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Abstract

Today the water industry faces a huge challenge in supplying a sustainable, energy efficient

and safe supply of drinking water to an increasing world population. Slow sand filters (SSFs)

have been used for hundreds of years to provide a safe and reliable source of potable drinking

water, with minimal energy requirements. However, a lack of knowledge pertaining to the

treatment mechanisms, particularly the biological processes, underpinning SSF operation,

has meant SSFs are still operated as “black boxes”. This lack of knowledge pertaining to the

underlying ecology and ecophysiology limits the design and optimisation of SSFs.

This thesis represents the most comprehensive microbial community survey of full-scale

SSFs to-date. Using traditional microbiological methods alongside up-to-date molecular

techniques and extensive water quality analyses, specific taxa and community metrics are

linked to changes in water quality production. Furthermore, it has been verified that laboratory-

scale SSFs can mimic the microbial community and water quality production of full-scale

filters. This allowed rigorous experiments pertaining to operational differences, pathogen

and novel contaminant removal to be performed. This has revealed, for the first time, that

multiple trophic interactions within SSFs are integral to optimal performance.

This thesis has shown that SSFs are phylogenetically and metabolically diverse systems ca-

pable of producing high quality water, with the ability to adapt to remove novel contami-

nants. Using the information gathered, improvements to filter maintenance and operation

can be achieved. Future work will apply the microbial and macrobial community dynam-

ics and impact of novel contaminants on filter performance discovered in this thesis into

predictive models for water quality.
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Chapter 1

Introduction

“Simplicity is the ultimate sophistication.”

Leonardo da Vinci

The requirement for access to safe drinking water is a basic human right [United Nations

General Assembly, 2010] and an important factor contributing to a decrease in morbidity and

mortality in developing countries [Van Leeuwen, 2000]. This, alongside the dissipation of

fossil fuels and the harsh economic times currently faced by the world motivate the search for

energy-efficient water treatment technologies which meet stringent drinking water standards.

Therefore, there is a great necessity to adopt a water treatment scheme that meets these

requirements.

1.1 Drinking Water Purification

Water purification is the process of removing undesirable chemicals, biological contami-

nants, suspended solids and gases from contaminated water. The goal is to produce water

fit for a specific purpose. Most water is purified for human consumption (drinking water),

but water purification may also be designed for a variety of other purposes, including medi-

cal, pharmacological, chemical, horticultural and industrial applications. It is also important

to emphasise that access to adequate sanitation and water are inextricable, with each ex-

acerbating the other, with water scarcity often being a problem of water quality as well as

quantity [Bauer, 2004]. Water quality is, in essence, an issue of sanitation that occurs from

the widespread presence of contaminants in our waterways. There are many sources of such

contaminants, however, most are caused by human activities, such as:
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1. Discharge of untreated sewage containing chemical wastes, nutrients, and suspended

matter. Discharge includes direct input from animals or open sewage sources as well

as leakage or poor management of sewage systems.

2. Industrial discharge of chemical wastes and byproducts.

3. Surface runoff from agriculture, construction sites, and mines, which result in the re-

lease of pesticides, herbicides, fertilisers, petroleum products, and heavy metals.

All or a combination of such pollution events lead to the following contaminants, which have

significant issues for human health, wildlife or the environment:

• Enteric bacteria: e.g. Escherichia coli - E.coli;

• Heavy metals;

• Organic and synthetic compounds;

• Pesticides;

• Pharmaceutical compounds;

• Protozoan parasites: Cryptosporidium and Giardia;

• Viruses.

1.1.1 Regulating Drinking Water Quality in the UK

All drinking water in the UK, whether from public supplies or other sources, has to meet

strict quality standards laid down in UK regulations derived from the EU Drinking Water Di-

rective (98/83/EC). This directive sets out standards for a wide range of chemical, physical

and microbiological parameters and a system for how best to monitor these parameters (Stan-

dard Methods regulated by the International Organisation for Standardisation). The directive

is reviewed at least every five years by the European Commission in order to take account

of changes in the World Health Organisation (WHO) guidelines. Briefly the directive states

that drinking water must be ”wholesome and clean: free from any micro-organisms and par-

asites and from any substances which, in numbers or concentrations, constitute a potential
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danger to human health.” [European Union Council Directive, 1998]. In the UK these re-

quirements are strictly followed, with some parameters being more stringent than defined by

the directive, reflecting the high standard of water supplies in the UK.

1.1.2 Drinking Water Purification Methods

Generally, the treatment of drinking water takes place in several steps to remove dissolved

and suspended solids, often involving a combination of physical (filtration, sedimentation,

ion-exchange and distillation), biological (slow sand filtration, biologically active carbon)

and chemical (flocculation, chlorination, ozonation and UV treatment) methods. The com-

bination of purification methods used depends upon the source of the water to be purified,

economic constraints and demand, with ground water (aquifers and water locked away in po-

lar caps and glaciers) requiring less purification than surface water (lakes, rivers, reservoirs

and impoundments).

Typically in the UK the source used for drinking water comes from surface or ground water

aquifers. In order to make it fit for human consumption it is impounded in large reservoirs,

with residence times of 3-4 weeks, where there is some self-purification from sunlight, and

from settling of particulate matter and attached bacteria. This is then normally followed by

storage in an additional sedimentation basin after adding a flocculent or coagulant, and then

rapid filtration through sand (depth ranging from 0.4 to 1.2 m) to remove micro-organisms

and turbidity. The pH of the water is then adjusted and disinfected with chlorine before

being sent to the consumer via the water distribution network (Figure 1.1). It should be

stressed that these processes are all extremely energy intensive. For example 4% of the

energy consumption in the United States in 2009 was used for drinking water purification

[U.S. Environmental Protection Agency, 2009a], a process which releases 52 million metric

tonnes of CO2 a year [McMahon and Price, 2011]. There are less energy intensive and carbon

rich solutions which could be adopted and must be explored as the above mentioned energy

consumption is predicted to rise by 50% to 6% by 2020 if less energy intensive purification

methods are not implemented [Spellman, 2013].
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1.2 An Inexpensive and Less Energy Intensive Solution

For over 200 years, slow sand filtration has been used as an effective means of treating wa-

ter for the control of microbiological contaminants, particularly for small community water

supplies. However, such systems lost popularity to rapid sand filters which have smaller land

requirements and are less sensitive to temperature and water quality variations [Huisman

et al., 1974]. In recent years, there has been renewed interest in slow sand filter application,

particularly because these systems do not require chemicals or electricity to operate and yet

can achieve a high level of treatment. Additionally, unlike other purification methods, slow

sand filters (SSFs) are relatively simple and easy to operate. It should however be stressed

that this does not mean the processes involved are simple or less complex, just that they are

not fully understood.

Several microbiologically mediated purification mechanisms (e.g., predation, scavenging,

adsorption and bio-oxidation) have been hypothesised or assumed to occur within biofilms

that form in the filter, but have never been comprehensively verified [Huisman et al., 1974,

Ellis and Wood, 1985, Haarhoff and Cleasby, 1991, Fogel et al., 1993, Lloyd, 1996, Bahgat

et al., 1999]. Such a gap in knowledge pertaining to the ecology and potential of SSFs to

remove various pollutants has and will continue to hamper advances in the design and opti-

misation of slow sand filters.

Initially the role of biological purification within slow sand filters was hypothesised and was

largely based on empirical observations [Huisman et al., 1974, Baker and Taras, 1948]. Since

then, most SSF research and development has always assumed that “biological purification”

would occur and focussed on: (a) pre-treatment methodology (particularly for application in

developing countries) [Bellamy et al., 1985, Weber-Shirk and Dick, 1997b, Dorea, 2013];

(b) process development, performance and modelling [Ojha and Graham, 1994, Campos

et al., 2002, Sadiq et al., 2004, Campos et al., 2006]. Some work has also been carried out

on the ecological aspects of biological treatment; however much of this has been based on

hypothesising about the biological treatment offered by SSFs, treating them as engineered

“black boxes”. As reviewed in Haig et al. [2011] there have been a number of studies which

have attempted to characterise the purification mechanisms and the microbes responsible

for them; however such studies have suffered from limitations in the approach or of the



CHAPTER 1. INTRODUCTION 21

techniques availability. Even recently, many of these investigations have been limited by a

focus on specific elements of the filter, such as the schmutzdecke (from the German “dirt

layer” a complex biological layer formed on the top of the SSF bed) [Campos et al., 2002,

Rooklidge et al., 2005, Unger and Collins, 2008], or on specific biological processes, such

as denitrification [Aslan and Cakici, 2007] and predation [Weber-Shirk and Dick, 1999].

Furthermore, most research so far has been limited to the microbes (and their associated

processes) that could be cultured using traditional microbiological techniques; the role of

uncultivable microorganisms has yet to be determined. Apart from one study [Calvo-Bado

et al., 2003], the microflora of these filters has never been studied and their individual roles in

purification never determined. One of the main limitations of these studies is that they have

been performed in laboratory-scale microcosms with carefully controlled parameters and

hence are not necessarily representative of the complex and diverse microbial community

that full-scale biological systems are believed to support. New techniques to understand

microbial ecology could address many of the limitations identified thus far.

1.3 Understanding Microbial Ecology

The term ecology comes from the Greek oekologie meaning “the study of the household of

nature” and was first coined in 1866 by the German scientist Ernst Haeckel to explain the in-

teractions between microbes and their environment [Konopka, 2009]. Therefore the primary

goal of ecology is to measure, understand, and predict biodiversity and functional diversity

of an ecosystem. Historically, ecological studies were performed in laboratory-scale micro-

cosms to answer questions like: how are ecosystems assembled and how do species that

make up a community arrive, survive, interact and succeed in a community? [Purdy et al.,

2010]. However, understanding and answering these questions was extremely difficult and

only really made possible in the 1950s when advances in molecular microbial ecology (Fig-

ure 1.2), such as the development of the polymerase chain reaction (PCR) were made. PCR

made it possible for the first time to directly interrogate the genetic information of individual

microorganisms and entire communities. This led to developments in obtaining and working

with mRNA which have revolutionised the ways in which functional genes are determined.

Further, microautoradiography coupled with fluorescence in situ hybridisation (FISH) and

stable-isotope probing (SIP), makes it possible to detect the function of particular genes in
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the community.

From the perspective of SSFs, such advancements place scientists and engineers at a juncture,

which will allow them to answer both the traditional microbial ecology questions regarding

community composition and assembly but also more complex questions pertaining to how

to manage the SSF microbial community to improve performance and pollutant removal

capabilities. Such understanding will allow slow sand filters to be designed and operated in

a tailored manner, specific to water quality needs and requirements.

1.4 Thesis Statement

In order to improve the operation and design of slow sand filters, a greater understanding

of the microbial community and the processes they perform is required, alongside determin-

ing the capabilities of these filters to remove new pollutants. This thesis will address the

following questions:

1. Which microorganisms are present in full-scale industrially operated slow sand filters

and what roles do they perform?

2. Does the microbial community structure change temporally and spatially in SSFs?

3. Can a laboratory-scale slow sand filter be constructed to mimic the performance and

microbial community of full-scale industrially operated slow sand filters?

4. What is the impact of light on the microbial community and filter performance?

5. Which mechanisms are responsible for the removal of the human pathogen E.coli in

slow sand filters?

6. How effective are slow sand filters at removing estrogen and can their performance be

improved by bioaugmentation?

1.5 Publications

Journal Papers
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• S. Haig, G. Collins, R. Davies, C. Dorea, and C. Quince. (2011). Biological Aspects

of Slow Sand Filtration: Past, Present and Future. Water Science & Technology: Water

Supply, 11 (4):468-472

• S. Haig, C. Quince, R. Davies, C. C. Dorea, and G. Collins. (2014). Validating the

Performance and Microbial Community of Laboratory-Scale Slow Sand Filters with

respect to Full-Scale Industrial Filters. Water Research, 61: 141-151

• S. Haig, C. Gauchotte-Lindsay, G. Collins, R. Davies, and C. Quince. (2014). Progress

in Slow Sand and Alternative Biofiltration Processes: Further Developments and Ap-

plications., Chapter 28: Bioaugmentation Reduces the Negative Effect of Estrogens

on Coliform Removal in SSFs. IWA Publishing

• S. Haig, M. Schirmer, R. D’Amore, J. Gibbs, R.L. Davies, G. Collins, and C. Quince.

(2014). Stable-Isotope Probing and Metagenomics Reveal Predation by Protozoa Drives

E.coli Removal in Slow Sand Filters. Accepted by ISME Journal

• S. Haig, C. Quince, R. Davies, C. Dorea and G. Collins. Spatial and Temporal Mi-

crobial Community Analysis Identifies Functionally Relevant Microbes for Slow Sand

Filter Performance. Under review in mBio

• S. Haig, A. Sewell, U.Ijaz, R. Marquez, G. Collins, C. Quince and C. Gauchotte-

Lindsay. BODIPY Fluorescent Tagging of Emerging Contaminants for Rapid Isolation

of Degrading Microbes. In preparation

• S. Haig, C. Gauchotte-Lindsay, G. Collins and C. Quince. Bioaugmentation Mitigates

the Impact of Estrogen on Coliform-Grazing Protozoa. In preparation

Conference Publications

• S. Haig, G. Collins, R. Davies, C. Quince and C. Gauchotte-Lindsay. Bioaugmenta-

tion Reduces the Negative Effects that Estrogen Exposure has on the Pathogen Re-

moval Capacity of Slow Sand Filters. Presented at the 15th International Society for

Microbial Ecology (ISME) Conference, Seoul, Korea, August 2014. [Poster]

• S. Haig, G. Collins, R. Davies, C. Quince and C. Gauchotte-Lindsay. Bioaugmentation

Reduces Negative Effect of Estrogens on Coliform Removal in SSFs. Presented at the
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International Slow and Alternative Biological Filtration Conference, Nagoya, Japan,

June 2014. [Talk]

• S. Haig, G. Collins, R. Davies, and C. Quince. Exploring Coliform Removal in Slow

Sand Filters using DNA-SIP Coupled with Metagenomics. Presented at Microbial

Ecology in Water Engineering (MEWE), Ann Arbor, USA, July 2013. [Talk]

• S. Haig, G. Collins, R. Davies, and C. Quince. Pathogen Removal in Slow Sand Filters

as Revealed by Stable Isotope Probing Coupled with Next Generation Sequencing.

Presented at the 14th International Society for Microbial Ecology (ISME) Conference,

Copenhagen, Denmark, August 2012. [Talk]

• S. Haig, C. Dorea, G. Collins, R. Davies, and C. Quince. Validating Laboratory Slow

Sand Filtration Studies Through Water Quality and Molecular Analysis. Presented at

Particle Separation, Berlin, Germany, June 2012. [Talk]

• S. Haig, G. Collins, R. Davies, C. Dorea, and C. Quince. Biological Aspects of Slow

Sand Filtration: Past, Present and Future. Presented at UK National Young Water

Professionals, Edinburgh, Scotland, April 2011. [Best Poster Prize]

1.6 Outline

This dissertation is structured as follows:

Chapter 2 presents a detailed literature review, summarising the various aspects of SSFs

including the fundamental theory, design, operation, maintenance and previous studies.

Chapter 3 presents a detailed review of the molecular techniques that are deployed to un-

derstand microbial communities.

Chapter 4 presents molecular (qPCR and next-generation sequencing) and water quality

analysis of two full-scale industrially operated slow sand filters which were sampled peri-

odically for eight months. This analysis links various water quality parameters to specific

organisms and demonstrates both temporal and spatial changes in the microbial community,
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providing unprecedented insight into the organisms that reside in real filters.

Chapter 5 presents the design, construction and operation of laboratory-scale slow sand fil-

ters. This chapter describes a proof-of-concept laboratory-scale unit which accurately mimic

full-scale industrially operated filters in terms of both water quality and microbial consortia.

The work in this chapter is a prerequisite for the subsequent work, demonstrating that find-

ings in the following chapters are relevant and applicable to industrially operated filters.

Chapter 6 uses the laboratory filters described in Chapter 5 to examine the effect of light

on slow sand filter performance and its microbial community; from an engineering perspec-

tive, this is to determine if there are differences between covered (used in the Netherlands)

and uncovered filters (used in the UK and USA). This chapter further examines how the

pathogen E.coli is removed by deploying stable-isotope probing (SIP) in combination with

metagenomics. Information obtained from such work could help improve the operation of

SSFs in the future.

Chapter 7 uses the laboratory filters described in Chapter 5 to explore the ability of slow

sand filters to remove natural estrogens (estrone, estradiol and estriol), which have been

newly designated by WHO to be harmful to wildlife and human health and recently added to

the EU Drinking Water Directive (98/83/EC). Further, this chapter explores the possibility of

improving estrogen removal by bioaugmentation with three estrogen metabolising bacteria

(obtained via enrichment culture from the industrial SSFs discussed in Chapters 4 and 5).

Chapter 8 explores the deleterious effects of natural estrogens on different protozoa species,

providing a potential reason for the reduced coliform removal ability observed in Chapter 7.

Chapter 9 provides a summary of the contributions and findings of this dissertation and

explores avenues for future work.
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Chapter 2

A Review of Slow Sand Filtration

“In every glass of water we drink, some of the water has already passed through

fishes, trees, bacteria, worms in the soil, and many other organisms, including people...

Living systems cleanse water and make it fit for human consumption.”

Elliot A Norse, (Animal Extinctions)

For over 200 years slow sand filtration has been an effective means of treating water for the

control of microbiological and chemical contaminants in both small and large community

water supplies [Huisman et al., 1974, Haig et al., 2011]. However, due to advancements in

engineering, various other methods, which require less land area, such as rapid sand filtration

[Huisman et al., 1974] have become the technology of choice. In recent years there has been

renewed interest in slow sand filter application, particularly because of its independence of

fossil fuels and its efficiency at removing bacteria, viruses, cysts, amoeba, zoospores and var-

ious chemical contaminants [Rooklidge et al., 2005, Hijnen et al., 2007, Elliott et al., 2008].

Slow sand filters (SSFs) are typically composed of a 1-2m deep porous medium (sand) filter

bed, through which the water to be purified percolates. The operational flow rate of these sys-

tems range from 0.1-0.2m3m−2h−1 which is a function of the dimensions of the filters which

can be rectangular or cylindrical in cross section. Although they are often the preferred tech-

nology in many developing countries, they are also used to treat water in developed countries

(e.g., the UK where they are used to treat water supplied to London and Edinburgh). Further-

A condensed version of this chapter is published: Haig, S. Collins, G. Davies, R.L. Dorea, C.C. and

Quince, C. (2011). Biological aspects of slow sand filtration: past, present and future. Water Science &

Technology: Water Supply, 11 (4):468-472
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more, their capability to efficiently remove various contaminants has seen SSF deployment

in various areas out with drinking water purification including: aquaculture [Arndt and Wag-

ner, 2004], horticulture [Calvo-Bado et al., 2003], storm-water purification [Urbonas, 1999]

and food and drink waste management [Ramond et al., 2013]. Irrespective of the adoption

and utilisation of SSFs in producing energy efficient and high quality water [Lloyd, 1974],

little is still understood about the functional ecology, i.e., biological mechanisms and organ-

isms responsible for producing the diverse and efficient functional capacity of SSFs [Haig

et al., 2011]. This lack of knowledge has and will continue to halt optimisation in design,

management and operation of these systems.

Recently, there have been a number of studies that have attempted to characterise the purifi-

cation mechanisms in SSFs and the microbes responsible for them [Weber-Shirk and Dick,

1997a, Bahgat et al., 1999, Calvo-Bado et al., 2003, Aslan, 2008, Wakelin et al., 2011, Ra-

mond et al., 2013]. However, such studies have focused on specific aspects of SSFs, for

example the schmutzdecke [Wakelin et al., 2011] or specific purification mechanisms e.g.

nitrate removal [Aslan, 2008] and, with the exception of Haig et al. [2014], have been per-

formed in non-verified laboratory-scale SSF microcosms [Burman, 1978, Weber-Shirk and

Dick, 1997a,b], which may not accurately reflect the true microbial community found in real

SSFs. Furthermore, these experiments have relied upon conventional plating and isolation

techniques which do not allow the study of non-culturable and fastidious species generally

thought to dominate environmental samples [Roszak and Colwell, 1987]. Direct methods

such as pyrosequencing, denaturing gradient gel electrophoresis (DGGE) [Calvo-Bado et al.,

2003], fluorescent in-situ hybridisation (FISH) and quantitative PCR (qPCR) overcome this

limitation and will hopefully allow the complex ecological processes and interactions which

take place in SSFs to be understood [Haig et al., 2011].

Although all of these studies have provided insight into the biological processes occurring

within SSFs, a deeper analysis of the structure and dynamics of the microbial community

underpinning slow sand filters as a function of performance and operational conditions is

needed. Such a study has the potential to reveal important and under-appreciated structure-

function relationships, which could greatly improve operation, management and design of

these systems.



CHAPTER 2. A REVIEW OF SLOW SAND FILTRATION 29

2.1 History of Slow Sand Filtration

Slow sand filtration or biological filtration is one of the earliest forms of potable water treat-

ment, with its origins being traced back 4000 years to the Sanskrit text, “Sus’ruta Samhita”

which documented the filtration of water through sand [Thomas, 1883]. This procedure was

adopted and further developed by many civilisations including the Egyptian and Romans,

where sand filter-cisterns have been documented [Lloyd, 1974]. However, slow sand filtra-

tion as recognised today dates from 1804 when John Gibb designed and built an experimen-

tal SSF for his bleachery in Paisley and sold the surplus treated water to the public [Baker

and Taras, 1948]. This filter was designed based on adaptions of the Egyptian, Roman and

French systems. Following the success of Gibb, slow sand filtration was further developed

by Robert Thorn and then later by James Simpson who implemented the first public supply

at the Chelsea Water Company, London, in 1829. Furthermore, following the cholera epi-

demic which devastated London in the mid 1800s it became a legal requirement to use SSFs

to filter all water extracted from the River Thames within five miles of St. Paul’s Cathedral

[Ellis and Wood, 1985].

After the pioneering work of Gibb, Thorn and Simpson numerous improvements were made

to SSFs, specifically pertaining to their construction with the first mechanised filter being

installed in 1885. Today, SSFs are generally the third stage of water purification after reser-

voir storage and rapid filtration, and prior to disinfection [Ellis and Wood, 1985]. However,

slow sand filters can also provide a single-stage treatment for raw waters within certain wa-

ter quality limits of turbidity and algal content [Campos et al., 2002] and can be found in

numerous cities around the world, including Amsterdam, Antwerp, London, Paris, Nagoya

and Stockholm. Unlike conventional and more sophisticated water treatment methods SSFs

are inexpensive, highly efficient, easy to operate and eliminate virtually all turbidity from the

water together with much of the organic matter originally present. More importantly, SSFs

can remove a high proportion of coliforms, pathogenic bacteria, viruses and distinct from

rapid sand filters, various parasites including Cercariae and Schistosomes (Table 2.1).

However, despite its importance in providing safe, efficient and cheap water purification

the fundamental biological mechanisms responsible for treatment in SSFs are poorly under-

stood. This lack of knowledge may be partially due to the disadvantages of SSFs, such as
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Table 2.1: Performance Summary of SSFs (adapted from Gimbel and Collins [2006])

Water Quality Parameter Abbreviation Removal Capacity Reference
Assimilated Organic Carbon AOC 14-40% Lambert and Graham (1995)

Biological Dissolved Organic Carbon BDOC 46-75% Lambert and Graham (1995)
Cercaria 100% Ellis (1985)

Chemical Oxygen Demand COD 15-25% Haaroff and Cleasby (1991)
Cryptosporidium 99.90% Hijnen et al., (2007)

Dissolved Organic Carbon DOC 5-40% Lambert and Graham (1995)
Dissolved Organic Matter DOM 25-75% Graham (1999)

Enteric bacteria 90-99.9% Hijnen et al., (2007)
Enteric viruses 99-99.9% Poynter and Slade (1977)
Giardia cysts 99-99.9% Bellamy et al., (1985)

Iron 30-90% Ellis (1985)
Manganese 30-90% Ellis (1985)

Nitrate 95% Aslan (2008)
Pesticides 0-100% Lambert and Graham (1995)

Total Organic Carbon TOC 15-25% Haaroff and Cleasby (1991)
Colour 25-40% Ellis (1985) and Smet and Vissher (1989)

Turbidity 90-98% Smet and Vissher (1989)
Zoospores 99-100% Calvo-Bado et al., (2003)

the large land area required, the reduced run length with increased turbidity in raw water and

the high cost involved in cleaning the filters [Ellis and Wood, 1985]. In recent years there

has been a resurgence of interest in SSFs, mostly because SSFs are not heavily reliant on

fossil fuel supply and provide excellent removal of cysts of Giardia and Cryptosporidium

and dissolved organic matter (DOM) after preoxidation [Graham, 1999] (Table 2.1). Re-

gardless of the renewed interest in slow sand filtration, the lack of knowledge pertaining to

the removal mechanisms, specifically the ecological processes involved, has and continues

to inhibit development and expanded application of these systems.

2.2 Elements of a Slow Sand Filter

In order to construct and operate a successful slow sand filter there are four basic components

(Figure 2.1) which are required:

1. A supernatant (raw) water layer. Principle role of which is to maintain a constant

level of water above the filter medium providing the pressure needed to carry the water

through the filter. This water supply also provides a source of micro- and macro-

organisms which form the biological components of these filters, which aids in major-

ity of the systems purification mechanisms.

2. A sand bed which is the location of majority of the purification processes. The sand is
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Figure 2.1: Schematic representation of a slow sand filter, adapted from Huisman et al. [1974]

usually of fine grain (0.15-0.3mm) size.

3. An under-drainage system which functions in conjunction with the sand bed. This

system may consist of a false floor of porous concrete or an array of porous or unjointed

pipes surrounded and covered with graded gravel to support the sand bed and prevent

fine grain entering the drainage system.

4. A flow control system which regulates the velocity of flow through the sand bed in

order to prevent the raw water level dropping below a predetermined level during op-

eration.

The first three of these features are contained within a single open-topped filter box, the flow

control valves being normally in adjacent structures. The box is typically rectangular and

ranges in size from 2.5-4m in depth and is typically built entirely underground. The general

appearance of a slow sand water filter plant can be seen in Figure 2.2

2.3 The Modes of Action in Slow Sand Filters

Several physicochemical and biological mechanisms have been proposed as responsible for

the removal of particles, microorganisms and other substances (e.g., organic matter) during

filtration. Biological mechanisms are those requiring (or which are enhanced by) the biolog-

ical activity of the microorganisms in suspension or colonising the filter media [Weber-Shirk

and Dick, 1997a]; these include predation, scavenging, decomposition and the bactericidal
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Figure 2.2: Slow sand filter plant at Fairmilehead Water Treatment Plant in Edinburgh.

effects of sunlight. Physico-chemical purification mechanisms are defined as those which do

not require biological activity to take place within the filter [Weber-Shirk and Dick, 1997b].

The physicochemical mechanisms taking place in SSFs have been extrapolated from rapid

sand filtration theory [Cranston and Amirtharajah, 1987]. These are better understood than

the biological processes within the filter bed.

The first purification mechanisms are thought to take place in the supernatant (Figure 2.1),

where the levels of sunlight and nutrients allow algae to proliferate, absorbing carbon diox-

ide, nitrates, phosphates, and releasing oxygen. The latter reacts with organic impurities

forming inorganic salts (e.g., sulphates, nitrates, and phosphates). In addition, nitrogenated

compounds are oxidised forming nitrates that are easily assimilated by algae [Huisman et al.,

1974, Wotton, 2002]. Wotton [2002] pointed out that that exopolymers secreted from organ-

isms may promote the flocculation and aggregation of particles within the supernatant.

On top of and within the sand bed of the slow sand filter a diverse ecology of micro-

and macroorganisms have been hypothesised to contribute to the overall biological treat-

ment. The biological purification phenomena in SSFs have been reviewed by [Haarhoff and

Cleasby, 1991] and form the basis of the mechanisms subsequently described.

In order to explain the various processes involved in slow sand filtration, the passage of the

raw water through the biological filter and the different purifying methods that it undergoes
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will be discussed. Firstly, the sample enters the supernatant water (Figure 2.1) and moves

due to gravitational drainage through the sand bed, a process which takes between 3-12 hours

depending upon the filtration velocity. As the water percolates through the sand, organic

material and microorganisms are removed [Ellis and Wood, 1985, Fogel et al., 1993]. This

removal is due to both mechanical and biological processes, namely the slow filtration rate

of the water, the small granular size of the sand used and also biological processes such

as predation, natural death and metabolic breakdown [Haarhoff and Cleasby, 1991, Bahgat

et al., 1999].

2.3.1 Physical Processes

Various particles such as minerals, microorganisms and amorphous debris are removed via

filtration, with particle removal efficiency being documented as reaching 99.99% for mature

SSFs [Bellamy et al., 1985] especially in waters of turbidity lower than 10 NTU and colour

less than 5 CU [Sharpe et al., 1994]. In general physical filtration can be divided into three

categories: straining, sedimentation and absorption. Straining takes place at the sand surface

on particles which are too large to enter into the sandbed. Sedimentation occurs within the

pore space (spaces between grains) of the SSFs and removes particles which are smaller than

the pore space by settling on the sand grains. Absorption is a physicochemical removal pro-

cess which favours dissolved substances and colloidal (a solution that has particles ranging

between 1 and 1000 nanometers in diameter, yet are still able to remain evenly distributed

throughout the solution) suspensions. The success of absorption is determined by surface

forces (e.g., Van der Waals forces and electrostatic interactions) between the substance to be

removed and the sand grains. For example, metals in solution (which are positively charged)

are readily absorbed by quartz sand due to their negative charge. These physical processes

are important, however biological processes are also integral to purification.

2.3.2 Biological Processes and the Schmutzdecke

As previously mentioned pathogenic microorganisms such as bacteria, cysts, viruses and

parasites can be efficiently removed by SSFs [Poynter and Slade, 1978, Graham, 1999].

This can be explained by the long hydraulic retention time of the water above the sand

bed, which allows organic matter and particles to be deposited on top of the sand, allowing
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the development of a substantial biological community [Huisman et al., 1974] to form, in

particular an algal mat known as the schmutzdecke. The schmutzdecke consists of threadlike

algae, diatoms, plankton, protozoa, rotifers and bacteria, as shown in Figure 2.3. This layer

is intensively active with the various organisms entrapping, digesting and breaking down

organic matter contained within the water. For example, Bellamy et al. [1985] showed that

the schmutzdecke was important for the removal of coliforms. Once the raw water has passed

through the schmutzdecke it enters the top layer of sand in which a biofilm develops. Within

these layers a number of biological processes occur which aid in the removal of organic

matter, pathogens and chemicals, these include:

1. Predation - which was shown by Haarhoff and Cleasby [1991] to occur due to the

algae and diatoms that were found in the guts of benthic invertebrates. Further, Lloyd

[1996] and Weber-Shirk and Dick [1999] presented strong evidence of bactivory (in-

gestion of bacteria) by protozoa. Such predation likely occurs on the surface of the

sand grains or by suspension feeding predators removing suspended particles and bac-

teria.

2. Scavenging - A considerable amount of detritus is scavenged mostly by aquatic worms

in the lower strata of slow sand filters [Haarhoff and Cleasby, 1991]. In the schmutzdecke

macro-invertebrates, e.g., oligochaetes and larval midges, feed on microorganisms, ex-

opolymers, and a range of detritus particles [Wotton, 2002].

3. Metabolic breakdown - which occurs within the schmutzdecke and lower sand layers

and accounts for the partial reduction in organic carbon levels. The bacterial popula-

tion retrieves energy for growth and metabolic functions (assimilation) through micro-

biological oxidation of available organic matter. Die-off also occurs, liberating organic

matter that is utilised by other organisms at lower depths [Huisman et al., 1974].

4. Adsorption - which is per se a physicochemical process. Nevertheless, Lloyd [1996]

suggested that protozoan grazing of attached bacteria was probably playing an impor-

tant role in maintaining sand surface area available for further adsorption. Hence, it

cannot be seen as an exclusively physicochemical process, as it can be influenced by

biological activity.

5. Bactericidal effect of sunlight and algae - Radiation could affect bacteria in the su-
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pernatant and extracellular algal products which can increase bacterial mortality over

long periods, although these (speculated) mechanisms are not proven to occur or con-

tribute significantly in filtration [Haarhoff and Cleasby, 1991]. In addition to the bac-

tericidal effect of sunlight, Wotton [2002] suggested that UV light can also add to the

breakdown of dissolved organics into by-products that are more susceptible to bacterial

assimilation.

2.3.3 Biofilms in Slow Sand Filters

Throughout history microorganisms have commonly been classified in the planktonic form,

freely floating and suspended in an aqueous medium. It was not until 1664 when Van

Leeuwenhoek observed that microbial cells aggregate on tooth surfaces [Madigan et al.,

2011] that microbial biofilms were discovered. Later, other scientists determined that micro-

bial attachment to a surface enhances growth and that bacteria tend to congregate on surfaces

instead of freely moving in the surrounding environment. Finally, the developments in elec-

tron microscopy have enabled scientists to ascertain the composition of biofilms.

A biofilm is an aggregation of microorganisms irreversibly attached to a solid surface and

enclosed by a matrix of extracellular polymeric substance (EPS). Biofilms can consist of

many different types of microorganisms, such as bacteria, diatoms, fungi, algae, protozoa,

and noncellular materials. Biofilms are located on solid materials in an aqueous medium and

acquire organic and inorganic material floating in surrounding water. Organic compounds,

such as nitrogen and phosphorous and reduced inorganic compounds provide energy for the

metabolism of the biofilm [Wesley and Satheesh, 2009].

It is believed that the development of a biofilm community on a submerged surface occurs

through a sequence of specific, but poorly understood processes [Cooksey and Wigglesworth-

Cooksey, 1995] (see Figure 2.4). It begins with the formation of a conditioning film (organic

matter) on the substratum, which facilitates the attachment of bacteria to the surface via elec-

trochemical interactions e.g., Van der Waal. It is thought that surface colonisation by bacteria

proceeds through an ordered series of recruitment processes; first, pioneer species of bacte-

ria (primary colonisers) interact with the conditioning film and form the initial assemblage

of surface biota and biopolymers [Marshall, 1992]. These primary organisms also modify
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the surface characteristics of the substratum, rendering it suitable / unsuitable for subsequent

colonisation by secondary microorganisms. Specific and/or non-specific interactions (e.g.,

quorum sensing) between the primary colonists and subsequent recruits permits new organ-

isms to efficiently colonise, these organisms include bacteria, insect larvae and invertebrates

[Wolfaardt et al., 1994]. Finally, through synergistic and competitive interactions, as well as

the loss and recruitment of new species [Dang and Lovell, 2000], the mature biofilm com-

munity is formed.

The structure of biofilms varies enormously, due to the environmental conditions they in-

habit [Stolz, 2000]. However all biofilms share certain structural characteristics; they are

composed of microcolonies of bacterial cells embedded in a matrix of EPS; hydrodynamic

channels separate the microcolonies and provide a means of communication between the

bacterial cells and permit the diffusion of nutrients, oxygen, waste material and horizontal

gene transfer [Laskin et al., 2004].

The biofilm matrix encloses the bacteria and determines the architecture and shape of the

biofilm. EPS is the major component of the biofilm matrix and comprises on average 85% of

the total organic carbon of the biofilm. Although the physical and chemical properties of the

EPS of different biofilms may vary, the principal component of all EPS is polysaccharides.

The polysaccharides of the EPS acquire great quantities of water through hydrogen bonding

resulting in a highly hydrated matrix composed of 97% water [Romeo, 2008]. EPS produc-

tion is promoted by inhibited bacterial growth and an excess of carbon and an inadequacy of

other nutrients, such as nitrogen [Laskin et al., 2004].

As previously mentioned the composition of the exopolysaccharides varies depending upon

the bacteria comprising the biofilm community, for example the EPS matrix of Gram neg-

ative bacteria are polyanionic (attracted to cations) whereas Gram positive bacteria produce

polycationic EPS matrices. Irrespective of the composition, the matrix components cross-

link the polymer strands and strengthen the biofilm and help to create a three dimensional

shape which is extremely stable and resistant to toxins, antimicrobials and predators [Romeo,

2008, Wesley and Satheesh, 2009].
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2.4 Operating Slow Sand Filters

From an engineer’s perspective, the primary consideration when operating a slow sand filter

is the quantity and efficiency of water produced per unit area per day [Ellis and Wood, 1985].

This depends upon a number of factors including the quality of the raw water, the environ-

mental conditions, the microbial community dynamics (both at the surface and within the

sand bed), and also the design, construction and operation of the filter [Lloyd, 1974].

Burman [1978] suggested that there are eleven principles for good SSF operation, these

include the removal of excess turbidity using effective pre-treatment, steady-state operation

i.e., not leaving the beds idle when full of water, cleaning the filters as quickly as possible and

resanding only during the coldest time of the year. Additionally, as suggested by Huisman

et al. [1974] and implemented in the Netherlands and Japan, SSFs can be covered from the

elements to prevent:

1. the deterioration in water quality during periods of low temperature (below 6◦C for

several months);

2. the expense and operational difficulties of ice removal during periods of cold weather;

3. sunlight exposure which has been shown to promote algae growth (particularly in

warm countries) which can reduce water quality;

4. the deterioration in water quality through wind-borne contamination and wildlife drop-

pings.

It is important to point out that as SSFs are biological in composition, if they are subjected

to continuous exposure of suspended solids this will eventually lead to filter clogging after

several months. The deposits of inert particles from the suspended solids, together with the

growth of microorganisms, create increased hydraulic resistance to flow, resulting in headloss

(when the maximum level of water above the sand and the outlet valve can no longer achieve

the designated flow rate). Once headloss has been reached the filter must be drained and

cleaned by scraping (removing) the top 2-3 cm of the sand bed (schmutzdecke).
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2.4.1 Maturation

When putting a new filter into operation the filtration rate must be started at a quarter of

the required final filtration rate and gradually increased over several weeks. This allows

the schmutzdecke and microbial community on the sand grains [Huisman et al., 1974]) to

develop, a process which can take more than 40 days [Ellis and Wood, 1985, Duncan, 1988]

but can be speeded up by increasing the temperature [Huisman et al., 1974]. It has been

widely acknowledged that the development of the microbial community (bacteria, viruses

and eukaryotes) is integral to the elimination of pathogens [McConnell et al., 1984, Fogel

et al., 1993, Weber-Shirk and Dick, 1997a, 1999, Hijnen et al., 2007, Bauer et al., 2011] the

breakdown of organic matter [Eighmy et al., 1992] and the oxidation of ammonia to nitrate

[Aslan, 2008]. It is also important to stress that throughout the maturation process and at

all stages of the water distribution process water quality tests must be performed. In Europe

such tests must comply with the guidelines outlined by the EU Drinking Water Directive

(98/83/EC) [European Union Council Directive, 1998], which as previously mentioned in

section 1.1.1 contains chemical, physical and microbiological tests to ensure excellent water

quality.

2.4.2 Cleaning and Re-sanding

Depending upon the turbidity and suspended solid content in the water to be purified the

length of time a slow sand filter can be operated for before water quality diminishes varies

greatly (60 days to more than fifteen years). In order to maintain good filter performance

and to reduce the period of time a filter is non-operational, SSFs need to be cleaned regu-

larly to prevent the filter bed from becoming clogged. This usually involves removing the

schmutzdecke and the top 2-3 cm of sand. These layers have been reported to contain the

highest levels of bacterial colonisation in the sand filter matrix [Haarhoff and Cleasby, 1991,

Eighmy et al., 1992] and the greatest biological activity [Calvo-Bado et al., 2003]. In order to

determine when a filter needs to be cleaned, the headloss of the filter is constantly measured

piezometrically. Briefly, referring to Figure 2.5 when the sum of the height of the filtered

water (H2) subtracted from the height of the column of water supported by the raw water

(H1) exceeds 1m the filters are cleaned.
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0.6 – 1.2m 

1 – 1.5m Supernatant water 
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Figure 2.5: Schematic filter showing how headloss is measured, adapted from Lloyd [1974]

In order to clean a slow sand filter, the water in the filter is first drained to 20 cm below the

sand surface, a process called “wet harrowing” (Figure 2.6 A). After being drained, the top

2 - 3 cm of the schmutzdecke is removed (scraped) either manually or by using a tractor

with a special device attached. The scraped sand is then cleaned through a hydraulic ejector

which forces it through a hose to a washer (Figure 2.6 B) the washed sand is then left to dry

in the sunlight and is ready for reuse (Figure 2.6 C and D). After the filter bed is scraped, it

is refilled until it is completely covered and run at a third of the normal filtration rate for at

least 4 days to allow the microbial community to reform. Before being put back into service

the filter must pass water quality checks. Resanding of the filters occurs after approximately

16 scraping sessions, once the level of the sand bed has reached 60 cm in height [Burman

and Lewin, 1961].

2.5 Advantages and Disadvantages of Slow Sand Filters

Today in developed countries SSFs tend to be overlooked when designing new drinking water

treatment plants mainly due to their disadvantages, which include:

1. Their large land footprint, which increases the initial startup costs. For example the

average surface area required for one industrial SSF in Europe is 1620m2 compared to

196m2 for rapid sand filters [Huisman et al., 1974]. Further, based on current average

land prices in the UK (one acre for £4000 [UK Land Directory, 2014]), one SSF would

cost approximately £1600, however, for the same cost and space eight rapid sand filters

could be installed.
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Figure 2.6: Photographs showing (a) drained filter, (b) hydraulic ejector sand cleaning machine, (c)

cleaned sand dune and (d) cleaned sand.

2. Poor removal of colour.

3. Poor operational performance if the water to be purified has a high algal and or tur-

bidity content as this increases the rate of clogging and decreases the concentration

of dissolved oxygen available for respiration and hence the development of aerobic

microbial community members.

4. Increased expense in countries where the winter is very cold as special structures may

need to be installed to prevent filter freezing.

However, these disadvantages are greatly outweighed by the advantages SSFs offer such as:

1. Simple design and construction.

2. Ease of operation which requires limited supervision.

3. Low operational and maintenance costs, mainly due to the renewable nature of the

filter-bed material and limited mechanical equipment. For example, Visscher et al.

[1987] calculated that the construction of one rapid sand filter would cost $70,000,

whereas a SSF of the same capacity costs less than half this value.

4. Limited power requirements as SSFs are typically gravity fed.
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5. Excellent overall water quality, including pathogen removal.

6. Small amount of water wastage (2–3% of the total treated).

7. Usually not necessary to chemically pre-treat the raw water.

8. Sand required for the filter bed is readily available and reusable making SSFs a very

environmentally friendly technology.

9. Filtered water is less corrosive and more uniform in quality than that found from chem-

ically treated water.

10. Complete ammonia removal.

These advantages in particular their carbon neutral footprint and the lack of chemical pre and

post treatment makes them a very attractive technology for the future [Johnson et al., 2009].

2.6 Previous Slow Sand Filter Studies

Extensive research exists describing the biomass development which occurs in the sand-bed

and in the schmutzdecke, with Huisman et al. [1974] and Ellis and Wood [1985] showing

that the level of bacterial activity decreases with depth, but normally continues to a depth of

700 mm. Although significant details are known about biomass development under different

conditions and in different positions in SSFs [Eighmy et al., 1992, Campos et al., 2002],

relatively little is known about the microbial species and their ecological interactions which

are responsible for purification. This lack of knowledge inhibits further optimisation and

functional advancement of SSFs.

There have been a few studies which have begun to address these questions. However, these

have been performed in controlled laboratory conditions [Burman, 1978, Weber-Shirk and

Dick, 1997a,b, Calvo-Bado et al., 2003, Bourne et al., 2006, Aslan, 2008] which have not

been shown to represent real industrially operated full-scale SSFs. Further they have used

conventional culture-dependent or carbon utilisation methods [Eighmy et al., 1992, Weber-

Shirk and Dick, 1999] which do not allow the study of the non-culturable and fastidious

species generally thought to dominate environmental samples [Roszak and Colwell, 1987].
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Figure 2.7: Schematic of the Sand profile sampler created by Lloyd [1973]

From earlier work it is known that the biological (grazing) activity of protozoa is responsible

for the high reduction of coliforms [Brook, 1955, Lloyd, 1973, Weber-Shirk and Dick, 1999]

and other pathogenic bacteria; however the specific species responsible remain unknown.

This breakthrough in understanding was made in 1973, when Lloyd created a simple and in-

expensive method for sampling and microscopically visualising the protozoa and Rotifera in

the sand of pilot-scale and full-scale SSFs at the London Metropolitan Water Board’s Walton

and Ashford Common Treatment Works (Figure 2.7). Following Lloyd’s discovery, a pio-

neering study by Weber-Shirk and Dick [1997a] involving the construction of a laboratory-

scale SSF revealed that biological activity was responsible for the marked reduction in E.coli

and particles smaller than 2 µm. However, within this study it was also concluded that pro-

tozoan grazing of the bacteria was the only removal mechanism, a conclusion which cannot

be substantiated as the authors failed to try other methods. Since the creation of the first

laboratory-scale SSFs by Weber-Shirk and Dick, several other laboratory-scale filters have

been created, with the most notable being that of Calvo-Bado et al. [2003] which possessed

sample ports to allow access to several depths down the sand bed. This provided for the first

time some insight into the spatial variability and diversity in the microbial community of

SSFs.

Slow sand filters have also been shown to be extremely effective in virus removal [Windle-

Taylor, 1969, Poynter and Slade, 1978, McConnell et al., 1984, Wotton, 2002, Elliott et al.,
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2008, Bauer et al., 2011]. Windle-Taylor first provided strong evidence that the microbial

community in SSFs is integral to viral removal in 1969 when he reported that viruses were

not removed by sterile sand. However, when sand from a mature filter was used to filter wa-

ter containing 100 plaque-forming units (PFU) per millilitre of attenuated poliovirus, 99.9%

of the virus was removed. He further highlighted the importance of the depth of the sand

bed, showing that a sand bed of 600 mm removed 75% more viral particles than a filter of

300 mm in depth.

More recently, some studies have tried to characterise the whole microbial community and

determine the functional boundaries of slow sand filters [Wakelin et al., 2011, Hunter et al.,

2012, Bai et al., 2013, Ramond et al., 2013] using modern molecular techniques, instead of

focussing on specific aspects such as viral or coliform removal. In spite of all of the work

which has been done, the complex foodwebs and metabolic processes which make up the

SSF community have not been studied in detail. Although Campos et al. [2006] produced

models describing schmutzdecke development and Devadhanam and Pillay [2008] visualised

the microbial biomass growth within the sand using environmental scanning electron mi-

croscopy (ESEM), very little is still known about the ecosystem of the SSFs. Additionally,

the interaction between the schmutzdecke layer and the underlying biofilm community in

the sand adds another level of complexity to the interaction and hence the processes of water

purification. Understanding such interactions and mechanisms would enable the develop-

ment of ecological mechanistic models of SSF systems, which may improve the operation

and efficiency of slow sand filters [Campos et al., 2002].

To date, slow sand filter studies have focussed on characterising and validating the biolog-

ically mediated purification mechanisms, using carefully controlled laboratory conditions

and conventional plating and isolation techniques, thus ignoring the uncultivable majority.

Today, molecular microbiological techniques are available, which, when used alongside con-

ventional microbiological tools, allow scientists to understand the ecology of SSF systems.

This will, in turn, promote optimisation of SSF design and operation, creating more efficient

filters with the ability to tailor water quality performance to the specific needs of a site.
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Chapter 3

Microbial Community Analysis Reviewed

“The true method of knowledge is experiment.”

