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Abstract  

This thesis is concerned with the study of characteristics of commercial Semiconductor 

Optical Amplifiers-SOAs and their employment in GPONs for the purpose of packet 

equalization of upstream bursts in order to provide additional loss budget. Additional 

loss budget is aimed at facilitating the extension of GPONs to provide not only longer 

distance between central office and end user,  but is also expected to increase the 

number of maximum users that can be connected to a single central office. 

The problem and the requirements of optical networks are described. After careful 

investigation into legal and technical dimensions of the situation such as use of certain 

wavelengths and EDFA’s inabilities, it is concluded that instead of EDFA or an Opto-

electronic amplifier, an SOA should be considered for the purpose of employing as an 

optical amplifier installed in front of burst mode receiver at the central office. 

Commercial SOAs are used in order to investigate the limitations of SOA so that a 

suitable solution can be looked for within the functional constraints of the amplifier. 

The results of parametric measurements including input/output signal power, Gain 

and saturation are discussed; four different commercial SOAs are assessed with special 

emphasis on input power dynamics and gain response.  

The bit error rate -BER analysis is performed on SOAs in the context of the findings of 

parametric analysis of the SOAs. The effect of varying the input signal power on BER 

was observed. The receiver sensitivity for BER of 10-9 was measured for various SOA 

input power values. Power penalty imposed on receiver’s sensitivity, by saturation 

effects and noise is analysed.  
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Chapter 1: Introduction 

1.1 Background 

The concept of communication or transmission of message is as old as the life on earth. 

Humans, animals and even plants communicate [1] with each other using their own 

means. A honey bee when finds food stock, performs a specific dance in front of fellow 

nest mates, who can interpret the encoded steps to locate and assess the food reservoir 

[2]. The story found in the holy books describing the first introduction between Adam 

and Eve on the mount Arafat is termed as first communication between two human 

beings on earth. With the passage of time, as the civilizations evolved, communication 

and modes of communication between human beings also developed. Smokes signals, 

drum beats, pigeon messaging, messaging through pictures and signs, and use of flags 

were the major modes of sending information that have been in use for thousands of 

years. The post office department as a mode of sending the information available for 

commoners has also been reported to have been maintained by numerous ancient 

empires in history especially Romans and Persians. 

The sending and receiving of information through electrical signals is a revolution in 

communication industry that started in 19th century by the advent of telegram system. 

Telegram uses pulsed electrical signal which is decoded at receiver’s end [3, 4]. The 

invention of telephone by Alexander Graham Bell in second half of 19th century 

provided a platform for two way voice communication. The conventional analogue 

telephones ruled the communications industry for almost a century. Although a number 

of developments in telecommunications were in progress during this period, until as 

recently as 1980s the classical analogue telephones were the only widely available and 

publicly used means of communication that allowed live conversation [5]. In most parts 

of the world having a phone connection at home used to be privilege, and it was not 

uncommon to find a civilized village or town with no or single phone connection. Many 

people had to travel tens of miles to make a telephone call. Calling abroad or even long 

distances within the country would be very costly. An alternative to telephone was 150 

years old telegram system which was cheaper than telephone, and would convey the 

message in couple of hours, thus was faster than the conventional post office mail [6].  

In last 30 years, the telecommunications industry has seen enormous progress. Mobile 

phone and internet are the most popular examples of the advancement during this 

period. Internet became globally popular among general public in late 1990s [7, 8] and 

had a significant impact on cultures and businesses as it provided an instant means of 
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communication using email [9-12] and instant messaging services, instant access to 

online literature, online discussion forums, video calling, and file sharing and transfer. 

Voice over Internet-Protocol –VoIP was developed as protocol to transport voice calls 

over internet [13]. Internet users use VoIP based internet service such as Skype [14] to 

make free internet calls whereas the telephone companies use VoIP as a vehicle for 

transporting phone calls [15]. In 1990s and early twenty first century, internet was 

mostly accessed through dialup connection using a dialup modem with maximum speed 

of 56 kb/s [16, 17]. With dialup connection it was unimaginable to run or download full 

movies or videos as it took about 15-30 minutes to download a 5 MB file. Now-a-days 

dialup is the choice only for people living in remote areas where broadband services not 

yet accessible. Broadband is a major breakthrough in cyber industry [18, 19].  Live video 

streaming [20, 21] and movie downloading became very easy with 100 Mb/s data rate. 

Internet TV, live channels, internet gaming, video streaming and online gaming have 

become the major consumers of the internet these days. 

In wireless communications, mobile phones are the most publicly used development 

[22]. Now-a-days for many people it is difficult to imagine a normal life without a cell 

phone. Mobile phone technology was in progress in 1970s though, the very first 

commercially automated cellular mobile network, using the analogue advanced mobile 

phone system-AMPS, later on referred to as first generation or 1G standard, was 

launched in Tokyo-Japan in 1979. Within next  few years the AMPS mobile network was 

not only expanded to all cities of Japan, but many other countries including Denmark, 

Finland, Norway, Sweden, and USA  launched their own mobile networks,  followed by 

UK, Mexico and Canada in the mid 1980’s. By early 1990s AMPS mobile phone networks 

had been established in most countries around the globe. Second generation - 2G 

digital cellular telecom networks were commercially launched on the Global System for 

Mobile Communications -GSM standard in Finland in 1991. The GSM was not only faster 

and reliable but also economic. The cell size had to be decreased thus increasing the 

number of base stations; which however was not a problem anymore as the equipment 

required had also become inexpensive. In addition to voice calling service GSM also 

provided data transfer services initially based on circuit switching later on replaced by 

general packet radio service - GPRS. GSM data transfer services could be used for fax, 

short messaging service -SMS and very high data transfer rate allowing live streaming 

and video calling. Although most of the mobile service providers still use 2G or GSM 

standard, third generation or 3G based cellular networks are also in practice. In UK, the 

company named ‘Three’ started the first 3G network [23]. The later releases 3G 
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technology, i.e. 3.5G and 3.75G mobile offer higher data rates, specialising in mobile 

television and high speed mobile broadband.  

Since the cost of both the handset and phone services has become affordable for 

people from almost every section of society, there has been a considerable increase in 

the number of subscribers over last decade. In Oct 2012 GSM Association announced 

the total number of mobile users to be 3.2 billion which meant that 45% of world 

population is connected through mobile phones  [24]. 

However the progress in the front end technologies including the ones described above 

has only been made possible with optical fibers in the backbone system. Optical fibers 

provide a very high speed transmission medium to transport all the data between cities, 

countries and continents [25]. The optical fibers carry the data signal which is carried by 

a beam of light and guided along the length of the fiber based on the principle of total 

internal reflection. The electrical signal is converted into optical signal using a light 

source mostly a laser or an LED. The light is received at the receiving end by a light 

detector which converts the optical signal back to electrical signal. As the signal gets 

attenuated by travelling along the fiber, repeaters are used after a specific distance to 

regenerate the optical signal [26].  

First installation of optical fibers dates back to April 1977 when the company General 

Telephone and Electronics sent first live telephone traffic through optical fiber at data 

rate of 6 Mbit/s in Long Beach, California. In Britain, the same year in June the British 

post office started telephone over optical fibers in Martlesham Heath [27]. At that time 

optical fibres could not be employed at large scale in communications systems because 

of very high losses (excess of 1000 dB/km) [28-31] and small repeater spacing 

(maximum 10km). First formal fiber system started in 1982 with 52 Mb/s initially at 850 

nm and later on switched to  1300nm[27, 32]. However this was not still enough to 

compete with coaxial data cable that provided data rate up to 560 Mb/s [33]. Around 

1988, advancement in fibres led to deployment of fiber in backbone systems with 

speeds 140 Mb/s & 560 Mb/s. By that time optical fiber was able to carry the light signal 

without need of regeneration for 52km, thus surpassing the span of coaxial cable. 

Shifting to 1550nm windows from 1330nm resulted repeater spacing to increase to 

90km. The same year first transatlantic underwater optical cable TAT8 was laid between 

US and Europe connecting US, UK and France. With a data rate of 280 Mb/s and 

repeater spacing of 120km clearly provided a better solution than traditional coaxial 

cable. Later on in 1990s TAT9 (1992-2004), TAT10 (1992-2003), TAT11 (1993-2003), and 



4 

 

TAT12/13 (1996-2008) were installed and remained in use. In year 2000 TAT14 

connected the Americas and the Europe with 3.2 Tb/s data rate and is still functional. 

One of the major achievements in the field of optical communication in 1990s was the 

ability of fiber to carry data at a rate as high as 2.5 Gb/s – at transmission wavelength of 

1550 nm with a repeater spacing of 100 km. Research work began on 40 Gb/s in early 

2000’s [34]. Now-a-days systems with data rates up to several Tera bits per second are 

commercially available [35, 36]. 

The above paragraphs discusses some of the examples of the front end technologies 

and applications exploited by the end users, along with the brief introduction of 

backend optical fibers used as backbone in long haul transmission. However equally 

important are the access networks which provide link and manage the data traffic 

between the long distance fibers and the front end service providers. The complexity 

and importance of the access networks can be understood by comparing the 

telecommunication system with the analogous real life road transport. The highways 

and the local area streets are easier to manage, but the metropolitan area roads that 

link local areas with each other, and local areas to the highways, are relatively 

complicated and need greater deal of traffic management, thus bottlenecking the 

performance of rest of the transport system. Similarly in modern optical 

telecommunications the access networks bridge the long haul fibers links and the front 

end service providers [37, 38]. With optical fiber industry looking up to data rates of the 

order of Tera Bits per second-fibres is far ahead of the current load accommodation 

profile [37]. Similarly the front end telecom service providers e.g. the cell phone, 

internet service providers –ISP etc manage and control the data their way within their 

own frame work. A large variety of data traffic comes from different users and it is then 

upon the access networks [39], that the data is properly gathered and transmitted to 

the main fiber line, and the incoming data is correctly received  and routed to desired 

locations. As the bandwidth capacity of the optical fiber is very large as compared to the 

electronic base rate of 10 Gb/s, the multiplexing techniques are used in optical domain. 

Most common of these are ‘Wavelength Division Multiplexing’ WDM [40] and ‘Optical 

Time Division Multiplexing’ – OTDM [41]. In WDM a unique wavelength is allotted to a 

signal for transmission into optical fiber. Being less complex, WDM systems are easily 

implemented, and thus systems with capacity of several terabits per second are 

commercially available [42]. A further development of WDM is ‘Dense WDM’ -DWDM in 

which closer wavelengths are used, thus increasing the number of channels within a 

wavelength spectrum [43]. 



5 

 

Optical code division multiple access -OCDMA is another multiplexing technique in 

which users are assigned unique coding sequences [44, 45]. As the data is encoded, 

multiple users cannot only share the same fiber channel, the bandwidth is also 

efficiently utilized.  Single chip semiconductor OCDMA circuit are being investigated for 

telecom networks which is expected to be cost effective, compact and efficient [46]. 

At metropolitan level passive optical networks -PONs have been introduced in which 

optical fibers are connected using splitters [47] and are used for point-multipoint 

system [47, 48]. In PONs data from different fibers can be gathered into a single fiber 

and vice versa without the need of any electrically powered equipment. Giga bit PONs 

or GPONs are PON networks designed for data rates above 1 Gb/s [49].   

The inline amplification of attenuated multiplexed data in the fiber channel was the 

next task. In the beginning, optoelectronic repeaters were used [50, 51]. An 

optoelectronic repeater converts the weakened optical signal into electrical signal, 

amplifies in electronic domain and re-transmits using optical transmitter. In order to 

amplify the optical signal containing WDM channels, the data had to be de-multiplexed 

first into separate n-channels, amplified in electrical domain, again multiplexed and 

retransmitted. The process would require almost the same complications as that of the 

main receiver or transmitter end. The introduction of optical amplifiers, initially 

semiconductor optical amplifier-SOA followed by erbium doped fiber amplified –EDFA 

in mid 1980s [52, 53] solved the problem by making signal optically transparent. SOAs 

are electrically pumped and use a semiconductor material as amplification medium. 

EDFAs are optically pumped fibers amplifiers, that use a length of fiber with core doped 

with a rare earth material. 

1.2 Focus of thesis 

This thesis is concerned with measurements and study of SOAs and investigation of 

their role in possible reach extension of GPONs. An optical amplifier is required which 

can not only amplify very high speed data, but should also be able to switch to a 

different level of amplification at a very high speed as different bursts of data coming 

from variety of sources may need different gain. In this way, the number of end users 

can be increased from 32 to 128 and OLT-ONU distance be increased from 20km to 

60km, as per defined and allowed by the ITU standard for GPONs.  

EDFAs have always been a good choice for inline optical amplification. However the 

EDFAs normally work in saturation region and have a gain recovery time greater than 

the bursts’ length. SOAs with small recovery time make a better case for use as an inline 

amplifier for upstream burst mode traffic in GPONs. In addition, in certain countries 
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including United States, the legal restrictions on use of 1550nm band to Cable TV also 

restrict the use of EDFA. The issue is discussed in further detail in Section 4.1. 

A parametric and bit error rate-BER analysis of the system using SOA is presented with 

focus on constraints imposed by gain saturation, noise and power penalty. This work is 

intended to guide and ease the future research in employment of SOA as amplifier in 

front of burst mode receiver for the purpose of extension of GPONs.  

1.3 Novel Features of this research work 

In the author’s view, the main points of the thesis are: 

- Investigation of the saturation behavior of numerous commercial SOAs with 

different active region lengths, photoluminance wavelengths, and facet 

reflectivity, and their analysis and comparison in the context of automatic 

power and gain control 

- Parametric and error rate analysis of SOA to assess its feasibility for perspective 

extended GPONs.   

