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ml   Millilitre(s) 

mmHg  Millimetres of Mercury 

MLC   Myosin Light Chan 

MLCK   Myosin Light Chain Kinase 

MRA  Mesenteric Resistance Artery 

MS   Mass Spectrometry 

n   Nano (prefix) 

NO   Nitric Oxide 

OD   Optical Density 

PBS    Phosphate-Buffered Saline 

PCA   Principal Component Analysis 

PDGF   Platelet Derived Growth Factor 
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PGI2  Prostacyclin 

Pen/strep   Penicillin / Streptomycin 

PFA    Paraformaldehyde 

Pi   Inorganic Phosphate 

PI3K    Phosphatidylinositol 3-Kinase 

PKC  Protein Kinase C 

PMSF   Phenylmethylsulphonyl Fluoride 

PTM  Post Translational Modifications 

QTL   Quantitative Trait Loci 

QC  Quality Control 

rcf   Relative Centrifugal Force  

RhoA   Ras Homolog Gene Family, Member A 

Rock   Rho Kinase 

ROS  Reactive Oxygen Species 

PRLC   Reverse Phase Liquid Chromatography 

rpm    Revolutions per Minute 

RT   Retention Time 

r.t   room temperature 

SAPK / JNK  Stress-Activated Protein Kinase / c-Jun N-Terminal Kinase 

S1P   Sphingosine-1-Phosphate 

S1PR1 / S1P1  Sphingosine-1-Phosphate Receptor 

SBP   Systolic Blood Pressure 

SDS     Sodium Dodecyl Sulphate 

SDS-PAGE   Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis 

SEM    Standard Error of the Mean 

SHR   Spontaneously Hypertensive Rat 

SHRSP    Stroke-Prone Spontaneously Hypertensive Rat 

SP  Short for SHRSP  

SW2a  SP.WKYGla2a Congenic Strain 

SW2k  SP.WKYGla2k Congenic Strain 

TBS   Tris - Buffered Saline 

TBST   0.1% Tween-20 in TBS 

TPR   Total Peripheral Resistance 

v (vs)  Versus 

v/v   Units volume per unit volume 

VCAM-1    Vascular Cell Adhesion Molecule-1 

VEGF   Vascular Endothelial Growth Factror 

VSMC    Vascular Smooth Muscle Cell 

w/v  Units weight per unit weight 

WB   Western Blot 

WHO  World Health Organisation 

WKY   Wistar Kyoto  

WS2a  WKY.SPGla2a Congenic Stain 
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Thesis Summary 

Essential hypertension (EH) is considered one of the major contributors to the present 

pandemic of cardiovascular disease (CVD). EH has a largely obscure aetiology, which lies 

upon both environmental risk factors and underlying genetic traits. The stroke-prone 

spontaneously hypertensive rat (SHRSP) is an excellent model of human EH and exhibits salt 

sensitivity. Two quantitative trait loci (QTL) for blood pressure (BP) regulation have been 

identified on rat chromosome 2 (chr.2). On this basis, previous work in our laboratory 

focused on construction of chr.2 congenic strains, on both the SHRSP and Wistar-Kyoto 

(WKY) genetic backgrounds. In combination with microarray gene expression profiling in 

kidney from salt-loaded rats, two positional candidate genes for salt-sensitive hypertension 

were identified. Sphingosine-1-phosphate receptor 1 (S1pr1) and vascular adhesion 

molecule (Vcam1) lie on the chr.2 congenic interval implicated in salt-sensitivity. 

Additionally, studies on vascular smooth muscle cells (VSMC) demonstrated enhanced 

S1PR1-mediated sphingosine signalling in SHRSP compared to WKY. Finally, glutathione S-

transferase mu 1 (Gstm1) was identified as another chr.2 candidate gene for BP regulation, 

lying outside the region implicated in salt-sensitivity.  

This project attempts to comprehensively investigate the potential role of altered 

S1PR1 signalling in BP regulation and salt-sensitivity, through comparative proteomic and 

metabolomic profiling in WKY, SHRSP and chromosome 2 congenic and transgenic stains 

(WKY.SPGla2a, SP.WKYGla2a, SP.WKYGla2k and Gstm1-transgenic).  

Characterisation of S1PR1 expression in renal and vascular tissue from 21 week-old 

salt-loaded rats, demonstrated below detection protein levels across parental and congenic 

strains. To further investigate the effect of the congenic interval and Gstm1 on salt-

sensitivity and BP regulation and identify putative biomarkers, high-throughput metabolomic 

screening of urine and plasma was conducted in parental, SP.WKYGla2k congenic and Gstm1-

transgenic strains, on a normal-salt and high-salt diet. In both urine and plasma, salt-loading 

affected processes implicated in CVD, including inflammatory response, free radical 

scavenging and lipid metabolism. In urine, oleic acid, implicated in regulation of renin levels, 

was increased in the SHRSP and transgenic salt-sensitive strains compared to the WKY and 

2k congenic salt-resistant strains, upon salt-loading. In plasma, known biomarkers of CVD 

were altered in SHRSP compared to the other three strains, at normal-salt, including L-

proline and linoleic acid. Upon salt-loading, glutathione disulfide and sphingosine-1-
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phosphate (S1P) were identified in high levels in the salt-sensitive strains. However, at 

normal-salt S1P was decreased in SHRSP compared to WKY and 2k congenic strains. 

Therefore, characterisation of the impact of S1P/S1PR1 signalling in the vasculature across 

the different strains was further investigated.  

 Initially, structure, mechanical properties and vascular reactivity of mesenteric 

resistance arteries (MRA) were studied in 16 week-old parental and reciprocal 2a congenic 

strains (WKY.SPGla2a and SP.WKYGla2a). There was no significant remodelling observed across 

the strains. However, SHRSP vessels were stiffer and this phenotype was under the control 

of the congenic segment. SHRSP exhibited hypercontractility, which was mediated by 

RhoA/Rock signalling pathway and was corrected by the transfer of the congenic interval in 

SP.WKYGla2a. SHRSP also displayed endothelial dysfunction, which was related to reduced 

nitric oxide (NO) bioavailability and was not improved by the congenic interval. The 

predominant regulatory mechanisms of contraction and relaxation in MRAs from WKY and 

WKY.SPGla2a were demonstrated to be different compared to SHRSP.  

Subsequently, representation of these physiological differences in MRAs, at the 

molecular level, was investigated along with the effect of S1P-signalling in HTN. 

Comprehensive, high-throughput proteome profiling of S1P-stimulated primary mesenteric 

VSMCs from parental and 2a-reciprocal congenic strains, was achieved through triple stable 

isotope labelling (SILAC), LC-MS/MS analysis and MaxQuant quantification. Detection of few 

abundant phosphorylated proteins was attributed to lack of enrichment for 

phosphoproteome. Therefore, focus was placed on proteins whose differential expression 

between SHRSP and WKY was genetically regulated. These proteins mapped to pathways 

implicated in BP-regulation, including oxidative stress, vascular tone regulation and vascular 

remodelling. Glutathione S-transferase mu 1 (GSTM1) was upregulated in SHRSP, as opposed 

to down-regulated NAD(P)H oxidase quinone 1 (NQO1) and heme oxygenase 1 (HMOX1), 

suggesting different antioxidant mechanisms in health and disease. Natriuretic peptide 

receptor C (NPR3) which is implicated in vascular relaxation was increased in SHRSP, along 

with activators of RhoA contractile mechanism, such as caveolin1 (CAV1). Furthermore, 

RhoA/Rock signalling pathway was highly altered in SHRSP. Finally, differentially expressed 

proteins were related to sphingosine signalling, including superoxide dismutase 2 (SOD2) 

and collagen type III, alpha 1 (COL3A1). 

To further investigate the metabolic effect of sphingosine signalling across the strains, 

and assess the contribution of the congenic interval, metabolomic profiling of primary 
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mesenteric VSMCs from parental and SP.WKYGla2a congenic strains, was performed at basal 

conditions and upon S1P-stimulation. A labelling-free, untargeted approach was employed, 

using HILIC-MS analysis and data processing through IDEOM. The effect of the congenic 

interval on the metabolic profile of SP.WKYGla2a was more profound under basal conditions. 

S1P-stimulation induced greater responses in SHRSP than WKY, indicating altered signalling. 

Furthermore the responses were different in each strain, suggesting a combined effect of 

the genetic background and the congenic interval on S1P signalling regulation. Inosine, 

which is implicated in purine metabolism, was significantly decreased in SHRSP compared to 

SP.WKYGla2a, at basal conditions, but was increased upon-S1P stimulation, implying that this 

S1P effect depends on the congenic interval. Moreover, tyramine, which has vasodilatory 

properties, was increased in stimulated SHRSP compared to basal conditions, indicating 

potential relation of sphingosine signalling with BP-regulation.  

This study has combined high-throughput proteomic and metabolomic screenings with 

congenic and transgenic strains to capture a clearer picture of the pathophysiological 

processes that underlie HTN in SHRSP. Individual metabolites and proteins or pathways and 

processes identified to be altered in HTN, through this work, can be used for generation of 

new testable hypothesis towards the development of new therapeutic approaches against 

HTN. 



1 Introduction 
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1.1 Cardiovascular Disease 

 Cardiovascular disease (CVD) refers to a class of disorders associated with the heart 

and vascular system, including coronary artery disease (CAD), cerebrovascular disease, 

hypertension, peripheral vascular disease, heart and renal failure. In the modern world, it 

represents a major cause of morbidity and mortality. In 2008, CVD was the leading cause of 

deaths attributed to non-communicable diseases (NCD), accounting for 17.3 million deaths 

or approximately 47% of the NCD deaths, according to the World Health Organisation (WHO, 

2012). The rapid rise in the mortality of CVD over the last decades can be attributed 

primarily to modifiable environmental risk factors, such as poor diet, tobacco use and 

physical inactivity (Yusuf et al., 2001). However, CVD is also known to have a large heritable 

component, classifying it as a complex and multifactorial disease (Kathiresan and Srivastava, 

2012). 

Hypertension (HTN) is considered one of the major contributors to the present 

pandemic of CVD (Levenson et al., 2002a, Carretero and Oparil, 2000). The WHO 2012 

statistics-report highlights the growing problem of raised blood pressure, which exhibits a 

high frequency affecting almost one in three adults (WHO, 2012). The actual prevalence and 

absolute burden of HTN was 26.4% (972 million) in 2000 and was predicted to increase by 

60% (1.56 billion) by 2025. Although the relative numbers of hypertensive adults were 

greater in economically developed countries, the rate of increase in incidence of HTN was 

almost 7 times higher in the developing world. Moreover, prevalence was similar between 

men and women and increased with age, consistently in all regions (Kearney et al., 2005). 

Despite advances in the prognosis and primary prevention of HTN, treatment remains poor 

(Vidt and Borazanian, 2003, Kumar et al., 2013). Therefore, there is a pressing need for 

better understanding of the pathophysiological mechanisms and genetics of HTN towards 

the improvement of public health and socioeconomic conditions. 

1.1.1 Hypertension: Causality and Classification 

Hypertension is a disease of large phenotypic variance, characterised by elevated 

blood pressure (BP). Diagnosis of HTN is made when patient’s average systolic/diastolic 

blood pressure (SBP/DBP) is consistently 140/90 mmHg or greater, although risk varies even 

at levels below 140/90 mmHg (pre-hypertensive; 120-139/80-89 mmHg) (Kshirsagar et al., 

2006). BP is a complex trait because of interplay between heritable components and 

environmental factors. Modifiable risk factors for increased BP include elevated body mass 
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index (obesity), insulin resistance, high alcohol / salt intake, smoking, sedentary lifestyle, 

stress and low potassium / calcium intake. Conversely, age, family history of CVD, gender 

and ethnicity belong to non-modifiable risk factors (Poulter, 2003). The prevalence of HTN 

increases with age, and above the age of 50 years systolic HTN represents the most common 

form of HTN (Chobanian et al., 2003). The occurrence of the disease changes with race, age, 

geographic patterns, gender and socioeconomic status. Critically, there is a strong positive 

and continuous correlation between systolic BP (SBP) and the risk of cardiovascular disease 

(CVD) (stroke, myocardial infarction, and heart failure), renal failure and mortality 

(Chobanian et al., 2003, Carretero and Oparil, 2000).  

According to the causality, HTN is classified in primary and secondary. Primary or 

essential hypertension (EH) is the dominant form, which accounts for 90-95% of cases of 

HTN (Carretero and Oparil, 2000). It is a disorder of largely obscure aetiology with lifestyle, 

environmental and genetic (Pickering, 1955, Marteau et al., 2005) components implicated in 

the occurrence. On the other hand, secondary hypertension is the least common form of 

HTN and is caused by another pre-existing medical condition, such as renovascular disease, 

renal failure, aldosteronism or tumours (Carretero and Oparil, 2000). 

1.1.2 Essential Hypertension 

1.1.2.1 Genetic Regulation of EH 

EH is a heterogeneous disorder, with different patients having different causal factors 

that lead to high BP. However, in most of EH cases the causes are not clear. Since its 

description as a polygenic trait (Pickering, 1955), EH genetic predisposition has been 

extensively reviewed (Franceschini and Le, 2013, Padmanabhan et al., 2012). There are also 

preliminary studies on epigenetic regulation of EH by DNA methylation, histone 

modifications and microRNAs (Udali et al., 2013).  

Early mechanistic insights into pathways altered in BP homeostasis came from studies 

on human Mendelian forms of HTN. These syndromes are caused by mutations in single 

genes which have large effects on BP and exhibit an early onset hypertension. Most of the 

mutated genes identified, correspond to rare variants which are associated with impaired 

sodium re-absorption (Table  1-1) (Munroe et al., 2013). 



Sofia Tsiropoulou Chapter 1 24 

Table  1-1. Mendelian / monogenic forms of hypertension.
1
 

 

                                                      

1 Table 1-1 summarises main features of Mendelian forms of HTN, causative genes and processes 

affected. WNK1/4: lysine deficient protein kinase 1/4; KLHL3: Kelch-like protein 3; CUL3: cullin 3; 

PPARγ: peroxisome proliferator-activated receptor gamma; NR3C2: mineralocorticoid receptor; 

CYP11B1: 11β hydroxylase; CYP11B2: aldosterone synthase; CYP17A1: 17α hydroxylase; HSD11B2: 

11β-hydroxysteroid dehydrogenase; SCNN1B/G: sodium channel nonvoltage-gated 1, β and γ 

subunits; IR: insulin resistance; T2DM: Type II diabetes mellitus; Chr: chromosome. 
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Recent advances in high-throughput genomic approaches have allowed more robust 

identification of genetic determinants of EH and BP. Human candidate genes studies have 

identified more than 110 genes to be potentially implicated in EH, such as angiotensin I 

converting enzyme (ACE), and nitric oxide synthase 3 (NOS3) genes (Benjafield and Morris, 

2000, Bedir et al., 1999). However, the results were difficult to replicate, frequently due to 

poor study design or SNP (single nucleotide polymorphisms) coverage. Such studies analyse 

allelic frequencies of genetic markers (SNPs), tandem oligo-nucleotide repeats or gene copy 

number on a set of potential candidate genes, in patients and healthy individuals. Further, 

genetic linkage studies have identified susceptibility loci for EH and BP in every human 

chromosome so far (Cowley, 2006). This approach analyses the frequency by which adjacent 

SNPs/alleles are inherited with the trait of interest, while further fine mapping narrows 

down the genomic region of interest and identifies new genetic biomarkers. Several genetic 

linkage studies on human populations of different ethnicities have repeatedly associated the 

long arm of chromosome 2 (Chr.2q) with BP/EH regulation (Caulfield et al., 2003, Mocci et 

al., 2009, Rao et al., 2003). However, such approaches have been challenging due to the 

polygenic nature of BP regulation. This issue has been tackled by large-scale, genome-wide 

association studies (GWAS) (Table  1-2), which, over the past few years, have accelerated the 

current understanding of the genetic architecture of BP and EH. GWAS investigate dense 

sets of single nucleotide polymorphisms (SNP) with allele frequency greater than 5% in a 

population, located throughout the genome and their association with complex polygenic 

traits. In humans, common genetic biomarkers for EH/BP have been reported in 29 loci, by 

identifying SNPs within or between genes as in the case of ATP2B1 (intron; (Levy et al., 

2009)), NPR3 - C5orf23 (intergenic; (Ehret, 2011)) and in regulatory regions as in the 

promoter region of UMOD (Padmanabhan et al., 2010) and NOS3 (Salvi et al., 2012).  

However, the reported genetic biomarkers represent, collectively, only a small fraction 

of BP heritability and have small size effects that do not explain BP phenotypic variance. 

Molecular and functional dissection of novel variants, using more detailed low-throughput 

analytical methods along with pathway analysis and in combination with advanced mapping 

(genome exon sequencing) and epigenetic studies may shed light into the aetiology of 

human EH (Padmanabhan et al., 2012). For example, in the case of UMOD, studies in 

transgenic mice homozygous for UMOD promoter risk variants demonstrated salt-sensitive 

hypertension and renal lesions, similar to those observed in homozygous individuals (Trudu 

et al., 2013). 
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Table  1-2. Genetic loci associated with BP and/or hypertension identified in genome-wide 

association studies (GWAS). The loci are listed in chromosomal order. 
2
  

 

                                                      

2  GWAS studies: CHARGE (Levy et al., 2009); GBPG (Newton-Cheh et al., 2009); AGEN-BP (Kato et al., 

2011); ICBP (Ehret et al., 2011); Gene-centric (Johnson et al., 2011); BP-extremes (Padmanabhan et 

aal. 2010). MTHFR: methylene-tetrahydrofolate reductase; NPPA: atrial natriuretic peptide; NPPB: 

brain natriuretic peptide; AGT: angiotensinogen; ULK4: serine/threonine-protein kinase ULK4; 

MECOM (MDS1): myelodysplasia syndrome protein 1; FGF5: fibroblast growth factor 5; NPR3: 

natriuretic peptide clearance receptor; HFE: human hemochromatosis protein; NOS3: nitric oxide 

synthase 3; CACNB2: voltage-dependent calcium channel B2 subunit; CYP17A1: cytochrome p450; 

PLEKHA7: plextrin-homology domain-containing family A member 7; SOX6: sex determining region y 

(SRY)-box 6; LSP1/TNNT3: leukocyte-specific protein 1 / troponin T type 3; ATP2B1: 

calcium/calmodulin-dependent ATPase isoform 1; SH2B3: lymphocyte-spesific adapter protein; TBX5, 

TBX3: T-box family genes; CSK: cytoplasmic tyrosine kinase; UMOD: uromodulin; ZNF652: zinc-finger 

protein 652; GNAS: guanine nucleotide binding protein, a-subunit stimulating; EDN3: endothelin 3.  
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1.1.2.2 Salt Sensitivity 

High salt intake is a major dietary risk factor contributing to EH with approximately one 

half of essential hypertensive patients demonstrating salt sensitivity. This chronic condition 

is characterised by exaggerated responses to changes in salt balance due to alteration of 

kidney function. Sodium retention, extracellular volume (ECV) expansion, increase of cardiac 

output and increased peripheral vascular resistance are some of the characteristic high salt-

intake phenotypes that lead to elevation of SBP.  

Salt sensitivity was arbitrarily classified by Weinberger et al. (Weinberger et al., 1986) 

as a difference of ≥10 mmHg in SBP between salt-loaded (2L of saline over 4h) and salt-

depleted (10mmol sodium diet per day, plus oral furosemide) states and salt-resistance as a 

difference of ≤5 mmHg. Salt-sensitive patients exhibit a significantly reduced capacity to 

restore sodium balance, after increased salt intake, due to impaired pressure-natriuresis 

relationship (Luft et al., 1986, Rodriguez-Iturbe and Vaziri, 2007). The implication of genetic 

factors has been demonstrated in humans (Mei et al., 2012, Svetkey et al., 1996). A number 

of mutations have been found in genes implicated in BP regulation, by encoding for proteins 

that alter renal salt re-absorption in kidney. Specifically, the mutations affected circulation of 

mineralocorticoid hormones, renal ion channels and transporters and the mineralocorticoid 

receptor, causing Mendelian forms of hypertension and hypotension (Lifton et al., 2001). In 

addition, several genetic polymorphisms (SNPs) related to impaired sodium excretion, have 

been localised in quantitative trait loci (QTL) for salt sensitivity in genetic rat models 

(Johnson et al., 2009, Yagil et al., 2003). Other processes which have been associated with 

salt sensitivity include altered activity of neurohormonal systems, renal inflammation and 

oxidative stress (Laffer et al., 2006, Manning et al., 2005, Beeks et al., 2004). Salt sensitivity, 

apart from enhancing susceptibility to renal damage, is considered a major contributor to 

overall cardiovascular risk.  
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1.2 Blood Pressure Regulation 

Circulation is a vital and highly regulated physiological function responsible for 

transportation of molecules (e.g. gases, nutrients and metabolism (by-)products) in the 

organism, across cells and organ tissues. The heart must pump against a variety of vascular 

beds (blood vessels) to transport blood to the organs, before it eventually returns to the 

heart via the veins, by flowing from areas of high to areas of low hydrostatic pressure. The 

force driving blood flow in the circulatory system is the mean arterial pressure (MAP), which 

is the result of the cardiac output (CO) multiplied by the total peripheral vascular resistance 

(TPR). CO represents the blood volume pumped by each heart ventricle per minute (~5.0 

L/min) and depends on the heart rate and the amount of blood pumped from each ventricle 

per pulse (stroke volume). TPR is influenced by the individual resistance in each vessel, 

which is predominantly determined by the lumen diameter (Di). The Di is controlled by a 

number of physiological and neurohormonal mechanisms to maintain a normal MAP in the 

system (Vander, 2001a). 

 The kidney is a major organ involved in MAP regulation by controlling the blood 

volume and the myogenic tone (the vessel's physiological contractile tension relative to 

maximally dilated state) in the circulatory system. In response to decreases in sodium or BP, 

kidney produces renin, which acts through the renin-angiotensin-aldosterone system (RAAS) 

to cause sodium re-absorption, water retention and vasoconstriction, promoting an increase 

in BP (Vander, 2001b). 

The autonomic nervous system can also regulate MAP through rapid activation of the 

sympathetic nervous system. Changes in BP are sensed by the baroreceptors in the vessels, 

which via signals to the vasomotor centre trigger secretion of hormones that affect the 

myogenic tone (a adrenoreceptors) and heart rate (β adrenoreceptors) to restore normal 

MAP (Julius, 1993). 

Large vessels do not play significant role in TPR, and therefore MAP regulation, due to 

increased diameter and elasticity (compliance; δV/δP). On the contrary, TPR is primarily 

controlled by the microcirculation, the part of vasculature that is more sensitive to pressure-

dependent diameter regulation, and consists of small arteries, pre-capillary arterioles, 

capillaries and venules, as well as elements of the lymphatic system (lymphatic capillaries 

and thoracic ducts). Increased resistance of these vessels, due to narrow Di and slow blood 



Sofia Tsiropoulou Chapter 1 29 

flow as a result of the high total cross sectional area (CSA), lowers the MAP, under normal 

conditions (Figure  1-1) (Vander, 2001a).  

In pathological conditions, including HTN, there is normally a disturbance in the CO 

or/and TPR. 

 

Figure  1-1 - Systolic and diastolic blood pressures in the vascular system. The large drop in blood 

pressure is caused by the resistance vasculature (microcirculation), characterised by narrow lumen 

diameter and slow blood flow as a result of increased total cross sectional area (Adapted from 

Purves et al., Life: The Science of Biology, 4th Edition). 



Sofia Tsiropoulou Chapter 1 30 

1.2.1 Small Resistance Arteries in HTN 

HTN is characterised by sustained increase in TPR, caused predominantly by 

pathological narrowing of small arteries (Di: 100-300µm) and precapillary arterioles (Di 

<100µm), which are considered a continuum rather distinct sites of resistance control (le 

Noble et al., 1998). This is evidenced by a large drop in BP across these vessels, which 

predicts a high resistance during HTN (Borders and Granger, 1986, Bohlen, 1986) (Figure 

 1-1). The lumen narrowing, observed in small arteries of both hypertensive animals (Briones 

et al., 2003, Arribas et al., 1997, Mulvany, 1988) and humans (Schiffrin, 1999, Rizzoni et al., 

2003), is attributed to structural and functional alterations (Mulvany and Aalkjaer, 1990). 

Changes in structure of small resistance arteries, known as vascular remodelling, seem to be 

the result of abnormal organisation of extracellular material and have been significantly 

associated with the occurrence of cardiovascular events, including EH (Aalkjaer et al., 1987, 

Mathiassen et al., 2007, Muiesan et al., 2002). They have also been suggested to represent 

the most common and early form of target organ damage in human (Park and Schiffrin, 

2001). 

In addition, functional alterations refer, mainly, to impaired endothelial function and 

subsequent changes in the myogenic tone and Di, which are tonically modulated by 

endothelium-derived factors. Impaired endothelium-dependent responses in the resistance 

vasculature have been well documented in EH patients (Panza et al., 1990, Rossi et al., 1997, 

Taddei et al., 1992) and animal models (Ito and Carretero, 1992, Tuncer and Vanhoutte, 

1993). 

1.2.1.1 Vascular Smooth Muscle and Remodelling in HTN 

In the arterial wall, the smooth muscle (SM) layer consists of vascular smooth muscle 

cells (VSMCs) in a matrix of collagen and elastin fibres and is known as tunica media. 

Depending on the vessel type, SM appears to be of variable thickness with the exception of 

capillary vessels, which consist only from endothelium. In response to physiological or 

chemical signals, SM can rapidly adapt its structural design to regulate the lumen diameter 

(Di) and meet vessel's functional demands.  

It has been demonstrated that in EH patients and animal models the structure of small 

resistance arteries is abnormal, characterised by reduced Di and increased wall thickness to 

Di ratio (wall : lumen ratio), without change in wall mass (Aalkjaer et al., 1987, Rizzoni et al., 

2003, Briones et al., 2003, Arribas et al., 1997). The mechanisms leading to such 
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abnormalities are not fully understood. Wall stress-induced changes in extracellular matrix 

proteins and neurohormonal environment as well as ROS have been suggested as potential 

mechanisms playing an important role (Lee et al., 1995, Touyz et al., 2003). The altered 

structure is considered to be the result of abnormal elastin and collagen re-arrangement in 

the vessel wall, rather than SM growth, known as inward eutrophic remodelling (Briones et 

al., 2003, Arribas et al., 1997, Mulvany, 1988). 

Although structural changes in small arteries have been related to long-term elevated 

BP (Folkow, 1958), it is unclear whether remodelling is the cause or consequence of 

increased BP. Experiments in rats made hypertensive (Goldblatt technique) suggest that the 

remodelling is adaptive to increased BP (Deng and Schiffrin, 1991). On the contrary, 

increased media:lumen ratio has been observed in mesenteric resistance arteries (MRA) 

from rats (SHR) at a pre-hypertensive stage (Rizzoni et al., 1994). However, recent studies in 

humans show strong correlation between small artery remodelling and TPR, proposing that 

the structural changes are the result of myogenic tone rather than of pressure (Mathiassen 

et al., 2007). Such changes have, in turn, a positive feedback on TPR and BP.  

 

Figure  1-2 - Vascular remodelling. Structural changes in the vascular smooth muscle are reflected 

as changes in the cross sectional area (CSA) and lumen diameter (Di) of the vessel. The relationship 

between CSA - Di determines the type of remodelling in small and large arteries. (Adapted 

from Mulvany et al., 1996) 
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1.2.1.2 Vascular Endothelium and Endothelial Dysfunction in HTN 

The luminal surface of the entire cardiovascular system, from heart to capillary vessels, 

is lined by a monolayer of endothelial cells, the vascular endothelium or tunica intima. Apart 

from being a natural semi-selective barrier between circulating blood and tissue, the role of 

endothelium further expands into maintaining the balance between vasodilatation and 

vasoconstriction (myogenic tone), proliferation and migration of VSMCs (angiogenesis, SM 

growth, vascular remodelling) and thrombogenesis and fibrinolysis (inflammatory responses, 

coagulation) (Davignon and Ganz, 2004).  

Upon exposure to mechanical or chemical stimuli, endothelial cells synthesise and 

secrete a variety of vasoactive factors (Félétou and Vanhoutte, 2006), which act primarily on 

the underlying SM to modulate myogenic tone and thereby vascular resistance. Vasodilators 

such as nitric oxide (NO), endothelium-derived hyper-polarisation factors (EDHF) and 

prostacyclin (PGI2) increase vessel diameter and decrease resistance. The exact opposite 

effect is introduced by vasoconstrictors, including endothelin-1 (ET-1), angiotensin II (Ang II), 

prostanoids and reactive oxygen species (ROS) (Félétou and Vanhoutte, 2006, Vanhoutte et 

al., 2005). The relative contribution of each vasoactive mediator to endothelium-dependent 

responses varies according to the vessel size, the specific vascular bed, and the animal 

species. The mechanisms of action of these factors are discussed below and illustrated in 

Figure  1-3. 
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Figure  1-3 - Endothelium-mediated contraction and relaxation in the smooth muscle. 

Vasoconstrictors and vasodilators released from endothelium upon stimulation, act on the smooth 

muscle through G-protein coupled receptors (GPCR), diffusion or membrane hyperpolarisation to 

cause contractile or vasodilatory responses, respectively. AngII, angiotensin II; ET-1, endothelin-1; 

O2
.- 

, superoxide; ONOO
.-
, peroxynitrate; NO, nitric oxide; PGl2, prostacyclin; EDHF, endothelium-

derived hyperpolarisation factor; PLC, phospholipase C; IP3, inositol triphosphate; DAG, 

diacyloglycerol; Ca
+2

, calcium; p-MLC, phosphorylated myosin light chain; Rock, Rho kinase; sGC, 

soluble guanyl cyclase; AC, adenyl cyclase; cGMP, cyclic guanosine monophosphate; cAMP, cyclic 

adenosin monophosphate; arrows indicate increased / decreased levels.  

The major regulator of cardiovascular homeostasis is considered to be NO, since apart 

from mediating vascular relaxation it also protects vascular wall from coagulation of blood 

and inflammatory responses leading to atherosclerosis (Harrison et al., 2010, Kubo-Inoue et 

al., 2002). Moreover, NO is known as the gate-keeper of endothelial function since it 

controls the production/action of other endothelium-derived mediators, including EDHF and 

ET-1 (Feletou et al., 2008). Its vasodilatory effects are predominantly exerted through 

stimulation of the soluble guanylyl cyclase (sGC) in the VSMCs and subsequent production of 

cyclic-GMP (Hobbs, 1997). In a similar manner, PGI2 promotes SM relaxation by activating 

adenyl cyclase (AC) in the VSMCs, followed by generation of cyclic-AMP (Holzmann et al., 

1980). On the contrary, the identity of EDHF is still not known. Several molecules have been 

proposed to complement the vasodilatory actions of NO and PGI2, by causing membrane 

hyperpolarisation (opening of potassium channels) of VSMCs resulting in closure of voltage-
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gated calcium channels (Feletou and Vanhoutte, 2009). C-type natriuretic peptide (CNP) has 

been identified as a potential EDHF, highly associated with regulation of relaxation in small 

resistance arteries (Barton et al., 1998, Chauhan et al., 2003, Steinmetz et al., 2004).  

In the case of vasoconstrictors, peptides such as AngII and ET-1 exert their effects upon 

binding to a G-protein coupled receptor (GPCR) on the VSMC membrane. Regardless of the 

stimuli, the cellular mechanism leading to constriction involves initial elevation of cytosolic 

Ca2+ levels, through efflux of extracellular Ca2+ and release of intracellular Ca2+ from 

sarcoplasmic reticulum. Subsequently, Ca2+/calmodulin complex induces activation of 

myosin by the myosin light chain kinase (MLCK), to promote contraction. Contraction is 

further maintained by Ca2+-sensitisation signalling, in which RhoA small G protein and its 

downstream effector, Rho kinase (RhoA/Rock) prevent activation of myosin light chain 

phosphatase (MLCP) (Webb, 2003, Wynne et al., 2009). On the other hand, ROS, superoxide 

anion (O2
-) in particular, induce contraction mainly by increasing Ca2+ mobilisation or 

sensitisation, direct depolarisation of the cell membrane or activation of endothelial 

enzymes which produce endothelium-derived contracting factors (EDCFs) (Jin et al., 1991, 

Tang et al., 2004, Vanhoutte et al., 2005). 

1.2.1.2.1 Endothelial Dysfunction 

Under physiological conditions release of endothelium-derived vasodilators 

predominate to maintain a normal vascular tone. Sustained shift of the equilibrium towards 

generation of endothelium-derived contracting factors (EDCF) results in endothelial 

dysfunction (Abdel-Sayed et al., 2003). In general, endothelial dysfunction is characterised 

by impaired endothelium-dependent relaxation of the SM to vasodilators such as 

acetylcholine, bradykinin and calcium ionophore. The reduced sensitivity of the vessel to 

such factors results from altered production and/or action of endothelium-derived 

vasodilators. Altered endothelial function is considered the hallmark in almost all forms of 

CVD (Félétou and Vanhoutte, 2006, Widlansky et al., 2003), including hypertension (Grunfeld 

et al., 1995, Potenza et al., 2005, Treasure et al., 1993), atherosclerosis (Ludmer et al., 1986, 

Kawashima and Yokoyama, 2004), CAD (Chan et al., 2003) and heart failure (Heitzer et al., 

2005). Endothelial dysfunction has been shown to occur in small resistance arteries from 

both EH patients and animal models of HTN.  

The mechanisms underlying endothelial dysfunction vary, depending on pathological, 

physiological and non-modifiable risk factors such as age and gender. In HTN, the 

impairment has been attributed to reduced synthesis and release of NO (Taddei et al., 1999, 
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Panza et al., 1993), and EDHF (Goto et al., 2004, Onaka et al., 1998) , or increased release of 

EDCFs (Luscher and Vanhoutte, 1986, Vanhoutte and Tang, 2008). It is still unclear whether 

endothelial dysfunction is a predictor, a risk factor or an end point of HTN, although it has 

been shown to precede establishment of high BP in young normotensive offspring of EH 

parents (Taddei et al., 1996). Moreover, inconsistent effects of antihypertensive drugs on 

endothelial function, despite correction of BP levels (Ghiadoni et al., 2012), further support 

the notion that endothelial dysfunction may be a primary event to BP increase.  

An increasing body of evidence reveals oxidative stress as the common denominator of 

endothelial dysfunction in CVD, including EH (Griendling and FitzGerald, 2003a, Griendling 

and FitzGerald, 2003b). Oxidative stress occurs upon increased ROS production or reduced 

ability to scavenge ROS and/or impaired antioxidant activity (Touyz and Schiffrin, 2004). ROS 

have been involved in the inhibition of the three major endothelium-dependent 

vasodilatation pathways, i.e. NO, EDHF and PGI2, by reducing NO bioavailability, inactivating 

NO and PGI2 synthases or inhibiting sGC and decreasing the activity of channels implicated in 

the EDHF-mediated relaxation (Münzel et al., 2005, Zou et al., 2004, Liu et al., 2006, Kusama 

et al., 2005). Furthermore, ROS are known to induce VSMC contraction, as mentioned above 

(Félétou and Vanhoutte, 2006). It is still not clear whether vascular oxidative stress causes 

HTN in human, as only few antioxidant approaches have demonstrated improvement of 

endothelial function (Mistry et al., 2008, Duffy et al., 2001, Hamilton et al., 2002) as opposed 

to rat models of HTN (Hamilton et al., 2002, Graham et al., 2009, Savoia et al., 2006, Fennell 

et al., 2002). Furthermore, oxidative stress has been shown to precede the establishment of 

high BP in SHR rats (Nabha et al., 2005).  
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1.2.2 Treatments in HTN 

Despite the extensive research in the battle against HTN, no treatment able to correct 

for all of the increased BP levels, oxidative stress and endothelial dysfunction has been 

found, to date. For improvement of HTN a selection of antihypertensive drugs is being used 

according to the individual's cardiovascular profile (BP readings, cardiovascular risk) and 

their response to the therapy (Mathiassen et al., 2007).  

