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Abstract 

As CMOS device dimensions are being aggressively scaled, the device 

characteristic must be assessed against fundamental physical limits. Nanoscale 

device modelling and statistical circuit analysis is needed to provide designer 

with ability to explore innovative new MOSFET devices as well as understanding 

the limits of the scaling process. This work introduces a systematic simulation 

methodology to investigate the impact of intrinsic parameter fluctuation for 

a novel Ultra-Thin-Body (UTB) Silicon-on-Insulator (SOl) transistor on the 

corresponding device and circuits. It provides essential link between physical 

device-level numerical simulation and circuit-level simulation. A systematic 

analysis of the effects of random discrete dopants, body thickness variations and 

line edge roughness on a well scaled 10 nm, 7.5 nm and 5 nm channel length 

UTB-SOI MOSFET is performed. To fully realise the performance benefits of 

UTB-SOI based SRAM cells a statistical circuit simulation methodology which 

can fully capture intrinsic parameter fluctuations information into the compact 

model is developed. The impact of intrinsic parameter fluctuations on the stability 

and performance of 6T SRAM has been investigated. A comparison with the 

behaviour of a 6T SRAM based on a conventional 35 nm MOSFET is also 

presented. 
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Chapter 1 

Introduction 

1.1 Motivation 

The concept of device scaling has been consistently applied over the past three 

decades, increasing the density, the performance, and reducing cost per function 

of the corresponding integrated circuits and systems [I J. However, the scaling 

of conventional device architectures such as bulk MOSFETs are approaching 

fundamental physical limits. As device dimensions shrink to nanometre regime, 

the limits of conventional bulk MOSFETs are becoming more pronounced 

due to increasing short-channel effects causing threshold voltage roll-off, lack 

of performance due to increasing access resistance, material limitations of 

conventional gate stack and technological difficulties [2]. Extremely high channel 

doping is required to control short-channel effects in conventional bulk MOSFET. 

This presents a challenge in tenns of devices fabrication and yields degradation 

of device performance due to strong ionised impurity scattering [3]. It is therefore 

necessary to consider new device architectures that can be scaled to smaller 

dimensions compared to the conventional bulk MOSFETs in order to sustain the 

growth of the VLSI industry in the forthcoming nano-scale CMOS generations. 

One of the most challenging by-products of feature scaling that is proving 

extremely difficult to manage are the increasing variations of the transistor 

characteristics due to intrinsic paramctcr fluctuations. This problem is associated 

with the fundamental discreteness of charge and matter [4, 5] and cannot be 
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removed by better processing steps or improved equipment [6]. Important 

sources of intrinsic parameter fluctuations includes random discrete dopants 

[5, 6, 7, 8], gate line edge roughness [9, 10, 11] and oxide thickness variations 

[12]. It has been experimentally demonstrated at device and circuit level 

that with the continuing scaling of the conventional MOSFETs, the random 

variation in numbers and positions of discrete dopant atoms in the channel region 

induce threshold voltage and drain-current fluctuations which adversely affect the 

circuit performance [13, 14]. These atomic-scale intrinsic fluctuations cannot be 

eliminated by tighter manufacturing process control and have already become one 

of the major stumbling blocks to scaling and integration. 

The International Technology Roadmap for Semiconductors (ITRS) [1] 

introduces several novel device architectures to secure the continuation of the 

MOSFET scaling near the end of the roadmap. Ultra-thin body silicon-on­

insulator (UTB-SOI) MOSFETs are one of the promising emerging devices 

that offer better control of short-channel effects compared to conventional bulk 

MOSFET. In SOl devices, short-channel effects are controlled by the thickness 

of the silicon film, thus allowing for gate length scaling below 10 nm [15 J. 
Tolerating low doped or intrinsic channels, UTB devices have negligible depletion 

charge and capacitance, which yields a steep subthreshold slope. In addition, by 

dielcctrically isolating the active region from the substrate, the SOl technology 

significantly reduces the junction capacitance contribution to the device capacitive 

load. Working UTB-SOI transistors with a channel length of 6 nm [15] and 

body thickness down to 3 nm [16] have already been successfully demonstrated. 

However, the optimal scaling of the UTB-SOI MOSFETs to such dimensions 

requires a body thickness in the range of deca-nanometres. At such body 

thicknesses, and device dimensions local variations in body thickness, geometry 

variations, due to line edge roughness and random discrete dopants in the source 

and drain region, will have a dramatic impact on the device parameter variations. 

Although UTB-SOI transistors can tolerate very low doping concentration in the 

channel region and therefore are more resistant to intrinsic parameter fluctuations 

induced by random discrete dopants compared to the conventional MOSFETs, 

there are unavoidable discrete random dopants in the source/drain regions. While 

UTB-SOI devices offer potential solution to the ultimate MOSFET scaling, a 
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reliable early estimate for the magnitude of the corresponding intrinsic parameter 

fluctuations becomes extremely important. From an integration and systems 

perspective, an in-depth investigation of realistic UTB-SOI MOSFET behaviour 

in the presence of intrinsic parameter fluctuations is also important to understand 

at which technology node such fluctuations will affect the UTB-SOI circuit 

robustncss yield and performance. The increasing device variability is especially 

critical for SRAM due to the use of minimum geometry devices to minimize 

cell area in combination with the requirement of adequate stability and high 

performance. 

Until now, six-transistors (6T) SRAM cell sizes have benefited in full from 

the technology ground rules and device dimension scaling [1]. However, it is 

now well recognized that the increasing variability in device parameters with 

scaling due to intrinsic parameter fluctuations [17, 18], can lead to less aggressive 

scaling of the SRAM cell in future technology nodes. This is bad news since 

microprocessors and System-on-Chip (SoC) applications require large SRAM 

arrays occupying an increasing fraction of the chip real estate. 

Around the 65 nm technology node, intrinsic parameter fluctuations start 

to eliminate much of the available noise margin and erode the overall speed 

in SRAM based on conventional MOSFETs [19]. In general it is expected 

that UTB-SOI MOSFET SRAMs will outperform conventional MOSFETs due 

to superior electrostatic integrity. The steeper subthreshold slope permits also 

a better trade-off bctween power consumption and performance in the SRAM 

cell design. The significant reduction in junction capacitance of UTB-SOI 

MOSFETs also reduces a major component of bit-line capacitance, which is a 

critical parameter limiting SRAM performance [20]. UTB-SOI transistors can 

operate without dopant within the channel region, which improves the variability 

compared to conventional MOSFETs and will have beneficial impact on SRAM 

yield. However at nanoscale dimensions the discreteness and randomness of the 

dopants in the source/drain regions together with atomic scale interface roughness 

and body thickness characteristics fluctuations in combination with LER will 

introduce variations in the UTB-SOI transistor. 

From a circuit and systems point of view, the intrinsic transistor variability 

must be captured in compact models which can be used in circuit simulators 
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like SPICE [21]. This will ensure the very important information related to 

the intrinsic parameter fluctuations is communicated to the circuit and system 

designers. On the other end, circuit designers must understand what range of 

variances the device will have to ensure that the circuit will function properly and 

deliver reasonable yield. 

1.2 Aim and Objectives 

The aim of this thesis is to investigate the impact of different sources of 

intrinsic parameter fluctuations in next generation UTB-SOI MOSFETs on the 

functionality and the performance of the corresponding 6T-SRAM cells. Thus, 

the first objective of this research is to study, using statistical three-dimensional 

(3D) numerical simulations, the impact of different sources of intrinsic parameter 

fluctuations in a family of well scaled UTB-SOI MOSFETs near the end of the 

ITRS [1] and beyond. The simulations are carried out by the 3D "atomistic" 

device simulator [6] developed in the Device Modelling Group at the University of 

Glasgow. The study focuses on the effect of different sources of IPF on important 

electrical characteristics of the scaled devices. The sources of intrinsic parameter 

fluctuations which can be separated in simulations will occur simultaneously 

within a single MOSFET. Thus, their combined effect has also been investigated. 

This allows to identify the dominant sources of intrinsic parameter fluctuations 

limiting the scaling of next generation UTB-SOI MOSFETs. 

A very important application of the result from 3D statistical simulation is 

the extraction of parameters for statistical SPICE compact models, which can be 

used in the statistical analysis and designing of integrated circuits. Therefore, 

the second objective of this research is to develop a statistical compact model 

circuit simulation framework which takes into account the intrinsic parameter 

fluctuations in UTB-SOI MOSFETs. The statistical circuit modelling framework 

will be able to capture the impact of intrinsic parameter variations in SPICE 

compact-model parameters in order to study the circuits operating uncertainty. 

The carefully designed methodology, specifically tailored to capture the impact of 

different sources of intrinsic parameter fluctuations in standard compact models 

like BSIMSOI would enable their investigation separately and in combination 
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without the need for a development of a new statistical compact-model. This 

methodology which bridges the gap between device-level and circuit-level 

modelling of intrinsic parameter fluctuations is important for understanding of 

their impact on the next generation circuits and systems and the development of 

fluctuation resistant design. 

Finally the third objective of this work is to study, using the statistical 

compact-level circuit simulation methodology, the behaviour of UTB-SOI based 

6T SRAM cells under the influence of different sources of intrinsic parameter 

fluctuations. The comprehensive investigation should lead to a more detailed 

understanding of the stability and performance of 6T SRAM cell of aggressively 

scaled UTB-SOI MOSFETs with channel lengths ranging from 10 to 5 nm. The 

study would also evaluate the advantages and drawback of SRAM cell ratio 

tailoring as a means for reducing the negative impact of IPF. This study helps to 

identify key areas for device mismatch optimisation based on future technology 

trends. 

1.3 Thesis Outline 

Chapter 2 provides the background for different research areas covered in this 

thesis. The chapter starts by describing the scaling limitation associated with 

conventional MOSFETs, and the need for migration to UTB-SOI MOSFETs. In 

addition, several factors limiting the success of UTB-SOI MOSFET scaling are 

also discussed. The main sources of intrinsic parameter fluctuations in UTB-SOI 

MOSFET are then laid out, including random discrete dopants, body thickness 

variation and line edge roughness. The next section of the chapter gives an 

overview of the physical device modelling aspects of this thesis. It describes the 

Glasgow 3D "atomistic" device simulator which has been used in this study of 

intrinsic parameter fluctuations including the use of quantum corrections. Then, 

the compact modelling aspects are discussed. Berkeley BSIMSOI [22] SPICE 

compact models which has been choosen for this work is presented. Finally an 

overview of the existing SRAM architectures with an emphasis on 6T SRAM 

cells is presented. The cell structure and operations are discussed as well as issues 

related to transistors mismatch. 
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Chapter 3, entitled "UTB-SOI MOSFETs Design and Modeling" contains 

the results of the physical simulation of intrinsic parameter fluctuations for 

next generation UTB-SOI MOSFETs. It begins by describing in detail the 

implementation of each individual source of intrinsic parameter fluctuations 

available in the Glasgow 3D "atomistic" device simulator. Next the structure 

and the geometry of the well scaled UTB-SOI MOSFETs with 10 nm, 7.5 nm 

and 5 nm channel length which will be used throughout this work is presented. 

These generic device correspond to the 25 nm, 20 nm and 14 nm technology 

generations. The electrical properties of the scaled devices are investigated. The 

chapter concludes with statistical investigation of the impact of different sources 

of intrinsic parameter fluctuations on these UTB-SOI MOSFETs. The three 

sources of fluctuations considered individually and in combination are random 

discrete dopants, body thickness variations and line edge roughness. 

Chapter 4 entitled "Statistical Circuit Simulation Framework" focuses 

on developing a methodology to incorporate intrinsic parameter fluctuations 

information into BSIMSOI [22] compact model. This includes compact model 

extraction strategy and statistical circuit simulation for the scaled UTB-SOI 

MOSFETs investigated earlier. The two stage statistical extraction strategy which 

has been used to build the generic devices compact model library are explained 

in detail. The quality of the extraction strategy for all of the generic UTB-SOI 

MOSFETs will be presented. The chapter concludes with the presentation of the 

extracted compact model parameters correlation. 

Chapter 5 entitled "Intrinsic Parameter Fluctuations in 6T SRAM Cells" 

investigates using SPICE circuit simulation, the impact of random discrete 

dopants, body thickness variations and line edge roughness on UTB-SOI based 

6T SRAM cells with different cell ratio. The compact model library built earlier, 

which incorporates the electrical characteristic information of intrinsic parameter 

fluctuations will be used extensively to measure the stability and performance 

of the 6T SRAM cells. Additionally, the stability of 6T SRAM cells based on 

conventional 35 nm bulk MOSFETs [19] and the generic UTB-SOI MOSFETs 

with different cell ratio are also investigated and compared. Analysis of the 

projected UTB-SOI SRAM cell leakage and static power dissipation are also 

discussed 
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Chapter 6 summarises the findings of this research and suggests possible 

future work that can extend the understanding of the effects of intrinsic parameter 

fluctuations in next generation MOSFETs devices and circuits. 



Chapter 2 

Background 

The microelectronic industry has benefited enormously from MOSFET 

miniaturization. Due to the advancement of MOSFET technology and the increase 

of number of transistors per chip, diverse functions have been incorporated into 

integrated circuits. As the scaling of device size continues due to the market's 

demand of high chip-density and reduction of production cost, the physical 

dimension of transistors such as channel length and gate oxide thickness have also 

been rapidly scaled down. At the same time the process sequence to build an IC 

has become very complex, demanding stringent process control to minimize the 

variations in the transistor parameters. These parameter variations traditionally 

caused by process variation are now also caused by variations in the atomic 

structure of the present deca-nanometer CMOS devices. 

Therefore one of the challenge of advanced CMOS manufacturing lies in 

TCAD modelling and simulation of the intrinsic parameter fluctuations for 

accurately assessing the performance and the yield of the corresponding ICs. 

The main relevant areas of modelling and simulation includes front-end process 

simulation, physical device simulation, compact-level models and parameter 

identification, circuit-level and system level simulation [I, 23]. However, a 

detailed discussion of all these simulation techniques and the corresponding tools 

is not the main aim of this chapter. The scope has been limited to cover only 

the modelling and simulation of device and compact models related to the aim 

and objectives of this thesis. The subsequent sections in this chapter provide 

8 
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background and literature review on research aspects covered by this thesis. 

This chapter has six main sections. Section 2.1, examines some of the 

fundamental limitations that that will eventually slow down the scaling of 

conventional MOSFETs. Section 2.2 provides an overview of the ultra thin­

body (UTB) SOl MOSFETs. The structure, advantages and limiting factor of this 

novel device will be discussed. Section 2.3 introduces the concepts of intrinsic 

parameter fluctuations (IPF) and the sources of IPF investigated in this work. A 

brief description of the physical device modeling strategy and simulation tool used 

in this research will be presented in section 2.4. Section 2.5 provides an overview 

of the compact modelling strategy and introduces the Berkeley BSIMSOI [22] 

SPICE compact models used for the circuit simulation of UTB-SOI MOSFET 

in this work. Finally, section 2.6 will present different designs of SRAM cells 

with an emphasis on 6T SRAM cells. Discussion of performance advantages that 

UTB-SOI transistors can provide as well as issues related to transistors mismatch 

in SRAM cell will also be presented. 

2.1 Limitation of Conventional MOSFET Scaling 

Over the past three decades, by scaling MOSFET design parameters (voltage, 

doping concentration, and physical dimensions) with each new generation of 

manufacturing technology, steady improvements in circuit performance and cost 

per function have been achieved. However, continued transistor scaling will not 

be as straightforward in the future as it has been in the past because fundamental 

materials and process limitations are rapidly being approach. Many reviews 

have been written about the current state and future prospects for MOSFETs and 

CMOSs [3, 16, 24, 25, 26]. In particular, many different scaling limitation factors 

for MOSFETs have been examined and innovations to circumvent fundamental 

physical barriers have been proposed and discussed. In this section, the current 

state of understanding of these scaling limits is presented. The result at the end is 

a growing consensus among the industry and research communities alike, that 

around the 45 nm technology node and beyond, despite the wide application 

of technology boosters such as process induced strain for carrier transport 

enhancement, high-k gate stack and metal gates [1], it will become necessary 
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Figure 2.1: Visual illustrations of quantum effects near the Si/Si02 interface. 
Reference [27]. 

to replace the conventional MOSFETs with novel device architectures such as 

UTB-SOI and double gate MOSFET. 

Conventional MOSFETs caled down to 15 nm gate lengths have been 

successfully demonstrated [28]. Scaling below this milestone involves intolerably 

thin gate dielectrics, unacceptably high channel doping and may require a 

departure from the conventional MOSFET concepts. This presents a challenge 

in terms of device fabrication because of a heavy halo implant must be localized 

close to the surface underneath the gate edge. However, even if this is achievable, 

the combination of thin gate oxides and heavy doping in conventional MOSFETs, 

will result in substantial quantum mechanical gate and band-to-band tunnelling 

[29]. The quantum confinement effects and the three main quantum mechanical 

tunnelling phenomena, which affect the MOSFET scaling are illustrated in 

figure 2.l. 

Tunneling current through the gate dielectrics is one of the most acute limits 
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to scaling. In order to control the short channel effects and achieve the desired 

current drive at a substantially low power supply voltages, aggressively scaled gate 

dielectrics with equivalent oxide thickness (EOT) in the range between I to 0.5 nm 

are required beyond the 65 nm technology node according to the latest edition 

of the ITRS. Conventional gate insulator, Si02 with physical oxide thickness of 

1.2 nm corresponding to four atomic layers of Si, has already been successfully 

implemented in the 90 nm technology node [30]. For such ultra thin oxides 

the channel carriers can easily tunnel into the polysilicon gate through the gate 

dielectric material. This process of electrons or holes transmission through the 

dielectric barrier increases the gate leakage current exponentially with decreasing 

oxide thickness [31]. This leakage has reached an intolerable level and already 

exceeds the requirements of high-performance logic technology [24, 32]. 

A large channel doping will also inevitably enhance band-to-band tunneling 

leakage between the body and drain [33]. This will be especially important 

because abrupt halo doping profiles in the channel are desirable to localize the 

heavy channel doping whereas abrupt drain doping profiles are desirable for the 

reduction of series resistance. Together, these requirements will greatly increase 

band-to-band tunneling, which also contribute to the off-state leakage current in 

the transistor [16]. Apart from quantum tunneling effects, carrier mobility of 

bulk device with a heavily doped channel will be severely degraded by impurity 

scattering. This is particularly noticeable above channel doping concentration of 

2eI8 cm-3 [3]. 

The other possible tunnelling mechanism that can affect the operation of 

nanometre scale MOSFETs is the source-to-drain tunnelling. The proximity of 

the source and drain junctions may lead to quantum mechanical tunnelling that 

will increase the overall transistor leakage current. The effect of source to drain 

tunnelling current in an 8 nm gate length MOSFET corresponding to the 20 nm 

technology node has been experimentally demonstrated [34]. According to the 

technology roadmap such devices will be in production around year 2018. 

Aside from fundamental physical limitations, power dissipation will become 

one of the major factors hampering the integration of the scaled devices and 

therefore limiting the usefulness of continued scaling [35]. From a VLSI circuits 

application point of view, the main power dissipation mechanisms are dynamic or 
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switching power and static power dissipation. The dynamic power is associated 

with the switching of circuit logic states and is in direct proportion to the rate of 

computation. Therefore it can be adjusted to meet application power requirement 

by adjusting the computation rate. Static power dissipation is associated with 

leakage mechanism within device or circuit and therefore difficult to control. The 

severity of the problem rapidly increases as scaling proceeds. As a result of 

subthreshold slope degradation including source-to-drain tunnelling for a given 

off-state leakage current specification, the threshold voltage must be raised. 

