
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Luo, Siding (2014) Stochastic models of microbial communities: 
stochastic dynamics of quasi-neutral species in a resource-limited 
chemostat environment. PhD thesis. 
 
 
 
http://theses.gla.ac.uk/5808/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/5808/


Stochastic Models of Microbial Communities:

Stochastic Dynamics of Quasi-Neutral Species in a

Resource-Limited Chemostat Environment

Siding Luo

School of Engineering

University of Glasgow

A thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

c© November 2014 by Siding Luo



i

To my parents



Acknowledgements

First of all, I would like to express the great appreciation to my super-

visor, Dr. Christopher Quince, who offered me this precious opportunity

to do research on the stochastic dynamics in microbial communities four

years ago. The way of scientific researching is full of challenges, but as my

research advisor, his positive attitude, valuable advice and tremendous pa-

tience helped me survive the toughest period in my life. His high standard

significantly improves my research ability and work over this whole research

course. I am deeply grateful to him for going through this thesis again and

again, correcting my writings and offering numerous suggestions.

I would also would like to give my appreciations to Dr. Todd Parsons

for his great preliminary work in the stochastic population dynamics, help-

ful ideas and constructive suggestions. Thanks for providing me plenty of

support in understanding mathematical population dynamics and giving me

inspiration to complete many analytical calculations and derivations, espe-

cially in deriving the diffusion approximation at long time scale and working

out the solution to correct some unpredictable analytical results. He also

helped check all the analytical calculations in Chapter 3 of this thesis.



iii

I am grateful to Dr. Zofia Jones with her numerous discussions and sug-

gestions. My thanks also to Dr Umer Ijaz for his expertise in programming,

which helped me to sort out practical problems in simulation.

I wish to thank Prof. William Sloan for his kind encouragement, many

kinds of help. I would also like to thank all the girls in my office for sharing

the pleasant environment.

I am immensely grateful to the Department of Civil Engineering, the Uni-

versity of Glasgow, and Engineering and Physical Sciences Research Council

(EPSRC) for awarding me the Scholarship.

Last but definitely not least, particularly thankful to my parents and

husband, without your consistent support, encouragement and love, I would

never know when I could complete this thesis work.



Abstract

The most indispensable work for microbial ecologists is to develop math-

ematical models in order to describe microbial communities. In this as-

pect, a proper understanding of microorganism richness and abundance is

of paramount importance. A chemostat environment is a classic open micro-

bial community, where multiple species compete for limited nutrients, whose

mathematical model has broad applications in microbiology and population

biology.

Generally speaking, there are four key processes that may influence the

diversity: selection, speciation, drift and dispersal. The debate between

niche assembly theory and neutral theory has lasted for decades about the

dominant process. In term of simplicity, Hubbell’s unified neutral theory

of biodiversity has a distinct advantage for sampling and parameterisation.

It offers a quantitative stochastic base model of island macroscopic com-

munity coupled with meta-community, where species compete in a finite

environment.

In this thesis, an explicit quasi-neutral chemostat model is fully devised

by reconciling neutral theory and niche difference, which gives insight into

iv
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how the origin, maintenance and loss of biodiversity in the local competitive

community at different time scales are influenced by selection, stochastic

drift and dispersal. An analysis of the deterministic dynamics is conducted

to explain the niche assembly rule, and to further show that the species

at the same largest fitness will be selected to coexist through life history

trade-offs. These species are quasi-neutral. However, over a long period of

time, stochastic drift will play a dominant role in constructing the pattern

of the local communities. Without dispersal, extinction is the ultimate fate

of stochastic drift.

Both analytical and numerical methods established in this thesis verify

that the quasi-neutral species are in fact not competitively equivalent. Their

difference will drive a superior species to fix in the isolated community.

When dispersal is incorporated, even with low immigration rate, it will drive

the long term drift of large communities, and balance extinction to maintain

the diversity of the local communities. An explicit results for the stationary

abundance distribution is calculated, which helps to demonstrate a deviation

from the neutral model. These results from the explicit stochastic model

highlight the importance of incorporating species interaction into the basic

neutral model.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

Population biology is the branch of mathematical biology that studies

how birth, death, immigration and emigration change the size and age com-

position of populations over time, and how these changes are influenced by

biological and environmental processes. There are essentially two streams

of problems that are represented at the population level. One is population

ecology, which is concerned with changes in population structure as a conse-

quence of interactions of organisms with the environment, with individuals

of their own species, and with those of other species. The other is population

and evolutionary genetics, whose focus is on the frequency distribution and

interaction of alleles and genes in populations.

Our research on microbial population biology applies population ecology

1
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and population genetics in order to understand the evolution and ecology of

microbes and the community interactions between microorganisms, includ-

ing nutrient competition. In this thesis, a specific chemostat environment

will be hypothesised in order to explore microbial ecology and evolution.

Before we present the detailed mathematical model, this chapter provides a

relevant review of the development of mathematical descriptions of popula-

tion dynamics, and a summary of the historical debates between determin-

istic and stochastic views, as well as a clarification of the motivations and

objectives of this thesis.

1.2 Review of the Population Dynamics

In the history of mathematical population dynamic models, nearly all

concepts in population ecology and population genetics originated from the

same processes and models, and diverged later due to their different appli-

cation areas. But the similarity in modelling analogies may still be found in

later development. The development of the concept of population ecology

predates the understanding of genetics. Therefore, with the purpose of un-

derstanding the microbial community, a full retrospective view of the whole

area of population dynamics is helpful. In this section, we will briefly dis-

cuss some history of population dynamics modelling relevant to this thesis,

and present the long-lasting debates between deterministic and stochastic

aspects.
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1.2.1 Development of the Mathematical Population Dynam-

ics

Fibonacci’s rabbit problem proposed in 1202 is probably the first effort

in the history of population dynamics. The Fibonacci sequence was created

to model a population of rabbits, but was far from being realistic, since no

mortality and no separation of sexes, etc. were assumed. Half a millennium

later, Euler introduced the geometric (exponential) growth of populations

[14], where the population Pn at year n increases geometrically,

Pn = (1 + x)nP0,

with year n, initial population P0, and growth rate x. Euler’s calculations

showed that a population could increase more than tenfold within one cen-

tury, which precisely matched with observations at the time in the city of

London [5].

However, with Euler’s geometric growth equation, even a small initial

population growing by a tiny constant fraction will lead to a large unsustain-

able population on Earth. Half a century later, this question was addressed

by Thomas Robert Malthus. He published one of the earliest and most

influential books on populations, An Essay on the Principle of Population

[41]. The views in the book suggested that growing population rates would

contribute to a rising supply of labour that would form a kind of resistance

(inevitably lower wages). His work was a key influence on Charles Darwin

and Alfred Russell Wallace’s development of the theory of natural selection

[11].
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Figure 1.1: Population growth under the Verhulst logistic equation is sig-
moidal (S-shaped), reaching an upper limit termed the carrying capacity, K.
Populations initiated at densities above K decline exponentially until they
reach K, which represents the only stable equilibrium.

Adolphe Quetelet and Pierre-Francois Verhulst continued this problem.

They translated the phenomena that a population approaches a steady state

into a mathematical model with the population expressed by P (t) at time

t,

Logistic equation:
dP

dt
= rP

(
1− P

K

)
, (1.1)

where the constant r defines the growth rate and K is the carrying capacity.1

Due to the S-shape as illustrated in Figure 1.1, the name “logistic equation”

was given in [68]. The idea of density dependence was first introduced by

Verhulst. In his model, the logistic equation could be approximated by

1 The carrying capacity of a biological species in an environment is defined as the
maximum population size of the species, which is different from the concept of population
equilibrium.
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the exponential equation, while P is less than K in the initial phase. As

saturation begins (due to environmental pressures), growth slows down. At

maturity, growth stops and the population is maintained at the stationary

state. The “S shaped” population curve is obtained. This is one of the most

basic models of population growth and today is considered a milestone in

this history [5].

In 1875, the Galton-Watson process was presented by Francis Galton

and Henry William Watson while analysing the problem of extinction of

family names [72]. This model accurately describes Y chromosome trans-

mission in genetics. The Galton-Watson process is a branching process

{X0, X1, . . . , XN}, where Xk is the number of male members in the k-th

generation. By assumption, X0 = 1, and ξ
(k)
j is the number of male descen-

dants of the j-th member in the k-th generation, with probability function

P (ξ
(k)
j = i) = pi. Therefore, Xk+1 =

∑Xk
j=1 ξ

(k)
j and

∑
pi = 1. To calculate

the probability of extinction of the family name within n generation, a trick

was used by Waston. He considered the generating function for the first

generation f1(x) = p0 + p1x + p2x
2 + · · · + pkx

k, and noticed that the nth

generation fn(x) could be computed recursively from the formula

fn(x) = p0,n + p1,nx+ p2,nx
2 + · · ·+ pqn,nx

qn

= fn−1

(
f1(x)

)

where pk,n is the probability that generation n consists of k man [72]. As a

result, the probability of extinction of the family name within n generations

p0,n = fn(0) is yielded.



CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 6

From 1900, the rediscovery of the laws of Mendelian inheritance initiated

the modern science of genetics. The Hardy-Weinberg principle (1908) stated

that in the absence of selection, mutation, migration and genetic drift, the

allele frequencies in a large population were constant through generations

[27]. Taking for instance two alleles, A and a, dominant and recessive re-

spectively, Hardy determined the frequencies of the genotypes AA, Aa and

aa, staying constant through the generations, as equal to p, 2q and r respec-

tively, satisfying the condition q2 = pr. This law for gene frequencies was

also discovered by Weinberg in the same year [76].

After more than six centuries of development, mathematical biologists

needed more complex models to describe the interactions between species.

The Lotka-Volterra equations were then proposed by Alfred James Lotka

[39] and Vito Volterra [70], independently, to describe the dynamics of eco-

logical systems with predator-prey interactions, competition, diseases and

mutualism [5]. In the Lotka-Volterra equations, the growth rates of two

populations prey N1(t) and predator N2(t), at time t can be expressed by

the equations [39],

dN1

dt
= N1(α1 − β1N2)

dN2

dt
= N2(−α2 + β2N1),

where the parameter α1 is the intrinsic growth rate of prey, α2 is the intrin-

sic death rate of predator, and β1N1N2 and β2N1N2 represent the rate of

predation upon the prey and growth of the predator population respectively,

both proportional to the rate at which the predators and the prey meet. By
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studying the sign of dNk/dt, Lotka explained the four equilibrium states,

why and also how the system could oscillate in a periodic way. This model

is also widely applied to determine the population dynamics in the case of

an epidemic, where βS(t)I(t) could express the rate of diseases spreading

from infected population I(t) to susceptible population S(t) at time t, with

infection parameter β.

The discipline of population genetics was founded in 1930 through the

work of R.A. Fisher, J.B.S. Haldane and Sewall Wright. Fisher made a key

step in population genetics by reconciling Mendel’s law with the ideas of

natural selection emphasised by Darwin [5]. Fisher explained the two situa-

tions of coexistence or extinction of genotypes, and published the book The

Genetical Theory of Natural Selection [20] in 1930, which was a milestone in

the history of population genetics. Influenced by Fisher, Wright considered

a mathematical model following the Hardy-Weinberg principle, but without

assuming the population to be infinitely large [77][78]. He first introduced

the concept of “drift”,2 which questioned natural selection as the foundation

of evolutionary theory, and ignited a century-long debate over the respective

influence of natural selection and random drift.

Most multicellular organisms are diploid, that is they have two sets of

chromosomes and have one copy of each gene (one allele) on each chromo-

some. If there is N copies of genes, the whole population of the allele is 2N .

Assume A and a are the two alleles segregating in the population. Under the

assumption of random mating, the Wright-Fisher Markov process calculates

2 The concept of “drift” in ecology is the change in the frequency of an allele/individual
in a population due to random sampling.
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the transition probability Pi,j of obtaining j copies of the allele A that had

i copies in the last generation, which is

Wright-Fisher process: Pi,j =

(
2N

j

)( i

2N

)j(
1− i

2N

)2N−j
.

Using the binomial distribution, for each generation, the number of copies

of A is expected to remain the same on average, but in fact may take any

value from zero (become extinct) to 2N (fixation) [58][73].

While the Wright-Fisher model has sudden-death generations, Moran

(1958) [46] embedded the Markov process in continuous time by assuming

overlapping generations.3 In this case, when an individual dies, it is imme-

diately replaced by a newcomer. Assume there are i copies of allele A and

2N − i copies of allele a in the current generation, and let j be the number

of copies of allele A after one time unit. The transition probabilities Pi,j

are,

Pi,j =



i
2N

2N−i
2N if j = i+ 1

2N−i
2N

i
2N if j = i− 1

( i
2N )2 + (2N−i

2N )2 if j = i

0 otherwise.

Supposing the population 2N to be large, the mean and the variance of the

copies of allele A, X(t) at time t, can be detained when an initial state

3 The non-overlap in generations means each generation produces exactly one genera-
tion in each time period.
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X(0) = i is given:

E[X(t)|X(0) = i] = i

V ar[X(t)|X(0) = i] = 2
i

2N

2N − i
2N

(1− (1− 2
(2N)2

)t

2
(2N)2

)
.

Moran’s model allows us to derive many exact results that are available only

approximately under the Wright-Fisher model. In practice, with equivalent

definitions of a generation, the Moran model and Wright-Fisher model give

qualitatively similar results, but genetic drift runs twice as fast in the Moran

model as it does in the Wright-Fisher model [73].

Two main findings emerges from the Wright-Fisher model and Moran’s

model. First, if the population is assumed infinitely large, the fluctuations

of the allele result in time-varying genetic drift without changing the main

qualitative features of the conclusions. Second, if one takes the finite size

of the populations into account, then genetic drift plays a significant role.

The frequencies of the two alleles fluctuate and one of the alleles will be lost

from the population. An excellent treatment of the dynamics of this model

are given by Ewens in [16]. In our later analysis in this thesis, with the help

of the law of large numbers, the first conclusion (that a small demographic

drift in a large population will not change the deterministic limit) is easily

proved. Using the simulation results in small population size, the second

conclusion (that a significant role is played by randomness) is also proved.

The Wright-Fisher model shows its robustness in the later development

of population genetics, and most mathematical descriptions of allele fre-

quencies are built upon it. The coalescent process, which was originally
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developed in the early 1908s by John Kingman is a backward view of the

time evolution of the Wright-Fisher model when the population size is large,

and describes the genealogy of a population sample [73]. Given a Wright-

Fisher model with population size 2N , the ancestral process includes both a

discrete genealogical tree structure and coalescent time intervals. Due to the

random picking of a parent, the probability that two individuals choose the

same parent is pc,1 = 1
2N . The probability for coalescence of two individuals

i.e. a common ancestor for the first time at t generations ago, is then

pc,t =
1

2N
· (1− 1

2N
)t−1.

Therefore, the coalescent time t is geometrically distributed with success

probability 1
2N [58].

Kimura (1962) later extended the results of the Wright-Fisher model

to include the probability of eventual dominance, and presented a general

diffusion approximation formula of the fixation probability u(p, t) in terms

of the initial frequency p,4

∂u(p, t)

∂t
=
V

2

∂2u(p, t)

∂p2
+M

∂u(p, t)

∂p

where V and M are the variance and mean of the change of p per gener-

ation [35]. This partial differential equation (PDE) is known as the back-

ward Kolmogorov equation and can be solved with boundary conditions

u(0, t) = 0, u(1, t) = 1 to obtain the probability u(p, t). Kimura’s standard

4In population genetics, fixation is the change in a gene pool from a situation where
there exists at least two variants of a particular gene (allele) to a situation where only one
of the alleles remains.
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diffusion approximation has made an enormous impact on the development

of theoretical and applied population genetics and was made more robust

by Ewans [52][16].

All the population genetics models built upon the Wright-Fisher model

assume a fixed population size, where the population 2N is an even num-

ber and has no mathematical significance [46]. However, in a real microbial

community, a fixed population is an unrealistic assumption. By varying

stochastically the population size, Quince and Parsons developed their den-

sity dependent model for the population genetics [52][53][54]. In their work,

the birth and death rates of competitive species are defined according to the

total population size as follows:

Pr(Xi + 1|Xi) = βiXi

Pr(Xi − 1|Xi) = δi

(
1 +

∑K
j=1Xj

N

)
Xi,

where βi, δi are the intrinsic birth and death rate of species type i, and N

is a parameter denoting the typical population size. Afterwards, a new dif-

fusion approximation is introduced to admit qualitatively different diffusion

from the Kimura’s standard one, which demonstrates novel behaviour by

contrasting small populations with populations near equilibrium. In order

to derive this diffusion approximation, Parsons further developed a method

by applying Itô’s formula on a different time scale [51].
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1.2.2 Debates between Deterministic and Stochastic Views

in Community Ecology

Opinions in both population genetics and ecology on the role of stochas-

tic factors are divided. In population genetics, a long-standing debate has

persisted over whether most changes in gene frequencies result from ran-

domness, neutral evolution or from natural selection. Since this thesis is on

ecology in microbiology, we will focus in this subsection on reviewing the

debates in community ecology.

There are two conflicting schools in ecology in terms of the importance

of the role that drift and dispersal play in ecological communities. The

mainstream perspective is that of traditional niche-based theories which

inherit the Darwinian tradition, believing that species differ in their traits,

focusing on the lives of interacting individuals and their fitness consequences

[11]. In this school of thought, biodiversity can be determined by the “niche

assembly rules”, which are based on the ecological niches or functional roles

of each species. Coexistence in this niche-assembly view is an equilibrium

state with the best competitors occupying each ecological niche, and this

perspective predicts the balance among these niche-differentiated competitor

species, predators and their prey [67].

In contrast to deterministic coexistence and diversity owing to compet-

itive interactions, some theorists have questioned whether similar patterns

could be observed through random chance alone. The other perspective is

formed by believing that niche differences quickly screen out the inferior

species and these differences are never the leading mechanism in controlling
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the abundance of species over a long period of time. Instead, ecological drift,

which emphasises the role of stochastic processes, plays a prominent role in

shaping the diversity of the community. The coexistence of species results

from a balance between speciation/ immigration and extinction through

random demographic drift. The emphasis on the ecological drift leads to a

theory with species that are ecologically equivalent [60] [59] [67]. MacArthur

and Wilson’s island biogeography theory in Figure 1.2 is a model of this

type.5 The actual parameters of their model are immigration and extinc-

tion rates, distance from mainland source areas and island size, parameters

which are absent from most niche-assembly theories [31]. However the most

extraordinary work was developed by Stephen Hubbell, who proposed that

the abundances and diversity of species in a community are determined

mainly by random dispersal, speciation, and extinction, with the assump-

tion of neutrality on the individual level which means the ‘whole population

one niche’.

This controversy between niche assembly deterministic theory and stochas-

tic neutral theory has lasted for half a century. Although niche difference is

a mechanism that can maintain biodiversity by allowing species to coexist,

the classical niche assembly theory does not provide a general explanation

for the relative abundance of species [31][60], and only a limited number of

analytical models in niche assembly theory can be applied to a small sample

[47][65]. Stochastic drift should be taken into account in any attempt to un-

derstand population structure, but the assumption of ecologically equivalent

5An island in this context, is not just a segment of land surrounded by water. It is any
area of habitat surrounded by areas unsuitable for the species on the island.
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species is obviously the great weakness of neutral theory. As a consequence,

more and more synthetic theories are and will be developed to reconcile

ecological drift and niche differences among species.

The chemostat model we built in this thesis is a such a reconciliation,

where niche differences, stochastic drift and dispersal interact to shape the

local microscopic community. For that reason, firstly we will introduce the

neutral theories in macroscopic communities in Section 1.3.

1.3 Neutral Theory in Community Ecology

In community ecology, ‘neutral’ means that a theory treats organisms

as identical in their probabilities of giving birth, dying, migrating, and spe-

ciation. Each theory uses a definition of neutrality operating on a different

level. Although controversial, these neutral theories demonstrate how much

can be achieved with the simple assumption of ecological equivalence before

introducing more complexity.

1.3.1 Neutral Models in Macroscopic Community Ecology

To better understand the stochastic dynamics of biodiversity in com-

munity ecology, Caswell (1976) attempted to emphasise the role of drift by

incorporating the neutral approach from population genetics without con-

sidering the complex interactions and environmental effects. Unfortunately

he failed to provide a good fit to the observed data [7]. It was MacArthur

and Wilson who first erected a new radical theory, separated from the main-

stream Darwinian view of ecological communities, by assuming neutrality
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and dispersal-assembly, emphasising the importance of random dispersal

and ecological drift in the communities.

Figure 1.2: MacArthur and Wilson’s island biogeography theory explains the
number of species on islands as a dynamic equilibrium (S∗) between the rate
of immigration of new species onto the island and the rate of extinction of
species already resident on the island. I is immigration rate and E represents
extinction rate.

In MacArthur and Wilson’s island biogeography model in Figure 1.2,

neutrality is defined at the species level, and immigration and extinction

rates are introduced as parameters which are absent from niche-assembly

theories. Although a steady-state number of species on the island is main-

tained through repeated immigrations and local extinctions, a stable assem-

blage of particular taxa cannot be predicted. This means that the equilib-

rium state only exists in a narrow sense, and the island biogeography model

is not a equilibrium theory. Thus, the absence of speciation and relative

abundance of species makes it incomplete as an ideal dispersal assembly

theory.
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1.3.1.1 Hubbell’s Unified Neutral Theory of Biodiversity

By integrating speciation into the island biogeography model and by

moving the neutrality from species level to individual level, Hubbell con-

structs his neutral theory of biodiversity and biogeography, which assumes

that ecological communities are structured entirely by ecological drift, ran-

dom migration, and random speciation [31].

Figure 1.3: This diagram of Hubbell’s mainland-island model and its relation
to a sample from a continuous landscape is from [3]. In diagram (b), the
green shaded rectangular area is the local community, within a continuous
meta-community. The fundamental biodiversity and dispersal numbers in
(b) can be approximated by calculating the effective neutral mainland-island
model in (a). The fundamental biodiversity number θ is a measure of the
effective meta-community diversity, while the fundamental dispersal number
I is a measure of the effective degree of isolation of the local community.

In his model, Hubbell defines an ecological community as a group of

tropically similar species that actually or potentially compete in a local area

for the same or similar resources. Neutrality, defined at the individual level,



CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 17

is used to describe the assumption of per capita ecological equivalence of all

individuals of all species in the community. He makes the definition of “bio-

diversity” to be synonymous with species richness and relative abundance

in space and time, and quantitatively predicts the species presence-absence,

relative abundance and persistence times in a wide range of different biolog-

ical communities.

There are two sample size independent fundamental parameters in the

theory that effectively determine the steady-state distribution of the species’

richness: the fundamental biodiversity number, which is a measure of the

effective meta-community diversity, and the fundamental dispersal rate (im-

migration rate m), which is a measure of the effective degree of isolation of

the local community.

Hubbell places great emphasis on the argument that living nature is

forever locked in a saturated, life-or-death and zero-sum game for limited

resources. This assumption of saturation keeps the population constant. In

local communities, the vacancy created by the death of an individual will be

filled immediately by random birth within the local community with proba-

bility 1−m, or an immigration from the meta-community with probability

m. Given the neutrality at individual level, the probability that a new in-

dividual comes from species i is simply proportional to that species’ overall

abundance, and is independent of species identity. Consequently, the ex-

pressions for the effective birth and death rate of the ith species in the local
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community are

Pr(Ni + 1/Ni) = (1−m)
Ni

J

J −Ni

J − 1
+m

µi
Jm

(
1− Ni

J

)
(1.2)

Pr(Ni − 1/Ni) = (1−m)
J −Ni

J

Ni

J − 1
+m

(
1− µi

Jm

)Ni

J
(1.3)

where J and Jm are the population sizes for the island and meta-community

respectively, and Ni and µi are the abundance of the ith species in the island

and meta-community respectively [31]. In his famous book [31], Hubbell pro-

vides a numerical calculation method using a generator function to generate

one random sample.

Following on from Hubbell’s basic theory, McKane et al. provide a gen-

eral analytic solution by recasting Hubbell’s discrete stochastic theory as an

appropriate continuous Markovian process, and determine that the station-

ary probability distribution in local communities can be expressed by a beta

function [44]. Moreover, to understand how the community is assembled

from a given starting point, studying the stationary density is not enough.

Since it is impossible to explicitly calculate the distribution of species at

time t, it is necessary to consider a good analytical diffusion approximation.

Using Van Kampen’s system size expansion [34], Mckane et al. approximate

the probability distribution involved with time to a Gaussian expression [44].

Despite its radical assumptions, Hubbell’s Unified Neutral Theory of

Biodiversity (UNTB) is the first general quantitative theory which attempts

to explain the distribution, abundance and diversity of species, and gives

insight into the origin, maintenance and loss of biodiversity in a biogeo-

graphical context by making only a few, but fundamental, assumptions [3].
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No other alternative model has done this. It is still the only sampling model

which has been developed. Although large numbers of empirical tests of

the prediction of the neutral theory appear to have rejected this pure neu-

trality [42][43][60], the really useful point is that it can be considered as a

null hypothesis to compare the actual data and assess the influence of other

parameters [66].

1.4 Motivations and Objectives of the Thesis:

Demographic Competition Models in a Resource-

Limited Chemostat Environment

In a microbial community, the disparity between sample scale and com-

munity size is huge. Bacterial richness far exceeds the richness levels ob-

served in the macroscopic community. Hundreds of thousands of bacterial

taxa exist in a tiny sample and increase with the sample size [19]. For ex-

ample, as many as 109 individual microorganisms can be found in a gram

sample of soil [63]. All these factors make the attempt of ecologists to cap-

ture the empirical definition of a taxa-abundance distribution in nearly any

community, and to derive analytical predictive models capable of dealing

with very large populations and communities, very challenging [19][63][75].

Therefore, even with the critical assumption of neutrality, Hubbell’s neutral

model is still considered to be an appropriate quantitative base model for

parameterisation and prediction.

The objective of this thesis is to construct suitable models, which are
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not only capable of capturing the essential biological features of microbial

population in compact communities, but are also mathematically tractable.

In Hubbell’s Unified Neutral Theory of Biodiversity, he gives an exam-

ple illustrating how species are distributed widely and defining the field

of macro-ecology [31], however, he does not take species interaction into

account but simply assumes ecological neutrality on the individual level.

Among various methods of introducing niche structure into Hubbell’s neu-

tral model, the simplest one is to alter this assumption and make the birth,

death and dispersal rate of species i dependent on the identity of i [7]. Sloan

frees this assumption of the uniform birth rate for each species with selec-

tive parameters to model species abundance distributions in a prokaryotic

community by applying the forward Kolmogorov equation [62][63]. Under

the limit of neutrality, the beta-distributed stationary probability density of

the relative abundance is analytically proved and is also recovered through

numerical calculations. Compared to other works on the analytical solution

advancing Hubbell’s original model [30][66][69], Sloan’s method not only re-

defines Hubbell’s strict neutrality to satisfy different modelling demands,

but also gives an straightforward diffusion approximation in a large popula-

tion transferred from the original discrete model. It helps us to predict the

dynamics of microbial communities using all the methods from modelling

stochastic macroscopic community and population genetics. However, it is

still based on the neutral theory and thus lacks an explicit demographic

ground in ecological theory. Without factoring in some important mecha-

nisms, it may mislead the interpretation and result in incomplete conclusions

about the fundamental drivers of population dynamics and species diversity
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[2][21][38]. Further iterations of candidate models for the prediction of the-

oretical microbial ecology are hence necessary.

In this thesis, we will redefine the assumptions of zero-sum and neu-

trality, build a niche-based stochastic demographic model for the multiple

species case in a resource-limited chemostat environment to assess the influ-

ence of the mechanisms of selection, drift and dispersal, analyse the diversity

over different time scales, and compare the results with those of Hubbell’s

neutral model and Sloan’s near-neutral model to determine whether the

species with same fitness exhibit substantial difference.

Using the Monod growth function, Hubbell developed a deterministic

model to analyse species competition analytically in a single nutrient-limited

chemostat environment and predicted that the single species with strongest

fitness will survive [33]. Later Hubbell confirmed the agreement between

this theoretical prediction and experimental outcomes [26].

To build our model, the same growth function as in Hubbell’s chemostat

model [33] is used. While keeping the growth and removal events of nutri-

ent happening deterministically, demographical stochasticity is incorporated

into the growth and death events of the population. A hybrid model, in

which the birth and death processes of species are time-dependent through

a nutrient concentration that is continuously evolving and constrained by

the population size, is then built. Life history trade-offs 6 allow different

species to survive in Hubbell’s selection regime.

Collet and Melerd [10] are concerned with a monotype population in

6 Life history trade-offs equalise the per capita relative fitness of species in the com-
munity, which set the stage for ecological drift [31].
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chemostat model and discuss the long time behaviour of this hybrid model,

gives the quasi-stationary distribution. However, their work could not be

generalised to a multiple type population. Campillo, Joannides and Valverde

[8][9] add stochastic drift into both the nutrient and population dynamics,

and provide an algorithmic method to show that the numerical results ap-

proximate the Fokker-Planck equation in a two-dimensional chemostat en-

vironment, without offering an explicit diffusion approximation.