1.4 Structure of Thesis 

Chapter 1 gives a general review of the optical communication technology, history and 

achievements. The chapter starts with background of optical communication system 

describing its main components like optical fiber, transmitter and receiver. It is followed 

by the description of the need of optical amplification and introduction of different 

kinds of optical amplifiers. Multiplexing techniques like WDM, OTDM and OCDM are 

then discussed. Later part of the chapter encompasses the GPON network and the 

anticipated extended GPON that provides the ground for this research.  

Chapter 3 is an introduction to the SOAs. The chapter starts with the introduction of 

semiconductor lasers as basis for the SOA technology. After that a brief description of 

structure of SOA is provided along with the basics of amplification process of the device.  

After that different types and structures of SOA, anti-reflection coatings and other 

antireflection techniques are described, followed by a discussion on basic parameters 

vital to SOA operation like gain, gain saturation, saturation power, signal to noise ratio, 

and input saturation power etc are briefly described.   

Chapter 4 describes the basic parametric measurements performed on commercial 

SOAs. The parameters of the SOA studied in these measurements include input and 

output optical power, gain, drive current, signal wavelength, and saturation power. 

Since the main features of the SOA defining its characteristics are gain, saturation and 
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dynamic range, these have been discussed in detail. After the analysis of a typical 

commercial SOA, measurements on 4 different commercial SOAs are discussed for the 

purpose of comparison and analysis. The trade off between small signal gain and input 

saturation power of the SOA is discussed. 

Chapter 5 discusses bit error rate measurements on an optical system containing SOA. 

This time an optical signal comprising of PRBS data is used instead of continuous wave 

probe. Issues like receiver sensitivity and power penalty imposed by amplification 

process are discussed in detail. Power penalty analysis gives a better picture of the 

constraints posed by amplification and the ranges over which the device could be used. 

Chapter 6 includes summary of the thesis, major conclusions and recommendations for 

future work to be continued on the topic. 
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Chapter 2: Optical Communications  

2.1 Introduction 

This chapter provides a brief description of the basic components used in optical 

communication systems. An introduction to optical amplifiers along with a discussion on 

GPONs and extended GPONs is given that provides a background for this research work.  

2.2 An Optical communication system 

In optical communications system, the data is transported by light signals that travel 

through a suitable channel, normally an optical fiber. This provides transmission of data 

over long distances with higher speed and bandwidth as compared to the other media 

used for telecommunications. An electrical signal is modulated onto a carrier light (e.g. 

the light from semiconductor laser) using opto-electronic modulator (e.g. Mach-

Zehnder modulator). The light wave carrying signal then travels in the optical fiber and 

is then received at the other end by a light wave receiver (photo detector) which then 

converts the light back to electrical signal [54].In order to utilize the capacity of an 

optical fiber to the maximum extent, several electrical channels are multiplexed onto a 

signal fiber channel using either optical time division multiplexing - OTDM or 

wavelength division multiplexing – WDM . 

 

 

Over long spans of optical fiber channel, the optical signal attenuates due to dispersion, 

bending losses [54], fiber imperfections [55] and polarization mode dispersion [56]. 

Amplifiers are used to regenerate the signal after a certain distance [57]. Optical 

amplifiers e.g. Semiconductor Optical Amplifier - SOAs and Erbium Doped Fiber 

Amplifier - EDFA are good choice for inline amplifiers as they provide receiving, 

amplifying and retransmission in optical domain without converting the signal to 

electrical [37, 58]. Figure 2.1 depicts the schematic of the basic optical communication 

system. 

Transmitter (e.g. Mach-

Zehnder Modulattor) 

Laser 

Receiver 

Optical fiber 

Electrical 

signal output 

Electrical signal 

input 

Optical data signal  

Figure 2-1: A Schematic of basic optical communication system 
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2.3 Optical Fibres 

Optical fiber is a transparent conduit made of glass or plastics, designed to transport 

light waves along its length. An optical fiber consists of three coaxial regions: the inner 

most region is called the core, which is surrounded by middle region known as cladding. 

The outermost region is called the sheath. The core always has a higher refractive index 

than the cladding, and due to the total internal reflection the light is confined inside the 

core. The sheath serves as a protective jacket which protects the fiber from ambient 

effects. 

As we can see from Figure 2-2 a ray of light is entering the fiber at an angle θ1. If θ1 

exceeds a certain value known as angle of acceptance, the total internal reflection will 

not occur and the light will be lost into the cladding.  The angle of acceptance defines 

the input cone and/or numerical aperture of the fiber 

Ray 1

Ray 2

Ray 3

Angle of 

acceptance

Cladding

Cladding

Core

Lost into cladding as ray 3 

is incident at angle greater 

than angle of acceptance

90
o
 

Ray of light 

critically reflected 

back into core thus 

ray2 defines the 

angle of 

acceptance.

Ray 1 being less than angle of 

accpetance, isreflected back is 

trapped inside core

Central Axis

Angle of incidence 

for ray 3 is greater 

than angle of 

acceptance

qa

Refractive

 Index

 

Figure 2-2: Light travelling inside an optical fiber 

Angle of acceptance - θα can be derived by considering the ray 2 which refracts at 900 on 

the junction of core and cladding, as shown in the Figure 2-2. By assuming the medium 

outside the fiber as air and applying Snell’s law at air-core and core-cladding junctions 

we get numerical aperture of the fiber N.A.: 

               
           

       

Equation 2.1 

   

                   
           

     

Equation 2.2 

Here Ncore, and NCladding are the refractive indices for core and the cladding respectively, 

and θα is the angle of acceptance. As we can see that acceptance angle of a fiber 

depends upon the value of refractive indices of the core and cladding, by using material 

with specific refractive indices, angle of acceptance can be chosen. 
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When light enters into an optical fiber, every ray of light with incident angle less than 

the acceptance angle will be allowed to propagate along the fiber. The allowed paths or 

directions that are followed by the rays of light inside the fiber are called modes of 

propagation. The fibers that allow more than one mode are called Multimode fibers. 

Multimode fibres have core diameter of around 50 microns. However, such fibers may 

exhibit intermodal dispersion [59]. Single mode fibers are designed to allow a single ray 

of light within the optical fiber. They have a core with very small diameter (2-10 

microns). In addition to the step index fibers discussed above, there exists a variant of 

multimode fiber known as graded index fiber in which the refractive index of the core is 

not constant and varies along the diameter with peak in the middle.  Figure 2-3 depicts 

structure of a single mode fiber, multimode step index fiber and a graded index fiber.   

 

Figure 2-3: Single mode, graded index, multimode fibers (Courtesy: Werner Rosenkranz, Digital 
communications 

The choice of material for optical fibers depends on the application.  For the purpose of 

data communications over long distances, silica glass fibers are used as they offer low 

loss propagation for long wavelengths, particularly around 1550nm where the losses 

are as low as 0.2dB/km [60]. Transparency for other wavelength regions can be 

increased by varying the concentration of hydroxyl groups – OH. 

In silica fibers, both the core and cladding are normally doped to achieve the required 

refractive indices. Doping of certain oxides e.g. Germanium dioxide (GeO2) or 

http://en.wikipedia.org/wiki/Germanium_dioxide
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Aluminium oxide  Al2O3 increases the refractive index, whereas doping of Boron trioxide 

(B2O3) decreases the refractive index of the silica fiber. Hence by engineering the 

material used, the angular width of cone of acceptance of the optical fiber can be 

chosen  [61]. 

Plastic optical fibers that are made of poly methyl methacrylate - PMMA (commonly 

known as acrylic glass) have relatively higher attenuation and distortion as compared to 

the silica fibers [62]. As these fibers and the associated accessories are relatively 

inexpensive, they are commonly used for low speed and short distance applications 

such as local area network, sensors and device probe connectors etc. Recent 

developments suggest plastics fibers suitable in communications for distance up to 

100m with data rates above 1 G b/s [63]. 

2.4 Repeaters and amplifiers 

Repeaters and amplifiers are important components of modern optical networks. An 

optical signal attenuates after travelling a certain distance and therefore needs to be 

amplified or regenerated. In opto-electronic repeaters the optical signal is detected by a 

light receiver, electrically amplified and then converted back to optical signal [50, 51]. 

With the advent of WDM in optical communication the optical-electrical-optical -OEO 

repeaters became less popular as they required every channel to be de-multiplexed, 

amplified separately and multiplexed again. In addition, the slower speed of the 

electrical domain would also bottleneck the communication at repeaters. The issue was 

quite successfully addressed by the EDFA [64] which provided the solution to amplify 

the optical signal without converting it to electrical domain. EDFA also amplifies all the 

WDM channels simultaneously without separating them [65, 66]. 

An alternative to EDFA is Semiconductor Optical Amplifier – SOA. An SOA is similar to a 

semiconductor laser with anti reflection measures on facets to keep the radiation from 

resonating [67-69]. SOAs are small in size and can be integrated with other optical 

components including lasers and modulators. SOAs are integrated with semiconductor 

laser to increase its output power [70, 71].  

2.5 Passive Optical Networks - PONs 

A passive optical network-PON is optical network architecture for optical access-

networks. PONs are based on point-to-multipoint transmitting and receiving. The word 

‘passive’ refers to the fact that the splitters used to connect the fiber into multiple lines 

and junctions are not powered. PONs are based on physical layer architecture. For 

downstream transmission, PONs use one-point-to-multipoint physical topology. 

http://en.wikipedia.org/wiki/Aluminium_oxide
http://en.wikipedia.org/wiki/Boron_trioxide
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Similarly for upstream they use multi-point-to-one-point topology [72, 73]. There are 

number of advantages of PONs over the other networks; for example PONs are 

economic because of less number of transmitters and receivers – single transceiver is 

used for all the users at junction. Different multiplexing techniques including WDM [74] 

and OTDM [75, 76]etc can used to connect multiple users. 

Other significant advantages of PONs include agility, high capacity, eliminations of costly 

optical-electrical-optical -OEO conversions, minimized transceivers, and making fiber to 

the home- FTTH [77] easy to implement [78, 79]. Figure 2-4 shows an optical network 

with local network implemented as PON. 

  

 

Figure 2-4: A schematic showing an Optical Network  with Passive Optical Network at access level ( Right hand side of 
figure is PON). Taken from  [80] 

2.5.1 PON Architecture 

The three main basic components within the PON architecture are: 

 OLT – Optical Line Terminator:   

 Passive Optical Splitter 

 ONU - Optical Network Unit  

OLT is the end of single mode fiber coming into the area and from here the PON 

architecture starts. A single fiber runs from the OLT to a passive splitter which is located 

near the users’ locations. The optical splitter merely divides the optical power into N 

separate paths to the ONUs. The number of optical paths can vary between 2 to 128. 

From the Splitter a separate fiber goes to every ONU.  The ONU then converts the data 

into required form for the user.  Figure 2-5 illustrates the basic architecture of a PON for 

an access network. 

The data format and frame architecture for different kinds of PONs are different and 

are best described in context to the PON type. However, because this thesis is mainly 
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related to GPONs, after discussing a few types of PONs we will discuss the frame format 

for GPONs in detail in a later section.  

 

Figure 2-5: Schematic of PON Architecture 

2.6 Gigabit PONs -GPONs 

2.6.1 Introduction  

As the name suggests, Gigabit-PON is a PON protocol particularly designed for 

transporting data rates on the order of several giga bits per second. Using larger and 

variable length packets, a GPON manages to utilize the bandwidth for higher number of 

services and users. For real time delay sensitive services like voice and video 

communication traffic, GPON uses frame segmentation, a strategy similar to small cells 

of ATM networks, thus offers efficient packaging of user traffic. [81]. GPON is more 

efficient than other PON architectures like APON and EPON and offers 40% to 160% 

additional bandwidth, depending on  the specific application and supported services 

[82]. GPONs are very cost effective, because not only is the system cost itself low, but 

also the higher efficiency leads to much more ‘revenue bits’ from the same system, and 

a much shorter payback period [83].  

Compatibility with preinstalled infrastructure is always an issue for emerging 

technologies. GPONs can easily be adjustable to new services without making changes 

to the GPON equipment. World’s first field trial of 10G-PON (also known as XG-PON) has 

recently taken place which can deliver 10 Gb/s downstream and 2.5 Gb/s upstream to 

SPLITTER 

ONU 1 

ONU 2 

ONU 3 

ONU 4 

ONU 

32 

20 km (max) 

OLT 
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residential or business customers. The trial confirmed XG-PON [84]. In order to put 

discussion on motivation of this research in context, GPON Network Architecture will be 

discussed in Section 1.7 along with perspective extended reach GPON architecture.  

2.6.2 Optical Burst Switching in GPONs 

As discussed above the developments in different sections of the optical networks are 

continuously in progress. After the struggle between pros and cons of the classical 

circuit switched network and modern packet switching for a very long time  [85], the 

burst mode switching of packets is now making its place in the industry [86, 87]. Burst 

by definition is series of repetition of an event occurring adjacent to each other without 

any delay or any other event occurring in-between. A popular use of the term ‘burst’ is 

the ‘burst of bullets’ from an automatic machine gun when operated in automatic 

mode. In computer network language the burst switching refers to the burst of data 

packets transmitted adjacent and in one go from a single source. The topology has 

already been in practice with its applications ranging from  satellite communication  and 

communication between the components within the computer like hard disk drive, 

temporary memories, and processor etc [88]. The same topology is now being applied 

in optical networking. 