Traditionally, diuretics have been used as first line treatment to increase water and 

sodium excretion with subsequent reduction in CO and minor change of TPR (Shah, Littler 

2004). Likewise, antagonists of β-adrenergic receptors (β-blockers) exert their therapeutic 

effects by lowering CO, but have no effect on endothelial function (Taddei et al., 2001). 

Calcium channel blockers improve endothelial function (Taddei et al., 2001), decrease 

contraction of the SM and consequently the TPR, however, they have been related to high 

risk of myocardial infarction. Blockers of AngII II receptors (ARB) or of its converting enzyme 

(ACE) increase dilatation of small arteries, leading to reduced TPR, without improving 

endothelial function (Schiffrin, 1998, Taddei et al., 1998). Antagonists of α-adrenergic 

receptors (α-blockers), which are less commonly used, decrease contraction of muscle fibres 

in the small arteries and hence the TPR. Finally, combination therapies, using more than one, 

are applied in the majority of cases, such as renin–angiotensin system inhibitors and calcium 

channel blockers, or renin–angiotensin system inhibitors and diuretics (Daskalopoulou et al., 

2012, Frank, 2008). However, none of the modern therapies seem to have consistently long-

term effects in lowering the pressure of EH patients. Unfortunately, their effects have not 

been assessed on TPR or small artery structure (Mulvany, 2012). It has been shown that 

therapies using substances with vasodilatory effects (Ca antagonists, ACE inhibitors, and 

receptor blockers (ARB)) can normalise small vessel structure, whereas beta-blocker 

treatments do not reduce TPR (Buus et al., 2004) and therefore do not correct the abnormal 

structure (Mathiassen et al., 2007, Agabiti-Rosei et al., 2009). Hence, treatment of HTN 

which focuses only on BP regulation could correct large artery and LV morphology, whereas 

for the normalisation of the crucial small resistance vessels structure vasodilator therapies 

are required (Mulvany, 2005, Mulvany, 2012, Schiffrin, 2010).  

Apart from prescription of antihypertensive drugs, preventative lifestyles changes are 

essential in order to control BP levels and lower the risk of CVD and renal damage 

(Daskalopoulou et al., 2012). 
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1.3 HTN in Rats 

The use of experimental animal models in studies of human diseases has been vital to 

the understanding of their pathophysiology. Using in-bred animal models ensures increased 

genetic homogeneity, reduced environmental effect through standardised housing criteria, 

and allows for controlled mating between diseased and healthy animals for linkage analysis 

(Graham et al., 2005). 

Due to clear pathogenic (genetic, biochemical and physiological) similarity with 

humans, rodent models are extensively used in the investigation of the genetic, cellular and 

molecular basis of CVD in order to gain a better understanding of the long-term BP 

regulation. The rat, mouse and human genomes encode for a similar number of genes and 

almost all human genes have corresponding orthologues in the rat genome (Rat Genome 

Sequencing Project Consortium; 2004). Moreover, rodents are ideal experimental models in 

the drug research and testing due to their small size, short breeding time and simple 

husbandry.  

Despite mice being the major model for mammalian genetic studies and 

manipulations, it is not the most appropriate model of human CVD, due to their small size 

and increased heart rate. On the contrary, rats have been widely bred to provide an animal 

model of human EH, due to their higher pathophysiological similarity to the human 

condition, as well as their bigger size which makes them more amenable to handling (Rapp, 

2000). 

1.3.1  Rat Models of HTN and Salt Disease 

Most of the rat experimental models of HTN were developed from either Wistar-

related or Sprague-Dawley stock, which share a common origin, using selective inbreeding, 

surgery, diet or drug treatment to induce HTN. A phylogenetic tree of 28  inbred laboratory 

rat strains used in the study of complex diseases, including HTN, has been generated 

recently, following their genome sequencing (Figure  1-4) (Atanur et al., 2013). 

An example of a genetic model of HTN is the Dahl salt-sensitive (S) and salt-resistant 

(R) rats, which were bred on the basis of their BP after being fed a high salt diet (8% NaCl). 

On the other hand, genetically hypertensive rats (GH) and spontaneously hypertensive rats 

(SHR) are two models developed by rats selectively bred for high BP without any dietary or 

environmental stimuli. Rats with surgery-induced HTN include the Goldblatt model of 

renovascular HTN, in which one or both renal arteries have been constricted by use of a 
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small adjustable clamp (Goldblatt et al., 1934). Sabra HTN prone (SBH) and resistant (SBN) 

strains were selectively bred according to the response of BP to unilateral nephrectomy, 

treatment with deoxycorticosterone acetate and 1% NaCl to drink. Several rat hypertensive 

models have been generated using specific diet or drug treatments, such as high salt / fat / 

sugar diets, chronic inhibition of NO and chronic infusion of AngII. Despite the common 

genetic origin of the above strains, the genetic diversity amongst them is substantial and 

comparable to the divergence between unrelated humans (Doggrell and Brown, 1998, 

Dornas and Silva, 2011). 

 

Figure  1-4 - Phylogenetic tree of inbred experimental rat models used in studies of complex human 

diseases, including hypertension, diabetes and insulin resistance. The scale represents genetic 

distance based on whole genome comparisons, using Brown Norway (BN/Mcwi) as the reference 

strain (Atanur et al., 2013). 
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1.3.2 The Stroke-Prone Spontaneously Hypertensive Rat (SHRSP) 

The most commonly studied SHR is a breed established in the early ‘60s (1963), at the 

University of Kyoto, from Wistar-Kyoto (WKY) normotensive male with elevated BP mated to 

female with slightly elevated BP (Okamoto and Aoki, 1963). Further selective inbreeding of 

SHR more susceptible to stroke led to development of an SHR sub-strain, the stroke-prone 

SHR (SHRSP) (1974) (Yamori and Okamoto, 1974). The SHRSP spontaneously develops 

cerebral stroke as well as severe hypertension (>200 mmHg) early in life. The onset of 

spontaneous HTN is between 8 and 12 weeks of age and its magnitude is closely related to 

the incidence of stroke. SHRSP also exhibit sexual dimorphism, characterised by more 

pronounced HTN in male than in female animals. At 16 weeks of age, SBP reaches 

approximately 180 mmHg in male compared to 150 mmHg in females. Divergence in SBP 

between individual SHRSP colonies is observed, considering different husbandry regimes and 

criteria for selecting breeding pairs. Further hypertensive phenotypes and end organ 

damage exhibited by SHRSP include salt-sensitivity, proteinuria, left ventricular hypertrophy, 

and endothelial dysfunction (Yamori and Okamoto, 1974, Ohtaka, 1980, Tesfamariam and 

Halpern, 1988).  

Because of the similarity in the pathophysiolology of stroke and EH between this strain 

and humans (Rapp, 2000), SHRSP is one of the most utilised experimental models for 

studying development, prognosis and treatment of EH, as well as interactions between 

genetics and environment. Its wide use in the genetic study of HTN involves genetic 

manipulations via generation of congenic (chromosomal segment replacement) and 

consomic (whole chromosome replacement) strains. Hilbert et al. (Hilbert et al., 1991)  at 

the same time with Jacob et al. (Jacob et al., 1991) were the first to generate congenic 

strains of crosses between SHRSP and the normotensive control Wistar-Kyoto (WKY) in 

genetic linkage studies, aiming to locate candidate genes that regulate the quantitative trait 

of EH. However, SHRSP fail to display every phenotype of human EH. It is known that this 

strain do not exhibit spontaneous heart failure. Moreover, rats do not develop spontaneous 

atherosclerosis due to their plasma profile of high HDL levels (Fernandez et al., 1999) and 

absence of cholesteryl ester transfer protein (CETP) (Guyard-Dangremont et al., 1998), as 

well as their increased ability to convert cholesterol to bile acids (Horton et al., 1995).  

SHRSP and WKY rats have been bred in Glasgow since September 1991. Integrity of 

colonies and hypertensive phenotype are ensured through selective mating of male SHRSP 

with SBP of 170-190 mmHg and female animals with SBP of 130-150 mmHg, measured by 
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tail cuff.  Offspring start to develop HTN at 6-8 weeks of age and by 12-16 weeks they exhibit 

baseline SBP of 187 mmHg, compared to 134 mmHg for age-matched WKY (Figure  1-5A) 

(Graham et al., 2007, Koh-Tan et al., 2009). Consomic and congenic strains have been 

constructed and utilised in genome-wide linkage studies to identify candidate genes for BP 

regulation and salt-sensitivity, in SHRSP (Clark et al., 1996, McBride et al., 2003). 

1.3.3 Congenic Strains in Genetic Screenings 

Congenic strains are constructed by selective replacement of a chromosomal region 

closely linked to genes and other genetic elements, underlying a particular polygenic trait 

(e.g. EH) in the recipient strain, with the homologous region from the donor strain. Such 

regions of interest are known as quantitative trait loci (QTL). For identification of candidate 

genes underlying a trait, QTLs are the first to be determined via genome wide linkage scan 

by use of microsatellite markers. Subsequent generation of congenic and consomic strains 

verifies the existence of the QTL. Further breeding produces smaller congenic substrains, 

carrying a reduced size of the implicated chromosomal region for gene identification (Zhang 

et al., 1997). Finally genome-wide microarray expression profiling allows for identification of 

differentially expressed, candidate genes. In SHRSP, QTLs associated with BP regulation and 

salt-sensitivity have been identified on chromosomes 2, 3 and 14 (Clark et al., 1996, McBride 

et al., 2005, McBride et al., 2003). Moreover, construction of reciprocal congenic stains has 

previously been used in the genetic dissection of a BP QTL on rat chromosomes 1, 8, 9 and 

13  (Clemitson et al., 2007, Zhang et al., 1997, Kumarasamy et al., 2011, Ariyarajah et al., 

2004) 

Previous work in our laboratory has led to construction of chr.2 congenic animals by 

mating of WKY (donor) and SHRSP (recipient) rats (Jeffs et al., 2000). A 'speed congenic' 

strategy was used, by combining a marker-directed breeding programme with genetic 

linkage maps, to achieve the congenic strains in 3-4 backcross generations (Jeffs et al., 2000). 

The strains were confirmed through genotyping. These animals exhibit significant reduction 

in SBP at baseline, when compared to SHRSP (Figure  1-5A). Total genome screening in the 

congenic strains (F2 generation) confirmed findings of Clark et al. (Clark et al., 1996) on the 

two QTLs for BP and salt-sensitivity identified on rat chr.2 (Jeffs et al., 2000, McBride et al., 

2003). Further exclusion mapping studies on this chromosome, by use of the congenic 

animals, identified a potential 6-Mbp region harbouring candidate genes for salt sensitivity 

(Figure  1-5B). Subsequent microarray expression profiling carried out in whole kidneys from 
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salt-loaded parental and chr.2 congenic strains revealed differential expression of 

physiological candidate genes for BP and salt-sensitivity in HTN (Graham et al., 2007, 

McBride et al., 2003). 

1.3.4 Candidate Genes for BP Regulation and Salt Sensitivity in SHRSP 

1.3.4.1 Glutathione S-transferase Mu Type 1 (Gstm1) 

One of the first positional and functional candidate genes for BP regulation identified 

in our laboratory on rat chr.2 was glutathione S-transferase mu type 1 (Gstm1) (Figure  1-5B) 

(McBride et al., 2003). Gstm1 encodes for an enzyme belonging to the superfamily of 

glutathione S-transferases (GST), which catalyses ROS scavenging by conjugation to the 

reduced form of glutathione (GSH), and therefore participates in the endogenous defence 

against oxidative stress (Hayes and Pulford, 1995). Studies in the absence of salt loading  

demonstrated reduced renal mRNA and protein levels in young SHRSP (5 week old) and 

adult (16 week old) compared to SP.WKYGla2c* and WKY. Gene sequencing identified SNPs in 

coding and non-coding (promoter) regions (McBride et al., 2005). Moreover, combination 

antihypertensive treatment, using an ARB and a diuretic/vasodilator, did not restore Gstm1 

expression levels in young SHRSP, despite improvement of renal histopathological damages 

caused by sustained high BP (Koh-Tan et al., 2009). The above findings suggest involvement 

of Gstm1 in the pathogenesis of HTN and occurrence of endothelial dysfunction, potentially 

via an oxidative stress pathway.   

 



Sofia Tsiropoulou Chapter 1 42 

 

Figure  1-5 - Identification of congenic interval and candidate genes for salt sensitivity and BP 

regulation. (A) Averaged weekly radiotelemetry recordings of night-time and day-time SBP in male 

WKY and SHRSP parental, SP.WKYGla2k, SP.WKYGla2a and SP.WKYGla2c* congenic strains. The 

animals were put on high-salt diet at 18 weeks of age. (B) Middle: Schematic map of chromosome 

2 from congenic strains SP.WKYGla2a, 2k and 2c*. Blue bars: regions of WKY homozygosity, red 

bars: regions of SHRSP homozygosity, hatched bar: region of recombination and heterozygosity. 

Right: Physical map of a 6-Mbp congenic interval harbouring physiological candidate genes for salt 

sensitivity including S1pr1 and Vcam1. Left: Genetic map. The location of Gstm1 is indicated 

outside of the region implicated in salt-sensitivity (McBride et al., 2003). A and B edited from 

Graham et al., 2007. 
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1.3.4.2 Sphingosine-1-Phosphate Receptor 1 (S1pr1) and Vascular Cell Adhesion 

Molecule (Vcam1) 

Sphingosine-1-phosphate receptor 1 (S1pr1) and vascular cell adhesion molecule 

(Vcam1) were identified as two positional candidates for salt-sensitivity, lying on the 6-Mbp 

congenic interval of rat chr.2 (Graham et al., 2007). The proteins produced by the two genes 

are known to lie on a number of common and functionally important molecular pathways 

(Graham et al., 2007, Yogi et al., 2011, Bolick et al., 2005). 

S1pr1, previously known as “endothelial differentiation gene 1” (Edg1), encodes for a 

G-protein coupled receptor (GPCR). It belongs to the family of receptors for sphingosine-1 

phosphate (S1P), a lysophospholipid released mainly from platelets at sites of tissue injury or 

inflammation to promote angiogenesis (Sano et al., 2002, Lee et al., 1999). The S1P receptor 

family consists of five members: S1PR1/EDG1, S1PR2/EDG5, S1PR3/EDG3, S1PR4/EDG6, and 

S1PR5/EDG8 (Pyne and Pyne, 2000a). Upon activation by S1P, the receptors couple to 

heterotrimeric G-proteins (exchange of GDP for GTP: Gi, Gq, and G12,13), which promote 

generation of second messengers to regulate a variety of cellular responses (Figure  1-6). 

Second messengers include phospholipase C (PLC), phospholipase D (PLD), adenylate cyclase 

(AC), intracellular Ca2+ levels, ERK, and many others (Van Brocklyn et al., 1998, Pyne and 

Pyne, 2000b). Regulated responses include survival, proliferation, migration, angiogenesis, 

and actin cytoskeletal rearrangements (Spiegel and Milstien, 2003a). The expression profile 

of each member changes across the different tissues and cell types. S1PR1, S1PR2, and 

S1PR3 are the most widely expressed and therefore most studied, whereas S1PR4, and 

S1PR5 are expressed in limited tissues and their function is less clearly understood. S1PR1 is 

highly abundant in endothelial cells and has been shown to signal exclusively through 

coupling with Gi (Windh et al., 1999). Its key role is the regulation of endothelial barrier 

functions, cell proliferation and migration, differentiation and vascular maturation (Kimura 

et al., 2000, Lee et al., 1998). Altered S1PR1 signalling has been implicated in the aetiology of 

cardiovascular disorders, including cardiac hypertrophy and inflammation (Yogi et al., 2011, 

Robert et al., 2001). Although the effects of S1P have been well documented, a major 

limitation in studying the role and signalling of discrete endogenous receptor subtypes has 

been the lack of subtype-selective agonists and antagonists, as well as poor receptor 

antibodies. Use of subtype-specific knockout mice has provided a powerful tool to overcome 

such challenges (Ishii et al., 2002, Liu et al., 2000). However, the S1pr1 knock-out mouse 

shows embryonic lethality and the cardiac specific knock-out is not yet available. In recent 
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years, however, a number of such ligands (fingolimond - FTY720, SEW2871) have emerged 

and are undergoing clinical trials to determine their efficiency in treating acute kidney injury 

and autoimmune disorders such as multiple sclerosis by inducing lymphopenia (Kim et al., 

2011, Lien et al., 2006).  

 

Figure  1-6 - Overview of signalling pathways of S1P receptors (S1PR) and regulated cellular 

responses. Upon activation, all S1PR can couple to Gi proteins, all except S1PR1 couple to G12-13 and 

finally the S1PR2 and S1PR3 receptors can also couple to Gq. Subsequently, the signal can be 

transduced through several second messengers to regulate different processes. S1PR1 couples 

exclusively to Gi, which then can activate either phospholipase C (PLC) to increase intracellular Ca
2+

 

levels, or Ras (small GTPases family) to promote proliferation, or phosphatidylinositol 3-kinase 

(PI3K) to induce survival and migration. It can also block adenylate cyclase (AC) to inhibit 

migration. Edg, endothelial differentiation gene; G, heterotrimeric G-proteins; Rac, subfamily of 

Rho GTPases ; Rho, small GTPases family;  DG, diacylglycerol; IP3, inositol triphosphate; JNK, C-Jun 

N-terminal kinase; cAMP, cyclic AMP; AKT, protein kinase B ; ERK, extracellular signal-regulated 

kinase; PKC, protein kinase C. 
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Vcam1 is mainly expressed in endothelial cells after stimulation by cytokines, encoding 

for an adhesion molecule which functions as a pro-inflammatory marker. Alternative splicing 

results into two different transcripts encoding for two isoforms of VCAM1. The membrane-

bound form allows adhesion of leukocytes (lymphocytes, monocytes, eosinophils, basophils) 

to vascular endothelium and subsequent trans-endothelial migration into arterial intima, 

and it also functions in signal transduction (Jager et al., 2000). The soluble isoform is used to 

monitor the membrane-bound VCAM1 expression and high levels are indicative of 

progressive formation of atherosclerotic lesions in human (Jager et al., 2000, Jang et al., 

1994). Although hypertensive rat models, are not readily susceptible to atherosclerosis, due 

to a different lipoprotein profile from that of humans (i.e. low plasma levels of pro-

atherogenic LDL and VLDL), increased expression of the soluble VCAM1 indicate potential 

kidney inflammation and low grade arterial stenosis. 

Previous gene expression profiling in our laboratory, demonstrated differential 

expression of the two positional candidate genes, S1pr1 and Vcam1, in kidneys from salt-

loaded rats, and identified a number of SNPs in their promoter regions. mRNA expression of 

both genes was up-regulated in SHRSP compared to WKY and the SP.WKYGla2a and 

SP.WKYGla2k congenic strains. However, protein expression analysis in the salt-loaded 

kidneys showed reduced S1PR1 as opposed to increased VCAM1 in SHRSP relative to WKY 

and the congenic strains (Figure  1-7A and B). This lack of concordance in S1pr1 mRNA and 

protein levels was suggestive of abnormal post-transcriptional regulation or protein turnover 

and subsequent altered S1PR1 signalling in HTN (Graham et al., 2007). Reduced protein 

levels could imply reduced renoprotection according to studies in rodents, which 

demonstrated a protective role of S1PR1 activation on renal function, characterised by 

suppression of pro-inflammatory molecules (Awad et al., 2006, Lien et al., 2006). Moreover, 

the renal levels of the pro-inflammatory marker VCAM1 were up-regulated in our SHRSP, 

indicating progressive kidney inflammation, a known key mechanism for inducing salt 

sensitivity (Rodriguez-Iturbe et al., 2002). However, recent studies on mesenteric primary 

VSMCs from WKY and SHRSP demonstrated that S1P-mediated S1PR1 activation up-

regulated mitogenic and pro-inflammatory signalling, including induction of VCAM1 

expression (Figure  1-7C and D). S1P/S1PR1 signalling was found to be altered in HTN, with 

related responses amplified in SHRSP, including activation of receptor tyrosine kinases 

(EGFR, PDGFR) and mitogenic kinases (MAPKs, SAPK/JNK) (Figure  1-7C), as well as expression 

of pro-inflammatory markers (ICAM1, VCAM1) and VSMC migration (Yogi et al., 2011). 
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Figure  1-7 - Differential renal expression of S1pr1 and Vcam1 candidate genes, and altered vascular 

S1P/S1PR1 signalling, in hypertension. (A) and (B): Differential mRNA (qRT-PCR; top graphs) and 

protein (WB; bottom graphs) expression levels of S1pr1 and Vcam1 in kidney from salt-loaded 

SHRSP compared to WKY and the SP.WKYGla2a, SP.WKYGla2k congenic strains. Statistical analysis 

was performed using 1-way ANOVA with Dunnett’s posthoc test for multiple comparisons. 

Adapted from Graham et al., 2007. (C) and (D): Up-regulated mitogenic (SAPK/JNK 

phosphorylation) and pro-inflammatory (VCAM1 expression) responses upon S1P-stimulation in 

mesenteric primary VSMCs from WKY and SHRSP. Responses were mediated through S1PR1 and 

were augmented in SHRSP compared to WKY. *P< 0.05, ***P< 0.001 indicate statistical 

significance. Adapted from Yogi et al., 2011. 
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To better comprehend / visualise the relationship between the two candidate genes 

and the pathways they are involved in, a hypothetical signalling network with S1PR1 (EDG1) 

at the apex, has been previously proposed using systems biology approaches (Graham et al., 

2007). In this static model there is no concept of dynamic behaviour as it merely depicts 

protein-protein interactions, post-translational modifications (PTMs) and protein-DNA 

interactions (Figure  1-8). The rising argument is whether phenotypic differences between 

health and disease are driven exclusively by S1PR1 receptor via VCAM1 or by both candidate 

genes, which could be answered through enrichment of the pathway with dynamic data on 

the connectivities. 

 

Figure  1-8 - Transcriptional networks of S1pr1 and Vcam1 positional candidate genes. Static model 

of direct connections between S1PR1 and VCAM1 (generated by Ingenuity Pathway Analysis (IPA) 

software, Ingenuity Systems). The network is displayed graphically as nodes (gene products) and 

edges (the biological relationship between the nodes). Adapted from Graham et al., 2007. 
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1.4 Systems Biology 

Dynamic living systems sense their environment and respond to changes through 

complex cellular processes. Signal transduction and metabolic pathways are involved in 

every cellular response and are organized as highly interconnected networks, in which 

molecules participate in more than one reaction and there are several feedbacks. Therefore, 

any genetic alteration or exogenous perturbation results in a series of changes in the 

dynamic proteome and metabolome, which can be generally translated into phenotypic 

alterations. Thus, it becomes challenging to distinguish which metabolic processes / 

pathways are modified in each system, under different conditions.  

Systems biology aims to interpret experimental evidence by reconstructing 

interconnected networks with increasing reliability, which would further allow rigorous 

predictions of cellular responses to specific perturbations. Crosstalk between networks 

provides holistic information on living systems for subsequent studies on diagnosis or 

prognosis of diseases. The emphasis is on the shift from working on individual molecules to 

work on networks which constitute the functional processes that link genetic and 

biochemical networks with biological phenotypes. To achieve this, mathematical modelling is 

combined with experimental validation, generating dynamic network maps with models 

describing their behaviour.  

The use of mass spectrometry (MS)-based, high-throughput strategies permits precise 

and rapid proteome and metabolome screenings, which can capture changes in protein and 

metabolite profiles, as well as transient interactions between molecules. These approaches 

contribute to systematic mapping of cellular responses and the enrichment of static network 

maps obtained from genetic screens with dynamic data on their connectivity. Such 

combination of highly complementary network topology maps with inter-dependent 

dynamic data enables the study of cellular networks' function, from the physiological to the 

molecular level, and allows comparison of health and disease states.  
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Figure  1-9 - The 'omics' information universe. Systems biology aims to describe what can happen 

(genomics), what appears to be happening (transcriptomics), what makes it happen (proteomics) 

and what has happened and is happening (metabolomics) in a living system. Combination of this 

diverse yet complimentary information provides better understanding of the phenotype and 

function of the biological system. 
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1.4.1 Proteomics 

1.4.1.1 Mass Spectrometry-Based Quantitative Proteomics  

Proteomics is the science often described as the next step after the sequencing of the 

human genome, as it is supported that there are many more proteins than there are 

corresponding genes in the genome. Proteomics focus on the study of protein structure and 

function and the ways they are produced and interact under different conditions within 

cells, in a system-wide manner. This highly sensitive and accurate 'omics' strategy provides a 

means towards a global view of cellular proteomes, which will improve our understanding of 

fundamental biological processes underlying a wide range of diseases and may facilitate 

discovery of new drugs. To date, the only global proteome (interactome) 

screening/quantification has been completed in Saccharomyces cerevisiae (Krogan et al., 

2006, Gavin et al., 2006). 

In highly complex dynamic systems, such as cells, proteins comprise the principal 

components of every cellular response to genomic changes or exogenous perturbations. 

Such responses involve the interplay of multiple protein modifications, interactions and 

signalling networks. Therefore, comprehensive protein characterisation is vital in revealing 

the mechanisms and underlying principles of biological processes, as well as in detecting 

unpredictable events. The complexity of proteomic changes has made their identification 

and characterisation quite challenging in modern cell biology.  

Traditionally, techniques such as affinity purification of proteins and conventional 

column chromatography, combined with immunobloting, microscopy and mass 

spectrometry (MS), have been employed to measure abundance, modifications and 

interactions of proteins and have permitted extensive characterisation of many signalling 

pathways and cellular responses (Gingras et al., 2007, Kocher and Superti-Furga, 2007). 

However, limitations of such approaches include the need for specific antibodies or epitope-

tagged proteins, the false-positive interactions difficult to distinguish from true specific 

signals, the need for extensive protein purification resulting in loss of weak binders and of 

course the restricted throughput (small-scale) which sheds light into a small part of the large 

interconnected protein networks in the cell. Therefore, such approaches were not suitable 

for large-scale interaction mapping.  

Recent development of high-throughput, MS-based quantitative proteomics, highly 

sensitive and accurate, circumvents the above limitations, offering the potential to compare 

global proteomic outputs and gain molecular insights into cellular function and physiology, in 
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situations of health and disease. Large-scale, unbiased profiling of protein abundance 

(Andersen et al., 2005) and dynamics (Blagoev et al., 2003, de Hoog et al., 2004) provides 

data to improve characterisation of mechanisms of action and prediction of biomarkers. 

Monitoring of quantitative differences in proteomes and dynamic properties of proteins, 

including sub-cellular distribution, protein-protein interactions, turnover rates and PTMs 

(Mann, 2006, Ong et al., 2002), can be achieved by in vitro labelling of proteins. Labelling can 

be introduced either as chemical modifications (ICAT, iTRAQ) (Gygi et al., 1999, Ross et al., 

2004), or as metabolic tags of peptides (Ong et al., 2004). Direct comparison of intensity 

signals between differentially labelled isotopes correspond to peptide and protein ratios. 

Metabolic labelling with stable heavy amino acid isotopes (SILAC) is proving to be a state-of-

the-art, important tool for systems biology applicable from cell lines to primary cells, tissues 

(Ishihama et al., 2005) and animal models (Krüger et al., 2008, Sury et al., 2010). In 

combination with high-resolution MS-instruments and specialised data-processing 

bioinformatics tools, this powerful technique has led to a spectacular progress in rapid and 

accurate proteome screening of large proportions of mammalian proteomes (Graumann et 

al., 2008). 

1.4.1.2 Proteomics Instrumentation and Bioinformatic Analysis  

Routine MS-screening of hundreds of proteins in complex sample mixtures, within few 

hours, has been mainly permitted due to continuous development of the instrumentation 

and bioinformatics tools for sample processing and data analysis (Makarov et al., 2006, 

Domon and Aebersold, 2006, Mueller et al., 2008).  

Powerful mass spectrometers, such as the LTQ-Orbitraps, have become widespread in 

shotgun proteomics due to their high-mass precision and high-resolution in the rapid 

analysis of highly complex proteomes (Makarov et al., 2006, Olsen et al., 2005). Gigabytes of 

high-resolution MS data generated by proteomic analyses are processed through advanced 

computational software packages, essential for extraction, filtering, identification and 

quantification of such datasets. MaxQuant is a high-accuracy protein quantification platform 

developed by Cox et al. (Cox et al., 2009), which supports LTQ-Orbitrap instruments and 

enables high peptide identification rates. Combined with advanced modules for extensive 

bioinformatics and statistical analysis, these platforms represent powerful, unified 

computational analysis pipelines for quantitative proteomics. Perseus (http://www.perseus-

framework.org), is such a module separately developed to complement MaxQuant 

workflow. Finally, pathway/network analysis performed on relevant databases, such as 
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Ingenuity Pathway Analysis (IPA; http://www.ingenuity.com), allows for biological 

interpretation and generation of new testable hypotheses. 

However, such sensitive and automated technologies have the disadvantage of 

identifying a large number of contaminants. Additionally, during protein identification, 

partial overlap of the results from different quantification algorithms reflects imperfect 

overlap of different search engines (Searle et al., 2008, Yu et al., 2010). Because of this 

complexity, validating these events in vitro is difficult, despite the fact that they can provide 

a first step in establishing predictive models.  

 

 

Figure  1-10 – Quantitative shotgun proteomics. Differentially labelled protein samples (SILAC) are 

mixed in equal amounts and digested enzymatically into mixtures of chemically identical but 

isotopically distinct peptides. Peptides are then separated by high performance liquid 

chromatography (HPLC) and transferred into a mass spectrometer by electrospray ionisation (ESI). 

The mass spectra (MS) reveal intensity ratios of labelled peptide pairs/triplets, which assist relative 

quantification. Fragmentation spectra (MS/MS) of individual peptides contain information about 

peptide identity and are matched to protein sequence databases. Further bioinformatics analysis 

requires use of advanced algorithms, which enable protein identification and quantification, data 

visualisation and biological interpretation.  



Sofia Tsiropoulou Chapter 1 53 

1.4.2 Metabolomics 

1.4.2.1 Metabolomics Analytical Platforms and Applications 

Metabolomics is a rapidly growing field of post-genomic systems biology, 

complementary to the other 'omics' areas, focusing on comprehensive characterisation of 

living systems biochemistry (Arita, 2009). The metabolome of a biological system refers to its 

complete set of small molecules (metabolites). In contrast to genome and transcriptome 

which describe the potential of a cell, tissue or organism, metabolome represents the 

fingerprint of dynamic states that reflect the actual phenotypic status of the system 

(Breitling et al., 2008, Kell, 2006). Hence, metabolome screening offers an un-biased strategy 

towards characterisation of metabolic signatures/patterns driving phenotypic changes in 

disease and biomarker identification. Moreover, construction of dynamic metabolic maps 

would permit insights into physiological stress responses and pathological processes 

involved in disease development. 

However, due to the highly diverse chemical nature of metabolites, a truly holistic 

metabolomics approach is not possible on a single analytical platform (Moco et al., 2007, 

Garcia et al., 2008). Therefore, current metabolomic studies are either targeted, focusing on 

specific metabolites or metabolic pathways of interest (Scalbert et al., 2009, Olszewski et al., 

2010), or untargeted, aiming to identification of the most significant detectable changes in a 

system, but exhaustive coverage is not the goal (De Vos et al., 2007, Dunn et al., 2011). 

Normally, the latter approach is used in hypothesis-generating and biomarker identification 

studies (Sreekumar et al., 2009).  
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Figure  1-11 – Metabolite diversity. The highly diverse chemical nature of metabolites requires use 

of multiple analytical platforms in order to achieve comprehensive characterisation of the 

metabolome. Gas chromatography (GC) and hydrophilic interaction liquid chromatography (HILIC) 

are the two most commonly used platforms in metabolomics analysis, coupled to MS. Adapted 

from Gratzfeld-Husgen and Schuster, 1996; Agilent Technologies.  

To sidestep limitations of individual analytical methods in global metabolic profiling, a 

multi-platform approach is required (Mandal et al., 2012, Naz et al., 2013, Suhre et al., 

2010). However, recent advances in HPLC technologies and mass spectrometers, have made 

liquid chromatography coupled to mass spectrometry (LC-MS) increasingly popular in the 

field of metabolomics (Cubbon et al., 2010, Scalbert et al., 2009, Kamleh et al., 2008). 

Traditional reversed phase (RP) LC-MS, which is used for separation of hydrophobic small 

molecules on a non-polar stationary phase, is now complemented by the hydrophilic 

interaction LC (HILIC) approach which separates highly polar analytes on a hydrophilic 

stationary phase (Cubbon et al., 2010, Dunn et al., 2011, Scalbert et al., 2009). Therefore 

separation of a broader spectrum of metabolites is achieved. In combination with high-

resolution mass analysers, such as the Orbitraps which offer accurate mass detection within 

1ppm (Breitling et al., 2006, Moco et al., 2007) and much greater sensitivity over nuclear 

magnetic resonance (NMR) spectrometers, significantly improve metabolite identification. 

Moreover, quantitative changes are monitored simultaneously in hundreds of metabolites. 
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Nevertheless, presence of numerous structural isomers in biological systems makes 

confirmation of identifications extremely crucial. The two parameters most extensively used 

in identification are the LC retention time (RT) and MS/MS fragmentation spectra (Scalbert 

et al., 2009), which are normally compared to authentic standards or matched to public 

MS/MS databases. Despite all improvements in technologies and instrumentation, high 

technical and biological variability during robust characterisation of the extremely dynamic 

metabolome makes the use of large number of replicates (biological, technical, analytical) 

indispensable, to avoid inconsistent findings and increase confidence (Jankevics et al., 2011).  

One of the major goals of metabolomics is the discovery of metabolic biomarkers, 

which are essential tools in clinical diagnostics as well as in monitoring progression of 

chronic diseases and responses to pharmacological treatments (Robertson, 2005, Rosner, 

2009). Chronic diseases, such as CVD, are typically multifactorial, characterised by systemic 

pathological changes, which influence numerous metabolic processes. Therefore, 

identification of a single biomarker cannot, normally, display the disease complex status and 

is insufficiently powerful to provide a clinically useful diagnosis. High-throughput, 

quantitative metabolic profiling offers the advantage of detecting several biomarkers or 

characteristic metabolite patterns, either genetically controlled or being the result of drug 

interventions. This way, a more accurate representation of the condition is provided and 

understanding of metabolism disorders and their underlying mechanisms is improved.  

The application of metabolomics in cardiovascular pathophysiology and genetics is a 

rapidly growing field, aiming to define a clearer metabolic picture for CVD prediction and 

progression. Accurate non-invasive techniques, carried out primarily on preparations of 

serum, plasma or urine (Giovane et al., 2008, Barderas et al., 2011, Waterman et al., 2010), 

have been combined with pattern-recognition algorithms to diagnose the presence and 

severity of the disease, as in the case of CAD (Brindle et al., 2002). A number of studies have 

focused and succeeded on establishing direct functional links between disease risk-genetic 

variants previously identified in GWAS, quantitative metabolic traits and an end-point of 

cardiovascular diseases. By integrating genomics with serum and urine metabolomics, such 

studies have allowed identification of new underlying biological processes and pathways in 

CVD (Illig et al., 2010, Suhre et al., 2011, Kettunen et al., 2012). Moreover, recent 

metabolomic studies are pointing at intestinal microbiota metabolism of nutrients as a 

potential risk factor for atherosclerosis pathogenesis (Koeth et al., 2013). 
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Therefore, data integration from high-throughput 'omics' studies will not only give 

insights into CVD pathophysiology, but will stress even more the importance of human 

metabolic individuality towards the development of new therapeutic strategies on a 

personalised medicine approach (Suhre et al., 2011).  

