
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Pollock, Andrew George (2014) Optimal algorithm design for transfer
path planning for unmanned aerial vehicles. PhD thesis.

http://theses.gla.ac.uk/5485/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/5485/

Optimal Algorithm Design for Transfer

Path Planning for Unmanned Aerial

Vehicles

by

Andrew George Pollock

A thesis submitted in partial fulfilment for the

degree of Doctor of Philosophy

in

Aerospace Sciences Research Division

School of Engineering

September 2014

©Andrew George Pollock , 2014

Abstract

Aerospace Sciences Research Division

School of Engineering

Doctor of Philosophy

by Andrew George Pollock

Over the past three decades unmanned aerial vehicles (UAV) have seen significant de-

velopment with a current focus on automation. The main area of development that

is pushing automation is that of path planning allowing a UAV to generate its own

path information that it can then follow to carry out its mission. Little work however

has been carried out on transfer path planning. This work attempts to address this

shortcoming by developing optimal algorithms for a path planning task to move on to a

circular flightpath to carry out a target tracking mission.

The work is developed in three main sections. Firstly the transfer algorithm itself is

derived including gradient analysis for the cost function being applied, adaptation of

this cost function into two separate minimising actions and analysis of a cost function

issue that introduces a separation distance constraint. The algorithm is tested proving

correct constraint activation and cost selection. The second part of this work looks

at validating the results of the transfer algorithm against the Dubin’s car result and a

receding horizon approach when applied to the transfer operation. Utilising the cost

results from the transfer algorithm an efficiency analysis against the equivalent costs

from the other methods is carried out. Lastly this work looks at the comparison between

the developed transfer algorithm and a more flexible transfer approach by developing a

new cost function form. A switching cost function is introduced where environmental

parameters from the target tracking mission (i.e target position and velocity) are used to

switch between a number of applicable cost functions (time minimal, distance minimal

and minimum speed transfer). An analysis is carried out to investigate the performance

of both the original algorithm and the newly developed switching function based on key

target tracking parameters . . .

Declaration of Authorship

I, Andrew George Pollock, declare that this thesis titled, ‘Optimal Algorithm Design for

Transfer Path Planning for Unmanned Aerial Vehicles’ and the work presented in it are

my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

ii

09 September 2014

”I love deadlines. I especially like the whooshing sound they make as they go flying by.”

Dilbert (by Scott Adams)

Acknowledgements

My thanks goes to my supervisors Dr. Jongrae Kim and Dr. Euan McGookin for their

continued guidance and support throughout this research, as it would never have began

without them and certainly never continued to its completion without their technical

expertise and their ability to listen to me rant.

In addition I would like to thank the Aerospace Sciences Division within the School of

Engineering at the University of Glasgow as without them this research would not have

been possible. I would also like to thank the EPSRC for their funding of this work.

I would also like to thank Dr Dave Anderson and Dr Douglas Thomson for their guidance,

assistance, support and advice throughout this project.

A huge thank you goes to my family, my mum, Elizabeth Pollock and dad, George

Pollock for believing in me and for the support and encouragement they have given

throughout this work.

A final special thanks goes to Keith Armstrong, without whom this work would of never

been finished. For his ability to cheer me up when I am down and to give me a kick

when I’m being stupid. . .

iv

Contents

Abstract i

Declaration of Authorship ii

Acknowledgements iv

List of Figures ix

List of Tables xii

Abbreviations xiii

Symbols xiv

1 Introduction 1

1.1 Preface . 1

1.2 UAV autonomy and the importance of path planning 2

1.3 Why transfer path planning? . 3

1.4 Objectives . 3

1.5 Contribution to the field . 3

1.6 Thesis Structure . 4

2 Background and Literature Review 6

2.1 Introduction . 6

2.2 UAV History . 6

2.2.1 Early Development . 6

2.2.2 World War I and II . 7

2.2.3 1950s and the Vietnam War . 8

2.2.4 1970s to present day . 9

2.3 UAV terminology and examples . 10

2.4 Brief History of Path Planning . 13

2.5 Target Tracking Scenario in Detail . 14

2.6 Path Planning methods . 17

2.6.1 Potential Field . 17

2.6.2 Monte-Carlo Simulations . 18

v

Contents vi

2.6.3 Branch and Bound . 18

2.6.4 Genetic Algorithm . 21

2.6.5 Two-Point Boundary Value Problem(TPBVP/TPBV) 22

2.6.5.1 Necessary Conditions with Unconstrained Control Inputs 23

2.6.5.2 Necessary Conditions with Constrained Control Inputs
(Pontryagin’s Minimum Principle) 27

2.6.5.3 Boundary Condition Derivation 30

2.6.5.3.1 Fixed Final Time Problems 30

2.6.5.3.2 Free Final Time Problems 33

2.6.6 Receding Horizon . 34

2.7 Importance of the work in this thesis . 38

3 Algorithm Construction and Testing 40

3.1 Introduction . 40

3.2 Initial Problem Formulation . 40

3.2.1 UAV Equations . 40

3.2.2 UAV Constraints . 42

3.2.3 Choosing the basic form of the cost function 44

3.2.3.1 Path Length Derivation 44

3.2.4 Form of the Optimal Control Problem 45

3.3 Two Point Boundary Value(TPBV) Problem 46

3.3.1 Hamiltonian Generation . 46

3.3.2 Hamiltonian Control Considerations 48

3.3.3 TPBV Problem Boundary Conditions 53

3.3.4 Problems Coding the TPBV problem 57

3.4 Shooting Method Algorithm . 58

3.4.1 Preparing the cost function for algorithm use 58

3.4.2 Problems with a single optimising action 61

3.4.3 Using a Split Optimiser . 62

3.4.3.1 Cost function with f(t) = ẋ2 + ẏ2 64

3.4.3.2 Cost function with f(t) =
√
ẋ2 + ẏ2 65

3.4.3.3 Applying the outer cost function 65

3.4.4 Testing the Algorithm . 69

3.5 Summary . 72

4 Comparing Shooting Results to Similar Path Planning Methods 74

4.1 Introduction . 74

4.2 Viable Paths for Comparison . 75

4.3 Dubin’s Comparison . 76

4.4 Receding Horizon Comparison . 78

4.5 Summary . 81

5 Comparison of the Shooting Transfer Against a Flexible Transfer Case 82

5.1 Introduction . 82

5.2 Switcher Design . 83

5.3 Defining the Performance Measures and Comparing the Transfer Algorithms 88

5.4 Summary . 91

Contents vii

6 Conclusions and Further Work 92

6.1 Conclusions . 92

6.2 Further Work . 96

6.2.1 Hamiltonian . 96

6.2.2 Shooting Method Algorithm . 96

6.2.3 Result Comparison . 97

6.2.4 Switching Cost Function Applications 97

A Plots of the Single Optimiser Gradient Issue 99

A.1 Gradient comparison for -75° . 99

A.2 Gradient comparison for -60° . 100

A.3 Gradient comparison for -45° . 100

A.4 Gradient comparison for -30° . 101

A.5 Gradient comparison for -15° . 101

A.6 Gradient comparison for 0° . 102

A.7 Gradient comparison for 15° . 102

B Plots of Shooting Method Algorithm Tests 103

B.1 Figures for an exit angle of -75° . 103

B.1.1 Path Map . 103

B.1.2 Velocity Magnitude Profiles . 104

B.1.3 Control History Profiles . 104

B.1.4 Path Curvature Conditions . 105

B.1.5 Path Cost Function Curve . 105

B.2 Figures for an exit angle of -60° . 106

B.2.1 Path Map . 106

B.2.2 Velocity Magnitude Profiles . 106

B.2.3 Control History Profiles . 107

B.2.4 Path Curvature Conditions . 107

B.2.5 Path Cost Function Curve . 108

B.3 Figures for an exit angle of -45° . 108

B.3.1 Path Map . 108

B.3.2 Velocity Magnitude Profiles . 109

B.3.3 Control History Profiles . 109

B.3.4 Path Curvature Conditions . 110

B.3.5 Path Cost Function Curve . 110

B.4 Figures for an exit angle of -30° . 111

B.4.1 Path Map . 111

B.4.2 Velocity Magnitude Profiles . 111

B.4.3 Control History Profiles . 112

B.4.4 Path Curvature Conditions . 112

B.4.5 Path Cost Function Curve . 113

B.5 Figures for an exit angle of -15° . 113

B.5.1 Path Map . 113

B.5.2 Velocity Magnitude Profiles . 114

B.5.3 Control History Profiles . 114

Contents viii

B.5.4 Path Curvature Conditions . 115

B.5.5 Path Cost Function Curve . 115

B.6 Figures for an exit angle of 0° . 116

B.6.1 Path Map . 116

B.6.2 Velocity Magnitude Profiles . 116

B.6.3 Control History Profiles . 117

B.6.4 Path Curvature Conditions . 117

B.6.5 Path Cost Function Curve . 118

B.7 Figures for an exit angle of 15° . 118

B.7.1 Path Map . 118

B.7.2 Velocity Magnitude Profiles . 119

B.7.3 Control History Profiles . 119

B.7.4 Path Curvature Conditions . 120

B.7.5 Path Cost Function Curve . 120

B.8 Figures for an exit angle of 30° . 121

B.8.1 Path Map . 121

B.8.2 Velocity Magnitude Profiles . 121

B.8.3 Control History Profiles . 122

B.8.4 Path Curvature Conditions . 122

B.8.5 Path Cost Function Curve . 123

B.9 Figures for an exit angle of 45° . 123

B.9.1 Path Map . 123

B.9.2 Velocity Magnitude Profiles . 124

B.9.3 Control History Profiles . 124

B.9.4 Path Curvature Conditions . 125

B.9.5 Path Cost Function Curve . 125

B.9.6 Velocity Magnitude Profiles . 126

B.9.7 Control History Profiles . 126

B.9.8 Path Curvature Conditions . 127

B.9.9 Path Cost Function Curve . 127

C Contour Plots Of The Receding Horizon Algorithm 128

C.1 Cost Contours for -75°Exit Angle . 128

C.2 Cost Contours for -60°Exit Angle . 129

C.3 Cost Contours for -45°Exit Angle . 129

C.4 Cost Contours for -30°Exit Angle . 130

C.5 Cost Contours for -15°Exit Angle . 130

C.6 Cost Contours for 0°Exit Angle . 131

C.7 Cost Contours for 15°Exit Angle . 131

C.8 Cost Contours for 30°Exit Angle . 132

C.9 Cost Contours for 45°Exit Angle . 132

C.10 Cost Contours for 60°Exit Angle . 133

D Discrete Shooting Method Algorithm Flow Diagram 134

Bibliography 135

List of Figures

2.1 The ’Queen Bee’ radio controlled aircraft 8

2.2 A Firebee UAV . 9

2.3 The Pioneer UAV . 10

2.4 The Reaper UCAV . 11

2.5 The Watchkeeper UAV . 12

2.6 A Quad-rotor UAV . 12

2.7 Target Tracking Example . 14

2.8 Target Tracking 3D Operating Area . 15

2.9 Target Tracking 2D Operating Area . 15

2.10 Target Tracking Algorithm Solution Space 16

2.11 Target Tracking Optimal Flight Path . 16

2.12 Branch and bound tree . 21

2.13 Receding Horizon Path sampling . 36

2.14 Receding Horizon Path Selection . 37

2.15 Receding Horizon Example . 38

3.1 Transfer example between two circular tracking paths 42

3.2 UAV coordinate system . 42

3.3 Graphical Representation of the UAV Control Box 49

3.4 Graphical Representation of the Control Cost 50

3.5 Graphical Representation of the Curvature Constraint 51

3.6 Reference for the corners of the control box 52

3.7 Path from 15° . 61

3.8 Gradient comparison for -90° . 62

3.9 Speed Transfer Profiles . 64

3.10 Speed Distance Contour for u = 4.2426 66

3.11 Speed Distance Contour for u = 1.5426 67

3.12 Speed Distance Contour for u = 0.14264 67

3.13 Cost Function Path Comparison . 68

3.14 Cost Function Velocity Comparison . 68

3.15 Velocity Magnitude for exit angle of -90° 70

3.16 Control history for exit angle of -90° . 70

3.17 Path curviture for exit angle of -90° . 71

3.18 Path map for exit angle of -90° . 71

3.19 Cost curve for exit angle of -90° . 72

4.1 Path map for exit angle of 60° . 75

4.2 Path map for exit angle of 75° . 75

ix

List of Figures x

4.3 Straight path from -90° . 77

4.4 Cost contours for Receding Horizon from -90° 79

5.1 Minimum Time Transfer environment . 84

5.2 Minimum distance Transfer environment 85

5.3 Minimum Velocity Transfer environment 86

5.4 UAV/target separation example . 86

5.5 Visibility Comparison . 89

5.6 Histogram for ρUAV
vis non switching . 90

5.7 Histogram for ρUAV
vis switching . 90

A.1 Gradient comparison for -75° . 99

A.2 Gradient comparison for -60° . 100

A.3 Gradient comparison for -45° . 100

A.4 Gradient comparison for -30° . 101

A.5 Gradient comparison for -15° . 101

A.6 Gradient comparison for 0° . 102

A.7 Gradient comparison for 15° . 102

B.1 Path map for exit angle of -75° . 103

B.2 Velocity Magnitude for exit angle of -75° 104

B.3 Control history for exit angle of -75° . 104

B.4 Path curviture for exit angle of -75° . 105

B.5 Cost curve for exit angle of -75° . 105

B.6 Path map for exit angle of -60° . 106

B.7 Velocity Magnitude for exit angle of -60° 106

B.8 Control history for exit angle of -60° . 107

B.9 Path curviture for exit angle of -60° . 107

B.10 Cost curve for exit angle of -60° . 108

B.11 Path map for exit angle of -45° . 108

B.12 Velocity Magnitude for exit angle of -45° 109

B.13 Control history for exit angle of -45° . 109

B.14 Path curviture for exit angle of -45° . 110

B.15 Cost curve for exit angle of -45° . 110

B.16 Path map for exit angle of -30° . 111

B.17 Velocity Magnitude for exit angle of -30° 111

B.18 Control history for exit angle of -30° . 112

B.19 Path curviture for exit angle of -30° . 112

B.20 Cost curve for exit angle of -30° . 113

B.21 Path map for exit angle of -15° . 113

B.22 Velocity Magnitude for exit angle of -15° 114

B.23 Control history for exit angle of -15° . 114

B.24 Path curviture for exit angle of -15° . 115

B.25 Cost curve for exit angle of -15° . 115

B.26 Path map for exit angle of 0° . 116

B.27 Velocity Magnitude for exit angle of 0° . 116

B.28 Control history for exit angle of 0° . 117

B.29 Path curviture for exit angle of 0° . 117

List of Figures xi

B.30 Cost curve for exit angle of 0° . 118

B.31 Path map for exit angle of 15° . 118

B.32 Velocity Magnitude for exit angle of 15° 119

B.33 Control history for exit angle of 15° . 119

B.34 Path curviture for exit angle of 15° . 120

B.35 Cost curve for exit angle of 15° . 120

B.36 Path map for exit angle of 30° . 121

B.37 Velocity Magnitude for exit angle of 30° 121

B.38 Control history for exit angle of 30° . 122

B.39 Path curviture for exit angle of 30° . 122

B.40 Cost curve for exit angle of 30° . 123

B.41 Path map for exit angle of 45° . 123

B.42 Velocity Magnitude for exit angle of 45° 124

B.43 Control history for exit angle of 45° . 124

B.44 Path curviture for exit angle of 45° . 125

B.45 Cost curve for exit angle of 45° . 125

B.46 Velocity Magnitude for exit angle of 60° 126

B.47 Control history for exit angle of 60° . 126

B.48 Path curviture for exit angle of 60° . 127

B.49 Cost curve for exit angle of 60° . 127

C.1 Cost contours for Receding Horizon from -75° 128

C.2 Cost contours for Receding Horizon from -60° 129

C.3 Cost contours for Receding Horizon from -45° 129

C.4 Cost contours for Receding Horizon from -30° 130

C.5 Cost contours for Receding Horizon from -15° 130

C.6 Cost contours for Receding Horizon from 0° 131

C.7 Cost contours for Receding Horizon from 15° 131

C.8 Cost contours for Receding Horizon from 30° 132

C.9 Cost contours for Receding Horizon from 45° 132

C.10 Cost contours for Receding Horizon from 60° 133

D.1 Algorithm Flow Diagram . 134

List of Tables

2.1 Detection Probability Table for Branch and Bound Example 19

4.1 Dubin’s cost comparison table . 78

4.2 Average cost comparison table for Receding Horizon 80

4.3 Minimum cost comparison table for Receding Horizon 80

xii

Abbreviations

UAV Unmannned Aerial Vehicle

TPBV Two Point Boundary Value

wrt with respect to

LOS Line of sight

xiii

Symbols

t0 Initial Time s

tf Final Time s

02 2x2 Zero Matrix

I2 2x2 Identity Matrix

xB Body x Coordinates m

yB Body y Coordinates m

x Inertial x Coordinates m

y Inertial y Coordinates m

vBx Body x Velocity m/s

vBy Body y Velocity m/s

vx Inertial x Velocity m/s

vy Inertial y Velocity m/s

uBx Body x Control m/s2

uBy Body y Control m/s2

ux Inertial x Control m/s2

uy Inertial y Control m/s2

Vmax Max Velocity m/s

Vmin Min Velocity m/s

Umax Max Control m/s2

Umin Min Control m/s2

H Hamiltonian

xiv

For my Gran. She isn’t here to see the end of this, but she at least
saw the beginning. I know this would make her proud. . .

xv

Chapter 1

Introduction

1.1 Preface

Over the past three decades unmanned aerial vehicles (UAV) have seen significant de-

velopment and are now being utilised for a number of different tasks [1]. Due to the

adaptability of UAVs they are readily used by many different organisations worldwide.

The drive to remove the human factor has pushed UAV development throughout history

and is continuing to do so with the advent of autonomous UAV platforms and systems.

UAVs and UAV research have become hot topics over recent years stemming from re-

quirements to provide remote operating platforms for many different tasks. Originally

used for military applications such as surveillance and reconnaissance, recent develop-

ments have seen the growth of UAV use in the civilian sector as well for tasks including

search and rescue, police use [2] and even weather monitoring [3].

Modern UAVs are capable of extended operational time scales (in the region of days)

so having a UAV that can carry out tasks automatically and react to changes in its

environment without human intervention is highly beneficial. To this end recent UAV

research has seen a shift towards the development of algorithms that can plan and

perform UAV manoeuvres to carry out missions. Some of the more common operations

include target tracking, collision avoidance and area reconnaissance. These algorithms

are all examples of path planning where the goal is to produce the path that the UAV

will fly to perform its set mission.

1

Chapter 1. Introduction 2

1.2 UAV autonomy and the importance of path planning

The majority of operational UAV control is still carried out by a remote operator phys-

ically controlling the UAV from a base station. The next generation of UAVs however

aim to take this to the next level. By providing a UAV with the ability to sense its

surroundings and analyse the information it is possible for the UAV to generate its own

control decisions based on mission parameters and inherent design limitations. If you

consider the situation that automation is trying to replicate; a pilot flying an aircraft; the

steps to full automation appear more complex than at first glance. Consider an obstacle

avoidance task: A pilot is capable of seeing an obstacle and carrying out an avoidance

manoeuvre and then continuing with the mission at hand. For an autonomous UAV

(AUAV) this task is more complex: the AUAV first has to have some method through

which to view its surroundings (usually some form of camera is used), it then has to take

this information and identify the potential obstacles, next it must select an appropriate

control action to avoid the obstacle and finally it has to recover from this avoidance

manoeuvre back to its normal operating mode. A similar situation occurs for a UAV

simply trying to travel between two points. The UAV is likely to be programmed with

its desired destination but then is required to work out a way to travel from its current

position to its destination and arrive in the correct configuration to carry out its next

mission phase. It is also imperative that the flight limitations of the UAV are not broken

during the transfer as this could result in the loss of the vehicle. For a human operator

these tasks are relatively simple whereas it is difficult for a UAV.

The majority of automated tasks have one key component in common, that there exists

a path available to the UAV that allows it to carry out its mission. Path planning under-

pins the degree of autonomy that a UAV can achieve. Without proper path information

it is impossible for a UAV to be expected to be able to carry out its mission as it simply

does not know how it should be flying. The starting point for flying any mission is the

reference path information that the UAV needs to successfully complete mission phases

and transfer between them.

It is desired to find the best path for any given operation. It is therefore safe to assume

that there exists an optimal path for given mission parameters and UAV constraints.

Optimal path planning therefore has important implications on the ability of such vehi-

cles to perform missions successfully [4–8]. The ability to generate mission useful paths

is key to the level of autonomy that a UAV can achieve.

Chapter 1. Introduction 3

1.3 Why transfer path planning?

It is useful to think of UAV automation in the form of a jigsaw puzzle with different

pieces representing an algorithm designed to carry out a specific task. To complete

this puzzle it would be expected that there exists an algorithm for each task that a

UAV must carry out to complete a mission. Some of the pieces already exist with

a lot of research having been carried out on what can be seen as the most desirable

tasks, for example, collision avoidance or target tracking. Equally some tasks have been

understudied such as algorithms for tasks like altitude changes as they are relatively

trivial with few expected complexities. From research one such understudied task is

that of transfer path planning. This made this task interesting for study as providing a

path planning algorithm that allowed a UAV to fly to a destination is a key component

in UAV automation. For example, if a UAV is on a mission to perform target tracking

within a defined region the first question to be considered before thinking about the

target tracking component of the mission is how should the UAV move from its current

position to the desired region of interest? This is the question that this work investigated

by attempting to solve a transfer problem for a UAV moving to a target tracking mission.

1.4 Objectives

The main objectives of this work can be summarised as:

• To research and design using optimal techniques a globally optimal path planning

algorithm that carries out a transfer for a UAV from a known start point to an

end configuration of a circular flight path used for target tracking.

• To compare the results from the developed algorithm against those of similar

algorithms to obtain information about the developed algorithms efficiency

• Develop a new cost function form that allows switching between a number of

appropriate cost functions depending on external stimulus.

• To compare the effect on key target tracking mission parameters of utilizing the

switching cost function or the developed transfer algorithm.

1.5 Contribution to the field

This project is aimed at furthering the development of path planning algorithms that

can be utilised for autonomous UAV operations. These contributions can be seen as:

Chapter 1. Introduction 4

• The development of a path planning algorithm that produces globally optimal

solutions for a UAV transfer manoeuvre where the shortest path is the desired

goal.

• An analysis of cost function gradient information for the above transfer manoeuvre.

• A study of cost function suitability for transfer path planning.

• A comparison of developed algorithm output against existing methods.

• The development of a switching cost function.

• Comparison of the effect of utilizing the a single cost function transfer algorithm

against a that of a multi-cost function transfer algorithm for target tracking.

1.6 Thesis Structure

The focus of this work is to design and analyse algorithms for path planning for a UAV

attempting to transfer between a known start point and a desired end configuration.

This was carried out utilising MATLAB for algorithm coding and subsequent analysis

of the designed algorithms’ performance. The goal for the main parts of this work is to

find globally optimal solutions to a path planning problem, however it should be noted

that in this case globally optimal is inferred as globally optimal within the tolerances

of the developed algorithms as these can effect the accuracy of solution. The following

outlines how this work was achieved.

A discussion of the history of the field is shown in Chapter 2. Due to the large scope

of UAV development the chapter first discusses UAV advancements throughout history

including a brief description of common terminology. The chapter culminates in a dis-

cussion of a few of the most pertinent works on path planning in recent history and a

look at some of the modern path planning methods readily applied today. It details the

target tracking example used by this work when developing the transfer algorithms and

details the choice of path planning methods to be used including the motivation and

details behind them.

Chapter 3 discusses the development of a globally optimal algorithm that underpins

the remaining analysis and work of this thesis. The mathematics for the design of two

algorithms are considered the first using continuous equations the second using discrete

equations. The development of a Hamiltonian based algorithm is shown and how this

leads to the development of a shooting method algorithm indicated. This includes an

analysis of cost function gradients and the effect these have on the algorithm design.

Chapter 1. Introduction 5

The necessity of correctly selecting the cost function for this application is also discussed

and the test results for the algorithm presented.

Chapter 4 is a comparison of the transfer paths from the developed algorithm and

the transfer paths from two similar algorithms. It builds on the work of Chapter 3

by investigating the performance improvement the developed method gives over existing

solutions. The two algorithms used are the Dubin’s Car approach and a receding horizon

approach.

A comparison between the shooting algorithm developed in Chapter 3 and a flexible

transfer using mission information for target tracking is presented in Chapter 5. Detailed

is the development of a switching cost function including the switching conditions when

applied to a target tracking example. The chapter details two key parameters applicable

to the target tracking mission and compares the effect of the shooting and switching

algorithms on these parameters.