William Blake, (All Religions are One)

Traditionally, the identification and characterisation of microbial communities has been lim-

ited to those microorganisms that are culturable, therefore these studies have overlooked the

non-culturable, fastidious and less adaptable species generally thought to dominate environ-

mental samples [Roszak and Colwell, 1987]. Molecular techniques overcome many of the

disadvantages associated with traditional culture-based techniques and provide an exciting

opportunity to greatly increase our understanding of microbial diversity and functionality

in various environments. These methods rely on the identification of cellular components

such as nucleic acids, proteins, fatty acids and other taxa-specific compounds [Amann et al.,

1995] and unlike culture dependent methods can be extracted directly from the environment

of interest and hence in situ metabolic function and the microbial community composition

can be preserved and analysed easily [Malik et al., 2008].

Application of these molecular techniques have led to more rapid and accurate strategies to

study microbial diversity, including the discovery and identification of novel organisms and

their ecophysiology. Individual bacterial identification and community diversity characteri-

sation has been enhanced by using the highly conserved 16S rRNA gene which is ubiquitous

in all prokaryotes [Pace, 1997]. The 16S rRNA gene sequence is conserved enough to enable

the design of PCR primers which target different taxonomic groups from kingdom to genus,

but have enough variability to provide phylogenetic comparisons of microbial communities

[Woese, 1987]. There are however a plethora of molecular techniques in the scientific arse-
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nal used to assess microbial community composition. In order to discuss them, they will be

divided into six categories:

1. Biochemical Methods

2. Nucleic Acids Based Methods

3. Techniques Linking Microbial Identity To Function

4. Next Generation Sequencing

5. Metagenomics

6. Other “Omic” Methods

It is however important to stress that in order to successfully identify and quantify microbial

communities, a combination of both molecular and traditional culture-based techniques are

often required.

3.1 Biochemical Methods

Phospholipid Fatty Acids (PLFAs)

Phospholipids are integral components of living organism’s membranes and constitute a sig-

nificant proportion of an organism’s biomass under natural conditions [Kozdroj and van El-

sas, 2001]. Unlike higher organisms, microbes have the ability to change their membrane

lipid composition in response to environmental conditions such as chemical stress and tem-

perature fluctuations [Malik et al., 2008]. Further, PLFA rapidly degrade upon cell death;

such regulated fluctuation in PLFA composition makes it an ideal indicator of organism’s

status and viability [Drenovsky et al., 2004].

Additionally, changes in phospholipid content are generally related to changes in the abun-

dance of different microbial phyla. Although a useful tool PLFA as a microbial community

profiling method produces profiles of limited complexity and has a bias towards species with

a larger PLFA content. Today, PLFA is rarely used alone; instead it is deployed alongside

other molecular profiling methods to assess microbial diversity [Malik et al., 2008].
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3.2 Nucleic Acid Based Methods

In 1983 Kary Mullis developed the polymerase chain reaction (PCR) [Bartlett and Stirling,

2003], a process which has the ability to produce millions of copies of a desired gene with

high fidelity within 3 to 4 hours. However like all molecular methods, it has its biases and

is reliant on the quality and yield of the initial DNA extraction. Insufficient lysis of cells

can result in the preferential extraction of DNA from Gram-negative bacteria, while exces-

sively harsh treatments may result in the shearing of DNA [Wintzingerode et al., 1997]. In

addition, PCR amplification efficiency can be severely reduced by the presence of inhibitory

substances which are co-extracted with nucleic acids (e.g., humic acids [Kirk et al., 2004]).

Due to these issues it is vital that methods used for sample collection, transportation and

storage are effective in preventing the addition of non-native organisms into the microbial

community of the sample [Schneegurt et al., 2003].

PCR-based molecular techniques have completely revolutionised the detection of DNA/RNA,

especially in microbial ecology studies. However, differential amplification and primer

choice of target genes such as 16S rRNA can bias PCR-based diversity studies [Wintzingerode

et al., 1997]. For example, sequences with lower guanine and cytosine content are thought

to separate more efficiently in the denaturing step of PCR and hence could be preferentially

amplified. Also, products seen on gels or in real-time may be as a result of artefacts or

chimeric PCR product formation [Wang and Wang, 1996]. Therefore, care must be taken

to minimise chimera formation, something which can be achieved through the use of high

fidelity polymerases [Oyola et al., 2012] and low numbers of PCR amplification cycles.

Microbial community composition can be analysed based on profiles generated from the

physical separation of RNA or DNA sequences on a gel [Muyzer et al., 1993]. In this regard,

several techniques based on the amplification and comparison of PCR-amplified DNA se-

quences have been developed and used to characterise microbial communities. These meth-

ods detect differences between DNA/RNA sequences of the target gene, with the 16S rRNA

gene being the most extensively used in bacterial studies, whereas in eukaryotic studies the

lack of a universal primer site has resulted in several genes being targeted (18S rRNA, and

ITS) depending on the subkingdom of interest.
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Figure 3.1: Schematic of 16S rRNA gene illustrating hypervariable (green) and conserved (blue)

regions

The 16S rRNA gene is composed of nine hypervariable regions (V1-V9) (Figure 3.1) inter-

spersed by conserved regions. By amplifying selected targets (combination of variable and

conserved areas) within the 16S rRNA gene, bacterial and archaeal genera and species iden-

tification can be achieved. It is however important to note that depending upon the hypervari-

able regions chosen to amplify, different efficacies with respect to species identification are

achieved [Schmalenberger et al., 2001, Luna et al., 2007]. The different genetic community

profiling methods include amplified ribosomal DNA restriction analysis (ARDRA), denatur-

ing gradient gel electrophoresis (DGGE)/temperature gradient gel electrophoresis (TGGE)

and terminal-restriction length polymorphism (T-RFLP).

3.2.1 Reverse-transcription PCR (RT-PCR)

Reverse transcription polymerase chain reaction (RT-PCR) is a variant of PCR, which is used

to qualitatively detect gene expression through the creation of complementary DNA (cDNA)

transcripts from RNA [Freeman et al., 1999]. RT-PCR has been widely used in environmen-

tal studies to measure functional gene expression levels [Smith et al., 2007, Hatzenpichler

et al., 2008] and to detect viable viruses in water filters [Langlet et al., 2009]. RT-PCR has

many advantages over conventional methods for measuring RNA including its sensitivity in

detecting low expression levels of mRNA, accurate quantification and the potential for high

throughput. However, it also has a number of problems associated with its use, including the

inherent variability and sensitivity of RNA, difficult extraction procedures and variability in

PCR efficiencies [Huggett et al., 2005]. Therefore, it is important that a reliable normalisa-

tion method is implemented to control for these problems.
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3.2.2 Quantitative Polymerase chain reaction (qPCR)

A variant of the PCR technique which can simultaneously detect and quantify the amplified

product whilst the reaction is occurring is real-time PCR or qPCR. This approach enables

the detection and quantification of PCR amplicons during the early exponential phase of

the reaction [Invitrogen Corporation, 2008]. Real-time PCR involves the use of fluorescent

markers (Sybr-Green or TaqMan) to quantify the product at the end of each amplification

cycle; the intensity of fluorescence is directly related to the amount of product at the end of

each cycle in the PCR reaction [Saleh-Lakha et al., 2005]. qPCR is one of the most widely

used molecular tools for determining relative and absolute numbers of different members

of a microbial community [O’Farrell and Janssen, 1999, Silva et al., 2006, Philippot et al.,

2009, De Gregoris et al., 2011]. The advantages that real-time PCR offers include speed,

sensitivity, accuracy and the possibility of robotic automation [Smith and Osborn, 2009].

Although real-time PCR can measure gene abundance, the results obtained do not link gene

expression with a specific measurable microbial activity or population.

3.2.3 Amplified ribosomal DNA restriction analysis (ARDRA)

Amplified ribosomal DNA restriction analysis (ARDRA) is a technique in which PCR-

amplified 16S rRNA fragments are digested at specific sites with restriction enzymes and

the resulting digest separated by gel electrophoresis. Due to the differing DNA content

of microbes, ARDRA results in unique banding patterns being generated for each organ-

ism. These patterns can be compared and analysed to determine community composition. It

should be stressed that this technique allows analysis of similarities or differences between

samples, however the identity of individual banding patterns is unknown unless extracted

and sequenced. Overall, ARDRA is a simple, rapid, and cost-effective method which has

been widely used to study microbial communities from various environments [Smit et al.,

1997, Gich et al., 2010].

3.2.4 Clone library

The creation of a clone library for a particular gene, typically 16S rRNA is one of the most

widely used tools for initial exploratory analysis of the microbial community in environmen-

tal samples. Clone libraries are created by amplifying extracted DNA with primers specific
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to the gene to be used to survey diversity (i.e., 16S or 18S rRNA). Amplified products are

then cloned / inserted into typically an E.coli vector (using commercially available kits) and

screened using ARDRA. Representatives of different banding patterns are typically Sanger

sequenced and characterised by comparing the sequence to databases such as Ribosomal

Database Project (RDP), and Greengenes. Typically, cloned sequences are assigned to phy-

lum, class, order, family, subfamily, or species (DeSantis et al. 2007). While clone libraries

of 16S rRNA genes permit an initial survey of diversity and identify novel taxa, studies

have shown that environmental samples may require >40,000 clones to document 50% of

the richness (Dunbar et al. 2002). Due to the need for such a large screen to pick up on a

samples diversity, next generation sequencing has today became the methodology of choice,

owing to the high sample throughput and increased sequencing resolution. Despite the lim-

itations of clone libraries (e.g., labour-intensive, time-consuming, and cost factors), they are

still considered the “gold standard” for preliminary microbial diversity surveys (DeSantis et

al. 2007). Furthermore unlike other methods they provide template of representative groups

for use as standards and positive controls in other methods such as qPCR.

3.2.5 Terminal-restriction fragment length polymorphism (T-RFLP)

Terminal-restriction fragment length polymorphism (T-RFLP) is a modification of ARDRA;

however, the primers used in T-RFLP are fluorescently labelled at their 5’ end so that the

resulting PCR products are also labelled [Slater et al., 2010]. The products are then digested

using a restriction enzyme (usually 2 - 4 different enzymes are used) and the mixture of

fragments analysed by capillary electrophoresis. The resulting electropherogram consists

of only the fluorescently labelled terminal fragments each of a particular length and height,

which represent a single operational taxonomic unit (OTU) [Tiedje et al., 1999]. This sim-

plified banding pattern enables complex microbial communities to be analysed both in terms

of diversity and relative abundance and has been used extensively in environmental stud-

ies of contaminated land and water bodies [Jeon et al., 2003, Winderl et al., 2008, Ramond

et al., 2013]. Like ARDRA and the other molecular techniques described in this section, T-

RFLP shares the same drawbacks (problems associated with PCR bias, chimera formations,

incomplete digestion, noise associated with small fragments and the subjective nature of in-

terpretation). However, it is an extremely valuable tool which provides great insight into the

community dynamics of a sample in an economical and time efficient way.
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3.2.6 Denaturing / Temperature gradient gel electrophoresis

Denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophore-

sis (TGGE) separate amplified rRNA fragments of the same length but with different base

pair compositions. The separation of bands is dependent on both the decreased electrophoretic

mobility of partially melted double stranded DNA molecules in polyacrylamide gels contain-

ing a linear gradient of DNA denaturants (DGGE) and a linear temperature gradient (TGGE)

[Muyzer and Smalla, 1998]. The amplified PCR products are separated on the basis of

sequence differences, not variation in length, with the number of bands produced being pro-

portional to the number of dominant species in the sample. Unlike ARDRA and T-RFLP,

DGGE/TGGE are used when information on the phylogenetic composition and abundance

of the microbial community is either unknown or only required for the dominant members,

specifically when determining the effect that contaminants and pathogens have on a commu-

nity [Boon et al., 2000, Calvo-Bado et al., 2003, Pereira et al., 2010, Hunter et al., 2012].

The main advantage of DGGE/TGGE is that it allows spatial and temporal changes in the

microbial community to be monitored. The limitations include those mentioned for ARDRA

and that the 16S fragment that can be analysed is limited to 500 bp, which may lack the

specificity required for the phylogenetic identification of some organisms. Additionally,

strong band intensity may not necessarily mean a more abundant member of the microbial

population, meaning that diversity may be overestimated [Muyzer and Smalla, 1998]. Fi-

nally, unlike T-RFLP, DGGE and TGGE are extremely labour-intensive techniques, which

provide limited information compared with faster methods.

3.3 Techniques Linking Identify to Function

Today there are a plethora of techniques available which allow the identification of microor-

ganisms. However, the real challenge for modern-day microbial ecologists is being able to

characterise them and their individual functions whilst in their natural environment [Pern-

thaler, 2010]. The aforementioned biochemical and nucleic acid based methods are very

effective at determining the identity and structure of microbial communities and certain pro-

cesses can also be correlated with these measures (e.g., nitrogen fixation, and respiration).

However, these methods do not provide direct information on the ecophysiology of individ-
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ual members of a community. This gap in knowledge drove the development of “single-cell

technologies” which allow both identity and function of individual members to be deter-

mined in a culture-independent manner [Sen and Ashbolt, 2011].

3.3.1 Microarray and Phylochips

A microarray is a high-throughput screening tool that is used to study gene expression or

in the case of phylochip used as an identification method. They work by hybridising the

mRNA or DNA (in the case of phylochip) of a sample to oligonucleotides or probes of

known genes or organisms (up to 240,000 probe arrays are available) which are attached to

a chip. The presence of a gene is detected by fluorescence, emitted when the sample (which

has been fluorescently labelled) binds to a probe on the chip. Lasers then scan the chip and

capture images of which locations are fluorescing, and relate this back to identity of the

probe(s). Conventionally, both a control and an experimental sample are added to a chip;

one is labelled with Cy3 (red fluorophore) and the other Cy5 (green fluorophore), allowing

conclusions to be drawn about the effect of the experimental procedure on gene expression.

Due to their high-throughput, microarrays have been extensively used in various environmen-

tal studies ranging from understanding methane cycling, total microbial diversity studies to

pathogen detection [Roh et al., 2010, Wakelin et al., 2011]. However, they are being used

less frequently today, due to several limitations [Hurd and Nelson, 2009] including:

• the prior knowledge about the organisms or genes required to make probes;

• cross hybridisation between similar sequences, limiting analysis to areas of a genome

which are non-repetitive;

• reproducibility of results is questionable due to issues with sample preparation and

analysis methods;

• the cost to perform compared to next-generation sequencing (in terms of per base

costs) especially if custom chips need to be designed.
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3.3.2 Fluorescence in situ hybridisation (FISH)

Fluorescence in situ hybridisation (FISH) is a method used to visualise (via epiflourescence

microscopy) and quantify the presence and relative abundance of microbial populations [De-

Long et al., 1989]. Samples are fixed on a glass slide and hybridised using phylogenetically

fluorescent probes, either group or domain specific. FISH is a method predominantly used to

examine whether members of a specific phylogenetic group are absent or present and allows

nonculturable organisms to be visualised and quantified [Lara-Martı́n et al., 2007]. On its

own, FISH provides limited insight into the ecophysiology of the microorganism in question,

and it is therefore typically coupled with other techniques such as microautoradiography

(MAR-FISH) [Gray et al., 2000, Thayanukul et al., 2010], and Raman microspectroscopy

(Raman-FISH) [Huang et al., 2007] and qPCR [Schippers et al., 2005]. Further, FISH is

used in numerous microbial community dynamic studies in conjunction with other genetic

fingerprinting methods such as DGGE [Straub et al., 2001, Collins et al., 2006] and T-RFLP

[Collins et al., 2006, Slater et al., 2010]

FISH is an extremely useful tool when trying to identify community dynamics particularly of

non-culturable organisms and link identity to function. However, it has several drawbacks,

namely that a limited number of probes can be used in a single hybridisation experiment

hence prior knowledge of which organisms are in a sample is often needed [Lara-Martı́n

et al., 2007], background fluorescence is difficult to correct for, and the fact that the design

and optimisation of hybridisation conditions for new probes is extremely time consuming

and complex [Pernthaler, 2010].

3.3.3 Stable-Isotope Probing (SIP)

Stable-isotope probing (SIP) is a relatively new method which is under constant develop-

ment and is increasingly being used to link identity to function. SIP works by using stable

isotopically-labelled substrates (e.g., 13C and 15N) to follow the fate of the substance as

it is metabolised and incorporated into the biomass of the microbial community [Dumont

and Murrell, 2005]. Once metabolised the labelled marker (typically DNA or RNA) can

be separated from the unlabelled biomass using CsCl and density-gradient centrifugation

[Neufeld et al., 2007]. Labelled (heavy) fractions will be found at the bottom of the cen-
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trifuge tubes and unlabelled (light) fractions at the top. Fractions can then be excised either

using a needle or a fractionator and used with traditional community analysis methods such

as DGGE [Moreno et al., 2010], T-RFLP [Sul et al., 2009] and qPCR or with more modern

methods such as metagenomics [Sul et al., 2009], proteomics [Jehmlich et al., 2008], FISH,

NanoSIMS or transcriptomics.

SIP is a powerful technique and has provided invaluable insights into the ecophysiology of

microorganisms and promises to deliver much more when used in combination with metage-

nomics and proteomics. However, as mentioned before this technique is in its infancy and

still has a lot of issues which must be overcome [Dumont and Murrell, 2005], such as:

• possible biases caused by the incubation with the isotope and the cycling of the stable

isotope within the microbial community;

• cross feeding with naturally forming variants of the labelled substrate which may dilute

labelled incorporation into the organism;

• formation of multiple heavy fractions in a mixed community, which can be overcome

by using a fractionator;

• uncertainty of how long it takes for the labelled substrate to be incorporated into the

biomass of the community;

• the complexity of the stages involved in SIP.

3.3.4 NanoSIMS

Nanoscale secondary ion mass spectrometry (NanoSIMS) is a technique that determines the

absolute isotopic composition of a sample in combination with high-resolution microscopy.

The process is destructive and involves bombarding the subject with Cs+ or O− ion beams,

resulting in the production of secondary ions. These secondary ions can be measured through

mass spectrometry and give details about the isotopic ratios within the sample. Currently,

a resolution of 50nm can be achieved, allowing very detailed spatial maps to be created.

NanoSIMS has recently been used by Fike et al. [2008] to explain how phosphorus cycling

occurs in cyanobacterial mats. Furthermore, NanoSIMS can be combined with other tech-

niques such as SIP [Ploug et al., 2011] which allows accurate substrate rates and turnovers
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to be calculated. Although NanoSIMS is a highly sensitive and accurate tool for functional

identification, the currently high cost of equipment limits further use of the technique.

3.4 Next Generation Sequencing

The development of DNA sequencing technology has a rich and diverse history [Shendure

and Ji, 2008], with its evolution being driven by clinical and research fraternities requiring

ever more efficient, cost effective and robust methods of genomic sequencing. In the past the

overwhelming majority of DNA sequencing relied on some version of the Sanger biochem-

istry3 methodology which allowed the full human genome to be sequenced. However, within

the last nine years at least five entirely new sequencing methods, coined “next-generation

sequencing” (NGS) platforms, have emerged. Roche’s 454 pyrosequencing was formerly

the most extensively used platform, however due to better read lengths and cost Illumina’s

MiSeq and HiSeq platforms have today became the platforms of choice. In addition to these

platforms, Life Technologies’ Ion Torrent and Helicos Biosciences’ HeliScope also exist.

NGS platforms have made it possible to recover and characterise genomic material directly

from environmental samples. It is this very reason which explains the vast number and range

of microbial interactions, ecophysiologies and biomes that are understood today [Tyson et al.,

2004, Amaral-Zettler et al., 2009, Petrosino et al., 2009, Bartram et al., 2011, Koskinen et al.,

2011, Dunthorn et al., 2012]. It is important to stress that different NGS platforms have var-

ious advantages and disadvantages in terms of their read length, quantity of data produced,

run time and cost (Table 3.1) and all of these must be considered when choosing a plat-

form. However, this continual development and evolution is not without problems, namely

issues with computational power, storage space and analytical methods not keeping pace.

Furthermore, the data produced by these platforms is affected by the same issues mentioned

in Section 3.2 (e.g. primer choice and PCR cycle number). Regardless of these problems,

next generation-sequencing methods are cheaper, faster and produce copious amounts of

genomic data. For this reason NGS has and will continue to revolutionise and accelerate

biological and biomedical research; in particular, allowing scientists to begin to understand

the complexity of bacterial metabolism, virulence mechanics, genetic exchange, phylogeny,

roles and interactions within specific niches.
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Table 3.1: Comparison of currently available next-generation sequencing platforms, adapted from

Schirmer et al. [2012] and Shokralla et al. [2012].

Platform Read length (bp) Sequencing output (per run) Run time Cost per Mb ($)

Roche 454 FLX Titanium 400-500 ≤500 Mb 10 h 12.40

Roche 454 FLX + 600-800 ≤700 Mb 23 h 7.00

Illumina Hiseq 2000 50-100 540-600 Mb 11 d 0.10

Illumina GAIIx 50-150 ≤ 95 Gb 14 d 0.12

Illumina Miseq 100-250 1-2 Gb 19-27 h 0.74

Ion Torrent 318 Chip 100-200 1 Gb 5.5 h 0.75

HeliScope 30-55 20-28 Gb 1 d 2.40

3.4.1 454 (GS-FLX Pyrosequencing)

Released in 2005, Roche’s 454 sequencing platform was the first available next-generation

sequencing system and is probably the most well known of all the new methodologies com-

mercially available. 454, the same as the other methods begins by the creation of a library of

amplified template-DNA fragments by emulsion PCR. Then using the 454 methodology the

DNA-template fragments undergo in vitro ligation to adaptor molecules (aid in amplification

and sequencing), which in turn are immobilised onto DNA capture beads. The DNA on the

beads are then subjected to emulsion PCR in order to amplify the nucleic acid. Amplified

template DNA are then isolated and inserted into wells of a picotitre plate. The sequencing

process that then follows consists of alternating cycles of adding one species of dNTP and

DNA polymerase in the presence of luciferase; thus, the incorporation of a complementary

nucleotide results in the release of pyrophosphate, which is used to make ATP, which drives

the chemoluminescence reaction of luciferase. The resulting light that is produced is directly

proportional to the amount of ATP available and software is used to interpret which dNTP

has been incorporated onto the complementary strand.

Of all next-generation platforms 454 sequencing provides the longest sequence reads (500

bases, with a single run potentially generating 500Mb) making it well suited to de novo

genome assemblies. However, it has several disadvantages; such as inaccuracies in calling

homopolymeric stretches of sequence (i.e., AAAA, CCCCC) [Hurd and Nelson, 2009] and

perhaps one of the biggest problems, the generation of chimeras (sequence hybrids usually

consisting of two phylogentically distinct parent sequences). Chimeras are well documented

in community profiling with 16S rRNA and are believed to account for at least 1
20

of the
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16S sequences held in public repositories [Ashelford et al., 2005], hence their removal is of

paramount importance in order to provide a true reflection of the composition of a microbial

community. There are several algorithms available which check the amplicon for the pres-

ence of chimeras and remove them (Pintail [Ashelford et al., 2005], Greengenes [DeSantis

et al., 2006] and Perseus [Quince et al., 2009]). Finally, unlike the other NGS platforms, 454

is very expensive in terms of megabase sequencing (Table 3.1) output and for that reason is

being used less often [Schirmer et al., 2012].

3.4.2 Illumina - MiSeq and HiSeq

In 2006 Illumina (formally Solexa) introduced the Genome Analyser which, unlike 454,

works in a similar way to Sanger sequencing, incorporating nucleotides in separate sequenc-

ing cycles; hence accounting for its major errors “base substitutions” as compared to 454’s

“indels” (insertions and deletions) [Suzuki et al., 2011]. Briefly, Illumina works by creat-

ing templates of the DNA sample using bridge amplification on individual fragments of the

sample, which are attached onto the solid surface of a flow cell. Attachment to the flow

cell occurs through covalent bonding between complementary oligos on the flow cell to the

adaptors on the fragments. Subsequent hybridisation is achieved by a combination of heating

and cooling stages, followed by incubation with the reagents needed for amplification which

results in the formation of 100-200 million clusters of amplified DNA fragments [Shokralla

et al., 2012]. Clusters are sequenced by supplying them with four fluorescently labelled nu-

cleotides which have a reversible terminator at their 3’ end (this terminator ensures that only

a single base can be incorporated per cycle). The sequence of each cluster is then computed

and quality filtered [Shendure and Ji, 2008] using phred scores.

Today, five versions of Illumina sequencer are commercially available: HiSeq 2500, HiSeq

1000, Genome Analyser, Genome Analyser IIx and MiSeq. According to Eisenstein [2012]

Illumina is the biggest and most widely used NGS platform, accounting for 60% of the

platforms used. Compared to 454, Illumina sequencing is extremely economical in terms

of its per base pair costs [Schirmer et al., 2012], and due to paired-end sequencing is now

competitive with the read lengths of 454 (Table 3.1).
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3.5 Metagenomics

Metagenomics refers to the culture-independent analysis of the complex and diverse (“meta”)

populations of prokaryotes, eukaryotes and viruses found in environmental niches, or in an-

imal hosts. Unlike traditional microbial genomic sequencing, metagenomics is based on

the concept that the entire genetic composition of environmental communities could be se-

quenced and analysed in the same way as sequencing a whole genome of a pure bacterial

culture, assuming sufficient sequencing depth. This in theory will allow the estimated 99%

of prokaryotes which are thus far uncultivable [Amann et al., 1995, Rappé and Giovannoni,

2003] to be identified. More importantly, metagenomics allows scientists to glimpse into

fully functional microbial communities, allowing observation over how they interact with

each other by exchanging nutrients, metabolites and signalling molecules [Wooley et al.,

2010].

Conventionally, bacterial communities in soils, sediment and water are analysed by targeting

the 16S rRNA gene by PCR amplification and subsequent analysis via the creation of clone

libraries, DGGE or T-RFLP. Most of these approaches provide limited insights into the struc-

ture of the bacterial communities, as the survey sizes and the number of compared sampling

sites are too small with respect to the enormous bacterial diversity present [Will et al., 2010].

Metagenomics can overcome these shortcomings as it can directly examine the phyloge-

netic diversity of complex microbial communities [Petrosino et al., 2009]. The metagenomic

approach includes both functional and sequence-based analyses of DNA extracted directly

from the environment. Extensive studies have been performed on mammalian microbiomes,

specifically the mucosal and epidermal surfaces [Turnbaugh et al., 2007, Grice et al., 2008,

Zhu et al., 2010] however scientists are only now beginning to explore the natural world

[Dinsdale et al., 2008, Petrosino et al., 2009].

Today, metagenomics is one of the fastest-developing research areas in science and has made

huge advancements since its development in 1998 [Simon and Daniel, 2011]. Such advance-

ments have been due to several keystone environmental metagenomic projects by Craig Ven-

ter and Gene Tyson. The first and probably best known extensive large-scale environmental

sequencing project was carried out by the J. Craig Venter Institute in 2004 in which frag-

ments of DNA derived from the entire microbial population of the nutrient-limited Sargasso
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Sea were sequenced. Following Venter’s approach, Tyson et al. [2004] chose a much simpler

community to analyse: acid mine drainage in the Richmond mine, Iron Mountain, Califor-

nia, one of the most extreme environments on earth. In this environment the microbiota was

composed of three bacterial and three archaeal species existing as a pink biofilm that forms

on the surface of the mine water. Both of these projects have shown that metagenomics is a

powerful technique for exploring the ecology of complex and simple microbial communities.

The main analytical challenge for metagenomics pertains to the need to obtain accurate iden-

tification of all isolates in the sample in a cost and time efficient manner. This need has led to

the development of various bioinformatic tools which allow sequences to be trimmed, vetted

for their quality and assembled. However, by far the biggest issue for metagenomics and to

a lesser extent NGS is the inability of computational advancements (data storage and pro-

cessing) to keep pace and until this is addressed any further advancements will be hindered

[Röling et al., 2010]. Regardless of these issues metagenomics is an extremely powerful

tool for analysing microbial communities. However, its true power will only ultimately be

harnessed when it is integrated with classical ecological approaches.

3.6 Other “Omic” Methods

Metagenomics provides information on the metabolic and functional capacity of a microbial

community. However, it cannot differentiate between expressed and nonexpressed genes and

hence fails to provide information about metabolic activity [Cardenas and Tiedje, 2008]. This

deficiency has led to the creation of metatranscriptomics and metaproteomics (the studies of

gene expression and translation to proteins, respectively). Today, there has been an explosion

in the number of studies using either or both techniques mainly due to methods overcoming

the previous associated difficulties with RNA (collecting enough high quality RNA, instabil-

ity of mRNA and its low abundance in the total RNA of a sample) [Simon and Daniel, 2011].

Metatranscriptomics and metaproteomics are approaches that have the potential to allow us

to understand the functional dynamics of microbial communities. When used in combination

with metagenomics they promise to significantly impact the measurement and prediction of

in situ microbial responses, activities, and productivity, which will dramatically improve our

understanding of ecosystems and aid in biotechnological advancements.
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3.7 Systems Biology for Microbial Ecology

All organisms, whether bacteria, protozoa, plants or humans, interact with the physical and

biological world that surrounds them, and understanding these interactions and their func-

tional potential is the role of ecology [Purdy et al., 2010]. Therefore, the major challenge

facing microbial ecology is the need to determine how a whole ecosystem operates and there-

fore be able to:

• Predict responses to perturbations, whether from environmental conditions or changes

in operational conditions (in engineered systems);

• Predict performance capabilities of biological engineered systems;

• Manage the community members of ecosystems in order to sustain and improve func-

tionality.

The resilience and stability of an ecosystem ultimately depends on the contributions made

by its constituent individual organisms; however, understanding these complex relationships

and interaction at the ecosystem level of organisation and larger spatial-temporal scales (Fig-

ure 3.2) is challenging. Achieving this understanding requires far more information than can

be obtained by simply scaling up from studies of single species in isolation and measuring

bulk stocks and fluxes as performed in the classic Lindeman (father of ecosystem biology)

ecosystem ecology studies [Lindeman, 1942]. In essence, the diversity of species, their eco-

logical roles, and the interactions between them are key to understanding the functionality of

an ecosystem [Purdy et al., 2010]; therefore a proper systems biology approach is needed.

Today, microbial ecology is undergoing a revolution because of the recent advancements in

NGS technologies, which are providing huge quantities of both taxonomic and functionally

relevant information [Woodward, 2010], allowing general theories about biodiversity, bio-

geography and ecosystem functioning to be addressed for the first time. Furthermore by

combining NGS and modern molecular techniques with traditional methodologies it is now

possible to study a range of levels of organisation, from individual members of a community

to whole ecosystems (Figure 3.2), allowing relationships and interconnections to be deter-

mined.
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Figure 3.2: Hierarchical organisation of biology from molecules to ecosystems. Below each heading

the genetic and ecological (shaded box) measures and fields studied are shown. Arrows represent

some of the tools / techniques available to study these areas. Adapted from Purdy et al. [2010]

3.8 Implications for Understanding the Ecology of SSFs

The biology of most naturally-occurring microbial communities, including those found in

SSFs, is complex. This complexity is due to the fact that microorganisms are rarely found

alone, but thrive in diverse biofilm communities, which collectively process a range of chem-

icals and nutrients entering the system. Identifying the organisms, their functions and the in-

terrelatedness and interdependency between different species and trophic groups underpins

modern microbial ecology [Kuypers, 2007] and is highly relevant to SSFs.

To date, studies of SSFs have focused on characterising and validating the biologically me-

diated purification mechanisms, by using carefully controlled, laboratory conditions, and

conventional plating and isolation techniques, thus ignoring the uncultivable majority [Haig

et al., 2011]. Further, these studies have never shown that laboratory-scale SSFs accurately

represent full-scale SSFs in terms of their water quality production or microbial community

composition, limiting the applicability of their results to full-scale slow sand filters. In addi-

tion the true metabolic / degradation capabilities of SSFs have never been examined.

Today, as previously shown there are a wealth of molecular microbiological techniques avail-
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able, which when used alongside conventional microbiological tools, will allow several de-

ficiencies in the knowledge of the SSFs ecology and hence performance to be addressed. By

building on pivotal slow sand filter studies like those carried out by Barry Lloyd, Monroe

Weber-Shirk and Luiza Campos through the use of qPCR, next-generation sequencing, SIP

and metagenomics, questions such as:

1. Which organisms are present in full-scale SSFs and what roles do they perform?

2. How does the microbial community structure change both spatially and temporally?

3. Do laboratory-scale slow sand filter mimic the performance and microbial community

of full-scale SSFs?

4. What effect does covering SSFs have on the microbial community and filter perfor-

mance?

5. What mechanisms are responsible for the removal of human pathogens, such as E.coli?

6. How effective are slow sand filters at removing modern-day chemical contaminants,

such as pharmacological contaminants and heavy metals?

7. Is it possible to improve the performance of SSFs through bioaugmentation?

can be answered, potentially allowing for better operations, system design and tailored water

purification for a range of chemical and microbiological contaminants. These four tech-

niques unlike the others mentioned in this chapter provide, accurate quantification of dom-

inant groups abundances (qPCR), high throughput and resolution in assessing community

composition and diversity (next generation amplicon sequencing) and provides an unbiased,

yet tractable method for determining how pathogens are removed without prior knowledge

requirement of which organisms to study (SIP and metagenomics).
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Chapter 4

Characterising the Microbiome of

Full-Scale Slow Sand Filters

“All have their worth and each contributes to the worth of the others.”

J.R.R. Tolkien (The Silmarillion)

Two industrially operated full-scale slow sand filters (ISSFs) were sampled periodically from

April until November 2011 to study the spatial and temporal structure of the bacterial com-

munity comprising the SSFs. To monitor global changes in the microbial community, DNA

from sand samples taken from different depths, locations within the ISSFs, filters ages and

operational stages were used for qPCR and Illumina 16S rRNA sequencing. Additionally,

fifteen water quality parameters were monitored to assess filter performance, with function-

ally relevant microbial members being identified using an array of statistical techniques. The

bacterial diversity in SSFs was found to be much larger than previously documented, with

community composition being shaped by the: characteristics of the SSF (age, and depth)

and sampling characteristics (month, side and distance from the influent and effluent pipe).

This study is the first to comprehensively characterise the microbial community of SSFs and

link specific microbes (Acidovorax, Halomonas, Sphingobium and Sphingomonas) to water

quality parameters and overall filter performance. Additionally, this study’s results indicate

that species evenness is critically related to SSF performance. By better understanding the

SSF community structure it will be possible to improve water quality performance through

A condensed version of some of the work in this chapter is under review: Haig, S. Quince, C. Davies,

R.L. Dorea, C.C. and Collins, G. Spatial and Temporal Microbial Community Analysis Identifies Func-

tionally Relevant Microbes for Slow Sand Filter Performance. Under review in mBio
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optimisation of SSF operation and design in the future.

4.1 Introduction

As discussed in Chapter 2 slow sand filtration has been an effective means of treating water

for the control of microbiological contaminants in both small and large community water

supplies for over 200 years. However, such systems lost popularity to rapid sand filters

mainly due to smaller land requirements and less sensitivity to water quality variations.

Slow sand filtration is still a particularly attractive process because its operation does not

require chemicals or electricity. Despite, this SSFs can still achieve a high level of treatment,

which is mainly attributed to naturally-occurring, biochemical processes in the filter. Several

microbiologically-mediated purification mechanisms (e.g. predation, scavenging, adsorption

and bio-oxidation) have been hypothesised or assumed to occur in the biofilm that forms in

the filters but these have not yet been comprehensively verified. Thus, SSFs are operated as

“black boxes” and knowledge gaps pertaining to the underlying ecology and ecophysiology

limit the design and optimisation of the technology.

Recently, there have been a number of studies that have attempted to characterise the purifi-

cation mechanisms and the microbes responsible for them [Weber-Shirk and Dick, 1997a,

Bahgat et al., 1999, Calvo-Bado et al., 2003, Aslan, 2008, Wakelin et al., 2011, Ramond et al.,

2013]. However, such studies have focused on specific aspects of SSFs (e.g. Schmutzdecke

[Wakelin et al., 2011]) or specific purification mechanisms (e.g. nitrate removal [Aslan,

2008]), and have been performed in non-verified laboratory-scale SSF microcosms, which

may not accurately reflect the true microbial community found in real SSFs. Although all of

these studies have provided great insight into the biological processes occurring within SSF,

a deeper analysis of the structure and dynamics of the microbial community which underpins

slow sand filters as a function of performance and operational conditions is needed. Such

a study has the potential to reveal important and under-appreciated structure-function rela-

tionships, which could greatly improve operation, management and design of these systems.

Previous, microbial ecology papers on engineered systems with a biological component have

shown that functional stability and robustness is correlated with several components of bio-

diversity, such as species richness and evenness [Hashsham et al., 2000, Bell et al., 2005,
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Allison and Martiny, 2008, Wittebolle et al., 2009, Werner et al., 2011] however no such

study has ever been performed on SSFs.

This chapter will present and discuss the findings of periodical sampling of two industrially

operated full-scale slow sand filters (ISSFs), in order to study the spatial and temporal struc-

ture of the bacterial community comprising the filters. It will also strive to determine how

specific microbial groups are related to overall filter performance. By determining the or-

ganisms and community metrics comprising SSFs, along with their functional performance

over their lifecycle (Figure 4.1), it will enable the development of a detailed slow sand filter

microbiome blueprint which can be used as a benchmark for subsequent comparisons.
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Sub Optimal 

Non-operational 

Figure 4.1: Lifecycle of slow sand filter. The size of the ring component corresponds to the proportion

of time the SSFs are at that stage. The black outer lines provide performance related information.

Hypotheses

Hypothesis 4.1 Slow sand filters become more spatially heterogenous with age.

Hypothesis 4.2 Decrease in species diversity from inlet to the outlet of slow sand filters

is related to substrate concentration gradients.
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Hypothesis 4.3 The age of slow sand filters will explain the largest proportion of the

variance in the microbial community.

Hypothesis 4.4 The quality of water produced (number of parameters met within the

European Union Council Directive) will positively correlate with SSF

age.

Hypothesis 4.5 Slow sand filters with identical influent compositions and filter perfor-

mance will share genus level similarity in community composition.

4.2 Materials and Methods

Within this section a detailed description of the various methods and approaches used to

sample and characterise the microbial community of ISSFs is presented.

4.2.1 Operation and Sampling of Industrial SSFs

Two dimensionally-identical ISSFs (Filter A and Filter B), at Scottish Water’s Fairmilehead

Water Treatment Works in Edinburgh were sampled approximately monthly from April un-

til November 2011, with the filters being decommissioned by the addition of chlorine in

November 2011. The filters differed in only their age (days since scraped). Additional to

the monthly sampling, an eight-week intensive sampling strategy was adopted from May to

June. The purpose of the intensive sampling programme was to monitor the SSF commu-

nity closely during the time it was hypothesised to be more microbially active. In total, 16

sampling sessions were conducted, providing data from representative points in the filters

lifecycle (Figure 4.1); it should be noted that drained filters were sampled 20h after draining

had occurred. Further, the first sampling points taken during decommissioning were col-

lected 20h after chlorine delivery and; both filters remained operational with the produced

water entering the distribution system until November 2011.

Fairmilehead is a drinking water treatment works with seven filters, each with an approx-

imate area of 1800m2 and composed of a 1m filter bed and 30cm of under-drainage. The

sand filters receive their influent water from several upland reservoirs (Talla: N 55.4745◦, W

3.3848◦and Megget: N 55.4851◦, W 3.2819◦) in the borders of Scotland via 45km of gravity

fed tunnels, pipelines and aqueducts (Figure 4.2). The Talla reservoir was built in the late
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Figure 4.2: Maps showing the location of the Talla and Megget reservoirs in relation to Fairmilehead

water treatment works.

19th century, opening in 1899, and the Megget reservoir was built in the 1980s to supple-

ment Edinburgh’s water supply. Like the Talla, the Megget resevoir is a man-made water

body constructed by damming the valley at its narrowest point; this 259 hectares reservoir

is held back by the largest earth dam in Scotland and collects water from the Tweedsmuir

Hills. Once the reservoir water has percolated through the slow sand filters the effluent is

chlorinated and then distributed via Scottish water’s distribution system to the consumers.

The Fairmilehead site supplies 160 million Litres/day.

4.2.2 Filter Bed Sand Characterisation

The sand comprising the filter bed in the sand filters was analysed to determine the effective

grain size distribution (ES) and uniformity coefficient (UC). To determine these values, 300g

of sand were dried and the ES was determined through sieve analysis by plotting the cumu-

lative weight of sand against the sieve mesh diameter. In the water industry the suitability

of sand for slow sand filtration is determined by the ES10 (sieve mesh by which 10% of the

sand weight passes) and the UC (degree of sand uniformity, calculated by dividing ES60 by

the ES10). Thus if there are large amounts of fine or coarse grains in the sand this will af-

fect the values of ES10 and ES60, and hence the UC. For optimal drinking water production
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using SSF an Es10 between 0.2mm and 0.25mm and a UC lower than 3 (ideally under 2) is

recommended [Van Dijk et al., 1978].

4.2.3 Sampling the Filter Beds

Sampling entailed collecting one 50cm sand core from each side of both filter beds using a

Multi-stage sediment sampler (AMS, America Falls, USA) (Figure 4.4). Cores were taken

from the three separate accessible sides of the filters (Figure 4.3). The multi-stage sampler

does not have an auger head to disturb the sand during emplacement, and so must be pushed

vertically into the sand bed and then hammered deeper into the filter bed using the attached

jack-hammer (Figure 4.5). The sampler (Figure 4.4) is constructed from stainless steel and

features a vented top cap with a one way valve, extendable body and coring tip with a but-

terfly valved retainer. The sampler is assembled by threading (male to female) the core tip

onto the lower liners and then threading this onto the extension rods and finally the 20lb slide

hammer. Once assembled the sampler is inserted into the filter and by using the slide ham-

mer it can reach the necessary depth (50cm deep in the filter bed). The sampler is recovered

by reverse hammering with the slide hammer; once out of the filter the top cap is removed

using the slip wrench on the sampler body and an adjustable wrench on the top cap threaded

extension connection. The liner and butterfly retainer are then removes from the Multi-Stage

Base Section and plastic caps are placed on either end of the liner to secure the sand section.

These undisturbed cores were sectioned at eight depths (0, 4, 10, 15, 20, 30, 40 and 50

cm) and 0.5 g of each subsample was used for DNA extraction using the FastDNA spin kits

for soil (MP Bio-Medical, Cambridge, UK); for details of this procedure, see Appendix B.

Extracted DNA was used for Illumina 16S amplicon sequencing and qPCR to identify and

quantify the various members of the microbial community. It should be noted that in order

to design specific probes and primers for qPCR a clone library representing the entire sand

core was created.

4.2.4 Water Quality Analysis

At each sampling occasion 2L influent and effluent water were collected from the two filters,

and pH and water temperature were measured on site with portable meters. Water sam-
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Figure 4.3: Schematic of Fairmilehead filter plant A), sampling locations within the filter bed, num-

bers represent the sampling order B) and mesoscale sampling locations C).

Figure 4.4: Photos of the multi-stage sampler. (A) shows the whole sampler. (B) shows the 20lb slide

hammer. (C) shows the butterfly valved core tip. (D and E) illustrate how the sampler will be used

at the SSF site; inserted into a hollow PVC tube which helps to guide the sampler down to the filter

bed. Once the blue mark on the slide hammer is just above the PVC tubing the sampler has reached

a depth of 50cm. (F) shows the plastic liner which the sample is contained within.
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Figure 4.5: Schematic of a slow sand filter and the location of AMS’s Multi-stage sampler during

sampling

ples were processed in triplicate for turbidity, dissolved organic carbon, specific ultraviolet

absorbency, chemical oxygen demand, nitrate, nitrite, ammonia and phosphate. Coliform

counts, and total viable bacteria counts at 30◦C and 13◦C, were measured five times each

(Table 4.1) using the methodology found in Appendix A. Environmental temperature, water

temperature, environmental light intensity and light intensity 5cm submerged into the fil-

ters were constantly measured from May to November 2011, and logged using Hobo Data

Loggers (Onset Computer Corporation, UK). To evaluate overall filter performance a new

parameter called “Performance metric” (5) was created. This parameter assigned the ef-

fluent of each filter a number from 0 - 10 based on the number of the top 10 water quality

parameters outlined by European Union Council Directive [1998] it fulfilled (Table 4.1). The

ranking is as follows: 0 - 4 is designated as poor performance, 5 - 6 as average, 7 - 8 as good

and 9 - 10 as excellent performance.

4.2.5 DNA Sequencing

A 16S rRNA gene clone library was constructed to identify likely important groups and to

provide positive controls for subsequent qPCR assay development. Further, in order to char-
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Table 4.1: Measured water quality parameters in this study, alongside the maximum concentration

allowed, as designated by European Union Council Directive [1998], all analytical methods used

come from the Standard Methods used by the water industry [Clesceri et al., 2005].

Parameter Analysis Technique Concentration Standard Method

Ammonia∗ Salicylate digestion 0.05mg/L P4500-NH3A

COD∗ Closed Reflux, titrimetric method 30 P5220C

Coliforms ∗ Serial dilutions on MLSB 0/100ml 9222

DOC∗ Samples filtered and processed using Hach TOC kit 10mg/L P5310C

Nitrate∗ Cadium Reduction 50mg/L P4500-NO3−E

Nitrite∗ Diazotization 0.5mg/L P4500-NO2−B

Orthophosphate∗ Ascorbic Acid 0.1mg/L P4500-PE

pH∗ Hydrogen ion concentration 6.5-9.5

SUVA∗ Division of UV254nm by DOC measurement 3.5 5910B

TVB Serial dilutions on plate count agar. Bahgat et al. [1999]

Turbidity∗ Nephelometric measurement 4NTU P2130B

UV254nm Absorbance at 254nm after filter (0.45µl filter) 5910
∗ denotes parameters which are used to assign5. Abbreviations: COD: Chemical Oxygen Demand, DOC:

Dissolved Organic Carbon, SUVA: Specific UV Absorbance, and TVB: Total Viable Bacteria at 30◦C

acterise, and calculate abundances of the whole microbial community found within SSFs,

Illumina 16S rRNA amplicon sequencing was also performed.

4.2.5.1 Clone library

A 16S rRNA clone library was created using the universal prokaryotic primers (27F: [5’-

GAGTTTGATCCTGGCTCAG-3’] and 1392R: [5’-ACGGGCGGTGTGTRC-3’]) on sand from a mixed

core (i.e., sand from all depths) from the industrial SSFs using the TOPO TA kit (Invitrogen)

following manufacturers instructions. One hundred clones were screened using amplified ri-

bosomal DNA restriction analysis, with the restriction enzyme HAEIII (Promega,UK). Oper-

ational taxonomic units (OTUs) were identified, based on restriction cleavage patterns, and

clones representing the different OTUs were sequenced (Genepool, Edinburgh). Chimera

checking was performed using Bellerophon [Huber et al., 2004]. For details of the exact

protocol used see Appendix B.

4.2.5.2 Illumina 16S Amplicon Sequencing

The 16S rRNA gene amplicon of 674 full-scale SSF samples (56 water and 618 sand sam-

ples), representing different depths, filters, filter ages and levels of filter performance were
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processed by the Earth Microbiome Project (EMP) using the 515F [5’-GTGCCAGCMGCCGCGG

TAA-3’] and 806R [5’-GGACTACHVGGGTWTCTAAT-3’] primers following the protocol outlined

by Caporaso et al. [2012]. Amplified samples were then pooled together (equimolar con-

centrations) and sequenced on Illumina HiSeq 2000. Sequenced samples were then quality

filtered and demultiplexed. Taxonomy for all samples was assigned against the Greengenes

database [DeSantis et al., 2006] which pre-clustered at ≥97% OTU identity. Additionally,

two mock communities processed in triplicate were also included to act as positive controls.

Raw and processed reads can be found at: www.microbio.me/emp/.