However, increasing the threshold voltage while scaling the power-supply voltage 

reduces the drive current of the device. A feasible way of addressing the power 

issue is to improve the sub-threshold gradient of the transistor. However, as the 

conventional transistor scales, and the channel doping increases to support the 

electrostatic integrity, the sub-threshold slope is degraded. Intrinsic parameter 

fluctuations due to the high channel doping are also among the main limitations 

to scaling. 

2.2 UTB-SOI MOSFET Devices 

In the previous section, the fundamental physicallimitation of conventional bulk 

MOSFET have been presented. It was highlighted that conventional transistors 

with gate length below 10 nm are increasingly difficult to design due to severe 

short channel effects, quantum tunnelling, power dissipation and the resulting 

loss of perfonnance. Therefore, it is very important to consider alternative device 

architectures that do not have some of the limitations of conventional MOSFETs 

and that may be manufactured with minimal changes to process technology. 

Novel MOSFET structures such as UTB-SOI and double-gate MOSFET can be 

scaled more aggressively than the conventional bulk structure and, hence, may 

be adapted for high perfonnance logic technology production as early as the 

65 nm technology node [21. That is why the latest edition of the ITRS expects 

that UTB-SOI MOSFET will phase out bulk MOSFET below 22 nm gate length 

while double-gate MOSFET is expected to be introduced below 16 nm gate length 

[1]. This work concentrates solely on the modelling and simulation of UTB­

SOl MOSFET. In this section a brief description of the basic properties, the 
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Figure 2.2: Schematic diagram of (a) partially-depleted SOl and (b) fully-depleted 
SOl MOSFET. 

generic structure and the significant advantages of SOl MOSFETs is presented. 

Further design considerations necessary to circumvent scaling limitations will be 

presented. 

2.2.1 SOl Basic Properties and Structure 

The structure of the classical SOl transistor is similar to the structure of a 

conventional MOSFET with the exception of the insertion of a buried oxide in 

the silicon substrate. The SOl technology dielectrically isolates components and 

in conjunction with the lateral isolation, reduces the effective area capacitance 

between the diffusion junction and the substrate compared to bulk MOSFET. This 

is mainly due to the buried oxide layer which is much thicker than the depletion 

regions and has lower dielectric constant than silicon. As a result, at identical 

dimensions SOl circuits are faster than bulk MOSFET circuits because of the 

reduced junction capacitance. 

There are two flavours of the SOl transistors, partially depleted (PD) and 

fully depleted (FD). Typical PD-SOI and FD-SOI device structures are shown 

in figure 2.2(a) and figure 2.2(b) respectively. PD-SOI have thicker silicon body 

than the maximum gate depletion width while FD-SOI transistor use a thin silicon 

body so the depletion layer extends through the entire body film. 
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The initially electro neutral floating region in PD-SOI MOSFET can be 

charged up by impact ionization currents which leads to floating body effects. 

The unique behaviour of these effects have plagued the commercial penetration 

of the PD-SOI MOSFET technologies for over three decades putting SOl into 

a high risk category [36]. The floating body introduces a kink in the DC 10 -

V G characteristics, lowering the threshold voltage at high drain bias and causing 

hysteresis, instability [37, 38] and history dependence during dynamic operation 

[39]. Connecting the body to the source (body-contact) is the conventional way 

to avoid floating body effect [40]. However body-contact structures degrade 

packing density and forces redesigning when remapping bulk chip design to SOl 

technology [41]. The design of PD-SOI MOSFETs is similar to the design of 

bulk MOSFETs and faces the same scaling limitations [42] and shifts the interest 

towards FD-SOI. 

Advances in SOl process manufacturing and demand for higher integration 

density, a smaller die area and a better performance directed the trend toward 

fully-depleted SOl. The advantages include virtually undoped channel, improved 

subthreshold slope and reduced random dopant induced parameter variations, 

reduction of floating-body effect and dynamic stability without body-contact [43]. 

FD-SOI MOSFETs are promising devices for low-voltage, low-power and high­

speed application due to better suppression of short-channel (SCE) and floating­

body effects. 

Ultra-thin body (UTB) SOl is an extension of FD-SOI. The main difference 

between the two is the silicon layer thickness. The silicon layer thickness for 

UTB-SOI transistors is usually less than 10 nm [44]. However, the scaling of 

the UTB single and double gate transistors beyond 10 nm channel length will 

require body thickness below 5 nm [45]. UTB-SOI transistors are expected to 

deliver a solution to the difficult challenge facing the scaling of conventional 

MOSFETs to deep nano-scale dimensions [46]. The salient features of the 

UTB-SOI MOSFET are control of short-channel effects by device geometry, as 

compared to conventional bulk, where the short-channel effects are controlled 

by doping (channel doping and/or halo doping). The reduced short-channel 

effects allow scaling to shorter channel lengths for identical gate oxide thickness 

compared to bulk MOSFET [47], a better subthreshold slope which allows for 
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a larger gate overdrive at the same power supply and the same off current, 

better carrier transport since UTB-SOI devices operates at lower vertical field 

and Coulomb scattering is negligible as the channel is virtually undoped [29]. 

Reduction of channel doping also reduces the drain-to-body and band-to-band 

tunneling leakage current. 

2.2.2 Design Considerations 

The UTB-SOI MOSFETs provide solutions to some of the fundamental issues of 

conventional bulk MOSFET scaling. Unfortunately, the aggressive scaling of the 

gate dielectric and the small silicon film thickness needed at short channel length 

to maintain the electrostatic integrity are prohibitively difficult to manufacture. 

New approaches to gate stack engineering, source/drain engineering and channel 

engineering are needed for the alleviation of these problems and will be discussed 

in this subsection. 

UTB-SOI devices require advanced gate stack to reduce the gate tunneling 

current and the gate capacitance degradation due to polysilicon depletion [2]. With 

the Si02 gate dielectric thickness approaching scaling limits, researchers have 

been exploring several alternative gate stacks for UTB-SOI MOSFET, including 

the use of high permittivity gate dielectric (high-k) and metal gate [2, 24, 481. 

Successful introduction of high-k depends upon achieving high layer uniformity 

stability, integration with other Si processes, minimal/controlled reactions with Si 

and the gate electrode [2], and low fixed-charge, defect, and trap densities in the 

insulator and at the interface between the insulator and the Si substrate [49]. The 

incompatibility of high-k dielectric materials with the polysilicon traditionally 

used for the gate electrode also require alternative gate materials [50]. The use 

of a metal gate material opens up the opportunity to choose the work function of 

the gate. In UTB-SOI MOSFET, where the short-channel effects are controlled by 

the device geometry, the threshold voltage is determined mainly by the gate work 

function. Therefore, the choice of the gate electrode is particularly important. The 

use of a lightly doped channel requires the gate work function to be tunable in the 

range between 4.4 and 5.0 eV to provide means for adjusting the threshold voltage 

[ 161. 
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In the UTB-SOI device structure, the body thickness is reduced with scaling 

to suppress short channel effects. However, the increasing access resistance 

of the source and drain regions could limit the transistor drive current [15, 

29]. Continued scaling of channel length decreases the channel resistance and 

increases the impact of access resistance on saturation current. A significant 

part of the access resistance is associated with the contact resistance which is 

not scalable [51]. The solution to the drive current reduction due to access 

resistance is to use raised source/drain, which increase the effective thickness 

of the junctions and hence the junction conductance [52]. Devices with raised 

source/drain exhibit superior drive currents, up to 50 percent larger compared to 

the non-raised source/drain counterparts [29]. An alternative approach is to reduce 

the series resistance in the thin body by introducing salicide (self aligned silicide) 

source/drain region [53]. 

Apart from the increase in series resistance arising from ultra-thin junctions 

discussed above, the fabrication of uniform thin body layers is extremely difficult. 

There is a lot of scepticism about UTB-SOI MOSFET ability to be manufactured 

in a large-scale production. However, experimental result shows relatively good 

control of body thickness in the range between 6 to 10 nm [54]. While MOSFET 

scaling can be extended with the UTB-SOI device structures, innovative design 

considerations and improve processing technology, an ultimate limit associated 

with intrinsic parameter fluctuations will eventually be reached. In the following 

section the main sources of intrinsic parameter fluctuations in UTB-SOI MOSFET 

will be presented. 

2.3 Intrinsic Parameter Fluctuations 

In the past, the mismatch in the characteristic of transistors in integrated circuits 

were associated with macroscopic manufacturing process fluctuations. These 

are mostly related to the process equipment used in various processes such as 

oxidation, ion implantation, annealing, deposition and etching. As the devices 

are scaled to nanometre regime, the intrinsic variations associated with the 

discreteness of charge and matter start to play a fundamental role even with 

perfect processing conditions. The atomistic nature of the deca nanometer and 
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Figure 2.3: The evolution towards atomistic devices concepts. (a) MOSFET with 
continuous ionised dopant charge, smooth boundaries and Si/Si02 interfaces. (b) 
Sketch of 22 nm MOSFET required for 45 nm technology node with random 
discrete dopants, rough interface and line edge roughness (c) Impression of 5 nm 
MOSFET with the silicon crystal lattice superimposed. Reference [55]. 

nanometer scale MOSFETs is illustrated in figure 2.3. The transistor with sub-

50 nm dimensions in figure 2.3(b) and the transistor with sub-l 0 nm dimensions 

in figure 2.3(c), can no longer be described, modelled or simulated based on the 

traditional assumptions of continuous dopant distribution, smooth interfaces and 

straight gate edges, illustrated in figure 2.3(a). The three main sources of intrinsic 

parameter fluctuation that are considered in this work include random discrete 

dopants (RDD), body thickness variations (BTV) and line edge roughness (LER). 

Ultimately, scaling of UTB-SOI MOSFETs is susceptible to the above sources of 

intrinsic parameter fluctuations 

2.3.1 Random Discrete Dopants 

According to the ITRS [1], MOSFETs with 7 nm gate lengths are expected to be 

in mass production around 2018. Such devices, similar to the one in figure 2.3(c), 

will have approximately 10 to 15 silicon atoms along the channel length and the 

position of each silicon, dopant or insulator atom is likely to have significant 

microscopic impact on the device characteristics. Conventional MOSFETs at such 

dimensions require a high doping concentration in the channel in order to suppress 

short channel effects. These dopants are introduced by implantation process and 

activated using annealing. The overall effect is a random distribution of position 
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Interface 

Figure 2.4: Body thickness fluctuations due to interface roughness between the 
silicon and oxide layers. 

and number of dopant atoms for each device. Aside from its adverse effect 

on device performance the high doping concentration will introduce intolerable 

IPF. Random discrete dopants of conventional MOSFETs are one of the source 

of IPF that have been experimentally demonstrated [5] and studied theoretically 

[8, 56, 57]. However, the impact of random discrete dopant has a different 

nature in UTB-SOI devices as they are more tolerant to low doping concentration 

in the channel. The use of virtually undoped channel in UTB-SOI MOSFETs 

reduces threshold voltage sensitivity and proved to be advantageous even at very 

short channel lengths [58], but the effect of unavoidable random dopants in the 

source/drain region has not been well understood. RDD simulation in this work 

only considers dopants in the source/drain regions of the UTB-SOI MOSFETs. 

2.3.2 Body Thickness Variations 

The scaling of the UTB-SOI MOSFET to nanometer regime near the end of 

the ITRS involves aggressive reduction of the silicon body thickness (tsi). This 

is a concern from a manufacturing stand point because of the sensitivity of 

threshold voltages to variation in the body thickness across the wafer [59, 60]. 

At the same time, atomic scale roughness of the SilSi02 interface will introduce 

significant intrinsic parameter fluctuations in UTB-SOI MOSFETs resulting in 

a unique pattern of the body thickness in each individual device as illustrated 
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in figure 2.4. This inevitably will introduce parameter variations related to 

local electrostatic, quantum confinement and mobility variations. It has been 

demonstrated experimentally that when body thickness is thinner then 4 nm, even 

atomic variation of the body thickness have a significant impact on the threshold 

voltage shift [61]. Threshold voltage increase in ultra thin body devices associated 

with quantum confinement effects has also been observed [61]. Factors such as 

surface optical phonon, surface roughness and Coulomb scattering contribute to 

the mobility degradation and variations [62]. In this work the simulations only 

capture fluctuations induced by the electrostatics and quantum effects. 

2.3.3 Line Edge Roughness 

Ideal MOSFETs are considered to have a straight gate edges as illustrated in 

figure 2.3(a). However in real devices, the gate is prone to line edge roughness 

(LER) caused by tolerances inherent to materials and tools used in the lithography 

processes. As a result of gate LER, gate geometry will vary from transistor to 

transistor. Since the drain current is related to the gate geometry the overall 

current may vary resulting also in threshold voltage variation from transistor to 

transistor [11]. At the same time, the doping distribution near the p-n junctions 

which closely follows the gate shape introduces variations in the effective channel 

length. In the past, LER had little impact on device operation because the gate 

length was much larger compared to the roughness of the gate edges. However, 

with UTB-SOI transistors gate length scaled to IO nm, the contribution of LER to 

overall IPF is becoming significant. 

2.4 Physical Device Modeling 

A proper understanding of the electrical properties of advanced semiconductor 

devices requires adequate device simulations. The ability to predict the electrical 

device characteristic reduces design cost and manufacturing delay and provides an 

opportunity to assess capability of devices and circuits using technology computer 

aided design (TCAD) and compact model extraction. Device simulation is also 

an important tool in the investigation of new materials and their impact on device 
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perfonnance. 

The intrinsic parameter fluctuations are three dimensional (3D) in nature, 

and therefore, to correctly capture their effects full scale 3D simulation should 

be carried out. In this work, the Glasgow 3D "atomistic" device simulator 

has been employed [10, 56, 63, 64] to investigate random discrete dopants, 

body thickness variations and line edge roughness in UTB-SOI MOSFETs. The 

simulator is based on the drift diffusion (DD) approach, self-consistently solving 

the Poisson and the current continuity equations at room temperature. The Poisson 

equation describes the charge distribution and the boundary conditions in the 

solution domain, while the continuity equation detennines the current and carrier 

concentration distributions. The DD system only works in quasi equilibrium 

where the electric field varies slowly and the velocity is locally related to the 

electric field. Therefore DD approach is perfectly adequate to analyze fluctuations 

in threshold voltage and in the subthreshold slope which are dominated by device 

electrostatics. 

Quantum mechanical effects have a big influence on the operation of 

nanometer scale MOSFETs and on their parameters and electrical characteristics. 

The quantum mechanical effects affecting the MOSFET operations are mainly the 

quantum confinement and tunneling. The quantum mechanical tunneling effects 

have been discussed previously in section 2.1. The quantum confinement effects 

occur when the carriers in a semiconductor are confined by a potential well in a 

constrained region. Quantum confinement in the channel has a profound impact 

on both the amount of charge which can be induced by the gate electrode through 

the gate oxide and the profile of channel charge in the direction perpendicular to 

the surface. The quantum confinement effects are included in our 3D simulations 

using the density gradient formalism [56]. The simulations of intrinsic parameter 

fluctuation in this work will only consider electrostatic and quantum confinement 

and do not include variations introduce by quantum confinement scattering and 

quantum tunneling. 

The extremely small body thickness considered in this work results in strong 

quantization in the direction nonnal to the interface. This quantization influences 

the device behaviour by increasing the threshold voltage and decreasing the drive 

current. In the Glasgow "atomistic" simulator, quantum mechanical effects are 
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included using quantum corrections based on the Density Gradient approach [56]. 

The quantum corrections significantly improve the accuracy of the drift diffusion 

simulation of nanoscale MOSFETs when quantum confinement effects influence 

the threshold voltage and the overall device performance. 

2.5 Compact Circuit Modeling 

In circuit design, engineers cycle between design and verification, searching for a 

design that complies with a set of specifications by performing circuit simulations 

that rely upon compact models. The purpose of compact modeling is to provide 

simple, fast and accurate analytical representations of the MOSFET terminal 

electrical characteristic. The models are desired to be physical in order to capture 

and reflect the real process and device characteristics with good accuracy and to be 

able to reasonably project the device behaviour. With a solid physical foundations, 

a compact model coupled to physically meaningful extraction strategy can be 

used for device understanding, evaluation, optimization and scaling prediction. 

Compact models are characterized using data measured from manufactured 

test chips or simulated using process and/or device simulators. Consequently 

such compact models are a critical link in the translation of MOSFET process 

properties into integrated circuit performance. 

2.5.1 BSIMSOI 

Compact models for SOl MOSFET devices have been developed by the 

microelectronic industry and in academia over the past few decades [66,67, 68]. 

However, among the reported models, BSIMSOI [22] has been of great interest 

[69, 70] and has played an important role in the semiconductor manufacturing 

companies [40, 65]. BSIMSOI is built on top of the BSIM3 [71], a well known 

accurate and predictive bulk MOSFET model, that allows important MOSFET 

device physics to be shared. However, BSIMSOI is designed as a unified compact 

model that could model both fully-depleted and partially-depIcted SOl devices. 

Figure 2.5 illustrates the circuit elements of BSIMSOI. When an ideal FD mode 

for BSIMSOI is enabled, a body-source built-in potential lowering term which is 
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Figure 2.5: Schematic diagram of an sal transi tor, ilustrating the elements 
present in BSIMSOI for both partially-depleted and fully-depleted Sal MOSFET. 
Model is shown without source and drain parasitic element. Reference [65]. 
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a measure of the floating-body behavior of SOl devices is introduced [22]. At the 

same time, calculation of body node and body current/charge (i.e., heating-free 

impact ionization current, diode current, gate induced drain leakage and gate­

to-body tunneling), which is essential to the partially-depleted model is skipped. 

Self-heating element in BSIMSOI exists for both FD and PD mode. Self-heating 

refers to the temperature rise that can occur if excessive heat energy builds up in 

the SOl body before being dissipated through the buried layer in the substrate. In 

this work, the self-heating element of BSIMSOI is disabled to clearly illustrate 

the impact of intrinsic parameter fluctuations in UTB-SOI devices. 

2.5.2 Statistical Circuit Modelling 

As the feature sizes of MOSFETs are scaled down, the impact of process and 

intrinsic fluctuations is becoming serious for both analog and digital circuit 

design. It has already been demonstrated at circuit level that as conventional 

MOSFET continue to scale, the random dopant induced drain-current fluctuations 

adversely impact the circuit performance [13, 72]. Therefore, statistical compact 

modeling, capable to simulate the increasing device variability, is becoming very 

important. 

There are various statistical compact modeling method that are used for 

statistical simulation of integrated circuits. These methods fall broadly under 

two categories namely worst case analysis and statistical design techniques. The 

worst-case techniques [73, 74] are used to explore the performance at the nominal, 

best and worst case process comers. Previously, this analysis is the industry's 

de facto standard in statistical modelling that can only be use to verify circuit 

design at the extremes of manufacturing process variation. The statistical design 

techniques perform parameter extraction procedure for many individual sample 

devices, then statistically analyzing the resulting sets of the parameters obtained 

[75, 76, 77, 78]. This approach could create unrealistic device behaviour and may 

not capture all aspects of the impact of intrinsic parameter fluctuation sources on 

the device behaviour. Moreover, compact model parameter inter-correlations are 

completely neglected, and produces circuit performance predictions that are either 

overly pessimistic or optimistic. 
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Figure 2.6: Intel Itanium 2 pr ce r overview. urte y f f811 . 
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Figure 2.7: Standard configuration of high-performance SRAM cells. (a) Six 
transistor. (b) Eight transistor. Cell is addressed by the word-line (word) and the 
data is read out via the bit-line pair (±bit). 

2.6 Static Random Access Memory (SRAM) 

A large fraction of the transistors in a modem processors and system on a chip 

(SoC) applications are in SRAM, impacting the density, performance and standby 

power of the entire chip. Figure 2.6 illustrates that the cache structures constitute 

a large portion of the Intel Itanium 2 microprocessor real estate. The key to the 

microprocessor cache market is high performance, high stability and small area. 

There are several different configuration of SRAM in use in these systems, with 

different structure and features. 