In all the above work, no explicit derivations of the diffusion approxima-

tions for multiple species over a long time interval are given to explain the

interaction between species in the same niche, and to predict the advantages

or disadvantages for competition. In this thesis, by changing the time scale,

we will reduce our three-dimensional hybrid system into a one dimensional

diffusion approximation in order to understand the evolution of this model.

Following that, dispersal (immigration) will be incorporated into the local

community to achieve a explicit stationary distribution which will be com-

pared with Hubbell’s neutral model to determine the role of selection, drift,

dispersal and life history trade-offs play in our local chemostat community.

Although there exist a large number of technical methods developed by

mathematical microbial ecologists to calculate the diffusion approximation,

to best of our knowledge, the demographic model in this thesis is the first one

with an explicitly derived diffusion approximation and matched simulation

results which thoroughly explains long time competition among multiple

species in a resource limited local community by considering all key processes

(natural selection, stochastic drift , and dispersal).
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1.5 Outline of the Thesis

Chapter 1

In Chapter 1, the relevant history of mathematical population ecol-

ogy and mathematical population genetics is given. We explain the differ-

ences between niche assembly theory and dispersal assembly views, present

Hubbell’s neutral theories and related studies that have been done in macro-

scopic and microscopic communities, and explain the motivations and ob-

jectives of this thesis.

Chapter 2

An introduction of the chemostat environment is first given. Besides

some fundamental definitions, this chapter mainly focuses on deterministic

analysis and explains the rule of niche assembly in our chemostat model.

Starting from a single cell, the deterministic dynamics of the population

would experience exponential and logistic growth phases before the equilib-

rium state is reached. Then strong selection is shown among the species,

resulting in the survival of species with the largest fitness. Species sharing

this largest fitness through life history trade-offs are defined as quasi-neutral.

These quasi-neutral species will coexist forever in the deterministic model

with its equilibrium state on a centre manifold expanded by the zero eigen-

value. With a stable assemblage of species, but no fixed equilibrium state,

the equilibrium in the deterministic model is in the narrow sense, and the

interaction between the quasi-neutral species is left unknown. In addition,

a trade-off parameter γk will be defined in this chapter, whose effects on the
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dynamics will be discussed later for all the models developed in the thesis.

Chapter 3

As the niche assembly theory is only able to explain the coexistence, a

stochastic model is needed to predict the species diversity. The stochastic

analysis is first attempted in Chapter 3, which is considered to be the most

creative part of this thesis. The population density is presented as a classical

birth and death process. Combined with deterministic dynamics of resource

concentration, our demographic chemostat model is hybrid. The Ornstein-

Uhlenbeck process then may be approximated using the law of large numbers

and central limit theorem, under the condition that this is over a compact

time interval. Over an infinite time interval, the law of large numbers and

central limit theorem are inapplicable. The quasi-neutral species will be

trapped into an absorbing state eventually, thus weak selection exists in the

process. By changing the time scale, we derive a new diffusion approximation

for the process over an infinite time interval. The calculation of fixation

probabilities and mean of the first absorption time is a consequence of the

explicit diffusion approximation. When the first absorbing state is reached,

the so-called quasi-stationary distribution of the dominated species, before

the whole population dies out, will be calculated.

Chapter 4

Using Monte Carlo algorithms, the stochastic model may be numerically

calculated for small populations. In this chapter, all the analytical quanti-

ties derived in Chapter 2 and Chapter 3 will be compared with the results
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of corresponding numerical calculations. The effects of the parameters yk

(yields), and trade-off parameter γk are discussed in both the phase of strong

selection and weak selection. By comparison, all the analytical results match

the numerical ones under a small population very well.

Chapter 5

In this chapter, the role played by the limited dispersal in shaping the lo-

cal communities is mainly investigated. By introducing a small immigration

rate, the deterministic dynamics and its centre manifold will not change,

but the stochastic dynamic at a long time scale are no longer trapped into

an absorbing state. Extinction will be balanced and coexistence will be

maintained. We discuss the sensitivities of the stationary distribution of the

relative abundance to the immigration rates, yields and γk, and state the

departure from Hubbell’s neutral model when the immigration rate is small.

Chapter 6

This chapter, besides summarising what has been done in the thesis, also

identifies some open tasks associated with this work and remaining to be

done.



Chapter 2

The Chemostat and Its

Deterministic Model

The open microbial community this thesis considers is one which ex-

cludes predator-prey, parasite-host and mutualistic relations, and includes

only species that pursue similar ways of life and compete with each another

for the same nutrients. A chemostat (from chemical environment is static)

is a classical environment for this scenario, and an important research tech-

nique in microbiology and population biology.

This chapter will give an idea of what the chemostat environment is

and how its deterministic model works. In the first section, the chemostat

environment will be clearly defined with essential assumptions. After giving

the expressions of stochastic and deterministic processes for both population

density and nutrient concentration in Section 3.2, we will use the rest of this

chapter to investigate the details of the deterministic dynamics. With the

26
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help of Hubbell’s analytical results [33] for competition between non-neutral

species, the results of strong selection and hence the niche assembly rule

will be derived in Section 3.3. At the same time, the ideas of fitness, quasi-

neutrality and life history trade-offs will be defined. The specific case of two

quasi-neutral species and its equilibrium states will be explained in Section

3.4. In the last section before the summary, we will introduce a trade-off

parameter γk which is important throughout this thesis.

2.1 Description of the Chemostat

2.1.1 Introduction to the Chemostat

Our chemostat is a bioreactor as shown in Figure 2.1. It contains a

population of n bacterial species, each with density xk(t) = Nk(t)
V (number

of cells at time t/unit volume, k = 1..n), and a single limited substrate of

concentration S(t) to feed the bacteria in a culture vessel (it is assumed

that all other substrates are supplied in excess of demand). Due to resource

limitation, the population in this closed volume is kept finite.

As Figure 2.1 shows, the chemostat environment is continually supplied

with stock nutrient of concentration Sin from a nutrient reservoir with a

constant flow at rate D (in units 1/time). At the same time, the culture

liquid is continuous removed with the same dilution rate D to keep the cul-

ture volume constant. By changing the rate of inflow, the growth rate of

the bacteria can be easily controlled. The bioreactor is assumed to be suffi-

ciently well stirred, so that the bacteria and nutrient are spatially uniformly

distributed, and each individual bacterium has equal access to the nutrients.
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Figure 2.1: A completely stirred chemostat bioreactor with a continuous
influx (the feed) and outflow (the effulent).

The chemostat environment is perhaps the best laboratory idealisation

of nature for competitive population studies. All such models are all open

systems for energy and materials. The input and removal of nutrients to

and from the chemostat represents the continuous turnover of nutrients in

nature. The outflow of organisms is formally equivalent to nonspecific death,

predation, or emigration, which always occur in nature [10].

2.1.2 Monod Function: Function for the Growth Rate of

Bacteria

Defined as an increase in the number of cells, growth is an essential com-

ponent of microbial function. The growth rate describes the change in cell

number per unit time. The mathematical expression for the growth rate

has been studied over the centuries. The logistic equation Eq. (1.1) is one

of the most widely used ones, which expresses the rate of reproduction as
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proportional to both the existing population and the amount of available

resources. However, in a chemostat environment, the growth curve of bac-

terial may not be logistic during some initial period.[79] We need a more

accurate function to explain the mechanism for the deceleration of the bac-

terial growth rate, namely nutrient depletion. By performing experiments

on bacteria fed a single limited nutrient, a function which fitted the data

best was found by Jacques Monod to describe its growth rate b(t). It is

called the Monod function, with a resource S(t) dependent expression:

Monod Function: b(S) =
mS(t)

a+ S(t)
.

As illustrated in Figure 2.2, the growth function monotonically increases,

approaching the maximum limit value m as S → ∞. When S reaches the

value a (in units mass/volume), the value of growth rate equals half the

value of the maximum growth rate, i.e., m/2 (in units 1/time). Therefore m

and a are called the maximum growth rate and half-saturation constant re-

spectively. Monod also found that the rate of nutrient consumed by bacteria

was proportional to the rate of bacterial growth, i.e., a gain of one unit of

bacteria requires 1
y units of nutrient. y is then defined as the growth yield,

and expressed as

y =
cells of bacteria produced

mass of nutrient used
.

Given these definitions, the deterministic and stochastic dynamics of

species population and nutrient in chemostat may be developed in detail.
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Figure 2.2: Monod Function b(S) = mS
a+S for a species with parameter a as

the half-saturation constant and m as the maximum growth rate.

2.2 Dynamics of the Chemostat Model

Before presenting our deterministic model, some essential concepts and

expressions used throughout this thesis will be given.

2.2.1 Deterministic and Stochastic Dynamics

As introduced in Chapter 1, different views in community ecology arise

by putting different emphases on natural selection and ecological drift. In

mathematical biology, different behaviours are yielded from different ap-

proaches by treating the dynamics in discrete or continuum, deterministi-



CHAPTER 2. THE CHEMOSTAT AND ITS DETERMINISTICMODEL31

cally or stochastically [36].

Continuous Deterministic Dynamics

Modelling begins typically in the form of ODESs in the continuous de-

terministic setting.

As the nature of the microbiological world is such that a ten gram sample

of soil can contain as many as 109 individual microorganisms [63], the whole

population in our chemostat model N(t) is ideally close to infinity. Corre-

spondingly, in our analytical models, by measuring in the units of volume of

a typical cell, the value of volume V is also close to infinity. In this manner,

a macroscopic description for the time evolutions of population density N(t)
V

and substrate concentration S(t) can be given in the form of ODEs.

Stochastic Dynamics

In contrast, since noise cannot be completely ignored in the real world,

the stochastic model is more suitable to describe the real dynamics. In

a stochastic model, drift is present and the states of the population are

variable and need to be described by probability distributions instead of

unique values.

Except this chapter, all the chapters of this thesis will focus on the

stochastic analysis to demonstrate how stochastic drift will shape the struc-

tures of the local community. In continuous and discrete settings for different

population scales, we will develop analytical and numerical models in the

later chapters, and such comparisons will be used to interpret and verify the

stochastic model.
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Although stochastic drift is important, the deterministic approach to

ecological dynamics has often been taken, due to its straightforwardness and

ability to explain natural selection and state a clear direction of evolution.

Moreover, the usual approach in most studies to derive the time dependent

stochastic approximation starts from expanding the deterministic ODEs.

Therefore, to give some necessary insights, the deterministic model will be

first discussed in the rest of this chapter .

2.2.2 Dynamics of the Population Density and Substrate

Concentration

The dynamics of the chemostat model in this thesis are compromised of

the population densities and substrate concentration. Thanks to Jacques

Monod’s work, their interaction is precisely defined, as stated in Subsection

2.1.2. In this subsection, the description of the dynamics for the substrate

concentration and population densities in both deterministic and stochastic

models will be given. In this thesis, the substrate concentration is measured

in units of mass/volume and the species density in units of cells volume.

Dynamics of the Population Densities xk(t)

From our previous assumptions, the birth rate for each species is ex-

pressed as a substrate-dependent Monod function, bk(t) = mkS(t)
ak+S(t) . The

death rate for each species is defined as dk = D + µk, with dilution rate of

the liquid D and the species intrinsic death rate µk. We assume the value of

dilution rate D in this thesis to be much larger than the intrinsic death rate

µk. Therefore in the later analytical analysis, µk is insignificant to impact
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the results.

Since in the deterministic dynamics, all the birth and death events occur

deterministically, the density of species type k can be expressed in ODE

form:

dxk
dt

=
mkS(t)

ak + S(t)
xk(t)− (D + µk)xk(t). (2.1)

In the stochastic dynamics, the population is assumed to behave as a

counting processes with Markovian rates. We will then explain in Chapter 3

how the stochastic process can be developed by adding stochastic drift into

the deterministic dynamical equation Eq. (2.1).

Dynamics of the Substrate Concentration S(t)

Assume the substrate concentration in the input flow Sin is fixed. With

dilution rate of the culture liquid D (which describes the fraction of volume

being replaced in a unit of time), the input rate of nutrient in the local

environment is SinD. The removal of nutrient is composed of two parts:

one is removed by dilution at rate S(t) · D, the other part is used by the

growing bacteria,

bkNk

yk
=

rate of production of bacteria

number of bacteria produced per unit substrate
,

where bk is the growth rate of the kth bacterial species.

In both deterministic and stochastic formulations of the model, the rates

of change of substrate concentration are defined to be deterministic and can
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be defined by the following ODE:

dS

dt
= SinD −

(
S(t)D +

n∑
k=1

1

V

bkNk

yk

)
=
(
Sin − S(t)

)
D −

n∑
k=1

xk(t)

yk

mkS(t)

ak + S(t)
.

Using the above descriptions, in the rest of this chapter we will derive

the deterministic model, and we will study the stochastic model in the fol-

lowing chapters. To distinguish them, we will use (S̄(t), x̄(t)) to express the

deterministic process, and (Ŝ(t), x̂(t)) for the stochastic process.

2.3 Deterministic Model

With the descriptions and assumptions in Section 3.2, the deterministic

process (
S̄(t), x̄(t)

)
=
(
S̄(t), x̄1(t), . . . , x̄n(t)

)
,

may be expressed as the solution of the ODE system:

dS̄

dt
=
(
Sin − S̄(t)

)
D −

n∑
k=1

x̄k(t)

yk

mkS̄(t)

ak + S̄(t)
, (2.2)

dx̄k
dt

=
mkS̄(t)

ak + S̄(t)
x̄k(t)− (D + µk)x̄k(t), (2.3)

S̄(0) = S0 > 0,

x̄k(0) = xk,0 > 0. k = 1, 2, . . . , n

The deterministic dynamics with three species are plotted in Figure 2.3 with

their birth rate (Monod) functions.
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Figure 2.3: This figure illustrates the deterministic dynamics of the chemo-
stat model with three species. Figure A and B are the time evolutions of
the substrate concentration and species densities. Figure C plots the growth
rate functions (Monod functions) at different resource concentrate value for
each species. The blue lines in Figure B and C represent the first species
with parameters: a1 = 1 · 10−6, m1 = 1, y1 = 5 · 107. The red lines are the
second species with: a1 = 2 · 10−6, m1 = 1.925, y1 = 5 · 107. The black lines
give the third species with: a1 = 1 · 10−5, m1 = 5, y1 = 5 · 107.

Let us define S∗k as the steady substrate concentration when the kth

species is grown alone in the chemostat. By setting Eq. (2.3) to be zero,

S∗k = ak(D+µk)
mk−(D+µk) is yielded for each species.
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2.3.1 Overview of the Deterministic Dynamics

As shown in Figure 2.3 A, the substrate is consumed dramatically at the

beginning by the increasing population and then reaches a low equilibrium

level S∗ to establish the carrying capacity of the community. Correspond-

ingly, in Figure 2.3 B, the population has enough resource to feed itself at

first, but competition among species for the limited nutrient starts once the

carrying capacity is reached. In Figure 2.3 B, the deterministic time evolu-

tions of population densities can be separated into an exponential phase, a

logistic phase and a strong selection phase. These phases will be explained

in the following Subsection 2.3.2. Figure 2.3 C helps to explain how the

species with different birth rate coefficients will behave in the deterministic

dynamics. The birth rate (Monod) function is monotonic with substrate

concentration S. As the substrate concentration reduces, the birth rate will

decrease correspondingly to a stable level where it equals the death rate and

then net growth vanishes.

By comparing Figure 2.3 C with Figure 2.3 B, it can be seen that the

third species with the largest value of S∗k (in black lines) has the smallest

birth rate at S∗ (in Figure C), and will die out eventually (in Figure B).

The first and second species sharing the same value of Sk = S∗ will coexist

for a long time. The second species with the larger slope of its birth rate

at S∗ (in red lines) easily reaches a higher proportion in the population.

This selection will be discussed in Subsection 2.3.2, and the behaviour of

the surviving species will be analysed in Subsections 2.3.3 and 2.3.4.
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2.3.2 Phases in the Time Evolution

By assuming that each species starts from a single cell and S0 = Sin, in

this subsection, we will discuss the behaviour of the deterministic dynamics

in the different time phases.

2.3.2.1 Phase 1: Exponential Growth Phase

At very beginning, the resource is sufficient, and since it has a very

small initial value, the population will not reach a level to impact the sub-

strate concentration. The substrate concentration will stay at Sin, and the

dynamics may be approximated by,

S̄(t) = Sin,

dx̄k
dt

=
mkS̄(t)

ak + S̄(t)
x̄k(t)− (D + µk)x̄k(t),

x̄k(0) = xk,0 k = 1, 2, . . . , n

with solution,

S̄(t) = Sin,

x̄k(t) = xk,0e

(
bkS

in−D−µk
)
t
.
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As the initial value of the species density, xk,0, is very small, by taking the

log of x̄k(t), we obtain

S̄(t) = Sin

log x̄k(t) =
(
bk(S

in)−D − µk
)
t. (2.4)

This expression shows that the species experiences exponential growth of its

density, with constant rate bk(S
in) − D − µk. We define this phase as the

exponential growth phase.

Since the intrinsic death rate is small enough to be negligible compared

to the dilution rate, the death rate D+µk can be approximated as D. Then

from the exponential equation Eq. (2.4), the species with the higher birth

rate in the beginning, bk(S
in), will dominate in this phase. However, due

to the dramatic growth of the population, the resource concentration will

rapidly deplete and the logistic growth phase is soon reached.

2.3.2.2 Phase 2: Logistic Growth Phase

After a small period of time in which the population grows exponentially,

the population reaches Nk(t) = O(N)1, where the parameter N determines

the typical population size, and the substrate consumed by the population

may no longer be neglected. There is a sharp drop in substrate concentration

as shown in Figure 2.3 A. A decrease in birth rate follows this drop, but it

is not affected sufficiently to stop the growth of the population which keeps

accelerating until it approaches the middle point of this phase. As the

1If f(N) = O(g(N)), then limN→∞ sup | f(N)
g(N)
| <∞
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resource level continues to reduce, it will reach a point where the birth rate

bk decreases to a level close to that of the death rate dk which equals D+µk.

Expressions for the deterministic process in this period are,

dS̄

dt
=
(
Sin − S̄(t)

)
D −

n∑
k=1

x̄k(t)

yk

mkS̄(t)

ak + S̄(t)
< 0

dx̄k
dt

=
( mkak
ak + S̄(t)

− (D + µk)
)
x̄k(t) > 0.

Since the solution of this system is in the form of a sigmoid curve (a

logistic curve which is S shaped), we will call this time period the logistic

phase.

2.3.2.3 Phase 3: Strong Selection Phase

When the growth of the population meets resistance due to substrate

limitation, competition begins. The niche assembly rules explains that,

competition among species is the ecologically equivalent of selection among

genotypes, and is expected to have the same outcome at equilibrium: the

best-adapted species will have replaced all others [6]. In this subsection, we

will explain this selection process in our chemostat model analytically.

At equilibrium the time derivatives of the state variables equal zero [40].

Using Eq. (2.3), the species type k surviving in equilibrium state (x̄k > 0)

then satisfies

0 =
mkS

∗
k

ak + S∗k
− dk =

mkS
∗
k

ak + S∗k
− µk −D.

Different types of species with different intrinsic parameters may result in

different S∗k , However, these species cannot coexist as there is only a single
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final steady substrate concentration S∗.

Using the analysis in Hsu et al’s 1977 paper [33], we will explain that

the species with the smallest parameter S∗k = ak
mk
D+µk

−1
will outcompete all

other species in the chemostat environment. We name this deterministic

phase the strong selection phase, because of its deterministic property when

compared to the weak selection in the stochastic model.

Given the parameters of the chemostat model with one limited nutri-

ent (growth rates, Michaelis-Menten constants, input concentration of the

limiting nutrient, and dilution rates), Hsu et al [33] analytically explain the

deterministic competition among non-neutral species. By focusing on the

parameter S∗k = ak
mk
D
−1

, Hsu et al prove mathematically that only the species

with the smallest value of S∗k survives, no matter how abundant the com-

petitors are at the start, or how efficiently the species convert the substrate

into cell growth (yields yk) [33].

We will keep most of the definitions in Hsu et al’s chemostat model except

those of death rates and the number of species surviving. By introducing

an intrinsic death rate µk into Hsu et al’s model, we relabel the species to

make sure their parameters S∗k = ak
mk

D+µk
−1

are ordered as

0 <
a1

m1
D+µ1

− 1
<

a2
m2

D+µ2
− 1
≤ · · · ≤ an

mn
D+µn

− 1
.

With at least a1
m1
D+µ1

−1
< Sin, otherwise no species will survive.

By a straightforward generalisation of Hsu et al’s results [33], first species

has the lowest value of S∗ so it survives and outcompetes all other species.
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The limiting values are

lim
t→∞

x̄1 =
y1(Sin − S∗)

1 + µ1
D

,

lim
t→∞

x̄k = 0, k = 2, 3, ...n,

lim
t→∞

Ŝ = S∗ =
a1

m1
D+µ1

− 1
.

Therefore the parameter S∗k , which represents the equilibrium substrate con-

centration when the kth species is grown alone in the chemostat model, is

the measurement that may be used to judge the fitness of each species. The

winning species is the one with the highest fitness (lowest parameter Sk).

This is the result of strong selection, and is not dependent on the cell growth

yields yk of each species.

Fitness

The parameter S∗k forms a useful measurement for fitness in the model,

as the strong selection regime selects the species with the smallest value of

S∗k . In biology, fitness describes the ability to reproduce. By defining a new

parameter 1
S∗k

as the fitness of every species, we can conclude that the species

with the largest fitness will survive the strong competition. Since the value

of S∗k can be measured in the chemostat with a single species grown alone,

this selection outcome is deterministic, and may be predicted in advance.
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2.3.3 Quasi-neutrality and Life History Trade-offs

Quasi-neutral Species

The other difference between our model and Hsu et al’s chemostat model,

is that there can be more than one species type sharing the same largest

fitness (smallest S∗k), i.e.,

0 <
a1

m1
D+µ1

− 1
=

a2
m2

D+µ2
− 1

= · · · = ad
md

D+µd
− 1

<
ad+1

md+1

D+µd+1
− 1
≤ · · · ≤ an

mn
D+µn

− 1
.

Given the results in the strong selection phase, we know that all the

species j (j > d) go extinct when t → ∞, and species k (k ≤ d) enter the

equilibrium state,

Ω = {S∗, x∗}

with elements satisfying:

S∗ =
ak(D + µk)

mk − (D + µk)
d∑

k=1

D + µk
yk

x∗k = (Sin − S∗)D, k = 1, . . . , d (2.5)

x∗k = 0, k > d.

These species k = 1, . . . , d which share the same largest deterministic fitness

are defined as mutually quasi-neutral.

d is the number of species which survive the strong selection. In this

thesis, we will assume two quasi-neutral species (d = 2). The situation for

d > 2 may be similarly derived in future work based on the analysis in this
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thesis.

Life History Trade-offs

In contrast to Hubbell’s neutral theory which assumes that all species

are competitively equivalent, we allow the quasi-neutral species to differ,

through life history trade-offs:

a1(D + µ1)

m1 − (D + µ1)
=

a2(D + µ2)

m2 − (D + µ2)
= S∗. (2.6)

ak, mk and µk can be defined as trade-off parameters. In the later analysis,

we will find that the quasi-neutral species with different trade-off parameters

exhibit substantial difference in the diversity of their communities.

After the deterministic process reaches the multiple species coexistence

phase, a stability problem in deterministic analysis arises: Is the equilibrium

state stable? Is the coexistence state fixed? These questions will be discussed

in the following subsections.

2.3.4 Equilibrium States and Their Stability Analysis

We denote the equilibrium states in our two quasi-neutral species model

as Ω ={S∗, x∗1, x∗2} . There are four possible stationary states in the deter-

ministic system:

Coexistence state {S∗, x∗1 6= 0, x∗2 6= 0},

Two fixation states {S∗, (Sin−S∗)Dy1
d1

, 0}, {S∗, 0, (Sin−S∗)Dy2
d2

},

Extinction state {Sin, 0, 0}.
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In the absence of immigration, when the population goes extinct it will

remain extinct and, hence, the extinction state is stable.

Let us assume the strong selection phase ends in a state where both

species exist. This subsection discusses the stability of the coexistence equi-

librium state, and the stability of the two fixation states follows next. The

first Lyapunov method [40] will be used to evaluate this stability based on

an eigenvalue and eigenvector analysis.

2.3.4.1 Stability of the Coexistence Equilibrium State

In the first step, by linearising the system at the coexistence stationary

point {S∗, x∗k 6= 0}, we derive the Jacobian matrix J∗ = J(S∗, x∗k) of the

first order partial derivatives:

J∗ =

 −D −
∑d
k=1

x∗kmkak
yk(ak+S∗)2

− d1
y1

− d2
y2

x∗1m1a1
(a1+S∗)2

0 0

x∗2m2a2
(a2+S∗)2

0 0

 =

 −D −
∑d
k=1

(mk−dk)2

mkak

x∗k
yk

− d1
y1

− d2
y2

(m1−d1)2

m1a1
x∗1 0 0

(m2−d2)2

m2a2
x∗2 0 0

.
(2.7)

The next step is to find the eigenvalues and eigenvectors. Denote u1, u2, u3

as the eigenvectors of the Jacobian matrix J∗, and λ1, λ2, λ3 as the corre-

sponding eigenvalues. Then the deterministic dynamic system evolves as

follows:

x̄(t) = c0 + c1e
λ1tu1 + c2e

λ2tu2 + c3e
λ3tu3, (2.8)

where λ1 = 0 and λ2,3 are the roots of

λ2 + (D +
d∑

k=1

(mk − dk)2

mkak

x∗k
yk

)λ+

d∑
k=1

x∗k
(mk − dk)2

mkak

dk
yk

= 0,
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which are both negative.

The zero eigenvalue of the equilibrium state proves the existence of a

centre manifold which is spanned by eigenvector u1. The other two neg-

ative eigenvalues delineate the deterministic process tending to this centre

manifold.

In the following subsection, we will expand the analysis of the centre

manifold and the flows of the population dynamics toward it.

2.3.4.2 Centre Manifold and Dynamical Flows Toward It

The eigenvector of zero eigenvalue, u1, spans a centre subspace. The

centre manifold W c is the tangent plane to this centre subspace,

{(S∗, x∗1, x∗2) | S∗ =
akdk

mk − dk
,
d1

y1
x∗1+

d2

y2
x∗2 = (S0−S∗)D, x∗1, x∗2 6= 0}. (2.9)

To find the flows of the dynamics towards the centre manifold, we return

to the solution, which is

x̄(t) = c0 + c1e
λ1tu1 + c2e

λ2tu2 + c3e
λ3tu3. (2.10)

As t increases, the two negative eigenvalues λ2 = −D,λ3 = −
∑ (mk−dk)2

mkak

x∗k
yk

cause the solution to move towards the centre manifold in a direction that

is parallel to their eigenvectors u2 =

 −D
(m1−d1)2

m1a1
x∗1

(m2−d2)2

m2a2
x∗2

, u3 =

 −
∑ γk

yk
(m1−d1)2

m1a1
x∗1

(m2−d2)2

m2a2
x∗2

.

For the dynamics of the substrate concentration, its equilibrium value is

fixed at S∗. The flows of the dynamics of the population densities and the

centre manifold are plotted in Figure 2.4, which illustrates that no matter
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where the dynamics starts from, it will move back to the centre manifold.

There are no fixed equilibrium states on the centre manifold. Population

processes with different initial states will intersect the centre manifold at

different equilibrium points. Therefore we cannot conclude a steady state for

our deterministic dynamics, but a steady number of species types (namely

the number of quasi-neutral species) may be assumed.
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Figure 2.4: With different initial values, we numerically plotted the flow of
the dynamics of the species density for parameter values: m1 = 1, m2 = 0.9,
a1 = 1 · 10−6, 1.925 · 10−6, y1 = y2 = 5 · 108, D = 0.075. The blue line gives
the centre manifold, b1

x1
y1

+ b2
x2
y2

= (Sin − S∗)D, where bk = mkS
∗

ak+S∗ .
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2.3.4.3 Stability of the Single-Species Equilibrium State

Referring to the equilibrium states with only single species left, namely,

the two boundary states on the centre manifold, the Jacobian matrix is

J∗ =

(
−D − (mk−dk)2

mkak

x∗k
yk

− dk
yk

(mk−dk)2

mkak
x∗k 0

)
.

It has two negative eigenvalues

λ1 = −D , λ2 = −(mk − dk)2

mkak

x∗k
yk
.

Therefore, if there is only one species fixed in the population, there exists a

fixed stable equilibrium state, which is
(
S∗ = akdk

mk−dk , x
∗
k = yk(S

in − S∗)
)

.