1.4.2.2 Metabolomics Bioinformatic Analysis  

In order to extract valuable information from gigabyte-large LC-MS datasets, the use of 

automated and reliable bioinformatics algorithms is essential. A number of freely available 

applications has been developed to aid conversion, quantification and identification of LC-

MS signals (Blekherman et al., 2011), complemented by advanced statistical software which 

extract significant features from such datasets (Madsen et al., 2010). IDEOM is a data 

processing pipeline developed for analysis of metabolomic LC/MS data from untargeted 

metabolomics studies (Creek et al., 2012). Its Excel graphical user interface (GUI) enables 

fast and easy conversion of raw LC-MS data into lists of putative metabolites, as well as 

advanced removal of noise and false identifications. This is achieved by implemented 

powerful processing tools, which perform automated filtering, peak annotation and 

metabolite identification with confidence levels and intensities (Smith et al., 2006b, 

Scheltema et al., 2011). Improved metabolite identification is based on mass and retention 

time matching to integrated databases. In addition, development of the PeakML.Viewer 

provides an environment for rapid inspection of peak quality (Scheltema et al., 2011). 

Subsequent interpretation of significant data through association with metabolic 

processes/networks and biomarker search, on web-servers such as IPA 

(http://www.ingenuity.com), allows for generation of new testable hypotheses and drug 

development.  

However, sensitivity of automated technologies on metabolite identification is 

particularly challenged by the highly unstable nature of metabolome, artefact peaks (Moco 

et al., 2007, Neumann and Bocker, 2010, Scheltema et al., 2009) and the large number of 

structural isomers in biological samples. Confidence of the results is greater when observed 

metabolic changes can be related to each other or to processes/pathways known to be 

deregulated or lastly to gene and protein networks of other 'omic' studies (Loscalzo et al., 

2007). Nonetheless, verification/validation of findings is vital before proceeding to 

generation of testable hypothesis and it minimally involves confirmation of the metabolite 

identity by further fractionation. In biomarker studies the result is usually validated in a 

different cohort of samples.  
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Aims 

Previously, microarray gene expression profiling in kidneys of salt-loaded WKY, SHRSP 

and chr.2 congenic strains, identified S1pr1 and Vcam1 as candidate genes predisposing to 

salt-sensitive HTN. In addition, studies in primary VSMCs from MRAs demonstrated 

association of S1P/S1PR1 signalling to specific pro-inflammatory pathways (VCAM1) through 

receptor tyrosine kinases, a process which was more pronounced in SHRSP compared to 

WKY. Moreover Gstm1 was identified as a chr.2 positional and functional candidate for BP 

regulation, mapping outside the region implicated in salt-sensitivity. 

The overall aim of this study is to dissect the functional role of these genes and of the 

chr.2 congenic interval in EH and salt-sensitivity in the SHRSP. A combination of chr.2 

congenic and transgenic strains with high-throughput proteome and metabolome screenings 

is used in order to achieve robust identification and characterisation of altered signalling 

pathways and metabolic processes associated with predisposing risk factors and 

consequences of HTN.  

The specific aims of this work are: 

• to compare, in vitro, S1PR1 expression profile in renal and vascular tissue from 21 week-

old, salt-loaded WKY, SHRSP and SP.WKYGla2a, SP.WKYGla2k congenic strains. 

• to characterise salt-sensitivity and identify putative biomarkers through metabolic 

profiling of matched urine and plasma from 21 week-old, control and salt-loaded, WKY, 

SHRSP, SP.WKYGla2k congenic and Gstm1-transgenic strains. 

• to examine, ex-vivo, MRA structure, mechanics and reactivity in vessel segments from 16 

week-old WKY, SHRSP and  SP.WKYGla2a, WKY.SPGla2a reciprocal congenic strains. 

• to study, in vitro, S1P/S1PR1-mediated mitogenic signalling in mesenteric primary VSMCs 

from 16 week-old WKY, SHRSP and SP.WKYGla2a, WKY.SPGla2a reciprocal congenic strains. 

• to extend the above study using MS-based quantitative SILAC-proteomic and 

metabolomic screenings for robust identification of S1P-mediated and genetically-driven 

changes in the global proteome and metabolome of VSMCs.  



2 Materials and Methods 
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2.1 Materials 

2.1.1 Biological Material  

Inbred colonies of the parental WKY and SHRSP, the congenic SP.WKYGla2a, 

WKY.SPGla2a and SP.WKYGla2k and the Gstm1-transgenic rat strains have been maintained at 

the University of Glasgow, by brother-sister mating and microsatellite/single nucleotide 

polymorphism genotyping, to ensure homozygosity of screened loci (Luft et al., 1988). The 

rats were housed under controlled conditions of 21°C and 12-hour light/dark cycles. The 

pups were weaned at 4 weeks and housed according to sibling group and gender thereafter. 

All rats were maintained on normal rat chow (rat and mouse No.1 maintenance diet, Special 

Diet Services, UK) and water ad libitum. The salt-loaded groups were given a salt challenge 

(1% NaCl in drinking water) at 18 weeks of age, for 3 weeks. The research was conducted in 

conformity with Public Health Service policy on the humane care and use of laboratory 

animals.  

Primary VSMCs previously isolated from thoracic aorta of the WKY and SHRSP rats, 

were grown in complete growth medium (section  2.1.4). Cell cultures were maintained for 

10-12 passages. 

2.1.2 Reagents 

General chemicals, enzymes and any reagents used in this study were of the highest 

available grades. Handling of all hazardous reagents was in accordance with Control of 

Substances Hazardous to Health regulations. The reagents were obtained from the following 

suppliers: 

• Avanti Polar Lipids Inc, Alabama, USA 

- VPC23019 sphingolipids 

• AMS Biotechnology Ltd, Europe 

- Detachin cell detachment solution 

• BD Biosciences, Oxford, UK 

- Cell nylon filter 100μm 

• BioRad Laboratories Ltd, Hertfordshire, UK 

- Ready gel tris-HCl 12%, Ready gel tris-HCl 10% 

• Dundee Cell Products Ltd, Dundee, UK 
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- DMEM-14 media (R0K0), DMEM-11 SILAC media (R6K6), DMEM-15 SILAC 

media (R10K8), dialysed FBS (MWCO 10,000 Da) 

• Enzo Life Sciences Inc (Biomol), UK 

- D-erythro sphingosine-1-phosphate  

• Fisher Scientific Ltd, Loughborough, Leicestershire, UK 

- Hepes, DMSO, Histoclear 

• GE Healthcare Bio-Sciences Ltd, Buckinghamshire, UK 

- Full-range markers RNP800E, Amersham Hybond-P polyvinylidene fluoride 

(PVDF) membrane 

• Invitrogen Ltd, Paisley, UK 

- Gibco high-glucose Dulbecco’s modified Eagle medium (DMEM), Gibco Ham’s 

F-12 nutrient mix, penicillin/streptomycin solution, gentamicin, L-glutamine, 

sodium pyruvate solution, trypsin-EDTA (0.5%-0.2%) solution, Prolong Gold 

• Lonza, Cambridge, UK 

- Calcium and magnesium free Dulbecco’s phosphate buffered saline (DPBS) 

• National Diagnostics, GA, USA 

- Histomount 

• PAA Laboratories Ltd, Somerset, UK 

- Foetal calf serum (FCS) 

• Promega Ltd, Southampton, UK 

- Sequencing grade modified trypsin 

• Roche Diagnostics Ltd, Burgess Hill, UK 

- Complete protease inhibitor cocktail 

• Sigma-Aldrich Company Ltd, Dorset, UK 

- 30% acrylamide/bis-acrylamide solution 37.5:1, bovine serum albumin (BSA), 

ponceau S, elastase (≥4 ui/mg), soybean trypsin inhibitor, N(G)-nitro-L-

arginine methyl ester hydrochloride (L-Name), carbamoylcholine chloride 

(carbachol), L-(-)-noradrenalin bitatrate (+)salt monohydrate, sodium 

nitroprusside (SNP), fasudil dihydrochloride, IgG mouse / goat / rabbit  

• Vector Laboratories Inc, Burlingame, USA 

- Vectashield, rabbit serum, goat serum 

• Worthington Biochemical Corp, Lakewood, UK 

- Collagenase type I (>200 IU/mg) 
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2.1.3 Kits 

The kits used in this study were obtained from the following suppliers: 

• Thermo Scientific, Waltham, MA, US 

- Pierce BCA Protein Assay kit 

• GE Healthcare Bio-Sciences Ltd, Buckinghamshire, UK 

- RPN2106 ECL Western Blotting Detection Reagents  

• AMS Biotechnology Ltd, Europe 

- CNM Compartmental Protein Extraction kit 

• Vector Laboratories Ltd, Peterborough, UK  

- Vectastain Universal Elite ABC kit  

- DAB Peroxidase Substrate Kit, 3,3’-diaminobenzidine  

2.1.4 Solutions & Media 

In all the solutions used in this study high purity sterile water was used as dissolving 

agent, unless otherwise stated. Laboratory glassware was autoclave-sterilised and sterile, 

disposable plastic-ware was used.  

• 6x SDS-PAGE sample buffer: 260mM Tris-HCl pH 6.8, 10% (w/v) SDS, 30% (v/v) 

glycerol, 0.012% (w/v) bromophenol blue, 6% (v/v) β-mercaptoethanol 

• SDS-PAGE resolving buffer: 10-12% (v/v) acrylamide/bis-acrylamide, 375mM Tris 

pH 8.8, 0.1 % (w/v) SDS 

• SDS-PAGE stacking buffer: 4% (v/v) acrylamide/bis-acrylamide,  125mM Tris pH 

6.8, 0.1 % (w/v) SDS 

• SDS-PAGE running buffer: 0.1 % (w/v) SDS, 25mM Tris, 192mM glycine 

• SDS-PAGE transfer buffer: 25mM Tris, 192mM glycine, 20% (v/v) methanol 

• Coomassie stain solution: 0.025% (w/v) Coomassie brilliant blue R-250, 40% (v/v) 

methanol, 10% (v/v) acetic acid 

• Coomassie de-stain solution: 40% (v/v) methanol, 10% (v/v) acetic acid 

• Ponceau S: 0.5% (w/v) Ponceau S in 1% (v/v) acetic acid 

• Tris-buffered saline / Tween (TBST): 140mM NaCl, 20mM Tris pH 7.6, 0.1% (v/v) 

Tween-20 



Sofia Tsiropoulou Chapter 2 62 

• Blocking buffer: 5% (w/v) BSA in TBST 

• 10x Phosphate-buffered saline: 1.37M NaCl, 27mM KCl, 0.1M Na2PO4, 18mM 

KH2PO4, pH 7.4 

• Citrate buffer: 8mM trisodium citrate, 2mM citric acid, pH 6.0 

• Stripping Solution: 0.2M glycine in 1% (w/v) SDS, pH 2.2 

• Krebs / Physiological salt solution (PSS): 119mM NaCl, 4.7mM KCl, 0.6mM 

MgSO4.7H20, 25mM NaHCO3, 1.18mM KH2PO4, 11mM D-glucose, 2.5mM 

CaCl2.2H20, pH 7.4 

• Calcium-free PSS: 23µM EDTA in PSS free of CaCl2 

• Potassium PSS (KPSS): 123mM KCl in PSS free of NaCl  

• Paraformaldehyde (PFA) 4%:  12.5mM NaOH 1N, 4% (w/v) PFA in DPBS 

• Metabolite extraction buffer: Chloroform : Methanol (100% v/v) : ddH2O (1:3:1) 

All cell culture media were supplemented with 10% FCS and 5% 100 IU/ml Penicillin - 

100μg/ml Streptomycin and were sterilized through a 0.2μm pore size filter, unless 

otherwise stated. 

• Wash media: Ham’s F-12 nutrient mix, 10mg/ml Gentamicin, 2mM L-glutamine, 

4.8g/ml Hepes, serum free 

• Complete growth media: DMEM with 4mmol/L L-glutamine, 4.5g/L D-glucose, 110 

mg/L sodium pyruvate 

• SILAC complete media: SILAC DMEM media containing unlabelled arginine and 

lysine amino acids (R0K0) / SILAC DMEM media containing 13C labelled arginine 

and lysine amino acids (R6K6) / SILAC DMEM media containing 13C and 15N labelled 

arginine, and 13C and 15N labelled lysine amino acids (R10K8). Media were 

supplemented with 10% (v/v) dialysed FBS. 

• Cryo-preservation media: 10% (v/v) DMSO in complete growth media  

• Pre-digestion media: 3mg/ml Collagenase II in wash media 
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• Digestion media: 2mg/ml BSA, 2mg/ml Collagenase II, 0.12mg/ml Elastase, 

0.36mg/ml soybean trypsin inhibitor in wash media 

• Cell lysis buffer: Buffer A: 50mM Na4P2O7, 50mM NaF, 50mM NaCl, 5mM Na2EDTA, 

10mM Hepes, 0.5% (v/v) triton X-100, pH 7.4; Buffer B: 1mM Na3VO4, 1mM PMSF, 

2 tablets of complete EDTA-free protease inhibitor cocktail per 50ml 

2.1.5 Primary Antibodies 

Primary antibodies were purchased from the following suppliers and are listed in Table 

 2-1:  

• Abcam, Plc., Cambridge, UK 

• Cell Signaling Technologies, Inc., MA, USA - New England Biolabs, Ltd, UK 

• Santa Cruz Biotechnology, Inc., CA, USA 

Table  2-1. List of primary antibodies used in the experiments 

Primary 

antibodies
Description Company Reference Dilution Method

1/200 - 

1/500 WB
1/100 - 

1/1000 IHC

HMOX1

IgG1 monoclonal antibody raised in mouse 

immunised with synthetic peptide corresponding to 

aa 1-30 of human HMOX1
Abcam ab13248 1/250 WB

CAV1

IgG polyclonal antibody raised in rabbit immunised 

with synthetic peptide corresponding to aa 1-17 of 

human CAV1

Abcam ab2910 1/500 WB

NPR3

IgG polyclonal antibody raised in rabbit immunised 

with synthetic peptide corresponding to aa 400-500 of 

human NPR3
Abcam ab79164 1/500 WB

NQO1

IgG polyclonal antibody raised in rabbit immunised 

with synthetic peptide from within residues 200 to C-

terminus of human NQO1

Abcam ab34173 1/500 WB

ACTA1

IgG polyclonal antibody raised in rabbit immunised 

with synthetic peptide from N-terminus of human 

ACTA1

Abcam ab11317 1/500 WB

IgG polyclonal antibody raised in rabbit immunised 

with synthetic peptide from C-terminus of mouse 

GSTM1

Provided by 

professor John D. 

Hayes

1/5000 WB

GAPDH
IgG1 monoclonal antibody raised in mouse 

immunised with rabbit muscle GAPDH
Abcam ab8245 1/5000 WB

GSTM1

1µg/ml WB

EDG1

IgG polyclonal antibody raised in rabbit immunised 

with synthetic peptide corresponding to aa 241-253 of 

human EDG1
Abcam ab23695

IgG polyclonal antibody raised in rabbit immunised 

with synthetic peptide from C-terminus of mouse 

EDG1

Provided by Dr. Tim 

Palmer (PA1-1040)
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Primary 

antibodies
Description Company Reference Dilution Method

ICC

AQP2

IgG polyclonal antibody raised in goat immunised 

with synthetic peptide corresponding to C-terminus 

of human aquaporin 2

Santa 

Cruz
sc-9882

1/100 - 

1/2000 
IHC

ACTA2

IgG2a monoclonal antibody raised in mouse 

immunised with synthetic peptide corresponding to 

N terminal amino acids 1-10 of alpha smooth muscle 

actin 

Abcam ab18147
1/100 - 

1/1000 
IHC

IgG polyclonal antibody raised in rabbit immunised 

with synthetic peptide corresponding to N-terminus 

of human SMCα-actin

Abcam ab5694 1/100

beta-Actin

IgG1 monoclonal antibody raised in mouse 

immunised with synthetic peptide corresponding to 

N-terminus of the beta isoform of actin

Abcam ab6276 1/10000 WB

p38 MAPK

IgG polyclonal antibody raised in rabbit immunised 

with synthetic peptide derived from the sequence of 

human p38 MAPK

Cell 

Signaling
#9212 1/1000 WB

WB

ERK1/2

IgG polyclonal antibody raised in rabbit immunised 

with synthetic peptide derived from a sequence in 

the C-terminus of rat ERK1

Cell 

Signaling
#9102 1/400 WB

phospho-     

p38 MAPK

IgG polyclonal antibody raised in rabbit immunised 

with synthetic phospho-peptide corresponding to 

residues surrounding Thr180/ Tyr182  of human p38 

MAPK

Cell 

Signaling
#9211 1/1000

WB

SAPK/JNK
IgG polyclonal antibody raised in rabbit immunised 

with GST/human JNK2 fusion protein

Cell 

Signaling
#9252 1/1000 WB

phospho-

ERK1/2

IgG polyclonal antibody raised in rabbit immunised 

with synthetic phospho-peptide corresponding to 

residues surrounding Thr202/Tyr204 of human ERK1

Cell 

Signaling
#9101 1/400

WB

Vimentin

IgG1 monoclonal antibody raised in mouse 

immunised with cytoskeletal vimentin extract of calf 

lens

Abcam ab8978 1/500 WB

phospho-

SAPK/JNK

IgG polyclonal antibody raised in rabbit immunised 

with synthetic phospho-peptide corresponding to 

residues surrounding Thr183/Tyr185 of human 

SAPK/JNK

Cell 

Signaling
#4668 1/1000

WB

Na-K 

ATPase

IgG1 monoclonal antibody raised in mouse 

immunised with full length native protein from 

rabbit renal outer-medulla
Abcam ab7671 1/5000 WB

histone 

H1.0

IgG1 monoclonal antibody raised in mouse 

immunised with ox liver histone H1.0
Abcam ab11079 1/500

WB

S1PR3

IgG monoclonal antibody raised in mouse immunised 

with synthetic peptide corresponding to C-terminal 

of human EDG3

Abcam ab12254 1/5000 WB

VCAM1

IgG monoclonal antibody raised in rat immunised 

with glycoprotein fraction from cerebellum of  8-10 

days old mice

Abcam ab78712 1/100

WBS1PR2

IgG polyclonal antibody raised in goat immunised 

with synthetic peptide corresponding to C-terminus 

of human EDG5
Santa Cruz sc-16085 1/100
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2.1.6 Secondary Antibodies 

Secondary antibodies were purchased from the following suppliers and are listed in 

Table  2-2: 

• Dako-Cytomation, Denmark  

• Abcam, Plc., Cambridge, UK 

• Vector Laboratories Ltd, Peterborough, UK 

Table  2-2. List of secondary antibodies used in the experiments 

Secondary antibodies Description Company Reference Dilution Method

Anti-mouse IgG

Horseradish peroxidase-

conjugated, polyclonal 

antibody, raised in rabbit

Dako #P0260 1/1000 - 1/2000 WB

Anti-rabbit IgG

Horseradish peroxidase-

conjugated, polyclonal 

antibody, raised in swine

Dako #P0399 1/1000 - 1/2000 WB

Anti-goat IgG

Horseradish peroxidise-

conjugated, polyclonal 

antibody, raised in rabbit 

Abcam ab6741 1/200 IHC

Anti-mouse/rabbit IgG
Biotinylated polyclonal 

antibody, raised in horse
Vector

#BA-1400 

(Universal 

ABC kit) 

1/200 IHC

 

2.1.7 Software 

• Image J V1.42, National Institutes of Health, Bethesda MD, USA 

• LabChart 6.1.1,  ADInstruments Ltd, Oxford, UK 

• MyoView 1.1, DMT, Denmark 

• Xcalibur 2.2.0 Thermo Fisher Scientific, Inc., MA, USA 

• MaxQuant 1.1.1.25, 1.2.0.18, 1.2.2.6, Max Planck Institute, Martinsried, Germany 

• Perseus 1.2.0.17, 1.2.7.4 Max Planck Institute, Martinsried, Germany 

• Scaffold 3.2.0, Proteome Software, Inc., Portland, USA 

• Mascot Server 2.3, Matrix Science Ltd, London, UK 

• IDEOM V11 – V19, Glasgow Polyomics Facility, Glasgow, UK 

• PeakML Viewer, Glasgow Polyomics Facility, Glasgow, UK 

• Wallac Work-Out, Turku, Finland  

• GraphPad Prism 4 for Windows, GraphPad Software, San Diego California USA 
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2.2 General Primary Cell Culture Methods 

All cell culture was performed under sterile conditions in vertical laminar flow 

cabinets. Cells were cultured in 100mm x 20mm culture dishes or T25, T75 and T150 culture 

flasks with vented cups (Corning, UK) and were maintained in the appropriate media as sub-

confluent cultures (70-80% confluence) at 37°C in a 5% CO2 humidified incubator. Media was 

replaced every other day. 

2.2.1  Isolation of Mesenteric Primary Rat VSMCs 

Rat primary vascular smooth muscle cells derived from mesenteric arteries of 16 week-

old male WKY, SHRSP, SP.WKYGla2a and WKY.SPGla2a rats were isolated by standard 

collagenase / elastase enzymatic digestion based on a modified version of the protocol 

described by Yogi and colleagues (Yogi et al., 2011). In summary, 1-3 animals were sacrificed 

by cervical dislocation and their mesenteric beds were excised and pooled in ice-cold wash 

media. Maximum storage time was 1h, on ice. Arteries were gently washed off of remaining 

blood with wash media and then incubated in pre-digestion media (10ml/mesenterium) for 

15min, at 37˚C under agitation. Excess fat, connective tissue and adventitia were stripped off 

in petri dishes containing cold wash media. Clean mesenteric beds were incubated in 

digestion media (7ml/mesenterium) for 60-90min, at 37˚C under agitation. The digested 

vessel fragments were subsequently passed through a 21-gauge needle, to obtain a 

homogeneous suspension, and filtered through a 100μm nylon filter to remove debris. Cell 

suspension was centrifuged for 2-3min at 800g, re-suspended in 5ml complete growth 

media, distributed in a T25 flask and kept in a 5% CO2 humidified incubator, at 37°C (passage 

0). Media was replaced after 24h. Cells were cultured up to passage 8.  

2.2.2 Culture and Passage of Primary Rat VSMCs 

Cultures of primary cells were passaged at approximately 70-80% confluence, ensuring 

they were not subject to stress by over or under-confluence. Media was removed and cells 

were washed in DPBS. Trypsin-EDTA (700µl / 25cm2) or Detachin (1ml / 25cm2), a mild 

enzymatic solution, were added to the cells and incubated at 37°C for 5min or until the 

majority of cells were detached. In the case of trypsin-EDTA the enzymatic action was 

subsequently suspended by the addition of a triple-volume of complete media. Cells were 
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pelleted by centrifugation at 800g for 3min and re-suspended in either fresh growth media 

for plating or ice-cold lysis buffer for protein extraction. 

2.2.3 Cryo-preservation of Primary Rat VSMCs 

Cells were harvested as described in section  2.2.2, and re-suspended in cryo-

preservation media at a density of approximately 2 x 106 cells/ml. Cell suspension was 

aliquoted into sterile 1ml cryogenic vials and cooled at a constant -1°C / min down to -80°C, 

using isopropanol containers. After 24h vials were stored in liquid nitrogen. 

For resuscitation, vials were quickly thawed at 37°C until culture was liquefied. Cells 

were carefully added into pre-warmed complete media and plated in a T25 flask. DMSO-

containing medium was replaced the following day. 

2.2.4 Characterisation of Mesenteric Primary Rat VSMCs 

The purity of primary VSMC cultures (% VSMC) was assessed by positive 

immunofluorescent staining (ICC) for the SMC type-specific marker SMC-α-actin (ACTA2, 

polyclonal rabbit-anti human; ab5694).  

At passage 2, cells were harvested and seeded onto sterile coverslips in 6-well plates 

and allowed to attach overnight. Media was then removed and cells were rinsed twice with 

DPBS, fixed in 4% PFA for 15min at rt and washed another three 5min times in DPBS. Cell 

permeabilisation with TritonX-100 (0.1% in DPBS) for 15min at rt was followed by three 5min 

DPBS washes. Cells were then incubated with 20% (v/v) serum/DPBS from the appropriate 

species that the secondary antibody was raised in, which was goat in this case, for 30min at 

rt, with one further DPBS wash. This was followed by incubation with the primary antibody 

(1:50 ACTA2 in 20% goat serum/DPBS) or an equivalent dilution of rabbit IgG used as a 

negative control, for 1h at rt. Excess primary antibody was removed by three 5min DPBS 

washes. Next, cells were incubated with secondary FITC-conjugated antibody (1:200 goat 

anti-rabbit IgG in 20% goat serum/DPBS), for 45min at rt. From this point on, coverslips were 

kept in the dark at all times to prevent photo bleaching of samples. Following a further three 

5min DPBS washes to remove excess secondary antibody, coverslips were mounted onto a 

glass slide using Vectashield supplemented with propidium iodide (PI) for nuclei counter-

staining. Coverslips were sealed with nail-varnish and left to dry overnight at rt, then stored 

at 4˚C. Cells were imaged under a Zeiss LSM 510 Meta confocal microscope (Carl Zeiss Ltd, 

Hertfordshire,UK) with compatible objectives, at x40 and x100 magnifications. 
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2.2.5 S1P-stimulation of Mesenteric Primary Rat VSMCs 

At sub-confluence (~80%), complete growth media was washed off three times with 

DPBS. Cells were starved overnight (~16h) in serum-free regular DMEM media to induce 

growth arrest and synchronise cell cycles to the G0 phase. Next day, starvation media was 

refreshed 30min prior to stimulation. Subsequently, cells were stimulated for 30min, at 37°C, 

with S1P (10-6mol/L) or an equivalent amount of 4mg/ml BSA in ddH2O (S1P solvent: 

vehicle), used as a negative control. Stimulation was terminated by washing off the media 

three times with cold DPBS. After removing DPBS completely, dishes were left upturned to 

dry and kept temporarily in dry ice or stored at -80˚C until used for whole cell lysate 

preparation. 

 In one set of experiments, prior to S1P stimulation, cells were exposed for 30min to 

VPC23019 (S1PR1/S1PR3 antagonist, 10-5mol/L) or equal amount of the VPC solvent [vehicle: 

DMSO/1N HCl (95:5 v/v) diluted (1:20) in 3% BSA (in ddH2O)], used as a negative control.  

2.2.6 SILAC Labelling of Mesenteric Primary Rat VSMCs 

Comparison of the whole proteome of the mesenteric primary VSMCs from WKY, 

WKY.SPGla2a, SP.WKYGla2a and SHRSP, was performed using stable isotope labelling with 

amino acids in cell culture (SILAC).  

At passage 3, the complete growth media was washed off twice with DPBS and 

replaced by regular DMEM medium supplemented with 10% dialysed serum. After cells 

being adapted for 24h, media was washed off and replaced by differentially labelled SILAC 

media. WKY cells were grown in the control “light”- R0K0 condition, with 12C6
14N4 L-arginine 

(Arg0) and 12C6
14N2 L-lysine (Lys0). SHRSP were “heavy”- R10K8 labelled with 13C6

15N4 L-

arginine (Arg 10; 10Da heavier) and 13C6
15N2 L-lysine (Lys8; 8Da heavier). The 2a congenic 

strains were “medium heavy”- R6K6 labelled with 13C6 L-arginine (Arg6; 6Da heavier) and 13C6 

L-lysine (Lys6; 6Da heavier). Cells were grown in the labelled media for 6 divisions, to ensure 

uniform incorporation of isotopic amino acids into proteins. At passage 7, cells were 

stimulated with S1P (10-6mol/L) as outlined in section  2.2.5 and harvested (section  2.2.2) to 

be used for proteome profiling. 
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2.2.7 Preparation of Whole Cell Lysates 

For protein extraction, cells were harvested as described in section  2.2.2, washed in 

DPBS and centrifuged for 5min at 800g, 4°C.  The pellet was then re-suspended in ice-cold 

lysis buffer (500µl / T150).   

In stimulation experiments (section  2.2.5), after washing off media, petri dishes were 

left inverted to dry. Two 10cm dishes were used per condition (e.g. vehicle, S1P-stimulated). 

Dishes were placed on an ice-tray and cells were scrapped off in ice-cold lysis buffer (120µl / 

dish) and collected into an Eppendorf tube.  

The suspension was incubated under rotation at 4°C for 30min and subsequently 

homogenised by 50 passes through a 25-gauge needle. Cell homogenates were centrifuged 

at 13,000 x g and 4°C for 15min and supernatant was stored at -80°C until required. Total 

protein concentration was measured using a BCA-based method as outlined in section  2.3.1. 

2.2.8 Compartmental Protein Extraction from Cells 

Enrichment of cellular compartments in protein was achieved using an Amsbio CNM 

Compartmental Protein Extraction Kit according to the manufacturer’s instructions. Briefly, 

cells were harvested, counted using a haemocytometer and lysed in an ice-cold hypotonic 

buffer (C-provided) by passing the suspension through a needle base for approximately 70 

times, while on ice. Lysate was compartmentalised in cytoplasmic, nuclear and membranic 

fractions by serial incubations (20min, 4°C) and centrifugations (20min, 15,000g, 4°C) in 

respective compartment extraction buffers. Hypotonic buffers C and N were used to break 

the cytoplasmic and nuclear membranes, respectively, whereas for extraction of membrane 

proteins the M buffer contained NP-40 detergent. Protein concentration of fractions was 

measured by BCA assay (section  2.3.1) and samples were stored at –80°C until required. 
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2.3 General Protein Methods 

2.3.1 Determination of Protein Concentration 

Protein concentrations were determined using a Pierce bicichoninic acid (BCA) Protein 

Assay kit according to the manufacturer’s instructions. Serial dilutions of albumin protein 

standard (provided), ranging from 25μg/ml to 2000μg/ml, was prepared (in lysis buffer) to 

generate a concentration standard curve for each assay. BCA reagent was prepared by 

mixing reagents A and B (provided) at a ratio of 50:1. 5μl of the albumin standards / protein 

samples / lysis buffer (blank) were added to a 96-well plate, in duplicate. Volume in each 

well was adjusted to 25μl with lysis buffer. BCA reagent (copper sulphate and bicinchonic 

acid) was then added at a ratio of 8:1 (BCA : sample/standard). Plates were subsequently 

incubated in dark at 37°C for 15min. At this temperature, protein peptide bonds reduce 

copper ions in the BCA reagent (Cu2+→ Cu1+). Each Cu1+ reacts with 2 molecules of BCA to 

produce a purple-coloured product detectable at 562nm. The optical density (OD) of the 

colour is directly proportional to the amount of protein in a sample. Absorbance at 562nm 

was determined using a Wallac Victor2 plate reader (Wallac, Turku, Finland). An average 

value of the two replicates was calculated. Concentration of protein in each sample was 

estimated from the linear equation of the standard curve by Work-Out software (Wallac) 

and the degree of dilution.  

2.3.2 SDS-PAGE  

In each experiment, equal amounts of protein samples (30-100µg) were diluted to an 

equal final volume, using ddH2O. Proteins were then denatured by exposure to 1% v/v β-

mercaptoethanol (1x sample buffer) and incubation at 70˚C, for 10mins. Samples were 

resolved by SDS-PAGE on gels of 4 % (w/v) acrylamide stacking buffer and 10-12 % (w/v) 

acrylamide resolving buffer, depending on the molecular weight of the proteins of interest. A 

30% acrylamide / bis-acrylamide mixture was used to form the gels, which were polymerised 

by addition of APS and TEMED. Full range (10 - 250 kDa) Amersham Rainbow or See Blue 

Plus2 molecular weight markers were resolved alongside samples to allow size estimation of 

immunoreactive proteins. Electrophoresis was performed in 0.1 % (w/v) SDS running buffer, 

at a constant electric potential of 150 volts. 
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2.3.3 Coomassie Staining / De-staining 

Following SDS-PAGE, gels containing the resolved proteins (section  2.3.2) were 

carefully stained in Coomassie solution for at least 30min, under gentle shaking. Gels were 

then de-stained in Coomassie de-staining solution, until protein bands become clearly 

visible. 

2.3.4 In-gel Trypsin Digestion of Coomassie-stained proteins 

All steps were performed in a laminar flow hood. Surfaces were cleaned with 70% (v/v) 

ethanol before use. Gloves were worn at all times to avoid keratin contamination. HPLC 

grade solvents were used to avoid polymers contamination. 

Coomassie-stained gels were rinsed in dH2O for 10min and placed on a light-surface 

inside a fume hood. Each lane was divided in 6 subsequent pieces from higher to lower 

molecular weights. Excised gel pieces were placed in Eppendorf tubes and washed first in 

100mM ammonium bicarbonate (NH4HCO3 - Sigma) and then in 50% (v/v) ACN/100mM 

NH4HCO3, pH 8, for another 30min at each stage, on shaker. To reduce peptides, treatment 

with 100mM NH4HCO3 / 45mM DTT (fresh) was performed at 60˚C for 30min. Samples were 

cooled down to rt and alkylated with 100mM iodoacetamide (IAA) (fresh) for 30min in the 

dark. In-gel reduction of disulphide bonds on cysteine by the mild agent DTT and alkylation 

of sulphydryl (SH) groups by IAA to prevent re-formation of disulphide bridges, before 

trypsin digestion, allows for wider protein coverage (Shevchenko et al., 1996). An extra 

30min wash was performed in 50% (v/v) ACN/100mM NH4HCO3, on shaker. Gel pieces were 

subsequently de-hydrated in 100% (v/v) ACN for 10min and completely dried off in a vacuum 

centrifuge. Sufficient amount of sequencing grade trypsin (in 25mM NH4HCO3) was added to 

re-hydrate each gel piece at a protease/protein ratio of 1:100 to 1:20 (w/w). Protein was 

digested overnight at 37˚C. Next day, supernatant was transferred to a 96 well-plate. Gel 

pieces were washed initially with 5% (v/v) formic acid and then with 100% (v/v) ACN for 

20min at each stage, at rt. Solvent was transferred to the respective well from the first 

extraction in the 96 well-plate. Combined extracts were completely dried off in a Speedvac 

and plate was stored at -20 ˚C until used for LC/MS. 
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2.3.5 Semi-dry Protein Transfer 

Proteins separated by SDS-PAGE (section  2.3.2) were subsequently electro-transferred 

from the gel onto a Hybond-P PVDF membrane by semi-dry transfer. Briefly, gels, filter paper 

and the PVDF membrane were equilibrated in transfer buffer for 10mins. Then, they were 

placed on a semi-dry transfer apparatus in the following order: 3 layers of filter paper, then 

the PVDF membrane, followed by the gel and a further 3 layers of filter paper. Air bubbles 

from in-between the layers were removed, apparatus lid was placed on and constant current 

of 180mA was applied for 30-45min. Time of transfer was determined by the number, 

percentage and thickness of the gels, as well as by the size of the protein(s) of interest. To 

check the efficiency of the electro-transfer, membranes were finally stained with Ponceau-S 

for 5min and de-stained with dH2O and TBST. 