The basic SRAM cell is made up of two cross coupled inverters with several 

variations. Two SRAM frequently investigated for high performance applications 

are depicted in figure 2.7. A typical high-performance application SRAM uses 

the standard six-device (6T) cell configuration illustrated in figure 2.7(a) l82, 83, 

84]. Although, the eight-transistors SRAM illustrated in figure 2.7(b), provides a 

much greater enhancement in stability by eliminating cell disturbs during a read 

access, the accommodation of two additional transistors causes an area penalty of 

30 percent compared to 6T configuration [85]. With excellent performance and 

stability the six-transistors SRAM has been dominant even though the area has 

been comparatively very large [24, 86, 87]. 
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SOl based 6T SRAM outperforms conventional bulk ones due to significant 

reduction of collective device junction capacitance. Its benefit is most exemplified 

in the differential pair bit-line topology illustrated in figure 2.7(a) as the bit­

lines is connected to millions of source/drain junctions and the corresponding 

capacitance constitutes a sizable portion of the total bit-line nodal capacitance 

[20]. Improvement in the range between 10 to 30 percent for PO and FD SOl 

have been observed [82, 83], while 16 percent reduction of chip area has been 

achieved [82]. Recently a UTB-SOI based 6T SRAM cell with 50 nm gate length 

transistors has been successfully demonstrated [88]. 

As memory begins to dominate chip area in high performance applications, 

SRAM has become the focus of technology scaling [89]. Traditionally, SRAM 

cell size has scaled in accordance with technology ground rules; however, with the 

growing importance of variability, it is feared that this may no longer be possible. 

As minimum gate length and width devices are used to minimize cell area, SRAM 

is most susceptible to both process induced variations in device geometry and 

intrinsic parameter fluctuations [90]. These can result in mismatch between the 

neighboring transistor in a cell. Any mismatch between the devices within a 

cell degrades the stability of the cell and might as well cause failure. As the 

scaling of MOSFETs is pushed into the nanoscale regime, the issue of intrinsic 

parameter fluctuations induced device mismatch is becoming an equal concern 

for both analog and digital circuits [13, 72]. 

The impact of random discrete dopants on SRAM cell have been widely 

investigated for conventional bulk MOSFET using analytical models [17, 18, 

19, 79] as well as experimental [13]. However, the impact of each source of 

IPF on UTB-SOI device and circuit has not been thoroughly investigated. This 

investigation will be one of the main focus of this thesis. 



Chapter 3 

UTB-SOI MOSFET Design and 

Modelling 

3.1 Introduction 

Conventional MOSFETs are becoming increasingly difficult to design and 

manufacture due to severe short channel effects, gate oxide tunnelling, power 

dissipation and intrinsic parameter fluctuations. The continued aggressive scaling 

of leading edge MOSFETs driven by the increasing density, performance and 

cost per function expectations, pushes the CMOS technology into an increasingly 

difficult manufacturing domain below the 65 nm technology generation [I]. 

Therefore, it is very important to consider alternative device architectures that 

are more tolerable to some of the limitations of conventional MOSFETs, and that 

may be realised with minimal change to process technologies. To meet these 

challenges, both industry and academic communities are pursuing non-classical 

CMOS technologies with new materials and new device architectures; including 

ultra-thin body silicon-on-insulator (UTB-SOI) devices after the 65 nm generation 

and double gate (DG) devices towards the 40 nm generation, according to the 2005 

edition of the ITRS. 

Working UTB-SOI MOSFETs with a gate length of 6 nm [151 and body 

thickness down to 3 nm [16] have already been successfully demonstrated. 

However, it is predicted that at such channel lengths intrinsic parameter 

27 
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fluctuations will become the critical source of device characteristic mismatch 

and therefore of profound industry importance. In this chapter the sensitivity of 

several important electrical parameters (VT , loff and Ion) to intrinsic parameter 

fluctuations (IPF) has been studied using numerical device simulation. The UTB­

SOl MOSFETs are designed to closely match the requirements of the International 

Technology Roadmap for Semiconductors (ITRS) for high-performance devices 

in the 25 nm, 20 nm and 14 nm technology generation, which correspond to 

10 nm, 7.5 nm and 5 nm channel length devices respectively. The simulation 

results will be used in the following chapters to predict the impact of IPF on 6-

transistors UTB-SOI SRAM cells via circuit simulation. The simulated devices 

have a simple generic structure with continuously adjustable work functions. 

Three sources of IPF are taken into account in the analysis: Random Discrete 

Dopants (ROD), Body Thickness Variation (BTV), and Line Edge Roughness 

(LER). ROD fluctuations are associated with the discrete nature of the dopant 

atoms and their location in the crystalline lattice. BTY is associated with the 

atomic structure of the thin-body Si and the top and bottom oxide layer interfaces, 

LER is introduced into fabricated devices though the lithographic and etching 

processes. 

This chapter has four main sections. Section 3.2 discusses the overall structure 

of the device simulation strategy implemented using the three-dimensional (3D) 

Glasgow atomistic device simulator, and the principal concepts for each source 

of IPF simulated. Section 3.3 provides a brief description of the generic UTB­

SOl structure used throughout this work. Results describing the impact of 

each individual and combined source of IPF on UTB-SOI device parameters are 

presented in section 3.4. The chapter summaries are presented in section 3.5. 

3.2 Simulation Approach 

In order to investigate the impact of intrinsic parameter fluctuations on UTB-SOI 

MOSFETs, the Glasgow device simulator has been employed [55, 63]. This three­

dimensional atomistic device simulator is based on the drift diffusion approach 

to solution of the semiconductor equations (Poisson and current continuity), 

employing density gradient quantum corrections. The simulations only capture 
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fluctuations induced by electrostatics and quantum confinement effect, and do 

not include transport variation due to scattering from different impurity and body 

thickness configurations effects or tunnelling through the gate oxide. 

The simulation of IPF shifts the paradigm of traditional device simulation into 

the statistical domain. In the presence of "atomistic" variations it is inadequate to 

simulate a single device in order to characterise all macroscopically identical but 

microscopically different devices realisations. It becomes necessary to simulate 

a statistically significant sample of devices. The simulation results in general 

follow closely a normal distribution. This allows a meaningful statistical analysis 

by estimating and comparing the mean values and standard deviations of basic 

design parameters such as threshold voltage, off-current and on-current for the 

whole ensemble of devices of a particular ITRS technology node. The UTB­

SOl MOSFET device structure and design will be discussed in section 3.3. In 

this section, the simulation concepts for including each source of IPF in the 3D 

Glasgow device simulator will be presented. 

3.2.1 Random Discrete Doping 

One major advantage of UTB-SOI is the tolerance to very low doping 

concentrations in the channel. This minimises the impact of intrinsic parameter 

fluctuations caused by random discrete channel dopants. However, unavoidable 

random discrete dopants in the source/drain regions will still result in nanometer 

scale variations of the effective channel length [6] and variation in the source/drain 

access resistance both contributing to variations in drive current. Thus, the 

impact of RDD has a different nature in UTB-SOI devices compared to their bulk 

counterparts. 

RDD simulation in this work only considers dopants in the source/drain 

regions of the UTB-SOI MOSFETs. Although the most realistic way for 

introducing the random source/drain doping distributions into the atomistic 

simulations would be the use of the output from a Monte Carlo process 

simulations [91, 92], here we apply a simpler approach. Given the continuous 

doping distribution obtained from conventional process simulation tools, the 

probability that there is a dopant in each cell of the 3D simulation mesh is 
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(a) (b) 

Figure 3.1: A typical simulation domain for a lO x 10 nm channel UTB-SOI 
MOSFET due to random discrete dopants at threshold. The gate and buried oxide 
is removed to show the fluctuations in (a) electrostatic potential and (b) carrier 
concentration contour at the source/drain and channel interfaces. The actual 
location of random discrete dopants in the source/drain regions is also illustrated. 

calculated. Then, using a rejection technique, the dopants are placed randomly 

in the source/drain regions [6]. The doping concentration in the channel region 

has a continuous distribution with a doping concentration of 1014 cm·3• 

A typical potential distribution obtained from RDD simulation of a 10 nm 

UTB-SOI MOSFET is illustrated in figure 3.1(a). The heavily doped source 

and drain regions are clearly visible in the potential landscape. Strong potential 

fluctuations at the source/drain and channel interface associated with the discrete 

dopants can be observed. The equi-concentration contour in figure 3.1 (b) 

highlights the basic features of the discrete dopants in the source/drain region. 

The discrete dopants render unusable the concept of a metallurgical junction 

introducing variation of effective channel length across the width of each 

simulated UTB-SOI MOSFET. Although the fluctuations in a conventional bulk 

MOSFET parameters are dominated by the randomness of dopants in the channel 

region [6], atomistic doping in the source and drain of UTB-SOI will introduce 

variations in the effective length of the channel, even for a perfectly defined gate 

pattern. 
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14 

(a) (b) 

Figure 3.2: (a) Rough surface generated from the Fourier synthesis technique 
(.6=0.3 nm, A=3 nm) and (b) the surface quantised to ±O.ISnm to give the actual 
interface used in simulations. Reference [64]. 

3.2.2 Body Thickness Variation 

It has been experimentally demonstrated [61] that when silicon body thickness i 

reduced below 4 nm, slight (even single atomic layer) body thickness variation 

have a significant impact on the threshold voltage and carrier mobility of UTB­

SOl MOSFETs. At such thickness, the atomic scale roughness of the top and 

bottom Si/Si02 interfaces, on the scale of ± 1 atomic layer (:::::0.3 nm), will 

introduce appreciable variation in the silicon body thickness. Body thickness 

variation is introduced into simulations using statistically generated interface 

roughness patterns with RMS amplitude, (.6) of 0.3 nm and correlation length, 

(A) of 1.8 nm for the top and bottom Si/Si02 interface . The Fourier synthesi 

technique used to generate the random interfaces [12] utilises a power pectrum 

which corresponds to an exponential autocorrelation function [64]. Figure 3.2 

shows a typical rough interface generated u ing this approach, and the same 

surface digitised to ±O. IS nm in respect of the originally position of the smooth 

interface in the simulations. 

When studying the impact of body thickness variations, it is important to 

include quantum confinement effects which push the inversion layer away from 

the rough interface and also introduce variations in the po ition of the ground 

state depending on the local body thickness [93, 94]. In this work the simulation 

only capture fluctuations induced by the electrostatics and quantum effects, 

and do not include variations in the quantum confinement scattering introduced 
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Figure 3.3: A typical simulation domain for a lO x 10 nm channel UTB-SOI 
MOSFET with ts;=2.5 nm due to body thickness variations at threshold. The gate 
and buried oxide is removed to show the fluctuations in (a) electrostatic potential 
and (b) carrier concentration contour at the top and bottom Si/Si02 interfaces. The 
silicon body thickness is also illustrated at the top of the images. 

by variations in the effective quantum potential. Typical potential and carrier 

concentration distributions obtained in the simulation of a 10 x 10 nm channel 

UTB-SOI MOSFET are illustrated in figure 3.3 with the gate and buried oxide 

removed. The silicon body thickness is 2.5 nm and illustrated in the same figures. 

The potential fluctuations associated with the body thickness variations are visible 

in figure 3.3(a). The variation in carrier concentration near the top and bottom 

interface due to the surface roughness and the corresponding body thickne s 

variation is clearly depicted in figure 3.3(b). 

3.2.3 Line Edge Roughness 

The contribution of line edge roughness in the gate pattern definition to the 

variation of electrical parameters will be significantly increased below the 80 nm 

technology generation [95]. In this work the investigation of LER is carried 

out by device simulation where the nominally straight edge gate is replaced 

by randomly generated rough line pattern. The LER modelling approach used 

to generate random junction patterns is based on a Fourier synthesi technique 

and generates gate edges from the power spectrum corresponding to Gaussian 



CHAPTER 3. UTB-SOI MOSFET DESIGN AND MODELLING 33 

autocorrelation functions [10, 96]. The expected smearing of the high frequency 

features in the edge profile due to implantation and subsequent diffusion is the 

reason for choosing to use smoother edge profile generated from the power 

spectrum corresponding to a Gaussian autocorrelation function [96]. The LER 

parameters used to define the gate edges are the RMS amplitude, (6) and 

correlation length, (A). However, unlike BTV simulations that use a constant 

RMS amplitude for each UTB-SOI MOSFETs investigated, the LER modelling 

uses the RMS amplitude predicted for each MOSFET generations by the ITRS 

[1]. It should be noted that the value quoted as LER is traditionally defined to be 

30- RMS amplitude. Starting from the 2003 ITRS edition, a new LER definition 

has been introduced. The term LER has been replaced by line width roughness 

(LWR) defined by the relationship: 

LER = LlVR/v'2 

Table 3.1: ITRS 2005 edition LWR and LER guidelines. 

Year of Production 

DRAM 1/2 Pitch [om] 
MPU Physical Lg [nm] 

Line Width Roughness (30-) [nm] 
Line Edge Roughness (30-) [nm] 

2015 

25 
10 
0.8 
0.56 

2017 2020 

20 14 
8 5 

0.6 0.5 
0.42 0.35 

(3.1 ) 

The ITRS lithography guideline for LER corresponding to the 10 nm, 7.5 nm 

and 5 nm UTB-SOI MOSFETs are given in table 3.1. The other parameter 

needed to characterise the gate LER is the correlation length. In contrast with 

the numerous values of RMS amplitude published in the literature for different 

lithography processes, significantly less is known about the corresponding 

correlation length [96], which is reported to vary between 10 nm and 50 nm. For 

the LER simulations presented in this thesis, the correlation length is assumed to 

be 30 nm. The potential and carrier concentration distributions for a lOx 10 nm 

UTB-SOI MOSFET with randomly generated gate edges are illustrated in figure 

3.4. The LER parameters are 6=3 nm and A=30 nm. The potential in this 
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(a) (b) 

Figure 3.4: A typical simulation domain for a lO x 10 nm channel UTB-SOI 
MOSFET due to gate line edge roughness at threshold. The gate and buried oxide 
is removed to show the fluctuations in (a) electrostatic potential and (b) carrier 
concentration contour at the source/drain and channel interface. 

MOSFET approximately follows the metallurgical pn junction as shown in figure 

3.4(a). 

3.3 The Simulated UTB-SOI Device 

Most simulation studies of IPF have been restricted to devices corresponding to 

one particular technology node. In this work, the study of IPF has been extended 

to UTB-SOI MOSFETs corresponding to three technology generations near the 

long-term end of the current edition of the ITRS [1]. This follows in detail 

both of the magnitudes and the trend of parameter fluctuations in next generation 

MOSFETs technology. The process technologies required to manufacture these 

devices will be developed in the future. However, the availability of the 3D 

Glasgow numerical device simulator allows us to study in advance the electrical 

behaviour of these future devices and under the influence of IPF. 
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Figure 3.5: Diagram of the generic UTB-SOI MOSFET simulated in this work. 

This work only considers high performance devices, which are typical for 

microprocessor cache and System on Chip (SoC) applications. As mentioned in 

chapter 2, the ITRS roadmap predicts that double-gate MOSFETs will be required 

towards the 40 nm technology node. However, much of the work in this thesis was 

performed prior to these updated guidelines, hence the study presented here only 

focuses on UTB-SOI MOSFETs. This subsection introduces the structure and 

the critical design parameters for the devices simulated in this work. The generic 

structure of the simulated devices is illustrated in Figure 3.5. The 3D Glasgow 

numerical device simulator initially designed for conventional MOSFETs has 

been modified to handle UTB-SOI [64] and DG L97] transistors. The simple UTB­

SOl MOSFET structure considered here has been selected to clearly illustrate the 

impact of IPF and to simplify the interpretation of the results. 

The scaling of the UTB-SOI MOSFETs from 15 nm down to 5 nm channel 

lengths have been investigated by Fikru Adamu-Lema and are covered in detail 

in his PhD dissertation [98]. In this work, a brief description of the scaling 

approach and the electrical characteristic for the 10 nm, 7.5 nm and 5 nm UTB­

SOl MOSFETs will be presented. 
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Table 3.2: Investigations of various scaling scenarios for UTB-SOI MOSFET. 
After [98]. 

Lc 
[nm] 

15 

10 

5 

1.0 
0.7 

1.0 
1.0 

S 
I onlIoff 

146 
101 

240 
133 
86 
77 

The starting point in the scaling investigation is a 15 nm device with silicon 

body thickness of lSi=3 nm and gate oxide of tox= 1 nm selected as reference 

device parameters. Table 3.2 shows the simulation results including key electrical 

characteristics for the three devices with channel lengths of 15 nm, 10 nm 

and 5 nm and various scaling schemes for tSi and tox . The device scaling 

study is performed using 2D classical simulations with the commercial simulator 

MedicfM , which is computationally efficient and sufficiently accurate in the 

subthreshold regime controlled primarily by the device electrostatics. The linear 

scaling of both lSi and lox (the fourth option shown for 10 nm and 5 nm) provides 

best on/off current ratio, however this results in a body thickness of only 1 nm for 

the 5 nm channel length device. Aside from the issues involved in fabricating such 

a thin device, when quantum mechanical confinement in the channel is considered 

the resultant threshold voltage shift (-700 m V) is prohibitively large [64] . Thi 

leads to the adoption of the scaling scheme highlighted in table 3.2, where the 

oxide thickness scales linearly with channel length but the body thicknes scales 

in a sub-linear fashion, resulting in ISi=2 nm for the 5 nm device. A 7.5 nm 

channel length device is not included in the scaling study of [98], the lSi and lox 
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for 7.5 nm device are obtained from interpolating between the 10 nm and 5 nm 

channel length devices. 

Table 3.3: UTB-SOI MOSFETs physical parameters considered. 

Channellengthiwidth [nm] 
Gate oxide thickness, lox [nm] 
Body thickness, lSi [nm] 
Buried oxide thickness, lbox [nm] 
Channel doping, Na [cm-3

] 

SourcelDrain doping, N~/d r cm-3] 

10/10 
0.67 
2.5 

7.517.5 
0.5 
2.25 
50 

1014 

2x 1020 

5/5 
0.33 
2.0 

The summarised device parameters for the investigated family of UTB-SOI 

MOSFETs are depicted in table 3.3. The 10 nm, 7.5 nm and 5 nm channel1ength 

UTB-SOI MOSFETs correspond to the 25 nm, 20 nm and 14 nm technology 

generations respectively. Another simplification of the presented simulation is 

the use of silicon dioxide (Si02) thickness and dielectric constant to achieve 

the electrostatic requirement. However, it is believed that such equivalent oxide 

thickness (EOT) with the application ofhigh-k gate dielectric will become feasible 

in the near future [2]. Simulation results in sub-section 3.4.2 show that the 

replacement of Si02 with high-k gate dielectric while considering IPF only 

contributed to approximately 5 percent increase in the threshold voltage standard 

deviation. The 3D Glasgow device simulator have been calibrated to match 

the Medic?M simulation result and a metal gate electrode is assumed with the 

workfunction adjusted to approximately 4.6 eV in each case. 

The ID- VG characteristics for the 10 nm, 7.5 nm and 5 nm devices simulated 

are plotted in figure 3.6. The simulations were performed using the 3D 

Glasgow device simulator assuming continuously doped and uniform devices. 

The increasing current curvature at shorter channel lengths, clearly indicates 

increasing problems associated with the access resistance. One of the very 

important needs in order to retain performance in scaled down MOSFETs and 

the corresponding circuits is the introduction of raised and silicidiscd source/drain 

junctions [99. 100]. The subthreshold behaviour of the three devices is illustrated 

in figure 3.7 using drift-diffusion simulations with and without density gradient 
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Figure 3.6: Plot of linear scale I D-V G characteristics for 10 nm, 7.5 nm and 5 nm 
channel length UTB-SOI MOSFET. 
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Figure 3.7: ID-VG characteristics for 10 nm, 7.5 nm and 5 nm channel length 
UTB-SOI MOSFET for both classical simulations and simulation with quantum 
corrections using density gradient approach. 
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Figure 3.8: The impact of unifonn variation of the body thickness (i.e. with no 
roughness) on the lo-Va characteristics of a lOx 10 nm channel SOl MOSFET 
in the classical simulations and quantum corrections with the density gradient 

approach. 

quantum corrections. 