2.4 Parameters and Their Effects on the Deter-

ministic Dynamics

In our chemostat model, there are four intrinsic parameters for each

species, the yields (yk), the two birth rate parameters (ak,mk), and the

intrinsic death rate (µk). The later three parameters are are also called as

trade-off parameters. Let us now assume the intrinsic death rate to be small

enough (µk ≈ 0), and that all other species with lower fitness hence died

out already, so that only the 2 quasi-neutral species remain.

As discussed in Subsection 2.3.2.3, we know that the results for the

strong selection are not dependent on the yields yk, but they do depend on

the trade-off parameters (mk and ak). In this section, we will discuss how
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these trade-off parameters and yields yk of the quasi-neutral species will

affect the long time equilibrium state.

2.4.1 Trade-off Parameters

Since the trade-off parameters mk and ak are also birth rate parameters,

firstly we will discuss how the trade-off parameters will affect the dynamics

through the birth rates.

We plot the birth rates (Monod function: bk = mkS
ak+S ) of the two quasi-

neutral species in Figure 2.5. The two birth rates are both monotonic with

substrate concentration S, and meet once at the equilibrium, where b1(S∗) =

b2(S∗) = D. Therefore, in both the exponential growth phase and the

logistic growth phase, where the substrate concentrations are far beyond

the equilibrium level, i.e., S(t) > S∗, the species with the advantage of

larger birth rate grows faster till the centre manifold is reached, where the

net growth rates equal zero.

This advantage may be predicted by the first derivative of the birth rate

with respect to the resource at the equilibrium state,

γk = (
dbk(S)

dS
)|S∗ =

ak
mk

D2

S∗2
=

(mk −D)2

mkak
=
D

S∗
(1− D

mk
). (2.11)

This dimensionless parameter γk measures the responsiveness of the micro-

bial growth rate to changes in the substrate concentration at the equilibrium

value, and is plotted in Figure 2.5 as the tangent lines of the Monod func-

tions at the equilibrium state. It can been seen that the species with large

γk has larger birth rate where S(t) > S∗.
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Figure 2.5: Monod functions and their derivatives for two quasi-neutral
species. The blue line represents the Monod function of the species with
m = 1, a = 80, blue dots are its tangent line at equilibrium state where
S∗ = 40. The red line and dots correspond to the Monod function and
its tangent line for species with parameters: m = 2, a = 200 with same
equilibrium value S∗ = 40.

Since γk is dependent on mk and ak only, we denote a trade-off parameter

together with mk and ak. If γ1 > γ2, we yield m1 > m2, a1 > a2 from Eq.

(2.11). We then define this situation as that the first species has larger trade-

offs parameters. Conversely, γ1 < γ2 implies that m1 < m2, a1 < a2, and it
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will be explained as that the first species has smaller trade-offs parameters.

Otherwise, if γ1 = γ2, two quasi-neutral species have identical trade-offs

parameters.
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Figure 2.6: Deterministic Flows of the population dynamics with different
trade-off parameter sets. The line in purple gives the centre manifold for all
the models with two species sharing the same yields y1 = y2 = 5 · 105. The
lines in red, black and blue represent the flows of population with γ1 > γ2,
γ1 = γ2, γ1 < γ2 respectively.

Therefore, in the quasi-neutral model, if both species start from a single

cell, the species with larger trade-off parameters has an advantage in growing

faster in both exponential and logistic growth phases and reaching a higher

relative abundance at the equilibrium state, as illustrated in Figure 2.6.
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2.4.2 Yields yk

The growth yields yk, are interpreted as the number of bacteria produced

per unit substrate. As discussed in Section 2.3, what the yields affect is not

the strong selection result and the stability of the equilibrium state, but

the centre manifold with expression d1
y1
N∗1 + d2

y2
N∗2 = V (S0 − S∗)D and the

population size N1 +N2.
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Figure 2.7: Flows of deterministic dynamics towards centre manifold with
different yields. The line in purple gives the centre manifold for all the
models with two species sharing the same yields y1 = y2 = 5 · 105, and
the dots in purple is the centre manifold for the models with parameters:
y1 = 5 · 105, y2 = 8 · 105.
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In the exponential growth phase, the species population is too small to

affect the substrate concentration, therefore the effect of the yields on sub-

strate removal may be neglected. In the following logistic growth phase,

larger yields would contribute to a slower removal of the resource and con-

sequently faster growth of the population. By plotting the flows of the

population dynamics in Figure 2.7 with the same trade-offs parameters (γk)

values in Figure 2.6, we find that upon increasing the yields, the centre man-

ifold moves outward, and vice versa. However, the variations of the yields

do not change the trajectories of the dynamics in the growth phases before

the centre manifold is reached.

2.5 Summary and Discussion

2.5.1 Summary

In this chapter, a deterministic chemostat model is fully developed and

we identify four development phases. Starting from a single cell, the pop-

ulation experiences the exponential growth phases and the logistic growth

phases, until nutrient limitation is reached. Hsu et al analyse the strong se-

lection regime both analytically and experimentally [33]. By applying Hsu

et al’s result to our model, we determine that the quasi-neutral species which

share the largest fitness 1
S∗ through life history trade-offs will survive under

strong selection and enter the long time coexistence phase.

The zero eigenvalue in the coexistence equilibrium states spans a centre

manifold. All the other eigenvalues are negative, thus the solutions of the

deterministic process tend to this centre manifold. With different initial val-
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ues, the dynamics will approach the centre manifold at different equilibrium

states. Once it is reached, the equilibrium state will be remained. Therefore

no fixed coexistence state can be predicted, but a steady-state number of

species, i.e., the number of quasi-neutral species.

Lastly, we discuss the role each parameter plays in the deterministic

dynamics. The fitness of a species is dependent on the trade-off parameters

mk, ak and µk. If we assume a small initial condition, the species with larger

trade-off parameter γk has the advantage of growing faster and so reaching a

higher relative abundance in the coexistence population. The growth yields

yk do not affect the strong selection results and the species’ growth path to

the centre manifold, but will influence the time to the centre manifold and

the population size.

2.5.2 Further Discussion

If we give the definition that the species in a niche share the same fitness.

In this chapter, we demonstrate that niche differentiation (fitness differenti-

ation) does allow for the coexistence of different species in the community.

Niche assembly explains species survival and extinction and also promotes

coexistence. However, coexistence only persists in the deterministic system if

immigration and mutation are excluded. We call the species ‘quasi-neutral’,

since the types are only neutral in terms of the deterministic limit. In the

following chapters, a birth-death Markov process will be built to develop

a hybrid model that incorporates both stochastic and deterministic events

which may relate more closely to the natural conditions. By adding stochas-

tic drift to the deterministic limit, the coexistence states of the quasi-neutral
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species will be destroyed in the absence of immigration and mutation. The

flow on the centre manifold will eventually be trapped in one of the ab-

sorbing states, where the trade-off parameters of the quasi-neutral species

will show their advantage/ disadvantage. Therefore, in the long time scale,

niche assembly can no longer explain the diversity of the community, but

stochastic drift plays a dominant role. To balance the eventual extinction of

species, dispersal-limited immigration will be incorporated in Chapter 5. Al-

though the final coexistence steady state is still one of competitive exclusion,

the time to reach a monomorphic population is then essentially indefinitely

delayed [32], and the quasi-stationary distribution can be analytically and

numerically measured.

In the view of Hubbell [31], niche differentiation along life-history trade-

offs is the very mechanism by which per capita relative fitness is equalised

among the coexisting species in a community. In this way, Hubbell accounts

for both niche and dispersal limited assembly in his unified neutral theory.

In the light of this, we will question if differences among the quasi- neutral

species are actually important to the final diversity; and if Hubbell’s unified

neutral concept may be applied to our quasi-neutral chemostat model (where

coexistence is maintained by the introduction of an immigration) to predict

a stationary diversity. The answer to these questions will be detailed in

Chapter 5.



Chapter 3

Stochastic Chemostat Model

The deterministic dynamics discussed in the previous chapter leads to

the simple result that the fittest species outcompetes all others in the absence

of immigration, but does not provide a stationary diversity and leaves the

interaction between the quasi-neutral species poorly understood. Motivated

by this fact, we shift our attention to the stochastic dynamics from this

chapter onwards. Our aim is to investigate the competition by studying the

impact of stochastic drift that arises due to intrinsic noise from randomness

in the death/birth of individual microbes.

In real world microbial populations, a large spatial region will of course

contain a relatively huge number of individuals which is close to infinity.

With such a huge population, the tiny individual drift driven by demo-

graphic noises has a small effect on the deterministic limit, especially over

compact time intervals. However, environmental resources are always not

sufficient and – together with the saturation, competition, and prey-predator

interactions – they restrict the population to be finite. Consequently the oc-

55
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currence of demographic noise cannot be excluded, and so the deterministic

model is not sufficient to describe the changes in the species frequencies and

to predict the long time result. Stochastic drift then will play a significant

role in the shaping of the structure in finite population.

For a small-sized population, the amplitude of the stochastic fluctua-

tions is relatively large compared to the value of the equilibrium states,

and may easily drive the whole population to the extinction state. If no

immigration or mutation exists, this extinction state is absorbing. Further-

more, this occurs in not only a small population, since the limiting theory of

Markov processes states that the finite state Markov chains with absorbing

states will eventually be trapped into one of the absorbing states as time

passes. Therefore, during this process, the deterministic stable assemblage

of coexisting species (quasi-neutral species) is broken and a new compet-

itive dynamics occurs amongst the quasi-neutral species after the process

approaches the deterministic equilibrium state.

In the resource-limited, immigration-absent chemostat model there ex-

ists one final absorption state: the extinction of all species. Nevertheless,

this absorption time will be far beyond the human time scale. The first

absorption state where the population is monotypic will be reached long

before the extinction of all species. Without the presence of mutation and

immigration, once this state is achieved, it will remain until the final ab-

sorption. We call the selection for quasi-neutral species to survive the first

absorption ‘weak selection’. A number of pertinent questions on quantity

arise at this phase. With what probability will certain species fade away?

How long it will take certain species to dominate the whole population?
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How sensitive are these quantities of probability and time to the absorption

to the intrinsic parameters of the species and their initial densities? What

is the trajectory of the stochastic process along the centre manifold before it

reaches the first absorption state? To answer these questions, it is necessary

to build a proper stochastic model and to analyse its dynamics.

3.1 Introduction and Overview

3.1.1 Introduction

In the first Section, a proper stochastic model will be built and defined.

By applying the law of large numbers in Section 3.3, this stochastic process

will be shown to converge to its corresponding deterministic limit in the

limit of infinite V .

After these two fundamental sections, due to the weakness of the law of

large numbers in the finite V , the analysis on stochastic dynamics is divided

into two parts: dynamics over a compact time interval (Section 3.4) and

dynamics over an infinite time scale (Sections 3.5, 3.6 and 3.7). Over a com-

pact time interval, with the help of the central limit theorem, the diffusion

approximation will be derived as an Ornstein-Uhlenbeck process fluctuating

around the equilibrium state where the quasi-neutral species coexist. Over

an infinite time interval, this coexistence will however not be maintained,

instead, the population will be trapped into one of the absorbing states.

This clearly highlights the significance of stochastic drift as a mechanism

affecting the dynamics over long time scales. Hence, by changing the time

scale, it is necessary to derive a new diffusion process in order to explain
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the stochastic dynamics over an infinite time interval – which will be the

main content of Sections 3.5 and 3.6. In Section 3.5, a mathematical trick

will be devised. By projecting the stochastic process onto its deterministic

trajectory as t→∞, we find that the trajectory on the projection map can

well approximate the stochastic process. The derivatives of this projection

map with respect to the initial states are calculated in this section. Later,

by Itô’s transformation and the weak convergence, the diffusion approxima-

tion of the projection map will be analytically derived in Section 3.6. The

dynamics of the quasi-neutral species on the centre manifold changes the

splitting probability which is also known as the fixation probability. There

are two possible ways to calculate this result: by solving the splitting prob-

ability on the centre manifold between two absorbing points; or by using

the backward Kolmogorov equation. The latter one was chosen to calculate

the fixation probability and the mean of the first absorption time, which is

shown in Section 3.7. Once the first absorbing state is reached, the popu-

lation will spend a long time in this phase, thus it is necessary to discuss

the quasi-stationary distribution of this single species and that is done in

Section 3.8. In the same section, the conditional probability density of the

relative abundance will be proved not to be stationary distributed. Section

3.9 concludes the whole chapter.

3.1.2 Overview of the Stochastic Dynamics over Time

Before attempting to extend the development of the stochastic model, it

is useful to outline the development of the stochastic dynamics over time, to

see how it differs from the deterministic dynamics of the chemostat model
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with two quasi-neutral species and immigration absent. The results of nu-

merical calculations are illustrated in Figure 3.1 (the calculations of the nu-

merical model will be explained in Section 4.1.1 in the next chapter), where

the stochastic dynamics of three species with different intrinsic parameters

are simulated.

Strong Selection and Coexistence Phase

The dynamics of the stochastic process in these two phases will be ex-

plained in Sections 3.2, 3.3 and 3.4.

In Figure 3.1, the dynamics in phase one and phase two are close to the

deterministic dynamics as discussed in the previous deterministic chapter.

The behaviour in phase one follows the course of strong selection with the

result deterministically decided by the intrinsic parameters of the species.

The species with smaller deterministic fitness (red line in Figure 3.1) will

die out in this phase. Starting from a single cell population, with nutrient

input, the population of the quasi-neutral species (black line and blue line)

grows exponentially and then logistically at the beginning. When it comes

close to the centre manifold, due to the limit of the nutrient, the mean of

the net growth rate gradually decreases to zero, where the coexistence phase

is reached.

Weak Selection Phase

The third time phase is the weak selection phase. The weak selection

regime will be discussed in Sections 3.5, 3.6 and 3.7.

After the strong selection, the surviving quasi-neutral species enter phase
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Figure 3.1: The time processes of the stochastic model with three species.
All the lines are results of stochastic numerical calculations. The dots are
analytical deterministic process. The red line is the stochastic process of the
species with smaller fitness, where ared = 2 · 10−6, mred = 1, kred = 5 · 108.
The red dots is the corresponding deterministic process. The stochastic
process of the two quasi-neutral species (in blue and black line) in phase 1
and phase 2 fluctuate around their deterministic process (in blue and black
dots), with ablack = 1 · 10−6, mblack = 1, yblack = 5 · 108, and ablue =
2 ·10−6, mblue = 1.925, yblue = 5 ·108. In phase 3, species in black line wins
the weak competition and dominate the whole population from then on.

2 where they may coexist for a long time. From a deterministic viewpoint,

this coexistence will be maintained indefinitely. Nevertheless, in the actual

bacterial world, the noise from the environment and demography may not be
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ignored. As a result of the addition of stochastic noise, there is a small drift

around the deterministic limit. Since the level of drift is tiny compared to

the size of the population, its influence does not become apparent very soon.

From a stochastic viewpoint, in the absence of immigration, this coexistence

will not be maintained indefinitely. The accumulation of small stochastic

drifts forms a mechanism to eventually cause the population dynamic to-

wards one of the absorbing states. This is illustrated in phase 3 of Figure 3.1

where one of the quasi-neutral species dies out and the other dominates the

whole population. The choice of which quasi-neutral species will dominate

is not predetermined, but the result of competition between two stochastic

populations. Contrasting this to the deterministic strong selection, we call

this competition ‘weak selection’.

Quasi-Stationary Phase

After the weak selection phase, the population is dominated by a single

species. Although the population cannot avoid the final extinction destina-

tion, its endurance time will be longer than the human time scale. In the

phase after the weak selection and before the final extinction, the popula-

tion of the surviving species behaves as a Gaussian process. We define this

phase as the quasi-stationary phase. The quasi-stationary distribution of

the dominating species will be calculated in Section 3.8.
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3.2 Stochastic Model Description

3.2.1 Stochastic Process of the Population Densities

As defined in Chapter 2, throughout the thesis, n is the number of species

in the initial state, and there are only two quasi-neutral species left after

the strong selection.

In the stochastic model, all events are assumed to occur independently

according to a Poisson process, and all individuals of a given species are

ecologically identical. During small time interval (t, t + 4t), the Monod

function (birth rate) could be approximated to mkŜ(t)

ak+Ŝ(t)
. Then for species

type k (k = 1, . . . , n), the transition probabilities from a population of size

N̂k to size N̂k + 1 or N̂k − 1 at time t +4t are functions of N̂k(t) and of

substrate concentration Ŝ(t) at time t,

P{N̂k(t+4t) = N̂k(t) + 1} =
mkŜ(t)

ak + Ŝ(t)
N̂k(t)4t+ o1(4t),

P{N̂k(t+4t) = N̂k(t)− 1} = (D + µk)N̂k(t)4t+ o2(4t).

By substituting the population with its density x̂(t) = N̂(t)
V , the transi-

tion probabilities of process N̂(t) =
(
N̂1(t), . . . , N̂n(t)

)
can be written as,

P{N̂k(t+4t) = N̂(t) + 1} = βk,1

(
Ŝ(t), x̂(t)

)
V4t+ o1(4t), (3.1)

P{N̂k(t+4t) = N̂(t)− 1} = βk,−1

(
Ŝ(t), x̂(t)

)
V4t+ o2(4t), (3.2)
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where l ∈ {1, 1−} and βk,l is the jump intensity expressed as,

βk,1

(
Ŝ(t), x̂(t)

)
= bk(t)x̂k(t) =

mkŜ(t)

ak + Ŝ(t)
x̂k(t),

βk,−1

(
Ŝ(t), x̂(t)

)
= dk(t)x̂k(t) = (D + µk)x̂k(t),

with bk(t) and dk(t) as the birth and death rates of the species k at time t.

This is a classical birth-death process, with the expected number of

events at time t is ∫ t

0
βk,l(Ŝ(u), x̂(u))V du.

By theorem 4.1 in Chapter 6 of Ref [13], the Markov process N̂k(t) with

jump intensities Eqs. (3.1) and (3.2) can be expressed in the form of,

N̂k(t) = N̂k(0) +
∑
l

lYl{V
∫ t

0
βk,l(Ŝ(u), x̂(u))du}, (3.3)

where Yl(s(t)) is an independent standard Poisson process with s(t) as its

expected number of events at time t. With l = 1 and −1, the poisson process

is a pure birth and death process respectively.

In the following step, we will expand the Eq. (3.3) in detail. Define

Ỹl(s)=Yl(s)− s as a Poisson process centred at its expectation. The expec-

tation of our Markov process at time t is expressed as

Fk(Ŝ, N̂) =
∑
l

lβk,l

(
S(t), N̂k

)
=
( mkŜ(t)

ak + Ŝ(t)
−D − µk

)
N̂k(t). (3.4)

Reaction Function F This function Fk(Ŝ, N̂) is usually named as the

drift function in stochastic analysis. To distinguish with the conception of
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stochastic drift, we denote F as the reaction function throughout this thesis.

Then the Markov process of Eq. (3.3) can be written as an integral of

the deterministic reaction term and the sum of the stochastic noise terms,

N̂k(t) = N̂k(0)+

∫ t

0
Fk

(
Ŝ(u), N̂(u)

)
du︸ ︷︷ ︸

Deterministic reaction component

+
∑
l

lỸl

{
V

∫ t

0
βk,l

(
Ŝ(u), x̂(u)

)
du
}

︸ ︷︷ ︸
Stochastic noise component

.

Correspondingly, the Markov process of the species density x̂(t) = (x̂1(t), . . . , x̂n(t))

can be expressed as the solution of,

x̂(t) = x̂(0)+

∫ t

0
F
(
Ŝ(u), x̂(u)

)
du︸ ︷︷ ︸

Deterministic reaction component

+
∑
l

lV −1Ỹl

{
V

∫ t

0
βl

(
Ŝ(u), x̂(u)

)
du
}

︸ ︷︷ ︸
Stochastic noise component

.

3.2.2 Stochastic Process of the Substrate Concentrate

Assume Ŝ(t) is the substrate concentration at time t, and V Ŝ(t) ex-

presses the total mass of the substrate, which is augmented by a continuous

substrate supply and is diminished due to the washing out of unused sub-

strate and conversion of substrate to microbial biomass. Mass balances on

the limited substrate provide us with the deterministic dynamics equation,

dV Ŝ(t)

dt
= V

(
Sin − Ŝ(t)

)
D −

n∑
k=1

N̂k(t)
mkŜ(t)

yk

(
ak + Ŝ(t)

) .
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that is

dŜ(t)

dt
= Fs(Ŝ, x̂) =

(
Sin − Ŝ(t)

)
D −

n∑
k=1

x̂k(t)
mkŜ(t)

yk

(
ak + Ŝ(t)

) ,
where Fs is the reaction function for the substrate concentrate.

Although the rates of change of the substrate concentration are deter-

ministic, the process of substrate concentration still behaves stochastically

due to the population density dependence.

3.2.3 Hybrid Stochastic System

Finally, the expression of the stochastic hybrid chemostat system is

Ŝ(t) = S(0) +

∫ t

0
Fs

(
Ŝ(u), x̂(u)

)
du (3.5)

x̂k(t) = x̂k(0) +

∫ t

0
Fk

(
Ŝ(u), x̂(u)

)
du+

∑
l

lV −1Ỹl

{
V

∫ t

0
βk,l

(
Ŝ(u), x̂(u)

)
du
}

(3.6)

where Ỹl(s)=Yl(s)− s is the Poisson process centred at its expectation and

F
(
Ŝ(t), x̂(t)

)
is the system of the reaction functions with expression:

Fs

(
Ŝ(t), x̂(t)

)
=
(
Sin − Ŝ(t)

)
D −

n∑
k=1

x̂k(t)
mkŜ(t)

yk

(
ak + Ŝ(t)

) (3.7)

Fk

(
Ŝ(t), x̂(t)

)
=
( mkŜ(t)

ak + Ŝ(t)
−D − µk

)
x̂k(t). (3.8)

In the following, we will analysis this stochastic dynamics starting from

relating it to the deterministic dynamics.
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3.3 Deterministic Limit

3.3.1 The Law of Large Numbers

It is well known that the stochastic process converges to the deterministic

process in the limit of infinitly large populations. The larger the popula-

tion, the more precise is the convergence. The convergence in the law of

large numbers has different conditions for each model with their different

assumptions. The uniform law of large numbers [13] will be applied to our

chemostat model in this section.

Theorem 1 (Law of Large Numbers). Suppose that for each compact K ⊂

Rn, ∑
l

|l|supx∈Kβl(x) <∞, (3.9)

and there exists Mk > 0 such that

|F (a)− F (b)| ≤Mk|a− b|, a, b ∈ K. (3.10)

Suppose x̂ satisfies (3.9), limV→∞ x̂k(0) = xk,0, and x̄ satisfies

x̄′(t) = F (x̄(s)), x̄k(0) = xk,0, t ≥ 0, (3.11)

Then for every t ≥ 0,

lim
V→∞

sup
s≤t
|x̂(s)− x̄(s)| = 0 a.s. (3.12)
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In our stochastic model,

βk,1 + βk,−1 =
( mkŜ(t)

ak + Ŝ(t)
+D + µk

)
x̂k(t) < mk +D + µk <∞,

and

|Fk(a)−Fk(b)| = |
mkŜ(t)

ak + Ŝ(t)
−D−µk||(a−b)| ≤ max

(
|mk−D−µk|, |D+µk|

)
|a−b|,

which means that the conditions in Eqs. (3.9) and (3.10) are satisfied.

As a result, if V → ∞, the Markov process converges almost surely to

the deterministic limit,
(
Ŝ(t), x̂(t)

)
⇒
(
S̄(t), x̄(t)

)
, which is the solution of

dS̄(t) =
{

(Sin − S̄(t))D −
n∑
k=1

x̄k(t)
mkS̄(t)

yk(ak + S̄(t))

}
dt

dx̄k(t) =
( mkS̄(t)

ak + S̄(t)
−D − µk

)
x̄(t)dt.

3.3.2 Weakness of the Law of Large Numbers

Although this law of large numbers is a strong convergence (converges

almost surely), it states the conditions under which the convergence occurs

uniformly over compact time internals in the case of V close to infinity.

That is to say with large but still finite V , the stochastic process is likely to

be close to the deterministic process, but it still leaves open the possibility

that the convergence will be violated over an infinite time interval. If the

time of process is elongated enough, this possibility may occur a number

of times and eventually violate the deterministic coexistence status. In the

later numerical models for small populations, the convergence will easily be
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broken at proper time point t.

Therefore, given this uniform law of large numbers, the stochastic process

converges to its limiting deterministic process over certain compact time

intervals, but not an infinite time interval. Then in the following derivations

of the diffusion approximations, it will be necessary to separate the analysis

into compact and infinite time intervals. Over compact time intervals, the

law of large numbers works well. Starting from the same initial states, the

trajectory of the deterministic dynamics in Eqs. (2.2) and (2.3) coincides

with the trajectory of the deterministic limits of the stochastic dynamics.

At longer times, these two trajectories separate at the time point t (t close

to∞) where the convergence breaks, then a new diffusion approximation at

a long time scale will be derived.

3.4 Diffusion Approximation over Compact Time

Intervals

The method to derive the diffusion approximation over compact time

intervals in this section is based on the central limit theorem in Ref [13]:

that with suitable re-scaling, the stochastic process converges to a centred

Gaussian process with independent increments.

3.4.1 Central Limit Theorem

From Eq. (3.6), the Markov process x̂(t) is expressed as

x̂(t) = x̂(0) +MV (t) +

∫ t

0
F
(
x̂(s)

)
ds,
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with martingale1 component

MV =
∑
l

lV −1Ỹl{V
∫ t

0
βl

(
Ŝ(s), x̂(s)

)
ds}, (3.13)

where Ỹl is a Poisson process centred at its expectation. F is the reaction

function defined in Eqs. (3.7) and (3.8).

Set W V
l (u) = V −

1
2 Ỹl(V u). By the central limit theorem, we have W V

l ⇒

Wl (converges in distribution, as V → ∞), where Wl is an independent

standard Brownian motion [13]. Then the martingale component MV in

Eq. (3.13) converges to Wl{
∫ t

0 βl

(
x̄(s)

)
ds}.

Define a new central and scaled process χV (t) on our stochastic process

x̂(t) as

χV (t) =
√
V
(
x̂(t)− x̄(t)

)
(3.14)

where x̄(t) is the deterministic process. The initial condition χV (0) =
√
V (x̂(0) − x̄(0)) is assumed to be sufficiently close to 0. Substitute the

stochastic process x̂(t) Eq. (3.6) into Eq. (3.14), then χV (t) is expanded as,

χV (t) = χV (0)+
∑
l

lW V
l

{∫ t

0
βl

(
x̂(s)

)
ds
}

+

∫ t

0

√
V
{
F
(
x̂(s)

)
−F
(
x̄(s)

)}
ds.

(3.15)

The purpose of applying the central limit theorem is to approximate

1 A martingale is a stochastic process for which, at time t, the expectation of the next
value in the sequence is equal to the present observed value even given knowledge of all
prior observed values at the current time.
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χV (t) in Eq. (3.15) by a new diffusion of the form of

X(t) = X(0)+
∑
l

lWl

{∫ t

0
βl(x̄(s))ds

}
+

∫ t

0
∂F
(
x̄(s)

)
X(s)ds, X(0) = 0.

(3.16)

Then our diffusion approximation of x̂(t) could be yielded as

x̂(t)⇒ x̄(t) +
1√
V
X(t).

Theorem 2 (Central Limit Theorem). Suppose that for each compact K ⊂

Rn, ∑
l

|l|2supx∈Kβl(x) <∞,

and that the βl and ∂F are continuous. Then χV (t) ⇒ X(t) (converges in

distribution).

Since all the conditions in the central limit theorem can easily be satisfied

as in the law of large numbers, the process χV (t) in Eq. (3.15) converges to

the process X(t) in Eq. (3.16) in our chemostat model. Rewriting X(t) in

Eq. (3.16) by Theorem 5.3 in Ref [13], we have

X(t) = X(0)+
∑
l

∫ t

0
lβ

1
2
l

(
x̄(s)

)
dWl(s)+

∫ t

0
∂F
(
x̄(s)

)
X(s)ds, X(0) = 0,

with its stochastic differential equation (SDE) form,

dX(t) = ∂F
(
x̄(t)

)
X(t)dt+

∑
l

lβ
1
2
l

(
x̄(s)

)
dWl.

Therefore, by transforming as in Eq. (3.4.1), we derive the diffusion
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approximation of our stochastic process x̂(t) in the form of:

dx̂(t) = ∂F
(
x̄(t)

)(
x̂(t)− x̄(t)

)
dt︸ ︷︷ ︸

Deterministic term

+V −
1
2

∑
l

lβ
1
2
l

(
x̄(s)

)
dWl. (3.17)

where x̄(t) is the deterministic limit of stochastic process, the deterministic

term is linearised, and F is the reaction function expressed as in Eq. (3.4).

This approximation will be expressed in detail in the following subsection.