4.2.6 qPCR

To calculate the changes in the absolute concentrations of the dominant phyla and classes

(based on indicative results from the 16S rRNA clone library) qPCR assays were done, both

over time and depth within SSFs. Eight phyla- and four class-specific qPCR primers were

designed. Primer information can be found in Table 4.2. All samples were processed in

triplicate along with two negative controls and standards.

qPCR assays were conducted in polypropylene 96-well plates on a CFX96 Real-Time PCR

Detection System (Bio-Rad). Each 10µl reaction contained the following: 5µl of SsoFast

EvaGreen Supermix (Bio-Rad), 0.8µl of each primer (0.4µM; Eurofins), 2.4µl water and 1µl

of template DNA (1ng µl−1). PCR conditions for total bacterial 16S, Acidobacteria, Bac-

teroidetes, and Betaproteobacteria were 15 mins at 95◦C, followed by 40 cycles of 95◦C

for 1 min, 30 s at the annealing temperature, and 72◦C for 1 min; all other assays were per-

formed for 35 cycles (Table 4.2). Melting curve analysis of the PCR products was conducted

following each assay to confirm that fluorescence signal originated from specific PCR prod-

ucts and not from primer dimers or other artefacts. Standard curves were generated using

triplicate 10-fold dilutions of linearised (EcoR1) plasmid DNA (generated from the clone

library, representatives of the different groups). DNA concentrations ranged from 8 × 108

to 8 × 101ng/µl. For all the qPCR assays, there was a linear relationship between the log of

the plasmid DNA copy number and the calculated threshold cycle value across the specified

concentration range (R2 >0.99 in all cases). Amplification efficiencies, calculated using the

method described by [Pfaffl, 2001], varied from 1.8-2.1 across the 13 qPCR assays; these

values are consistent with those reported in other studies [Fierer et al., 2005, Castillo et al.,
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Figure 4.6: Scatter plot depicting the correlation between the percentages of the different phyla cal-

culated by this study’s qPCR assays and the known abundances [Shakya et al., 2013].

2006].

To ascertain the accuracy of the qPCR assays, a blind test was performed for each phylum /

class with a previously quantified mock community [Shakya et al., 2013], results of which

can be seen in Figure 4.6. Calculating Pearson’s correlation coefficient between the pre-

viously determined abundances in this mock community against our measured abundances

resulted in a very strong (0.976) positive correlation, which confirms the accuracy of the

qPCR assays and subsequent phyla abundances in unknown samples.

4.2.7 Statistical Analysis

Correlations between water quality parameters were explored using the nonparametric Kendall

τ procedure and seasonal effects were examined using a seasonal Mann-Kendall test. Ad-

ditionally, the functional relationships between water quality parameters and the absolute

abundance of eight bacterial phyla and four bacterial classes were analysed using stepwise

multivariate forward/reverse regression analysis.

Taxonomic and OTU tables generated for the Illumina samples were used to calculate pair

wise similarities among samples based on the Bray-Curtis similarity index. The resulting

matrices were examined for temporal and spatial patterns in bacterial community structure
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by using non-metric multidimensional scaling (NMDS) as implemented in the Vegan pack-

age [Oksanen et al., 2012]. Significant differences in the microbial community composition

between filters, age, depth, location of core, season and addition of chlorine were determined

by using the adonis function, which performs a nonparametric multivariate analysis of vari-

ance (MANOVA) [Anderson, 2001]. To determine the contribution of individual taxon to dif-

ferences in filter performance SIMPER (similarity percentage) analysis [Clarke, 1993] was

used. SIMPER analysis is a useful measure of the magnitude of difference, however, in or-

der to decide whether a taxon differed significantly pairwise t-tests (kendall non-parametric)

adjusted for multiple comparisons using Benjamini-Hochberg false-discovery method [Ben-

jamini and Yekutieli, 2001] were performed. Only taxa with a false-discovery rate of less

than 5% were reported. Shannon diversity indices, Chao’s richness, Pielou’s evenness and

rarefaction curves were calculated using the Vegan package on rarefied samples at the 3%

genetic distance. The relationships between environmental variables and patterns in bacterial

community structure were examined by canonical correspondence analysis with significance

tested by analysis of variance tests (ANOVA) after reducing the overall suite of environ-

mental variables using step-wise Akaike’s Information Criterion (AIC) model. All statistical

analysis was performed in R [R Development Core Team, 2011].

4.3 Results

Within this section the results of the study, alongside discursive analysis will be presented,

with an overall discussion being provided in Section 4.4.

4.3.1 Sand Characterisation

Referring to Figure 4.7 the uniformity coefficient (UC) of the sand at Fairmilehead was

calculated as 2.8, which is within the guidelines for SSF performance [Huisman et al., 1974].

However, it can be seen that the Es10 is double the optimal value stated in the guidelines

and that the average particle size is 1300µm, four times greater than the guide-lined size.

Irrespective of these finding this sand has been successfully used for centuries in providing

high quality drinking water at this site and further emphasises the flexibility in the sand type

which can be used for slow sand filtration.
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Figure 4.7: Effective particle size distribution graph for the sand taken from Fairmilehead

4.3.2 Water quality

Two industrially operated full-scale SSFs were sampled routinely from April 2011 until they

were decommissioned in November 2011, equating to a total of 16 sampling trips. Both

industrial sand filters performed extremely well in terms of the Water Supply, Water Quality,

Scotland Regulations 2001 (part of the Water Scotland Act 1980). Influent, effluent and per-

centage removal results can be seen in Tables 4.3, 4.4 and 4.5. Overall, the filters failed to

meet only one drinking water requirement; the coliform levels. However it should be noted

that these filters are not a single point of purification, with effluent from the filters being chlo-

rinated before being distributed, a process which would remove the low levels of coliforms

present in the effluent. Additionally, in terms of performance there was no statistically sig-

nificant difference (p-value 0.08, Wilcox Test) in filter performance between filters A and B.

Referring to Figure 4.8 it can be seen that all of the water quality parameters significantly

correlate with at least six other parameters, with DOC correlating the least and NH4 and DO

correlating with every parameter. Additionally, several parameters (Table 4.6) showed vary-

ing strengths of correlation with the age of the filters, with coliform removal showing the

strongest positive correlation, with optimum coliform removal occurring after seven weeks.

This is consistent with operators reports of SSF performance increasing with age / matu-
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Table 4.6: Significant correlations of age against percentage removal of water quality parameters

(red text denotes positive and blue negative correlations), based on 470 samples

Water Quality Parameter Correlation P-value

Ammonium -0.283 3.89 × 10−10

Coliforms 0.537 1.80 × 10−4

Dissolved Organic Carbon -0.285 3.11 × 10−10

Nitrate -0.606 2.20 × 10−16

Nitrite -0.171 1.90 × 10−4

Performance Metric (5) 0.475 4.00 × 10−3

Phosphate -0.411 2.20 × 10−16

Total viable bacteria (TVB) at 30◦C 0.243 1.90 × 10−3

TVB at 13◦C 0.117 1.09 × 10−3

rity. Statistical analysis of seasonality using the Mann-Kendall test showed only a significant

seasonal effect for temperature and turbidity, suggesting performance improvements are not

due to seasonal effects. This is not surprising as temperature is known to follow a natural

seasonal trend in Scotland. Likewise, turbidity is known to fluctuate with rainfall levels, as

higher rainfall leads to increased agricultural runoff and thus more turbid influent water sup-

plying the filters. Therefore these results suggest that the improvement in filter performance

is due to maturity in the microbial community and not seasonal variability.

4.3.3 Clone Library

To determine the most abundant phyla and bacterial classes found within SSFs and to cre-

ate taxon-specific qPCR primers to quantify temporal concentration changes, a 16S rRNA

gene clone library was constructed. The SSF clone library was composed of 100 clones

that grouped into 35 phylotypes, representing 10 different phyla; results of the sequencing

can be seen in (Table 4.7). From Figure 4.9 it can be seen that the bacterial phylotypes

can be divided into ten different phyla: Proteobacteria (56% of the total clones), Plancto-

mycetes (16%), Bacteroidetes (8%), Actinobacteria (6%), Acidobacteria (4%), Nitrospira

(4%), Chloroflexi (1%), Gemmatmonadetes (1%), Verrucomicrobia (1%) and Unclassified

at 95% cutoff with RDP classifier (3%). Proteobacteria were the dominant phylum, with

Betaproteobacteria and Deltaproteobacteria representing 45% of the clone library, with the

dominant phylotype (20% of the clone library) being affiliated with the Deltaproteobacteria.
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Figure 4.8: Kendall correlation tests showing the relationships between the percentage removal of the

various water quality parameters. Red indicate positive correlations and blue negative correlations.

P-values are denoted by . = 0.5 , * = 0.1, ** = 0.001, *** = 0. Temperature, pH and UV were left

out of the analysis.
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Since there are known biases associated with DNA extraction and PCR amplification, the

abundances of a phylotype on a clone library does not necessarily reflect its true abundance

in the sample and hence in the environment. However, this SSF clone library does have

similarities to other soil and sediment clone libraries; in particular there is great similarity

between this SSF clone library and an Arctic perennial Spring sediment clone library from

Canada [Perreault et al., 2007] and a German drinking water reservoir [Röske et al., 2012],

with respect to the dominance of Proteobacteria, specifically Deltaproteobacteria.

4.3.4 Distinct Microbial Community Composition Between Samples from

Sand, Influent and Effluent

A total of 26,163,232 sequences were generated from Illumina sequencing with an average

number of 38,566 reads for each sample (Figure 4.10). To account for differences in read

number, and therefore diversity, samples were rarefied to the lowest read number within the

dataset (5,909). Rarefied samples were classified below domain level, being affiliated to:

36 phyla, 82 classes, 126 orders, 239 families, 688 genera and 11,026 OTUs. Proteobac-

teria were the dominant phylum in all samples as shown in Figure 4.11, accounting for, on

average 51% of the community, which is consistent with the clone library results. Overall,

sand from operational SSFs contained the greatest number of OTUs (8,319, of which 2,312

were unique to sand), which was almost double that found in drained SSF sand (4,482, with

3 unique OTUs) and both the influent (4,504) and effluent (3,947) samples. This coincided

with significant differences in species diversity and evenness; with operational SSF sand hav-

ing greater species diversity and evenness than drained sand samples (Wilcoxon test p-value:

0.0021 and 0.0004, respectively).

Influent water samples possess more OTUs than effluent samples, alongside a significantly

higher species diversity index (p-value = 0.001); however, there was no difference between

species evenness values (0.65 and 0.63, respectively). Interestingly, sand samples from op-

erational filters only shared 55% and 73% of their OTUs with influent and effluent water

samples, respectively. This highlights that other environmental factors such as wildlife and

weather, in addition to the supply water, are important in shaping the microbial community

in SSFs. It should, however, be noted that the OTU numbers reported above are likely to be

over-estimates of the true diversity, given that an over-estimation of OTU number in dupli-
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Figure 4.10: Number of reads associated with each sample sequenced by Illumina HiSeq 2000.
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Figure 4.11: Average relative abundance of the top 15 phyla based on Illumina 16S rRNA amplicon

sequencing in: influent, effluent, operational SSF sand and drained SSF sand.
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Figure 4.12: Barplots showing the actual number of OTUs in light blue and the sequenced number of

OTUs in dark blue for two mock communities. A: A slow sand filter mock community created from the

clone library mentioned in Section 4.3.3. B: The mock community created by Shakya et al. [2013].

cate analysis of positive control mock communities was observed (Figure 4.12). Based on

comparisons to the known OTU number of these two mock communities it can be concluded

that this Illumina sequencing over-estimates the true OTU number by on average 6.80-13.11

times.

NMDS analysis [Oksanen et al., 2012] (Figure 4.13) revealed that all samples clustered into

four groups: influent water, effluent water, sand from operational filters and drained sand

from two SSFs. Adonis analysis confirmed that the four groups were significantly different

(p-value = 0.001). The SIMPER procedure was used to identify the top ten OTUs responsible

for the dissimilarities between water and sand samples (Table 4.8). Referring to Figure 4.13

and Table 4.8 the extreme difference in community composition of drained SSFs compared to

operational SSFs is apparent. In particular, Bacillaceae, members of the Firmicutes phylum

appear to be responsible for the greatest proportion of the difference, being more than 16,000

times more abundant in drained samples than in operational SSFs.

4.3.5 Spatial and Temporal Community Diversity in Sand Samples

The spatial and temporal patterns of the absolute number of Acidobacteria, Actinobacte-

ria α-Proteobacteria, Bacteroidetes, β-Proteobacteria, Chloroflexi, δ-Proteobacteria, γ-

Proteobacteria, Gemmatimonadetes, Nitrospira, Planctomycetes, Verrucomicrobia and the
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total bacterial community were studied using qPCR in the two ISSFs, which were divided

into three sections based on the side (location in filter i.e., beside the influent or effluent

pipe) of the filters (Figure 4.14). As expected, the highest abundance was observed for the

total bacterial community, with densities ranging from 2.13 x 107 to 2.21 x 1010 16S rRNA

genes/g of extracted sand. A strong positive correlation was found between total 16S rRNA

genes and age of the filters (0.43, p-value: 0.01) and a mild negative correlation between

the total 16S rRNA genes and depth (-0.165, p-value: 0.001), which is consistent with other

studies [Koizumi et al., 2003]. Overall, clear changes can be seen in the absolute phyla

abundances over time and depth (Figure 4.14), with Acidobacteria, Actinobacteria, Bac-

teroidetes, Chloroflexi, Planctomycetes, δ-Proteobacteria and Verrucomicrobia accounting

for 85% of the population on average, with the abundance of Actinobacteria, Bacteroidetes,

Proteobacteria and Verrucomicrobia fluctuating most over time.

To statistically determine the parameters shaping the microbial community in SSF sand, two

ISSFs were sampled at various times of year; ages; locations; depths and distances from both

the influent and effluent pipes; and the data were analysed using canonical correspondence

analysis (CCA). A combination of these factors (all factors in Table 4.9 except filter) ex-

Drained sand 
Sand 
Influent water 
Effluent water 

Stress: 0.098 

SAND 

INFLUENT 

EFFLUENT 

DRAINED 

Figure 4.13: NMDS ordination for the microbial community structure for all samples in the Illumina

dataset at the 97% OTU level. Ellipses designate the 95% confidence intervals for the four groups.
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Table 4.9: Canonical correspondence analysis of the relative abundances of bacterial OTUs and filter

parameters and characteristics in 406 sand samples from two SSFs

Parameter Degrees of Freedom !2 F value Number of permutations Pr(>F)
Month 3 0.1575 6.4583 99 0.01

Age category 2 0.1359 10.4997 99 0.02
Side 1 0.0691 8.5006 99 0.01

Distance from Effluent Pipe 1 0.0246 3.0248 99 0.04
Distance from Influent Pipe 1 0.0234 2.8756 99 0.01

Age 1 0.0577 7.0844 99 0.01
Depth 1 0.0131 1.6080 99 0.05
Filter 1 0.0093 1.1394 99 0.64

Residual 190 1.5352

plained the SSF sand microbial community structure (p-value: 0.005). Of the characteristics

evaluated, age (both individual ages and age categories: early, middle and late); the side of

the filter sampled; and the month at which a sample was taken; were the major drivers for

the bacterial community structure, with age being the most significant factor (Figure 4.15).

Subtle differences at specific age categories (early:0-4weeks, mid: 5-8weeks and late:≥9

weeks) with respect to the abundance of the top 18 families can be seen in Figure 4.16,

in particular differences between: Flavobacteriaceae, Micrococcaceae, Nitrospiraceae and

Oxalobacteraceae. Further analysis revealed that there is a strong positive correlation in the

total number of OTUs and the total 16S counts with the age of the filters (early: 4790, mid:

5234 and late: 6798 OTUs), corresponding to average 16S counts of 5.62 × 107, 2.14 × 108

and 4.39 × 108 16S/g of sand). Therefore, it can be concluded that older filters possessed

a greater number and density of OTUs than earlier stages, which is consistent with previous

studies [Ramond et al., 2013]. SIMPER analysis corroborated that significant differences

in community composition at the various age categories was mainly due to members in the:

Flavobacteriaceae, Micrococcaceae, Nitrospiraceae and Oxalobacteraceae families. How-

ever, Ruminococcaceae, a less abundant family, was likewise found to explain a significant

amount of the community variation, with percentage abundances of this family being signif-

icantly higher in older filters (early abundance: <0.001%, mid: 0.0013% and late: 0.268%).

Further, there were nine families (Table 4.10), ranging in relative abundance from <0.0001-

0.027%, which were only present in the oldest filters.

Surprisingly, depth was only a marginally significant parameter (p-value: 0.05) in explaining

differences between sand samples. This is unusual as chemical gradients are hypothesised
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Figure 4.15: Non-metric multidimensional scaling plot of the bacterial OTU community structures in

406 sand samples taken from two SSFs. Samples are coloured according to their age bin category:

early = 0-4 weeks, mid = 5-8 weeks and late = >9weeks after scraping
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Figure 4.16: Average relative abundance of the top 18 families in SSFs at different age bins (early: 0-

4 weeks, mid: 5-8 weeks and late: >10weeks after scraping), data generated from Illumina amplicon

sequencing
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Table 4.10: Average percentage relative abundance of the nine families only found in late age-binned

SSFs. ∗ denotes a member of the archae

Average Relative
 Abundance (%)

Alteromonadaceae 2.01E-05
Beutenbergiaceae 9.71E-06
Elusimicrobiaceae 1.15E-03
Listeriaceae 5.66E-05

Methanocorpusculaceae* 1.61E-03
Mycoplasmataceae 4.32E-05
Rikenellaceae 2.71E-02
vadinHA31 3.35E-04
Victivallaceae 2.83E-04

Family

to exist with SSFs and, therefore, community composition was expected to be explained in

a large part by depth. However, laterally (side of the filter sampled), there were significant

differences in the microbial community. SIMPER analysis revealed that side 1 was most

similar to side 2 (47% similarity) but less similar to side 3 (41% similarity), and that side 2

was 43% similar to side 3. The majority of the differences between the microbial community

composition at the different sides was due to Acidobacteria and various orders of Proteobac-

teria (Figure 4.17). Furthermore, Adonis analysis showed that the microbial community in

both filters A and B were statistically indiscriminate (p-value = 0.093). Therefore, with re-

spect to reproducibility and homogeneity between microbial communities, the filters were

indistinguishable.

4.3.5.1 The Impact of draining and Chlorination on the Microbial Community

Species evenness indices revealed that as the filters matured the microbial community be-

comes more even, with evenness being consistent irrespective of the depth in the sand bed.

However, during the decomissioning of the site, chlorine was added to the filters and, as in

the study by Wang et al. [2013], chlorination was shown to significantly lower species even-

ness (Filter A before = 0.558± 0.090 and after chlorination = 0.502± 0.077, Filter B before

= 0.556 ± 0.070 and after chlorination = 0.448 ± 0.090). This effect was also seen during

the time when filters were drained and scraped (Figure 4.18), with a more profound effect

on the top depths than lower depths. Referring more closely to Figure 4.14, a staggering

difference in community composition can be seen at all depths when the filters are drained;
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Figure 4.18: Heatmaps showing the temporal and spatial changes in species evenness in SSF A and

B, (a) Filter A Length 1 (b) Filter A Length 2,(c) Filter A Length 3, (d) Aerial picture of filter showing

length and filter locations, (e) Filter B Length 1 and (f) Filter B Length 3.

specifically, a large increase was observed in the proportion of Chloroflexi, Planctomycetes

and Verrucomicrobia, which coincided with a decrease in Acidobacteria, Bacteroidetes and

Deltaproteobacteria.

Diversity indices (shannon index) also showed significant reduction during these periods

(Filter A before chlorination = 1.55 ± 0.13 and 1.27 ± 0.20 after chlorination, Filter B

before = 1.50 ± 0.16 and 1.08 ± 0.15 after chlorination). This reduction in evenness and

diversity is explained by the large change in the microbial composition of the filters, specif-

ically the dominance of Deltaproteobacteria, which had increased from an average abun-

dance of 24.87% to 63.50%. Although chlorination did impact species evenness and diver-

sity it should be noted that the level of effect was different depending upon the side of the

filter, with side 1 (side of the filter where the influent pipe is located) being the first and most

severely affected. This is not surprising as it is the closest location to where chlorine delivery

occurs.
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4.3.6 Mesoscale Spatial Variation

Previously, the importance of the side and distance from the influent and effluent pipe on

explaining differences in the microbial community has been discussed. However, in order to

gain a better understanding of this spatial variation on a more microbially realistic scale, six

cores at each side of both industrial SSFs were taken on the 21st of June 2011 (Figure 4.3C).

Referring to the canonical correspondence analysis plot (Figure 4.19), the sand samples from

the mesoscale experiment form three distinct clusters those: distance from the influent pipe,

distance from effluent pipe and distance from effluent corner. The depth and distance from

the influent pipe correlated with CA1 and explained 33.97% of the variation and the distance

from the effluent pipe and effluent corner correlated with CA2 and explained 16.89%. Adonis

analysis confirmed that there were significant differences in the microbial community within

and between groups (between groups p-value = 0.009; within distance from the: influent

pipe p-value = 0.034; effluent pipe p-value = 0.018; effluent corner p-value = 0.053). Such

differences in community can be attributed to chemical gradients which likely exist within

the filters. SIMPER analysis revealed that the abundance of the Massilia genus increased

with distance from the influent pipe (average abundance at 0.2m = 1.36%, 0.42m = 14.44%

and 0.68m = 23.10%). Massilia sp. have been isolated from various environmental samples

from many sources, including air, dust, soil, roots and drinking water [Gallego et al., 2006],

however, the reason for their dominance away from the influent pipe is unclear. Interestingly,

total 16S numbers were highest at the middle length (0.42m) and lowest at the furthest length

(0.68m), which coincided with the largest and smallest number of OTUs (3275 and 2898

respectively). However, in direct contrast the total number of 16S rRNA genes was greatest

beside the effluent pipe (albeit half the number found beside the influent pipe).

4.3.7 Correlation Between Community Members and Water Quality

Stepwise multivariate regression showed that the relative proportion of several bacterial fam-

ilies correlated strongly with the removal of certain water quality parameters (Table 4.11).

These correlations are consistent with the findings of other studies. Additional multivariate

regression analysis showed that the water quality performance of SSFs significantly corre-

lated with both the age and species evenness of the filters (Age p-value: 0.022, Evenness

p-value: 1.620 × 10−4), with species evenness being more important than age (Figure 4.20).
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Figure 4.19: Canonical Correspondence Analysis (CCA) of mesoscale spatial variability in the mi-

crobial community in sand samples taken from several locations from the influent and effluent pipes

supplying two ISSFs.

The importance of species evenness in relation to better performance has been previously

documented [Werner et al., 2011]. Wittebolle et al. [2009] explained that higher species

evenness implies greater robustness and functional stability and therefore a greater ability to

adapt to new and fluctuating parameters.

Significant differences (p-value: 0.01) in the community composition at different perfor-

mance levels (poor, average, good and excellent) were determined by Adonis analysis, with

the major organisms that contribute to these dissimilarities being determined through SIM-

PER analysis (Table 4.12). In particular, it can be seen that for excellent performance, an

evenly distributed community is required with no overly abundant organisms. On further

analysis it is apparent that poor performance is due to an uneven community structure. In

particular, an over-abundance of Acidovorax and Sphingobium, and an under-abundance of

Halomonas and Sphingomonas (Figure 4.21), as well as the complete absence of Naxibacter,

Streptopyta and Acinetobacter compared with good and excellent performing filters.
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Table 4.11: Stepwise multivariate regression of water quality parameters and family abundances.

Parameter Model P-value Adjusted R2 Family P-value Relationship with Removal
Ammonium 1.562 x 10-5 0.4133 CL500.29 0.0399 +

Cellulomonadaceae 0.0784 -
Mycobacteriaceae 0.0464 -

Nocardiaceae 0.0635 -
Carnobacteriaceae 0.0040 +

Rhizobiaceae 0.0041 +
Leuconostocaceae 0.0094 -

Pseudomonadaceae 0.0286 -
Coliform 1.837 x 10-6 0.5265 Erysipelotrichaceae 0.0877 -

Carnobacteriaceae 0.0653 -
Fusobacteriaceae 0.0418 -
Isosphaeraceae 8.23 x 10-5 +

Planctomycetaceae 0.0207 -
Desulfobacteraceae 0.0507 -
Sinobacteraceae.1 0.0251 +

Opitutaceae 0.0005 +
Verrucomicrobia subdivision3 0.0011 -

Enterobacteriaceae 0.0435 -
Dissolved 2.2 x 10-16 0.8583 Nocardiaceae 0.0140 +

Organic Promicromonosporaceae 3.24 x 10-7 -
Carbon Propionibacteriaceae 6.59 x 10-9 -

Bifidobacteriaceae 3.00 x 10-7 +
Solirubrobacteraceae 0.0431 +
Alicyclobacillaceae 0.0029 +

Pasteuriaceae 0.0126 -
Carnobacteriaceae 0.0045 -
Leuconostocaceae 7.80 x 10-5 -

Sphingomonadaceae 1.44 x 10-8 +
Rhodocyclaceae 0.0066 -

Nitrate 1.469 x 10-8 0.5524 Brevibacteriaceae 1.96 x 10-5 -
Dermacoccaceae 0.0030 -

FW 0.0002 -
Rhodobiaceae 0.1071 +

Mycoplasmataceae 0.0006 -
Nitrite 0.008712 0.1952 Thermodesulfovibrionaceae 0.0699 -

Planctomycetaceae 0.0503 +
Hyphomicrobiaceae 0.0298 -
Phyllobacteriaceae 0.0193 +
Rhodobacteraceae 0.0291 -
Xanthobacteraceae 0.0534 +

Performance (!) 1.726 x 10-9 0.6219 Holophagaceae 0.0171 +
CL500.29 0.0004 +

Kineosporiaceae 0.0034 -
Micrococcaceae 5.78 x 10-8 -

Fusobacteriaceae 0.0001 -
Rhodobiaceae 0.0197 -
Shewanellaceae 0.0001 -

Sphingomonadaceae 0.0875 +
pH 0.000205 0.307 Dietziaceae 0.0143 -

Microbacteriaceae 0.0646 +
Micrococcaceae 0.0002 +
Saprospiraceae 0.0448 -
Moraxellaceae 0.0122 -

Phosphate 9.567 x 10-6 0.3917 Flavobacteriaceae 1.21 x 10-5 -
Sphingobacteriaceae 0.0079 +
Alicyclobacillaceae 0.0717 +
Carnobacteriaceae 0.0025 +
Leuconostocaceae 0.0009 -

Turbidity 2.014 x 10-11 0.6599 Actinomycetaceae 6.55 x 10-6 +
Fusobacteriaceae 1.55 x 10-11 -
Isosphaeraceae 0.0020 +

Bradyrhizobiaceae 0.0007 -
Shewanellaceae 0.0076 -
Peptococcaceae 0.0831 +

Total 2.2 x 10-16 0.8407 Catenulisporaceae 1.88 x 10-9 -
Viable Rivulariaceae 2. x 10-16 -

Bacteria Thermodesulfovibrionaceae 0.0014 +
Gemmataceae 0.0020 -
Pirellulaceae 0.0067 +

Procabacteriaceae 0.0331 -
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Table 4.12: SIMPER analysis of the top 15 taxa accounting for majority of the dissimilarities between

SSFs producing different levels of water quality.

Taxon Genus Contribution (%) Avg. Poor (%) Avg. Excellent  (%)

Alphaproteobacteria Sphingobium 12.61 14.96 2.97
Gammaproteobacteria Pseudomonas 4.55 5.72 3.52

Betaproteobacteria Acidovorax 10.27 12.23 4.37
Bacteroidetes Flavobacterium 6.64 6.51 6.07

Alphaproteobacteria Methylobacterium 2.37 1.81 1.14
Gammaproteobacteria Halomonas 5.72 1.62 6.34
Alphaproteobacteria Sphingomonas 3.11 1.89 2.93
Betaproteobacteria Naxibacter 3.63 3.18 2.55
Betaproteobacteria Massilia 1.44 0.7 1.4
Betaproteobacteria Polynucleobacter 0.005 1.88 0.84

Alphaproteobacteria Novosphingobium 2.17 1.98 1.53
Bacteroidetes Arcicella 1.4 0.7 1.02

Gammaproteobacteria Nevskia 0.002 0.13 0.36
Streptophyta Streptophyta 0.19 1.11 0.11

Gammaproteobacteria Acinetobacter 0.86 0.89 0.24

Taxon Genus Contribution (%) Avg. Average  (%) Avg. Excellent  (%)

Alphaproteobacteria Sphingobium 17.16 24.33 38.73
Gammaproteobacteria Pseudomonas 12.61 14.96 2.97

Betaproteobacteria Acidovorax 4.55 5.72 3.52
Bacteroidetes Flavobacterium 10.27 12.23 4.37

Alphaproteobacteria Methylobacterium 6.64 6.51 6.07
Gammaproteobacteria Halomonas 2.37 1.81 1.14
Alphaproteobacteria Sphingomonas 5.72 1.62 6.34
Betaproteobacteria Naxibacter 3.11 1.89 2.93
Betaproteobacteria Massilia 3.63 3.18 2.55
Betaproteobacteria Polynucleobacter 1.44 0.7 1.4

Alphaproteobacteria Novosphingobium 0.005 1.88 0.84
Bacteroidetes Arcicella 2.17 1.98 1.53

Gammaproteobacteria Nevskia 1.4 0.7 1.02
Streptophyta Streptophyta 0.002 0.13 0.36

Gammaproteobacteria Acinetobacter 0.19 1.11 0.11

Taxon Genus Contribution (%) Avg. Good  (%) Avg. Excellent  (%)

Alphaproteobacteria Sphingobium 4.14 3.11 2.97
Gammaproteobacteria Pseudomonas 6.41 8.68 3.52

Betaproteobacteria Acidovorax 5.5 5.65 4.37
Bacteroidetes Flavobacterium 6.13 5.51 6.07

Alphaproteobacteria Methylobacterium 3.82 4.31 1.14
Gammaproteobacteria Halomonas 5.64 2.75 6.34
Alphaproteobacteria Sphingomonas 4.57 2.83 2.93
Betaproteobacteria Naxibacter 2.82 2.21 2.55
Betaproteobacteria Massilia 2.92 2.85 1.4
Betaproteobacteria Polynucleobacter 1.33 1.26 0.84

Alphaproteobacteria Novosphingobium 1.78 1.12 1.53
Bacteroidetes Arcicella 2.04 1.44 1.02

Gammaproteobacteria Nevskia 1.35 1.71 0.36
Streptophyta Streptophyta 0.85 0.98 0.11

Gammaproteobacteria Acinetobacter 1.32 1.19 0.24

Performance designated by using5: 0-4:Poor, 5-6:Average, 7-8:Good and 9-10:excellent.
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Correlation = 0.635 
P-value = 3.14x10-5 

B)   
Correlation = 0.853 
P-value = 3.97x10-11 

C)   
Correlation = 0.704 
P-value = 1.69x10-6 

D)   
Correlation = 0.507 
P-value = 1.60x10-3 

E)   
Correlation = 0.847 
P-value = 4.02x10-11 

F)   
Correlation = 0.755 
P-value = 1.02x10-7 

Figure 4.20: Scatter plot showing the correlation between sand filter performance (5) and species

evenness at different levels of classification. (A) Phyla, (B) Class, (C) Order, (D) Family, (E) Genus

and (F) OTU. Higher 5 corresponds to better water quality performance. Based on Illumina se-

quencing of 618 sand samples.
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Figure 4.21: Barplots of the average percentage abundance of 4 key genera: A) Halomonas, B)

Sphingomonas, C) Acidovorax and D) Sphingobium, at different levels of water quality performance

(5). Note: different y-axis scale. Based on Illumina sequencing of 618 sand samples.

4.4 Discussion

4.4.1 Slow Sand Filters Host Diverse Bacterial Communities

The first major work into the characterisation of the microbial ecology of SSFs began sev-

eral decades ago [Brink, 1967, Lloyd, 1974]. In these studies, the diversity in the bacterial

community of these filters was deemed to be very low. However, the work of Brink and

Lloyd was based on using conventional plating and isolation techniques, which are known to

under-estimate the true diversity. Since this initial work, several studies have been published

[Eighmy et al., 1992, Bahgat et al., 1999, Calvo-Bado et al., 2003, Wakelin et al., 2011, Ra-

mond et al., 2013], which have begun to utilise modern molecular methods to answer the

same questions of Brink and Lloyd. These studies have all found that SSF communities are

extremely diverse both metabolically and phylogenetically [Eighmy et al., 1992]. However,

all of these studies have been carried out in SSFs used to purify wastewater or storm water,

rather than drinking water, as in this study, or on only samples from the schmutzdecke and

not various depths, as in this study.
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In this thesis, the microbial diversity of two ISSFs was found to be far larger than previously

reported with 36 phyla and 239 families found, compared to the 21 phyla and 149 families

found by Wakelin et al. [2011] in an Australian SSF. Such differences in diversity may be

explained by the different methodological approaches and primers used, as well as different

water sources, and perhaps more significantly, the different depths sampled within the SSF

(Wakelin et al. [2011] used storm water and only sampled the schmutzdecke). However, like

Petry-Hansen et al. [2006] and Wakelin et al. [2011], Proteobacteria were found to be the

dominant phylum in this study. Additionally, the microbial community in the influent and

effluent water was found to be significantly different to the sand community, both in terms

of composition and density. This highlights that other environmental factors such as wildlife

and weather are important in shaping the microbial community found in SSFs and should be

considered for future studies.

4.4.2 Reproducibility of Filter Performance and Microbial Community

The microbial community composition of the SSFs were significantly different depending

upon the status (operational or drained), age, location, month, distance from the influent and

effluent pipe, and depth from which samples were taken (Table 4.9). This was a previously

uknown. The age of the filter was the most significant parameter in explaining both changes

in the microbial community and water quality variables. This is not surprising as it is widely

documented by operators that SSF performance improves with maturity [Huisman et al.,

1974]. Additionally, the increase in the abundance of Ruminococcaceae, and the presence

of the nine other families (Table 4.10) in older filters might be explained by the fact that

they are all either facultative or strict anaerobes commonly found in wastewater and sewage

[Whitman et al., 2012]. Their increased abundance is likely due to prolonged exposure to

faeces from wildlife (i.e., birds) surrounding the filters and similar exposure at the reservoir

feeding the filters.

Surprisingly, filter identity was not a significant factor in explaining the differences in the

microbial community, suggesting that the communities within SSFs at this site are indis-

tinguishable. This alongside the similarity in water quality production between the filters,

implies that both the microbial community and performance are highly reproducible between

filters at this site. Another unexpected finding was the marginal significance of depth in ex-



CHAPTER 4. THE MICROBIOME OF FULL-SCALE SLOW SAND FILTERS 103

plaining differences in community composition. This is strange as in many other freshwater

studies [Lin et al., 2012] depth has been shown to be extremely important, as chemical gra-

dients are known to exist, causing changes in community composition. Although surprising,

this is not the first study to find depth a marginally significant variable. Recently, Röske et al.

[2012] showed that depth was an insignificant variable in explaining community composi-

tion in sediment from the Saidenbach drinking water reservoir in Germany. Regardless of

this, future work should focus on determining whether such water chemistry gradients exist

and if they affect or shape the microbial community of SSFs.

Although vertical (depth) spatial differences in the SSF microbial community were marginal,

lateral (side and distance from influent and effluent pipe) differences were highly significant.

Both can be a consequence of habitat heterogeneities imposed by differences in the physic-

ochemical characteristics [Deschesne et al., 2007], such as partially filled or unfilled voids

between sand grains that would disperse nutrients and microbes or the dilution of compo-

nents away from the influent pipe, creating nutritional gradients. Perhaps such dispersal of

nutrients occurs faster and easier along the surface of SSFs rather than vertically and thus

may account for the higher significance.

4.4.3 Species Evenness is Critical to Performance

Stepwise multivariate regression showed that the water quality performance of SSFs signifi-

cantly correlates with both the age and species evenness of the filters (Table 4.11), with better

performing filters having higher evenness values. This is the first study to the author’s knowl-

edge to correlate bacterial species evenness to the differing levels of performance of water

filters (Figure 4.20). Greater evenness has been linked to greater robustness and functional

stability [Wittebolle et al., 2009], and therefore, the ability to adapt to new and fluctuating

parameters, such as those brought by weather events (e.g., storms), which would impact the

composition of the influent water feeding the filters. Therefore, the increased species even-

ness and richness found in excellently performing filters is additional confirmation of the

“insurance hypothesis” conceived by Yachi and Loreau [1999], which hypothesises that both

functional redundancy and evenness are necessary for functionally robust ecosystems.

The importance of species evenness is further emphasised by the dramatic effect seen during
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draining events compared to operational times, in particular the over-abundance of Firmi-

cutes and Planctomycetes. This dominance may be directly related to the fact that Firmi-

cutes are known to produce endospores during periods of starvation or stress (i.e., during

SSF draining periods when organisms in the sand are exposed to temperature, pH, oxygen,

nutritional and UV fluctuations). The dominance of Planctomycetes can be explained by

the increased exposure to sunlight (due to reduced depth of water), resulting in heightened

algal growth, which has been shown to promote increased Planctomycetes growth [Pizzetti

et al., 2011]. Likewise, a similar effect occurs during chlorination, with the decline in even-

ness being attributed to an increase in Deltaproteobacteria. Deltaproteobacteria are widely

documented as being capable of reductive dechlorination, or halorespiration (the process of

using halogenated compounds such as sodium hypochlorite, as terminal electron acceptors

in anaerobic respiration) [Richardson, 2013]. Therefore, their dominance after chlorination

is not wholly surprising.

NMDS analysis of variance revealed that at different levels of performance (excellent, av-

erage and poor, defined in Section 4.2.4), the composition of the microbial community is

different. During periods of excellent performance there is a higher relative abundance of

Sphingomonas and Acinetobacter, two genera known to be capable of biodegradation and

metabolism of a wide range of chemicals (e.g., polycyclic aromatic hydrocarbons (PAHs),

cyanotoxins, endocrine disruptors and herbicides) [Shi et al., 2001, Bending et al., 2003,

Valeria et al., 2006, Fang et al., 2007, Williams and Ray, 2008], all of which would likely

be present in the reservoir water feeding the SSFs. Moreover, Innerebner et al. [2011] re-

cently showed that Sphingomonas has a striking plant-protective effect by suppressing dis-

ease symptoms and diminishing pathogen growth. Therefore, within SSFs this recent finding

may help to explain why their abundance is higher in excellent performing filters, which typ-

ically have no, or low, pathogen counts. Likewise, the increased abundance of Halomonas

in filters with excellent performance may be explained by the recent discovery that several

members of this genus can produce bioflocculants with a power of >80% turbidity reduction

[Cosa et al., 2013].

Conversely, in poorly performing filters the over-abundance of Acidovorax and Sphingob-

ium may be explained by niche competition; both of these genera are known to be capable of
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similar processes to Sphingomonas and Acinetobacter, which are found in greater abundance

in filters achieving excellent performance. The antagonistic effects of such competition be-

tween members of the Sphingomonad family (Sphingomonas, Sphingobium, Novosphingo-

bium and Sphingopyxis) have been examined [Cunliffe and Kertesz, 2006] and shown to

influence removal performance of PAHs in contaminated soils. However, it is important to

note that it is impossible to determine whether differences in filter performance are due to

the microbial community, or if it is the performance of the filters that shapes the community.

Speculatively, the former seems most plausible as SSFs predominantly function via biolog-

ical mechanisms. Additionally, referring to Table 4.3, little change in the characteristics of

the influent water feeding the filters can be seen and, therefore, performance differences must

be attributed to the microbial community. Overall, these findings show that higher species

evenness is integral to excellent SSF performance, and for the first time, associate specific

genera with differing levels of water quality production and ISSF performance.

4.5 Conclusions

In summary, the results of this study show that the microbial diversity of SSFs is far greater

than previously documented and that, in terms of community composition and performance,

the two SSFs sampled were indistinguishable and highly reproducible. Both filters produced

high quality drinking water, with quality improving as the filters matured. The month, age,

side, distance from the influent and effluent pipe and depth from which the samples were

taken significantly impacted the microbial community in SSFs, with age being the most

significant variable. As filters aged both the number and density of OTUs increased, as

did species evenness. Further, Illumina sequencing indicated that the abundance of various

members of the microbial community, specifically Acidovorax, Halomonas, Sphingobium

and Sphingomonas were important for performance. More significantly, it was found that

increased species evenness was critical for excellent filter performance. Decreased species

evenness indices were found in drained and juvenile SSFs, coinciding with increased abun-

dance of Planctomycetes, possibly induced by additional exposure to sunlight. Future work

should investigate the impact of reducing the drainage period, or the effects of covering

filters during draining and scraping events, on species evenness and the abundance of Planc-

tomycetes. Such work could significantly reduce the downtime (the period of time SSFs are
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non-operational due to poor performance) of SSFs.

Together the results of this study provide the most detailed characterisation of the functional

microbial community found in SSFs and provide a framework for future ecological and phys-

iological microbial research in these systems. To conclude, this study is the first to provide

insight into the importance of specific taxa to performance. However, the extent of their

importance, and other abiotic and biotic factors, requires additional field-based study as well

as ecophysiological study under carefully controlled laboratory conditions.
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Chapter 5

Mimicking Full-Scale Industrial SSFs in

the Laboratory

“Happy families are all alike; every unhappy family is unhappy in its own way.”

Leo Tolstoy, (Anna Karenina)

Previous laboratory-scale studies to characterise the functional microbial ecology of slow

sand filters have suffered from methodological limitations that could compromise their rel-

evance to full-scale systems. Therefore, to ascertain if laboratory-scale slow sand filters

(LSSFs) can replicate the microbial community and water quality production of industrially

operated full-scale slow sand filters (ISSFs), eight LSSFs were constructed and were used to

treat water from the same source as the ISSFs. Half of the LSSF sand beds were composed of

sterilised sand (sterile) from the industrial filters and the other half with sand taken directly

from the same industrial filter (non-sterile). All filters were operated for 10 weeks, with the

microbial community and water quality parameters sampled and analysed weekly. To char-

acterise the microbial community phylum-specific qPCR assays and 454 pyrosequencing of

16S rRNA genes were used in conjunction with an array of statistical techniques. The results

demonstrate that it is possible to mimic both water quality production and the structure of

the microbial community of full-scale filters in the laboratory, allowing subsequent LSSF

experimentation to be directly comparable to full-scale units. Further, it was found that the

sand type composing the filter bed (non-sterile or sterile), the water quality produced, the age

A condensed version of this chapter is published: Haig, S. Quince, C. Davies, R.L. Dorea, C.C. and

Collins, G. (2014). Validating the Performance and Microbial Community of Laboratory-Scale Slow

Sand Filters with respect to Full-Scale Industrial Filters. Water Research, 61, 141-151
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of the filters and the depth of sand samples were all significant factors in explaining observed

differences in the structure of the microbial consortia. This study is the first to the author’s

knowledge that demonstrates that scaled-down slow sand filters can accurately reproduce the

water quality and microbial consortia of full-scale slow sand filters.

5.1 Introduction

As outlined in Chapter 3 and reviewed in Haig et al. [2011] there have been a number of

studies that have attempted to characterise the purification mechanisms in SSFs and the mi-

crobes responsible for them, however, all previous studies have suffered from limitations of

approach or the techniques available. Even recently, many of these investigations have been

constrained by a focus on specific elements of the filter, such as the schmutzdecke, a bio-

logical layer formed on the top of the SSF bed [Campos et al., 2002, Rooklidge et al., 2005,

Unger and Collins, 2008, Wakelin et al., 2011] or on specific biological processes, such as

denitrification [Aslan and Cakici, 2007] and predation [Lloyd, 1996, Weber-Shirk and Dick,

1999, Lee and Oki, 2013]. A common drawback of these studies is their use of specific

microcosms under carefully controlled conditions that may not fully represent the presum-

ably complex and diverse microbial communities under-pinning real-world SSFs [Haig et al.,

2011]. There is, therefore, a need to verify whether scaled-down, laboratory SSFs (LSSFs)

can adequately represent full-scale industrially operated slow sand filters (ISSFs) with re-

spect to microbial community structure and water quality performance. This type of verifi-

cation will allow more complex questions pertaining to removal capabilities and the effects

of abiotic and biotic parameters to be explored under controlled laboratory conditions, with

the knowledge that conclusions drawn are directly comparable to full-scale filters. Further it

will allow better understanding of the factors and mechanisms driving microbial community

assembly, which will be of great benefit to the field of microbial ecology.

In this study, microbial diversity and water treatment performance were investigated in

LSSFs to determine the feasibility of mimicking the microbial consortia and water qual-

ity production of ISSFs in the laboratory. We hypothesise that the age, scale and type of

filter bed sand used (sterile - autoclaved, non-sterile directly taken from an operational ISSF

or full-scale) are important factors in explaining community structure.
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Hypotheses

Hypothesis 5.1 Temporal and spatial changes in the microbial community structure of

full-scale SSFs can be reproduced at the laboratory-scale.

Hypothesis 5.2 Laboratory-scale SSFs can replicate the performance of full-scale SSFs

across the majority of the water quality metrics measured.

Hypothesis 5.3 Laboratory-scale SSFs containing biologically active filter media can

replicate the performance and community structure of the full-scale SSFs

from which they were seeded faster than laboratory-scale SSFs with a

filter bed consisting of sterile filter media, despite being operated identi-

cally.

5.2 Materials and Methods

In order to mimic a SSF in the laboratory it is important to keep the sand and water depths

the same as found in industrial SSFs (ISSFs). This will allow us to accurately reproduce

ISSFs conditions, with the aim of reproducing the microbial community. There have been

few previous studies that have constructed laboratory-scale SSFs. Within this chapter LSSFs

(Figure 5.1 and Figure 5.2) have been designed and constructed based on adapted versions of

two previous models [Weber-Shirk and Dick, 1997a,b] and [Calvo-Bado et al., 2003]. This is

a proof of concept study, which aims to determine if it is possible to replicate the microbial

community and water quality production of ISSFs in LSSFs. In order to do this two sets

of four replicate LSSF rigs were constructed, each supplied from the same untreated water

source supplying the industrial filters discussed in Chapter 4. LSSFs were operated and

sampled for ten weeks, with comparisons being made to ISSFs of the same age.

5.2.1 Design and Construction of Lab-scale SSFs

Filters were constructed using a flange-based design made with 2 x 1.25 m of 54 mm diam-

eter polyvinyl chloride with a wall thickness of 5 mm (Figure 5.1). Filter set 1: ε, ζ , η and

θ have 8 x 3, 11 mm diameter sampling ports down the length (0, 5, 10, 15, 20, 30, 45, 70

cm) and around the circumference of the sand bed (Figure 5.2), whereas Filter set 2: α, β, γ,

and δ do not have these sampling chambers. This was to verify that the presence of sampling

ports have no effect on the bacterial community and water quality production. Filters have
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1m sand bed and 6.5 cm of under-drainage (0.85 - 1.4 mm gravel) to allow free drainage

of filtered water from the columns. The water flow rate for all experiments was set at 0.15

m3m−2h−1 (height of water column passing per hour) which is consistent with the ISSFs.

Water was pumped from the storage tank which contained the untreated water supplying the

industrial filters to the header tank (5 L) at a continuous rate. This storage tank was refilled

weekly with the water supplying the industrial filters and was kept constantly aerated and

homogenised. The sand used in all experiments was taken from the industrial sand filter site

sampled in Chapter 4 and had an effective size of 0.38 mm and a uniformity coefficient of

2.78. In order to ascertain if microbial community assembly and water quality performance

differed and could be reached quicker in the laboratory half of the columns were filled with

sand from a freshly sampled operational industrial SSFs (non-sterile sand) and the remaining

LSSFs were filled with sand which has be autoclaved at 121 ◦C for 20 minutes (sterile sand).