Finally, Chapter 6 presents the conclusions of this work and includes a section discussing

further work with possible algorithm adaptations.

Chapter 2

Background and Literature

Review

2.1 Introduction

This chapter gives a brief history of UAV development from the original concept of flying

bombs to the type of UAV drones seen today. Next a look at common UAV terminology

and current examples of operational UAVs will be detailed. The chapter will culminate

by looking at UAV automation including a brief look at the history of the path planning

techniques central to this research with a basic formulation of the problem presented and

a summary of some of the path planning methods available to solve the posed problem.

2.2 UAV History

This section provides a brief history of UAV development to the UAV platforms recog-

nised in the present day. The majority of UAV development was driven by the need for

military advancement during times of war when the necessity for finding technology that

limited or removed the risk of harm to humans became paramount. The information for

this section is taken from the following: [9–12]

2.2.1 Early Development

This era can be seen as the time preceding the First World War when the first recorded

use of unmanned aircraft were kites and balloons dating as early as the 19th century. One

of the earliest recorded uses was during the Italian Wars of Unification when, in August

6

Chapter 2. Background and Literature Review 7

1849, the Austrians used balloons to carry explosive payloads into Venice. Although

these were unmanned they had no guidance control and frequently would be blown

towards friendly forces. In addition the balloons had a limited range as the explosives

required an attached detonator wire. This war balloon idea was later extended for use

during the American Civil War when hot air balloons carried explosives with a timed

release. The ’Perley Bomber’ as they were known, named after inventor ’Charles Perley’,

had similar draw-backs to the Austrian balloons given their lack of guidance control.

This again resulted in ’friendly fire’ incidents caused by unfavourable wind conditions

blowing the balloons back over friendly lines.

The use of unmanned aerial vehicles for reconnaissance first seemed feasible in 1883,

when kites with mounted cameras were used by a photographer to take low altitude

photographs. An early military application was during the Spanish-American war in

1898 where kite-cameras were employed by the US Army to survey enemy positions and

fortifications.

2.2.2 World War I and II

During the First World War the attack and surveillance capabilities of UAVs were of

interest especially focusing on the idea of ’glide bombs’, forerunners to the German

V-1. Although all sides made advances in ’glide bomb’ technology both the British

and American forces also made developments in remote controlled vehicles. A British

radio controlled aircraft was developed in 1917 while American efforts focussed on aerial

torpedoes and the ’Kettering Bug’ remote controlled bi-plane. However as the First

World War ended these research programmes declined and interest was lost until the

late 1930s and the advent of World War II.

British and American efforts stemmed from the need for gunnery practice targets. With

the invention of the bomber aircraft the Royal Air Force(RAF) and Royal Navy required

a means to test effective defence strategies for Navy warships against bombing runs. This

resulted in the development of the ’Fairy Queen’ target drone and later the development

of the first recoverable and therefore reusable UAV, the ’Queen Bee’, a radio controlled

Tiger Moth aircraft (see Figure 2.1)

Chapter 2. Background and Literature Review 8

Figure 2.1: The first recoverable, reusable UAV the ’Queen Bee’ which is a radio
controlled version of the Tiger Moth aircraft

The Americans developed similar gunnery practice drones such as the ’RP-4 Radio-

plane’ used by US services. There were also experiments with unmanned B-17 and B-24

bombers where the radio controls were set in flight before the crew would bale out from

the aircraft. A suggested modification to this system was to use a television monitor

attached to the bombers nose to allow better direction of the bomber onto its intended

target.

German efforts between the 1930s and the end of World War II were considerably more

advanced resulting in both the V-1 and the V-2 flying bombs. The advances in guidance

and control arising from the German flying bombs fuelled the continued development

during and after World War II when German technology transferred into Allied hands.

This included American development of camera and Infrared (IR) guidance aircraft

which could be seen as the start of the cruise missile and the continued UAV development

into the 1950s and beyond.

2.2.3 1950s and the Vietnam War

In the 1950s the Americans developed the Teledyne Ryan Q-2 Firebee (see Figure 2.2).

The adaptability and fully recoverable nature of the Firebee shows the beginning of the

modern recognised concept of a UAV.

Chapter 2. Background and Literature Review 9

Figure 2.2: A Firebee drone deigned in the 1950s - 60s. This is the beginning of the
concept of modern UAVs

Due to the loss of a U-2 spy plane in May 1960 and the resulting political implications

with the Soviet Union along with the loss of several other manned reconnaissance air-

craft the development of unmanned intelligence gathering systems became a top priority.

The numerous variants of the Firebee were used heavily in the Vietnam War for many

reconnaissance rolls and were also used as decoys to draw enemy fire away from manned

aircraft. Some Firebees were modified to work as CHAFF dispensing drones and elec-

tronic counter measure platforms. Throughout the war the continued development of

UAV systems saw the advent of drones capable of collecting and transmitting data, ad-

vancements in photographic reconnaissance including the equipping of some drones with

IR to perform night operations. Near the end of the Vietnam war a few drones were

adapted to carry missile payloads however the American withdrawal in 1968 saw a loss

of funding for these experiments.

2.2.4 1970s to present day

The continued development of UAVs as attack platforms was carried out in Israel in the

1970s after the purchase of Firebee drones from the USA. These Firebees were primarily

used for reconnaissance, decoy roles and as anti surface to air missile (SAM) platforms.

In subsequent years Israel became world leaders in UAV design, with both the ’Scout’

and through further development the ’Pioneer’ UAVs. Both of these UAVs were either

controlled via a ground station or through an autopilot system linked to a pre-defined

programme. In the 1980s 20 Pioneer UAVs were bought by the US and were heavily

used during Gulf War I (Figure 2.3). From the 1st Gulf War onwards research into

Chapter 2. Background and Literature Review 10

UAV capabilities both as attack and surveillance platforms have effectively taken off.

An increasing onus on the autonomous capabilities of such platforms has been seen in

recent years. Some of the modern day UAV examples will be discussed in the next

section.

Figure 2.3: The Pioneer UAV, used heavily in Gulf War I

2.3 UAV terminology and examples

Over the course of UAV development many terms have arisen to describe different UAV

types and configurations. Some of the more pertinent examples are detailed here:

Unmanned Aerial Vehicle (UAV): This term is used to describe any aerial vehicle

that doesn’t carry a human operator. This gives no indication of the intended role

of the UAV, the UAV configuration or the whether the UAV is remotely controlled or

autonomous in nature.

Unmanned Combat Aerial Vehicle (UCAV): This term is reserved for UAVs that

are designed for combat capabilities. This type of UAV is particularly controversial

especially when considering autonomous systems as there are moral and legal obligations

regarding the right to fire for these types of system. Currently both the RAF and the

USAAF have UCAVs in active deployment. The most recent variant in service is the

’MQ-9 Reaper’ which is a remotely operated MALE UAV (see below) capable of carrying

4 Hellfire missiles and 2 laser guided bomb, Figure 2.4.

Chapter 2. Background and Literature Review 11

Figure 2.4: The MQ-9 Reaper UCAV currently in active service with both the RAF
and the USAAF

Medium Altitude Long Endurance (MALE): UAVs that can operate up to 30000’

with a 12-15 hour endurance.

High Altitude Long Endurance (HALE): UAVs that can operate above 30000’

with an endurance of 24 hours or longer.

Unmanned Aerial System: This relatively new term refers to the entire system

required to operate a UAV platform including the UAV itself, command/communication

links and any associated control stations (these can either be ground, air or sea based

stations). Sometimes this is also referred to as a UAVS (UAV System).

Fixed Wing UAV: This denotes the configuration of the UAV to be fixed wing such

as that found on a conventional aircraft. This is the main type of UAV in use today

due to the controllability and endurance of such platforms. The Watcheeeper UAV is

an example of a fixed wing surveillance platform, Figure 2.5.

Chapter 2. Background and Literature Review 12

Figure 2.5: The Watchkeeper UAV, an example of a fixed wing surveillance platform

Rotary Wing UAV: This UAV is akin to vertical take off and landing platforms such

as helicopters. These are subject to recent research as the ability to perform vertical take

off and landings as well as the increased manoeuvrability and hover capabilities make

them a more versatile UAV platform than standard fixed wing UAVs. Rotary UAVs are

however harder to control especially autonomously resulting in numerous rotary wing

research projects seen in academia and industry today. A typical research Quad-rotor

can be seen in Figure 2.6.

Figure 2.6: A Quad-rotor UAV as used in research at the University of Glasgow

Autonomous UAV (AUAV): This refers to any UAV this is capable of operation

without the intervention of a human operator. The ability to send a UAV on a mission

of up to and beyond 15 hours with minimal human intervention is desirable. Methods

of autonomy are the subject of many research studies and attempts to improve and

innovate in the field of UAV autonomy is a large area of UAV research today. The

Chapter 2. Background and Literature Review 13

next section discusses the need and requirement for UAV autonomy focusing on the

requirement of proper path planning and its effect on mission outcomes.

2.4 Brief History of Path Planning

In recent years the idea of path planning for UAVs has become a hot topic for research

especially in areas such as target tracking. The majority of this work stems from research

into path planning for small robotic vehicles and robot manipulators, initially beginning

with the ability of such robots to navigate around obstacles (e.g. a robot manipulator

moving an object from one area to another without hitting anything)[13–17].

Using the work carried out into path planning for ground vehicles as a basis, recent

research is attempting to apply path planning techniques to aircraft [18]. The majority

of this work focuses on the usage of optimisation formulations [19, 20].

An early attempt to find an optimal solution for a path connecting two points was carried

out by L. E. Dubins [21]. This work was focussed on finding geodesics which are lines

connecting an initial and final point that are minimum in length. Dubins restricted such

paths to have a maximum curvature and found what he called sets of words that would

result in geodesics. He found 6 possible words that would describe any geodesic: lrl, lsl,

lsr, rlr, rsr and rsl, where l and r denote a go left or go right instruction respectively

and s is a go straight command. The curvature for the left and right operations, or

anticlockwise/clockwise rotation was restricted to that of a unit circle. Dubins however

restricted his problem to a vehicle that could only travel forward. The word notation

can be further simplified by realising that the movement can be classified as a CCC or

a CSC form where C stands for curve (i.e. either a left or right rotation) and S is a

straight line path.

This work was later extended in [16] when the ability to reverse was added, resulted

in an extension from the original possible 6 words to 48 possible solutions that could

be optimal. The work by Dubins and J. A. Reeds and L. A. Shepp has resulted in

well known optimal path planning examples of Dubins Car and the Reeds Shepp Car

which have been applied to numerous planning problems. They have become the basis

of some of the modern day methods in an attempt to take the basic examples set out

by Dubins, Reeds and Shepp and apply the work to more real life problems (i.e. adding

other dimensions or removing some of the constraints set by Dubins, Reeds and Shepp).

Examples of expansions of these works are [6, 18, 22, 23]

The development of path planning algorithms has driven the use of UAVs in reconnais-

sance roles due to their improved endurance and safety benefits compared to manned

Chapter 2. Background and Literature Review 14

vehicles. This is no more true in the case of target tracking where a large amount of

research is devoted to developing better algorithms for tracking moving targets [24]. The

focus of this work aims to extend on this target tracking work by looking at new appli-

cations of path planning algorithms for transferring between target tracking scenarios.

2.5 Target Tracking Scenario in Detail

The target tracking scenarios in question come from the work carried out in [24] where

a ground moving target is required to be tracked using a UAV, where the target is in a

dense obstacle area. The following section is a summary of this work, with the Figures

taken from [24] with the permission of the author.

The main objective was to position a UAV/UAVs in such a way that that the target

was inside the field of view of the UAV’s cameras, Figure 2.7.

Reference

���
���
���
���

���
���
���
���

O

rt

toptvtgt

rminuav

ruav

hmaxuav

rblg

hmax

rr

rr2

rlos1
rlos2 rlos3

Target

Camera

UAV

Coordinate

Figure 2.7: Moving ground target tracking using a UAV camera

Assuming the aircraft is a fixed wing UAV and that the ground obstacle locations and

heights are known an example of the tracking scenario can be viewed in 3D and 2D

space, Figure 2.8 and Figure 2.9, where the star indicates the target position, the circle

an example of the UAVs flight path and buildings/obstacles are represented by the black

boxes. If the altitude of the UAV is relatively close to the height of the highest ground

obstacle it is safe to assume that at some point the line of sight (LOS) of the UAV’s

camera will be blocked.

Chapter 2. Background and Literature Review 15

0
100

200
300

400
500

0
100

200
300

400
500

600
700

0
50

100
150
200
250

x−axis [m]

y−axis [m]

A
lti

tu
de

 [m
]

Figure 2.8: 3D view of operating area

0 100 200 300 400 500
0

100

200

300

400

500

600

700

x−axis [m]

y−
ax

is
 [m

]

Figure 2.9: 2D view of operating area

The goal therefore is to minimise the amount of time the camera is obstructed (i.e. min-

imise the amount of time the UAV cannot see the target). To do this target movement

needs to be taken into account. Assuming the algorithm designed to solve the problem

takes a certain time to run, an area of probable target locations can be identified. Fig-

ure 2.10 shows this, with the smaller circle being the possible area in which the target

can be located, the dots representing random samples of this area and the arrows from

the larger circle indicating the LOS of the UAV some of which are blocked by buildings

(broken arrows).

Chapter 2. Background and Literature Review 16

0 100 200 300 400 500
0

100

200

300

400

500

600

700

x−axis [m]

y−
ax

is
 [m

]

Figure 2.10: Possible location of the target with possible UAV flight path to track
the target

Using this setup a cost function was defined that minimises the probability of the UAV

LOS being blocked as a function of circle centre. An additional parameter was included

to allow multiple UAVs to be optimally spaced around this optimally centred circle.

Figure 2.11 shows the final result, with the solid circle representing the optimal path.

0 100 200 300 400 500
0

100

200

300

400

500

600

700

x−axis [meter]

y−
ax

is
 [m

et
er

]

Original Path

Optimised Path

Figure 2.11: Flight path with optimal centre, depicted by the solid circle

Using this information as a basis the problem this work tries to solve is how to move

between, or onto a circular flight path in an optimal fashion while attempting to stay as

close to the final circular path as possible during the transfer. This requirement stems

from the nature of the target tracking algorithm, as the closer to the final circular path

Chapter 2. Background and Literature Review 17

the UAV is during the transfer the higher the probability of tracking the target even

while carrying out the transfer.

From this work a basic formulation for the problem can be made (see 3.2). From the

basic formulation it is possible to apply the cost function with constraints to numerous

path planning methods. Only some of these are suitable in solving the problem and

these will be discussed next.

2.6 Path Planning methods

Depending on the mission requirements paths can be pre-generated before the mission or

can be calculated in real time. Paths are pre-generated for missions where path planning

algorithms require considerable computational power and run times that would not be

available to the UAV, hence making them unsuitable for real time applications [25, 26].

The majority of real time path planning algorithms are tailored to work in short time

frames allowing a UAV to quickly adapt to changing surroundings; a good example

of this would be collision avoidance where a UAV reacts to the presence of an object

and calculates a path to avoid it [27–29]. This reactive path planning can clearly not

be achieved in pre-generation as the presence of obstructions would not be known in

advance. This is also true when considering weather avoidance as weather conditions

vary in real time. However real-time path planners generally operate on a subset of the

original problem to provide the increased computation speed resulting in locally optimal

or ”good enough for purpose” solutions.

2.6.1 Potential Field

The Potential Field method as shown in [17] works by allocating a mathematically re-

pulsive potential to anything considered an obstacle/obstruction and a mathematically

attractive potential to anything that is a way-point/goal point. This results in a math-

ematical potential function which can be used to plan a path. The theory is that the

path will be pushed around obstacles/obstructions and drawn towards way-points/goal

points generating a path that allows the vehicle or manipulator to navigate the obstacle

field.

The potential field method can be computationally very quick but does require very

detailed information about the obstacle field being navigated including object locations

and the shape of the obstacles. Certain obstacle shapes can cause problems with this

method as they can cause vehicles to become trapped, never generating a path that

Chapter 2. Background and Literature Review 18

achieves the mission. In addition to this the paths generated by this method are not

guaranteed to be optimal. Other (more recent) examples of the potential field method

can be found in [30–34].

The potential field method is also not useful for the type of path planning required to

solve this problem due to its lack of constraint handling beyond physical path shape re-

strictions. No constraints beyond terminal location would exist as the only object in this

setup would be the terminal circle which would have an attractive potential. Although a

path would be generated no consideration is given for the other constraints. Curvature

could be handled but it would require additional repulsive objects to be added at every

time point to bound the curvature of the path.

2.6.2 Monte-Carlo Simulations

Monte-Carlo simulations are not strictly speaking a method of path planning and see

use in many fields of study. They are iterative algorithm that generate results from

randomly selected feasible inputs. They are used to identify trends in many problems

where analytical solutions do not exist. By repeatedly running a simulation many times

the resultant output can be checked to see if the solution being tested is producing

results as expected. If a significant number of runs produce the desired result it proves

the algorithm being simulated is operating as desired. The number of runs is important

as there need to be enough so that the resultant output is statistically valid.

It is a useful approach to validate many optimisation problems such as path planners as

they often do not have an analytical solution. It is therefore necessary to use numerical

methods to evaluate the problem instead. Research that makes use of a Monte-Carlo

method can be seen in [24, 35].

2.6.3 Branch and Bound

This method works using the principle that there exists a set of possible candidate

solutions that can be split into multiple smaller subsets whose union forms the original

candidate set. This branching is carried out multiple times to form a tree like search

structure. The bounding section of the algorithm is so called as it involves calculating

the upper and lower bound of the cost being optimized for each subset created in the

branching operation. A process of pruning is then carried out where subsets are removed

from the search tree depending on the calculated bound values. This can be done

because some subsets have lower bounds that are greater than the upper bounds of

Chapter 2. Background and Literature Review 19

others making them un-viable solutions. The pruning process is carried out iteratively

until only one possible solution remains or the upper and lower bounds of a solution

are equal, providing the optimal cost result.This method is reliant on the efficiency of

the branch-and-bound calculations; good choices make for a fast pruning process and

therefore a fast convergence onto the optimal path; poor choices however can cause

branches to be analysed multiple times slowing the process. Examples of Branch-and-

Bound optimisation are [36–40]. The best way of illustrating how this works is to look

at a basic example:

Imagine there exist four UAVs and four possible paths to carry the UAVs from a start

point to a mission area. Each UAV can fly any path but only one UAV can be assigned

to each path. As a UAV follows a path it has a probability of being detected and

subsequently shot down. What path/UAV combination should be chosen to allow the

UAVs to fly to the mission point with the least chance of being detected? The detection

probability for each UAV on each path is shown in Table 2.1.

Path

1 2 3 4

A 0.1 0.2 0.1 0.15

UAVs B 0.3 0.4 0.2 0.3

C 0.15 0.3 0.15 0.2

D 0.25 0.3 0.25 0.3

Table 2.1: Detection Probability Table for four UAVs and four possible path choices
for Branch and Bound Example

In terms of branch and bound terminology the following statements are valid:

• The bounding function in used is to assign unassigned UAV to paths based on

their chance of detection assigning the least likely to be detected first even if it is

assigned more than once.

• The Incumbent Solution is the best feasible solution currently found within the

tree.

• A node in the branch and bound tree is a UAV path allocation either partially or

fully.

• Nodes are selected based on the minimum value of the bounding function.

Chapter 2. Background and Literature Review 20

• Paths are selected based on their natural order, 1 to 4.

• The branch and bound process is terminated when the value of the Incumbent So-

lution is better than or equal to the values of the bounding function at all nodes.

The solution is deemed optimal if the Incumbent solution exists when the algo-

rithm terminates.

• A Fathomed node is one that has been expanded until each UAV is assigned to a

singular unique path.

Using the above a solution tree is created starting from a Root point. As there have

been no decisions made at this root point it is simplest to choose the UAV with the

lowest probability to fly each path which in this case is A. The root then branches to the

four possible nodes representing the four UAV that can fly path one. At each of these

nodes the indicated UAV is allocated to follow path 1 and cannot be chosen again to fly

any other path. The remaining UAVs are then assigned to fly the path that they have

the lowest detection probability for. This yields a bounding value for each node that is

the overall detection probability for the chosen path/UAV combination. For example

at the Node labelled A UAV A is selected to fly path 1 the remaining paths are then

assigned to UAV C as this has the lowest probability of the remaining choices and yields

a bounding value of (0.1)(0.3)(0.15)(0.2) = 0.0009. As none of the nodes for path 1

assign a single UAV to a single path it is necessary to expand a node and branch for

path 2 . The sensible choice for expansion is the node that has the lowest bounding

value as this is most likely to yield an optimal solution given that our goal is to assign

paths to UAVs that minimises their chance of detection. To this end the node for C at

path 1 is expanded. This time as C is already assigned to path 1 only three nodes are

created for UAV A, B and D. This therefore assigns these UAVs to path 2 and the remain

UAVs select their paths as before. This gives one result that assigns a UAV to each path

in the combination CABD for paths 1234 respectively. This has a bounding value of

0.0018 and is set as our Incumbent solution. Any node that has a value gretaer than this

Incumbent solution can be trimmed as it is incapable of producing a better result. Any

node that has a value of less than the Incumbent Solution is set as a new Incumbent

Solution allowing further node trimming. By continuing to expand the tree along all

possible options and update the incumbent solution where necessary non optimal nodes

cam be trimmed resulting in a singular solution or a set of solutions that all have the

same probability. The full tree can be seen in Figure 2.12 with the final solution to the

problem being UAV A on path 1, D on path 2, B on path 3 and C on path 4.

Chapter 2. Background and Literature Review 21

Root

A
B

D
C

A
B
C

B

D
C

B
C

D
C

A
D

A
C
D

A

A

A

B
D

B

B

ACCC
0.0009

BAAA
0.0009
CAAA
0.0045
DAAA
0.00075

Path 1

CABD
0.0018
CBAA
0.0009
CDAA
0.000675

CDAB
0.00135
CDBA
0.00135

Path 2 Path 3

x

DCAA
0.001125

DBAA
0.0015

DACC
0.0015

x
x DCAB

0.00225
DCBA
0.00225

x
x

ABCC
0.0012
ACBD
0.0018
ADCC
0.0009

x ADBC
0.0012
ADCB
0.00135

x

x
BACC
0.0018
BCAA
0.00135
BDAA
0.00135

x
x
x

ABCD
0.0018
ABDC
0.002

x
x

*

AAAA
0.0003

CBAD
0.0018
CBDA
0.002025

x
x

x
*

1st Branch
2nd Branch
3rd Branch
4th Branch
5th Branch
6th Branch
7th Branch
8th Branch

Trimmed Node
Optimal Solution

9th Branch
10th Branch

Incumbent
CABD 0.0018
CDAB 0.00135
ADBC 0.0012

Figure 2.12: The solution tree for the branch and bound example of UAVs selecting
the best path combination to minimise probability of detection

The above example is a good representation of the branch and bound technique in

action. It can be seen however that it operates by selecting from known solutions. This

makes this method unsuitable for the transfer problem as it requires knowledge of the

solution space that is not available in this case. Due to there being little limitation on

possible solutions beyond its constraint functions there is no way to split the problem

into a form suitable for the branch and bound technique. Every time point within the

solution would have to be represented within the branch and bound algorithm so that

the path could be generated. As time divisions decreased to a relatively small value so

as to maximise the accuracy of the generated path the number of branch and bound

operations would increase exponentially making the method computationally difficult to

carry out and ill suited to solve for global solutions.

2.6.4 Genetic Algorithm

This is a different approach to classical optimisation algorithms like branch-and-bound

[41–46]. It works by making paths evolve towards their goal while competing for domi-

nance. Weak paths (those considered to be less optimal than others) will ’die’ out leaving

only stronger and stronger paths with each passing generation. The goal is to be left

with only the strongest (most optimal) path, which in effect will have ’beaten’ all other

paths. This type of approach can however require large time scales and computational

requirements to generate an optimal path. Genetic algorithms also suffer from an issue

Chapter 2. Background and Literature Review 22

called premature convergence where the algorithm will converge to a locally optimal

solution and not the desired globally optimal one [47].

This approach is not suitable for much the same reason as Branch and Bound. An

initial population is required on which to operate and as we have no information about

possible solutions with which to work there is no easy start point for a genetic algorithm

approach.

2.6.5 Two-Point Boundary Value Problem(TPBVP/TPBV)

As the name suggests this algorithm attempts to solve a problem between two boundary

points (generally one being the start point and one being the end point). This method

relies on being able to represent the system as a set of first order ordinary differential

equations (ODEs) that can be evaluated at both of the two boundary points with a

number of boundary conditions that must be met. The goal is then to iteratively solve

the differential equations so that they conform to the set boundary conditions resulting

in a solution for any unknown parameters in the original cost function. Once a solution

has been found then the desired path information can be extracted from the original

cost function and the ODEs. [48, 49] are examples of TPBVP being applied to path

planning.