In burst switching, a number of data packets travel in a single burst. Because all the 

packets have the same control information, there is no need for individual overheads. 

For a number of burst mode data channels, a single control channel is allocated [89-91].  

This control information is always ahead of the data channels by a time difference 

known as offset, in order that the receiver can be adjusted according to the incoming 

burst information [92]. The information about the burst carried by the control channel 

includes routing details, length of burst etc. Though the bursts of optical data remains 

optical, the control channel is received and converted to electrical signal for purpose of 

adjustment, according to information contained at the receiver end. 

2.6.3 Extended Reach GPON  

GPON network follows the ITU-T G.984 standard. GPON standard as per defined by ITU 

allows up to 128 ONUs and [93] a logical fiber length of 60km. However in practice 

GPONs are restricted to a maximum of 32 users and a maximum OLT-to-ONU length of 

20km.  All  the 32 users are restricted to be within a 28dB tolerance [94] (also known as 

loss budget) from the burst mode receiver installed in the central office. Hence the 

burst mode receiver at central office is able to receive the data bursts without need of 

further amplification. Recently there has been much interest in increasing the loss 
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budget of GPON. By increasing the loss budget both the distance between OLT and 

ONU, and the number of ONUs can be increased.  
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Figure 2-7: Metro network of 4 OLTs with GPON access units 

Figure 2-6: GPON currently in use 
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Figure 2-6 shows an example of the current GPON architecture. In order to provide 

services to 128 users, 4 OLTs are required and the user must not be more than 20 km 

away from the respective OLT. In any case either if the end user is more than 20km 

away from the OLT or the number of users for an OLT exceeds 32, a new OLT will be 

required for the user to be connected. 

Figure 2-8 is the replacement of the metropolitan area optical network of Figure 2-6 by 

an extended GPON. The benefit of increased ONU’s is obvious that with lesser number 

of OLTs more users can be entertained within the access network. Increasing the logical 

fiber distance from 20km to 60km is also vital to both the service providers and the end 

users. The service providers will benefit by linking more ONUs to single OLT thus 

decreasing the need for real estate etc., close to end user and making service more 

centralized by taking the OLT to the even higher levels. Extended reach service will also 

be beneficial for users who live far from urban area. 

For the purpose of extension of GPON to its maximum capacity, the loss budget has to 

be increased from 28dB for the upstream data traffic from ONUs. The burst mode 

receivers however are not yet able to handle the variety of bursts with losses exceeding 

from 28dB. Hence an amplifier is required which can not only amplify the upcoming 

bursts but also be able to change its gain to handle different sized bursts coming from 

different users. 
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Figure 2-8: The perspective extended GPON, replacing the Metro network shown in Figure 2-6 
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In upstream traffic different bursts come from a number of different users that are 

behind their ONUs. Different bursts of data are of different sizes and hence require 

different level of amplification in order to equalize for the purpose of sending to OLT or 

the central office. 

 

Figure 2-9: Frame format for upstream data traffic in GPON 

GPON frame format for upstream traffic is shown in Figure 2-9. The Upstream GTS 

frame duration is also 125us and is 19440 Bytes long, which gives an upstream data rate 

of 1.24416 GB/s. However an upstream frame is shared among ONUs which contains a 

number of transmission bursts coming from one or more ONUs. 

Every upstream data burst contains a header and a payload. The Header contains 

routing, addressing, and synchronizing information, whereas the payload contains data 

[95]. On the leading end of the payload is a section called preamble. The preamble leads 

the whole GTC frame [96]. The preamble is a general bit sequence may be or not may 

not be known to the burst mode receiver. The burst mode receiver acquires the clock 

and other synchronization parameters from the preamble and compares the bit 

sequence for adaptive equalization in order to rectify the distortions inflicted by the 

channel. The preamble also allows the repeater burst mode receiver to adjust gain and 

threshold for the incoming burst  [97]. The received data is then amplified by the opto-

electronic amplifier. In this process some of the preamble is used up and lost. However, 

rest of the preamble and the frame is then received and forwarded properly. If a single 

frame has to go through a series of burst mode receivers with every receiver consuming 

a chunk of preamble, the GTC frame might completely lose the preamble. This situation 

is undesirable as the following receiver in this case will treat the front bits of the 

remaining frame as preamble resulting in loss of information. It is difficult to acquire 

clock and data recovery fast enough without eroding the preamble. Therefore for the 

case of opto-electronic repeaters, the maximum number of receivers, the GTC frame 

can be received (and forwarded) in series is limited by the length of preamble and the 

proportion consumed by every receiver. 

On the other hand the optical amplifier can amplify the stream without knowing what is 

inside the frame and without consuming any part of it. Therefore, optical amplifier is a 

good choice as amplifier to be installed in front of the burst mode receiver for 

amplifying the upstream data traffic in perspective extended GPONs.   

Header Payload  Header Payload  Header Payload  

Upstream Frame 125µs 
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Optical amplifiers on the other hand have other issues that need to be addressed. The 

predominant optical amplifier so far is EDFA that has fairly good performance as a 

transparent optical amplifier. However, for the burst mode amplifier EDFA is not a good 

choice because of its large gain recovery time which is on the order of a few milli 

seconds. The standard length of a GPON frame is 125µs that is far smaller than the 

recovery time of EDFA. Due to very high gain recovery time the EDFA cannot switch gain 

fast enough to full fill the varying amplifying needs of the different sized optical burst 

coming from different users.  

The SOA with gain recovery time of the order of nano seconds can be easily fabricated 

for any specific range of signal wavelength. Therefore for the purpose of reach 

extension in GPONs, SOA makes a better case. Further discussion on the comparison of 

SOA and fiber amplifier can be found in Section 4.1.  

Saturation characteristics and gain control of SOA are issues that still need to be 

addressed. It is difficult to manage to control the gain of SOA, especially because of 

saturation at high signal powers. Therefore this thesis is focused on the study of 

behaviour of SOA in the context of its application as amplifier in front of burst mode 

receiver. 
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Chapter 3: Semiconductor Optical Amplifier  

3.1 Introduction 

This chapter describes the basic semiconductor physics that is necessary to understand 

the operation of SOAs and how various aspects of its operation can be controlled and 

improved. An SOA is a variant of semiconductor laser and the lasing process in both the 

devices follows the same basic principles. Therefore, this chapter begins with a brief 

overview of semiconductor lasers and their working principles in order that the 

discussion on SOAs could be understood. Rest of the chapter describes structure and 

operation of SOAs, SOA characteristics like gain and saturation, and the factors that 

affect the performance of SOA employed in optical networks. 

3.2 Semiconductor lasers 

Since their invention in 1960s [98] semiconductor lasers are perhaps the most popular 

and widely used lasers with their use ranging from toys, instrumentation, pointers, 

medical treatment, masonry measurements, weapons aiming and guiding systems, and 

telecommunications [99, 100]. The lasing wavelength is mostly application specific. 

Most of the applications require the laser in visible range as to guide the human sight. 

In telecom, however instead of visibility, low loss transmission of data through an 

optical fiber is generally required, which occurs at the low loss windows of 850nm, 

1330nm and 1550nm [101]. Out of these three low loss windows only 850nm 

wavelength lies in visible region, the latter two are infrared. Most of the optical 

transmitters in modern optical networks are semiconductor lasers [102]. 

3.2.1 Optical gain in semiconductor lasers 

Three processes are vital to all lasers i.e. absorption, spontaneous emission, and 

stimulated emission. When a photon of energy E= h is incident on an electron with 

ground state energy level E1, the photon gets absorbed into the electron raising its 

energy to excited state E2 = E1 + h.  This process is known as absorption. An electron 

cannot stay in the excited state for long period. After a particular time the electron 

reverts to the ground state energy emitting the photon of energy h . The emission of 

photon by an atom without any external impetus is called spontaneous emission. 

According to Einstein’s prediction ‘if a photon can stimulate an atom to move from  a 

lower energy level E1 to a higher energy level E2 by means of absorption transition, then 

a photon should also be able to stimulate an atom from the same upper level E2  to a 

lower level E1’ [58]. Hence an electron in an excited higher energy level E2 when hit by 

an incident photon with energy h, can emit a photon of energy h, i.e. coherent with 
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incident photon, and drop to lower energy level E1, such that E1= E2- h. This mechanism 

is known as stimulated emission.  

If the net upward and downward transitions are equal, it is a state of thermal 

equilibrium in which spontaneous emission dominates and optical gain cannot be 

achieved [103]. In order to operate away from thermal equilibrium and to achieve 

population inversion through stimulated emission, the device is pumped with excessive 

photons or electrons. Semiconductor laser is electrically pumped by applying electric 

potential across a pn-junction [104]. The active medium in semiconductor lasers is 

based on pn-junction. A pn-junction is formed when p-type and n-type semiconductor 

materials are brought together. Figure 3-1 shows the p-n junction in thermal 

equilibrium (a, & c), and under forward bias situations (b & d). 

 

  

In thermal equilibrium, there are no free electrons and holes due to their 

recombination. The depletion region electric field also prevents further carrier drift and 

diffusion into the intrinsic region [105]. When electrons and holes are injected, each 

from either side by applying electrical voltage, the junction becomes forward bias, and 

this field reduces, allowing the diffusion of electrons and holes into the depletion region 
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where they can recombine and produce photons by stimulated or spontaneous 

emission. 

3.2.2 Hetero-junction  

Devices based on the PN junction shown in Figure 3-1 forms a homo-junction device. In 

this configuration the electrons and holes cannot be are not well confined and the 

carriers are free to recombine over a large region within the material resulting in 

decrease of carrier densities. Another assembly is Hetero-junction [106] in which a thin 

layer of another material with different band gap but same lattice constant is 

sandwiched with two layers of higher band gap material that increases the density of 

charge carriers by confining them in small region [107]. In doing so, the efficiency of the 

recombination process can be significantly improved. This thin layer in semiconductor 

laser-based devices is called the active region. The refractive indices of the materials are 

chosen in such a way that radiation is confined within this layer which acts like a 

waveguide [108]. This difference in band gap between the active layer and the 

surrounding substrate, serves to confine the carriers. Figure 3-2 shows a heterojunction 

scheme.  

 

 

 

 

 

 

 

The wavelength of the emitted photons is related with the energy gap through the 

relation 

Eg =  Ec – Ev =  h =  hc(1/PL) 

Equation 3.1 

Where PL is the wavelength of emitted light, h is planks constant and c is the speed of 

light. A parabola model as depicted in Figure 3-3 for the energy levels of conduction and 

valence bands vs. the wave number k (k = 2/) presents a better understanding of 

energy level distribution in the material. 

Figure 3-2: The schematic of a hetero junction 
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As it can be observed from the Figure 3-3, in a direct band gap material the minima of 

conduction band lies right above the maxima of valence band thus easing the transition 

at the respective wavelength, which is referred to as photo luminance wavelength of 

the material. The minimum energy gap of the active layer and thus the photo-

luminance wavelength can be chosen by choosing any direct band gap material for 

active layer. For 1.55μm region materials such as In1-xGaxAsyP1-y and In1-xGaxAs are used. 

The composition decides the band gap and the wavelength, and therefore the photo 

luminance wavelength can be adjusted by selection of correct values of x and y. 

3.2.3 Resonators 

Semiconductor laser like other lasers have resonating mirrors that provide optical 

feedback. Traditionally there is a partial reflecting mirror on output end a full reflecting 

mirror is used on other side. The initial population of photons in laser is spontaneous 

emission. These photons then interact with other excited electrons for stimulated 

emission. To utilize the full capacity of the excited population of photons, the emitted 

photons are reflected back from the mirrors and result in greater amount of stimulated 

emissions thus amplifying the radiation to greater extent.  When reflected back into the 

active layer these photons result in greater number of stimulated emissions.  
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Figure 3-4: Structure of a semiconductor laser (not to scale), depiction of resonating mirrors. 
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The condition for oscillation of a wavelength in the laser cavity is 

k=2nL  

Equation 3.2 

 Where k is an integer, λ is the wavelength of light, n is the effective refractive index of 

the guided mode and L is the length of the laser cavity. 

The discussion on resonators is vital to our discussion, as the resonators form the basis 

of difference between lasers and optical amplifiers. An integral part of semiconductor 

lasers, the resonators or any resonating modes are undesirable for modern SOAs. This 

topic will be discussed in detail in following section on SOAs.  

3.3 Semiconductor optical amplifier-SOA 

3.3.1 Introduction 

Semiconductor optical amplifiers-SOAs have been in use for a couple of decades in fiber 

optics for detection and amplification of optical signals. SOAs are optical amplifiers that 

use a semiconductor material to provide the gain medium. SOA is driven by electric 

current i.e. electrically pumped and is able to receive an optical signal, amplify and emit 

the amplified output. 

 

 

The output optical signal has roughly the same optical spectrum as that of the input 

signal but with higher intensity. The semiconductor optical amplifier is a small sized 

electrically pumped compact semiconductor chip with fiber connections. The gain 

bandwidth of the SOA is smaller. However SOAs can be designed for desired band of 

wavelengths. The amplification is normally polarization-sensitive, however many 

developments been made towards polarization in-sensitive SOAs. The issue is addressed 

further in section 3.5.1. The SOA can be easily designed for any band of wavelengths 

within the entire fiber transmission window. In addition, the support for high data rate 

and ability to integrate with other optical components, gives SOA a considerable edge 
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over other counterparts, making SOA a high profile candidate for use as an optical 

amplifier for optical fiber systems [109]. 