5.2.2 Sampling and Water Quality Testing

Each week, 2 L of influent and effluent water were collected from all the filters and tested

for the same water parameters presented in Table 4.1 following the methods outlined in

Appendix A. Additionally, sand samples were taken weekly from one of the sampling ports

at each depth of filter set 1 and used for DNA extraction (Appendix B). Once extracted

DNA was used for next-generation sequencing and qPCR (as performed in Section 4.2.6). In

order to compare the effects of the presence of sampling ports on the microbial community

sand samples from all filters were taken at the end of the experiments and final community

composition compared.

5.2.3 qPCR

Performed as described in Section 4.2.6

5.2.4 454 Pyrosequencing

The V4-V5 region of the 16S rRNA gene (Figure 3.1) was PCR amplified and sequenced

on the 454 GS FLX platform for 226 samples representing different depths, filters and

filter ages. Note that ISSF samples matching the same ages as LSSFs were sequenced.

PCR amplification was carried out in a Gene Pro thermal cycler (Bioer Technology, UK).
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Figure 5.1: Schematic of laboratory-scale slow sand filters. A. depicts the overall view of the LSSF

setup with 2 sets of 4 filters, each 2.5m high by 54mm diameter. B. depicts the design of set 1 which

have a series of holes at different heights around the circumference of the filter. These holes are to

allow for investigation into spatial distribution. C. depicts the design of set 2 which are the same as

set 1 with the exception of the omission of the holes.

Extracted DNA was used to amplify the V4-V5 regions of the 16S rRNA gene in eight

replicates with the universal bacterial primers 515F [GTGCCAGCMGCCGCGGTAA] and 926R

[CCGTCAATTCMTTTRAGT] with different multiplex identifiers (MIDs) attached using Phu-

sion polymerase (Finnzymes, Espoo, Finland) with the GC buffer and 2.5 % dimethyl sul-

foxide (DMSO). Cycling conditions consisted of an initial denaturation at 98 ◦C for 30s,

23 cycles of 98 ◦C for 10s, 55 ◦C for 30s, and 72 ◦C for 10s, and a final extension at 72
◦C for 5 min. After amplifications, the replicates were pooled and purified with the Qiagen

Gel Cleanup kit. The size and quality of the PCR products were determined with a Bioana-

lyzer 2100 (Agilent Technologies) and the DNA concentrations were measured with a Qubit

fluorometer (Invitrogen, UK). Purified and quantified products were sent to the Centre for

Genomic Research (Liverpool University, UK) where emulsion PCR and sequencing was
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Figure 5.2: Photograph of laboratory-scale SSFs A. depicts the overall view of 4 of the LSSFs. B.

depicts the flange used to connect the two pipes used to make the filter. C and D. depict the design of

set two of the LSSFs (sampling ports).

performed.

454 Data Processing

Pyrosequencing reads contain a substantial number of errors (noise), which include sequenc-

ing errors from the inclusion or deletion of single bases in homopolymer runs of ≥3 bp,

PCR single base substitutions and PCR chimeras [Quince et al., 2009]. Therefore prior to

generating OTUs this noise was removed using the AmpliconNoise pipeline [Quince et al.,

2011]; this comprises filtering, flowgram and sequence clustering steps and has been shown

to reduce noise by 50% in environmental data sets. Subsequently, chimeras were identi-

fied using Perseus [Quince et al., 2011]. This algorithm generates a chimera index (CI) for

each read that is ≥0 with higher values corresponding to reads that are most likely to be

chimeric. Perseus identifies the likely parent sequences and breaking-points of such can-

didate sequences through pairwise alignments. Logistic regression is then used to classify

chimeras so that the pyrosequencing data output lists chimeric and non-chimeric sequences.

The lower the probability of the sequence evolving naturally, the higher the CI. After denois-

ing and chimera checking taxonomic classification was assigned using the RDP classifier



CHAPTER 5. LABSCALE SLOW SAND FILTERS 113

[Cole et al., 2009] with a 80% confidence threshold.

5.2.5 Statistical Analysis

To allow robust comparisons among samples containing different numbers of sequences,

sample diversity was calculated based on samples rarefied to contain 1500 sequences. The

taxonomic and OTU tables generated for the samples were used to calculate pair-wise sim-

ilarities among samples based on the Bray-Curtis similarity index. The resulting matrices

were examined for temporal and spatial patterns in bacterial community structure by using

non-metric multidimensional scaling (NMDS) as implemented in the Vegan package in R

[Oksanen et al., 2012]. Significant differences in the microbial community composition be-

tween filter types (ISSFs, sterile and non-sterile LSSFs), location (industry or laboratory),

presence and absence of sample ports and filter age were determined using the Adonis func-

tion in Vegan, which performs a permutation or nonparametric multivariate analysis of vari-

ance (MANOVA) [Anderson, 2001]. The contribution of individual taxa to overall commu-

nity dissimilarity was determined using SIMPER (similarity percentage) analysis [Clarke,

1993]. Shannon diversity indices, Chao’s diversity index, Pielou’s evenness and rarefaction

curves were calculated using Vegan on rarefied samples at the 3% nucleotide distance. The

relationships between environmental variables and patterns in bacterial community struc-

ture were examined by canonical correspondence analysis (CCA) with significance tested by

analysis of variance tests (ANOVA) after reducing the overall suite of environmental vari-

ables using step-wise variable selection based on Akaike’s Information Criterion (AIC).

5.3 Results

Within this section the results of the study alongside discursive analysis will be presented,

with an overall discussion being provided in Section 5.4.

5.3.1 Water Quality

Analysis of the water quality parameters and overall water quality performance (5) showed

that, as with the full-scale filters (discussed in Chapter 4), the LSSFs produce good quality

water (all removal results can be seen in Tables 5.1 and 5.2). The laboratory-scale filters
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Figure 5.3: Boxplot depicting the fraction of coliforms retained by laboratory-scale and industrial

SSFs over time. Early age bin: 0-3 weeks, Mid: 4-6 weeks and Late: 7-10 weeks.

met all of the quality parameters set out in the European Union Directive: 98/83/EC (1998),

except coliform removal targets (0/100ml). However, a significant negative correlation was

found between coliform retention and age of the filters, where both LSSFs and ISSFs dis-

played the same trend of improved removal with age (Figure 5.3). Additionally, multivariate

linear regression analysis showed that laboratory-scale filters do mimic the ISSFs in terms

of overall performance (5) when the age of the filters is taken into consideration (R2: 0.43,

p-value: 2.038 × 10−8), with non-sterile LSSFs mimicking ISSFs faster than sterile LSSFs.

Further, no significant difference was found in water quality production between filters with

and without sample ports.

5.3.2 Bacterial Diversity and Richness

Rarefaction curves, richness and diversity estimates were identified for OTUs at the 3% nu-

cleotide distance, which was used to approximate species [Schloss and Handelsman, 2005].

In general, rarefaction curves (Figure 5.4) showed under-sampling, implying that the true di-

versity of ISSFs and LSSFs samples are likely to be underestimated. However comparison to

the known diversity of the two mock communities (Figure 5.5) has shown that diversity esti-
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Figure 5.4: Rarefaction Curves. A: Influent water, B: Effluent water, C: Industrial SSFs, and D:

Labscale SSFs

mates are very accurate, overestimating the true diversity on average by 1.82 times thus being

more accurate than that found by the Illumina results discussed in Chapter 4. The Shannon

index of diversity (H’) was determined for all samples and averages calculated for the type

of filter (industrial, sterile and non-sterile LSSFs) and age profile (early: 0-3 weeks, mid: 4-6

weeks and late: 7-10 weeks of operation) (Table 5.3). These diversities were consistent with

previous studies [Hunter et al., 2012]. Overall the Shannon index ranged from 0.74 found in

the influent water feeding the filters to 6.71 in the oldest industrial SSF. Comparison of the

mean H’ of the different types of filter and age profiles revealed that the highest diversity was

found in middle-aged industrial filters. Further, there was statistically significant differences

in H’ between groups during the first six weeks of operation. However, by the late age phase

(≥7weeks) of filter operation there was no statistically significant difference in H’ between

industrial and laboratory-scale filters (p-value: 0.172). Furthermore, the diversity of all the

filters converged by the conclusion of the experiment (Figure 5.6).
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Figure 5.5: Barplots showing the actual number of OTUs in light blue and the sequenced number of

OTUs in dark blue for two mock communities. A):mock community created by Shakya et al. [2013]

and B):SSF mock community created in Chapter 4.

The trend of increasing diversity with age is consistent with the increasing number of 16S

rRNA gene copies (Figure 5.7). Using pairwise Wilcoxon signed-rank tests no significant

difference in the 16S rRNA gene abundance between non-sterile LSSFs and ISSFs (p-value:

0.1209) was found. However, sterile LSSFs possessed a significantly lower number of 16S

rRNA copies at the early (p-value: 0.0174) and late (p-value: 0.000406) age bins com-

pared to both ISSFs and non-sterile SSFs. Regardless of these points, laboratory-scale and

full-scale SSFs display similar levels of diversity, OTU number and 16S rRNA copy num-

ber, further evidence that the richness and diversity of environmental microbial communities

can be replicated in the laboratory. In terms of shaping and influencing the sand microbial

community, the influent water feeding the ISSFs and LSSFs plays a large role, with 37%

of the OTUs from ISSFs sand samples and 52% of OTUs from LSSFs sand samples being

shared with their source water (Table 5.4). Interestingly, there was a marginally significant

(p-value: 0.07889) difference in the number of shared OTUs between ISSFs and LSSFs,

Table 5.3: Average species richness, diversity and evenness for industrial and laboratory-scale SSFs

at different age bins (early: 0-3weeks, mid: 4-6weeks and late: 7-10weeks).

EARLY MID LATE EARLY MID LATE EARLY MID LATE

Observed OTUs 481 569 1056 282 348 974 777 799 1119 405 451
Choa's  Richness 1105 2880 1080 220 752 1023 465 1672 1845 1816 3033
Shannon Diversity Index 6.050 6.279 6.138 2.330 4.219 5.907 4.218 5.513 6.095 3.699 3.758
Pielou's Evenness 0.975 0.906 0.910 0.417 0.758 0.815 0.865 0.815 0.893 0.545 0.640

3% OTU

INDUSTRIAL STERILE LAB NON-STERILE LAB
INFLUENT EFFLUENT
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Table 5.4: Table displaying the percentage of shared OTUs in each of the industrial and laboratory-

scale SSFs with the influent and effluent water sources.

% Shared OTUs 

Influent and  Effluent and  Influent and  

Filter Location Sand Sand Effluent 

ISSF A Industry 42.50 72.9 31.71 

ISSF B Industry 31.36 54.40 25.55 

Alpha Non-sterile Laboratory-scale 45.26 82.50 27.60 

Delta Non-sterile Laboratory-scale 45.60 65.60 24.94 

Eta Non-sterile Laboratory-scale 52.40 70.19 22.96 

Zeta Non-sterile Laboratory-scale 55.29 72.00 24.51 

Beta Sterile Laboratory-scale 68.17 76.25 23.79 

Epsilon Sterile Laboratory-scale 35.09 72.16 17.83 

Gamma Sterile Laboratory-scale 65.68 21.25 26.63 

Theta Sterile Laboratory-scale 46.64 56.98 19.10 

!

with laboratory-scale filters having greater variation in the percentage shared OTUs with the

source water compared to ISSFs.

Similarly to the ISSFs in Chapter 4, LSSFs display a significant positive correlations be-

tween species evenness and 5, however, only at the phylum (p-value: 0.0001), class (p-

value: 0.0001), order (p-value: 0.0039) and OTU (p-value: 0.0180) levels of classification,

compared to all levels in ISSFs. Compounding the previous conclusions in Chapter 4, that

filters with a greater species evenness produce a higher standard of water quality than filters

of lower species evenness.

5.3.3 Differences and Similarities in Community Structure Between Lab-

scale and Industrial SSFs

A total of 468,773 sequences were classified below domain level being affiliated to 30 phyla,

61 classes, 76 orders, 191 families, 591 genera and 28,612 OTUs. The dominant phyla in

sand samples were: Proteobacteria, Bacteriodetes, Acidobacteria, Actinobacteria, Planc-

tomycetes, Verrucomicrobia, and Gemmatimonadetes representing 60.80, 9.27, 5.17, 4.67,

4.42, 1.78, and 1.15 % of the reads respectively (Figure 5.9). This richness in diversity is

consistent with a previous SSF study [Wakelin et al., 2011] although there are discrepancies
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Figure 5.7: Box-and-whisker plot comparing the abundance of the 16S rRNA gene in labscale and

industrial SSFs at three age bins. The top and bottom boundaries of the boxes show the 75th and

25th percentile and the ends of the whiskers show the maximum and minimum values within 1.5 of

the interquartile range of the upper and lower quartiles (respectively). Bold lines within the boxes

represent median values (50th percentile).

between dominant taxa which could be attributed to the different methodological approach

adopted. Referring more closely to Figure 5.9 it can be seen that the relative abundance

of dominant phyla changed with the age of the filters, with Proteobacteria, specifically Al-

phaproteobacteria and Betaproteobacteria dominating ISSF samples, which is in accordance

with findings from a Chinese sand filter [Bai et al., 2013]. However, a more stark difference

is seen in the rare sand phyla (≤1 % of all classified sequences) where phyla abundance

and presence change dramatically (Figure 5.10). Overall, the LSSFs microbial community

are indistinguishable from industrial SSF at the phylum and class level by the end of the

experiment, with the main difference being the abundance of unclassified organisms. These

conclusions are further confirmed by qPCR analysis, where vector maps (Figure 5.8) show

temporal changes in the microbial community composition with non-sterile LSSFs mimick-

ing the microbial consortia of ISSFs faster than sterile LSSFs. More impressively Figure



CHAPTER 5. LABSCALE SLOW SAND FILTERS 122

−0.5 0.0 0.5 1.0

−0
.5

0.
0

0.
5

1.
0

NMDS1

N
M
D
S2

Stress =0.120 

Industrial 
Sterile 
Non-sterile 

START 

END 

START 

END 

START 

END 

Figure 5.8: Non-metric multidimensional scaling plot with vector maps illustrating the change in the

microbial community composition (determined by qPCR) of industrial and labscale SSFs with time.

5.8 depicts the convergence of LSSFs and ISSFs microbial communities by the end of the

experimental period.

Initial exploratory analysis (Figure 5.11) showed that the microbial community from sand

and water samples clustered into four distinct groups (industrial filters, sterile LSSFs, non-

sterile LSSFs and water). As shown in Figure 5.9 the community of non-sterile filters more

closely represents the ISSFs community than sterile LSSFs. Using permutation ANOVA

it was determined that at both the early (0-3weeks) and mid age bin (4 to 6 weeks) there

were significant differences in community composition between labscale and industrial fil-

ters (early p-values: 0.001 and R2: 0.795, Mid p-value: 0.001 and R2: 0.518). However, by

the late age bin (≥ 7 weeks of operation) there was no statistically significant differences

between community composition both with 454 and qPCR results (p-value: 0.115 and 0.074

respectively) (Table 5.6) between LSSFs and ISSFs. To identify which taxa contributed most

to the differences between the filter types at early and mid age bins SIMPER analysis (Ta-

ble 5.5) was used and clearly showed that the majority of the differences (>60%) between

filter types and age bins are due to unclassifiable organisms, Comamonadaceae and Sph-
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Figure 5.11: Non-metric multidimensional scaling ordination for the microbial community structure

for all samples in the 454 dataset at the 97% OTU level.

ingomonadaceae families. Interestingly, these two families and several others in Table 5.5

were identified in Chapter 4 as being key taxa involved with performance.

It should, however, be stressed, that although at higher levels of taxon classification LSSFs

and ISSFs communities become indistinguishable once ≥ 7 weeks of age, at the OTU level

this is not the case. Referring to Figure 5.12 it can be seen that at the OTU level of classifica-

tion there are significant differences between groups at all age bins (p-values: 0.001, 0.014

and 0.006 for early, mid and late age bin respectively). Interestingly, however there was no

statistically significant difference in community composition at the late age bin between the

two types of laboratory-scale filters (p-value: 0.175).

5.3.4 Impact of Filter Identity, Type and Location on the Microbial

Community

In order to determine which factors explain the differences between LSSFs and ISSFs mi-

crobial communities, permutation ANOVAs were performed with phyla, family and OTU

classified data. The results of these and canonical correspondence analysis (Figure 5.13a)
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Figure 5.12: Hierarchical cluster dendrogram of the microbial community at the OTU level of classi-

fication in industrial and labscale SSFs at different agebins.

with phyla and family data revealed that the type of filter (sterile, non-sterile or industrial)

explained the biggest proportion of the bacterial community composition, whereas individ-

ual filter identity (i.e., α, β, γ), location (industry or laboratory) and the presence of sample

ports were not significant variables, implying that community composition is not random.

Further referring to Table 5.7A, age bin and the depth of the sample are also significant

factors in explaining differences in the microbial community. However, at the OTU level of

classification the location of the filters (laboratory or industry) was the most significant factor

in explaining the variation in the community (Figure 5.13b and Table 5.7B), with both filter

identity and the presence of sample ports remaining insignificant variables. Such differences

Table 5.6: Results from MANOVA analysis using 454 and qPCR data, showing the level of community

composition similarity between labscale and industrial SSFs at various ages. 

qPCR  454 – Phyla and Proteobacteria 

families 

Analysis Factor 
R2 P value  R2 P value 

Early filter age (0-3 weeks) by type of filter 
(Sterile, Non-sterile and Industrial) 

Early age by type 0.068 0.001  0.795 0.001 

Intermediate filter age (4-6 weeks) by type of 
filter (Sterile, Non-sterile and Industrial) 

Intermediate age by type 0.05 0.043  0.518 0.001 

Late filter age (7-11 weeks) by type of filter 
(Sterile, Non-sterile and Industrial) 

Late age by type 0.03 0.074  0.197 0.115 
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Table 5.7: Canonical correspondence analysis of the relative abundance of bacterial: (A) phyla and

(B) OTUs with filter parameters. ∗ denotes significant parameters.
A) Parameter Degrees of Freedom !2 F value Number of permutations Pr(>F)

Type 2 0.1799 19.0187 99 0.01*
Age bin 2 0.0307 3.2508 99 0.01*
Depth 1 0.0121 4.6392 99 0.02*

Performance 1 0.0116 2.4576 99 0.02*
Filter Identity 6 0.0281 0.9960 99 0.47

Location 1 0.0079 0.8480 99 0.51
Sample ports 1 0.0007 0.1492 99 0.4

Residual 52 0.2459

B) Parameter Degrees of Freedom !2 F value Number of permutations Pr(>F)
Location 1 0.6438 2.7589 99 0.01*
Age bin 1 0.7259 1.5530 99 0.01*
Depth 1 0.3826 1.6397 99 0.01*
Type 2 0.2972 1.2737 99 0.01*

Performance 1 0.2760 1.1828 99 0.04*
Filter Identity 7 1.1416 0.9785 99 0.45
Sample ports 1 0.2478 1.0621 99 0.35

Residual 47 10.9671

at the OTU level of classification due to location might explained by the lack of wildlife and

climatic effects in the laboratory, which were shown in Chapter 4 to add significant diver-

sity to ISSFs. Interestingly, when only mature samples (those from the late age bin) were

analysed (Figure 5.14), only the depth of the sample was significant in explaining the vari-

ation in the microbial community; both filter type and location were no longer significant.

Further, individual filters in each group showed little variability in community composition

yet displayed clear clustering within their individual group. This is surprising as in Chapter

4 depth was found to be a marginally significant parameter, implying that in LSSFs there is

more vertical spatial variation than in ISSFs. This might be induced by the relatively narrow

diameter of the LSSFs or the reduced height to width ratio compared with the ISSFs.

5.4 Discussion

This study showed that it is possible to replicate the water quality performance and the mi-

crobial community of ISSFs in the laboratory. Although the diversity of the SSFs in this

study was found to be high and reproducible between laboratory-scale and industrial filters,

significant under sampling was found. This alongside the much higher diversity found in

Chapter 4 maybe due to the different sequencing technologies used as Illumina HiSeq 2000

can produce six billion paired end reads [Illumina, 2013], whereas Roche’s 454 FLX + only

produces one million [Roche, 2013]. Regardless of the differing extents of diversity found
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between these results and those of Chapter 4, patterns pertaining to community assembly

and performance were the same. For all the water quality parameters tested, results showed

that the laboratory SSFs do mimic ISSFs when age is taken into consideration (Figure 5.3).
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Figure 5.13: Canonical correspondence analysis of labscale and industrial SSFs at: a) phylum, and

b) OTU levels of classification.

This shows that slow sand filtration can be adequately reproduced in the laboratory and with

performance comparable to industrial SSFs. Similar to Werner et al. [2011] and the findings

of Chapter 4, communities with greater evenness had a higher level of water quality perfor-

mance, implying greater robustness and functional stability [Wittebolle et al., 2009].
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Figure 5.14: NMDS plots of OTUs of mature filters ≥7 weeks of age)

Although differences between non-sterile and sterile laboratory SSFs were found, with non-

sterile filters mimicking full-scale filters performance three weeks before sterile LSSFs, the

findings nonetheless confirm that a mature microbial community is necessary for optimum

operation. Such differences in initial performance can be attributed to the differences in

community composition, as depicted by factorial analysis, Shannon indices and the stacked

barplots (Figure 5.9), which all show that the community composition between laboratory-

scale and full-scale filters are quite different at the beginning of operation (early-age bin).

Intriguingly, however, the communities in both the full-scale and laboratory-scale filters are

highly similar at phyla and class level of classification by the late-age bin (≥7 weeks of

operation). Such convergence in the microbial community composition between labscale

and industrial filters is staggering and suggests as Massol-Deya et al. [1997] concluded in

their study of fixed film reactors, that the microbial community converges towards a struc-

ture which is best for optimal performance. This is however, the first example to the author’s

knowledge that demonstrates that functional microbial communities from an engineered sys-

tem can be reproduced in the laboratory. Further, the reappearance from the ISSFs discussed

in Chapter 4 of the importance of the Comamonadaceae and Sphingomonadacea families
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when filters age, further strengthens conclusions of their importance in performance and the

ability of LSSFs to replicate the functional community of ISSFs. Although there are ob-

vious differences in abundance between these families in the LSSFs and ISSFs, the ratio

of individual genera to one another may be important, as was shown for Bacteriodetes,

Gammaproteobacteria, and Nitrospira to Betaproteobacteria by Garrido et al. [2014] in

varying qualities of wastewater. Future work should investigate through qPCR the absolute

number, abundance and ratios of the Comamonadaceae and Sphingomonadacea families to

individual members and the whole community, in particular Acidovorax, Sphingomonas and

Sphingobium in order to confirm their importance to overall filter performance (5).

Although good reproduction of the microbial community composition of ISSFs was ob-

served in LSSFs at higher levels of classification, this was not true at the OTU level, where

there were significant differences at all time points. Although filter location (laboratory or

industry) was observed to be an insignificant variable at higher taxonomic classification, it

was found to be the most important factor in explaining differences in community structure

at the OTU level. The significance of location may be explained by the lack of environmen-

tal variables (e.g., wildlife and climatic effects) in the laboratory that may add significantly

more diversity to ISSFs. This finding is supported by the higher proportion of shared OTUs

between influent water and the sand community in LSSFs compared to full-scale slow sand

filters. Additionally, differences in shared OTUs may also be an age-dependent effect as

full-scale filters have been exposed to their water source for a longer period of time com-

pared to LSSFs. Hence, ISSFs have a higher initial diversity and share fewer OTUs with

the current water supply. This may explain the higher proportion of shared OTUs between

sterile LSSFs and the influent water source compared to non-sterile LSSFs. Further, another

factor which may explain differences at OTU level is the reduced width to height ratio of

the laboratory-scale filters compared to ISSFs. It is widely known that different bacterial

species (OTUs) survive and occupy specific niches, some of which can be very small (i.e.,

the voids between two sand grains). It is also known that within microbial communities,

micro-, meso- and macro-scale variation exists [Nunan et al., 2002] which is often driven by

environmental and chemical gradients [Nunan et al., 2003]. Therefore, it is possible that the

reduced similarity at the OTU level between LSSFs and ISSFs may be due to the reduced

dimensions of the laboratory-scale filters, therefore producing differences in chemical gradi-
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ent distribution, and hence niche formation. Further attention could be aimed to examine the

effect on the microbial community of various width-to-height ratios of LSSFs to determine if

convergence in community composition can be achieved at genus and OTU level with LSSFs

with a bigger diameter.

Such differences in community composition at higher levels of classification are not surpris-

ing and alongside the finding that there was no difference in composition between individual

filters, implies that community assembly is not random. This provides further evidence of

niche theory [Sloan et al., 2007]. However, the divergence of community composition at the

OTU level supports neutral theories [Sloan et al., 2007], which state that different OTUs can

perform the same functions. This, in-conjunction with the support for niche theory at higher

taxonomic classification, underscores the complexity of microbial community assembly and

implies that a combined neutral and niche theory may best explain microbial community

assembly in SSFs. Although there is growing support for the combined neutral and niche

theory explanation for microbial community assembly, in order to determine which mecha-

nism is more important within SSFs community assembly, more experimentation is needed.

In particular, by combining the data presented in this chapter and in chapter 4 with additional

characterisation surveys a large dataset encompassing multiple environmental variables will

be produced, which will allow robust statistical analysis and interpretation to be gained.

Such analysis will be able to determine the extent to which niche and neutral processes ex-

plain community composition. For example if neutral processes dominate we would predict

that:

1. The SSF microbial species abundances will fit the zero-sum multinomial (ZSM) dis-

tribution [Hubbell, 2001].

2. Changes in the SSF community composition will be related to the distance between

samples, indicating the effects of dispersal limitation.

3. There will be no relationship between the SSF community and either water or sand

properties.

However, if niche-based mechanisms dominate we would predict that:

1. The SSF microbial species abundances will fit a log-normal or other niche-based

species abundance distribution [McGill et al., 2007].
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2. Changes in the SSF community composition will be related to changes in either the

water or sand properties [Jongman et al., 1995]

3. The SSF microbial community will not be structured by distance effects [Dumbrell et

al., 2010].

5.5 Conclusions

The bacterial communities of slow sand filters are extremely rich in taxa; not dominated by

any particular phylogenetic group; and exhibit spatial and temporal changes. This study is

the first to demonstrate that it is possible to recreate this complex and rich SSF community

in the laboratory at phylum, class and order levels. Based on this study, it is now possible to

use these laboratory scale SSFs to ask more complex questions relating to water quality and

community assembly. However, it should be noted that although conclusions drawn from

LSSFs are applicable to ISSFs they might not accurately reflect OTU dynamics. Whilst the

laboratory and industrial filters appear identical at a coarse taxonomic level, when OTUs

(species proxies) are considered they differ consistently. Given that they also appear equiv-

alent in terms of function, a degree of redundancy is suggested. Neutral theory proposes

that different species level community compositions are possible even in communities with

the same distribution of families and with the same functional capacity. It is unclear what

is driving the differences at the OTU level, but it is likely environmental differences such as

temperature and the presence / absence of wildlife between the laboratory and the industrial

filters have a part to play. However, this requires further study. Ultimately, by utilising the

laboratory-scale SSFs designed in this study, further investigation into the individual SSF

community members and their relationship with water quality performance can be explored.

This will allow optimised and tailored operation and design of full-scale slow sand filters for

specific water quality needs and requirements. Furthermore, this provides a paradigm for fu-

ture microbial ecology studies aimed at understanding and modelling microbial community

assembly.
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Chapter 6

Shedding Light on Pathogen Removal in

SSFs

“Tell me what you eat, and I shall tell you what you are”.

Jean Anthelme Brillat-Savarin, (Physiologie du goût – The Physiology of Taste)

Stable-isotope probing (SIP) and metagenomics were applied to study samples taken from

laboratory-scale SSFs (described in Chapter 5) 0.5, 1, 2, 3, and 4h after challenging with
13C-labelled E.coli, in order to determine the mechanisms and organisms responsible for co-

liform removal. Further, this work focuses on the effects of light on the microbiome and

functioning of slow sand filters. In order to do this the laboratory-scale filters described in

Chapter 5 were supplied with influent water from the River Kelvin for 70 days. Half the

filters were in total darkness and the other half were exposed to a 12h daylight 12h darkness

period mirroring light intensities found in summer at the industrial SSF site discussed in

Chapter 4. After 35 days the filters were challenged for 1h with 13C labelled E.coli. In order

to determine the mechanisms responsible for E.coli removal, sand samples were taken from

different depths and multiple time points after challenging and used for SIP and metage-

nomics analysis. Direct counts and qPCR assays revealed a clear predator-prey response

between protozoa and E.coli. The importance of top-down trophic-interactions was con-

firmed by metagenomic analysis, identifying several protozoan and viral species connected

to E.coli attrition, with protozoan grazing responsible for the majority of the removal. In ad-

A condensed version of this chapter has been accepted by the ISME journal: Haig, S. Schirmer, M.

D’Amore, R. Gibbs, J. Davies, R.L. Collins, G. and Quince, C. Stable-Isotope Probing and Metagenomics

Reveal Predation by Protozoa Drives E.coli Removal in Slow Sand Filters
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dition to top-down mechanisms, indirect mechanisms such as algal reactive oxygen species

induced autolysis, and mutualistic interactions between algae and fungi, were suggested to

be associated with coliform removal. Further, the top upper depths of the SSFs were found

to be responsible for the majority of the coliform removal in both light and dark filters, how-

ever, at different depths, coliform removal occurs more quickly in light filters in comparison

to dark conditions where E.coli still appears after 96h. The differences in the abundance

of labeled E.coli at various depths in light and dark filters implies that a light environment

is more hostile in terms of E.coli survival. These findings significantly further our under-

standing of the processes and trophic interactions underpinning E.coli removal. This study

provides an example for similar studies, and the opportunity to better understand, manage

and enhance E.coli removal by allowing the creation of more complex trophic interaction

models.

6.1 Introduction

In Chapter 5 laboratory-scale filters have been compared to full-scale units using phylum-

specific qPCR primers and both 454 and Illumina sequencing (Earth Microbiome Project).

This revealed that the microbial communities underpinning slow sand filters are extremely

complex, with specific organisms correlating with certain water quality parameters (e.g.,5).

However, such complexity and performance was shown to be reproducible in the laboratory

and now allows more pertinent questions pertaining to human health and microbial ecology

to be addressed. Therefore, from a functional perspective, understanding how pathogenic

microorganisms (e.g., E.coli) are removed is a critical question. This will address one of

the primary tasks of modern ecology; linking the biotic interactions of organisms within

an ecosystem to their functional performance [Mikola and Setälä, 1998]. Determining the

mode(s) of removal would be highly advantageous and potentially allow water companies

to control E.coli levels by managing the slow sand filter microbial community. Further by

exploring how abiotic factors such as the presence of sunlight affect such performance will

provide great insight and knowledge into how these “real world” microbial food-webs sur-

vive and perform in differing environments.

The need to remove pathogens and understand the mechanisms responsible for pathogen
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removal in potable water supplies is a well-recognised issue, emphasised by the fact that

approximately 3.4 million people each year die from water-related disease [World Health

Organisation, 2004]. Determining and understanding these mechanisms would be highly ad-

vantageous and would vastly improve the implementation of drinking water technologies in

developing countries, including household systems. In addition, it could allow water com-

panies in developed countries to control pathogen levels by directly managing the slow sand

filter community. Further, by determining the trophic mechanisms and interactions involved

in E.coli removal in a “real world” food-web, great insight and knowledge for general mi-

crobial ecology will be obtained. This will provide a paradigm for similar studies and the

opportunity to create more realistic trophic interaction models in the future.

Previous SSF studies have examined the ability of specific organisms (e.g., Chrysophyte) to

remove pathogenic bacteria [Weber-Shirk and Dick, 1999], or the overall pathogen removal

efficiency of SSFs [Bomo et al., 2004, Grobe et al., 2006, Hijnen et al., 2007, Elliott et al.,

2008]. However, these studies are limited by their specificity. Further, based on these studies,

and knowledge from marine and terrestrial environments, both top-down (predation by pro-

tozoa and viral lysis) and bottom-up (nutrient / resource availability) mechanisms have been

suggested to be important for the regulation of microbial mortality [Lloyd, 1973, Hunter and

Price, 1992, Pace and Cole, 1994, Weber-Shirk and Dick, 1999, Rosemond et al., 2001].

Additionally, theoretical models and empirical surveys have indicated that majority of the

mortality is due to grazing by protists, and to a lesser extent viral lysis [Pernthaler, 2005].

However, abiotic factors, such as UV radiation and reactive oxygen species (ROS)-associated

lysis, have also been hypothesised as potential lysis routes for microbes / pathogens [Curtis

et al., 1992, Alonso-Sáez et al., 2006, Liu et al., 2007, Kadir and Nelson, 2014].

Although these studies are informative, they are also unrealistic as they have been performed

in microcosms, focussing on one or a small group of organisms and hence over-simplify and

potentially provide inaccurate or biased conclusions on regulatory mechanisms. Currently,

no study, to the author’s knowledge, exists which aims to determine the mechanisms respon-

sible for pathogen removal in a real biological system without prior knowledge as to which

removal mechanisms or organisms to target. However, the complexity of real communities

requires an untargeted approach capable of quantifying the importance of all trophic groups
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simultaneously. Likewise various studies have looked at the performance effects of cov-

ered and uncovered SSFs (i.e. exclusion of light) [Campos et al., 2002, Abrahamsson and

Dromberg, 2006]; however such studies have never looked at differences and similarities

within the microbial community. Here, we develop such an approach by combining stable-

isotope probing with metagenomics [Sul et al., 2009] and apply it to the tractable, though

complex system in SSFs, allowing all mechanisms and organisms involved in the removal

of non-pathogenic E.coli K12 to be determined. We will use this organism, a commonly

used faecal indicator, as a proxy for true pathogens, such as other E.coli strains, making the

assumption that the removal processes will be the same. The experiment was used to test the

hypothesise that the principal modes of removal will be top-down removal mechanisms, such

as predation by protozoa and viral lysis, although the extent of these processes is expected

to differ throughout time and in different filter conditions.

Hypotheses

Hypothesis 6.1 Filters exposed to light will perform better in terms of operation ability

(fulfil more of the water quality parameters outlined in the European

Union Directive) quicker than those in darkness.

Hypothesis 6.2 The community of microbes in covered SSFs will be less diverse and have

lower biomass than the non-covered SSFs.

Hypothesis 6.3 Viral lysis is the key mode of E.coli removal in SSFs

Hypothesis 6.4 Majority of the E.coli removal will occur at the top of the SSFs.

6.2 Materials and Methods

6.2.1 Filter Set-up and Operation

The same slow sand filter set-up (eight filters of 2.5m in height and 54mm in diameter)

and operational procedures, as employed in Section 5.2 were used in this study. The only

difference was the addition of high-power LED lights fitted with a cool white (240 lumens

or 5.4W) bulb, erected above half of the SSFs to simulate daylight conditions, similar to

those found at the full-scale SSF site (Chapter 4). These lights functioned on a 12h light /
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12h dark cycle for the duration of the experiment, with times being regulated by a digital

electronic timer, these filters will be referred to as “uncovered SSFs”. The remaining filters

were covered in metal foil and black-out curtains to prevent any light reaching them and will

be referred to as “covered SSFs”. The source of water feeding each of the filters was the

River Kelvin in Glasgow, and was supplied at a constant rate of 0.15m3m−2h−1, which is

consistent with full-scale SSF operation. The sand used in all filters was sourced from the

full-scale SSF discussed in Chapter 4 and was sterilised by autoclaving at 121◦C for 20min

prior to being put into the eight laboratory-scale SSFs.

6.2.2 Spiking the Filters with Isotopically-Labelled E.coli

After seven weeks of operation, each of the filters were spiked with isotopically-labelled

E.coli K12 (Section 6.2.2.1 for strain details) following the protocol outlined in Marley et al.

[2001]. Briefly, E.coli K12 was grown overnight in M9 minimal medium (Table 6.1) with

20ml of filter-sterilised 20% (w/v) 13C-glucose (Sigma) as the sole carbon source at 37◦C,

with shaking at 200rpm. The overnight culture was then centrifuged at 3000g for 10min

and washed twice with sterile PBS before being resuspended in autoclaved river water to

a density of 300cfu/ml, 5 min before spiking into the SSFs. Spiking entailed feeding the

isotopically-labelled E.coli to all filters for one hour at the same filtration rate used previously

(0.15m3m−2h−1), after which time normal filter operation resumed with non-spiked, non-

autoclaved river water. The concentration of E.coli used was approximately ten times the

normal concentration found in the river water and was chosen to mimic levels found during

pollution events and storm run-off events.

6.2.2.1 E.coli Strain

The E.coli strain used for this work is the non-pathogenic K12 strain (TOP10) which is

commonly used for cloning and for which the full genome is available1. The genomic com-

position of TOP10 is: F− mcrA ∆(mrr-hsdRMS-mcrBC) φ80lacZ∆M15 ∆lacX74 ∆recA1

araD139 ∆(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG. The genome contains the fol-

lowing defective prophages: CP4-6, DLP12, E14, Fels-1, Rac, Qin, and λ80 [Durfee et al.,

2008]. Once transformed with the pCR4-TOPO plasmid the strain additionally becomes

Ampicillin and Kanamycin resistant. In order to verify that the strain retained its antibiotic

1http://www.genome.jp/dbget-bin/www bget?refseq+NC 010473
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Table 6.1: Chemical Composition of M9 Minimal Media: (A) Composition of M9 Minimal Media (B)

Composition of 5x M9 Salts
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Table 5.1: Composition of M9 Minimal Media

Component Amount in 1L

5X M9 Salts 200ml

1M MgSO4 2ml

1M CaCl2 0.1ml

Water 777.9ml

Ampicillin (5mg/ml) 20ml

Kanamycin (5mg/ml) 10ml

Streptomycin (5mg/ml) 5ml

Table 5.2: Composition of 5X M9 Salts

Components Quantity in 1L

Na2HP04.7H2O 64g

KH2P04 15g

NaCl 2.5g

NH4Cl 5g

at the same filtration rate used previously (0.15m3m−2h−1), after which time normal filter

operation resumed with non-spiked river water. The concentration of E.coli used is approxi-

mately ten times the normal concentration found in the river water and was chosen to mimic

levels found during pollution events and storm runnoff events.

5.3.2.1 E.coli Strain

The E.coli strain used for this piece of work is the non-pathogenic K12 strain (TOP10) which

is commonly used for cloning and who’s full genome is available. The genomic composition

of TOP10 is: F− mcrA ∆(mrr-hsdRMS-mcrBC) φ80lacZ∆M15 ∆lacX74 recA1 araD139

∆(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG and once transformed with the pCR4-

TOPO plasmid the strain additionally becomes Ampicillin and Kanamycin resistant. In order

to verification that the strain could retain its antibiotic resistance for the entirety of the ex-

periment, the transformed E.coli strain was placed in the same autoclaved river water used

for the experiment. Viability was tested on LB plates supplemented with all three antibiotics

every 12h for 120h. The transformed strain was found to be viable for > 120h.

A) 
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B) 

resistance for the entirety of the experiment, the transformed E.coli strain was placed in the

same autoclaved river water used for the experiment. Viability was tested on membrane lau-

ryl sulphate agar (MLSB) and LB agar plates supplemented with all three antibiotics every

12h for 120h. The transformed strain was found to be viable for >120h, this alongside the

absence of growth of any other water dwelling bacteria on LB, Plate Count Agar or MLSB

containing the three antibiotics possessed by the transformed strain (Ampicillin, Kanamycin,

and Streptomycin) confirms that any bacterial counts observed on this media are the trans-

formed strain.

6.2.3 Sampling Spiked Filters

To determine the mechanisms responsible for E.coli removal, sand was sampled from the

filters at depths (1, 5, 10, 15 cm) and times of 0.5h, 1h, 2h, 3h, and 4h after spiking begun.

Additionally, all depths (0, 5, 10, 15, 20, 30, 45, 70 cm) were sampled from the filters 24h and

96h after spiking. Sand samples (0.5g wet weight) were used for; direct E.coli plate counts

(Section 6.2.3.1) on MLSB containing: 100 µgml−1 ampicillin, 50 µgml−1, kanamycin, and

25 µgml−1 streptomycin (Life Technologies, UK); direct protozoa quantification (Section

6.2.3.2); and DNA extraction (Appendix B) with the downstream application of qPCR (Sec-

tion 6.2.4), and stable-isotope probing in conjunction with metagenomic sequencing (Section

6.2.6).
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Table 6.2: Additional qPCR primers used for SIP study

Primer Target Sequence (5’-3’) Annealing Temp (◦C) Amplicon Length (bp) Reference

EcoliF E.coli 16S CAATTTTCGTGTCCCCTTCG 58 450 Khan et al. [2007]

EcoliR E.coli 16S GTTAATGATAGTGTGTCGAAAC 58 450 Khan et al. [2007]

Euk567F All 18S GTTAAARVGYTCGTAGTY 56 517 Bass [2013]

Euk1084r All 18S CCGTCAATTHCTTYAART 56 517 Bass [2013]

6.2.3.1 Quantifying Labelled Coliforms

In order to determine the survival and extent of the viability of the spiked E.coli in the

different depths of the SSFs, 0.5g sand samples were placed in 1ml of PBS and centrifuged

at 3000g for 10 min. The resulting supernatant was used for plate counts on MLS agar with

100µgml−1 ampicillin, 25µgml−1 streptomycin and 50µgml−1 kanamycin, each sample was

performed in replicas of five. Additionally, after 12h, 24h and 96h after spiking effluent

water samples from all the filters were tested for E.coli viability in the same manner.

6.2.3.2 Quantifying the Abundance of Protozoa

As protozoan grazing is believed to be a major factor influencing bacterial populations in

water systems, it is appropriate that we monitor changes in their abundance during the ex-

periment. This was achieved by adapting the procedure outlined by [Dehority, 1984]. Briefly,

sand samples were fixed with 10% formalin (1:1 weight:volume) for 2h at room temperature.

After fixation samples were centrifuged at 500g for 10min and the resulting supernatant was

stained with glycerol buffered methyl green (1:20 final dilution) for 12h. Three 100µl stained

samples were then loaded into a haemocytometer and visualised on an inverted optical mi-

croscope (Inverted Olympus IX71) at 100x magnification, results were expressed as cells/g

(wet weight). Additionally, the same procedure was performed for effluent water samples,

with the omission of the centrifugation step, results were expressed as cells ml−1

6.2.4 qPCR

All samples were processed in triplicate for the 13 different qPCR assays described previ-

ously (Section 4.2.6), with the addition of two assays for E.coli specific 16S and total 18S

rRNA (Table 6.2), both of which were performed using 35 cycles.
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6.2.5 DNA-Stable-Isotope Probing (DNA-SIP)

To separate the labelled (13C) from the unlabelled (12C) DNA the procedure of Neufeld et al.

[2007] was used, complete details of which can be found in Appendix C. Briefly, separation

was achieved by using density gradient fractionation of the total DNA extract (50µL) on a

CsCl gradient with a buoyant density of 1.725 g/ml that was subjected to ultracentrifuga-

tion in a Sorvall 100SE Ultracentrifuge (Thermo Scientific) at 44,100rpm for 40h at 20◦C.

The density gradient was fractionated into 12 aliquots (approximately 400µL each) by a

drop-wise collection method, where fractions were taken from the bottom of the ultracen-

trifugation tube by pumping water into the top of the tube with a constant-flow (500µL/min)

syringe pump (Gilson’s Miniplus 2 peristaltic pump). The resulting fractions density were

measured with an AR200 refractometer (Reichert) and ranged from 1.47 to 1.73g/ml with a

median density of 1.68g/ml. Fractions were precipitated using a polyethylene glycol solution

and dissolved in 30µL of TE buffer, and used for qPCR quantification of 18S rRNA, total

16S and E.coli specific 16S rRNA genes (Table 6.2). Based on qPCR and density profiles

of the samples compared with 12C and 13C controls, two fractions from each sample, one

representing labelled (density: >1.68g/ml) DNA and one representing non-labelled (density

<1.68g/ml) DNA, were chosen for metagenomic library construction and analysis (Figures

6.1 and 6.2).

6.2.6 Illumina Metagenomic Library Preparation on SIP Samples

Thirty-six Illumina libraries (eighteen pairs of labelled 13C and non-labelled 12C fraction

from various filters and time-points) were prepared using the Nextera XT kits (Illumina,

UK), following the manufacturer’s instructions. Briefly, 5µL (0.2ng/µL) of extracted DNA

were tagmented and then subjected to PCR using specific index primers and common adap-

tors (P5 and P7). Amplified libraries were cleaned-up using the AMPure XP beads (Beck-

man Coulter, UK) and eluted in a final volume of 12µL TE. Libraries were checked for

their fragment size distribution and concentration using a Bioanalyzer 2100 (Agilent, UK),

and appropriate libraries were size selected (500-800bp) using a Pippin Prep (Sage Science,

USA) using a 1.5% cassette. Size selected libraries were pooled using equimolar quantities

in order to obtain the desired number of reads for each sample. The pool was sequenced on

a HiSeq 2000 (Illumina, UK) at the Centre for Genomic Research (Liverpool).
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6.2.7 Metagenomic Sequence Analysis

Sequenced reads for each sample were quality trimmed using sickle2. Quality profiles were

constructed with FastQC [Andrews, 2010], which revealed a non-uniform distribution of

nucleotides at the start of the reads, indicating the possible partial remainder of adapter or

transposon sequence. Therefore the first 20bp of the MiSeq and 16bp of the HiSeq reads

were trimmed and reads were filtered based on a minimum read length of 80bp and 40bp

for MiSeq and HiSeq respectively (originally MiSeq: 150bp and HiSeq: 99bp). Resulting

samples contained on average 8,157,287.

For the taxonomic classification, paired-end reads were converted to a format suitable for

analysis using MEGAN [Huson et al., 2011]. LAST [Frith et al., 2010] was used to align

the reads (max. of 20 matches) against a customised subset of the NCBI database containing

the microbial, protozoan, viral and fungal databases to achieve a more time-efficient analysis.

The output was converted into “blast format” and piped into MEGAN where the lowest com-

mon ancestor (LCA) was assigned to each read (LCA parameters: max-matches=100, min-

score=35.0, toppercent=10.0, winscore=0.0, minsupport=1, mincomplexity=0.3). Occur-

rence tables of the taxonomic assignment were generated using a custom designed script3 in

which the last column of the MEGAN output files was converted into the corresponding taxid

and the taxonomic path was inferred by utilising the perl library Bio::LITE::Taxonomy. Di-

rectly exporting taxonomic paths with MEGAN caused problems in particular for eukaryotes

and viruses as not all taxonomic levels were defined. Additionally, Bio::LITE::Taxonomy

was unable to resolve issues due to synonyms present in the database. Therefore, the taxo-

nomic paths of all “taxids” which were unresolved by Bio::LITE::Taxonomy were directly

inferred from the NCBI taxonomy database (names.dmp). Furthermore, the full taxonomic

paths of several organisms (e.g., Monosiga brevicollis and Dictyostelium discoideum) were

added to the database.

6.2.8 Statistical Analysis

Significant differences in the microbial community composition determined by qPCR anal-

ysis between covered and uncovered filters, age, and depth were identified by using permu-

2www.github.com/najoshi/sickle
3Designed by Melanie Schirmer
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tational multivariate analysis of variance tests (MANOVA) [Anderson, 2001]. The contri-

bution of individual taxon to overall community dissimilarity was determined using SIM-

PER analysis [Clarke, 1993]. SIMPER analysis is a useful measure of the magnitude of

difference, however in order to decide whether taxa differed significantly pairwise t-tests

(kendall non-parametric) adjusted for multiple comparisons using the Benjamini-Hochberg

false-discovery method were performed. Only taxa with a false-discovery rate of less than

5% [Benjamini and Yekutieli, 2001] were reported. The relationships between environmen-

tal variables and patterns in bacterial community structure were examined by canonical cor-

respondence analysis with significance tested by ANOVA after reducing the overall suite

of environmental variables using a step-wise AIC model. To determine which organisms

played a significant role in E.coli removal, pair-wise similarities among samples based on

the Bray-Curtis similarity index were calculated. The resulting matrices were examined for

temporal patterns and differences between 13C (labelled) and 12C (non-labelled) samples us-

ing NMDS and CCA analysis as implemented in the Vegan package for R [Oksanen et al.,

2012]. Significant differences in the metagenomic community composition between differ-

ent time points (0.5-4h) and carbon sources (labelled - 13C and non-labelled - 12C) after

spiking with E.coli were determined using an MANOVA. To determine individual contribu-

tions from each taxon to the differences between labelled and non-labelled samples, and for

the various time points, SIMPER analysis alongside pairwise t-tests adjusted for multiple

comparisons using the Benjamini-Hochberg false-discovery method were performed.