3.4.2 Diffusion Approximation

From the previous deterministic chapter, we know that while the centre

manifold is approached, x̄(t) will keep on it in definitely. Replace x̄(t) in

Eq. (3.17) by the equilibrium state x∗ = (S∗, x∗1, x
∗
2), then the diffusion

approximation of our stochastic process x̂(t) is obtained of the stochastic

differential equation (SDE) form,

dx̂(t) = ∂F (x∗)
(
x̂(t)− x∗

)
dt+ V −

1
2

∑
l

lβ
1
2
l (x∗)dWl, (3.18)

at V →∞. This is an Ornstein-Uhlenbeck process, an example of a Gaussian

process.

The equilibrium state (S∗, x∗1, x∗2) is not a fixed point, and is dependent

on the initial value. However, the value of S∗ is constant, and the point (x∗1,

x∗2) is kept on the centre manifold.

We assume the surviving species in the strong selection are two quasi-

neutral species sharing the same smallest S∗. Given the results from Chapter
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2, the coefficients in the Ornstein-Uhlenbeck process Eq. (3.18) satisfy,

∂F (x∗) =


−D −

∑
k=1,2

mkakx
∗
k

yk(ak+S∗)2 −d1
y1
−d2
y2

m1a1x∗1
(a1+S∗)2 0 0

m2a2x∗2
(a2+S∗)2 0 0

 (3.19)

and

∑
llTβl = G =


0 0 0

0 2d1x
∗
1 0

0 0 2d2x
∗
2

 . (3.20)

Substituting Eqs. (3.19) and (3.20) into Eq. (3.18), we obtain the diffu-

sion approximation with expression:

dŜ(t) =
{(
−D −

∑ x∗kγk
yk

)
(Ŝ − S∗)−

∑ dk
yk

(
x̂k − x∗k

)}
dt (3.21)

dx̂k(t) = γkx
∗
k(Ŝ − S∗)dt+ V −

1
2

√
dkx

∗
k

(
dWk,1 − dWk,−1

)
(3.22)

as V → ∞, where γk = (mk−dk)2

mkak
is the derivative of the birth rate with

respect to the resource concentration at the equilibrium state
dβk,1

dŜ
|S∗ and

defined as trade-off parameter in last chapter.

By the law of large numbers, the limit behaviour of this diffusion is a

linearised flow dx̄(t) = ∂F (x∗)
(
x̄(t)−x∗(t)

)
dt. With the modifications from

the random walk to this diffusion process, the tendency of the walk to move

back towards the equilibrium state is shown. The results of the numerical

calculation is plotted in Figure 3.2 to illustrate this.
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Figure 3.2: The trajectory of the stochastic process for the two quasi-neutral
species around the centre manifold with initial value N1 = N2 = 10 and
parameters a1 = 1 · 10−6, m1 = 1, y1 = 5 · 109, a2 = 2 · 10−6, m1 =
1.925, y1 = 5 · 109.

3.4.3 Weakness of the Diffusion Approximation

By the central limit theorem, the stochastic process converges to a Gaus-

sian process with its linearised deterministic limit proving the characteristic

of mean reverting. However, there exists a weakness in this diffusion ap-

proximation which will be unfolded in the following:

Firstly, the central limit theorem is applied to determine a Gaussian
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process fluctuating round the deterministic limit which results from the law

of large numbers. In this manner, our central limit theorem is conditioned

over compact time intervals in the case of large but finite V . That is,

asymptotically, the diffusion approximation and original stochastic process

are essentially equivalent for compact time intervals, but not infinite time

intervals. Consequently, a new diffusion approximation over an infinite time

interval is need to be derived when we focusing on the long time dynamics.

Secondly, during the application of the central limit theorem, when the

rescaled centred process

χV (t) = χV (0)+
∑
l

lW
(V )
l {

∫ t

0
βl

(
x̂(s)

)
ds}+

∫ t

0

√
V
(
F (x̂(s))−F (x̄(s)

)
ds

converging to

X(t) = X(0) +
∑
l

lWl{
∫ t

0
βl(x̄(s))ds}+

∫ t

0
∂F (x̄(s))X(s)ds,

the last deterministic term on the right hand side is linearised, and the terms

beyond the second order are dropped in the Taylor’s expansion.

This results in a linearised process when we project the diffusion approx-

imation onto the deterministic trajectory,

dS̄(t) =
{(
−D −

∑ x∗kγk
yk

)
(S̄ − S∗)−

∑ dk
yk

(
x̄k − x∗k

)}
dt

dx̄k(t) = γkx
∗
k(S̄ − S∗)dt,

which is actually the first order Taylor expansion of the deterministic ODE
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system around the steady states.

The absence of the higher order terms will not result in a big influence

on the dynamics over compact time intervals. However, when using this

linearised deterministic limit to analysis the long time behaviour, the ana-

lytical results for the fixation probability do not match the numerical results

very well, which will be shown in Chapter 4.

Above all, over compact time intervals, the Ornstein-Uhlenbeck process

is sufficient to estimate the behaviour of the stochastic process. However,

over a longer periods of time, the convergence from the stochastic dynamics

to the deterministic dynamics will almost certainly not hold. In the following

sections, we will derive a new diffusion approximation for t→∞ which will

then correspond to a new deterministic trajectory along the centre manifold,

and later determine how this stochastic population process will be trapped

in to an absorption state. The method to derive the diffusion approximation

is inspired by Dr. Todd Parsons.

3.5 Stochastic Process at a Long Time Scale and

Its Projection Map onto the Deterministic Tra-

jectory

In this section, we will by changing the time scale of the stochastic pro-

cess to V t, to find the stochastic process over an infinite time interval. The

definition will be given in Section 3.5.1. To derive the diffusion approxima-
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tion of the stochastic process at a long time scale, a mathematical trick will

be used in Section 3.5.2. We will project the stochastic process onto the

deterministic trajectory as t → ∞, and prove that the projection map can

well approximate the stochastic process. In Section 3.5.3, the derivatives of

the projection map are calculated.

3.5.1 Stochastic Process at a Long Time Scale

Given infinite large V and hence large extinction time, we will focus on

the long time behaviour. Define the Markov process on a longer time-scale

with the following new definition:

ŝ(t)
def
= Ŝ(V t), (3.23)

ŵ(t)
def
=

1

V
N̂(V t) = x̂(V t), (3.24)

ŵ(0) = w̄(0) = w,

ŝ(0) = s,

where the time scale is multiplied by the value of the volume which is close

to infinity, and assume the initial state (s, w) stays on the centre manifold

Ω.

Given the definition in Section 3.2, the long time scale process
(
ŝ(t), ŵ(t)

)
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is a solution of,

dŝ(t) = V
{
D(Sin − ŝ)−

∑ akŝ

yk

(
mk + ŝ(t)

) ŵ}dt

dŵk(t) = V
{( akŝ

mk + ŝ(t)
− µk −D

)
ŵk

}
dt

+
∑
l

lV −1Ỹl{V 2βl

(
Ŝ(t), x̂(t)

)
dt} (3.25)

with initial state (s, w), and Yl(s(∆t)) as an independent standard Poisson

process with s(∆t) as its expected number of events during time ∆t. Set

BV
l (u) = V −

1
2 Ỹl(V u), then BV

k,l(u) = 1
V Ỹl(V

2u) ⇒ Bk,l(u) are independent

Brownian motions. Therefore, the stochastic part of Eq.(3.25) approximates

to
√
bkŵk(t)dBk,1 −

√
dkŵk(t)dBk,−1.

Over an infinite time interval, the law of large numbers and the central

limit theorem are inapplicable, and the limit of the stochastic process is

not the smooth solution of the ODE system at time t. Nevertheless, the

diffusion approximations derived in the previous section may still be used

to describe the dynamics over an appropriate small compact time interval

(t− 1
V ∆t, t+ 1

V ∆t) in the infinite time interval,

dŝ(t) = V
{(
−D −

∑ w∗k(t)γk
yk

)
(ŝ− s∗)−

∑ dk
yk

(
ŵk − w∗k(t)

)}
dt

(3.26)

dŵk(t) = V
{
γkw

∗
k(t)(ŝ− s∗)

}
dt+

√
dkw

∗
k(t)(dBk,1 − dBk,−1), (3.27)

where the equilibrium state (s∗, w∗1(t), w∗2(t)) is no longer a fixed point de-

pendent on the initial states, but a flow on the centre manifold. However, no
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matter where the stochastic drift moves to, from Eqs. (3.26) and (3.27), we

can see that at any time there is a strong attraction pulling the trajectories

back to the centre manifold. This attraction force is V times the one at

the normal time scale, and ensures that the stochastic process
(
ŝ(t), ŵ(t)

)
converges to the centre manifold

(
s∗, w∗(t)

)
. Therefore, in the following

section, in order to explain the stochastic dynamics over infinite time in-

tervals, we will focus on determining the long time behaviour on the centre

manifold.

3.5.2 Projection Map onto the Deterministic Trajectory

Define π(s, w) as the value on the deterministic system as t→∞, with

the initial state (s, w). To make the definition more precise, let

π0(s, w)
def
= lim

t→∞
S̄(t, s, w),

πk(s, w)
def
= lim

t→∞
x̄k(t, s, w).

where
(
S̄(t, s, w), x̄k(t, s, w)

)
is the unique solution of the deterministic

ODE system at the normal time scale (defined in Section 2.3) with ini-

tial conditions S̄(0) = s and x̄k = wk. With this definition, π depends

only on the initial condition and not on time. If the initial value is on

the centre manifold (S∗, x∗), then it will remain there indefinitely, namely

π(S∗, x∗) = (S∗, x∗).
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Projection Map

Substitute the initial condition with the stochastic process at a long time

scale, then π
(
ŝ(t), ŵ(t)

)
=
(
π0

(
ŝ(t), ŵ(t)

)
, π1

(
ŝ(t), ŵ(t)

)
, π2

(
ŝ(t), ŵ(t)

))
is

the projection map of
(
ŝ(t), ŵ(t)

)
onto the deterministic trajectory as t→

∞.

As was explained in the previous subsection, due to an extremely strong

attraction towards the centre manifold, the stochastic process at a long time

scale will always move immediately back to the centre manifold. Therefore

(
ŝ(t), ŵ(t)

)
⇒
(
S∗, w∗(t)

)
as V →∞, (3.28)

and

πk

(
ŝ(t), ŵ(t)

)
⇒ πk

(
S∗, w∗(t)

)
, (3.29)

where
(
S∗, w∗(t)

)
is the trajectory on the centre manifold. As the nature of

our deterministic dynamics, if the process start from an equilibrium state,

it will remain there, then

π
(
S∗, w∗(t)

)
=
(
S∗, w∗(t)

)
. (3.30)

Given Eqs.(3.28),(3.29) and (3.30), we yield,

π
(
ŝ(t), ŵ(t)

)
−
(
ŝ(t), ŵ(t)

)
⇒ 0. (3.31)

Hence, this projection map onto the deterministic trajectory as t → ∞ is

sufficient to predict the behaviour of the stochastic process at the long time
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scale. If the explicit expression of π
(
ŝ(t), ŵ(t)

)
could be derived, then it

will be the diffusion approximation of the stochastic process at a long time

scale.

In the following Section 3.6, with the help of Itô’s transformation and

Thomas Kurtz’s weak convergence, πk

(
ŝ(t), ŵ(t)

)
can be calculated, where

dπ(ŵ)
dŵ is needed. Thus, before we derive the diffusion approximation, it is

necessary to calculate the derivatives of the projection map.

3.5.3 Derivatives of the Projection Map

In this section, we will derive the first and second derivatives of the pro-

jection map with respect to the initial values dπ(ŵ)
dŵ , which are needed in the

later analysis to calculate the explicit expression of the diffusion approxima-

tion.

As the long time result of deterministic dynamics, π(s, w) will stay in-

definitely on the centre manifold, its value satisfies Eq. (2.9):

π0 = S∗

(Sin − S∗)D −
2∑
k

πk
yk
dk = 0.

By taking derivatives of the above equation with respect to the initial state

wk, the relationships between the first derivatives may be expressed as:

dπ1

dwk

d1

y1
+

dπ2

dwk

d2

y2
= 0, (3.32)
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Figure 3.3: The point (ŵ1(t), ŵ2(t)) jumps to the centre manifold
(ŵ∗1(t), ŵ∗2(t)) immediately. In deterministic trajectory, the long time re-
sults π(ŵ∗1(t), ŵ∗2(t)) remains on the initial point (ŵ∗1(t), ŵ∗2(t)). Therefore
the trajectory of projection map π(ŵ1(t), ŵ2(t)) is sufficient to tell the be-
haviour of the process (ŵ1(t), ŵ2(t)).

which implies that,

dπ1

dwk
= −κ2

κ1

dπ2

dwk
(3.33)

d2π1

dw2
k

= −κ2

κ1

d2π2

dw2
k

, (3.34)

where κk = dk
yk

.
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In Section 3.4.2, when the central limit theorem is applied to derive the

diffusion approximation, an approximation on the deterministic trajectory

is obtained, which is actually the first order Taylor expansion of the deter-

ministic ODE system around the equilibrium state. Then the expression of

the deterministic trajectory
(
s̄(t), x̄(t)

)
can linearly approximated as,

dS̄(t) =
{(
−D −

∑ x∗k(t)γk
yk

)(
S̄(t)− S∗

)
−
∑ dk

yk

(
x̄k − x∗k(t)

)}
dt

(3.35)

dx̄k(t) =
{
γkx

∗
k(t)

(
S̄(t)− S∗

)}
dt (3.36)

with the boundaries x̄k(t = 0) = wk and x̄k(t =∞) = πk.

By applying Eq. (3.36)

dx̄1

dx̄2
=

{
γ1x
∗
1(t)
(
S̄(t)− S∗

)}
dt{

γ2x∗2(t)
(
S̄(t)− S∗

)}
dt

=
γ1x̄1

γ2x̄2
,

with the boundaries, we obtain the relationship:

wγ21 π
γ1
2 = wγ12 π

γ2
1 . (3.37)

Furthermore, we differentiate Eq. (3.37) with respect to w1,

γ2w
γ2−1
1 πγ12 + γ1w

γ2
1 π

γ1−1
2

dπ2

dw1
= γ2w

γ1
2 π

γ2−1
1

dπ1

dw1
,

and substitute Eqs. (3.32) and (3.37) into this equation. Then the first
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derivative dπ1
dw1

is found,

dπ1

dw1
=

γ2κ2π1π2

(γ1κ1π1 + γ2κ2π2)w1
.

Substituting the initial value with the stochastic process at a long time

scale ŵ, with ŵk ⇒ πk(ŵ) from Eq.(3.31), we have the final results for the

derivatives of the projection map,

dπ1(ŵ)

dŵ1
⇒ γ2κ2π2

γ1κ1π1 + γ2κ2π2
. (3.38)

In a similar way,

dπ1(ŵ)

dŵ2
⇒ − γ1κ2π1

γ1κ1π1 + γ2κ2π2
. (3.39)

Differentiating Eq. (3.37) again, we can obtain the second derivatives,

d2π1

dw2
1

⇒ −κ1κ2γ1γ2π2

(κ1π1γ1 + κ2π2γ2)2
(1 +

γ2(κ1π1 + κ2π2)

κ1π1γ1 + κ2π2γ2
),

d2π2

dw2
1

= −κ1

κ2

d2π1

dw2
1

,

d2π1

dw2
2

⇒ κ2
2γ1γ2π1

(κ1π1γ1 + κ2π2γ2)2
(1 +

γ1(κ1π1 + κ2π2)

κ1π1γ1 + κ2π2γ2
,

d2π2

dw2
2

= −κ1

κ2

d2π1

dw2
2

.

Using these results, the diffusion approximation at a long time scale and

the fixation probability will be calculated in the later sections. However,

when comparing the analytical fixation probabilities with the simulation

results in Chapter 4, we found large discrepancies. These difference did not
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disappear as the population was increased, suggesting that a more accurate

approximation of the derivatives is necessary.

3.5.3.1 Corrections to the Derivatives of the Projection Map

In Eqs. (3.35) and (3.36), we use the first-order Taylor expansion around

the equilibrium state to express the behaviour on the deterministic trajec-

tory. The ignorance of the higher order terms may result in inaccuracy of

the final analytical prediction.

Thus in this subsection, we will use the second-order Taylor expansion

of the deterministic ODE system around the equilibrium state, to calcu-

late the derivatives of the projection map. The results calculated in this

subsection will be applied to correct the fixation probabilities which will be

demonstrated to match the numerical results better in Chapter 4.

The second order Taylor series expansion of our deterministic dynamics

can be written as

dx̄(t)

dt
= ∂F (x∗)

(
x̄(t)− x∗

)
+
∑
i,j

∂i∂jF (x∗)
(
x̄i(t)− x∗i

)(
x̄j(t)− x∗j

)
.

Expanding it in detail, we have

dS̄

dt
= (−D −

∑ γkx̄k
yk

)(S̄ − S∗) +
∑ dkx̄k

mkykS∗
(S̄ − S∗)2 (3.40)

dx̄k
dt

= γkx̄k(S̄ − S∗)−
dk

mkS∗
γkx̄k(S̄ − S∗)2 (3.41)

with boundaries at (S̄, x̄k)(t = 0) = (ŝ, ŵk), (S̄, x̄k)(t =∞) = (π0, πk).
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Cautions in the calculation Since the initial condition S̄(t = 0) = ŝ⇒

S∗, the trajectory of S̄(t) is kept constant all through. Therefore, in the

following calculation, the integral of functions of S̄(t)− S∗ from t = 0 to ∞

can always be vanished, i.e

∫ ∞
0

f
(
S̄(t)− S∗

)
dt = 0. (3.42)

First Derivatives

Taking the first derivative of Eq. (3.41) with respect to w1, we have

1

γ1

d2 ln x̄1

dtdw1
=

dS̄

dw1
− 2d1(S̄ − S∗)

m1S∗
dS̄

dw1

1

γ2

d2 ln x̄2

dtdw1
=

dS̄

dw1
− 2d2(S̄ − S∗)

m2S∗
dS̄

dw1
,

with its integral system from t = 0 to t =∞:

1

γ1π1

dπ1

dw1
− 1

γ1w1
=

∫ ∞
0

dS̄

dw1
dt−

∫ ∞
0

2d1(S̄ − S∗)
m1S∗

dS̄

dw1
dt (3.43)

1

γ2π2

dπ2

dw1
=

∫ ∞
0

dS̄

dw1
dt−

∫ ∞
0

2d2(S̄ − S∗)
m2S∗

dS̄

dw1
dt. (3.44)

Given Eq. (3.42), the second terms on the right hand side of Eqs. (3.43)

and (3.44),
∫∞

0
2dk(S̄(t)−S∗)

mkS∗
dS̄
dw1

dt, are close to 0, thus the second order term

of the Taylor expansion in Eq. (3.41) may be neglected.

Rearranging Eq.(3.43) and (3.44), we have

1

γ1π1

dπ1

dw1
− 1

γ1w1
=

1

γ2π2

dπ2

dw1
.



CHAPTER 3. STOCHASTIC CHEMOSTAT MODEL 86

With the relationship on the centre manifold in Eq. (3.33) dπ1
dwk

= −κ2
κ1

dπ2
dwk

,

the results for the first derivatives of the projection map will not differ from

the results derived by the first order Taylor expansion, which is shown in

Eqs. (3.38) and (3.39).

Second Derivatives

The first derivatives of the projection map are obtained from solving the

Eqs. (3.43) and (3.44) with
∫∞

0
2dk(S̄(t)−S∗)

mkS∗
dS̄
dw1

dt = 0. To derive the second

derivatives of the projection map, we take derivatives of the system. The

non-zero value of the first derivative of
∫∞

0
2dk(S̄(t)−S∗)

mkS∗
dS̄
dw1

dt in the system

cause the second order term of the Taylor expansion in Eq. (3.41) to be no

longer negligible. Therefore, the second derivatives of the projection map

are not the same as in the last subsection.

The followings are the steps to calculate the second derivative d2π1
dw2

1
:

Firstly, differentiate Eq. (3.43) with respect to w1:

1

γ1π1

d2π1

dw2
1

− 1

γ1π2
1

(
dπ1

dw1
)2 +

1

γ1w2
1

=∫ ∞
0

d2S̄

dw2
1

dt−
∫ ∞

0

2d1

m1S∗
(

dS̄

dw1
)2dt−

∫ ∞
0

2d1(S̄ − S∗)
m1S∗

d2S̄

dw2
1

dt︸ ︷︷ ︸
→0

.

The third term on the right hand side can be omitted as previously, but not

the second term. Similarly, the differentiation of Eq. (3.44) with respect to

w1 is:

1

γ2π2

d2π2

dw2
1

− 1

γ2π2
2

(
dπ2

dw1
)2 =

∫ ∞
0

d2S̄

dw2
1

dt−
∫ ∞

0

2d2

m2S∗
(

dS̄

dw1
)2dt.
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After rearranging the above two equations, we have the following rela-

tionship for the second derivatives of the projection map:

∫ ∞
0

d2S̄

dw2
1

dt =
1

γ1π1

{d2π1

dw2
1

+ γ1π1

∫ ∞
0

2d1

m1S∗
(

dS̄

dw1
)2dt− 1

π1
(

dπ1

dw1
)2 +

1

π1

}
=

1

γ2π2

{d2π2

dw2
1

+ γ2π2

∫ ∞
0

2d2

m2S∗
(

dS̄

dw1
)2dt− 1

π2
(

dπ2

dw1
)2
}
.

Given the relationship in Eqs. (3.33) and (3.34) and the results for the first

derivatives in Eqs.(3.38) and (3.39), the system of the second derivatives is

yielded:

γ2π2

γ1π1

{d2π1

dw2
1

+ γ1π1

∫ ∞
0

2d1

m1S∗
(

dS̄

dw1
)2dt− 1

π1
(

dπ1

dw1
)2 +

1

π1

}
=

d2π2

dw2
1

+ γ2π2

∫ ∞
0

2d2

m2S∗
(

dS̄

dw1
)2dt− 1

π2
(

dπ2

dw1
)2

d2π1

dw2
1

= −κ2

κ1

d2π2

dw2
1

dπ1

dŵ1
=

γ2κ2π2

γ1κ1π1 + γ2κ2π2
= −κ2

κ1

dπ2

dŵ1
,

with solution

d2π1

dw2
1

=− κ1κ2γ1γ2π2

(κ1π1γ1 + κ2π2γ2)2
(1 +

γ2(κ1π1 + κ2π2)

κ1π1γ1 + κ2π2γ2
)

+
2κ2γ1γ2π1π2D

S∗(
∑
κkγkπk)

(
1

m2
− 1

m1
)

∫ ∞
0

(
dπ0

dw1
)2dt. (3.45)
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Secondly, we will calculate the term
∫∞

0 ( dπ0
dw1

)2dt in Eq. (3.45):

∫ ∞
0

(
dπ0

dw1
)2dt =

∫ ∞
0

dπ0

dw1
d
(∫ t

0

dπ0(u)

dw1
du
)

=
dπ0

dw1

∫ t

0

dπ0(u)

dw1
du
∣∣∣∞
0
−
∫ ∞

0

(∫ t

0

dπ0(u)

dw1
du
)

d
dπ0

dw1

= 0−
∫ ∞

0

(∫ t

0

dπ0(u)

dw1
du
) d2π0

dw1dt
dt

=

∫ ∞
0

(∫ t

0

dπ0(u)

dw1
du
)(

(D +
∑ γkπk

yk
)

dπ0

dw1
+
∑ γk

yk

dπk
dw1

(π0 − S∗)︸ ︷︷ ︸
→0

)
dt

=

∫ ∞
0

(∫ t

0

dπ0(u)

dw1
du
)
D

dπ0

dw1
dt+

∫ ∞
0

(∫ t

0

dπ0(u)

dw1
du
)∑ γkπk

yk

dπ0

dw1
dt+ 0

= D

∫ ∞
0

(∫ t

0

dπ0(u)

dw1
du
)

d
(∫ t

0

dπ0(u)

dw1
du
)

+

∫ ∞
0

(∫ t

0

dπ0(u)

dw1
du
)∑ 1

yk

d2πk
dtdw1

dt

=
D

2

(∫ t

0

dπ0(u)

dw1
du
)2∣∣∣∞

0
+

∫ ∞
0

(∫ t

0

dπ0(u)

dw1
du
)

d
(∑ 1

yk

dπk
dw1

)
.

(3.46)

Given
∑ 1

yk
dπk
dw1

= 0 in Eq. (3.32), the second term on the right hand side

of Eq. (3.46) is 0, as

∫ ∞
0

(∫ t

0

dπ0(u)

dw1
du
)

d
(∑ 1

yk

dπk
dw1

)
=
(∫ t

0

dπ0(u)

dw1
du
)(∑ 1

yk

dπk
dw1

)∣∣∣∞
0

−
∫ ∞

0

(∑ 1

yk

dπk
dw1

)(dπ0(t)

dw1

)
dt

= 0.

Using the Eq. (3.44), we yield the first term on the right hand side of Eq.
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(3.46) as,

D

2

(∫ t

0

dπ0(u)

dw1
du
)2∣∣∣∞

0
=
D

2
(

1

γ2π2

dπ2

dw1
)2 =

Dκ2
1

2(
∑
κkγkπk)2

.

Therefore, the calculation of Eq.(3.46) is completed, and we obtain

∫ ∞
0

(
dπ0

dw1
)2dt =

Dκ2
1

2(
∑
κkγkπk)2

, (3.47)

where κk = dk
yk

.

Lastly, by substituing Eq. (3.47) into the Eq. (3.45), the corrected

results for d2π1
dw2

1
is obtained,

d2π1

dw2
1

=− κ1κ2γ1γ2π2

(κ1π1γ1 + κ2π2γ2)2

(
1 +

γ2(κ1π1 + κ2π2)

κ1π1γ1 + κ2π2γ2

)
+ γ1π1

D2

S∗
κ2

1κ2γ2π2

(
∑
κkγkπk)3

(
1

m2
− 1

m1
).

Similarly,

d2π1

dw2
2

=
κ2

2γ1γ2π1

(κ1π1γ1 + κ2π2γ2)2

(
1 +

γ1(κ1π1 + κ2π2)

κ1π1γ1 + κ2π2γ2

)
+ γ1π1

D2

S∗
κ3

2γ2π2

(
∑
κkγkπk)3

(
1

m2
− 1

m1
).

3.6 Diffusion Approximation at a Long Time Scale

In the last section, it is explained that the projection map can well

approximate the stochastic process at a long time scale. Therefore, in this

section, we will derive the diffusion approximation of the projection map,



CHAPTER 3. STOCHASTIC CHEMOSTAT MODEL 90

which is the diffusion approximation of the stochastic process at a long time

scale.

3.6.1 Diffusion Approximation of the Species Densities

With the help of Itô’s transformation2, the Ito stochastic integral equa-

tion of the projection map πk

(
ŵ(t)

)
can be generated immediately, which

is

πk

(
ŵ(t)

)
= πk

(
ŵ(0)

)
+

2∑
i

∫ t

0
(∂iπk)

(
ŵ(s)

)
dŵi(s)

+
1

2

∑
i,j

∫ t

0
(∂i∂jπk)

(
ŵ(s)

)
d[ŵi, ŵj ]s + ε(t), (3.48)

with the quadratic covariation3

[ŵi, ŵj ]s = [Mi,Mj ]s.

Mk is the stochastic term of ŵk in Eq. (3.27),

Mk =
√
dkw

∗
k(t)

(
dBk,1 − dBk,−1

)
,

satisfying the quadratic covariation [Mk,Mj ]i 6=j = 0, and the quadratic vari-

ation [Mi,Mi] = [Mi] = 2diw
∗
i .

2Itô’s transformation is an identity used in Itô’s calculus to find the differential of a
time-dependent function of a stochastic process. It is memorised by forming the Taylor
series expansion of the function up to its second derivatives and identifying the square of
an increment in the Wiener process with an increment in time. (from Wiki)

3The quadratic variation is [X,Y ]t = limi→∞
∑
ti<t

(Xti+1 −Xti)(Yti+1 − Yti)
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Expanding Eq. (3.48) in detail, gives

πk

(
ŵ(t)

)
=πk

(
ŵ(0)

)
+

∫ t

0
(Dπk)

(
ŵ(s)

)
· F
(
ŵ(s)

)
ds︸ ︷︷ ︸

Finite Variation Component

+

2∑
i

∫ t

0
(∂iπk)

(
ŵ(s)

)
dMi(s)︸ ︷︷ ︸

Martingale Component

+
1

2

2∑
i

∫ t

0
(∂2
i πk)

(
ŵ(s)

)
d[Mi]s︸ ︷︷ ︸

Quadratic Variation Component

+ε(t). (3.49)

In order to derive the approximation of Eq. (3.49), the weak convergence

for the stochastic integrals and stochastic differential equations from Kurtz

and Protter’s paper [37] will be applied. This states that if (Un, Xn, Yn) sat-

isfies Xn(t) = Un(t) +
∫ t

0 Fn(Xn, s−)dYn(s), and (Un, Yn, Fn) ⇒ (U, Y, F ),

then Xn converges to a solution X of the obvious limiting stochastic differ-

ential equation X(t) = U(t) +
∫ t

0 F (X, s−)dY (s).

To apply this weak convergence, firstly, each component of the Eq. (3.49)

will be approximated one by one in the following:

Finite Variation Component

∫ t

0
(Dπk)

(
ŵ(s)

)
· F
(
ŵ(s)

)
ds

=

∫ t

0

dπk
dŵ1

F1(ŵ) +
dπk
dŵ2

F2(ŵ)ds

Using the results of the first derivatives of the projection map in Eqs. (3.38)

and (3.39), we have

dπk
dŵ1

F1(ŵ) +
dπk
dŵ2

F2(ŵ)⇒ 0.
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Thus the finite variation component of πk

(
ŵ(t)

)
vanishes, as V → ∞,

and it means that the deterministic reaction function Fk will have no influ-

ence on the final stochastic diffusion approximation in this model.

