3.5.8  Male and Female Rescue mice showed a significant 
improvement in bone hardness 

Results from male mice showed significantly reduced bone hardness in male Stop 

mice as compared to wild-type littermates. Moreover, tamoxifen-treated Rescue 

mice did not differ significantly from wild-type and showed a significant treatment 

effect when compared with the Mecp2Stop/y cohort (WT= 73.7 ± 1.3 HV, Stop = 65.4 

± 1.2 HV, Rescue = 72.1 ± 4.7 HV, n = 5 per genotype, p<0.01, ANOVA with 

Tukey’s post hoc test). A significant deficit in bone hardness was also observed in 

female Mecp2 Stop mice femurs (WT= 72.8 ± 6.3 HV, Stop = 63.2 ± 3.0 HV, 
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Rescue = 75.7 ± 2.2 HV, n=3-5 per genotype; p<0.01, ANOVA with Tukey’s post 

hoc test). Again, rescue mice showed a significant treatment effect and measures 

were not found significantly different, from wild-type (figure 3.12). 

 

Figure3-12   Microindentation results in male and female cohorts  
(A) Bar chart showing a significant reduced cortical bone hardness in Mecp2stop/y 

(Stop) mice when compared with the wild-type (Wt) controls  (p<0.05, one way 

ANOVA with Tukey’s post hoc test, n = 5 femurs per genotype). In contrast, micro 

hardness measures in rescued Mecp2stop/y, CreER (rescue) mice were not different 

from controls (p>0.05; n=5 femurs). (B) Microindentation hardness test results in 

female mice showed a similar pattern with reduced cortical bone hardness in 

Mecp2+/stop (Stop) mice when compared with wild-type(Wt) controls and rescued 

mice (n= 3-5 femurs per genotype, one way ANOVA with Tukey’s post hoc test). 

Abbreviations: ns = not significant, * = p<0.05, **= p<0.01, ***=p<0.001). Plots 

show mean ± SD.  

3.5.9  Male and Female Stop mice showed no significant 
difference in femur biomechanical properties 

This test was conducted to assess possible group differences in the mechanical 

properties of the femoral neck. Femurs were mounted and force applied as shown 

in figure 3-7. In male mice, no significant differences were observed in stiffness 

and ultimate load measures of biomechanical properties. 
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Similar findings were obtained in the female mice cohorts (Figure 3-13). 

 

 

Figure3-13  Fracture neck test results of male and female cohort 
Bar Plot of male stop (A-B) mice femur neck test results, showing; (A) stiffness, 

(WT = 130 ± 35.1 N/mm; Stop= 119 ± 28.2 N/mm; Rescue = 131 ± 13.9 N/mm, 

n=5 per genotype; p>0.05, ANOVA with Tukey’s post hoc test) (B) ultimate load 

(WT = 15.9 ± 3.9 N; Stop = 12.6 ± 2.4 N; Stop = 13.4 ± 2.2 N, n = 5 per genotype, 

p>0.05, ANOVA with Tukey’s post hoc test) (C-D) Female mice femur displayed 

the similar pattern; (C) cortical bone stiffness WT = 157± 43.23 N/mm; Stop= 118 

± 41.73 N/mm; Rescue = 137± 42.33 N/mm, n=5 per genotype; p>0.05, ANOVA 

with Tukey’s post hoc test) (D) ultimate load (WT = 13.77 ± 5.77 N; Stop = 12.05 ± 

3.93 N; Stop = 12.6 ± 3.90 N, n=3-5 per genotype, p>0.05, ANOVA with Tukey’s 

post hoc test). Abbreviation: ns = not significant; Plots show mean ± SD. 
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3.6 Discussion 

As describe earlier, MeCP2 is a nuclear protein, abundant in post mitotic cells of 

the brain but also widely expressed throughout the body (Shahbazian et al., 

2002b; Braunschweig et al., 2004; Zhou et al., 2006). The results of my 

fluorescence confocal microscope images confirmed this nuclear expression of 

Mecp2 in all bone cells nuclei stained with DAPI (4’,6-Diamindino-2 Phenylindole 

Dilactate, a blue fluorescent nucleic acid stain) of male wild type GFP tagged 

mice( figure 2-4Ai-iv)  . 

Further on, confocal images from hemizygous stop male mice (figure 2-4 Bi-iv) in 

which Mecp2 is silenced by a stop cassette, GFP tagged Mecp2 nuclear 

expression was found absent in all bone cells. On the other hand heterozygous 

Mecp2+/stop (Stop) female (figure 2-4 Ci-iv) showed only ~50% of nuclear bone 

cells expression of Mecp2 in mice in which one Mecp2 allele is silenced to mimic 

the mosaic expression pattern seen in human Rett syndrome (Guy et al., 2007; 

Robinson et al., 2012a). 

For the morphometric and biomechanical analysis I have used the lower limb long 

bones (femur and tibia) as these were found to be the most commonly effected 

bones in RTT patients in terms of  increase rate of fracture was found in these 

bones (Downs et al., 2008a; Roende et al., 2011b). 

The results of  morphometric analysis of long bones revealed that Mecp2 stop 

male have an abnormal skeletal phenotype that shares components of the clinical 

skeletal features of RTT patients (Neul et al., 2010). Long bone morphometric 

analysis showed that Mecp2 stop male mice have lighter (a significant reduction of 

14% in femur weight and 13% in tibial weight) and shorter bones (a significant 

reduction of 10% in tibial lengths) as compared to age matched wild type controls 

(table 3-1).  These findings were consistent with the growth retardation found in 

RTT patients (Schultz et al., 1993; Neul et al., 2010).  

Although there was no significant difference found in whole body weight measures 

of three comparison groups in male stop mice cohorts. The basis for this apparent 

discrepancy was the observation that male stop mouse model often had more 

subcutaneous fat than their wild type matched littermates detected during the 
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dissection. These findings of my study were also found consistent with the findings 

of O’Connor and colleagues study on RTT bone phenotype using the Mecp2 null 

mouse model. 

In Robinson and colleagues study  of  morphological and phenotype reversal  in 

Mecp2 stop male mice, an observation of reduced skeletal size along with the 

presence of a kyphotic curvature of the spine had been made (Robinson et al., 

2012a). In my project I have used the same stop mice. Kyphotic posturing 

frequently observed in the stop mice is comparable to the ‘S’ type scoliotic 

curvature of the spine that is more common among RTT patients (Koop, 2011; 

Riise et al., 2011). These skeletal dysmorphic findings in stop mouse model were 

also found consistent with the bone phenotype of Mecp2 null mouse model by 

O’Connor et al. One of the unique features of my study was the use of Rescue 

mice. Morphometric analysis of rescue mice in which Mecp2 gene has been 

reactivated showed a significant improvement in femur bone weight (15%) as 

compared to stop mice. A similar trend of increase in tibial weight (10%) as 

compared to wild type was also observed but it does not reach statistical 

significance owing to the power of my study. Tibial and femur length 

measurements remained reduced. 

 In contrast to male stop mice, adult female heterozygous Mecp2+/stop mice did not 

showed any significant differences in gross tibia and femur length/weight 

measures. However an interesting similar trend as found in male stop was also 

noted in female stop mice cohort displaying lighter bones (7% reduction in femur 

weight and 5% reduction in tibial weight) and in case of tibia shorter bones (5%) as 

compared to age match wild type but the values did not reached the statistical 

significance (table 3-1).  

My study is the first study in which female mice have been used to explore the 

bone phenotype of RTT. Female Mecp2+/stop are a gender appropriate and 

accurate genetic model of RTT yet display a more subtle and delayed onset (4-12 

months) of neurological features (Guy et al., 2007) compared to hemizygous male 

mice who become symptomatic by the age of 6-8 weeks. 

A major finding of the current study was the demonstrated robust deficits in 

mechanical properties and micro-hardness of bone seen in the male Mecp2 Stop 
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mice. This is the first time that biomechanical tests have been performed on stop 

mice modelling RTT bone phenotype. Such deficiencies in mechanical and 

material properties were profound (39.5% reduction in stiffness in the three point 

bending test; 37% decrease in Young’s modulus, 31% in load and 12.3% 

reduction in micro hardness) (figure 3-10) and could explain the occurrence of low 

energy fractures reported in Rett syndrome patient (Leonard et al. 1999; Zysman 

et al. 2006; Downs et al. 2008; Leonard et al. 2010). Whilst I have not observed 

overt signs of spontaneous fractures in experimental colonies of mice, such a 

magnitude of reduced bone stiffness and load properties could mirror the 4 times 

increased risk of fracture in Rett patients compared to the population rate (Downs 

et al. 2008). Given that the mice are housed under standard laboratory conditions 

and there is not opportunity for traumatic bone insult, it is perhaps not surprising 

that spontaneous fractures are not apparent.  

Male rescue mice interestingly showed a significant improvement in bone stiffness 

(40%), ultimate load (10%),Young’s modulus (61%) and microindentation (12%) 

when the gene is reactivated as compared to male stop mice. These findings were 

quite encouraging and potentiated our hypothesis of genetic basis of RTT bone 

phenotype (figure 3-10). 

Mechanical properties and micro hardness test was also performed in female 

heterozygous cohort. This is the first time that female mice modelling RTT bone 

phenotype has been used.  

Biomechanical analysis of heterozygous stop female showed similar trend (15% 

reduction in stiffness and 24% reduction in ultimate load as compared to age 

matched wild-type control) as the results of their morphometric analysis results but 

like morphometric findings, these values does not reach the statistical significance 

(figure 3-11). 

The finding that a similar significant reduction as male stop mice values, in micro 

hardness (14%) measure was seen in female mice that are heterozygous and 

mosaic for the mutant allele is important and demonstrates that the bone deficits 

are not restricted to the more severe male RTT-like phenotype but are seen in a 

gender and MeCP2 expression pattern appropriate model of RTT.  
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A very interesting finding in female heterozygous rescue mice was found to be a 

significant improvement in microhardness (19%) when the gene is reactivated as 

compared to the stop female. These findings were quite encouraging and 

displayed that the bone deficits rescue is not restricted to the more severe male 

RTT-like phenotype but rescue effects can be seen in a gender and MeCP2 

expression pattern appropriate model of RTT (figure 3-12). 

 Analysis of femoral neck fracture showed no difference between genotypes. Male 

stop mice showed a decrease of 9% in stiffness and 21% decrease in load 

measures but the values did not reach the statistical significance. Male rescue 

mice displayed a 10% improvement in stiffness and 6% improvement in ultimate 

load measures but these values were also not found statistically different (figure 3-

13).  

Female stop mice showed a similar trend of decrease in stiffness values of 15% 

and load value of 13% as compared to age matched wild type control, while 

female rescue mice showed a 16% improvement in stiffness as compared to stop 

mice and no improvement are seen in ultimate load values. Similar to male stop 

and rescue mice measures of femur neck test all these measures did not reached 

the statistical significance (figure 3-14).  

It is possible that the complex microstructure of bone in the femoral neck (cf. the 

simple cortical shaft geometry) is a confounding factor and limits the sensitivity of 

this test. Indeed, we also noted greater variance in this test than in the other 

biomechanical tests which may limit our ability to resolve subtle changes in this 

parameter. Nevertheless, this test has been used in other rodent models to show 

deficits in femoral neck integrity (Hessle et al., 2013). 

An important finding of the current study and one with therapeutic implications is 

that the observed deficits in cortical bone material and biomechanical properties 

were rescued by delayed postnatal activation of the Mecp2 gene. This finding 

mirrors the improvements seen in multiple non-bone phenotypes seen in the 

Mecp2Stop/y  mice after delayed activation of the Mecp2 gene including survival, 

normalized bodyweight, locomotor and behavioural activities and well as 

morphological features within the brain (Guy et al., 2007; Robinson et al., 2012a). 
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 These results suggest that the bone abnormalities present in RTT patients may 

be at least partially reversible using gene-based therapies that are currently being 

developed (Gadalla et al., 2013; Garg et al., 2013) should the animal studies 

translate to clinical studies. However, it is also possible that significant 

amelioration of bone phenotypes may also be achieved using pharmacological 

strategies. Pharmacological approaches are being investigated in RTT, both in 

pre-clinical studies as well as clinical trials (Gadalla et al., 2011; Gadalla et al., 

2013; Garg et al., 2013). Of particular importance for this approach with respect to 

bone phenotypes is to identify the mechanisms by which MeCP2 deficiency results 

in altered bone properties. Whilst we show that MeCP2 is expressed in osteocytes 

(figure 3.8), the protein is widely expressed throughout the body and it is possible 

that metabolic and endocrine perturbations elsewhere in the body (Motil et al., 

2006; Motil et al., 2011; Roende et al., 2014) may also impact on bone 

homeostasis.  

However the results obtained from our biomechanical tests study were quite 

encouraging, the decrease in bone strength in Mecp2 deficient mouse and the 

subsequent improvement of bone integrity when the gene is switch back lead us to 

explore further into the mechanism by which Mecp2 is causing this deficiency in 

bone strength. The experiments performed in this regard will be discussed in detail 

in the next chapters. 
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Chapter 4 

Radiology based structural studies to assess 
trabecular and cortical bone parameters in a 
mouse model of Rett Syndrome  

  

4.1 Introduction 

Radiographic and ultrasound studies have been conducted in Rett syndrome 

patients to better understand the underlying pathology that may account for the 

reduced bone strength and increased risk of fractures in RTT patients (Leonard et 

al., 1995; Leonard et al., 1999b; Cepollaro et al., 2001). The majority of these 

imaging studies have been conducted to investigate the bone mineral density and 

bone mineral content in RTT patients. However there remains to be a detailed 

study exploring the effect of MECP2 mutations on bone structural geometry in 

humans. One reason for this may be the lack of appreciation of bone phenotypes 

in what is considered a largely neurological disorder. Another difficulty might be 

the application of radiological test in patients with many other confounding 

impairments. For instance, patients with scoliosis who require spinal rod 

placements have implanted metal, which interferes with the ability of Dual-energy 

X-ray absorptiometry (DXA) in provision of accurate assessment of bone 

parameters. 