On a basic level a shooting approach, [50], is a form of boundary value problem better

called an initial value problem (IVP) as it only relies on the initial values. The easiest

analogy for the shooting method is to think of cannon being fired from a known start

point and the goal is to get the projectile from the cannon to travel to a desired end

point/plane while meeting certain conditions such as final velocity constraints. The

cannon is fired and the path generated is checked against the constraints. The control

parameters for the cannon are then adjusted and the cannon can be fired again generating

a new path. This process can then be repeated modifying the control parameters for the

problem until the path generated meets all constrains within a given tolerance including

the minimisation/maximisation of the desired cost function. This method can only be

used when all the initial conditions are well known which is usually not the case, as

a result it is not often applied in practice with the TPBVP often utilised instead to

overcome this shortcoming.

This method is a good candidate for the solving of the problem posed. The problem

can easily be represented in the correct form as it trying to generate a path between a

known start point and end point giving the two points required for a TPBVP. Due to

the constraints that will be required based on UAV limitations and mission parameters

Chapter 2. Background and Literature Review 23

it is necessary to form the problem using the Hamiltonian so that these are included in

the optimisation. The Hamiltonian and its boundary conditions are derived as follows:

2.6.5.1 Necessary Conditions with Unconstrained Control Inputs

Assume there exists a system described by the following:

ẋ(t) = a(x(t), u(t), t) (2.1)

where a is a function relating state and control inputs to the equivalent state derivatives.

The optimal control problem to be solved is to find control values u∗ that cause the

system described by Equation 2.1 to follow an optimal trajectory x∗ that minimises a

desired performance measure. This performance measure can be generally described as:

J(u) = h(x(tf), tf) +

∫ tf

t0

g(x(t), u(t), t)dt (2.2)

where t0 and tf are initial and final time respectively and h and g are scalar functions.

Assuming h is differentiable,

h(x(tf), tf) =

∫ tf

t0

d

dt
[h(x(t), t)] dt+ h(x(t0), t0) (2.3)

using this fact the performance measure can be rewritten

J(u) =

∫ tf

t0

{
g(x(t), u(t), t) +

d

dt
[h(x(t), t)]

}
dt+ h(x(t0), t0) (2.4)

since initial time and initial states are fixed, they are unaffected by the minimisation

shortening the performance measure

J(u) =

∫ tf

t0

{
g(x(t), u(t), t) +

d

dt
[h(x(t), t)]

}
dt (2.5)

Equation 2.5 can be further expanded by applying the chain rule to the derivative term

involving h

J(u) =

∫ tf

t0

{
g(x(t), u(t), t) +

[
∂h

∂x
(x(t), t)

]T
+
∂h

∂t
(x(t), t)

}
dt (2.6)

Chapter 2. Background and Literature Review 24

To include the constraints imposed by Equation 2.1 the performance measure given by

Equation 2.6 can be augmented by introducing Lagrange multipliers λ1(t), . . . , λn(t).

Ja(u) =

∫ tf

t0

{
g(x(t), u(t), t)+

[
∂h

∂x
(x(t), t)

]T
+
∂h

∂t
(x(t), t)

+ λT (t) [a(x(t), u(t), t)− ẋ(t)]

}
dt

(2.7)

by further defining

ga(x(t), ẋ(t), u(t), λ(t), t) , g(x(t), u(t), t)

+ λT (t) [a(x(t), u(t), t)− ẋ(t)]

+

[
∂h

∂x
(x(t), t)

]T
+
∂h

∂t
(x(t), t)

(2.8)

Using the definition given by Equation 2.8 the augmented function becomes:

Ja(u) =

∫ tf

t0

{ga(x(t), ẋ(t), u(t), λ(t), t)} dt (2.9)

For a minimum point to exist the variation of Ja , δJa must equal zero on an extremal.

By introducing the variations δx, δẋ, δu, δλ and δtf the variation δJa can be defined:

Chapter 2. Background and Literature Review 25

δJa(u
∗) = 0 =

[
∂ga
∂ẋ

(x∗(tf), ẋ∗(tf), u∗(tf), λ∗(tf), tf)

]T
δxf

+

[
ga(x

∗(tf), ẋ∗(tf), u∗(tf), λ∗(tf), tf)

−
[
∂ga
∂x

(x∗(tf), ẋ∗(tf), u∗(tf), λ∗(tf), tf)

]T
δẋ(tf)

]
δtf

+

∫ tf

t0

{[[
∂ga
∂x

(x∗(t), ẋ∗(t), u∗(t), λ∗(t), t)

]T
− d

dt

[
∂ga
∂ẋ

(x∗(t), ẋ∗(t), u∗(t), λ∗(t), t)

]T]
δx(t)

+

[
∂ga
∂u

(x∗(t), ẋ∗(t), u∗(t), λ∗(t), t)

]T
δu(t)

+

[
∂ga
∂λ

(x∗(t), ẋ∗(t), u∗(t), λ∗(t), t)

]T
δλ(t)

}
dt

(2.10)

Where xf is the final states. Extracting the terms involving function h from Equa-

tion 2.10 yields

∂

∂x

[[
∂h

∂x
(x∗(t), t)

]T
ẋ∗(t) +

∂h

∂t
(x∗(t), t)

]
− d

dt

{
∂

∂ẋ

[[
∂h

∂x
(x∗(t), t)

]T
ẋ∗(t)

]}
(2.11)

Writing Equation 2.11 out in full and applying the chain rule:

[
∂2h

∂x2
(x∗(t), t)

]
ẋ∗(t) +

[
∂2h

∂t∂x
(x∗(t), t)

]
ẋ∗(t)

−
[
∂2h

∂x2
(x∗(t), t)

]
ẋ∗(t)−

[
∂2h

∂x∂t
(x∗(t), t)

]
ẋ∗(t)

(2.12)

assuming the second partial derivatives are continuous and the terms sum to zero leaves

the integral terms as:

Chapter 2. Background and Literature Review 26

∫ tf

t0

{[[
∂g

∂x
(x∗(t), u∗(t), t)

]T
+ λ∗T (t)

[
∂a

∂x
(x∗(t), u∗(t), t)

]

− d

dt

[
− λ∗T (t)

]]
δx(t) +

[[
∂g

∂u
(x∗(t), u∗(t), t)

]T
+ λ∗T (t)

[
∂a

∂u
(x∗(t), u∗(t), t)

]]
δu(t)

+

[[
a(x∗(t), u∗(t), t)− vẋ∗(t)

]T]
δλ(t)

}
dt

(2.13)

On an extremal Equation 2.13 must vanish. The constraints must also be satisfied on

an extremal meaning that the coefficient of δλ(t) is zero. Since the Lagrange multipliers

are arbitrary they can be selected to make the coefficient of δx(t) zero:

λ̇∗(t) =

[
∂a

∂x
(x∗(t), u∗(t), t)

]T
λ∗(t)− ∂g

∂x
(x∗(t), u∗(t), t) (2.14)

Equation 2.14 are called the costate equations with λ(t) being the costate.

The final variation δu(t) is independent making it coefficient also zero:

0 =
∂g

∂u
(x∗(t), u∗(t), t) +

[
∂a

∂u
(x∗(t), u∗(t), t)

]T
λ∗(t) (2.15)

The terms outside the integral must still be delt with. given that the variation must be

zero these terms must also add to zero:

[
∂h

∂x
(x∗(tf), tf)− λ∗(tf)

]T
δxf+

[
g(x∗(tf), u∗(tf), tf) +

∂h

∂t
(x∗(tf), tf)

+ λ∗T (tf)

[
a(x∗(tf), u∗(tf), tf)

]]
δtf = 0

(2.16)

these are all the necessary conditions but by defining the Hamiltonian as follows:

H (x(t), u(t), λ(t), t) , g(x(t), u(t), t) + λT (t) [a(x(t), u(t), t)] (2.17)

the necessary conditions can be written as:

Chapter 2. Background and Literature Review 27

ẋ∗(t) =
∂H

∂λ
(x∗(t), u∗(t), λ∗(t), t) (2.18)

λ̇∗(t) = −∂H

∂x
(x∗(t), u∗(t), λ∗(t), t) (2.19)

0 =
∂H

∂u
(x∗(t), u∗(t), λ∗(t), t) (2.20)

For all t ∈ [t0, tf]

[
∂h

∂x
(x∗(tf), tf)− λ∗(tf)

]
T δxf +

[
H (x∗(tf), u∗(tf), λ∗(tf), tf)

+
∂h

∂t
(x∗(tf), tf)

]
δtf = 0

(2.21)

2.6.5.2 Necessary Conditions with Constrained Control Inputs (Pontryagin’s Min-

imum Principle)

In the previous section the derivation only takes into account when control values are

unbounded which realistically is rarely the case. The control u∗ cause the performance

measure J to have a relative minimum if:

J(u)− J(u∗) = ∆J ≥ 0 (2.22)

If we express u = u∗ + δu the increment in J becomes

∆J(u∗, δu) = δJ(u∗, δu) + higher-order terms; (2.23)

By considering admissible variations with ‖δu‖ small enough so that the sign of ∆J is

determined by δJ , a necessary condition for u∗ to minimise J is

δJ(u∗, δu) ≥ 0 (2.24)

if u∗ lies on a boundary during the time interval [t0, tf] and

δJ(u∗, δu) = 0 (2.25)

if u∗ lies within the boundary during the time interval [t0, tf]

Chapter 2. Background and Literature Review 28

By applying this change to the previous derivation of the necessary conditions. The

increment of J is

∆J(u∗, δu) =

[
∂h

∂x
(x∗(tf), tf))− λ∗(tf)

]T
δxf

+

[
H (x∗(tf), u∗(tf), λ∗(tf), tf) +

∂h

∂t
(x∗(tf), tf)

]
δtf

+

∫ tf

t0

{[
λ̇∗(t) +

∂H

∂x
(x∗(t), u∗(t), λ∗(t), t)

]T
δx(t)

+

[
∂H

∂u
(x∗(t), u∗(t), λ∗(t), t)

]T
δu(t)

+

[
∂H

∂λ
(x∗(t), u∗(t), λ∗(t), t)− ẋ∗(t)

]T
δλ(t)

}
dt

+ higher-order terms

(2.26)

If λ∗(t) is chosen so that the coefficient of δx(t) in the integral is zero, the state equations

are satisfied and the boundary condition equation given by Equation 2.21 is satisfied.

The increment becomes

∆J(u∗, δu) =

∫ tf

t0

[
∂H

∂u
(x∗(t), u∗(t), λ∗(t), t)

]T
δu(t)dt

+ higher-order terms

(2.27)

It can be seen that the integrand is the first-order approximation of the change in H

cause by a change in u alone, or:

[
∂H

∂u
(x∗(t), u∗(t), λ∗(t), t)

]T
δu(t)

.
=

H (x∗(t), u∗(t) + δu(t), λ∗(t), t)−H (x∗(t), u∗(t), λ∗(t), t)

(2.28)

therefore,

Chapter 2. Background and Literature Review 29

∆J(u∗, δu) =

∫ tf

t0

[
H (x∗(t), u∗(t) + δu(t), λ∗(t), t)

−H (x∗(t), u∗(t), λ∗(t), t)

]
dt

+ higher-order terms

(2.29)

If u∗ + δu is in a sufficiently small neighbourhood of u∗ (‖δu‖ < τ where τ defines the

maximum magnitude of this neighbourhood) the higher-order terms are small and the

the integral term dominates. Therefore for u∗ to be a minimizing control it is necessary

that

∆J(u∗, δu) =

∫ tf

t0

[
H (x∗(t), u∗(t) + δu(t), λ∗(t), t)−H (x∗(t), u∗(t), λ∗(t), t)

]
dt ≥ 0

(2.30)

for all admissible δu, such that ‖δu‖ < τ

Therefore, for Equation 2.30 to be satisfied for admissible δu

H (x∗(t), u∗(t) + δu(t), λ∗(t), t) ≥H (x∗(t), u∗(t), λ∗(t), t) (2.31)

for all admissible δu and all t ∈ [t0, tf]

Consider the following control

u(t) = u∗(t); t /∈ [t1, t2]

u(t) = u∗(t) + δu(t); t ∈ [t1, t2]
(2.32)

where [t1, t2] is a non zero arbitrarily small time interval and δu(t) is an admissible

control variation that satisfies ‖δu‖ < τ .

Assume that the control in Equation 2.32 does not satisfy the inequality in Equation 2.31.

Therefore in the time interval [t1, t2]

H (x∗(t), u(t), λ∗(t), t) < H (x∗(t), u∗(t), λ∗(t), t) (2.33)

Therefore,

Chapter 2. Background and Literature Review 30

∫ tf

t0

[
H (x∗(t), u(t), λ∗(t), t)−H (x∗(t), u∗(t), λ∗(t), t)

]
dt < 0 (2.34)

Since the time interval [t1, t2] can be anywhere in the interval [t0, tf], Equation 2.33

also exists for any t ∈ [t0, tf]. This means that it it is always possible to obtain and

admissible control such as that given in Equation 2.32, which causes ∆J < 0. Since

this finding contradicts the optimality of the control u∗ the necessary condition for u∗

to minimise J is:

H (x∗(t), u∗(t), λ∗(t), t) ≤H (x∗(t), u(t), λ∗(t), t) (2.35)

for all t ∈ [t0, tf] and all admissible controls.

Equation 2.35 indicates that an optimal control must minimise the Hamiltonian, this is

Pontryagin’s Minimum Principle.

the necessary conditions found previously can then be rewritten as:

ẋ∗(t) =
∂H

∂λ
(x∗(t), u∗(t), λ∗(t), t) (2.36)

λ̇∗(t) = −∂H

∂x
(x∗(t), u∗(t), λ∗(t), t) (2.37)

H (x∗(t), u∗(t), λ∗(t), t) ≤H (x∗(t), u(t), λ∗(t), t) (2.38)

For all t ∈ [t0, tf] and all admissible u(t)

[
∂h

∂x
(x∗(tf), tf)− λ∗(tf)

]
T δxf +

[
H (x∗(tf), u∗(tf), λ∗(tf), tf)

+
∂h

∂t
(x∗(tf), tf)

]
δtf = 0

(2.39)

2.6.5.3 Boundary Condition Derivation

Using Equation 2.21 it is possible to derive different boundary conditions by making

appropriate substitutions based on the final conditions of time and states.

2.6.5.3.1 Fixed Final Time Problems Three cases exist when final time tf is

known, x(tf) can be free, fixed or be required to lie on a surface:

Chapter 2. Background and Literature Review 31

• Case I: Final State Fixed

As both x(tf) and tf are known, δxf and δtf both equal zero. Applying this to

Equation 2.21 yields n boundary equations:

x∗(tf) = Xf (2.40)

• Case II: Final State Free

This time only δtf = 0 and δxf is arbitrary. This makes Equation 2.21 become

∂h

∂x
(x∗(tf))− λ∗(tf) = 0 (2.41)

This hold as the function h is independent of tf as tf is fixed.

• Case III: Final state lying in a surface defined by m(x(t)) = 0

Consider an example situation where the final state of a system must lie on a circle

defined as follows:

m(x(t)) = [x1(t)− 3]2 + [x2(t)− 4]2 − 4 = 0 (2.42)

The system here is second-order. Admissible changes in δx(tf) are tangent to the

circle at the point (x∗(tf), tf). The tangent line is normal to the gradient vector

∂m

∂x
(x∗(tf)) =

[
2[x∗1(tf)− 3]

2[x∗2(tf)− 4]

]
(2.43)

at the point (x∗(tf), tf)

Therefore, δx(tf) must be normal to the gradient Equation 2.43 so that

[
∂m

∂x
(x∗(tf))

]T
δx(tf) = 2[x∗1(tf)− 3]δx1(tf) + 2[x∗2(tf)− 4]δx2(tf) = 0 (2.44)

We can then solve for δx2(tf)

δx2(tf) = − [x∗1(tf)− 3]

[x∗2(tf)− 4]
δx1(tf) (2.45)

which can then be substituted into Equation 2.21, giving

[
∂h

∂x
(x∗(tf))− λ∗(tf)

]T 1

− [x∗1(tf)−3]
[x∗2(tf)−4]

δx1(tf)

 = 0 (2.46)

since δtf = 0 and δx1(tf) is arbitrary.

Chapter 2. Background and Literature Review 32

The second required equation at final time is that the final optimal state must be

on the surface,

m(x∗(tf)) = [x∗1(tf)− 3]2 + [x∗2(tf)− 4]2 − 4 = 0 (2.47)

This example can now be transferred to the general situation where there are n

state variables and 1 ≤ k ≤ n−1 relationships that the states must satisfy at final

time. The m(x(t)) relationship is then

m(x(t)) =

m(x1(t))

...

mk(x(t))

 = 0 (2.48)

where each component of m represents a hypersurface in the n-dimensional state

space.

The final state therefore lies on the intersection of these hypersurfaces with δxf a

tangent to each hypersurface at the point (x∗(tf), tf). This means that δx(tf) is

normal to each of the gradient vectors

∂m1

∂x
(x∗(tf)), . . . ,

∂mk

∂x
(x∗(tf)) (2.49)

These are assumed to be linearly independent.

Since δtf = 0, Equation 2.21 becomes

[
∂h

∂x
(x∗(tf))− λ∗(tf)

]T
δx(tf) , vT δx(tf) = 0 (2.50)

where Equation 2.50 can only be satisfied if the vector v is a linear combination

of the gradient vectors from Equation 2.49

∂h

∂x
(x∗(tf))− λ∗(tf) = d1

[
∂m1

∂x
(x∗(tf))

]
+ . . .+ dk

[
∂mk

∂x
(x∗(tf))

]
(2.51)

again the second required equation at final time is that the final optimal states

must be on the hypersurface

m(x∗(tf)) = 0 (2.52)

Applying Equation 2.51 and 2.52 to the original example can be shown to yield

the same results as originally obtained.

Chapter 2. Background and Literature Review 33

2.6.5.3.2 Free Final Time Problems Similarly to fixed final time problems sev-

eral case exist.

• Case I: Final State Fixed

Since final time is free δtf is arbitrary and δxf = 0 Equation 2.21 becomes

H (x∗(tf), u∗(tf), λ∗(tf), tf) +
∂h

∂t
(x∗(tf), tf) = 0 (2.53)

• Case II: Final State Free

In this case both δtf and δxf are arbitrary and independent. Therefore for Equa-

tion 2.21 to equal zero the coefficients of δtf and δxf must be zero

λ∗(tf) =
∂h

∂x
(x∗(tf), tf) (2.54)

H (x∗(tf), u∗(tf), λ∗(tf), tf) +
∂h

∂t
(x∗(tf), tf) = 0 (2.55)

Note that if h = 0

λ∗(tf) = 0 (2.56)

H (x∗(tf), u∗(tf), λ∗(tf), tf) = 0 (2.57)

• Case III: x(tf) lies on a moving point θ(t)

In this case δxf and δtf are related as follows:

δxf
.
=

[
dθ

dt
(tf)

]
δtf (2.58)

substituting this into Equation 2.21 gives

H (x∗(tf), u∗(tf), λ∗(tf), tf) +
∂h

∂t
(x∗(tf), tf) +

[
∂h

∂x
(x∗(tf), tf)− λ∗(tf)

]T
×
[
dθ

dt
(tf)

]
= 0

(2.59)

and the remaining equation that the optimal final states must lie on the point

Chapter 2. Background and Literature Review 34

x∗(tf) = θ(tf) (2.60)

• Case IV: Final state lying on a surface defined by m(x(t)) = 0. This case is

similar to Case III when final time was fixed. Since δxf is independent of δtf , the

coefficient of δtf must be zero. This gives four conditions:

x∗(t0) = x0 (2.61)

∂h

∂x
(x∗(tf), tf)− λ∗(tf) = d1

[
∂m1

∂x
(x∗(tf))

]
+ . . .+ dk

[
∂mk

∂x
(x∗(tf))

]
(2.62)

m(x∗(tf)) = 0 (2.63)

H (x∗(tf), u∗(tf), λ∗(tf), tf) +
∂h

∂t
(x∗(tf), tf) = 0 (2.64)

(Refer to Case III for fixed time for more detailed derivation)

• Case V: Final state lying on a moving surface defined by m(x(t), t) = 0

This case is very similar to Case IV except that the surface is itself moving.

∂h

∂x
(x∗(tf), tf)−λ∗(tf) = d1

[
∂m1

∂x
(x∗(tf), tf)

]
+. . .+dk

[
∂mk

∂x
(x∗(tf), tf)

]
(2.65)

m(x∗(tf), tf) = 0 (2.66)

2.6.6 Receding Horizon

A receding horizon approach is a form of online path planning that attempts to ap-

proximate a globally optimal solution using a cut down and simplified version of the

mathematics used to solve the global problem. The receding horizon approach breaks

the problem down into a horizon of known end time with detailed information about

the solution space within the horizon. The goal is to find the point within the horizon

that minimises or maximises the desired cost function, with the path needed to move

optimally through the horizon being the path between the horizon start point and the

found optimal end point. This process can then be repeated with the previous end point

becoming the start point for the next horizon. A path can therefore be constructed

from a collection of these reduced horizons. [51–53] show examples of receding horizon

approaches applied to UAV tracking type algorithms.

Chapter 2. Background and Literature Review 35

The algorithm applicable to the transfer problem in this case is based on the work shown

in [54].

The main simplification that directly impacts the run time of the algorithm is the re-

duction of the solution space. One of the complexities of the global algorithm is the

curvature range allowing paths to take any curvature between the upper and lower lim-

its. This means that numerous paths exist within the solution space causing the iterative

process to run for longer time scales as the algorithm is trying numerous curvatures while

searching for a solution. The receding horizon approach reduces this large set of solu-

tions to a small set of known curvature values. In this case three different path shapes

are considered:

1. Straight - A straight path with zero curvature

2. Left Curve - A turn to the left with maximum positive curvature

3. Right Curve - A turn to the right with maximum negative curvature

Therefore at each time point, or node, only three possible solutions exist. Since com-

putational power is no longer required to identify the solution it is simply the case of

calculating the cost value for every possible node within the horizon using the desired

cost function and then selecting the optimal point. Within the horizon the possible

paths are sampled from the feasible curvature area as shown on Figure 2.13.

Chapter 2. Background and Literature Review 36

Feasible curvatures

Path Samples

Figure 2.13: Receding horizon path sampling from feasible curvatures

The number of points sampled in each horizon is given by the following equation:

ntotals =
N∑
k=1

nks (2.67)

where ns is the number of paths available at each time interval (3 in this case) and N

comes from the equation:

T = N∆t (2.68)

where T is the horizon length and ∆t is the sampling interval. For a horizon where

T = 10 , ∆t = 2 and ns = 3 the number of nodes that need to be sampled for each

horizon is 363, however if ∆t = 5 then the number of nodes is reduced to only 39. Clearly

as T and ∆t are adjusted the number of nodes can be altered to achieve the best trade

off between number of calculations (and therefore algorithm run time) and algorithm

accuracy (the more samples taken the more accurate the path representation). Once

the appropriate sample space is decided a cost can be allocated to each node. The node

with the lowest cost gives the end point of the optimal path within the horizon and is

in turn the start point of the next horizon. To obtain the full path from horizon start

to this optimal end point it is simply a case of working back along the preceding nodes.

Figure 2.14 shows an example of this for the case where ns = N = 3.

Chapter 2. Background and Literature Review 37

Optimal Point

Optimal Path

Sampled Nodes

Sampled Paths

Figure 2.14: Receding horizon path selection from sampled space

The process is then repeated over multiple horizons until the cost value of the optimal

point is within the desired threshold (i.e. the horizon has arrived at the destination

within a set tolerance). An example of this can be seen in Figure 2.15.

Chapter 2. Background and Literature Review 38

Optimal Point

Optimal Path

Sampled Nodes

Sampled Paths

Destination

Figure 2.15: Receding horizon example

Although not applicable to solve the main problem of this work due to it not producing a

global solution the receding horizon approach gives a reasonable approximation of results

within a fast time scale, making this method an appropriate choice when comparing the

results of different algorithms used to solve this problem.

2.7 Importance of the work in this thesis

The majority of the path planning methods mentioned above carefully choose their

solution spaces so that they become easier to solve.

Starting with Dubin’s where only two possible path choices exist this has been expanded

as computational methods have improved that are better equipped to handle larger

solution spaces. Simple additions have been made to expand on the capability of such

path planners such as adding the ability to reverse to Dubin’s results or adding a third

dimensions to handle altitude.