2.3.6 Western Immunoblotting  

Following transfer, PVDF membranes were washed in TBST for 5min prior to 

incubation with blocking buffer for at least 1h, at rt. Membranes were then probed with 

primary antibody overnight, at 4°C, under gentle shaking. Primary antibodies were diluted to 

appropriate concentrations (section  2.1.5) in blocking buffer. After six 5min washes in TBST, 

membranes were incubated with the appropriate HRP-conjugated secondary antibody 

diluted in blocking buffer (section  2.1.4), for 2h, at rt. A further six 5min washes in TBST were 

performed. Immunoreactive proteins were detected using Amersham ECL Western Blotting 

Detection reagents, as per the manufacturer’s instructions. X-ray films were exposed to 

membranes for 1sec-30min, and developed using a Kodak X-OMAT 2000 developer. Band 

densitometric quantification (arbitrary units) was performed using ImageJ V1.42 and protein 

expression levels were normalised to expression levels of housekeeping/control proteins 

(GAPDH, β-actin). 

2.3.7 Membrane Re-probing 

After film exposure, membranes were washed off ECL buffer twice, for 5min in TBST. 

Bound antibodies were stripped off by incubation in stripping buffer for 30min, at rt, under 

mild shaking. Three 5min washes in TBST were followed by a 30min incubation in blocking 

buffer, at rt. Membranes were re-probed with new primary antibodies and the subsequent 

steps of immunodetection were performed as described in section  2.3.6.  
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2.4 Immunohistochemistry 

Expression levels of S1PR1 in thoracic aortas and kidneys from 21 week-old, salt-

loaded, WKY and SHRSP rats were detected by immunohistochemistry (IHC). Tissue 

collection and fixing (10% v/v formalin) was performed by Dr Caline Coh-Tan. Preparation of 

paraffinised sections was performed by Mr Andy Carswell. 

Prior to histological staining, paraffin was removed from the cut sections by two 7min 

washes in Histoclear and rehydrated through an ethanol gradient of 100%, 95% and 70% for 

7min at each stage and a final 7min rinse in dH2O. Endogenous peroxidase was quenched by 

incubating slides for 15min in 0.3% (v/v) H2O2 in methanol, at rt. After two 10min washes in 

dH2O, antigen was retrieved by heating at 95°C in citrate buffer for 15min, followed by two 

further 10min washes. Sections were incubated in 2% normal blocking serum (derived from 

the appropriate species that the secondary ab was raised in) in PBS, for 1h. Subsequently, 

primary antibodies against S1PR1 (ab23695; IgG rabbit polyclonal) and the positive controls 

AQP2 (sc-9882; IgG goat polyclonal) and ACTA2 (ab18147; IgGa2 mouse monoclonal), as well 

as equivalent IgGs (derived from same species primary ab was raised in - used as negative 

controls) were probed overnight. Antibodies and IgGs were diluted in the appropriate 

blocking serum at a range of 1/100 to 1/2000. Three 5min washes with PBS were followed 

by incubation with either biotinylated anti-mouse/rabbit (ABC universal kit) or HRP-

conjugated anti-goat secondary antibody, diluted in blocking serum (1/200), at rt, for 30min 

or 1h, respectively. When ABC universal secondary antibody was used, sections were 

subsequently incubated with ABC complex for 30min, at rt. Sections were then washed three 

times in PBS and incubated with the chromogen diaminobenzidine hydrochloride with 

hydrogen peroxide (DAB substrate kit) for 5min, at rt. Sections were then counterstained 

with heamatoxylin for 2min, washed in cold running tap water for 5min and dehydrated 

through a reverse ethanol gradient of 70%, 95% and 100% for 7min at each stage with two 

final 7min washes in Histoclear. Histomount was used to mount the sections before 

observation under Olympus BX40 transmitted light microscope, at several magnifications. 

Positive immunostaining was seen as a dark brown and nuclei appeared blue/purple. 
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2.5 General Ex-Vivo Drug Interventions 

Mesenteric resistance arteries (MRA) were isolated from WKY, SHRSP, WKY.SPGla2a 

and SP.WKYGla2a rats to investigate vascular reactivity by wire myography and vascular 

remodelling by pressure myography. Animals were sacrificed at 16 weeks of age under 

terminal anaesthesia with isoflurane. Mesenteries were excised and placed in ice-cold 

physiological salt solution (PSS). Third order MRAs (2–3 mm in length) were dissected of 

adherent connective tissue, and stored in PSS at 4˚C, overnight. Tissue collection as well as 

myograph set up, vessel mounting and normalisations were performed by Mrs Elisabeth 

Beattie. 

2.5.1 Wire Myography 

Vessel segments were suspended on two stainless steel wires on a four-channel small 

vessel myograph (DanishMyoTech (DMT), Atlanta, GA). Changes in isometric tension of 

vessels were detected by a force transducer and recorded by the LabChart (v6.1.1) data 

acquisition package. Segments were maintained in organ bath chambers filled with PSS pH 

7.4, at 37˚C and gassed with 95% O2 - 5% CO2. To achieve maximal contraction, vessels were 

first allowed to stabilize for 30min at resting tension and then exposed for a further 30min to 

a predetermined optimal active tension for rat MRAs (lumen diameter normalised to 90% of 

the diameter expected at transmural pressure of 100 mmHg) (Falloon et al., 1995). Viability 

of vessels was assessed by a contractile response to treatment with high potassium PSS 

(KPSS) and maximal active tension between vessels was calculated. Following three PSS 

washes, vessels were left to rest for 30min. Contractile responses to cumulative doses of the 

α-adrenergic receptor agonist, noradrenalin (NA, 10−9 to 3x10−5 M), were measured first in 

the absence and again after two PSS washes, in the presence of the Rho-kinase (ROCK) 

inhibitor Fasudil (3μM) (Asano et al., 1987). Changes in tension in the presence of Fasudil 

provided a measure of the contribution of Rho kinase pathway on the basal tone. The 

degree of contraction was calculated and expressed as percentage of the maximal response 

at 3x10-5 NA without Fasudil. Similarly, relaxation in response to cumulative doses of the 

cholinergic agonist carbachol (10-8 to 10-5 M) was assessed in the absence and presence of 

the endothelial nitric oxide synthase (eNOS) inhibitor, L-NAME (100μM). Changes in tension 

in the presence of L-NAME indicated effect of endothelial NO on the regulation of basal 

tone. Relaxation was calculated and expressed as a percentage of sub-maximal (~80%) 
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contraction to NA at 3x10-6M. Finally, MRAs were washed 3 times with PSS and allowed to 

stabilize for 10min. Endothelium-independent vasorelaxation was assessed using cumulative 

doses of an external donor of NO, the sodium nitroprusside (SNP, 10-8 to 10-5M) in a similar 

manner. Dose response curves were plotted on GraphPad Prism 4. Relaxation and 

contraction responses were expressed as percentages of the maximal response and 

statistical analysis was performed using two-way analysis of variance (ANOVA) followed by 

Bonferroni’s multiple comparison test, on GraphPad Prism 4. Differences were considered 

statistically significant at P<0.05. 

 

Figure  2-1. Myography systems. (A) Wire myograph. The vessel segment is mounted on two steal 

wires. The adjustable jaw is connected to a micrometer screw and the fixed jaw to the force 

transducer.  (B) Pressure myograph. The vessel is mounted onto two glass cannulas. Inflow and 

outflow pressures are controlled by adjusting the height of Ca-free PSS reservoirs on a tower and 

are continually recorded by two in-line pressure transducers. 

2.5.2 Pressure Myography 

Pressure myography is the method of choice for studying structure and mechanics of 

small vessels, which under exposure to intraluminal pressures assume a physiological shape 

(Halpern and Osol, 1986; Mulvany and Aalkjaer, 1990). 

Vessel segments were tied on the two glass cannulas of a pressure myograph (DMT 

p100 pressure system, Denmark) using nylon ties. Two in-line pressure transducers 

continually recorded inflow and outflow pressures, which were controlled by adjusting the 

height of Ca-free PSS reservoirs on a tower. A Zeiss Axiovert 25 inverted microscope 

equipped with a CCD Sony XC-75CE monochrome video camera was used to capture a real 

time video image of the vessel, displayed on a PC monitor by MyoView 1.1 software (DMT, 
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Denmark). Lumen (internal) and vessel wall (external) diameters were measured at a x200 

magnification. Within the bath chamber, MRAs were maintained in Ca-free PSS, pH 7.4, at 

37˚C and gassed with 95% O2 - 5% CO2. Vessel lumen was flushed to remove any remaining 

debris or blood and the segment was straightened without any stretching, by adjusting the 

micrometer. Vessels were subjected to gradually increasing intraluminal pressure from 10-

110 mmHg at 10 and 20 mmHg intervals, lasting 10min each. Internal (Di; lumen width) and 

external (De) diameters of vessels were measured and used to calculate structural and 

mechanical parameters. Structural parameters included cross sectional area (CSA = (π / 4) x 

(De
2 - Di

2)) and wall to lumen ratio (Wall / lumen = (De - Di) / 2Di). Mechanical parameters 

were calculated as previously described by Baumbach and Heistad (Baumbach and Heistad, 

1989) and included: Circumferential wall strain = (Di – D0) / D0, where D0 is the diameter at 

the lowest intraluminal pressure of 10 mmHg and Di is the observed internal diameter for a 

given pressure. Circumferential wall stress = (P x Di) / De - Di where P is the intraluminal 

pressure. Response curves were plotted on GraphPad Prism 4. Statistical analysis of 

structural and mechanical parameters was performed using two-way analysis of variance 

(ANOVA) followed by Bonferroni’s multiple comparison test. The strain-stress relation was 

fitted to an exponential curve for each vessel and the slope of the curve was determined. 

The slopes were compared between groups using unpaired Student’s t-test. Differences 

were considered statistically significant at P<0.05. 

2.6 Proteomic Profiling 

2.6.1 Sample Preparation 

Comparisons of whole proteome from 16 week-old WKY, SHRSP, WKY.SPGla2a and 

SP.WKYGla2a were performed on 30min S1P-stimulated primary VSMCs (section  2.2.6). To 

optimise the experimental design (comparison of 3 experimental groups at a time) triple 

SILAC labelling (section  2.2.5) was performed, allowing comparison of the proteome from all 

four groups in just two experiments: (A) WKY - WKY.SPGla2a - SHRSP and (B) WKY - 

SP.WKYGla2a - SHRSP. After differential labelling cells from each strain were harvested and 

mixed at 1:1:1 ratio, based on cell number counted with a haemocytometer (Hausser 

Scientific, US). Following cell lysis (section  2.2.7), the mixed-lysates were processed using 

SDS-PAGE (section  2.3.2), gel was stained with Coomassie (section  2.3.3) and each lane was 

divided into 6 gel slices to reduce the complexity of samples for LC separation. Subsequently, 



Sofia Tsiropoulou Chapter 2 77 

each slice underwent in-gel trypsin digestion (section  2.3.4) and the eluates were stored as 

individual samples at -80˚C, until used for proteome profiling. The sample preparation 

procedure is illustrated in Figure  2-2A.  

2.6.2 Liquid Chromatography – Tandem Mass Spectrometry Analysis 

For proteomic profiling, the chemically identical and isotopically distinct SILAC tryptic 

peptides were distinguished by polarity and mass using reversed-phase rapid separation 

liquid chromatography (RSLC) operated on a nano-HPLC flow system (Ultimate 3000, Dionex, 

Camberley, UK), which provides ultrafast, ultrahigh-resolution LC separations using high flow 

rates.  Initially, samples were loaded onto a Dionex 100μm x 2cm, 5μm/100Å pore size, C18 

nano trap column, in ACN (98:2) and 0.1% formic acid solution. Samples were then washed 

off into an Acclaim PepMap C18 nano column 75μm x 15cm, 2μm/100Å pore size at a flow 

rate of 0.3μm/min. The nano-system was maintained at 35 °C in a column oven. Elution of 

samples was carried out for 100min, using a gradient of solvent A: 0.1% formic acid versus 

solvent B: acetonitrile, starting at 5% B and rising to 50% B. Eluted peptides were 

electrosprayed into an Orbitrap Velos Fourier Transformation mass spectrometer via a 

Proxeon nanoelectrospray ion source (2.5kV ionisation voltage, 200 °C capillary 

temperature, Thermo Fisher Hemel, UK). These mass spectrometers enable faster and more 

reliable detection and identification of proteins in complex mixtures and were operated in 

positive ion and MS-MS mode, scanning from 380 to 2000 amu. Top 20 most intense ions 

from each full scan, depending on signal intensity, were isolated for MS/MS fragmentation 

by collision-induced dissociation (CID) at 35% collision energy. The resulting fragments were 

detected at ion resolutions of 60,000 for MS scans and 7,500 for MS/MS scans. This work 

was done by Prof H. Mischak’s laboratory. 

2.6.3 Proteomic Data Processing 

Raw MS/MS Orbitrap Velos spectra were extracted using Xcalibur (version 2.2) and 

processed on MaxQuant software (versions 1.1.1.25, 1.2.0.18 or 1.2.2.6) specific for MS-

based quantitative proteomics (Cox et al., 2009). MaxQuant 'Quant' interface initially 

detected three-dimensional peak and isotope patterns and assembled them into SILAC 

triplets for quantification. Peptide fragment spectra were filtered through Andromeda, a 

peptide search engine integrated into the MaxQuant environment (Cox et al., 2011), being 

unique in accurately distinguishing and identifying co-fragmented peptides from mixture 
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spectra. Derived peak lists were searched using the Mascot search engine against the mouse 

and/or rat International Protein Index (IPI version 3.68; minimally redundant but maximally 

complete combined database) or SwissProt Rodentia peptide sequences database (2011; 

best annotated database). Cysteine carbamidomethylation was selected as the fixed 

modification; methionine oxidation, N-terminal protein acetylation, phosphorylation of 

serine, threonine and tyrosine sites and heavy isotopes of lysine and arginine (Lys6, Lys8, 

Arg6, Arg10) were selected as variable modifications. MS/MS ion data were searched with a 

relative peptide mass tolerance of 20ppm. Minimum required peptide length was 6 amino 

acids. A maximum of two missed cleavages was allowed per tryptic peptide. MaxQuant 

'Identify' interface allowed statistical filtering and quantification of identified 

peptides/proteins (Cox and Mann, 2008). Data extraction and processing through MaxQuant 

were performed by Dr D. Sumpton, Dr S. Lilla and Dr S. Zanivan (The Beatson Institute). The 

output of the MaxQuant/Mascot workflow was subsequently submitted to the Perseus 

platform (version 1.2.0.17 or 1.2.7.4) for bioinformatics analysis and visualisation 

(http://www.perseus-framework.org). Proteins were filtered for differential expression, 

using a fold change cut-off of 1.3 (FC=±1.3). To explore relevant biological pathways, 

networks and processes, all differentially regulated proteins with SwissProt/IPI identifiers, 

corresponding expression values and FC were imported into Ingenuity Pathway Analysis 

(Ingenuity®Systems, www.ingenuity.com). Each identifier was mapped to the corresponding 

protein in the Ingenuity® Knowledge Database. A cut-off of FC=±1.3 was set again to filter for 

significance. These so called Network Eligible molecules were then overlaid to biological 

canonical pathways, functions and diseases based on the existing information in the 

database. Also, networks of Network Eligible molecules were algorithmically generated 

based on their connectivity. The score for each network represents the degree of relevance 

of a network to the given list of Network Eligible molecules. The data analysis process is 

illustrated in Figure  2-2B. Selected differentially expressed proteins were validated by 

immunoblotting.  
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Figure  2-2 - SILAC proteome profiling of parental and congenic primary S1P-stimulated VSMC. (A) 

Experimental workflow. Primary mesenteric VSMCs from 16 week-old animals are adapted in 

DMEM supplemented with 10% dialysed serum, for 24h. Subsequently, cells are transferred into 

differentially isotope-labeled SILAC media for metabolic labeling. WKY are grown in control “light” 

condition with 
12

C6
14

N4 L-arginine (Arg0) and 
12

C6
14

N2 L-lysine (Lys0), SHRSP are “heavy” labelled 

with 
13

C6
15

N4 L-arginine (Arg10) and 
13

C6
15

N2 L-lysine (Lys8), 2a congenics are “medium” labelled 

with 
13

C6 L-arginine (Arg6) and 
13

C8 L-lysine (Lys6). After 6 divisions, to ensure isotopic amino acid 

incorporation, cells are serum-starved overnight, stimulated with S1P (10
-6

M) for 30 min, harvested 

and mixed in equal numbers (1:1:1, 10
6
): experiment A. WKYL - WKY.SPGla2aM - SHRSPH, experiment 

B. WKYL - SP.WKYGla2aM - SHRSPH. Following cell lysis the mixed-lysate (50 µg) is resolved by SDS-

PAGE and visualized by Coomassie staining. Each lane (A, B) is divided into 6 slices and digested in-

gel by trypsin before analysed by LC coupled to MS/MS. Differences in intensity of peptide peak-

ratios reflect differences in protein abundance. (B) MS/MS data analysis workflow. Tryptic 

peptides separated by rapid LC are directed to the Orbitrap Velos mass analyser, through ESI. Raw 

MS/MS spectra are extracted using Excalibur, filtered and quantified through MaxQuant and 

associated with amino acid sequences on Mascot search engine. Data is uploaded to Perseus 

platform for further bioinformatics analysis, and to IPA database for association with relevant 

biological pathways. 
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2.7 Metabolomic Profiling 

2.7.1 Sample Preparation 

Mesenteric primary VSMCs from 16 week-old WKY, SHRSP and the two 2a congenic 

strains were treated for 30mins with S1P or vehicle (section  2.2.5), harvested (section  2.2.2) 

and lysed in metabolite extraction buffer, as described below. Four biological replicates of 

each strain were analysed. 

Matched urine and plasma samples were collected from 21 week-old male WKY, 

SHRSP, SP.WKYGla2k congenic and Gstm1-transgenic rats fed normal or high-salt (1% NaCl in 

drinking water) diet as described in section  2.1.1. At 21 weeks of age, rats were housed 

individually in metabolic cages for 24 hours prior to sacrifice. Urine samples were collected 

over a 24h period, while stored at 4˚C. Aliquots were snap frozen into liquid nitrogen (N2(l)) 

and stored at -80˚C until use. Blood samples were collected in EDTA at sacrifice, immediately 

placed on ice and centrifuged within 1h at 1000g, for 10min. Plasma was extracted, 

aliquoted, snap frozen into N2(l) and stored at -80˚C. Metabolites were extracted from a 

maximum of 4 biological replicates of matched urine and plasma from each strain, as 

described below. Salt intervention and sample collection was done by researchers at the 

Glasgow Cardiovascular Research Centre (BHF/GCRC).  

Metabolites were extracted using a slightly modified version of Folch method (Folch et 

al., 1957). Chloroform was used as the non-polar and methanol as the polar extracting 

solvents along with water, at a ratio of 1:3:1 (v/v), allowing the extraction of both non-polar 

and polar, water-soluble and organic-soluble metabolites. Samples were vortex-mixed in 

metabolite extraction buffer for 1h, at 4°C and then centrifuged at 13.000 g for 3min, at 4°C. 

Supernatant was stored at -80˚C until metabolomic profiling was performed. 

2.7.2 Hydrophilic Interaction Liquid Chromatography – Mass 

Spectrometry 

Metabolites were separated by polarity and hydrophilicity using a ZIC-HILIC 4.6mm x 

15cm column (Merck SeQuant, Sweden) running at 300µl/min, on a UltiMate 3000 Rapid 

Separation LC system (Thermo Fisher, UK). Separation is based on weak electrostatic 

interactions (hydrogen bonds and polar-polar interactions) occurring between hydrophilic 

metabolites and the zwitterionic stationary phase. Mobile phase gradient ran from 20% H2O-

80% ACN to 80% H2O-20% ACN in 30min, followed by a wash at 5% ACN-95% H2O for 6min 
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and equilibration at 20% H2O-80% ACN for 8min. HILIC column is much more efficient (peaks 

up ~38% of molecules) compared to other columns, especially in highly complex samples 

such as urine. Eluted metabolites were directed via heated electrospray ionisation (ESI) to an 

Orbitrap Exactive mass analyser (Thermo Fisher), which exhibits ultrahigh mass accuracy and 

resolution and was operated in both positive and negative detection ion modes. The work 

was done by researchers at the Glasgow Polyomics Facility. 

2.7.3 Metabolomic Data Processing 

Raw MS data, from positive and negative modes, generated in Orbitrap Exactive was 

processed using version11/version19 IDEOM Excel interface tools, a standard pipeline 

suitable for metabolomic LC/MS data analysis (Creek et al., 2012). In specific, raw data was 

converted into a functional format by msconvert, XCMS library (R-package) was then used 

for peak picking (Smith et al., 2006a) and mzMatch for related peak annotation, filtering and 

grouping of samples (Scheltema et al., 2011). IDEOM further allowed for metabolite 

identification by mass and retention time (RT), using several comprehensive metabolomic 

and metabolic pathway databases (e.g. HMDB, KEGG, Metacyc) and RT lists of standards 

(authentic metabolites), as well as for relative quantification using internal standards. 

IDEOM also enabled advanced visualisation and multivariate statistics by exporting data to R. 

PeakML Viewer was used for rapid inspection of data quality (peak shape, intensity, 

confidence levels) and dataset comparisons (Scheltema et al., 2011). Metabolite intensities 

were corrected for total MS intensity (TIC: total ion current). Student’s unpaired t-test was 

employed to filter for significance, using a p-value (p-val) threshold of 0.05. Datasets 

containing KEGG identifiers, corresponding expression values and p-val were then uploaded 

onto Ingenuity Pathway Analysis (IPA) software (Ingenuity®Systems, www.ingenuity.com). 

Each identifier was mapped to the corresponding metabolite in the Ingenuity® Knowledge 

Database. A cut-off p-value<0.05 was set to identify significantly changing molecules, called 

Network Eligible molecules. When overlaid to a global molecular network generated by 

Ingenuity® Knowledge Database, networks of Network Eligible molecules were 

algorithmically generated based on their connectivity. Individual metabolites and networks 

were associated with metabolic processes/pathways and biomarker search. The data 

analysis pipeline is illustrated in Figure  2-3. 
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Figure  2-3 - Metabolomic analysis: sample processing and MS data analysis pipeline. Analytes 

extracted from cell lysates or biofluids, by methanol/chloroform for 1h at 4°C, are separated by 

zwitterionic - hydrophilic interaction liquid chromatography (ZIC-HILIC) according to their 

hydrophilicity, eluted and directed to the Orbitrap Exactive mass analyser through heated 

electrospray ionisation (H-ESI). Peaks are extracted from raw MS spectra using the XCMS library 

and processed through the mzMatch/IDEOM pipeline for metabolite identification and further 

bioinformatics analysis. The number of detected peaks is remarkably reduced along the extensive 

filtering process. Metabolites reaching statistical significance are finally uploaded to Ingenuity 

Pathway Analysis (IPA) database for association with metabolic processes and biological 

interpretation. 

2.8 Statistical Analysis 

In vitro experiments were performed in triplicate on 3 independent occasions, unless 

otherwise stated. Ex vivo myography experiments were carried out with 4 to 12 rats per 

group. Statistical analysis was performed using Microsoft Excel and Prism Graphpad 4 

commercially available software. Results are expressed as Mean ± standard error of the 

mean (SEM). For specific two-group comparisons, unpaired Student’s t-test was used. 

Comparisons across multiple groups and conditions were made by two-way analysis of 

variance (ANOVA) followed by Bonferroni’s multiple correction test. Statistical significance 

was considered for p-values <0.05 (two-tailed).  
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Proteomic data were filtered for fold change, FC ≥ ±1.3. Metabolomic data were 

filtered for significance using unpaired Student’s t-test for p-value <0.05. Canonical pathway 

analysis identified the pathways from the IPA library that were most significantly associated 

with the datasets. Proteins/metabolites from the dataset that met the FC/p-value cut-off 

and were mapped to a pathway in the Ingenuity Pathway Knowledge Base (IPKB) were 

considered for the analysis.  

 

Figure  2-4 - IPA annotations. This table provides a key of the main features of IPA Network Explorer 

and Canonical Pathways, including molecule shapes and relationship labels and types. (Ingenuity® 

Systems, http://www.ingenuity.com).  



3 Effects of Salt Loading on S1PR1 

Expression and Signalling and on BP 

Regulation in Salt-Sensitive Rats 
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3.1 Introduction 

Essential hypertension (EH) is regularly characterised by exaggerated responses to 

increased dietary sodium, mainly due to impaired kidney function (Luft et al., 1986). SHRSP, 

a well-characterised model of human EH, also exhibits salt sensitivity (Ohtaka, 1980, 

Tesfamariam and Halpern, 1988, Yamori and Okamoto, 1974). Genome-wide linkage studies 

have identified two QTLs on rat chromosome 2 associated with BP regulation and salt 

sensitivity (Clark et al., 1996). To confirm and further dissect the genetic components of 

these QTLs, congenic strains have been generated, using WKY as the donor of chr.2 

segments and SHRSP as the recipient strain (Figure  3-1A). Two congenic strains generated by 

introgression of a 64-cM congenic interval, SP.WKYGla2a (SW2a), and of a smaller 10-cM 

segment part of the 64-cM region, SP.WKYGla2k (SW2k), exhibit significantly lower SBP to 

SHRSP, at baseline and under salt-loading. Moreover, they display similarly reduced 

sensitivity to salt, compared to responses in SHRSP (Figure  3-1B) (Graham et al., 2007). 

Microarray expression profiling in renal tissue from baseline and salt-loaded parental and 

chr.2 congenic strains has detected differentially expressed candidate genes for BP and salt-

sensitivity. At baseline, Gstm1 was identified as a positional and functional candidate for BP 

regulation (McBride et al., 2003). A Gstm1-transgenic strain has been constructed in our 

laboratory, by insertion of the WKY gene into the SHRSP background, demonstrating 

significantly reduced SBP, similar to that of SW2a and SW2k at baseline, yet upon salt 

loading an exaggerated increase in SBP is observed (Figure  3-1). Under salt-loading, Vcam1 

and S1pr1 have been identified as two candidate genes for salt-sensitive BP regulation. 

These genes demonstrated elevated mRNA levels in SHRSP compared to WKY and the SW2a 

and 2k congenic strains. However, S1PR1 protein levels were decreased in SHRSP, suggestive 

of abnormal post-transcriptional regulation or protein turnover and subsequent altered 

signalling in hypertension (Graham et al., 2007).  

Therefore, genetic alterations, as well as exogenous perturbations can lead to 

substantial alterations in the phenotype, through large and diverse impact on numerous 

metabolic processes. Comprehensive and accurate characterisation of changes in the highly 

dynamic metabolome, which represents best the actual phenotypic state of a biological 

system (Breitling et al., 2008, Kell, 2006), can be achieved by use of high-throughput 

approaches. In metabolomic studies, body fluids are of significant value because of their 

metabolite-rich content, which reflects at least in part, the actual state of each cell, tissue 
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and organ in an organism. Plasma and urine are the most commonly used biofluids, due to 

their availability and ease of collection. In comparison to plasma, urine offers the extra 

advantages of non-invasive collection, multiple sampling over a period of time and greater 

stability and resistance to oxidation or precipitation, thus generating more reproducible 

profiles (von Zur Muhlen et al., 2009). Alterations in the metabolic fingerprint of urine and 

plasma are representative of the complex pathophysiology during progression of chronic 

diseases, such as EH. The application of metabolomics in cardiovascular research is an 

emerging field aiming to define a clearer metabolic picture of CVD for improved prognosis, 

diagnosis and therapy evaluation (Giovane et al., 2008, Barderas et al., 2011). In clinical 

diagnostics, the main focus is on identification of disease biomarkers and biofluid samples 

are typically collected from control and drug treated or diseased subjects. Large-scale 

metabolomic screenings, using advanced instrumentation and bioinformatics tools, permit 

discovery of distinct and defined metabolite patterns instead of single biomarkers, which are 

more informative of the disease complex status. 

 

Figure  3-1 - Chromosome 2 congenic and transgenic strains generated by WKY (donor) and SHRSP 

(recipient) mating. (A) Schematic of chr.2 from parental, SW2a and SW2k congenic and Gstm1-

transgenic strains, showing location and size of congenic regions, as well as approximate 

integration site of the Gstm1 gene. Blue bars: regions of WKY homozygosity, red bars: regions of 

SHRSP homozygosity. (B) Averaged weekly radiotelemetry recordings of night-time and day-time 

SBP in male parental, SW2a and SW2k congenic and Gstm1-transgenic strains, under baseline and 

salt-loaded conditions. Animals were put on high-salt diet at 18 weeks of age. Edited from Graham 

et al., 2007. 
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Aims 

This work is a follow up of previous studies on rat renal tissue identifying Gstm1 as a 

candidate gene for BP regulation and S1pr1 as a candidate for salt sensitivity. We used 21 

week-old, WKY and SHRSP parental in combination with SW2a and SW2k congenic and 

Gstm1-transgenic strains aiming to: 

• characterise S1PR1 protein expression upon salt-loading, in renal and vascular tissue 

and compare the expression profiles across salt-resistant (WKY, SW2a, SW2k) and salt-

sensitive (SHRSP) strains, by the means of immunohistochemistry (IHC) and western blot 

(WB) analysis. 

• characterise the metabolic profile (signatures/patterns) of salt-sensitivity and identify 

urine and plasma biomarkers, by comparisons across salt-resistant (WKY, SW2k) and salt-

sensitive (SHRSP, Gstm1-transgenic) strains, under normal-salt (baseline) and salt-loaded 

conditions. Untargeted metabolomic screening of urine and plasma was performed (Figure 

 3-2). 

 

Figure  3-2 - Metabolomics analysis of urine and plasma from parental, SW2k-congenic and Gstm1-

transgenic rats. Matched samples were collected from 21 week-old rats, at baseline and under salt-

loading. (A) Experimental process. Metabolites were separated by ZIC-HILIC and analysed on an 

Orbitrap Exactive mass spectrometer. Raw peaks were filtered, identified, quantified and 

statistically analysed through the IDEOM v18 stringent pipeline and uploaded to databases for 

biological interpretation. (B) Experimental design. Four biological replicates for WKY and SHRSP 

and three for SW2k congenic and Gstm1-transgenic strains were analysed. 



Sofia Tsiropoulou Chapter 3 88 

3.2 Results  

3.2.1 S1PR1 expression in tissues from salt-loaded rats   

3.2.1.1 S1PR1 renal expression in salt-loaded WKY, SHRSP and congenic strains 

S1PR1 expression in kidney from 21 week-old, salt-loaded WKY and SHRSP was 

assessed by IHC, as described in section  2.4. S1PR1 levels were below detection in the kidney 

medulla and cortex from both strains (Figure  3-3B and C, bottom panels). Negative IgG 

controls showed no detectable staining as expected (Figure  3-3; A: left panel, B and C: 

bottom panels) and positive immunostaining for aquaporin2 (AQP2) gave intense signal on 

the periphery of medullary collecting ducts and cortical collecting tubules, in kidney from 

WKY (Figure  3-3A; right panel). 

 

Figure  3-3 - Characterisation of S1PR1 expression in kidney (medulla and cortex) from 21 week-old, 

salt-loaded WKY and SHRSP rats, by IHC. (A) Tissue from WKY. Left panel: Isotype (goat IgG) 

negative control; right panel: positive immunostaining for AQP2, 1/1000. Tissues from WKY (B) and 

SHRSP (C). Top panels: Isotype (rabbit IgG) negative control; bottom panels: immunostaining for 

S1PR1, 1/100. Magnification x10. 
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To increase concentrations of low abundance proteins, enrichment for cellular 

compartments was performed on whole kidney homogenates from 21 week-old salt-loaded 

parental and SW2a and SW2k congenic strains. Western blot for S1PR1 (47 kDa) detected a 

single strong band in the membrane fraction and a single fainter band in the cytoplasmic 

fraction, at the expected MW (Figure  3-4; top panels). Expression levels in the membrane 

fraction were similar across all four strains. Cytoplasmic levels appeared increased in SW2k. 

Cross-contamination of cellular compartments was tested by stripping and re-probing the 

membranes for compartment specific markers. GAPDH cytoplasm specific and Na+/K+ATPase 

membrane specific markers showed considerable cross-contamination, however enrichment 

of fractions appeared to be sufficient for detection of S1PR1 (Figure  3-4; middle and bottom 

panels). 

 

Figure  3-4 - S1PR1 expression in protein enriched, cellular compartments of whole kidney 

homogenate, from 21 week-old, salt-loaded parental and SW2a and SW2k congenic strains. 

Representative immunoblots for S1PR1 (top panel). Membranes were stripped and re-probed with 

compartment specific markers: Na
+
/K

+
 ATPase membrane marker (middle panel); GAPDH cytosolic 

marker (bottom panel). Protein loaded: 80 µg (C: cytosolic, N: nuclear, M: membranic fractions). 

Results are representative of 2 experiments. 
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3.2.1.2 S1PR1 vascular expression in salt-loaded WKY and SHRSP 

S1PR1 expression in thoracic aortas from 21 week-old, salt-loaded WKY and SHRSP was 

assessed by IHC, as described in section  2.4. S1PR1 levels were below detection in the SM of 

thoracic aortas from both strains (Figure  3-5B and C, bottom panels). Negative IgG controls 

showed no detectable staining as expected (Figure  3-5; top panels) and positive 

immunostaining for α-SMactin2 (ACTA2) (Figure  3-5A; bottom panel) gave widespread signal 

in the SM of carotid artery from WKY. 

 

Figure  3-5 - Characterisation of S1PR1 expression in thoracic aorta from 21 week-old, salt-loaded 

WKY and SHRSP rats, by IHC. (A) Carotid artery from WKY. Top panel: Isotype (mouse IgG) negative 

control; bottom panel: positive immunostaining for ACTA2, 1/1000. Thoracic aorta from WKY (B) 

and SHRSP (C). Top panels: Isotype (rabbit IgG) negative control; bottom panels: immunostaining 

for S1PR1, 1/100. Magnification x40.  
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3.2.2 Urine and Plasma Metabolomics and Bioinformatics Analysis  

To further investigate the role of candidate genes in salt-sensitive HTN, and assess the 

effects of salt-loading on BP regulation and sphingosine metabolism, untargeted metabolic 

profiling was carried out in urine and plasma matched samples from 21 week-old WKY, 

SHRSP, SW2k congenic and Gstm1-transgenic strains, under baseline and salt-loaded 

conditions. Extracted metabolites from urine and plasma were processed on a ZIC-HILIC - MS 

platform, as detailed in section  2.7. Stringent filtering of extracted MS data containing 

thousands of peaks (~50.000) using IDEOM v18, led to identification of a reduced number of 

positively and negatively ionised putative metabolites (Figure  3-6A): 4849_Plasma_Pos / 

3254_Plasma_Neg; 6395_Urine_Pos / 4116_Urine_Neg. The number of metabolites 

identified in plasma samples were almost two thirds of those identified in urine. Next, 

metabolites' intensities were corrected to the summed MS intensity (TIC: total ion current) 

to minimise the uncontrollable effect of exogenous factors (quantification errors). 

Identification lists of positive and negative modes were then combined (PosNeg) to give the 

list of putative metabolites to be further analysed: 820_Plasma_PosNeg and 

1336_Urine_PosNeg (Figure  3-6A). 