Bone mass has been investigated in detail in RTT patients (Haas et al., 1997; 

Leonard et al., 1999c; Cepollaro et al., 2001; Motil et al., 2006; Zysman et al., 

2006; Gonnelli et al., 2008; Shapiro et al., 2010) as it is  shown to be a strong 

predictor of fracture risk in adults (Hui et al., 1988) and children (Hui et al., 1988; 

Flynn et al., 2007). Although prospective measures of BMD in the lumbar spine of 

children with cerebral palsy did not predict subsequent fracture risk (Henderson, 

1997).  
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Neurological disabilities found in RTT patients evolves over several years with 

potential co-morbidities such as poor nutrition due to problems with swallowing 

(Oddy et al., 2007), surgical procedures (Kerr et al., 2003) for the correction of 

bone deformities (scoliosis) and certain anticonvulsant medications usage 

(Leonard et al., 2010), that together may limit the development of normal bone 

mass. The availability of murine RTT models now permits an assessment of the 

effects of MECP2 mutation on bone mass independent of theses contributing 

factors. The ultra structure and density of bone in mice with and without the Mecp2 

protein have been investigated in a study by O’Connor and colleagues (O'Connor 

et al., 2009b). This study showed, growth retardation, abnormal growth plates 

(irregular shape chondrocytes) and decreased cortical and trabecular bone 

parameters. Another study conducted on the same Mecp2 null mouse model by 

Shapiro and colleagues found differences in cortical thickness, mineralization of 

the medullary cavity in long bones and spinal bone density (Shapiro et al., 2010). 

O’Connor and colleague in their Mecp2 knockout mouse model also found 

modestly lower values of bone mineral density (BMD) and bone mineral content 

(BMC) but this decrease did not achieve statistical significance and hence bone 

mineral density changes as a cause of bone anomalies seen in RTT murine model 

is still not fully understood. 

Rett syndrome bone phenotypes have been frequently compared to osteoporosis 

which has been defined as ‘a systemic skeletal disease characterized by low bone 

mass and micro-architectural deterioration of bone tissue with a resulting increase 

in fragility and risk of fractures’ (Zysman et al., 2006). Hence, a comprehensive 

approach to investigate bone material and structural properties is required to 

better understand the bone phenotype in RTT. 

Previous studies investigating various osteoporotic processes in murine model 

have used femur, tibia and lumbar 5 and 6 vertebrae (Sheng et al., 2002; Rubin et 

al., 2004) as sample biopsies to better understand underlying structural 

pathologies in a range of conditions. The work presented in the current chapter 

was an analysis of long bones and vertebrae in order to explore aspects of cortical 

and trabecular bone structure of Mecp2 stop mice. 
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4.1.1 Bone structure and Bone strength 

Predicting fracture propensity for fracture requires a proper understanding of the 

relationship between bone structure and the mechanical properties of bone. The 

material composition and structural design of bone determines its strength. 

In recent years the concept of bone strength has moved beyond density alone and 

has expanded to include an amalgamation of all the factors that determine how 

well the skeleton can resist fracturing, such as micro architecture, accumulated 

microscopic damage, the quality of collagen, the size of mineral crystals and the 

rate of bone turn over (Chavassieux et al., 2007). 

In particularly, the supremacy of bone structure has been found over tissue-level 

material properties. The net response of osteoblasts for bone formation and 

osteoclasts for bone resorption are reflected by changes in the trabecular structure 

and bone volume fraction (Nazarian et al., 2008). 

Studies in the past have concluded that a unified consideration of the relationship 

of bone tissue mineralization and trabecular structure can predict the mechanical 

properties of normal and pathologic bones (Cody et al., 1991; Kim et al., 2007).  

 

4.1.2 µCT use in skeletal phenotypes  

Histological and radiological studies are usually employed to understand the bone 

micro architecture. Micro computerised tomography (µCT) has now become the 

gold standard for the evaluation of bone morphology and micro architecture in 

mice and other small animals (Martín-Badosa et al., 2003). The accuracy of µCT 

morphology measurements has been evaluated both in animals (Waarsing et al., 

2004; Bonnet et al., 2009) and in humans (Kuhn et al., 1990; Müller et al., 1998) 

specimens. These studies have shown that 2D and 3D morphologic 

measurements by µCT generally are correlated highly than these from 2D 

histomorphometry. 
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4.1.3 Aim of the study 

The results obtained from the analyses of biomechanical properties described in 

the previous chapter were encouraging in that they demonstrated a reduction in 

bone strength in Mecp2 mice and also an amelioration of this phenotype in stop 

mice genetic rescue. This suggested that at the functional level in stop mice, bone 

deficits were overt but reversible. The aim of the experiments described in the 

current chapter was to explore further the potential structural alterations in bone of 

Mecp2 deficient mice that might account for some of the observed biomechanical 

deficits. I hypothesised that the reduction in bone strength, seen in  Mecp2 stop 

mice is due to alternations in bone structure and bone mineral density (BMD) 

levels. In order to analyse these features I have used the µCT scanning 

technology to analyse the ultra structure of bones from wild-type, Mecp2 stop and 

genetically rescued mice of male and female cohorts. 

4.2 Material and Methods 

The structural properties of bone samples from wild-type, Mecp2-stop and 

genetically recued mice were assessed using scanning electron microscopy and 

were also visualised using a µCT scanner (see below). The result analysis 

obtained were then used to investigate cortical and trabecular bone structure.  

4.2.1 Micro-computed tomography (µCT) 

After the gross morphometric measurements (chapter 3) a subset of bone samples 

was scanned using µCT. The samples were scanned prior to any biomechanical 

tests being performed. All scans were conducted using the micro computed 

tomography facility at the Orthopaedic Research group, University of Edinburgh, 

Edinburgh, UK. We have used the Sky Scan 1172/A X-ray Computed 

Microtomgraphy system (µCT) maintained by Robert Wallace, Chancellors 

Building, Orthopaedic Research Group, Edinburgh, UK. 

The micro CT scanner is composed of a sealed micro focus X-ray tube, air cooled 

with a spot size lens and a camera. The maximum length of object that is capable 

of fitting into this device is 40mm. Bone specimens were scanned in wet form by 

placing them first in a vial containing water to maintain hydration (figure 4.1). 
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The sample vial was subsequently fixed to the machine stub (mounting plate) with 

masking tape, which in turn was securely fastened to the holder in the µCT x-ray 

chamber. This must be secured correctly as any movement of the sample could 

render the scan unusable. 

Multiple projection images were obtained with a rotation of 0.45°- 0.1° between 

each image. Given a series of projection images a stack of 2D sections was 

reconstructed for each specimen. CT-Analyser v1.8.1.3 (Skyscan, Kontich, 

Belgium) and NRecon v1.6.6.0 (Skyscan, Kontich, Belgium) were used for the task 

of reconstruction and whole data processing as described in user’s manual and 

according to protocols followed by local technical faculty. Image slices obtained 

and stored in the .bmp format with indexed grey levels ranging from 0 (black) to 

255 (white). Understandably, this is a resource intensive computer task and as 

such a dedicated computer was used for this process (2x 3GHz Quad core CPUs, 

8Gb Ram, NVIDIA Quadro FX 570). 

 

Figure4-1  Micro CT scanning of Tibia 
(A) Mouse tibia in the test tube filled with water to maintain hydration during the CT 

scanning (B) Scanned image of tibia placed in test tube taken during the µCT 

scan. Images were scanned at a voxel resolution of 34μm for male and female 

stop tibia, using a sky scan micro CT machine. The X-ray tube was operated at 

54KV and 185μA. The Sky scan 1172 micro CT scanner at Chancellor’s building, 

Orthopaedic Research Group facility at the  University of Edinburgh, Edinburgh UK 

was used for the trabecular and cortical bone parameters analysis. 
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4.2.2 Micro-computed tomography (µCT) for cortical bone 
measures 

In order to obtain accurate internal and external diameter measures for calculating 

second moment of area and for cortical bone structural parameter evaluation, right 

tibias from male (n=5) and female cohorts (n3-5) were scanned at a voxel 

resolution of  34μm using a sky scan micro CT machine. The X-ray tube was 

operated at 54KV and 185μA. For cortical bone parameter analyses, 2mm 

midshaft region of interest (ROIs) were selected from tibial diaphysis, starting from 

the anatomical point of tibiofibular junction in each bone specimen.  

 

 

Figure4-2 Screen shot of image analysis while using the CT 
analyser software, displaying region of interest at mid diaphysis 
of tibia 
Representative screen shot showing mouse tibia with a region of interest at the 

mid-diaphysis, while CT scan images of tibia were analysed using the CT analyser 

software v 1.8.1.3. A region of interest (2mm) was selected from tibial shaft per 

bone specimen per genotype. A lower grey threshold value of 113 and upper grey 

threshold value of 255 was used as thresholding values. Care was taken that all 

the reconstruction parameters selected were applied identically to all bone scans. 

  

A 
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Images obtained were reconstructed and analysed using the NRecon software v 

1.6.6.0 and CT analyser software v 1.8.1.3. The data from each scan was then 

split by region of interest. A lower grey threshold value of 113 and upper grey 

threshold value of 255 was used as thresholding values in each cortical bone 

sample. All the reconstruction parameters selected were applied identically to all 

bone scans (figure 4-2). 

 Individual two dimensional object analyses were performed on six sections per 

bone specimen within each comparison genotype group to calculate the inner and 

outer perimeters of bone. An average of six values per specimen then used as the 

final measure for the inner and outer perimeter and subsequently cortical 

thickness measurement was derived from these values. Three dimensional 

analyses further used to calculate marrow area, cortical area, total area and bone 

volume. 

4.2.3 Scanning Electron Microscopy (SEM)  

The Undecalcified, left distal femur metaphyseal region from both male mice (n=5) 

and female (n=3-5) mice were selected to observe any trabecular structural 

differences using scanning electron microscope (SEM) Stereoscan 250 MK3, 

Cambridge, UK) at the Anatomy Department, University of Glasgow, Glasgow, UK. 

4.2.3.1 Sample preparation for SEM 

Distal parts of left femur per bone per genotype from both male and female mice 

were cut with diamond saw (IsoMet plus Precision Saw; Buehler Ltd.) transversely, 

3mm above the condyles. The 3mm distance from the medial condyle was 

measured with vernier calliper before cutting. Bones were then stored in 2.5% 

paraformaldehyde in 0.1M sodium phosphate buffer (water, pH7.4) at 4°C for 48h. 

Adherent soft tissue was removed by immersion in 3% hydrogen peroxide solution 

for 48h. After rinsing with distilled water, specimens were defatted in 50:50 

methanol/chloroform for 24h at room temperature and transferred to a 5% trypsin 

solution (0.1M PB, pH 7.4) at room temperature for 48h. After cleaning with 
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distilled water, specimens were desiccated. Samples were gold coated by using a 

sputter coater (Polaron E5000, East Sussex, UK). An extra coating with silver 

paint was done to have the proper imaging. Images were obtained using a 

scanning electron microscope (Stereoscan 250 MK3, Cambridge, UK).  

4.2.4  5th Lumbar vertebrae, µCT scan for trabecular parameters  

5th Lumbar vertebrae from the mice from each genotype were scanned at a 

resolution of 5µm.  

 

 

 

Figure4-3  Micro CT scan of 5th Lumbar vertebrae 
The L5 vertebrae (n=6) from each genotype of male mice cohort (WT, Stop, and 

Rescue) were dissected out. The micro CT scans of each vertebra were taken 

using the sky scanner µCT facility. (A) Lateral view of L5 vertebrae scanned at 

5um resolution. A cylindrical shape region of interest (ROI), comprising of 150 

slices was taken from the body of the vertebrae. The shell properties of cortical 

bone were not included. (B) Reconstructed image of 5th Lumbar vertebrae, 

showing the selection region of interest (ROI) within the body of vertebrae. A lower 

grey threshold value of 81 and upper grey threshold value of 252 was used as 

thresholding values in each trabecular bone sample. Scale bar=200μm. 
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A higher resolution was needed to scan the trabecular bone and hence 5 μm 

selected for the mouse trabecular bone parameters as compared to the cortical 

bone parameters(Ito, 2005). The X-ray tube was operated at 41kV and 240μA. 

Table 4-1: Trabecular bone parameters 

Abbreviation Description Definition Standard 
Unit 

TV Total volume Volume of the entire region of 
interest 

mm-3 

BV Bone volume Volume of the region segmented as 
bone 

mm-3 

BS Bone surface Surface of the region segmented as 
bone 

mm-3 

BV/TV Bone volume 
fraction 

Ratio of the segmented bone 
volume to the total volume of the 
region of interest. 

% 

BS/TV Bone surface 
density 

Ratio of the segmented bone 
surface to the volume of the region 
of interest. 

mm-2/ mm-

3 

BS/BV Specific bone 
surface 

Ratio of the segmented bone 
surface to the segmented bone 
volume. 

mm-2/ mm-

3 

Conn.D Connectivity 
density 

A measure of the degree of 
connectivity of the trabeculae 
normalised by TV. 

1/ mm-3 

SMI Structure model 
index 

An indicator of the structure of 
trabeculae, 0=parallel plates, 3= 
cylindrical rods 

 

Tb.N Trabecular 
number 

Average number of trabeculae per 
unit length 

1/mm 

Tb.Th Trabecular 
thickness 

Mean thickness of trabeculae 
assessed using Direct 3D methods. 

mm 

Tb.Sp Trabecular 
separation 

Mean distance between trabeculae mm 

DA Degree of 
anisotropy 

Length of longest divided by 
shortest mean Intercept length 
vector. 

a 

Note: Modified and adopted from (Bouxsein et al. 2010). 
 