Even more complex algorithm such as Genetic algorithms, branch and bound and Re-

ceding Horizon work using reduced or carefully selected solution spaces to facilitate their

Chapter 2. Background and Literature Review 39

application to problems and faster runtimes. Indeed branch and bound algorithms can

not work unless provided with known solutions on which to operate as too large or an

unknown solution space would result in the algorithm having a long runtime or failing

completely.

This work relaxes the constraint on the available solution space seen in similar methods

by allowing paths to take any value as long as they conform to certain constraints such

as velocity magnitude and maximum curvature of turn. This is a closer approximation

to how a human operator would control a UAV and facilitates the goal of producing

globally optimal solutions for this problem rather than the locally solutions of other

methods arising from their use of a tightly constrained solution space.

The relaxing of the curvature constraint is far removed from works like Dubin’s or even

Receding Horizon where curvature is fixed to a set value or limited to only a few cases.

This will allow the available choice of paths to greatly increase.

The work in this thesis looks at the development of an algorithm that utilises a more real-

istic curvature constraint and investigates its performance in producing global solutions

for the transfer problem in question.

Chapter 3

Algorithm Construction and

Testing

3.1 Introduction

Before any path planning algorithm can be implemented the problem has to first be

defined. This includes UAV dynamics plus any constraints that apply. In addition this

also includes deciding on the desired form of the cost function to meet the requirements

of transfer paths. From this initial formulation it is possible to construct an algorithm

using a Two Point Boundary Value(TPBV) method to solve the problem. The initial

formulation is detailed and then followed by the formulation of the TPBV problem

including the identification of the necessary boundary conditions . The resulting issues of

this TPBV problem are discussed giving motivation for the implementation of a simpler

shooting approach. The formulation of the shooting algorithm is discussed including

a discussion on cost function validity. Algorithm results are presented showing the

functionality of the developed algorithm.

3.2 Initial Problem Formulation

3.2.1 UAV Equations

As with most Engineering problems it is possible to apply some simplifications to the

transfer problem. Firstly the altitude can be assumed constant therefore reducing the

problem to two dimensions. Secondly as the goal is to produce a guidance law that

gives path information, rather than a control law that allows a specific UAV to follow

40

Chapter 3. Algorithm Formulation and Testing 41

the path information, it is acceptable to use simplified UAV dynamics when solving the

problem. The UAV can be considered as a point mass and its dynamics in state-space

are given by.

ẋ =

[
02 I2

02 02

]
x +

[
02

I2

]
u = Ax +Bu (3.1)

where x = [x, y, vx, vy]
T , x and y are the coordinates of aircraft, vx and vy are the

aircraft velocity in x and y direction, respectively, [·]T is the transpose, 02 is 2×2 zero

matrix, I2 is 2×2 identity matrix, u = [ux, uy]
T , ux and uy are the control input in the

x and y direction, respectively.

From the results shown in [24] the nominal path for an aircraft tracking a target in a

dense obstacle area is circular. The problem can therefore be formed as a transfer from

one circular path to another as shown in Figure 3.1. The initial and final UAV position

must be as follows:

x2(t0) + y2(t0) = r2 (3.2a)

x(t0)ẋ(t0) + y(t0)ẏ(t0) = 0 (3.2b)

[x(tf)− α]2 + [y2(tf)− β] = r2 (3.2c)

[x(tf)− α]ẋ(tf) + [y(tf)− β]ẏ(tf) = 0 (3.2d)

where α is the distance offset between the centres of the two circles in x, β is the distance

offset between the centres of the two circles in y, initial time t0 is fixed, initial location

x(t0) and y(t0) are given, final time tf is free, and final location x(tf) and y(tf) lie on the

circle defined by Equation 3.2c. All quantities are expressed in the global coordinates

shown in Figure 3.2.

Chapter 3. Algorithm Formulation and Testing 42

x

y

(ẋ(tf),ẏ(tf))

Transfer Path

α

(ẋ(t0),ẏ(t0))

y(t0)

x(t0)

Figure 3.1: An example of the transfer between two circular tracking paths

y

x

yB
xB

uymax − uymin

uxmax − uxmin

φ

Figure 3.2: Global (X−Y) and UAV local (xB − yB) coordinates with the control
input magnitude constraint, which is indicated by the dotted box.

3.2.2 UAV Constraints

The following critical constraints for the UAV must be considered to design an optimal

guidance algorithm:

Chapter 3. Algorithm Formulation and Testing 43

• Velocity for x-direction in the body coordinates must satisfy the following:

0 < vmin ≤ vBx ≤ vmax (3.3)

where vBx is the aircraft velocity in the body coordinates. The aircraft attitude is

assumed to be aligned with the velocity vector, hence, vBy is always equal to zero.

Equation 3.3 can be expressed in the global coordinates as follows:

v2min ≤ v2x + v2y ≤ v2max (3.4)

where

vx = vBx cosφ (3.5a)

vy = vBx sinφ (3.5b)

where φ is equal to tan−1(vy/vx).

• Control input magnitudes are constrained as follows:

uxmin ≤ uBx ≤ uxmax (3.6a)

uymin ≤ uBy ≤ uymax (3.6b)

where uBx and uBy are the control input expressed in the aircraft body coordinates.

Note that the ranges of control input for x and y are not the same as each other,

in general. Equation 3.6 can be expressed in the global coordinates as follows:

uxmin ≤ ux cosφ+ uy sinφ ≤ uxmax (3.7a)

uymin ≤ −ux sinφ+ uy cosφ ≤ uxmax (3.7b)

• The turn radius of aircraft must be larger than the given minimum radius turn of

aircraft. In other words, the radius of curvature of the flight path must be smaller

than the inverse of the minimum radius.

|vxuy − vyux|(
v2x + v2y

)3/2 ≤ 1

rmin
(3.8)

where rmin is the radius of the circle corresponding to the minimum radius turn.

The above equation can be written as follows:

− 1

rmin

(
v2x + v2y

)3/2 ≤ vxuy − vyux ≤ 1

rmin

(
v2x + v2y

)3/2
(3.9)

Chapter 3. Algorithm Formulation and Testing 44

where the region in the control input space satisfying the above inequalities is the

enclosed region by two straight lines which are parallel to the xB-axis.

3.2.3 Choosing the basic form of the cost function

To successfully carry out the path planning task the form of the cost function must first

be decided. Two sensible measures exist that can be applied to this problem:

1. Minimum Time

2. Minimum Distance

To choose which of these measure is most appropriate it is first required to look at the

type of path desired for the transfer. In this case the most direct path is desirable as it

is the most useful when considering the target tracking mission. If the most direct path

is used then the UAV would always be travelling towards the tracking region defined

by the circle. By using minimum time no control is given over the directionality of the

path which could result in paths that are shortest in time but may not be the most

direct. Minimum distance on the other hand is directly trying to control the length

of the generated path, with the minimum distance equating to the most direct path.

A cost function involving minimum distance is therefore the most appropriate for this

application. The path length parameter will form the basis of the minimum distance

cost function and can be derived as follows:

3.2.3.1 Path Length Derivation

For UAV path planning problems, one of the natural choices for the minimising cost

function is the path length. The equation for path length can be derived from the

equation of arc length as follows:

For a straight line the arc length can be simply be represented as the square root of the

square sum of the difference in x and y coordinates

L =
√

(∆x)2 + (∆y)2 (3.10)

An arbitrary path can be split into numerous small straight line segments (polygonal

arc) each having a length of:

Li =
√

[f(ti)− f(ti−1)]2 + [g(ti)− g(ti−1)]2 (3.11)

Chapter 3. Algorithm Formulation and Testing 45

where x = f(x), y = g(x) and t0 < t < tf is the time interval over which the path exists.

However if

∆t = ti − ti−1 = (t0 − tf)/n (3.12)

then from the mean value theorem

f(ti)− f(ti−1) = f ′(t∗i)∆t (3.13a)

g(ti)− g(ti−1) = g′(t∗i)∆t (3.13b)

where t∗i is some time in [ti−1, ti]

Substituting this back

Li =
√

[f ′(t∗i)]
2 + [g′(t∗i)]

2∆t (3.14)

The total path length is therefore the sum of all the Li elements

s =
n∑
i=1

Li (3.15a)

s =
n∑
i=1

√
[f ′(t∗i)]

2 + [g′(t∗i)]
2∆t (3.15b)

as n�∞

s =

∫ tf

t0

√
[f ′(t∗i)]

2 + [g′(t∗i)]
2dt (3.16a)

s =

∫ tf

t0

√
ẋ2 + ẏ2dt (3.16b)

as, integrating over an infinitesimally small arc length:

δs =

√
δx2 + δy2 = δt

√
ẋ2 + ẏ2 (3.17)

3.2.4 Form of the Optimal Control Problem

From equations Equation 3.4, Equation 3.7 and Equation 3.9 the form of optimal control

problem can be defined as:

Minimise
tf∈[0,∞),u(t)∈U

J =

∫ tf

t0

f(t)dt (3.18)

where U is a compact set defined by Equation 3.7, t0 is the initial time, tf is the final

time, which is free, and f(t) is a function to be chosen based on Equation 3.16b.

Chapter 3. Algorithm Formulation and Testing 46

subject to

ẋ = Ax +Bu

and

v2min ≤ v2x + v2y ≤ v2max

uxmin ≤ ux cosφ+ uy sinφ ≤ uxmax

uymin ≤ −ux sinφ+ uy cosφ ≤ uxmax

− 1

rmin

(
v2x + v2y

)3/2 ≤ vxuy − vyux ≤ 1

rmin

(
v2x + v2y

)3/2

3.3 Two Point Boundary Value(TPBV) Problem

From the initial formulation it is required to obtain a set of ordinary differential equations

(ODE) that will be used to solve the TPBV problem. For problems with constraints

such as this an augmented cost function called the Hamiltonian is produced that gives

a set of ODE and associated boundary conditions that should be sufficient to solve the

problem.

3.3.1 Hamiltonian Generation

Firstly an augmented cost function must be formed to create the Hamiltonian H .

The cost function chosen for this is the square of path length from Equation 3.16b:

J =

∫ tf

t0

ẋ2 + ẏ2dt (3.19)

This choice is due to the removal of the square root as it provides a simpler equation

to augment. The Hamiltonian is formed by augmenting the original cost function by

adding the constraint equations in Equation 3.18, weighted using time varying Lagrange

multipliers:

H =x23 + x24 + λ1x3 + λ2x4 + λ3ux + λ4uy

+ λ5[(x
2
3 + x24 − V 2

max)21(V 2
max − x23 − x24)

+ (V 2
min − x23 − x24)21(x23 + x24 − V 2

min)]

(3.20)

Chapter 3. Algorithm Formulation and Testing 47

where x3 = ẋ1 = ẋ, x4 = ẋ2 = ẏ, ux = ẋ3 = ẍ and uy = ẋ4 = ÿ. λ1,2,...5 are time varying

Lagrange multipliers. The terms involving 1 are defined as follows:

1(−fi) =

 1 for fi ≤ 0

0 for fi > 0
(3.21)

Taking the derivative of H and setting it to zero gives one of the necessary conditions

for a minimum point to exist as follows:

δH

δxi
= −λ̇i = Hxi

where i = 1, 2, 3....., n.

Therefore

Hx1 = −λ̇1 = 0 (3.22)

Hx2 = −λ̇2 = 0 (3.23)

Hx3 = −λ̇3
= −2x3 − λ1 − λ5[4x3(x23 + x24 − V 2

max)1(V 2
max − x23 − x24)

− 4x3(V
2
min − x23 − x24)1(x23 + x24 − V 2

min)]

(3.24)

Hx4 = −λ̇4
= −2x4 − λ2 − λ5[4x4(x23 + x24 − V 2

max)1(V 2
max − x23 − x24)

− 4x4(V
2
min − x23 − x24)1(x23 + x24 − V 2

min)]

(3.25)

Hx5 = λ̇5 = 0 (3.26)

In addition to these equations the derivatives of the states can also be defined as:

δH

δλi
= ẋi

where i = 1, 2, 3....., n.

Chapter 3. Algorithm Formulation and Testing 48

Therefore

ẋ1 =x3

ẋ2 =x4

ẋ3 =ux

ẋ4 =uy

ẋ5 =(x23 + x24 − V 2
max)21(V 2

max − x23 − x24)
+ (V 2

min − x23 − x24)21(x23 + x24 − V 2
min)

where x5 is a dummy state to allow for the addition of the fifth Lagrange multiplier λ5.

This gives ten differential equations that describe the problem. It is shown that λ1, λ2

and λ5 are constant values.

3.3.2 Hamiltonian Control Considerations

Due to the existence of a constraint on the control inputs the problem must be solved

using Pontryagin’s Minimum Principle. This involves finding a control input that min-

imises the Hamiltonian H . Firstly the Hamiltonian is rewritten by extracting the terms

involving ux and uy and then forming the minimisation problem using the control con-

straint equation (3.7)

Minimise
u(t)∈U

Hcontrol = λ3ux + λ4uy (3.27)

subject to

uxmin ≤ ux cosφ+ uy sinφ ≤ uxmax

uymin ≤ −ux sinφ+ uy cosφ ≤ uxmax

− 1

rmin

(
v2x + v2y

)3/2 ≤ vxuy − vyux ≤ 1

rmin

(
v2x + v2y

)3/2
Due to the condition imposed by Equation 3.7 ux and uy form a box in the ux and uy

plane as shown in Figure 3.3.

Chapter 3. Algorithm Formulation and Testing 49

uy

ux

uBy

uBx

uymax − uymin

uxmax − uxmin

φ

Figure 3.3: Graphical Representation of the UAV Control Box

By performing a 2D rotation on the uBx and uBy body coordinates the ux and uy values

for any φ can be found. The transformation is as follows:[
ux

uy

]
=

[
cosφ − sinφ

sinφ cosφ

][
uBx

uBy

]
(3.28)

The available control values exist within this box and will dictate the value of Hcontrol.

This is because the minimum value of Hcontrol is a function of the maximum magnitude

of ux and uy. This can more clearly be seen by noting that, from Equation 3.27, the

cost function describes lines in the ux and uy plane given by Equation 3.29 as shown in

Figure 3.4.

uy = −λ3
λ4
ux +

Hcontrol

λ4
(3.29)

Chapter 3. Algorithm Formulation and Testing 50

−λ4

λ3

(u∗x, u
∗
y)

Hcontrolmin
λ4

uy

ux

Hcontrol Lines
Control Box
Minimum Value of Hcontrol

Optimal Value of u

Figure 3.4: Graphical Representation of the Control Cost

The optimal control values of u∗x and u∗y will therefore exist when the line corresponding

to the minimum Hcontrol value is within the bounding box. However the curvature

constraint can also affect the size of this box and must first be taken into account before

the optimal control values can be selected.

The curvature constraint is two lines in the ux and uy plane that will either be large

enough that they encompass the whole uBx and uBy box or are small enough that they

shrink the uBx and uBy box as shown in Figure 3.5.

Chapter 3. Algorithm Formulation and Testing 51

vy

vx

+1
r

(v2x+v2y)
3/2

vx

−1
r

(v2x+v2y)
3/2

vx

Curvature that includes control box
Curvature that shrinks control box

uy

ux

uBy uBx

φ

Figure 3.5: Graphical Representation of the Curvature Constraint

The control box will therefore change in size depending on the velocity of the aircraft

and how this affects the curvature constraint. If the control box shrinks the maximum

available control will be less and therefore impact the value of Hcontrol. The curvature

lines are always parallel with the uBx axis and can effectively reduce the control magnitude

available in uBy . This is the case as the angle of the curvature lines to the ux axis is the

same as the heading angle, φ, of the UAV. The Figure 3.5 shows the generic case for

this curvature bounding however when the body axes are parallel to the inertial axes

two special cases exist for the equations of the bounding lines:

• Case] 1, vx = 0 and vy 6= 0

ux = ±1

r
v2y

uy = 0

• Case] 2, vx 6= 0 and vy = 0

ux = 0

uy = ±1

r
v2x

Using the above the uBx and uBy control box can be defined for any velocity allowing for

the corresponding ux and uy values to be found that minimise equation Equation 3.27.

Chapter 3. Algorithm Formulation and Testing 52

Knowing that the minimum Hcontrol occurs at the boundary of the control box, where

control magnitude is at its maximum, we only need consider the ux and uy values at the

four corners of the box. The minimum value of Hcontrol will be achieved at one of these

points allowing u∗x and u∗y to be selected. The coordinates of the four corners as shown

in Figure 3.6, in the ux and uy plane are:

uxright upper
= uxmax cosφ− uymax sinφ

uyright upper
= uxmax sinφ+ uymax cosφ

uxright lower
= uxmax cosφ− uymin sinφ

uyright lower
= uxmax sinφ+ uymin cosφ

uxleft upper
= uxmin cosφ− uymax sinφ

uyleft upper
= uxmin sinφ+ uymax cosφ

uxleft lower
= uxmin cosφ+ uymin sinφ

uyleft lower
= uxmin sinφ+ uymin cosφ

where the value of uymax and uymin varies depending on the curvature constraints.

uBy

uBx

uright upper

uright lower

uleft lower

uleft upper

uxmax

uymax

uxmin

uymin

Figure 3.6: Reference for the corners of the control box including maximum and
minimum control indications

Chapter 3. Algorithm Formulation and Testing 53

3.3.3 TPBV Problem Boundary Conditions

To complete the formulation of the TPBV problem the remaining boundary conditions

must be derived. To do this the following sufficient condition must be met:

[
δh

δx
(x∗(tf), tf)− λ∗(tf)]T δxtf + [H (tf) +

δh

δt
(x∗(tf), tf)]δtf = 0 (3.30)

where x∗ and λ∗ are optimal x and λ, the function h is a function of the final time and

final x and H (tf) is the Hamiltonian at final time.

For Equation 3.30 to equal zero, both parts of the sum must equal zero. Since final time

is free, δ(tf) is greater than zero,therefore the coefficient of δ(tf) must equal zero:

H (tf) +
δh

δt
(x∗(tf), tf) = 0 (3.31)

In addition since final position lies on a fixed surface:

[
δh

δx
(x∗(tf), tf)− λ∗(tf)]T δxtf = 0 (3.32)

Since h is on a fixed surface it does not vary with final time, hence
δh

δt
(x∗(tf), tf) = 0,

giving one boundary condition:

H (tf) = 0 (3.33)

δh

δx
(x∗(tf), tf) = 0 is the gradient of the surfaces that x must be on at final time:

δh

δx
(x∗(tf), tf) = λ∗(tf) (3.34)

There are three surfaces that x must lie on, one defining final position, one defining final

velocity and the third defining the surface for the dummy state x5 at final time:

m1[x(t)] = [x1(tf)− α]2 + [x2(tf)− β]2 − r2 = 0 (3.35a)

m2[x(t)] = 2[x1(tf)− α]x3(tf) + 2[x2(tf)− β]x4(tf) = 0 (3.35b)

m3[x(t)] = x5 = 0 (3.35c)

Chapter 3. Algorithm Formulation and Testing 54

δh

δx
(x∗(tf), tf) will be a weighted sum of the gradients from both of these equations.

δm1

δx
=

2[x1(tf)− α]

2[x2(tf)− β]

0

0

0

(3.36)

δm2

δx
=

x3(tf)

x4(tf)

2(x1(tf)− α)

2(x2(tf)− β)

0

(3.37)

δm3

δx
=

0

0

0

0

1

(3.38)

it follows that

δh

δx
[x∗(tf), tf] = d1

2[x1(tf)− α]

2[x2(tf)− β]

0

0

0

+ d2

x3(tf)

x4(tf)

2(x1(tf)− α)

2(x2(tf)− β)

0

+ d3

0

0

0

0

1

(3.39)

where d1, d2 and d3 are weighting factors, substituting back

λ1(tf)

λ2(tf)

λ3(tf)

λ4(tf)

λ5(tf)

= d1

2(x1(tf)− α)

2(x2(tf)− β)

0

0

0

+ d2

x3(tf)

x4(tf)

2(x1(tf)− α)

2(x2(tf)− β)

0

+ d3

0

0

0

0

1

(3.40)

Using these equations it is possible to obtain values for d1 and d2. Firstly note that four

equations exist involving d1 and d2:

Chapter 3. Algorithm Formulation and Testing 55

λ1(tf) = 2d1(x1(tf)− α) + d2x3(tf) (3.41)

λ2(tf) = 2d1(x2(tf)− β) + d2x3(tf) (3.42)

λ3(tf) = 2d2(x1(tf)− α) (3.43)

λ4(tf) = 2d2(x2(tf)− β) (3.44)

Using the last of these two equations it is possible to solve for d2:

d2 =
λ3(tf)

2(x1(tf)− α)
=

λ4(tf)

2(x2(tf)− β)
(3.45)

Substituting back into the equations for λ1 and λ2:

λ1(tf) = 2d1(x1(tf)− α) +
λ3(tf)x3(tf)

2(x1(tf)− α)
(3.46)

λ2(tf) = 2d1(x2(tf)− β) +
λ4(tf)x4(tf)

2(x2(tf)− β)
(3.47)

These equations can then be solved for d1:

d1 =
λ1(tf)

2(x1(tf)− α)
− λ3(tf)x3(tf)

4(x1(tf)− α)2
=

λ2(tf)

2(x2(tf)− β)
− λ4(tf)x4(tf)

4(x2(tf)− β)2
(3.48)

If Equation 3.48 and Equation 3.45 are rearranged to equal zero a further two boundary

conditions are obtained:

λ3(tf)

2(x1(tf)− α)
=

λ4(tf)

2(x2(tf)− β)
(3.49)

2λ3(tf)(x2(tf)− β) = 2λ4(tf)(x1(tf)− α) (3.50)

λ3(tf)(x2(tf)− β)− λ4(tf)(x1(tf)− α) = 0 (3.51)

and

Chapter 3. Algorithm Formulation and Testing 56

λ1(tf)

2(x1(tf)− α)
− λ3(tf)x3(tf)

4(x1(tf)− α)2
=

λ2(tf)

2(x2(tf)− β)
− λ4(tf)x4(tf)

4(x2(tf)− β)2
(3.52)

1

2(x1(tf)− α)

[
λ1(tf)− λ3(tf)x3(tf)

2(x1(tf)− α)

]
=

1

2(x2(tf)− β)

[
λ2(tf)− λ4(tf)x4(tf)

2(x2(tf)− β)

] (3.53)

2λ1(tf)(x2(tf)− β)− λ3(tf)x3(tf)(x2(tf)− β)

(x1(tf)− α)

= 2λ2(tf)(x1(tf)− β)− λ4(tf)x4(tf)(x1(tf)− α)

(x2(tf)− β)

(3.54)

1

(x1(tf)− α)
[2λ1(tf)(x1(tf)− α)(x2(tf)− β)− λ3(tf)x3(tf)(x2(tf)− β)]

=
1

(x2(tf)− β)
[2λ2(tf)(x1(tf)− α)(x2(tf)− β)− λ4(tf)x4(tf)(x1(tf)− α)]

(3.55)

(x2(tf)− β)2 [2λ1(tf)(x1(tf)− α)− λ3(tf)x3(tf)]

= (x1(tf)− α)2 [2λ2(tf)(x2(tf)− β)− λ4(tf)x4(tf)]
(3.56)

(x2(tf)− β)2 [2λ1(tf)(x1(tf)− α)− λ3(tf)x3(tf)]

− (x1(tf)− α)2 [2λ2(tf)(x2(tf)− β)− λ4(tf)x4(tf)] = 0
(3.57)

Finally the equation forλ5(tf) can is simply:

λ5(tf)− d3 = 0; (3.58)

However as the weighting factor d3 is undetermined and can take any valueEquation 3.3.3

is not a suitable boundary condition for λ5(tf). To solve this it can be noted that λ̇5

was found to be zero in Equation 3.26 meaning that λ5 is constant. At final time λ5

must equal the same value as at initial time therefore:

λ5(tf)− λ5(t0) = 0; (3.59)

This gives three boundary conditions involving λ1,2,...,5 at final time.