The quality of urine and plasma filtered data was assessed by generation of principal 

component analysis (PCA) plots, which represent the profile of a linear combination of the 

metabolites identified for each sample. Two representative PCA score plots, where all 

plasma or urine samples (baseline and salt-loaded) have been plotted together for increased 

reliability, are illustrated in Figure  3-6B and C, respectively. In both plots, the normotensive 

and salt-resistant WKY clustered separately from the other three strains under baseline and 

salt-loading. Gstm1-transgenic strain seemed to always cluster together with SHRSP, unlike 

SW2k which generally displayed more separated clusters, especially at baseline. Moreover, 

the metabolic profiles between baseline and salt-loaded conditions appeared to be discrete 

across all strains, although in some plots WKY and WKY-salt clusters exhibited partial 

overlapping, such as in plasma_positive (Figure  3-6B). Finally, cluster separation in plasma 

was clearer compared to urine profile. 
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Figure  3-6 - Orbitrap Exactive MS-data filtering and visualisation on IDEOM v18. (A) Peaks were 

picked using XCMS, filtered using mzMatch and matched to a set of databases for metabolite 

identification. The table summarises numbers of putative metabolites identified in the positive and 

negative modes and collectively (posneg), after correcting for total intensity (TIC), across plasma or 
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urine samples, in all four stains. (B)-(C) PCA score plots for plasma_positive and urine_negative 

samples, respectively, were generated in R using data from all strains and both baseline and salt-

loaded conditions. PC1 and PC2 represent the percentages of metabolites that drive the separation 

of samples along the axes. Dashed lines indicate separation between WKY and the other strains or 

between baseline and salt-loaded groups.  

Subsequently, pair-wise comparisons were performed both across strains, under 

baseline or salt-loading (Figure  3-7), and across salt-challenged conditions (salt_v_baseline) 

(Figure  3-8), in urine and plasma. Unpaired t-test was utilised to determine significance (p-

val <0.05). Approximately one third of the identified metabolites, in each of the comparisons 

at baseline and at salt-loaded conditions, were found to be significantly changed, both in 

urine and plasma. The only exception was the plasma comparison under salt-loading 

between Gstm1-tansgenic and SW2k, which exhibited a smaller ratio of significant 

differences (610_total / 105_significant) (Figure  3-7A). In the comparisons across baseline 

and salt-loading, WKY displayed lower ratio of significant changes in plasma compared to the 

other three strains (555_total / 71_significant). However, in urine, WKY had similar ratio to 

SW2k, which was smaller than these of SHRSP and the transgenic (Figure  3-8).  

When data was uploaded onto IPA, approximately one half of the significant 

metabolites were identified by their KEGG IDs (Figure  3-7A and Figure  3-8A). These 

significant 'analysis ready' molecules were used for biological interpretation and biomarker 

analysis. Tables of original data (IDEOM v18) and of significantly changing metabolites, for all 

comparisons and intersections of interest, are included in the 'Urine' and 'Plasma' subfolders 

of the 'Chapter 3 - Urine, Plasma metabolomics' folder, in the hard copy (CD) accompanying 

this thesis. 
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Figure  3-7 - Comparisons of interest between WKY, SHRSP, SW2k congenic and Gstm1-transgenic 

strains, at baseline and salt-loading, in plasma and urine. (A) Summary table of numbers of 

putative metabolites identified collectively in positive and negative modes (posneg), of 

significantly changing metabolites (p-val <0.05) and of significant metabolites identified on IPA as 

'analysis ready', across the comparisons. (B) Venn-diagrams of 'analysis ready' metabolites for 

comparisons of interest. 
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Figure  3-8 - Comparisons of interest across baseline and salt-loaded conditions in plasma and urine 

from WKY, SHRSP, SW2k congenic and Gstm1-transgenic strains. (A) Summary table of numbers of 

putative metabolites identified collectively in positive and negative modes (posneg), of 

significantly changing metabolites (p-val <0.05) upon salt-challenge, and of significant metabolites 

identified on IPA as 'analysis ready', across different comparisons. (B) Venn-diagrams of 'analysis 

ready' metabolites for comparisons of interest.  
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3.2.2.1 Urine metabolomic profiling at baseline and upon salt-loading 

At baseline, comparison of SHRSP urine metabolic profile to the other three strains 

identified 41 common, significantly changing metabolites across the three comparisons: 

SHRSP_v_WKY, SHRSP_v_Trans and SHRSP_v_SW2k (Figure  3-7B; top venn-diagram). The 

above metabolites mapped to a variety of functions and diseases on IPA, rather than 

highlighting a few specific ones. Of the 41, 25 displayed consistent direction of change, with 

24 being constantly increased and 1 decreased in SHRSP. Table  3-1 summarises data for 

some of the metabolites. 19 out of the 24 increased metabolites were detected only in 

SHRSP and exhibited fold changes (FC) between 2.610 and 9535.108. Complete data for all 

41 metabolites can be found in the ‘Urine/Baseline/Urine_base_IC3_41_IPA’ supplementary 

table.  

Further network analysis on IPA explored potential relation of the 41 significant 

metabolites to GSTM1 and GSTM5 (rat and human homologues), in an attempt to more 

restrictively identify molecules implicated in the improved BP phenotype of Gstm1-

transgenic compared to SHRSP (Figure  3-9). N-acetyl-L-cysteine (NAC) was an interesting 

metabolite connected to GSTM5 through molecules implicated in oxidative stress, lipid 

metabolism and CVD. NAC was reduced in SHRSP compared to WKY (FC=-2.006) and SW2k 

(FC=-2.101), but its levels were highly increased in comparison to Gstm1-transgenic 

(FC=202.72).  
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Table  3-1. Subset of the 41 'in common' urine metabolites exhibiting consistent, significant change 

across the comparisons of SHRSP versus WKY, SW2k and Gstm1-transgenic, at baseline. Data were 

generated on IDEOM v18. Green: decreased and red: increased metabolite levels.  
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Figure  3-9 - Ingenuity Pathway Analysis (IPA) network associating urine N-acetyl-L-cysteine with 

GSTM1 and GSTM5 (glutathione S-transferase mu 1/5). N-acetyl-L-cysteine (NAC) baseline levels 

were significantly deceased in the SHRSP_v_WKY and SHRSP_v_SW2k comparisons (A) and 

significantly increased in the SHRSP_v_ Gstm1-transgenic comparison baseline (B).  (C) NAC was 

associated to GSTM5 through molecules implicated in ROS generation, fatty acid metabolism, 

arterial and cardiac disorders. TP53: tumour protein p53; FOXO3: forkhead box O3; NFE2L2: 

nuclear factor (erythroid-derived 2)-like 2; AKT1: serine-threonine protein kinase AKT1; PI3K: 1-

phosphatidylinositol 3-kinase; NFKBIA: nuclear factor of kappa light polypeptide gene enhancer in 

B-cells inhibitor, alpha; Gst alpha: glutathione S-transferase alpha. Colour indications: green - 

decrease, red - increase, white - not detected.  
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Subsequently, urine metabolic profiles of salt-loaded animals were compared. 

Comparison of the SHRSP and Gstm1-transgenic salt-sensitive versus the WKY and 2k salt-

resistant strains identified 21 metabolites that were changing across all four comparisons: 

SHRSP_v_WKY, SHRSP_v_SW2k, Trans_v_WKY and Trans_v_SW2k. 14 of these metabolites 

were consistently increased in the salt-sensitive strains and all but one were detected only in 

the SHRSP and Gstm1-transgenic, having FC that ranged from 3.313 to 5555.425. Table  3-2 

summarises data for some of the metabolites. Complete data for all 21 metabolites can be 

found in the ‘Urine/Salt/Urine_salt_IC4_21_IPA’ supplementary table. 

Table  3-2. Subset of the 21 'in common' urine metabolites exhibiting significant change across the 

comparisons of SHRSP and Gstm1-transgenic versus WKY and SW2k, under salt loading. Data were 

generated on IDEOM v18. Green: decreased and red: increased metabolite levels. 
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Further network analysis on IPA associated 3-hydroxyanthranilic acid (consistently 

increased), oleic acid (consistently increased), pipecolic acid (decreased in comparisons with 

WKY) and 2-deoxy-D-ribose (decreased in SHRSP) with molecules implicated in lipid 

metabolism, inflammatory response, CVD and oxidative stress (Figure  3-10).  

 

Figure  3-10 - IPA network of urine metabolites significantly changing in the salt-sensitive versus the 

salt-resistant strains, upon salt-loading. (A) Changes in the SHRSP_v_WKY. (B) Changes in the 

Gstm1-transgenic _v_WKY followed same direction as in SHRSP_v_WKY apart from 2-deoxy-D-

ribose. (C) Changes in the SHRSP_v_SW2k. (D) Changes in the Gstm1-transgenic _v_ SW2k 

comparison. The altered metabolites were associated to molecules implicated in lipid metabolism, 

inflammatory response, ROS production, CVD. VCAM1: vascular cell adhesion molecule 1; NFkB: 

nuclear factor kappa-light-chain-enhancer of activated B cells; NOS2: nitric oxide synthase 2; 

REN:renin; PPARG: peroxisome proliferator-activated receptor gamma; Na
+
: sodium. Colour 

indications: green - decrease, red - increase, white - not detected. Asterisk indicates more than one 

potential isomers. 
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Finally, assessment of peak quality for the metabolites of interest that were identified 

in the urine comparisons, was performed on peakML.Viewer. Figure  3-11 illustrates the peak 

chromatograms of selected metabolites which demonstrated relatively good peak shape and 

reproducibility. 

 

Figure  3-11 - PeakML chromatograms of metabolites of interest identified in urine comparisons 

across WKY, SHRSP, SW2k and Gstm-1 transgenic strains, at baseline or salt-loaded conditions. (A) 

N-acteyl-cysteine exhibited significant decrease at baseline in SHRSP compared to WKY and SW2k 

and was not detected in the transgenic. At salt-loading, (B) 3-hydroxyanthraniclic acid and (C) oleic 

acid were increased in SHRSP and transgenic animals compared to WKY and SW2k. The x-axis 

indicates the retention time and the y-axis the intensity. 



Sofia Tsiropoulou Chapter 3 102 

3.2.2.2 Plasma metabolomic profiling at baseline and upon salt-loading 

At baseline, comparison of SHRSP plasma metabolic profile to the other three strains 

identified 19 common, significantly changing metabolites across the three comparisons: 

SHRSP_v_WKY, SHRSP_v_Trans and SHRSP_v_SW2k (Figure  3-7B; top venn-diagram). 

Association to functions and diseases on IPA did not highlight a particular process, rather, 

each metabolite was implicated in different functions. 18 out of the 19 metabolites exhibited 

consistent direction of change, with 17 showing constantly elevated and 1 diminished levels 

in SHRSP (Table  3-3). Of the 17 increased metabolites 5 were detected only in SHRSP and 

exhibited FC raging from 3.701 to 4005.273.  

Similarly to the urine analysis, further network analysis on IPA investigated potential 

relation of the 19 significant metabolites to GSTM1 and GSTM5, attempting to more 

restrictively identify plasma metabolic components implicated in the improved BP 

phenotype of Gstm1-transgenic compared to SHRSP. 5 metabolites were connected to 

GSTM5 and related to ROS and lipid metabolism (Figure  3-12). L-proline, 1-

acylglycerophosphocholine and phosphatidylethanolamine belonged to the consistently 

increased in SHRSP metabolites. Moreover, L-proline was unique to SHRSP, with 

FC=4005.273 over the other three strains. Another metabolite of interest was the linoleic 

acid, the only consistently reduced metabolite in SHRSP, having a FC of -7.176 in 

SHRSP_v_WKY, -8.207 in SHRSP_v_Trans and -7.301 in SHRSP_v_SW2k comparison (Table 

 3-3). Moreover, an interesting hit exhibiting inconsistent change was the sphingosine-1-

phosphate (S1P). S1P was significantly decreased in SHRSP compared to WKY (FC= -72.654) 

and SW2k (FC=-58.345), but did not change in comparison to transgenic animals (FC=1.504, 

p-val=0.0954).  
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Table  3-3. Subset of the 19 'in common' plasma metabolites exhibiting significant change in SHRSP 

compared to WKY, SW2k and Gstm1-transgenic, at baseline. Data were generated on IDEOM v18. 

Green: decreased and red: increased metabolite levels. 

 



Sofia Tsiropoulou Chapter 3 104 

 

Figure  3-12 - IPA network associating plasma metabolites, which significantly change at baseline in 

SHRSP versus WKY, SW2k and Gstm1-transgenic, with GSTM1 and GSTM5. (A) Changes in the 

SHRSP_v_WKY comparison. (B) Changes in the SHRSP_v_SW2k and SHRSP_v_ Gstm1-transgenic 

comparisons followed a common pattern. Five metabolites were associated to GSTM5 and the 

majority of molecules in the network mapped to ROS and lipid metabolism. IL4: interleukin 4; 

CFTR: cystic fibrosis transmembrane conductance regulator; CYCS: cyctochrome C, somatic. Colour 

indications: green - decrease, red - increase, white - not detected. Asterisk indicates more than one 

potential isomers. 
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Subsequently, plasma metabolic profiles in salt-loaded animals were compared. As in 

the urine analysis, comparison of the salt-sensitive versus the salt-resistant strains identified 

44 metabolites that were changing across all four comparisons: SHRSP_v_WKY, 

SHRSP_v_SW2k, Trans_v_WKY and Trans_v_SW2k. Of the above metabolites 3 were 

consistently decreased and 19 increased in the salt-sensitive strains. Of those increased 11 

were detected only in SHRSP and Gstm1-transgenic, having FC that ranged from 1.580 to 

382.770. Table  3-2 summarises data for some of the metabolites. Complete data for all 44 

metabolites can be found in the ‘Plasma/Salt/Plasma_salt_IC4_44_IPA’ supplementary table.  

Further investigation identified glutathione disulfide (GSSH) as a potentially interesting 

metabolite, which was detected only in salt-sensitive strains. GSSH displayed increased 

concentrations in SHRSP (FC=10.718) and Gstm1-transgenic (FC=26.31) compared to WKY 

and SW2k (Table  3-4). However, in the comparison between SHRSP and transgenic the 

change was not significant (FC=-2.455; p-val=0.0562).  
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Table  3-4. Subset of the 44 'in common' plasma metabolites exhibiting significant change across 

the comparisons of SHRSP and Gstm1-transgenic versus WKY and SW2k, under salt loading. Data 

were generated on IDEOM v18. Green: decreased and red: increased metabolite levels. 
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Finally, the metabolic effect of salt-loading on plasma was assessed in each strain 

individually, by comparing profiles between baseline and salt-loaded conditions. 

Comparisons across Gstm1-transgenic and the salt-resistant strains identified 28 significant 

changes unique to the transgenic. Of these, 9 were in common with SHRSP and 6 exhibited 

consistent increase across the two salt-sensitive strains, with FC ranging from 1.439 to 

961.421 (Table  3-5). Complete data for all unique and common metabolites can be found in 

the ‘Plasma/Salt_v_Baseline/Plasma_salt_v_base_SHRSP_IC_Trans_(13)+ Trans_unique_(28) 

_IPA' supplementary table. 

Table  3-5. Subset of the plasma metabolites exhibiting significant change in SHRSP and Gstm1-

transgenic or in the transgenic alone (unique), upon salt-loading. Data were generated on IDEOM 

v18. Green: significantly decreased and red: significantly increased metabolite levels. 
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Further investigation identified sphingosine-1-phosphate to be consistently and highly 

increased in both SHRSP (FC=82.300) and the transgenic (FC=88.898), under salt-loading 

(Table  3-5). Arachdonic acid was another molecule of interest, which displayed significantly 

increased concentrations only in salt-loaded transgenic animals (FC=1.582). 'Diseases and 

Function' analysis on IPA implicated the two metabolites in several pathological processes 

known to be related to salt, including CVD and BP regulation, inflammatory response, ROS 

producion and lipid metabolism.  

 

Figure  3-13 - 'Disease and function' analysis on IPA for significantly changing metabolites upon salt-

loading, in salt-sensitive strains. Sphingosine-1-phosphate was consistently increased across SHRSP 

(FC=82.300) and Gstm1-transgenic (FC=88.898). Arachidonic acid exhibited elevated concentrations 

only in salt-loaded transgenic (FC=1.582). The two metabolites were associated on IPA with a 

number of processes and pathological conditions including, inflammatory response, ROS 

production, lipid metabolism, BP, angiogenesis and artery disorders. Red indicates increase.  

Asterisk indicates more than one potential isomers. 

Finally, assessment of peak quality for the metabolites of interest, that were identified 

in the plasma comparisons, was performed on peakML.Viewer. Figure  3-14 illustrates the 

peak chromatograms of selected metabolites which demonstrated good peak shape and 

reproducibility. 
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Figure  3-14 - PeakML chromatograms of metabolites of interest identified in plasma comparisons 

across WKY, SHRSP, SW2k and Gstm-1 transgenic strains, at baseline or salt-loaded conditions. (A) 

Linoleic acid baseline levels were significantly decreased in SHRSP compared to the other three 

strains. (B) L-proline was a 'unique' SHRSP metabolite, not detected in the other strains, at 

baseline. (C) S1P exhibited decreased baseline concentrations in SHRSP and the transgenic strain 

compared to WKY and SW2k. (D) Glutathione disulfide was detected only in SHRSP and transgenic , 

upon salt-loading and displayed increased levels in SHRSP. (E) Upon salt-loading S1P increased in 

both SHRSP and the transgenic compared to baseline levels. (F) Arachidonic acid displayed high 

levels in the transgenic, which were even more elevated under salt-loading. The x-axis indicates 

the retention time and the y-axis the intensity. 
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3.3 Discussion 

Previous microarray profiling in whole kidney from salt-loaded rats demonstrated 

differential expression of S1pr1, a candidate gene for salt-sensitivity, across WKY, SHRSP and 

chr.2 congenic strains (Graham et al., 2007). Following up from these studies, this work 

aimed to further investigate whether the effects of altered gene expression were 

represented at the protein level, in kidneys from salt-loaded parental and SW2a and SW2k 

congenic rats. The investigation was also extended to vascular tissue, since S1PR1 is known 

to play significant role in the vasculature (Spiegel and Milstien, 2003b, Fujii et al., 2012). 

The protein levels of S1PR1 in both salt-loaded kidney and thoracic aorta were below 

detection when tested with IHC. To circumvent this issue, WB analysis was performed in 

kidney enrichments for membrane fraction and demonstrated similar expression levels 

across parental and congenic animals. This inconsistency between mRNA and protein levels 

implies abnormal post-transcriptional regulation or protein turnover. In thoracic aorta 

enrichments, previous work in our lab demonstrated consistently low detection of S1PR1 

levels across the strains. 

To further investigate the role of candidate genes in salt-sensitive HTN, and assess the 

effects of salt-loading on BP regulation and sphingosine signalling, a more comprehensive, 

untargeted, metabolic profiling was carried out in urine and plasma from rats, on normal-salt 

and salt-loaded diets. In this study, apart from the parental and the SW2k congenic strains, 

the Gstm1-transgenic strain was included. The aim was to also assess the role of Gstm1, a 

chr.2 positional and functional candidate for BP-regulation (McBride et al., 2003), on the 

metabolic level and to investigate its implication in salt-sensitivity. 

Identified metabolites in plasma were almost two thirds of those identified in urine. 

This could be the result of the fact that urine samples were collected over a 24h period. 

During this space of time, while urine is exposed to the environment, further chemical 

reactions and oxidation changes of the dynamic urinary metabolome are possibly allowed to 

take place, leading to greater inter-sample variability. PCA plots for urine and plasma were 

generated to assess the variability within and across groups. In both urine and plasma, 

clustering indicated different profiles between normal-salt and salt-loaded groups, in each 

strain, with the exception of WKY in plasma. This may illustrate the fact that WKY are 

resistant to salt-loading, maintaining low BP levels. In addition, WKY and SW2k displayed 

more different profiles to the SHRSP and Gstm1-transgenic strains, which were clustering 

(
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together, and this differential clustering was consistent across urine and plasma and across 

baseline and salt-loading. It is therefore suggested that the two salt-resistant strains, WKY 

and SW2k, handle salt-loading in a different way, as opposed to the salt-sensitive strains 

which exhibit consistently similar profiles across normal-salt and salt-loaded conditions. 

However, variability within groups was large, which can be attributed to the small number of 

replicates, in combination with the highly dynamic nature of the metabolome.  

Considering time limitations, from a large number of comparisons across urine and 

plasma, across strains and across conditions, focus was placed on particular intersects 

according to the most interesting questions to be tested in each case. At baseline, SHRSP 

was compared to each of the other three strains, in order to investigate the metabolic 

components associated with increased BP in SHRSP and improved BP in SW2k and Gstm1-

tansgenic. Under salt-loading, the SHRSP and Gstm1-transgenic salt-sensitive strains were 

compared to the WKY and SW2k salt-resistant strains, in order to examine metabolic 

changes implicated in a protective or a pathogenic manner in salt-sensitivity. Lastly, 

comparisons within each strain before and after salt-loading were performed to characterise 

how each strain responds to salt-loading. 

Comparison of urine profiles under normal-salt, demonstrated that SHRSP was equally 

different to the other three strains, and therefore ‘in common’ changing metabolites, were 

further investigated as components associated with BP regulation. The most interesting 

finding was N-acetyl-cysteine (NAC), which exhibited decreased levels in SHRSP compared to 

WKY and SW2k, but was not detected in the transgenic animals. Moreover, IPA network 

analysis identified several connections between NAC and the human homologue of GSTM1, 

GSTM5. However, N-acetyl-cysteine is a synthetic derivative of cysteine, exhibiting 

antioxidant properties (Mansano et al., 2012) and being implicated in artery vasodilation and 

protection against acute renal failure in rats (de Araujo et al., 2005, Alencar et al., 2003). It 

has been and is extensively being used in clinical trials as a treatment for a wide range of 

human diseases, including HTN and renal failure (NCT00569465, NCT00736866 - clinical trial 

identifiers). Therefore, further investigation is needed into the origin of this metabolite 

(microbiota?) in our animals, which was the single isomer identified with high confidence. 

Subsequent investigation of the effect of salt-loading in urine profiles of salt-resistant 

and salt-sensitive strains, demonstrated responses of similar magnitude for the resistant 

WKY and SW2k. However, the sensitive SHRSP and transgenic seemed to respond in a 

different way to salt-loading, as indicated through the venn diagrams. Therefore, the few 
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metabolites changing ‘in common’ and in the same direction between SHRSP and the 

transgenic may include molecules implicated in salt-sensitivity. 3-hydroxyanthranilic acid and 

oleic acid were two metabolites consistently elevated in SHRSP and the transgenic, 

compared to WKY and SW2k. 3-hydroxyanthranilic acid, an intermediate of tryptophan 

degradation, has protective effects against inflammation through scavenging of free radicals, 

induction of the antioxidant HMOX1 (heme-oxygenase 1) protein expression and reduction 

of VCAM1 protein expression (Opitz et al., 2007). Therefore, increased levels in the salt-

sensitive strains imply increased tryptophan degradation, which may act in a protective 

manner against stress induced by salt-loading. Moreover, oleic acid, a monounsaturated 

fatty acid, has been implicated in increased production of ROS (reactive oxygen species) (Lu 

et al., 1998), and the up-regulation of renin transcription through the transcription factor 

PPARg (peroxisome proliferator-activated receptor-gamma) (Todorov et al., 2007). Increased 

renin transcription suggests potentially increased levels of angiotensin II, which regulates 

vasoconstriction. Furthermore, a paradigm of how angiotensin II may be implicated in the 

pathogenesis of salt-dependent HTN has been recently described (Blaustein et al., 2012). 

Hence, raised BP in salt-sensitivity may be regulated by increased levels of oleic acid. The 

above responses may be mediated by the congenic interval due to the different profiles 

between salt-sensitive and salt-resistant strains. 

Finally, comparisons across normal-salt and salt-loaded conditions within each strain 

indicated different responses across strains, as observed through venn diagramms. However, 

due to time limitations, further analysis of these urine comparisons was not performed. 

Subsequent comparisons of plasma profiles under normal-salt, exhibited a similar 

pattern to this of urine, with SHRSP having a consistently different profile to this of the other 

three strains. Focus on ‘in common’ metabolites changing consistently across the three 

comparisons, identified L-proline and linoleic acid as potentially interesting and they were 

also associated to human GSTM5 and metabolism of ROS, on IPA. L-proline is an amino acid 

that has been reported to support generation of ROS through its oxidised form (Donald et 

al., 2001) and also to reduce the antioxidant activity of SOD (superoxide dismutase) in rat 

erythrocytes (Roecker et al., 2012). Therefore, increased levels of L-proline only in SHRSP 

suggest implication in the elevated BP phenotype, as well as a protective effect of the 

congenic interval, and potentially the Gstm1, through down-regulation of L-proline levels. In 

addition, levels of linoleic acid were consistently decreased in SHRSP. Linoleic acid, an 

unsaturated fatty acid is known to down-regulate protein expression of eNOS (endothelial 
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nitric oxide synthase) in endothelial cells (Artwohl et al., 2004) and increase NAD(P)H 

oxidase activity (Lassegue and Clempus, 2003) in VSMC. Moreover, linoleic acid plasma levels 

were shown to be inherited in families with CVD (Shah et al., 2009). Thus, decreased levels 

of linoleic acid in SHRSP may imply a protective adaptation against increased oxidative stress 

in these animals, which is most likely mediated by the congenic interval, but further 

investigation is needed. Another interesting finding was the significantly reduced S1P levels 

in SHRSP compared to WKY and SW2k, but not to the transgenic strain, which suggests that 

Gstm1 does not regulate S1P levels. 

Next, the plasma metabolic profiles upon salt-loading were compared across the salt-

sensitive and salt-resistant strains. Responses between SHRSP and Gstm1-transgenic shared 

less ‘in common’ metabolites, indicating different handling of salt-loading and supporting 

similar findings in urine. An interesting metabolite that was consistently elevated in the salt-

sensitive strains was the glutathione disulfide (GSSH). GSSH is the oxidised form of 

glutathione, a known antioxidant (Pompella et al., 2003). Increased GSSH levels are 

potentially a marker of increased oxidative stress upon salt-loading in salt sensitivity. 

Furthermore, it could be suggested that although Gstm1 expression in the transgenic strain 

is beneficial at baseline causing decrease in BP, salt-loading hampers this beneficial effect. 

Finally, the plasma profiles at normal-salt and salt-loaded conditions were compared 

within each strain to assess differential responses to salt-loading. Again, the majority of 

identified metabolites were unique to each strain, suggesting different handling of salt. The 

major finding of this analysis was the consistent increase of S1P upon salt-loading, in both 

the SHRSP and Gstm1-transgenic salt-sensitive strains, which suggests regulation of S1P 

levels by salt. This increase reaches S1P levels of WKY and SW2k at baseline and can be 

interpreted as protective in the regulation of BP and oxidative stress under salt loading.  

In conclusion, urine analysis proved to be more challenging than plasma, as urinary 

metabolic profiles are known to be more susceptible to environmental factors and therefore 

more variable. However, oleic acid was identified in urine as a candidate biomarker for salt 

sensitivity. In plasma, glutathione disulfide could represent a marker of increased oxidative 

stress in salt-sensitivity. Moreover, L-proline and linoleic acid were suggested to be 

implicated in BP regulation in HTN. For the analysis to be complete, further validation of the 

findings to authentic standards by MS/MS fractionation and verification by WB and 

enzymatic activity assays, would be essential before any generation of new testable 

hypothesis. 



4 Functional and Molecular 

Characterisation of Mesenteric 

Resistance Arteries from WKY, SHRSP 

and Chromosome 2 Congenic Strains 
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4.1 Introduction 

Elevated BP in HTN is mediated by increased peripheral vascular resistance, which is 

principally determined through the myogenic tone of microcirculation, including  resistance 

arteries (Borders and Granger, 1986, Bohlen, 1986). Alterations in the structure and function 

of resistance arteries regulate blood flow and pressure, through vascular remodelling and 

modulation of myogenic tone (Mulvany and Aalkjaer, 1990).  

Adaptive changes in structure and elasticity of mesenteric resistance arteries (MRA) in 

hypertensive rat models (SHR/SHRSP) are characterised by narrowing of the lumen and 

increased wall:lumen ratio, which may increase vascular resistance, even at full dilatation, 

and vascular stiffening caused by abnormal elastin and collagen organisation (Arribas et al., 

1997, Briones et al., 2003, Briones et al., 2009, Mulvany, 1988). However, the mechanisms 

involved in vascular remodelling, are not clear. Antioxidant therapies in SHR/SHRSP have 

been shown to improve the wall:lumen ratio in MRAs (Chen et al., 2001, Park et al., 2002, 

Rizzoni et al., 1998). Therefore, oxidative stress, along with wall stress, changes in the 

extracellular matrix proteins deposition and the neurohormonal environment, have been 

suggested as potential mechanisms contributing to the vascular remodelling (Lee et al., 

1995, Touyz et al., 2003).  

In addition, alterations of function in resistance arteries occur as a result of imbalance 

between vasodilatation and vasoconstriction. The principal vasodilators are nitric oxide (NO), 

prostacyclin (PGI2) and endothelium-derived hyperpolarising factors (EDHF). EDHF is the 

main vasodilatory pathway in small resistance arteries, whereas PGI2 and NO are more 

prominent in large vessels (Shimokawa et al., 1996). Yet, NO is considered the major 

regulator of cardiovascular homeostasis (Feletou et al., 2012). The principal vasoconstrictors 

include endothelin-1, prostanoids, angiotensin II and superoxide anions (Félétou and 

Vanhoutte, 2006). Normal function of endothelium, which is the source of the vasoactive 

factors, maintains the physiological vascular tone. Imbalance in availability of vasoactive 

factors results in endothelial dysfunction, the common denominator of cardiovascular 

diseases, including hypertension (Grunfeld et al., 1995, Potenza et al., 2005, Treasure et al., 

1993). In SHRSP, EDHF-mediated responses have been reported to be impaired in resistance 

arteries (Goto et al., 2004, Sunano et al., 1999). Moreover, endothelium-dependent 

relaxation responses are diminished due to low NO bioavailability, despite the generally 

increased eNOS activity and unaffected endothelial NO production (McIntyre et al., 1997, 



Sofia Tsiropoulou Chapter 4 116 

Kerr et al., 1999, Ma et al., 2001). In SHRSP, NO bioavailability is reduced due to enhanced 

levels of the NO scavenger, superoxide anion, indicating implication of ROS in endothelial 

dysfunction (Hamilton et al., 2004). Increased production of the superoxide anion has been 

mainly attributed to endothelial xanthine oxidase, NADPH oxidase (NOX) and uncoupled 

eNOS (Grunfeld et al., 1995, Kerr et al., 1999, Suzuki et al., 1998, Zalba et al., 2000, Hamilton 

et al., 2001). Inhibition of eNOS by administration of L-NAME, decreased vascular superoxide 

levels in SHRSP (Grunfeld et al., 1995, Hamilton et al., 2001, Kerr et al., 1999). In general, 

therapeutic approaches using antioxidants demonstrate an improvement in the endothelial 

function (Fennell et al., 2002, Savoia et al., 2006).  

Apart from the endothelium-dependent modulation, the contractile state of SM is also 

regulated by neurotransmitters, hormones and other chemical signals, as well as changes in 

the load or length, which affect directly the VSMCs (Webb, 2003). The contractile activity in 

SM is controlled by the balance between Ca2+/calmodulin-dependent MLC kinase (MLCK) 

and MLC phosphatase (MLCP) activity, whereby de-phosphorylation of MLC promotes 

relaxation. MLCP activity is controlled by the RhoA small G protein and its downstream 

effector Rho kinase (RhoK), which de-activates the phosphatase, maintaining the contracted 

state of MLC in VSMCs (Seko et al., 2003, Webb, 2003). Inhibition of RhoK using 

pharmacological antagonists, such as Fasudil, has been shown to induce relaxation hence 

reduction in BP (Tsounapi et al., 2012, Uehata et al., 1997, Yang et al., 2011) and correct 

SMC hypercontractions (Mukai et al., 2001, Tsounapi et al., 2012) in in vivo and ex vivo 

studies on animal models of HTN, suggesting that inhibition of RhoK improves endothelial 

dysfunction in HTN in the SHR model. Recent publications also support a potential 

antioxidant role of fasudil, which is partly exerted through elevation of NO production (Guan 

et al., 2012, Ma et al., 2011), potentially leading to further inhibition of RhoA, in VSMC 

(Sauzeau et al., 2000, Wu et al., 1996). 

In addition, vasoactive compounds can also be produced and secreted by platelets, as 

in the case of sphingolipids, which are known to impact on vascular remodelling and 

endothelial dysfunction in HTN (Bolz et al., 2003, Ohanian et al., 2012, Spijkers et al., 2011). 

Sphingosine-1-phosphate (S1P) is an important bioactive lipid that influences vascular tone 

and VSMC function through selective binding of S1PR1, S1PR2 and S1PR3 receptors (Coussin 

et al., 2002, Lee et al., 1998, Murakami et al., 2010) (subtypes present in the 

vasculature)(Peters and Alewijnse, 2007). S1P signalling has been related to inflammation in 

HTN; specifically, it has been suggested to regulate pro-inflammatory vascular signalling 
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through receptor tyrosine kinases (RTK) (Tanimoto et al., 2004). Moreover, RTK 

transactivation has been shown to further trigger activation of MAP kinases, including 

p38MAPK and SAPK/JNK, known mitogenic signal transducers implicated in pro-

inflammatory pathways and VSMC inflammation (Eguchi et al., 2001, Linseman et al., 1995, 

Yogi et al., 2011). These S1P/S1PR1-mediated pro-inflammatory effects were upregulated in 

mesenteric VSMCs from hypertensive SHRSP (Yogi et al., 2011). Furthermore, it has been 

demonstrated that the S1pr1 (Edg1) receptor is a candidate gene implicated in salt-sensitive 

HTN in the SHRSP model, exhibiting elevated mRNA expression in kidney from these animals 

(Graham et al., 2007).  Taken together the above data signify the potential importance of 

altered S1P/S1PR1 signalling in vascular remodelling and endothelial dysfunction in HTN. 

 

4.1.1 Aims 

Previous construction of chr.2 congenic strains, both on the WKY and SHRSP genetic 

backgrounds, resulted in improved BP phenotypes (Graham et al., 2007) (Figure  4-1). This 

series of experiments used 3rd order-mesenteric resistance arteries (MRA) from 16-week-

old normotensive WKY, hypertensive SHRSP and the WKY.SPGla2a (WS2a) and SP.WKYGla2a 

(SW2a) reciprocal congenic strains aiming to: 

• to compare the structure, mechanics and vascular function of MRAs across the strains, 

as well as to assess the effect of the chr.2 congenic interval on these phenotypes.  

• to investigate the underlying regulatory mechanisms of MRA vascular reactivity across 

the strains and their association with the congenic interval.   

• to establish mesenteric primary VSMC cultures, in order to examine S1P/S1PR1 

signalling across the strains.  
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Figure  4-1 - Chromosome 2 reciprocal congenic strains generated by WKY and SHRSP  mating. (A) 

Schematic of chr.2 from parental, WKY.SPGla2a and SP.WKYGla2a congenic strains, showing location 

of the congenic interval. Blue bars: regions of WKY homozygosity, red bars: regions of SHRSP 

homozygosity. (B) Averaged weekly radiotelemetry recordings of night-time and day-time SBP in 

male parental and WKY.SPGla2a and SP.WKYGla2a congenic strains, under baseline and salt-loaded 

conditions. Animals were put on high-salt diet at 18 weeks of age. Edited from Graham et al., 2007. 
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4.2 Results  

4.2.1 Structural and mechanical properties of MRAs from WKY, SHRSP and 2a 

congenic strains 

Vascular structure and mechanics of MRAs from 16 week old WKY, SHRSP and the 

SP.WKYGla2a and WKY.SPGla2a congenic strains were assessed by subjecting vessel segments 

to a stepwise increase of intraluminal pressure (from 10 to 110 mmHg) on a pressure 

myograph, as described in section  2.5.2.  