Quadratic Variation Component

1

2

2∑
i

∫ t

0
(d2
iπk)

(
ŵ(s)

)
d[Mi]s

As a càdlàg finite variation process, ŵi has its quadratic variation equal to

the sum of the square of the jumps of ŵi. This gives the result that [Mi]t ⇒∫ t
0 2dkw

∗
k(s)ds. Thus when V →∞, the convergence of the quadratic varia-

tion component is obtained as,

1

2

2∑
i

∫ t

0
(d2
iπk)

(
ŵ(s)

)
d[Mi]s ⇒

∫ t

0
(d2

1πk)d1w
∗
1(s) + (d2

2πk)d2w
∗
2(s) ds

with death rate dk = D + µk.

Martingale Component

2∑
i

∫ t

0
(diπk)

(
ŵ(s)

)
dMi(s)

As above, while V →∞

2∑
i

∫ t

0
(diπk)

(
ŵ(s)

)
dMi(s)⇒

∑
l

∫ t

0
(d1πk)l

(
d1w

∗
1(s)

) 1
2
dW1,l(s)

+ (d2πk)l
(
d2w

∗
2(s)

) 1
2
dW2,l(s)
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Remainder terms |ε(t)| weakly converges to 0 as V →∞ [51].

As above, the only contribution from the deterministic reaction, i.e., the

finite variation component, vanishes in the weak convergence. This leaves

the martingale component and the quadratic variation component in the

diffusion, both resulting from stochastic drift. Therefore, in our model with

large but finite population, although the level of stochastic drift is tiny, it

is an important mechanism and has significant influence over an infinite

time interval, causing the departure of the process from the deterministic

dynamics.

Finally, by applying the weak convergence in [37], π(ŵ) converges weakly

to the diffusion process Π(w, t) =
(

Π1(w, t),Π2(w, t)
)

, which can be ex-

pressed in SDEs as,

dΠ1 =
{

(d2
1Π1)d1Π1 + (d2

2Π1)d2Π2

}
dt

+ (d1Π1)
√
d1Π1

(
dW1,1 − dW1,−1

)
+ (d2Π1)

√
d2Π2

(
dW2,1 − dW2,−1

)
=

γ1γ2κ2Π1Π2

(γ1κ1Π1 + γ2κ2Π2)2

[
(κ2d2 − κ1d1) +

(κ1Π1 + κ2Π2)(γ1κ2d2 − γ2κ1d1)

γ1κ1Π1 + γ2κ2Π2

]
dt

+
γ2κ2Π2

√
d1Π1

γ1κ1Π1 + γ2κ2Π2

(
dW1,1 − dW1,−1

)
− γ1κ2Π1

√
d2Π2

γ1κ1Π1 + γ2κ2Π2

(
dW2,1 − dW2,−1

)
(3.50)

dΠ2 =
{

(d2
1Π2)d1Π1 + (d2

2Π2)d2Π2

}
dt

+ (d1Π2)
√
d1Π1

(
dW1,1 − dW1,−1

)
+ (d2Π2)

√
d2Π2

(
dW2,1 − dW2,−1

)
,

= −κ1

κ2
dΠ1
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where dk = b∗k = mks
∗

ak+s∗ , and the initial state (s, w) ∈ Ω.

The derivatives of the projection map were calculated in Subsection 3.5.3,

where two different sets are stated. The first set of the derivatives derived

by the linearised expression of the deterministic system are generally used in

Eq. (3.50) to yield the final expression for the diffusion approximation over

a infinite time interval. In the later discussion, the diffusion approximation

will be used to yield the fixation probabilities. Then, special care needs to

be taken when comparing the analytical results with the numerical results

of the fixation probabilities. If differences are observed, the corrected set

of the derivatives of the projection map (in Subsection 3.5.3.2) have to be

applied to ensure the analytical prediction is accurate.

3.6.2 Diffusion Approximation of the Relative Abundance of

the First Species

As our model has only two quasi-neutral species, analysing the relative

abundance of the first species is sufficient to understand the behaviour of

the whole population. Given the diffusion approximation of the species

densities, the relative abundance of first species at the long time scale is

P (t) =
Π1(t)

Π1(t) + Π2(t)
.

In this subsection, we will calculate the diffusion approximation of P (t).

Since
(

Π1(t),Π2(t)
)

is kept on the centre manifold,

0 = (Sin − S∗)D − (κ1Π1 + κ2Π2),
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then Π2 = (Sin−S∗)D−κ1Π1

κ2
, and

P (t) =
κ2Π1(t)

(Sin − S∗)D + (κ2 − κ1)Π1(t)
(3.51)

with κk = dk
yk

.

Applying Itô’s formula on Eq. (3.51), we get,

dP =
dP

dΠ1
(dΠ1) +

1

2

d2P

dΠ2
1

(dΠ1)2, (3.52)

with the derivatives

dP

dΠ1
=

κ2(Sin − S∗)D(
(Sin − S∗)D + (κ2 − κ1)Π1(t)

)2 =
κ2(1− P ) + κ1P

κ2(Π1 + Π2)

d2P

dΠ2
1

= 2
(κ2(1− P ) + κ1P )(κ1 − κ2)

κ2
2(Π1 + Π2)2

,

where the total population

Θ = Π1 + Π2 =
(Sin − S∗)D

κ1P + κ2(1− P )
.

Denote the initial relative abundance as

P (0) = p =
w1

w1 + w2
.

In order to completely expand the Eq. (3.52), it is necessary to use the

limit that : for any independent standard Bronian process Bk, as dt tends

to 0, the terms of order dt2, dB1dB2 and dtdBk will disappear but the dB2
k

term tends to dt.
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Therefore, given dΠ in the last subsection, the diffusion approximation

of the relative abundance of the first species in Eq. (3.52) can be rewritten

as a SDE:

dP = b(P )dt+ a(P )dBt,

where the drift coefficient b(P ) is

b(P ) =
dP

dΠ1

{
d1π1d2

1π1 + d2π2d2
2π1 +

2(κ1 − κ2)

κ2(Π1 + Π2)

(
d1π1(d1π1)2 + d2π2(d2π1)2

)}
=

dP

dΠ1

P (1− P )κ2(
γ1κ1P + γ2κ2(1− P )

)2

{
(κ2d2 − κ1d1)γ1γ2

+ γ1γ2

(
κ1P + κ2(1− P )

)
(γ1κ2d2 − γ2κ1d1)

κ1γ1P + κ2γ2(1− P )
+ 2(κ1 − κ2)

(
γ2

2d1(1− P ) + γ2
1d2P

)}
(3.53)

and the diffusion coefficient a(P ) is

1

2
a(P )2 = (

dP

dΠ1
)2
(
d1π1(d1π1)2 + d2π2(d2π1)2

)
=

dP

dΠ1

P (1− P )κ2(
γ1κ1p+ γ2κ2(1− P )

)2

(
κ2(1− P ) + κ1P

)(
γ2

2d1(1− P ) + γ2
1d2P

)
,

(3.54)

with dk = D + µk, γk = (mk−dk)2

mkak
, κk = dk

yk
.

In this section, by applying Itô’s transformation and the weak conver-

gence, we derived an explicit diffusion approximation for the stochastic

process at a long time scale, whose behaviour is on the centre manifold:

κ1Π1 + κ2Π2 = (Sin − S∗)D, until one of the absorption states, Π1 = 0
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or Π2 = 0 is reached. This is the classical splitting problem in stochastic

analysis, which is defined as a fixation problem in ecology with the changing

from the situation of multiple species coexistence to dominance by a single

species.4

In the following section, the fixation probabilities and the mean of the

first absorption time will be calculated.

3.7 Fixation Problems

The stochastic fluctuations on the centre manifold drive one population

to extinction and as the cause of the weak competition. The absorbing states

are where Π1 = 0 or Π2 = 0 (one species dominates the whole population).

The splitting probability on the centre manifold to one of the absorbing

states is also the fixation probability in population genetics which is a use-

ful quality to describe the competitive ability of a quasi-neutral species by

comparing with the strictly neutral model.

In Ewens’s book [16], he demonstrates how to derive the fixation proba-

bilities and the absorption time properties. Using the backward Kolmogorov

equation, the partial differential equation (PDE) of the relative abundance

of the first species P (t) in the future time t will reach

df(x, t; p)

dt
= b(p)

df(x, t; p)

dp
+

1

2
a(p)2 d2f(x, t; p)

dp2

with the initial state P (0) = p. The random variable x is the value of the

4In genetics, fixation is the change in a gene pool from a situation where there exists at
least two variants of a particular gene (allele) to a situation where only one of the alleles
remains.
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relative abundance of the first species at time t, and b(p), a(p)2 are expressed

in Eqs. (3.53) and (3.54).

The points x = 0 and 1 are the absorbing states of the diffusion process.

Define the fixation probability of the first species with initial relative abun-

dance p as F (p), which is the probability that the first species dominates the

population at or before infinite time t (t→∞). Define the mean time until

either of the absorbing boundaries is reached as ET (p). Ewens discusses

these quantities in [15] for general cases, and gives their ODEs with bound-

ary conditions. In this section, we will apply Ewens’s methods to derive the

fixation quantities in our model.

Before proceeding to the next analytical step, it is necessary to clearly

state the coefficients of the diffusion. b(p) and a(p) are already presented in

Eqs. (3.53) and (3.54), and yield

b(p)
1
2a(p)2

=
γ1γ2(κ2d2 − κ1d1)(

κ1p+ κ2(1− p)
)(
γ2

1d2p+ γ2
2d1(1− p)

)
+

γ1γ2(γ1κ2d2 − γ2κ1d1)(
κ1γ1p+ κ2γ2(1− p)

)(
γ2

1d2p+ γ2
2d1(1− p)

) + 2
κ1 − κ2

κ1p+ κ2(1− p)

=
(

2 +
γ1γ2(κ2d2 − κ1d1)

γ2
2κ1d1 − γ2

1κ2d2

) κ1 − κ2

(κ1 − κ2)p+ κ2

− (γ1κ2d2 − γ2κ1d1)(γ1 + γ2)

γ2
2κ1d1 − γ2

1κ2d2

d2γ
2
1 − d1γ

2
2

(d2γ2
1 − d1γ2

2)p+ d1γ2
2

− γ1κ1 − γ2κ2

(γ1κ1 − γ2κ2)p+ γ2κ2
(3.55)

where κk = dk
yk

.

Now, we will use these results to calculate the fixation probability of the

first species and the mean of the first absorption time.
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3.7.1 Fixation Probability of the First Species F (p)

As Ewens shows in [16], the fixation probability F (p) of the first species

satisfies the ODE system:

b(p)
dF

dp
+
a(p)2

2

d2F

dp2
= 0 (3.56)

F (p = 0) = 0, (3.57)

F (p = 1) = 1. (3.58)

Firstly, by taking the integral with respect to p over Eq. (3.56), we have

dF

dp
= c1e

−2
∫ b(p)

a(p)2
dp

= c1ψ(p).

With the conditions Eqs. (3.57) and (3.58), the solution is then

F (p) =

∫ p
0 ψ(u)du∫ 1
0 ψ(u)du

, (3.59)

where ψ(p) is expressed as:

ψ(p) =
(γ1κ1 − γ2κ2)p+ γ2κ2

[(κ1 − κ2)p+ κ2]3

{(d2γ
2
1 − d1γ

2
2)p+ d1γ

2
2

(κ1 − κ2)p+ κ2

} (γ1κ2d2−γ2κ1d1)(γ1+γ2)
γ22κ1d1−γ

2
1κ2d2 .

This is a general results for the fixation probability. Furthermore, as the

intrinsic death rates are assumed to be insignificant, the death rates of the
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species are identical, i.e., d1 = d2 = D, and ψ(p) is simplified as

ψ(p) =
(γ1κ1 − γ2κ2)p+ γ2κ2(

(κ1 − κ2)p+ κ2

)3

{(γ2
1 − γ2

2)p+ γ2
2

(κ1 − κ2)p+ κ2

} (γ1κ2−γ2κ1)(γ1+γ2)
γ22κ1−γ

2
1κ2 . (3.60)

Unfortunately, this fixation probability is too complicated to derive a

general results of the effects of the parameters. The sign of b(p) which

explains the direction of the flow on the centre manifold, is decided by six

parameters γk, κk(=
dk
yk

),mk and the initial relative abundance p. We will

discuss the effects of these parameters in specific conditions in the following

subsections.

3.7.1.1 Neutral Case

To verify the result in the case of the strictly neutral model, let γ1 = γ2,

d1 = d2, y1 = y2, we have

ψ(p) = 1.

Then the fixation probability of the first species in the neutral model is the

reciprocal of the initial frequency by symmetry, that is

F (p) = p.

Each neutral species has an equal chance of being the one that will eventually

become fixed via drift. Therefore, by comparing with this symmetric result,

we may demonstrate a selective advantage for either of the species in the

quasi-neutral model.
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3.7.1.2 Effects of γk With Identical yk

To determine how the γk may affect the fixation probability without the

impact of the yields, we assume the yields to be identical. Since κk = dk
yk

,

with the assumption of dk = D, we have κ1 = κ2. Then

ψ(p) =
(γ1γ2 − 1)p+ 1

(γ1γ2
2 − 1)p+ 1

F (p) =

∫ p
0 ψ(u)du∫ 1
0 ψ(u)du

=

p+
γ1
γ2

γ1
γ2

2−1
log((γ1γ2

2 − 1)p+ 1)

1 +
γ1
γ2

γ1
γ2

2−1
log {γ1γ2

2}

=p+

γ1
γ2

[log
(

({γ1γ2
2} − 1)p+ 1

)
− 2p log γ1

γ2
]

γ1
γ2

2 − 1 + 2γ1γ2 log γ1
γ2

.

That is to say,

F (p) > p, if γ1 > γ2,

F (p) < p, if γ1 < γ2.

This result helps us to understand the impact of γk when the yields are

fixed, the species with higher γk has an increased probability of surviving

the weak competition, and dominating the whole population.

3.7.1.3 Effects of yk With Identical γk

If we assume the species share the same trade-off parameter γk = (dbk(S)
dS )|S∗ ,

then the ak and mk are identical for the quasi-neutral species. The fixation
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probability is obtained as

ψ = 1,

F (p) = p,

which is exactly the same as the fixation probability in the strictly neutral

model.

Therefore, if γ1 = γ2, the yields do not impact the fixation probability

in the weak competition. However, they will affect the population size and

the time to the first absorption state.

3.7.2 Corrections to the Fixation Probability

Above we presented the analytical calculation for the fixation probabil-

ities. However, in the next chapter, when comparing these analytical pre-

dictions with simulation results, we will find large discrepancies. Moreover,

these difference will not disappear as the simulation population increases.

This could be explained by the fact that, in the derivation of the diffusion

approximation, we use the first order Taylor expansion of the deterministic

system to derive the derivatives of the projection map. The absence of

the higher order terms of the Taylor expansion in the calculations leads

the final analytical fixation probability not being accurate. Therefore, in

this subsection, we take the higher order term of the Taylor expansion of

the deterministic trajectory into account, and use the corrected derivatives

of the projection map (derived in Section 3.5.3.1) to express the diffusion

approximation. Correspondingly, the drift coefficient b(P ) in the diffusion
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approximation of the relative abundance will be corrected to a new value

with notation b1(P ):

b1(P ) = b(P )+

dP

dΠ1

D2

S∗
κ2γ1γ2P (1− P )(

(κ1γ1 − κ2γ2)P + κ2γ2

)3 (
1

m2
− 1

m1
)
(

(d1κ
2
1 − d2κ

2
2)P + d2κ

2
2

)
.

The diffusion coefficient a(P ) (expressed in Eq. (3.54)) is unchanged because

it is only dependent on the first derivatives of the projection map which are

kept constant.

Then, the coefficient b1(p)
1
2
a(p)2

can be obtained,

b1(p)
1
2a(p)2

=
b(p)

1
2a(p)2

+
γ1γ2D

2

S∗

( 1

m2
− 1

m1

)(κ2
1d1 − κ2

2d2)p+ κ2
2d2

(γ2
1d1 − γ2

2d1)p+ γ2
2d1

1

(κ1 − κ2)p+ κ2

1

(γ1κ1 − γ2κ2)p+ γ2κ2

(3.61)

Applying this new results of b1(p)
1
2
a(p)2

in backward Kolmogrove equation,

we have a corrected fixation probability expressed as:

F (p) =

∫ p
0 ψ1(u)du∫ 1
0 ψ1(u)du
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with

ψ1(p) ={(γ1κ1 − γ2κ2)p+ γ2κ2}
1− D2

(γ1−γ2)S∗
( 1
m2
− 1
m1

)

{(γ2
1 − γ2

2)p+ γ2
2}

(γ1κ2−γ2κ1)(γ1+γ2)
γ22κ1−γ

2
1κ2

− κ22γ
2
1−κ

2
1γ

2
2

(κ2γ
2
1−κ1γ

2
2)(γ1κ2−γ2κ1)

D2

(γ1−γ2)S∗
( 1
m2
− 1
m1

)

{(κ1 − κ2)p+ κ2}
−3− (γ1κ2−γ2κ1)(γ1+γ2)

γ22κ1−γ
2
1κ2

− κ1−κ2
(γ1−γ2)(γ21κ2−γ

2
2κ1)

D2

(γ1−γ2)S∗
( 1
m2
− 1
m1

)

(3.62)

3.7.3 Mean of the First Absorption Time ET (p)

As explained in [16], the mean of the first absorption time is the solution

of

b(p)
dET

dp
+
a(p)2

2

d2ET

dp2
= −1,

ET (p = 0) = 0,

ET (p = 1) = 0,

with the result in the form of

ET (p) =

∫ 1

0
t(x; p)dx

where

t(x; p) = 2
1− F (p)

a2(x)ψ(x)

∫ x

0
ψ(y)dy, 0 ≤ x ≤ p

t(x; p) = 2
F (p)

a2(x)ψ(x)

∫ 1

x
ψ(y)dy, p ≤ x ≤ 1.
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Then the mean of the first absorption time can be expressed as,

ET (p) = 2

∫ 1

0
ψ(x)dx ·

{
(1− F (p))

∫ p

0

F (x)

a2(x)ψ(x)
dx+ F (p)

∫ 1

p

1− F (x)

a2(x)ψ(x)
dx
}
.

(3.63)

This expression is even more complicated than the fixation probability, and

it is impossible to directly determine its sensitivity to each parameter. In

the next chapter, we will plot this function with different parameter values

to determine how the times change as the parameters vary, and to compare

them with the numerical results.

Neutral Case

In the case of the truly neutral model, by assuming γ1 = γ2, d1 = d2,

y1 = y2, the mean of the first absorption time is simplified as

ET (p) = −y(Sin − S∗)
(
p log p+ (1− p) log (1− p)

)
.

As the population size Θ equals y(Sin − S∗) at the equilibrium state, we

have

ET (p) = Θ∗
(
− p log p− (1− p) log (1− p)

)
.

Therefore, in the strictly neutral case, the mean of the first absorption time is

proportional to the yield through the impact on the equilibrium population

size.
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3.8 Quasi-Stationary Distribution

We have explained in the previous sections that the finite Markov process

will eventually be trapped into the extinction state. In the microbial world, a

huge population will endure for a very long time before dying out far beyond

the human timescale. Therefore it is interesting to find out the information

contained in this long time process before the predestined absorption.

In an island community with a population that has immigrated from

a meta-community, if the relative abundance of each species in the immi-

gration flow is positive and constant, then the population on the island

community will have coexistence stationary states, that means the station-

ary distribution of the relative abundance exists. This will be discussed in

Chapter 5.

In our current isolated chemostat model, once the first absorption state

is reached, there is only one species left in the whole population, and it will

endure for a long time before fading away. Due to the final extinction, there

is no strictly stationary distribution for the abundance of the single species

that dominates the whole population after the weak selection, but there

is an asymptotically stationary distribution prior to this final extinction.

This is defined as the quasi-stationary distribution, which is an important

probabilistic measure of the system behaviour. Correspondingly, the phase

between the first absorption being reached and the final extinction is defined

as the quasi-stationary phase.

In this section, we will first determine this asymptotically stationary

distribution of the surviving species if the condition of non-extinction is
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assumed. Then we will discuss whether a quasi-stationary distribution exists

for the relative abundance given the condition that the absorbing state has

not been reached.

3.8.1 Quasi-Stationary Distribution of the First Species fq,1

We can assume without loss of generality that it is the first species that

fixes in the whole population in the quasi-stationary phase where there are no

individuals of the second species. The quasi-stationary distribution f1,q(x̂1)

is a conditional probability density with definition,

fq,1(x) = lim
t→∞

Pr
(
x̂1(t) ∈ lim

∆x→0
(x, x+ ∆x) | x̂1(t) 6= 0

)
,

which is independent of the time t after the first absorption occurs.

In this subsection, the approach by Van der Werf [45] will be used to

derive this conditional distribution in the quasi-stationary phase. As dis-

cussed in Subsection 3.4.1, with the help of the central limit theorem, the

centred and scaled stochastic process
√
V (x̂(t) − x̄(t)) was proved to be

approximated by an Ornstein-Uhlenbeck process X(t),

dX(t) = ∂F
(
x̄(t)

)
X(t)dt+

∑
l

lβ
1
2
l

(
x̄(s)

)
dWl.

By finding out the quasi-stationary distribution of X(t), we can determine

the fq,1(x).

Since the second species has already died out, the process is now a bi-
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variate Ornstein-Uhlenbeck system,

dX(t) = −Θ(X − E)dt+ CdBt.

with

E = 0,

Θ =

 D + γ1
y1
x∗ d1

y1

−γ1x
∗ 0

 ,

G = CC ′ =

 0 0

0 2d1x
∗
1

 .

As Van der Werf (2007) discusses in [45], the conditional distribution of

the Ornstein-Uhlenbeck process is normally distributed at all times,

Xt+τ ≈ N(xt+τ ,
∑
τ

),

with the deterministic drift

xt+τ = (I − e−Θτ )E + e−Θτxt,

and the covariance
∑

τ which is expressed in terms of the stack operator
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vec5 and the Kronecker sum ⊕6,

vec(
∑
τ

) = (Θ⊕Θ)−1(I − e−(Θ⊕Θ)τ )vec(G).

As τ goes to infinity, since the eigenvalue of Θ has positive real part, the

5Operator vec: The vectorization of a matrix is a linear transformation which converts
the matrix into a column vector. Specifically, the vectorization of an m × n matrix A,
denoted by vec(A), is the mn× 1 column vector obtained by stacking the columns of the
matrix A on top of one another:

vec(A) = [a1,1, . . . , am,1, a1,2, . . . , am,2, . . . , aq,n, . . . , am,n]T

6Kronecker sum ⊕: If A is an m×n matrix and B is a p×q matrix, then the Kronecker
project A⊕B is the mp× nq block matrix:

A⊕B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB


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distribution of the process stabilises to a Gaussian distribution with

x∞ = E,

vec(
∑
∞

) = (Θ⊕Θ)−1vec(G)

=



2(D + γ1
y1
x∗1) d1

y1
d1
y1

0

−γ1x
∗
1 D + γ1

y1
x∗1 0 d1

y1

−γ1x
∗
1 0 D + γ1

y1
x∗1

d1
y1

d1
y1

0 −γ1x
∗
1 −γ1x

∗
1 0



−1

0

0

0

2dx∗1


,

=



1
2(D+

γ1
y1
x∗1)

0 0
d1
y1

2(D+
γ1
y1
x∗1)γ1x∗1

0 1
2(D+

γ1
y1
x∗1)

− 1
2(D+

γ1
y1
x∗1)

− 1
2γ1x∗1

0 − 1
2(D+

γ1
y1
x∗1)

1
2(D+

γ1
y1
x∗1)

− 1
2γ1x∗1

γ1x∗1
2(D+

γ1
y1
x∗1)

d1
y1

y1
2d1

y1
2d1

D+
γ1
y1
x∗1

2
d1
y1
γ1x∗1

+ 1
2(D+

γ1
y1
x∗1)



×



0

0

0

2d1x
∗
1


,

=



d21
(Dy1+γ1x∗1)γ1

− d1
γ∗1

− d1
γ∗1

y1(D+
γ1
y1
x∗1)

γ1
+

x∗1d1
D+

γ1
y1
x∗1


.

After being transformed by Eq. (3.14), the conditional probability den-
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sity of the first species is also Gaussian distributed with mean and variance,

E1 = x∗1 =
y1(Sin − S∗)D

d1
(3.64)

σ2
1 =

1

V
(
y1(D + γ1

y1
x∗1)

γ1
+

x∗1d1

D + γ1
y1
x∗1

). (3.65)

This is the quasi-stationary distribution of the first species.

Quasi-Stationary Distribution of the Second Species

Similarly, if the second species fixes in the whole population in the quasi-

stationary phase, the quasi-stationary distribution for the density of the

second species is

fq,2(x) = lim
t→∞

Pr
(
x̂2(t) ∈ lim

∆x→0
(x, x+ ∆x) | x̂2(t) 6= 0

)
,

which is Gaussian distributed with mean and variance,

E2 =
y2(Sin − S∗)D

d2

δ2
2 =

1

V
(
y2(D + γ2

y2
x∗2)

γ2
+

x∗2d2

D + γ2
y2
x∗2

).

However, in the coexistence phase over compact time intervals, the stochas-

tic processes with two quasi-neutral species does not behave as a Gaus-

sian distribution due to the existence of the zero eigenvalue. The exis-

tence problem of the quasi-stationary distribution of the relative abundance
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fq(P (t) = x) will be discussed in Section 3.8.3.

Moreover, as illustrated in the Figure 2.4 (in Section 2.3), when the

deterministic dynamics returns to any point on the flows with direction to-

wards the state (x∗1, x
∗
2), it will always move back to (x∗1, x

∗
2). Thus for a

specific state (x∗1, x
∗
2) on the centre manifold, there is a stationary distri-

bution along the flow with direction towards this state. The method of

calculation is similar to that in Subsection 3.8.1, but more tedious for a

stationary distribution of a trivariate Ornstein-Uhlenbeck system.

3.8.2 Relationship Between the Quasi-Stationary Distribu-

tions and the Fixation Probabilities

It is well known that, given a smaller variance, the stochastic process

is more stable and will remain closer to the equilibrium state. Conversely,

a species with larger variance has larger fluctuations, and is more likely

to reach the extinction state. In our chemostat model, if V → ∞, the

variance is close to zero, the stochastic processes is stable remaining near the

equilibrium state, then the quasi-stationary phase will be very long. Given

the explicit expressions of the quasi-stationary distributions and the fixation

probabilities, we wonder whether there is a certain relationship between

them? Does a more stable Gaussian distributed species have an advantage

in terms of fixation probability before this monotonic state is reached? These

questions will be answered in this subsection.

To compare these two quasi-neutral species, we list their distribution
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coefficients:

var1 =
1

V
{D(

x∗1
D

+
y1

γ1
) +

D
D
x∗1

+ γ1
y1

} (3.66)

x∗1 = (Sin − S∗)y1 (3.67)

var2 =
1

V
{x∗2 +

y2D

γ2
+

D
D
x∗2

+ γ2
y2

} (3.68)

x∗2 = (Sin − S∗)y2 (3.69)

where γk = ∂bk(S)
∂S |S∗ .

Here are the connections which we find between the quasi-stationary

distributions and the fixation probabilities:

• In the strictly neutral case, the two species are ecologically identical,

thus the fixation probability is decided only by the initial states.

• If the yields yk are identical, the two species share the same mean

value in a single species environment, i.e., x∗1 = x∗2. The larger γk

corresponds to a smaller variance, that gives the species a more stable

population. As concluded in Subsection 3.7.1.2, the species with larger

γk has an increased fixation probability. The species with an advantage

during weak selection is associated with a more stable Gaussian process

in the quasi stationary phase, and vice versa.