3.3.2 Basic Structure of SOA 

SOA is a variant of semiconductor laser. There are two main kinds of SOAs: Febry-Perot 

SOA or FP-SOA, and travelling wave SOA or TW-SOA.  In FP-SOA high gain is achieved by 

resonating modes inside the cavity at resonant wavelengths. However, in TW-SOA 

resonance is undesirable; therefore there are no end mirrors. To enhance the travelling 

wave nature of SOA and to suppress any possible facet reflections, anti reflection 

measure like anti-reflection coatings, tilted waveguide and window region 

configurations are applied which can reduce end face reflection to as low as 0.001%. 

Since this creates a loss of power from the cavity which is greater than the gain it 

prevents the amplifier from reaching the lasing threshold and keeps it from acting as a 

laser 

 

 

Because the amplification medium and working of the SOA are the same as the lasing 

medium and the lasing process of the laser diode, the discussion of types of SOAs with 

respect to internal structure will be quite similar to that of the semiconductor laser. 

3.3.3 Facet reflectivity  

Initial generations of SOAs were Febry-Perot cavities or FP-SOAs, in which the gain is a 

strong function of resonant wavelengths and the reflections from the facets are 

significant. Elimination of mirrors for the purpose of travelling wave-TW SOA is not 

enough to suppress the resonating modes as the waveguide facets have a reflectivity of 

their own. In addition, the difference of refractive index between the active medium 

and the outer space also results in total internal reflections. Ideally the facet reflectivity 

of a TW-SOA should be zero. The non-zero reflectivity results in gain ripples (G) 

expressed by the equation: 

Optical Input 

GND 

n-type 

Amplified 

Output 

Active Layer  

p-type 

Vcc 

Figure 3-6: A Basic SOA structure with straight facet structure, a variant of semiconductor laser, with 
no mirrors. For the purpose of demonstration, no additional anti-reflection measure is shown. 
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   
           

         

 

 

 

Equation 3.3 

Here R1 and R2 are facet reflectivities and Gs is the single pass gain. For negligible facet 

reflectivities, the gain ripple is negligible thus smoothing the gain profile over the 

spectrum. However 100% transmittance is not practical. For practical TW-SOAs 3dB gain 

ripple is acceptable, as 3dB also defines the bandwidth of a transfer function. 

To remedy this problem, anti-reflection coatings have traditionally been in use. An anti-

reflection coating is a layer of transparent material that is annexed to the cross section 

of waveguide as a shield in front both of SOA opening. This is graphically shown in 

Figure 3-7 . The refractive index of this coating is less than that of the waveguide and 

greater than the outer space, normally air, so that any out coming light ray, if deviates 

from the axis, is refracted toward the perpendicular axis for maximum transmittance. 

 

 

Anti-reflection coatings are in use for a range of optical applications since 1950s [110]. 

SOAs however, to be the technology of choice for the vendors and to compete with 

other counterpart needs to decrease the manufacturing cost, where the anti-reflection 

coatings inflect additional overhead [42]. In this regard alternate anti-reflection 

measures like tapered facet and tilted waveguides have been suggested, some of which 

discussed in following sections. 

3.3.4 Tilted waveguide and/or tapered edged SOA Structures 

In an angled facet SOA, the active region is slanted away from the facet cleavage plane, 

thereby reducing the effective facet reflectivity. The relative reflectivity decreases as 

the facet angle increases [111]. However, the coupling efficiency between an SOA and 

optical fiber degrades at large facet angles due to the far field asymmetry. AR coating if 

used also becomes more polarization sensitive as the facet angle increases. 
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The tapered-end active-layer SOA have also been realized [112] for the purpose of 

polarization insensitivity, which is also another important pre-requisite for many 

applications. 

Optimal facet-tilt-angles lie in the range between 7o and 10o. Increasing the facet tilt 

angle from 70 to 100 decreases the effective reflectivity from 10-4 to 10-5 [113].  

 

 

3.3.5 Optical Gain 

An optical amplifier increases the power of the optical signals passing through it. The 

ratio by which the input signal is increased is called Gain. Mathematically Gain is 

defined as  

        
            

           
 

Equation 3.4 

And in decibels  

             
            

           
  

Equation 3.5 

As discussed SOA is an electrically pumped device with an optical input and optical 

output.  The optical gain of the SOA as defined by Equation 3.4 and Equation 3.5 is the 

major transfer function of the device. The additional power for optical gain is provided 

by the injected electrons. These injected electrons result in increase of population of 

the high energy electrons leading to spontaneous and stimulated emission. While 

stimulated emission provides gain, the amplified spontaneous emissions-ASE is the 

main source of noise in SOAs.  

A simple approach to the calculation of gain is through the considerations of carrier 

population in the active region. Assuming that there is no pumping and no stimulated 

Active Length 

Output Input 

Lateral tapers 

(a) (b) 

Figure 3-8: Angle Facet SOA - (a) Straight facets (b) Tapered Waveguide 
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emission, the decay in the instantaneous population density ‘n’ of charge carriers can 

be explained by simple differential equation  

  

  
 

 

  
    

Equation 3.6 

Where c is the carrier lifetime, that explains the spontaneous exponential decay in the 

population density.  However the injection of carriers and photon emission is vital to 

the device. The rate of injection for injection current density ‘J’ into the active layer of 

thickness ‘d’ is ‘
 

  
’ where e is charge of an electron. Similarly the rate of change in 

population density of carriers due to stimulated emission of light intensity ‘I’ and 

frequency ‘’ equals         
 

   
   where n0 is transparency carrier density, ‘Ag’ is 

differential gain, ‘h’ is Planck’s constant, and ‘’is the active region confinement factor. 

The difference of rate of injected carrier density and the population inversion due to 

stimulated emission provides the forcing function for the inhomogeneous differential 

equation that describes the rate of change of instantaneous population density ‘n’ of 

electrons of carrier lifetime inside the device as given by 

  

  

  
 

 

  

      
 

  
          

 

 
   

Equation 3.7 

 

  
    

  

  
   

 

  
           

 

 
   

Equation 3.8 

            

Equation 3.7 and Equation 3.8 are both the same however arranged differently. 

Equation 3.7 separates the natural response (L.H.S) and the forcing function (R.H.S). The 

arrangement in Equation 3.8 describes the division of injected carriers into two 

portions: carriers grounding due to the photo emissions and carriers increasing the 

carrier density.   

Similarly the light of intensity ‘I’ travelling along x-axis inside the waveguide if the 

photon emission is assumed to be stopped, will undergo attenuation defined by the 

differential equation  

  

  
      

Equation 3.9 
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Here a is the waveguide loss-coefficient. As the stimulated reinforces the light intensity 

the rate equation becomes  

  

  
               

Equation 3.10 

Solving the equation 3.5 for instantaneous population density n, substituting in 3.7, and 

substituting for saturation intensity Is = h/cAg and gain coefficient        
  

  
     

we get  

  

  
   

   

  
 

    

     

Equation 3.11 

The small signal gain (I <<Is) can be calculated by integrating Equation 3.11 over the 

length of the amplifier: 

  
    

   
           

Equation 3.12 

Here POUT and Pin are the signal powers at the output and the input of the device.  From 

Equation 3.12 it can be deduced that the gain of the device can be increased by 

increasing the material gain go, device length and confinement factor and by decreasing 

the internal loss.  However this only occurs up to a point and in practice the achievable 

SOA gain is limited not by any of these parameters but by the self saturation due to 

spontaneous emission. 

3.3.6 Electrical pump and control 

SOAs are electrically pumped devices. The SOA can be switched on and off at a very 

high speed, and thus can be used as electro-optic modulator as well for fast switching 

between packets. In addition to the fast on and off characteristic, the injection current 

can be varied thus varying the gain and/or lasing profile of the SOA at a very high speed. 

This property of the SOA has been used in the adjustable gain clamped SOA [114] for 

the purpose of gain clamping. However the dynamic runtime decision to adjust the 

current of the SOA based on the information received from the incoming burst or 

packet remains a problem, and achieving the ability to do so could be a possible 

solution, though not the only solution to the problem of equalization of bursts in burst 

switched network. 
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3.3.7 Polarization Sensitivity 

An optical signal like all electromagnetic waves can be decomposed into transverse 

electric –TE and transverse magnetic - TM modes that are perpendicular to each other. 

These two modes are also perpendicular to axis of propagation along the length of the 

waveguide. In polarized signal one of the transverse modes lags behind.  

Optical fiber which acts as the waveguide for optical signal transmission, normally faces 

bending, material imperfection and coupling effects, causing difference of refractive 

index ratio and confinement factor for perpendicular modes. This results in change of 

state of polarization for the optical signal. The state of polarization of a signal is 

normally not known, therefore most of the network devices, including optical amplifier 

have to be polarization insensitive.  

Change in polarization of the signal is mostly because of the difference in confinement 

factors for TE and TM modes due to asymmetric cross-section of waveguide. Because it 

is not possible to generalize the state of polarization of a signal, the SOA if used to 

amplify the signal should be able to accept and amplify signal with any state of 

polarization.  

SOAs are generally polarization sensitive and do not completely preserve the state of 

polarisation. There are a number of factors that affect the state of polarization of the 

signal while being amplified by the SOA. Before we briefly discuss these factors it is 

important to note that while some of the polarization disturbing factors are either 

intrinsic, unavoidable or system requirement, other factors are exploited to counteract 

their effects so that the overall polarization insensitivity could be achieved.  

Generally the confinement factor for the TE mode is stronger than TM because the 

active region does not normally have the same refractive index profile on both sides of 

waveguide cross-section. An index difference of 10-4 [115]  and TE and TM has been 

reported.  

The inclusion of a separate confinement hetero structure –SCH can provide the control 

of the confinement factors ratio for TE and TM mode through varying the refractive 

index profiles Figure 3-9(c). SCH is a thin layer of a material slightly different to that of 

the active region. The material has a bandgap higher than that of active region and 

refractive index between those of active region and the surrounding substrate. The SCH 

can be used to maintain the confinement factors ratio by inclusion of SCH of different 

composition and thickness.  
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Using a perfect square cross section Figure 3-9(a) waveguide brings refractive index 

profiles closer thus decreasing the confinement factors’ difference for TE and TM 

modes. The technique works very well. However etching the width of waveguide close 

to the required thickness is not easy especially in mass production.   

 

 Courtesy C. Michie et el[112] 

Alternatively straining of the active-region material is another technique to adjust the 

material gains for TE and TM polarizations as shown in Figure 3-9(b). Normally the 

active region and substrate have same lattice constants. However for growing  strained 

layers a material composition is chosen so that its lattice constant is slightly different to 

that of the substrate  [116]. Bulk layers grown with tensile strains increase the TM 

material gain relative to the TE material gain, which can balance the difference of 

confinement factors’ effects. 

Anti reflection coatings are also important issue with regards to polarization 

dependence of SOA. AR coatings are generally polarization dependent, and were 

considered the main cause of polarization dependence in early SOA devices. AR coatings 

help suppressing the resonating modes and so could not be avoided. However other 

anti-reflection techniques have been developed to either replace or accompany the AR 

coatings. Tilted waveguide and tapered edges are some of the solutions (Figure 3-9 (d)), 

discussed already in Section 3.3.4. 
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Chapter 4: Measurements and Analysis 

4.1 Motivation for the research  

In the context of upstream Burst Mode Extended GPON as discussed in Chapter 1, the 

data burst may be characterizeyuhbd by difference losses depending on the path from 

the end users and the type of system they are coming from. This puts a stringent 

requirement on the amplifier of being able to adjust the gain dynamically. 

This issue has been a subject of research of many researchers during the last few 

decades, and many application-oriented solutions have been suggested [94, 117-121]. 

In this section we will discuss the qualification of SOA and the motivation for the 

research in the context of its application in prospective extended-GPONs.  

As discussed in Section 2.6.3, an amplifier is required for the purpose of upstream burst 

mode traffic that can:  

 Clamp the gain to a required level 

 Take the information from the incoming burst and change the clamping 

level dynamically at the speed comparable to bursts speed. 

To provide PON based optical access services more effectively, long reach (and high-

splitting number) systems based on burst- mode optical amplifiers have been 

extensively studied [122] We are dealing with GPONs that currently operate at approx 

2.5 Gb/s, and looking to 10/100 GB/s data speeds. EDFA has been a good choice for 

optical amplification. However in the scenario we have in front of us, the EDFA may not 

be the best candidate for a number of reasons. The upstream data in GPONs uses 

1480nm, whereas the EDFA can only handle 1550nm wavelength. The 1550nm 

wavelength is currently in used by Cable TV networks and there can raise legal issues. 

Fiber Amplifiers made up of other rare earth elements, e.g. Thulium [123], 

Praseodymium [124] and Ytterbium [125] have also been fabricated and they can 

handle other wavelengths. Thulium doped fiber amplifier with gain peak at 1470nm is 

suitable to be used for S-band. However it provides small signal gain of 25dB at 1470nm 

which is very low. In addition the availability of suitable rare earth metals also 

constraints the use of these doped fibers. An amplifier is required that either has a wide 

spectrum support to cover the required wavelength or has the ability to be designed for 

a specific wavelength at low cost.   

 

An EDFA can handle and amplify any data rate. However the gain saturation and 

recovery has a characteristic time in milliseconds range, whereas the full length of a 
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GPON upstream frame is normally 125µs, i.e. smaller than the recovery time. An EDFA 

normally operates in saturated mode with constant output power [126]. In burst 

switching, variable size bursts from different sources can require different gain levels. If 

the speed of the data is on the order of giga bit per second, then the gain recovery 

might be required on the scale of nano second level. For single stream of signal where 

there is not much variation in the signal power, the EDFA works fine. However, because 

of gain recovery time of the order of milliseconds EDFA becomes completely unsuitable 

for data bursts or high speed especially Gigabit traffic.  