6.3 Results

In this section the results of the study will be presented alongside discursive analysis, with

an overall discussion being provided in Section 6.4.

6.3.1 Water Quality of Covered and Non-covered SSFs

Analysis of the water quality parameters and overall water quality performance (5) has

shown that like the industrial filters (discussed in Chapter 4), and labscale filters (discussed in

Chapter 5) the covered and non-covered LSSFs studied in this chapter produce good quality

water (Tables 6.3 - 6.5 show the influent and the effluent from the filters). No significant

difference was found between covered and non-covered LSSFs’ 5 (p-value:0.7806). This
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is noteworthy as in comparison to the previous studies the water feeding these filters came

from river water that is much higher in organic matter. Therefore the fact that these filters

produced water of the same quality as filters purifying reservoir water shows the versatility

of SSFs to treat a range of water sources.

6.3.1.1 Coliform Removal in Covered and Non-covered SSFs

Similar to the filters in chapters 4 and 5, these filters fulfil all of the water quality parameters

except coliform removal targets set out in the Water (Scotland) Act 1980. However, unlike

the SSFs in previous chapters the filters within this chapter remove significantly fewer col-

iforms (approximately 24 times less) at the early age bin (p-value: 6.839 × 10−6). Further,

significant negative correlations were found between coliform retention and age of the filters,

with both covered and non-covered LSSFs displaying the same trend of improved removal

with age (Figure 6.3). Additionally, Wilcoxon tests revealed that there are significant differ-

ences in coliform retention / removal between covered and non-covered filters at the early

age bin (p-value: 0.0085); with non-covered filters removing > 2.5 times more coliforms

than covered LSSFs. However, by the mid and late age bins (> 42 days old) there was no

difference is coliform removal ability between the filter types (p-values: 0.4245 and 0.3126

respectively) even during the spiking event.

6.3.2 Impact of Light on the SSF Microbial Community

Initial exploratory NMDS and MANOVA analysis (Figure 6.4) revealed that the microbial

communities present in covered and non-covered LSSFs were significantly different (p-

value: >0.001), with Gammaproteobateria, Acidobacteria and unclassified bacteria dom-

inating non-covered LSSFs (12h light / 12h darkness), and Deltaproteobacteria and Planc-

tomycetes dominating covered LSSFs (Figure 6.5). Additionally, significant differences in

the abundance of 16S rRNA genes were found between covered and non-covered filters (p-

value: 0.0014), with non-covered filters possessing on average four times more copies than

covered LSSFs. Further, in accordance with the filters in Chapter 4 and 5 a positive correla-

tion was found between between age and 16S rRNA copy number (0.15, p-value: 0.007) and

a negative correlation was found between depth and 16S rRNA copy number (0.19, p-value:

0.0005). Overall, mean 16S rRNA copy numbers were consistent with the filters of previous

chapters (covered filters: 5.48 × 107 and non-covered filters: 2.02 × 108 16S rRNA copies
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Figure 6.3: Box-and-whisker plot comparing the coliform retention in covered and non-covered

LSSFs at three age bins. Early age bin: 0-3 weeks, Mid: 4-6weeks and Late: 7-10 weeks. The top

and bottom boundaries of the boxes show the 75th and 25th percentile and the ends of the whiskers

show the maximum and minimum values within 1.5 of the interquartile range of the upper and lower

quartiles (respectively). Bold lines within the boxes represent median values (50th percentile). Note:

values below 1 correspond to coliform removal and values above 1 signify retention / no removal.

per gram of extracted sand).

Overall, clear changes can be seen in the absolute phyla abundances over time and depth

(Figure 6.5) with the Proteobacteria phylum dominating both covered and non-covered

LSSFs as seen previously in labscale and industrial SSFs. However, interestingly the domi-

nance of the various classes of Proteobacteria are extremely different both between covered

and non-covered LSSFs and between previous labscale and industrial SSFs. Previously,

Alphaproteobacteria and Betaproteobacteria accounted for the biggest proportion of the

Proteobacteria phyla in both labscale and industrial SSFs (Figure 5.9), however in the lab-

scale filters in this chapter Gammaproteobacteria and Deltaprotoebacteria are the dominant

classes. Reasons for such differences are likely due to the different water sources (previously

reservoir water and now river water) which have already been shown to strongly influence

the SSF sand microbial community and can be seen in Figure 6.6 to do the same for the

filters here.
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Non-covered SSFs 
Covered SSFs 

Figure 6.4: NMDS analysis of phlya abundance in covered and non-covered SSFs. Capital letters

denote filter names, non-covered: C, D, E, and F and covered: G, H, I, and J.

In order to determine which factors explain the differences between covered and non-covered

LSSFs microbial communities, MANOVA and canonical correspondence analysis was per-

formed. This analysis revealed (Table 6.6) that the condition of the filter (covered or non-

covered) explained the biggest proportion (39.5%) of the difference in bacterial community

composition, with age, depth and the individual filter identity (i.e., C, D, E), also being

highly significant. Interestingly, individual filter identity was not a significant variable in

explaining the differences between bacterial community composition in previous chapters; a

potential reason for its importance now could be due to the different influent water. Within

Table 6.6: CCA analysis of bacterial phyla and class abundances against various filter parameters.

∗ denotes significant parameters.

Parameter Degrees of Freedom !2 F value Number of permutations Pr(>F)

Condition (Covered / non-covered) 1 0.3166 137.8915 99 0.01*
Age 1 0.0679 29.5647 99 0.01*

Depth 1 0.0181 7.9029 99 0.01*
Filter Identity 6 0.0444 3.2230 99 0.01*

Residual 342 0.7853
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Figure 6.6: Stacked barplots depicting the average fractional abundance of all phyla and classes

assessed by qPCR in influent water, covered and non-covered LSSFs at different age bins. Early age

bin: 0-3 weeks, mid: 4-6 weeks and late: 7-10weeks.

this chapter, water from the River Kelvin was used which can be seen (Figure 6.7) to have

much higher 16S rRNA copy numbers than the water feeding the industrial SSFs and lab-

scale SSFs of chapter 5. Such exposure to increased diversity alongside the knowledge of

neutral theory (multiple organisms can perform the same function) may explain individual

filter variability both within and between covered and non-covered filters.

Determining the Mechanisms of E.coli Removal

To determine the magnitude with which protozoa and other eukaryotes affect E.coli removal;

direct recombinant E.coli and protozoa counts, total and E.coli specific 16S rRNA, and 18S

rRNA, qPCR assays were performed on samples taken from SSFs challenged with isotopi-

cally labelled (13C) E.coli. To resolve which organisms (bacteria, eukaryotes and viruses)

were responsible for E.coli removal, the different carbon densities (12C and 13C) in the sam-

ples were separated (DNA-SIP) and used for metagenomic analysis. Increased abundance of

any organism in 13C labelled samples is indicative of potential involvement in E.coli removal.
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Figure 6.7: Box-and-whisker plot comparing the number of 16S rRNA copies (determined by qPCR)

in the water supplies used in Chapter 4 and 5 (Reservoir) and this chapter (River Kelvin).

6.3.3 Protozoan predator-prey response - direct counts and qPCR

Direct counts of E.coli and total protozoa revealed a clear predator-prey relationship (Fig-

ure 6.9), with most removal occurring at the top of the filters, 2-3h after spiking with 13C

labelled E.coli (Figure 6.8). Both filter types achieved 100% E.coli removal after 24h, how-

ever at different sand depths coliform removal occurs more quickly in uncovered filters in

comparison to covered SSFs, with E.coli still appearing after 96h in covered SSFs at lower

depths (Figure 6.8). This implies that an environment with light exposure is more hostile in

terms of E.coli survival, yet has no affect on water quality production. However, it should be

noted that increased retention of viable E.coli in covered filters at lower depths could result

in the release of pathogens at a later point into the effluent of the covered SSFs. Therefore

in a real world situation both types of SSFs deal with heavy pollution and run-off events

extremely well resulting in reduced pathogen numbers. However, referring back to Tables

6.4 and 6.5 it can be seen that coliform removal in the three weeks after the spiking event

is significantly lower in covered SSFs compared to non-covered, insinuating that covered

filters incur longterm effects to increased E.coli exposure which have a knock-on effect to

coliform removal.

The importance of protozoan grazing was further emphasised by the gradual decrease over
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Figure 6.8: Direct counts of viable 13C labelled E.coli at various timepoints and depths within SSFs.

A: Top depths (0-5cm), B: Middle depths (15-30cm) and C: Bottom depths (40-70cm). Note the

different y-axes.
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Figure 6.9: Scatter plot showing the predator-prey response of protozoa on coliforms at the top depth

in SSFs

time in the abundance of 13C labelled E.coli, as well as the peak in the number of labelled

(13C) 18S rRNA copies in qPCR assays on samples 3 and 24 hours after spiking (Figure

6.10). However, as the 12C 18S rRNA results showed a similar trend compared to labelled

18S rRNA, it can be assumed that incomplete 13C incorporation has occurred i.e., samples

with a density resembling normal carbon (12C) may have started to incorporate labelled 13C

but have not incorporated enough into their biomass to cause a density change. Additionally,

the increased occurrence of 18S rRNA copies at early time-points (2 and 3h after spiking) is

surprising due to the on average longer replication rate of eukaryotes, however some protists

and various fungi are known to incorporate carbon into their genomes and replicate within

two hours after exposure to a food source [Bååth, 2001].

6.3.4 All Domains of Life are Important for E.coli Removal

To resolve which organisms (bacteria, eukaryotes and viruses) were responsible for E.coli re-

moval, DNA-SIP in conjunction with metagenomic analysis was employed. Metagenomics

unlike qPCR and conventional sequencing approaches, does not rely on prior knowledge

of the organisms of interest and, thus organism-specific primers are not required [Wooley

et al., 2010]. However, metagenomics does still suffer from biases introduced during DNA

extraction, enzymatic cutting during library preparation and PCR amplification. MANOVA
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Figure 6.10: Absolute numbers of 16S, 18S and E.coli specific 16S rRNA in 12C and 13C fractions,

determined by qPCR assays on the top depth of sand.

revealed significant differences in the metagenomic communities at all levels of taxonomic

classification between: carbon types (13C or 12C), and times after spiking, of the 36 samples

taken from four SSFs after adding the 13C labeled E.coli. Time was the most significant

variable explaining 15.4% (p-value: 0.01) of the variance followed by type (11.3% p-value:

0.001) and condition (5.1% p-value: 0.02). Canonical correspondence analysis (Figure 6.11)

alongside SIMPER analysis (Table 6.7) on individual taxa proportions adjusted for multiple

comparisons identified ten orders (two bacterial, six eukaryotic and two viral) as being statis-

tically significant in explaining differences between 12C and 13C metagenomic communities.

Overall, SIMPER analysis revealed that the viral order Caudovirales accounted for the

biggest difference between 13C and 12C communities, insinuating that viral lysis may be a

significant mode for E.coli removal. Further, SIMPER analysis revealed that the Enterobac-

teriales order accounted for a large difference between labelled and non-labelled samples,

this is not surprising as E.coli is a member of this order and differences here are due to the

excessive quantify of labelled E.coli added during the experiment. Therefore as all three
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Table 6.7: Relative abundances of statistically significant Orders of organism which explain differ-

ences between 13C and 12C samples. Adjusted p-values calculated using the Benjamini-Hochberg

method, average percentages are relative to the kingdom the order belongs to.

SIMPER Calculated
 p-value Contribution to Difference (%) 12C 13C

Peniculida Eukaryota 2.68182 0.01173 0.015076 0.0700 0.3295 0.2305
Herpesvirales Viral 2.51466 0.01656 0.022064 9.6000 29.9375 14.0812
Caudovirales Viral -2.5104 0.01671 0.022266 9.9500 49.9682 85.8644
Eurotiales Fungi -2.4689 0.02777 0.032573 1.5201 3.7049 6.2315

Enterobacteriales Bacterial -2.2899 0.04082 0.04742 4.1696 3.5448 16.8301
Vibrionales Bacterial -2.2864 0.04108 0.047727 0.6103 0.4350 2.3151
Kinetoplastida Eukaryota -1.5084 0.04205 0.050322 1.3890 4.9205 6.5473
Perkinsida Eukaryota -1.437 0.04775 0.049914 1.2152 1.0862 2.9243
Sordariales Fungi -0.4374 0.05068 0.05858 2.3166 4.7333 10.5973

Saccharomycetales Fungi -0.5542 0.05074 0.060559 2.3438 9.1490 10.2895

Adjusted Average Percentage Abundance
Order t p-valueKingdom

domains of life (Viruses, Eukaryotes and Bacteria) have been identified as accounting for

significant differences between 13C and 12C communities and hence E.coli removal, each

kingdom was analysed independently at higher levels of taxonomic resolution. It should be

noted that the number of reads associated with each time point (Figure 6.12) within each

group (12C and 13C ) was not significantly different (p-value: 0.9356), and both fractions had

similar overall community structures (12C: 0.09% Viruses, 9.18% Eukaryotes and 90.73%

Prokaryotes; 13C: 0.08% Viruses, 8.50% Eukaryotes and 91.42% Prokaryotes).

6.3.5 The Importance of Viral Lysis for E.coli Removal

Twenty-two viral species (Table 6.8) were identified by pairwise t-tests with adjusted p-

values based on Benjamini-Hochberg false discovery tests as being significantly different

between 12C and 13C metagenomic communities. None were prophages found within the

E.coli K12 genome. Overall, fifteen of these viruses were present at higher abundances in
13C communities compared to 12C samples and hence are involved directly or indirectly in

E.coli removal. Collectively these accounted for 22% of the dissimilarity between 13C and
12C samples. Visually referring to the 22 significant viral species (Figure 6.13) the impor-

tance of Enterobacteria Phages is apparent, and in particular Enterobacteria Phage Lambda,

Enterobacteria Phage cdtl and Enterobacteria Phage N15, which account for over 14% of

the difference between labelled and non-labelled samples (Table 6.8). In particular, the abun-

dance of Enterobacteria Phage Lambda was over 117 times more abundant in 13C samples

than 12C communities, implying its importance in E.coli removal. Further their increased
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Figure 6.11: Principle component analysis of all orders of organism. Green text represents viral

orders, brown text represents bacterial orders and orange text represents eukaryotic orders.

●

●

●

●

●

●

●

1e
+0

7
2e

+0
7

3e
+0

7
4e

+0
7

5e
+0

7
6e

+0
7

Time after spiking with 13C labelled E.coli (h)

N
um

be
r o

f r
ea

ds

● 13C Samples
12C samples

0.5 1 2 3 4 24 96

Figure 6.12: Line plot displaying the total number of reads classified to species level at each time-

point within 12C and 13C metagenomic samples. Data points represent the mean and bars represent

the standard error.



CHAPTER 6. PATHOGEN REMOVAL IN SLOW SAND FILTERS 160

Table 6.8: Relative abundances of 22 viral species which are statistically significant between 13C and

12C samples. Adjusted p-values calculated using the Benjamini-Hochberg method.

SIMPER Calculated
 p-value Contribution to Difference (%) 12C 13C

Ictalurid.herpesvirus.1 2.6716 0.0094 0.0195 2.5004 4.2004 1.4493
Enterobacteria.phage.lambda -2.9675 0.0105 0.0123 10.3949 0.1162 13.6214
Glypta.fumiferanae.ichnovirus 2.6974 0.0106 0.0153 4.3017 6.7856 3.1190
Microbacterium.phage.Min1 -2.9207 0.0107 0.0125 1.1951 0.5574 1.8756
Human.herpesvirus.6 2.9802 0.0107 0.0163 1.3084 2.0376 0.6672

Stenotrophomonas.phage.S1 -2.7294 0.0172 0.0196 0.0600 0.0112 0.0854
Enterobacteria.phage.YYZ.2008 -2.6555 0.0210 0.0235 0.4300 0.0055 0.5960
Rhodococcus.phage.REQ3 -2.5802 0.0217 0.0256 0.3785 0.0604 0.2577
Stx2.converting.phage.1717 -2.6298 0.0220 0.0247 0.8700 0.0192 1.1474

Phage.Gifsy.2 -2.5886 0.0237 0.0268 1.0210 0.0100 1.0228
Rhodococcus.phage.REQ1 -2.4596 0.0257 0.0309 1.0004 0.2396 0.5613
Enterobacteria.phage.N15 -2.5010 0.0278 0.0318 0.5100 0.0189 0.6695
Pseudomonas.phage.phi297 -2.4469 0.0286 0.0337 0.5902 0.3174 0.9253
Mycobacterium.phage.L5 -2.4226 0.0288 0.0344 0.2400 0.1299 0.3619

Mycobacterium.phage.SWU1 -2.3819 0.0308 0.0369 0.2300 0.1322 0.3619
Enterobacteria.phage.cdtI -2.4057 0.0332 0.0382 3.6571 0.0450 4.7744
Enterobacteria.phage.SfV -2.2911 0.0341 0.0407 0.6100 0.0033 0.0141
Salmonella.phage.Fels.1 -2.3826 0.0346 0.0399 0.6996 0.0091 0.9147
Enterobacteria.phage.P2 2.0842 0.0369 0.0580 0.0300 0.0441 0.0142

Phage.Gifsy.1 -2.3279 0.0379 0.0440 0.7810 0.0962 2.4099
Mycobacterium.phage.Cjw1 -2.2296 0.0436 0.0515 0.5700 0.0934 0.3841

Propionibacterium.phage.PAD20 1.5668 0.0438 0.0509 5.4700 7.1897 2.3280

Average Percentage Abundance
Viral Species t p-value

Adjusted 

abundance alongside Phage gifsy 1 and 2 and Stx2 Converting Phage 1717 are not surprising

as they are known phages of E.coli. However their over expression at 1, 4 and 96h and lower

abundance at the remaining time points suggests that these viruses are fluctuating between

states of pseudolysogeny and lysogeny to lytic pathways (Figure 6.15). Such behaviour is

widely documented for environmental phages [Abedon, 2008], with different pathways being

chosen based on the “health” of the host bacteria (i.e., availability of nutrients and exposure

to environmental stress such as UV).

Referring more closely to the significant viral species (Table 6.8) it was observed that >15%

of the dissimilarity between 13C and 12C is due to members of the Lambda-like-viruses (Fig-

ure 6.14). Furthermore, it can be seen that the abundance of the Lambda-like-viruses dra-

matically increases at 1h, 4h and 96h after spiking with labelled E.coli. Additionally it can

be seen that two members of the Myoviridae family; T4-like-viruses and L3-like-viruses in-

crease in abundance at the time-points where Lambda-like-viruses have reduced abundance

(2h, 3h, and 24h). These differences in labelled viral genera at different time-points imply

that various viruses are important for E.coli removal and important in downstream labelled

carbon metabolism. Additionally such differences in the abundance of different genera may
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Figure 6.14: Stacked barplot showing the abundance of the top 6 viral genera in: A: 13C (labelled)

samples and B: 12C (non-labelled) samples at various timepoints after spiking with 13C labelled

E.coli
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Figure 6.15: The progressive relationship between host bacterial cells and different bacteriophage

life cycles, adapted from Abedon [2008]. Red lines indicate lytic pathways and blue lines indicate

lysogenic pathways.

be due to differences in genome size and hence replication rate. For example Lambda-

like-viruses have a smaller genome (48500 nucleotides on average) compared to an average

of 101800 nucleotides for viruses in the Myoviridae family (T4-like-viruses and L3-like-

viruses). Additionally, the increased abundance of Lambda-like-viruses at 96 hours may be

due to the fact that unlike members of the Myoviridae family Lambda-like-viruses have the

potential to be lysogenic (integrate into the genome of their host and remain dormant until

they desire to leave the host (Figure 6.15)).

6.3.6 The Importance of Eukaryotes for E.coli Removal

Following the same approach taken to identify significant viral species involved with E.coli

removal and 13C metabolism, 52 eukaryotic species were identified (Table 6.9), of which

twenty were protozoa (Figure 6.16), fifteen algae (Figure 6.17) and seventeen fungi (Figure

6.18). The presence of significant species from all eukaryotic kingdoms further underscores

the complex mechanisms involved with E.coli removal.

6.3.6.1 The Importance of Protozoan Grazing for E.coli Removal

The twenty significant protozoan species represented fifteen different genera and members

from the flagellate, ciliate and amoeboid groups, all of which are known predators of E.coli

[Weekers et al., 1993, Fleck et al., 2000, Fey et al., 2007, Cassidy-Hanley, 2012, Yue et al.,
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Table 6.9: Eukaryotic species relative abundances which are statistically significant between 13C and

12C samples. Samples are from the top depth of the SSF bed and represent averages based on all time

points (0.5-96h post spiking).

SIMPER Calculated Average Abundance (%) 
Eukaryotic Species t p-value 

Adjusted       
p-value Contribution to Difference (%) 12C 13C 

Paramecium.tetraurelia 3.57762 0.0017
1 

0.00174 0.0896 0.3115 0.1591 
Tetrahymena.thermophila 2.75045 0.0103

6 
0.01268 0.1990 0.5367 0.3526 

Postia.placenta -2.73381 0.0153
9 

0.01829 0.0808 0.1343 0.2669 
Tetrahymena.malaccensis -2.54231 0.0216

1 
0.02607 0.0130 0.0173 0.0358 

Desmarestia.viridis -2.55943 0.0219
8 

0.02619 0.0126 0.0168 0.0352 
Aspergillus.terreus -2.53551 0.0244

6 
0.02859 0.1161 0.1236 0.3122 

Neosartorya.fischeri -2.53955 0.0245
4 

0.02855 0.2753 0.2594 0.7184 
Reclinomonas.americana -2.46792 0.0266

1 
0.03166 0.0519 0.0661 0.1428 

Malawimonas.jakobiformis -2.43917 0.0277
0 

0.03310 0.0790 0.1040 0.2189 
Pylaiella.littoralis -2.41217 0.0285

6 
0.03429 0.0105 0.0137 0.0287 

Blastocystis.sp..subtype.3 -2.38201 0.0297
4 

0.03577 0.0104 0.0150 0.0292 
Saccharina.coriacea -2.38071 0.0302

2 
0.03629 0.0121 0.0173 0.0340 

Saccharina.diabolica -2.37830 0.0304
5 

0.03655 0.0123 0.0175 0.0346 
Saccharina.ochotensis -2.37830 0.0304

5 
0.03655 0.0124 0.0175 0.0346 

Saccharina.longipedalis -2.37773 0.0304
8 

0.03659 0.0123 0.0175 0.0346 
Saccharina.religiosa -2.35847 0.0314

9 
0.03781 0.0194 0.0172 0.0336 

Rhizopus.oryzae -2.36037 0.0319
7 

0.03828 0.0305 0.0415 0.0853 
Saccharina.angustata -2.33985 0.0325

7 
0.03909 0.0116 0.0169 0.0327 

Saccharina.japonica.x.latissima -2.33277 0.0335
3 

0.04016 0.0116 0.0164 0.0324 
Eremothecium.gossypii -2.33713 0.0342

1 
0.04076 0.0721 0.1106 0.2116 

Paulinella.chromatophora -2.34440 0.0343
5 

0.04074 0.0824 0.1044 0.2257 
Glaucocystis.nostochinearum -2.30653 0.0343

7 
0.04123 0.0199 0.0304 0.0572 

Chaetomium.globosum -2.33314 0.0354
4 

0.04193 0.1467 0.2187 0.4357 
Schizophyllum.commune -2.33412 0.0355

4 
0.04199 0.1342 0.1655 0.3741 

Polysphondylium.pallidum -2.30359 0.0361
4 

0.04313 0.0154 0.0226 0.0438 
Cafeteria.roenbergensis -2.28885 0.0361

8 
0.04333 0.0199 0.0293 0.0561 

Chattonella.marina -2.28340 0.0368
5 

0.04409 0.0164 0.0238 0.0458 
Ochromonas.danica -2.26917 0.0376

6 
0.04507 0.0177 0.0272 0.0509 

Tetrahymena.pigmentosa -2.24581 0.0378
3 

0.04517 0.0124 0.0193 0.0355 
Vermamoeba.vermiformis -2.26055 0.0379

6 
0.04544 0.0275 0.0381 0.0714 

Laminaria.digitata -2.26860 0.0380
8 

0.04552 0.0113 0.0165 0.0319 
Sordaria.macrospora -2.28253 0.0381

8 
0.04542 1.6880 2.9028 5.3071 

Naumovozyma.castellii 2.22123 0.0382
2 

0.03448 0.2902 1.0603 0.6671 
Gigaspora.rosea -2.28863 0.0384

1 
0.04551 0.0106 0.0126 0.0287 

Monosiga.brevicollis 1.53508 0.0390
5 

0.04320 1.7310 6.5174 8.2966 
Gigaspora.margarita -2.27833 0.0391

4 
0.04638 0.0106 0.0126 0.0287 

Chromerida.sp..RM11 -2.27704 0.0391
8 

0.04645 0.0066 0.0808 0.1779 
Tetrahymena.pyriformis -2.22485 0.0397

7 
0.04748 0.0135 0.0207 0.0382 

Dictyota.dichotoma -2.24800 0.0400
0 

0.04773 0.0159 0.0226 0.0447 
Tetrahymena.paravorax -2.21393 0.0401

5 
0.04780 0.0128 0.0197 0.0363 

Phytophthora.sojae -2.23975 0.0403
5 

0.04818 0.0191 0.0290 0.0547 
Euglena.gracilis -2.24004 0.0404

6 
0.04829 0.0539 0.0782 0.1509 

Phytophthora.andina -2.23832 0.0405
1 

0.04837 0.0197 0.0291 0.0551 
Ichthyophthirius.multifiliis -2.21725 0.0407

3 
0.04865 0.0135 0.0207 0.0385 

Paramecium.aurelia -2.13811 0.0408
6 

0.05814 0.0100 0.0135 0.0275 
Phytophthora.phaseoli -2.23284 0.0409

2 
0.04885 0.0189 0.0287 0.0542 

Phytophthora.mirabilis -2.23246 0.0409
6 

0.04889 0.0194 0.0293 0.0555 
Acanthamoeba.castellanii -2.12744 0.0411

0 
0.05064 0.0101 0.0141 0.0288 

Cyanophora.paradoxa -2.23258 0.0413
7 

0.04932 0.0923 0.1337 0.2592 
Phytophthora.ipomoeae -2.22309 0.0416

4 
0.04970 0.0193 0.0293 0.0552 

Pythium.ultimum -2.21143 0.0421
5 

0.05032 0.0455 0.0711 0.1311 
Dictyostelium.fasciculatum -2.09591 0.0433

5 
0.05033 0.0108 0.0177 0.0318 

!
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2013]. Referring to Figure 6.16A it can be seen that the proportion of significant protozoan

species increases over time, compared with the relatively stable proportion of 7% in non-

labelled (12C) samples (Figure 6.16B). Further, the biggest difference between 13C and 12C

communities are due to fluctuations in the populations of: Chromerida RM11, Euglena gra-

cilis, Malawimonas jakobiformis, Monosiga brevicollis, Paulinella chromatophora, Recli-

nomonas americana, Tetrahymena paravorax and Vermamoeba vermiformis, (Figure 6.16)

all of which are highly motile and possess voracious appetites. Specifically, the importance

of protozoan grazing on labelled E.coli and hence E.coli removal, is apparent two hours

post-spiking, where a large increase in protozoan population is observed. In particular a

large increase in the proportion of Monosiga brevicollis and Tetrahymena spp. were ob-

served, with both genera collectively being responsible for 2% of the dissimilarity between
12C and 13C communities (Table 6.9).

6.3.6.2 The Mutualistic Relationship of Fungi and Algae in the Removal of E.coli

The abundances of seventeen fungal, and fifteen algal, species were identified as being sig-

nificantly different between 12C and 13C samples, of which only the fungal species Nau-

movozyma castelli was present in greater proportion in non-labelled samples. Therefore,

the remaining species appear to be involved in E.coli removal and / or 13C labelled carbon

metabolism. On initial analysis of the algal and fungal abundances, a staggering similarity

in community dynamics can be seen, with both communities increasing and decreasing in

abundance at the same time points (Figure 6.17 and Figure 6.18); Kendall correlation tests

of all significant fungal and algal species confirmed this to be a significant relationship (tau

0.81952, p-value: 0.01071). This mirrored behaviour is indicative of a mutualistic relation-

ship. Such symbioses between algae and fungi have been widely documented in various

environments [Harte and Kinzig, 1993, Danger et al., 2013].

The fifteen significant algal species represented nine different genera, with Saccharina spp.

accounting for 47% of the significant algal species. Clear shifts in the abundance of sig-

nificant algae can be seen between 12C and 13C samples at all time points (Figure 6.17), in

particular at 2, 3, 24 and 96 hours after spiking with 13C labelled E.coli, where the average

abundance tripled in 13C samples compared to the non-labelled samples. Additionally, fun-

gal species followed the same trend with Sordaria macrospora and Chaetomium globosum
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showing the largest increase (Figure 6.18).

6.3.6.3 Calculating the Importance of Protozoa and Viruses

To approximate the importance of protozoa and viruses in E.coli removal the following as-

sumptions were made:

1. The added 13C labelled E.coli does not undergo replication

2. Only protozoa and viruses are responsible for E.coli removal

3. All protozoa and viruses are grazing / infecting E.coli at a constant rate

4. Enterobacteria Phage Lambda is used to represent all viruses (since it is the most

abundant and significant virus identified in 13C samples)

5. Monosiga brevicollis and Tetrahymena thermophila are used to average the abilities of

protozoa (as they are the two most significant and abundant protozoa in 13C samples)

6. For a protozoan to become 13C labelled, 50% of its grazing consumption must be from
13C labelled E.coli

Based on these assumptions and taking genome size and progeny production into consid-

eration, it was concluded (Appendix D) that protozoan grazing appeared to be the major

driving force behind E.coli removal (99.86%), with Monosiga brevicollis accounting for the

biggest proportion of E.coli removal (24.83%), followed by 4.68% achieved by Tetrahymena

thermophila. Conversely, viral associated lysis was responsible for 0.14% removal of which

Enterobacteria Phage Lambda was responsible for 0.076%, which was 326 times smaller

than the removal achieved by Monosiga brevicollis. However, it is important to note that

these calculations do not take into consideration, the effects that viruses entering a lysogenic

life cycle may have on E.coli removal and the ability of protozoa to be able to graze on other

organisms (not E.coli) which may have been labelled through the consumption of released

biomass.
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6.4 Discussion

6.4.1 Light Affects the Microbial Community but not Performance

Light exposure had significant spatial and temporal effects on the composition of the micro-

bial community of laboratory-scale slow sand filters. Non-covered (exposed to light) LSSFs

displayed a more even community composition in comparison to covered (no light exposure)

LSSFs which were generally dominated by Deltaproteobacteria. Such dominance is not sur-

prising as Deltaproteobacteria are either chemoorganotrophic or chemolithotrophic, hence

do not require the presence of light to survive [Garrity et al., 2004]. Likewise the dominance

of Gammaproteobacteria in LSSFs exposed to light can be explained by the fact that major-

ity of this class are highly resistant to solar radiation [Alonso-Sáez et al., 2006]. In addition

filters exposed to light displayed a biomass which was four times greater than that of covered

LSSFs. This is unsurprising as light / dark environments are known to support and facilitate a

wider range of metabolisms than environments of complete darkness. These results support

the findings of Campos et al. [2002] who found that covered SSFs had a significantly lower

overall biomass concentration than non-covered. A potential reason for this increased abun-

dance is likely due to the presence of photochemical oxidation of dissolved organic matter

(DOM) which has aided in releasing and making more organic matter available for bacterial

metabolism and hence supports more growth and diversity [Judd et al., 2007].

Interestingly, differences in the microbial community composition and abundance had little

effect on overall filter performance (5). Such little difference in performance between cov-

ered and non-covered filters is in accordance with previous work by Campos et al. [2002]

which found little difference in organic carbon removal between filter types. The work in

this chapter is however, the first study to the author’s knowledge which has found no dif-

ference in the removal capabilities of various water quality parameters between covered and

non-covered slow sand filters. Furthermore, this study is the first to show that the micro-

bial community of covered and non-covered SSFs are extremely divergent in composition

and abundance yet achieve the same level of excellent filter performance, further evidence

of neutral theory (theory that the bacterial community composition is a product of random

events in connection to the recruitment of functionally equivalent bacterial taxa from the

“metacommunity” [Langenheder et al., 2006]). It should however be noted that at the early
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age bin (0-3 weeks) there was a significant difference between covered and non-covered

LSSFs ability to remove coliforms, with non-covered filters removing 24 times more than

covered filters. This in conjunction with the increased retention of viable E.coli in cov-

ered filters at all depths insinuates that light exposure facilitates E.coli removal. Numerous

studies have shown that sunlight can improve E.coli removal; for example, UV has been

shown to damage the cytoplasmic membrane, making bacteria more sensitive to the effects

of other factors such as pH [Curtis et al., 1992]. Further, photo-oxidation [Curtis et al., 1992,

Mezrioui et al., 1995] increased algal growth and subsequent algal toxin and reactive oxygen

species (ROS) production have likewise been shown to cause bacterial death [Maynard et al.,

1999].

6.4.2 Top-down Trophic Interactions are Essential for E.coli Removal

Identifying and unpicking trophic interactions, particularly those involved with pathogen re-

moval, is an extremely complex and important question. Previously, mathematical models

and work in simplified microcosms have shown the individual importance of viral lysis, pro-

tozoan grazing, and endogenous and exogenous reactive oxygen species in E.coli removal

[Curtis et al., 1992, Bomo et al., 2004, Grobe et al., 2006, Liu et al., 2007, Kadir and Nelson,

2014]. Within this study the level of involvement in E.coli removal of each kingdom has

been approximated from the metagenomic analysis and several assumptions. Furthermore,

to optimise for the success of the DNA-SIP approach, i.e. obtain enough genomic material

for metagenomic sequencing, a higher concentration of E.coli than normally found in surface

water was spiked into the SSFs. However, this is the first study, to the author’s knowledge, to

examine and identify the ecosystem-wide trophic interactions and mechanisms responsible

for pathogen removal in a “real” system, without prior bias as to which organisms and mech-

anisms to target. Additionally, this study is the first to show that it is possible to isotopically

label E.coli and follow its removal through an ecosystem.

Based on the direct counts, qPCR (Figures 6.9 and 6.10) and DNA-SIP metagenomic se-

quencing analysis, the importance of top-down regulatory mechanisms for E.coli removal

is apparent. Among a consortium of phages, protozoa, fungi and algae, which were 13C-

labelled (hence involved in E.coli removal / metabolism) and identified as highly significant

via statistical analysis, Enterobacteria Phage Lambda, Monosiga brevicollis and Tetrahy-
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mena spp. were identified as the main organisms responsible for E.coli removal. Based on

our calculations (Appendix D) and direct count observations, protozoan grazing was respon-

sible for more than 99% of the E.coli removal, which is consistent with previous investiga-

tions into pathogen removal in constructed wetlands [Weber and Legge, 2008] and estuaries

[McCambridge and McMeekin, 1980]. From the twenty statistically significant protozoan

species (Table 6.9) Monosiga brevicollis was predicted to be responsible for the majority

(24.83%) of the E.coli removal once factors such as replication rate, progeny production,

grazing rates and genome size were taken into consideration. This equated to approximately

326 times more E.coli removal than that achieved by Enterobacteria Phage Lambda. This

lowered involvement of viral associated lysis for E.coli removal is also consistent with pre-

vious work [Withey et al., 2005].

The importance, and dominance, of Monosiga brevicollis from the beginning to the end

of the experiment is not surprising as it is known to play a critical role in marine global

carbon cycling [Yue et al., 2013]. Further, its dominance over other protozoan grazers in-

cluding Tetrahymena spp. (responsible for 4.68% of E.coli removal) may be explained by

their very short doubling time of 4.6h [Christaki et al., 2005] and fast grazing rates of 196

bacterial cells1h [Parry, 2004], which in theory would allow them to outcompete other iden-

tified significant protozoan species. Although the feeding rate of M.brevicollis is slower than

Tetrahymena spp., such dominance could be explained by Monosiga brevicollis;

1. Possessing a microvilli collar, which hold bacteria from the water flow and allows

them to be engulfed at a later time [Yue et al., 2013], hence providing energy storage

for less plentiful times.

2. Possessing six oxidative stress genes; four of which are algal in origin - two ascorbate

peroxidases and two metacaspases - that help protect the protozoa from various algal-

mediated reactive oxygen species [Nedelcu et al., 2008].

Although protozoan grazing appeared to be the major route for E.coli removal, the role of

viral-associated lysis cannot be overlooked, especially as Enterobacteria Phage Lambda was

more abundant in 13C labelled samples (Figure 6.13) and was identified by SIMPER analysis

to contribute to more than 10% of the dissimilarity between 12C and 13C communities (Table
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6.8).

Overall, with the exception of the Microbacterium, Pseudomonas, Salmonella and Rhodococ-

cus phages the remaining eight statistically-significant phages are all known prophages of

E.coli and have been shown to reduce Enterobacteria (including E.coli) numbers. However,

unlike the protozoa the viral abundances changed dramatically with time (Figure 6.13), with

increased abundance at 1, 4 and 96h and lower abundance at the remaining time points.

Such behaviour suggests that these viruses are fluctuating between states of pseudolysogeny

/ lysogeny and lytic pathways (Figure 6.15), behaviours widely documented for environmen-

tal phages [Abedon, 2008]. This choice of life-cycle has been shown to aid in the regulation

of bacterial biomass [Ripp and Miller, 1997], which is not taken into consideration in our

calculations of removal. Additionally, the extremely high abundance of phages one hour

after incubation with 13C labelled E.coli was surprising; however, Zeng and Golding [2011]

showed that Enterobacteria Phage Lambda can infect, replicate and enter the lysogenic cy-

cle within E.coli after only 80 minutes. Therefore, although viral lysis has been calculated to

be responsible for 0.14% of the E.coli removal (Appendix D) it is likely that the phages are

supporting the regulations of the population (by allowing the E.coli population to recover) to

ensure sufficient hosts for subsequent viral infection [Abedon, 2008]. In addition, the rapid

appearance of E.coli phages in this experiment may reflect the heightened metabolic state of

introduced E.coli at the start of the spiking period due to glucose availability.

6.4.3 Ecosystem-Wide Associations are Needed for E.coli Removal

Although top-down regulatory trophic interactions, such as protozoan grazing and viral lysis

are the major mechanisms for E.coli removal, the importance of indirect and abiotic mech-

anisms cannot be overlooked. For example, previous work has shown algae to be actively

involved in E.coli removal by the production of ROS [Curtis et al., 1992, Maynard et al.,

1999, Feng et al., 2011], which causes lysis of E.coli and other bacterial species. In par-

ticular, extensive work has shown that Chattonella marina (one of the algae which showed

significant increase in labelled samples (Figure 6.17)) produces several ROS species [Liu

et al., 2007] known to significantly reduce coliform numbers. Therefore, it is conceivable

that algae are actively participating in E.coli removal by indirect mechanisms (Figure 6.19).

Furthermore, as eleven out of the fifteen significant algal species are mixotrophs (obtain en-
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Figure 6.19: The mutulistic relationship of algae and fungi in the removal of E.coli

ergy from the sun or organic sources and obtain carbon from both inorganic and organic

sources) [Nasr et al., 1968, Semple and Cain, 1996, Aamot, 2011] it is likely they accessed

carbon from the released biomass from the 13C labelled E.coli (via viral lysis and protozoan

grazing).

In addition to indirect bacterial autolysis induced by algal ROS, these products help to ex-

plain the dominance of M.brevicollis (which contains ROS protection genes). Such autolysis,

alongside protozoa and viral lysis of labelled E.coli, will have increased the amount of free
13C labelled biomass components available for fungal degradation, explaining the dominance

of the fast growing saprotrophs Sordaria macrospora and Chaetomium globosum [Kavak,

2012] which dominated the fungal 13C community. This is likely to have amplified changes

in the carbonate-bicarbonate equilibrium induced by algal respiration, which has been show

to induce elevated growth rates and fruiting body formation in Sordaria spp. [Elleuche and

Pöggeler, 2010]. This, in turn, results in further elevated CO2 levels due to fungal respira-

tion causing an additional imbalance in the carbonate-bicarbonate equilibrium and induces

a knock-on effect to the water pH, which has been shown to inducing elevated algal ROS

production [Liu et al., 2007]. Such an association helps to explain the apparent mutulistic

relationship displayed by fungi and algae during E.coli removal (Figure 6.19). Nonetheless,



CHAPTER 6. PATHOGEN REMOVAL IN SLOW SAND FILTERS 175

in addition to biological removal mechanisms, physical removal mechanisms such as strain-

ing, sedimentation and absorption also play an important part in pathogen removal in SSFs

[Haarhoff and Cleasby, 1991].

In summary, it was possible to ascertain that E.coli removal was achieved by both direct

(protozoan grazing and viral lysis) and indirect (lysis induced by algal ROS production and

fungal degradation of released biomass) mechanisms (Figure 6.20). These mechanisms ap-

peared to occur simultaneously with the involvement of species from various kingdoms, in

particular Fungi and Algae, which exhibited mutualistic interactions. The highest removal

of E.coli occurred between one and three hours after spiking. This level of removal at these

time-points is consistent with the following characteristics of the 13C communities:

1. Phages peaked in abundance at 1h, with extensive replication as part of their lytic

pathway, resulting in reduced E.coli numbers after 2h;

2. Protozoa numbers peaked at 2-3h, allowing extensive grazing on 13C labelled E.coli

prior to this;

3. Algal abundance peaked at 2 and 3h, which was likely due to the increased availability

of 13C labelled CO2 and other inorganics, created during viral lysis and protozoan

grazing;

4. Fungal abundance peaked at 2 and 3h, when extensive reduction in E.coli numbers oc-

curred, hence releasing biomass for decomposition and resulting in changes in carbonate-

bicarbonate equilibrium inducing algal ROS production and further autolysis of E.coli

6.5 Conclusions

While various studies have shown the individual importance of viral lysis, protozoan grazing

and endogenous, and exogenous, ROS in E.coli removal [Curtis et al., 1992, Bomo et al.,

2004, Grobe et al., 2006, Liu et al., 2007, Kadir and Nelson, 2014], this is the first study, to

our knowledge, to indicate the importance and interactions of all of these mechanisms for

E.coli removal. Further, our approach enabled us to identify that the majority of the E.coli

removal is due to top-down trophic interactions, such as protozoan grazing by Monosiga

brevicollis and Tetrahymena spp. and viral lysis by Enterobacteria phages. Additionally,
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Figure 6.20: Food-web showing ecosystem wide involvement and trophic interactions in E.coli re-

moval. Red shaded text represents viral lysis, purple shading represents protozoan grazing and blue

and green shading corresponds to the mutulistic interactions between algae and fungi.
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although E.coli K12 was used in this study it is highly likely that the mechanisms of re-

moval of pathogenic strains of E.coli would follow similar routes. The protozoan grazers

identified are non-specific grazers, affected only by the size of the prey community and the

phages identified are Enterobacteria-specific, rather than species specific. However more

work is required to determine if these removal mechanisms are similar for pathogenic and

environmentally-persistent bacterial species.

This study has shown that SSFs provide an ideal laboratory-scale system to study relevant

and functional food webs. By applying cutting-edge molecular methods to these systems we

have furthered our understanding of the processes, mechanisms and organisms responsible

for E.coli removal. The work and methodology adopted in this study will provide both a

paradigm for similar studies and the opportunity to:

1. Design and improve pathogen removal and overall performance of new and existing

water purification systems by managing the community;

2. Predict E.coli removal rates in natural treatment systems that have biological compo-

nents, in particular during pollution and weather events;

3. Further our understanding of complex food webs and trophic interactions;

4. Create more complex and realistic trophic interaction models.

Future work should aim to develop more sophisticated trophic interaction models using data

generated from DNA-SIP studies. These models should be further integrated into pathogen

prediction models to allow better pathogen tracking and removal prediction. Finally, the

conclusion that ecosystem-wide associations are essential for complete E.coli removal may

help to explain the reduced performance of household purification systems, which support a

less diverse ecosystem. Therefore, future work should investigate the ability and benefit that

introducing a more complex community may create.
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Chapter 7

Bioaugmentation of Slow Sand Filters

with Estrogen Metabolisers

“All the world’s a stage,

And all the men and women merely players;

They have their exits and their entrances;

And one man in his time plays many parts”

William Shakespeare, (As You Like It)

Exposure to endocrine-disrupting chemicals (EDCs), such as estrogens, is a growing issue

for human and wildlife health as they have been shown to be the main causative agents for

reproductive and developmental abnormalities in wildlife and plants and have been linked to

increasing incidents of testicular cancer and other male infertility disorders in humans. With

the rise of intensive farming, together with the increase in weather events such as storms,

flash flooding, and land slides, the risk of estrogen exposure (via agricultural or wastewater

runoff) into waterways typically used to supply slow sand filters is high. Therefore effec-

tive removal strategies are required. In this chapter the potential to improve natural estrogen

(estrone, estradiol and estriol) removal and overall SSF performance by bioaugmentation

with estrogen degrading bacteria was explored. In order to ensure optimal survival of the

augmented bacterial strains within LSSFs, strains were isolated from full-scale SSFs. The

A condensed version of some of the work from this chapter is published: S. Haig, C. Gauchotte-

Lindsay, G. Collins, R. Davies, and C. Quince. (2014). Progress in Slow Sand and Alternative Biofiltration

Processes: Further Developments and Applications., Chapter 28: Bioaugmentation Reduces Negative

Effect of Estrogens on Coliform Removal in SSFs. IWA Publishing
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genomes of the estrogen degraders (E1-rm, E2-rm and E3-rm) used to augment the LSSFs all

possessed several known enzymes involved in estrogen degradation. Concentrations of the

natural estrogens determined by gas chromatography coupled with mass spectrometry (GC-

MS) revealed that augmented filters reduced the overall estrogenic potency of the supplied

water by 26% on average and removed significantly more estrone and estradiol than non-

augmented filters. However this removal was significantly lower than that achieved in pure

culture experiments. Additionally, a negative correlation was found between coliform re-

moval and estrogen concentration in non-augmented filters. This was hypothesised to be due

to the toxic inhibition of protozoa, suggesting the functional implications (impaired coliform

removal) that high estrogen concentrations might have in SSFs. Consequently, we suggest

that high estrogen concentrations could impact significantly on water quality production, and

in particular on pathogen removal.