• If we let γ1 = γ2, the mean and the variance of the quasi-stationary

distributions in Eqs. (3.66)-(3.69) are dependent on the yields yk, but
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not on their ratios which are identical as,

var1

x∗1
=
var2

x∗2
=

1

V
{1 +

D

γ(Sin − S∗)
+

D

D + γ(Sin − S∗)
}.

Consequently these two Gaussian processes have equivalent strengths

of relative fluctuations. Applying γ1 = γ2 to the fixation probability,

we get the neutral result F (p) = p in Subsection 3.7.1.3. Therefore,

quasi-neutral species that share the same γk will have the same dis-

persal of their Gaussian distribution, and act ecologically identically

in the weak competition, no matter how different their yields are.

3.8.3 Distribution of the Relative Abundance in the Coexis-

tence Phase

3.8.3.1 Does a Quasi-Stationary Distribution of the Relative Abun-

dance Exis?

The quasi-stationary distribution of a single species after the long coexis-

tence phase is well understood, now we will address the question of whether

there exists an asymptotically stationary distribution for the relative abun-

dance in the long-time coexistence phase? Is there a quasi stationary regime

that the coexisting populations could be relaxed to?

The answer is no. The conditional distribution of the Ornstein-Uhlenbeck

process

dX(t) = −Θ(X − E)dt+ CdBt.

is stationary only if the real parts of all the eigenvalues of Θ are strictly
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positive. In the coexistence phase of our model, zero eigenvalues exists.

Therefore the overall covariance of the Ornstein-Uhlenbeck process does not

converge and no quasi-stationary distribution of relative abundance exist in

the coexistence stage of the model. The probability density of the relative

abundance is then time-dependent.

3.8.3.2 Probability Density of the Relative Abundances

If the population is large, then the duration time until the first absorption

will be long enough to consider the behaviour of the relative abundances,

even though its distribution is not quasi-stationary. Before proceeding, it is

necessary to issue some caveats and define some terms.

First of all, the probability density of the relative abundance of the first

species conditional on no absorption is defined as

fc(x, t|p, 0) = lim
∆x→0

Pr
(
Pt ∈ (x, x+ ∆x) | Pt ∈ (0, 1), P0 = p

)
. (3.70)

Secondly, define f(x, t | p, 0) as the probability density of the relative

abundance of the first species with definition

f(x, t|p, 0) = lim
∆x→0

Pr
(
Pt ∈ (x, x+ ∆x) | P0 = p

)
. (3.71)

To distinguish, fc(x, t|p, 0) is denoted as conditional probability density and

f(x, t|p, 0) as a probability density. In this section, we will determine the

relationship between the probability density f(x, t | p, 0) and the conditional

probability density fc(x, t | p, 0).
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Thirdly, we define v(p, t) as the probability that the whole population is

not monotypic at time t, with expression,

v(p, t) = Pr(Pt ∈ (0, 1)|P0 = p)

= Pr(Time to the first absorption state > t|P0 = p)

= 1− Pr(Time to the first absorption state ≤ t|P0 = p)

In almost all density-dependent population dynamics models, the time to

extinction is exponentially distributed [25] [48]. Thus using the known ex-

pectation of the first absorption time ET (p) in Eq. (3.63), v(p, t) can be

determined as,

v(p, t) = 1−
∫ t

0

1

ET (p)
exp{− s

ET (p)
}ds (3.72)

We already know that both the conditional and unconditional proba-

bility density of the relative abundance are dependent on t. To find their

relationships, we may apply the Bayes’ theorem on the conditional density
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Eq. (3.70),

fc(x, t) = lim
∆x→0

Pr
(
Pt ∈ (x, x+ ∆x) | Pt ∈ (0, 1), P0 = p

)
= lim

∆x→0

Pr
(
Pt ∈ (x, x+ ∆x), Pt ∈ (0, 1) | P0 = p

)
Pr
(
Pt ∈ (0, 1) | P0 = p

)
= lim

∆x→0

Pr
(
Pt ∈ (x, x+ ∆x) | P0 = p

)
· Pr
(
Pt ∈ (0, 1) | Pt ∈ (x, x+ ∆x), P0 = p

)
Pr
(
Pt ∈ (0, 1) | P0 = p

)
= f(x, t | p, 0)

Pr
(
Pt ∈ (0, 1) | Pt ∈ (x, x+ ∆x), P0 = p

)
Pr
(
Pt ∈ (0, 1) | P0 = p

)
where

Pr
(
Pt ∈ (0, 1) | Pt ∈ (x, x+ ∆x), P0 = p

)
=

 1 if x ∈ (0, 1)

0 otherwise
(3.73)

is the indicator function 1{x∈(0,1)}.

Thus fc(x, t) could be derived with f(x, t|p, 0) and v(p, t), that,

fc(x, t) =
f(x, t | p, 0)

v(p, t)
1{x∈(0,1)} (3.74)

where v(x, t) is expressed in Eq. (3.72). Using the expression of the diffusion

process

dPt = b(Pt)dt+ a(Pt)dt,

and its initial state P (t = 0) = p, the probability density f(x, t|p, 0) in the
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coexistence stage satisfies the Fokker-Planck equation,

df(x, t|p, 0)

dt
= −db(x)f(x, t)

dx
+

1

2

d2a(x)2f(x, t)

dx2
(3.75)

Therefore, the conditional probability density of the relative abundance

of the first species fc(x, t) is the solution of the system:

df(x, t|p, 0)

dt
= −db(x)f(x, t|p, 0)

dx
+

1

2

d2a(x)2f(x, t|p, 0)

dx2
(3.76)

fc(x, t) = f(x, t | p, 0) exp
{
− 1

ET (p)
t
}
1{x∈(0,1)} (3.77)

with ET (x) and the parameters b(x), a(x) derived in Eqs. (3.63), (3.53)

and (3.54) respectively.

Although a generally analytical solution of the partial differential equa-

tion Eq. (3.76) is impossible to derive, it can be calculated numerically with

simple parameter assumptions to predict the value of fc(x, t) through Eq.

(3.77).

3.9 Summary

As discussed in the deterministic model, after competition, we have a

strong selection regime in the equilibrium state. The species that share the

largest deterministic fitness win the competition and coexist on the centre

manifold indefinitely through the life history trade-offs. This is the niche

assembly rule.

In this chapter, we incorporated stochastic drift into the dynamics, and

focussed on the stochastic behaviours of these quasi-neutral species on the
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centre manifold, over compact time intervals and infinite time intervals.

Over compact time intervals, the law of large numbers and the central limit

theorem both work well. The stochastic dynamics closely fluctuates around

the deterministic dynamics, and may approximate to an Ornstein-Uhlenbeck

process. In all real microbial communities, the population is large but finite,

then over an infinite interval, the law of large numbers and the central limit

theorem are no longer applicable. Weak competition exists among the quasi-

neutral species, and leads the coexistence states on the centre manifold to

one of the absorbing states, where a single species dominates the whole

population. Therefore, a dominant role played by stochastic drift in the

long time dynamics can be determined.

In order to derive the diffusion approximation over an infinite time inter-

val, we changed the time scale of the stochastic process, and then found that

the projection map onto the deterministic process as t→∞ can well approx-

imate the stochastic process at a long time scale. Using Itô’s transformation

and weak convergence, the diffusion approximation of the stochastic process

at a long time scale was derived. Using this specific diffusion approximation,

all quantities regarding the fixation problem may be analytically calculated.

The stationary distribution in the quasi-stationary stage is another impor-

tant idea in the population dynamics, which is not only Gaussian but also

found to be related to the fixation probability. In the absence of immigra-

tion, the quasi-stationary distribution of the relative abundance does not

exist in the model as it possesses a zero eigenvalue.

This chapter explains the significant role stochastic drift plays in a com-

pact microbial community in the absence of immigration, especially over
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infinite time intervals, demonstrating that random effects do lead to extinc-

tion in scenarios where the deterministic model predicts persistence. Even

tiny stochastic drift will project the stochastic process onto a different de-

terministic limiting result after a long enough time, and change the original

deterministic coexistence state.

Both in the deterministic and stochastic models, the trade-off parame-

ter γk which measures the responsiveness of the microbial growth rate to

changes in the substrate concentration at the equilibrium value, is a useful

parameter that helps us predict the dynamics of the process. In the case of

deterministic strong selection, the species with large γk has a larger birth

rate until the equilibrium is reached, and thus this species will have a larger

population abundance in the coexistence equilibrium state. In the stochastic

weak selection, larger γk is also an advantage which helps the species domi-

nate the whole population. If the γk are identical, the quasi-neutral species

appear truly neutral, no matter how different their yields are. Therefore,

the quasi-neutral species with different trade-off parameters exhibits sub-

stantial differences even with the same largest fitness. The mechanism of

the life history trade-offs could not ensure the coexistence and equivalence

of the quasi-neutral species in this model with the effects of the stochastic

drift.

To balance extinction and maintain the population diversity, it is neces-

sary to introduce immigration into the model. This new model will be anal-

ysed in Chapter 5. Before that, in the next chapter, the analytical results

of the strong selection, weak selection and the quasi-stationary distributions

will be checked by comparing them with the numerical calculations for small
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populations.



Chapter 4

Effects of the Parameters:

Comparison of the Analytical

Model and the Numerical

Model

From the analytical discussions in the last two chapters, we know that

if the volume V (in the units of the volume of a typical cell) in a chemo-

stat is finite but close to infinitely large, the continuous stochastic process

converges to the deterministic dynamics over finite time intervals and be-

haves as an Ornstein-Uhlenbeck process. Over an infinite time interval, a

new diffusion approximation is analytically calculated, from which we can

predict the fixation probability and the mean of the first absorption time.

Furthermore, the best approach to depict the dynamics of the stochastic

122
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model and to check the accuracy of the analytical diffusion approximation,

is through numerical simulation. In this chapter, we will simulate the dis-

crete stochastic model in the absent of immigration for small population,

and compare the results of the strong and weak selection with the analytical

approximations derived for large populations.

In the first section, we will explain the method used to perform the

simulations and give the units used in the model. In the later sections,

we compare the results of the simulations with the analytical results and

discuss the roles each parameter plays. The results of the strong selection

will be stated in Section 4.2. In Sections 4.3 and 4.4, we will explain how

the yields yk and trade-off parameter γk affect the fixation probability and

the mean of the first absorption time. As big discrepancies are found, the

corrected fixation probability derived in the last chapter will be compared to

check whether it fits the numerical calculation better in Subsection 4.4.2.3.

Lastly, in Section 4.5, the quasi-stationary distribution will be numerically

calculated and compared to the Gaussian approximation derived from the

analytical analysis.

4.1 Numerical Model

4.1.1 Stochastic Simulation Algorithms

The simulation approach regards the time evolution of the number of

individuals of a given species as a discrete random-walk process. It can be

numerically simulated at an individual level with algorithms which use a

rigorously derived Monte Carlo procedure.
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To perform the simulation, Gillespie’s algorithm will be applied.[23] Here

two questions need to be solved:

The first is, after the current state, which event occurs next? To de-

termine this, the rates of all possible changes to the state of the model are

computed, and then ordered in an array (b1, b2, b3, b4), where bk, bk+2 are

birth and death rates of the species type k respectively. Next, the cumu-

lative sum of the array is taken, and the final cell contains the number R,

which is the total event rate R =
∑4

v=1 bv. The cumulative array is now a

discrete cumulative distribution, and can be used to choose the next event

by picking a random number r2 ∼ U(0, 1) and choosing the µth event, such

that
∑µ−1

v=1
bv
R < r2 <

∑µ
v=1

bv
R .

The second question is, when does the next event occur? Since the

change on the population level is discrete and governed by a Poisson pro-

cess, then the time to the next event is exponentially distributed, and may

be determined by a random number r1 drawn from an exponentially distri-

bution function with mean 1
R . Thus time to next event will be advanced by

1
R log(−r1), given r1 is drawn from a uniform distribution.

A diagram of the algorithms for simulating the stochastic time evolution

of the chemostat model in the absence of immigration is shown in Figure

4.1.

4.1.2 Units of the Parameters in the Simulations

We analysed a continuous approximation in the limit of infinite values

of V , but the numerical model is the exact discrete process with explicit

individuals. A typical numerical parameters and their units are given in
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Figure 4.1: Schematic of the Stochastic Simulation Algorithm. [23]
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Table 4.1 for instance.

Table 4.1: Values and Units of the Parameters in a Typical Simulations

Symbol Name Value and Units

V volume 0.2 liter
yk yields 5 · 108 cell/g
mk maximal growth rate 1 per hour
ak half saturation constant 1 · 10−6 g/liter
µk intrinsic death rate 0 per hour
D dilution rate 0.075 per hour
Sin input concentration 5 · 10−6 g/liter

The choice of parameters is based on the value used in Hansen and

Hubbell’s experiments [26]. However, we adjust the values of the yields yk

to reach a good balance between computational time and an appropriate

population size.

4.2 Strong Selection

Over finite time intervals, the stochastic dynamics fluctuate around the

deterministic limit as an Ornstein-Uhlenbeck process. In this section, we will

choose parameter sets for species with different deterministic fitness, and

compete them numerically. The results of the simulation are then compared

with the deterministic analytical strong selection results. The assumption of

the deterministic dynamics means that, as the population reaches the centre

manifold, the equilibrium state remains.
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Effect of mk

Firstly, we simulated the model with the parameters in Table 4.2, where

the value of mk is different between the two species.

Table 4.2: Parameters of Simulation: Different mk

species k Sin S(t = 0) Nk(t = 0) mk ak µk V · yk D

1(blue) 5 · 10−6 1 · 10−6 100 1 1 · 10−6 0 5 · 107 0.075
2(red) 5 · 10−6 1 · 10−6 100 1.925 1 · 10−6 0 5 · 107 0.075
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Figure 4.2: The smooth lines are deterministic result, the fluctuating lines
give the stochastic numerical simulation. Red lines represent the species
with higher m = 1.925, and blue lines are the species with m = 1. All other
parameters are identical for the both species as in Table 4.2.

As is shown in Figure 4.2, the stochastic numerical dynamics fluctuate

around the smooth deterministic lines. The red lines gives the dynamics of
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the second species with the higher maximal growth rate mk, i.e, smaller S∗k ,

with a higher deterministic fitness.

Effect of ak

Secondly, a parameter set with different ak as in Table 4.3 will be simu-

lated.

Table 4.3: Parameters of the Simulation: Different ak

species k Sin S(t = 0) Nk(t = 0) mk ak µk V · yk D

1(blue) 5 · 10−6 1 · 10−6 100 1 1 · 10−6 0 5 · 107 0.075
2(red) 5 · 10−6 1 · 10−6 100 1 2 · 10−6 0 5 · 107 0.075
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Figure 4.3: The two smooth lines are the deterministic results, the fluctuat-
ing lines are the stochastic numerical computations. Red lines represent the
species with higher a = 10−6, blue lines are the species with a = 2 · 10−6.

Figure 4.3 illustrates the convergence of the stochastic numerical results
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to the smooth deterministic results, and shows that selection favours the

species with the lower half-saturation constant ak, i.e, smaller S∗k (the blue

line).

Both the numerical competitions above justify the analytical strong se-

lection result, that species with the smaller value of S∗k = akdk
mk−dk perform

better. The yield yk does not affect the fitness of the species, its effect on

the weak selection will be analysed in later simulations.

Quasi-neutral Case

The numerical strong selection results for two quasi-neutral species with

parameters in Table 4.4 was plotted in Figure 3.1 in the last chapter. The

time phases 1 and 2 in Figure 3.1 illustrate that, once the equilibrium state

is reached, two quasi-neutral species coexist for a long time and their pop-

ulation process fluctuate around this equilibrium value.

Table 4.4: Parameters of the Simulation: Quasi Neutral Model

species k Sin S(t = 0) Nk(t = 0) mk ak V · yk D+µ

1(blue) 2 · 10−6 1 · 10−6 100 1.925 2 · 10−6 5 · 108 0.075
2(black) 2 · 10−6 1 · 10−6 100 1 1 · 10−6 5 · 108 0.075

4.3 Methodology for the Weak Selection Simula-

tion

After the strong selection, the quasi-neutral species will coexist in the

equilibrium state for a long time. From the discussion in Chapter 3, we

know that eventually there will be only one species left that dominates the
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whole population. In the following sections we will numerically calculate the

results of the weak selection to compare with the analytical approximations.

By simulating the fixation probability and the mean of the first absorption

time with different parameters, we will show the effect of each parameter

on the weak selection. Before giving the comparisons and discussions, it is

important to clarify two points: how to calculate the fixation probability

and which parameters offer the best balance between available computing

resources and the accuracy of the results.

For each simulation, either the first species or the second species fixes

and dominates the whole population. To calculate the fixation probability

numerically, we need to run simulations under the same parameters a large

number of times to estimate the probability of fixation by a certain species

and the mean value of the first absorption time. Figure 4.4 shows the pseudo-

code for finding the fixation probability by using the algorithms outlined in

Figure 4.1, where R is the number of simulation runs.

Input: Natural number R > 0
Output: Estimated of fixation probability of first species

x← 0 (x will count number of times the first species fixes)
for i = 0→ R do
{
Simulation in Figure 4.1
}
while (N1 6= 0 and N2 6= 0)
If N2 = 0 then x+ +

end for
return x/R (the estimated fixation probability)

Figure 4.4: Algorithm: Simulation to Compute Fixation Probabilities

Let the estimated fixation probabilities returned by the simulation in
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Figure 4.4 be FR = x
R with different values of R. As seen from Figure

4.4, FR is the mean of a R-sized sample of binomially-distributed random

variables.

The standard error of the estimate for the fixation probability FR is

SE =

√
Sample standard deviation2

Number of observations
=

√
1

R−1RFR(1− FR)

R

=

√
FR(1− FR)

R− 1

which decreases as the value of R increases.

However, it is not possible to run the simulation as many times as neces-

sary to obtain a very accurate result, due to both the computational resource

and time constraints. Therefore, running times and population sizes for the

simulations need to be appropriately selected.

4.3.1 Choice of the Population Size and the Number of Sim-

ulation Runs Executed

4.3.1.1 Population Size

Referring to the strictly neutral model with the parameter set except yk

listed in Table 4.5, if the value of yk is 109, the corresponding population size

will be around 10000. It takes several hours to run one simulation with this

population size. For a fixation probability which needs at least hundreds

of simulation runs to compute accurately, this population size is too big.

Conversely, the value of 107 for yk is too small, because its corresponding

population size 100 cannot ensure a good analytical approximation. There-
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fore, we finally chose 8 as the order of the yields, which corresponds to a

population around 1000. Most of the simulations in the following sections

are run with a population around this size.

Table 4.5: Parameters for Neutral Model

species Sin S(t = 0) Nk(t = 0) mk ak µk V · yk D

1 2 ∗ 10−6 .081 · 10−6 960p 1 1 · 10−6 0 5 · 108 0.075
2 2 ∗ 10−6 .081 · 10−6 960(1− p) 1 1 · 10−6 0 5 · 108 0.075

4.3.1.2 Number of Simulation Runs Executed

It is known that in a strictly neutral model, the fixation probability

equals the initial relative abundance, i.e., f(p) = p. Therefore, our sim-

ulations can be tested, using the neutral parameter set in Table 4.5. By

comparing the numerical results to the analytical neutral line f(p) = p, we

can adjust the number of simulation runs executed R, and hence run time,

needed for an accurate result.

We ran the simulation 100, 200, 500 times respectively with p = 0.1, 0.2 · · · 0.9

and plotted the results in Figure 4.5. This illustrates that all the fixation

probabilities are close to the analytical neutral line f(p) = p, but the top

figure in Figure 4.5 with R = 100 gives the lowest accuracy (largest stan-

dard error) compared to the results in the middle figure with R = 200 and

bottom figure with R = 500. To balance the running time and accuracy,

we will chose R = 200 for each simulation with a population over 1000, and

R =500 or 1000 in simulations with population under 1000.

All simulations throughout this chapter were started from initial values
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Figure 4.5: Simulation results for the fixation probability of the strictly
neutral model. The dots are the simulated fixation probabilities and the
lines are the true fixation probabilities, f(p) = p. The number of simulation
runs executed for the top, middle and bottom figures are 100, 200 and 500
respectively. Error bars are standard errors.
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in the equilibrium state, with the purpose of clearly understanding how the

result will be affected by different initial relative abundance on the centre

manifold. In the following sections, we will compare the numerical results

over different parameters with the analytical results obtained in Chapter

3, to test the influence of the parameters and the accuracy of the diffusion

approximation.

4.4 Effects of the Parameters on the Fixation Prob-

ability

Since the species’ intrinsic death rates µk are assumed to be negligible

compared with the dilution rate D, µk will be dropped from now on to

simplify the comparison.

As derived in the last chapter, the fixation probability in our first ap-

proximation is

F (p) =

∫ p
0 ψ(u)du∫ 1
0 ψ(u)du

,

with

ψ(p) =
(γ1κ1 − γ2κ2)p+ γ2κ2

[(κ1 − κ2)p+ κ2]3

{(γ2
1 − γ2

2)p+ γ2
2

(κ1 − κ2)p+ κ2

} (γ1κ2−γ2κ1)(γ1+γ2)
γ22κ1−γ

2
1κ2 .

In Subsections 4.4.1 and 4.4.2, these analytical predictions for the fixa-

tion probability will be compared with the numerical results to determine

the effects of the yields yk and γk respectively. Since large discrepancies

will appear, in Subsection 4.4.2.3, we will show that the corrected fixation

probability derived in Subsection 3.7.2 matches the numerical results better.
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4.4.1 Effects of the Yields yk

4.4.1.1 Effects of the Yields yk, While γk Are the Same

To remove the impact of all other parameters, here we assume that

the parameter γk is identical to both species, namely γ1
γ2

= 1. Using the

analytical results in Subsection 3.7.1.3, we have

F (p) = p,

regardless of the value of y1
y2

. That is, under the situation where the birth

rate bk = mkS
ak+S and its sensitivity to the resource at the equilibrium state

γk = dbk
dS |S∗ are identical to both species at the equilibrium state, the fixa-

tion probability is only dependent on its initial frequency, as in the strictly

neutral model.

To numerically test the negligible influence of the yields on the fixation

probability under the condition of identical γk, we expand the conditions

slightly. Let the value of γ1 and γ2 be close but not exactly identical. Other

values of the parameters are listed in Table 4.6 where γ1
γ2

= 0.9625. The

numerical results of the fixation probability are plotted together with the

analytical predictions in Figure 4.6.

Table 4.6: The Parameter set to test the effect of the yields

species k Sin S(t = 0) mk ak µk D

1 2 · 10−6 .081 · 10−6 1 1 · 10−6 0 0.075
2 2 · 10−6 .081 · 10−6 1.925 2 · 10−6 0 0.075
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Figure 4.6: The effect of the yields on the fixation probability when γ1
γ2

=

0.9625 and d1
d2

= 1. The dots are the results of the numerical calculation,
and the lines are the analytical results. The results for different ratios of
the yields y1

y2
= 1, 0.1, 10 are plotted in the colours of blue, red and black

respectively.

Figure 4.6 illustrates that the numerical fixation probabilities are all

located around the the analytical neutral lines no matter how the yields

changes. This close match between the numerical and analytical results

demonstrates that if the trade-off parameters γk are close to each other for

the quasi-neutral species, then a large variation in yields do not affect the

fixation probability result greatly.
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It was shown in Subsection 3.8.1 that the species in the quasi-stationary

phase is Gaussian distributed with the mean and variance given in Eqs.(3.66)-

(3.69). If γ1=γ2, these two Gaussian processes have the same magnitude of

relative fluctuations equal to :

δ2
1

µ1
= 1 +

D

γ1(Sin − S∗)
+

D

D + γ1(Sin − S∗)
=
δ2

2

µ2
.

As discussed in Subsection 2.4.1, if γ1 = γ2, then all other trade-off

parameters are identical.

Therefore, if the quasi-neutral species has the same trade-off parameters,

they will be ecologically neutral in the weak selection no matter how different

their yields are.

4.4.1.2 Effect of the Yields yk, While γk Are Different

However, this is only the case when γ1 = γ2. If the γk or dk are very

different from each other then the yields do impact the fixation probability.

This is because, when γ1 6= γ2, the sign of the drift coefficient b(q) is de-

pendent on all the parameters p, γk and yk. In Figure 4.7, analytical results

for the fixation probability are shown for decreasing and increasing y1
y2

with

γ1 > γ2 and γ1 < γ2. These results are complex and the derivation from

neutrality does not depend on any single parameter.

4.4.2 Effects of the Parameter γk

The sensitivity of the birth rate to the resource at the equilibrium state,

γk, is an important parameter in the model. In the deterministic analy-
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Figure 4.7: The effect of the yields on the analytical fixation probability
while γ1 6= γ2. In Figure A and B,m1 = 1, m2 = 0.12125, a1 = 1·10−6, a2 =
5 · 10−8. In Figure C and D, m1 = 0.0935, m2 = 1.925, a1 = 2 · 10−8, a2 =
2 · 10−6. The dilution rate D = 0.075.

sis, the species with larger γk grows more quickly before saturation and

achieves a larger relative abundance when it reaches the centre manifold.

In this subsection, we will analyse the effects of varying γk on the fixation

probability F (p). The yields yk will be kept fixed at the same value for the
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two quasi-neutral species throughout this section.

4.4.2.1 Analytical Results

Given that y1 = y2, d1 = d2, using the results in Subsection 3.7.1.2, the

analytical fixation probability using our first approximation is:

F (p) = p+

γ1
γ2

[log(({γ1γ2
2} − 1)p+ 1)− 2p log γ1

γ2
]

γ1
γ2

2 − 1 + 2γ1γ2 log γ1
γ2

.

This shows that the species with large γk has an increased fixation proba-

bility.

This advantage can be explained by the difference between their quasi-

stationary distributions in the quasi stationary phase. Given the same yield

rate, the quasi-neutral species have the same mean abundance,

x∗1 = (Sin − S∗)y1 = (Sin − S∗)y2 = x∗2.

However, the species with larger γ has a smaller variance,

γ1 > γ2

var1 =
1

V
{D(

x1∗
D

+
y1

γ1
) +

D
D
x∗1

+ γ1
y1

} < 1

V
{D(

x∗2
D

+
y2

γ2
) +

D
D
x∗2

+ γ2
y2

} = var2.

Therefore, the species with a birth rate that is more sensitive to the resource

concentration at the equilibrium state is more likely to dominate the popu-

lation in the weak selection regime, and following fixation has a more stable

population in the quasi stationary phase.
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4.4.2.2 Numerical Comparison

In order to compare these predictions with the numerical results, we fix

S∗, the values of the yields and the species death rates at constant values,

that S∗ = 0.081 · 10−6, Sin = 2 · 10−6 and y1 = y2 = 5 · 108, d1 = d2 = 0.075.

Due to the yields being the same, the total expected population size will

not change with the different initial relative abundance p of the first species,

that is,

Π1 + Π2 = (Sin − S∗)y = 960.

In Figure 4.8, we simulate numerical models with different ratios of γk (γ1γ2 =

0.9625, 1.3, 2.425) and compare them with the analytical predictions. In

both case we observe an advantage to the species with larger γk in the weak

selection regime.

4.4.2.3 Better Fit Using the Corrected Fixation Probability

In Figure 4.8, it is apparent that there are discrepancies between the

numerical results and the analytical approximations. By increasing the

population size from 1000 to 10000, the running time for one simulation

increases greatly. However there is no even tiny apparent improvement of

shrinking the discrepancies. It suggests that the analytical approximation

is not sufficiently accurate. Such discrepancies are caused by the absence

of the higher order term of Taylor expansion when deriving the derivatives

of the projection map. Based on the above fact, in this subsection, we will

use the results for the corrected fixation probability in Subsection 3.7.2 to

compare with the numerical results.
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Figure 4.8: The effects of γk on the fixation probability: a compari-
son of the numerical results to the analytical prediction. In Figure A:
a1 = 1 · 10−6, m1 = 1. a2 = 2 · 10−6, 0.2 · 10−6, 5 · 10−8, and
m2 = 1.925, 0.26, 0.12125 in blue, red and black lines respectively. In
Figure B: a2 = 2 · 10−6, m2 = 1.925. a1 = 1 · 10−6, 1 · 10−7, 2 · 10−8,
and m1 = 1, 0.1675, 0.0935 in blue, red and black lines respectively.
y1 = y2 = 5 · 10−8 in all calculations. Error bars are standard errors.

Given that y1 = y2, d1 = d2 = D, with the expressions in Eqs.(3.59)
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and (3.62), the fixation probability is expressed as,

ψ1(p) =(
(γ1γ2 − 1)p+ 1

(γ1γ2
2 − 1)p+ 1

)
1− D2

S∗(γ1−γ2)
( 1
m1
− 1
m2

)

F (p) =

∫ p
0 ψ1(u)du∫ 1
0 ψ1(u)du

.

Using the same parameters as in Subsection 4.4.2.2 and Figure 4.8, the

corrected analytical results for the fixation probability are plotted in Figure

4.9 together with the numerical results. A very good match between the

analytical and numerical fixation probabilities is obtained.