In order to clearly illustrate the importance of quantum mechanical 

confinement effects in the next generation UTB-SOI MOSFETs, the 10 nm 

channel length UTB SOl MOSFET has been simulated with body thickness, lSi 

of 2.3 nm, 2.5 nm and 2.7 nm. The 10 - Va characteristics obtained from drift­

diffusion simulations with and without density gradient quantum corrections are 

illustrated in figure 3.8. The classical simulations show no dependence of the 

threshold voltage on the body thicknesses. The inclusion of quantum corrections 

results in much larger change in threshold voltage with the reduction of the 

body thickness, due to the shift in position of the electron ground state which 

is approximated by the density gradient solution. 

Figure 3.9 shows channel length dependence of the threshold voltage, Vr of 

the three UTB-SOI MOSFETs. For the purpose of this analysis Vr is determined 

using a current criteria of 1O-7 l-Veff / LeI I A at V 0=50 m V. The off-current, IOff 

and on-current, Ion for the 10 nm, 7.5 nm and 5 nm transistor are plotted in 

figure 3.10. The values of Ioff and on-current, Ion are extracted at the points where 

ID (Va=O V) and 10 (Va=VD=Vdd ) respectively. Higher 1(111 values observed in the 
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"atomistic" simulation compared to the results from UTB-SOI MOSFETs scaling 

work are caused by the constant mobility model used to represent the transport in 

the MOSFET channel. Such simple mobility models do not take into account the 

mobility reduction in the highly doped source and drain regions, nor the effects of 

the lateral and perpendicular electric fields in the channel. 

3.4 Intrinsic Parameter Fluctuations in UTB-SOI 

MOSFETs 

The magnitude of intrinsic parameter fluctuations due to random discrete dopants, 

body thickness variations and line edge roughness using simulations of statistical 

samples of 200 UTB-SOI MOSFETs for each device design are presented in this 

section. The sources of intrinsic parameter fluctuations which can be separated in 

simulations, will occur simultaneously within a single MOSFET. To understand 

the magnitude of IPF in an actual device simulations with all sources of intrinsic 

parameter fluctuations simultaneously present have also been performed. The hr 
V G simulations have been performed at both low and high drain voltage. Results 

for both VD bias conditions are necessary for SPICE compact model parameter 

extraction and eventually for the SRAM cell simulation in the following chapters. 

In the following sub-section, the impact of the different sources of IPF on Iv­

V G characteristics, threshold voltage VT, off-current Ioff and on-current Ion are 

presented. 

3.4.1 ID- V G Characteristic 

Figure 3.11 illustrates ID- VG characteristics obtained from the simulation of 

statistical samples of 200 macroscopically different 10 nm UTB-SOI MOSFETs 

in the presence of different sources of IPF. The simulations show that each 

microscopically different UTB-SOI MOSFET has different characteristics in the 

presence of random discrete dopants, body thickness variations and gate line edge 

roughness. Each source of IPF has a marked effect in the subthreshold regime 

leading to current fluctuations with large magnitude, but has a smaller impact 
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on the on-current. The spread in the subthreshold characteristics due to RDD is 

largest compared to the spreads due to BTV and LER. 

The gate voltage dependence of the normalised difference between the average 

current, (ID) obtained from the statistical simulation of different sources of 

IPF and the current obtained from a continuously doped uniform device, I DO 

is depicted in figures 3.12(a) - 3.12(c) for each of the simulated UTB-SOI 

MOSFETs. This comparison is important because continuously doped devices 

are still the basis of TCAD simulation in device design. In all cases, we observe 

an increase in the average current compared to the continuously doped uniform 

device. The difference between the average current and the current from the 

continuously doped uniform device is reduced at higher gate voltage. 

RDD is the dominant source of IPF for the 10 nm, 7.5 nm and 5 nm UTB­

sal MOSFETs. Below threshold voltage, random discrete dopants result in an 

approximately 60 percent increase of average "atomistic" current compared to 

the continuously doped devices. This is caused by the stochastic shortenings of 

the physical channel length and results in an overall reduction of the threshold 

voltage. Above threshold, the series resistance of the source and drain becomes 

larger compared to the channel resistance resulting in a relative reduction in the 

percentage difference of the average "atomistic" current and the current from a 

continuously doped device. 

BTV in UTB-SOI MOSFETs also results in an increase in the leakage current. 

This is due to local areas that have a reduced oxide thickness which facilitates the 

inversion and increases the amount of leakage current. Below threshold, there 

is approximately 40 percent "atomistic" current increase for the 10 nm and a 

further increase of approximately 45 percent for the 7.5 nm and 5 nm channel 

length devices. Above threshold, the variations of the body thickness have a less 

pronounced effect on the device characteristics due to the well developed inversion 

layer throughout the device. 

In the case of LER the spread in characteristics is smaller compared to the case 

of RDD and BTY. Below threshold, there is approximately 30 percent increase 

in average current for the 10 nm devices and approximately 35 percent and 

40 percent increase for the 7.5 nm and 5 nm channel length devices respectively. 

Although LER also causes shortening of the physical channel length similar to 
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the case of random discrete dopants, the magnitude of the difference is smaller as 

the RMS amplitudes are reduced according to the ITRS requirement. Similar to 

the case of body thickness variation, the effect of LER becomes less pronounced 

above threshold. 

The impact of the three sources of IPF occurring simultaneously in an 

actual device is also illustrated in figures 3.12(a) - 3.l2(c). As expected, the 

combined effect is larger compared to the effect of each individual source of 

IPF. Below threshold, the combined sources of IPF (RDD+BTV+LER) cause an 

approximately 70 percent average current increase for the 10 nm devices. As 

illustrated in figure 3.12(b) and 3.12(c) the increase of average current further 

rises to 75 percent and 90 percent for the 7.5 nm and 5 nm UTB-SOI MOSFETs 

respectively for combined sources of IPE 

3.4.2 Threshold Voltage 

Threshold voltage VT , is an important parameter in MOSFET design. In concert 

with the subthreshold slope it determines the off-state leakage current. A well 

defined, steady and stable threshold voltage is crucially important for analogue 

and digital circuits, i.e., less variation of VT is highly desirable. Therefore, it is 

important to keep VT within an acceptable degree of tolerance in order to deliver 

a reliable integrated circuit and properly working systems. However in real nano­

scale MOSFETs, the different sources of IPF introduce V T fluctuations. Moreover, 

the fluctuations increase significantly as the gate length decreases. 

The simulated average threshold voltage, (Vr) as a function of channel length 

with different sources of IPF is depicted in figure 3.13. The combined sources 

of IPF has the largest (Vr ) for the 5 nm, 7.5 nm and 10 nm UTB-SOI MOSFET 

channel length compared to other individual sources of IPE This is followed by 

RDD, BTV and LER. The statistical average effect from the simulation results 

give a false notion that the combined source of IPF effects is less severe than the 

individual source of IPF. This observation is important during SRAM simulation 

in chapter 4, as the static noise margin of SRAM cells is a function of threshold 

voltage, supply voltage and cell ratio [10 1]. 

Figure 3.14 illustrate the channel length dependence of the shift in the average 
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Figure 3.15: Standard deviation of threshold voltage in an ensemble of 200 
distinct 10 nm, 7.5 nm and 5 nm UTB-SOI MOSFETs due to different sources 
of intrinsic parameter fluctuations, 

threshold voltage, (VT ) corresponding to different IPF sources compared to the 

threshold voltage of a continuously doped unifonn device, VTO , Each source of 

IPF individually or in combination cause threshold voltage lowering compared to 

a continuously doped uniform device. The shift in the average threshold voltage 

increases almost linearly with the reduction in the channel length for all sources 

of IPE In the case of combined sources of IPF, the average threshold voltage for 

10 nm UTB-SOI MOSFETs is reduced by 68 mY, while the 7.5 nm and 5 nm 

devices have a threshold voltage shift of 72 mY and 79 mY respectively. The 

results, along with the effects of each single source of fluctuations is shown in 

detail in figure 3.14. 

Figure 3.15 compares the standard deviation in the threshold voltage (a VT ) 

introduced by different sources of IPF for all UTB-SOI MOSFETs investigated 

in this work. The results follow an intuitively expected trend as the fluctuations 

increase with decreasing channel length. BTY and LER cause a standard deviation 

increasing from approximately 10 mY to 30 mY as the channel length is scaled 

from 10 to 5 nm. However, in the ROD case the standard deviation of threshold 

voltage increases non-linearly from 14 mY in the \0 nm devices to approximately 
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Table 3.4: Summary of the standard deviations of threshold voltage, O"Vr for 
the case of individual and combined sources of intrinsic parameter fluctuations. 
Calculated O"Vr from the individual sources of intrinsic parameter fluctuations are 

also included. 

Intrinsic Parameter Fluctuations 10nm 7.5 nm 5nm 

RDD o-Vr [mY) 14.2 26.0 73.9 
BTV o-Vr [mY) 7.4 13.4 23.2 
LER o-Vr [mY) 11.9 17.6 28.6 
Calculated a"Vr [mY) 20.0 34.1 82.5 
RDD + BTV + LER o-Vr [mY) 22.8 35.2 78.5 

75 mV in 5 nm one. Assuming the 60- spread of a normal distribution, often 

used for industrial yield calculation [102) gives approximately a 450 mV range 

of threshold voltages bearing in mind an expected target Vr of 200 mY. Such 

variations will significantly affect the SRAM cells and peripheral circuit noise 

margins. It is also evident that the magnitude of fluctuations resulting from 

RDD in the source/drain regions will become a dominant source of intrinsic 

parameter fluctuations, especially for the 5 nm UTB-SOI MOSFETs compared 

to characteristic fluctuations due to BTV and LER in the gate pattern definition. 

The results for combined sources of IPF for each of the UTB-SOI MOSFETs 

investigated are included in the same figure. 

The combined effect of three statistically independent variables on the 

standard deviation is given by the relationship 0-1+2+3 = J 0"1 2 + 0-2 2 + 0"32. 

Table 3.4 compares the standard deviation in the threshold voltage (O"Vr) from 

their addition as statistically independent entities to the results of simulations 

combining all three sources of intrinsic parameter fluctuations. The statistical 

summations of the standard deviations from individual sources of IPF are very 

close to the value obtained from the simultaneous simulation of the three 

fluctuation sources. This provides some evidence that these sources of fluctuations 

are uncorrelated. 

As mention earlier, the simulations use Si02 thickness and dielectric constant 

to secure the electrostatic integrity of the devices. The Si02 thickness of 0.67 nm, 

0.5 nm and 0.33 nm for the respective 10 nm and 7.5 nm and 5 nm channel length 
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Figure 3.16: (a) Average threshold voltage shift and (b) standard deviation 
of threshold voltage in 10 nm, 7.5 nm and 5 nm UTB-SOI MOSFETs from 
simulation of combined source of intrinsic parameter fluctuations with different 
gate dielectric. 

devices are unrealistic due to exponential increase of tunnelling current through 

the gate dielectric with decreasing physical thickness [103]. Tunnelling currents 

in Si02 layers thinner than 0.8 nm cannot be tolerated, even for high-performance 

devices [24]. 

To understand better the impact of intrinsic parameter fluctuations in the 

next generation UTB-SOI MOSFETs, a statistical simulation of the three devices 

with physically thicker high-k layers are necessary. Simulations with Hf02 gate 

dielectric were carried out keeping the same equivalent oxide thickness. A 

dielectric constant k=20 was assumed in this case [2] and the thickness of the gate 

dielectric of the 10 nm and 7.5 nm and 5 nm have been increased by the ratio of the 

Hf02 on the Si02 dielectric constants to 3.35 nm, 2.5 nm and 1.65 nm respectively. 

Figure 3.16(a) and 3.16(b) shows the average threshold voltage shift and standard 

deviation of threshold voltage for the three UTB-SOI MOSFETs with Si02 and 

Hf02 as gate insulators. The simulations are performed considering all source of 

intrinsic parameter fluctuations in combination. Figure 3.16(a) shows a reduction 

between 5 and 10 percent average threshold voltage shift for devices with Hf02 

gate insulator compared to devices with Si02 gate insulator. This is caused by 

proximity effects associated with the five times increase of the Hf02 physical 
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thickness. It should be noted that the physical thickness of the high-k insulator 

becomes more important as k increases [104] and has to be taken into account in 

the simulations. Figure 3.16(b) indicates approximately 5 percent increase in aVr 
of devices with Hf02 gate insulator compared to devices with Si02 gate insulator. 

The results show that, without considering the gate leakage effects, the use of Si02 

as gate insulator gives reasonably accurate results for the purpose of this work. 

The LER simulations carried out in this work follow the values prescribed 

by the ITRS according to the 10 nm, 7.5 nm and 5 nm UTB-SOI MOSFETs 

technology generations given in table 3.1. As shown in figure 3.17, the LER 

induced threshold voltage standard deviation for this scenario is well controlled, 

increasing from 11 mY for the 10 nm channel length, rising to 23 mY for the 

5 nm UTB-SOI MOSFET. However, the reduction of the LER in accordance to 

the ITRS requirements will be a very difficult task due to the molecular structure 

of the photoresist the corpuscular nature of the light and the limitation of optical 

lithography. Therefore as a second scenario simulations with a constant value of 

6=0.7 nm at all channel lengths were carried out keeping the correlation length 

30 nm. In this case, the LER threshold voltage standard deviation becomes worse 
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Figure 3.18: Off-current shift for 10 nm, 7.5 nm and 5 nm UTB-SOI MOSFETs 
with different sources of intrinsic parameter fluctuations. 

than that of RDD. In this second scenario the LER results in a standard deviation 

of 36 m V at 10 nm channel length which increases to 103 m V at the 5 nm channel 

length. 

3.4.3 Off-Current 

The off-current is another important parameter in MOSFETs, and to a great extent 

determines the standby leakage current in integrated circuits. For SRAMs, the off­

current fluctuations are also important as they degrade read operation performance 

by affecting the precharged bitlines [105] as well as contributing to the total 

standby power dissipation. 

Its illustrated in figure 3.18 that the different sources of IPF result in a 

substantial increase in the average subthreshold leakage current with the reduction 

of the channel length. Even the "ideal" LER scenario, where the magnitude of 

the line edge roughness follows the ITRS requirements there is a considerable 

average increase in subthreshold leakage for the UTB SOl MOSFETs. This is 

highly undesirable from the static power dissipation point of view. However, the 

ideal LER scenario causes the smallest off-current increase from approximately 
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Figure 3.19: Standard deviation of off-current, alog(loff) for 10 nm, 7.5 nm 
and 5 nm UTB-SOI MOSFETs with different sources of intrinsic parameter 
fluctuations. 

33 percent at 10 nm channel length to 42 percent at 5 nm channel length. The 

corresponding results for the rest of the individual and the combined sources of 

fluctuations are also shown in figure 3.1S. 

Unlike the distributions of the threshold voltage, which are close to normal 

distributions, the IOff distribution is a log-normal distribution. This is due to 

the exponential dependence of the subthreshold current on gate voltage. The 

channel length dependence of the standard deviation of log(loff) is shown in figure 

3.19. The magnitude of the Iojf fluctuations corresponding to each source of IPF 

increases as the UTB-SOI devices are scaled to shorter channel lengths. Figure 

3.19 clearly shows that RDD remains the main source of IojJ fluctuations in UTB­

SOl MOSFETs at all investigated channel lengths. BTV and LER result in a 

standard deviation of less than 0.3 orders of magnitude for all three UTB-SOI 

MOSFETs. In these cases, line edge roughness dominates at longer channel 

lengths, but there is a crossover for devices smaller than 7.5 nm channel length. 

However the magnitude of the standard deviation in the case of RDD increase 

non-linearly and more sharply. 
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Figure 3.20: On-current shift for 10 nm, 7.5 nm and 5 nm UTB-SOI MOSFETs 
with different sources of intrinsic parameter fluctuations. 

3.4.4 On-Current 

The on-current is key measure for the performance of MOSFETs. One of the 

motivations of scaling transistors is to achieve high relative drive current in order 

to boost circuit performance. However variations in the drive current may result 

in mismatch in analogue applications and variation in the signal propagation times 

of digital circuits. 

The normalised shift in average on-current from atomistic simulation 

compared to the on-current from a continuously doped uniform interface device 

as a function of channel length is depicted in 3.20. Similar to the results for 

the off-current shift, LER causes the smallest on-current shift followed by BTY, 

while RDD causes the largest shift. For the 10 nm devices, LER and BTY cause 

approximately between 16 to 18 percent Ion shift respectively. The shift in lm, 

increases linearly as the channel length is scaled down, to approximately between 

24 to 28 percent for the 5 nm UTB SOl MOSFETs. RDD results in a larger on­

current lOll shift compared to the other IPF sources, starting from approximately 

25 percent for the 10 nm devices and increasing to 41 percent for the 5 nm devices. 

As expected, there is a trend of increasing Ion fluctuation magnitude with the 

reduction of the channel length as illustrated in figure 3.21. BTY and LER result 

in an on-current standard deviation of less than 5 percent for all three UTB-SOI 
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Figure 3.21: Standard deviation of on-current for 10 nm, 7.5 nm and 5 nm UTB­
SOl MOSFETs with different sources of intrinsic parameter fluctuations. 

MOSFETs. In both these cases, LER dominates at longer channel lengths but 

causes a similar to BTV standard deviation of on-current below 10 nm channel 

length. The results and effects associated with the combined source of IPF is also 

shown in the same figure. 

3.5 Chapter Summary 

We have shown that the next generations of UTB-SOI MOSFETs are affected by 

different sources of intrinsic parameter fluctuations, which can become a major 

factor limiting further scaling and integration. As expected, for each investigated 

electrical characteristic the combined sources of IPF cause the worst fluctuations, 

compared to each individual source of IPF. Random discrete dopants in the 

source/drain region of UTB-SOI MOSFETs are the dominant individual source 

of intrinsic parameter fluctuations. When comparing the impact of line edge 

roughness and body thickness variations, the geometry and scale of the devices 

will determine which of these two sources of fluctuations dominates and it is 

therefore important to investigate each source individually, and all combined to 

obtain the full picture. 

Below threshold voltage, simulation of combined sources of IPF caused 
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between 70 and 90 percent increase in average current of the simulated sample 

of devices. The impact of the combined sources of IPF on threshold voltage is 

dramatic starting from 22 m V standard deviation for the 10 nm devices which 

increases to 79 mV for 5 nm device. Simulation results also show that switching 

the gate dielectric from Si02 to Hf02 causes less than 5 percent additional increase 

of threshold voltage standard deviation for the UTB-SOI MOSFET investigated 

in this work. Assuming a scenario in which LER does not scale according to the 

ITRS, but stays close to current technology magnitudes, simulations demonstrate 

that fluctuations caused by this LER become more critical compared to the 

fluctuations induced by RDD in the source/drain regions. In this case LER causes 

a standard deviation of 36 m V for the 10 nm device, increasing to 103 m V for the 

5 nm devices. 

The sources of IPF also result in a substantial increase in the average 

subthreshold leakage current which becomes larger with the reduction of the 

channel length. The standard deviation of the off-current, considering all sources 

of fluctuations in combination, is 0.28 orders of magnitude for the 10 nm UTB­

SOl MOSFETs, rising to 0.9 orders of magnitude for the 5 nm devices. Although 

the 3D Glasgow simulator underestimates non-equilibrium transports effects, it 

still predicts that the investigated sources of IPF will cause serious on-current 

fluctuation problems. Combined sources of IPF cause between 11 to 28 percent 

standard deviation of on-current for the UTB-SOI MOSFETs investigated in this 

work. 