 

A lower grey threshold value of 81 and upper grey threshold value of 252 was 

used as thresholding values in each trabecular bone sample. A cylindrical region 

of interest (150 slices or 0.774mm) was selected from the centre of each vertebral 

body excluding the cortical shell area, in order to analyse only the trabecular 

parameter specifically (figure 4.3). Images reconstructed and analysed using the 

NRecon 1.6.6.0 and CT-Analyser 1.8.1.3 software. Vertebral body lengths were 

determined by measuring a line drawn at a 90° angle from the proximal part of the 
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vertebral body to the distal part. Three dimensional analysis was performed for the 

following parameters: trabecular thickness, trabecular separation, trabecular bone 

volume, trabecular porosity, as well as degree of anisotropy (DA) and structure 

model index (SMI); for details of these parameter see (table 4-1 

 
4.2.4.1 Density calibration of 5th lumbar vertebrae in µCT scanner 

 

Bone mineral density (BMD) was standardized to the volumetric density of calcium 

hydroxyapatite (CaHA) in terms of g.cm-3.  For bone mineral density (BMD) 

calibration, the Skyscan CT- analyser, was calibrated by means of phantom rods, 

with known BMD values of 0.25 and 0.75 g.cm-3 CaHA respectively.  

Trabecular (medullary) density can refer to the density of a defined volume of bone 

plus soft tissue. 

Hounsfield units (HU) are a standard unit of x-ray CT density, in which air and 

water are ascribed values of -1000 and 0 respectively. The Skyscan CT-analyser 

software provides for an integrated calibration of datasets into these two density 

scales (HU and BMD). Both require the appropriate calibration phantom scans and 

measurements. 

For density calibration, a scan of free standing tibia, within a tube of water was 

performed. Then the two BMD rods (under the same conditions as the bone scan) 

with BMD values of values of 0.25 and 0.75 g.cm-3  CaHA were scanned as well. 

Reconstruction of the scan of the bone in the water tube was done by using the 

NRecon 1.6.6.0 and CT-Analyser 1.8.1.3 softwares. Reconstruction parameter 

were selected and same parameter were applied throughout the scans of each 

sample bone per genotype. Also care was taken with the selection of the lower 

and upper contrast limits. 
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With the scans and reconstruction of the bones and the calibrating phantoms 

complete, the HU and BMD calibration was implemented in CT-analyser.Following 

density range calibration was selected (Table 3-2). 

Table 4-2: Density range calibration 

Calibration unit Min Value Max Value 

Index 0 255 

HU -1000 7292 

 

4.3 Results 

µCT analysis was used to examine the three dimensional structure of wild-type 

and Mecp2 stop male and female tibias. Micro CT analysis of male Mecp2-Stop 

mice tibia revealed considerable differences in cortical bone parameters while 

several trends were noteworthy in the trabecular bone. 

4.3.1 Micro CT revealed male Mecp2-Stop mice to display altered 
cortical bone properties. 

One of the major structural findings of my current study was the reduction found in 

cortical bone parameters results obtained from the µCT analysis of male Mecp2 

mice cortical bone. These results were consistent with the reduced biomechanical 

strength findings and also correlate with the reduced cortical bone parameters 

seen in RTT patients.  

A significant difference in male stop mice cortical bone parameters was found in 

cortical bone thickness (54%), outer perimeter (20%), inner perimeter (12%), 

marrow area (38%), total area (20%) and bone volume (30%) values as compared 

to wild type control mice However no significant difference was seen in cortical 

area values of Mecp2 stop mice (figure 4-4 i-vii). Rescue mice didn’t show any 

improvement in bone cortical parameters and values obtained, remain reduced 

when a comparison is made with WT control values. 
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Figure4-4 Cortical bone parameter in Mecp2 Stop and Rescue 
male mice 
Bar graphs (i-vii) showing a significant decrease in cortical thickness, (WT= 0.41±0.17mm, Stop= 

0.19±0.07mm, Rescue= 0.21±0.08mm; n=5 per genotype; p<0.05, ANOVA with Tukey’s post hoc 

test outer perimeter (WT= 1.65±0.22mm, Stop= 1.32±0.07mm, Rescue= 1.38±0.05mm; n=5 per 

genotype; p<0.05, ANOVA with Tukey’s post hoc test), inner perimeter (WT= 1.26±0.24mm, Stop= 

1.12±0.07mm, Rescue= 1.08±0.05mm; n=5 per genotype; p<0.05, ANOVA with Tukey’s post hoc 

test), marrow area (WT=0.48±0.14mm², Stop=0.30±0.02mm², Rescue=0.29±0.03mm²; n=5 per 

genotype; p<0.05, ANOVA with Tukey’s post hoc test),total area (WT=1.26±0.17mm², 

Stop=1.05±0.11mm², Rescue=0.98±0.05mm²; n=5 per genotype; p<0.05, ANOVA with Tukey’s 

post hoc test), and bone volume (WT= 1.75±0.21 mm³, Stop=1.39±0.19 mm³, Rescue= 1.39±0.11 

mm³; n=5 per genotype; p<0.05, ANOVA with Tukey’s post hoc test). No significant difference was 

seen in cortical area (WT=0.81±0.08 mm², Stop=0.75±0.13 mm², Rescue= 0.69±0.045 mm²; n=5 

per genotype; p>0.05, ANOVA with Tukey’s post hoc test) values of Mecp2 stop mice as compared 

to wild-type controls. Abbreviation: ns = not significant; * p<0.05, ** p<0.01. Plots show mean ± SD.
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4.3.2 Micro CT scans of heterozygous female Mecp2-Stop and 
Rescue mice showed no significant differences in cortical 
structure parameters 

 

 

Figure4-5 Cortical bone parameters in Mecp2 Stop and Rescue 
Female mice.  
Bar graphs (A-G) showing no significant difference (p>0.05) in results of outer perimeter (WT= 

1.44±0.05mm, Stop= 1.42±0.17mm, Rescue= 1.35±0.05mm; n=3-5 per genotype; p0>.05, ANOVA 

with Tukey’s post hoc test), inner perimeter (WT= 1.21±0.09mm, Stop= 1.18±0.12mm, Rescue= 

1.12±0.12mm; n=3-5 per genotype; p>0.05, ANOVA with Tukey’s post hoc test)  cortical thickness 

(WT= 0.22±0.08mm, Stop= 0.21±0.07mm, Rescue= 0.22±0.06mm; n=3-5 per genotype; p>0.05, 

ANOVA with Tukey’s post hoc test), cortical area (WT=0.82±0.09 mm², Stop=0.71±0.08 mm², 

Rescue= 0.76±0.14 mm²; n=3-5 per genotype; p>0.05, ANOVA with Tukey’s post hoc test), marrow 

area (WT=0.39±0.09mm², Stop=0.40±0.10mm², Rescue=0.29±0.07mm²; n=3-5 per genotype; 

p>0.05, ANOVA with Tukey’s post hoc test), total area (WT=1.21±0.14mm², Stop=1.11±0.17mm², 

Rescue=1.06±0.18mm²; n=3-5 per genotype; p>0.05, ANOVA with Tukey’s post hoc test), and 

bone volume (WT= 1.73±0.22 mm³, Stop=1.51±0.21mm³, Rescue= 1.54±0.31 mm³; n=3-5 per 

genotype; p>0.05, ANOVA with Tukey’s post hoc test) as compared to wild-type controls 
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4.3.3 Scanning electron microscopy revealed altered trabecular 
structure in Stop male mice 

Qualitative analysis using scanning electron microscopy (SEM) of the distal femur 

(n=5 per genotype) revealed porous structure in cortical bone (3 of 5 mice) as well 

as alterations in the architecture of trabecular bone in Mecp2stop/y mice (figure 4-6). 

The central metaphyseal region in Mecp2stop/y mice showed a sparse trabecular 

mass consisting of short, thin trabecular rod and plate structures. In contrast, a 

more robust trabecular structure, with a network of shorter and thicker rods and 

plates was found in wild-type control tissue (figure 4-6). The porosity and altered 

trabecular structure was less evident in rescued Mecp2stop/y, CreER mice. 

 
 
 

Figure 4-6 Scanning electron microscopy reveals pitted cortical 
bone and altered trabecular structure in distal femur of male 
MeCP2-deficient mice. 
Scanning electron micrographs of distal femur in (Ai) wild-type (Wt) and (Bi) 

Mecp2stop/y (stop).Higher powered images of cortical (ii) and metaphyseal (iii) 

regions (areas indicated in A) reveal a more porous structure in cortical bone 

(arrows in Bi indicate pores) and a sparse trabecular structure in Mecp2stop/y mice 

when compared with representative with Wt controls. (Ci-iii) Representative 

micrograph from a Mecp2stop/y, CreER (rescue) mouse.  
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4.3.4 Micro CT scans showed improvement in trabecular bone 
thickness in Rescue male mice 

Three dimensional μCT scan analyses were performed to obtain a quantitative 

measure of trabecular architecture in wild-type, Stop and Rescue mouse 5th 

lumbar vertebrae. A significant reduction of 5th lumbar, trabecular thickness 

(~30%) was observed in Stop male mouse tissues compared to the wild-type 

controls. Interestingly rescue male mice 5th lumbar μCT scan results, showed a 

significant increase (+80%, p<0.01) in trabecular rod and plates thickness 

compared to Mecp2stop/y mice   (Wt=0.073 ± 0.01mm; Stop = 0.051 ± 0.02mm; 

Rescue= 0.09 ± 0.02 mm; n=6 per genotype; p<0.01, ANOVA with Tukey’s post 

hoc test) suggesting a significant treatment effect (figure 4.6). 

 

 
 
 
 
 
 
 

Figure4-7 MicroCT scans of L5 vertebrae revealed thinner 
trabecular mass in MeCP2-deficient mice 
(A) Bar plot showing quantitative analysis of trabecular thickness (arrows in B-D). 

Note the reduced thickness in Mecp2stop/y samples (p<0.05; n=6 per genotype). (B-

D) Micrographs showing representative trabecular samples from wild-type (Wt), 

Mecp2stop/y (Stop) and Mecp2stop/y, CreER (rescue) mice. (E) Scale bar: B-D, 

50µm. Abbreviations: ns = not significant, * = p<0.05, ** = p<0.01; one way 

ANOVA with Tukey’s post hoc test). Plots show mean ± SD.  
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Length of the vertebral bodies revealed a significant difference (WT= 4.157 ± 

0.52mm, Stop= 3.48 ± 0.39mm, Rescue= 3.14 ± 0.37mm; n=6 per genotype; 

p<0.05, ANOVA with Tukey’s post hoc test) in Mecp2 stop and rescue mice 

vertebral body length measurements as compared to age matched wild-

typecontrol. No significant difference was observed in trabecular separation, 

trabecular bone volume, trabecular porosity, bone mineral density (BMD), degree 

of anisotropy (DA) and structure model index (SMI) between comparison 

genotypes of male mice cohort. All findings are summarized in figure 4.6 and table 

4.3. 

 
 

Table 4-3    Lumbar vertebrae trabecular bone parameters 
Body of 5th Lumbar vertebrae was selected as region of interest (ROI) and was 

analysed to assess the trabecular part of the bone. All data given as mean ± SD 

for each group of samples (n=6 per genotype). Significance was assessed by one 

way ANOVA with Tukey’s post hoc test. Abbreviations: * p<0.05, ** p<0.01. 

Symbol¶ (a comparison is made between Wild-type control and Stop male mice). 

Symbol ɸ (a comparison is made between Stop and Rescue male mice).  
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Figure4-8 Trabecular bone parameters bar graphs of Mecp2 stop 
mice 
Bar graphs (A-E); displaying trabecular bone parameters, showed an apparent 

trend of decrease in bone volume fraction (%), connectivity density (1/mm3), 

trabecular separation and structure model index measurements but these values 

does not reach any statistical significant (p>0.05) difference; n=6; Abbreviations: 

ns = not significant ; one way ANOVA with Tukey’s post hoc test). Plots show 

mean ± SD. 

 

4.3.5 Bone density measurements from μCT did not revealed any 
significant difference in Mecp2 stop mice. 

 
In order to analyse bone density measurements, 5th Lumbar vertebrae were 

scanned, and no significant difference was not observed in male stop mice 

genotypes (WT= 0.96±0.06; Stop= 0.92±0.07; Rescue=0.94±0.06 n≤7 per 

genotype; p>0.05, ANOVA with Tukey’s post hoc test). All data given as, mean ± 

SD (figure 4-9). To further confirm these finding we have performed and 

experiment to calculate the ash content. See chapter 5 for full details. 
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Figure4-9  Micro CT derived bone mineral density in Mecp2 stop 
mice 5th lumbar vertebrae 
Bone mineral density (BMD) values in Stop and rescue mice cohorts. (A) BMD 

values derived from the CT scan after density calibration showed no significant 

difference p>0.05 among the comparison genotypes; n=6, one way ANOVA with 

Tukey’s post hoc test. Abbreviations: ns = not significant; one way ANOVA with 

Tukey’s post hoc test). Plots show mean ± SD. 

4.4 Discussion 

The main finding of the current chapter was the demonstration that MeCP2 

deficient in bone results in significant changes in bone both at macro and 

microstructure levels. The alternation in cortical and trabecular bone parameters in 

the structure found could account for the biomechanical defects reported in the 

previous results. Radiological study using µCT revealed some interesting finding in 

Mecp2 stop and rescue hemizygous male and heterozygous female mice.  