The SOA normally works in linear region and has a gain recovery time at the order of 

nano seconds, as shown in Figure 4-1. This gain recovery in SOA is much faster than the 

10 Gb/s data rates.  This gives SOA enough time to get adjusted between the bursts.  

 

Figure 4-1: High speed gain recovery in SOA (Time vs SOA output power,  Scale x-axis: 200ps per div, y-
axis: 579µW per div) : 

SOA on the other hand has a very high gain recovery rate, which can be observed from 

the results presented in this thesis. Furthermore, the SOA does not treat the 

multiplexed wavelengths separately i.e. for WDM networks, the sum of all the WDM 

channels will decide whether SOA will be in linear or the saturation region. SOA can be 

designed and fabricated for any wavelength by altering the composition of materials 

used as active medium. Alternatives to AR coatings have made SOA more robust and 

inexpensive than before. Therefore, there is reasonable evidence of suitability of SOA 

for use as amplifier for burst mode receiver in GPONs. We chose SOA for 

experimentation and analysis in this research work. 

SOA however has its own operational limitations in the amplification process with 

regards to gain saturation and dynamic range that need to be addressed. These 

limitations and constraints are discussed in detail in this chapter and Chapter 5.  

SOA can be used as a simple inline amplifier in the small signal region, where the linear 

gain remains stable while varying the input signal power. Though highly desired, the 
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linear behaviour of small signal region is not available above a certain value of signal 

power called saturation power. As the signal power increases further beyond the 

saturation power, the gain decreases more rapidly.  

Operating the SOA in the saturation region can cause inter-symbol interference-ISI [127] 

or patterning because the recovery time the SOA is normally in a range comparable to 

the data modulation rates. Therefore to use the SOA in linear region, it becomes 

necessary to ensure that the overall signal power going into the SOA does not exceed 

the saturation power and thus keep the SOA from driving into saturation.  

In the light of the discussion, we have come to the conclusion to select SOA for testing 

to be used as in-line optical amplifier for Burst mode WDM-GPONs, based on the merits 

of SOA. However a number of issues regarding the performance were also discussed 

that need to sorted out. A number of suggestions and ideas on as to how the issues can 

be addressed have been put forward. However before going any further and testing 

new arrangement, it is necessary to understand the behaviour and characteristics of the 

basic SOA. This chapter is based on the measurements taken on the SOA, analysis and 

conclusions. Measurements were taken on a commercial SOA and the results were 

plotted and discussed. The measurements form the basis of theoretical understanding, 

and make a road map for the further investigations into the applications of the device, 

as per the network’s requirements. 

The remaining chapters comprise of measurements, discussion and analysis of SOA in 

order that it can address the problem and an effort has been made to explore the 

faculties of the device. Several aspects like error analysis, losses in Power penalties in 

SOAs is discussed in details. 

4.2 Parametric measurements on optically amplified system 

using SOA 

Figure 4-2 shows the experimental setup used to perform the basic parametric 

measurements on SOA. The apparatus include a tuneable laser, an optical attenuator, 

an SOA, a polarization controller, an optical Isolator, an optical spectrum analyzer-OSA, 

computer controlled SOA-current driver, Power supply, PC, and Fiber probes with 

cross/straight connections. 
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The analytical quantities that were used/measured and/or calculated and plotted 

during this analysis are:  

 Input power  (dBm) 

 Output power    (dBm) 

 Gain  (dB) = Output power – Input power 

 Drive current of the SOA (mA) 

 Wavelength of the optical signal (nm) 

Based on the measurements taken on the device according to the setup shown in Figure 

4-2, different graphs were obtained in order to study the response of the SOA to 

changing parameters. Following is the summary of the observations and results from 

these experiments. 

4.2.1  Output Power Vs Gain: Case of saturation  

 

Figure 4-3: When operated at a power higher than level the gain decreases; the behaviour of a typical SOA.  

As we can see from the Figure 4-3 , the gain of the SOA for a specific injection current is 

almost constant over a span of output power, but above a certain output power, the 

gain start to decrease rapidly, thus indicating saturation in the device. The constant gain 

observed on the left hand side of the gain curve is known as small signal gain. It can be 

concluded from the curve that for linear amplification, the SOA can be used only for a 

range of signal power limited by the saturation power. Beyond the saturation power 
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Figure 4-2: Block diagram of experimental setup for parametric measurements on an SOA. 
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barrier, the gain starts to decrease. This decrease in the optical gain at higher output 

powers is due to the depletion of carriers inside the active region [109]. 

4.2.2 Drive Current and the Gain of SOA 

Figure 4-4 shows a set of plots for gain response to the output power for 1550nm 

wavelength, at twelve different drive currents, ranging from 16.7mA to 286mA. 

Figure 4-5 shows an increase in gain with respect to change in drive current. However 

the set of plots also shows that with increase in current the effect of current on gain 

decreases. For instance we can see that by changing current from 25mA to 50mA, the 

gain jumps from 3dB to approximately 13dB, i.e. 10dB change.  

On the other hand, at higher currents even for a 50mA increase in current there is 

hardly 1dB increase in gain. This depicts the gain saturation with respect to the drive 

current.  

The increased number of charge carriers increases the opportunity for stimulated 

emissions which increase the gain with increase in injection current. However decrease 

in the gradient of increasing gain with current is mainly due to increased auger 

recombination and increased ASE. 

 

Figure 4-4: Plots showing optical gain Vs output power of SOA for different drive Currents. 
(measurements on a typical commercial SOA) 

The recombination mechanism is proportional to the cube (n3) of the carrier density and 

thus becomes dominant at higher injection currents. Thermal heating due to increase of 

charge carriers might also affect the gain as this causes leakage of carriers from the 

active region. 
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Another important observation that can be made from Figure 4-4 is change in 

saturation power with the change in drive current. The gain as discussed above could be 

increased and increase by varying the injection current. However by decreasing the gain 

also decreases the saturation power and vice versa. This variation in saturation power is 

one of the major issues in employment of SOA in optical networks. The gain of the SOA 

cannot be controlled independently of saturation power, and further investigation into 

this behaviour is done in the following sections. 

 

Figure 4-5: Drive Current of SOA Vs the Gain and Saturation Power 

The PSAT and Gain response to drive current is pictured in detail in Figure 4-5. The figure 

shows the relationship between the drive current and the gain of the SOA, and between 

the drive current and the saturation power.  

The Figure 4-6 shows a relation between the small signal gain and the saturation power. 

From the graph we can see that the saturation power is also increasing as we increase 

the gain. In other words, a constant saturation power is not available for varying gain 

values. This results in higher power deprived of small gains, as the small gain curves 

saturate before reaching high power.  

For example let us consider the case where we are controlling the gain to get 5dBm 

output power. It can be acquired if approximately 17dB or higher gain is required. If a 

lesser gain is required to get the same output i.e. 5dB, the SOA will have to be operated 
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at lesser gain. However if the SOA’s small gain is decreased by decreasing the drive 

current, 5dBm POUT will be in saturation region. 

 

Figure 4-6: Saturation power vs. Gain 

This analysis also gives rise to the consideration of maximum input power for a specific 

gain and/or drive current. The input power analysis is discussed in detail in the 

discussion on commercial SOA in coming section. 

In Figure 4-5 both gain and PSAT are plotted against drive current on the same graph that 

gives us the amount of maximum small signal gain available at which the PSAT ceases to 

increase with current.  In addition we can see that gradient of PSAT begins to drop at 

drive current lower than that of fall of gain. However the rate of drop of PSAT is almost 

the same as the decrease in gain. This phenomenon is clearer in Figure 4-6 in which 

Gain vs. PSAT is drawn. Gain and PSAT seem to be proportional to each other. The plot 

reinforces the presumption that high output power but with small gain cannot easily be 

achieved with the device.  

Traditionally 3dB decrease in gain is considered as saturation point that is used as 

consistent point of comparison for different device. However the actual saturation point 

is decided by loss in gain that the system can tolerate. Some optical communication 

systems do not tolerate 3dB saturation level, as this can result in crosstalk between 

signals due to cross gain modulation. For such systems 1dB decrease in small signal gain 

is considered the ceiling of linear regime. In wavelength switched networks where the 
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average gain saturation and number of channels and/or users are interconnected, the 

gain may be required to remain as close as 0.5 dB to small signal gain [128]. However 

the function and shape of the curves and behavior is almost similar for 3dB, 1dB and 

0.5dB saturation level. Therefore investigation on one of these points leads to a suitable 

conclusion that can be generalized. For the purpose of this thesis we will be considering 

1dB saturation limit, most of the time. We will observe and verify our selection in error 

rate measurements in Chapter 5 as well. 

As discussed in Chapter 3, PSAT is directly proportional to Is, and Is can be increased by 

decreasing carrier life time i.e increasing the carrier density. Therefore increase in 

saturation power can be explained by the increase in carriers’ density (or bias current).  

4.3 Measurements and analysis of different commercial SOAs 

4.3.1 Measured devices 

In order to study the effect of design and dimension of SOA on its performance and 

behavior we have taken measurements on four different SOA and their analysis is 

presented in this chapter. The purpose of these measurements is to study and analyze 

the role of design parameters of SOA in performance evaluation and response to variety 

of conditions. 

The structure of the four SOAs are given in [112] 

Device ID Length 
Active 
region 

PL  
Photoluminance 
Wavelength 

comments 

021934  (SC-15-0089-677&678-
C603155) 

600um 1.55m PL shift towards blue by 40nm 

021909(SC-15-0089-560&561-
C602142) 

600um 1.55m  Same as 021934 with 
different AR Coating 

 PL shift towards blue by 40nm 

021923(SC-15-2015-2819&2820-
B101133) 

1000um 1.59m Standard design for Gain peak 

1550m 

021256 (SC-15-0125-600&601-
B603054) 

 600um 1.59m Standard design  for gain peak 

at 1550m 

Figure 4-7: Table of detail specifications of SOAs used in measurements. 

4.3.2 Pout Vs Gain – Analysis and comparison of the SOAs 

Let us start with the basic Pout Vs Gain curves, as shown in Figure 4-8. The figure shows 

the Pout Vs Gain for the three devices 21923, 21256 and 21909. Three sets of 

measurements were taken for each device at probe wavelengths of 1524nm, 1550nm, 

and 1563nm. The bias current for all the devices was kept constant at 200mA for 

comparative analysis. The device 21934 has not been included in the figure as the 

device’s structure is same as 21909 with different anti-reflection coating and thus has 
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behaviour very close to 21909 which results in overlapping and congestion in the 

graphs, making it difficult  to read.  

 

Figure 4-8: POUT   Vs Gain of three SOAs. Colour used is black for 21923, purple for 21256 and red for 
21909. Thick solid lines are response to 1528nm, long dashes for 1550nm and small dashed line for 1563 
nm signal. Response to device 21934 is not drawn to avoid confusion because its plots are very close to 

plots of 21909. 

 

 

Figure 4-9: Current Vs Gain: different devices' response at various signal wavelengths for various devices. 
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The plots in Figure 4-8 and Figure 4-9 show a clear trend in the behavior. The few 

parameters that affect the gain of the devices are: 

 Length of the active region 

 Photo-luminance wavelength (PL) of the device 

 Signal Wavelength 

Active region length: It can be observed that longer active region result in higher gain. 

The device 21923 with 1000m active region length and 1.59nm PL wavelength has 

highest gain. The device 21256 that has PL wavelength same as 21923 but shorter active 

region length (600m) has 9dB less gain at similar signal wavelength. Longer active 

region provides greater opportunities of stimulated emissions as the photons (incident 

as well as emitted) travel along the length of SOA and collide with greater number of 

electrons. Therefore this device provides higher gain than its counterparts with shorter 

active region. It was discussed in Chapter 3 that gain of the SOA is directly proportional 

to the length of the active region. The point is verified by the plots in Figure 4-9 that 

show that at any particular injection current the gain is higher for longer devices and 

vice versa. 

Photo-luminance wavelength: Photo-luminance wavelength PL of the SOA, as 

discussed in Chapter 3, is the wavelength that corresponds to the bandgap Eg of the 

active region and is also the energy of the photon with wavelength PL. Eg and PL 

related by the equation 

Eg = h PL =hc (1/PL) =hc(PL)
-1 

Equation 4.1 

Where h and c are planks’ constant and speed of light respectively and are constants; 

PL and PL are the photo luminance frequency and wavelength respectively for the 

material. 

The Equation 4.1 tells us that a device fabricated for high Photoluminance wavelength 

has low energy gap i.e. the valence band and the conduction band will be very close to 

each other. Such a device when operated at wavelength smaller than PL will yield high 

output power or high gain as shorter wavelength corresponds to higher energy. 

Therefore the gain peak of an SOA normally occurs at a wavelength below or blue 

shifted from PL..  

The devices 21256 and 21909 are of the same active region length. However PL for 

21256 is 1590nm and for device 21909 is 1550nm. For device 21256 having longer PL 

has relatively smaller band gap thus easing electrons transitions with greater number of 
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emitted photons. Therefore device 21256 despite of having same active region length, 

has greater gain at any signal wavelength as compared to device 21909. 

 Signal Wavelength: The measurements are taken on all the devices are taken at three 

wavelengths i.e. 1528nm, 1550nm and 1563nm. The response of all the devices to the 

signal wavelength is similar i.e. the gain was highest at 1528nm and lowest at 1563nm. 