From the perspective of intrinsic parameter fluctuations, scaling down UTB­

SOl MOSFETs to 10 nm and below will be extremely difficult. Although, 

there will be an inevitable transition from single-gate UTB-SOI to double-gate or 

multi-gate MOSFETs resulting from electrostatic constraints, impact of intrinsic 

parameter fluctuations would still exist. 

The next step, in this research will be to capture the results of the 3D statistical 

simulations in statistical SPICE compact modelling which will allow to study the 

impact of the intrinsic fluctuations on circuit and systems operation. This will 

help to develop circuit design methodology that could cope better with the device 

variability. 



Chapter 4 

Statistical Circuit Simulation 

Framework 

4.1 Introduction 

The semiconductor industry is constantly striving to increase product yield and to 

reduce product development time. One of the integral component of Ie design and 

manufacturing activity is the prediction of both nominal circuit behaviour and the 

likely statistical circuit performance spreads. Hence there is a dire need for a very 

good understanding of the impact of intrinsic parameter fluctuations in MOSFET 

on resulting variation in corresponding circuit. 

In chapter 3, the impact of intrinsic parameter fluctuations on UTB­

SOl MOSFETs behaviour have been investigated. Fluctuation of transistor 

characteristic reduces the reliability and operating margin of circuit with the 

continuous scaling down of device feature size and power supply. This requires 

the development of statistical circuit simulation methodology taking into account 

the variability in the device characteristic at present and future MOSFET 

generations. In this chapter, a new statistical circuit simulation methodology 

that realistically takes into account the impact of intrinsic parameter fluctuations 

in transistors on the corresponding circuits is presented. The methodology 

incorporates intrinsic parameter fluctuations information into Berkeley BSIMSOI 

[22], a SPICE [21] compact model and is applied to the 10 nm, 7.5 nm and 

56 
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5 nm channel length UTB-SOI MOSFETs simulated in the previous chapter. 

The compact model library built in this chapter will be employed in chapter 5 to 

investigate the impact of intrinsic parameter fluctuations in UTB-SOI MOSFET 

based SRAM cell. 

In section 4.2 of this chapter, the overall statistical circuit simulation 

methodology that bridges the device-level and circuit-level simulation aspect of 

this thesis is presented. The methodology consists of a statistical compact model 

parameter extraction and statistical circuit simulation strategy. In section 4.3, the 

statistical parameter extraction strategy, which is essential in achieving highly 

accurate modeling of the fluctuation effects will be discussed. The statistical 

parameter extraction is used to build a compact model library for the 10 nm, 

7.5 nm and 5 nm channel length UTB-SOI MOSFETs simulated in chapter 3. 

The quality of the compact model and analysis of the extracted parameters is 

presented. In section 4.4, a statistical circuit simulation strategy for utilising the 

compact model library built in section 4.3 is described. 

4.2 Statistical Circuit Simulation Methodology 

Statistical circuit simulation analysis consists of a series of statistical dcvice­

level and circuit-level simulations. The robust statistical circuit simulation 

methodology that has been developed for this work is depicted in figure 4.1. 

Critical ingredients of any statistical circuit modelling approach are the device 

data sets employed for parameter extraction, the MOSFET compact model and the 

parameter extraction process itself. The reliability and accuracy of the statistical 

circuit spread prediction scheme is ultimately determined by the suitability of 

these three components. 

The accuracy of MOSFET parameter extraction is determined by the quality 

of the collected electrical data sets coming from either simulations or from 

measurements. Current-voltage characteristic data sets for different bias condition 

enable the extraction of the core model parameters and estimates for the drain and 

source access resistances. In this work, data sets required for the compact model 

parameter extraction are obtained from the simulation of the previously described 

10 nm, 7.5 nm and 5 nm UTB-SOI MOSFET presented in chapter 3. These data 
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Figure 4.1: Flowchart of statistical circuit simulation methodology. 

sets comprise of current-voltage characteristics from ideal devices simulation and 

devices with different sources of intrinsic parameter fluctuations individually or 

in combination. 

The selected MOSFET compact model must be capable of accurately 

reproducing the characteristics of the devices. In this work Berkeley BSIMSOI 

[22] which is an accurate and computationally efficient industry standard SOl 

MOSFET compact model has been chosen. BSIMSOI is a derivative of the 

industry-standard bulk MOSFET compact model BSIM3 [71) with SOl specific 

features including floating-body model, body-contact model and self-heating 

model. However, because of the chosen UTB-SOI architecture, it is safe to 

initially focus on extraction of basic MOSFET parameters as UTB-SOI structure 

is less affected by history effects, unlike its PD-SOI [39] counterpart. However, 

UTB-SOI MOSFETs are still susceptible to the local thermal heating generated 

in the channel because of the low thermal conductivity of the buried oxide. 

Extracting model parameter without considering 'self heating' will overestimate 

circuit speed in SPICE simulation. However, under dynamic operation conditions 

(e.g. digital circuit), the self-heating effect is generally insignifIcant, since the 
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average power consumption per device is low and its switching time, is much 

shorter than the thermal time constant [84, 106]. A small difference between 

3 to 6 percent delay for inverter circuit has been observed [106]. 

Compact models used in circuit simulation comprise of equations with 

associated parameters that need to be determined using parameter extraction 

procedures. Without a good parameter-extraction strategy a compact model is 

not complete and useful. Due to the device physics based nature of BSIMSOI, 

extraction is not merely a curve fitting process compared to some of the earlier 

generation SPICE compact models. Parameter extraction routes must be chosen 

carefully to prevent unphysical MOSFET device parameter identification and to 

capture completely the behaviour of the DC current characteristic observed at the 

device-level modelling stage. In general, the applicability of DC current-voltage 

characteristics to characterize device mismatch introduced by intrinsic parameter 

fluctuations is widely accepted [107]. The compact model parameter extraction 

was carried out using Aurora™[1O81, a general purpose optimisation program for 

fitting SPICE compact models such as BSIMSOI to device electrical data. The 

program fits a model to a set of data points by adjusting one or more parameters 

of the model. The complete set of optimisation steps constitutes the parameter 

extraction strategy. Not only the extraction steps but also their order is very 

important. The accuracy of the parameter extraction procedure is limited only by 

the accuracy of the model and the correct choice of parameters. The parameters 

are extracted by minimizing the root mean square (RMS) error between each point 

of data and corresponding compact model value as defined in (4.1). 

RAfS = J 610 + ... + 6!n (4.1 ) 

Two different strategies are available for extracting parameters: the single 

device extraction strategy and group device extraction strategy. Group device 

extraction strategy requires simulation or measurement data from devices with 

different channel length and width geometries of a certain process. Data sets 

from each devices will be used during extraction strategy to capture geometry 

dependence parameters. The resulting model parameters might not be absolutely 

perfect for any single device but cover the whole range of channel length and 
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Table 4.1: Prerequisite process parameters prior to compact model extraction. 

Parameter 

L 
W 
tox 

tSi 

tbox 

Xj 
nch 

nsub 

Ngate 

Physical Meaning 

Channel length 
Channel width 
Gate oxide thickness 
Silicon film thickness 
Buried oxide thickness 
SourcelDrain junction depth 
Channel doping concentration 
Substrate doping concentration 
Polysilicon gate doping concentration 

widths under consideration. In a single device extraction strategy, data from a 

single device is used to extract a complete set of model parameters. The resulting 

parameters fit well the single device, but will not fit other devices with different 

geometries. In this work, single device extraction strategy is carried out to obtain 

compact model parameters as circuits simulated will only use the same geometry 

device. In addition, the strong source/drain resistance observed in chapter 3 

and the sensitivity to electrostatic effect resulting in large current characteristic 

mismatch between long and short channel devices prevents the use of group device 

extraction strategy as suggested by [71). 

It is possible to perform a global optimisation to find model parameters that 

will fit the available data set, with minimum RMS error between data sets and 

BSIMSOI calculated data point. However, this optimization treats each parameter 

as fitting and often has severe problems and can result in nonphysical parameter 

values. Using local optimization, parameters are extracted independently of each 

other from bias condition which correspond to dominant physical mechanism. A 

good optimisation strategy ensures that the results of a preceding steps are not 

affected by succeeding steps. Different sets of parameters are suitable for fitting 

in the linear region of operation or in saturation region. Some parameters are 

directly measurable while others can only be found indirectly hy least s4uares fit. 

In this work, a local optimization strategy has been adopted. 

Basically, BSIMSOI consists of physical and empirical parameters. At the 
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beginning of the parameter extraction procedure, some prerequisite device design 

process related parameters have to be provided as listed in table 4.1. To keep 

the physical meaning of the compact model, it is always advisable to use direct 

measurement of a physical parameter rather than indirect identification by fitting. 

The incorrect identification of one parameter adversely affects the identification 

of the other model parameters [109]. In this work, these parameters correspond 

to the physical parameters of the UTB-SOI MOSFETs considered in this work 

as depicted in table 3.3. Doping concentration in the polysilicon gate, Ngate is 

used to model the polysilicon depletion effects. However, UTB-SOI MOSFET 

devices simulated in chapter 3 are assumed to have a metal gate. In BSIMSOI, the 

polysilicon depletion effects model can be bypassed by setting the value of Ngate 

to zero. Unlike BSIM3 [71], the inclusion of flat-band voltage (VIb) in a unified 

current formula of BSIMSOI prevents direct access to the parameter during the 

extraction process thus requiring adjustment of the BSIMSOI threshold voltage 

parameters. 

A two-stage statistical parameter extraction strategy suitable for both the 

BSIMSOI compact model and the statistical circuit simulation task involved has 

been developed and are presented in the following section. This strategy ensures 

the generation of compact model libraries which closely match the physically 

simulated characteristic of the statistical ensembles of real device in the presence 

of intrinsic parameter fluctuation sources. This approach also allows the sources 

of intrinsic fluctuation to be investigated individually or in combination. 

4.3 Statistical Parameter Extraction 

As discussed in chapter 2, the BSIMSOI compact model has been dcvc\opcd 

for deterministic (not statistical) devices and docs not explicitly include effects 

associated with intrinsic parameter fluctuations. For example, in a deterministic 

model two devices with the same dimensions, identical process and transport 

parameters give rise to an identical device characteristics. In reality they will have 

different characteristics due to different sources of IPF that affect their electrical 

behavior. Although, the BSIMSOI compact model docs not explicitly consider 

intrinsic parameter fluctuation effects, it has a number of empirical parameters 
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Figure 4.2: Flowchart of a two-stage statistical compact model parameter 
extraction methodology. 

introduced to model process variation conditions. It has been observed that, 

although a large number of compact model parameters are needed to accurately 

model MOSFET behaviour at circuit level, process fluctuations influence only a 

handful of parameters [110]. Therefore, a carefully chosen subset of parameters 

can be used to model the fluctuation in UTB-SOI MOSFETs characteristics 

introduced by random discrete dopants, body thickness variations and gate line 

edge roughness. In principle, BSIMSOI is flexible enough to descrihe device 

mismatch induced by IPF using a number of empirical parameters originally 

introduced to model device performance variation caused hy different foundry 

processes. 
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Figure 4.2 illustrates the basic idea of the two-stage statistical parameter 

extraction strategy developed in this work. In the first parameter extraction 

stage, a number of key BSIMSOI parameters are extracted from the 10 - V G and 

10 - V 0 characteristics of an ideal UTB-SOI MOSFETs. The ideal devices has 

continuously doped source/drain regions, uniform body thickness and straight 

gate line edge. Therefore only one extraction procedure is required for a particular 

UTB-SOI MOSFETs generation of interest. The ideal device extraction strategy is 

presented in detail in section 4.3.1. The extracted parameters are then grouped into 

two parts. Parameters which are considered insensitive to intrinsic fluctuations 

are fixed after the first stage while several BSIMSOI parameters are selected to 

represent the impact of different sources of intrinsic parameter fluctuations in the 

second statistical extraction stage. This statistical extraction strategy is repeated 

for each of the ensemble of 200 microscopically different 10 nm, 7.5 nm and 5 nm 

channel length UTB-SOI MOSFET with different sources of intrinsic parameter 

fluctuations. The variations in the simulated devices can be captured accurately 

using only the 10 - V G characteristic reducing the computational burden of the 3-D 

"atomistic" device simulation [107, 111]. 

4.3.1 Ideal Device Extraction 

Regardless of device geometry, accurate and physical compact model extraction 

for each device requires current-voltage characteristics at three distinct bias 

conditions. 

• Io-VG with low Vo bias 

• Io-VG with high Vo bias 

• lo-Vo with different VG bias 

Device behaviour targeted for extraction includes carrier mobility, threshold 

voltage, subthreshold region and short channel effects. The extraction procedure 

follows closely [112] with some extraction steps either skipped or modified, 

depending on the specific goals, while keeping compatibility as close as possible. 

The key to the physical extraction of the basic parameters is to extract the value 
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of the parameters from the correct physical phenomenon in the measured or 

simulated device on which the parameter is based. The BSIMSOI compact model 

parameter extraction strategy for the ideal device include the following steps: 

1. VIlla, body effect parameters (KJ and K2) and low field mobility (11.0) are 

extracted from 10 - V G characteristics at low Vo. VIlla is the threshold voltage 

at zero substrate bias, VB. This is one of the most important parameters 

governing the threshold voltage in BSIMSOI and should be a positive 

number for NMOS and negative for PMOS. As only NMOS devices have 

been simulated in chapter 3, VlhO together with Jlo is used to artificially 

create a PMOS device. KJ and K2 are the first and second order body effect 

coefficient. These two parameters directly control the threshold voltage and 

are usually associated with heavy channel doping and large VBS bias. 110 

is the zero field mobility in the universal mobility formulation [1131, when 

the device operating temperature is equal to Tnom the temperature at which 

the model parameters are extracted. In this work, for PMOS devices Ilo is 

assumed to be half of the value obtained for NMOS devices. 

2. Subthreshold swing (Nfactor), threshold voltage short channel effects (DI'I(i, 

Dvtl ) and subthreshold region offset voltage (Von) parameters are extracted 

from 10 - V G characteristics at low VI). Nfactor is treated as a fitting 

parameter aiming to improve the fit between simulation and simulated 

data, as well as to accommodate various devices geometries under various 

bias conditions. Nfactor is extracted again when the related hulk charge 

coefficient, Abulk is extracted. D vlo and DWJ arc the first and second order 

coefficients describing the impact of the charge sharing on the threshold 

voltage in short channel devices. Voff provides an extra degree of freedom 

to improve the fit of off-current without re-optimisation of VI},(J and lJ.o 

extracted earlier. It can be used in the simultaneous optimization of the 

drain current in both the subthreshold and the strong inversion regions. 

3. Drain/source resistance related (Rdnn Prwg) parameters are extracted 

from Io-VG characteristics at low Vo. Rdsw characterize the drain/source 

resistance per JLm of gate width which exist right in the current path. A 
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large Rdsw value lowers the drive current and degrades the device transient 

perfonnance. Prwg is the gate bias effect coefficient of Rd.1w • Generally, 

Prwg is viewed as a fitting parameter without any physical significant. 

4. Drain induced barrier lowering (DIBL) related parameters (EtaO, Etab, 

Dsub, Pc/m) and saturation velocity (vsal ) parameter are extracted from ID- V G 

characteristics at high V D. EtaO is the DIBL coefficient for threshold voltage 

calculation which is extracted by fitting the required magnitude of the DIBL 

correction to the threshold voltage. Etab is used to model the substrate bias 

effect on threshold voltage due to DIBL in short channel devices. Etab can 

be merely treated as a fitting parameter to improve accuracy of the threshold 

voltage behaviour with respect to the applied VB. Dsub is the channel length 

dependence of DIBL effects on the threshold voltage. It is used to control 

the amount of threshold voltage change as a function of channel length. Pc/In 

is the channel length modulation parameter in the calculation of the drain 

current. V.WI is the carrier saturation velocity at the nominal temperature 

Tnom and is a critical parameter detennining the device current in short 

channel devices. 

5. Nfactor and DIBL related parameters (EtaO, Etab, D.1uh , Pelln ) are extracted 

from ID-VD characteristics. 

6. Channel length dependency parameter of the substrate charge coefficient 

(AO), non-saturation factors for Rdsw (AI, A2 ) and body charge coefficient 

related parameter (Ags) are extracted from ID-VD. 

The proposed extraction strategy accurately fits simulation data with RMS 

error less than two percent for the ideal 10 nm, 7.5 nm and 5 nm channel lengths 

UTB-SOI MOSFET. The good overall agreements between the ideal device 

simulation results and the extracted BSIMSOI model parameters is illustrated in 

figure 4.3. The quality of 10 - V G fit for the 10 nm, 7.5 nm and 5 nm devices 

is shown in figure 4.3(a), 4.3(b), 4.3(c) respectively while In-VI) fit quality is 

illustrated in figure 4.3(d), 4.3(e), 4.3(f) respectively. Parameters which are 

insensitive to intrinsic fluctuations are fixed after this parameter extraction phase 

while a few BSIMSOI parameters are selected for extraction in the second-stage, 



CHAPTER 4. STATISTICAL CIRCUIT SIMULATION FRAMEWORK 66 

10.2 .-.---~-~-~-~, 

10.3 

10.4 

10.5 

10 6 

10.7 

1 0.8 L.----:.~~__'_ ___ ____'__' 

a 0.2 0.4 0.6 0.8 

VGM 

(a) 

1 0.2 .--.--~-~----.---..., 

10.3 

10.4 

10.5 

10.6 

10.
7 

7.5nm BSIMSOI 
7.5nm simulation • 1 0.8 L.-~':':';';:;;""'::"':::':'::':"-__ ----,__' 

a 0.2 0.4 0.6 0.8 

VGM 

(b) 

1 0.2 .-.----T""---.--~-~--. 

10.3 

10.4 

10.5 

10.6 

10
.7 

Snm BSIMSOI 
5nm simulation • 1 0.8 L.-~':"'-"'-=---~-=------,-_----,....J 

a 0.2 0.4 0.6 0.8 

VG [V] 

(c) 

8.---.---~----.----.---...., 
10nm BSIMSOI 
10nm simulation .. 

6 

o 0.2 0.4 0.6 0.8 

Vo (mV] 

(d) 

8~~--~~~--~--ro 
7.Snm BSIMSOI 
7.5nm simulation • 

6 

o 
~----------' ___ ~ ___ -J 

o 0.2 0.4 06 0.8 
Vo [mV] 

(c) 

8r-r-----.---~---.---_.._, 
5nm BSIMSOI 
5nm simulation • 

6 

§. 
~ 4 
o .... 2 

a 0.2 0.4 0.6 0.8 
Vo(mVj 

(I) 

Figure 4.3: Quality of BSIMSOI extraction compared to ideal device simulation 
for equal body characteristics of uniformly doped 10 nm, 7.5 nm and 5 nm channc I 
lengths UT8-S01 MOSFET. 
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to represent the variations in MOSFET characteristics due to intrinsic parameter 

ftuctuations. 

4.3.2 Atomistic Device Extraction 

The stochastic nature of mismatch caused by IPF makes it necessary to use a 

large sample of electrical characteristics in order to have high confidence in the 

statistical circuit simulation. The data sets required for the statistical compact 

model extraction are from the simulations of 200 macroscopically identical, 

but microscopically different 10 nm, 7.5 nm and 5 nm channel length UTB­

SOl MOSFET described in chapter 3. Using the extracted model parameters 

from the ideal device as base parameters, seven parameters are re-extracted 

using only I D-V G characteristics during the statistical extraction strategy. This 

data and parameters selection is based on previous findings that the impact of 

IPF characteristics can be accurately captured in compact models from I D-V G 

characteristics only [107, Ill]. This approach reduce the computational burden 

of the 3D device simulation, making the simulation of I D-V D characteristics 

unnecessary. The focus of the statistical extraction strategy is on adjusting drain 

saturation current and threshold voltage because they playa dominant role in the 

simulation of digital circuits [111, 114]. 