The cortical bone parameters analysis of male Mecp2 stop mice revealed a 54% 

decrease in cortical thickness, 20% reduction in total area and outer perimeter 

values, 12% reduction in inner perimeter along with the 38% reduction in marrow 

and 30% reduction in bone volume measures in a bone (tibia) that is 90% the 

length of the age-matched wild-type group (figure 4-4). This cortical bone thinning 

found in Mecp2 stop mice was consistent with what is expected in an osteoporotic 

model and it is known that reductions in bone strength and increases in cortical 
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micro damage affect the fragility of bone (Seeman, 2008a). Interestingly, RTT 

bone phenotype has been frequently related to osteoporosis because of the 

reduced level of bone strength, increase in fracture risk and reduced bone mineral 

density reported in RTT patients (Zysman et al., 2006; Roende et al., 2011b). My 

findings of cortical bone parameters were also found consistent with the one 

reported in RTT patients by Leonard and colleagues. They reported a decrease in  

total area of 20%, medullary area of 47%, cortical thickness of 30% and cortical 

area of 20% in patients suffering from Rett syndrome  (Leonard et al., 1999b). 

However in my study Mecp2 stop showed a modest reduction of only 8% in 

cortical area which did not reached statistical significance owing to the high 

variance found in stop mice. 

These values of reduction in cortical bone parameters were also consistent with 

my earlier biomechanical test results analysis and pointed towards the potential 

underlying alternation in ultra-structural arrangement as the possible mechanism 

of reduced bone strength values seen in Mecp2 stop mice. My findings of cortical 

bone parameters were also found consistent with the O’Conner’s micro CT 

analysis of cortical bone of Mecp2 null mouse model, in which they showed a 

similar reduction of 20% in total area and a similar significant but modest reduction 

of 17% reduction in cortical thickness, 7% reduction in outer perimeter and 14% 

reduction in marrow area (O'Connor et al., 2009b) as compared to Mecp2 male 

stop mouse model. The slight variations in results of my study and O’Conner’s 

RTT bone analysis could be because of the high variance found in Mecp2 stop 

mice statistical analysis, or difference of age, strain or type of mutation among the 

mouse models (O'Connor et al., 2009b). There was a difference of age between 

the two mouse models, Mecp2 null mouse model was much younger 8 weeks as 

compared to stop mouse model which was of 14 weeks. Hence the enhanced 

reduction of cortical bone parameter in my stop mouse models could be the result 

of worsening of bone phenotype with age. This point is also further supported by 

the fact that bone phenotype (reduction in cortical thickness, cortical area of bone, 

total area and bone mineral density values) in RTT patients have also been 

reported to deteriorates with age (Leonard et al., 1999c; Motil et al., 2008).  

Finding of 30% reduction in bone volume by μCT in current study in particular is 

very interesting as it is consistent with the bone histomorphometric analysis of iliac 

crest biopsies of 5 RTT children. This histological analysis in RTT patients showed 
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decreased bone volume, decreased osteoclast surface and number, and a 

reduced rate of bone formation suggesting decreased osteoblast function in RTT 

patients (Budden and Gunness, 2003).  

One of the unique features of the current study was the use of rescue male mice 

for the structural analysis of bone. Rescue mice did showed a significant 

improvement in biomechanical properties but failed to show improvement in 

cortical bone structural parameters (figure 4-4). These findings surfaced the need 

to explore further the possible causes of improvement in bone strength identified in 

rescue male mice, outside the realms of structural entity of bones and hence we 

carried out the extracellular matrix analysis (see chapter 5). 

In this study we also explored the cortical parameters in heterozygous stop female 

mice. This is the first time that female mouse model has been used to explore the 

structural properties of Mecp2 deficient mice. Unlike male mouse, female mouse 

displayed a modest decrease in cortical thickness (5%), total area (7%), cortical 

area (13%) and bone volume (14%). This decrease in values didn’t reach 

statistical significance because of the high variance and with the number of 

animals that I had available for this study. This subtle decrease in cortical bone 

parameters was found consistent with my biomechanical tests results of stop 

female mice. Female stop rescue mice similar to the male stop mice did not 

showed any significant improvement in cortical structural parameter. 

After the cortical bone analyses, I also wanted to explore the trabecular structure 

of the bone. For this reason distal femoral metaphyseal region was scanned and 

imaged using the scanning electron microscopy. Qualitative analysis by scanning 

electron microscopy did reveal altered trabecular architecture (thin trabeculae) in 

Mecp2 stop mice, consistent with the overall osteoporotic picture and suggesting 

clear structural differences between genotypes which would be consistent with 

reduce bone integrity results obtained after the biomechanical analysis. The 

cortical area surrounding the central rod and plate mass showed characteristic pits 

in Mecp2stop/y which were much less numerous in wild-type controls. These could 

result from increased nutrient foramina or poorly laden osteoporotic bone due to 

osteoblast dysfunction. This is further supported by the known fact that the 

increasing porosity of cortical bone effectively trabecularizes the cortex and hence 

leads to osteoporotic bone phenotype (Brown et al., 1987; Foldes et al., 1991). 
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The quantitative μCT on the trabecular portion of L5 vertebrae were carried out 

and the results were found consistent with the SEM osteoporotic findings in that 

the trabecular thickness was significantly reduced in Mecp2 stop mice (figure 4-6). 

The trabeculae in vertebral bodies of Mecp2 stop mouse were found significantly 

thinner and but displayed a trend of increase in number and hence reduced 

trabecular separation, although the enhance in trabecular number and trabecular 

separation was not found statistically significant due to the high statistical variance 

shown in Mecp2 stop mice. This discrepancy could also be because of the overall, 

decrease in length of vertebral body in Mecp2 stop mice as compared to the age 

matched wild type group and hence the apparent increase in number and reduced 

trabecular separation. Nonetheless, the significant thinner trabecular finding in 

vertebral bodies and thinning of cortical thickness along with decrease in total area 

and bone volume found in cortical bone supported the overall osteoporotic picture 

seen commonly in RTT patients (Zysman et al., 2006; Roende et al., 2011a; 

Roende et al., 2011b). 

An interesting finding consistent with the functional tests results on long bones 

was seen, and trabecular thickness was normalized to wild type levels upon 

unsilencing Mecp2 in the Rescue cohort. This is indicative of a pronounced 

phenotypic rescue and evidence of structural remodelling upon activation of 

MeCP2 analogous to structural rescuing demonstrated in the brain by Robinson 

and colleagues (Robinson et al., 2012b).   

Other parameters of the trabecular bone showed loss of bone volume fraction 

percentage (10%), connectivity density (17%) and structural model index (30% 

reduction, indicating more plate like trabecular structure rather than rod like) 

(Hildebrand and Rüegsegger, 1997) in male stop mice but these values didn’t 

reached the statistical significance owing to the high variance among the 

comparison groups (figure 4-7). The number, thickness, spacing, distribution and 

connectivity (i.e., connection) of trabeculae reflect the trabecular network and 

determine bone strength (Chavassieux et al., 2007). It is also known that for the 

same defect in trabecular density, loss of connectivity has more deleterious effects 

on bone strength than thinned but well-connected trabeculae (Weinstein and 

Hutson, 1987; van der Linden et al., 2001). In my trabecular bone analysis I found 

significant reduction in trabecular thickness and loss of connectivity in Mecp2 stop 

5th lumbar vertebrae, though the latter does not reach statistical significance. As 
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stated earlier, overall the decrease in trabecular thickness, bone volume fraction % 

in vertebral bodies points towards an osteopenic phenotype frequently reported in 

RTT patients and seen in RTT bone phenotype animal models as these results 

were also found consistent with µCT and histomorphometric analysis reported by 

O’Connor and colleague using the Mecp2 null mouse model (O'Connor et al., 

2009b).  

Surprisingly, bone mineral density (µCT) values didn’t show any difference in 

comparison genotypes in male stop mice 5th lumbar vertebrae (figure 4-8). 

Reduced bone mass is commonly associated with osteoporotic phenotypes (Hui et 

al., 1988; Leonard et al., 1999c; Cummings et al., 2002; Ager et al., 2006; Flynn et 

al., 2007) and bone mineral density, differences have been reported in Mecp2-null 

mice (Shapiro et al., 2010). The lack of observed differences (density) in the 

current study could be due to differences between mouse models (strain, mutation 

type, age). However my findings of bone mineral density were consistent with the 

ones reported in Mecp2 null of bone mineral density and bone mineral content. 

They did found a modest difference in BMD and BMC, but this decrease did not 

reach statistical significance due to the small number of animal they used in the 

study (O'Connor et al., 2009a).  

Interestingly among the indicators of cortical bone loss, the percentage cortical 

area is considered to be the most directly related to bone mass (Leonard et al., 

1999c). In my current study no significant difference was observed both in cortical 

area and bone mineral density suggesting that the primary cause of reduced bone 

strength might be the result of cellular, osteoblast decrease activity as seen by 

reduction in bone volume or because of the increase osteoclast number/activity or 

probable defect in organic part of the bone. Based on these findings I had 

performed histological experiments. See Chapter 5 for further details. 
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Chapter 5 

An analysis of the material composition of bone in 
an mouse model of Rett Syndrome 

  

5.1 Introduction 

A number of clinical studies have investigated potential properties of bones that 

might underlie reduced bone strength seen in RTT patients. Such studies have 

adopted both static and dynamic histomorphometric approaches (Budden and 

Gunness, 2001, 2003; Zysman et al., 2006; Motil et al., 2008). Overall, these 

studies have so far revealed consistent decreases in bone volume, accompanied 

by reduction in bone formation rates (Budden and Gunness, 2003; O'Connor et al., 

2009b).However significant changes in osteoid thickness and number per bone 

surface as well as absolute osteoclast number has remained inconclusive (Budden 

and Gunness, 2003; O'Connor et al., 2009b; Rastegar et al., 2009). And hence the 

exact cellular mechanism leading to bone phenotypes in RTT remains poorly 

defined.  

5.1.1 The material composition of bone: collagen and mineral 

Bone is a specialized connective tissue and is composed of an organic matrix of 

type 1 collagen. The unique feature of collagen component is its mineralization 

with an inorganic phase comprising of calcium hydroxyapatite-like crystals. The 

organic matrix of bone tissue provides flexibility, whereas increasing amount of 

mineral contributes towards material stiffness (Cooper et al., 2004). 

Collagen molecules are structural macromolecules present in the extracellular 

matrix. They include as a part of their structure one or several domains that have a 

characteristic triple helical conformation. Most common types includes I II, III,V, 

and XI with less common subtypes including types IV and VIII (van der Rest and 

Garrone, 1991). Type 1 collagen is the most ubiquitously distributed and most 

abundant of the collagen family of protein.  



135 
 

Structure wise, collagen is a heterotrimer which is composed of two alpha1 chains 

and one alpha 2 chain (Dalgleish, 1997). The type 1 collagen is encoded by 

COL1A1 and COL1A2 respectively. Collagen abnormalities can result from 

mutations in these genes with over 200 of such mutations having been reported 

(Chavassieux et al., 2007). Mutations at these loci can lead to pathologies such as 

osteogenesis imperfect (OI) and Ehlers-Danlos syndrome. Mutations at these loci 

have also been reported to be linked with osteoporosis and Marfan’s syndrome 

(Dalgleish, 1997; Chavassieux et al., 2007). Bone phenotype in OI, has been 

particularly linked with RTT bone phenotype. 

As described in the introductory chapter, the basic structural units (BSUs) in bone 

matrix are not uniformly mineralized. More recently completed BSUs are less 

densely mineralized than older BSUs that have had more time to undergo 

secondary mineralization (crystal enlargement) (Boskey, 2003). Even within a 

BSU, the organisation is formed as a composite. The higher and lower density 

lamellae with collagen fibers oriented in different directions creates a structure that 

serves to prevent the occurrence of cracks and limits crack progression in skeletal 

tissue. Loss of the lamellar organization as seen in woven bone in Paget’s disease 

and loss of heterogeneity in tissue mineral density as frequently seen in prolong 

use of bisphosphonate may affect bone’s ability to prevent crack occurrence and 

progression (Boivin and Meunier, 2002). Keeping this in mind, the mechanism of 

low energy fractures seen in RTT patients can be explained however research in 

terms of collagen component of bone pathologies seen in RTT patients is still 

poorly define. 

Recently a case control study (Roende et al., 2014) has been conducted by 

Roende and colleagues, which revealed a decrease in the bone formation marker  

N-terminal propeptides of collagen type 1 (PINP), pointing towards the potential 

role of collagen along with mineral component as the contributing factors to altered 

bone integrity seen in Rett Syndrome. However, analogous and controlled studies 

assessing collagen content and composition have so far not been conducted in 

animal mouse models of RTT. 
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5.1.2 The Cellular Machinery for bone homeostasis and turnover 

As mentioned earlier the cellular activities of bone modelling and remodelling 

determine the material composition and structure of bone. Bone modelling 

represents the formation of new bone phase whereas bone remodelling 

encompasses both a resorptive phase and a bone formation phase. The whole 

process of bone modelling and remodelling contributes to the bone strength 

(Chavassieux et al., 2007). Bone cells (see section 1.5.3) plays a vitol role in this 

regards, osteoclast in particular starts the remodelling by first differentiation under 

the stimulation by osteoblast cells (Nakashima, 2014).  

Receptor activator of nuclear factor-kB (RANK) LIGAND (RANKL) is expressed  

and secreted by osteoblast precursor cell and binds RANK expressed by 

osteoclasts, thus promoting the differentiation and activity of osteoclasts. 

Osteoblasts secrete osteoprotegerin (OPG), which binds to RANKL and inhibit the 

RANK-RANKL interaction (Nakashima, 2014). RANKL knockout mice have display 

severe osteoporosis and an analysis of cell types reveal that they lack osteoclasts 

despite the presence of osteoprogenitors (OPG). In contrast to the consequences 

of reduced RANKL expression, increased expression of RANKL may explain 

disorders associated with increased / excessive resorption such as multiple 

myeloma. Interestingly OPG-deficient mice showed a sever osteoporosis as well 

resulting from increase in osteoclastic activity and formation (Horowitz et al., 2001; 

Kon et al., 2001; Chavassieux et al., 2007). 