Again we see that shorter signal wavelengths acquire greater gain and vice versa. One 

reason for this behavior is the relationship between wavelength and the energy of the 

photon as discussed. However, gain or output power of an SOA is not simply a 

consideration of the energy of individual photon, the major contribution to high gain is 

the increased population of photons emitted. The parabola model of band structure as 

discussed in Chapter 3 provides the explanation. At PL the device has a direct band gap 

which is sharp and less number of carriers can be accommodated at bandgap. However 

greater number of charge carriers is available with higher energies inside the 

conduction band. Therefore, operating the device at a smaller signal wavelength results 

in greater number of transitions and thus, greater number of emitted photons.  

Another observation that can be made from the Figure 4-8 is the increase in PSAT with 

the increase in signal wavelength. The PSAT for 1528nm for the device 21923 is around 

10dBm whereas for the same device when injected with same drive current but at high 

wavelength exhibits PSAT values of 11dBm for 1550nm and 11.3dB for 1563nm signal 

wavelength. This is because the higher signal wavelengths have lower gain output and 

for a specific carrier density saturate at comparatively higher power. 
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Coupling efficiency and packaging: The device 21934 is the fourth type of SOA that was 

used for these measurements. 21934 and 21909 are similar devices with same active 

region length and PL but with slightly different AR coatings and packaging, which in turn 

results in a small difference in the coupling efficiency.  

 

Figure 4-10: POUT Vs Gain curves of two SOAs with same Active Region Length and Photoluminance 
wavelengths, but different facet reflectivity. 

It can be observed from Figure 4-10 that the device 21934 has approximately 1dB 

higher gain than 21909. This might be because of difference of finishing of end faces. 

Anyway 1dB gain difference is significant. 

Polarization sensitivity: Polarization sensitivity is another aspect of the SOA. Figure 4-11 

shows output power vs gain curves for 3 devices with each device measured for input 

source at maximum and minimum polarization. From the figure, it can be seen that 

varying the polarization of the probe varies the gain by a small but observable amount.  
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Figure 4-11: Pout Vs Gain for three devices – minimum/unknown and maximum polarization response 
illustrated. 

As mentioned earlier, the devices we have used for these measurements have the 

polarization insensitive design as discussed in Section 3.3.7 and presented by [112]. 

That is the main reason the devices show little impact of polarization on gain, with the 

21923 undergoing a maximum gain variation of about 1.2dB with change in the 

polarization of input signal. 

4.3.3 Input power range for different SOAs  

We can see devices have a variety of behavior with regards to input saturation profile -

and gain. From Figure 4-7 through 4-9, we can deduce that different devices offer 

different gain levels but the output saturation powers are somewhat comparable. A 

better way to analyze the range of operation of the device is study the range of device’s 

input power range. Here we can introduce input saturation power - PinSAT defined as the 

minimum input power of the SOA at which the gain is 3dB less than the small signal 

gain. PinSAT refers to same operational point as PoutSAT.  PinSAT is related with PoutSAT by   

PinSAT     = PoutSAT    -    GaindB (SAT) 

Equation 4.2 

Where GaindB (SAT) is the gain at saturation point and is 3dB less than the small signal 

gain. 
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However in this research work we are more interested in 1dB saturation as discussed in 

previous section. Therefore in the remaining discussion we will use PinSAT instead of PinSAT 

(1dB), defined as the input power at which the gain is 1dB less than small signal gain. 

PinSAT plotted against the drive current is shown in Figure 4-12 . It can be observed that 

the devices 21909 and 21934 have higher input saturation power as compared to other 

two devices. However the response of these two devices to drive current is not constant 

and the PinSAT   changes with the increase in drive current.  

 

Figure 4-12:  1dB Input Saturation Power profile for 4 different SOAs 

On the other hand the PinSAT for devices 21256 and 21923 is -4 and -12dBm respectively 

which is very low but stable and does not change with drive current.  

The device 21923 has the lowest input saturation power among the four devices, as it 

works below -12 dBm, which is very low.  The device 21956 has comparatively higher 

values of input saturation power, i.e. approx -4dBm.  

The other two devices 21909 & 21934 have high PinSAT power i.e. between 4dBm and 

8dBm. High PinSAT power is a required feature and the two devices have this feature. 

However in contrast to the other two devices, we can see that the input saturation 

power is not constant over the range and is rising with the gain and this is not always 

desirable.  

From Figure 4-12  we can conclude that for high gain devices 21256 and 21923, the 

PinSAT can be kept stable while varying the gain as gain is controlled by injected current. 

However Figure 4-13 suggests that the gain is not exactly proportional to current and 
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has a saturating behaviour. In order to investigate the true response of the device’s 

PinSAT towards variation in gain, gain  vs PinSAT is plotted in Figure 4-14.  

The plots in Figure 4-14 display the saturation characteristics from a different 

perspective. Both the low gain devices have almost same PinSAT response to gain as 

current. However in both high gain devices the PinSAT decrease with increase in gain upto 

a certain level. For device 21256 the PinSAT decrease until approximately 7dB gain and 

become stable above this value. The device 21923, which is the highest gain and lowest 

PinSAT device of all considered, the drop in PinSAT is greater as the PinSAT decreases with 

increase in gain up to approximately 17dB and then becomes stable above this value. 

 

Figure 4-13: Gain Vs current – All four SOAs. 

However if we look closely at the injection current and gain values above which the 

PinSAT becomes stable are 50mA and 15db respectively for 21923. The gain control with 

constant PinSAT above 50mA will be limited to gain values between 15dB and 25 dB 

approximately. If this is the required region of operation, then device i.e. 21923 is more 

useful than others. 

 
Figure 4-14: Comparison of Gain and Input saturation power(1 dB saturation) relationship for the 4 SOAs 
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Figure 4-12 gives a perception that the high gain devices with stable PinSAT e.g. 21923 can 

be operated over a large range of injection currents. However plotting gain vs PinSAT i.e. 

Figure 4-14 (black color trace) tells that despite of the large range of current values the 

device can be operated over a very short range of gain values. The point is reinforced by 

the current vs gain plot in Figure 4-13, which shows that the device in gain saturation 

with respect to injection current from 50mA to 200mA. 

The behaviour of the device regarding the input saturation characteristics can be 

explained by considering gain response of the devices to bias current as shown in figure 

4-9. The device 21923 has a maximum of 20dB gain which is highest. The device 21256 

has approximately 14dB small signal gain.  The devices 21909 and 21934 with high Pin-

sat have small signal gain very low gain whereas the devices 21256 and 21923 have high 

and medium gain respectively. Looking into the input saturation characteristics of the 

four devices discussed above it looks like a trade-off between high input saturation 

power and high gains.  

A high gain device when compared to a low gain device either has a longer active region 

or smaller bandgap or both. Both of these parameters result in utilization of greater 

proportion of available charge carriers. That is why there is high gain even at low input 

power. However for the same reason of rate of emissions the same device will have low 

PinSAT at any specific current.  

We have also discussed that PinSAT of the high device does not increase with increasing 

the injection current (or the number of charge carriers). This is because the high gain 

device is designed in a way that a low power optical beam is able to utilize greater 

potential of the device. Therefore, injection of additional carriers, though increase the 

gain, do not increase the PinSAT.  

The device 21256 which is a medium gain device, has same PL wavelength as the device 

21923  but has shorter active region. Because of shorter active region single-pass gain is 

less than longer device. However high power beam would have greater single pass 

utilization there this device has higher PinSAT.  The PinSAT remains stable at -4dBm for gain 

values between 7dB and 15dB. It means that the gain can be varied within this range at 

constant PinSAT. without changing the PinSAT of the device. 

The two low gain devices 21909 and 21934 have short active region(600µm) and higher 

band gap. As a beam of light has little utilization of available charge carriers in this 

scenario, device has higher PinSAT at any specification current as compared to high gain 
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devices. Moreover, the PinSAT increases with the increase in injection current as the 

portion of charge carriers available for radiative recombinations increases.  

4.4 Summary and conclusions 

The chapter provides analysis of the parametric measurements on SOA. The chapter 

began with brief description of the experimental setup used for measurement. After 

that the basic parameters like gain, saturation power and injection current are 

discussed with regards to the measurement taken on a commercial SOA chosen 

randomly.  During these measurement it was found that any specific injection current 

the SOA can handle optical power only up to a limit called saturation power; using the 

SOA above saturation power the optical decreases.  

The gain of the SOA can be adjusted by adjusting the drive current. The effective 

dynamic gain adjustment through current is limited by reduction in the saturation 

power. 

Changing the drive current of the SOA, also changes the saturation power of the SOA. A 

strong signal cannot be amplified by SOA for a small gain. The adjustment of the gain 

through drive current is effective over very limited dynamic range and hence demand of 

being able to provide a gain with large dynamic range for a large signal power dynamic 

range are the characteristics of the amplifier are to be employed for power equalization 

of the packets’ optical power. 

To study this problem in detail, we took parametric measurements on four different 

commercial SOAs. The design parameters that differentiated the devices were the 

photoluminance wavelength -PL, length of active region and the quality of AR coating.   

The summary of conclusions from measurement on these four devices is present in the 

following points: 

 Length of active region is directly proportional to device gain. 

 High PL device has higher gain as energy gap is lower. 

 Gain of device is inversely proportional to signal wavelength when operated 

within the spectrum of the device.  

 Better AR coating enhances the gain. However we cannot relate the gain to the 

quality of AR coating at this as we do not have the correct figures to analyse 

from this perspective 

 The high gain and medium devices offer a region of operation where PinSAT 

remains constant for a large range of injection current. However through the 
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long range of injection current the variation of gain is low and offers a small 

range. 

 However for higher gain device, the stable PinSAT is very low (i.e. -12.5dBm) and 

is available only above 16dB gain values. Medium gain device has better PinSAT (-

4dBm) and is available when device is operated at small signal gain above 7dB. 

 Low gain devices have high PinSAT.  

 PinSAT in low gain devices increase with increasing gain and vice versa, and do 

not provide a region where the device could be operated at stable PinSAT with 

varying gain. 

From the analysis of the measurements taken on the 4 different SOAs, we realised that 

any of these commercial SOA can either have high PinSAT or high gain, but not both.  For 

example the SOA offering more than 20 dB gain has -12dBm Input saturation, whereas 

the device offering high input saturation power like 2 dBm has gain as low 8 dB. The 

SOA we need for the extended-reach GPONs is required to have high PinSAT and high 

gain, with PinSAT constant with gain. Unfortunately, all these features cannot be found in 

any single device so far.  
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Chapter 5: Bit Error Rate Analysis of System Using 

SOA 

5.1 Introduction 

In Chapter 4, we discussed the parametric measurements performed on a number of 

commercial SOAs using a continuous wave-CW probe. The main objective of 

measurements performed is a quantitative analysis of amplification response of an SOA 

towards variety of input optical power values, optical wavelength and amount of bias 

current. By performing measurements on number of different commercial SOAs, the 

dependence of device structure on the device behaviour was also analyzed. 

The saturation characteristics of SOA at high optical inputs, as discussed in the last 

chapter, suggest that the device can be used at optical power values less than the 

saturation power for a linear response. However, in this chapter we will study the 

effects of very low optical power values as well, on the fidelity of the signal.  

This chapter presents the analysis of optical signals’ distortion and errors added when 

amplified by an SOA. For this purpose, instead of CW probe an optical signal containing 

known information was amplified by the SOA and then compared with a copy of original 

information so the errors or distortion added by amplification process could be 

measured. Bit error rate analysis of digital signal is the best way to analyse the 

performance of the system the signal travels through. 

5.1.1 Bit Error Rate – BER 

Bit error ratio or Bit error rate - BER, by definition is the ratio of the number of bits or 

blocks received incorrectly by the receiver in a specific time period, to the total number 

of bits or blocks of data received. 

     
                                 

                             
                                   Eq 5-1 

BER is an important parameter with regards to fidelity of information and the 

performance of a data communication system. In mobile and wireless communication a 

ceiling BER of 10-3 is required, which means that one in a thousand bits could be 

erroneous.  For telephone the BER ceiling is 10-6. Optical communication is safe, fast, 

and reliable therefore a BER value of 10-9 is standard for an optical communication 

system. This means that only one erroneous bit in a billion bits is acceptable. By 

erroneous bit we mean receipt of logic one by the receiver whereas logic zero was sent 

and vice versa. The BER standard for optical communication is strict so that minor 

abnormalities, if occur could be detected and rectified. 
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5.1.2 SOA in Future Extended-GPONs 

Referring to our discussion in section 2.6.3, that for the purpose of implementation of 

extended-GPON standard, the number of users directly connecting OLT are to be 

increased to 128 and the OLT to ONU distance be increased from 20km to 60km without 

the need of any active components.  

 

Figure 5-1: Future extended GPON and the SOA – Target and tasks 

Figure 5-1 explains the problem and summarizes in the form of a procedural depiction 

the background  for BER analysis of SOA and as to why and how it can be improved in 

order to serve as amplifier infront of the splitter in the perspective of extended GPONs. 

As mentioned in the last step of the procedure chart in Figure 5-1, three kinds of 

analysis will be performed on an SOA in this chapter:  

- Effect of receiver sensitivity and SOA input on BER 

- Measurement of receiver’s sensitivity at BER = 10-9. 