It is explained in Subsection 3.7.2 that the two sets of derivatives of

the projection map will result in a difference in drift coefficient b(p) of the

diffusion approximation of the relative abundance, but not the diffusion

coefficient a(p). The reason why the corrected approximation makes such a

large improvement is due to b(p) having a significant impact on the fixation

probability. However, in the calculation of the mean of the first absorption

time, the coefficient a(p) has greater impact. In that case the approximation

derived from the first set of derivatives of the projection map is sufficient to

obtain a good match to the numerical calculations.
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Figure 4.9: The effects of γk on fixation probability using the corrected
analytical approximations. In Figure A: a1 = 1 · 10−6, m1 = 1. a2 =
2 · 10−6, 0.2 · 10−6, 5 · 10−8, and m2 = 1.925, 0.26, 0.12125 in blue, red and
black lines respectively. In Figure B: a2 = 2 · 10−6, m2 = 1.925. a1 equal
1 · 10−6, 1 · 10−7, 2 · 10−8, and m1 equal 1, 0.1675, 0.0935 in blue, red and
black lines respectively. y1 = y2 = 5 ·10−8 in all calculations. Error bars are
standard errors.

4.5 Effects of the Parameters on the Mean of First

Absorption Time

The analytical result for the mean of the first absorption time ET (p) is

calculated in Section 3.7.2,

ET (p) = 2

∫ 1

0
ψ(x)dx ·

{
(1− F (p))

∫ p

0

F (x)

a2(x)ψ(x)
dx+ F (p)

∫ 1

p

1− F (x)

a2(x)ψ(x)
dx
}
.
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In this section, we will analyse how the parameters affect these results.

4.5.1 Effects of γk

To analyse the effect of γk on the mean of the first absorption time, we

use the same parameter sets as in Subsection 4.4.2.2, where S∗ = 0.081·10−6,

Sin = 2 · 10−6, y1 = y2 = 5 · 108, and d1 = d2 = D = 0.075. Due to the

yields being identical, the total expected population size remains constant,

Π1 + Π2 = (Sin − S∗)y = 960,

for different initial relative abundance value p. The analytical and numerical

results for the means of the first absorption times with different γk are

plotted in Figure 4.10.

As Figure 4.10 shows, the analytical results derived by the diffusion

approximation match well with the numerical results even for small popula-

tions. The means of the first absorption time do not change greatly with the

different γ1
γ2

ratio. Therefore, we suggest that the yields-dependent popula-

tion size has a larger impact on the mean of the first absorption time than

the parameter γk. To verify this, in the next subsection, we will change yk

and population size to see how the mean of the first absorption time varies.
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Figure 4.10: The mean of first absorption time with different γk. The pa-
rameters of the first species are kept constant as a1 = 1 · 10−4, m1 = 0.15.
For the second species in the blue, black and red lines, a2 = 5 · 10−4, 1.1 ·
10−3, 2·10−5, m2 = 0.1125, 0.9, 0.09 respectively. y1 = y2 = 107,D = 0.075.

4.5.2 Effects of the Yields yk

As derived in Subsection 3.7.2, the mean of the first absorption time in

the strictly neutral case is

ET (p) = −y(Sin − S∗)
(
p log p+ (1− p) log (1− p)

)
,
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where ET (p) is proportional to the total expected population size Θ =

y(Sin − S∗).

In the quasi-neutral model, if we set the γk to be identical, the expected

population size varies dramatically with the initial relative abundance p,

Θ = Π1 + Π2 =
(Sin − S∗)D

κ1p+ κ2(1− p)

Using the results in Subsection 3.7.2, we have the mean of the first absorption

time,

ET (p) =
1

D

(
(1− p)

∫ p

0

Θ

1− x
dx+ p

∫ 1

p

Θ

x
dx
)

= (
1− p
κ1

+
p

κ2
) log

(
(
κ1

κ2
− 1)p+ 1

)
− 1− p

κ1
log(1− p)− p

κ2
log p

where, κk = D
yk

. Plotting this analytical result in Figure 4.11, we can deter-

mine that the yield yk plays a major role in the mean of the first absorption

time. Given an initial value p, increasing either of the yields yk will increase

the mean of the first absorption time. Increasing the value of y2 gives an

positive skew1, to the blue and purple line. It means that the large initial

relative abundance of second species will delay the first absorption time.

Decreasing it, the skew is then negative2 in the red line, and tell us that

increase the initial relative abundance of the first species can help us extend

the time of the coexistence phase.

1Positive skew indicates that the tail on the right side is longer or fatter than the left
side

2Negative skew indicates that the tail on the left side is longer or fatter than the right
side
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Figure 4.11: The mean of first absorption time with different yields yk, and
a1 = a2 = 1 · 10−4, m1 = m2 = 0.15, S∗ = 1 · 10−4, Sin = 2 · 10−4.

4.6 Numerical Calculation of the Quasi-stationary

Distribution

The theoretical assumption underlying the numerical calculation of the

quasi-stationary distribution is that the progress Nk in the quasi stationary
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phase is ergodic3. We assume a set of parameters for the two quasi-neutral

species and their chemostat environment in Table 4.7.

Table 4.7: Parameter set for quasi-stationary distribution calculation

species Sin S(t = 0) N(t = 0) mk ak µk yk ∗ V D

1 1.081 · 10−6 .081 · 10−6 4000 1.95 2 · 10−6 0 1 · 109 0.075
2 1.081 · 10−6 .081 · 10−6 16000 1 1 · 10−6 0 1 · 109 0.075

According to the analytical quasi-stationary result in Eqs.(3.64) and (3.65),

the mean and variance of the population of the first species is

µ1 = V x∗1 = V
y1(Sin − S∗)D

d1

σ2
1 = V

(y1(D + γ1
y1
x∗1)

γ1
+

x∗1d1

D + γ1
y1
x∗1

)
.

Given the value of the parameters in Table 4.7, the above equations yield a

mean of 1000, and a standard deviation of 34.1796.

For the simulation, we will use the history up to time t (which is large

enough) from an appropriate starting time t0 in the quasi stationary phase

to estimate the fq,1(N) with the help of the normal fit command (a matlab

command). The numerical results in Figure 4.12 show that the process

visits every state according to a Gaussian distribution with mean 1002 and

standard deviation 34.29 which matches the analytical results perfectly.

3In a Markov chain, a state is said to be ergodic if it is aperiodic and non-absorbing.
If all states in a Markov chain are ergodic, then the chain is said to be ergodic.
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Figure 4.12: The quasi-stationary distribution, fq,1(N). The solid line is nu-
merical calculation with mean 1002 and standard deviation 34.29, compared
to the analytical approximation (dot line) with mean 1000 and standard de-
viation 34.18

4.7 Summary

This chapter compares the analytical diffusion approximations with the

numerical results, and discusses how the parameters (yields yk, sensitivity of

the birth rate to the resource at the equilibrium state γk) affect the results

of the strong selection, the fixation probability, the mean of the absorption

time and the quasi-stationary distribution.

Firstly we observe, from comparing the numerical and analytical results,

that if the first set of the derivatives of the projection map in Subsection

3.5.3 is used to derive the fixation probability, there is no good fit between

the analytical approximation in the large population limit and numerical
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results for small population. The large discrepancies between numerical and

analytical results do not shrink if the simulation population size increases,

and are caused by the absence of the higher order term of the Taylor expan-

sion of the deterministic trajectory. By using the corrected results for the

fixation probability, a good approximation between the numerical calcula-

tion and analytical calculation are achieved.

Secondly we conclude, that the yields yk and the sensitivity of the birth

rate to the resource at the equilibrium state, γk, play different roles in im-

pacting the strong and weak selection. In the strong selection, the yields

has no impact on the results, and the species with larger γk has the advan-

tage of growing quickly and occupying a larger relative abundance in the

long time coexistence phase. In the weak selection, it is hard to say which

single parameter will be an advantage or disadvantage for the species to

compete. If the γk are identical for both quasi-neutral species, the yields

will not influence the results of weak selection, and the fixation probability

is only dependent on the initial relative abundance p. Conversely, under the

situation that the yields yk are identical, there is a selective advantage for

the species with larger γk. It will obtain a larger relative abundance during

the strong selection, and have an increased fixation probability in the weak

selection and increased chance to dominate the population. However, larger

yields which lead to larger population will delay the time to fixation.

In all the above chapters, most results we found useful in the chemostat

model with immigration absent were derived. Its deterministic model was

built in Chapter 2, the stochastic model was developed in Chapter 3, and

the comparisons of these two models are discussed in this chapter. In the
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following chapter, we will add dispersal (immigration) to the present model

to prevent fixation and maintain a stationary distribution, then determine

how the disperse controls the diversity of the local communities.



Chapter 5

Quasi-Neutral Model with

Immigration

In the last three chapters, the chemostat models considered ignored im-

migration, i.e., the influx comprised only resource. However, in the real

world, most microbial communities are not isolated. A community in the

absence of immigration will quickly lose diversity due to the deterministic

strong selection and more slowly through stochastic weak selection. There-

fore, to maintain a complex community with a stationary total diversity,

immigration will be necessary. In this chapter we incorporate a steady rate

of immigration of individuals into our local community from a fixed dis-

tribution in a presumed meta-community. No matter how low the rate of

immigration this ensures that no species will go extinct in the system.

152
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5.1 Introduction

Assume a small rate of population influx for each species into the lo-

cal chemostat community, denoted Rk(k = 1, 2), from a meta-community.

Given large V , we define the rate of immigration density rk = Rk
V to be

small, with definition 1 2

rk = O(1/V )

Rk = o(V ).

Namely, rk → 0, Rk = V rk <∞.

Define qk to be the relative abundance of the species k in the meta-

community. Since the immigration population enters the local community

through the influx (with dilution rate D), the immigration rate of the kth

species to the local community Rk, is proportional to the relative abundance

of the kth species in the meta-community qk and the dilution D:

Rk
V

= rk ∝ qkD. (5.1)

In the deterministic perspective, this is a constant rate of immigration. In

the stochastic perspective, the immigration occurs according to a Poisson

distribution with jump intensity rk.

To understand this new dynamics, firstly the deterministic model will be

constructed in Section 5.2 and be approximated by the deterministic model

1If f(N) = O(g(N)), then limN→∞ sup | f(N)
g(N)
| <∞

2If f(N) = o(g(N)), then limN→∞ | f(N)
g(N)
| = 0
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in the absence of immigration since the immigration rate is small. Then

we will have the same results for the strong selection and the same centre

manifold as in the model with immigration absent.

Later in Section 5.3, the stochastic model will be developed to derive

the diffusion approximation at the long time scale. The immigration will

drive the long term drift and balance extinction to maintain the diversity of

the local community. With the help of the forward Kolmogorov equation,

the stationary distribution of the relative abundance will be calculated in

Section 5.4. In Section 5.5, the impact of the parameters on the stationary

distribution is analysed. Section 5.6 is the comparison section, where the

stationary distribution will be numerically calculated to determine how well

this fits the analytical results. In the last section, we will compare our quasi-

neutral model with Hubbell’s neutral model. By analysing how the models

differ, we reveal the roles the drift, immigration and species difference play

in shaping the structure of the local community.

5.2 Deterministic Approximation

By the law of large numbers, the deterministic ODE system is the limit

of the stochastic system over compact time intervals. In this section, the

deterministic dynamics of the model with immigration will be clearly pre-

sented.

Define the deterministic dynamics of the resource concentration and
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species density (S̄(t), x̄k(t)) as the solution of the ODE system:

∂S̄

∂t
=
(
Sin − S̄(t)

)
D −

2∑
k=1

x̄k(t)

yk

mkS̄(t)

ak + S̄(t)
,

∂x̄k
∂t

= rk +
mkS̄(t)

ak + S̄(t)
x̄k(t)−

(
D + µk

)
x̄k(t),

S̄(0) = S0 > 0,

x̄k(0) = xk,0 > 0, k = 1, 2, . . . , n.

Given V → ∞, the small immigration density rate is negligible, i.e,

rk → 0. With this limit, this ODE system can be approximated by the ODE

system of the deterministic model in the absence of immigration derived in

Chapter 2. Therefore, the assumption of low immigration rate rk → 0

ensures the same results for strong selection, only the quasi-neutral species

at the largest fitness 1
S∗ survive, and the equilibrium states on the same

centre manifold, where

(Sin − S∗)D =

2∑
k

dk
yk
x∗k (5.2)

S∗ =
akdk

mk − dk
. (5.3)

The deterministic equilibrium state of the species density x∗k are dependent

on the initial values.

With the results for niche assembly unchanged, in the following sections,

we determine how the limited dispersal will shape the diversity in local

communities together with stochastic drift.
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5.3 Stochastic Analytical Model

In the rest of this chapter, we will analysis the stochastic dynamics of

the chemostat model with immigration present. Using the law of large num-

bers, the stochastic dynamics may be converged to the deterministic dynam-

ics over compact time intervals, where the impact of the rare immigration

density rate is negligible. The diffusion approximation over compact time

intervals will be the same as derived in Chapter 3. However, over an infinite

time interval, the boundaries are no longer absorbing given the presence of

immigration. Although the quasi-neutral species continue to coexist, the

diversity over an infinite time interval is different from that over compact

time intervals. In this section, we will derive the diffusion approximations

over the compact time intervals and infinite time intervals respectively, and

explore the final stationary distribution of the relative abundance of the first

species, f(p).

5.3.1 Stochastic Model and Diffusion Approximation Over

Compact Time Intervals

Compared to the stochastic model in the absence of immigration, the

birth events of the species are no longer intrinsic only, as the immigration

events need to be accounted for. Therefore the transition probabilities of
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the population N̂k(t) are different from those in Section 3.2.1,

P{N̂k(t+4t) = N̂k(t) + 1} =
( mkS(t)

ak + S(t)
N̂k(t) +Rk

)
4t+ o1(4t) (5.4)

= βk,1

(
Ŝ(t), x̂(t)

)
V4t+ o1(4t),

P{N̂k(t+4t) = N̂k(t)− 1} = (D + µk)N̂k(t)4t+ o2(4t) (5.5)

= βk,−1

(
Ŝ(t), x̂(t)

)
V4t+ o2(4t),

where βk,l is the jump intensity defined as,

βk,1

(
Ŝ(t), x̂(t)

)
= bk(t)x̂k(t) + rk =

mkŜ(t)

ak + Ŝ(t)
x̂k(t) + rk︸︷︷︸

negligible

≈ mkŜ(t)

ak + Ŝ(t)
x̂k(t),

βk,−1

(
Ŝ(t), x̂(t)

)
= dk(t)x̂k(t) = (D + µk)x̂k(t),

and bk(t) and dk(t) are the birth and death rates of kth species at time t.

Over compact time intervals, the immigration rate of the species density

is a negligible term, thus this stochastic process behaves the same as in

the model in the absence of immigration given in Chapter 3. The diffusion

approximation over compact time intervals is still the Ornstein-Uhlenbeck

process with expression:

dŜ(t) =
{

(−D −
∑ γkx

∗
k

yk
)(Ŝ − S∗)−

∑ b∗k
yk

(x̂k − x∗k)
}

dt (5.6)

dx̂k(t) = γkx
∗
k(Ŝ − S∗)dt+

√
b∗kx
∗
kdWk,1 −

√
dkx

∗
kdWk,−1. (5.7)
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where γk = dbk
dS |S∗ and the equilibrium state (S∗, x∗1, x

∗
2) is only dependent

on the initial states.

5.3.2 Stochastic Model at a Long Time Scale

As discussed in Chapter 3, the law of large numbers and the central limit

theorem are applicable over compact time intervals, but will not hold over an

infinite time interval. Actually, over an infinite interval, the absorption state

will no longer be reached given even a small immigration rate. Therefore it

is necessary to derive a new diffusion approximation at the long time scale,

where the immigration rate Rk = V rk will reveal its role as a significant

mechanism in the dynamics.

Similarly to Sections 3.5 and 3.6, we define the population density for

large V at longer timescales as,

ŝ(t)
def
= Ŝ(V t),

ŵ(t)
def
=

1

V
N̂(V t),

ŵ(0) = w̄(0) = w,

Ŝ(0) = s.

The stochastic process at the long time scale is then defined by the expres-
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sion:

dŜ = V
{(
Sin − Ŝ(t)

)
D −

n∑
k=2

ŵk(t)

yk

mkŜ(t)

ak + Ŝ(t)

}
dt,

dŵk =
{
Rk + V

( mkŜ(t)

ak + Ŝ(t)
− (D + µk)

)
ŵk(t)

}
dt+

∑
l

lβk,l(ŵ)
1
2 dBk,l.

5.3.2.1 Projection Map onto the Deterministic Trajectory

Projecting the stochastic process onto the deterministic trajectory as

t→∞, we have the projection map with definition,

π(ŵ) =
(
π0(ŵ), π1(ŵ), π2(ŵ)

)
=
(

lim
t→∞

S̄(t, ŵ), lim
t→∞

x̄1(t, ŵ), lim
t→∞

x̄2(t, ŵ)
)
.

As was discussed in Subection 3.5.2, the projection map can well approxi-

mate the stochastic process at the long time scale, namely ŵ ⇒ π(ŵ).

Since Rk = o(V ), there is no change in the derivatives of the projection
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map. That is,

∂π1

∂w1
=

γ2κ2π2

γ1κ1π1 + γ2κ2π2

∂π2

∂w1
= −κ1

κ2

∂π1

∂w1

∂π1

∂w2
= − γ1κ2π1

γ1κ1π1 + γ2κ2π2

∂π2

∂w2
=
∂π1

∂w2

∂2π1

∂w2
1

=
−κ1κ2γ1γ2π2

(κ1π1γ1 + κ2π2γ2)2

(
1 +

γ2(κ1π1 + κ2π2)

κ1π1γ1 + κ2π2γ2

)
,

∂2π2

∂w2
1

= −κ1

κ2

∂2π1

∂w2
1

,

∂2π1

∂w2
2

=
κ2

2γ1γ2π1

(κ1π1γ1 + κ2π2γ2)2

(
1 +

γ1(κ1π1 + κ2π2)

κ1π1γ1 + κ2π2γ2

)
,

∂2π2

∂w2
2

= −κ1

κ2

∂2π1

∂w2
2

.

It turns out that due to the significant influence of the immigration rate,

which will be explored later in this chapter, the impact of the inaccuracy of

the derivatives of the projection map (absence of the higher order terms of

the Taylor expansion of the deterministic trajectory) is greatly weakened.

Therefore, the derivatives of the projection map derived above are sufficient

to calculate the final stationary distribution. It is not necessary to correct

the derivatives of the projection map as we did in Subsection 3.5.3.1 by con-

sidering the higher order terms in the Taylor expansion of the deterministic

trajectory.
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5.3.2.2 Diffusion Approximation at the Long Time Scale

As before we can apply Itô’s transformation to derive the approximation

of the projection map, which is

πk

(
ŵ(t)

)
=πk

(
ŵ(0)

)
+

∫ t

0
(Dπk)

(
ŵ(s)

)
· F
(
ŵ(s)

)
ds︸ ︷︷ ︸

Finite Variation Component

+
2∑
i

∫ t

0
(∂iπk)

(
ŵ(s)

)
dMi(s)︸ ︷︷ ︸

Martingale Component

+
1

2

2∑
i

∫ t

0
(∂2
i πk)

(
ŵ(s)

)
d[Mi]s︸ ︷︷ ︸

Quadratic Variation Component

+ε(t). (5.8)

The martingale component and the quadratic variation component are the

same as in the model in the absence of immigration, but the finite variation

component is not. This is because the immigration term Rk in the F (ŵ(t))

contributes an extra non-zero value compared with the model in the absence

of immigration,

(Dπk)
(
ŵ(s)

)
· F
(
ŵ(s)

)
= (Dπk)

(
ŵ(s)

)
·
(
Rk + V γk(Ŝ − S∗)ŵk

)
= (Dπk)

(
ŵ(s)

)
·Rk + 0

= R1
dπk
dŵ1

+R2
dπk
dŵ2
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With the help of the weak convergence[37], πk

(
ŵ(t)

)
converges weakly to

Π(w, t) =
(

Π1(w, t),Π2(w, t)
)

with expression,

dΠ1 =
{
R1 · d1Π1 +R2 · d2Π1 + (d2

1Π1)d1Π1 + (d2
2Π1)d2Π2

}
dt

+ (d1Π1)
√
d1Π1

(
dW1,1 − dW1,−1

)
+ (d2Π1)

√
d2Π2

(
dW2,1 − dW2,−1

)
dΠ2 =

{
R1 · d1Π2 +R2 · d2Π2 + (d2

1Π2)d1Π1 + (d2
2Π2)d2Π2

}
dt

+ (d1Π2)
√
d1Π1

(
dW1,1 − dW1,−1

)
+ (d2Π2)

√
d2Π2

(
dW2,1 − dW2,−1

)
.

This is the diffusion approximation for the stochastic process of the species

densities with immigration present at the long time scale.

5.3.3 Stationary Distribution of the Relative Abundance of

the First Species

In the model with two quasi-neutral species, p(t) = Π1(t)
Π1(t)+Π2(t) is a diffu-

sion on [0,1], and the dynamics of the relative abundance of the first species

is sufficient to explain the whole population dynamics. Since
(

Π1(t),Π2(t)
)

is kept on the centre manifold, the total density approximates to,

Θ = Π1 + Π2 =
(Sin − S∗)D

κ1p+ κ2(1− p)
.
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As discussed in Subsection 3.6.2, by applying Itô’s formula, the diffusion of

the relative abundance of the first species p(t) is expressed as,

dp =
dp

dΠ1
(dΠ1) +

1

2

d2p

dΠ2
1

(dΠ1)2

=
κ2(1− p) + κ1p

κ2Θ
(dΠ1) +

(κ2(1− p) + κ1p)(κ1 − κ2)

κ2
2Θ2

(dΠ1)2

= b(p)dt+ a(p)dBt,

with drift coefficient

b(p) =
κ2(1− p) + κ1p

κ2

{R1

Θ
d1Π1 +

R2

Θ
d2Π1 + d1pd

2
1Π1 + d2(1− p)d2

2Π1

+
2(κ1 − κ2)

κ2Θ

(
d1p(d1Π1)2 + d2(1− p)(d2Π1)2

)}

and diffusion coefficient a(p) satisfying

1

2
a(p)2 =

(
κ2(1− p) + κ1p

)2

κ2
2Θ

{
d1p(d1Π1)2 + d2(1− p)(d2Π1)2

}
.

Using the forward Kolmogorov equation, we have that the probability

density of the relative abundance of the first species f(t, p) satisfies,

df(t, p)

dt
= − d

dp
{b(p)f(t, p)}+

1

2

d2

dp2
{a2(p)f(t, p)}. (5.9)

To derive the stationary distribution, we integrate Eq.(5.9) throughout

formally with respect to p, giving:

d

dt

(
1− F (t, p)

)
= b(p)f(t, p)− 1

2

d

dp

(
a2(p)f(p)

)
, (5.10)
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with F (t, p) as the distribution function:

F (t, p) =

∫ p

0
f(t, y)dy.

Since the stationary distribution is independent of t, we define it as f(p),

and the left hand side of Eq.(5.10) equals zero,

0 = b(p)f(p)− 1

2

d

dp

(
a2(p)f(p)

)
.

Then the stationary probability density is derived in the form of

f(p) =
const

a2(p)
exp

{
2

∫ p

0

b(y)

a2(y)
dy
}
,

with the constant satisfying
∫ 1

0 f(p) = 1.

To expand the expression in detail, we substitute the derivatives of the
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projection map into b(p) and a2(p), obtaining

2
b(p)

a(p)2
=

2(κ1 − κ2)

(κ1 − κ2)p+ κ2

+

(
γ1κ1p+ γ2κ2(1− p)

)(
R1γ2(1− p)−R2γ1p

)
(

(κ1 − κ2)p+ κ2

)
p(1− p)

(
(d2γ2

1 − d1γ2
2)p+ d1γ2

2

)
+

γ1γ2(d2κ2 − d1κ1)(
(κ1 − κ2)p+ κ2

)(
(d2γ2

1 − d1γ2
2)p+ d1γ2

2

)
+

γ1γ2(d2κ2γ1 − d1κ1γ2)(
(κ1γ1 − κ2γ2)p+ κ2

)(
(d2γ2

1 − d1γ2
2)p+ d1γ2

2

)
=
{

2 +
(γ1κ1 − γ2κ2)(γ1R2 + γ2R1)− γ1γ2(d1κ1 − d2κ2)

κ1d1γ2
2 − κ2d2γ2

1

− κ1 − κ2

κ1d1γ2
2 − κ2d2γ2

1

(R2γ
2
1 +R1γ

2
2)
} (κ1 − κ2)

(κ1 − κ2)p+ κ2

+
{

1− (γ1κ1 − γ2κ2)(γ1R2 + γ2R1)− γ1γ2(d1κ1 − d2κ2)

κ1d1γ2
2 − κ2d2γ2

1

+
d2γ

2
1 − d1γ

2
2

κ1d1γ2
2 − κ2d2γ2

1

(
R2κ1

d2
+
R1κ2

d1
)
} d2γ

2
1 − d1γ

2
2

(d2γ2
1 − d1γ2

2)p+ d2γ2
1

− κ1γ1 − κ2γ2

(κ1γ1 − κ2γ2)p+ κ2γ2
− R2

d2

1

1− p
+
R1

d1

1

p

a(p)2 =
p(1− p)

(
(d2γ

2
1 − d1γ

2
2)p+ d2γ

2
1

)(
(κ1 − κ2)p+ κ2

)3

(Sin − S∗)D
(

(κ1γ1 − κ2γ2)p+ κ2γ2

)2 .

with κ = dk
yk

, γk = dbk
dS |S∗ = (mk−dk)2

mkak
.

Therefore, the final stationary distribution of the relative abundance of
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the first species is derived in the following expression

f(p) = const ·
(

(κ1 − κ2)p+ κ2

) (γ1−γ2)(γ1κ2R2+γ2κ1R1)−γ1γ2(d1κ1−d2κ2)
κ1d1γ

2
2−κ2d2γ

2
1

−1

·
(

(κ1γ1 − κ2γ2)p+ κ2γ2

)
·
(

(d2γ
2
1 − d1γ

2
2)p+ d1γ

2
2

) (
R2
d2

γ2+
R1
d1

γ1)(κ2γ1d2−κ1γ2d1)−γ1γ2(d1κ1−d2κ2)

κ1d1γ
2
2−κ2d2γ

2
1

· p
R1
d1
−1

(1− p)
R2
d2
−1

(5.11)

with the constant value satisfying
∫ 1

0 f(p) = 1.

As was assumed in the previous discussion, the intrinsic death rate is

considered to be negligible, that is d1 = d2 = D. Then the expression

for the stationary distribution of the relative abundance of the first species

becomes:

f(p) = const ·
(

(κ1 − κ2)p+ κ2

)−R1
D

+
(R1−R2)(γ1−γ2)γ1κ2

D(γ21κ2−γ
2
2κ1)

− γ1γ2(κ1−κ2)
γ21κ2−γ

2
2κ1

(
R1
D
−1)−1

︸ ︷︷ ︸
1©(

(Dγ2
1 −Dγ2

2)p+Dγ2
2

)−R2
D
− (R1−R2)(γ1−γ2)γ1κ2

D(γ21κ2−γ
2
2κ1)

+
γ1γ2(κ1−κ2)
γ21κ2−γ

2
2κ1

(
R1
D

+1)

︸ ︷︷ ︸
2©(

(κ1γ1 − κ2γ2)p+ κ2γ2

)
︸ ︷︷ ︸

3©

·p
R1
D
−1 · (1− p)

R2
D
−1. (5.12)

Neutral Model

In the strictly neutral case where γ1 = γ2, κ1 = κ2, d1 = d2 = D, the

relative abundance of the first species p is beta distributed with probability
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density,

f(p) =
Γ(R1+R2

D )

Γ(R1
D )Γ(R2

D )
p
R1
D
−1(1− p)

R2
D
−1. (5.13)

The mean value of this beta distribution equals the relative abundance of the

first species in the meta-community R1
R1+R2

= q1. The value of the variance

is R1R2D
(R1+R2)2(R1+R2+D)

.

5.3.4 Effects of the Parameters on the Stationary Distribu-

tion

Compared with the stationary distribution of the strictly neutral model

given in Eq. (5.13), which is only dependent on the immigration rate and

dilution rate, the stationary distribution of the quasi-neutral model in Eq.

(5.12) has a selection term ( 1©, 2©, 3© in Eq. (5.12)) which moves the station-

ary distribution of the relative abundance away from the beta distribution.

This selection term is dependent on the immigration rate Rk, the sensitiv-

ity of the birth rate to the resource at the equilibrium state γk (trade-offs

parameter), the yields yk and the death rate dk, and is too complicated to

expand by Taylor expansion in ∆(κ) and ∆(γ). Therefore to analyse the

impact of the parameters, we plot the analytical stationary distributions in

Figure 5.1 over different parameters.