5.1.3 Aim of the study 

Results from the previous chapters showing altered biomechanical as well as 

material (microhardess) properties of MeCP2-deficient bone suggest that there are 

likely to be alteration in bone composition.  In the current set of experiments I 

hypothesised that alterations in the protein or mineralisation of MeCP2 deficient 

bone may explain the earlier biomechanical and material bone phenotypes 

observed in the mouse model of Rett Syndrome. Thus, the specific aim of the 

experiments in this chapter was to determine whether deletion and restoration of 

MeCP2 is accompanied by detectable changes in bone mineralisation, collagen 

content and osteoclast number / activity.  
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5.2 Methods and Material 

5.2.1 Preparation of histological sections of bone 

Whilst the distal parts of male MeCP2 stop/y, wild-type and rescued mouse left 

femurs were used for scanning electron microscopy imaging described in chapter 

4, the proximal aspects of left femurs (n=5 per genotype) were used for 

histological analysis. Because of the limited availability of tissue samples in my 

study I have selected two important experiments as the initial histological analysis. 

Firstly, I have looked at the collagen content as this parameter has never been 

analysed in both RTT patients or animal studies before. Also since I did not find 

any difference in inorganic part (mineral content) I wanted to explore the organic 

part of the bone. Furthermore since collagen forms the primary organic component 

of bone matrix it was appropriate to start an initial analysis by measuring the 

collagen content first. Osteoblast is involved in the synthesis of collagen hence the 

results obtained could also be the indirect measure of osteoblast function. 

Secondly the results of previous experiments of trabecular thinning seen in Mecp2 

stop mice and significant improvement seen in rescue mice raised questions as to 

whether increased/decreased osteoclast activity in the bone tissue is the primary 

cause of under lying pathology. Alternate sections were stained with either Sirius 

red staining for collagen content (see section 5.2.2.1) or tartrate-resistant acid 

phosphatase (TRAP) staining for osteoclasts (see section 5.2.3.1).  

5.2.1.1 Decalcification of proximal parts of stop femur 

The bone samples were first decalcified in 12% EDTA, (pH 8.0, 5N NaOH) for 14 

days. The fresh solution was added every second day over the 14 day period. The 

specimens were then kept in the decalcifying solution in a refrigerator at 4°C prior 

to tissue sectioning.  

5.2.1.2 Processing of tissues for histology 

Following fixation by 10% neutral buffered formalin, tissues were placed in plastic 

cassettes and processed using a Leica TP1020 tissue processor (Leica Milton 

Keynes, UK) maintained by David Russell, Laboratory of Human Anatomy, 

University of Glasgow. The overnight processing programme took tissues through 
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graded alcohols (70%, 90%, 100%; 1hr, 1hr, 1.5hrs), amyl acetate and molten 

paraffin wax. Tissues were then transferred for embedding 

5.2.1.3 Embedding tissues in paraffin 

Embedding was performed on a Tissue Tek embedding centre maintained by 

David Russell, Laboratory of human anatomy, University of Glasgow. Molten wax 

was poured into moulds and bone samples were carefully oriented to provide a 

longitudinal (LS) sections on cutting. Wax hardens around the plastic embedding 

cassettes and makes up the finished block, allowing blocks to be easily cut. 

5.2.1.4 Cutting of histological sections  

Longitudinal sections of 5 μm thickness (150 slices in total) were cut using a 

microtome (Leica RM2035, Milton Keynes, UK) maintained by David Russell, 

Laboratory of human anatomy, University of Glasgow.  

5.2.2  Quantitative measurement of collagen in bone 

A variety of stains are available to stain collagen including, Masson’s trichrome 

which is one of the commonly used staining methods employed for collagen and 

collagen related pathologies (O'Brien et al., 2000; Lazzarini et al., 2005). Other 

studies have used sirius red staining because of its specific binding to collagen 

(Puchtler et al., 1973; Junqueira et al., 1979; Malkusch et al., 1995; Wright et al., 

2003; Hui et al., 2004; Goodman et al., 2007; Kliment et al., 2011; Huang et al., 

2013).  

However trichrome stain has limitation as it is not specific to collagen, in contrast, 

the sirius red stain is based on the application of a single dye that has been shown 

to specifically stain collagen types I, II and III and is highly sensitive in detecting 

small amounts of collagen (Junqueira et al., 1979).  

Moreover in a recent study (Huang et al., 2013) a collagen proportional area 

(CPA) images, stained with trichrome staining was compared with sirius red stain 

and it was found that the reproducibility of collagen proportional area image 

analysis stained with sirius red stain was superior to that achieved with trichrome. 

Moreover the mean CPA stained with sirius red was found to be significantly 

greater than CPA stained with trichrome and this was found to be consistent with 
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their morphological findings that sirius red staining detected more collagen then 

did trichrome staining. 

 In my current study I have used Picro-sirius red method of staining (after (Puchtler 

et al., 1973; Junqueira et al., 1979) to detect the percentage of Picro-sirius red 

stained collagen content in each bone specimen per genotype as sirius red 

staining for collagen is one of the best understood techniques of collagen staining 

(for methodology see section 5.2.2.1).  

After staining, percentage collagen content was calculated by pixel counting 

technology (see section 5.2.2.2 for details). Pixel counting technology is potentially 

a highly accurate technology that calculates collagen area however the reliability 

could be influenced by threshold settings, magnification and image resolution 

(Huang et al., 2013). In order to obtain reliable analysis, both during the staining 

and image analysis I and technical staff were blinded to the identification of the 

sample. 

5.2.2.1 Sirius Red staining for collagen 

After cutting, the bone sections were de-waxed with Histoclear (Fisher), for 15 

mins and hydrated through 100%, 90% and 70% alcohols. Nuclei were stained 

with Mayer’s haematoxylin for 8 minutes, and then slides were washed for 10 

minutes.  

Specimens were then stained in Picro-sirius red solution [prepared by adding 0.5g 

of Sirius red F3B (Sigma-Aldrich, C.1.35782) in 500 ml of saturated aqueous 

solute ion of picric acid]. This gives near optimal staining, which does not increase 

with longer incubation. Tissue samples were washed in two changes of acidified 

water [prepared by adding 5 ml of acetic acid (glacial) in 1 litre of water (tap or 

distilled)]. Specimens were then dehydrated in increasing ethanol concentrations, 

cleared in Histoclear and mounted in DPX (consists of distyrene, a plasticizer, and 

Xylene) (Sigma Aldrich). To standardize staining, care was taken that all sections 

were stained in a single batch (figure 5-6). 
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5.2.2.2 Region of interest and image analyses of bone sections for collagen 
content 

To assess total collagen content, bright field images were sampled using a 40X 

objective lens on an Axioskop50 microscope (Zeiss, Cambridge, UK) with Carl 

Zeiss AxioCam MRc camera (Zeiss, Cambridge, UK) and images were further 

analysed using Zeiss Axiovision v.4.8.3.0 software and colour segmentation 

plugin.  

Care was taken to obtain all images with same magnification, thresholding and 

image resolution. A demarcation, line was drawn across each specimen image, at 

the beginning of third trochanter across the whole bone section to standardise and 

specify the exact area from which region of interests (219.31μm x 164.56μm) were 

selected each, from both medial (femoral head side) and lateral side (trochanter 

side) per bone per genotype (figure 5-6).  

The Regions of interests were further analysed and quantified by using the Image 

J 1.47v, colour segmentation plugin. This plugin helps to segment (different 

colours) within the examining bone image. The Positive sirius red stained pixels 

were selected and quantified by using Imagej (colour segmentation plugin) with 

pixel area count and reported as a percentage of the total tissue area (219.31μm 

x164.56μm) specified in each bone per genotype (Malkusch et al., 1995; Kiernan, 

2008) (figure 5-6, Bi-Biii). The detailed steps of methodology are as below: 

Steps 

1. To calculate the area of red pixels corresponding to the Sirius red stained 

collagen fibres, images were opened in image j 1.47v (figure 5-1).  

2. Under the Colour segmentation, POINTCROSS tool was selected, in the 

toolbar section of image j software.  
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        Figure 5-1 Selection of image through image j Colour-   
         Segmentation plugin 

 

 
3. First cluster of high intensity red pixels was defined by clicking on the 

image.  

4. Subsequent clusters of white, blue (nuclei) pixels of osteocyte cells and 

remaining faint red pixels were selected by clicking on the image (figure 5-

2). 
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         Figure 5-2 Selection of different pixel colour clusters             

               

 

5. Under the data organization section dependant channels option was 

selected.  

6. Further on algorithm of K-Means clustering was carried out.  After this 

selection, Run option was clicked and an output image was obtained per 

sample.  
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 Figure 5-3   Percentage area measurement by Colour segmentation plugin             

                          

 

 
7. The subsequent output images gave the percentage area measurements of 

each defined colour cluster.  

8. The % area of red pixels corresponding to collagen fibres, relative to total 

tissue area, was estimated using a colour segmentation plugin in Image J    

(Biomedical imaging Group, EPFL, Switzerland 

:http://bigwww.epfl.ch/sage/soft/colorsegmentation/) using independent 

colour channels and the K-means algorithm (figure 3-3). 

 

 

 

http://bigwww.epfl.ch/sage/soft/colorsegmentation/
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5.2.3 TRAP staining for osteoclast 

Alternate sections from the proximal femur longitudinal sections were stained with 

Tartrate-resistant acid phosphatase (TRAP) staining to assess resorption activity 

(osteoclast number per bone surface). 

5.2.3.1 Tartrate-resistant acid phosphatase (TRAP) staining for osteoclasts 

After cutting, the bone sections were de-waxed with Histoclear, for 15 mins and 

hydrated through 100%, 90% and 70% alcohols. TRAP solution was prepared by 

adding in 100 ml of distilled water, 1.15 g of sodium Tartrate, 1.22 g of sodium 

acetate. Solution was adjusted to pH5 by using 1M HCl before 5 mg Fast Red TR 

10 mg Naphol AS-MX (Sigma Aldrich, N-4875) was added. Specimens were then 

stained in TRAP solution for 1 hour at 37°C. Tissue samples were washed in two 

changes of tap water. Nuclei were stained with Mayer’s haematoxylin for 8 

minutes, and then slides were washed for 10 minutes for blueing of nuclei. To 

standardize staining, care was taken that all sections were stained in a single 

batch. A slide was treated with the same solution minus the substrate, as a 

negative control. Method of staining adopted from O’Connor et al (O'Connor et al., 

2009b). 

5.2.3.2 Region of interest and image analyses of bone sections for 
osteoclast number 

To quantify osteoclast number in histological sections, images were sampled by 

bright field microscopy using a 40X objective lens on an Axioskop50 microscope 

(Zeiss, Cambridge, UK). A rectangle area of 1.47 mm2 was selected as the region 

of interest below the anatomical point of femoral trochanter in each bone specimen 

per genotype. The TRAP stained cells were independently counted by at least two 

blinded reviewers, and each multinucleated and TRAP stained cell was counted as 

one osteoclast. Total numbers of osteoclasts were counted within the region of 

interest both on the medial and lateral side per bone specimen per genotype. For 

each sample an average number of osteoclasts were counted using the method  
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described by Sawyer and colleagues (Sawyer et al., 2003) and adopted by 

O’Connor and colleagues (O'Connor et al., 2009b). Osteoclast were defined as 

TRAP stained, multinucleated, light blue stained cells containing foaming 

cytoplasm lying close to an eroded lacuna or on the bone surface (figure 5-4). 

TRAP-positive osteoclasts adjacent to bone showing one nucleus or no nuclei at 

all in the plane of section were also included in the count as the osteoclasts. The 

number of TRAP stained cells was independently counted by two blind reviewers, 

assuming each TRAP stained cell was one osteoclast. Average number of 

osteoclast counts was calculated for each bone per genotype and total mean 

values for all three genotypes were compared. 

 

 

Figure5-4  Region of interest selection for osteoclast count in 
male stop mice 
(A) Low power bright field micrograph showing, the method for selection of regions 

of interest (ROI) for the quantification of osteoclast number. A rectangular region 

of interest (1.47 mm2) was selected below the anatomical point of beginning of 

trochanter. (B) High power (40x) image of region of interest) showing osteoclasts 

(black arrows) (A) Scale bar= 1000μm (B) Scale bar= 50μm 
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5.2.4 Ash weight density 

In order to confirm the density findings obtained from CT scan measures, I 

performed an ash weight density experiment. For this experiment, Left tibias from 

both male and female mice cohorts were place in Pyrex crucibles and dried at 

100°C for 24h in a muffled furnace at the Organic Chemistry Department, 

University of Glasgow, Glasgow, UK. Weight measurement of the crucibles was 

taken separately at the beginning of experiment by using the analytical balance 

(APX60 Analytical Balance, Denver Instruments). Weight measures were taken 

after the bones have been dried and ashed in muffled furnace. 

Dry weight measures were obtained (APX60 Analytical Balance, Denver 

Instruments) while the tibias were still in the crucibles to avoid any tissue loss as 

the mouse bones are understandably very small and fragile to handle, especially 

after being heated at high temperature . The specimens were then reduced to ash 

at 650°C for 24h and the ash weight measurement were taken in a same manner 

as dry weight measures. The ratio of ash weight and dry weight was used to 

obtain the final ash content (Kriewall et al., 1981; Keene et al., 2004). The ash 

content can be expressed on either a dry or wet basis: 

                  
     

     
   X 100              

                  
     

     
  X 100              

Where         refers to the mass (weight) of the ashed sample and       and 

      refer to the original masses (weights) of the dried and wet bone samples. 
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5.3 Results 

5.3.1 Mecp2 stop mice showed decrease in collagen content 

Sirius red staining was conducted as an initial experiment to assess any gross 

defects in overall collagen content of the bone samples from Mecp2stop/y mice and 

wilt-type and genetic rescue controls. The percentage college content values were 

derived by quantifying pixel area count of positive sirius red stain, localization in 

each region of interest per bone per genotype. Final values were reported as a 

percentage of the total tissue area (1.47mm2) specified in all genotypes. Stop male 

mice showed a significant decrease in collagen content compared to Wt mice (WT 

= 65.1 ± 8.6%; Stop= 48.8 ± 9.1 %; Rescue = 55.63 ± 11.4 %; n = 5 specimens 

per bone per genotype, p<0.01, one way ANOVA with Tukey’s post hoc test). An 

interesting finding of reduced collagen content and increased pale stained 

extracellular are in tissue sample of Mecp2 stop was also made as compared to 

the age matched wild type and rescue mice (figure 5-5).  