The statistical parameter extraction strategy is carried out in two steps. The 

best accuracy fit at the end of each optimization step is ensured by setting 

aggressive error limits. The first step is based on the ID - V G characteristics at low 

drain bias, matching threshold voltage and sub-threshold slope using RdJw , Prwg, 

Nfactor and Voff parameters. Rdsw, is only optimised for simulation of UTB-SOI 

MOSFET with random discrete dopants and the combined source of IPF. Then the 

saturation region of the device characteristics is matched at high drain bias using 

the parameters AI, A2 and D sub • 

In BSIMSOI, Rdsw and Prwg can reftect effective channel length variation and 

access resistance ftuctuation in the strong inversion. In the case of BTV and LER , 
there is no strong inftuence of access resistance, therefore RdJW is not required. The 

parameter Nfactor is re-optimised to improve the subthreshold fit, while the V
ojJ 

parameter can be effectively used to reftect threshold voltage fluctuation caused 
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by each source of IPF individually or in combination. Parameters AJ and A2 

mediate the saturation voltage, and therefore can be used to map IPF induced 

electric field fluctuations in the pinch-off region. Finally, DSlIb is used to reflect 

atomistic fluctuation caused DIBL effects variation. 

Table 4.2: Average and standard deviation of the relative RMS error from 
statistical BSIMSOI parameter extraction corresponding to choosen parameters 
for (a) low drain and (b) high drain bias. 

10nm 7.S nm Snm 
a 

BTV 0.18 
LER 0.24 
RDD 0.11 
BTV+ 0.10 
LER+ 
RDD 

(a) 

10nm 7.S nm 5nm 
a 

BTV 0.22 
LER 0.19 
RDD 0.23 
BTV+ 0.14 
LER+ 
RDD 

(b) 

To assess the accuracy of the device model and the stati tical parameter 

extraction strategy. the ID - V G RMS relative percentage error i calculated between 

atomistic simulation data and the corresponding BSIMSOI re ult . Summary of 

the average and standard deviation of ID·V G RMS percentages error fr m the 

statistical extraction strategy for the 10 nm, 7 .S nm and 5 nm channel length 

UTB-SOI MOSFET including each source of IPF individually or in combination 
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Figure 4.4: Distributions of selected BSIMSOI parameters from statistical 
extraction of 10 nm channel length UTB-SOI MOSFET with body thickness 
variations from an ensemble of 200 devices. 

is shown in table 4.2. The mean RMS errors of the statistical compact model 

extraction from all channel lengths are less than two percent for each source of 

IPF for both extraction step. The I D-V G RMS errors have a very narrow normal 

distribution for the ensembles of 200 microscopically different transistors of each 

channel length and for each source of IPF. These results clearly demonstrate that 

the choice of seven key parameters adequately describes the effect of IPF over the 

whole range of device operation for all samples of devices with channel length of 

10 nm, 7.5 nm and 5 nm. It is worth mentioning that the RMS error for the whole 

sample of transistors with a particular channel length depends on the accuracy of 

the ideal device parameter extraction and could be further improved by improving 

the extraction strategy. 

Figure 4.4 shows the histograms of the selected BSIMSOI parameters from 

the statistical extraction of 10 nm channel length UTB-SOI MOSFET with hody 

thickness variations. Each parameter has a different distribution with distinct 
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Figure 4.5 : Scatter plots of selected BSIMSOl parameter fr rn tati tical 
extraction of 10 nm channel length UTB-SOl MOSFET with b dy thickne s 
variations from an ensemble of 200 devices. 
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characteristics. Although BSIMSOI is developed with physical foundation, it 

still rely on smoothing functions, which are not physical. Therefore, acquiring 

a set of parameters which are uncorrelated are almost impossible. Figure 4.5 

illustrates a scatter plots of the selected BSIMSOI parameters from the same 

device as above. The figure clearly illustrate that there are correlations between 

the selected BSIMSOI empirical process parameters choosen to reflect the body 

thickness fluctuation effects. 

The detailed analysis of BSIMSOI parameter correlation for each source of 

IPF individually and in combination corresponding to the 10 nm, 7.5 nm and 5 nm 

channel length UTB-SOI MOSFET is shown in table 4.3,4.4 and 4.5 respectively. 

The correlation of BSIMSOI parameters for the 10 nm device in table 4.3(a)-

4.3(d), shows that almost all of the parameters are correlated. However, there is 

one instance of uncorrelation between Nfactor and AI parameters for devices with 

random discrete dopants as shown in table 4.3(c). There is also no clear trend in 

the 10 nm device correlation of BSIMSOI parameter for different sources of IPE 

For example, AI and Prwg parameters have a negative correlation for the case 

of devices with body thickness variations and line edge roughness, but shows a 

positive correlation for devices with random discrete dopants and combination of 

all sources of IPE The correlation of BSIMSOI parameters for the 7.5 nm and 

5 nm depicted in table 4.4 and 4.5 respectively also shows the same observation. 

For example, Nfactor and Prwg parameters have a strong positive correlation for 

the 10 nm UTB-SOI MOSFET device but shifted to negative correlation as the 

device is scaled 5 nm channel length. Due to the statistical extraction strategy 

introduced in this work and the inherent limitation of the BSIMSOI model, 

correlation relationship between parameters is not important. 
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Table 4.3: Correlation of BSIMSOI parameters from statistical extraction 
of 10 nm UTB-SOI MOSFET for different sources of intrinsic parameter 
fluctuations. (a) BTV, (b) LER, (c) RDD and (d) BTV+LER+RDD. 

Al 
A z 

Dsub 0.81 
Nfactor -0.73 

Prwg -0.86 - 0.44 
Voff 0.26 -0.50 

Al 
Az 

Dsub 0.31 
Nfactor - 0.05 

0.63 - 0.74 
(a) 

Prwg - 0.19 - 0.77 - 0.12 
Voff - 0.18 - 0.77 - 0.10 

(b) 

Dsub 

Al - 0.02 
Az 

Dsub 

Nfactor 0.00 0.46 
0.46 

- 0.50 
Prwg 0.06 0.94 

- 0.89 
0.66 - 0.85 

(c) 

Voff - 0.11 
Rdsw -0.34 - 0.41 

Al 
Az 

Dsub 
Nfactor 

Prwg 

Voff 
Rdsw 

- 0.19 
0.21 0.02 
0.41 - 0.53 - 0.20 - 0.36 

- 0.17 0.34 0.01 - 0.01 
(d) 

0.63 
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Table 4.4: Correlation of BSIMSOI parameters from tatistical extraction 
of 7.5 nm UTB-SOI MOSFET for different sources of intrin ic parameter 
fluctuations. (a) BTV, (b) LER, (c) RDD and (d) BTV+LER+RDD. 

A I ~IW&'III.. 
A2 

Dsub 
Nfactor 

Prwg - 0.82 0.17 
Voff 0.01 - 0.06 0.81 

(a) 

Al 
A2 

Dsub 
Nfactor 

Prwg - 0.97 0.61 

AJ 
A2 

Dsub 
Nfactor 

Prwg 

Voff 
Rdsw 

AJ 
A2 

Dsub 
Nfactor 

Prwg 

Voff 
Rdsw 

VofJ - 0.97 0.61 0.70 0.10 

0.36 - 0.13 
0.41 - 0.03 

- 0.47 - 0.05 
- 0.50 0.18 

0.81 
- 0.43 
- 0.90 - 0.63 
- 0.92 - 0.67 

(b) 

0.37 
0.53 - 0.76 

(c) 

0.26 
0.10 - 0.94 

(d) 
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Table 4.5: Correlation of BSIMSOI parameter fr m lali tical xtracti n 
5 nm UTB-SOI MOSFET for different source f intrin i paramet r Au tu ti n . . 
(a) BTY, (b) LER, (c) RDD and (d) BTY+LER+RDD. 

AI 
A2 

D sub 

Nfactor - 0.66 
Prwg - 0.04 

Voff 0.06 

AI 
A2 

D sub 
Nfactor - 0.79 

0.02 0.13 - .25 
(a 

Prwg 0.95 - . 7 
Vo!! - 0.51 .53 0.0 

AI 
A2 0.0 

D sub - 0.03 
Nfactor - 0.21 

Prwg 0.25 
Vo!! - 0.15 

RdsMi - 0.30 

AI 
A2 

D sub 

Nfactor 
Prwg 

Vo!! 
RdsMi 

0.45 
0.0 

- 0.3 0.72 -
O. 9 - 0.5 

(b 
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4.4 Statistical Circuit Simulation 

Worst and best case simulation is usually employed to predict the behaviour of 

the design. Typically this is achieved using a fixed parameters set describing 

nominal, worst and best processing conditions. Each individual parameter for 

a set of devices in a circuit is then put at their best or worst process corners. Thus 

there is a high risk of overly pessimistic or optimistic sets since it is unlikely that 

all individual parameter are at their extreme value at the same time. Conventional 

statistical circuit simulations such as Monte Carlo analysis rely on multivariate 

statistic such as Principle Component Analysis (PCA) [75, 76] to find a small 

number of uncorrelated parameters that together may explain most of the variation 

in the data. Such analysis is a powerful tool to understand parameter correlations 

but a practical and crucial problem exists because the resulting parameters only 

have mathematical meaning. Such an empirical approach could also create 

unrealistic devices and may not capture all physical fluctuation information. 

The statistical extraction strategy introduced in this work captures accurately 

the IPF information from actual devices in a compact model library. This 

has implications for statistical circuit design. Rather than varying unphysical 

parameters or their corresponding ambiguous principal components, it is now 

possible to perform statistical circuit design using real devices. The compact 

model libraries built from ensembles of 200 microscopically different devices 

using the statistical extraction strategy described in this chapter are then used 

in circuit-level simulations. There are four different libraries for each of the 

10 nm, 7.5 nm and 5 nm channel length UTB-SOI MOSFETs corresponding to 

each source of IPF investigated. Devices in a statistical circuit simulation can 

be randomly selected from the library of a corresponding channel length device 

and source of IPF, therefore would guarantee that the devices used in circuit 

simulations correctly represent realistic intrinsic parameter fluctuation effects. 

4.5 Chapter Summary 

In this chapter, a methodology for integrating "atomistic" device and circuit 

simulation of UTB-SOI MOSFET to analyse the impact of intrinsic parameter 
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fluctuations on corresponding circuits has been presented. The methodology 

consist of a two-stage statistical parameter extraction and a statistical circuit 

simulation. The two-stage statistical parameter extraction is able to accurately 

capture MOSFET characteristic fluctuations information obtained from the 3D 

'atomistic' simulator into a representative set of BSIMSOI compact models. 

Using our statistical circuit simulation strategy, transistors used in circuit 

simulations have realistic intrinsic parameter fluctuation effects. The overall 

methodology allows to investigate different sources of intrinsic parameter 

fluctuations individually or in combination and could improve the general 

understanding of circuit stability and performance tolerance. 

An increasingly important problem in manufacturing is how to deal with 

the effects of intrinsic parameter fluctuations on the behaviour of circuit. By 

assessing important circuits such as SRAM and CMOS logic. important intrinsic 

parameter fluctuations effects on circuits reliability. stability. timing issue, speed 

and power can be observed and dominant fluctuation effects in circuit operation 

can be identified. Using the statistical circuit simulation methodology descrihed 

in this chapter, the impact of intrinsic parameter fluctuations on UTB-SOI hased 

6T SRAM cells wi 11 be investigated. 



Chapter 5 

6T SRAM Cells Simulation 

5.1 Introduction 

Intrinsic parameter fluctuations (lPF), introduced as a result of the underlying 

discreteness of charge and matter in ultra-small devices, will be one of the major 

challenges for the semiconductor industry in the next decade [I]. In most cases, 

the transistors used in SRAM cells are among the minimal size for each pi.ll1icular 

technology generation, and thus are critically sensitive to intrinsic parameter 

fluctuations [18, 115]. This intrinsic variation cannot be eliminated by tightening 

the manufacturing process control, and will have an increasing impact on SRAM 

performance and yield [13]. Failures due to the cumulative impact of various 

sources of IPF in an SRAM cells, are principally caused by mismatch between 

the neighboring active transistors in the cell. Mismatch in the characteristics 

of different transistors result in different types of failure event that includes 

destructive read or unsuccessful write, an increase in access time of the cell 

resulting in a violation of delay requirements, and destruction of the cell content 

in standby mode [17]. Increased failure rates in the cells of a memory array will 

reduce the yield of the associated chip. 

So far, this thesis has addressed the effects of different sources of IPF 

on well scaled UTB-SOI MOSFETs, including the effects of random discrete 

dopants (RDD), body thickness variations (BTY) and line edge roughness (LER). 

The methodology to capture device fluctuation information obtained from the 

77 
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Figure 5.1: Circuit schematic of the 6-transistor SRAM. 

3D 'atomistic' simulations into a representative set of BSIMSOI [221 compact 

models was presented in chapter 4. In this chapter, the impact of individual 

and combined sources of intrinsic parameter fluctuations on the static operation 

of next generation UTB-SOI SRAM cells is investigated using the BSIMSOI 

compact model library built earlier. The SRAM cells will be evaluated in terms of 

stability, performance and leakage with specific reference to the deviation of these 

properties from their nominal values, and the impact of this deviation on device 

yield. 

In section 5.2 of this chapter, the SRAM architecture under consideration, 

circuit operating conditions and simulation strategy for statistical investigation of 

the impact of IPF on SRAM cells will be presented. In section 5.3, the stahility 

of SRAM cells based on UTB-SOI MOSFETs with differing channel lengths 

and cell ratios is studied. Advantages of UTB-SOI MOSFETs, compared to 

conventional 35 nm bulk MOSFET [116] based SRAM cells, are also discussed. 

The impact of intrinsic parameter fluctuations on UTB-SOI SRAM cells, read 

and write characteristics are analysed and discussed in section 5.4. In section 

5.5, SRAM cell leakage and static power dissipation is evaluated. Section 5.6, 

summarizes the results of this chapter. 
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5.2 Simulated SRAM Setup 

In chapter 2 various memory configurations have been discussed. Each structure 

has been shown to be useful for specific applications. However, this thesis is 

primarily concerned with high-performance microprocessor cache, a market that 

has been totally dominated by the standard 6-transistor (6T) SRAM. With the 

projected growth in the percentage of chip area devoted to cache [117) in high­

performance microprocessors, the impact of IPF on SRAM circuitry must be 

considered during the design cycle. A schematic of the 6T SRAM cells simulated 

in this work is shown in figure 5.1. The storage nodes (node A and node B) 

consists of two load PMOS transistors (M 1 and M3) and two driver NMOS 

transistors (M2 and M4) with two access NMOS transistors (M5 and M6). 

The specifications for supply voltage are obtained from the ITRS [I). A supply 

voltage of 800 m V is used for the 10 nm transistor and 700 m V for both the 7.5 nm 

and 5 nm transistors. In order to study the statistical characteristics of SRAM cells 

subject to the intrinsic parameter fluctuations, a total of 200 unique SH.AM cells 

are simulated in this work for each statistical simulation experiment. SRAM cells 

corresponding to 10 nm, 7.5 nm and 5 nm channel length UTB-SOI MOSFETs 

are constructed using randomly selected devices from the compact models library 

prepared earlier. Each compact models library comprise of 200 "atomistic" 

devices. So far in this work, only NMOS devices have been considered. In 

these simulations, PMOS devices are assumed to have an identical statistical 

distribution as a result of intrinsic parameter fluctuations, with a mohility half 

that of NMOS devices. 

The impact of intrinsic parameter fluctuations on SRAM yield and 

performance is a strong function of the cell ratio, r defined as the ratio of the 

driver transistors (M2 and M4) widthllength (WIL) to the access transistors (M5 

and M6) WIL (5.1). 

(5.1 ) 

It will be shown that the probability of failure for any particular memory 

cell can be minimized by an optimal choice of r, achieved by appropriate sizing 

these transistors. However, any such optimization has an impact on the overall 
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silicon area, the static leakage and eventually the static power dissipation of the 

SRAM array. The impact of intrinsic parameter fluctuations on UTB-SOI devices 

is quantified by varying the SRAM cell ratio, r and measuring the stability and 

performance of the SRAM during read and write operations. 

The cell ratio is altered by increasing the driver transistor width, while keeping 

the other transistor dimensions constant. High WIL ratio devices are often used in 

design, particularly when high drive currents are required. In this work, the load 

and access transistors have a WIL ratio of one while the driver transistor WIL ratio 

is determined by the choice of r. Larger WIL ratio devices are built by connecting 

in parallel randomly selected transistors from the compact models library, as the 

library contains only device with WIL=l. Neglecting edge effects, this technique 

correctly captures the statistics of wider devices. 

To clearly illustrate the impact of intrinsic parameter fluctuations on SRAM 

cells, the peripheral read and write circuitry is omitted from the circuit simulation 

and ideal complementary signals are directly applied to the bit-lines. SRAMs 

are frequently placed near active logic circuits where the temperature of the 

die is high, and subthreshold leakage current will dominate cell leakage (118). 

To distinguish IPF effects from temperature effects the 6T SRAM circuit was 

simulated at 300 K. 

5.3 Cell Stability 

In SRAM design, the stability of the cell is a critical factor in determining its 

sensitivity to process tolerances and operating conditions. Thus, is a critical factor 

in obtaining the desired yield of a chip. Each 6T SRAM cell contains two sets 

of matched inverters, as shown in figure 5.1 and for a given cell design, higher 

threshold voltage for each cell transistor improves cell stability. Any mismatch 

between the transistors caused by intrinsic parameter fluctuations between the pair 

degrades the stability of the whole cell. In this section, static noise margin and 

switch point voltage analysis are used to capture different aspects of SRAM cells 

read and write operation stability. 
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Figure 5.2: (a) SRAM cell represented by two inverters with static noise voltage 
sources included. (b) Graphical representation of SNM. 

5.3.1 Static Noise Margin 

Reading information from an SRAM cell should be non-destructive. After the 

read operation the logic state of the cell must remain unaltered. 6T SRAM cell is 

most unstable at the onset of the reading access. The read operation hegins with 

the word-line being raised to the power supply voltage, Vdd and bit-lines initially 

precharged high. This causes the logic low node within the cell to rise due to 

the voltage division between driver transistors and access transistors. If the cell 

design allows the nominal value of this node voltage to come close to the nominal 

threshold voltage of the driver transistors, IPF caused by process variations may 

result in the node voltage passing the critical point where the state of the cell is 

flipped. The Static Noise Margin (SNM) [1011, which is the .minimum DC noise 

voltage needed to flip the cell state, is often used to measure the cell stahility. 

SNM is a function of threshold voltage and depends on the relative strength of 

the two cross-coupled inverters in the cell. A large threshold voltage improves 

SNM and the cell state could only be flipped by large DC noise. However, as 

the electrical parameters of the transistors in these inverters are prone to intrinsic 

fluctuations, the SNM varies from memory cell to memory cell. 

An SRAM cell can be represented by a flip-flop comprised of two inverters 

as shown in figure 5.2(a). SNM is simulated by using two voltage sources (VI/uti 

and V(mt2) which are placed inside the memory cell to obtain the stalic transfer 
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Figure 5.3: Static transfer curves of 200 di tinct SRAM cell with a II rati r 
one. The columns represent UTB-SOI MOSFET channell ngth whil th r w 
indicate the corresponding sources of intrin ic param ter flu luati n . 

curve of each inverter. The static noise margin can b btain d graphi ally 

by drawing and mirroring the inverter characteri tic and tting the maximu 

possible square between the two curve a depicted in fi gur 5.2 ). r w 11 

matched transistors, the curves are ymmetrical and the tw NM ar th ·am . 