5.2 Experimental setup for BER measurements  

In order to measure the effect of different conditions on the BER of the optically 

amplified system, a system of measurements was setup and measurements were taken 

in a wide variety of operational conditions. In this chapter we will discuss the results of 

the BER measurements performed on optically amplified system based on SOA and 

analyse the findings in the perspective of extended GPONs.  
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Figure 5-2: Experimental setup for BER measurements (will replace this figure with word art) 

The experimental setup for BER measurement is shown in Figure 5-2. The components 

and their purpose in the experimental setup are described below:  

- PRBS Generator: In order to simulate a real signal we used a pseudo random bit 

sequence or PRBS as main data signal. As PRBS is a chain of 1s and 0s, in an 

order which is pseudo random (i.e. not fully random) and is known bit 

sequence. Therefore it is possible to expect whether there should be a logic 

zero or one at any specific time at the receiver’s end.  

- Laser: 1550nm coherent laser source was used as optical carrier. 

- Mach-Zehnder Modulator: The PRBS data was modulated on to the carrier (i.e. 

laser) using Mach-Zehnder Modulator. This provided us with an optical data 

signal. 

- EDFA: It was observed that Mach-Zehnder modulator attenuates the signal by 

at least 5dB. If the signal power is not strong enough, a booster is used to bring 

the signal power to required level. We used an EDFA for one of the SOAs with 

higher PinSAT. The EDFA was also used to supply the SOA with a variable input 

power in addition to the variable attenuator.  

- WDM- Demux: It was observed that the EDFA had an undesirable noise peak at 

about 1520nm, which was not desirable. Therefore a WDM demux is introduced 

after the EDFA in order to allow only 1550nm signal into the SOA. 

- Mechanical Attenuator: A mechanical attenuator is used to emulate the 

attenuation suffered by signal on its way to the receiver. 
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- Coupler: A coupler placed in front of receiver divides the signal in to two equal 

parts. Half of the signal is converted into electrical signal by the receiver for 

error analysis and other half for the optical probe input of the oscilloscope. The 

coupler was used for two reasons: firstly because of mechanical attenuator it 

was difficult to find the exact optical power that was going into the receiver.  

Secondly because we wanted to look at the eye diagram of the signal in the 

optical domain. Splitting the output of the SOA into two equal parts enabled to 

simultaneously perform error analysis and the optical waveform viewing. 

- 10 GHz Lightwave receiver:  One output of the coupler was received by a 

10Gb/s optical receiver, which converted the signal to electrical for further 

analysis in the electrical domain.  

- Error Detector: An error detector is electronic equipment which compares two 

signals and counts the number of mismatched bits in a specific period of time. 

The electrical output of the receiver is given into the error detector for BER 

measurements. 

- Pulse generator: A single 10Gb/s pulse generator was used to provide 

simultaneous clock to PRBS generator, error detector and the optical receiver 

for the purpose of synchronization. All the measurements discussed in this 

chapter have been done using 10 Gb/s PRBS data. 

- Oscilloscope: A 10GHz oscilloscope with both electrical and optical input probes 

was used. The oscilloscope allowed us to view and analyse the eye diagram and 

the pattern of the optically amplified signal.  

- Optical Spectrum Analyzer- OSA:  An OSA was used to measure the power as 

well noise in the optical signal. It is pertinent to mention here that one of the 

outputs of couple was permanently given to receiver for error rate 

measurement. Therefore, the other output was occasionally viewed either on 

oscilloscope or OSA. The OSA was operated with a resolution bandwidth – RBW 

of 0.2 nm. 

 

5.3 BER Profile of the Signal Amplified by SOA at Receiver end 

5.3.1 Introduction 

 The SOA amplifies the signal but it also adds few undesirable features to the signal, 

increasing the minimum signal power required by the receiver to read the signal 

correctly. For instance, consider a receiver that is able to read the signal carried by 

5dBm optical signal directly coming from emitter. But if the same 5dBm signal is coming 
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from an SOA, the receiver may not be able to read the message because of the 

erroneous features added by SOA and would probably require higher signal power. 

The main idea behind these measurements is that the optical signal may go through 

attenuation or other losses after being amplified by the SOA on its way to the receiver, 

thus affecting the BER. In addition to other factors, the BER in SOA amplified systems 

might be affected by two very important parameters: 

i. SOA input signal power 

ii. The strength of amplified optical signal that reached the Receiver 

Study of SOA input power is important as it defines the mode of operation of the SOA. 

For a low input power there may be dominant noise effects whereas larger optical 

power may drive the SOA into saturation. In the next sections, we will study the role of 

these parameters in error rate of signal. 

 

We already discussed in the previous sections that perspective extended-GPONs is 

expected to have extended span between OLT and user. As the attenuation effects are 

directly proportional to length of fiber, the optical power that reaches the user will 

decrease in case of extension of span. BER of the signal received at receiver’s end 

describes the effects of both variation in SOA input power and the loss of signal 

strength due to both splitting and long span. 

 

As discussed, two variable attenuators are used in the measurement setup – signal 

power loss is emulated by a variable attenuator used in front of the receiver and the 

other one is placed in front of the SOA to vary the input SOA power. 
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5.3.1.1 Results - BER Response to Receiver Power 

 

Figure 5-3:  Receiver input power Vs. BER for different SOA input powers –Device 21909 

 

 

Figure 5-4: 1dB and 3dB PinSAT for device 21909 

The plots for SOA inputs of -25, -20, -15, -10, -5, 0, 5, and 10dBm are shown in Figure 

5-3. The device 21909 has been used for these measurements. Parametric 

measurements on the device were analyzed in Chapter 4.  Figure 5-4 is a trace of PinSAT 

vs drive current from Chapter 4 for the purpose of reference to the saturation points at 

150mA. Both 3dB and 1dB PinSAT curves are shown for comparison. For BER 
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measurements the device was driven at 150mA at which 1dB PinSAT is approximately 1.2 

dBm.  

We can see from the BER curves shown in Figure 5-3, that irrespective of the SOA input 

power, there is a general trend of very high BER (approx 10-1) at low receiver powers 

(LHS of the Figure 5-3 ). In general, low received power can refer to:  

- Either a very long span or other source of attenuation added to the signal 

before it was received or  

- Low output power of the SOA 

In the experimental setup we have used an attenuator after SOA which decreases the 

signal strength before it is received by the receiver. 

A serial digital optical signal is a series of optical pulses, with logic zero as zero power 

(ideally) and logic 1 as some finite optical power. When the received power is low, the 

logic zero and logic 1 level come very close resulting in decrease of extinction ratio. 

Even a minor fluctuation in this situation can result in logic 1 be received as logic 0 and 

vice versa. That is why there is generally a high BER at low received power values. This 

phenomenon is general and should hold for both amplified and non-amplified signal. 

The BER will remain high no matter the SOA input was high or low, if the optical power 

that finally arrived at receiver is low.  

However when the signal power received is increased, the BER decreases significantly. 

The behaviour can be observed from the right hand side of the plots for SOA inputs of -

25 through 0dBm.  The error floor seems to be significantly low for these curves.(error 

floor not shown in plot) 

When the received power is reasonably high, the extinction ratio is high and the 

receiver is able to adjust its threshold to an adequate level and therefore the probability 

of erroneous bits received becomes low as compared to low received power. In general, 

by increasing the received power the BER decreases. This conclusion remains true apart 

from the situation when the SOA is operated in saturation region. 

The saturated output of SOA if carries a signal to the receiver such that received power 

is reasonably high, there might still be high error rate. For 5dBm SOA input, though the 

error floor seems to be well below 10-10 the behaviour is different. This suggests that 

increasing the SOA input might increase the BER. This is further confirmed by the plot 

for 10dBm SOA input, which ceases to go below an error floor of 10-5. The observation 
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suggests that operating the SOA in saturation region might increase the error rate of the 

signal and this error cannot be removed by increasing the received power. 

From Figure 5-3, we can observe that for very high SOA input power, like 10dBm the 

BER does not improve beyond a certain value even if the received power is high. 

Referring to our analysis in last chapter and the Figure 5-4, the plot 5dBm and 10dBm lie 

in the saturation region of the device. This means that the signal received by the 

receiver is a saturated output of the SOA. The effect of gain saturation of SOA will be 

discussed in detail in later sections.  

It is interesting here to note that in parametric analysis of SOA in Chapter 4, we could 

not find any problem with saturation apart from the decrease of gain, and the SOA 

could still be used. However from BER analysis we have observed that saturation of gain 

is not the only problem in saturation region operation; increased BER due to saturation 

may also result in loss of information. 

5.4 Receiver’s Sensitivity Measurements  

5.4.1 The Receivers Sensitivity-Rx  

From previous section, we conclude that higher SOA input signal power, the BER is 

greater. In order to get a clear picture and to find the limits imposed on the output of 

SOA. Further experiments and measurement were taken in terms of maximum tolerable 

BER. As discussed in the Section 5.1.1, the maximum tolerable BER is normally taken as 

10-9. The light wave receiver requires that the optical signal should be strong enough to 

be received without errors or to keep BER to the minimum. There is a minimum level of 

optical power, which the optical signal must have in order to be received by the receiver 

with BER equal to or less than 10-9. This minimum acceptance level of received power 

refers to receiver sensitivity – Rx.  

It is important to mention here that for a situation where high receivable power is 

required by the receiver, conventionally the sensitivity is said to be ‘Low’; and similarly 

if a low optical power can keep the minimum BER, the receiver sensitivity is said to be 

‘High’. In other words, the receiver sensitivity Rx is a receiver’s response-parameter to 

the incoming signal. A high sensitivity would mean a good response and receiver’s good 

ability to receive error free (or minimum BER) data carried by even a low optical power 

signal, and vice versa.  

Receiver sensitivity is important as it defines the span the signal can travel in the fiber 

before being received. High sensitivity (i.e. low power required) would facilitate longer 
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spans and accommodate channel. The optical signal amplified by SOA is expected to 

effected by two major factors 

1. Saturation 

2. Signal Noise 

As discussed in previous chapters, the saturation of SOA occurs when the signal power 

exceeds a certain level. Hence the saturation affects the signal’s BER at high SOA input 

power results in higher receiver power requirement.   

Optical signal to noise ratio – OSNR is another important parameter which plays an 

important role in the estimations of errors and sources of errors in the optical 

transmission system. Noise normally influences at low power where OSNR is very low. 

We took optical power measurements from OSA in decibel scale. The signal power and 

noise can both be visually measured in decibels. However noise adjustment and 

estimation of OSNR cannot be done directly from the decibel measurements, since 

subtraction and addition in decibel refers to division and multiplication in linear scale. 

Because noise is added to the signal, we need to convert the observed siglnal power 

and the noise measurement into linear scale, subtract the noise from the observed 

signal power and then convert it back to decibels. This way we will get the noise 

adjusted power. Mathematically 

             
                                  

                              
 

Equation 5.1 

 

                                                           

Equation 5.2 

The same setup as discussed Section 5.2 and shown in Figure 5-2 was used to perform 

the receiver sensitivity measurements. At any specific drive current, the input to the 

SOA was varied using an EDFA. The variable attenuator between the receiver and the 

SOA was used to adjust the optical power to a level that offer a BER value of 10-9.  This 

procedure was repeated for several drive currents. 

5.4.2  Sensitivity Measurements: Results and Discussion 

Figure 5-5 shows the results for selected currents. We can clearly see a parabolic profile 

of the graphs, which is consistent with our discussion in Section 5.4.1 . In general all the 

graphs show a specific trend, i.e.: 
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 At low SOA input power, higher receiver power is required to keep BER to a 

minimum.  

 In the middle portion, the required receiver power is lowest. This is the desired 

behaviour where the required BER level can be achieved with minimum receiver 

power or highest sensitivity. 

 At high SOA input powers, the high receiver power is required to achieve the 

required BER of 10-9. This means receiver sensitivity is low if the SOA input is 

increased. The effects of not decreasing the sensitivity of the receiver will be 

high BER. 

 

Figure 5-5: SOA Input Power Vs Receiver sensitivity device 21909 

There trend can be observed when we compare the curves for different currents. 

Following observations can be made from the plot: 

 Effect of current at low SOA input power value: From LHS of figure we can 

observe that at low input power where receiver sensitivity is generally low, the 

sensitivity for high current is even lower than the small current value. This is 

because of higher charge carrier density and lower amount of stimulated 

emissions as the input power is low, and as a consequence the ASE becomes 

dominant. That is the reason that a lower current results in comparatively 

better sensitivity at low input power as the superfluous carriers are lesser in 

number. 

 

 Effect of current at medium input power where sensitivity is generally higher: 

Middle part of sensitivity curve is where SOA input is neither very low nor 

saturated. The sensitivity in this part is generally higher for all currents. 
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However for higher current values the sensitivity is better than the lower 

current. This is because higher input power with higher carrier density results in 

higher amount of stimulated emissions, (provided the device is not saturated) 

and the signal is less affected by high current noise as OSNR becomes higher.  

 

 Effect of current at high input power where sensitivity is generally decreased: At 

high input signal power the SOA is normally saturated.  

 Effect of current in general on the sensitivity: In general, the receivers sensitivity 

bowl become narrower for high current i.e. the region of operation or high 

sensitivity get narrower with increase in drive current. However the level of 

highest sensitivity in the middle also improves with increase in current. So it is a 

trade off between increasing the best sensitivity and widening the region of 

operation.  

For a better and clearer picture, 100mA curve from Figure 5-5 is redrawn in Figure 5-6. 

Gain and OSNR are also plotted with respect to input current in same graph. The 

purpose of adding gain and OSNR traces to the plot is to analyse their effects on the 

receiver sensitivity. The effect of OSNR in small SOA input power values and the 

saturation effects on high SOA input values have already been discussed a number a 

time in this chapter.  Therefore, very briefly we discuss the picture the plots present 

when combined. 