            

Figure5-5 Collagen content analysis in Mecp2 stop mice 
Bar chart  showing  percentage Collagen content in Mecp2Stop/y (Stop) mice is 

reduced as compared to wild-type (Wt; p<0.01);  n = 5  specimens (5 sections 

from each medial and lateral side) per bone per genotype. No significant treatment 

effect was seen in rescue mice. Abbreviations: ns = not significant; one way 

ANOVA with Tukey’s post hoc test). Plots show mean ± S.D.  
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Figure 5-6  Comparison of %collagen content 
 
 
(A) Low power micrograph showing position of (boxes) region of interest (ROI) 

selected for the quantification of collagen. Regions of interest are selected from 

both the medial and lateral side of each proximal femur at a site demarcated by 

the beginning of trochanter. A line was drawn across the section so that both the 

sections are selected at the same level. (B) Higher power bright field micrograph 

showing sirius red stained region of interest. (Ci-iii) Representative, high power (40 

x objective) micrographs showing representative regions of interest from each 

experimental cohort/genotype.  Images of region of interest were reconstructed for 

the quantification of percentage college content by using image j (colour 

segmentation plugin). (A) Scale bar= 500μm (B) Scale bar= 50μm 
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5.3.2 Osteoclast number did not showed any significant 
difference in Mecp2 stop mice 

TRAP staining was conducted to assess resorption activity (osteoclast number per 

bone surface within region of interest) but showed no difference between 

genotypes (WT=12.61±8.51 (n); Stop =17.48±6.13 (n); Rescue =18.90±4.61 (n); 

n=5 per genotype, p>0.05, one way ANOVA with Tukey’s post hoc test) (figure 5-

7). 

                   

Figure5-7  Osteoclast number quantification analysis in Mecp2 
Stop mice 
Bar chart showing no significant difference in osteoclast number between the three 

comparison genotypes (WT=12.61±8.51; Stop =17.48±6.13; Rescue =18.90±4.61; 

n=5 per genotype, p<0.05, one way ANOVA with Tukey’s post hoc test). Values 

refer to absolute number (n) count of osteoclast within the specified tissue region) 

Abbreviations: ns = not significant. Plots show mean ± S.D.  
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5.3.3 Ash density analysis of bone tissues in Mecp2 stop mice 

The analysis of mechanical (reduced bone strength), material (reduced bone 

hardness measure), structural (thinning of cortical and trabecular bone) 

experiments revealed an osteoporotic picture of the bone tissue similar to the one 

frequently reported in RTT patients.  

A surprising result was the finding of no significant difference in bone mineral 

density measures obtained after the μCT (see chapter 4). Decrease in bone 

mineral density has been frequently reported in RTT patients (Budden and 

Gunness, 2001; Cepollaro et al., 2001; Budden and Gunness, 2003; Shapiro et al., 

2010; Jefferson et al., 2011; Roende et al., 2013b). In order to re confirm the bone 

mineral density values derived from μCT, I performed ash weight density test. Ash 

weight density is frequently used to asses’ ash content. Studies have been done to 

compare the results from bone mineral density and ash weight tests. I also 

performed this experiment to confirm the findings of my earlier experiment.  

Left tibia was used to analyse the percentage mineralization (ash content) see 

above section 4.2.5 for methodology. Results showed no significant difference in 

percentage ash content measured on the basis of dry weight measures and in 

percentage ash content values measured on the basis of wet weight measures 

between genotypes of male mice (figure 5-8). 
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Figure5-8  Ash Content analysis in male and female stop mice 
(Ai-Aii) Bar charts showed no difference in percentage ash content in male mice 

cohort (dry basis) (WT= 62.15± 5.22%; Stop =62.57± 4.25%; Rescue =61.75 ± 

3.72%; n =6 per genotype, p>0.05, ANOVA with Tukey’s post hoc test) and (wet 

basis) (WT=41.54 ± 11.35%; Stop =40.88 ± 7.92%; Rescue =41.23 ± 5.36%; n=6 

per genotype, p>0.05, ANOVA with Tukey’s post hoc test). (Bi-Bii) Percentage ash 

content values in Stop female mice showed similar pattern of no significant 

difference, in % ash content (dry basis) (WT= 45.58± 6.37%; Stop =45.49± 3.78%; 

Rescue =49.55 ± 5.128%; n=3-5 per genotype, p>0.05, ANOVA with Tukey’s post 

hoc test) and % ash content (wet basis) (WT= 17.27 ± 26.27%; Stop=15.00 ± 

21.99%; Rescue =17.59 ± 26.36%; n=3-5 per genotype, p>0.05, ANOVA with 

Tukey’s post hoc test). Abbreviations: ns = not significant, Plots show mean ± S.D.  
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A similar trend of percentage ash content results was observed in female cohort 

tibias. No significant difference was found in heterozygous Stop female cohort of 

values of  percentage ash content calculated on either dry weight basis or wet 

weight basis  All data given as, mean ± SD (figure 5-8). 

5.4 Discussion 

The major finding of the current set of experiments was the observation that the 

collagen content is appreciably reduced in bone sections stained with sirius red 

from MeCP2-defience mice as compared to wild-type littermate mice. Sirius red 

stain was first described by Junqueira et al. in 1979 (Junqueira et al., 1979) and is 

a dye that binds to the [Gly-x-y] triple-helix structure found in all collagen fibers. 

This property of sirius red stain can be utilized to assess collagen in various tissue 

sections under bright field and polarized light microscope (Junqueira et al., 1979; 

Whittaker et al., 1994) and in cell culture (Walsh et al., 1992).  

In my initial analysis, to observe any gross changes in collagen content, I have 

used bright field microscope to assess the overall content of collagen in a 

specified region of interest per bone per genotype. The Sirius red stained images 

were further analysed by using the colour segmentation plugin of Imagej. The 

colour segmentation is an Imagej plugin that allows to segment an colour image or 

a stack of colour by pixels clustering. I have used the colour segmentation plugin 

to segment the bone cells from the extracellular content. The high intensity sirius 

red stained collagen content area was identified in each image per slide per bone 

by using Imagej software and the collagen content was calculated as a percentage 

of the specified area of each image (expressed in pixels).  

The results obtained showed mean colour area percentage of collagen in Mecp2 

stop mice to be 48.8% which was significantly decreased compared with the 

control group (p<0.01). This reduction in % collagen content was found consistent 

with the mean colour area percentage of collagen of 47.7% seen in histological 

sections of female albino rat (ovariectomy induced) models of osteoporosis (Naim, 

2011). The overall picture of reduced collagen content and increase pale stained 

space within the extracellular bone matrix found in my study adds to the 

osteoporotic picture of RTT bone phenotype. However bone histomorphometric 

analysis of collagen content in children and adolescents with RTT is unknown.  
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The magnitude of the reduction in my study was in the range of ~25% and thus it 

can be predicted to have a profound effect on overall material and mechanical 

properties of bones in these mice. Interestingly, there was a trend towards a 

reversal of collagen level deficits in genetically rescued mice (~15% increase 

compared to knockout mice) but this change did not achieve statistical 

significance. Hence, this study did not provide direct evidence that restoration of 

MeCP2 can results in improvement of organic part of extracellular matrix. In RTT 

patients bone anomalies have always being considered and investigated in terms 

of decrease in bone mineral density, while little attention has been paid to the 

organic part of extracellular matrix.  

As described earlier the organic (collagenous and non-collagenous proteins) and 

inorganic phase (minerals) both contributes towards the bone strength (Marotti et 

al., 1994). Collagen fibrils are stiffened by integration of the mineral phase. The 

presence of mineral phase increases bone strength; but in woven bone, which is 

constituted by unorganized collagen fibrils, the mechanical properties are 

decreased despite a high mineral content (Marotti et al., 1994). As majority of 

collagen content consists of type 1 form of collagen, my finding of decrease in 

collagen content are also consistent with the results of a recent analysis of 

biochemical bone marker, in which all the bone markers including N-terminal , 

propeptides of collagen type 1(PNIP), the C-terminal telopeptide cross links (CTX); 

and osteocalcin (see section 1.5.4) were found decreased in blood samples taken 

from Rett patients (Roende et al., 2014).  

Osteoblast plays a major role in collagen homeostasis as it synthesizes and 

secretes the C-terminal propeptides of the alpha 1 and alpha 2 chains of type 1 

collagen (Johansen et al., 1992). Hence the reduction in collagen content from the 

current study can be interpreted as the decreased osteoblast function in Mecp2 

stop mice.  

Interestingly, MeCP2 has been found to regulate the expression of RANKL gene 

(Kitazawa and Kitazawa, 2007) expressed by osteoblasts (Alvarez-Saavedra et 

al., 2010)(see section 1.5.4 and 5.1.2 for details of RANKL and its role in bone 

homeostasis) further supporting the potential involvement of MeCP2 in 

skeletogenesis. Also MeCP2 overexpression, duplication and triplication has been 

found to result in diminished ossification resulting in severe kyphosis, a distorted 
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sternum, spina bifida and dysmorphic feature  in male TTM20dTg mice (kyphosis, 

scoliosis).  

Interestingly, RTT bone phenotype, other than osteoporosis has also been linked 

to share features with a disorder known as Osteogenesis imperfecta (OI). OI is an 

inherited disorder characterized by increased bone fragility with recurrent fractures 

mainly caused by the defects in collagen synthesis (Smith et al., 1975; Camacho 

et al., 1999). Nonetheless the possible role of collagen defects, in RTT bone 

phenotype needs more attention. This current study has limitation as I have 

calculated the gross values of collagen content by using the bright field 

microscopy. In future studies a polarized light microscopic (Lillian and Whittaker, 

2005) examination to identify the collagen structure in detail can give further 

details. 

Histological experiment to count osteoclast number was also performed to analyse 

the resorptive activity of the bone (O'Connor et al., 2009b). Connor and colleague 

also looked at the absolute osteoclast number in their Mecp2 null mouse model 

and did not find any difference. They relate the non-significance of their findings to 

the small number of animals they have used in their study. I wanted to look at the 

osteoclast number to see if there is any significant difference in the resorption 

activity in bone that is causing all the apparent increase in bone fragility in Mecp2 

stop mice. The multinucleated osteoclast-like cells form pits on bone or dentine 

slice express high concentrations of 5 isozyme of tartrate-resistant acid 

phosphatase (TRAP) (Alatalo et al., 2000).  

TRAP is a histochemical marker of the osteoclast. It is also characteristic of 

macrophages and other cells of mononhitiocytic lineage (Alatalo et al., 2000; 

Hayman et al., 2000). This enzyme  partially dephosphorlylates the bone matrix 

phophoproteins osteopontin and bone sialoprotein, which have been implicated in 

cell attachment (Ek-Rylander et al., 1994). The TRAP “knockout” mouse has 

shown that the enzyme is essential for normal mineralization of cartilage in 

developing bones and for maintaining the integrity and turnover of the adult 

skeleton (Hayman et al., 1996). 

As an initial experiment to analyse the bone resorption activity I have calculated 

the number of TRAP stained osteoclast within the specified region of interest 
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selected per bone per genotype. TRAP is confirmed as a valid marker for 

identification of osteoclasts on the other hand TRAP activity is an osteoclastic 

marker of weak sensitivity. This may be due to known fact that synthesis of 

enzyme is not being unique to osteoclasts (Ballanti et al., 1997). Osteoclasts are 

heterogeneous with respect to cellular size and shape. They used to be 

recognised mainly on the basis of multinuclearity and cell width but since these 

criteria do not recognize mononucleated osteoclasts, this methodology has been 

questioned (Palle et al., 1989). 

Tartrate-resistant acid phosphatase (TRAP) is detectable in large amounts in the 

lysosomes of osteoclasts and its activity is now considered an established 

cytochemical marker useful for recognizing polynucleated as well as 

mononucleated osteoclasts in bone sections (Baron et al., 1986). At present, the 

number of osteoclasts is determined by counting the number of TRAP-positive 

multinucleated osteoclast-like cells (Takahashi et al., 1988). 

The results obtained displayed no significant difference of osteoclast number 

among the three comparison genotypes of male stop mice. However if we look at 

the analysis bar graph an interesting trend of 30% increased osteoclast number in 

stop mice and 50% increase in rescue mice as compared to wild type control mice 

was found indicating towards the slight increase in bone resorptive activity as 

compared to the age matched wild type control. The non-significance of this 

experiment results could be the result of high biological variance seen in tissue 

samples analysis (figure 5-4). 

Our results of no significant difference in osteoclast number were inacordance to 

the finding obtained by O’Connor et al. Similar to our finding they did not find any 

significant difference in osteoclast number per bone surface (WT= 6.34±2.43, 

Mecp2 null= 6.60±2.30) in their TRAP stained tibial section of Mecp2 null mouse 

mode. In another study conducted on five RTT girls revealed a decrease in 

osteoclast number and surface (Budden and Gunness, 2003). However this study 

had the limitations that patients and controls were not age matched and hence 

conclusion about resorption activity or rates cannot be inferred from these surface 

estimates. On the other hand Motil and colleagues study has displayed increase in  

bone turnover (increased resorption to formation) by age (Motil et al., 2008). 