However, when intrinsic parameter fluctuations are inc1ud d, th tw maxir urn 

squares are different and the smallest of the two i defined a the NM. In rca. in 

cell ratio [119] and other circuit techniques uch a dyn mic-thr h Id RAM 

[120] that push both of the static tran fer curve away fr m a h lh r will 

improve cell SNM, but will never eliminate the impact f IP all g lh r. 

Static transfer curves for an ensemble of 200 di tinct RAM c II with a II 

ratio of one, considering transi tor parameter variati n re ulting fr m , B V 

and LER, are shown in figure 5.3. The fluctuation of the tati tran ' f r urv 
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increase as the corresponding UTB-SOI MOSFETs are scaled from the 10 nm 

to the 5 nm channel length. Detailed quantitative analysis of the resul ts wi ll be 

presented below, but even from the groups of figure 5.3 it can clearly be een that 

IPF will become a major source of SRAM cell instability near the ultimate scaling 

limits. 
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Figure 5.4: SNM distributions due to different source f IP in 
based SRAM cells with a cell ratio of one. The column r pre nt 
MOSFETs channel lengths while the rows are the corre p nding r 
intrinsic parameter fluctuations. 

To better visualize and compare the overall effects of different 

on the stability of 6T SRAM cells, SNM distribution for SRAM cell with I nm , 

7.5 nm and 5 nm transistors are illustrated in figure 5.4. Frail three s ts r 
devices, the distribution of the SNM is clo e to a n rmal di tri uti n with an , 
increasing standard deviation with channel length reduction . A noted a v, lh 

SNM fluctuations due to RDD shown in the first row are the w rtf r all 

SOl MOSFETs channel lengths. RDD also causes a considerable pr p rti n r 
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Figure 5.5: The average of the SNM for SRAM cells as a function of UTB-SOI 
MOSFET channel lengths for different cell ratios considering different sources of 
intrinsic parameter fluctuation. (a) random discrete dopants, (b) body thickness 
variations, (c) line edge roughness and (d) combination. 

devices at the 7.5 nm and 5 nm channel length fail to operate even under otherwise 

ideal conditions. The impact of ROD on SNM has already been expected from 

UTB-SOI MOSFET simulation results in chapter 3. ROD caused a threshold 

voltage standard deviation, aVT of 25 mY and 75 mY for the 7.5 nm and 5 nm 

UTB-SOI MOSFET. As SNM is a function of threshold voltage, noise margin 

will be eliminated if SRAM cell are built from transistors with extreme threshold 

voltage lowering. Approximately 10 percent failure rate at 7.5 nm channel length 

and a 13 percent failure rate at 5 nm channel length. 

Figure 5.5 illustrates the average SNM for SRAM cells based on UTB devices 

with different cell ratios, considering each source of IPF individually and in 

combination. It clearly shows the expected trend that by increasing the cell ratio, 
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the cell stability for all UTB-SOI channel length is improved. The improvement 

of average SNM are much larger in longer channel length device. For SRAM cells 

built from transistors with the presence of all source of IPF shown in figure 5.5(d), 

the average SNM for the 10 nm devices is increased by 40 m V while the average 

SNM for 7.5 nm and 5 nm are only increased by 30 mV and 20 mV respectively. 

The impact of each individual source of IPF on the average SNM are depicted in 

figure 5.5(a) to figure 5.5(c). Comparing the average SNM between each source of 

IPF individually or in combination from figure 5.5(a) to figure 5.5(d) gives a false 

notion that SNM of SRAM cell with the presence of all source of IPF are much 

better. This is in fact not true as this is related to the statistical behaviour of the 

average threshold voltage, (VT ) from the ensemble of 200 UT8-S01 MOSFETs 

observed in chapter 3. As explained earlier, SNM is a function of threshold voltage 

and in the presence of all sources of IPF, the average threshold voltage, (Vr) is 

the highest, thus giving a skewed impression of a better SNM. To clearly compare 

the impact of each source of IPF individually or in combinations, the standard 

deviation of the mean must be used. 

The channel length dependence of SNM standard deviation, due to different 

sources of IPF for different cell ratio configuration are illustrated in figure 5.0. 

For all case of cell ratio configuration, SRAM cells built from transistors with the 

presence of all IPF source have the largest standard deviation. In the presence 

of all IPF sources, SRAM cells with minimum cell ratio (r= I), have a standard 

deviation of 14 mV for the 10 nm channel length device, increasing to 34 mY 

for the 5 nm device. The impact of each individual source of IPF on the SNM 

standard deviation are depicted in figure 5.6(a) to figure 5.6(c). SRAM cells huilt 

from transistors with the presence of BTV and LER have a standard deviation of 

less than 10m V. For all case of cell ratio configuration, LER dominates at longer 

channel length. However, there is a crossover below 7.5 nm channel length. 

To facilitate the comparison of standard deviation between different channel 

length, the normalised standard deviation (a / It) of the SNM is calculated. Figures 

5.7 illustrate the normalised standard deviation of the SNM due to different 

sources of IPF as a function of UTB-SOI MOSFETs channel length for SRAM 

cells with different cell ratios. The magnitude of the fluctuations increase as 

the UTB-SOI MOSFETs are scaled to shorter channel length. Although SNM 
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Figure 5.6: Standard deviation of SNM due to different sources of IPF in SRAM 
cells that utilises 10 nm, 7.5 nm and 5 nm UTB-SOI MOSFETs, with SRAM cell 
ratios of (a) 1/1, (b) 211 and (c) 3/1. 
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Figure 5.7: Normalised standard deviation of SNM due to different sources of IPF 
in SRAM cells that utilises 10 nm, 7.5 nm and 5 nm UTB-SOI MOSFETs, with 
SRAM cell ratios of (a) 111, (b) 211 and (c) 3/1. 
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fluctuations remain well under control for the 10 nm channel length device, at 

minimum cell ratio, primarily as a result of increasing variation due to ROO the 

normalised SNM standard deviation for 7.5 nm and 5 nm channel length devices 

are considerably degraded. Compared to combined source of IPF, the steep 

degradation of the average SNM of ROD causes a rapid growth and crossover 

of the SNM normalised standard deviation at minimum cell ratio. BTY and 

LER result in less than 15 percent normalised standard deviation for the 10 nm 

and the 7.5 nm devices but increases to more than 20 percent for the the 5 nm 

SRAM. The magnitude of fluctuation for transistors with combined sources of IPF 

(ROD+BTV+LER) increases from approximately 10 percent at 10 nm channel 

length to more than 31 percent at 5 nm channel length, for SRAM with a cell ratio 

of one despite the effect of BTY and LER continuing to be well controlled for the 

7.5 nm device. 

The negative impact of IPF increase with the transistor scaling can he 

compensated by increasing the SRAM cell ratio. Increasing the cell ratio not only 

improves the average SNM as discussed earlier, but also reduces the magnitude 

of its fluctuations which is partly reflected by the reduced normalized standard 

deviation. The increase of the cell ratio delivers between 10 and 30 percent 

reduction of the SNM fluctuation for 7.5 nm and 5 nm UTB-SOl MOSFETs for 

different sources of IPF. However increasing cell ratio delivers less improvement 

of the SNM with the reduction of the channel length. For the 5 nm transistors, the 

need to increase cell ratio will reduce the benefit of the device scaling compared 

to 10 nm and 7.5 nm channel length transistors. 

As the number of transistors per chip continues to increase, SNM fluctuations 

must be small enough to satisfy future yield requirements. For example, a 4 M B 

(32 Mbit) cache, including error correction, usually contains almost 38 million 

memory cells and requires a tolerance of 5.44a to have only one cell failure 

per cache [115]. A common technique when considering yield is to apply 

the six-sigma (60-) approach, adopted by Motorola [102]. Devices operating 

outside 60- from the mean value (/l-6a) will occur on average only 3.4 times 

per million devices. Calculated values of /t-60- from ensembles of 200 distinct 

SRAM cells built from 10 nm and 7.5 nm UTB-SOI MOSFETs arc plotted in 

figure 5.8 as a function of cell ratio. It is clear that an increase in cell ratio 
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Figure 5.8: p,-6(J" of Static Noise Margin (SNM) as a function of cell ratio for 
10 nm, and 7.5 nm UTB-SOI MOSFET SRAMs. Lines: 1/,-6a>32 mY for 10 nm 
and >28 mY for 7.5 nm. 

leads to an improvement in J.L-6(J" which implies improved SRAM cell yield. As 

a guideline for SRAM, IL-6(J" should exceed 4 percent of the supply voltage to 

achieve 90 percent yield on 1 Mbit SRAMs [121]. This criteria is satisfied for 

a cell ratio of one for 10 nm channel length devices for any individual source 

of IPF. However, if the combination of sources of IPF is taken into account, the 

10 nm channel length device will require at least a cell ratio of two. The 7.5 nm 

channel length UTB-SOI MOSFET SRAM requires a cell ratio of two if only 

BTY or LER are considered in isolation and a cell ratio of three for either RDD, 

or a combination of all sources of IPE SRAM cells based on 5 nm channel length 

devices could not fulfill the required guideline even at higher cell ratios. Resorting 

to higher cell ratios only increases cell area, negating the improved storage density 

that is one of the main reason for scaling devices to shorter channel length. This 

implies that 6T SRAMs will not gain the full benefits from further UTB MOSFET 

scaling to channel lengths smaller than 10 nm. 
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5.3.2 Switch Point Voltage 

Writing data into 6T SRAM cell is performed by applying opposite signals 

on each bit-line. This forces the cell into the state defined by the bit-lines. 

While SRAM read operation stability requires a large and stable SNM, it is also 

important to have a reasonably low switch point voltage (SPY), defined as the bit­

line voltage which will cause cell data to begin to change under a write operation 

[115]. The cell internal nodes (node A and node B) remain in their initial state 

until the SPY is reached. Then the node storing the logic low rises suddenly, the 

high node falls, and the cell switches state. The SPY must be far enough from 

both supply voltage (V dd) and ground so that no combination of offsets and noise 

can cause a write failure or even an accidental write when a read is intended. 

The average switch point voltage for different UTB-SOI MOSFET based 

SRAM cells as a function of cell ratio are shown in figure 5.9(a), 5.9(b) and 

5.9(c). Usually, a symmetric 6T memory cell has a switch point voltage that 

is slightly less than the half of the power supply, Vdd [115]. Optimal switch 

point voltage results in better noise immunity. However, SRAM cells subject 

to IPF have an average Spy of more than 60 percent of the power supply 

voltage for 10 nm, 7.5 nm and 5 nm UTB-SOI MOSFET devices. For all the 

devices under consideration, increasing the cell ratio from r= 1 to r=3 results in 

approximately 20 percent higher switch point, making it more diftlcult to write 

into the cell. The SPY fluctuations caused by different sources of IPF, individually 

or in combination, are relatively insensitive to cell ratio. An increased cell ratio 

does not result in any significant reduction in the magnitude of the fluctuations as 

shown in figure 5.9(d), 5.9(e) and 5.9(f). The combination of all sources of IPF 

causes approximately a 12 percent normalised standard deviation in the value of 

SPY. Upon further inspection, it can be seen that the 60- range, for all cell ratios 

is close to the ground (~100 mY) or greater than the supply voltage (700 mY). 

Additionally, almost 5 percent of the 5 nm channel length cells are unwritable due 

to either a combination of all IPF effects, or solely due to RDD, even at a cell ratio 

of one. 
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Figure 5.9: Average switch point voltage for (a) 10 nm, (b) 7.5 nm and (c) 5 nm 
UTB-SOI MOSFET SRAMs as a function of cell ratio with different sources of 
intrinsic parameter fluctuation. Vdd12 is 400 mV for 10 nm SRAMs and 350 mY 
for both 7.5 nm and 5 nm SRAMS. Normalised standard deviation of switch point 
voltage as a function of cell ratios for (d) 10 nm, (e) 7.5 nm and (f) 5 nm UTB-SOI 
MOSFET SRAMs. 
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Figure 5.10: Static transfer characteristics of 200 di stinct SRAM cell utili ing 
(a) 10 nm UTB-SOI MOSFETs and (b) 35 nm bulk MOS T. 

5.3.3 UTB-SOI vs Bulk MOSFETs 

To show the practical advantages of UTB-SOI MOS ET b ed RAM 11 

with respect to stability in the presence of IPF, a compari n is mad b lw n 

10 nm channel length UTB-SOI MOSFET memory cell and c 11 lru tur d 

from well calibrated 35 nm bulk device [19]. The tati tran ~ r urv . 

ensemble of 200 SRAM cells built from 10 nm chann 1 I ngth M s, 

considering the combination ofIPF source (RDD+BTV+ R) i h wn in 

5.1O(a). The opening of the butterfly tran fer curves f r 1 nm an 

be clearly compared to the results obtained for SRAM n tru t d fr m nm 

conventional bulk MOSFETs shown in figure 5.1 O(b). The w r 

performance for an identical cell ratio configuration i due t larger flu luati n 

resulting from the random discrete dopants in the channel f th bulk d vi s. A 

recent experimental study [13] has confirmed the adver e ef~ t f rand m d pin 

fluctuations on the yield and stability of SRAM cells. 

Normalised standard deviation of the SNM a a functi n f II rali f r 

SRAM constructed from UTB-SOl MOSFET and bulk devi es i d pi t d in 

figure 5.11. The UTB-SOI MOSFET cells are imulated f r ell rati 

r=l to r=3 . Bulk MOSFET cell cannot op rate with a ell rali 

are simulated with cell ratios from r=2 to r=4. The trend f incre, 

stability is observed for 35 nm bulk MOSFET ba ed mem ry ell s a th 11 rati 
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Figure 5.11: Normalised standard deviation of SNM as a function of cell ratio 
for 10 nm UTB-SOI MOSFET based SRAM due to different sources of IPE 
Equivalent results for SRAM constructed from 35 nm bulk MOSFETs arc also 
shown. The bulk devices are only subjected to random discrete dopants. 

is increased. However, SRAM cells based on 35 nm bulk MOSFETs are more 

sensitive to the random doping effects compared to 10 nm UTB-SOI MOSFETs 

with the combination of all IPF sources. 

The calculated J.L-6a dependence on cell ratio is compared in figure 5.12 from 

SRAM cells utilising 10 nm UTB-SOI and 35 nm bulk MOSFET. 1t is clear that 

for both devices the increase of the cell ratio leads to improvement in 11.-6fT which 

implies that a larger fraction of SRAM cells for each geometry achieve stahility 

threshold. A memory cell based on 35 nm bulk MOSFETs requires a cell ratio 

of at least three, considering only intrinsic fluctuations caused by discrete randllll1 

dopants. According to figure 5.12, from the SNM point of view, 10 nm UTB-SOI 

MOSFET SRAM cells are more stable even though operated at 80 percent of the 

supply voltage of 35 nm bulk MOSFET based SRAM. 
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IOn m UTB-SOI MOSFETs and 35 nm bulk MOSFETs with different sources 
of intrinsic parameter fluctuations. Lines: Jt-6(J >32 m V for 10 nm UTB-SOI 
MOSFETs and >48 mV for 35 nm bulk MOSFETs. 

5.4 Cell Performance 

The performance of an SRAM array is determined by the read and write operation 

of its slowest cell. A read operation is performed by holding both hit-lines 

high and selecting the desired word-line. Once the word-line is enahled, data 

in the cell will pull one of the bit-lines low through the access transistor (M5, 

M6) and driver transistor (M2, M4). The differential signal on the hit-lines is 

detected, amplified and read out through the output buffer [1221. One important 

performance parameter is the read access time which represents the propagation 

delay from the time when the address is presented at the memory chip until the 

time when data become available at the memory output. 

In this work, in order to obtain the relative read operation speed, the discharge 

time for the bit-line is estimated from the simulation of an ensemble of 200 

6T SRAM cells for each of the investigated UTB-SOI MOSFETs. The read 

discharge time (RDT) is a major component in determining array access time, 

and the overall chip speed is fundamentally limited by the cell discharge time. 
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Figure 5.13: A typical read discharge-time simulation waveforms. Both bit-lines 
are initially precharged at supply voltage and RDT is measured when bit-line 
voltage drop to Vdd12. 

The RDT will be affected by the bit-line capacitance which depends on both the 

architectural configuration of the memory array and the UTB-SOI MOSFETs 

choosen. However, in the following statistical circuit simulations a constant 

0.05 pF bit-line capacitance is assumed. In order to secure a sufficient noise 

margin, the threshold for the sense amplifier is assumed to be half of the supply 

voltage. The read discharge time is defined by the bit-line voltage drop to the 

sense amplifier threshold after the access transistors are switched on as shown in 

figure 5.13. 



CHAPTER 5. 6T SRAM CELLS SIMULATION 96 

25 

g 20 

~ IS 

It 10 

lOnm 

1.2 1.6 2.0 2.4 

ROT (nsJ 

3D .--~------, 

25 

~ 2D 
II: 15 

J 10 

7.5 nm 

25 

~ 20 

~ IS 

.t 10 

o~llllllllllll~~~~ 
0.8 1.2 1.6 2.0 2.4 

ROT (noJ 

30 ~~-------, 

25 

~ 20 

~ IS 

u. 10 

o l.-II 

25 

i 2D 

~ 15 

u. 10 

S nm 

12 1 6 20 24 

ROT (nlJ 

~~-~--------~ 
2S 

i 2D 

t IS 

u.. 10 

00.8 1.2 1.6 2.0 2.4 0.8 1.2 1.6 2.0 2.4 12 18 20 2" 
ROT (nsJ ROT (nsJ ROT (ntJ 

3D .---~-~-~--, 30 .----,---.-~---_, ~r--~--------, 

25 

[ 20 

~ 15 

.t 10 

o ~IL--___ ~---' 

0.8 1.2 1.6 2.0 2.4 

ROT (nsJ 

25 

~ 20 

~ 15 

u. 10 

o L-II-.. ____ --J 

08 1.2 1.6 20 2. 
ROT (nIJ 

25 

i 20 

t IS 

u. 10 

5 

Figure 5.14: Read discharge time di tributi n for UTB­
SRAM cells with a cell ratio of one. The c lumn repr nt 
channel lengths while the rows are the c rre p nding 
parameter fluctuations. 

1 20 2 . 
ROT(ntJ 

f intrin i 

The histogram of the read discharge time di tributi n f r diff r nt hann 1 

lengths of UTB-SOI MOSFETs with different ource f IP 

figures 5.14. Each source of IPF has a different impact n th 

performance of the SRAM cells, but more importantly, IP ant 

performance differences between the fa te t and I we t RAM c II a and 

may cause a violation of the delay requirements for reliabl mem ry II p rati n 

at a specific clock frequency. 

Under nominal conditions, the discharge time f rea h TB- 1 M T 

investigated improves between 17 and 25 percent with th increa e ell 

ratio to two, and between 31 and 75 percent with the increa e f th 

to three considering all sources of IPF in combinati n. The r ult , t g th r 

with the effects of each single sources of fluctuation ar illu tr t d in figur 5. 15. 
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Figure 5.15: Average of read discharge time as a function of cell ratio with 
different sources of intrinsic parameter fluctuation for (a) 10 nm, (b) 7.5 nm and 
(c) 5 nm UTB-SOI MOSFET based SRAM cells. 
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Larger cell ratios reduce the cell pull down time due to increasing current drive 

from larger driver transistor, which will help to improve general read access 

performance. However it is also clear that IPF have a negative impact on SRAM 

cell read access time. From the three individual sources of IPF investigated in 

this work, RDD has the worst impact on read discharge time with performance 

degradation greater than the effect of any other single source of fluctuations. 

The normalised standard deviation illustrated in figures 5.16 shows that even 

though nominal speed improves due to larger cell ratios, there is no significant 

reduction in the variations of the read access between SRAM cells even at a 

cell ratio of three. The read performance difference for devices in the individual 

presence of BTV or LER is less than 5 percent for any UTB-SOI MOSfETs. 