These equations in addition to the equations of the non-dummy surfaces, the initial con-

dition and the final condition on the Hamiltonian give a total of 10 boundary conditions:

Chapter 3. Algorithm Formulation and Testing 57

Four for the initial values:

x1(t0)− r cos(θ) = 0

x2(t0)− r sin(θ) = 0

x3(t0) + Vmin sin(θ) = 0

x4(t0)− Vmin cos(θ) = 0

where θ denotes the angle around the initial circular path from which the UAV departs,

Five for the terminal values:

(x1(tf)− α)2 + (x2(tf)− β)2 − r2 = 0

2(x1(tf)− α)x3(tf) + 2(x2(tf)− β)x4(tf) = 0

(x2(tf)− β)2 [2λ1(tf)(x1(tf)− α)− λ3(tf)x3(tf)]

−(x1(tf)− α)2 [2λ2(tf)(x2(tf)− β)− λ4(tf)x4(tf)] = 0

λ3(tf)(x2(tf)− β)− λ4(tf)(x1(tf)− α) = 0

λ5(tf)− λ5(t0) = 0

And one for the Hamiltonian at the terminal point

x23(tf) + x24(tf) + λ1(tf)x3(tf) + λ2(tf)x4(tf) + λ3(tf)ux(tf) + λ4(tf)uy(tf)

+ λ5(tf)[(x23(tf) + x24(tf)− V 2
max)21(V 2

max − x23(tf)− x24(tf))

+ (V 2
min − x23(tf)− x24(tf))21(x23(tf) + x24(tf)− V 2

min)] = 0

3.3.4 Problems Coding the TPBV problem

MATLABs bvp4c TPBV solver was used to code this problem. After numerous attempts

at testing and algorithm rewrites, this method proved to yield no results. The algorithm

resulted in the generation of a singular Jacobian while attempting to solve the collocation

equations. This was traced to a problem with the initial guess of the solution. Given

the limited information as to how the states vary over the solution space the initial

guess provided to the solver was arbitrary. The initial guess is used to give the solver

a start point and can effect the resulting solution so much so that a different solution

can be found simply by varying the initial guess. An inappropriate guess can go as far

as causing the solving algorithm to fail completely yielding no result as in this case. As

it is infeasible to obtain a more accurate guess for an unknown solution space another

method must be employed to solve this path planning task.

Chapter 3. Algorithm Formulation and Testing 58

As all transfers start form a known point in the solution space the initial values of the

problem are well defined. As this is the case it is possible to apply an initial value

approach such as a shooting method to solve this problem. In addition it is also possible

to further simplify the approach by changing from continuous to discrete time removing

the need to handle differential equations when solving the problem and instead being

able to work in purely algebraic terms. As a discrete shooting method relies only on

the initial conditions the unknown nature of the solution space that restricts the use

of a TPBV method will have little impact making it a better choice to solve the posed

transfer problem.

3.4 Shooting Method Algorithm

MATLAB solver fmincon was selected as the optimiser to be used for the shooting

method problem. From Equation 3.16b two cost functions were considered as viable

options to generate distance optimal paths:

J =

∫ tf

t0

√
ẋ2 + ẏ2dt (3.60a)

J =

∫ tf

t0

ẋ2 + ẏdt (3.60b)

3.4.1 Preparing the cost function for algorithm use

As mentioned previously, for numerical optimisation to be applied it is necessary to

discretise the cost function so that it can be solved as an algebraic equation rather than

a differential equation.

The equations of motion can be discretised as follows:

x(k + 1) = Adx(k) +Bdu(k) (3.61)

Where Ad and Bd are discrete forms of the A and B matrices respectively and x(k+ 1)

denotes the next discrete step and x(k) denotes the previous discrete step.

In turn the cost functions can also be written in a discrete form:

J =

N−1∑
k=0

√
ẋ2(k) + ẏ2(k)h (3.62)

Chapter 3. Algorithm Formulation and Testing 59

J =
N−1∑
k=0

ẋ2(k) + ẏ2(k)h (3.63)

where h is the discretisation step size.

To create these functions from the original equations of motion we must first select only

the x and y velocity components required in the cost functions. This will give us a

matrix used for the selection (C) and the output of the selection (Y):

C =
[
02 I2

]
(3.64)

x =

x

y

ẋ

ẏ

 (3.65)

Therefore

Y =

[
ẋ

ẏ

]
= CX (3.66)

The costs can then be defined in terms of the matrix Y:

J =
N−1∑
k=0

√
YT (k)Y(k)h (3.67)

J =

N−1∑
k=0

YT (k)Y(k)h (3.68)

where YT (k) is the matrix transpose of Y(k).

The next step is to find the generic equation for Y (k) for any given time step k. This

can be done by looking at the first few terms in the expansion of Y (k) and identifying

Chapter 3. Algorithm Formulation and Testing 60

the generic equation.

Y(1) = CAdx(0) + CBdu(0)

Y(2) = CAdx(1) + CBdu(1)

= CAd(Adx(0) +Bdu(0)) + CBdu(1)

= CAd
2x(0) + CAdBdu(0)(1) + CBdu(1)

Y(3) = CAdx(2) + CBdu(2)

= CAd(Adx(1) +Bdu(1)) + CBdu(2)

= CAd(Ad(Adx(0) +Bdu(0)) +Bdu(1)) + CBdu(2)

= CAd(Ad
2x(0) +AdBdu(0) +Bdu(1)) + CBdu(2)

= CAd
3x(0) + CA2

dBdu(0) + CAdBdu(1) + CBdu(2)

Therefore

Y(n) = CAd
nx0 + C

n−1∑
i=0

Ad
iBdu(n− 1− i) (3.69)

where x0 is the initial conditions of x.

The summing term in Equation 3.69 can be further simplified:

n−1∑
i=0

Ad
iBdu(n− 1− i) =

[
Ad

n−1 Ad
n−2 ... Ad

2 Ad I
]
Bd

u(0)

u(1)

u(2)

.

.

.

u(n− 1)

(3.70)

From this we can define two matrices as follows:[
Ad

n−1 Ad
n−2 ... Ad

2 Ad I
]
Bd = F

u(0)

u(1)

u(2)

.

.

.

u(n− 1)

= X

Chapter 3. Algorithm Formulation and Testing 61

Substituting back into Equation 3.69:

Y(n) = CAd
nx0 + CFX (3.71)

Finally the equation for Y T (n)Y (n) can be found in terms of control inputs and initial

values:

Y T (n)Y (n) = [x0
T (Ad

n)TCT +X
T
F
TCT][CAd

nx0 + CFX]

= x0
T (Ad

n)TCTCAd
nx0

+ 2x0
T (Ad

n)TCTCFX

+X
T
F
TCTCFX

(3.72)

Using Equation 3.72, Equation 3.67 and Equation 3.68 can be constructed by summing

the value of the equation over all time points. In addition Equation 3.61 can be used to

generate x, y, ẋ and ẏ values over time which can be used to calculate constraints and

plot generated paths.

3.4.2 Problems with a single optimising action

The algorithm using the cost function of the form shown in Equation 3.18 was unable

to produce paths as desired. Figure 3.7 shows this clearly as the path generated fails to

perform the transfer. This issue presents itself for all path exit angles greater than 15°.

To analyse this problem the gradient of the cost function with respect to the control

inputs ux, uy and the control for final time, tf , step size h was calculated.

0 500 1000 1500 2000

−800

−600

−400

−200

0

200

400

600

800

1000

x[m]

y
[m

]

Figure 3.7: The path generated by a single optimising action from 15°exit angle

Chapter 3. Algorithm Formulation and Testing 62

Due to the algorithm producing discrete results the norm of gradient values wrt ux, uy

was taken with infinite gradient values being replaced with the maximum real value of

the norm. This was plotted with the absolute values wrt h to allow the comparison of

the largest gradient values. Figure 3.8 shows this for an exit angle of -90°. Gradient

figures for other exit angles can be seen in Appendix A.

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

Iteration Step

G
ra

d
ie

n
t

M
a

g
n

it
u

d
e

‖ ∂J
∂u‖

‖ ∂J
∂h‖

Figure 3.8: Gradient comparison for -90°

It is clear from these figures that the gradient wrt to ux and uy shown by the solid blue

line is much larger than the gradient wrt h shown by the dashed red line:

∂J

∂u
� ∂J

∂h
(3.73)

where h = tf/N , causing this issue.

This gradient stiffness results in the single optimising action terminating at local solu-

tions instead of the desired global solutions. Due to this the form of the optimiser needs

to be changed to overcome this limitation.

3.4.3 Using a Split Optimiser

It is possible to take the single optimising action shown in Equation 3.18 and split it

into two distinct actions:

Chapter 3. Algorithm Formulation and Testing 63

Minimise
tf

(Jinner)

:= Minimise
tf∈[0,∞)

(
Minimise

u(t)∈U
J =

∫ tf

t0

f(u)dt

) (3.74)

The inner optimiser generates the control values to follow a path at a given final time. It

results in a valid or invalid path at the set final time, and is the optimiser responsible for

generating the path shape while ensuring that valid paths meet the set constraints. The

outer optimiser adjusts the final time of the path. In essence this optimiser attempts

to minimise the time taken to fly a distance optimal transfer path. However it was not

known, if the action of splitting the optimisation process into two steps, could yield

different results depending on the choice of cost function.

All costs generated from either Equation 3.60a or Equation 3.60b will lie between limits

generated from Equation 3.4. The limits are generated from the accelerated and min-

imum speed profiles shown in Figure 3.9. Using the chosen values of maximum speed

Vmax, minimum speed Vmin and maximum control magnitude u, the values of t′f , the

final time for accelerated transfer, tf , the final time for minimum speed transfer, and t1,

the time that the UAV reaches the maximum velocity, can be represented:

tf =
d

Vmin
, t1 =

∆V

u
, t′f =

d

Vmax
+

∆V 2

2uVmax
(3.75)

where d is the path length, u =
√
u2xmax + u2ymax

and ∆V = Vmax − Vmin.

Chapter 3. Algorithm Formulation and Testing 64

t

V B
x

Acclerated Transfer
Minimum Speed Transfer

tft′ft1

Vmax

Vmin

Figure 3.9: Speed Transfer Profiles

The limits on optimal cost, J∗ can be calculated for Equation 3.60a and Equation 3.60b.

3.4.3.1 Cost function with f(t) = ẋ2 + ẏ2

The cost function, Jinner, with f(t) = ẋ2 + ẏ2 for the minimum speed profile, becomes

Jinner = Minimise
u(t)∈U

∫ tf

0

(
ẋ2 + ẏ2

)
dt

=

∫ tf

0
V 2
mindt = V 2

mintf = Vmind (3.76)

This can be repeated for the accelerated speed profile:

Jinner = Minimise
u(t)∈U

∫ t1

0

(
ẋ2 + ẏ2

)
dt+

∫ t′f

t1

(
ẋ2 + ẏ2

)
dt

=

∫ t1

0
(Vmin + ut)2dt+

∫ tf
′

t1

Vmax
2dt (3.77)

= Vmin
2tf + Vminut1

2 +
ut1

2

2
+ Vmax

2
(
tf
′ − t1

)
(3.78)

=
Vmin

2∆V

u
+
Vmin∆V 2

u
+

∆V 3

3u
+ Vmaxd+

Vmax∆V 2

2u
− Vmax

2∆V

u
(3.79)

= Vmaxd−
∆V 2 (Vmax − 2Vmin)

6u
(3.80)

Chapter 3. Algorithm Formulation and Testing 65

Therefore the limits on J∗ when f(t) = ẋ2 + ẏ2 are:

Vmaxd−
∆V 2 (Vmax − 2Vmin)

6u
≤ J∗ ≤ Vmind (3.81)

3.4.3.2 Cost function with f(t) =
√
ẋ2 + ẏ2

The cost function, Jinner, with f(t) =
√
ẋ2 + ẏ2 for the minimum speed profile, becomes

Jinner = Minimise
u(t)∈U

∫ tf

0

√
ẋ2 + ẏ2dt

=

∫ tf

0
Vmindt = Vmintf = d (3.82)

And, for the accelerated speed profile:

Jinner = Minimise
u(t)∈U

∫ t1

0

√
ẋ2 + ẏ2dt+

∫ t′f

t1

√
ẋ2 + ẏ2dt

=

∫ t1

0
(Vmin + ut)dt+

∫ tf
′

t1

Vmaxdt (3.83)

= Vmint1 +
ut1

2

2
+ Vmax

(
tf
′ − t1

)
(3.84)

=
Vmin∆V

u
+

∆V 2

2u
+ d+

∆V 2

2u
− Vmax∆V

u
(3.85)

= d+
∆V

u
(Vmin − Vmax) +

∆V 2

u
(3.86)

= d+
∆V 2

u
− ∆V 2

u
(3.87)

= d (3.88)

Since the costs are independent of speed profile, J∗ = d∗ where d∗ is the distance

corresponding to the optimal value of final time t∗f when f(t) =
√
ẋ2 + ẏ2

3.4.3.3 Applying the outer cost function

The effect of the outer cost function, Minimisetf∈[0,∞), is to find the cost, Jinner, that

corresponds to the optimal time i.e when final time is minimum for the minimum distance

path. This occurs when the accelerated speed profile is used.

Chapter 3. Algorithm Formulation and Testing 66

For f(t) = ẋ2 + ẏ2, the accelerated speed profile will only be used if the cost of the

accelerated speed profile is less than the cost of the minimum speed profile. Or if:

Vmaxd−
∆V 2 (Vmax − 2Vmin)

6u
< Vmind (3.89)

or

Vmaxd− Vmind <
∆V 2 (Vmax − 2Vmin)

6u
(3.90)

d <
∆V (Vmax − 2Vmin)

6u
(3.91)

This new constraint causes the cost function, Equation 3.60b, to become unfeasible as

inputting sensible values for Vmax = 30m/s,Vmin = 20m/s and u = 4.2426m/s2 gives

d < −3.928. This is clearly impossible as distance cannot be negative. Therefore using

Equation 3.60b in the split optimiser will not generate correct time optimal results.

This effect can be further shown by plotting the value of d for varying values of Vmax,

Vmin and u. Figure 3.10 shows the case mentioned above. It is clear that for d to be

a usable value, V would need to take unrealistic values. Figure 3.11 shows the case

when u = 1.5426. This still has similar issues although indicates that lower values of u

could allow Equation 3.60b to be used. Figure 3.12 shows the case where u = 0.14264.

Although this value for u is small and unrealistic it could be used to allow Equation 3.60b

as a cost function as d is now a usable value for realistic V . Since Vmin ≯ Vmax these

figures do not show information for this region.

Vmin

V
m
a
x

50 100 150 200 250 300

50

100

150

200

250

300

−1500

−1000

−500

0

500

1000

1500

2000

Figure 3.10: Speed Distance Contour for u = 4.2426

Chapter 3. Algorithm Formulation and Testing 67

Vmin

V
m
a
x

50 100 150 200 250 300

50

100

150

200

250

300

−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure 3.11: Speed Distance Contour for u = 1.5426

Vmin

V
m
a
x

50 100 150 200 250 300

50

100

150

200

250

300

0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

Figure 3.12: Speed Distance Contour for u = 0.14264

In a similar way when, f(t) =
√
ẋ2 + ẏ2, we are free to choose the cost value correspond-

ing to any final time. Therefore the path that uses the optimal value of time, t∗f , i.e.

the time for the accelerated speed profile, is always available resulting in Equation 3.60a

always generating correct time optimal results if applied correctly.

The generated paths for both cost functions can be plotted as can the velocity profiles

generated for each. Figure 3.13 shows the two paths plotted together with the path for

Equation 3.60b shown by the solid blue line and the path for Equation 3.60a shown by

the dotted purple line.

Chapter 3. Algorithm Formulation and Testing 68

0 500 1000 1500 2000

−1000

−500

0

500

1000

x[m]

y
[m

]

Initial Path
Final Path
Squared Cost Path
Square Root Cost Path

(x(t0), y(t0))

Figure 3.13: The path comparison for an exit angle of -90°for the cost functions
Equation 3.60b and Equation 3.60a

It can be seen from Figure 3.13 that the generated path for each of the cost functions

is significantly different due to the velocity transfer profile issue described. Figure 3.14

shows the velocity profile for each path and the issue can be clearly seen. The profile

for(3.60b) can be seen to always sit on the Vmin boundary line causing the difference in

path shape and final time between Equation 3.60a which is describing an accelerated

transfer.

0 20 40 60 80 100
18

20

22

24

26

28

30

32

Time[s]

M
a
g
n
it
u
d
e
 o

f
V

[m
/s

]

Vmax
Vmin
Square Root Cost Velocity
Squared Cost Velocity

Figure 3.14: The velocity profile comparison for an exit angle of -90°for the cost
functions Equation 3.60b and Equation 3.60a

Chapter 3. Algorithm Formulation and Testing 69

3.4.4 Testing the Algorithm

Once a viable form of the algorithm was produced it was necessary to test the generated

paths to ensure that the algorithm was working as expected. The tests mainly involve

checking that the generated paths correctly meet all constraints verifying that they are

correct optimal paths. The algorithm generates multiple paths at numerous different

final times and then categorises them as either valid or non-valid paths based on the

values of the constraint function for the path. The algorithm uses bisection to carry out

the operation of the outer optimiser by first searching between a lower time bound of

zero and a set upper time bound, that is set large enough to ensure all paths can be

found, this operation aims to find the valid path with the shortest final time. Once this

is found the bounds are adjusted so that the lower bound is the time for the shortest

time valid path and the upper bound is the time for the next largest valid path. Paths

are again searched for this time looking for the path with the lowest cost. This can be

done as the cost function curve is assumed smooth and continuous. A flow diagram for

this algorithm can be found in Appendix D

To test the algorithm four parameters must be checked:

• Velocity Magnitude:

The magnitude of the UAV velocity can not be larger than the set value of Vmax or

smaller than the value of Vmin. All valid paths’ velocity profiles should lie between

these bounds whereas non-valid paths could break this constraint.

• Control Input:

The control input values ux and uy are bound in a similar way to velocity and

must lie within the boundaries set by uxmax , uxmin uymax and uymin . All valid paths

should follow this rule while non-valid paths may break the boundary.

• Curvature:

The UAV is constrained to turns no smaller than rmin or curvature values that lie

between ± 1

rmin

• The path that is selected as optimal has the minimum cost value of all the valid

paths found.

Shown are figures for the an exit angle of -90°. The figures for all other exit angles are

shown in Appendix B for completeness.

The validity of the algorithm can be investigated using these figures to check that the

parameters mentioned above are adhered to. Firstly it can be seen that the paths that

Chapter 3. Algorithm Formulation and Testing 70

indicate as valid all lie within or on the boundary lines for velocity on Figure 3.15

showing that the velocity constraints are working correctly.

0 10 20 30 40 50 60 70 80 90 100
15

20

25

30

35

40

45

50

55

60

Time[s]

‖v
‖[
m
/
s]

 ‖v‖ Lower Bounds
‖v‖ Upper Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure 3.15: The velocity profiles for all paths found for an exit angle of -90°

Looking at the graph for control, Figure 3.16, a similar situation is shown where valid

paths correctly lie between the boundaries set on the body control values.

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

Time[s]

U
B x
[m

/
s2
]

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6

8

Time[s]

U
B y
[m

/
s2
]

UB
x Lower Bounds

UB
x Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

UB
y Lower Bounds

UB
y Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure 3.16: The Ux and Uy control history for all paths found for an exit angle of
-90°

The final constraint of curvature, Figures 3.17, again shows this pattern with valid paths

correctly lying between the set curvature bounds.

Chapter 3. Algorithm Formulation and Testing 71

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6

8

10

12
x 10

−3

Time[s]

C
u
rv

a
tu

re

Curvature Upper Bounds
Curvature Lower Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure 3.17: Path curvatures for all paths found for an exit angle of -90°

The actual path shape can be seen on Figure 3.18 and can be used to check the con-

straints on final position as paths that meet the final circle and don’t violate any other

constraints are valid.

0 500 1000 1500 2000

−1000

−800

−600

−400

−200

0

200

400

600

800

x[m]

y
[m

]

Initial Path
Final Path
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure 3.18: All paths found for an exit angle of -90°

The results shown by these figures verify that the constraint equations are being cor-

rectly activated allowing for the correct classification of paths as valid or non-valid, with

those that are non-valid breaking at least one of the constraint equations outlined in

Section 3.2.2. The correct classification of paths as valid or non-valid was essential to

finding the optimal path as it was the key method used for managing the bounds of the

Chapter 3. Algorithm Formulation and Testing 72

bisection search use to handle the time minimisation operation. To ensure the algorithm

is working as desired it is required to investigate the selection of the optimal path from

all paths that are found to be valid. This path should have the minimum cost value

out of all the valid paths. This can be investigated by looking at the figure of cost

value at each value of final time. This is shown in Figure 3.19. It can be seen that

the cost functions are continuous with the minimum point being correctly selected as

the optimal path. From these results it is therefore sufficient to say that the shooting

method algorithm performs as expected producing globally optimal paths that meet the

set constraints.

20 30 40 50 60 70 80 90 100
1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

Final Time[s]

C
o
s
t
V

a
lu

e
 f

Non-valid Paths
Valid Paths
Optimal Path

Figure 3.19: Cost curve for an exit angle of -90°

3.5 Summary

From the initial formulations the problem had been presented as a Two Point Boundary

Value problem using a Hamiltonian formulation with Pontryagin’s Minimum Principle.

This method was subsequently shown not to yield usable results due to the inability to

select an appropriate initial guess caused by the unknown nature of the solution space.

This led to a move to represent the problem as a discrete shooting method algorithm

as it only relied on the initial values which were well known. As part of the discrete

formulation the effect of gradient on the resulting cost function was shown. Due to the

gradient on the control values being much larger than that of time the algorithm would

suffer from premature convergence indicating that the problem could not be solved as

a single optimiser. To this end the problem was re-worked as a split optimiser with

a discussion on the importance of cost function choice when using the split optimiser.

Chapter 3. Algorithm Formulation and Testing 73

The effect of splitting the optimising action in effect added an unknown extra constraint

regarding separation distance between the initial and final path and therefore reduced

the viable cost functions that could successfully be used to solve the problem. Once

an appropriate cost function was selected a series of tests were carried out to check the

developed algorithm was correctly activating the constants and correctly selecting the

path with minimum cost. These tests validated the output of the algorithm in terms of

functional correctness. An investigation into the efficiency of the developed algorithm

compared to existing methods is discussed in Chapter 4

Chapter 4

Comparing Shooting Results to

Similar Path Planning Methods

4.1 Introduction

Up to this point the benefit of the path planning algorithm developed in Chapter 3 has

not been investigated. The purpose of this chapter is to investigate the efficiency gain

of the new algorithm when compared with other similar path planning methods.

The downside of the shooting method algorithm is the algorithm’s long run time. Due

to the complexity of the constraints the computational requirements of the algorithm

are high making run times to find individual paths unsuitable for most real time ap-

plications unless significant hardware is available to process the algorithm in a shorter

time-scale. Most current applications however do not have access to such hardware. The

performance improvement of the developed path planning method can be compared to

a similar real time path planner to further understand the benefit of the new method.

The trade-off between a real time algorithm and one that is offline is the trade-off

between run time and accuracy. Real time algorithms use simplified constraints and

system models in an attempt to perform the path planning operation in a run time

that is suitable for the application. Due to these cut down systems the accuracy of the

generated paths often suffer converging to local minimums instead of optimal solutions.

Essentially this is the difference between methods that perform exhaustive searches and

those that perform a ’good enough for practice’ approach.

The two methods chosen for comparison are the well known Dubin’s car experiment

discussed in Chapter 2 and a receding horizon approach commonly used for path planning

tasks such as this.

74

Chapter 4. Comparing Shooting Results to Similar Path Planning Methods 75

4.2 Viable Paths for Comparison

The first stage in the comparison process is to identify the paths from the shooting

algorithm that provide unique results. It is apparent that only a select number of paths

are unique with the initial exit angle being the differentiator between unique and non-

unique paths. Figure 4.1 is an example of a unique path for an exit angle of 60°.

0 500 1000 1500

−500

0

500

1000

1500

x[m]

y
[m

]

Initial Path
Final Path
Non-valid Paths
Valid Non-optimal Paths
Optimal Path

Figure 4.1: All paths found for an exit angle of 60°

Figure 4.2 however is not unique as the path from an exit angle of 75°actually exits the

initial circular flight path between -90°and -75°for which a solution already exits.

−500 0 500 1000 1500 2000

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x[m]

y
[m

]

Initial Path
Final Path
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure 4.2: All paths found for an exit angle of 75°

Chapter 4. Comparing Shooting Results to Similar Path Planning Methods 76

This fact holds for all paths with an exit angle equal to and greater than 75°. Therefore

it is only necessary to consider paths with exit angles between -90°and 60°as any path

outside this range will simply follow its initial circular flight path until exiting within

this unique transfer region. Since this is the case, only paths from exit angles within

the unique transfer region need to be considered for comparison. This result is in itself

a further validation of the shooting method output as it is producing paths that are

intuitive when compared to the actions a human operator would perform. In this case it

would be expected that after a certain point turning the UAV off its initial flight path to

make the transfer is not sensible as it is flying away for the desired transfer destination.

In these cases it would be sensible to fly the UAV on its original circular path and exit

when closer to the transfer destination.