Resorptive activity measures in RTT bone phenotype are still unclear and future 
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bone histomorphometric studies need to be done to fully understand the cellular 

mechanism of bone resorption in RTT patients. 

After the histological experiments in organic part of bone I also looked at the 

inorganic (mineral) content of the bone of male and female stop mice by 

conducting the ash weight density measurements. Although I already had obtained 

the bone mineral density measurement from μCT scans analysis, I performed this 

experiment to confirm and validate the finding of μCT mineralisation calculations 

as various report in RTT patients have reported decrease in bone mineral density 

(Haas et al., 1997; Leonard et al., 1999b; Leonard et al., 1999c; Cepollaro et al., 

2001; Motil et al., 2006; Zysman et al., 2006; Gonnelli et al., 2008; Alvarez-

Saavedra et al., 2010; Shapiro et al., 2010). 

No significant difference was seen in wet and dry ash weight density values of 

male and female stop mice and the results from the experiment confirmed the 

findings of μCT. In adults mammals 20% of bone weight is water, 45% is ash and 

35% is organic matrix (Carter and Spengler, 1978). On a dry weight bases, 

mineral content is 65 to 70% and organic matrix is 30 to 35%. In this current study 

Mecp2 stop male mice showed a 62% of ash content on dry basis which was 

comparable to wild type and rescue values and 41% ash content based on wet 

basis and consistent with the normal range. Compare to male mice, female stop 

mice displayed 45% ash content analysis on dry weight basis and 15% on wet 

weight basis, this apparent decrease in density measures obtained from male and 

female stop cohorts was gender and age appropriate (Henry and Eastell, 2000).  

Overall similar to male stop mice cohort, female mice cohort showed no significant 

difference among the three comparison genotypes. O’ Connor and colleagues in 

their Mecp2 null mouse model, had displayed a modest reduction of bone mineral 

density and bone mineral content values (O'Connor et al., 2009b) but results does 

not reach the statistical significance. Also a recent study (Roende et al., 2014) on 

bone metabolism of patients with RTT has revealed some interesting insights. 

Bone metabolism can be characterized by biochemical markers of bone formation, 

resorption, mineralization and turnover (Szulc et al., 2000; Jürimäe, 2010). 

Roende and colleagues characterise bone metabolism in RTT patients, by 

comparing biochemical bone markers levels in RTT patients with healthy controls. 

They found that both markers of bone formation the N-terminal propeptides of 
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collagen type 1 (PINP); markers of bone resorption, the C-terminal telopeptide 

cross links (CTX); of bone turnover, osteocalcin (OC); and of bone mineralization, 

bone specific alkaline phosphatase (B-ALP) were significantly reduced. 

Interestingly they also found no significant association between bone markers 

levels and volumetric bone mineral density calculations obtained from DXA scans 

of lumbar spine and femur neck of the patients. The difference of bone mineral 

density value obtained from this study and previous studies (Cepollaro et al., 2001; 

Motil et al., 2006; Gonnelli et al., 2008) could be because the Roende et al 

adjusted their analysis of biochemical bone markers for age and puberty while 

previous studies have only analysed biochemical markers of bone formation in 

RTT children and young adults less than of 25 years of age. Studies 

(Rauchenzauner et al., 2007; Tuchman et al., 2008; Jürimäe, 2010) on 

biochemical bone markers in healthy persons have reported high levels in early 

childhood, peaking in puberty and decreasing to stable levels in the mid-20s. 

Children with disabilities and limited mobility are at increased risk of osteoporosis 

(Aronson and Stevenson, 2012). RTT patients display osteoporotic bone 

phenotype (Zysman et al., 2006) and have been compared with cerebral palsy 

(CP) patients in past to analyse the bone mineral density values (Haas et al., 

1997). Interestingly biochemical markers (OC, B-ALP, and N- telopeptides) in 

cerebral palsy (CP) patients with motor deficiencies have shown a wide variety in 

serum levels (Henderson et al., 1995; Henderson et al., 2002) and no significant 

association with measures of bone mass as BMD z scores of the lumbar spine and 

distal femur region have been found (Henderson et al., 2002).  

Moreover another study comparing CP and healthy children reported no significant 

difference in both formation and resorption markers (Chen et al., 2011). Thus the 

reduced level of bone turnover seen in children and adolescents with RTT could 

be a direct effect of MECP2 gene mutation, although levels of bone markers did 

not differ between different mutation groups in patients with RTT (Roende et al., 

2014). This could be due to an overall general effect of MECP2 on regulation of 

growth and bone turnover. This is corroborated by my findings of decrease cortical 

bone volume, alteration in trabecular structure, reduced bone strength in Mecp2 

stop mouse model along with the growth plate abnormalities, decreased femoral 

trabecular and cortical bone volume and decreased bone mineral apposition rates 

seen in other Mecp2  mouse models (O'Connor et al., 2009a; Shapiro et al., 2010).  
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The results obtained from this study are quite interesting. As described earlier, in 

my initial experiments I did find a difference in bone strength and structural 

parameters in Mecp2 stop mice. In this current study, I found a possible defect 

(reduced collagen content) in organic part and not the traditionally considered 

inorganic part (ash weight density) of extracellular matrix to be responsible for 

bone fragility.  

Future experiments need to be more focused on the organic part of extracellular 

matrix in order to determine the possible mechanisms of bone fragility commonly 

seen in RTT patients. 
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Chapter 6  

General discussion 

  

The overall aim of the experiments described in this thesis was to explore the 

effects of MeCP2 protein on bone tissue using various biomechanical, radiological 

and anatomical techniques applied to mice in which the Mecp2 gene was 

functionally silenced. A secondary theme was to assess whether such features are 

potentially reversible by genetic rescue of the Mecp2 gene. This has important 

therapeutic implications as it would predict whether future gene-based therapeutic 

interventions are likely to impact on bone phenotypes. In this chapter I will 

integrate the major findings of this thesis, the significance of these findings and 

finally, I will discuss possible future experiments to extend this work and derive the 

maximum benefits from the results I have obtained to date. 

6.1 Major findings of the study  

My first aim was to see whether inactivating the Mecp2 gene in male and female 

mice will result in overt bone phenotypes. My study is only the second study to 

explore RTT-like bone phenotype in mice and the first study to investigate such 

phenotypes in female mice as well as to investigate biomechanical properties of 

bone. Female Mecp2+/stop mice are a gender appropriate and accurate genetic 

model of RTT yet they display a more subtle and delayed onset (4-12 months) of 

neurological features (Guy et al., 2007; Robinson et al., 2012a) compared to 

hemizygous male mice. Male Mecp2-null mice typically become symptomatic by 

the age of 5-8 weeks (Guy et al., 2007) and because of this rapid and severe 

disease trajectory are more commonly used in preclinical studies (Gadalla et al., 

2011). In keeping with this pattern, the results of my work revealed a more 

pronounced bone phenotype in male stop mice and subtle or undetectable bone 

phenotypes in heterozygous female mice. 

At the outset of the project there was no published literature on the expression of 

MeCP2 in bone. Therefore, an important initial experiment was to assess this in a 
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MeCP2-GFP reporter mouse line in which MeCP2 protein with an C-terminal GFP 

tag (McLeod et al., 2013) is expressed under its endogenous promoter and 

regulation. In male mice the MeCP2-GFP was observed to co-localise with DAPI in 

the nucleus but was absent elsewhere. This is consistent with MeCP2 displaying a 

similar nuclear-specific expression pattern as reported in brain neurons as well as 

other tissues. These experiments also showed heterozygous Mecp2+/stop mice to 

display punctate nuclear GFP fluorescence in ~50% of nuclei and no detectable 

MeCP2-GFP in the other cells. The heterozygous Mecp2 stop female mice in 

which one Mecp2 allele is inactivated mimic the mosaic expression seen in human 

Rett syndrome (figure 3-8). 

Having established the presence of MeCP2 in bone and the efficient silencing of 

the gene in the Mecp2-stop mouse line the results of my subsequent anatomical 

and biomechanical phenotyping revealed that Mecp2 stop male mice display a 

range of abnormal skeletal phenotypes that shares many of the features seen in 

clinical cased of RTT. Morphometric analysis revealed that the long bones of 

Mecp2 stop male mice are lighter and shorter as compared to the age matched 

wild type group. This finding correlates with the growth retardation pattern seen 

commonly in RTT patients (Neul et al., 2010). Male stop mice are also known to 

display skeletal dysmorphic feature of kyphosis, which is comparable to 

pathogenomic ‘S’ type of curvature seen in RTT patients (Ager et al., 2006; Koop, 

2011; Riise et al., 2011). 

One of the major finding of the current study came after the biomechanical 

analysis of male and female stop mice. The robust deficits were seen in 

mechanical properties were profound (39.5% reduction in stiffness in the three 

point bending test; 31% in load and  12.3% reduction in micro hardness) and could 

explain the weakness in MeCP2 deficient bone that accounts for the  increasing 

occurrence of low energy fractures reported in Rett syndrome patients (Roende et 

al., 2011b). Frequent findings of reduction in bone strength (brittle bones) and 

hence increase incidence of fracture has given human RTT bone phenotype an 

overall osteoporotic bone phenotype picture (Haas et al., 1997; Zysman et al., 

2006). However, the current studies do not discriminate whether the observed  
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defects arise from absence of MeCP2 protein or MeCP2 per se (ie. a primary 

pathology) or whether global silencing of Mecp2 throughout the body results in 

endocrine or systems defects elsewhere in the body that results a secondary 

pathology within the skeletal system. This question could potentially be address by 

using bone-linage specific cre lines. In terms of the potential secondary pathology, 

it is important to consider that the male mouse tissues used in the study were 

harvested at a time point at which the Mecp2-stop mice where showing fairly 

severe and advanced clinical signs (tremor, abnormal breathing, reduced 

locomotor activity and general poor condition) and these non-bone-related 

phenotypes may be an important factor. In contrast, the female heterozygous 

mice, despite being tested at a much later (many months rather than weeks) 

display similar non-bone phenotypes, albeit with much reduced severity (Guy et 

al., 2007). 

Another important finding of my work came after the structural analysis of cortical 

and trabecular bone. Robust significant differences were seen in Mecp2 stop 

mouse cortical and trabecular bone including a pronounced 54% reduction in 

cortical thickness, 30% in bone volume, 20% in total area, 38% in marrow area 

and 30% in trabecular thickness. Such findings are consistent with what is 

expected in an osteoporotic model (Seeman, 2008b).  

Female stop mice bone phenotype results remained consistent with their overall 

subtle bone phenotypes and didn’t show an overt difference in morphometric 

measurements of long bone length and weight measurements. Within the nervous 

system there is evidence for both cell autonomous and non-cell autonomous 

effects of MeCP2-deficiency including morphological changes in dendritic 

architecture (Ballas et al., 2009). Whilst it is clear from the results of the current 

experiments that various bone phenotypes are more subtle, absent or below the 

level of detection in hemizygous females compared to equivalent measures in 

males, it is unclear whether this is indeed due to the fact that only ~50% of bone 

cells are expressing MeCP2 or whether dysfunction in other systems are 

contributing to the subtle phenotypes. Nonetheless, a similar significant reduction 

(14%) in micro hardness and a trend towards reduced biomechanical properties 
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 seen in female mice that are heterozygous and mosaic for the mutant allele, 

demonstrate that the bone deficits are not restricted to the more severe male RTT-

like phenotype but are also seen in a gender and MeCP2 expression pattern 

appropriate model of RTT.  

An important finding of the current study and one with therapeutic significance is 

that the bone anomalies observed in terms of cortical bone material and 

biomechanical properties were rescued by delayed postnatal activation of the 

Mecp2 gene. Male rescue mice displayed a robust improvement in mechanical 

(stiffness 40%, ultimate load 10%, young’s modulus 61% and micro hardness 

12%) and structural bone parameters (trabecular thickness 80%) as compared to 

Mecp2 stop male mice. Similarly another major finding was the rescue of female 

bone phenotype in female stop mice. Female rescue mice displayed a significant 

improvement in bone material properties (micro hardness 19%) and a trend of 

improvement in mechanical properties (stiffness, load) as compared to stop mice. 

These finding of rescue of bone phenotype in stop mice were consistent with  the 

improvements seen in multiple non-bone phenotypes seen in the Mecp2Stop/y  mice 

after delayed activation of the Mecp2 gene including survival, normalized 

bodyweight, locomotor and behavioural activities (Guy et al., 2007; Robinson et 

al., 2012a). 

These results were quite significant as they suggest that the bone anomalies seen 

in RTT patients may be at least partially reversible using gene-based approaches 

currently under development (Gadalla et al., 2013; Garg et al., 2013). However, it 

is also possible that significant amelioration of bone phenotypes may also be 

achieved by using pharmacological strategies (Gadalla et al., 2011; Garg et al., 

2013). In order to apply all these therapeutic intervention most important aspect is 

to identify the mechanisms by which MeCP2 deficiency results in altered bone 

mechanical, material and structural properties. In my study I have found that 

MeCP2 is expressed in osteocytes (figure 3-8), but the protein is widely expressed 

throughout the body and it is possible that metabolic and endocrine factors can 

influence the bone homeostasis (Motil et al., 2006; Motil et al., 2011; Motil et al., 

2012).  
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A surprising finding of the current study was the absence of any significant 

difference in ash weight density or bone mineral density (µCT) in stop male and 

female cohorts. Our findings of no significant difference in bone mineral density 

(BMD) in Mecp2 mice were similar to the one reported in a Mecp2 null mouse 

model (O'Connor et al., 2009a) while differs with other animal study in which bone 

mineral density were found reduced in Mecp2 null mouse model (Shapiro et al., 

2010). These are the only two animal model studies conducted in past to explore 

the RTT bone phenotype using the  Mecp2 null mouse model. The relationship 

between RTT bone phenotype and bone mineral density values in animal studies 

is still unclear. 