MRAs from SHRSP exhibited smaller, yet not significantly, external diameter at 

pressures greater than 60mmHg (De; Figure  4-2A), compared with the other three strains. 

SHRSP internal diameter (Di; Figure  4-2B) also appeared slightly diminished relative to WKY 

and SP.WKYGla2a, and significantly smaller to WKY.SPGla2a, at high pressures (80-120mmHg, 

P<0.05). Wall : lumen ratio, wall thickness and cross-sectional area (CSA) (Figure  4-2C,D and 

E) tended to decrease in SHRSP and both the 2a congenic strains compared with WKY, but 

only reached significance in WKY.SPGla2a versus WKY arteries (P<0.05; 10-20mmHg for wall : 

lumen ratio, 10-20 and 80-110mmHg for wall thickness, 100-110mmHg for CSA). SHRSP and 

SP.WKYGla2a demonstrated intermediate phenotypes for these three parameters. The above 

data are summarised in Table  4-1. 

Table  4-1. Morphometric parameters of pressurised MRAs.  

Group External 

diameter (µm) 

(110mmHg) 

Lumen 

diameter (µm) 

(110mmHg) 

Wall/lumen  

ratio (%) 

(20mmHg) 

Wall thickness 

(µm)  

(110mmHg) 

Cross-section 

area (µm
2
) 

(110mmHg) 

WKY 436 ± 15.0 314 ± 10.8 0.196 ± 0.02* 61 ± 5.2* 72486 ± 7518* 

WS2a 438 ± 12.3 348 ± 12.7 0.132 ± 0.011 45 ± 2.5 55450 ±  3266 

SW2a 443 ± 10.1 328 ± 13.0 0.181 ± 0.019 58 ± 4.1         

(40-60mmHg)* 

69333 ± 4730 

SHRSP 402 ± 13.9 294 ± 18.6* 0.197 ± 0.025 55 ± 3.5 58907 ± 2847 

Values are means ± SEM        *p<0.05 vs WS2a 
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Figure  4-2 - Comparison of structural properties of MRAs from 16 week old parental WKY and 

SHRSP and congenic WKY.SPGla2a and SP.WKYGla2a strains. (A) External diameter, (B) internal 

diameter, (C) wall : lumen ratio, (D) wall thickness and (E) cross-sectional area (CSA) in dependency 

to applied intraluminal pressure, on fully relaxed MRA, as measured by pressure myography. Data 

are expressed as mean ±SEM; n=number of animals is indicated in parenthesis; P-values indicate 

statistical difference between strains calculated by two-way ANOVA (rat strain – pressure), 

followed by Bonferroni test. 

 

 



Sofia Tsiropoulou Chapter 4 121 

Subsequently, vascular stiffness of MRAs was assessed by measuring stress and strain 

of the arterial wall. Wall stress was significantly enhanced only in WKY.SPGla2a, at high 

pressures (80-110mmHg), in comparison to all other strains (Figure  4-3A). Wall strain was 

significantly lower in SHRSP relative to WKY as well as WKY.SPGla2a, at pressures between 60 

and 110mmHg (P<0.001 and P<0.01, respectively) (Figure  4-3B). Incremental distensibility, at 

low pressures (10-40mmHg), followed a similar pattern between strains sharing genetic 

background, with SHRSP-background strains (SHRSP and SP.WKYGla2a) exhibiting smaller 

values than WKY-background strains (WKY and WKY.SPGla2a) (Figure  4-3C). Finally, wall 

stiffness, described by the stress - wall strain relationship, was increased in SHRSP compared 

with WKY and the congenic strains, however it did not reach significance (p=0.055) (Figure 

 4-3D). Increased stiffness is indicated by the leftward shift of the curve and the higher β 

value, which represents the curve slope. Data are summarised in Table  4-2. 

Table  4-2. Mechanical parameters of pressurised MRAs. 

Group Stress                   

(x 10
6
 dynes/cm

2
) 

(20mmHg) 

Wall strain 

(110mmHg) 

Incremental 

distensibility                        

(% mmHg
-1

) 

(20mmHg) 

β-slope         

WKY 0.041 ± 0.004 *** 0.870 ± 0.106
 ### 0.901 ± 0.162 4.053 ± 0.376   

WS2a 0.058 ± 0.004 0.755 ± 0.076 ## 0.942 ± 0.189 4.497 ± 0.278  

SW2a 0.044 ± 0.004 *** 0.669 ± 0.071 0.599 ± 0.128 5.310 ± 0.828  

SHRSP 0.042 ± 0.005 *** 0.468 ± 0.066 0.602 ± 0.123 7.221 ± 0.928  

Values are means ± SEM                                                                                                                                

*** P<0.001  vs WS2a        ###, ## P<0.001, 0.01  vs SHRSP 

 



Sofia Tsiropoulou Chapter 4 122 

 

Figure  4-3 - Comparison of mechanical parameters of MRAs from 16 week old parental WKY and 

SHRSP and congenic WKY.SPGla2a and SP.WKYGla2a strains. (A) Stress, (B) wall strain and (C) 

incremental distensibility in dependency to applied intraluminal pressure, on fully relaxed MRA. 

(D) Stress-strain relationship. Data are expressed as mean ±SEM; n=number of animals is indicated 

in parenthesis; *,**,*** P< 0.05, 0.01, 0.001 indicate statistical difference between strains 

calculated by two-way ANOVA (rat strain – pressure), followed by Bonferroni test. 
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4.2.2 Vascular reactivity and endothelial function of MRAs from WKY, SHRSP 

and 2a congenic strains  

Vascular reactivity and endothelial function of MRAs from 16 week old WKY, SHRSP 

and SP.WKYGla2a and WKY.SPGla2a congenic strains were assessed by exposing vessels to 

cumulative doses of a vasodilator / vasoconstrictor, and measuring the responses on a wire 

myograph, before and after pharmacological inhibition of certain relaxation / constriction 

pathways, as described in section 2.5.1.  

To evaluate alpha-adrenergic-induced contractile responses of MRAs, isolated arteries 

were treated with increasing doses of noradrenalin (NA) (10-9 to 3x10-5M). Responses were 

measured before and after RhoK inhibition with fasudil (3μM, 30min before NA stimulation) 

to assess the involvement of RhoA/Rho kinase pathway on the basal tone. Inhibition of RhoK 

decreased similarly NA-induced contraction in WKY, WKY.SPGla2a and SP.WKYGla2a, without 

reaching significance (Figure  4-4A, B and D). On the contrary, in SHRSP, the fasudil-induced 

decrease in contraction to high NA doses was significantly greater compared to untreated 

MRAs (3x10-6M, P<0.01). Moreover, the contraction curve was slightly shifted to the right, 

indicating a lower sensitivity to NA in fasudil-treated versus untreated arteries from SHRSP 

(Figure  4-4C). Further, comparison of responses across strains, in untreated MRAs, 

demonstrated significantly enhanced contractility in SHRSP versus WKY and the two 

congenic strains (3x10-6 to 10-5M). SP.WKYGla2a NA-induced contraction was also increased 

relative to WKY, whereas WKY.SPGla2a exhibited similar responses to WKY. Finally, a small 

leftward shift of the SHRSP curve indicated higher sensitivity to NA (Figure  4-4E). After RhoK 

inhibition, SHRSP high contractile responses to NA remained significantly different to the 

other three stains (3x10-6 to 10-5 M), despite the corrected levels as described above (Figure 

 4-4F). The above data are summarised in Table  4-3. 
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Table  4-3. Contractile responses to noradrenalin in untreated and fasudil-treated MRAs.  

Group Noradrenaline                    

Active effective pressure (kPa)      

(3 x 10
-6

 M) 

Noradrenaline + Fasudil                                                 

Active effective pressure (kPa)                 

(3 x 10
-6

 M) 

WKY
 

23.18 ± 2.54  *** 
, #  17.38 ± 2.17  *** 

, ##, § 

WS2a 25.92 ± 3.89  *** 20.90 ± 5.87  

SW2a 32.85 ± 2.22  ** 27.10 ± 2.02 

SHRSP 41.45 ± 1.85  ## 31.26 ± 3.42 §§ 

 Values are means ± SEM                                                                                                                   

***,** P < 0.001, 0.01  vs SHRSP          ##, # P < 0.01, 0.05  vs SW2a                              

§§,§ P < 0.01, 0.05  vs untreated                                                                                                                 
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Figure  4-4 - Contractile responses to noradrenaline (NA) in MRAs from 16 week old parental WKY 

and SHRSP and congenic WKY.SPGla2a and SP.WKYGla2a strains. Concentration-response curves of 

(A) WKY, (B) WKY.SPGla2a, (C) SHRSP and (D) SP.WKYGla2a to NA (10
-9

 to 3x10
-5

M) before and after 

acute treatment with fasudil 3μM, using wire myography. (E) Comparison of contraction curves of 

untreated MRAs. (F) Comparison of contraction curves of fasudil-treated MRAs. Data are expressed 

as mean ±SEM; n=number of animals is indicated in parenthesis; *,**,*** P< 0.05, 0.01, 0.001 

indicate significant statistical difference calculated by two-way ANOVA (treatment - [NA] or rat 

strain - [NA]), followed by Bonferroni test. 
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Endothelium-mediated relaxation to cumulative doses of carbachol (3x10-8 to 10-5 M) 

was measured in NA-pre-contracted MRAs, at baseline and after eNOS inhibition with L-

NAME (100μM, 30min before stimulation with agonists), to evaluate function of 

endothelium and contribution of endothelial NO on relaxation, in each strain.  

In the first series of experiments, fully (100%) pre-contracted arteries (3x10-5M NA) 

from SHRSP and SP.WKYGla2a relaxed in a similar manner to carbachol (3x10-7 to 10-5M) and 

significantly less compared to WKY and WKY.SPGla2a, under basal conditions (Figure  4-5). 

Data are summarised in Table  4-4.  

 

Figure  4-5 - Endothelium-dependent relaxation to carbachol, in fully (100%) pre-contracted MRAs 

with noradrenaline, from 16 week old parental WKY and SHRSP and congenic WKY.SPGla2a and 

SP.WKYGla2a strains. MRAs were pre-contracted with 3x10
-5

M NA and concentration-response 

curves to carbachol (3x10
-8

 to 10
-5

M) were generated using wire myography. Data are expressed as 

mean ±SEM; n=number of animals is indicated in parenthesis; *,**,*** P< 0.05, 0.01, 0.001 indicate 

statistical difference calculated by two-way ANOVA (rat strain - [carbachol]), followed by 

Bonferroni test. 
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In a following set of experiments MRAs were pre-contracted to approximately 80% 

(2x10-6M NA) before treatment with L-NAME. Untreated arteries relaxed completely in all 

four strains (Figure  4-6A). Inhibition of eNOS significantly decreased carbachol-induced 

relaxation of MRAs from SHRSP compared to WKY and the two congenic strains (3x10-7 to 10-

5 M). Responses of SP.WKYGla2a were affected to a lesser extent, without reaching 

significance against WKY and WKY.SPGla2a (Figure  4-6B). Looking specifically into each strain, 

L-NAME treatment partially reduced relaxation to carbachol in MRAs from WKY (10-7 to 

3x10-7 M), but had no significant effect on WKY.SPGla2a (Figure  4-6C and D). On the contrary, 

inhibition of eNOS highly impaired vasodilatation in MRAs from SHRSP and SP.WKYGla2a (10-7 

to 10-5 M) (Figure  4-6E and F). Moreover, upon treatment sensitivity to carbachol was 

reduced in all four strains, however to a different extent, as indicated by the rightward shift 

of the curve. Data are summarised in Table  4-4.  

Table  4-4. Relaxation responses of MRAs  

Group Carbachol                  

% Relaxation     

(3x10
-6

 M)          

(100% pre-

contracted) 

Carbachol              

% Relaxation         

(3 x 10
-6

 M)      

(80% pre-

contracted) 

Carbachol  + L-NAME    

% Relaxation                      

(3 x 10
-6

 M)               

(80% pre-      

contracted) 

SNP                    

% Relaxation    

(3 x 10
-6

 M) 

(80% pre-

contracted) 

WKY 83.50 ± 6.43***
, ##

 98.36 ± 0.77  84.21 ± 10.53 * 100 ± 0.26  

WS2a 70.76 ± 6.57 * 95.05 ± 2.83 93.41 ± 2.56 ** 98.3 ± 1.67 

SW2a 52.34 ± 7.10 95.12 ± 3.63     63.11 ± 12.25 §§ 94.6 ± 2.77 

SHRSP 44.53 ± 5.88 88.33 ± 3.05  47.21 ± 10.85 §§§ 97.6 ± 0.66 

Values are means ± SEM                                                                                                                       

***,**,* P < 0.001, 0.01, 0.05  vs SHRSP             ## P < 0.01  vs SW2a                                                          

§§§,§§ P < 0.001, 0.01  vs untreated                                                                                                                 
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Figure  4-6 - Endothelium-dependent vasodilatation responses to carbachol, in 80% NA pre-

contracted MRAs from 16 weeks old parental WKY and SHRSP and congenic WKY.SPGla2a and 

SP.WKYGla2a strains. (A) Comparison of relaxation curves of untreated MRA. (B) Comparison of 

relaxation curves of L-name-treated MRA. Concentration-response curves of (C) WKY, (D) 

WKY.SPGla2a, (E) SHRSP and (F) SP.WKYGla2a to carbachol (3x10
-8

 to 10
-5

M) before and after 

treatment with L-name (100μM), using wire myography. Data are expressed as mean ±SEM; 

n=number of animals is indicated in parenthesis; *,**,*** P< 0.05, 0.01, 0.001 indicate statistical 

difference calculated by two-way ANOVA (treatment - [carbachol] or rat strain - [carbachol]), 

followed by Bonferroni test. 
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Endothelium-independent relaxation of NA-pre-contracted vessels (2x10-6M) was 

assessed in response to cumulative doses of the external nitric oxide (NO) donor, sodium 

nitroprusside (SNP; 3x10-8 to 10-5 M). Relaxation curves did not differ between the four 

strains (Figure  4-7). Data are also summarised in Table 4. 

 

Figure  4-7 - Endothelium-independent vasodilatation responses to the external nitric oxide donor, 

sodium nitroprusside (SNP) in noradrenaline pre-contracted (80%) MRAs. Concentration-response 

curves of WKY, WKY.SPGla2a, SHRSP, and SP.WKYGla2a, to SNP (3x10
-8

 to 10
-5

M), using wire 

myography. Data are expressed as mean ±SEM; n=number of animals is indicated in parenthesis. 

Statistical difference between treatment groups was calculated by two-way ANOVA (rat strain - 

[SNP]). 
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4.2.3 Isolation of primary VSMCs from MRAs and culture establishment 

To investigate whether differences in physiology of MRAs are represented at the 

cellular and molecular level, primary VSMCs from MRAs of 16 week old WKY, SHRSP and 2a 

congenic strains were isolated and cell cultures were established (sections  2.2.1 and 2.2.2). 

Purity of primary VSMC cultures was assessed by positive immunofluerescent staining (ICC) 

for the smooth muscle cell type-specific marker SMC-α-actin (ACTA2), at passage 3, as 

described in section 2.2.4. Green fluorescent staining of actin microfilaments demonstrated 

clear domination of VSMCs (>90%) (Figure  4-8, middle). Negative species-specific IgG (rabbit) 

control showed no detectable staining (Figure  4-8, right). 

 

Figure  4-8 - Characterisation of mesenteric VSMC cultures from 16 week old rats, by 

immunocytochemistry. VSMC cell culture at passage 3, x10 magnification (left). 

Immunofluorescent staining for ACTA2 (polyclonal rabbit-anti human, 1/100, ab5694), x20 

magnification (middle). Isotype (rabbit IgG) negative control (right).  
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4.2.4 S1P-Receptors expression in primary VSMCs from MRAs  

Previous microarray and protein expression data from renal tissue and primary VSMCs, 

indicated S1PR1 as a positional candidate of salt-sensitivity and BP regulation in SHRSP 

(Graham et al., 2007). Following these observations, S1PR1 expression was investigated in 

primary mesenteric VSMCs relative to primary aortic VSMCs. Moreover, levels of S1PR2 and 

S1PR3 were tested in mesenteric primary VSMCs. WB analysis (section 2.3) was performed 

on whole cell lysates (section 2.2.7) from 16 weeks old WKY, SHRSP and the 2a congenics, 

probed with specific receptor antibodies. No bands corresponding to the size of S1PR1 

(47kDa) were detected in any of the strains, for mesenteric or aortic VSMCs. Positive control 

of transfected CCL39 cells expressing human S1PR1 gave an intense band at the expected 

size. No signal was detected in negative control of untransfected CCL39 cells. (Figure  4-9; top 

panel). Similarly, expression levels of S1PR2 and S1PR3 were beyond detection in mesenteric 

VSMCs from WKY and SHRSP (Figure  4-9 B and C; top panels). β-actin was used as loading 

control. 
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Figure  4-9 - S1P-Receptors expression in whole cell lysates of primary VSMCs from 16 week old 

WKY, SHRSP and 2a congenic strains. Top panels: (A) immunoblot for S1PR1 (PA1-1040 antibody 

provided by Dr. Tim Palmer) in: transfected CCL39 hamster lung fibroblast cells stably expressing 

human S1PR1 protein ((+) positive control), CCL39 untransfected cells ((-) negative control), 

primary aortic VSMCs from WKY and SHRSP (lanes 3,4), primary VSMCs from MRAs of WKY, SHRSP, 

WKY.SPGla2a and SP.WKYGla2a (lanes 5 to 8). (B) immunoblot for S1PR2 and (C) S1PR3 in  primary 

VSMCs from MRAs of WKY and SHRSP. Bottom panels: immunoblots for β-actin used as loading 

control. Protein loaded: 80 µg. 
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4.2.5 S1PR1 signalling in primary VSMCs from MRAs 

Despite expression levels of S1PR1 below the detection threshold of western analysis 

in mesenteric primary VSMCs from the four strains (section  4.2.4), investigation of receptor's 

downstream signalling was performed based on and in order to confirm data from previous 

studies, which demonstrated altered S1PR1 MAP kinase signalling between WKY and SHRSP 

in mesenteric VSMCs (Yogi et al., 2011). A drug agonist/antagonist intervention was applied 

to compare phosphorylation levels of signalling effectors and verify the receptor subtype 

through which S1P induces its effects, in primary VSMCs from the parental and congenic 

strains. As described in section 2.2.5, cells were either stimulated with the S1P agonist (10-

6M) for 30mins or pre-exposed to VPC23091 (10-5M), a potent S1PR1 antagonist, for 30min 

before S1P stimulation. Levels of phosphorylation of the MAP kinases SAPK/JNK, ERK1/2 and 

p38MAPK were compared by WB analysis (section 2.3) on whole cell lysates (section 2.2.7). 

Membranes were probed with specific antibodies for total and phosphorylated forms of 

SAPK/JNK, ERK1/2 and p38MAPK. β-actin was used as loading control. Responses were 

expressed as percentages of the initial phosphorylation levels during control treatment with 

vehicle. 

S1P-stimulation significantly increased SAPK/JNK phosphorylation in cells from all four 

strains. Responses were augmented in SP.WKYGla2a compared to the other three strains. VPC 

pre-treatment did not appear to have any inhibitory effects on the S1P-induced 

phosphorylation in any of the strains, but WKY.SPGla2a. However no statistics could be 

performed on the latter strain as there was only one experimental replicate. (Figure  4-10) 

Moreover, stimulation with S1P induced significant p38MAPK phopshorylation of 

similar magnitude in cells from WKY and SP.WKYGla2a, but not in SHRSP and WKY.SPGla2a. 

Treatment with VPC did not abrogate this change in phosphorylation levels. (Figure  4-11) 

Finally, S1P significantly stimulated ERK1/2 phosphorylation in parental strains as 

opposed to congenics. Effects were enhanced in cells for WKY relative to SHRSP, without 

reaching significance. VPC did not significantly block S1P-mediated ERK1/2 phosphorylation 

in any strain. (Figure  4-12) 
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Figure  4-10 - Effect of S1PR1 receptor stimulation and antagonism on S1P-induced SAPK/JNK 

phosphorylation in VSMCs from WKY, SHRSP and the 2a congenics. Mesenteric primary VSMCs 

from 16 week old WKY, SHRSP, SP.WKYGla2a and WKY.SPGla2a were stimulated with 10
-6

M S1P for 

30mins or pre-treated with 10
-5

M VPC23091 for 30min prior to S1P stimulation. Top panels, 

representative immunoblots on whole cell lysates for SAPK/JNK [Thr
183

/Tyr
185

] (top), SAPK/JNK 

(middle) and β-actin (bottom). Protein loaded: 30 µg. Bottom, corresponding densitometry bar 

graph demonstrating the effect of S1P stimulation on SAPK/JNK phosphorylation and of VPC23091 

on S1P-induced SAPK/JNK phosphorylation in VSMCs of the four strains. Results come either from 

one or are the mean ±SEM of 2 or 3 experiments and were compared by Student's t-test (unpaired, 

two-tailed). *P<0.05 vs vehicle; #P<0.05 vs S1P-stimulation in SP.WKYGla2a.  
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Figure  4-11 - Effect of S1PR1 receptor stimulation and antagonism on S1P-induced p38MAPK 

phosphorylation in VSMCs from WKY, SHRSP and the 2a congenics. Top panels, representative 

immunoblots for p38MAPK [Thr
180

/Tyr
182

] (top), p38MAPK (middle) and β-actin (bottom). Protein 

loaded: 30 µg. Bottom, corresponding bar graph demonstrating the effect of S1P (10
-6

M) 

stimulation on p38MAPK phosphorylation and of VPC23091 (10
-5

M) on S1P-induced p38MAPK 

phosphorylation in VSMCs of the four strains. Results come either from one or are the mean ±SEM 

of 2 or 3 experiments and were compared by Student's t-test (unpaired, two-tailed). *P<0.05 vs 

vehicle. 
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Figure  4-12 - Effect of S1PR1 receptor stimulation and antagonism on S1P-induced ERK 1/2 

phosphorylation in VSMCs from WKY, SHRSP and the 2a congenics. Top panels, representative 

immunoblots for ERK 1/2 [Thr
202

/Tyr
204

] (top), ERK 1/2 (middle) and β-actin (bottom). Protein 

loaded: 30 µg. Bottom, corresponding bar graph demonstrating the effect of S1P (10
-6

M) 

stimulation on ERK 1/2 phosphorylation and of VPC23091 (10
-5

M) on S1P-induced ERK 1/2 

phosphorylation in VSMCs of the four strains. Results come either from one or are the mean ±SEM 

of 2 or 3 experiments and were compared by Student's t-test (unpaired, two-tailed).  *P<0.05 vs 

vehicle; §P<0.05 vs S1P-stimulation in WKY. 
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4.3 Discussion 

Previous introgression of normotensive-WKY or hypertensive-SHRSP chromosome 2 

interval into the reciprocal genetic background generated the SP.WKYGla2a and WKY.SPGla2a 

congenic strains of increased SBP phenotypes. This study aims to further investigate the 

significance of the interval on vascular/endothelial function and remodelling in mesenteric 

resistance arteries (MRA) from 16 week old parental and 2a congenic strains. Ex vivo studies 

compared structure, mechanics and function of arteries. In vitro experiments in primary 

VSMCs from MRAs focused on investigation of S1P/S1PR1-mediated mitogenic signalling.  

Remodelling of MRAs was assessed by comparison of structural and mechanical 

vascular properties. Basic structure measurements of internal (Di) and external (Do) 

diameter, wall thickness, wall:lumen ratio and CSA were similar between WKY and SHRSP. 

Nonetheless, the decreased trends in Do, wall thickness and CSA in SHRSP, especially at high 

intravascular pressures (>60mmHg), indicate smaller vessel size and thinner walls, and imply 

a tendency of the hypertensive vessels to be stiffer. However, previous microscopic 

investigation of structure in MRAs from 8-10 month old SHRSP (Glasgow) has shown 

hypertrophic inward remodelling resulting from a reduced vessel lumen and an increased 

wall thickness and wall:lumen ratio compared to WKY (Arribas et al., 1997). This may suggest 

that structural alterations develop later in life as an adaptive response to increased BP, 

which is in agreement with studies on time course development of remodelling in MRAs 

from SHR demonstrating no structural alterations up to 1 month but present at 5 and 6 

months old animals (Gonzalez et al., 2006, Intengan et al., 1999). Further, from the two 

congenic strains, SP.WKYGla2a exhibited characteristics very similar to WKY, implying a 

potential beneficial effect of the WKY congenic interval. Such an effect has already been 

evident through the reduced SBP of SP.WKYGla2a compared to SHRSP. On the other hand, 

WKY.SPGla2a demonstrated increased Di, associated with decreased wall thickness and 

consequently lower wall:lumen ratio and CSA compared to WKY. Such alterations indicate a 

vessel of similar size but thinner walls, which could be interpreted as adaptive responses 

(reduce peripheral vascular resistance) to the detrimental effect (increased hemodynamic 

load/SBP) introduced by the SHRSP congenic interval.  

In line with the structural data, comparison of MRA mechanical properties, in SHRSP 

versus WKY, demonstrated significant decrease in wall strain, thus reduced ability to stretch 

(elasticity). This was also evident in the decreased trend of incremental distensibility (at 
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physiological intravascular pressures of 20 to 60 mmHg), which implies requirement of 

greater pressure in SHRSP to achieve similar percentage of Di change with WKY. However, 

wall stress (wall tension), which depends on the Di and wall thickness, did not differ between 

the parental stains, as expected. Nevertheless, the stress-strain relationship indicated a 

tendency of vessels from 16 week old SHRSP to be stiffer. Such observations are supported 

by previous studies on MRAs from 20-24 week old SHR that reported increased intrinsic wall 

stiffness and reduced stress and incremental distensibility compared to WKY (Intengan et al., 

1999, Briones et al., 2003). This implies that the mechanical alterations probably develop 

later in life, following vascular remodelling. With respect to SP.WKYGla2a, MRA mechanical 

properties did not differ significantly to those of the parental animals. Nonetheless, elasticity 

of arteries (strain) at high pressures, as well as their stiffness tended to improve by 

introgression of the WKY congenic interval. In WKY.SPGla2a, the ability of arteries to stretch 

(strain and incremental distensibility) was similar to the one of WKY. However, introgression 

of the SHRSP congenic interval appeared to significantly elevate wall tension, which is not 

surprising, considering the significantly reduced wall thickness observed in this strain. 

Moreover, stiffness of the vessels tended to increase. In both congenic strains, the observed 

tendencies in stiffness are in agreement with the respective changes introduced in SBP by 

the congenic interval. However, the cause and effect relationship is still not clear, despite 

the fact that the above data collectively would support that changes in SBP occur as primary 

events leading to changes in stiffness at a later stage. 

Taken together the above findings demonstrate no evident remodelling in SHRSP 

MRAs at the age of 16 weeks, despite the established hypertension. A possible explanation 

could be that structural and mechanical alterations develop later in life as adaptive 

responses to increased BP. From experiments on rat models of hypertension, it is known 

that primary structural abnormalities in distal resistance arteries (arterioles) seem to be 

responsible for increase in BP which finally leads to adaptive structural changes in proximal 

resistance arteries (small arteries) . It is also known that resistance artery structure is not 

entirely dependent on the development of hypertension, but it is also affected by 

neurohormonal (Folkow et al., 1988) and genetic factors. Data supporting this hypothesis 

showed that improvement in SHRSP vessel structure, such as reduction in wall:lumen ratio, 

did not reduce BP and vice versa (Morton et al., 1992, Hashimoto et al., 2010, Rigsby et al., 

2011). Furthermore, introgression of the SHRSP-'diseased' congenic interval into 

WKY.SPGla2a seems to introduce great alterations in MRA structural and mechanical 
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properties as an attempt of the WKY-'healthy' background to correct the increased BP. On 

the other hand, introduction of the WKY congenic interval in SP.WKYGla2a does not manage 

to significantly improve the 'diseased' phenotype. Further evaluation of differences in MRA 

structure and mechanical properties by histological staining for markers of morphological 

changes, such as elastin and collagens content, would have been more supportive of our 

data, but there was a limitation of time.  

Subsequently, assessment of contractile function in MRAs demonstrated 

hypercontractility of SHRSP arteries compared to the other strains, which could explain the 

increased BP in SHRSP at this age, in the lack of significant structural/mechanical alterations. 

In support of this observation, several studies have shown hypercontractility in hypertensive 

rat strains (Gradin et al., 2003). Moreover, the reduced contractile responses of SP.WKYGla2a 

in comparison to SHRSP imply that introgression of WKY congenic interval improves the 

hypercontratile phenotype. In contrast, insertion of the SHRSP congenic interval in 

WKY.SPGla2a did not seem to have any detrimental effect on the vascular tone of WKY. 

Therefore, it could be hypothesised that WKY control their contraction by components that 

lie both inside and outside chromosome 2 congenic interval and which could act 

synergistically or even compensate for each other's loss of functionality. Those components 

lying outside the interval seem to be predominant, as they maintain normal contractile 

function in WKY.SPGla2a, whereas in SP.WKYGla2a function is only partially improved. Further, 

acute inhibition of RhoK, to investigate the role of RhoA/RhoK signalling on contraction of 

the smooth muscle, demonstrated significant improvement of hypercontractility in SHRSP 

arteries, but had no effect on WKY and the congenic strains. Such observations are 

consistent with previous studies suggesting implication of RhoA/RhoK pathway in increased 

contractile responses of hypertensive rat models (Kitazono et al., 2002, Moriki et al., 2004). 

Moreover, reduction of hypercontractility in SHRSP could partially be attributed to 

decreased release of EDCFs, another effect of RhoK blockade. This is supported by studies on 

WKY aortas, in which inhibition of RhoK resulted in a significant decrease of endothelium-

dependent contractions (Chan et al., 2009). On the other hand, contractions in MRAs from 

WKY, WKY.SPGla2a and SP.WKYGla2a seem to only partially be mediated by RhoA/RhoK 

pathway, considering the trend of reduced responses upon RhoK inhibition. It is therefore 

suggested that alternative contraction regulatory systems are predominant in these strains, 

such as potassium channels and PKC. This explanation further supports our earlier 

hypothesis suggesting existence of components, in this case other regulatory systems, 
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present within or outside the congenic interval of WKY having a beneficial effect on 

contractile responses in 2a congenics. Further experiments, including inhibition of the other 

contraction pathways, calcium sensitivity and cyclic GMP regulation studies, measurement 

of Rho kinase activity and expression levels of RhoA/RhoK activation markers, such as ezrin 

and MLC, would enable a better understanding and verification of the above data.  

Moreover, assessment of vasodilatory responses of fully pre-contracted MRAs 

revealed significantly reduced ability of SHRSP and SP.WKYGla2a to relax in comparison to 

WKY and WKY.SPGla2a, at 16 weeks of age. Such observations indicate a predominant role of 

the genetic background over the congenic interval on regulation of relaxation. Further, 

based on the increased SBP phenotype of WKY.SPGla2a, it is implied that impaired relaxation 

is a secondary event to elevated BP in this strain. Whether this impairment is the result of 

smooth muscle or endothelial dysfunction was further examined. Endothelium-independent 

responses to an external vasodilator (SNP: NO donor) were similar in all four strains, 

indicating fully functional smooth muscle at this age. Endothelium-dependent relaxation was 

assessed by evaluating the contribution of endothelial NO bioavailability as relaxation 

mechanism in MRAs upon eNOS inhibition. A trend in WKY and WKY.SPGla2a arteries to dilate 

less than before eNOS blockade, imply that either NO is not the major vasodilator in MRAs of 

strains sharing WKY genetic background, but rather acts synergistically to alternative 

vasodilatory systems such as EDHF and prostacyclins, or that the alternative regulatory 

systems can effectively compensate for the reduced NO biovailability. Studies have 

previously demonstrated EDHF-signalling as the predominant vasodilatation mechanism in 

small resistance arteries, compensating for decreased NO availability (Ruiz-Marcos et al., 

2001, Hussain et al., 2001, Madhani et al., 2003). On the contrary, in SHRSP and SP.WKYGla2a, 

eNOS inhibition was followed by significantly reduced dilatory responses, although 

introgression of the WKY congenic interval slightly, but not significantly, improved 

relaxation. This suggests that either NO bioavailability is the predominant mechanism in 

strains sharing SHRSP genetic background, as shown previously (Kerr et al., 1999, Ma et al., 

2001, McIntyre et al., 1997), or that the predominant EDHF or prostacyclin pathway is 

impaired (Sunano et al., 1999, Goto et al., 2004, Giachini et al., 2009) and NO, as a secondary 

system, can only partially compensate for the impairment. The ability of different 

vasodilatation systems to act synergistically or substitute each other in situations of 

endothelial dysfunction has been previously shown in MRAs from hypertensive models 

(Chataigneau et al., 1999, Sofola et al., 2002). Taken together the results from eNOS 
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blockade unmasked an endothelial dysfunction in SHRSP and SP.WKYGla2a, as a combination 

of impaired and non-efficient relaxation mechanisms, which are primarily regulated by the 

genetic background rather the congenic interval. Moreover, based on the opposite 

relaxation responses of the 2a congenic strains, despite their increased-SBP phenotypes, it is 

implied that endothelial impairment is a secondary event to elevated BP. In agreement with 

this, studies on aorta from SHRSP demonstrated that only at a later stage, after hypertension 

is established, endothelial dysfunction develops (Kerr et al., 1999, Onda et al., 1994). Further 

experiments, including inhibition of alternative relaxation systems and measuring of NO 

levels in MRAs from the four strains, would elucidate the predominant vasodilatory 

mechanisms and impairments in each strain.  

In order to investigate whether the above physiological differences in MRAs from our 

strains are represented at the cellular/molecular level, cell cultures of primary mesenteric 

VSMCs were established. S1PR1 expression and mitogenic signalling were chosen to be 

assessed in these cells, based on existing data identifying S1PR1 receptor as a positional 

candidate for hypertension and implicating S1P/S1PR1 signalling in vascular inflammatory 

responses and cell growth in VSMCs (Graham et al., 2007, Yogi et al., 2011), processes that 

impact on vascular remodelling and endothelial dysfunction in hypertension. In contrast to 

previous studies from Touyz's group demonstrating similar expression of S1PR1 and S1PR2 

subtypes between WKY and SHRSP, but absence of S1PR3 in these cells (Yogi et al., 2011), 

our studies showed expression levels below detection for all three receptor subtypes in WKY 

and SHRSP. Similarly, S1PR1 levels were below detection in primary cells from 2a congenic 

strains MRAs, as well as from WKY and SHRSP aortas. These opposing results could be 

attributed to interstrain variability. Furthermore, it is known that GPCR receptors are 

generally expressed in low levels. Future studies could explore expression levels in enriched 

membrane fractions. 

Considering growing evidence on the importance of S1P/S1PR signalling in 

development and regulation of vascular system and in pathogenesis of vascular diseases 

(Bolz et al., 2003, Allende and Proia, 2002, Deutschman et al., 2003), particularly from the 

work of Yogi et al. (Yogi et al., 2011) and in order to verify them, altered S1PR1 signalling 

through MAP kinase activation was investigated in cells from our strains. Phosphorylation 

levels of SAPK/JNK, ERK1/2 and p38MAPK as downstream signalling partners were assessed 

in response to the S1P stimulus and VPC blockade of S1PR1/3 receptors. Also, the 30min 

stimulation was chosen as the optimal time for maximal responses, according to previous 
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data (Yogi et al., 2011). Differential activation of MAPKs observed upon S1P stimulation is an 

indirect indication that our cells express at least one out of the three subtypes of S1PR 

receptors, despite their low levels as assessed by WB. However, the observation that VPC 

treatment was unable to significantly abrogate phosphorylation of MAPKs in mesenteric 

VSMCs from any strain indicates that these changes are potentially not mediated by S1PR1 

or S1PR3. Such results contradict Yogi's data, and could suggest that S1PR2 may play a role in 

induction of MAPK pathways in these cells. However, no firm conclusions to support Yogi's 

data can be drawn regarding the extent of responses in each strain, due to the low number 

of repetitions of each experiment.  