7.1 Introduction

The water industry faces a huge challenge in supplying a sustainable and safe supply of

drinking water to a growing world population. Increasing demand has led to the reuse of

various water sources of varying quality, including wastewater [Falconer et al., 2006]. How-

ever, along with increasing urbanisation and changes in agricultural practices this has led to

reduced water quality mainly through anthropogenic contamination. Common and emerging

contaminants include: various metals; carcinogenic organic compounds; synthetic chemi-

cals; pharmaceuticals; veterinary growth stimulators; ingredients in personal care products;

and food supplements [Kolpin et al., 2002, Caliman and Gavrilescu, 2009]. Today there is

a growing body of scientific research indicating that these substances, in particular natural

estrogens (estrone (E1), 17β-estradiol (E2) and estriol (E3)), may interfere with the normal

function of the endocrine system of humans and wildlife by: (i) mimicking and/or antago-

nising the effect of endogenous hormones; (ii) disrupting the synthesis and metabolism of

endogenous hormones and hormone receptors, resulting in various reproductive and devel-

opmental abnormalities and disorders [Goldman et al., 2000, Conroy et al., 2007, Caserta

et al., 2008, Caliman and Gavrilescu, 2009, Alvarez et al., 2013]

Furthermore, since estrogens are excreted by all humans and animals, they can enter the



CHAPTER 7. BIOAUGMENTATION OF SLOW SAND FILTERS 180

environment via several routes, particularly from sewage treatment works discharge (incom-

plete removal) and agricultural runoff. It is, therefore, unsurprising that recent surveys re-

vealed broad occurrences of up to 85ng/L of E1, E2 and E3 in surface waters in the U.S.A.,

Pan-European area, and Asia (Table 7.3) [Ternes et al., 1999, Kuch and Ballschmiter, 2001,

Matthiessen et al., 2006, Zhao et al., 2009, Wang et al., 2011]. Therefore, due to increasing

concerns about the adverse health effects posed by natural estrogens, the US EPA recently

added E1, E2, and E3 onto its Contaminant Candidate List 3 [U.S. Environmental Protection

Agency, 2009b]. Likewise, the European Union’s Water Framework Directive added E2 as

a “Hazardous” substance, meaning that Member States must include removal measures for

it from surface water and wastewater discharge by 2015 and meet the defined environmental

quality standards by 2021 [European Commission Scientific Committee on Health and En-

vironmental Risks, 2011].

Regardless of the potential danger posed by estrogens little research has been conducted into

their effect and impact on the biological engineered systems used to remove them. Therefore,

as reclaimed wastewater and other surface waters are likely to be needed to supplement the

existing drinking water supply, urgent research is required to determine how estrogen degra-

dation can be improved or introduced into existing biological water purification systems.

Numerous studies have been carried out to determine how to remove estrogens from wastew-

ater using highly energy-intensive processes. However, to our knowledge the ability of SSFs

to transform or remove such contaminants has never been investigated. Previous studies in

wastewater treatment systems have shown that EDC removal can be enhanced by the intro-

duction / augmentation of specific strains of degrading bacteria into the systems (bioaug-

mentation) [Iasur-Kruh et al., 2011]. For example Hashimoto et al. [2009] and Roh and Chu

[2011] demonstrated that bioaugmentation of conventional activated sludge systems and se-

quencing batch reactors, respectively, with Novosphingobium sp. strain JEM-1 and Sphin-

gomonas strain KC8, increased estradiol removal significantly. Furthermore, bioaugmenta-

tion has been shown to be a successful approach for the removal of various contaminants

such as steroid hormones [Iasur-Kruh et al., 2011], petroleum hydrocarbons [Mishra et al.,

2001] and toluene [Kim et al., 2004] in various environments, including wastewater purifica-

tion systems [Runes et al., 2001, Lorah and Voytek, 2004, Ren et al., 2007, Hashimoto and
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Murakami, 2009, Silva et al., 2012, Yu et al., 2013]. Unlike other water treatment methods,

slow sand filtration requires little energy input (as discussed in Chapter 2). This, along with

their extremely diverse microbial community hence catabolic potential, makes them an at-

tractive candidate for bioaugmentation with EDC degraders, potentially resulting in effective

and economical EDC removal.

In Chapters 4 and 5, laboratory-scale filters were compared to full-scale SSFs using phylum-

specific qPCR primers, and both 454 and Illumina sequencing, revealing that the microbial

communities underpinning SSFs are extremely complex, and phylogenetically and metabol-

ically diverse. However, from a functional perspective, determining whether removal of

emerging contaminants (e.g., estrogens) can be achieved and/or enhanced through bioaug-

mentation of the SSF microbial communities is important. Furthermore, analysis of the

functional impact of exposure to these contaminant on existing treatment systems is required,

especially as the list of contaminants included in water quality guidelines expands. There-

fore, this chapter will focus on understanding the functional effect that estrogen exposure

induces on SSFs performance, and determine whether bioaugmentation with known estro-

gen metabolisers can improve estrogen removal and overall filter performance.

Hypotheses

Hypothesis 7.1 Full-scale SSFs do contain estrogen degrading bacterial species.

Hypothesis 7.2 Bioaugmentation of SSFs with estrogen degrading bacteria will success-

fully enhance the estrogen removal capacity of SSFs.

Hypothesis 7.3 The estrogen removal capacity of the laboratory-scale SSFs augmented

with estrogen degraders will be lower than the estrogen removal capacity

of the estrogen degrading bacteria in pure culture.

7.2 Background

In this section a detailed literature review providing an overview of the sources, fate in the

environment, and techniques for monitoring natural estrogens is provided.
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Table 7.1: Daily excretion (µg) of estrogenic hormones, adapted from Ying et al. [2002]

Category E1 E2 E3 EE2

Males 3.9 1.6 1.5 -

Menopausal females 4 2.3 1 -

Menstruating females 8 3.5 4.8 -

Pregnant women 600 259 6000 -

Women using oral contraceptives - - - 35

7.2.1 Natural Estrogens

Naturally occurring estrogens (estrone (E1), 17β-estradiol (E2) and estriol (E3)) are predom-

inantly female hormones, which are important for maintaining healthy reproductive tissues,

breasts, skin and brains and are released daily in urine and faeces in varying amounts (Table

7.1). Natural estrogens are collectively known as steroid hormones, a group of biologi-

cally active compounds that are synthesised from cholesterol and possess a cyclopentan-o-

perhydrophenanthrene ring [Ying et al., 2002]. Each carbon in this fused-ring structure is

assigned a number identifier, and each ring, a letter (Figure 7.1), the natural estrogens differ

only in the number of hydroxyl groups they possess (Table 7.2). In humans and animals,

estrogens undergo various transformations mainly in the liver, where they are frequently ox-

idised, hydroxylated, deoxylated and methylated prior to final conjugation with glucuronic

acid.

Due to the physicochemical properties of E1, E2 and E3 (Table 7.2) they are considered

hydrophobic, low-volatile chemicals with varying degrees of potency (amount needed to in-

duce transcriptional activation). E2 is considered the most potent of the natural estrogens

with 1.47ng inducing estrogen receptor transcriptional activation in humans, although this

Figure 7.1: Basic estrogen molecule. All natural estrogen molecules have 18 carbon atoms and differ

only in the number of hydroxyl groups.
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Table 7.2: Physiochemical properties of natural estrogens, adapted from Silva et al. [2012]

Estrogen MW1 pKa log KOW
2 EC50

3 REA4 Structure

Estrone (E1) 270.4 10.3 - 10.8 3.43 122ng 0.20

17β-estradiol (E2) 272.4 10.5 - 10.7 3.94 1.47ng 1

Estriol (E3) 288.4 10.4 2.81 10.3ng 0.01
1Molecular Weight; 2Octanol / water partition coefficient; 3half maximal effective concentration required to

induce fish endocrine receptor gene transcription, adapted from Alvarez et al. [2013]; 4Relative (to E2)

Estrogenic Activity based on the Yeast Estrogen Screen [Conroy et al., 2007]

is considerably lower than that of the other estrogens [Alvarez et al., 2013]. It is impor-

tant to recognise that E1 and E2 can be readily converted to each another and E1 can be

further converted into E3, with many other polar metabolites, such as 16-hydroxy-estrone,

16-ketoestrone or 16-epiestriol being formed and excreted with varying levels of potency.

7.2.2 Estrogen in the Environment

In aquatic ecosystems, the major sources of estrogens are considered to be from discharge

after incomplete treatment removal from wastewater treatment plants (WWTs) [Silva et al.,

2012]; and agricultural runoff [Falconer et al., 2006] (in particular from concentrated animal

feeding operations) as steroid hormones are frequently used to control the reproductive sys-

tems of livestock [Ying et al., 2002] (Figure 7.2). Therefore, the increase in intensive farming

and incomplete removal by WWTs has led to reports of estrogenic steroids being found in

surface water, ground water and drinking water in the low ng/L range (Table 7.3) [Shore

et al., 1995, Ternes et al., 1999, Kuch and Ballschmiter, 2001, Ying et al., 2002, Quintana

et al., 2004, Langston et al., 2005, Zhao et al., 2009].

The occurrence of endocrine-disrupting chemicals (EDCs) in the environment is a grow-

ing issue for human and wildlife development and reproduction [Shore et al., 1995, Bel-

froid et al., 1999, Ternes et al., 1999, Jobling et al., 2006, Zhou et al., 2010]. In particular,

EDCs alongside synthetic xeno-estrogens, such as 17β-ethynylestradiol (EE2), bisphenol A,
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4-nonylphenol, 4-tert-octylphenol and the more potent natural estrogens (E1, E2 and E3)

[Ternes et al., 1999, Langston et al., 2005, Zhou et al., 2010] have been shown to be the main

causative agents for the feminisation of fish, and reproductive and developmental abnormal-

ities, and disorders, in wildlife and plants at pg/L concentrations [Shore et al., 1995, Ternes

et al., 1999, Jobling et al., 2006, Zhou et al., 2010]. Further, in humans they have been linked

to decreasing sperm counts and increasing incidents of testicular cancer and other male in-

fertility disorders [Ternes et al., 1999]. Despite the range of studies that have examined the

effects of estrogens on fish, other aquatic organisms and to a lesser extent, humans [Cald-

well et al., 2010], no study to date has examined the impact of estrogen exposure on the

performance and microbial community of biological engineered water treatment systems.

7.2.3 Degradation and Removal of Estrogen

Estrogens in water can been removed using physiochemical treatment processes, such as

membrane separation [Cartinella et al., 2006, Xue et al., 2010], advanced oxidation [Liu

et al., 2009, Stalter et al., 2011, Silva et al., 2012] and granular activated carbon [Le Noir

et al., 2007, Stalter et al., 2011], with varying levels of removal success (19-92%) [Iasur-

Kruh et al., 2011]. However, from the numerous studies undertaken to investigate the fate

and transport of estrogens in the natural environment [Yu et al., 2013], biodegradation has

been shown to be the primary removal mechanism. Collectively these studies have shown

that both an increased hydraulic retention time and the presence of estrogen-degrading bac-

teria are necessary for optimal removal [Roh and Chu, 2011].
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Figure 7.2: Routes by which estogenic hormones enter the environment
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Table 7.3: Maximum and minimum concentration of natural estrogens found in surface waters and

sewage treatment plant effluents from around the world.

Location Sample type E1 (ng/L) E2 (ng/L) E3 (ng/L) Reference

China Pearl and Liao River 0-78.7 0.9-7.7 NM [Zhao et al., 2009, Wang et al., 2011]

Germany River water (31 samples) 0.1-18 0.15-5.2 NM [Kuch and Ballschmiter, 2001]

Japan Tama River 0.01-85.6 0.01-12.3 NM [Wang et al., 2011]

Netherlands Coastal/Estuarine water (11 samples) 0.1-3.4 0.3-5.5 0.1-4.3 [Ying et al., 2002]

UK River water (28 sites) 0.07-3.33 0-0.9 0-1.2 [Xiao et al., 2001]

USA River water (139 sites) <5-112 <5-93 <5-51 [Kolpin et al., 2002]

USA Mississippi River 0.02-4.7 0.02-4.5 NM [Zhang et al., 2007]

USA Drinking water (10 samples) 0.03-0.1 0.01-0.02 0.01-0.02 [Wise et al., 2011]

Taiwan Wulo Creek - downstream of CAFO1 (54 samples) 7.4-1267 9.3-313.6 0-210 Chen et al. [2010]

UK River downstream of farm runoff (25 samples) 1.46-9.31 0.69-3.62 NM [Matthiessen et al., 2006]

UK Poultry litter runoff 32.5-3500 NM NM [Langston et al., 2005]

USA 8 CAFO1 (swine lagoon) 1100-17400 194-3900 47-6290 [Hutchins et al., 2007]

USA 8 CAFO1 (cattle runoff) 20-102 8-200 ND [Hutchins et al., 2007]

Canada Effluent from STW2 2.5-82.1 0.44-3.3 0.43-18 [Baronti et al., 2000]

Germany Effluent from STW2 1-70 <1-3 NM [Ternes et al., 1999]

Germany 15 Rivers subjected to STW2 discharge <0.1-1.6 NM NM [Ternes et al., 1999]

Spain Effluent from STW2 <0.2-1.8 ND NM [Kuster et al., 2008]

Spain Llobregat River subjected to STW2 discharge 0.7-1 ND NM [Kuster et al., 2008]

UK Effluent from 3 STW2 <0.4-12.2 <0.4-4.3 NM [Williams et al., 2003]

UK River subjected to STW2 discharge <0.4-2.5 <0.4-2.3 NM [Williams et al., 2003]

NM: Not Measured; ND: Not Detected; 1Concentrated Animal Feeding Operation; 2Sewage Treatment Works

The ability of bacteria to degrade aromatics as their sole carbon source was first demon-

strated in 1908 by Stromer, who isolated Bacillus hexacarbovorum, which grew on toluene

and xylene. This discovery fuelled research into isolating other microorganisms capable

of degrading other aromatic compounds, such as estrogens. Biodegradation is a “process

by which microbial organisms transform or alter (through metabolic or enzymatic action)

the structure of chemicals introduced into the environment” [U.S. Environmental Protection

Agency, 2009c]. Since the pioneering work of Stromer there has been extensive research into

the biodegradation of estrogens in activated sludge treatment, membrane bioreactors, fixed

bed reactors and fluidized bed reactors [Ternes et al., 1999, Ren et al., 2007, Hashimoto and

Murakami, 2009, Silva et al., 2012]. Although biological estrogen removal has not been in-

vestigated in the context of drinking water treatment, studies monitoring the performance of

wastewater treatment systems have shown varying degrees of both natural and synthetic es-

trogen removal. However, these systems either require energy (electricity) or chemical input

to facilitate removal and hence are extremely costly. The need for cheaper water purifica-

tion has led to recent studies, in which existing systems have been bioaugmented with EDC
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degrading microbes (Rhodococcus zopfii, Pseudomonas aeruginosa, Sphingobacterium sp.

JCR5, Phyllobacterium myrsinacearum, Sphingomonas KC8) with varying levels of success

[Pauwels et al., 2008, Hu et al., 2011, Silva et al., 2012].

Microorganisms can degrade steroid hormones using two possible degradation mechanisms:

growth-linked (metabolic) and non-growth-linked (co-metabolic) [Yu et al., 2007]. Growth-

linked degradation utilises the steroid hormones as the energy / carbon source, whereas dur-

ing co-metabolism the steroid hormone is degraded by an enzyme or co-factor produced

during metabolism of another carbon source (e.g. glucose) [Madigan et al., 2011]. As co-

metabolic degradation yields no carbon or energy benefits to the degradative microorgan-

isms, a primary growth substrate is needed for sustainable bacterial growth and is required to

induce the expression of degradative enzymes. Previous studies have shown that E2 can be

co-metabolically degraded by heterotrophic bacteria [Yu et al., 2007, Pauwels et al., 2008]

with increased removal being observed during the presence of non-specific monooxygenases,

such as ammonia monooxygenase [Shi et al., 2004, Yu et al., 2013]. Generally, details per-

taining to the exact pathways and enzymes involved in estrogen degradation are limited,

however some of the identified enzymes are shown in Figure 7.3. In general, the first stages

of estrogen degradation can be divided into four groups: hydroxylation of the A ring at C4,

hydroxylation of the saturated ring, dehydration of the D ring at C17 and dehydrogenation

of the D ring at C17 [Overbeek et al., 2005, Hu et al., 2011, Garcı́a-Gómez et al., 2012,

Lloret et al., 2012, Yu et al., 2013]. Additionally, many microbes known to survive in high

steroid hormone environments possess several multidrug efflux pumps (e.g. AcrAB-TolC

and EmrAB-TolC) of which steroids are the substrate [Elkins and Mullis, 2006, Garcı́a-

Gómez et al., 2012].

7.2.4 Analysing and Measuring Estrogens in Environmental Samples

Accurately detecting estrogens in environmental samples is challenging due to the low con-

centration at which they are commonly found. Therefore several analytical methods such as,

gas chromatography / mass spectrometry (GC/MS); GC/MS/MS; high performance liquid

chromatography (HPLC); and liquid chromatography (LC-MS/MS) have been developed to

detect and quantify estrogens [Liu et al., 2011] to the low and sub-nanogram-per-litre scale

[Briciu et al., 2009]. However, these methods on their own are often insufficiently sensitive
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EC Number Name Reference for Involvement with Estrogens
1.1.1.50 Hydroxysteroid dehydrogenase Hu et al.,  (2011)
1.1.1.51 3(or 17)Beta-hydroxysteroid dehydrogenase Hu et al.,  (2011)
1.1.1.53 3Alpha(or 20beta)-hydroxysteroid Overbeek et al., (2005)
1.1.1.62 17-Beta-estradiol dehydrogenase Overbeek et al., (2005)
1.1.1.145 Delta5-3-beta-hydroxysteroid dehydrogenase Overbeek et al., (2005)
1.1.1.147 16-Alpha-hydroxysteroid dehydrogenae Hu et al.,  (2011)
1.1.1.148 Estradiol 17alpha-dehydrogenase Overbeek et al., (2005)
1.1.1.149 20-Alpha-hydroxysteroid dehydrogenae Hu et al.,  (2011)
1.1.1.150 21-hydroxysteroid dehydrogenae Hu et al.,  (2011)
1.1.1.159 7Alpha-hydroxysteroid dehydrogenae Overbeek et al., (2005)
1.1.1.201 7Beta-hydroxysteroid dehydrogenae Hu et al.,  (2011)
1.1.1.209 3Alpha-hydroxysteroid dehydrogenae Overbeek et al., (2005)
1.1.1.210 3Beta-hydroxysteroid dehydrogenae Hu et al.,  (2011)
1.1.1.239 3Alpha(17beta)-hydroxysteroid dehydrogenase Hu et al.,  (2011)
1.1.1.357 3Alpha-hydroxysteroid 3-dehydrogenase Garcia-Gomez et al., (2013)
1.3.99.4  3-ketosteroid-delta1-dehydrogenase Hu et al.,  (2011) and Sang et al., (2011)
1.13.11.2 Catechol 2,3-dioxygenase Hu et al.,  (2011)
1.14.14.1 Xenobiotic monooxygenase Overbeek et al., (2005)
1.14.14.14 Aromatase Overbeek et al., (2005)
1.14.99.11 Estradiol 6beta-hydroxylase Overbeek et al., (2005)

2.1.1.6 Catechol O-methyltransferase Overbeek et al., (2005)
2.4.1.17 Estradiol glucuronosyltransferase Overbeek et al., (2005)
2.8.2.15 Steroid sulfotransferase Overbeek et al., (2005)
2.8.2.4 Estrone sulfotransferase Overbeek et al., (2005)
3.1.1.1 Carboxylesterase Sang et al., (2011)
3.1.6.1 Arylsulfatase Overbeek et al., (2005)
5.1.99.2 16-hydroxysteroid epimerase Overbeek et al., (2005)

1.14.99.39 Ammonium monoxygenase1 Shi et al., (2004)
1.10.3.2 Laccase2 Eibes et al., (2012)

NA AcrAB-TolC Multi drug efflux pump3 Garcia-Gomez et al., (2013)
NA EmrAB-TolC Multi drug efflux pump4 Elkins and Mullis, (2006)

Figure 7.3: Estrogen metabolism pathways, adapted from the KEGG estrogen metabolism pathway,

blue text represent the EC number of the enzymes involved. The bottom four features of the list cannot

be found in the pathway diagram, however have been shown to be important for estrogen metabolism

or for survival in high estrogen concentrated environments: 1 and 2 have been shown to improve the

rate of estrogen metabolism, 3 and 4 are multidrug efflux pumps which have been shown to provide

resistance to steroid hormones.
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and, thus, pre-concentration and purification steps, such as solid phase extraction (SPE) are

required.

GC/MS has been widely used for the analysis of natural estrogens and other EDCs in urine,

meat and environmental samples [Shore et al., 1995, Kuch and Ballschmiter, 2001, Quin-

tana et al., 2004, Liu et al., 2011], although it has lost popularity in recent years to LC-MS,

which has greater accuracy at the lower limits of detection [Nováková and Vlčková, 2009].

Gas chromatography mass spectrometry is an instrumental technique, comprising a gas chro-

matograph (GC) coupled to a mass spectrometer (MS). GC/MS allows complex mixtures of

chemicals to be separated (due to differences in molecular weight and boiling point), iden-

tified and quantified (due to specific ion fingerprints, generated from ionisation). It should,

however, be noted that for a compound to be analysed by GC/MS it must be sufficiently

volatile and thermally stable. Therefore, in order to make the low volatile estrogens more

compatible with GC/MS (improved stability; improved chromatographic separation; and the

production of more favourable diagnostic fragmentation patterns) derivatisation is necessary

[Shareef et al., 2006, Briciu et al., 2009].

N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA), N-methyl-N-(trinethylsilyl) trifluoroac-

etamide (MSTFA) and N-(tert-butyldimethylsilyl)-N-methyl trifluoroacetamide (MTBSTFA)

are the most commonly used derivatisation reagents for estrogens [Quintana et al., 2004].

These agents all derivatise via silylation, which is the most common form of derivatisation.

Silylation is the process by which the active proton in organic compounds containing active

hydrogen atoms (e.g. -OH, -NH, -NH2, -SH, -COOH) are displaced by the silyl group.

7.3 Materials and Methods

7.3.1 Enrichment of Estrogen Metabolising Bacteria

In order to optimise the survival and success of bioaugmentation with estrogen degrading

bacteria, hence estrogen removal in SSFs, it was decided that the best approach was to aug-

ment with bacteria which originate from full-scale SSFs. Therefore, in order to isolate such

bacterial strains a traditional enrichment based isolation procedure was chosen.
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7.3.1.1 Minimal Medium Composition

To obtain pure cultures of estrogen-metabolising bacteria from SSFs, an enrichment culture

procedure was adopted. This entailed using a minimal medium (Table 7.4) adapted from

Bold’s basal medium [Shelton and Tiedje, 1984]. After medium preparation, 100µg/L of ei-

ther E1, E2 or E3 and 0.01g/L ammonium chloride were dissolved in autoclaved 1L bottles

of the minimal medium as the sole carbon and nitrogen sources. In addition, trace elements

and vitamin stocks were added to the medium, which was then adjusted to a pH of 7.5. Pre-

pared medium was aliquoted (9ml) into 20ml vials and inoculated with 1g of sand taken from

the full-scale SSFs described in Chapter 4. Each enrichment culture was set up in complete

darkness at both room temperature and 4◦C. Every three weeks over a year, 1ml of each

culture was subcultured into fresh medium following the enrichment procedure described by

Madigan et al. [2011]. Enrichments were routinely Gram stained to check for purity.

7.3.1.2 Isolation of Estrogen Metabolising Bacteria

After a year of subculturing, the final vial of each enriched culture condition were used as

a source for the isolation of E1, E2 or E3 degrading isolates. One millilitre of these was

used to streak on minimal media agar (1.5%) plates composed of the same components as

described in Table 7.4. The plates were incubated at the temperature that the original culture

was enriched from (room temperature or 4◦C) in total darkness for seven days. This was

repeated twice, after which morphologically distinct colonies were selected from the room

temperature and 4◦C, E1, E2 and E3 cultures. The six isolated strains were named, E1-rm,

Table 7.4: Chemical composition of minimal medium. Bold font denotes ingredient added after prepa-

ration. Adapted from Shelton and Tiedje [1984]

Component Amount in stock

MgSO4.7H2O 100mg/L dH2O

K2HPO4 0.35g/L dH2O

KH2PO4 0.27g/L dH2O

MgCl2 100mg/L dH2O

CaCl2.2H2O 75mg/L dH2O

FeSO4.7H2O 14mg/L dH2O

MnCl4.4H2O 0.05mg/L dH2O

NaHCO3 1.2g/L dH2O
Nitrogen concentrations based on those used by Suneethi and Joseph [2010]
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E2-rm, E3-rm, E1-4◦C, E2-4◦C and E3-4◦C based on the estrogen they degrade, and the

temperature they were isolated from, respectively. These six isolates were grown overnight

in liquid medium and used to prepare cryogenically (80◦C) preserved stocks of the strains

(15% of glycerol (v/v)).

7.3.1.3 Phylogenetic Identification of Enriched Isolates

The DNA of the six enriched isolates (E1-rm, E2-rm, E3-rm, E1-4◦C, E2-4◦C and E3-4◦C )

were obtained using FastDNA Spin Kit for soil (MP Biomedcal, Cambridge, UK) according

to manufacturers’ instructions. The 16S rRNA gene fragments were obtained by amplifying

the 16S rRNA gene with the following reaction mix: 200 ng DNA, 25 µl Bioline PCR mix

and 12.5 pmol of both the forward, 27F (5’-GAGTTTGATCCTGGCTCAG-3’) and reverse primer

1392R (5’-ACGGGCGGTGTGTRC-3’) in a Gene Pro thermal cycler (Bioer Technology, UK).

PCR amplification was carried out under the conditions described by McHugh et al. [2004].

DNA sequencing of the PCR fragments was carried out by Source Bioscience, LifeSciences

(Nottingham). After chimera checking, taxonomic classifications were assigned using the

RDP classifier [Cole et al., 2009] using an 80% confidence threshold.

7.3.1.4 Whole-Genome Assembly and Annotation

Total genomic DNA from the pure cultures of the three room temperature estrogen metabolis-

ing enrichment cultures (E1-rm, E2-rm and E3-rm) were used to make Illumina metagenomic

library preparations. Illumina libraries were prepared using the Nextera Standard kits (Illu-

mina), following the same methodology discussed in Section 6.2.6, with the exception that

25µL (2ng/µL) of extracted DNA were tagmented. Sequenced reads for each sample were

trimmed to remove adaptors and quality filtered (using their Phred score,≤ 25 are removed).

Trimmed and quality checked paired end sequences were then used for de novo assembly

using the program Velvet [Zerbino and Birney, 2008]. Velvet works by converting reads into

k-mers using a hash table and then assembling overlapping k-mers into contigs (velvetOp-

timiser was used to choose the optimal parameters for assembly)1. Genome assembly was

then performed by running the newly generated contigs through the Rapid Annotation us-

ing Subsystem Technology (RAST) program [Aziz et al., 2008] against suitable reference

genomes (based upon their 16S rRNA characterisation (Section 7.3.1.3)).

1These stages were conducted by Dr. Umer Ijaz, University of Glasgow
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Figure 7.4: Chemical structure of the flourescently tagged estrogens, produced via “click” chemistry

using an alkyne linker between the estrogen (A:Estone, B: Estradiol and C: Estriol) and the BODIPY-

FL fluorophore (Life technologies, UK), produced by Dr. Alan Sewell, University of Glasgow.

7.3.2 Growth Kinetics of Estrogen Metabolisers

The three room-temperature estrogen enrichment cultures were grown in 250 ml minimal

medium (Section 7.3.1.1) with either: 5 µg/L estrone, 3.9 µg/L estriol or 1.2 µg/L estradiol

as their sole carbon source for 168 h at 18◦C in darkness. E1, E2 and E3 concentrations were

measured following the timeframe used in previous E2 bacterial-degrading studies [Pauwels

et al., 2008] (0, 2.5, 5, 12, 24, 48, 72, 96, 120 and 168h) by collecting 10ml from each

culture. This 10ml sample was filtered (0.45 µm cellulose filter) and then used for solid

phase extraction, followed by GC/MS quantification (Section 7.3.3). Similarly the same pro-

cedure was repeated using the more environmentally relevant concentration of 500ng/L for

each of the estrogens, as performed by Pauwels et al. [2008]. In addition to this, in order

to visually detect estrogen metabolism, fluorescently labelled E1, E2 and E3 (Figure 7.4) at

the same concentrations as mentioned above, were also cultured with the enriched isolates.

All cultures were grown in triplicate, alongside negative (sterile media) and positive controls

(two known E1 and E2 metabolsing Acinetobacter and Pseudomonas strains obtained from

Pauwels et al. [2008]).

To determine biomass growth, and uptake of the fluorescent estrogens, the OD600nm was

measured alongside fluorescence microscopy. Epifluorescence microscopy was performed

following an adaptation of the procedure used by Bomo et al. [2004]. Briefly, 1ml of the ex-

perimental cultures were filtered through a 0.1µm Anodisc 25-mm membrane filter (What-
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man, Maidstone, UK) with a slight vacuum (20 kPa). The Anodisc membrane was filtered

to dryness, placed on a microscope slide and mounted in Vectashield (Vector Laboratories,

UK). Digital images of green fluorescent bacteria on the membrane were captured using an

inverted optical microscope (Inverted Olympus IX71) at 100x magnification.

7.3.3 Quantifying Estrogen Via GC/MS

GC/MS analysis of natural estrogens was performed following an adapted procedure of that

used by Quintana et al. [2004]. Briefly, 10 ml of filtered medium from the growth kinetic

cultures were forced through a 60mg HLB Oasis SPE cartridge (Waters, UK) (approximately

at 15-20 ml/min) that had been sequentially pre-conditioned with 3ml ethyl acetate and 3ml

Milli-Q water adjusted to the same pH as the sample. After finishing the concentration step,

cartridges were dried under a stream of nitrogen for 30 min and eluted with 1ml of ethyl

acetate. Prior to GC/MS analysis the resulting analytes were further concentrated by evapo-

rating to dryness under a constant nitrogen stream and resuspended in 100µl of ethyl acetate,

which were derivatised with 200µl of MSTFA (Fisher Scientific, UK) at 85◦C for 100min.

Derivatised samples were analysed using GC (Agilent 7890A) system equipped with a HP-

5MS capillary column (30m × 0.25mm × 0.25µm) coupled to a single quadrupole (Agilent

3157 5975c Inert XL EI/CI MSD) run in splitless full scan mode (mass range 50-500mz).

Compounds were separated using the following oven program: 1min at 50◦C, first ramp at

10◦C/min to 220◦C, second ramp at 5◦C/min to 280◦C (held for 10min). The GC/MS in-

terface temperature was set to 250◦C. Quantification of each of the estrogens including the

fluorescently tagged versions was achieved using MSD ChemStation (Agilent, UK) using

single ion extracts (estrone = 342 m/z, estradiol = 416 m/z and estriol = 504 m/z). All

GC/MS runs were performed in triplicate alongside six standards, negative controls and

blanks. Calibration curves were built by plotting the ratio of analyte peak area versus the

analyte concentration.

7.3.4 Slow Sand Filter Operation and Sampling

SSFs were operated as previously described in Section 5.2 with the exception that half (four)

of the filters were bioaugmented (Section 7.3.5) with the three enriched estrogen metabolis-

ers (E1-rm, E2-rm and E3-rm). All water quality analyses, as described in previous chapters,
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were done weekly. Additionally, every week the influent and effluent from all eight filters

were analysed for E1, E2 and E3 concentration using the GC/MS method documented in

Section 7.3.3 with the only alteration being that 1L samples were filtered.

As in previous chapters, sand samples were retrieved weekly from every sampling port to as-

sess microbial community structure using qPCR. Further, in order to monitor the abundance

of the three enriched organisms, custom qPCR primers and assays were designed (Section

7.3.6). To assess the SSFs effectiveness in removing high concentrations of estrogens, filters

were spiked with E1 (50ng/L), E2 (12ng/L) and E3 (39ng/L) at weeks 5 and 8, effluent sam-

ples from all filters were collected 12h post spiking to ensure complete passage of the water

through the filters. Concentrations were chosen based on averages from Fine et al. [2003]

and Chen et al. [2010] and simulate agricultural or wastewater pollution events.

7.3.5 Bioaugmentation of SSFs with Estrogen Metabolising Bacteria

Bioaugmentation of the SSFs was achieved following the method outlined by Kim et al.

[2004]. Briefly, at the beginning of the study 20ml (1 × 108cfu/ml [OD600nm of 0.6]) of

each of the three room temperature estrogen enrichments (E1-rm, E2-rm and E3-rm) grown

to exponential phase were added to the top of the filter-bed of four LSSF every day for four

days, equating to 5 hydraulic retention times. After which normal filter operation resumed

as described in Section 5.2.

7.3.6 qPCR of Estrogen Metabolising Enrichment Cultures

To accurately quantify the abundance of the three enriched estrogen metabolisers specific

qPCR primers, targeting the 16S rRNA gene sequence of each organism were designed.

Based on the constructed consensus 16S rRNA sequences obtained from the Sanger sequenc-

ing (Section 7.3.1.3) primers were designed using CODEHOP [Rose et al., 2003] and tested

for their uniqueness using the Silva TestPrime database [Klindworth et al., 2013]. Primer in-

formation can be found in Table 7.5. qPCR assays were conducted in triplicate as previously

described (Section 4.2.6) alongside two no-template controls, negative controls (E.coli) and

six different concentrations of linearised 16S rRNA from each of the enriched isolates.
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Table 7.5: qPCR primers used for the enriched and isolated estrogen metabolising bacteria

Primer Target Sequence (5’-3’) Paired Primers Anneal. Temp. (◦C) Amplicon Size (bp)

6-8-RT-F E1 metaboliser ACAGAGGGATAGCCCAGAGA 6RT-R and 8-RT-R 52 205

6RT-R E1 metaboliser TAATAGTGGCTTCATGCGAA 6-8-RT-F 52 205

7-RT-F E2 metaboliser TTTAAAGGGTGCGTAGGTGG 7-RT-R 54.3 257

7-RT-R E2 metaboliser GTCCTCATCGTTTACGGCAT 7-RT-F 54.3 257

8-RT-R E3 metaboliser TAATATAATCCTGATGCCAG 6-8-RT-F 52.3 127

7.3.7 Statistics

Significant differences in the microbial composition as determined by qPCR analysis be-

tween bioaugmented and non-augmented filters, age, and depth were identified by using per-

mutational multivariate analysis of variance tests [Anderson, 2001]. Significant differences

in water quality production and estrogen removal efficiencies between bioaugmented and

non-augmented SSFs were tested using Wilcoxon tests. Estrogen removal efficiencies were

calculated relative to the influent water supplying the filters and total estrogenic potency was

determined using equation 7.1, where REA represents the relative estrogenic activity (Table

7.2). Coliform retention (number of coliforms not removed) was calculated as a ratio (efflu-

ent coliform counts / influent coliform counts), where higher number correspond to greater

retention / low removal.

Estrogenic potency =
E1 Concentration∑

E1, E2 and E3 concentration
× REA of E1 (0.2)

+
E2 Concentration∑

E1, E2 and E3 concentration
× REA of E2 (1.0)

+
E3 Concentration∑

E1, E2 and E3 concentration
× REA of E3 (0.01)

(7.1)

7.4 Results

In this section the results of the study will be presented alongside discursive analysis, with

an overall discussion being provided in Section 7.5.
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7.4.1 Characterisation of Enrichment Cultures

Six estrogen-degrading bacteria, designated as, E1-rm, E2-rm, E3-rm, E1-4◦C, E2-4◦C and

E3-4◦C, were successfully isolated from the estrogen enrichment cultures. The analysis of

the near full-length (1300bp) 16S rRNA genes of the isolates revealed they were phyloge-

netically distinct (Table 7.6), belonging to either the Proteobacteria or Bacteriodetes phyla,

with a clear temperature effect also apparent. All room temperature strains were highly sim-

ilar to three previously identified steroid-degrading bacterial species and represent the two

most widely known steroid-degrading bacterial genera - Acidovorax and Pseudomonas.

7.4.2 Whole-Genome Metagenomic Analysis

The final assembly of the E1, E2 and E3 metabolising room temperature enrichment culture

genomes (Figure 7.5), consisted of 123, 837 and 607 contigs with total lengths of 5,200,896

bp, 4,809,037 bp and 4,985,812 bp, respectively.

7.4.2.1 Estrone-Metaboliser

The estrone (E1) enrichment isolate (E1-rm) genome contained a single circular chromosome

with an average GC content of 61.9% and shared a 93% sequence homology to Acidovorax

sp. strain KKS102. E1-rm possessed 3961 bp more than the KKS102 strain [Ohtsubo et al.,

2012], potentially relating to estrogen metabolism. Additionally, searches within the genome

revealed twelve known estrogen metabolism and degradation enzymes alongside five known

steroid-removing efflux pumps (Figure 7.5). All the identified enzymes are involved with

the metabolic breakdown of estrone to either estradiol, 16-α-hydroxyestrone or estrone-3-

sulphate (Figure 7.5).

7.4.2.2 Estradiol-Metaboliser

The estradiol (E2) enrichment isolate (E2-rm) genome contained a single chromosome with

an average GC content of 60.57% and shared closest sequence homology (90%) to Pseu-

domonas sp. strain UW4. UW4 is a plant growth-promoting bacteria found in rhizospheres

of reeds and is known for its extreme environmental stress resistance. Unlike the UW4

strain, E2-rm was 1,374,351 bp smaller [Duan et al., 2013]. In addition, searches within the

genome revealed the possession of 21 known estrogen metabolism and degradation enzymes,
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alongside steroid-removing efflux pumps (Figure 7.5). Analysis of the possessed enzymes

reveals that estradiol metabolism / degradation appears to occur by conversion to estrone

and then subsequent estrone metabolism (Figure 7.5). Additionally, and unlike the other two

estrogen metabolising enrichment isolates, the estradiol degrader possesses an ammonium

monoxygenase enzyme which has been linked to increased estrogen degradation [Shi et al.,

2004].

7.4.2.3 Estriol-Metaboliser

The estriol enrichment isolate (E3-rm) genome contained a single chromosome with an av-

erage GC content of 56.05% and shared closest sequence homology (90%) to Pseudomonas

fluorescenes strain Pf0-1. Pf0-1 like the UW4 strain is a plant growth-promoting bacteria and

is commonly found in soil. Unlike the Pf0-1 strain, E3-rm possesses 1,452,593 bp less [Silby

et al., 2009], however has seven estrogen metabolism enzymes. Interestingly, these enzymes

are associated with the breakdown of estradiol to estrone and not estriol. No known enzymes

involved with estriol metabolism or degradation were found within the genome (Figure 7.5).

7.4.3 Growth Kinetics of the Estrogen Degrading Isolates

Growth experiments with the three isolated estrogen degraders with two different concen-

trations of fluorescently-tagged E1, E2 and E3 (Figure 7.6) indicated the impact of both the

carbon concentration and the fluorophore on the growth of the isolates. Overall, referring to

the non-tagged cultures, the E3-degrader was the quickest growing strain (23.75h) and the

E1-degrader the slowest (36.23h). These results are reliable as the growth rates of the two

positive control organisms are consistent with the findings of Pauwels et al. [2008] (Figure

7.6).

Surprisingly, unlike the other two strains the E1-degrading isolate grown in the presence of

the fluorescently tagged E1 had a doubling time six hours faster than its non-tagged control.

This could potentially be due to a 3D conformational change of the tagged estrone making

the active sites of degradation enzymes more accessible. However, the E2 and E3 degrading

isolates grew slower in the presence of fluorescently tagged estrogen (Figure 7.6B, C and

E), implying an inhibitory effect of the fluorophore. Further, comparing the two isolates,

the E2-degrading isolate was much more severely affected by the fluorophore (increase of
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FEATURE COLOUR 

Forward CDS 

Reverse CDS 

Enzymes associated with Estrogen 
metabolism / degradation 

Efflux pumps associated with 
Estrogens 

Above average GC content 

Below average GC content 

E1 

E2 E3 

E1 METABOLISER E2 METABOLISER E3 METABOLISER
3Alpha(or 20beta)-hydroxysteroid 1.1.1.53 3 2 0

7Alpha-hydroxysteroid dehydrogenase 1.1.1.159 1 3 0
3Alpha-hydroxysteroid dehydrogenase 1.1.1.209 1 0 0
 3-ketosteroid-delta1-dehydrogenase 1.3.99.4 0 5 1

Catechol 2,3-dioxygenase 1.13.11.2 0 4 0
Carboxylesterase 3.1.1.1 5 6 6

Arylsulfatase 3.1.6.1 2 0 0
Steroid sulfotransferase 2.8.2.15 0 1 0

Ammonium monoxygenase 1.14.99.39 0 1 0
AcrAB-TolC Multi drug efflux pump NA 2 4 2
EmrAB-TolC Multi drug efflux pump NA 3 4 3

ENZYME / FEATURE EC NUMBER
NUMBER OF CDS REGIONS

Figure 7.5: Annotated genomes of the three estrogen metabolising isolates, alongside the number

and identity of known enzymes or genes involved with estrogen metabolism and their location in the

metabolic pathway. Green rings correspond to enzymes possessed by E1-rm, red rings to E2-rm and

orange to E3-rm. Genome annotation diagrams were created using DNAPlotter [Carver et al., 2009].
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E) Culture Identity Estrogen Culture Condition Growth Rate -k (gen/hr) Generation Time -tgen (h)
Acidovorax sp. E1 control1 5µg/L 0.0276 36.23
Acidovorax sp. E1 5µg/L 0.0324 30.86
Acidovorax sp. E1 500ng/L 0.0251 39.84

Pseudomonas sp. UW4 E2 control1 1.2µg/L 0.0354 28.25
Pseudomonas sp. UW4 E2 1.2µg/L 0.0262 38.17
Pseudomonas sp. UW4 E2 500ng/L 0.0201 49.75

Pseudomonas fluorescenes E3 control1 3.9µg/L 0.0421 23.75
Pseudomonas fluorescenes E3 3.9µg/L 0.0387 25.84
Pseudomonas fluorescenes E3 500ng/L 0.0399 25.06

Pseudomonas sp. E1 0.0328 30.48
Acinetobacter sp. E2 0.0379 26.38

Previously characterised E1 and E2 metabolisers (Pauwels et al., 2008)

1non fluorescently tagged estrogen

Figure 7.6: Growth curves of the mean and standard error for the estrone A), estradiol B) and estriol

C) degrading isolates at two concentrations of fluorescently tagged estrogen. D) shows the growth

curves of two known estrone- and estradiol-degrading bacteria [Pauwels et al., 2008]. E) shows the

growth rate and generation times for each isolate.
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Figure 7.7: Time series fluorescent microscopy images of estriol metabolising isolate. A-D: estriol

isolate at 3.2µg/L, E-H: estriol isolate at 500ng/L. Time series intervals are: 5h, 24h, 120h, 168h.

over 35% in its doubling time) than the E3-degrader which showed an increase of 8%. In

addition, the hypothesised inhibitory effect of the fluorophore to the E2 and E3-degrading

isolates was supported by morphological changes (filamentation) and an absence of fluores-

cent bacteria at the end of the experiment (Figure 7.7C and D and Figure 7.8K,L and P).

This filamentation is possibly due to stress-induced inhibition of SulA and MinCD, which

prevent bacterial division at the septum [Bi and Lutkenhaus, 1993]. Furthermore, the mat-

like biofilm formation (Figure 7.9) is additional evidence of stress, and the distinct absence

of fluorescent bacteria at the end of the study could be due to death or to the removal of the

fluorophore by efflux pumps (Figure 7.5).

7.4.4 Estrogen Degradation Capacity of Enriched Isolates

After 48h the average removal efficiencies for the six cultures grown with fluorescently

tagged estrogens ranged from: 34-86% for E1, 25-84% for E2 and 97-98% for E3. In all

cases, except for the E3 isolate, the highest removal efficiency was achieved with the higher

estrogen concentration. The removal efficiencies are in accordance with the non-tagged

controls (Figure 7.10F). The degradation profiles indicate considerably slower degradation

than described by Pauwels et al. [2008], but are consistent with those described by Yu et al.
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Figure 7.8: Time series fluorescent microscopy images of estrone and estradiol metabolising isolates.

A-D: estrone isolate at 5µg/L, E-H: estrone isolate at 500ng/L, I-L: estradiol isolate at 1.3µg/L and

M-P: estradiol isolate at 500ng/L. Time series intervals are: 5h, 24h, 120h, 168h.
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Figure 7.9: The developmental stages of the estradiol-metabolising isolate. A-D: time series of biofilm

development, (left to right: 24h, 96h, 120h and 168h), E-F: fluorescence microscopy images of a

section of the biofilm mat taken from the end of the study.

[2007], and this is likely due to the differences in bacterial taxa used.

By the end of the study all enriched isolates removed at least 63% of their estrogen source,

with the E2 isolate being the poorest degrader. Degradation in the case of the E1 and E2

isolates occurred via some conversion of the estrogen source into the other estrogens (Figure

7.10) and various metabolites (Figure 7.11). In both cases more significant estrogen conver-

sion was seen with lower (500ng/L) estrogen concentrations than with higher (5000ng/L E1

and 1300ng/L E2) concentrations. Unlike the E1 and E2-degrading isolates, the E3-degrader

at both the high and low concentration achieved 100% E3 removal after 96 and 72h respec-

tively; however, an increase in E3 was subsequently detected (Figure 7.10E). This was not

seen in the E3 non-tagged control (Figure 7.10F) and suggests a toxic effect induced by the

fluorophore.

All isolates showed complex degradation routes, with accumulation of metabolites (vari-

ous estrogen degradation products) being seen at the end of the study (Figure 7.11). Some

of these products have been identified as known estrogen degradation products (dehydro-

epiandrosterone and 17-hydroxypregneonolone) and bacterial cellular components (palmitic
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Figure 7.10: Estrogen degradation graphs: A) and B) are the estrone enriched isolate at 5000ng/L

and 500ng/L respectively, C) and D) are the estradiol enriched isolate at 1300ng/L and 500ng/L

respectively and E) is the estriol enriched isolate. F) depicts the three enriched isolates with non-

fluorescently tagged estrone (5000ng/L), estradiol (1300ng/L) and estriol (3900ng/L)
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E1 

A) 

E1 

E2 

E3 

C) 

B) 

E2 

E3 

Dehydroepiandrosterone 

Palmitic 
acid 

17-hydroxypregnenolone 

Figure 7.11: Chromatographs of the E1 metaboliser depicting estrone removal and metabolite pro-

duction. A) beginning of study, B) end of study and C) standards. Blue text: predicted metabolites.

acid and various amino acids). The presence of palmitic acid, the major fatty acid found in

membrane phospholipids [Madigan et al., 2011] alongside various amino acids (L-tyrosine

and L-lysine) may be further evidence that bacterial cell death occurred at the end of the

experiment with fluorescently tagged estrogen.

7.4.5 Effects of Bioaugmentation on SSF Functionality

Analysis of the water quality parameters and overall water quality performance (5) showed

that, as with the industrial filters (discussed in Chapter 4) and lab-scale filters (discussed in

Chapters 5 and 6), the augmented and non-augmented LSSFs studied in this chapter produce

good quality water (Table 7.7 and Table 7.8). Significant differences were found between

augmented and non-augmented LSSFs 5 (p-value: 0.042), which are solely attributed to

differences in coliform removal capabilities. Interestingly, when data pertaining to the two

spiking events is removed there were only marginal significant differences in filter perfor-

mance. Additionally, the average total estrogen concentration of the raw water - influent

(Table 7.9) supplying the filters was 23.86ng/L, more than four times greater than the previ-

ously described highest concentration found in UK rivers [Xiao et al., 2001].

Estrogen degradation capacity results indicate that augmented filters removed significantly
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Table 7.10: Average percentage removal of estrogens in augmented and non-augmented filters.

Augmented Non-augmented
Estrone 30.1 + 11.02 -130 + 23.0 * 0.00784

Estradiol 5.2 + 0.20 -90 + 37.0 * 0.02285

Estriol -69 + 19.2 -282 + 74.4 0.104

Average percentage removal by filter type
Estrogen p-value

∗Significant differences tested using Wilcoxon tests. Positive percentages correspond to removal. Negative

percentage correspond to an increase in the concentration of estrogens i.e. no removal.

more estrone and estradiol than non-augmented filters (Table 7.10). However, there was no

significant difference in estriol removal. These removal capabilities are significantly lower

than seen in the pure culture growth kinetic experiments (Section 7.4.4) and may likely be

due to the inability to form mat-like biofilms (Figure 7.9) within the SSFs due to shearing

between sand grains. Although estrogen removal was lower than predicted, bioaugmenta-

tion did significantly reduce the overall estrogenic potency (p-value: 6.889 × 10−5) of the

purified water by 26% on average, compared to no reduction in non-augmented SSFs (Table

7.11).