Reduced bone mass is commonly associated with osteoporotic phenotypes and 

indeed these have been reported in RTT patients (Hui et al., 1988; Leonard et al., 

1999c; Cummings et al., 2002; Ager et al., 2006; Flynn et al., 2007). Several 

clinical, density x-ray absorptiometry (DXA) studies (Haas et al., 1997; Leonard et 

al., 1999a; Cepollaro et al., 2001; Motil et al., 2008; Shapiro et al., 2010) in RTT 

patients have shown low absolute values of BMC (g) and or BMD (g/cm2) 

compared to age-matched controls. The problem with use of DXA scan for 

assessment of bone mineral values is that the size adjusted absolute DXA values 

of aBMD (g/cm2) may lead to interpretation of a relatively lower bone density 

among RTT patients than is actually the case (Roende et al., 2011a). Nonetheless 

these findings of bone mineral density from both µCT and ash content analysis are 

very interesting. They points towards the further need and importance of 

exploration of other possible factors (e.g. cellular dysfunction and alterations in the 

extracellular protein matrix)  involved in the robust reduction of bone strength and 

structural parameters seen in Mecp2 stop mice. Furthermore reversal of bone 

integrity (bone stiffness, hardness, trabecular thickness) seen in rescue mice after 

the gene reactivation leads to assess the mechanisms by which bone structure 

and properties are dynamically regulated by MeCP2 levels. As stated, it is also 

necessary to assess whether the influence of MeCP2 on bone homeostasis is a 

primary or secondary mechanism.  

A number of studies have been conducted to investigate the role of specific genes, 

gene pathways and biochemical networks involved in the regulation of bone  
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homeostasis (Elefteriou et al., 2014; Quiros-Gonzalez and Yadav, 2014).  

Studies involving leptin and neuropeptide Y2 have disclosed unrecognized 

interactions between the central nervous system, peripheral neurotransmitters and 

osteoblast function (Allison et al., 2007; Abdala et al., 2013; Elefteriou et al., 2014; 

Quiros-Gonzalez and Yadav, 2014). Several reports suggest that MeCP2 is an 

important regulator of neuronal gene expression (Skene et al., 2010; Guy et al., 

2011b)). Neurological studies suggest that MeCP2 can affect osteoblast function 

by altering osteoblast chromatin structure as already seen  in brain tissue or by 

altering cell maturation as observed in RTT neuronal tissues (Budden and 

Gunness, 2003; Chadwick and Wade, 2007). However, the precise role played by 

MeCP2 in the nucleus remains unclear (Chahrour et al., 2008; Skene et al., 2010; 

Guy et al., 2011a; Li et al., 2013a), but it is generally considered to regulate gene 

expression.  

Another important finding of my studies and one which may relate to aberrant 

gene expression is the effect of MeCP2 deficiency on collagen content. As 

collagen is the most abundant gene product and structural determinant in bone, I 

conducted an initial analysis of collagen content and distribution using sirius red 

staining. The decreased levels (25% as compared to age matched wild type 

genotype) of intense sirius red stain observed in the MeCP2-deficient mice is 

consistent with reduced PINP (bone formation markers) levels in human RTT 

(Roende et al., 2013a) and the patches of reduced staining resemble those 

features characteristic of early osteoporosis (Leonard et al., 1999a). Whilst my 

work suggests that deregulation of collagen may be a significant potential 

mechanism underlying RTT-related bone phenotypes, further studies would be 

required to assess whether altered collagen level or altered balance of different 

collagen subtypes may result as a direct consequence of MeCP2 deficiency.  

In addition to structural protein, we also investigated the resorptive properties of 

the bone in terms of TRAP staining. The lack of any difference in osteoclast 

number between genotypes is consistent with a previous report (O'Connor et al., 

2009a) and suggests the possible absence of any primary defect in bone 

remodelling.  
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My findings of osteoclasts were also consistent with the bone histomorphometric 

analysis performed by Budden and colleagues (Budden and Gunness, 2003). 

Although no difference in resorptive parameter (osteoclast number) was found, 

conclusions about the resorption activity or rates cannot be inferred from these 

surface estimates. 

Overall, based on all these major findings of my study it could be said that Mecp2 

stop mice display, osteopathic features of RTT (reduced bone strength, decrease 

in cortical and trabecular thickness, decrease in collagen content and tendency 

towards spinal curvature) which are also similar to those reported in collagen type 

1 genetic disorder (osteogenesis imperfecta; brittle bone disease) (Dogba et al., 

2013) pointing towards the possible importance of collagen defects in RTT. The 

RTT bone phenotype has previously been linked with osteogenesis imperfecta 

(OI) in past (Loder et al., 1989). Indeed, one patient in this study who suffered 

from increased rate of fractures had originally been given a primary diagnosis of 

osteogenesis imperfecta before the Rett syndrome was diagnosed. 

Animal’s studies and studies in human subjects suggest that skeletal fragility in 

osteogenesis (OI) is due to the defect in collagen synthesis, whereas the 

abnormalities in bone turnover and mineral are inconsistent. These findings of 

reduced collagen and no significant difference in bone mineral density were similar 

to the one I have observed in my analysis of skeletal phenotype of RTT. The 

collagen abnormalities seen in OI are the result of the two type 1 collagen genes, 

mutation COLIA1 and COLIA2. Over 200 mutation types have been reported. Two 

main classes of type 1 collagen mutations have been described (Seeman and 

Delmas, 2006). The first “null allele” mutation affects the pro-alpha1 or pro-alpha2 

allele that impairs transcription and mRNA stability and produce low amounts of 

the secreted heterodimer. The abnormal heterodimers are incorporated into 

matrix, resulting in a quantitative and qualitative abnormal bone matrix (Seeman 

and Delmas, 2006). These results of quantitative abnormality of bone matrix were 

consistent with my finding of quantitative analysis of Mecp2 stop mice showing 

reduction of 30% in collagen content and a recent study on bone biochemical 

markers (Roende et al., 2013a). 
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Whatever the mutation in OI, there is less bone synthesized (Seeman and 

Delmas, 2006), a feature that may parallel the bone phenotypes seen in RTT 

(Budden and Gunness, 2003; O'Connor et al., 2009a). Moreover abnormal 

collagen fibrils may be unable to provide nucleating and scaffolding sites for 

mineral propagation. Such mechanism point towards a hypothesis that low mineral 

density seen in RTT patients could result from a direct alteration in collagen 

homeosynthesis.  

As mentioned earlier, although RTT-like bone phenotypes are frequently linked to 

an osteoporosis bone picture (Zysman et al., 2006), the biomechanical, structural 

and histological finding from my study has features consistent with both 

osteoporosis as well as those of OI bone phenotypes.  

A mouse model having well-defined genetic mutations on the COLIA2 gene 

produces aplpha1 collagen homotrimers and non-functional pro alpha2 chains. 

These oim/oim mouse modelling human OI, displayed a bone phenotype 

characterized by spontaneous fractures  and limb deformities (Camacho et al., 

1999), both of these features are commonly reported in RTT(Guidera et al., 1991a; 

Roende et al., 2011b). OI, oim/oim mouse model (Camacho et al., 1999) also had 

displayed mechanical defects (30% decrease in stiffness, 20% decrease in 

collagen content, reduced trabecular thickness and an unchanged mineral content, 

but with a decreased mineral crystallinity). Other than mineral crystalline results, 

all the features of RTT bone phenotype in my Mecp2 stop mouse study were 

qualitatively and indeed quantitatively similar (39.5% reduced stiffness, ~30% 

decrease in trabecular thickness, 25% decrease in collagen content and no 

difference in bone mineral deficits) suggesting that RTT bone phenotype shares 

common features with OI bone phenotype and that specific material properties 

such as mineral crytallinity and collagen content commonly seen in oim mice, 

could also be indicative and possibly predictive of bone fragility seen in RTT 

patients. Leonard and colleagues (Leonard et al., 1999a) did mentioned these 

similarities between OI bone phenotype and RTT bone phenotype but since then 

not much attention has been given both by human and animal based trials to 

explore further qualitative and quantitative dysfunction in organic part of 

extracellular matrix as a possible causes of bone fragility. To investigate the 

mineral crystalline structure directly, I have already initiated synchrotron X-ray 

nanomechanical (SAXS) imaging of mineralized fibre composites on Mecp2 stop 
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mice humerus. I have performed this research experiment at MAX Lab at Lund 

University (Sweden). Results and analysis are in the process. In situ synchrotron 

X-ray scattering and diffraction, in combination with micromechanical testing can 

provide quantitative information on the nanoscale mechanics of bio mineralized 

composites of bone. In bone carbonated apatite forms a composite fibril with type 

1 collagen of diameter ~ 50-200nm, which forms plywood-like lamellae in the bone 

with widths ~5-10μm that in turn form cylindrical osteons at the scale of ~100-

200μm. Due to this well known hierarchical organization the structural and 

mechanical properties of the mineral/protein composite at small (submicron) 

scales are crucial to the mechanical function of the entire organ (Reznikov et al., 

2014).   

6.2 Significance of the study 

Given the very limited previous attempts to explore the effects of Mecp2 on 

skeletal tissue, my current studies brings significant advance understandings that 

Mecp2 has a role in skeletal tissue regulation since inactivation of Mecp2 resulted 

in RTT like bone phenotype in stop mouse and reactivation of Mecp2 resulted in 

improvement of some of these defects identified in stop mice.  My study is the first 

study to use female stop mice which is a genetically accurate mouse model of 

RTT, and the results obtained from stop mice bone phenotype analysis will 

contribute towards the pre clinical trials of gene therapy intervention.  

Fractures due to osteoporosis are a major cause of long term dysfunction and 

even death (Heaney, 2003) in individuals with physical and mental disabilities 

(Gray et al., 1992; Lingam and Joester, 1994). Lack of soft tissue padding, 

inappropriate postural reactions, and lack of bone strength as major contributors to 

fractures and these factors are common among individual with RTT. For these 

reasons a thorough knowledge of mechanisms by which Mecp2 regulates and 

participates in bone homeostasis is required. Biomechanical and structural 

findings from my study will contribute towards the better understanding of these 

parameters and their link with MeCP2.  

My study results along with other recent studies (Roende et al., 2013a) have found 

a defect most probably linked to bone formative factors (decrease in collagen 

content and no difference in osteoclast number) rather than bone resorptive 
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measures. In this scenario, use of pharmacological antiresorptive measures 

seems less useful by further decreasing the activity of osteoclasts and the 

osteoblast. In contrast anabolic bone treatment stimulating bone formation may be 

more relevant, but caution should be taken due to possible medical side effects 

regarding risk of inducing uncontrolled bone formation in childhood (Tashjian and 

Goltzman, 2008).  

Also my study is the first study to provide initial quantitative analysis of collagen 

protein in RTT bone phenotype. Majority of the clinical trials in past have been 

focused to explore the inorganic part of the bone and not much research has been 

done to explore the organic part of the bone. My study highlights the importance of 

more insights into the collagen as underlying mechanism for the RTT bone 

phenotype 

And lastly the most important significance of this study is the use of adult male and 

female rescue mice. Reversal studies (Guy et al., 2007; Robinson et al., 2012a; 

Gadalla et al., 2013; Garg et al., 2013) in stop mice have shown potential 

reversibility of RTT-like phenotypes. In this study I have shown the first evidence 

that RTT bone phenotype can be prevented/ improved by genetic manipulation. 

These data in rescue mice however at the proof of concept level should have an 

impact on the future therapeutic approaches not only just for RTT bone phenotype 

but for better bone health in other related bone pathologies (osteoporosis, 

osteogenesis imperfecta etc) for which gene based therapies might eventually 

have therapeutic potential. 

6.3 Future studies 

The nature of this project has been to explore the consequence of inactivation of 

MeCP2 on bone tissue using an animal model of RTT. This represents a logical 

trajectory in reaching the ultimate goal of exact mechanism by which MECP2 is 

linked with the skeletal tissue: 

 In my current study I have used a functional knockout mouse model in 

which Mecp2 is silenced throughout the body including the nervous system. 

In order to discriminate where the bone phenotypes I have identified result 

primarily from local intrinsic bone dysfunction or whether central (nervous 
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system) dysfunction result in secondary bone phenotypes, experiments with 

different mouse cre lines may be informative. For instance mouse lines 

have been developed in which Mecp2 is activated or inactivated only in the 

nervous system or only in peripheral tissues or other organ systems 

(Alvarez-Saavedra et al., 2007; Alvarez-Saavedra et al., 2010; Chao et al., 

2010; Nguyen et al., 2012). An analysis of bone measures in these models 

would be highly informative. 

 The role of collagen in the pathogenesis of RTT bone phenotype has not 

been explored yet. Basic validation of altered collagen level by techniques 

like immunoblotting would strengthen this conclusion whereas a better 

understanding of collagen (matrix) structure in bone from RTT model using 

approaches such as Small energy X-Ray (SAXS), a nanomechanical 

imaging of mineralized fibre composites can provide useful insights about 

the exact structural changes that might result from MeCP2 insufficiency  

 In my current study I have used an adult mouse model, in future, animal 

studies need to be done to explore the possible effects of MECP2 on the 

bone mass formation and later on ossification of bone, using the embryonic 

and early postnatal murine models. These experiments will give a better 

understanding of the exact time points over which the deleterious effects of 

MeCP2 deficiency start impacting bone health/properties. This will also help 

in the development of future therapeutic strategies and time point at which 

they should be implemented. 

Based on the findings of this study, the reduced bone size reduced mechanical 

properties of bone, altered structural parameters and extracellular organic deficits 

in an adult stop mouse model points towards the fact that MeCP2 has a general 

role in regulating bone growth. Improved knowledge of how it involved in bone 

metabolism is important to assist directions for prevention and treatment in order 

to improve bone health in RTT. 
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