4.3 Dubin’s Comparison

Dubin’s results have been a long standing way to solve problems such as this as it

simplifies the required paths to a set of curved and straight sections with the curvature

of the curved sections maintained at the minimum turn radius. The Dubin’s result that

mimics the result of the shooting algorithm can be seen in Figure 4.3 and is simply the

tangent lines between the two circular flight paths from an exit angle of -90°and -48.19°.

For the UAV to transfer between the two circular path using the Dubin’s result it must

fly around its original circular flight path until it reaches one of the two tangent lines to

make the transfer. The tangent line that provides the shortest transfer will depend on

where on the initial flight path the UAV decides to exit, with the tangent lines having

a set length as shown:

Chapter 4. Comparing Shooting Results to Similar Path Planning Methods 77

−500 0 500 1000 1500 2000
−500

−400

−300

−200

−100

0

100

200

300

400

500

x[m]

y
[m

]

Initial Path
Final Path
Dubins’s Line 1
Dubins’s Line 2

Figure 4.3: Dubin’s straight line path from-90°

−90° < θ ≤ −48.19° −48.19°−−−−−→
exitpath

Length = 1118.04m

otherwise
−90°−−−−−→

exitpath
Length = 1500m

Adding the relevant tangent line length to the distance the UAV must fly around its

initial circular path to reach the exit angle will give the total cost of the Dubin’s transfer

for comparison against the shooting results. Table 4.1 shows the resulting values:

Chapter 4. Comparing Shooting Results to Similar Path Planning Methods 78

Exit Dubin’s Shooting Efficiency vs

angle(°) Cost (m) Cost (m) Dubin’s(%)

-90 1,500.00 1,234.78 17.68

-75 1,352.00 1,103.87 18.35

-60 1,221.10 974.12 20.23

-45 1,892.70 861.61 54.48

-30 2,023.60 806.13 60.16

-15 2,154.50 872.90 59.48

0 2,285.40 1,150.76 49.65

15 2,416.30 1,571.87 34.95

30 2,547.20 1,992.87 21.76

45 2,678.10 2,356.50 12.01

60 2,809.00 2,706.29 3.66

Table 4.1: Cost comparison table for Dubin’s cost for different exit angles

The paths found by the shooting algorithm can be seen to be more efficient than those

produced by Dubin’s. The ability to generate paths from the full curvature range instead

of being restricted to only the minimum radius turn can yield a path length improvement

of up to ∼ 60% which is a significant improvement over Dubin’s method.

4.4 Receding Horizon Comparison

From the algorithm described in Section 2.6.6 it necessary to obtain a data set to which

the shooting algorithm results can be compared. Repeated runs of the receding horizon

algorithm are carried out for each exit angle varying the values of T and ∆t each time.

A sensible range for these values can be decided noting that ∆t 6> T . For each run the

path length from horizon start to optimal end is calculated. Using this information a

cost contour plot for each exit angle is created. Figure 4.4 shows an examples of these

plots for an exit angle of -90°. The contour plots for the remaining exit angles can be

found in Appendix B.

Chapter 4. Comparing Shooting Results to Similar Path Planning Methods 79

∆t[s]

H
o
ri
z
o
n
 L

e
n
g
th

 T
[s

]

1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

25

30

35

7.5

8

8.5

9

9.5

10

10.5

11

11.5

Figure 4.4: Cost contours for a Receding Horizon from -90°over various horizon
lengths and ∆t values

To handle issues of large scale values, the plotted points are the natural log of actual cost

values. The blue diamonds indicate the minimum cost values. To compare the cost values

from the receding horizon algorithm to the shooting method it was first required to take

the many receding horizon results that exist due to the varying T and ∆t combinations

and obtain a single cost value for comparison for each exit angle. A sensible measure for

this was the average value of the cost, however it quickly became clear that this value

was not a suitable measure. Due to the large variation in cost values over the range

of T and ∆t, the average cost is significantly large in comparison to the shooting cost

giving what would appear to be large and unrealistic efficiency gains between the two

algorithms. Although an efficiency gain is hypothesised due to the larger range of path

curvatures available to the shooting algorithm when compared to the receding horizon

method the large efficiency gains as seen in Table 4.2 are not true gains but are instead

artifacts of improper T and ∆t choices resulting in skewed average cost values. Therefore

the cost value best used for the comparison is the minimum produced by the receding

horizon algorithm. This value is the result of the best combination of T and ∆t and will

be the closest to the shooting method cost. Using the minimum value, Table 4.3 can

be produced, this shows the efficiency gain provided by the shooting algorithm for each

exit angle.

Chapter 4. Comparing Shooting Results to Similar Path Planning Methods 80

Exit Average Shooting Efficiency vs

angle(°) Cost (m) Cost (m) Average(%)

-90 14672.70 1234.78 91.58

-75 18013.81 1103.87 93.87

-60 9677.30 974.12 89.93

-45 12505.56 861.61 93.11

-30 9617.94 806.13 91.62

-15 9754.44 872.90 91.05

0 10477.14 1150.76 89.02

15 9386.67 1571.87 83.25

30 10588.73 1992.87 81.18

45 10104.60 2356.50 76.68

60 10735.56 2706.29 74.79

Table 4.2: Cost comparison table for average cost for different Receding Horizon exit
angles

Exit Minimum Shooting Efficiency vs Horizon ∆t(s)

angle(°) Cost (m) Cost (m) Minimum(%) Length T(s)

-90 1470 1234.78 16 14 3.5

-75 1240 1103.87 10.98 10 2

-60 1150 974.12 15.29 10 2.5

-45 1000 861.61 13.84 15 2.5

-30 900 806.13 10.43 17.5 2.5

-15 1280 872.90 30.80 14 2

0 1540 1150.76 25.28 14 3.5

15 1750 1571.87 10.18 15 & 17.5 2.5

30 2100 1992.87 5.10 17.5 2.5

45 2430 2356.50 3.02 31.5 4.5

60 2820 2706.29 4.03 12 & 15 3

Table 4.3: Cost comparison table including T and ∆t values for minimum cost for
different Receding Horizon exit angles

In addition Table 4.3 shows the T and ∆t values that result in the minimum receding

horizon cost for each start point. This lookup table provides a better starting guess

for the T and ∆t values for a receding horizon algorithm performing this type of path

planning. This results in an algorithm that can work in real time that also attempts to

Chapter 4. Comparing Shooting Results to Similar Path Planning Methods 81

minimise the efficiency loss when compared to an offline equivalent through appropriate

T and ∆t selection.

4.5 Summary

By comparing the cost values from the shooting algorithm against the equivalent cost

values from both Dubin’s results and an equivalent receding horizon approach it has been

possible to gauge the performance improvement that the shooting algorithm developed

in Chapter 3 gives over similar methods. The algorithm is shown to gives significant

performance improvements in terms of generated path length against both of the com-

parison algorithms. This result was expected due to the shooting method algorithm’s

greater choice in selecting available paths. The simple addition of the curvature con-

stants has allowed a larger degree of flexibility in the generated transfer paths resulting

in the increased efficiency (shorter transfer distance) over other methods. It can be

noted that by increasing the number of nodes within a horizon and/or by allowing more

than three available paths per node for the receding horizon approach could more closely

approximate the shooting method results, however this would in turn impact the run

time of a receding horizon approach.

Chapter 5

Comparison of the Shooting

Transfer Against a Flexible

Transfer Case

5.1 Introduction

One of the questions that arises when applying the shooting transfer developed in Chap-

ter 3 is ”Could better performance be achieved if a more flexible transfer algorithm was

used?”

Up to this point the developed algorithm could be considered relatively generic. Al-

though the fact that it minimises distance is beneficial when considering the target

tracking mission (the UAV will always be flying towards its target if distance is min-

imised) to be carried out once on the final circular path the algorithm itself could in

essence be applied to any application when moving between a known initial point and

final circular path is required. Although this makes the algorithm more widely appli-

cable than just to a single mission its suitability for the transfer to a target tracking

mission could be called into question.

This chapter looks at this situation by applying a more flexible algorithm to the target

tracking mission through the development of a new switching method. The switching

method incorporates information about target movement to select the best cost function

depending on the situation. By investigating the effect of both the switching and direct

method on two visibility indices, that are key to the performance of the target tracking

mission, a comparison can be carried out. This allows the performance of the shooting

82

Chapter 5. Comparison of the Shooting Transfer Against a Flexible Transfer Case 83

transfer and switching transfer to be compared based on their influence on these key

parameters.

5.2 Switcher Design

From the results shown in 3.4.3 it became clear that by simply altering the power of the

standard cost function:

J =

∫ tf

t0

s (5.1)

three cost functions could be obtained each performing a different minimising action

based on the power of the original function.

J =

∫ tf

t0

s0 (5.2)

J =

∫ tf

t0

s (5.3)

J =

∫ tf

t0

s2 (5.4)

With Equation 5.2 providing a time optimal transfer, Equation 5.3 providing a distance

optimal transfer and Equation 5.4 providing a minimum velocity transfer. These three

cost functions could then be used to create a switching algorithm where the most ap-

propriate cost function for the current operating environment is used to solve the path

planning problem. Consider the following environments attaching an appropriate cost

function to each:

Figure 5.1: A UAV transferring to track a target where the centre of the tracking circle

is at a distance of less than r away. This relates to Equation 5.2 as the UAV is now

effectively too close to the target. The goal is to move onto a tracking trajectory as

quickly as possible so that the probability of keeping the target in track is maximised.

In addition the UAV is attempting to maintain a minimum distance from the target

which has been broken in this environment so it is desirable that it re-establishes its

normal flying state as quickly as possible hence why the cost function selected is that

which minimises time.

Chapter 5. Comparison of the Shooting Transfer Against a Flexible Transfer Case 84

UAV Heading

Target Heading
Circle of Radius r

Separation Distance < r

Figure 5.1: Transfer environment for a UAV transferring to track a target where the
centre of the tracking circle is at a distance of less than r away

Figure 5.2: A UAV transferring to track a target where the centre of the tracking circle

is at a distance of greater than r away and the target is not travelling towards the UAV.

This relates to Equation 5.3 as this is the environment of operation equivalent to the

shooting method algorithm with one exception, that the target and UAV cannot be

moving towards each other within a set threshold. It is therefore desirable to transfer in

the fastest time with the shortest distance to ensure that the transfer onto the desired

tracking path is carried out as efficiently as possible, hence the use of the distance

optimal cost.

Chapter 5. Comparison of the Shooting Transfer Against a Flexible Transfer Case 85

UAV Heading

Target Heading

Circle of Radius r

Separation Distance ≥ r

Figure 5.2: Transfer environment for a UAV transferring to track a target where the
centre of the tracking circle is at a distance of greater than r away and the target is

not travelling towards the UAV

Figure 5.3: A UAV transferring to track a target where the centre of the tracking circle

is at a distance of greater than r away and the target is travelling towards the UAV.

This relates to Equation 5.4. This cost function is the same as that originally rejected in

Section 3.4.3.3 as it produced transfer paths that were always at the minimum velocity.

Although not useful for performing distance optimal transfers it can be used for cases

where the environment requires a slower transfer in reaction to target movement. In this

case the target heading is towards the UAV meaning that it is possible that the UAV

could pass over the target which is undesirable as it could cause a loss of line of sight

(LOS) between the UAV cameras and the target. In this situation it would be beneficial

for the aircraft to perform a minimum speed transfer to reduce the possibility of the

target being lost, hence this cost function becomes useful.

Chapter 5. Comparison of the Shooting Transfer Against a Flexible Transfer Case 86

UAV Heading

Target Heading

Circle of Radius r

Separation Distance ≥ r

Figure 5.3: Transfer environment for a UAV transferring to track a target where the
centre of the tracking circle is at a distance of greater than r away and the target is

travelling towards the UAV

The final stage is to decide upon the switching conditions that cause the change between

the three cost functions. If we consider the generic case shown in Figure 5.4

y(m)

x(m)

(Vxa , Vya)

θ

φt

φa

d

(vxt , vyt)
UAV (xa, ya)
Target (xt, yt)

Tracking Circle Centre (xc, yc)

Figure 5.4: Generic example of UAV and target separation

Chapter 5. Comparison of the Shooting Transfer Against a Flexible Transfer Case 87

where,

φa = tan−1
(
vya
vxa

)
(5.5)

φt = tan−1
(
vyt
vxt

)
(5.6)

θ = tan−1
(

(yt − ya)
(xt − xa)

)
(5.7)

d =

√
(xc − xa)2 + (yc − ya)2 (5.8)

it is possible to generate a number of switching conditions. Firstly the conditions based

on separation distance:

d < rmin (5.9)

d ≥ rmin (5.10)

where rmin = r the minimum turning radius.

Lastly the condition based on heading angle needs to be identified to allow proper

switching if the UAV and target are moving towards each other within a given threshold.

|[φa − θ]− [φt − (
π

2
− θ)] + π| > ψ (5.11)

|[φa − θ]− [φt − (
π

2
− θ)] + π| ≤ ψ (5.12)

where, ψ is the threshold on the difference in resulting heading angle between the UAV

and the target. This value should be relatively small as it is desirable only to enter

the minimum speed operating mode only for resulting angles around 0 radians so as

to operate in the more efficient distance or time optimal modes for the widest range of

resulting headings possible. In this case a value of ±π
8

radians or ±22.5°was chosen as

acceptable.

The full switching cost function is therefore,

Minimise
tf∈[0,∞)

(
Minimise

u(t)∈U
J

)
(5.13)

where U is a compact set defined by Equation 3.7, t0 is the initial time and tf is the

final time, which is free.

Chapter 5. Comparison of the Shooting Transfer Against a Flexible Transfer Case 88

where,

J =

∫ tf

t0

dt for Equation 5.9 and Equation 5.11∫ tf

t0

√
ẋa

2 + ẏa
2dt for Equation 5.10 and Equation 5.11∫ tf

t0

(ẋa
2 + ẏa

2)dt for Equation 5.10 and Equation 5.12

subject to

ẋ = Ax +Bu

and

v2min ≤ v2x + v2y ≤ v2max

uxmin ≤ ux cosφ+ uy sinφ ≤ uxmax

uymin ≤ −ux sinφ+ uy cosφ ≤ uxmax

− 1

rmin

(
v2x + v2y

)3/2 ≤ vxuy − vyux ≤ 1

rmin

(
v2x + v2y

)3/2

5.3 Defining the Performance Measures and Comparing

the Transfer Algorithms

It is desired to test the effect of both the switching method and the shooting method

when applied to the target tracking example described in 2.5, where a UAV is trans-

ferring to an optimal circular tracking path. To do this two performance measures are

introduced denoting the probability of the target tracking the UAV, Equation 5.14, and

the probability of the UAV tracking the target, Equation 5.15.

ρtargetvis =
Σ∆tseetarget

T
(5.14)

ρUAV
vis =

Σ∆tseeUAV

T
(5.15)

The target tracking mission in question is already designed to optimise these visibility

indices through its placement of the tracking circle and therefore these are not directly

controlled by the transferring path planner. These indices however are only at their

optimal state when the UAV is actually flying the final circular path. During the transfer

there is no direct control of the visibility indexes but depending on where the UAV is

located and how it is flying the values of the indices will change. The desired outcome

is to maximise Equation 5.15 while minimising Equation 5.14 even while transferring so

Chapter 5. Comparison of the Shooting Transfer Against a Flexible Transfer Case 89

that the UAV can potentially begin tracking the target before it reaches the tracking

path. As the UAV gets closer to the tracking circle these indices will approach their

optimal values. It is also at this point where the switching method could have most

effect as being able to react to target motion during a path update could provide a

beneficial change in these indices over the shooting method.

Using these visibility indexes a simulation was run to analyse the probability differences

between the switching and shooting methods to test if providing mission information

had an effect. The algorithm is set up so that the UAV calculates a path update every

10 seconds assuming that the target has randomly moved and the target tracking circle

has therefore been updated. Each run lasts a total of 100 seconds or 10 path updates

with visibility information for each second stored for use in calculating the visibility

indices. One thousand runs for each method was completed with each method utilising

the same random path information to provide a direct comparison. Figure 5.5 shows

the comparison between the switching and shooting methods, it can be seen that there

is no significant difference in the visibility indexes.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ρ
UAV

vis

ρ
ta

rg
e

t

v
is

Non Switcher Data
Switcher Data

Figure 5.5: Comparison of Visibility Index of the Switching and Non Switching Cost
Functions

This result indicates that the switching method is for the majority of the time activating

the minimum distance cost which is the same cost utilised by the shooting method. There

is some discrepancy between results indicating that the remaining switching states are

activated on occasion but not enough to impact the visibility indexes significantly. When

investigating the histogram plots. Figure 5.6 and Figure 5.7, for ρUAV
vis for both methods

it can also be seen that the number of paths that have greater than 60% probability of

the UAV viewing the target during the transfer is higher for the non switching method.

Chapter 5. Comparison of the Shooting Transfer Against a Flexible Transfer Case 90

This indicates that the non switching method is able to get the UAV closer to the final

circular path than the Switching method. Therefore not only is the Shooting method

the algorithm that is most used, it is also capable of manoeuvring the UAV closer to its

intended destination.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

ρ
UAV

vis

Values >60% = 301

Figure 5.6: Histogram plot for the value of ρUAV
vis for the non switching method

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

ρ
UAV

vis

Values >60% = 278

Figure 5.7: Histogram plot for the value of ρUAV
vis for the switching method

Chapter 5. Comparison of the Shooting Transfer Against a Flexible Transfer Case 91

5.4 Summary

A switching algorithm was developed to provide more flexibility in the transfer paths for

a target tracking mission. Using key visibility indexes the transfer paths for the switcher

were compared against the singular cost function transfer paths. The results indicated

no significant difference in the visibility indexes for either method. Given that one of

the switching modes was the singular cost function it is clear that during the transfer

operation the UAV spends the majority of its time utilising the singular cost function

to produce paths, and that adding flexibility to the path planning effort by providing

more cost function choice yields no significant effect on the target tracking mission being

carried out. In addition it was also seen that the single cost function path produced

a higher number of results with greater than 60% visibility index indicating that this

method was also able to move the UAV closer to the desired target tracking path that

the switching method. These result further validate the single cost functions developed

in Chapter 3 and its suitability for the target tracking mission posed.

Chapter 6

Conclusions and Further Work

6.1 Conclusions

Over the past three decades the use of unmanned aerial vehicles has been on the increase.

Primarily driven by military applications, UAVs are being increasingly used in fields of

operation where detrimental human factors (e.g. long operational time scales, risk of

injury etc.) dictates the use of technologies that remove the human element from the

immediate operational vicinity. The prevalence of information warfare has seen the role

of reconnaissance take the forefront in UAV missions and over recent years has lead to

a push in autonomous aircraft that can operate for many hours without the need for

human control or intervention. This drive for UAV autonomy has seen the need for

accurate and efficient path planning algorithms designed to generate the flight paths

required for UAVs to carry out missions. The majority of these algorithms have been

focused on specific mission parameters such as collision avoidance and target tracking

resulting in a lack of algorithms for simple tasks such as transfer algorithms required for

a UAV to move between its mission phases or to simply manoeuvre between way-points.

From the work on target tracking carried out by Dr Jongrae Kim, where a UAV was

found to be capable of carrying out a target tracking mission by flying an optimal circular

flight path, it became clear that the development of an algorithm capable of transferring

a UAV onto or between these target tracking circles was required. The path type best

suited for such a transfer was the most direct path resulting in the requirement that

the algorithm worked to minimise distance leading to the derivation of the equation for

path length from which the desired cost function could be constructed. A simple UAV

model was used to develop the guidance law including the derivation of all constraints

leading to an applicable minimisation equation for the transfer.

92

Chapter 6. Conclusions and Further Work 93

The first aim of this work was to look into the development of an algorithm capable of

producing optimal solutions for this transfer task.

This work relaxed the constraint on the available solution space seen in similar methods

by allowing paths to take any value as long as they conformed to certain constraints such

as velocity magnitude and maximum curvature of turn. This is a closer approximation to

how a human operator would control a UAV and facilitated the goal of producing globally

optimal solutions for this problem rather than the local solutions of other methods arising

from their use of a tightly constrained solution space

The work in this thesis looked primarily at the development of an algorithm that utilised

a more realistic curvature constraint and provided an investigation into its performance

in producing global solutions for the transfer problem in question.

Firstly an algorithm method had to be selected that was most appropriate for the prob-

lem. Due to the known information about the initial and terminal conditions a two point

boundary value algorithm (TPBVA) was originally though to be most appropriate.

A Hamiltonian was formed for this problem by augmenting the cost function to provide

the set of continuous differential equations required by the TPBVA which included the

necessary constraint information with Pontryagin’s Minimum Principle applied to handle

the control constraints. Boundary condition were generated from the information known

about initial and terminal points resulting in all the required equations for the TPBVA.

This type of approach is unfortunately highly susceptible to errors arising from improper

initial guess values. This results in paths being generated that are not optimal or no

paths being generated at all. In this case the unknown nature of the solution space meant

that the chosen initial guess for the algorithm yielded no useful results and without more

information being available this could not be corrected. As such a simpler approach was

adopted using an initial value shooting method.

Initial value methods are usually not applied to many problems as they are highly reliant

on knowing the initial values for them to work and in most cases all this information is

not known. However for this transfer case the initial values were well defined as each

path started from a known point within the solution space making this an acceptable

approach. To simplify the algorithm further it was transferred to discrete time rather

than continuous time.

The development of the shooting method approach called for an investigation into the

gradient of the cost function in reference to control input and time to see how the

parameters key to the minimisation effected the convergence of the algorithm to the

desired solution. It was observed that the gradient of the cost function relating to

Chapter 6. Conclusions and Further Work 94

control inputs was significantly greater than that for time which resulted in the algorithm

converging to locally optimal solutions instead of the globally optimal solution as desired.

This discovery meant that the algorithm could not solve for both time and control inputs

at the same time as this would result in local solutions.

To overcome this issue the cost function was split into two minimising actions; an inner

minimisation relating to the control inputs for a fixed time and an outer minimisation

relating to time. Using this split optimiser the gradient disparity was removed, however

the change to a split optimiser made some natural cost function choices invalid for this

application. Splitting the minimising action introduced a new constraint on separation

distance between initial and final flight path; dependant on the scale of the cost function;

significantly changing algorithm results with correct solutions being disregarded if the

wrong form of the cost function was used. Different forms of the cost function are

considered showing the creation of this new constraint for certain forms, allowing for a

valid cost function form to be selected.

The final stage of the development of this algorithm was validation. Constraint con-

ditions were checked against simulation values showing that the algorithm correctly

activated the constraints and could select between valid and non valid paths. A check

on cost function value was also performed identifying the shape of the cost function and

that the minimum value was being correctly selected within the set tolerances.

The second aim of this work was to investigate the benefit of the developed algorithm

by comparing its results against the those from other equivalent path planners. Two

algorithms were identified for this purpose, the Dubin’s Car approach and a receding

horizon approach. These were selected as they are commonly used to solve similar path

planning problems.

Due to the simplicity of the Dubin’s approach a performance increase was expected, how-

ever the observed increase was significantly higher than anticipated with some shooting

paths being almost half the length of the equivalent Dubin’s path. The increase in avail-

able path curvatures in the shooting algorithm yields the extra path flexibility needed

to generate paths that have significant performance improvements over the Dubin’s

method.

The receding horizon approach had two parameters that were key to the performance

and accuracy of this algorithm, horizon length and number of horizon nodes. It was

shown that there exists a balance between these two parameters giving a trade off in

runtime and accuracy with the goal of keeping the number of nodes sufficiently large

within a long enough horizon length that path accuracy is maximised while the runtime is

Chapter 6. Conclusions and Further Work 95

minimised. There exists many combinations of horizon length, parametrised by horizon

step size, and number of horizon nodes that yield suitable paths.

To perform the comparison cost data for numerous parameter combinations was obtained

and the minimum value compared against the shooting results. Again in this case the

shooting method results were expected to show a performance increase as the shooting

algorithm had greater path flexibility. As expected this was the case showing the benefit

of the new method in generating optimal paths.

In addition to this analysis the parameter combination that yielded the minimum cost

values were noted. As the accuracy of the algorithm is highly susceptible to these values

they must be carefully chosen or the generated paths could be significantly different to

optimal solutions. Using the values a better first guess for these parameters is provided

which would result in a receding horizon algorithm for this type of transfer to be more

accurate.

The final aim of this work was to investigate the performance of the algorithm for the tar-

get tracking mission against an algorithm that provides greater path flexibility tailored

to target tracking. To this end a Switching Cost function was created. The switch-

ing function was designed for the target tracking example to select the most appropriate

cost function depending on target location and velocity. The switching function resulted

in three cost functions; minimum time, minimum distance and minimum speed; with

switching conditions to select the appropriate function based on separation distance be-

tween UAV and tracking path centre and relative UAV/target flight/movement path

angle. The development of the switcher provides an algorithm that uses mission infor-

mation to intelligently produce its paths and is a good comparison against the shooting

algorithm.