Irrespective of the reduced estrogen removal in SSFs, estrogen concentration was found to

negatively correlate with coliform removal in non-augmented filters (correlation = -0.34, p-

value = 0.0379) (Figure 7.12), which appears to be due to inhibition of coliform-grazing

protozoa (Figure 7.13). Referring more closely to Figure 7.13, a reduction in the number

of eukaryotes (i.e., protozoa) present during the two spiking periods of estrogen can be seen

in both augmented and non-augmented filters. However, this reduction was significantly

lower in augmented filters (55% and 53% respectively) compared to non-augmented filters

(93% and 85% respectively). This alongside the interesting finding that coliform removal

in augmented filters was less affected by estrogen concentration than non-augmented fil-

ters, implies that augmentation reduces the toxic effect of estrogen on the coliform-grazing,

protozoan community.
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7.4.6 Effect of Bioaugmentation of Filter Community

Initial exploratory NMDS and MANOVA analysis revealed that the microbial communi-

ties present in augmented and non-augmented LSSFs were significantly different (p-value:

0.003), with Gammaproteobateria, and unclassified bacteria dominating augmented LSSFs,

and Bacteriodetes and unclassified bacteria dominating non-augmented LSSFs (Figure 7.14).

The dominance of Gammaproteobacteria is unsurprising as two of the bacterial isolates used

to augment the filters belong to this taxonomy. Additionally, significant differences in the

number of 16S rRNA copies were found between augmented and non-augmented filters (p-

value: 0.0087), with augmented filters possessing on average three times more copies than

non-augmented LSSFs.

In order to determine which factors explain the differences between augmented and non-

augmented LSSFs microbial communities, MANOVA and canonical correspondence analy-

sis analysis was performed. This analysis revealed (Table 7.12) that the type of filter (aug-

mented or non-augmented) explained the biggest proportion (38%) of the difference in bac-

terial community composition, with age and the occurrence of estrogen spiking also be-

ing highly significant. Interestingly, individual filter identity and depth were not significant

variables in explaining the differences between bacterial community composition as seen in

Chapters 4 and 5.

Table 7.11: Total estrogenic potency within the influent and effluent of bioaugmented and non-

augmented SSFs

Influent Augmented Retention Non-augmented Retention 
19/03/2013 0.68 0.47 0.69 0.72 1.06
26/03/2013 0.73 0.64 0.87 0.78 1.06
02/04/2013 0.75 0.39 0.52 0.46 0.61
09/04/2013 0.46 0.37 0.82 0.33 0.72
15/04/2013 0.30 0.22 0.75 0.34 1.15
23/04/2013 0.20 0.07 0.33 0.07 0.33
30/04/2013 0.27 0.36 1.34 0.38 1.42
07/05/2013 0.26 0.35 1.36 0.54 2.08
14/05/2013 0.66 0.35 0.54 0.69 1.04
21/05/2013 0.28 0.19 0.67 0.29 1.05

AVERAGE 0.46 0.34 0.74 0.46 1.00

Total Estrogenic Potency
DATE

Potency calculated using the formula in equation 7.1.
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To determine whether bioaugmentation with the three enrichment estrogen degraders was

successful and sustainable, specifically-designed qPCR primers (Table 7.5) were used to

enumerate their presence. In bioaugmented SSFs the initial number of the E1, E2 and E3-

degraders were 38, 25 and 16 times greater than that found in the non-augmented SSFs. It is

however, important to note that non-augmented filters did possess the three enriched estrogen

degraders, which originated from the river; confirmed by qPCR assays with DNA extracted

from the influent river water. Although bioaugmentation was shown to be successful and

sustainable it is important to note that only between 0.01% and 1.3% of the initial inocula (1

× 108cfu/ml) for each isolate remained at the top depth of the SSFs by the end of the study in

augmented SSFs. This reduction is likely due to natural competition between other bacteria.

Throughout the study the three enriched isolates were present in greater abundance in the

bioaugmented filters (Figure 7.15), with greatest abundance in both types of filter being seen

during and after the two estrogen spiking periods.

7.5 Discussion

7.5.1 Estrogen-Degrading Enriched Bacterial Strains

An estrone (E1)-degrading bacterial strain (E1-rm) capable of metabolising and removing E1

and E2 was enriched and isolated from a full-scale SSF. Likewise estradiol (E2) and estriol

(E3)-degrading bacterial strains (E2-rm and E3-rm) capable of degrading only their enriched

estrogen source were isolated. This is the first study to isolate estrogen degrading bacterial

strains from a SSF. Consistent with the literature and this study, the ability to degrade estra-

diol was more widespread than the ability to degrade estrone and estriol [Yu et al., 2007,

Table 7.12: Canonical-correspondence analysis analysis of bacterial phyla and class abundances

against various parameters from augmented and non-augmented filter.
Table 3. Canonical correspondence analysis of the relative abundance of bacterial: (A) phyla and (B) OTUs with filter parameters. 

Parameter Degrees of 
Freedom 

! 2 F value Number of permutations Pr(>F) 

Age 1 0.1093 18.0847 99 0.01* 
Type 1 0.5730 94.8510 99 0.005* 

Spiked 1 0.0229 3.7903 99 0.02* 
Residual 216 0.7894       

* denotes significant variable *!!"#$%"&'&()#(*(+,#%'-,.,/"%".&0!

'
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Figure 7.15: Abundance of estrogen-degrading enriched isolates and protozoa at the top depth of: A)

augmented and B) non-augmented SSFs

Pauwels et al., 2008, Iasur-Kruh et al., 2011]. Such conversion of estradiol to either estrone,

estriol or various intimidates is extremely beneficial as E1 is five times less potent than estra-

diol [Conroy et al., 2007]. Therefore from an environmental and water quality perspective

this reduces the overall estrogenicity [Iasur-Kruh et al., 2011].

Results from the pure culture growth kinetics (Figure 7.10) and examination of the isolates’

genomes suggest that the transformation of E1 and E2 can be explained by the mechanisms

proposed by Yu et al. [2007]. For example E2 was likely degraded to a ketone following

the oxidation of the secondary alcohol on C17. The degradation of E1, which was the major

metabolite of E2 biodegradation, suggests that the conversion of E2 to secondary metabolites

might be the rate-limiting step. Furthermore, the increased E1 production during metabolism

of 500ng/L of E2 suggests a potential enzymatic negative feedback system which inhibits

E2 conversion at high concentrations of E1 (Figure 7.10C and D). These mechanisms are

supported by many field studies involving wastewater treatment [Baronti et al., 2000], in

which efficient E2 removal was achieved whereas E1 removal was not. In addition, enzyme

searches within the genomes showed that strain E2-rm possessed an ammonia monooxyge-

nase gene, which has been linked to cometabolic reactions of a wide range of organics in-

cluding estrogens [Shi et al., 2004, Yu et al., 2013]. Therefore it is likely that both metabolic
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and co-metabolic degradation of E2 and E1 are achieved by E2-rm, however, more experi-

ments are needed to test this hypothesis.

Unlike the E1 and E2 degraders, the route of E3 transformation is unknown as secondary

metabolites could not be identified and searches within the genome revealed no known es-

triol degradative enzymes. However, it should be noted that although no significant differ-

ence between degradation rates using fluorescently tagged and non-tagged estrogen were

observed, the degradation rate of secondary metabolites (i.e. E1 from E2 metabolism) were

different (Figure 7.10). Metabolic stress induced by the presence of the fluorophore is the

likely reason for the decreased removal and increased time required for doubling (Figure

7.6), although metatranscriptomic research would be required to verify this.

7.5.2 Impact of Bioaugmentation on SSF Performance and Community

In addition to the single-species growth kinetics, E1-rm, E2-rm and E3-rm were incorpo-

rated into sterile SSFs (bioaugmentation). The success of bioaugmentation is determined

by two major principles: the ability of the integrated bacterium to survive in the augmented

environment and its ability to degrade the target pollutant [El Fantroussi and Agathos, 2005].

The three bacterial strains were able to satisfy both criteria, removing more estrone (E1) and

estradiol (E2) than non-augmented SSFs (Table 7.10). Recently, several studies have shown

enhanced estradiol degradation by bioaugmentation into activated sludge systems [Yu et al.,

2007] and constructed wetlands [Iasur-Kruh et al., 2011], but this is the first study to the

author’s knowledge to show successful augmentation into a drinking water system.

With respect to estrogen removal efficiency, the isolates achieved far greater degradation in

pure culture than once augmented into the laboratory-scale SSFs. This is unsurprising as pure

culture experiments with the isolates led to mat-like biofilm formation (Figure 7.9), which

would be unlikely to occur within the SSFs due to shearing pressure between sand grains.

Additionally, the inability to remove estriol (E3) in augmentation experiments could be due

to toxicity induced by estriol and other estrogen degradation metabolites, which may explain

the absence of fluorescent bacteria at the end of pure culture experiments (Figure 7.7). This

toxicity is further supported by the evidence of filamentous morphology, increased concen-

trations of fluorophore and cellular components observed at the latter stages of pure culture
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work which was potentially due to lysis induced by stress.

Although bioaugmentation was achieved, only a small percentage of the original inocula

survived in the SSFs by the end of the study (Figure 7.15). This may also help explain the

reduced estrogen removal compared with pure culture assays. Recently, several studies have

shown that bioaugmentation can be improved by augmentation at different times and through

nutrient management. For example, Iasur-Kruh et al. [2011] successfully bioaugmented an

E2-degrading bacterium into a mature wetland biofilm, resulting in complete E2 removal

and Gallego et al. [2001] showed that a 50% increase in diesel oil degradation could be

achieved by managing the carbon/nitrogen and carbon/phosphorus ratios in soil microcosms.

Therefore, future work should also aim to increase bioaugmented bacterial survival in SSFs

by either augmentation at different stages of the SSF lifecycle (e.g. once a mature biofilm

has formed) or through biostimulation of the estrogen-degrading bacteria. In addition, more

work is needed to optimise physical removal mechanisms within the filters. For example

anion exchange resin coated sand could help absorb some of the potentially toxic metabolites

which may have induced bacterial death, hence if used in conjunction with bioaugmentation

could result in increased estrogen removal.

7.5.3 Estrogen Exposure Affects Coliform Removal

Interestingly, although estrogen removal within SSFs was lower than expected, augmentation

not only significantly improved estrogen removal (Table 7.10), but significantly increased

the overall water quality performance of augmented SSFs. This increased performance was

solely due to differences in coliform removal capabilities, with estrogen concentration neg-

atively correlating with coliform removal in non-augmented filters effluents (Figure 7.12).

This is the first example to the author’s knowledge in any system, to show that estrogen con-

centration induces a negative effect on pathogen removal. The reduced coliform removal was

hypothesised to be due to the inhibition of coliform-grazing protozoa (Figure 7.13). This,

alongside the interesting finding that coliform removal in augmented SSFs was less affected

by estrogen concentration than non-augmented SSFs, implies that augmentation reduced the

toxic effect of estrogen on the coliform-grazing protozoan community. This is the first study

to show that bioaugmentation not only improves the removal of the target chemical, but re-

duces the negative impact on treatment efficiency that such contaminants induce on water
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quality production.

7.6 Conclusions

In this chapter, six estrogen-degrading bacterial strains were isolated from the industrial SSFs

discussed in Chapters 4 and 5. Three of these isolates were used to augment laboratory-scale

SSFs to assess whether estrogen removal and overall filter performance could be improved.

To the best of the author’s knowledge, this is the first study to isolate estrogen-degrading

bacteria from SSFs and successfully use them to augment filter performance. To summarise,

the main conclusions of this chapter are:

1. Bioaugmentation is possible and significantly improved the removal of estrone and

estradiol in experimental slow sand filters;

2. Estrogen concentration is negatively correlated with coliform removal in non-augmented

filters;

3. High estrogen concentrations cause reduced protozoan growth (18S rRNA qPCR mea-

surements) and death resulting in reduced coliform removal. However, these effects

were significantly lower in augmented filters compared to non-augmented filters.

With respect to current and future implications, the negative effects of estrogen exposure on

coliform removal in SSFs pose questions for the operation of SSFs and other biological water

filters (both waste water and drinking water). These include understanding the effects of nat-

ural estrogens on the performance, and micro- and macro- community of biological filters.

This is important, especially due to increases in intensive farming and extreme weather phe-

nomena, all of which result in elevated estrogen levels reaching various water sources. This

is the first study to discover that estrogen exposure induces a negative effect on coliform re-

moval in SSFs, potentially by the toxic inhibition of protozoan grazers. Future work should

aim to determine the level of toxicity induced by estrogen exposure to protozoan grazers.

Further, this work highlights the potentially serious consequences of unmonitored estrogen

exposure, not only for water quality production but for the health of aquatic ecosystems in

water sources such as reservoirs and rivers - which are used as water sources for SSFs.
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Chapter 8

Differential Toxicity of Estrogens to

Protozoan Species

“To every action there is always opposed an equal reaction: or, the mutual actions of

two bodies upon each other are always equal, and directed to contrary parts”.

Isaac Newton, (Principia Mathematica - Newton’s Third Law)

Exposure to EDCs such as estrogens are now widely accepted to partially explain declines

in the biodiversity of aquatic ecosystems, due to their adverse effects on the endocrine, re-

productive and immune systems of aquatic organisms. Furthermore, recent study (Chapter

7) hypothesised that the impaired pathogen removal capabilities of SSFs seen during high

estrogen exposure may be due to toxicity induced by estrogen exposure to the protozoa

grazing community. Here, for the first time, the impact (of varying concentrations) of nat-

ural estrogens (estrone, estradiol and estriol) on three subgroups of protozoa (amoeboids,

ciliates and flagellates), was examined through population impairment growth assays. Dif-

fering levels and extents of toxicity were found depending upon the subgroup of protozoa,

with Dictyostelium discoideum (an amoeboid) being completely unaffected by both high and

low concentrations of estrogens. In contrast, high estrogen concentrations were toxic to the

growth of both Euglena gracilis (a flagellate) and Tetrahymena pyriformis (a ciliate), with the

latter also being severely impeded at lower concentrations. The differential toxic effect in-

duced by natural estrogens to the three subgroups of protozoa explains the reduced pathogen

removal seen in Chapter 7. It also indicates the potential negative effects that estrogen ex-

posure may have on protozoan populations in waterways, shifting the protozoa community

makeup, with potential impacts both to higher and lower trophic levels. This highlights the
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serious ramifications such exposure may have on the health, survival and functional perfor-

mance of aquatic ecosystems and engineered systems.

8.1 Introduction

As discussed in Chapter 7, the occurrence of EDCs in the environment is a growing issue for

human and wildlife development and reproduction [Belfroid et al., 1999, Ternes et al., 1999,

Jobling et al., 2006, Zhou et al., 2010]. In particular, EDCs have recently been shown to be

the main causative agents for the feminisation of fish, and for reproductive and developmen-

tal damage in wildlife, plants and humans [Jobling et al., 2006, Shore et al., 1995, Ternes

et al., 1999]. Furthermore, in Chapter 7 estrogen exposure was for the first time shown to

have a detrimental effect (reduced pathogen removal) on the performance of SSFs. This

impaired functional performance was hypothesised to be due to the toxic inhibition of the

protozoan grazers.

Despite the range of studies examining the effects of estrogens on fish, other aquatic organ-

isms, and to a lesser extent humans [Caldwell et al., 2010], no study to date has investigated

the impact of estrogens on environmental protozoa, which are one of the most important

groups of organisms in aquatic environments [Martı́n-González et al., 2006]. Furthermore,

within Chapter 6, protozoa, specifically Monosiga brevicolis, Tetrahymena sp. and various

ciliates were shown to be essential for optimal pathogen removal (responsible for more than

99% of the E.coli removal) in SSFs. Ciliated, flagellated and amoeboid protozoa are found

in SSFs and various other aquatic ecosystems and occupy the lower trophic levels within

these ecosystems, either as primary producers or bacteriovores. Together they play essential

roles in the transfer of matter and energy within the microbial loop and are integral to the

health and survival of aquatic ecosystems. Moreover, due to their sensitivity to environmen-

tal changes they are considered excellent biological indicators of water quality and pollution

[Martı́n-González et al., 2006, Valster et al., 2011, Shi et al., 2012].

The presence of estrogens in the environment is believed to come from two main sources

(Figure 7.2); incomplete removal by sewage and wastewater treatment plants, and animal

husbandry waste [Chen et al., 2010, Wang et al., 2011]. Recent surveys from around the
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globe have revealed the broad occurrence of varying levels of E1, E2, E3 and EE2 in surface,

ground and drinking waters [Shore et al., 1995, Ternes et al., 1999, Kuch and Ballschmiter,

2001, Ying et al., 2002, Williams et al., 2003, Quintana et al., 2004, Zhao et al., 2009]).

Additionally, estrogens are persistent contaminants in sediments and soil [Ying et al., 2002,

Wise et al., 2011] providing an additional source of estrogen leakage into surface waters.

In this study three different types of protozoa representing the three most dominant protozoan

genera (the amoeba Dictyostelium discoideum, the ciliate Tetrahymena pyriformis and the

flagellate Euglena gracilis) found in Chapter 6 to be involved with E.coli removal were used

to assess the differential effects that exposure to natural estrogens may induce on growth.

Results of which may help to explain the reduced coliform removal observed in Chapter 7

during periods of high estrogen exposure. Further, these three organisms were chosen to best

represent the diverse groups of protozoa found within SSFs; additionally, the full genome

sequences are available for all three organisms.

Hypotheses

Hypothesis 8.1 Estrogen is toxic to protozoa.

8.2 Materials and Methods

8.2.1 Cell Cultures and Estrogen Exposure

All toxicological assays used axenic cultures of: Dictyostelium discoideum B10 strain

DBS0304514, Tetrahymena pyriformis strain CCAP 1630/1W and Euglena gracilis strain

CCAP 1224/5Z. Dictyostelium discoideum were obtained from DictyBase, Northwestern

University, USA, while both Tetrahymena pyriformis and Euglena gracilis were obtained

from Strains of Culture Collection of Algae and Protozoa, UK. Details pertaining to strain-

specific culturing can be found in sections 8.2.2-8.2.4.

Briefly, the density of protozoa was adjusted to 104 cells/ml in fresh growth media (specific

to the protozoa). Natural estrogens (estrone, estradiol and estriol, purchased from Sigma-

Aldrich, UK) were added to the cells at a final concentration of 50ng/L estone, 12ng/L estra-
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diol and 39ng/L estriol (i.e., a total of 101ng/L) and at a 1 in 10 dilution of these concen-

trations (10.1ng/L), these concentrations corresponded to a total estrogenic potency of 0.23

(Equation 7.1). The higher concentration of 101ng/L was chosen to best represent, and simu-

late, agricultural or wastewater pollution events (based on averages from Chen et al. [2010]).

Additionally, a non-exposed culture and a culture exposed to the solvent (ethyl acetate) used

to dissolve the estrogens were set up. All assays were performed in triplicate in 25 ml culture

vessels. Effects on growth were determined by cell counts using a haemocytometer under

phase-contrast microscopy using a 100× optic, and three separate samples were counted at

each time point.

8.2.2 Culturing Dictyostelium discoideum

Dictyostelium discoideum is an amoeba often referred to as a “social amoeba” or “slime

mould”, which has the ability during times of starvation to form a self-preserving multicel-

luar structure. To obtain an axenic culture of D. discoideum, the protocol outlined by Fey

et al. [2007] was followed. Briefly, the protozoa were initially grown with Klebsiella aero-

genes on SM plates at 22◦C for 2 days. Then 5 x 103 freshly grown D. discoideum cells were

inoculated from the SM plates into several 200ml flasks containing Developmental Buffer

(5 mM Na2HPO4, 5 mM KH2PO4, 1 mM CaCl2 and 2 mM MgCl2) and Escherichia coli

(adjusted to an OD600nm of 8) and grown at 22◦C, with shaking at 180rpm.

8.2.3 Culturing Tetrahymena pyriformis

The ciliated protozoan Tetrahymena pyriformis is an amicronucleate strain often used for

toxicological studies. Growth conditions and procedure followed the protocol outlined by

Cassidy-Hanley [2012]. Briefly, protozoa were grown axenically without shaking at 25◦C

in proteose peptone yeast extract media (PPY) and were maintained in exponential growth

phase by reseeding in PPY liquid medium.

8.2.4 Culturing Euglena gracilis

Euglena gracilis is a unicellular flagellated protozoan that is both photoautotrophic and

chemoheterotrophic. Growth conditions and procedure used can be found in Fleck et al.

[2000]. Briefly, E.gracilis were grown axenically in several 10ml cultures of Proteose Pep-
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tone media (PP) overnight at 23◦C with 100 rpm. Cells were maintained in exponential

growth phases by reseeding in fresh PP media.

8.2.5 Population Growth Impairment and Generation Time Determi-

nation

Effects on growth and generation time were determined following the protocol outlined by

Dias et al. [2003]. Briefly, three aliquots of 100µl were immediately taken (T0) from the

controls and the exposed protozoan cultures, and subsequently at 4, 8, 12, 24 and 48h. The

samples were diluted in distilled water and visualised using a haemocytometer under phase

contrast on an inverted optical microscope (Inverted Olympus IX71) at 100× magnifica-

tion. Effects on protozoan population growth were characterised by their generation time

(g) required for doubling the population. Generation time was calculated by the formulae in

Equation 8.1 and Equation 8.2:

Number of generations (n) =
logN1 − logN0

log2
(8.1)

where N1 = number of cells at 24h and N0 = The number of cells at T0

Generation time (g) =
Time of growth

n
(8.2)

where Time of growth = 24h

8.2.6 Statistics

In each assay, the experimental data represent the mean of three independent assays. Sig-

nificant differences in protozoan growth between the controls and experimental assays were

determined by analysis of variance (ANOVA) tests performed in the statistical package R [R

Development Core Team, 2011]. Significance between groups was determined by p-values

of less than 0.05.
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8.3 Results

8.3.1 Population Growth Impairment of Dictyostelium discoideum

At the beginning of the experiment (T0) the cell density of Dictyostelium discoideum in the

culture condition was 1.18 × 104 ± 9.62 × 102 cells/ml, with a normal generation time of

10.6 h. Addition of natural estrogens had little effect on growth and generation time (Table

8.1) of D. discoideum. Even the highest concentration (101ng/L) of estrogens had only a

marginally significant effect on generation time (p-value: 0.0508, Figure 8.1A). However,

after 48h of exposure at the high concentration there was a significant difference in popula-

tion growth (p-value: 0.03). From these results the predicted lethal concentration resulting

in the death of 50% of the population (LC50) of D. discoideum is likely to be >101ng/L total

estrogens.

8.3.2 Population Growth Impairment of Euglena gracilis

At the beginning of the experiment (T0) the cell density of Euglena gracilis in the culture

condition was 6.60 × 104 ± 1.02 × 103 cells/ml, with a normal generation time of 19.9h.

Addition of natural estrogens at lower concentrations resulted in no significant reduction in

generation time (Table 8.1 and Figure 8.1B). However, at higher concentrations a significant

effect can be seen on population growth (Figure 8.1B), with less than 50% of the original

population of E.gracilis being viable after 24h, with this further decreasing to 34% after

48h. Taking these results into consideration the likely LC50 value for natural estrogens on E.

gracilis is within the range of 10.1-101ng/L.

8.3.3 Population Growth Impairment of Tetrahymena pyriformis

At the beginning of the experiment (T0) the cell density of Tetrahymena pyriformis in the

culture condition was 3.12 × 104 ± 1.10 × 103 cells/ml, with a normal generation time of

11.7h. The addition of natural estrogens had a significant effect on growth and generation

time, with a clear concentration-dependent effect (Table 8.1 and Figure 8.1C). Low estrogen

concentration resulted in a doubling of generation time compared with controls and no viable

cells were detected after 24h of exposure at the higher concentration. Taking these results

into consideration the likely LC50 value for natural estrogens on T. pyriformis is <101ng/L
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Figure 8.1: Effect of natural estrogens on: A) D.discoideum, B) E.gracilis and C) T.pyriformis popu-

lation growth during 48h. Concentrations of estrogens used were: high (101ng/L) and low (10.1ng/L).

Data points represent the mean of triplicate assays and bars represent the standard error. ***Indi-

cates significant differences (P-value: <0.0005), *(P-value: 0.05) and .(P.value: 0.03) from the

control values.
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Table 8.1: The effect of natural estrogens on the generation time after 24 hours of growth on

D.discoideum, T.pyriformis and E.gracilis.

Protozoa Estrogen Concentration (ng/L) Generation Time (h) Increase in Generation Time (%)

T.pyriformis Growth Control 11.67 ± 1.08 -
T.pyriformis Solvent Control 12.77 ± 1.51 9.43
T.pyriformis 101 - -
T.pyriformis 10.1 22.74 ± 1.49** 94.86
D.discoideum Growth Control 10.61 ± 0.88 -
D.discoideum Solvent Control 11.09 ± 0.76 4.52

D.discoideum 101 12.44 ± 0.82. 17.25
D.discoideum 10.1 11.57 ± 0.69 9.05
E.gracilis Growth Control 19.89 ± 0.94 -
E.gracilis Solvent Control 20.94 ± 1.36 5.28
E.gracilis 101 - -
E.gracilis 10.1 23.86 ± 2.39 19.96

Increase in generation time is in respect to the control.

but >10.1ng/L.

8.4 Discussion

This is the first study to the author’s knowledge to examine the effect of natural estrogens

(E1, E2 and E3) on the growth of protozoa and link the findings to the reduced pathogen

removal performance found in chapter 7. In this chapter it has been shown that there are

differential effects to growth depending upon the protozoa and the concentration of estro-

gen used. Growth of both the flagellate (Tetrahymena pyriformis) and the ciliate (Euglena

gracilis) were severely impeded, and in the latter case complete cell death was observed at

high estrogen concentrations. However, at lower concentrations only the growth of the cili-

ate was significantly affected. These observations help to clarify, and provide explanations

for the reduced coliform removal observed in Chapter 7. This, alongside the absence of an

effect on the growth of the amoeba, highlights the importance of testing multiple organisms

to ascertain the true toxicity of a chemical in the environment. Such differential responses

to EDCs are not surprising, as similar findings arose in human protozoan parasite studies

[Nava-Castro et al., 2012], and in aquatic vertebrate studies [Segner et al., 2003]. Reasons

for such effects on growth can only be speculated due to the lack of knowledge pertaining

to protozoan endocrinology. However, in various other EDC studies involving invertebrates,

estrogens have been found to alter the phosphorylation state of mitogen-activated protein ki-
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nases (MAPKs) and lysosomal membrane integrity [Canesi et al., 2004] resulting in various

detrimental effects. It is therefore conceivable that similar processes may explain the effects

in protozoa. Furthermore, based on the reduced coliform removal performance observed in

Chapter 7, during high estrogen exposure, it is possible that EDC reduce the grazing capacity

of protozoa; however, ingestion rate studies would be required to confirm this.

The reasons for the differences in effect between the three groups of protozoa are unclear.

Possible explanations may be related to the differing binding affinity of estrogens to the re-

ceptors of the different protozoa, as mentioned previously. Additionally, potential reasons

for the reduced effects in the amoeba could be due to the complete absence of either the ERα

or ERβ estrogen receptor or homologues, unlike in T. pyriformis [Kohidai and Csaba, 2003]

and E. gracilis [Cann, 2004]. However, it should be noted that although D. discoideum was

unaffected by estrogens over the first 24h of exposure, there was significant impediment to

growth after 48h. This implies that although the amoeba is not as sensitive as both the cili-

ate and flagellate to initial estrogen exposure, extended exposure is detrimental. A possible

reason for such a delayed effect may be the critical buildup of ROS or other damaging radi-

cals (e.g. hydroxyl radicals), produced in the mitochondria when oxygen is reduced along the

electron transport chain. Internal ROS accumulation induced by TiO2 and fullerene exposure

has been shown to interfere with the correct functioning of various cofactors and enzymes,

resulting in the disruption of protein structure and function, and in reduced growth rates and

survival [Jafar and Hamzeh, 2013].

Hypothetically, if an environmental pollution event such as large-scale agricultural runoff

into waterways was to arise, these results suggest that the survival of these three organisms

would be questionable. The results of this would be fatal as E. gracilis is a key primary pro-

ducer in aquatic environments [Fleck et al., 2000], and both T. pyriformis and D. discoideum

are key members of the base of the microbial and detritivore food webs, playing important

roles as grazers of microbes in aquatic environments and controlling bacterio-plankton pro-

duction. Together these three organisms form the basis of the first trophic level in aquatic

environments, and their disruption could have serious knock-on effects to higher trophic

levels. In addition to the general environmental impact, increased estrogen exposure into

waterways; typically used to supply slow sand filters would have serious knock-on-effects
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for optimal SSF performance, in particular for effective E.coli removal (Chapter 7). There-

fore, from a functional perspective the toxicity of these protozoa in particular Tetrahymena

spp., which were shown in Chapter 6 to be very important for E.coli removal, would have

serious implications for the pathogen removal performance of SSFs and potentially other

water purification systems with biological components.

8.5 Conclusions

Due to the alarming and differential effects of estrogens on protozoa and the knock-on-effect

to SSF performance discovered in this study, serious issues for the functional performance of

SSFs and survival and health of aquatic food webs and ecosystems are posed. Further work is

required to determine the individual toxicity and LC50 of E1, E2 and E3 to various protozoan

members, alongside the characterisation of the mode(s) of toxicity. This, alongside further

studies in LSSFs and river microcosms (which will more closely mimic the true aquatic envi-

ronment) [Gerhardt et al., 2010] and SSFs with varying concentrations, periods of exposure

and estrogenic potencies, will allow more accurate conclusions to be drawn about the poten-

tial deleterious effects of estrogen exposure. To conclude, this study is the first to show that

natural estrogen exposure has negative effects on protozoan population growth and survival

and that the extent of such effects are protozoan specific. Further, it is the first study to ex-

plain the functional implications (reduced pathogen removal) that estrogen exposure has on

engineered systems performance.
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Chapter 9

Conclusions and Future Work

“Knowledge is of no value unless you put it into practice.”

Anton Chekhov

The supply of clean and safe drinking water, free from any substances or organisms, which

pose a danger to human health, is an objective of the European Union Drinking Water Direc-

tive (98/83/EC) and World Health Organisation (WHO) [World Health Organisation, 2004].

For over 200 years slow sand filtration has been an effective means of treating water for

the control of microbiological and chemical contaminants in both small and large com-

munity water supplies [Huisman et al., 1974, Haig et al., 2011]. This capability and ef-

ficiency to remove various contaminants has underpinned SSF deployment in various areas

outside of drinking water purification including: aquaculture [Arndt and Wagner, 2004], hor-

ticulture [Calvo-Bado et al., 2003], storm-water purification [Urbonas, 1999] and food and

drink waste management [Ramond et al., 2013]. However, despite their adoption and use

in energy-efficient production of high-quality water, little is understood about the biological

mechanisms and organisms responsible for producing the diverse and efficient functional ca-

pacity offered by SSFs [Haig et al., 2011]. This lack of knowledge has and will continue to

hinder optimisation in design, management and operation of these systems.

The focus of this thesis was to build on the limited ecological knowledge of SSFs using

techniques to identify the culturable and non-culturable microorganisms, and to relate diver-

sity and specific taxa to water quality production. Understanding these dynamics alongside

performance-induced effects associated with operational differences and exposure to novel

contaminants will promote optimised SSF design, maintenance and operation, creating more
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efficient and environmentally sustainable filters. Specifically, this thesis aimed to address the

following questions:

1. Which microorganisms are present in full-scale industrially operated slow sand filters

and which roles do they perform?

2. Does the microbial community structure change temporally and spatially in slow sand

filters?

3. Can a laboratory-scale slow sand filter be constructed to mimic the performance and

microbial community of full-scale, industrially operated slow sand filters?

4. What is the impact of light on the microbial community and filter performance?

5. Which mechanisms are responsible for the removal of the human pathogen E.coli in

slow sand filters?

6. How effective are slow sand filters at removing estrogen and can their performance be

improved by bioaugmentation?

To address these complex questions a two-pronged approach was taken: firstly the microbial

community of two full-scale slow sand filters (Chapter 4) was surveyed for eight months, rep-

resenting all stages of the filters lifecycle (scraped, ripened, clogged and drained). Secondly,

to better understand pathogen removal mechanisms, as well as the impact of light exposure

(Chapter 6) and of estrogen exposure (Chapter 7-8), eight laboratory-scale SSFs were de-

signed, constructed and operated (Chapter 5). Overall, this thesis has shown that SSFs are

phylogenetically and metabolically diverse systems capable of producing high-quality water,

with the ability to adapt to remove novel contaminants.

The remainder of this chapter is structured as follows; Section 9.1 lists the contributions of

this thesis. Section 9.2 outlines directions for future work, describing improvements that can

be made to the work presented here, and explores the wider implications of this work and

how it fits into other areas of research; and Section 9.3 provides a summary of this chapter,

and concludes the thesis.
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9.1 Contributions

The contributions of this thesis are as follows:

Detailed Characterisation of the Microbial Community of Full-Scale SSFs

Chapter 4 describes the periodic sampling of two industrially operated slow sand filters was

presented in order to study the spatial and temporal structure of the bacterial community

comprising the filters, and to determine how specific microbial groups were related to over-

all filter performance. The results of this chapter showed that the microbial diversity of

SSFs is far greater than previously documented and that the month; age; side; distance from

the influent and effluent pipe; and depth from which the samples were taken significantly

impacted the microbial community in SSFs, with age being the most significant variable.

As filters aged, both the number and density of OTUs increased, as did species evenness.

Further, Illumina 16S rRNA amplicon sequencing indicated that the abundance of various

members of the microbial community, specifically Acidovorax, Halomonas, Sphingobium

and Sphingomonas, were important for performance. Moreover it was found that increased

species evenness was critical for excellent filter performance, with decreased species even-

ness being found in drained and early-stage SSFs coinciding with increased abundance of

Planctomycetes. Although this chapter presents the most detailed microbial SSF survey to

date, additional sampling extending through multiple filter life-cycles would provide more

statistically robust taxa-function information. This, however, was not possible as the site was

decommissioned.

Verification that Full-scale SSFs can be Replicated in the Laboratory

Chapter 5 describes eight laboratory-scale SSFs that were designed, constructed, operated

and applied to demonstrate, for the first time, that the water quality and microbial commu-

nity of full-scale SSFs could be replicated in the laboratory. Phylum-specific qPCR assays

and 454 pyrosequencing of the 16S rRNA gene revealed that whilst the laboratory and in-

dustrial filters appeared identical at a coarse taxonomic level, when OTUs (species proxies)

were considered they differ consistently. Given that they also appear equivalent in terms

of function, a degree of redundancy is suggested. It is unclear what is driving the differ-

ences at the OTU level, but it is likely environmental differences, such as temperature and
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the presence or absence of wildlife between the laboratory and the industrial filters have a

part to play. However, this requires further study. In addition to the parameters (age, depth

from which samples were taken and water quality produced) identified in Chapter 4 to ex-

plain differences in the microbial community of full-scale SSFs, the sand type (sterile or

non-sterile) was also found to be a significant factor. However, irrespective of the type of

sand within lab-scale SSFs the microbial consortia converged in all filters after seven weeks

of operation. Such convergence is staggering and suggests that the microbial community

converges towards a structure which is best for optimal performance. In particular the reap-

pearance from the ISSFs discussed in Chapter 4 of the importance of the Comamonadaceae

and Sphingomonadacea families when filters age - further strengthens conclusions of their

importance in performance and the ability of LSSFs to replicate the functional community of

ISSFs. Furthermore, although water quality parameters were measured in filter effluents in

order to accurately relate microbial taxa to specific function, the use of depth specific probes

would provide more accurate data. Based on this proof of concept study, it is now possible

to use these laboratory-scale SSFs to ask more complex questions relating to water quality

and community assembly and relate any findings directly to full-scale units.

Ecosystem-wide Responses are Involved in E.coli Removal in SSFs

In Chapter 6, the laboratory-scale SSFs first described in Chapter 5 were used to determine

the mechanisms responsible for E.coli removal, using stable-isotope-probing in conjunction

with metagenomics. This study is the first to follow the fate of an isotopically-labelled

pathogen through a biological system using metagenomics. Direct counts and qPCR as-

says revealed a clear predator-prey response between protozoa and E.coli. Furthermore,

the importance of top-down trophic-interactions were confirmed by metagenomic analysis,

identifying several protozoa (Monosiga brevicollis and Tetrahymena spp.) and viral species

(Enterobacteria phages) connected to E.coli attrition, with protozoan grazing responsible for

>99% of the removal. In addition to top-down mechanisms, indirect mechanisms such as al-

gal reactive oxygen species (ROS)-induced lysis, and mutualistic interactions between algae

and fungi, were suggested to also be associated with coliform removal. Although complex

interactions involved in E.coli removal were determined in this chapter, more detailed food

webs may be created by sampling at smaller time intervals and performing mass balance

calculations. Furthermore, in order to determine the specific mechanisms deployed by or-
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ganisms RNA-based sequencing and metatranscriptomics would be required. To summarise,

whilst various studies have shown the individual importance of viral lysis, protozoan grazing

and endogenous, and exogenous, ROS in E.coli removal, chapter 6 presents the first study, to

the author’s knowledge, to show the importance and interactions of all of these mechanisms

for pathogen removal in SSFs.

Functional Implications of Covering SSFs (Operation in Darkness)

Within Chapter 6, the effects of light exposure on the performance and microbial community

in SSFs was explored using qPCR and water quality analysis; from an engineering per-

spective, this was to determine if there were differences between covered (e.g. used in the

Netherlands) and uncovered filters (e.g. used in the UK and USA). Overall, light exposure

had significant spatial and temporal effects on the composition of the microbial community

of LSSFs, with non-covered (exposed to light) LSSFs developing a more even community

composition compared to covered (no light exposure) LSSFs. Interestingly, differences in

the microbial community composition and abundance had little effect on overall filter per-

formance (5). This study is the first to show that the microbial community of covered

and non-covered SSFs are extremely divergent in composition and abundance yet achieve

the same level of excellent filter performance. Although, overall, there was no difference

in 5 between covered and non-covered SSFs, at early time-points (0-3 weeks) in the filter

lifecycle there were significant differences in coliform removal potential, with non-covered

filters removing 24 times more than covered SSFs. This, along with the increased retention

of viable E.coli in covered filters at all depths, implies that light exposure facilitates E.coli

removal. Furthermore, the reduced capacity for coliform removal in covered filters in the

three weeks after the E.coli spiking event suggests covered SSFs incur long-term effects

from prolonged E.coli exposure which have a knock-on effect to coliform removal.

Estrogen-Degrading Bacteria Exist in SSFs

Within Chapter 7 the potential to improve estrogen removal and overall filter performance

by bioaugmentation with estrogen-degrading bacteria was explored. In order to promote op-

timal survival of the introduced bacterial strains within LSSFs, strains were isolated from

the full-scale SSFs described in Chapters 4 and 5. Overall, six bacterial strains capable of
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degrading at least one of the natural estrogens (E1, E2 or E3) at room temperature and 4◦C

were isolated. The genomes of the three room-temperature isolates: E1-rm, E2-rm and E3-

rm all possessed several known enzymes involved in estrogen degradation. However, the

E3-rm isolate unlike the other two isolates did not possess any known degradation enzymes

involved in its enriched estrogen source (E3) metabolism, despite its 100% removal in pure

culture experiments. A limitation of this study was the absence of RNA sequencing which

would have revealed the functionally relevant enzymes which were being used by the iso-

lates. This is the first study to show that SSFs support the survival of estrogen degraders and

to obtain pure culture isolates.

Bioaugmentation Improves Estrogen Removal in SSFs

Within Chapter 7 LSSFs were bioaugmented with the three room-temperature estrogen de-

grading isolates enriched from full-scale SSFs. Bioaugmentation was shown by qPCR to

be successful due to the survival of the organisms within the filters throughout the study.

Functionally, augmentation significantly improved the removal of E1 and E2 and reduced

the overall estrogenic potency of the influent water by 26%, compared to non-augmented

filters. However, this removal was lower than expected based on pure culture growth kinetic

experiments, which is likely due to the inability of the isolates to form their mat-like biofilm

formation between sand grains and due to natural competition from other microorganisms

within the filters. To the best of the author’s knowledge this is the first example of augmenta-

tion in a drinking water system with estrogen degrading microbes and the first demonstration

that bioaugmentation can improve SSF performance.

High Estrogen Exposure Causes Reduced Pathogen Removal

In addition to the improved estrogen removal due to the bioaugmentation discussed in Chap-

ter 7, estrogen concentration was found to negatively correlate with coliform removal in

non-augmented filters. This was hypothesised and shown within chapter 8 to be due to the

toxic inhibition of coliform-grazing protozoa. Interestingly, coliform removal in augmented

filters was less affected by estrogen concentration than non-augmented filters, implying that

augmentation reduced the toxic effect of estrogen on the coliform-grazing, protozoan com-

munity. This study underscores the importance of investigating the effects of emerging con-
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taminants on the micro- and macro-community of SSFs and further shows that bioaugmen-

tation of SSFs with estrogen degraders is beneficial for both chemical and microbiological

removal. This is the first study, to the author’s knowledge, to demonstrate the negative effect

of estrogens on pathogen removal in any system and demonstrate the toxicity of estrogen

exposure to protozoa.

9.2 Future Directions

The work within this thesis has demonstrated that the microbial community of SSFs are

metabolically and phylogenetically rich, influenced by various operational parameters (ex-

posure to light, and estrogen concentration) and capable of producing high-quality drinking

water. Furthermore, this thesis has shown links between various taxa and optimal filter per-

formance and revealed that multi-trophic interactions appear to be responsible for E.coli

removal. Additionally, it has demonstrated that SSFs can be augmented with estrogen de-

grading bacteria which promotes improved estrogen removal and confers protection to the

coliform-grazing protozoan community which were inhibited by estrogen exposure. How-

ever, the work presented in the preceding chapters provide several opportunities for future

research, which will be described in this section.

9.2.1 Comparison Between Geographic Areas and Technologies

One obvious direction for future work is to expand the microbial ecology survey, to study

other SSFs in different geographic regions in order to determine if there is a universal op-

timal SSF community. Additionally, it would be interesting to compare the communities

between different treatment systems e.g. Manz filters, household SSFs, rapid sand filters,

and GAC filters to allow functionally relevant taxa to be identified and in the future moni-

tor and manage them. Alongside the community characterisation, functional screens could

be performed using standard and custom designed EcoPlates (Biolog, UK) to determine the

metabolic capabilities of the SSF community.
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9.2.2 Filter Design, Maintenance and Operation

As discussed in Chapter 2, extensive knowledge about the physical mechanisms within SSFs

is understood, however the future of biological filter technology lies in optimising both the

physical and biological mechanisms. Therefore, future work should aim to manage and boost

the survival and metabolic degradation profile of SSFs in addition to pairing this with studies

comparing the impact of different filter bed materials. For example a SSF bed composed of

a layer of granular activated carbon may allow absorption of certain contaminants which are

either not or incompletely removed via microbial degradation. Such synergistic studies will

potentially provide tailored water purification systems specific to the needs of the user. Ad-

ditionally from Chapter 5 the functional implications of covering SSFs in regards to reduced

performance during heavy coliform exposure suggest that non-covered SSFs are optimal for

the UK. However, it would be interesting to compare this functional effect in covered and

non-covered filters in other geographical locations.

In Chapter 4 the decreased species evenness and increased abundance of Planctomycetes

found in drained and early-stage SSFs was likely due to additional sunlight exposure, these

findings pose several avenues for future work focussed on improving SSF maintenance. For

example, future work should investigate the impact of reducing the drainage period or the

effects of covering filters during draining and scraping events on species evenness and the

abundance of Planctomycetes. Such work could significantly reduce the period of time SSFs

are non-operational due to poor performance and hence have economical benefits.

Regarding the operation of SSFs, there are several areas of improvement and future work

which have come to light from this thesis. Firstly, the major disadvantage of SSFs compared

to other systems is the slow production of purified water, therefore additional work is re-

quired into developing an “intermediate sand filter” i.e., a sand filter operating at a filtration

rate between that of rapid and slow sand filters. Secondly, from the work within this the-

sis it was shown that filter performance (produce better water quality) improves with age,

however it is unclear as to whether this is due to changes in the community or due to in-

creased exposure to contaminants. From Chapter 6 it was noted that during periods of high

coliform number exposure, filters showed increasing removal capabilities in correlation to

the number of times these events occurred. Likewise in Chapter 7, during the two periods
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of high estrogen exposure both filter types showed improved removal and non-augmented

filters additionally displayed an increased protective effect to the protozoan community dur-

ing the second estrogen exposure, in-line with the augmented filters. These two phenomena

are suggestive that the SSF community can be primed to respond rapidly to contaminants

through increased exposure. Therefore future work might aim to research “vaccination like”

procedures i.e., expose SSFs (following the same approach used in Chapters 6 and 7) to the

contaminant of choice in various quantities, at different points in the filters lifecycle (par-

ticularly during early stages) and for different durations in order to determine if improved

exposure can induce an adaptive immune like response in the SSFs.

9.2.3 Predictive Water Quality Modelling

Another avenue for further development is the creation of predictive water quality mod-

els based on species evenness information and qPCR quantified abundances of Halomonas,

Sphingomonas, Acidovorax and Sphingobium which were found within this study to give

accurate predictions of filter performance. Such models would allow operators to determine

the water quality production of a filter in a faster time-frame than that achieved using tradi-

tion water quality analysis methods. Additionally, integrating this model with the functional

effects of differing estrogen concentrations will allow more reliable predictions of coliform

numbers to be determined in filter effluents. In addition to these water quality models, math-

ematical models and food-web interaction models based on the E.coli removal mechanisms

discovered in Chapter 6 should be created. However, additional work is required to integrate

physical removal mechanisms into such a model. Further, the DNA-SIP study discussed

within this thesis should be replicated using various pathogenic strains of E.coli to determine

if the removal mechanisms are the same.

9.2.4 Metabolic Limits

Due to the increasing number of contaminants being added to the EU Drinking Water Di-

rective (98/83/EC), there is a need to find solutions for current and emerging contaminant

removal. Within this thesis the ability of SSFs to remove estrogens has been shown, however

future work should focus on determining the metabolic limit of SSFs, through metagenomic,

metatranscriptomic and traditional enrichment culture based studies. Additionally, this thesis
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has shown that SSFs are amenable to bioaugmentation. Therefore future work should aim

to harness this potential by further laboratory-scale studies trialling different augmentation

and biostimulation procedures. For example the survival of augmented organism could be

boosted by encapsulating them in alginate, hence allowing the diffusion of products in and

out but reducing the risk of predation and washout in the filters.

9.2.5 Integration with Other Systems

Although SSFs have been shown within this thesis to be effective purification systems, they

are known to struggle with high turbidity and lack the ability to remove colour. Therefore in

order to be effectively utilised to purify a range of water sources (grey-water, storm water,

waste water, and water obtained from sustainable urban drainage (SUDS)) they will need to

be linked to other technologies. For example SSFs could be paired with portable constructed

wetlands to be used in nurseries and greenhouses as an economical and ecologically based

approach for treating runoff containing nutrients, pesticides, pathogens and other organic and

biological contaminants. Such a setup would potentially allow nutrient / resource recovery

which may have financial benefits. Furthermore SSFs could be used to purify road-runoff

collected in SUDS, hence providing sustainable, economical and environmentally friendly

treatment technologies to recycle water or to assure compliance with increasingly stringent

environmental regulations regarding the discharge of non-point-source pollutants.