RDD considered either solely or in combination with other IPF sources result in 

the worst variations in read discharge time of approximately 6 percent for the 

10 nm transistors, raising to 24 percent for the 5 nm devices. 

Although write time is not one of the critical requirements for SRAM design 

[122], large variations in write time may still disrupt functional ity of the memory 

arrays. Unlike read discharge time, write operation is not affected by bit-line 

capacitance, assuming that a constant voltage is applied to Hip the cell. In this 

work, the write time is measured from the time the access transistors are switched 

on after applying an appropriate value to the bit-lines, to the moment when the 

two internal storage nodes reach 90 percent of their final value. The worst case 

flip time is recorded as the write time for the cells as illustrated in figure 5.17. 

The average write times for all investigated UTB-SOI MOSFETs are presented 

in figures 5.18. It is important to note that although a higher cell ratio improves 

stability, it degrades the write performance, as a higher voltage is required to Ilip 

the storage nodes. IPF further contributes to the degradation of write performance. 

extending the time needed to flip an SRAM cell contents. A compromise must he 

made between SRAM cell stability and write performance. However. in most 

cases cell stability is more important than write speed. 

The normalised standard deviation of write times for different channel lengths 

of UTB-SOI MOSFET based memory cell is shown in figures 5.19. Similar to 

the case of read performance, the magnitude of fluctuations in SRAM cells write 

performance becomes worst as the UTB-SOI MOSFET based SRAM is scaled 
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Figure 5.16: Normalised standard deviation of read discharge time as a function of 
channel length with different sources of intrinsic parameter fluctuation for UTB­
SOl MOSFET based SRAM cells with cell ratio of (a) 111, (b) 2/1 and (c) 311. 
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Figure 5.17: Write-time simulation with constant voltage applied to bit-lines. 

from 10 nm to 5 nm channel length especially in the presence of ROD. Another 

important conclusion that can be drawn from the results plotted in figures 5.19 is 

that write time fluctuation is also less sensitive to an increase in cell ratio. There 

is almost no reduction in the magnitude of write time variation for any of the 

simulated UTB-SOI MOSFET as the cell ratio is increased from r= 1 to r=3. 
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Figure 5.18: Average write time as a function of cell ratio with different sources of 
intrinsic parameter fluctuations for (a) 10 nm, (b) 7.5 nm and (c) 5 nm UTB-SOI 
MOSFET based SRAM cells. 
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length with different sources of intrinsic parameter fluctuation for UTB-SOI bascu 
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Figure 5.20: Dominant leakage paths for 6T SRAM cells. Bitline leakage, hillillc 

is the leakage from bit-line to ground and cell leakage, [cell is the leakage from Vdd 

to ground. 

5.5 Leakage and Power Dissipation 

While yield and performance are key issues for high performance SRAMs, 

leakage and power consumption cannot be neglected. The total leakage in a 

memory cell is primarily caused by the sub-threshold leakage, the gate leakage, 

and the junction leakage through different transistors in the cell. Another 

important component of leakage in SRAM circuits is associated with the CUtTent 

discharge of the bit-lines capacitance [105], which is dependent on the physical 

layout of the memory cell arrays. Basically, the bit-line capacitance is mainly 

due to the drain capacitance of the access transistors of the memory cell that 

share electrical connections with millions of other cells in its column and the total 

interconnect capacitance to these access transistors. 

The simulations presented here will only consider the leakage and power 

dissipation associated with a single memory cell during static or standhy 

operation. Presently, static power dissipation is comparable to dynamic power 

[51] and is predicted to become more important as MOSFET is scaled in the 

nanometre region. According to a projection from Intel, the static leakage 

component of the total power in a microprocessor may exceed dynamic power 

as the technology decreases below the 65 nm technology generation 1291. 
During standby, the word-line is held low so that the two access transistors 

are off, isolating the cell from the bit-lines. In this state, most of the leakage 
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Figure 5.21: (a) Average and (b) normalised standard deviation of bit-line leakage, 
Ibi,-line for 10 nm, 7.5 nm and 5 nm UTB-SOI MOSFET based SRAM cells with 
different sources of intrinsic parameter fluctuations. 

is dissipated by the transistors that are in their off state. The two dominant 

leakage paths for a 6T SRAM cells are the bit-line to ground (hit-line) and Vdd 

to ground (lecl!) as shown in figure 5.20. Leakage through these two paths makes 

up 93 percent of the total leakage [123]. 

The bit-line leakage, hi/-line is interesting from two different perspectives. One 

is that it contributes to the total power dissipation and the other is a performance 

issue. During a read or write cycle, un selected cells in a column of the memory 

array act as a leakage source discharging the bit-lines. Therefore, the minimum 

delay to read and write data to a cell to some extent also depends on other 

memory cells on the bit-line. Figure 5.21 depicts the channel length dependence 

of the mean and normalised standard deviation of bit-line leakage from UTB-SOI 

MOSFET based SRAM cells storing a logic low. The mean of the bit-line leakage 

is approximately 5 nA for 10 nm devices increasing non-linearly to 53 nA for 

5 nm devices considering the combination of all sources of IPF. No one par1icular 

sources of IPF produces a significantly different mean bit-line leakage. These 

results are plotted in detail in figure 5.21 (a). Overall IPF also causes a much 

worse normalised standard deviation for bit-line leakage of more than 40 percent 

for all UTB-SOI MOSFETs as depicted in figure 5.21 (b). Note that the impact 

of LER on bit-line leakage is almost constant as the UTB-SOI MOSFET based 
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Figure 5.22: (a) Average and (b) normalised standard deviation of cell leakage, 
lcell for 10 nm, 7.5 nm and 5 nm UTB-SOI MOSFET based SRAM cells with 
different sources of intrinsic parameter fluctuations. 

SRAMs are scaled to smaller channel lengths because the LER parameter arc also 

scaled according to the requirement of the ITRS [I ]. 

The cell leakage, [cell is the total leakage through the latch and is very 

important for the overall static power dissipation of the system. The total static 

power dissipation of the memory array is the sum over the total ensemble of cells 

and should be capped to a defined level to prevent the chip from overheating, or 

reducing the battery life for low power applications. To clearly isolate the cell 

leakage of the SRAM cells in simulations, the access transistors are switched otT 

and the bit-lines are held low to prevent the bit-lines leakage contribution to the 

total leakage. The mean cell leakage for 10 nm devices is approximately 5 nA, 

increasing non-linearly as the UTB-SOI MOSFETs are further scaled. For the 

5 nm devices, the average leakage for the combined source of IPF is 90 nA. The 

effect of the individual and combined sources of IPF on average cell leakage is 

shown in detail in figure 5.22(a). As illustrated in figure 5.22(b), the cel1lcakagc 

has a similar trend of the channel length dependence of the normalized standard 

deviation as the bit-line leakage. 

The projected amount of static power dissipation for SRAM cache arrays with 

10 nm, 7.5 nm and 5 nm UTB-SOI MOSFETs is depicted in figure 5.23. The 

static power is calculated by multiplying the sum of bit-line and cell leakage 
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Figure 5.23: Static power in SRAM arrays as a function of projected cache 
capacities for 10 nm, 7.5 nm and 5 nm UTB-SOI MOSFETs considering all 
sources of intrinsic parameter fluctuations in combination. 

with projected stand-by supply voltage to obtain the static power dissipation 

per SRAM array. To maintain sufficient noise margin, a nominal power supply 

voltage of 560 m V for the 10 nm SRAM arrays and 490 mY for the 7.5 and 

5 nm SRAM arrays are chosen. The nominal power supply has been chosen 

by multiplying the corresponding power supply voltage to the 'subtreshold slope 

adjustment factor' of single gate UTB-SOI MOSFETs (0.7) [I J. The suhthreshold 

slope adjustment factor takes account of using advance UTB and douhle-gate 

MOSFETs. Specifically, this is a multiplying factor for the suhthreshold slope, 

reducing it towards its minimum ideal value of 60 m V /decade. Conventional 

bulk MOSFET has a factor of one, while UTB-SOI MOSFET has a factor ranges 

of 0.7 to 0.8. As cache memory in microprocessors is projected to douhle 

with each successive technology generation, the projected static power shown 

in figure 5.23 is obviously unacceptable, bearing in mind that the cell leakage 

used in this projection is the raw statistical average, without consideration of the 

spread, peripheral circuitry and the temperature effects which would need to be 

accounted for in an industrial setting. The increase in leakage current outweighs 

the reduction in supply voltage at each channel length, with a net effect of increase 
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in static power dissipation. 

5.6 Chapter Summary 

The cumulative impact of the intrinsic parameter fluctuations introduced by 

random discrete dopants, body thickness variations and line edge roughness in 

UTB-SOI MOSFETs on the operation of 6T SRAM cells has been investigated 

using a statistical circuit simulation methodology. From the yield point of view. 

the operation of 6T SRAM may not gain the full benefits from further UTB-SOl 

MOSFET scaling to channe1lengths smaller than 10 nm. At a cell ratio of one. 

there is approximately 10 percent failure rate for SRAMs with 7.5 nm transistors 

and 13 percent failure rate for SRAMs with 5 nm transistors. Increasing cell ratio 

delivers less improvement of the SNM with the reduction of the channel length 

and does not reduce the magnitude of SNM standard deviation. The major source 

of device mismatch in UTB-SOI MOSFETs is the random discrete dopants in the 

source and drain region. Applying the six-sigma tolerance criteria. in the presence 

of all sources ofIPF. 10 nm UTB-SOI MOSFET based SRAM cells require at least 

a cell ratio of two, while 7.5 nm SRAM cells requires at least a cell ratio of three. 

The stability advantages of SRAM cells utilising UTB-SOI MOSFET 

compared to bulk MOSFET SRAM cells has also been discussed. The operation 

of 10 nm UTB-SOI MOSFET based SRAM cells is more stahle compared to 

35 nm bulk MOSFET memory cells even though operated at 80 percent of the 

supply voltage. Therefore, the transition to UTB-SOl technology could extend 

the benefits of SRAM scaling beyond the 25 nm technology generation. However. 

simulation results show that the intrinsic parameter fluctuations is becoming one 

of the major factors limiting the integration of UTB-SOI into billion transistor 

count chips for transistors with channel length below 10 nm. 

The significant impact of intrinsic parameter fluctuations especially random 

discrete dopants on the performance of UTB-SOI MOSFET based SRAM cells 

cannot be ignored. SRAM simulation considering combination of all sources 

of intrinsic parameter fluctuations show 6 to 24 percent access performance 

difference between fastest and slowest SRAM cells which may cause violation 

of delay requirement for reliable memory cell operation. 
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It is also anticipated that intrinsic parameter fluctuations will increase the 

overall leakage of cache memory. contributing to an increasing fraction of static 

energy consumption for the next generation high performance microprocessors. 

The combined effect of large cache structures (> 16 MB) and large leakage current 

results in expected power dissipation nearing 100m W for high performance 

10 nm UTB-SOI MOSFET based SRAM cells and more than a watt for 5 nm 

based SRAM cells. Increased power translates to more heat which in turn 

degrades performance and reliability. 



Chapter 6 

Conclusions 

The aim of this thesis was to investigate the impact of different sources of 

intrinsic parameter fluctuations in next generation UTB-SOI MOSFETs on the 

functionality and the performance of the corresponding 6T-SRAM cells. This 

covers three different aspects of UTB-SOI MOSFET device modelling and 

simulation. The first aspect is the device-level modelling, applied to study the 

impact of intrinsic parameter fluctuations in a family of well scaled UTB-SOI 

MOSFETs. The inclusion of different sources of intrinsic parameter fluctuation 

allows detailed analysis on important electrical characteristics of the scaled 

devices. The second aspect is the development of a statistical circuit modelling 

framework which takes into account the intrinsic parameter fluctuations in UTB­

SOl MOSFETs. This methodology provides a link between device-level and 

circuit level modelling of intrinsic parameter fluctuation. The simulation results 

obtained from device-modelling simulation have been translated into a compact 

model framework for use in circuit-level simulation. The third aspect is statistical 

circuit-level modelling applied to study the influence of different sources of 

intrinsic parameter fluctuations on 6T SRAM based on UTB-SOI MOSFETs. 

In Chapter 2, a literature review embracing various aspect of this thesis has 

been presented. The scaling limitation of conventional bulk MOSFET which 

shifts the interest of the research and industrial community towards advance 

UTB-SOI MOSFET architecture has been identified. The inherent advantage of 

UTB-SOI MOSFETs have been discussed in comparison to bulk counterparts. 

109 
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Several design considerations using gate and source/drain engineering have been 

presented to alleviate these problem existing technology and process limitations. 

MOSFET scaling continues in to the nanometre regime, the discreteness of 

charge and matter introduces intrinsic parameter fluctuations that can not be 

removed by tightening of the process control or by the introduction of new 

materials. Intrinsic parameter fluctuations are becoming a reality that has to be 

properly reflected in device and circuit simulations. The Glasgow 3D atomistic 

simulator has been employed in order to accurately model the 3D nature of 

the intrinsic parameter fluctuation sources. The "atomistic" simulator includes 

quantum correction which plays an increasingly important role in nanometer 

scale devices. Compact models such as Berkeley BSIMSOI are required to to 

investigate UTB-SOI MOSFET circuit behaviour. However, modern compact 

models are largely empirical, preventing a direct link to technology, device design 

parameters and proper physical understanding. In order to assess the impact of 

different sources of intrinsic parameter fluctuations on circuit behaviour, statistical 

compact model simulation methodology is required. The SOl based SRAM cells 

are superior compared to their bulk counterparts in terms of performance, density 

and power dissipation. It also suffers from intrinsic parameter fluctuations which 

are most pronounced in minimum geometry MOSFETs commonly used in area­

constrained circuits such as SRAM cells. To fully realise the perfonmmce benefit 

of UTB-SOI MOSFET, a detailed study of their susceptibility to IPF is required. 

In Chapter 3, simulation results for the intrinsic parameter fluctuations in 

ensembles of 200 well scaled 10 nm, 7.5 nm and 5 nm UTB-SOI MOSFET have 

been presented. The transistors correspond to the long term, high performance 

requirement of the ITRS roadmap. The individual and combined effects of random 

discrete dopants, body thickness variations and gate line edge roughness were 

investigated. For all investigated UTB-SOI MOSFET, the intrinsic parameter 

fluctuations increase with decreasing channel length and are dominated by random 

discrete dopants in the source/drain region. However, the effects of body thickness 

variation and line edge roughness could not be disregarded. The specific design 

parameters of the scaled UTB-SOI MOSFETs devices will determine which of 

these two sources of fluctuations will dominate in the future. The inclusion of 

all sources of fluctuations results in a threshold voltage standard deviation of 
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22 m V in the 10 nm devices and increases to 79 m V for 5 nm devices. The 

simulation results also demonstrate that fluctuations caused by failing to scale 

line edge roughness become more critical compared to the fluctuations induced by 

random discrete dopants. If lithographic technology are not improved, line edge 

roughness resulted in more than 25 percent increase of treshold voltage standard 

deviation compared to random discrete dopants. The sources of IPF also results in 

a substantial increase of fluctuations in off-current and on-current of the simulated 

devices. The standard deviation of the off-current, considering all sources of 

fluctuations in combination, is 0.28 orders of magnitude for the 10 nm UTS-SOl 

MOSFETs, rising to 0.9 orders of magnitude for the 5 nm devices. The combined 

sources of IPF cause between 11 to 28 percent standard deviation of on-current 

for the UTB-SOI MOSFETs investigated in this work. The simulation results 

indicate that the scaling of UTB-SOI MOSFET below 10 nm channel length will 

be extremely difficult from the intrinsic parameter fluctuations point of views. 

In Chapter 4, UTB-SOI MOSFET data characteristics corresponding to the 

10 nm, 7.5 nm and 5 nm channel length devices considering different sources 

of intrinsic parameter fluctuations both individually or in combination, have 

been converted into sets of compact model libraries. To facilitate the process, 

a new statistical circuit simulation methodology which takes into account each 

source of intrinsic fluctuations in UTB-SOI MOSFETs has been developed. 

The methodology allows seamless integration into the currently available EDA 

tools. The methodology combines a statistical compact model extraction strategy 

and a statistical circuit simulation procedure. The statistical compact-model 

extraction employs the Berkeley BSIMSOI model and a two stage extraction 

strategy. Although, BSIMSOI does not explicitly consider intrinsic parameter 

fluctuations, it has a number of empirical parameters introduced to model process 

variation conditions that can be used to model the fluctuations in atomistic UTB­

SOl MOSFET devices. The achieved RMS differences between the atomistic 

simulation data and the corresponding BSIMSOI result less than two percent 

for each source of IPF at all channel lengths. This clearly demonstrates that 

the statistical parameter extraction strategy can adequately describe the effect 

of IPF over the whole range of simulated devices. In the statistical circuit 

simulation, devices are randomly selected from the compact model library built by 
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the statistical extraction strategy. This guarantees that the devices used in circuit 

simulations correctly represent realistic intrinsic parameter fluctuations effects. 

In Chapter 5, the impact of different sources of intrinsic parameter fluctuations 

on 6T SRAM cells based on the 10 nm, 7.5 nm and 5 nm UTB-SOI MOSFET 

has been investigated individually or in combination. The SRAM cell have been 

evaluated in terms of stability, performance and leakage. As expected, random 

discrete dopants in the source/drain regions dominate the SRAM variability 

compared to other sources of intrinsic parameter fluctuations. Random discrete 

dopants results an approximately 10 percent SNM failure rate at 7.5 nm channel 

length and a 13 percent failure rate at 5 nm channel length. Increasing the cell 

ratio, r improves the SNM of the simulated SRAM cells by 20 to 40 percent. The 

increase of the cell ratio also reduces the fluctuations of the SNM. Increasing the 

cell ratio to three delivers 30 percent reduction of the SNM standard deviation 

for the 10 nm channel length SRAM cells. However, the improvement is 

less pronounced at shorter channel lengths. Simulation results demonstmte 

that 10 nm UTB-SOI MOSFET are more stable than 35 nm bulk MOSFET 

even though operated at 80 percent of the expected supply voltage. Intrinsic 

parameter fluctuations caused significant disparity in access performance which 

may cause violation of the delay requirement for reliable memory cell operation. 

SRAM simulation considering combination of all sources of intrinsic pammeter 

fluctuations show 6 to 24 percent access difference between fastest and slowest 

SRAM cells. It is also anticipated that intrinsic parameter fluctuations will 

increase the overall leakage of cache memory contributing to an increasing static 

power consumption. The combined effect of large cache structures (> 16 MB) and 

large leakage current results in expected power dissipation nearing 100 mW for 

high performance 10 nm UTB-SOI MOSFET based SRAM cells and more than a 

watt for 5 nm based SRAM cells. 

6.1 Future Work 

There are several future research directions stemming from this work. For the 

device modelling aspect, the introduction of roughness at the gate electrode/gate 

dielectric interfaces will be a natural extension of this work. Considering other 
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sources of fluctuation including structural non-uniformity of high-k gate dielectric 

and traps or defects in the gate insulator at the interface or in the Si body 

MOSFET that will cause microscopic variations in device characteristics is also 

important. Investigation of unintentional strain induced fluctuations is another 

possible direction of research. 

Since intrinsic parameter fluctuations are one of the important factors that 

impact the design of the next generation circuits, a more physically based compact 

model is required. The compact model should have the ability to predict the 

magnitude of intrinsic parameter fluctuations and the quantum mechanical effects 

governing the operation of nanoscale MOSFETs. Since the variations of the 

transistor characteristics due to intrinsic parameter fluctuations will be increasing 

with scaling, it is imperative to understand the nature of their impact on various 

circuits and to develop design techniques to reduce their impact. 
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