To identify the performance of both algorithms the important mission parameters were

extracted. For the case of target tracking these parameters were key visibility indices.

The first was that of target to UAV visibility or the probability of the UAV being able to

view the target. The second was that of UAV to target visibility or the probability of the

target viewing the UAV. The desired goal of any target tracking mission is to track the

target so the visibility of target to UAV should be high, conversely it is undesirable for

the UAV to be visible to the target so this index should be low. To investigate the effect

of the path planning methods on these indices a Monte Carlo simulation was performed

for randomly generated initial and terminal conditions, calculating the indices for each

run. Using this method visibility data was obtained for both the shooting and switching

algorithm, a comparison of the data showed no marked difference between the indices

for both the path planning methods. Given that one of the switching modes was the

singular cost function it is clear that during the transfer operation the UAV spends the

Chapter 6. Conclusions and Further Work 96

majority of its time utilising the singular cost function to produce paths and that adding

flexibility to the path planning effort by providing more cost function choice yields no

significant effect on the target tracking mission being carried out further validating the

developed algorithm. In addition to this it can also be seen that more paths using

the single cost function are closer to the desired final tracking circle (within the same

time-scale) resulting in higher visibility indexes.

6.2 Further Work

Due to the complexity and runtime of the algorithms developed throughout this work

a concious effort was made to maximise the work carried out in the time available. To

this end some avenues of algorithm development were left unexplored to prioritise the

main themes of the research. This section details potential areas of further work using

the algorithms developed as part of this thesis.

6.2.1 Hamiltonian

The work using the two point boundary value approach with the Hamiltonian could not

be revisited. The better understanding of the solution space provided by the shooting

method algorithm could be used to rework the TPBV problem so that it yields usable

results. The benefit of doing so would be the provision of a second algorithm that could

carry out transfer path planning for target tracking. A TPBV approach could have a

shorter and more efficient runtime than the shooting method algorithm if the initial

guess was better defined. A comparison between the two algorithms could be carried

out to further validate the results in this work.

6.2.2 Shooting Method Algorithm

The shooting method algorithm was developed using a 2D solution space. This was done

to reduce the complexity of the problem by setting altitude as constant with a value large

enough to avoid collision with ground obstacles. A potential extension to the algorithm

would be to allow a varying altitude based on external information about ground obstacle

height. The effect of changing to a 3D solution space is currently unknown but could

allow for paths that are shorter than their 2D counterparts.

The goal of the shooting method algorithm was to design a guidance law, not to apply a

specific guidance law to a particular model, hence providing path information that could

be used by any UAV. As a result it was designed using a very simple model representing

Chapter 6. Conclusions and Further Work 97

the UAV as a point mass. A valid and necessary extension of this work is the design

of a control law for specific UAVs. This extension is essential if the path information

generated in this work is to be put to practical use. The constraint equations would

need to be tweaked for specific UAVs so that the correct velocity and control constraints

are used with the resulting path information forming the basis of a control law for a

specific and detailed UAV model. The coupling of path planner and controller would

allow a specific UAV to generate then follow the generated transfer path.

6.2.3 Result Comparison

The shooting method has so far been compared to only two other path planners, which

were chosen due to their similarity to the shooting method. Other applicable path plan-

ning algorithms could be investigated to further investigate the benefit of the developed

shooting algorithm. In addition to this extra validation exercise comparing the results

of this optimal algorithm against others could lead to improved algorithm development

as a baseline result for this type of transfer is now available.

6.2.4 Switching Cost Function Applications

The switching cost function method was created to provide a comparison between the

shooting algorithm and one which is capable of using mission information to select the

applicable transfer cost function. The switching method requires further investigation to

analyse the potential benefits (if any) over other optimal control techniques. Although

showing no significant improvement over a single cost function example in this case,

further tests are required. Testing in this work applied the switching method to only

one mission and as such it is not fair to dismiss the technique as a viable path planning

method. Further work in this could be therefore wide ranging.

The switching conditions alone could be a large area of study as they are a tunable

parameter. An interesting extension of this work would be to develop an algorithm

that could alter the switching conditions potentially providing control over the effect on

the mission parameters. In effect this is adding sensory intelligence to the UAV as it

monitors external conditions and adapts its path planning methods accordingly.

Another area of study would be to the application of this method to other algorithms and

missions. Only a specific target tracking mission was investigated and simply because

no improvement between path planning methods was shown here it does not mean that

this would be the case for other mission types. To further work in this area, application

Chapter 6. Conclusions and Further Work 98

of the switching method to other missions must be carried out. This analysis would

provide a better understanding of the effects of utilising a switching method approach.

Appendix A

Plots of the Single Optimiser

Gradient Issue

This appendix contains extra figures showing the single optimiser gradient issue shown

in 3.4.2. This appendix does not include any figure already shown in the main work

and only shows exit angles up to 15°as this is where this particular algorithm fails to

produce valid results.

A.1 Gradient comparison for -75°

0 50 100 150
0

20

40

60

80

100

120

140

Iteration Step

G
ra

d
ie

n
t

M
a

g
n

it
u

d
e

‖ ∂J
∂u‖

‖ ∂J
∂h‖

Figure A.1: Gradient comparison for -75°

99

Appendix A. Plots of the Single Optimiser Gradient Issue 100

A.2 Gradient comparison for -60°

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

Iteration Step

G
ra

d
ie

n
t

M
a

g
n

it
u

d
e

‖ ∂J
∂u‖

‖ ∂J
∂h‖

Figure A.2: Gradient comparison for -60°

A.3 Gradient comparison for -45°

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

160

180

200

Iteration Step

G
ra

d
ie

n
t

M
a

g
n

it
u

d
e

‖ ∂J
∂u‖

‖ ∂J
∂h‖

Figure A.3: Gradient comparison for -45°

Appendix A. Plots of the Single Optimiser Gradient Issue 101

A.4 Gradient comparison for -30°

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

Iteration Step

G
ra

d
ie

n
t

M
a

g
n

it
u

d
e

‖ ∂J
∂u‖

‖ ∂J
∂h‖

Figure A.4: Gradient comparison for -30°

A.5 Gradient comparison for -15°

0 10 20 30 40 50 60 70
0

50

100

150

Iteration Step

G
ra

d
ie

n
t

M
a

g
n

it
u

d
e

‖ ∂J
∂u‖

‖ ∂J
∂h‖

Figure A.5: Gradient comparison for -15°

Appendix A. Plots of the Single Optimiser Gradient Issue 102

A.6 Gradient comparison for 0°

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

400

450

500

Iteration Step

G
ra

d
ie

n
t

M
a

g
n

it
u

d
e

‖ ∂J
∂u‖

‖ ∂J
∂h‖

Figure A.6: Gradient comparison for 0°

A.7 Gradient comparison for 15°

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

Iteration Step

G
ra

d
ie

n
t

M
a

g
n

it
u

d
e

‖ ∂J
∂u‖

‖ ∂J
∂h‖

Figure A.7: Gradient comparison for 15°

Appendix B

Plots of Shooting Method

Algorithm Tests

This appendix contains extra figures for the testing procedure documented in Sec-

tion 3.4.4. This appendix only shows uniquely different paths as described in Section 4.2

and does not include any figure already shown in the main work.

B.1 Figures for an exit angle of -75°

B.1.1 Path Map

0 500 1000 1500 2000

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

x[m]

y
[m

]

Initial Path
Final Path
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.1: All paths found for an exit angle of -75°

103

Appendix B. Plots of Shooting Method Algorithm Tests 104

B.1.2 Velocity Magnitude Profiles

0 10 20 30 40 50 60 70 80 90 100
15

20

25

30

35

40

45

50

55

Time[s]

‖v
‖[
m
/
s]

 ‖v‖ Lower Bounds
‖v‖ Upper Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.2: The velocity profiles for all paths found for an exit angle of -75°

B.1.3 Control History Profiles

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

Time[s]

U
B x
[m

/
s2
]

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6

Time[s]

U
B y
[m

/
s2
]

UB
x Lower Bounds

UB
x Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

UB
y Lower Bounds

UB
y Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.3: The Ux and Uy control history for all paths found for an exit angle of
-75°

Appendix B. Plots of Shooting Method Algorithm Tests 105

B.1.4 Path Curvature Conditions

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

4
x 10

−3

Time[s]

C
u
rv

a
tu

re

Curvature Upper Bounds
Curvature Lower Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.4: Path curvatures for all paths found for an exit angle of -75°

B.1.5 Path Cost Function Curve

20 30 40 50 60 70 80 90 100
1000

1200

1400

1600

1800

2000

2200

Final Time[s]

C
o
s
t
V

a
lu

e
 f

Non-valid Paths
Valid Paths
Optimal Path

Figure B.5: Cost curve for an exit angle of -75°

Appendix B. Plots of Shooting Method Algorithm Tests 106

B.2 Figures for an exit angle of -60°

B.2.1 Path Map

0 500 1000 1500 2000

−800

−600

−400

−200

0

200

400

600

800

1000

x[m]

y
[m

]

Initial Path
Final Path
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.6: All paths found for an exit angle of -60°

B.2.2 Velocity Magnitude Profiles

0 10 20 30 40 50 60 70 80 90 100
15

20

25

30

35

40

45

Time[s]

‖v
‖[
m
/
s]

 ‖v‖ Lower Bounds
‖v‖ Upper Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.7: The velocity profiles for all paths found for an exit angle of -60°

Appendix B. Plots of Shooting Method Algorithm Tests 107

B.2.3 Control History Profiles

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6

Time[s]

U
B x
[m

/
s2
]

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

6

Time[s]

U
B y
[m

/
s2
]

UB
x Lower Bounds

UB
x Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

UB
y Lower Bounds

UB
y Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.8: The Ux and Uy control history for all paths found for an exit angle of
-60°

B.2.4 Path Curvature Conditions

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3

4

5
x 10

−3

Time[s]

C
u
rv

a
tu

re

Curvature Upper Bounds
Curvature Lower Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.9: Path curvatures for all paths found for an exit angle of -60°

Appendix B. Plots of Shooting Method Algorithm Tests 108

B.2.5 Path Cost Function Curve

20 30 40 50 60 70 80 90 100
800

1000

1200

1400

1600

1800

2000

2200

Final Time[s]

C
o
s
t
V

a
lu

e
 f

Non-valid Paths
Valid Paths
Optimal Path

Figure B.10: Cost curve for an exit angle of -60°

B.3 Figures for an exit angle of -45°

B.3.1 Path Map

0 500 1000 1500 2000

−800

−600

−400

−200

0

200

400

600

800

1000

x[m]

y
[m

]

Initial Path
Final Path
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.11: All paths found for an exit angle of -45°

Appendix B. Plots of Shooting Method Algorithm Tests 109

B.3.2 Velocity Magnitude Profiles

0 10 20 30 40 50 60 70 80 90 100
18

20

22

24

26

28

30

32

34

36

38

Time[s]

‖v
‖[
m
/
s]

 ‖v‖ Lower Bounds
‖v‖ Upper Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.12: The velocity profiles for all paths found for an exit angle of -45°

B.3.3 Control History Profiles

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

Time[s]

U
B x
[m

/
s2
]

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

Time[s]

U
B y
[m

/
s2
]

UB
x Lower Bounds

UB
x Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

UB
y Lower Bounds

UB
y Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.13: The Ux and Uy control history for all paths found for an exit angle of
-45°

Appendix B. Plots of Shooting Method Algorithm Tests 110

B.3.4 Path Curvature Conditions

0 10 20 30 40 50 60 70 80 90 100
−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−3

Time[s]

C
u
rv

a
tu

re

Curvature Upper Bounds
Curvature Lower Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.14: Path curvatures for all paths found for an exit angle of -45°

B.3.5 Path Cost Function Curve

20 30 40 50 60 70 80 90 100
800

1000

1200

1400

1600

1800

2000

2200

Final Time[s]

C
o
s
t
V

a
lu

e
 f

Non-valid Paths
Valid Paths
Optimal Path

Figure B.15: Cost curve for an exit angle of -45°

Appendix B. Plots of Shooting Method Algorithm Tests 111

B.4 Figures for an exit angle of -30°

B.4.1 Path Map

0 500 1000 1500 2000

−800

−600

−400

−200

0

200

400

600

800

1000

x[m]

y
[m

]

Initial Path
Final Path
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.16: All paths found for an exit angle of -30°

B.4.2 Velocity Magnitude Profiles

0 10 20 30 40 50 60 70 80 90 100
18

20

22

24

26

28

30

32

34

Time[s]

‖v
‖[
m
/
s]

 ‖v‖ Lower Bounds
‖v‖ Upper Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.17: The velocity profiles for all paths found for an exit angle of -30°

Appendix B. Plots of Shooting Method Algorithm Tests 112

B.4.3 Control History Profiles

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

Time[s]

U
B x
[m

/
s2
]

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

Time[s]

U
B y
[m

/
s2
]

UB
x Lower Bounds

UB
x Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

UB
y Lower Bounds

UB
y Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.18: The Ux and Uy control history for all paths found for an exit angle of
-30°

B.4.4 Path Curvature Conditions

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3
x 10

−3

Time[s]

C
u
rv

a
tu

re

Curvature Upper Bounds
Curvature Lower Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.19: Path curvatures for all paths found for an exit angle of -30°

Appendix B. Plots of Shooting Method Algorithm Tests 113

B.4.5 Path Cost Function Curve

20 30 40 50 60 70 80 90 100
600

800

1000

1200

1400

1600

1800

2000

2200

Final Time[s]

C
o
s
t
V

a
lu

e
 f

Non-valid Paths
Valid Paths
Optimal Path

Figure B.20: Cost curve for an exit angle of -30°

B.5 Figures for an exit angle of -15°

B.5.1 Path Map

0 500 1000 1500 2000

−800

−600

−400

−200

0

200

400

600

800

1000

1200

x[m]

y
[m

]

Initial Path
Final Path
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.21: All paths found for an exit angle of -15°

Appendix B. Plots of Shooting Method Algorithm Tests 114

B.5.2 Velocity Magnitude Profiles

0 10 20 30 40 50 60 70 80 90 100
18

20

22

24

26

28

30

32

34

Time[s]

‖v
‖[
m
/
s]

 ‖v‖ Lower Bounds
‖v‖ Upper Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.22: The velocity profiles for all paths found for an exit angle of -15°

B.5.3 Control History Profiles

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

Time[s]

U
B x
[m

/
s2
]

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

Time[s]

U
B y
[m

/
s2
]

UB
x Lower Bounds

UB
x Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

UB
y Lower Bounds

UB
y Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.23: The Ux and Uy control history for all paths found for an exit angle of
-15°

Appendix B. Plots of Shooting Method Algorithm Tests 115

B.5.4 Path Curvature Conditions

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3
x 10

−3

Time[s]

C
u
rv

a
tu

re

Curvature Upper Bounds
Curvature Lower Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.24: Path curvatures for all paths found for an exit angle of -15°

B.5.5 Path Cost Function Curve

20 30 40 50 60 70 80 90 100
600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Final Time[s]

C
o
s
t
V

a
lu

e
 f

Non-valid Paths
Valid Paths
Optimal Path

Figure B.25: Cost curve for an exit angle of -15°

Appendix B. Plots of Shooting Method Algorithm Tests 116

B.6 Figures for an exit angle of 0°

B.6.1 Path Map

0 500 1000 1500 2000

−800

−600

−400

−200

0

200

400

600

800

1000

1200

x[m]

y
[m

]

Initial Path
Final Path
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.26: All paths found for an exit angle of 0°

B.6.2 Velocity Magnitude Profiles

0 10 20 30 40 50 60 70 80 90 100
15

20

25

30

35

40

Time[s]

‖v
‖[
m
/
s]

 ‖v‖ Lower Bounds
‖v‖ Upper Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.27: The velocity profiles for all paths found for an exit angle of 0°

Appendix B. Plots of Shooting Method Algorithm Tests 117

B.6.3 Control History Profiles

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

Time[s]

U
B x
[m

/
s2
]

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

Time[s]

U
B y
[m

/
s2
]

UB
x Lower Bounds

UB
x Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

UB
y Lower Bounds

UB
y Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.28: The Ux and Uy control history for all paths found for an exit angle of
0°

B.6.4 Path Curvature Conditions

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4
x 10

−3

Time[s]

C
u
rv

a
tu

re

Curvature Upper Bounds
Curvature Lower Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.29: Path curvatures for all paths found for an exit angle of 0°

Appendix B. Plots of Shooting Method Algorithm Tests 118

B.6.5 Path Cost Function Curve

20 30 40 50 60 70 80 90 100
600

800

1000

1200

1400

1600

1800

2000

2200

Final Time[s]

C
o
s
t
V

a
lu

e
 f

Non-valid Paths
Valid Paths
Optimal Path

Figure B.30: Cost curve for an exit angle of 0°

B.7 Figures for an exit angle of 15°

B.7.1 Path Map

0 500 1000 1500 2000

−800

−600

−400

−200

0

200

400

600

800

1000

1200

x[m]

y
[m

]

Initial Path
Final Path
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.31: All paths found for an exit angle of 15°

Appendix B. Plots of Shooting Method Algorithm Tests 119

B.7.2 Velocity Magnitude Profiles

0 10 20 30 40 50 60 70 80 90 100
18

20

22

24

26

28

30

32

Time[s]

‖v
‖[
m
/
s]

 ‖v‖ Lower Bounds
‖v‖ Upper Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.32: The velocity profiles for all paths found for an exit angle of 15°

B.7.3 Control History Profiles

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

Time[s]

U
B x
[m

/
s2
]

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

Time[s]

U
B y
[m

/
s2
]

UB
x Lower Bounds

UB
x Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

UB
y Lower Bounds

UB
y Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.33: The Ux and Uy control history for all paths found for an exit angle of
15°

Appendix B. Plots of Shooting Method Algorithm Tests 120

B.7.4 Path Curvature Conditions

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

Time[s]

C
u
rv

a
tu

re

Curvature Upper Bounds
Curvature Lower Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.34: Path curvatures for all paths found for an exit angle of 15°

B.7.5 Path Cost Function Curve

50 55 60 65 70 75 80 85 90 95 100
1500

1600

1700

1800

1900

2000

2100

Final Time[s]

C
o
s
t
V

a
lu

e
 f

Non-valid Paths
Valid Paths
Optimal Path

Figure B.35: Cost curve for an exit angle of 15°

Appendix B. Plots of Shooting Method Algorithm Tests 121

B.8 Figures for an exit angle of 30°

B.8.1 Path Map

0 500 1000 1500

−600

−400

−200

0

200

400

600

800

1000

1200

x[m]

y
[m

]

Initial Path
Final Path
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.36: All paths found for an exit angle of 30°

B.8.2 Velocity Magnitude Profiles

0 10 20 30 40 50 60 70 80 90 100
16

18

20

22

24

26

28

30

32

34

36

Time[s]

‖v
‖[
m
/
s]

 ‖v‖ Lower Bounds
‖v‖ Upper Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.37: The velocity profiles for all paths found for an exit angle of 30°

Appendix B. Plots of Shooting Method Algorithm Tests 122

B.8.3 Control History Profiles

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

Time[s]

U
B x
[m

/
s2
]

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

Time[s]

U
B y
[m

/
s2
]

UB
x Lower Bounds

UB
x Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

UB
y Lower Bounds

UB
y Upper Bounds

Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.38: The Ux and Uy control history for all paths found for an exit angle of
30°

B.8.4 Path Curvature Conditions

0 10 20 30 40 50 60 70 80 90 100
−5

−4

−3

−2

−1

0

1

2

3
x 10

−3

Time[s]

C
u
rv

a
tu

re

Curvature Upper Bounds
Curvature Lower Bounds
Valid Non-optimal Paths
Non-valid Paths
Optimal Path

Figure B.39: Path curvatures for all paths found for an exit angle of 30°

Appendix B. Plots of Shooting Method Algorithm Tests 123

B.8.5 Path Cost Function Curve

50 55 60 65 70 75 80 85 90 95 100
1300

1400

1500

1600

1700

1800

1900

2000

2100

Final Time[s]

C
o
s
t
V

a
lu

e
 f

Non-valid Paths
Valid Paths
Optimal Path

Figure B.40: Cost curve for an exit angle of 30°

B.9 Figures for an exit angle of 45°

B.9.1 Path Map

0 500 1000 1500

−600

−400

−200

0

200

400

600

800

1000

1200

1400

x[m]

y
[m

]

Initial Path
Final Path
Non-valid Paths
Valid Non-optimal Paths
Optimal Path

Figure B.41: All paths found for an exit angle of 45°

Appendix B. Plots of Shooting Method Algorithm Tests 124

B.9.2 Velocity Magnitude Profiles

0 50 100 150
18

20

22

24

26

28

30

32

Time[s]

‖v
‖[
m
/
s]

 ‖v‖ Lower Bounds
‖v‖ Upper Bounds
Non-valid Paths
Valid Non-optimal Paths
Optimal Path

Figure B.42: The velocity profiles for all paths found for an exit angle of 45°

B.9.3 Control History Profiles

0 50 100 150
−4

−2

0

2

4

Time[s]

U
B x
[m

/
s2
]

0 50 100 150
−2

−1

0

1

2

Time[s]

U
B y
[m

/
s2
]

UB
x Lower Bounds

UB
x Upper Bounds

Non-valid Paths
Valid Non-optimal Paths
Optimal Path

UB
y Lower Bounds

UB
y Upper Bounds

Non-valid Paths
Valid Non-optimal Paths
Optimal Path

Figure B.43: The Ux and Uy control history for all paths found for an exit angle of
45°

Appendix B. Plots of Shooting Method Algorithm Tests 125

B.9.4 Path Curvature Conditions

0 50 100 150
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

Time[s]

C
u
rv

a
tu

re

Curvature Upper Bounds
Curvature Lower Bounds
Non-valid Paths
Valid Non-optimal Paths
Optimal Path

Figure B.44: Path curvatures for all paths found for an exit angle of 45°

B.9.5 Path Cost Function Curve

100 105 110 115 120 125 130 135 140 145 150
2300

2400

2500

2600

2700

2800

2900

3000

3100

Final Time[s]

C
o
s
t
V

a
lu

e
 f

Non-valid Paths
Valid Paths
Optimal Path

Figure B.45: Cost curve for an exit angle of 45°

Appendix B. Plots of Shooting Method Algorithm Tests 126

B.9.6 Velocity Magnitude Profiles

0 50 100 150
18

20

22

24

26

28

30

32

Time[s]

‖v
‖[
m
/
s]

 ‖v‖ Lower Bounds
‖v‖ Upper Bounds
Non-valid Paths
Valid Non-optimal Paths
Optimal Path

Figure B.46: The velocity profiles for all paths found for an exit angle of 60°

B.9.7 Control History Profiles

0 50 100 150
−4

−2

0

2

4

Time[s]

U
B x
[m

/
s2
]

0 50 100 150
−2

−1

0

1

2

Time[s]

U
B y
[m

/
s2
]

UB
x Lower Bounds

UB
x Upper Bounds

Non-valid Paths
Valid Non-optimal Paths
Optimal Path

UB
y Lower Bounds

UB
y Upper Bounds

Non-valid Paths
Valid Non-optimal Paths
Optimal Path

Figure B.47: The Ux and Uy control history for all paths found for an exit angle of
60°

Appendix B. Plots of Shooting Method Algorithm Tests 127

B.9.8 Path Curvature Conditions

0 50 100 150
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

Time[s]

C
u
rv

a
tu

re

Curvature Upper Bounds
Curvature Lower Bounds
Non-valid Paths
Valid Non-optimal Paths
Optimal Path

Figure B.48: Path curvatures for all paths found for an exit angle of 60°

B.9.9 Path Cost Function Curve

100 105 110 115 120 125 130 135 140 145 150
2700

2750

2800

2850

2900

2950

3000

3050

Final Time[s]

C
o
s
t
V

a
lu

e
 f

Non-valid Paths
Valid Paths
Optimal Path

Figure B.49: Cost curve for an exit angle of 60°

Appendix C

Contour Plots Of The Receding

Horizon Algorithm

This appendix shows the contour plots for different receding horizon algorithm param-

eters for the uniquely different paths as described in Section 4.2 and does not include

any figure already shown in the main work.