However, S1P signalling is still relevant, as involvement of other signalling pathways, 

apart from MAPKs, are known to influence vascular function (vascular remodelling and 

endothelial dysfunction), such as generation of ROS, activation of transcription factors and 

stimulation of cation channels (Mochizuki, 2009). To further investigate such pathways and 

to overcome difficulties on assessing contribution of the congenic interval to phenotypic 

differences by ex vivo and in vitro studies, a broader, high-throughput approach was 

followed, involving whole proteome profiling in our parental and 2a congenic strains in 

response to S1P stimulation, described in the following chapter. The ultimate aim would be 

to compare the outputs of signalling pathways in health and disease and to identify/predict 

the best points at which to intervene to redress the balance.  



5 Proteome Profiling in S1P-Stimulated 

Mesenteric Primary VSMCs 
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5.1 Introduction 

5.1.1 MS-based quantitative proteomics: SILAC  

In the highly complex cellular environment, comprehensive characterisation of protein 

dynamic interactions and signalling networks is vital in revealing the mechanisms underlying 

biological processes. Development of high-throughput, MS-based quantitative proteomic 

approaches has enabled for large-scale mapping of interconnected protein networks 

(Aebersold and Mann, 2003).  

Considering that MS is not essentially a quantitative method, molecules are stably 

labelled to assist quantification. Direct comparison of intensity signals between differentially 

labelled isotopes correspond to peptide and protein ratios.  

Stable isotope labelling with amino acids of cells in culture (SILAC) is the most 

widespread metabolic labelling technique (Mann, 2006, Ong et al., 2002) applicable on both 

cell lines and primary cells. Combined with high-resolution LC-MS/MS and specialised data 

processing software, it provides a powerful strategy for rapid, unbiased screening of global 

proteomes  and of post-translational modifications (PTM) occurring in response to particular 

stimuli (Olsen et al., 2006). Moreover, SILAC has been successfully used to study the 

temporal dynamics of signalling pathways by exploiting phosphorylation based enrichment 

methods coupled to MS (EGFR pathway; (Schulze and Mann, 2004)), as well as in the 

identification of prognostic disease biomarkers (Geiger et al., 2012). SILAC achieves highly 

reliable quantification of hundreds to thousands of proteins, within four orders of 

magnitude in protein abundance, including low level regulatory molecules and membrane 

proteins (de Godoy et al., 2008).  

SILAC labelling is performed using media in which the normal isotopes 12C and 14N of 

arginine and lysine have been replaced by stable (non-radioactive) heavy isotopes 13C or 

13C/15N, to be incorporated into proteins. Arginine and lysine are selected as sites of trypsin 

cleavage, thus generating chemically identical tryptic peptides (Olsen et al., 2004). 

Nevertheless, tryptic peptides derived from differentially labelled populations are 

isotopically distinct and thus distinguished by a defined mass shift of the peak in the mass 

spectra. Specific software quantifies intensity ratios of heavy labelled peptides over light 

isotopic pairs as relative abundance (Figure  5-1). Usually, protein ratios of 1.3 to 2.0-fold 

have been used as cut-offs for both statistical and biological significance (Mann, 2006). SILAC 

allows further for multiplex comparisons either in a single experiment using triple labelling, 
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or by linking several SILAC experiments through a common experimental state or through a 

‘spiked-in’ labelled internal standard, without affecting quantitative accuracy (Andersen et 

al., 2005, Blagoev et al., 2004, Geiger et al., 2011, Kratchmarova et al., 2005). 

5.1.2 Quantitative proteomics sample preparation and instrumentation  

Recent advances in sample preparation strategies, instrument performance (Domon 

and Aebersold, 2006, Makarov et al., 2006) and bioinformatics tools (Mueller et al., 2008) 

have led to a spectacular progress and routine application of MS-based proteomics. 

It is common practice for highly-complex protein mixtures to be enzymatically digested 

(e.g. trypsin) into mixtures of chemically identical peptides prior to MS analysis (Olsen et al., 

2004). Further processing of digested peptides through liquid chromatography coupled to 

electrospray ionisation and high-resolution mass spectrometers (LC-ESI/MS) (Ho et al., 2003) 

has become the technique of choice for rapid analysis in shotgun quantitative proteomics 

(Aebersold and Mann, 2003, Cravatt et al., 2007). Amongst the existing mass analysers, 

linear iontrap quadrupole (LTQ) /orbitrap hybrids (Makarov et al., 2006) exhibit the highest 

resolving power and mass precision (5ppm m/z) and employ Fourier-transformation of 

peptide signals to generate MS spectra containing information on peptide mass and 

intensities. MS/MS fragmentation spectra are matched against sequence databases for 

peptide identification (Steen and Mann, 2004). 
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Figure  5-1 - Stable isotope labelling by amino acids in cell culture (SILAC). (A) Adaptation phase. 

Cells are initially adapted to complete growth media supplemented with dialysed serum, for 24h. 

Subsequently, they are transferred into differentially isotope-labelled SILAC media for metabolic 

labelling. Control “light” media contain 
12

C6
14

N2 L-lysine (Lys0) and/or 
12

C6
14

N4 L-arginine (Arg0). 

“Heavy” media contain heavy isotopes of these amino-acids (
13

C6 L-lysine (Lys6) or 
13

C6
15

N2 L-lysine 

(Lys8) and/or 
13

C6 L-arginine (Arg6) or 
13

C6
15

N4 L-arginine (Arg10)). Cells are propagated into SILAC 

media for 5-6 divisions, to ensure complete incorporation of labelled amino-acids. (B) Experimental 

phase. To quantify changes upon treatment of either cell population, labelled cells from both 
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populations (light and heavy) are harvested and combined in 1:1 ratio. Mixed cell lysate is then 

resolved by SDS-PAGE and visualized by Coomassie staining. Gel-lane slices or individual bands are 

extracted and subjected to trypsin digestion. Optional enrichment for a specific peptide fraction 

(e.g. phosphopeptides), is followed by separation of tryptic peptides by LC and 

identification/quantification by MS/MS analysis. (C) Exemplary mass spectra of isotopic peptide 

pairs. Differences in intensity ratios of peptide peaks reflect differences in relative protein 

abundance between the two states. (Adapted from Ong and Mann, 2006).  

5.1.3 Proteomic data processing and analysis:  MaxQuant - Perseus 

Large-scale proteomics analyses generate gigabytes of high-resolution MS data, 

requiring specialised software for efficient manipulation. MaxQuant is a widely applied 

computational proteomics platform (Cox et al., 2009), which uses a standardised workflow 

to process large numbers of LC-MS runs, including complex data from SILAC double or triple-

labelling experiments (Andersen et al., 2005, Blagoev et al., 2004). Its high quantification 

accuracy lies upon algorithms that perform measurements at the level of individual 

peptides. In combination with robust peptide and protein scoring results, it enables high 

peptide identification rates, that are even higher on SILAC peptide pairs (Cox and Mann, 

2008). In the case of SILAC experiments, raw data files generated by the mass analyser 

software are loaded into MaxQuant. Three-dimensional peak and isotope patterns are 

detected and assembled into SILAC pairs/triplets for quantification. SILAC-peptide ratios are 

normalised (log-ratio median = 0) to correct for unequal loading. Output files containing 

combined MS/MS fragmentation spectra from all LC-MS runs are submitted to either Mascot 

(commercial; (Perkins et al., 1999)) or Andromeda (MaxQuant-integrated; (Cox et al., 2011)) 

search engine, for peptide identification using a specified protein sequence database (e.g. 

IPI, Swissprot). Further processing in MaxQuant includes statistical validation of 

identifications, protein assembly and quantification and generation of summary tables 

containing all the information. Bioinformatics analysis and visualisation is performed on 

platforms such as Perseus, a separate module developed to complement MaxQuant 

workflow into a powerful, unified computational analysis pipeline for quantitative 

proteomics (http://www.perseus-framework.org), Scaffold (Searle, 2010) and IPA 

(http://www.ingenuity.com). 
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5.1.4 Aims 

Previous microarray profiling of salt-loaded SHRSP, WKY and SP.WKYGla2a congenic 

strain indicated differential renal expression of S1pr1, in addition to a number of SNPs in the 

promoter region (Graham et al., 2007). Moreover, signalling through S1PR1 receptor was 

found to be altered in S1P-stimulated mesenteric VSMC from SHRSP compared to WKY (Yogi 

et al., 2011). In order to overcome the difficulties on assessing outputs in situations of health 

and disease by low-sensitivity, small-scale experiments and to further investigate the impact 

of the congenic interval on phenotype, high-throughput MS-based quantitative proteomics 

were employed. Comparison of global-proteome profiles of mesenteric primary VSMCs from 

16-week-old WKY, SHRSP and 2a congenic strains (WKY.SPGla2a and SP.WKYGla2a) and 

characterisation of biological effects of a 30min S1P-stimulation on BP regulation were 

achieved using:   

•  high-throughput SILAC proteomic approach (triple-labelling) in the exploratory 

mode, to stably label global proteome for identification/monitoring of relative quantitative 

differences by LC-MS/MS analysis. 

•  bioinformatics analysis, to focus on significantly differentially expressed proteins 

and elucidate modulated biological processes, networks and pathways associated with S1P 

signalling and BP regulation.  

•  immunoblotting analysis, to validate SILAC results for significantly differentially 

expressed proteins as candidate molecules driving phenotypic changes in hypertension.  
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5.2 Results 

5.2.1 Proteomics and bioinformatics analysis 

Global proteomes of S1P-stimulated VSMCs from parental and 2a congenic strains 

were compared in two individual experiments using triple SILAC labelling (Light - Medium 

heavy - Heavy), as described in section 2.2.6: (A) WKYL - WKY.SPGla2aM - SHRSPH and (B) WKYL 

- SP.WKYGla2aM - SHRSPH. Cell growth rates did not seem to be affected upon replacement of 

normal with isotopically labelled media supplemented with dFBS, during the adaptation 

phase. MS data were filtered down a stringent pipeline, combining high accuracy 

quantitative software, search engines and protein sequences databases, visualisation 

platforms and web-based functional analysis tools (Figure  5-2). Filtering removed noise and 

contaminants, leaving a substantially reduced number of proteins to be further analysed. 

Assessment of incorporation of labelled-amino acids into peptides seemed to be efficient, 

when MS/MS spectra were previewed in Mascot. Combined MS/MS data were then 

processed through multiple versions of MaxQuant (v1.1.1.25, 1.2.0.18 and 1.2.2.6) to 

overcome re-occurring issues with the triple-labelling quantification (inconsistencies 

between the raw data - intensities of individual peptides mapping to a protein - and relative 

protein abundance). Eventually, data analysed with the latest version, v1.2.2.6, were 

searched against the rat IPI database v3.68, using Mascot Server to accurately identify 

proteins (high probability scores).  Proteins sharing a set of identified peptides were joined 

in a protein group, and protein quantification was performed based on unique and razor 

peptides (shared peptides associated with the group with the highest number of identified 

peptides). A total of 1998 proteins were identified across the two experiments, A and B. This 

number includes all isomers of each protein group which share at least half of the peptides 

with the leading protein of the group (majority isomers). Of these 1998 proteins, a small 

percentage represented highly abundant phosphorylated proteins, as visualised in Scaffold3 

(v3.2.0). As shown in Figure  5-3, only six phosphoproteins were identified with a probability 

higher than 95%, when filtered for a minimum of 99% protein probability, 90% peptide 

probability and peptide number of 2. Raw data for all proteins identified using MaxQuant 

v1.2.2.6 are summarised in supplementary table ‘PerseusDataTable_Expanded_MajorityIDs_ 

1998’, included in the hard copy (CD) accompanying the thesis. 
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Figure  5-2 – Proteomics analysis pipeline. MS/MS data from LTQ-Orbitrap Velos are extracted using 

Xcalibur, filtered and quantified through the MaxQuant workflow, associated with amino acid 

sequences on Mascot Server and uploaded to platforms such as Perseus and Scaffold for further 

manipulation and visualisation. Finally, Ingenuity Pathway Analysis (Ingenuity® Systems, 

www.ingenuity.com) is used for functional analysis and biological interpretation. Along the 

pipeline the number of detected features is remarkably reduced, allowing focus into a more 

manageable number of proteins. 
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Figure  5-3 - List of phosphorylated proteins identified at 95% probability, or higher, in Scaffold3 

proteome software. Protein list generated by MaxQuant v1.2.2.6 was filtered for minimum protein 

probability: 99%, minimum peptide number: 2 and minimum peptide probability: 90%. Columns A 

and B include the number of unique peptides on which the identification was based for 

experiments A: WKY - WKY.SPGla2a - SHRSP and B: WKY - SP.WKYGla2a - SHRSP, respectively. 

Further processing and visualisation of the identified peptides/proteins was performed 

using Perseus v1.2.7.4. Data from pair-wise comparisons between strains were represented 

in histograms. Normalised relative log-ratios (subtract median from each distribution) of all 

proteins identified were plotted against summed peptide counts (light, medium and heavy), 

in each experiment (Figure  5-4). Comparisons of SHRSP vs WKY demonstrated normal 

distribution. However, skewed distributions were identified in comparisons including any of 

the medium-labelled congenic strains, in both experiments A and B. Specifically, a leftward 

shift was observed for congenic vs WKY (M/L) comparisons, indicating down-regulation of an 

unexpectedly large number of proteins in the congenics, whereas the rightward shift for 

SHRSP vs congenics (H/M) comparisons suggested up-regulation of the majority of proteins 

in SHRSP. Groups of proteins represented by bins (columns) adjacent to log10Ratio=0 (1:1 

ratio) on the x-axis are not differentially expressed between the strains compared. In 

contrast, the longer the distance from 0, the greater the difference in expression levels.  
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Figure  5-4 - Distribution histograms of all proteins quantified per comparison in experiments A and 

B. Normalised protein ratios of each comparison (M/L: congenic vs WKY, H/L: SHRSP vs WKY, H/M: 

SHRSP vs congenic) are plotted on the x-axis using a log10 scale, against the summed peptide 

counts detected in each experiment, on the y-axis. Each bin (column) corresponds to a group of 

proteins sharing similar ratios. Proteins annotated to bins adjacent to log10Ratio=0 (on the x-axis) 

show no or very small expression changes. Proteins groups of positive ratios include up-regulated 

proteins whereas groups of negative ratios contain down-regulated molecules. Data is acquired on 

MaxQuant v1.2.2.6 and histograms are generated on Perseus v1.2.7.4. 
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Similar distribution-patterns were observed in scatterplot representation of relative 

log-ratios of all proteins identified, against summed peptide intensities (light, medium and 

heavy) detected for each protein, in each experiment (Figure  5-5). In this case proteins were 

represented by data points (coloured by density) exhibiting a colour gradient, ranging from 

light-blue to deep-red corresponding from unaltered up to high fold changes. In both 

experiments, distributions appeared shifted for comparisons including any of the medium-

labelled (M) congenic populations, as opposed to normal distributions exhibited in the 

SHRSP vs WKY (H/L) comparisons, with the majority of proteins clustering around 0 (ratio 

1:1). However, peptide distributions seemed to be slightly corrected when compared against 

analyses performed on previous versions of MaxQuant (v1.1.1.25, 1.2.0.18), but were still 

shifted compared to analysis on Mascot Distiller (Figure  5-6). 
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Figure  5-5 – Quantitative scatterplots of all proteins quantified per comparison in experiments A 

and B. Relative protein ratios of each comparison (M/L: congenic vs WKY, H/L: SHRSP vs WKY, 

H/M: SHRSP vs congenic) are plotted on the x-axis using a log10 scale. The abundance of each 

protein is indicated on the y-axis as the sum of the individual peptide intensities detected for each 

protein, in each experiment. Proteins clustering around log10Ratio=0 (light blue dots) show no or 

very small expression changes. Data points are coloured for expression change, with dots in 

yellow/red corresponding to highly regulated proteins. Few of the most regulated molecules are 

annotated in green. Data is acquired on MaxQuant v1.2.2.6 and histograms are produced on 

Perseus v1.2.7.4. 
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Figure  5-6 - Software and version comparison. Quantitative scatterplots of all peptides quantified 

for the comparison H/M: SHRSP vs WKY.SPGla2a in experiment A, as acquired on MaxQuant 

v1.1.1.25, v1.2.0.18, v1.2.2.6 and on Mascot Distiller. Scatterplots are produced on Perseus. 

Relative peptide ratios (normalised) are plotted on the x-axis using a log10 scale. The abundance of 

each peptide is indicated on the y-axis. The majority of peptides exhibit 1:1 ratio and cluster 

around log10Ratio=0. In red: peptides mapping to protein alpha actinin 4 (IPI0023463 - MaxQuant; 

Swissprot q9qxq0 - Distiller). Distiller ratio is inverted to match MaxQuant. 
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The unusual quantification pattern was also obvious when data were uploaded for 

biological interpretation onto IPA as protein lists containing SwissProt/IPI identifiers, 

expression values and FC. Specifically, from 1998 proteins (majority isomers) identified in 

total across experiments A and B by MaxQuant v1.2.2.6, 1736 had mapping IDs on IPA. 

Therefore, the primary focus during the discovery phase was on the SHRSP vs WKY (H/L) 

comparison, which was replicated in both A and B experiments. The reproducibility of the 

results in the two replicates was satisfactory (linear distribution along the diagonal axis) as 

indicated by correlation scatterplot of log-transformed normalised ratios, with no presence 

of distinct populations and the majority of hits clustering around 0 (1:1 ratio) (Figure  5-7A). 

Analysis on IPA identified 1148 proteins in union and 1056 in common (~92%) between H/LA 

and H/LB. 338 and 288, respectively, were significantly differentially expressed (FC ≥ ±1.3), 

'analysis-ready' proteins, exhibiting FC ranging from -12.18/-17.30 to 4.35/4.12 (in 

experiments A and B respectively) (Supplementary tables ‘HLA_analysis ready_338’ and 

‘HLB_analysis ready_288’ included in the hard copy). Not surprisingly, the number of 

significantly differentially expressed proteins appeared to be much larger in comparisons 

that included any of the medium-labelled strains: experiment A: WKY.SPGla2a vs WKY (M/LA): 

778, SHRSP vs WKY.SPGla2a (H/MA): 759; experiment B: SP.WKYGla2a vs WKY (M/LB): 675, 

SHRSP vs SP.WKYGla2a (H/MB): 638. Figure  5-7 illustrates Venn diagrams of these 'analysis-

ready' proteins for several comparisons of interest (Figure  5-7 B,C and D). Overlap in the 

cases of H/LA - H/LB and M/LA - H/MB was substantial, whereas any of the comparisons 

including a medium-labelled strain (M/L, H/M) exhibited low overlap with the parental H/L 

comparisons.  

Based on these outcomes, which support the unusual quantification pattern derived 

from MaxQuant, our further study focused mainly on the SHRSP vs WKY (H/L) comparison. 

From the 203 proteins that were changing significantly in both experiments A and B (Figure 

 5-7B), 141 were consistently up-regulated, 61 were consistently down-regulated 

(Supplementary table ‘common_HLA_HLB_Fold change significant_203’ included in the CD) 

and 18 (~10%) were encoded by genes mapping to chromosome 2 (Table  5-1). Ranking was 

performed on the 203 common IDs, individually in each experiment, and the mean ranks 

were calculated to prioritise proteins for further validation. Numerical data are summarised 

in Figure  5-8A. 
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Figure  5-7 - Bioinformatics analysis of data produced on MaxQuant v1.2.2.6. (A) Correlation 

scatterplot of log-transformed, normalised SILAC ratios determined in H/L A and H/L B 

independent replicates. Plot generated on Perseus v1.2.7.4. (B) Venn-diagram representing the 

overlap of differentially expressed majority proteins (FC≥ ±1.3) quantified in SHRSP vs WKY (H/L) A 

and B comparisons and identified as ‘analysis ready’ on IPA. (C) Venn-diagrams of comparisons of 

interest (M/L: congenic vs WKY, H/L: SHRSP vs WKY, H/M: SHRSP vs congenic).  
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Table  5-1. Differentially expressed proteins in SHRSP vs WKY (H/L) comparison, ‘common’ across 

experiments A and B, encoded by genes mapping to rat chromosome 2. Molecules exhibited 

consistent significant change (FC≥±1.3) and were identified on IPA as 'analysis ready'. Ranking was 

performed on the 203 'common' IDs. Green: down-regulation, red: up-regulation.  

Symbol Protein Names IPI Fold 
Change 
HLA

Fold 
Change 
HLB

Mean 
Ranks 
FC

DHFR Dihydrofolate reductase IPI00200419 -2.184 -2.428 11

HMGCS1 Hydroxymethylglutaryl-CoA 
synthase

IPI00188158 -1.698 -1.834 16

LMNA Lamin-A IPI00188879 -1.506 -1.414 37.5

HIST1H4A Histone H4 IPI00764726 -1.432 -1.439 38.5

ARHGEF2 Rho guanine nucleotide
exchange factor 2

IPI00368617 -1.311 -1.708 42

LXN Latexin IPI00211758 1.327 1.506 101.5

RAI14 Ankycorbin; Retinoic acid-
induced protein 14

IPI00372146 1.414 1.655 124.5

PDLIM5 PDZ and LIM domain protein 5 IPI00210187 1.457 1.360 95

GSTM1 
(Gstm2;Gstm3 )

Glutathione S-transferase Mu 2;
GST class-mu 3; GSTM2-2

IPI00411230 1.569 1.492 124.5

GSTM2 
(Gstm2;Gstm3 )

Glutathione S-transferase Mu 2;
GST class-mu 3; GSTM2-2

IPI00230942 1.569 1.492 123.5

GSTM5 
(Gstm1 )

Glutathione S-transferase Mu 1;
GSTM1-1; Rat glutathione S-
transferase

IPI00231639 1.584 1.400 115.5

Hist2h2aa1/        
Hist2h2aa2

H2A histone family, member X IPI00368293 1.670 1.311 107

HIST2H2AB H2A histone family, member X IPI00569279 1.670 1.311 111

HIST2H2AC H2A histone family, member X IPI00566481 1.670 1.311 109

ITGA1 Integrin alpha-1 IPI00324585 1.739 1.470 136.5

SELENBP1 Selenium-binding protein 1 IPI00208026 1.768 1.958 173

NPR3 Atrial natriuretic peptide
clearance receptor type C

IPI00195882 1.961 1.938 178.5

HEXB Beta-hexosaminidase subunit
beta

IPI00464518 2.386 2.687 196
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Subsequently, biological functions and diseases, pathways and toxicological lists 

relevant to the common (203) differentially regulated proteins (FC ≥ ±1.3) were explored on 

IPA (Figure  5-8B). The analysis revealed ~20% of the changing proteins to be associated with 

"cardiovascular disease" and the "cardiovascular system development and function", 

including regulation of BP. "Inflammation" was also highly affected by ~10% of the identified 

proteins. Oxidative stress, hypertrophy and fibrosis were amongst the top regulated tox 

functions/pathways and were upregulated in SHRSP. Canonical pathway analysis highlighted 

signalling involved in oxidative stress, myogenic tone and vascular remodelling as highly 

regulated. The degree of regulation was expressed as correlation between H/L A (338) or H/L 

B (288) datasets (FC ≥ ±1.3) with each pathway, indicated by -log(p-value). The most 

regulated pathways were "Integrin signalling" (5.72e-15 / 2.35e-10), "NRF-mediated 

oxidative stress response" (1.55e-09 / 3.19e-09), "ILK signalling" (2.46e-09 / 4.01e-08) and 

"RhoA signalling" (5.92e-09 / 3.81 e-0.8); numbers in brackets correspond to -log(p-value) in 

experiment A / B.  
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Figure  5-8 - Correlation analysis in IPA. (A) Table summarising numbers of significantly 

differentially expressed proteins (FC≥±1.3) in the SHRSP vs WKY (H/L) comparison, identified to be 

in union, in common and encoded by chromosome 2 genes across the two experimental replicates, 

H/L A and H/L B. Majority was up-regulated in SHRSP. (B) Lists of top Functions & Diseases, 

Toxicological processes and Canonical Pathways, related to the 203 ‘common’ proteins. Numbers 

in brackets correspond to mapped proteins found to be associated with the respective 

function/pathway. Bar-graphs demonstrate the degree of correlation (-log(p-value)) of the entire 

H/L A (dark blue) and H/L B (light blue) datasets (FC≥±1.3). Orange line on the bar-graphs 

represents the threshold of correlation significance. Green: down-regulation, red: up-regulation.  

 



Sofia Tsiropoulou Chapter 5 161 

Following the basic function/pathway correlation analysis, top related proteins and 

pathways were investigated further on IPA. Out of the 18 significantly regulated (FC≥±1.3) 

proteins encoded by the chromosome 2 congenic interval (Table  5-1), glutathione S-

transferases (GSTM1, GSTM2: 1.569 / 1.492; GSTM5: 1.584 / 1.400), were up-regulated in 

SHRSP and linked to oxidative stress and free radical scavenging. On the contrary, 

dihydrofolate reductase (DHFR: -2.184 / -2.428) and Rho-guanine nucleotide exchange factor 

2 (ARHGEF2: -1.311 / -1.708) were down-regulated and related to regulation of myogenic 

tone. Lastly, levels of natriuretic peptide receptor C (NPR3: 1.961 / 1.938) and integrin alpha-

1 (ITGA1: 1.739 / 1.470) were enhanced in the hypertensive strain and associated with 

vasodilatation and hypertrophy, and vascular remodelling and fibrosis, respectively. 

(Numbers in brackets correspond to fold change in experiments A / B and data are 

summarised in Table  5-2). 

Further, altered proteins encoded by genes lying outside the congenic interval were 

mapped to pathways involved in BP regulation. In RhoA signalling, one of the regulatory SM-

contraction systems, actin (ACTA1/ACTC1: 2.097 / 2.058, ACTA2/ACTG2: 2.405 / 1.935), 

myosin light-chain (MYL12A/MYL12B: 1.641 / 1.710; MYL6B: 1.750 / 1.636) and MLC-kinase 

(MYLK: 3.316 / 3.617) levels were significantly increased in SHRSP as opposed to down-

regulated ezrin (EZR: -2.656 / -2.547) (Figure  5-9). Caveolin-1 (CAV1: 1.784 / 1.741), also 

increased in SHRSP, was implicated in a number of pathways related to hypertension, such 

as "Caveolar-mediated endocytosis signalling" (Figure  5-10A), "NO signalling in the 

cardiovascular system" (Figure  5-10B). Investigation of the "sphingosine-1 phosphate 

signalling" of interest did not demonstrate any significant regulation across WKY and SHRSP, 

with expression levels of most proteins remaining unaltered. (Figure  5-11A). However, 

assessment of the interconnection between S1P/S1PR1 and the list of differentially 

expressed proteins generated an interesting network (Figure  5-11B). Members of this 

network were implicated in hypertension phenotypes, including vascular remodelling, 

regulation of myogenic tone and oxidative stress. In specific, collagen alpha-1 type III 

(COL3A1: 2.121 / 1.988), cathepsin D (CTSD: 1.301 / 1.362) and superoxide dismutase 2 

(SOD2: 1.374 / 1.378) were up-regulated in SHRSP, as opposed to decreased levels of ezrin 

(EZR: -2.656 / -2.547) and milk fat globule-EGF factor 8 (MFGE8: -1.794 / -1.639). (Numbers 

in brackets correspond to fold change in experiments A / B and data are summarised in 

Table  5-2). 
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Table  5-2. List of highly regulated proteins identified on IPA to be related to processes and 

pathways implicated in hypertension. Proteins exhibited consistent differential expression 

(FC≥±1.3) in the SHRSP vs WKY (H/L) comparisons. Regulation is shown across all SILAC 

comparisons: SHRSP vs WKY (H/L), WKY.SPGla2a vs WKY (M/L A), SHRSP vs WKY.SPGla2a (H/M A), 

SP.WKYGla2a vs WKY (M/L B), SHRSP vs SP.WKYGla2a (H/M B). Red: up-regulation, green: down-

regulation. 

Protein name IPI 

identifier 

Fold change 

(H/L) 

 A            B 

Fold 

change 

(M/L A) 

Fold 

change 

(H/M A) 

Fold 

change 

(M/L B) 

Fold 

change 

(H/M B) 

GSTM1/GSTM2 
IPI00778234/

00230942 
1.569 / 1.492 -10.254 10.024 1.649 1.055 

GSTM5 IPI00231639 1.584 / 1.400 -1.463 1.557 1.288 -1.005 

DHFR IPI00200419 -2.184 / -2.428 -3.169 -1.034 -2.196 -1.767 

ARHGEF2 IPI00949206 -1.311 / -1.708 -1.598 -1.104 -1.842 -1.131 

NPR3 IPI00195882 1.961 / 1.938 1.695 1.143 -2.006 3.278 

ITGA1 IPI00324585 1.739 / 1.470 -2.363 3.746 1.790 -1.126 

ACTA1/ACTC1 
IPI00189813/

00194087 
2.097 / 2.058 -3.231 5.008 1.183 1.330 

ACTA2/ACTG2 
IPI00197129/

00560160 
2.405 / 1.935 -1.737 1.412 -6.556 5.025 

MYL12A/MYL12

B 

IPI00564409/

00914162 
1.641 / 1.710 1.270 1.324 1.356 1.247 

MYL6B IPI00870820 1.750 / 1.636 -6.094 8.196 -2.918 9.690 

MYLK IPI00779078 3.316 / 3.617 1.278 5.559 -1.015 3.265 

EZR IPI00948980 -2.656 / -2.547 -1.410 1.102 -1.663 -1.496 

CAV1 IPI00475476 1.784 / 1.741 -2.421 3.746 -1.812 3.731 

PDGFRB IPI00199968 1.065 / -1.216 1.401 -1.487 1.649 -1.863 

ERK1 IPI00231081 1.136 / 1.010 -1.015 1.059 1.083 1.010 

ERK2 IPI00199688 -1.074 / -1.163 -1.000 1.062 -1.039 -1.163 

COL3A1 IPI00366944 2.121 / 1.988 -2.086 5.012 1.485 2.990 

CTSD IPI00421525 1.301 / 1.362 -2.751 4.136 -1.788 5.412 

SOD2 IPI00211593 1.374 / 1.378 -12.107 11.540 -2.305 13.659 

MFGE8 IPI00188896 -1.794 / -1.639 -1.579 2.372 1.941 -2.427 

NQO1 IPI00231595 -2.711 / -2.784 -20.144 4.768 -5.684 6.748 

HMOX1 IPI00206626 -2.080 / -2.364 -1.179 -2.008 2.666 -4.067 
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Figure  5-9 - Schematic representation of RhoA signalling and mapping of differentially expressed 

proteins identified in SHRSP vs WKY (H/L) comparison. Actins (ACTA1/ACTC1, ACTA2/ACTG2) 

myosin light-chain (MLC: MYL12A/MYL12B, MYL6B) and MLC kinase (MLCK) were consistently up-

regulated in SHRSP, in both A and B experiments. Ezrin (EZR) was consistently down-regulated. The 

pathway was generated on IPA and overlaid with the H/L A dataset of the 203 'common' with H/L 

B proteins. Proteins involved in the pathway are indicated with their IPA names and FC. Colour 

key: red: up-regulated, green: down-regulated, grey: not changing, white: not identified. For 

molecule shapes and relationship labels and types see Figure 2.4 in M&M. 
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Figure  5-10 - Schematic representation of top canonical pathways of caveolin-1 (CAV1). CAV1 was 

consistently up-regulated in SHRSP vs WKY, in both A and B experiments (FC= 1.784 / 1.741) and 

was associated with pathways related to BP regulation, such as caveolar-mediated endocytosis (A) 

and nitric oxide signalling in the cardiovascular system (B). Pathways were generated on IPA and 

overlaid with the H/L A dataset of the 203 'common' with H/L B proteins. Proteins involved in the 

pathways are indicated with their IPA names and FC. Colour key: red: up-regulated, green: down-

regulated, grey: not changing, white: not identified. For molecule shapes and relationship labels 

and types see Figure 2.4 in M&M. 
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Figure  5-11 - Schematic representation of sphingosine-1 phosphate (S1P) signalling and mapping of 

differentially expressed proteins identified in SHRSP vs WKY (H/L) comparison. (A) The S1P 

signalling pathway was not significantly regulated. (B) The network generated by S1P/S1PR and the 

list of differentially expressed proteins (203) was highly-regulated. Collagen alpha-1 type III 

(COL3A1), cathepsin D (CTSD) and superoxide dismutase 2 (SOD2) were up-regulated in SHRSP. 

Ezrin (EZR) and milk fat globule-EGF factor 8 (MFGE8) were decreased, whereas platelet-derived 

growth factor receptor (PDGFRB) and extracellular signal-regulated kinase (ERK1: 1.136 / 1.010; 

ERK2) remained unaltered. The pathway and network were generated on IPA and overlaid with the 

H/L B dataset of the 203 'common' with H/L A proteins. Proteins involved are indicated with their 

IPA names and FC. Colour key: red: up-regulation, green: down-regulation, grey: not changing, 

white: not identified. For molecule shapes and relationship labels and types see Figure 2.4 in 

M&M. 

Lastly, DHFR and NPR3 were two proteins that demonstrated significant regulation of a 

particular pattern of interest across comparisons with the 2a congenic strains (medium-

labelled). Specifically, when WKY.SPGla2a was compared to WKY (M/L A: -3.169_DHFR, 

1.695_NPR3), the differential expression followed same direction of change as in the SHRSP 

vs WKY (H/L A: -2.184_DHFR, 1.691_NPR3) comparison. Moreover, protein levels remained 

unaltered between SHRSP and WKY.SPGla2a (H/M A: -1.034_DHFR, 1.143_NPR3). In contrast, 

comparisons of the SP.WKYGla2a with the parental strains did not reveal a consistent pattern 

between the two protein levels. DHFR levels were decreased in SP.WKYGla2a compared to 

WKY (M/L B: -2.196) and increased compared to SHRSP (H/M B: -1.767). NPR3 regulation 

was down in the SP.WKYGla2a when compared to either of the parental strains (i.e. M/L B: -

2.006 and H/M B: 3.278). 
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5.2.2 Immunoblotting validation 

To validate proteomic changes revealed by SILAC, eight of the significantly regulated 

proteins in the SHRSP vs WKY (H/L) comparisons were chosen to be analysed by WB, in the 

same VSMCs used for the proteomic analysis (section 2.3). The candidate proteins were: 

NAD(P)H quinone oxireductase-1 (NQO1) and heme oxygenase-1 (HMOX) - down-regulated 

in SHRSP in the proteomics analysis; glutathione S-transferase mu-1 (GSTM5), caveolin-1 

(CAV1), natriuretic peptide receptor C (NPR3) and alpha-SM-actin2 (ACTA2) - up-regulated in 

SHRSP in the proteomics analysis (Table  5-3). The 2a congenic strains were also included in 

the WB analysis. The experimental design of the 30min S1P-stimulation of mesenteric, 

primary VSMCs, was identical to the one used for the SILAC-proteomic analysis, excluding 

the use of isotopically labelled-media. 