 

Figure 5-6: Receiver Sensitivity, Gain and OSNR - all as function of SOA input power for device 21909 
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As we can see in the Figure 5-6 that the OSNR is increasing with the increasing signal 

power. Therefore the system noise has comparatively minor impact on the receiver’s 

sensitivity at high SOA input power values. In fact, the OSNR gets even higher when the 

sensitivity starts decreasing again; hence there is no or little evidence of involvement of 

noise on the fall of receiver sensitivity on right hand side of curve or at higher SOA input 

power.  

However, in the same figure we can see that it is the saturation region of the SOA 

where the sensitivity of receiver rises again after touching the minima. Therefore there 

is more probability that SOA gain saturation is the main factor causing BER to increase 

thus imposing higher optical power requirement for at receiver’s end. 

5.4.2.1 1dB saturation 

From Figure 5-4 we can see that 1dB PinSAT for the device 21909 is between -1.5 and 

2dBm, whereas 3dB PinSAT is between 4 and 6.5 dBm for this device. It may be 

interesting to note from Figure 5-5 and Figure 5-6 that the fall in sensitivity is 

approximately in the 1dB PinSAT range, and when the SOA input power is increased to 

3dB PinSAT level, the sensitivity drops considerably. Hence 1dB PinSAT seems to appear as a 

potential candidate to replace 3dB saturation threshold in the analysis of SOA in optical 

communications system from the perspective of error analysis. In addition the results 

justify our choice of 1dB saturation point for parametric analysis in Chapter 4. 

5.5 Power Penalty in system using SOA 

Power penalty refers to additional power required by a receiver to keep BER value at 

certain required value in a changed scenario. Mathematically power penalty is a ratio 

and has no linear units if the power is assessed in linear units and dB if power units are 

decibel.  

For linear units 

               
  

  
  

    

  
 

Equation 5.3 

And in dB 

                                  

Equation 5.4 

Here P1 is power required in good conditions when the receiver sensitivity is high and 

less power is required. P2 is the power required in changed scenario. P is the 

additional power imposed by changes in the system or environment.  
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For instance, a receiver requires the signal power to be 0.5mW in order to be received 

with a BER of 10-9. Suppose there are changes in the system that adds noise or other 

effects e.g. SOA saturation etc. Under these conditions, the BER increases and in order 

to keep BER low, the signal power has to be increased to 0.75mW. The ratio by which 

the power has to be increased is the power penalty imposed by the new condition and 

is equal to (0.75mW)/(0.5mW) = 1.5, i.e. a 50% increase in signal power required to 

keep BER low.   

 

Figure 5-7: Mask mode view of the eye diagram of the optical signal with overshoots 

 

Figure 5-8: Signal Overshoot captured on Oscilloscope. Scale x-axis: one division =20ps, y-axis: 1 
div=579µw 

In SOA amplified transmission gain saturation imposes a power penalty due to optical 

power wasted in signal overshoots. In digital transmission for logic zero level there is 

ideally zero power, and practically very little optical power carried by the signal. Thus 

even if the device is in saturation, the zero segment of the wave will be in small signal 

region. So zero level will not be affected by the saturation. However when the signal 

changes from zero to one, the device again goes into saturation and the gain has to go 

down. But the device is not able to switch the gain very quickly, so the signal power 

rises first as if it has the same small signal gain, but then quickly comes down to the 

saturation regions gain. This going up and down is called overshoot. Figure 5-7 shows a 
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mask mode view of the signal in saturation where Figure 5-8 is the pattern locked snap 

of the same signal captured from oscilloscope. The overshoots are clearly visible in both 

pictures. As the SOA will not be operating in the upper gain regions anyway, the power 

consumed in going up and down is a waste of power, and same amount of additional 

power will be required to accommodate this loss. 

There are also visible minor undershoots, when the signal changes from 1 to 0. This has 

the same explanation as for the overshoot. The system while in logic 1 state or high 

incident population state is adjusted to decreased emission amplitude in order to keep 

the equilibrium. When the level of signal changes to low power level, the system treats 

the signal with the same response as it was treating the high power, thus there is low 

power output initially. However later on, low power resulting in lesser stimulated 

emissions, initially gives way to increased availability of carriers, and adjust accordingly 

toward the equilibrium at some  level a bit higher than the undershoot.  

Undershoots are very small as compared to overshoots. There are a number of reasons 

that can explain this difference; one reason for this behaviour is that the system is in 

saturation region, and decrease in power means a decrease in saturation level, and thus 

the system will be able to adjust easier than the overshoot. Another reason is presence 

of spontaneous emissions which does not let the output go down.  

After explaining the causes of overshoots, let us consider the different overshoots 

shown in Figure 5-8  (a, b). We can see that the size of overshoot is not the same for all 

transitions. The overshoot for a transition from ‘zero’ to ‘one’ level after multiple 

continuous ‘zeroes’ is bigger than the one that comes after single or less number of 

zeros. That means if signal level is low for longer time and then transits to higher level 

there will be bigger overshoot, and if it remains low for smaller time, the overshoot is 

smaller.  

For high power, (logic 1), in saturation region, the SOA is adjusted in a state of 

equilibrium which is suited for very high number of photons. When the signal changes 

to lower level (logic zero) the new state has to be developed in order to entertain the 

less number of photons. The system keeps adjusting itself toward to the best possible 

equilibrium state for the current low power. Therefore, the situation of remaining low 

for a single logic zero is different from remaining low for more continuous zeros.  

This is the reason that when there is logic one after small number of zeros, the 

overshoot is smaller, and when it comes after large number of zeros, the overshoot is 

bigger. Now the effect of remaining at logic zero is not seen on the graph. This is 



63 

 

probably because of the spontaneous emission which hides the effects and adds power 

to low level. 

The vertical widening of power level for logic ‘1’, affects the eye opening and the 

decision level. This imposes severe restrictions on the signal power resulting in extra 

power needed, which is understood as power penalty due to loss of extinction ratio.  

Loss of extinction ratio can occur due to noise as well as gain saturation.  

5.6 BER analysis conclusion 

BER analysis of SOA-amplified signal suggests that contrary to the linear regime findings 

in parametric analysis, operating the SOA at very low signal power values is also not 

suitable because of high BER caused by noise. In saturation region the error analysis 

appears to be in-line with the findings of parametric analysis of SOA amplified system. 

The BER of the system increases as SOA enters the saturation region. As a result the 

sensitivity of the receiver drops. However, the drop in receiver’s sensitivity can be 

accommodated by increasing the receiver’s power as long as the error floor is below 10
-

9.  Referring to our discussion in Section 5.3 and Figure 5-3 very high signal power might 

result in complete sensitivity loss as the error floor goes rises significantly close to 10-9. 

Therefore the region of operation is a medium range of signal power values that lies 

between noise affected low values and saturation affected high values. 

The error rate measurements presented in this chapter are for a low gain device which 

has a higher PinSAT. The input dynamic range appears to be between -20 and -0dBm 

(including the region where there is minor loss of sensitivity). Receiver’s best sensitivity 

is around -20dBm available between -15 and -1dBm SOA input signal power. This range 

is available for 9dB SOA gain as this SOA has low gain. The behaviour for a high gain SOA 

can be perceived from these results. The high gain SOA e.g. 21923 can offer around 

23dB gain as discussed in parametric measurements in Chapter 4. High gain can help 

reaching users further apart from the SOA. However, with high optical, the same device 

has PinSAT of about -12dBm, which is very low. As the sensitivity starts dropping at 1dB 

PinSAT, we can expect that the higher edge of high sensitivity input range for this high 

gain device might be 10dB lower than the low gain device discussed in this chapter (i.e. 

21909), which might narrow the dynamic input range of the device.  
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Chapter 6: Conclusions and future work 

6.1 Summary & conclusions  

The discussion presented in this thesis is based on the measurements and analysis of 

SOA for its suitability as in-line amplifier in future extended-GPONs. In order to extend 

the reach and number of users of current GPON structure, an optical amplifier is 

required to be installed in front of burst mode receiver, that can not only provide a high 

gain but should also be able to switch the gain level according to the size of incoming 

data burst so that all the busts can be amplified to similar size as per requirement of the 

burst mode receiver. An SOA with a very high recovery speed makes a potential 

candidate for this application. However the SOA has its own limitations. Strong signals 

that need very little gain, cannot be amplified with SOA as the SOA when operated at 

low gain regime, suffers a low saturation power, and the signal power might be greater 

than the saturation power. From this perspective, parametric and error rate 

measurements were performed and discussed in this thesis in order to make a basis for 

the further investigations on prospects of future employment of SOA in extended 

GPONs. 

The first set of experiments on system using SOA was parametric measurements using a 

CW laser on a number of high and low gain commercials SOAs. The high gain devices 

(i.e. approx 25dB) appeared to have a comparatively low PinSAT (approx -12dB) thus 

limiting the ceiling for SOA input. In addition the high gain devices have small range in 

which the gain could be varied using drive current. On the other hand, the low gain 

devices (i.e. 9dB approx) have higher PinSAT (-1 to 0dBm) allowing the input range to be 

greater. However the low gain remains a barrier.  

 The second set of experiments is concerned with the bit error rate analysis of the 

optically amplified system using SOA. In these experiments a 10 GHz PRBS signal is 

amplified using SOA and compared with original signal in order to find the rate of bit 

errors added by system amplified by SOA. The initials measurements on different SOA 

input power values showed that for high input power values (e.g. 5 or 10dBm) the error 

floor remains very high thus suggesting that SOA should not be operated at very high 

signal power, as the error rate cannot be decreased by increasing received power. Low 

signal powers like 1dB and below seemed to be suitable as the error floor seemed to be 

well below 10-9 for these inputs.  
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The parametric measurements in Chapter 4 suggest linear operation at low SOA input 

power values. However the error analysis shows at very low signal power values the 

noise dominates and results in high BER.  

Therefore at very low and very high signal power values the SOA amplified system has 

very low sensitivity. Hence the best range of operation for SOA input is medium range 

where the SOA suffers neither a low OSNR nor saturation. The width of SOA input range 

of operation for a low gain (i.e. 9dB) SOA is about 20 dB (i.e. -20 to 0dBm). The ceiling of 

this range is defined by the PinSAT. The PinSAT for high gain device (i.e. 21923) is -12dBm 

which very low, and hence upper limit of SOA input might be lower than the low gain 

device. Therefore a trade off is expected between input dynamic range and high gain 

while switching between high and low gain SOAs.  

6.2 Possible solutions  

From the analysis in this thesis it seems that the SOA has the capacity to fulfil the 

requirements as an amplifier for extended GPONs. However the limitations imposed by 

the SOA’s natural response need to addressed and eradicated. Saturation at high power 

is a characteristic of SOA that cannot be removed. In normal operation a higher 

saturation power can be acquired but is only available to high gain, whereas low gain is 

possible only with low saturation power. Experiments were performed on different 

devices, and the results concluded that the required characteristics like high and stable 

saturation power, wider control over gain and higher dynamic range etc can be easily 

found in these devices. However all of these characteristics cannot be found in a single 

device and a trade off is always required.  

Adjustable gain clamped SOA – AGCSOA: Low Gain with high saturation power can be 

achieved by gain clamping. In gain clamping the SOA is kept at high current so that the 

saturation power is high providing large signal dynamic range. Instead of drive current 

the gain is decreased or clamped to a lower level through some lasing technique. Thus 

through gain clamping a low gain level can be achieved without compromising over the 

high saturation power.  

 

The GCSOA still lacks the ability to adjust the gain. Most of the GCSOA techniques were 

based on either fixed structure (monolithic fabrications e.g. [129]) or in some cases 

physically quantized adjustable clamping level control parameters (e.g. reliance on fiber 

grating etc )., and thus limiting the speed with which the gain can be adjusted.  



66 

 

The handicap can be addressed through the dynamic adjustments of the clamping level 

of GCSOA. The idea is  known as Adjustable GCSOA or AGCSOA [114]. In AGCSOA, the 

SOA is driven at fixed current, and the gain is clamped through the lasing mode 

resonating in the opposite direction. This lasing mode is provided by another SOA, with 

adjustable drive current. So in short, in AGCSOA, the gain of an SOA is controlled 

through the drive current of another SOA, which is connected to the main SOA in a ring 

cavity. AGCSOA has proved to provide a wide input dynamic range for a wide gain 

dynamic range at the same time. 

However the AGCSOA still has to refine as it lacks the ability to integrate. The AGCSOA 

uses isolators to avoid back reflections. These isolators are optical components that are 

difficult to integrate. 

Multi-section SOA is designed that deal with gain and PinSAT separately. 

Multiple SOAs: High gain and high PinSAT SOAs used in parallel and the incoming signal is 

passively let go by low gain device and be amplified by high gain device. A coupler can 

be used to divide the SOA input into e.g. 1:7 or similar ratio, with smaller portion 

amplified by high gain SOA and bigger portion by the high PinSAT device.  

6.3  Suggestion for future research projects 

 Power penalty measurements based on methodology presented in this thesis 

can be done to find the exact losses due noise and saturation by measuring the 

amount of overshoots and power loss in extinction ratio. 

 Follow up of the BER, sensitivity and power penalty analysis to be performed on 

AGCSOA. 

 RLC circuit modelling of SOAs: The overshoots and recovering to equilibrium 

level is similar to over damped or critically damped RLC circuit response. 

Discrete electronics components are easy to manage and are inexpensive.  

 Parametric and BER measurements on a compound amplifier i.e. multi-section 

or AGCSOA [71, 114]. 

 The amount of attenuation and other effect can be simulated for exactly 60km 

fibers by modifying parameters for required solution.  
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