C.1 Cost Contours for -75°Exit Angle

∆t[s]

H
o

ri
z
o

n
 L

e
n

g
th

 T
[s

]

1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

25

30

35

7.5

8

8.5

9

9.5

10

10.5

11

Figure C.1: Cost contours for a Receding Horizon from -75°over various horizon
lengths and ∆t values

128

Appendix C. Contour Plots Of The Receding Horizon Algorithm 129

C.2 Cost Contours for -60°Exit Angle

∆t[s]

H
o

ri
z
o

n
 L

e
n

g
th

 T
[s

]

1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

25

30

35

7.5

8

8.5

9

9.5

10

10.5

Figure C.2: Cost contours for a Receding Horizon from -60°over various horizon
lengths and ∆t values

C.3 Cost Contours for -45°Exit Angle

∆t[s]

H
o

ri
z
o

n
 L

e
n

g
th

 T
[s

]

1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

25

30

35

7

7.5

8

8.5

9

9.5

10

10.5

Figure C.3: Cost contours for a Receding Horizon from -45°over various horizon
lengths and ∆t values

Appendix C. Contour Plots Of The Receding Horizon Algorithm 130

C.4 Cost Contours for -30°Exit Angle

∆t[s]

H
o

ri
z
o

n
 L

e
n

g
th

 T
[s

]

1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

25

30

35

7

7.5

8

8.5

9

9.5

10

Figure C.4: Cost contours for a Receding Horizon from -30°over various horizon
lengths and ∆t values

C.5 Cost Contours for -15°Exit Angle

∆t[s]

H
o

ri
z
o

n
 L

e
n

g
th

 T
[s

]

1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

25

30

35

7.5

8

8.5

9

9.5

10

Figure C.5: Cost contours for a Receding Horizon from -15°over various horizon
lengths and ∆t values

Appendix C. Contour Plots Of The Receding Horizon Algorithm 131

C.6 Cost Contours for 0°Exit Angle

∆t[s]

H
o

ri
z
o

n
 L

e
n

g
th

 T
[s

]

1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

25

30

35

7.5

8

8.5

9

9.5

10

10.5

Figure C.6: Cost contours for a Receding Horizon from 0°over various horizon lengths
and ∆t values

C.7 Cost Contours for 15°Exit Angle

∆t[s]

H
o

ri
z
o

n
 L

e
n

g
th

 T
[s

]

1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

25

30

35

7.5

8

8.5

9

9.5

10

Figure C.7: Cost contours for a Receding Horizon from 15°over various horizon lengths
and ∆t values

Appendix C. Contour Plots Of The Receding Horizon Algorithm 132

C.8 Cost Contours for 30°Exit Angle

∆t[s]

H
o

ri
z
o

n
 L

e
n

g
th

 T
[s

]

1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

25

30

35

7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

Figure C.8: Cost contours for a Receding Horizon from 30°over various horizon lengths
and ∆t values

C.9 Cost Contours for 45°Exit Angle

∆t[s]

H
o

ri
z
o

n
 L

e
n

g
th

 T
[s

]

1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

25

30

35

7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

Figure C.9: Cost contours for a Receding Horizon from 45°over various horizon lengths
and ∆t values

Appendix C. Contour Plots Of The Receding Horizon Algorithm 133

C.10 Cost Contours for 60°Exit Angle

∆t[s]

H
o

ri
z
o

n
 L

e
n

g
th

 T
[s

]

1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

25

30

35

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

Figure C.10: Cost contours for a Receding Horizon from 60°over various horizon
lengths and ∆t values

Appendix D

Discrete Shooting Method

Algorithm Flow Diagram

Algorithm Start Set Initial Conditions

Find path for

given final time

If path is valid set

final time to upper bound.

Calculate new final time

If path is not valid set

final time to lower bound.

Calculate new final time

If

(upper bound - lower bound)/2

< threshold

Calculate new final time

Set lower bound

to the lowest

final time of the

valid paths

Find path for

given final time
If path has lower cost than

 previous minimum set final

 time to lower bound.

Calculate new final time

If path has higher cost than

 previous minimum set final

 time to upper bound.

Calculate new final time

If

(upper bound - lower bound)/2

< threshold output path

with lowest cost as optimal

Figure D.1: Discrete Shooting Method Algorithm Flow Diagram

134

Bibliography

[1] Dr Kimon P. Valavanis, editor. Advances in Unmanned Aerial Vehicles, volume 33

of Intelligent Systems, Control and Automation: Science and Engineering. Springer,

2007.

[2] Paul Lewis. Cctv in the sky: police plan to use military-style spy

drones, Jan 2010. URL http://www.guardian.co.uk/uk/2010/jan/23/

cctv-sky-police-plan-drones.

[3] Jim Loney. Remote controlled planes to explore hurricanes,

May 2008. URL http://uk.reuters.com/article/2008/05/26/

us-storm-hurricanes-drones-idUKN2531234020080526.

[4] Luca De Filippis, Giorgio Guglieri, and Fulvia Quagliotti. Path planning strategies

for uavs in 3d environments. Journal of Intelligent & Robotic Systems, pages 1–18,

2011. ISSN 0921-0296. URL http://dx.doi.org/10.1007/s10846-011-9568-2.

10.1007/s10846-011-9568-2.

[5] Diclehan Tezcaner and Murat Kksalan. An interactive algorithm for multi-objective

route planning. Journal of Optimization Theory and Applications, 150:379–394,

2011. ISSN 0022-3239. URL http://dx.doi.org/10.1007/s10957-011-9838-y.

10.1007/s10957-011-9838-y.

[6] Xu Chu Ding, A.R. Rahmani, and M. Egerstedt. Multi-uav convoy protection: An

optimal approach to path planning and coordination. Robotics, IEEE Transactions

on, 26(2):256 –268, april 2010. ISSN 1552-3098. doi: 10.1109/TRO.2010.2042325.

[7] Yong Bao, Xiaowei Fu, and Xiaoguang Gao. Path planning for reconnaissance

uav based on particle swarm optimization. In Computational Intelligence and Nat-

ural Computing Proceedings (CINC), 2010 Second International Conference on,

volume 2, pages 28 –32, sept. 2010. doi: 10.1109/CINC.2010.5643794.

[8] Vitaly Shaferman and Tal Shima. Unmanned aerial vehicles cooperative tracking of

moving ground target in urban environments. Journal Of Guidance, Control, And

Dynamics, 31(5):1360–1371, September-October 2008.

135

Bibliography 136

[9] Royal Air Force Directorate of Defence Studies. Air Power: UAVs: The Wider

Context. No1 Aeronautical Information Documents Unit (No 1 AIDU), 2009. URL

http://www.airpowerstudies.co.uk/UAV-Book.pdf.

[10] K.L.B. Cook. The silent force multiplier: The history and role of uavs in warfare.

In Aerospace Conference, 2007 IEEE, pages 1 –7, march 2007. doi: 10.1109/AERO.

2007.352737.

[11] J.M. Sullivan. Revolution or evolution? the rise of the uavs. In Technology and

Society, 2005. Weapons and Wires: Prevention and Safety in a Time of Fear.

ISTAS 2005. Proceedings. 2005 International Symposium on, pages 94 – 101, june

2005. doi: 10.1109/ISTAS.2005.1452718.

[12] R.M. Howard and I. Kaminer. Survey of unmanned air vehicles. In American

Control Conference, 1995. Proceedings of the, volume 5, pages 2950 –2953 vol.5,

jun 1995. doi: 10.1109/ACC.1995.532054.

[13] B.J. Hendrey and R.A. Jarvis. Robot manipulator path planning. In TENCON ’92.

”Technology Enabling Tomorrow : Computers, Communications and Automation

towards the 21st Century.’ 1992 IEEE Region 10 International Conference., pages

865 –870 vol.2, nov 1992. doi: 10.1109/TENCON.1992.271847.

[14] H J Sussman and G Tang. Shortest paths for the reeds-shepp car: a worked out

example of the use of geometric techniques in nonlinear optimal control. Technical

report, 1991.

[15] M. Shibata, S. Takakura, and K. Ohnishi. Path planning for robot manipulator

based on middle goal method. In Industrial Electronics, Control and Instrumen-

tation, 1991. Proceedings. IECON ’91., 1991 International Conference on, pages

1017 –1022 vol.2, oct-1 nov 1991. doi: 10.1109/IECON.1991.239151.

[16] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both forwards and

backwards. Pacific Journal of Mathematics, 145(2):367–393, 1990.

[17] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile

robots. The International Journal of Robotics Research, 5(1):90–98, 1986. doi:

10.1177/027836498600500106. URL http://ijr.sagepub.com/content/5/1/90.

abstract.

[18] H. Chitsaz and S.M. LaValle. Time-optimal paths for a dubins airplane. In Decision

and Control, 2007 46th IEEE Conference on, pages 2379 –2384, dec. 2007. doi:

10.1109/CDC.2007.4434966.

Bibliography 137

[19] Jr. Arthur E. Bryson and Yu-Chi Ho. Applied Optimal Control. Hemisphere Pub-

lishing Corporation, 1975.

[20] Donald E. Kirk. Optimal Control Theory an Introduction. Prentice-Hall, 1970.

[21] L. E. Dubins. On curves of minimal length with a constraint on average curvature,

and with prescribed initial and terminal positions and tangents. American Journal

of Mathematics, 79:497516, 1957.

[22] P. Soueres and J.-P. Laumond. Shortest paths synthesis for a car-like robot. Auto-

matic Control, IEEE Transactions on, 41(5):672 –688, may 1996. ISSN 0018-9286.

doi: 10.1109/9.489204.

[23] J.-D. Boissonnat, A. Cerezo, and J. Leblond. Shortest paths of bounded cur-

vature in the plane. In Robotics and Automation, 1992. Proceedings., 1992

IEEE International Conference on, pages 2315 –2320 vol.3, may 1992. doi:

10.1109/ROBOT.1992.220117.

[24] Jongrae Kim and Yoonsoo Kim. Moving ground target tracking in dense obstacle

areas using uavs. In The 17th IFAC World Congress, Seoul, Korea, 2008.

[25] S. Mittal and K. Deb. Three-dimensional offline path planning for uavs using

multiobjective evolutionary algorithms. In Evolutionary Computation, 2007. CEC

2007. IEEE Congress on, pages 3195 –3202, sept. 2007. doi: 10.1109/CEC.2007.

4424880.

[26] I.K. Nikolos and A.N. Brintaki. Coordinated uav path planning using differential

evolution. In Intelligent Control, 2005. Proceedings of the 2005 IEEE International

Symposium on, Mediterrean Conference on Control and Automation, pages 549 –

556, june 2005. doi: 10.1109/.2005.1467074.

[27] H. Rezaee and F. Abdollahi. Adaptive artificial potential field approach for obstacle

avoidance of unmanned aircrafts. In Advanced Intelligent Mechatronics (AIM),

2012 IEEE/ASME International Conference on, pages 1 –6, july 2012. doi: 10.

1109/AIM.2012.6305268.

[28] Mr. Joel George Manathara and Prof. Debasish Ghose. Reactive collision avoidance

of multiple realistic uavs. Aircraft Engineering and Aerospace Technology, 83(6),

2011.

[29] J.J. Rebollo, I. Maza, and A. Ollero. A two step velocity planning method for

real-time collision avoidance of multiple aerial robots in dynamic environments. In

Proceedings of the 17th World Congress The International Federation of Automatic

Control, 2008.

Bibliography 138

[30] Zhang Hong, Yang Liu, Gao Zhongguo, and Cao Yi. The dynamic path planning

research for mobile robot based on artificial potential field. In Consumer Electronics,

Communications and Networks (CECNet), 2011 International Conference on, pages

2736 –2739, april 2011. doi: 10.1109/CECNET.2011.5768480.

[31] Lei Tang, Songyi Dian, Gangxu Gu, Kunli Zhou, Suihe Wang, and Xinghuan Feng.

A novel potential field method for obstacle avoidance and path planning of mobile

robot. In Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE

International Conference on, volume 9, pages 633 –637, july 2010. doi: 10.1109/

ICCSIT.2010.5565069.

[32] Ding Fu-guang, Jiao Peng, Bian Xin-qian, and Wang Hong-jian. Auv local path

planning based on virtual potential field. In Mechatronics and Automation, 2005

IEEE International Conference, volume 4, pages 1711 –1716 Vol. 4, 2005. doi:

10.1109/ICMA.2005.1626816.

[33] P. Vadakkepat, Kay Chen Tan, and Wang Ming-Liang. Evolutionary artificial po-

tential fields and their application in real time robot path planning. In Evolutionary

Computation, 2000. Proceedings of the 2000 Congress on, volume 1, pages 256 –263

vol.1, 2000. doi: 10.1109/CEC.2000.870304.

[34] T. Tsuji, P.G. Morasso, and M. Kaneko. Trajectory generation for manipulators

based on artificial potential field approach with adjustable temporal behavior. In

Intelligent Robots and Systems ’96, IROS 96, Proceedings of the 1996 IEEE/RSJ

International Conference on, volume 2, pages 438 –443 vol.2, nov 1996. doi: 10.

1109/IROS.1996.570811.

[35] J. Barraquand and J.-C. Latombe. A monte-carlo algorithm for path planning

with many degrees of freedom. In Robotics and Automation, 1990. Proceedings.,

1990 IEEE International Conference on, pages 1712 –1717 vol.3, may 1990. doi:

10.1109/ROBOT.1990.126256.

[36] J. Binney and G.S. Sukhatme. Branch and bound for informative path planning. In

Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages

2147 –2154, may 2012. doi: 10.1109/ICRA.2012.6224902.

[37] A. Eele and A. Richards. Rapid updating for path-planning using nonlinear branch-

and-bound. In Robotics and Automation (ICRA), 2010 IEEE International Con-

ference on, pages 3575 –3580, may 2010. doi: 10.1109/ROBOT.2010.5509732.

[38] Hoai Le Thi, Duc Nguyen, and Tao Pham Dinh. Globally solving a nonlinear uav

task assignment problem by stochastic and deterministic optimization approaches.

Bibliography 139

Optimization Letters, pages 1–15, 2010. ISSN 1862-4472. URL http://dx.doi.

org/10.1007/s11590-010-0259-x. 10.1007/s11590-010-0259-x.

[39] Alison Eele and Arthur Richards. Path-planning with avoidance using nonlinear

branch-and-bound optimization. Journal Of Guidance, Control, And Dynamics, 32

(2):384–394, March-April 2009.

[40] S.J. Rasmussen and T. Shima. Branch and bound tree search for assigning coop-

erating uavs to multiple tasks. In American Control Conference, 2006, page 6 pp.,

june 2006. doi: 10.1109/ACC.2006.1656541.

[41] J.A. Cobano, R. Conde, D. Alejo, and A. Ollero. Path planning based on genetic al-

gorithms and the monte-carlo method to avoid aerial vehicle collisions under uncer-

tainties. In Robotics and Automation (ICRA), 2011 IEEE International Conference

on, pages 4429 –4434, may 2011. doi: 10.1109/ICRA.2011.5980246.

[42] Douglas Macharet, Armando Neto, and Mario Campos. Feasible uav path planning

using genetic algorithms and bzier curves. In Antnio da Rocha Costa, Rosa Vicari,

and Flavio Tonidandel, editors, Advances in Artificial Intelligence SBIA 2010,

volume 6404 of Lecture Notes in Computer Science, pages 223–232. Springer Berlin

/ Heidelberg, 2011. URL http://dx.doi.org/10.1007/978-3-642-16138-4_23.

[43] Ze Cheng, Ying Sun, and Yanli Liu. Path planning based on immune genetic

algorithm for uav. In Electric Information and Control Engineering (ICEICE), 2011

International Conference on, pages 590 –593, april 2011. doi: 10.1109/ICEICE.

2011.5777407.

[44] Oktay Baysal Y. Volkan Pehlivanoglu and Abdurrahman Hacioglu. Path planning

for autonomous uav via vibrational genetic algorithm. Aircraft Engineering and

Aerospace Technology: An International Journal, 79(4):352–359, 2007.

[45] T. Shima, S.J. Rasmussen, and A.G. Sparks. Uav cooperative multiple task assign-

ments using genetic algorithms. In American Control Conference, 2005. Proceedings

of the 2005, pages 2989 – 2994 vol. 5, june 2005. doi: 10.1109/ACC.2005.1470429.

[46] Dong Jia and Juris Vagners. Parallel evolutionary algorithms for uav path planning.

In AIAA 1st Intelligent Systems Technical Conference, September 2004.

[47] Liu Juan, Cai Zixing, and Liu Jianqin. Premature convergence in genetic algo-

rithm: analysis and prevention based on chaos operator. In Intelligent Control and

Automation, 2000. Proceedings of the 3rd World Congress on, volume 1, pages 495

–499 vol.1, 2000. doi: 10.1109/WCICA.2000.860016.

Bibliography 140

[48] M.H. Korayem, M. Bamdad, and S. Bayat. Optimal trajectory planning with max-

imum load carrying capacity for cable suspended robots. In Mechatronics and its

Applications, 2009. ISMA ’09. 6th International Symposium on, pages 1 –6, march

2009. doi: 10.1109/ISMA.2009.5164817.

[49] S. Khanmohammadi, G. Alizadeh, J. Jassbi, and M. Pourmahmood. A new artificial

intelligence approach for 2d path planning for underwater vehicles avoiding static

and energized obstacles. In Evolutionary Computation, 2008. CEC 2008. (IEEE

World Congress on Computational Intelligence). IEEE Congress on, pages 1988

–1995, june 2008. doi: 10.1109/CEC.2008.4631061.

[50] Hans Georg Bock and Karl J. Plitt. A multiple shooting algorithm for direct solution

of optimal control problems. In International Federation of Automatic Control 9th

World Congress, 1984.

[51] T. Khuswendi, H. Hindersah, and W. Adiprawita. Uav path planning using poten-

tial field and modified receding horizon a* 3d algorithm. In Electrical Engineering

and Informatics (ICEEI), 2011 International Conference on, pages 1 –6, july 2011.

doi: 10.1109/ICEEI.2011.6021579.

[52] J.R. Riehl, G.E. Collins, and J.P. Hespanha. Cooperative graph-based model pre-

dictive search. pages 2998 –3004, dec. 2007. ISSN 0191-2216. doi: 10.1109/CDC.

2007.4435025.

[53] R. Prazenica, A. Kurdila, R. Sharpley, and J. Evers. Vision-based geometry es-

timation and receding horizon path planning for uavs operating in urban envi-

ronments. In American Control Conference, 2006, page 6 pp., june 2006. doi:

10.1109/ACC.2006.1657155.

[54] Jongrae Kim and J.L. Crassidis. Uav path planning for maximum visibility of

ground targets in an urban area. In Information Fusion (FUSION), 2010 13th

Conference on, pages 1 –7, july 2010.

	Abstract
	Declaration of Authorship
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Preface
	1.2 UAV autonomy and the importance of path planning
	1.3 Why transfer path planning?
	1.4 Objectives
	1.5 Contribution to the field
	1.6 Thesis Structure

	2 Background and Literature Review
	2.1 Introduction
	2.2 UAV History
	2.2.1 Early Development
	2.2.2 World War I and II
	2.2.3 1950s and the Vietnam War
	2.2.4 1970s to present day

	2.3 UAV terminology and examples
	2.4 Brief History of Path Planning
	2.5 Target Tracking Scenario in Detail
	2.6 Path Planning methods
	2.6.1 Potential Field
	2.6.2 Monte-Carlo Simulations
	2.6.3 Branch and Bound
	2.6.4 Genetic Algorithm
	2.6.5 Two-Point Boundary Value Problem(TPBVP/TPBV)
	2.6.5.1 Necessary Conditions with Unconstrained Control Inputs
	2.6.5.2 Necessary Conditions with Constrained Control Inputs (Pontryagin's Minimum Principle)
	2.6.5.3 Boundary Condition Derivation
	2.6.5.3.1 Fixed Final Time Problems
	2.6.5.3.2 Free Final Time Problems

	2.6.6 Receding Horizon

	2.7 Importance of the work in this thesis

	3 Algorithm Construction and Testing
	3.1 Introduction
	3.2 Initial Problem Formulation
	3.2.1 UAV Equations
	3.2.2 UAV Constraints
	3.2.3 Choosing the basic form of the cost function
	3.2.3.1 Path Length Derivation

	3.2.4 Form of the Optimal Control Problem

	3.3 Two Point Boundary Value(TPBV) Problem
	3.3.1 Hamiltonian Generation
	3.3.2 Hamiltonian Control Considerations
	3.3.3 TPBV Problem Boundary Conditions
	3.3.4 Problems Coding the TPBV problem

	3.4 Shooting Method Algorithm
	3.4.1 Preparing the cost function for algorithm use
	3.4.2 Problems with a single optimising action
	3.4.3 Using a Split Optimiser
	3.4.3.1 Cost function with f(t)=2+2
	3.4.3.2 Cost function with f(t)=2+2
	3.4.3.3 Applying the outer cost function

	3.4.4 Testing the Algorithm

	3.5 Summary

	4 Comparing Shooting Results to Similar Path Planning Methods
	4.1 Introduction
	4.2 Viable Paths for Comparison
	4.3 Dubin's Comparison
	4.4 Receding Horizon Comparison
	4.5 Summary

	5 Comparison of the Shooting Transfer Against a Flexible Transfer Case
	5.1 Introduction
	5.2 Switcher Design
	5.3 Defining the Performance Measures and Comparing the Transfer Algorithms
	5.4 Summary

	6 Conclusions and Further Work
	6.1 Conclusions
	6.2 Further Work
	6.2.1 Hamiltonian
	6.2.2 Shooting Method Algorithm
	6.2.3 Result Comparison
	6.2.4 Switching Cost Function Applications

	A Plots of the Single Optimiser Gradient Issue
	A.1 Gradient comparison for -75°
	A.2 Gradient comparison for -60°
	A.3 Gradient comparison for -45°
	A.4 Gradient comparison for -30°
	A.5 Gradient comparison for -15°
	A.6 Gradient comparison for 0°
	A.7 Gradient comparison for 15°

	B Plots of Shooting Method Algorithm Tests
	B.1 Figures for an exit angle of -75°
	B.1.1 Path Map
	B.1.2 Velocity Magnitude Profiles
	B.1.3 Control History Profiles
	B.1.4 Path Curvature Conditions
	B.1.5 Path Cost Function Curve

	B.2 Figures for an exit angle of -60°
	B.2.1 Path Map
	B.2.2 Velocity Magnitude Profiles
	B.2.3 Control History Profiles
	B.2.4 Path Curvature Conditions
	B.2.5 Path Cost Function Curve

	B.3 Figures for an exit angle of -45°
	B.3.1 Path Map
	B.3.2 Velocity Magnitude Profiles
	B.3.3 Control History Profiles
	B.3.4 Path Curvature Conditions
	B.3.5 Path Cost Function Curve

	B.4 Figures for an exit angle of -30°
	B.4.1 Path Map
	B.4.2 Velocity Magnitude Profiles
	B.4.3 Control History Profiles
	B.4.4 Path Curvature Conditions
	B.4.5 Path Cost Function Curve

	B.5 Figures for an exit angle of -15°
	B.5.1 Path Map
	B.5.2 Velocity Magnitude Profiles
	B.5.3 Control History Profiles
	B.5.4 Path Curvature Conditions
	B.5.5 Path Cost Function Curve

	B.6 Figures for an exit angle of 0°
	B.6.1 Path Map
	B.6.2 Velocity Magnitude Profiles
	B.6.3 Control History Profiles
	B.6.4 Path Curvature Conditions
	B.6.5 Path Cost Function Curve

	B.7 Figures for an exit angle of 15°
	B.7.1 Path Map
	B.7.2 Velocity Magnitude Profiles
	B.7.3 Control History Profiles
	B.7.4 Path Curvature Conditions
	B.7.5 Path Cost Function Curve

	B.8 Figures for an exit angle of 30°
	B.8.1 Path Map
	B.8.2 Velocity Magnitude Profiles
	B.8.3 Control History Profiles
	B.8.4 Path Curvature Conditions
	B.8.5 Path Cost Function Curve

	B.9 Figures for an exit angle of 45°
	B.9.1 Path Map
	B.9.2 Velocity Magnitude Profiles
	B.9.3 Control History Profiles
	B.9.4 Path Curvature Conditions
	B.9.5 Path Cost Function Curve
	B.9.6 Velocity Magnitude Profiles
	B.9.7 Control History Profiles
	B.9.8 Path Curvature Conditions
	B.9.9 Path Cost Function Curve

	C Contour Plots Of The Receding Horizon Algorithm
	C.1 Cost Contours for -75°Exit Angle
	C.2 Cost Contours for -60°Exit Angle
	C.3 Cost Contours for -45°Exit Angle
	C.4 Cost Contours for -30°Exit Angle
	C.5 Cost Contours for -15°Exit Angle
	C.6 Cost Contours for 0°Exit Angle
	C.7 Cost Contours for 15°Exit Angle
	C.8 Cost Contours for 30°Exit Angle
	C.9 Cost Contours for 45°Exit Angle
	C.10 Cost Contours for 60°Exit Angle

	D Discrete Shooting Method Algorithm Flow Diagram
	Bibliography