5.3.4.1 Effects of the Immigration Rate

In each panel of Figure 5.1, the distributions of the relative abundances

show large sensitivities to small changes in the immigration rate. It is appar-

ent that the species with a higher abundance in the meta-community has the
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Figure 5.1: The dependence of the stationary distributions of the relative
frequency of the first species on different immigration rates R. The ratios
of γ1

γ2
are 3, 1 and 1

2 , and ratios of κ1
κ2

are 1
10 , 1 and 3 in Panel A, B and C

respectively.

advantage of obtaining a larger relative abundance in the local community.

Immigration, even at small rates, plays a significant role in determining the

community’s diversity.
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5.3.4.2 Effects of yk and γk

To remove the impact of the immigration rate, here we assume that

R1 = R2 = 2. The blue lines in Figure 5.1 shows stationary distributions of

the relative abundance of the first species with different values of the ratios

γ1
γ2

and κ1
κ2

, where κk = D
yk

.

Given the parameter relationships γ1
γ2

= 3, κ1κ2 = 1
10 , the term 1© in

Eq.(5.12) shows a selective advantage for the first species (which skews the

distribution to the right), but terms 2© and 3© play opposite roles. The re-

sult is that the mean of the blue line in Figure 5.1 A with γ1
γ2

= 3, y1y2 = 10 is

less than the mean of the strictly neutral model in Figure 5.1 B, which shows

that larger γk and yk reduce the relative abundance of the first species.

From this example, we can see that it is hard to determine the impact of

a single parameter on the stationary distribution of the relative abundance.

Instead, what may be analysed is the impact of a single parameter given

the condition that all other parameters are identical for both quasi-neutral

species.

Effects of the Yields yk with Identical γk

If we assume γ1 is identical to γ2, then the expression for the stationary

distribution of the relative abundance of the first species may be derived as

f(p) = const ·
(

1 + (
κ1

κ2
− 1)p

)−1
· p

R1
D
−1 ·

(
1− p

)R2
D
−1

= const ·
(

1 + (
y2

y1
− 1)p

)−1
· p

R1
D
−1 ·

(
1− p

)R2
D
−1
. (5.14)
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In Eq. (5.14), the selection term
(

1 + (y2y1 − 1)p
)−1

gives the species with

larger yk an advantage in obtaining a higher relative abundance. This result

can be demonstrated in Figure 5.2 where the stationary distributions of the

relative abundance of the first species with different values of the ratio y1
y2

are

plotted. However, the discrepancies among the stationary distributions with

different yields ratios y1
y2

are not apparent in both top and bottom figures

in Figure 5.2 where the relative abundance in the immigrating populations

are different.

In the local microbial community, even with low immigration rate, the

exact number Rk will be much larger. In Figure 5.3, after increasing the

immigration rate from 4 to 40 ( this value is still negligible compared to the

large local microbial population size), the discrepancies among the distribu-

tions over different ratios y1
y2

is hard to pinpoint. This may be explained by

the fact that, in Eq. (5.14), the power of the selective term
(

1 + (y2y1 − 1)p
)

is −1, which is far less than the power R1
D of p and power R2

D of 1 − p, and

this results in a negligible influence on the final analytical prediction.

Therefore, we can confidently conclude that the yields yk do not affect

the stationary distribution of the relative abundance greatly if the trade-offs

parameters γk are identical for both species.

Effects of γk with Identical Yields yk

Similarly, in this subsection, we will test the impact of the trade-off

parameter, γk, on the stationary distribution of the relative abundance of

the first species.
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Figure 5.2: The analytical stationary distributions of the relative frequency
of the first species with different yields yk but identical γk. The immigration
population per unit time in the top figure are R1 = 1, R2 = 3, and in the
bottom figure are R1 = 3, R2 = 1.

By assuming y1 = y2, the expression of the stationary distribution of the

relative abundance of the first species is,

f(p) = const ·
(

(γ1 − γ2)p+ γ2

)(
(γ2

1 − γ2
2)p+ γ2

2

)−R2γ2+R1γ1
D(γ1+γ2) p

R1
D
−1(1− p)

R2
D
−1

(5.15)

As was discussed in the last subsection, the first term in Eq. (5.15)
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3 , but the immigration population size per
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plays a small role in the final result due to the small value of its power, 1.

However, the second term cannot be ignored due to the larger value of its

power, −R2γ2+R1γ1
D(γ1+γ2) . Since this power is always negative, the second term

then represents a selective disadvantage to the species with larger γ. These

effects are illustrated in Figure 5.4, where larger γk decreases the mean of

the relative abundance of this species, and vice versa.

To determine whether increasing the immigration rates will change the

effect of γk, we plot the variation in the stationary distributions for different
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Figure 5.4: The stationary distributions of the relative abundance of the first
species with different γk but same yields. The lines and dots in red are results
of the model with parameters: a1 = 1 · 10−4, m1 = 0.15, a2 = 0.2 · 10−4,
m2 = 0.09, y1 = y2 = 5 · 107. Blue lines and dots represent the results
of neutral model with:a1 = a2 = 1 · 10−4, m1 = 0.15, y1 = y2 = 5 · 107.
The black lines and dots gives results of the models with parameter values:
a1 = 1 · 10−4, m1 = 0.15, a2 = 1 · 10−3, m2 = 0.825, y1 = y2 = 5 · 107.
The models In Panel A have immigration rates: R1 = 1, R2 = 3. The
immigration rates of the models in Panel B are: R1 = 3, R2 = 1.

γk under different immigration rates in Figure 5.5. This illustrates that the

mean of each distribution does not obviously change with the increasing R,

but the standard deviation greatly decreases which indicates a weakened
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role of stochastic drift.
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Figure 5.5: The effects of γ on the stationary distributions of the relative
frequency of the first species with different size of immigration population.
The lines and dots in red are the results of the models with parameters:
a1 = 1 · 10−4, m1 = 0.15, a2 = 0.2 · 10−4, m2 = 0.09, y1 = y2 = 5 · 107.
Blue lines and dots represent the results of the strict neutral models with:
a1 = a2 = 1 · 10−4, m1 = m2 = 0.15, y1 = y2 = 5 · 107. The lines
and dots in black give the results of the models with parameter values:
a1 = 1 · 10−4, m1 = 0.15, a2 = 1 · 10−3, m2 = 0.825, y1 = y2 = 5 · 107. The
models in line has immigration rates R1 = 2 ans R2 = 6, which is twice of
the immigration rates in the models in dots.

Therefore, ignoring yk, the species with smaller γk has an advantage in

reaching a higher relative abundance in the stationary phase. This result

demonstrate that the quasi-neutral species with different trade-off parame-

ters exhibit substantial differences.
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In the following section, the analytical stationary distributions will be

compared with the results of numerical calculations.

5.4 Numerical Models

The simulation of the model in the presence of immigration is almost

the same as explained in Figure 4.1. The only difference is that a small

immigration rate will be added into the birth rate for each species, which

ensures the existence of birth events even when the current population is

zero for both species. After running for a long enough time (400000 time

units), the probability density of the relative abundance of the first species

may be estimated using the Kernel smoothing function estimating method

(command ksdensity in Matlab). In Figure 5.6, the results of the numerical

calculations with immigration rate R1 = R2 = 2 are plotted together with

the analytical approximations.

In Figure 5.6, all the analytical approximated stationary distributions fit

well with the numerically estimated stationary distributions. With identical

yields, the result from the last section is proved that the mean of the sta-

tionary distribution increases with the decrease of γk, which indicates that

the species with smaller trade-off parameter has an advantage in reaching a

higher relative abundance over long time scales.

5.5 Comparison With Hubbell’s Neutral Model

Hubbell’s neutral model is built on a limited set of assumptions and

unreasonably assumes neutrality at the individual level. In most cases, it
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has been rejected by statistical tests [60][42][43]. However, the useful point

is that it can be considered as a null model for community assembly to

compare with actual data and assess the influence of parameters [66].

In this section, Hubbell’s Unified Neutral Theory of Biodiversity will be

calibrated for the chemostat community in Subsection 5.5.1, to compare with

the our niche structured quasi-neutral demographic model in Subsection

5.5.2.

5.5.1 Hubbell’s Neutral Model

Hubbell’s Unified Neutral Theory of Biodiversity has been introduced

in Subsection 1.3.1.1. In this theory, all individuals are assumed to be

ecologically identical. The research focus in this thesis is on the local com-

munity dynamics, and assumes that there is a meta-community coupled to

the island chemostat community with known relative abundances qi and

population size Θm.

In the model, the local community is saturated with a total of Θ indi-

viduals. If there is a change in the community, an individual must die, and

the dead individual is immediately replaced by an individual immigrating

from the meta-community, with probability m, or by a newborn individual

which is the offspring of a random individual within the local community

with probability 1−m [31].

To explain the local chemostat environment by neutral theory, instead

of directly testing Hubbell’s neutral model, we focus on Sloan’s near-neutral

model described in Ref [62]. This near-neutral model is built on the core con-

cepts of Hubbell’s neutral theory, but makes two main advances. Firstly, a
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competitive advantage or disadvantage is allowed for each species. Secondly,

the near-neutral model translates Hubbell’s discrete model into a continuous

diffusion equation so that the large population-sized microbial environment

may be modelled.

Then based on the expression for Hubbell’s neutral model in Eqs. (1.2)

and (1.3) in Chapter 1, the effective birth and death rates for each species

are encapsulated in the following expressions ,

Pr(Ni + 1/Ni) = (
Θ−Ni

Θ
)
(
mqi + (1 + αi)(1−m)(

Ni

Θ− 1
)
)

Pr(Ni − 1/Ni) = (
Ni

Θ
)
(
m(1− qi) + (1− αi)(1−m)(

Θ−Ni

Θ− 1
)
)
,

where qi is the relative abundance in the meta-community, m is the migra-

tion rate, Θ is the total population in the local community and αi is the

advantage parameter for each species [62].

Assuming there are two species in the model, let p = N1
Θ be the relative

abundance of the first species in the local community. Sloan shows the

probability density function of p, f(p, t), is given by the forward Kolmogorov

equation [62]:

df(p, t)

dt
= − d

dp

(
Mf

)
+

1

2

d2

dp

(
V f
)
,

where, M , is the expected rate of change in frequency, approximates to

m(q1 − p) + (1−m)2αip(1− p)
Θ

,
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and, V , is a measure of the rate of change in variability, approximates to

2(1− p)p+m(q1 − p)(1− 2p)

Θ2
.

As was defined in the beginning of this chapter, the immigration rate in the

local community is too small to change the deterministic dynamics, then the

second term in the variance of the above process, m(q1−p)(1−2p)
Θ2 , is negligible.

Therefore, the forward Kolmogorov equation of the probability density can

be approximated as,

df(p, t)

dt
= − d

dp

(m(q1 − p) + (1−m)2αip(1− p)
Θ

f(p, t)
)

+
1

2

d2

dp

(2(1− p)p
Θ2

f(p, t)
)
,

where q1 is the relative abundance of the first species in the meta-community.

Then by equalising df(p,t)
dt being zero, we obtain the stationary solution for

this probability density function in Sloan’s near-neutral model:

f(p) = const · pΘmq1−1(1− p)Θm(1−q1)−1 exp{2α1Θ(1−m)p}. (5.16)

In Hubbell’s model, with strict neutrality, αi = 0, the density of the rela-

tive abundance of the first species in the local-community is Beta distributed

with mean and variance,

µ = q1 (5.17)

var =
q1(1− q1)

Θm+ 1
. (5.18)
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where q1 is the relative abundance of the first species in the meta-community.

5.5.2 Comparison

In this subsection, we will compare our quasi-neutral demographic model

with the neutral model explained in Subsection 5.5.1.

We showed in Eq. (5.13) of Subsection 5.3.3 that in the strictly neutral

case of our quasi-neutral demographical model, the stationary distribution

of the relative abundance of the first species derived is beta distributed.

Since the rate of immigration of each species is proportional to the relative

abundance in the meta-community as shown in Eq. (5.1), we have the mean

and variance,

µ1 =
R1

R1 +R2
= q1

var1 =
R1R2D

(R1 +R2)2(R1 +R2 +D)
=
q1(1− q1)
R1+R2
D + 1

,

where q1 is the relative abundance of the first species in the meta-community,

and R1+R2
D corresponds to the term Θm in Eq. (5.18), which is the mean of

the immigration rate from the meta-community. Therefore the two beta dis-

tributions from Hubbell’s neutral model and our demographic quasi-neutral

model in the strictly neutral case are matched.

However, as there exists a difference between the parameters γk and yk

for the quasi-neutral species in the same niche, the relative abundance of

our demographic quasi-neutral model depart from Hubbell’s neutral model.

Moreover, we cannot find a constant αi which is independent of p that can
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map our quasi-neutral model onto Sloan’s model.

f(p) = const ·
(

(κ1 − κ2)p+ κ2

)−R1
D

+
(R1−R2)(γ1−γ2)γ1κ2

D(γ21κ2−γ
2
2κ1)

− γ1γ2(κ1−κ2)
γ21κ2−γ

2
2κ1

(
R1
D
−1)−1

︸ ︷︷ ︸
1©(

(Dγ2
1 −Dγ2

2)p+Dγ2
2

)−R2
D
− (R1−R2)(γ1−γ2)γ1κ2

D(γ21κ2−γ
2
2κ1)

+
γ1γ2(κ1−κ2)
γ21κ2−γ

2
2κ1

(
R1
D

+1)

︸ ︷︷ ︸
2©(

(κ1γ1 − κ2γ2)p+ κ2γ2︸ ︷︷ ︸
3©

)
· p

R1
D
−1 · (1− p)

R2
D
−1 (5.19)

We have discussed the effects of parameters γk and yk on the stationary

distribution in the previous section and concluded that their impacts on

the selective terms 1©, 2©, 3© in the stationary distribution Eq. (5.19) are

complicated. Then a positive or negative αi in Sloan’s model cannot be

determined easily by comparing Eq. (5.16) with (5.19). Nevertheless the

selective terms 1©, 2©, 3© in Eq. (5.19) are independent of population size.

This suggests that the selective parameter αi is independent of the volume

and population size of the local community. Therefore the advantage or

disadvantage to the species does not change with the population size.

If the two quasi-neutral species in the model have equivalent sensitivity of

the birth rate to the resource at the equilibrium state γk, using the results

derived at the end of Subsection 5.3.4.2, then the stationary diversity is

approximated by a beta distribution. Since with Eq. (2.11), identical γk

results in equivalent mk and ak, then the plausibility of Hubbell’s neutral

theory can be predicted by the same trade-off parameters for the quasi-

neutral species, no matter how different their yields are. Conversely, in the
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case with identical yields yk but different trade-off parameters (γk, mk, ak),

the selective term in Eq. (5.15) plays a large role in causing departure from

the neutral results. Therefore, the life history trade-off plays an significant

role in controlling the diversity of the local communities.

Above all, we answered the two central questions Alonso and McKane

asked in [3] while generally accepting Hubbell’s neutral theory as the null

model for the community structure: “ To what extent is the neutral assump-

tion a good operational first approximation to describe ecological communi-

ties? Which mechanisms are responsible for any observed departures from

neutrality? ”

5.5.3 Mechanism of the Dispersal Difference

Dispersal-Limited Case

The last subsection compared Hubbell’s neutral model with the neutral-

ity defined at the individual level with our quasi-neutral demographic model

with the neutrality defined at the species level, under the condition that the

local community has low immigration rates. We found that Hubbell’s neu-

tral model is not sufficient to explain the mechanisms of the species difference

when both have the largest fitness. When the dispersal is very limited ( i.e.,

immigration rate is small), the quasi-neutral model shows that one species

is superior to another, rather than Hubbell’s supposition that the relative

abundances are changed by chance and dispersal only.
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Dispersal-Unlimited Case

We know that if the immigration ratem is close to 1 (dispersal-unlimited),

there is a high probability that immigration will play a leading role in shap-

ing the local community, with the result that the local abundance will be

completely reflected in the abundance in the meta-community, i.e., pi = qi.

Thus, we can envisage that the more connected the local-community is to

the meta-community, the more the role of selection (advantages and disad-

vantages) in the local community will be weakened.

Furthermore, both in Figures 5.3 and 5.5, we found that when increasing

the immigration rates, although there is no change in the mean relative

abundance, the standard deviations of the distributions decrease greatly,

which demonstrates a shrinking role of stochastic drift.

Therefore, difference in dispersal are an underlying mechanism that

drives the composition and structure of the local communities.

5.6 Summary

In this chapter, we coupled the local chemostat community with a meta-

community to determine how immigration influences the diversity of the

quasi-neutral model. With a low immigration rate, the result of the strong

selection does not change, the deterministic dynamics remains the same as

the dynamic in Chapter 2. However, the stochastic model will no longer be

trapped into the absorption state in the model with immigration present.

Immigration plays a role as a mechanism to balance extinction and maintain

a stationary diversity over an infinite time interval, even if its rate is very
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small. Therefore, in a local community with very limited dispersal (low im-

migration rate), we can see that the deterministic selection may only explain

the coexistence of the quasi-neutral species, and its stationary density abun-

dance can be predicted through the stochastic drift, by assuming neutrality

at the species level. This suggests that niche structure, stochastic drift and

immigration all have key roles in shaping the structure of the chemostat

community.

Later, the effects of the immigration rate and species intrinsic param-

eters on the stationary distribution were discussed. A small immigration

rate which has no impact on the deterministic dynamics, plays a significant

role in shaping the structure of the local community over infinite time in-

terval. As the immigration rate increases, the roles played by stochastic

drift and selection between quasi-neutral species are weakened. Since in the

final diffusion approximation, the number of parameters is greatly reduced,

we only need to discuss the effects of yields yk and the sensitivity of the

birth rate to the resource at the equilibrium state, γk. Although a simple

advantage parameter could not be determined, there is still much informa-

tion that may be collected. The yields yk still do not play a large role if the

trade-off parameter γk are identical, but γk becomes a selective disadvantage

parameter when yk is identical. That is to say that, in the model that the

quasi-neutral species at the largest fitness have identical yields yk but dif-

ferent trade-off parameters γk, the species with larger trade-off parameters

has the advantage of dominating the community if immigration is absent,

but has a reduced mean steady states relative abundance when immigration

is introduced. If γk are identical for both quasi-neutral species, then the
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application of Hubbell’s Unified Theory of Biodiversity in our local com-

munity can be predicted, and all individual may be treated as ecologically

equivalent, no matter how different their yields yk are.

Due to the sensitivity of the species abundance to the parameters we

observed, the weakness of Hubbell’s neutral theory in shaping the structure

of the local community with limited dispersal is found. Therefore, niche

assembly together with Hubbell’s neutral theory are not sufficient to explain

the structure in a long time period in our chemostat model. Although

it is still believed that emergent neutrality is reasonable with trade-off in

complicated models, species differences amongst the quasi-neutral species

could not be ignored in the dispersal assembly theory.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, by analysing competition among multiple species in a

resource-limited chemostat environment, we determined how the structure

of the local community is shaped, and investigated the role played by selec-

tion, stochastic drift and dispersal. To achieve this, a range of models were

developed and compared: a deterministic model, a stochastic quasi-neutral

model, a numerical model, as well as a stochastic quasi-neutral model with

immigration and Hubbell’s unified neutral model.

Firstly, we derived a niche assembly rule by developing a deterministic

model in Chapter 2. By incorporating stochastic drift and limited dispersal

in the first part of both Chapter 3 and Chapter 5, the deterministic limits

of the dynamics will not change over compact time intervals in large com-

munities. This gives a clear direction to the evolution, that is, the species

sharing the same largest fitness in our model may survive and coexist. It

186
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corresponds to the acquisition of the heritable adaptations to the current

environment and allows species differentiation through life history trade-

offs. Compared with the stationary distribution of the stochastic model in

Chapter 5, the biodiversity given by the niche assembly rules merely predict

the richness and a balance in the niches, where the coexistence equilibrium

states are dependent on their initial frequencies and trade-offs parameters.

In this case, at the beginning of time evolution, the structure of the com-

munities is mainly regulated by the niche assembly rule, while the effects of

stochastic drift and limited dispersal are not obvious.

Secondly, the mechanism of demographic drift was elaborated in Chap-

ter 3 and Chapter 4, by including Markovian noise into our niche-structured

quasi-neutral model. We found that, over infinite time intervals, the law of

large numbers and central limit theory no longer holds in the case of large

but still finite volume, rather the stochastic dynamics will be trapped into

an absorbing state eventually due to stochastic drift. In order to analytically

show how stochastic drift drives the population diversity to fixation and cal-

culate more quantities, a diffusion approximation at a long time scale was

derived. The development of the analytical method to derive this diffusion

approximation is one of the most innovative parts of the thesis, whose details

are presented in Sections 3.5 and 3.6. With the first attempt at the diffusion

approximation, big discrepancies were observed when comparing with the

simulation results in Chapter 4. To improve the accuracy of the analytical

prediction, a correction was made on the derivatives of the projection map

in Subsection 3.5.3.1, yielding a good match between the numerical and

analytical results. The numerical model built in Chapter 4 regards the pop-



CHAPTER 6. CONCLUSION AND FUTURE WORK 188

ulation dynamics as a discrete birth death random walk process. Although

all the numerical results were obtained for the small populations due to the

limitation of computational capacities, they are still well matched with the

analytical prediction for large populations. Moreover, in the absence of im-

migration, the population in the local communities will be dominated by a

single species with Gaussian distribution under the condition that extinction

does not occur.

Dispersal is another key process in the local community that balances

extinction to maintain the community diversity. In Chapter 6, by coupling

the local chemostat community to a meta-community with limited dispersal,

the stationary distribution of the relative abundance is explicitly calculated.

Even with low immigration rates, the local diversity was sensitive to the

abundance in the meta-community. By increasing the immigration rates, the

role played by stochastic drift and selection between quasi-neutral species

will be weakening.

Our quasi-neutral model is built to allow the species in the same niche to

differ through life history trade-offs. Therefore, for all the models in this the-

sis, we discussed the effects of the trade-off parameter to determine whether

the quasi-neutral species exhibits substantial differences by comparing with

strictly neutral model. After that, the importance of the trade-off parameter

γk which represents the sensitivity of growth rate to the resource concen-

tration at the equilibrium state was demonstrated. γk helps to connect the

fixation probabilities with the quasi-stationary distributions, and to predict

a deviation from the strictly neutral model. This deviation could be ascribed

to two separate phenomena: the first was an advantage in increasing chance
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to dominate the population to the species with higher γk when immigration

is absent in the model, the second was a disadvantage to this type on the

final relative abundance. Furthermore, when the trade-off parameters are

identical, the quasi-neutral species could be regarded as ecologically neutral,

no matter how different the other parameter yields yk are.

In conclusion, with sufficient quantitative results and clearly explana-

tions, by thoroughly explaining the dynamics of the competitive species in

the resource limited model, we show that the natural selection, stochastic

drift and dispersal should be collectively instead of individually applied.

The “niche assembly rules” which are a fitness consequence of the natural

selection determine the richness, not the relative abundance, of the biodiver-

sity. Over a long period of time, when the inferior species have already been

screened out, niche assembly is no longer the dominant mechanism. At that

moment, stochastic drift and dispersal together will play dominant roles to

give the stationary abundance of the species in the local communities. The

life history trade-off not only ensures the coexistence in the same niche, but

also allows the quasi-neutral species to exhibit substantial difference by the

effects of stochastic drift and dispersal.

6.2 Future Work and Directions

The strongest test of the quasi-neutral model would be to fit into exper-

imental empirical data. However, to obtain real data is challenging. Micro-

bial ecologists still are not sure how much data from a sample is sufficient to

completely explain the biodiversity in a typical microbial community, and
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then to test the model which we wish to extrapolate to a large population

[63]. Also, the falsification of Hubbell’s neutral model in a local community

with low immigration rate does not mean rejection of neutrality. It is still

the only sampling dispersal theory. Actually, Holt [29] finds the emergent

property for neutrality in a macroscopic community: that when examined

over certain spatial and temporal scales, a reasonable neutral approximation

may be converged from non-neutral dynamical processes.

Therefore, although a priori theoretical models still need strong backing

to support research into microbial communities, it is never useless to build

more candidate models and iterate toward a predictive theoretical microbial

ecology.

6.2.1 A Multivariate Quasi-Neutral Model

In this thesis, all our research focuses on a two-species quasi-neutral

model, where the relative abundance of the first species p(t) is sufficient

to explain the behaviour of the whole population. The population process

may be reduced to a one dimensional diffusion approximation. If we allow

the number of species type k > 2, the relative abundance of each species

is x̂i∑
j x̂j

, and the fixation probability on the centre manifold is more than

two dimensional. A multivariate quasi-neutral model could be derived for

general applications in future.

6.2.2 A Dispersal-Assembly Model

Moreover, in developing the coupled model, the immigration rate is as-

sumed to be small. Increasing the immigration rate, the deterministic dy-
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namics will not be the same: the centre manifold will disappear, which may

result in a different expression for the stationary distribution of the relative

abundance. Further work on a general model for any immigration rates may

be undertaken to discuss how the roles of the niche structure and dispersal

difference will play out in shaping the structure of the community.

6.2.3 Numerical Test of Hubbell’s Neutral Model

Although we have partly rejected the agreement between our niche struc-

tured quasi-neutral model and Hubbell’s neutral model, the comparison is

between two analytical diffusion approximations. Hubbell’s numerical model

is still the best model designed to apply to the samples[3]. Thus, the numer-

ical model of Hubbell’s unified theory of biodiversity on a chemostat model

is worth testing in future work.

An approach to do this could involve three steps as in [31] [42]. First,

estimate the two parameters: the fundamental biodiversity parameter θ

and migration rate m. Second, generate 500 rank-abundance curves under

the standard neutral model using the estimated parameters in the first step.

Last step, test the hypothesis that the observed rank-abundance curve drawn

from the distribution of simulated curves to our quasi-neutral stationary

distribution.

6.2.4 A Spatial Model

All models in this thesis are build on the assumption that the chemostat

is completely well stirred, so that the bacteria and nutrient are spatially

uniformly distributed, and each individual has equal access to the nutrients.
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In any real natural community, there will not only be one spatial scale,

the spatial structure and its variance will greatly influences the ecological

processes. Therefore an ideal theoretical attempt to explain the biodiversity

of community requires an spatial formulation to connect the spatial pattern

with the ecological process [3].

In future work, we could develop a stochastic spatial explicit model in

spatially mixed local chemostat community, to analyse the relation between

the spatial heterogeneity and the ecological resource.

To build the model, a discrete spatial structure is required. The local

community will be comprised of a large number of components. The com-

ponent labeled x has species density for the kth type u(x, t)k and resource

concentration S(x, t) at time t [1]. With the interaction among the com-

ponents, a diffusion-reaction function may be present. Starting from the

simple, deterministic, macroscopic description, successive layers of detail

should be added into and discussed.



Appendix A: Simulation

Results

Numerical Results in Figure 4.5

Table 1: Fixation Probability With Close γk

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F (p|y1y2 = 1) 0.086 0.196 0.282 0.393 0.489 0.60 0.698 0.786 0.890

F (p|y1y2 = 0.1) 0.115 0.185 0.29 0.405 0.51 0.605 0.675 0.82 0.91

F (p|y1y2 = 10) 0.09 0.2017 0.2995 0.3925 0.515 0.615 0.685 0.81 0.905

Numerical Results in Figure A of Figure 4.7 and Figure 4.8

Table 2: Fixation Probability With Identical yk, but γ1 > γ2

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F (p|γ1γ2 = 0.9625) 0.086 0.196 0.282 0.393 0.489 0.60 0.698 0.786 0.890

F (p|γ1γ2 = 1.3) 0.11 0.23 0.34 0.46 0.548 0.654 0.749 0.825 0.934

F (p|γ1γ2 = 2.425) 0.196 0.392 0.482 0.59 0.67 0.758 0.818 0.898 0.934

193
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Numerical Results in Figure B of Figures 4.7 and 4.8

Table 3: Fixation Probability With Identical yk, but γ1 < γ2

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F (p|γ1γ2 = 0.9625) 0.086 0.196 0.282 0.393 0.489 0.60 0.698 0.786 0.890

F (p|γ1γ2 = 0.5746) 0.064 0.148 0.19 0.272 0.364 0.453 0.55 0.684 0.862

F (p|γ1γ2 = 0.2059) 0.056 0.102 0.132 0.168 0.23 0.306 0.38 0.49 0.646

Numerical Results in Figure 4.9

Table 4: Mean of First Absorption Time with Identical yk, But Different γk

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ET (p|γ1γ2 = 0.55) 3807 6209 7505 8605 8821 8861 8109 7015 4451

ET (p|γ1γ2 = 1) 3911 6603 8109 9271 9064 8473 7622 6829 4446

ET (p|γ1γ2 = 1.5) 3998 6698 8194 8974 9276 8986 8058 6252 4232

ET (p|γ1γ2 = 3) 4287 6917 7769 8119 8457 8021 7424 5963 3808
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