9.3 Closing Remarks

The work presented within this thesis has provided a better understanding of the spatial, tem-

poral and functionally induced changes in SSF microbial communities. It has also shown

that SSFs are phylogenetically and metabolically diverse systems capable of producing high

quality water, with the ability to adapt to remove novel contaminants. Using the informa-

tion gathered within this thesis alongside future research will allow improvements to filter

maintenance and operation to be achieved. It is my belief that the future of drinking water

purification does not lie in developing a new technology, but in improving the way cur-

rent systems such as SSFs are operated and managed. By optimising the synergy between

physical and biological removal mechanisms, SSFs could be the most adaptable, efficient,

sustainable and cost-effective treatment solution of the future.
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Anaerobic degradation of linear alkylbenzene sulfonates in coastal marine sediments. En-

vironmental Science & Technology, 41(10):3573–3579, 2007.



BIBLIOGRAPHY 254

A.I. Laskin, J.W. Bennett, and G.M. Gadd. Advances in applied microbiology, volume 57.

Academic Press, San Diego, 2004.

K. Lautenschlager, N. Boon, Y. Wang, T. Egli, and F. Hammes. Overnight stagnation of

drinking water in household taps induces microbial growth and changes in community

composition. Water Research, 44:4868–4877, 2010.

M. Le Noir, A-S. Lepeuple, B. Guieysse, and B. Mattiasson. Selective removal of

17βestradiol at trace concentration using a molecularly imprinted polymer. Water Re-

search, 41(12):2825–2831, 2007.

E. Lee and L.R Oki. Slow sand filters effectively reduce Phytophthora after a pathogen

switch from Fusarium and a simulated pump failure. Water research, 47(14):5121–5129,

2013.

X. Lin, J. McKinley, C.T Resch, R. Kaluzny, C.L Lauber, and et al. Spatial and temporal

dynamics of the microbial community in the Hanford unconfined aquifer. ISME, 6(9):

1665–1676, 2012.

R.L Lindeman. The trophic-dynamic aspect of ecology. Ecology, 23(4):399–417, 1942.

W. Liu, D.W. Au, D.M. Anderson, P.K. Lam, and R.S. Wu. Effects of nutrients, salinity, pH

and light: dark cycle on the production of reactive oxygen species in the alga Chattonella

marina. Journal of Experimental Marine Biology and Ecology, 346(1):76–86, 2007.

Z-H. Liu, Y. Kanjo, and S. Mizutani. Removal mechanisms for endocrine disrupting com-

pounds (EDCs) in wastewater treatmentphysical means, biodegradation, and chemical ad-

vanced oxidation: a review. Science of the Total Environment, 407(2):731–748, 2009.

Z-H. Liu, J.A. Ogejo, A. Pruden, and K.F Knowlton. Occurrence, fate and removal of

synthetic oral contraceptives (SOCs) in the natural environment: A review. Science of the

Total Environment, 409(24):5149–5161, 2011.

L Lloret, G Eibes, G Feijoo, MT Moreira, and JM Lema. Degradation of estrogens by

laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors.

Journal of hazardous materials, 213:175–183, 2012.



BIBLIOGRAPHY 255

B. Lloyd. The functional microbial ecology of slow, sand filters. PhD thesis, University of

Surrey, 1974.

B. Lloyd. The construction of a sand profile sampler: its use in the study of the vorticella

populations and the general interstitial microfauna of slow sand filters. Water Research, 7

(7):963–973, 1973.

BJ Lloyd. The significance of protozoal predation and adsorption for the removal of bacteria

by slow sand filtration. In Advances in Slow Sand and Alternative Biological Filtration,

pages 129–137. John Wiley & Sons, UK, 1996.

M.M Lorah and M.A Voytek. Degradation of 1, 1, 2, 2-tetrachloroethane and accumulation

of vinyl chloride in wetland sediment microcosms and in situ porewater: biogeochemical

controls and associations with microbial communities. Journal of contaminant hydrology,

70(1):117–145, 2004.

R.A. Luna, L.R. Fasciano, S.C. Jones, B.L. Boyanton Jr, T.T. Ton, and J. Versalovic. Dna

pyrosequencing-based bacterial pathogen identification in a pediatric hospital setting.

Journal of clinical microbiology, 45(9):2985 – 2992, 2007.

M.T Madigan, J.M Martinko, D. Stahl, and D.P Clark. Brock Biology of Microorganisms

13th edition, volume 13. Pearson Education, 2011.

S. Malik, M. Beer, M. Megharaj, and R. Naidu. The use of molecular techniques to character-

ize the microbial communities in contaminated soil and water. Environment international,

34(2):265–276, 2008.

J. Marley, M. Lu, and C. Bracken. A method for efficient isotopic labeling of recombinant

proteins. Journal of Biomolecular NMR, 20(1):71–75, 2001.

KC Marshall. Biofilms: An overview of bacterial adhesion, activity, and control at surfaces.

control of biofilm formation awaits the development of a method to prevent bacterial ad-

hesion. ASM American Society for Microbiology News, 58(4):202–207, 1992.
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W.F.M Röling, M. Ferrer, and P.N Golyshin. Systems approaches to microbial communities

and their functioning. Current opinion in biotechnology, 21(4):532–538, 2010.

T. Romeo. Bacterial biofilms. Springer Verlag, Berlin, 2008.

S.J. Rooklidge, E.R. Burns, and J.P. Bolte. Modeling antimicrobial contaminant removal in

slow sand filtration. Water research, 39(2-3):331–339, 2005.

T.M Rose, J.G Henikoff, and S. Henikoff. CODEHOP (COnsensus-DEgenerate hybrid

oligonucleotide primer) PCR primer design. Nucleic Acids Research, 31(13):3763–3766,

2003.

A.D Rosemond, C.M Pringle, A. Ramı́rez, and M.J Paul. A test of top-down and bottom-up

control in a detritus-based food web. Ecology, 82(8):2279–2293, 2001.

K. Röske, R. Sachse, C. Scheerer, and I. Röske. Microbial diversity and composition of the

sediment in the drinking water reservoir Saidenbach (Saxonia, Germany). Systematic and

applied microbiology, 35(1):35–44, 2012.



BIBLIOGRAPHY 262

DB Roszak and RR Colwell. Survival strategies of bacteria in the natural environment.

Microbiology and Molecular Biology Reviews, 51(3):365–379, 1987.

H Runes, J Jenkins, and P Bottomley. Atrazine degradation by bioaugmented sediment from

constructed wetlands. Applied microbiology and biotechnology, 57(3):427–432, 2001.

R. Sadiq, M.A. Al-Zahrani, A.K. Sheikh, T. Husain, and S. Farooq. Performance evalua-

tion of slow sand filters using fuzzy rule-based modelling. Environmental Modelling &

Software, 19(5):507–515, 2004.

S. Saleh-Lakha, M. Miller, R.G Campbell, K. Schneider, P. Elahimanesh, M.M Hart, and J.T

Trevors. Microbial gene expression in soil: methods, applications and challenges. Journal

of Microbiological Methods, 63(1):1–19, 2005.

A. Schippers, L.N. Neretin, J. Kallmeyer, T.G. Ferdelman, B.A. Cragg, R.J. Parkes, and et al.

Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Letters

to nature, 433(24):861–864, 2005.

M. Schirmer, W.T. Sloan, and C. Quince. Benchmarking of viral haplotype reconstruction

programmes: an overview of the capacities and limitations of currently available pro-

grammes. Briefings in bioinformatics, 2012.

P.D. Schloss and J. Handelsman. Introducing DOTUR, a computer program for defining

operational taxonomic units and estimating species richness. Applied and Environmental

Microbiology, 71(3):1501–1506, 2005.

A. Schmalenberger, F. Schwieger, and C.C. Tebbe. Effect of primers hybridizing to different

evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial

community analyses and genetic profiling. Applied and Environmental Microbiology, 67

(8):3557 – 3563, 2001.

M.A. Schneegurt, S.Y. Dore, and C.F. Kulpa Jr. Direct extraction of DNA from soils for

studies in microbial ecology. Current issues in molecular biology, 5(1):1–8, 2003.

H Segner, K Caroll, M Fenske, CR Janssen, G Maack, D Pascoe, and et al. Identification

of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the

European IDEA project. Ecotoxicology and environmental safety, 54(3):302–314, 2003.



BIBLIOGRAPHY 263

K.T Semple and R.B Cain. Biodegradation of phenols by the alga Ochromonas danica.

Applied and Environmental Microbiology, 62(4):1265–1273, 1996.

K. Sen and N.J Ashbolt. Environmental Microbiology: Current Technology and Water Ap-

plications, chapter 7. Horizon Scientific Press, 2011.

M. Shakya, C. Quince, J.H Campbell, Z.K Yang, C.W Schadt, and M. Podar. Comparative

metagenomic and rRNA microbial diversity characterization using archaeal and bacterial

synthetic communities. Environmental microbiology, pages 1–18, 2013.

A. Shareef, M.J. Angove, and J.D. Wells. Optimization of silylation using N-methyl-

N-(trimethylsilyl)-trifluoroacetamide,N,O-bis-(trimethylsilyl)-trifluoroacetamide and N-

(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide for the determination of the estro-

gens estrone and 17α-ethinylestradiol by gas chromatography-mass spectrometry. Journal

of Chromatography A, 1108(1):121–128, 2006.

A.J. Sharpe, P.A. Quern, and R.A. Currier. A consultant’s point of view. In M.R. Collins and

N.J.D. Graham, editors, Slow Sand Filtration. American Water Works Association, 1994.

D.R. Shelton and J.M. Tiedje. General method for determining anaerobic biodegradation

potential. Applied and Environmental Microbiology, 47(4):850–857, 1984.

J. Shendure and H. Ji. Next-generation dna sequencing. Nature biotechnology, 26(10):

1135–1145, 2008.

J. Shi, S. Fujisawa, S. Nakai, and M. Hosomi. Biodegradation of natural and synthetic

estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas

europaea. Water Research, 38(9):2323–2330, 2004.

T Shi, J.K Fredrickson, and D.L Balkwill. Biodegradation of polycyclic aromatic hydrocar-

bons by Sphingomonas strains isolated from the terrestrial subsurface. Journal of Indus-

trial Microbiology and Biotechnology, 26(5):283–289, 2001.

X. Shi, X. Liu, G. Liu, Z. Sun, and H. Xu. An approach to analyze spatial patterns of

protozoan communities for assessing water quality in the Hangzhou section of Jing-Hang

Grand Canal in China. Environmental Science and Pollution Research, 19(3):739–747,

2012.



BIBLIOGRAPHY 264

S. Shokralla, J.L Spall, J.F Gibson, and M. Hajibabaei. Next-generation sequencing tech-

nologies for environmental DNA research. Molecular Ecology, 21(8):1794–1805, 2012.

L.S. Shore, Y. Kapulnik, M. Gurevich, S. Wininger, H. Badamy, and M. Shemesh. Induction

of phytoestrogen production in Medicago sativa leaves by irrigation with sewage water.

Environmental and Experimental Botany, 35(3):363–369, 1995.
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Appendix A

Water quality testing

A.1 Ammonia (NH3)

Procedure: Performed using Hach Test ’N Tube Vials, method based on Salicylate

method (Standard Method 4500-NH3 A

1. Add 2ml of sample to one Test N Tube vials and 2ml ammonia free water to another.

2. Add the contents of one ammonia salicylate reagent pillows to each vial.

3. Add the contents of one ammonia cyanurate reagents pillows to each vial.

4. Cap vials and shake thoroughly to dissolve powder.

5. Start the instrument timer (20min)

6. Put blank into the instrument and zero.

7. Put sample in and measure.

A.2 Chemical Oxygen Demand (COD)

Analysis by the closed reflux titrimetric method (standard method 5220C)

In environmental chemistry, the chemical oxygen demand (COD) test is commonly used to

indirectly measure the amount of organic compounds in water. Most applications of COD

determine the amount of organic pollutants found in surface water (e.g. lakes and rivers),

making COD a useful measure of water quality. It is expressed in milligrams per litre (mg/L),

which indicates the mass of oxygen consumed per litre of solution.
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COD is defined as the amount of a specified oxidant that reacts with the sample under con-

trolled conditions. The quantity of oxidant consumed is expressed in terms of oxygen equiv-

alence. The oxidant used is the dichromate ion (Cr2O2−
7 ) which is reduced to the chromic ion

(Cr3+). In the standard COD tests a mixture of potassium dichromate and sulfuric acid are

used to oxidise organic matter, with silver (Ag+) added as the catalyst. A simplified example

of this reaction is illustrated below.

Cr2O
2−
7 + 14H+ + 6e−

heat+Ag+

−−−−−−→ 2Cr3+ + 7H2O (A.1)

A known amount of a solution of potassium dichromate in moderately concentrated sulphuric

acid is added to a measured amount of sample and the mixture is boiled in air. In this reaction

the oxidising agent, hexavalent chromium is reduced to trivalent chromium. After boiling

the remaining hexavalent chromium is titrated against a reducing agent (ferrous ammonium

sulphate). The difference between the initial amount of chromium added to the sample and

the remaining chromium after the organic matter has been oxidised is proportional to the

COD.

A.3 Coliforms

To isolate and enumerate coliforms and E.coli from water samples the recommended stan-

dard method [Clesceri et al., 2005] deployed uses the membrane filter procedure with the

media Membrane Lauryl Sulphate Broth (MSLB). This method works on the basis that lac-

tose fermenting organisms produce yellow colonies on MLSB when incubated at 35◦C for

22 -24 h. Dilutions of sample performed in distilled water. These colonies are counted and

are known as thermotolerant coliforms, i.e. bacteria resembling and including E.coli. : Four

vials containing 9ml water were autoclaved at 120◦C for 20 minutes and allowed to cool. The

first vial was inoculated with 1ml E.coli sample and mixed thoroughly using a rotary mixer.

The second vial was then inoculated with 1ml of the new sample, mixed and the procedure

repeated to produce dilutions of 10−1, 10−2, 10−3 and 10−4. Petri dishes containing a sterile

Millipore pad soaked in membrane lauryl sulphate broth medium (MLSB) were prepared.

Using sterile filter membranes, 1ml of each neat, 10−1, 10−2, 10−3 and 10−4dilutions was

filtered using a pump and filter system. The Filter membranes were then placed on the MLSB

medium soaked pads, labeled and incubated at 35◦C for 22 -24 h.
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A.4 Dissolved Organic Carbon (DOC)

Dissolved organic carbon (DOC) is defined as the organic matter that is able to pass through

a filter (filters generally range in size between 0.7 and 0.22 um). DOC are important com-

ponents in the carbon cycle and serve as a primary food sources for aquatic food webs. In

addition, DOC alters aquatic ecosystem chemistries by contributing to acidification in low-

alkalinity, weakly buffered, freshwater systems. Furthermore, DOC forms complexes with

trace metals, creating water-soluble complexes which can be transported and taken up by or-

ganisms. Finally, organic carbon, as well as other dissolved and particulate matter, can affect

light penetration in aquatic ecosystems, which is important for the ecosystem’s phototrophs

that need light to subsist.

Procedure

Using the Hach kit for TOC analysis (following Heated-Persulfate Oxidation Method, Stan-

dard methods 5310 C) and TOC standards for precision.

1. Filter 10ml of the sample through a 0.45µm filter

2. Turn on the DRB200 reactor and select the TOC program

3. Pour the 10ml filtered sample into 50ml Erlenmeyer flask and add a flee

4. Add 0.4ml of the buffer solution (check pH is 2)

5. Place flask on stir plate and allow to stir on medium speed for 10min

6. Label 2 acid digestion vials with blank and sample

7. Use a filter funner to add contents of Persulfate pillow to each vial (colourless)

8. Add 3ml of organic free water to the blank vial and 3ml of the sample to sample vial.

9. Rinse 2 blue indicator ampules with deionised water and wipe clean

10. Lower one of the unopened ampules into the acid digestion vial. When the score marks

on the ampule is level with the top of acid digestion vial, snap the top off and allow it

to drop into the digestion vial.

11. Cap the vials and insert into DRB200 and close lid and start program (2h at 103-105◦C)

12. Remove vials from machine and place in testube rack, allow to cool (1h)

13. Select Organic Carbon test on spec. Insert the blank and zero the machine.

14. Insert sample and press read, note down reading.
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A.5 Nitrates (NO−3 )

In water and wastewater the forms of nitrogen of greatest interest are in order of decreas-

ing oxidation state; nitrate, nitrite, ammonia and organic nitrogen. All of these forms are

biochemically interconvertable and are components of the nitrogen cycle. Total oxidised ni-

trogen is the sum of nitrate and nitrite. Nitrate generally occurs in trace quantities in surface

waters but may attain high levels in some ground water. In excessive amounts it contributes

to the illness methemoglobinemia and due to this a limit of 10mg nitrate/L has been imposed

for drinking water. Nitrate is found only in small amounts in fresh domestic wastewater but

in the effluent of nitrifying biological treatment plants may be fond in concentrations up to

30mg/L.

Principle

NO−
3 is reduced almost quantitatively to nitrite (NO−

2 ) in the presence of cadmium (Cd).

This method uses commercially available Cd granules treated with copper sulphate. The

NO−
2 produced is determined by diazotizing with sulfanilamide and coupling with N-(1-

naphthyl)-ethylenediamine dihydrochloride to form a highly coloured azo dye that is mea-

sured colourmetrically.

Procedure: Performed using Hach Nitrate powder pillows (21061-69) method based on

Cadmium reduction (Standard Methods 4500-NO−
3 E)1

1. Measure 2 x 15ml of sample water

2. Add contents of NitraVer 6 Reagent Powder pillow to the sample. Put a stopper over

the sample and shake vigorously for 3min

3. Leave the sample to sit for 2min

4. Pour 10ml of the sample into a clean sample cell (not cadmium particles)

5. Add the contents of the NitriVer 3 Nitrite reagent powder pillow to the sample cell.

6. Cap the sample and shake for 30sec (Pink colour will develop) then leave for 15min

7. Fill another sample cell with 10ml of the original sample (for blank)

8. Insert blank and zero instrument (DR 2800)
1Note: Nitrate standard (0.4mg/L) were made to confirm accuracy
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9. Insert sample and press read, note down the results (mg/L NO−
3 -N) do 5 readings for

each sample and average.

A.6 Nitrites (NO−2 )

Procedure: Performed using Hach Nitrite powder pillows method based on Diazotiza-

tion method (Standard Methods 4500-NO−
2 B

1. Measure 2 x 10ml of sample water

2. Add the contents of the NitriVer 3 Nitrite reagent powder pillow to the sample cell.

3. Swirl bottle to help powder dissolve (Pink colour will develop) & leave for 20min

4. Fill another sample cell with 10ml of the original sample (for blank)

5. Insert blank and zero instrument (DR 2800)

6. Insert sample and press read, note down the results (mg/L NO−
2 -N) do 5 readings for

each sample and average.

A.7 pH: measured using the Hachs portable pH meter

pH will affect the bacteria present and will affect their activity as certain enzymes are affected

by pH, it will also give an idea of what kind of reactions are occurring in the water i.e.

nitrification will produce more alkaline pH.

A.8 Phosphate (PO3−
4 )

Phosphorus occurs in nature only in the form of chemical compounds, either as inorganic or-

thophosphate (HPO4
2−, H2PO4

−) or in organic compounds. Total phosphorus can be subdi-

vided into particulate phosphorus and soluble phosphorus. Furthermore, soluble phosphorus

can be divided into soluble reactive phosphorus and soluble unreactive phosphorus.

Particulate phosphorus consists of adsorbed, exchangeable phosphorus, organic phospho-

rus, precipitates, reaction products with Ca2+ , Fe2+ , Al3+ and other cations as well as
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crystalline minerals and amorphous phosphorus. The soluble form of phosphorus is nor-

mally though to consist of orthophosphate, inorganic polyphosphates and dissolved organic

phosphorus [Holtan et al., 1988]. The distribution of different species of orthophosphate

(H3PO4, H2PO4
−, HPO4

2−, or PO4
3−) is pH-dependent. A large part of the identified organic

phosphorus fraction is represented by inositol phosphates, phospholipids, nucleic acids, or-

ganic acids and phosphate esters. Organic phosphorus can be hydrolysed to inorganic forms

through chemical and/or biological reactions [Holtan et al., 1988] or by reactions driven by

UV-radiation. Phosphorus combined to biological material (bacteria, phytoplankton) can

comprise a large fraction of the total phosphorus in lake water.

Principle

Chemical phosphorus analysis has two steps: 1) conversion of phosphorus compounds to dis-

solved orthophosphate, and 2) colorimetric determination of the dissolved orthophosphate.

According to the Standard Methods, phosphorus is analysed by the ascorbic acid method,

where ammonium molybdate and potassium antimonyl tartrate react in an acid medium with

orthophosphate to form phosphomolybdic acid, which then reacts with ascorbic acid forming

the coloured compound molybdenum blue, which can be analysed with a spectrophotometer.

Procedure: Following Hach protocol based on Standard Methods 4500-P E: Ascorbic

Acid Method

1. Make a 2mg/L standards to test accuracy (process as if sample).

2. Fill a sample cell with 10ml of sample

3. Add contents of one PhosVer 3 phosphate pillow to the sample and shake vigorously

for 30sec

4. Fill another cell with 10ml (Blank)

5. Put the blank into the cell and zero instrument

6. Put sample in and press read, note down the measurement.
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A.9 Specific Ultraviolet Absorption (SUVA)

The SUVA calculation requires both the DOC and UVA measurement. The SUVA is cal-

culated by dividing the UV absorbance of the sample (in cm−1) by the DOC of the sample

(in mg/L) and then multiplying by 100 cm/M. SUVA is reported in units of L/mg-M. A high

SUVA indicates that a large portion of the organics present in the water are aromatic. Since

aromatic organics have a greater tendency to react with disinfectants to create DBPs, a high

SUVA indicates there is a high potential for the formation of DBPs.

SUV A (L/mg-M) =
UV A(cm−)

DOC(mg/L)
× 100cm/M (as metre means x 10)

UV ACalculation : UV A = A/d

where:

UVA = The calculated UV absorbance of the sample

A = The measured UV absorbance of the sample

d = The quartz cell path length

(A.2)

A.10 Temperature

Temperature effects the type of bacteria present and the level of their activity. This was

measured in the field (at the filter site, in the filters) by inserting digital logging devices

equipped with a thermometer into the filter and reading the temperature.

A.11 Total Viable bacteria

To be performed on Plate Count Agar (PCA) following the method of Bahgat et al. [1999],

Lautenschlager et al. [2010]. Briefly, dilutions of the sample (total 1ml) are aliquoted and

spread onto the media and left to grow for 3d at 30◦C, colonies are counted after this time.

A.12 Turbidity

Turbidity in water is caused by suspended and colloidal matter such as clay, silt, finely di-

vided organic and inorganic matter, and plankton and other microscopic organisms. Tur-
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bidity is an expression of the optical property that causes light to be scattered and absorbed

rather than transmitted with no change in direction or flux level through the sample. His-

torically, the standard method for determination of turbidity has been based on the Jackson

candle turbidimeter; however, the lowest turbidity value that can be measured directly on this

device is 25 Jackson Turbidity Units (JTU). Because turbidities of water treated by conven-

tional fluid-particle separation processes usually fall within the range of 0 to 1 unit,indirect

secondary methods were developed to estimate turbidity. Electronic nephelometers are the

preferred instruments for turbidity measurement. Its precision, sensitivity, and applicability

over a wide turbidity range make the nephelometric method preferable to visual methods.

Report nephelometric measurement results as nephelometric turbidity units (NTU).

Principle: Based on American Public Health Association protocol 2130 B.

This method is based on a comparison of the intensity of light scattered by the sample under

defined conditions with the intensity of light scattered by a standard reference suspension

under the same conditions. The higher the intensity of scattered light, the higher the turbid-

ity. Formazin polymer is used as the primary standard reference suspension. The turbidity

of a specified concentration of formazin suspension is defined as 4000 NTU.

Procedure

1. Nephelometer calibration: Follow the manufacturers operating instructions. Run at

least one standard in each instrument range to be used. Make certain the nephelometer

gives stable readings in all sensitivity ranges used.

2. Measurement of turbidity: Gently agitate sample. Wait until air bubbles disappear and

pour sample into cell and measure turbidity (on Turbidimeter 2100N Hach)

A.13 UV254nm

The UVA procedure requires that the sample be passed through a 0.45µl filter and transferred

to a quartz cell. It is then placed in a spectrophotometer to measure the UV absorbance at

254 nm and is reported in cm−1, Zheng et al. [2010] provides useful interpretation advice.
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Appendix B

16S rRNA Clone Library Construction

Sand sample

In order to investigate the sand filter associated bacterial diversity, different levels of a core

from a sand filter (Fairmilehead) were mixed together for total genomic DNA extraction. For

an overview of the processing involving in creating a clone library see Figure B.1

DNA Extraction

This procedure has been optimised for sand / sediment samples using MP BIO FastDNA

Spin Kit for soil (6560-200)

1. Add up to 500mg of soil to a Lysing matrix E tube.

2. Add 978µl Sodium Phosphate buffer to the sample tube

3. Add 122µl MT buffer

4. Homogenise in the FastPrep machine for 30s at speed setting 6.0

5. Centrifuge at 13,000g for 10 min to pellet debris.

6. Add 250µl PPS to clean 2.0ml microcentrifuge tube and transfer supernatant into. Mix

by inverting by hand 10x.

7. Centrifuge at 14000g for 5min to pellet precipitate. Transfer supernatant to a clean

2ml tube.

8. Add 1ml binding matrix suspension to supernatant in 2ml tube.
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9. Invert by hand for 2min to allow DNA binding.

10. Place tubes in a rack for 3min to allow silica matrix to settle.

11. Remove and discard 600µl of supernatant

12. Resuspend binding matrix (shake) in the remaining amount of supernatant and transfer

600µl of mixture to Spin Filter and centrifuge at 14000g for 1min.

13. Empty catch tube and turn filter to prevent clogging, add remaining mixture to the filter

and recentrifuge as before and empty.

14. Add 500µl of SEWS-M (remember to have added 100ml 100% ETOH to the bottle)

to the tube to resuspend the pellet.

15. Centrifuge at 13000g for 1min and empty catch tube.

16. Centrifuge again at 13000g for 2min without any liquid being added.

17. Remove filters and put in kit supplied catch tubes, allow to air dry the filter for 5min

at RT

18. Gently re-suspend binding matrix (above spin filter) in 50l DNase pyrogen free water

(pipette into centre of filter).

19. Centrifuge at 13000g for 1min to bring eluted DNA into clean catch tube. Discard spin

filter.

20. Qubit

21. Run 5µl of DNA extract with 2µl loading buffer on a gel to check purity.

22. Run at 100v for 50min.

23. Store DNA extraction in -20 freezer until needed for PCR

Always best to run extractions on a 1% gel (1g agarose to 100ml TAE or TBE + 1µl /

10ml sybr safe), to do load 7.5µl (5µl template mixed with 2.5µl

PCR Amplification

Amplification of the 16s rRNA was performed by pulling the DNA extracted from 10 sepa-

rate 500mg samples of Sand with the Universal prokaryotic 16S primers:

27F (5’-GAGTTTGATCCTGGCTCAG-3’) and 1392R (5’-ACGGGCGGTGTGTRC-3’).

The amplification reaction consisted of
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2µl (200ng) DNA template (1:10 dilution)

25µl Bioline PCR Mix

1µl each primer (12.5pmol each)

21µ Water

Total Volume 50µl

The amplification was carried out using the following conditions: initial denaturation (95◦C

for 5 min) followed by 30 cycles of denaturation (94◦Cfor 1min), annealing (62◦C for 1min),

and extension (72◦C for 1min) and a final extension of 72◦C for 10 min [McHugh et al.,

2004]. All 10 separate amplifications were pooled and then purified using QIAquick PCR

Purification Kit.

PCR Product Clean-Up

The PCR product was run on a 1% gel and checked for purity. The PCR products were then

purified using the QIAquick PCR Purification Kit (250 reactions)

Important points before starting

• Add ethanol (96-100%) to Buffer PE before use (see bottle label for volume).

• All centrifugation steps are carried out at 17,900 x g (13,000 rpm) in a conventional

tabletop microcentrifuge at room temperature.

• Add 1:250 volume pH indicator I to Buffer PB (i.e., add 120 µl pH indicator I to 30

ml Buffer PB or add 600µl pH indicator I to 150 ml Buffer PB). The yellow color of

Buffer PB with pH indicator I indicates a pH of 7.5.

• Add pH indicator I to entire buffer contents. Do not add pH indicator I to buffer

aliquots.

• If the purified PCR product is to be used in sensitive microarray applications, it may

be beneficial to use Buffer PB without the addition of pH indicator I.

Procedure

1. Add 5 volumes of Buffer PB to 1 volume of the PCR sample and mix. It is not nec-

essary to remove mineral oil or kerosene. (For example, add 500 µl of Buffer PB to

100µl PCR sample (not including oil)).
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2. If pH indicator I has been added to Buffer PB, check that the colour of the mixture is

yellow. If the colour of the mixture is orange or violet, add 10µl of 3 M sodium acetate

pH 5.0, and mix. The colour of the mixture will turn to yellow.

3. Place a QIAquick spin column in a provided 2 ml collection tube. 4.To bind DNA,

apply the sample to the QIAquick column and centrifuge for 30-60 s. 5. Discard flow-

through. Place the QIAquick column back into the same tube. Collection tubes are

re-used to reduce plastic waste.

4. To wash, add 0.75 ml Buffer PE to the QIAquick column and centrifuge for 30-60s.

5. Discard flow-through and place the QIAquick column back in the same tube. Cen-

trifuge the column for an additional 1 min.

IMPORTANT: Residual ethanol from Buffer PE will not be completely removed un-

less the flow-through is discarded before this additional centrifugation.

6. Place QIAquick column in a clean 1.5 ml microcentrifuge tube.

7. To elute DNA, add 50µl Buffer EB (10 mM TrisCl, pH 8.5) or water (pH 7.0-8.5) to the

center of the QIAquick membrane and centrifuge the column for 1 min. Alternatively,

for increased DNA concentration, add 30µl elution buffer to the centre of the QIAquick

membrane, let the column stand for 1 min, and then centrifuge.1

8. If the purified DNA is to be analysed on a gel, add 1 volume of Loading Dye to 5

volumes of purified DNA. Mix the solution by pipetting up and down before loading

the gel.

Library construction

Cloning PCR Product into Vectors for Sequencing

Cloning will be performed using the TOPO TA kit (K4575-02 Invitrogen)

Making Kanamycin stock
1Elution efficiency is dependent on pH. The maximum elution efficiency is achieved between pH 7.0 and

8.5. When using water, make sure that the pH value is within this range, and store DNA at 20◦C as DNA may

degrade in the absence of a buffering agent. The purified DNA can also be eluted in TE buffer (10 mM TrisCl,

1 mM EDTA, pH 8.0), but the EDTA may inhibit subsequent enzymatic reactions.
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Kanamycin is usually made at a stock of 50µg/ml (1mg/ml = 1µg / µl).Dissolve 1g of KAN

into 20mL of ddH2O and syringe filter into 0.45µl and aliquot into 1ml eppendorf tube and

freeze at -20◦C.

Making the LB-Agar Plates with Kanamycin

1. 10g Trypton

2. 5g yeast extract

3. 10g NaCl2

4. 950ml ddH2O

5. 15g Agar

6. Adjust pH with NaOH to 7.3

7. Autoclave

8. Once cooled to touch add 1ml Kanamycin (50mg/ml) using sterile technique to the

media and pour plates sterilely and store at 4◦C

Making LB with Kanamycin

In order to make the LB broth follow the procedure above except omit the agar.

Cloning PCR product into Vector using TOPO TA Kit

Add the following ingredient together

1. 2µl PCR product

2. 1µl Salt solution

3. 1µl TOPO Vector

4. 2µl Water

5. 6µl Final Volume

6. Note should use the control template amplified with appropriate primers to test effi-

ciency.

7. Incubate at room temperature (22-25◦C) for 30min

8. Place reaction on ice and proceed to transformation

9. NB reaction can be stored at -20◦C if necessary
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Transforming One Shot TOP 10

1. Thaw TOP10 cells on ice

2. Add 2µl of TOPO cloning reaction to a vial of TOPO10 competent cells and mix

gently (Flick the tube gently, don’t pipette up and down).

3. Incubate on ice for 30min

4. Heat shock the cells for 30sec at 42◦C (without shaking).

5. Immediately transfer tubes to ice

6. Add 250µl of room temperature S.O.C medium

7. Cap the tubes tightly and shake the tubes horizontally (200rpm) at 37◦C for 1hour.

8. Spread 100µl of mixture on each plate and spread using a glass spreader. Additionally

spread the remaining 150µl

9. Incubate at 37◦C overnight

10. An efficient TOPO cloning reaction should produce several hundred colonies, pick 150

(white) for analysis and proceed to analysing transformants.

Analysing Transformants

Pick 150 colonies (growth of E.coli has Kanamycin resistance gene and insert in vector has

spliced the ccd gene (lethal) which is fused to the C-terminus of LacZ) and culture in 200µl

of LB broth (produces as above) overnight at 37◦C in 96 well nunc plates2

Amplification of Insert in Transformants

Amplification products, generated using the vector-specic primers

M13F (5’GTTTTCCCAGTCACGAC-3’) and M13R (5’-CAGGAAACAGCTATGAC-3’),

were obtained from clones following the same recipe as before with 2µl of the overnight

culture as the template source. 2µl of each sample were analysed on a 1% agarose gel and

only inserts of the correct size were subjected to digestion.

2Remember to make a copy plate which contains LB broth with 15% glycerol for long term storage. Mix

0.85 ml of culture with 0.15 ml of sterile glycerol and transfer to a cryovial and store at -80C. Alternatively fill

the wells of a 96 well plate up with 200µl of LB + ampicillin + 15% glycerol and transfer a loopful of each

clone into the wells.
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Digestion

ARDRA (Amplified Ribosomal DNA Restriction Analysis)

Digested using the tetrameric restriction endonuclease HaeIII (Promega) at 37◦C 4h follow-

ing the manufacturers protocol:

sterile, deionized water 7.3µl (change depending on template concentration)

RE 10X Buffer 2µl

Acetylated BSA, (10µg/µl) 0.2µl

DNA, (1µg/µl) 10µl

Mix by pipetting, then add: Restriction Enzyme, (10µg/µl) 0.5µl

final volume 20µl

We will digest the remaining M13 amplified amplicon (48µl)

Resultant DNA fragments (ran all 20µl) were separated electrophoretically in 0.7% TAE

high-resolution agarose gels, containing syber safe. Operational taxonomic units (OTUs)

were identified, based on restriction cleavage patterns and clones representing the OTUs

selected for sequencing. Using the Quick Plasmid Miniprep Kit kit plasmid DNA from

overnight cultures of different OTUs were prepared and sent for sequencing.

Plasmid purification

Before Starting: Overnight cultures of the selected clones are to be grown in 3ml of LB

broth + kanamycin (in falcon tubes).

• Add RNase A to Resuspension Buffer (R3) according to instructions on the label. Mix

well. Mark on the label that RNase A is added. Store buffer at 4◦C.

• Add 96 - 100% ethanol to Wash Buffer (W9) and Wash Buffer (W10) according to

instructions on each label. Mix well. Mark on the labels that ethanol is added. Store

both wash buffers with ethanol at room temperature.

• If the Lysis Buffer (L7) contains salt precipitates, warm the buffer in a 37◦C water bath

for a few minutes until precipitates dissolve. Do not shake the buffer.

Preparing Cell Lysate
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1. Pellet 1-5 ml of an overnight culture. Thoroughly remove all medium from the cell

pellet.

2. Completely resuspend the pellet in 250µl Resuspension Buffer (R3) with RNase A.

No cell clumps should remain.

3. Add 250µl Lysis Buffer (L7) to cells. Mix gently by inverting the capped tube 5 times.

Do not vortex.

4. Incubate the tube for 5 minutes at room temperature. Do not exceed 5 minutes.

5. Add 350µl Precipitation Buffer (N4). Mix immediately by inverting the tube until the

solution is homogeneous. For large pellets shake more vigorously. Do not vortex.

6. Centrifuge the mixture at 12,000 x g for 10 minutes at room temperature using a

microcentrifuge to clarify the lysate from lysis debris.

7. Load the supernatant from Step 6 onto a Spin Column.

8. Place the Spin Column with supernatant from Step 7 of Preparing Cell Lysate (front

page) into a 2-ml Wash Tube.

9. Centrifuge at 12,000 x g for 1 minute. Discard the flow- through and place the column

back into the Wash Tube.

10. Add 500µl Wash Buffer (W10) with ethanol to the column. Incubate for 1 minute at

room temperature. Centrifuge at 12,000 x g for 1 minute. Discard the flow-through

and place column back into the Wash Tube.

11. Add 700µl Wash Buffer (W9) with ethanol to the column.

12. Centrifuge the column at 12,000 x g for 1 minute. Discard the flow-through and place

the column back into the Wash Tube.

13. Centrifuge the column at 12,000 x g for 1 minute to remove any residual Wash Buffer

(W9). Discard the Wash Tube with the flow-through.

14. To Elute DNA place the Spin Column in a clean 1.5-ml Recovery Tube.

15. Add 75µl of preheated TE Buffer (TE) to the centre of the column.

16. Incubate the column for 1 minute at room temperature.

17. Centrifuge at 12,000 x g for 2 minutes.

18. The Recovery Tube contains your purified plasmid DNA. Discard the column.
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Appendix C

Stable Isotope Probing (SIP)

SIP Protocol: adapted from Neufeld et al. [2007]

Reagents

TrisHCl (1 M, pH 8.0) Dissolve 121.1 g Tris base in 800 ml of milliQ water. Adjust to pH

8.0 with HCl and add milliQ water to make up the volume to 1.0 litre.

70% ethanol

GB Add 50ml of 1MTrisHCl, 3.75g KCl and 1ml of0.5M EDTA to 400ml of milliQ water.

Dissolve KCl, then add milliQ water to 500 ml. Filter-Sterilise (0.2 µm). Autoclave. The

final solution is 0.1 M Tris, 0.1 M KCl and 1 mM EDTA.

TE buffer: Prepare a solution of 10 mM TrisHCl (pH 8.0) and 1 mM EDTA (pH 8.0) in

milliQ water. Autoclave.

CsCl solution: Combine 250 ml of water with 250 g CsCl (this solution is referred to as 1 g

ml−1). Warming the solution to 30 1C can help dissolve the CsCl. Store solution in sealed

aliquots (to prevent evaporation and crust formation around bottle caps). The final density of

this solution, once combined with EtBr, is cited as being 1.55 g ml−1

PEG solution: Combine 150 g of polyethylene glycol 6000 with 46.8 g NaCl. Dissolve in

milliQ water to a total volume of 500 ml. Filter-sterilize (0.2 mm). Autoclave. The solution

is 30% PEG 6000 and 1.6 M NaCl.

TE-saturated 1-butanol: Add TE to 100 ml of 1-butanol with intermittent mixing until two

phases form. Butanol is less dense and becomes the upper phase.

Method
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1. Extract DNA and quantify

2. Mix a volume of DNA (510 ηg) with GB to a final volume of 1.2 ml in a 15-ml screw-

cap tube.

3. The mixed volume of GB/DNA will vary depending on the density of the CsCl stock

solution. The volume of GB/DNA mix to be added to the CsCl stock solution can be

calculated using the following formula:

V olume = ((CsCl stock density - desired final density) × (CsCl volume added)× 1.52)

(C.1)

4. In a 15-ml screw-cap tube, combine 4.80 ml of CsCl stock solution and the 1.20 ml

GB/DNA solution. CRITICAL STEP: Before using the CsCl stock, ensure that a

precipitate of CsCl has not formed in the bottom of the bottle. If some precipitation has

occurred, shaking the bottle for several minutes dissolves the CsCl back into solution

5. Mix by gentle inversion

6. Slowly add the mixture to an ultracentrifuge tube with a Pasteur pipette or a syringe

and needle. CRITICAL STEP: Solution should be flush with the base of the tube

neck. Tubes should be balanced to within 10mg.

7. Seal the tube with a heat sealer (POSSIBLE PAUSE POINT, DNA STABLE IN CsCl

FOR WEEKS) and place tubes in the rotor with balanced pairs opposite each other.

Make sure caps are tightly screwed on and check they are hanging ok by pulling down

on the buckets.

8. Spin conditions are 44,100 rpm in the AH-650 swinging rotor at 20◦C for 40 h with

vacuum, maximum acceleration and without brake.

9. Carefully remove tubes from rotor with forceps and place in rack

10. Prepare the top displacement gradient fractionator by connecting tubing into the frac-

tionator hood to a HPLC pump drawing from mineral oil. Prime the line until a single

drop emerges out of the fractionator hood.

11. Place centrifuge tube in fraction recovery system. Lower the fraction recovery top onto

the top of the open tube, ensuring tight seal, and lock in position

12. Pierce bottom of tube by inserting fraction collection needle
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13. Set pump to 500µL/min (2.0 on pump), switch on and start a stop watch. Collect a

fraction every 30 secs in a sterile 1.5ml tube.

14. Clean fractionators by removing hood and pipetting 2ml of 0.1m NaOH, then 2ml

absolute ethanol through tube

15. Check density of fractions using a refractometer

16. Precipitate DNA by adding 10µl glycogen (5mg/ml) for every 150µl of DNA and 2

volumes of PEG (Glycogen help to recover low DNA concentrations). Mix well by

inversion.

17. Leave at RT for 2h to precipitate DNA (can store overnight at this stage if necessary)

18. Centrifuge at 13000g for 5 min, discard supernatant.

19. Wash with 500µl of 70% ETOH

20. Centrifuge at 13000g for 5 min and remove supernatant and allow to air dry for at least

15 min

21. Resuspend pellet in 30µl sterile water

22. 1µL of each sample will then be used for 16s, 18s and E.coli specific qPCR assays

23. Based on density and qPCR results a heavy (13C) and a light (12C) fraction will be

chosen for each time point and used for metagenomic library creation (Nextera XT)
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Appendix D

Calculating the Importance of Protozoa

and Viruses in E.coli Removal

All calculations are based on the SIP data up to 4h as this is the longest doubling time of one

of the protozoa. These calculations are approximations and based on the following several

assumptions1.

• Protozoa 1 (P1) - Monosiga brevicollis; grazing rate (gr1) = 196 bacteria/ h,

genome size = 41.6MB

• Protozoa 2 (P2) - Tetrahymena; grazing rate (gr2) = 1161 bacteria/ h,

genome size = 104MB

• Virus 1 - Enterobacteria Phage Lambda; burst size (bs) = 161viruses/ h,

genome size = 48KB

E.coli was fed to the system at 300cfu/ml at flow rate of 0.15m3m−2h−1 corresponding to

850ml = 255000 E.coli. After 4h only 750cfu left - therefore 254,249 E.coli removed (=E1)

X = # Total organisms in the population

1These calculations were formulated with the assistance of Melanie Schirmer, University of Glasgow
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Protozoa 1

P1Lab(Proportion of labelled protozoa 1) =
Number of reads for labelled protozoa 1

Total number of reads
(D.1)

= 109706/3653980 = 0.0300237

To account for the differences in genome size (P1 genome size is 867 times larger than V1

genome) normalisation is performed as follows:

N-P1Lab = P1Lab / 867 = 0.0000346

X.P1Lab: Labelled P1

P1Prot: Proportion of significant labelled protozoa made up by protozoa 1

P1Prot: = 109706/256425 = 0.4278288 or 42.78288%

E1: number of E.coli eaten by P1

After 4h Protozoa 1 will have eaten 4 × gr1 (gr1 = grazing rate) E.coli. We assume that

only 50% of the new carbon must be labeled to cause a density change in the protozoa and

hence become labeled. Thus we multiply by half.

E1e =
4× gr

2

E1e = 392 (D.2)

P1P =
109706.33

1850465

P1P = 0.05928 (5.93%) (D.3)

α1: In order to account for 2 protozoa species competing for E.coli we must average, there-

fore each protozoa gets 50% of the E.coli.

α1 =
50

P1Prot

(D.4)

α1 = 1.1686918 (D.5)
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Therefore the number of labelled E.coli eaten by protozoa 1:

α1(X × N-P1Lab1 × E1) = 0.0158512×X

(D.6)

Protozoa 2 Variable Names

Analogous for protozoa 2, we get:

P2Lab(Proportion of labelled protozoa 2) =
Number of reads for labelled protozoa 1

Total number of reads
(D.7)

= 8461 / 3653980 = 0.0023156 (0.23%)

Normalised by genome size (P2 genome is 2,167 times larger than V1 genome).

N-P2Lab = P2Lab / 2167 = 0.0000011

X.P2Lab: Labelled P2

P2Prot: Proportion of all significant protozoa made up by protozoa 2

P2Prot: = 8461/256425 = 0.03299600 (3.299600%)

E2: number of E.coli eaten by P2

After 4h Protozoa 2 will have eaten 4 × gr2 (gr2 = grazing rate) E.coli. We assume that

only 50% of the new carbon must be labeled to cause a density change in the protozoa and

hence become labeled. Thus we multiply by half.

E2e =
4× gr

2

E2e = 2322 (D.8)

α2: In order to account for 2 protozoa species competing for E.coli we must average, there-

fore each protozoa gets 50% of the E.coli.

α2 =
50

P2Prot

(D.9)

α2 = 15.1533519 (D.10)
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Therefore the number of labelled E.coli eaten by protozoa 2:

α2(X × N-P2Lab2 × E2) = 0.0387047×X

(D.11)

Virus 1 Variable Names

X = number of organisms in the population

V 1Lab(Proportion of labelled virus 1) =
Number of reads for labelled virus 1

Total number of reads
(D.12)

= 24378 / 3653980 = 0.0066716

X.V1Lab: Labelled V1

bs: Burst size (161 viruses / h)

V1vir =
labeled V1

All significant labeled viruses
(D.13)

= 24378 / 44339 = 0.5498094 (54.98094%)

β: Multiplication factor to approximate the whole virus population with V1:

β = 100/V1vir

= 1.8188121

Therefore the number of labelled E.coli lysed by all viruses:

β(X × V1Lab

bs
) = 0.0000754 (D.14)

Final Calculation

As 254,249 E.coli are known to be removed after four hours by the system and assuming that

this is achieved collectively by protozoa 1, protozoa 2 and virus 1 the following calculations

can be used to approximate the proportion of E.coli removed by each organism.
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(α1(X × N-P1Lab2 × E1)) + (α2(X × N-P2Lab2 × E2e)) + (β(X × V1Lab

bs
)) = 254249

0.0546313×X = 254249

X = 4653907.1923970

(D.15)

Therefore replacing X with the solved number for each organism and adjusting for the

proportion they make-up of their community we can conclude:

P1 =
0.0158512×X

α1

P1 = 63121.8715560 ≈ 63, 122 E.coli (D.16)

P2 =
0.0387047×X

α2

P2 = 11887.0123693 ≈ 11, 888 E.coli (D.17)

V 1 =
0.0000754×X

β

V 1 = 192.9306509 ≈ 193 E.coli (D.18)

Therefore based on the above assumptions P1 approximately removes 326 times more E.coli

than V1 and 5.3 times more than P2. Overall P1 accounts for 24.83% of the removal, P2

accounts for 4.68% and V1 0.08%.

All significant protozoa v.s. all significant phages:

Protozoa: 0.0158512X + 0.0387047X = 0.0545559X

Viruses : 0.0000754X

Thus Protozoa consumed 253,898.0953977 ≈ 253,899 E.coli and

Viruses consumed 350.9046023 ≈ 351 E.coli

Therefore based on the approximations:

All significant protozoa collectively remove 254,193 (99.86%) E.coli

All significant viruses collectively remove 57 (0.14%) E.coli