The 30min S1P-stimulation did not cause any changes in the levels of the proteins 

examined, as expected (Figure  5-12). HMOX1 exhibited a trend to decrease in SHRSP vs WKY, 

unlike NQO1 which seemed unaltered. CAV1, GSTM1 and ACTA2 also showed a trend to 

increase in the hypertensive strain. Finally, NPR3 demonstrated a trend for up-regulation in 

SHRSP vs WKY. More specifically, NPR3 levels tended to be higher in the WKY-congenic 

(SP.WKYGla2a) compared to WKY and at the same levels as SHRSP. Further, the SHRSP-

congenic (WKY.SPGla2a) showed a decreased trend compared to SHRSP and similar levels to 

WKY. 
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Table  5-3. List of proteins selected for immunoblotting validation. Proteins were identified in the 

SILAC-proteomics analysis as differentially regulated (FC ≥ ±1.3) in SHRSP vs WKY (H/L), ‘common’ 

across experiments A and B. Ranking was performed on these 203 'common' IDs. 

Protein name Rank 

(FC_H/L) 

FC                 

 H/L A       H/L B 

FC 

M/L A 

FC 

H/M A 

FC 

M/L B 

FC 

H/M B 

NQO1  

NAD(P)H dehydrogenase 

quinone 1 

5.5 -2.711 / -2.784 -20.144 4.768 -5.684 6.748 

HMOX1  

Heme oxygenase 1 
12 -2.080 / -2.364 -1.179 -2.008 2.666 -4.067 

GSTM1 

Glutathion S-transferase 

mu 1 

115.5 1.584 / 1.400 -1.463 1.557 1.288 -1.005 

CAV1  

Caveolin 1 
167 1.784 / 1.741 -2.421 3.746 -1.812 3.731 

NPR3  

Natriuretic peptide 

receptor C 

178.5 1.961 / 1.938 1.695 1.143 -2.006 3.278 

ACTA2  

Alpha-actin-2, smooth 

muscle 

184.5 2.405 / 1.935 -1.737 1.412 -6.556 5.025 
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Figure  5-12 - Western blot analysis of selected proteins identified in the SILAC study. Primary 

VSMCs from WKY, SHRSP and the 2a congenics were treated with vehicle (control) or stimulated 

with S1P (10
-6

M), for 30mins in the same way as in the SILAC experiments. Protein loaded:  40-

50µg. Membranes were probed with the indicated antibodies. Top panels, representative 

immunoblots for HMOX1, CAV1, GSTM1 (left); NQO1, NPR3, ACTA2 (right) and respective β-actin 

and GAPDH loading controls. Bottom, corresponding bar graphs demonstrating the change 

(arbitrary units) in protein levels before and after stimulation, across the four strains. 

Quantification data were normalised to either GAPDH or β-actin. Results are the mean ±SEM of 2 

or 3 individual experiments, compared by Student's t-test (unpaired, two-tailed).  
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5.3 Discussion 

Previous microarray analysis and sphingosine signalling studies identified altered S1pr1 

expression and signalling profiles between WKY and SHRSP. To overcome difficulties faced 

during low-throughput characterisation of S1PR1 expression and signalling (chapter4) and to 

further investigate effects of altered sphingosine signalling on BP regulation, comprehensive 

MS-based proteomic screening was employed. By combining the power of SILAC labelling 

and reciprocal congenic strains, SP.WKYGla2a and WKY.SPGla2a, along with the WKY and 

SHRSP parental strains, we aimed to more accurately and reliably characterise traits 

underlying phenotypic differences in hypertensive rat models. Proteomic alterations 

occurring upon 30min S1P-stimulation, as well as genetically driven proteomic differences 

across the four strains were quantified in whole cell proteome of primary VSMCs from 16 

week old animals.  

Using triple-SILAC labelling, optimal comparison of four strains proteome was achieved 

in just two experiments. Moreover, the WKY vs SHRSP comparison was replicated twice 

allowing for testing of the technique reproducibility. Cell growth rate and morphology was 

not affected when cells were transferred in SILAC/dFBS media, minimising the chances that 

the observed proteome differences are the result of this treatment. Mixing equal numbers 

of differentially SILAC-labelled intact-cell populations at an early stage in the process 

minimised relative quantification errors, as an identical workflow was followed thereafter. 

The increased quantitative accuracy of this method was evident by similar abundance 

(score) of L(light), M(medium) and H(heavy) SILAC-peptides of housekeeping proteins, 

according to MS/MS spectra preview on Mascot. Extensive separation of intact proteins, 

with SDS-PAGE and subsequent LC, significantly reduced complexity of samples, permitting 

deeper proteome coverage. Trypsin digestion of protein mixtures generated chemically 

identical peptides, yet isotopically distinct, allowing for accurate identification and relative 

quantification of SILAC-peptides by MS. Finally, extensive processing of MS/MS data in 

MaxQuant removed noise, contaminants and low confidence hits, and normalised SILAC-

peptide ratios to further correct for any cell-mixing errors, while assuming that the majority 

of proteins were not deferentially expressed.  

Despite the initial objective of the experiment to detect effects of the 30min S1P-

stimulation, expressed mainly as changes in the phosphoproteome, only a small number of 

highly abundant phospho-peptides were detected. Generally, detection of phosphoproteins 

is considered challenging as they comprise only ~10% of the entire proteome in a cell. It is 
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lately becoming common practice to perform enrichment for particular fractions of interest 

previous to digestion, in order to achieve deeper coverage of fraction specific or low 

abundance proteins (Olsen et al., 2006, Zhang and Peck, 2011). Consequently, in our 

experiment, it is expected that the majority of detected protein differences would most 

likely be driven by genetic differences across strains rather than the S1P stimulation.  

During the discovery phase of this work, we identified proteins of potential interest by 

setting the fold change (FC) threshold to ±1.3, based on literature reports (Blagoev et al., 

2003, Mann, 2006). This cut-off is stringent enough to filter out the majority of proteins with 

ratios close to 1, without however excluding potentially interesting hits with a small 

magnitude of change. Lists of differentially regulated proteins were subjected to pathway 

analysis on IPA, allowing for biological interpretation of SILAC results in the context of 

published experimental data.  

Our primary focus was on the comparison between the two extreme phenotypes of 

hypertension, SHRSP(H) vs WKY(L), which was replicated twice. Satisfactory reproducibility 

of normalised H/L ratios between A and B experiments, as well as 1:1 H/L ratios for the 

majority of proteins in each experiment indicated good performance and SILAC 

quantification accuracy. Using IPA, significantly regulated proteins, in common between H/L 

A and H/L B, were highly correlated with CVD and a number of biologically relevant 

phenotypes and processes including BP, vascular reactivity, hypertrophy, oxidative stress 

and inflammation. Moreover, canonical pathway analysis further highlighted signalling 

associated with these processes, such as NRF2-mediated oxidative stress response 

(antioxidant pathway), Rho family GTPases / RhoA signalling (vascular contractility) and 

integrin / actin cytoskeleton signalling (cytoskeletal reorganisation). Interestingly, several of 

the regulated proteins involved in these pathways and almost 10% of all significantly 

regulated proteins in the H/L comparisons, mapped to chrom.2 congenic interval, including: 

GSTM1/GSTM2, GSTM5, DHFR, ARHGEF2, NPR3 and ITGA1. However, examination of their 

direction of change across parental and congenic strains sharing the chrom.2 interval did not 

reveal any consistent patterns of interest. Such results highlight the fact that protein 

expression levels do not solely depend upon the origin of the gene, but also on the 

epigenetics and cellular state.  

• Glutathione S-transferases (GSTM1/GSTM2 and GSTM5), implicated in ROS 

detoxification, were up-regulated in SHRSP, indicating a protective role against increased 

superoxide levels observed in their vasculature (Kerr et al., 1999). However, reduced mRNA 
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and protein levels of GSTM1 detected in their kidneys, compared to WKY (McBride et al., 

2005), most likely imply differences in renal and vascular antioxidant mechanisms.  

• Dihydrofolate reductase (DHFR), associated with oxidative stress and regulation of SM 

tone, was decreased in SHRSP. However, its role is mainly studied in endothelial cells, where 

DHFR regulates tetrahydrobiopterin (BH4) bioavailability, essential in eNOS coupling 

(Crabtree et al., 2009). Reduced DHFR levels in SHRSP are in line with increased superoxide 

in their vasculature (Kerr et al., 1999), as well as the impaired relaxation observed in our 

functional studies (chapter 4). As protein levels are consistent with the WKY.SPGla2a congenic 

data, this suggests that regulation of DHFR expression is dependent on the congenic interval 

and may directly contribute to the pathogenesis of hypertension in this model. In addition, 

increased expression in SP.WKYGla2a vs SHRSP, could support the partial correction of 

endothelial dysfunction demonstrated in chapter 4. 

• Rho-guanine nucleotide exchange factor 2 (ARHGEF2), which activates Rho proteins to 

increase formation of actin stress fibres and regulate SM tone, was decreased in SHRSP. 

According to Yu et al. (Yu et al., 2011), ARHGEF2 down-regulation imply reduced SMC 

proliferation, and it may therefore represent a protective adaptation against the 

hypertrophic phenotype of SHRSP.  

• Natriuretic peptide receptor C (NPR3), primarily expressed in the mesenterium of 

SHRSP (Nagase et al., 1997), was up-regulated compared to WKY. NPR3 mediates C 

natriuretic peptide (CNP) signalling known to be associated with lowering of BP, and exerts 

anti-hypertrophic and anti-inflammatory properties (Scotland et al., 2005a). Further, CNP 

was recently identified as an EDHF factor, therefore implicating NPR3 in regulation of 

vascular reactivity (Chauhan et al., 2003). Increased NPR3 levels in SHRSP are consistent with 

previous data demonstrating higher density in VSMCs from SHRSP vs WKY (Liao et al., 1991). 

This could be interpreted as an attempt to correct high BP, hypertrophy and inflammation 

phenotypes, as well as the hypercontractility and endothelial dysfunction observed in 

chapter 4, or even to compensate for reduced affinity and responsiveness of the receptor, as 

previously shown (Liao et al., 1991). Moreover, the direction of change in the congenic 

strains, imply that NPR3 expression is principally controlled by the interval and is a 

secondary response to the already established hypertensive phenotypes. 

• Integrin alpha-1 (ITGA1), associated with negative regulation of ROS production and 

collagen synthesis, hallmarks of fibrosis (Chen et al., 2004), was increased in SHRSP. Integrins 

are also known to participate in detection of pressure and contraction changes (Martinez-
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Lemus et al., 2005). Therefore, ITGA1 increase could be a protective response against 

pronounced oxidative stress and hypercontractility in SHRSP (chapter 4). Considering the 

direction of change in the congenic strains, it can be assumed that ITGA1 expression is 

primarily regulated by the genetic background rather the congenic interval.  

Apart from the proteins mapping to the congenic interval, differentially regulated 

proteins lying outside the interval were also associated with pathways related to 

hypertension phenotypes, BP regulation and S1P signalling.  

• RhoA/Rock pathway, a regulator of cytoskeletal re-organisation and thus vascular 

tone, was most regulated in SHRSP. Consistent with this finding, previous studies have 

shown up-regulation in mesenteric and aortic VSMC from SHRSP (Moriki et al., 2004, Savoia 

et al., 2005). Moreover, our vascular reactivity data (chapter 4) demonstrated RhoA/Rock as 

the major contraction mechanism in SHRSP MRAs which was impaired, promoting 

hypercontractility. Therefore, the up-regulation of MLC-kinase (MYLK), myosin light-chain 

(MYL12A/MYL12B, MYL6B) and actin (ACTA1, ACTA2) could imply increased contractile 

activity in SHRSP vs WKY, despite no differences in RhoA and Rock levels, which is consistent 

with previous findings in aortic VSMCs (Moriki et al., 2004). On the contrary, a downstream 

target of Rock, ezrin (EZR), an actin-binding protein, was down-regulated, perhaps as a 

defence mechanism attempting to lower the activity of the pathway. 

• Caveolin-1 (CAV1), the main component of caveolae, highly expressed in rat vascular 

SM (Voldstedlund et al., 2001), was up-regulated in SHRSP compared to WKY and 

SP.WKYGla2a. It is known to induce RhoA activation in rat MRAs (Dubroca et al, 2007), 

consistent with the hypercontractility we observed in SHRSP (chapter 4). Furthermore, CAV1 

overexpression in vascular myocytes has been shown to attenuate growth by inhibiting 

PDGF proliferative responses (Peterson et al., 2003), which is critical since PDGFR signalling 

is up-regulated in hypertension (Tabet et al., 2005, Yogi et al., 2011). In addition, CAV1 has 

been implicated in S1P/S1PR1 signalling in endothelial cells, through direct interaction with 

S1PR1 in caveolae, which is crucial for endothelial barrier integrity and eNOS activation 

(Igarashi and Michel, 2000, Singleton et al., 2009). Such findings encourage further studies 

on the role of CAV1 in VSMC of hypertensive animals. 

• The S1P/S1PR1 signalling canonical pathway was not significantly altered between 

WKY and SHRSP and the receptor levels were below detection. Moreover, PTMs mediating 

enhanced signalling in SHRSP upon 30min S1P-stimulation (Yogi et al., 2011)  could not be 

observed in global proteome screening. Nevertheless, in a broader S1P/S1PR1 interaction 
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network a number of interesting proteins were highly changing. More specifically, enzymes 

positively related to oxidative stress responses, including superoxide dismutase 2 (SOD2) and 

cathepsin D (CTSD) (Roberg, 1998, Tiwari et al., 2008), were increased in SHRSP, exerting a 

potentially protective role. These enzymes have also been implicated in attenuation of VSMC 

proliferation and migration (Wang et al., 2012a) and hypertrophy of aortic VSMC from SHR 

(Fukuda et al., 1999), respectively. Other regulated proteins of the network were also 

associated with vascular structure and mechanics. Increased mRNA levels of collagen alpha-1 

type III (COL3A1) have been related to fibrotic stiffness of MRA in aged rats (Briones et al., 

2007, Campbell et al., 1991) and the increased protein levels observed here could therefore 

explain the increased stiffness of MRAs from SHRSP observed in our functional studies 

(chapter 4). Further, up-regulated levels of ezrin (EZR) and milk fat globule-EGF factor 8 

protein (MFGE8) have been detected in proteomic screenings of pulmonary hypertensive 

mice (Veith et al., 2013) and of aortas from rats with chronic kidney disease exhibiting 

arterial stiffness (Lin et al., 2010), respectively. EZR has also been associated with SMC 

hypertrophy and increased vascular resistance in pulmonary artery of rats with induced 

inflammation (Dai et al., 2006), while MFGE8 has been shown to induce aortic VSMC 

proliferation in aged rats (Wang et al., 2012b). Hence, the decreased levels observed in our 

SHRSP may reflect protective adaptations. Interestingly, the above proteins exhibited 

consistent direction of change across the comparisons between SHRSP vs WKY and 

SP.WKYGla2a, reflecting regulation of their expression by the WKY congenic interval.  

• Finally, two proteins important in the protection against oxidative stress were highly 

down-regulated in SHRSP, which may contribute further to the hypertensive phenotypes. 

Heme oxygenase-1 (HMOX1) is an enzyme shown to regulate myogenic tone, reduce BP in 

SHR and counteract oxidative stress (Datla et al., 2007, Escalante et al., 1991, Sammut et al., 

1998), as well as to restore high-blood-flow-dependent remodelling and impaired 

endothelial function in MRAs from old Wistar rats (Freidja et al., 2011). The second protein, 

the detoxification enzyme NAD(P)H quinone oxireductase-1 (NQO1) (Zhu et al., 2007), is 

highly expressed in cardiovascular cells and has anti-proliferative effects on VSMCs (Kim et 

al., 2009).  

Despite the fact that several protein expression data from the congenic strains could 

be interpreted in a meaningful way, we have to be careful due to the unusual quantification 

patterns observed in the congenics' comparisons. It is highly likely that such patterns reflect 

issues of the MaxQuant version used in performing triple-SILAC quantification. This 
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assumption is supported by the fact that when MS/MS spectra of housekeeping proteins 

were previewed on Mascot, similar abundance (score) of L, M and H SILAC-peptides was 

observed. Moreover, when data were quantified using Mascot Distiller normal distributions 

were acquired for every (pair) comparison. To confirm our assumption a control, 'cross-over' 

experiment with inverted SILAC labels between the strains could be performed, had there 

not been time limitations. 

Validation of changes observed with MS was performed for some proteins of interest, 

which were identified as single isoforms and exhibited FC>1.5, to enable more accurate and 

easier detection by WB. As expected, levels of these proteins were not changing upon the 

30min S1P-stimulation, consistent with the hypothesis that the observed differences were 

genetically driven. However, WB results did not provide any solid confirmation of the 

proteomic data. Possible explanations could be the small number of WB replicates, the small 

magnitude of protein FC or the sensitivity and specificity of the antibodies. Generally, due to 

inherent variability in a WB, which makes the technique less accurate and reliable, only 

'dramatic' changes can be confirmed. 

In conclusion, identification of proteins previously known to be related with the 

disease, as well as expression changes consistent with the literature validate our workflow 

design, giving more confidence to our data. On the other hand, changing proteins not 

previously reported to associate with the disease, could provide novel knowledge and the 

motive for generation of new testable hypothesis. To further investigate the effect of S1P-

signalling on hypertension and assess contribution of the congenic interval, metabolomic 

screening was conducted on the S1P-treated VSMC used in our proteomics analysis, 

described in chapter 5. 
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6.1 Introduction 

One of the major strategies in systems biology is integration of data from high-

throughput 'omics' analyses, which promises valuable insights into cellular biology and a 

more holistic and accurate characterisation of the living systems. In the past, such 

approaches were prevented due to the high-complexity of such datasets and the lack of 

powerful analytical software. However, the recent advances in high-resolution and accuracy 

instrumentation, in combination with developed quantitative and statistical platforms and 

databases have opened the way to large-scale integrating studies. To date, the majority of 

such studies come from the areas of plant biology and microbiology (Kromer et al., 2004, 

Maier et al., 2013), primarily due to the lower complexity of such systems. So far, there are 

many less studies integrating data from different platforms for highly complex biological 

systems (Ly-Verdu et al., 2013, Geiger et al., 2010, Zhang et al., 2013). Yet, the number of 

'omics' analyses on complex organisms, including animal models of human diseases as well 

as on biofluids and tissues from human subjects, grows exponentially. This provides the 

potential for a rapid rise of 'omics'-integrating studies in the near future, towards a better 

understanding of the pathophysiology and treatment of chronic diseases, such as EH.  

Upon perturbations of a biological system, response of its homeostatic mechanisms 

results in alterations on its proteome and metabolome. Therefore, comprehensive analysis 

of dynamic changes in the molecular characterisation of living systems should include both 

proteomic and metabolomic profiling. Variations in the metabolic profile, represented by 

changes in metabolites levels, comprise a useful complementary analysis to proteomic 

studies, which identify changes in protein levels, protein-protein interactions and PTMs. 

6.1.1 Aims 

Following the global proteomic profiling of mesenteric primary VSMCs, conducted in 

chapter 5, and studies demonstrating altered sphingosine signalling in VSMCs from SHRSP 

(Yogi et al., 2011), an untargeted metabolomic profiling of these cells was performed in this 

chapter. Metabolome from mesenteric primary VSMCs from 16-week-old WKY, SHRSP and 

the SP.WKYGla2a (SW2a) congenic strains was subjected to HILIC/MS and IDEOM 

bioinformatics analysis aiming to:  
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• investigate metabolic differences under basal conditions (vehicle), across the 

hypertensive SHRSP, the normotensive WKY and the SW2a congenic strain of improved 

BP phenotype (Figure  3-1A),  

• elucidate the metabolic effects of sphingosine signalling (30min S1P-stimulation) within 

each strain and compare the effects across the three strains (Figure  3-1C).  

 

Figure  6-1 - Metabolomics analysis in S1P-stimulated mesenteric primary VSMCs isolated from 16-

week-old WKY, SHRSP and SP.WKYGla2a-congenic strains. (A) Averaged weekly radiotelemetry 

recordings of night-time and day-time SBP in male animals, under baseline and salt-loaded periods 

(high-salt diet at 18 weeks of age) (Edited from Graham et al., 2007). (B) Experimental process. 

Metabolites were separated by ZIC-HILIC, ionised by ESI and directed to Orbitrap Exactive mass 

analyser. Raw peaks were filtered, identified, quantified and statistically analysed through IDEOM 

v18, visualised on PeakML.Viewer and finally uploaded to databases for biological interpretation. 

(C) Experimental design. Four biological replicates of each strain were analysed at basal conditions 

(vehicle) and upon 30min stimulation with spingosine-1-phosphate (S1P).  
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6.2 Results  

Metabolites were extracted from mesenteric primary VSMCs, which had been treated 

with vehicle or S1P for 30min (section 2.2.5), and processed on a ZIC-HILIC/MS platform, as 

detailed in section 2.7. Stringent processing of raw MS data containing thousands of peaks 

(~50.000) using IDEOM v18, led to identification of a relatively small number of positively 

(691_Pos) and negatively (374_Neg) ionised putative metabolites (Figure  6-2A). Correction 

for total MS intensity (TIC; metabolite intensity / sum of all metabolite intensities) was then 

performed to minimise the uncontrollable effect of exogenous factors (quantification 

errors). Identification lists of positive and negative modes were then combined (PosNeg) to 

give the list of putative metabolites to be further analysed: 920_PosNeg (Figure  6-2A). 

The quality of filtered data was assessed by generation of principal component analysis 

(PCA) plots (Figure  6-2B), which represent the profile of a linear combination of the 

metabolites identified for each sample. In the PCA for the PosNeg dataset, in which all 

samples (vehicle and S1P-stimulated) were plotted together, the percentage of PC1 was 

13.9% and of PC2 was 12.7%. Clustering of samples according to strain or to differential 

treatments was not clear. 
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Figure  6-2 - Orbitrap Exactive MS-data filtering and visualisation on IDEOM v18. (A) Peaks were 

picked using XCMS, filtered using mzMatch and matched to a set of databases for metabolite 

identification. The table summarises numbers of putative metabolites identified in the positive and 

negative modes and collectively (posneg), after correcting for total intensity (TIC), across all 

samples and stains. (B) PCA score plots for PosNeg list of putative metabolites, was generated in R 

using data from all strains and both vehicle and S1P-stimulated samples. PC1 and PC2 represent 

the percentages of metabolites that drive the separation of samples along the axes.  
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Subsequently, pair-wise comparisons were performed across strains under vehicle or 

S1P treatment, as well as within each strain before and after the S1P-stimulation. Unpaired 

t-test was utilised to determine significance (p-val <0.05). Approximately 1/10 to 1/30 of the 

identified metabolites were found to be significantly changed in each of the comparisons. 

Around one half of these had KEGG IDs and were qualified as ‘analysis ready’ molecules on 

IPA (Figure  6-3A). During further exploration on IPA, the majority of ‘analysis ready’ 

metabolites were related to ‘lipid metabolism’ and ‘small molecule biochemistry’ processes. 

When associated to canonical pathways, diseases and toxicological functions, the relatively 

few metabolites were, mostly, individually mapped to different processes rather than 

highlighting a few common ones. Therefore, an individual investigation of potentially 

interesting molecules was followed, including the significant metabolites that were not 

mapped on IPA (no KEGG ID) (Figure  6-3B). 
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Figure  6-3 - Comparisons of interest across WKY, SHRSP and SW2a-congenic strains, under control 

and S1P-treated conditions. (A) Comparisons were performed either across the stains or within 

each stain, before and after S1P-stimulation. Table summarises numbers of putative metabolites 

identified in positive and negative modes collectively (total), of metabolites changing significantly 

(p-val <0.05), and of significant metabolites mapped on IPA (‘analysis ready’), in each comparison. 

(B) Venn-diagrams of significantly changing metabolites for comparisons of interest. Data acquired 

on IDEOM v18. 
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6.2.1 Metabolic differences across strains at basal conditions 

To investigate the metabolic components that are potentially implicated in BP 

regulation the metabolome of VSMCs was compared across the three strains, under basal 

conditions (vehicle). The ratio of significantly changing metabolites to total metabolites 

identified for each of the comparisons was: SHRSP_v_WKY (20/778); SHRSP_v_SW2a 

(25/782); SW2a_v_WKY (12/776) (Figure  6-3A). Most changes were observed between 

SHRSP_v_WKY (16 unique) and SHRSP_v_SW2a (17 unique) (Figure  6-3B; top left venn-

diagram). The main focus was on intersects between comparisons, as they are likely to 

include metabolites regulated by the congenic interval and be beneficial on the VSMC 

phenotype. When SHRSP or SW2a were compared to WKY, no 'in common' metabolites 

were identified. In the comparisons between SHRSP versus WKY or SW2a, four metabolites 

were found to be changing 'in common', consistently decreased in SHRSP. In addition, 

potentially protective metabolites could be included in the 17 unique metabolites identified 

in SHRSP versus SW2a comparison, from which 10 were decreased and 7 increased in SHRSP. 

The decreased metabolites were implicated in nucleotide, amino acid and carbohydrate 

metabolism. Of similar interest were the 16 unique metabolites identified to be changing in 

SHRSP compared to WKY, from which 15 were reduced and one raised in SHRSP. From the 

decreased metabolites, 8 were related to lipid metabolism. Table  6-1 summarises data for 

some of the above significant metabolites. Full data are included in ‘vehicle comparisons; 

venns’ supplementary table. 

Additional checking of peak quality for the above metabolites on peakML.Viewer, in 

order to exclude false-positives (e.g. present only in 'standards' or 'quality control' samples, 

peak reproducibility), directed the focus on the four metabolites, whose peaks are illustrated 

in Figure  6-4. [SP (16:0)] N-(hexadecanoyl)-sphing-4-enine-1-phosphocholine was found to 

be consistently decreased in SHRSP compared to WKY and SW2a: FC= -1.314 and -1.242, 

respectively. Homoarginine was reduced in SHRSP versus WKY: FC= -2.040. L-ornithine and 

inosine were also decreased in SHRSP in comparison to SW2a: FC= -14.974 and -1.581, 

respectively. 

Network analysis on IPA mapped few of the metabolites changing significantly in 

SHRSP versus WKY and SW2a to a network implicating molecules related to vascular tone 

modulation and BP regulation. The network included nitric oxide synthase (NOS), tumor 

necrosis factor (TNF), xanthine dehydrogenase (XDH), calcium, cAMP and hydrogen peroxide 

(Figure  6-5). 
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Table  6-1. Subset of metabolites exhibiting significant change in the comparisons across WKY, 

SHRSP and SW2a, under basal conditions. Data were generated on IDEOM v18. Green: decreased 

and red: increased metabolite levels. 
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Figure  6-4 - Levels of significantly changing metabolites in the comparisons across WKY, SHRSP and 

SW2a, at basal conditions (vehicle). PeakML chromatograms illustrate significant (p<0.05) decrease 

of: (A) [SP (16:0)] N-(hexadecanoyl)-sphing-4-enine-1-phosphocholine, in SHRSP versus WKY and 

SW2a; (B) homoarginine, in SHRSP versus WKY; (C) L-ornithine and (D) inosine, in SHRSP versus 

SW2a. The x-axis indicates the retention time and the y-axis the intensity. 
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Figure  6-5 - Ingenuity Pathway Analysis (IPA) network of metabolic changes in SHRSP versus WKY 

and SW2a, in VSMCs under basal conditions. Significantly changing molecules from the two 

comparisons are related to TNF (tumor necrosis factor), NOS (nitric oxide synthase), SMAD3 

signalling protein, calcium (Ca
2+

), xanthine dehydrogenase (XDH), hydrogen peroxide and cyclic 

AMP. (A) Metabolites changing in the SHRSP_v_WKY comparison. (B) Metabolites changing in the 

SHRSP_v_SW2a comparison. Colour indications: green - decrease, red - increase, gray - no change, 

white - not detected. Asterisk indicated more than one potential isomers.  
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6.2.2 Metabolic differences across strains upon S1P-stimulation 

To investigate the metabolic effect of sphingosine stimulation across the strains and its 

association with processes and pathways related to BP regulation, the metabolome of S1P-

stimulated VSMCs was compared across the three strains. The ratio of significantly changing 

metabolites to total metabolites identified in the three comparisons was: SHRSP_v_WKY 

(45/784); SHRSP_v_SW2a (11/784); SW2a_v_WKY (22/786) (Figure  6-3A). The majority of 

changes were observed between SHRSP_v_WKY (36 unique), with SHRSP_v_SW2a exhibiting 

the fewest (9 unique). The main focus was on intersects between comparisons, as they are 

likely to include metabolites affected by the congenic interval and having protective or 

detrimental effect on BP regulation (Figure  6-3B; top right venn-diagram). In the 

comparisons between SHRSP versus WKY or SW2a, one metabolite was found to be 

consistently decreased in SHRSP and it was involved in lipid metabolism. When SHRSP and 

SW2a were compared to WKY, 8 'in common' metabolites were identified. All 8 displayed 

reduced levels in SHRSP and SW2a and they were mapping to different metabolic pathways. 

Moreover, the 36 unique metabolites changing in SHRSP versus WKY were further 

investigated. 20 of them were related to lipid or amino acid metabolism, 22 were decreased 

and 14 increased in SHRSP. Table  6-2 summarises the data for some of the above significant 

metabolites. Full data are included in ‘S1Pcomparisons; venns’ supplementary table. 

Further inspection of peak quality for the above metabolites on peakML.Viewer, 

brought up the three metabolites illustrated in Figure  6-6 as potentially interesting. (S)-3-

methyl-2-oxopentanoic acid was found to be consistently decreased in SHRSP and SW2a 

compared to WKY: FC= -1.649 and -1.362, respectively. Inosine and tyramine displayed 

increased concentrations in SHRSP versus WKY: FC= 2.777 and 5.487, respectively. 

Generation of S1P-network on IPA involved significantly changing metabolites from the 

SHRSP versus WKY comparison, including inosine and tyramine. The metabolites were 

associated with S1P through calcium, cAMP and hydrogen peroxide (Figure  6-7). 
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Table  6-2. Subset of metabolites exhibiting significant change in comparisons across S1P-

stimulated VSMCs from WKY, SHRSP and SW2a. Data were generated on IDEOM v18. Green: 

decreased and red: increased metabolite levels. 
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Figure  6-6 - Levels of significantly changing metabolites in the comparisons across S1P-stimulated 

VSMCs from WKY, SHRSP and SW2a. PeakML chromatograms demonstrate significant (p<0.05) 

decrease of (S)-3-methyl-2-oxopentanoic acid in SHRSP and SW2a compared to WKY (A) and 

increase in the levels of inosine (B) and tyramine (C) in SHRSP versus WKY.  The x-axis indicates the 

retention time and the y-axis the intensity. 
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Figure  6-7 - IPA comparison of S1P-network across S1P-stimulated VSMCs from SHRSP, WKY and 

SW2a. (A) Significantly changing metabolites in the SHRSP_v_WKY comparison are associated to 

sphingosine signalling, involving hydrogen peroxide, cAMP and calcium. These metabolites are 

unique to the comparison and are not changing in (B) SHRSP_v_SW2a and SW2a_v_WKY 

comparisons. Colour indications: red - increase, gray - no change, white - not detected. Asterisk 

indicates more than one isomers. 
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6.2.3 Metabolic effects of S1P-stimulation within strains 

The metabolic effect of sphingosine stimulation was assessed in each strain 

individually, by comparing metabolic profiles under basal conditions and upon S1P-

stimulation. The number of significantly changing metabolites compared to the total number 

of metabolites identified in each strain was: WKYS1P_v_WKYveh (32/783); 

SHRSPS1P_v_SHRSPveh (20/780); SW2aS1P_v_SW2aveh (26/784) (Figure  3-7A). The majority of 

changed metabolites were unique to each strain: union (75); WKYS1P_v_WKYveh (31); 

SHRSPS1P_v_SHRSPveh (19); SW2aS1P_v_SW2aveh (22), with no molecules identified 'in 

common' (e.g. Figure  6-3B; bottom venn-diagram). In WKY the number of metabolites 

exhibiting reduced levels (12) upon stimulation was similar to those with elevated levels 

(19). Many of the decreased metabolites (5) mapped to lipid metabolism, whilst most of the 

increased (8) were related to amino acid and carbohydrate metabolism. In stimulated SHRSP 

the larger number of metabolites was increased (14 out of 19) and related to lipid 

metabolism. Lastly, in stimulated SW2a most metabolites were decreased (17 out of 22) and 

also mapped to lipid metabolic pathways.  The 30 unique metabolites in WKY comparison, 

along with the two common between SW2a and WKY comparisons, were further 

investigated as potentially protective in the sphingosine-related BP regulation. Likewise, the 

19 SHRSP unique metabolites and the one common metabolite between SW2a and SHRSP 

comparisons were examined as potentially deleterious upon S1P-stimulation (Table  6-3). Full 

data are included in ‘S1P_v_veh_comparisons; venns’ supplementary table. 
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Table  6-3. Subsets of metabolites exhibiting significant change upon S1P-stimulation in VSMCs 

from WKY, SHRSP and SW2a. Data were generated on IDEOM v18. Green: decreased and red: 

increased metabolite levels. 
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Subsequent assessment of peak quality for the above metabolites was performed on 

peakML.Viewer. Figure  6-8 illustrates selected peaks of potential interest. Myo-inositol 

(FC=1.477) was increased in S1P-stimulated WKY as opposed to reduced levels of 

homoarginine (FC=-1.908) (Figure  6-8A). In SHRSP, S1P-stimulation caused significant 

increase in inosine (FC=17.152) and N,N-dimethylsphing-4-enine (FC=1.894) concentrations 

(Figure  6-8B). The significance in inosine reduction in S1P-stimulated SW2a (FC=-2.775) 

appeared to be a 'false positive' indication, driven by outliers (Figure  6-8C).    

Generation of S1P-network on IPA involved significantly changing metabolites from 

stimulated WKY, SHRSP and SW2a strains, including homoarginine, N,N-dimethylsphing-4-

enine and inosine (Figure  6-9). In WKY the metabolites were connected to S1P through 

calcium, L-glutamic acid, NOS (nitric oxide synthase) and SMAD3 protein. In SHRSP the 

connections were either direct or involved cAMP-adenosine. Finally, in SW2a the network 

implicated the inflammatory molecules, TNF (tumour necrosis factor), IFNG (interferon 

gamma) and IL6 (interleukin 6). 
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Figure  6-8 - Levels of significantly changing metabolites upon S1P-stimulation of the three strains, 

illustrated as peakML chromatograms. (A) S1P-stimulated WKY demonstrate significant (p<0.05) 

increase of myo-inositol (FC=1.477)) and decrease of homoarginine (FC=-1.908). (B) In S1P-

stimulated SHRSP, inosine (FC=17.152) and N,N-dimethylsphing-4-enine (FC=1.894) exhibit 

increased concentrations. (C) S1P-stimulation in SW2a did not affect inosine levels, despite the 

achieved significance (p=0.0499) due to poor reproducibility of peaks. The x-axis indicates the 

retention time and the y-axis the intensity. 
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Figure  6-9 - Metabolic changes induced by S1P-stimulation of VSMCs in SHRSP, WKY and SW2a and 

mapping to S1P-network. (A) Significantly changing metabolites in stimulated WKY are related to 

NOS (nitric oxide synthase), calcium (Ca
2+

), L-glutamic acid and SMAD3 protein. (B) Changing 

metabolites in stimulated SHRSP are either directly associated with S1P or through cyclic AMP-

adenosine, NOS, (Ca
2+

) and L-glutamic acid. (C) In SW2a the changes are mediated through cyclic 

AMP-adenosine or mainly through inflammatory components (TNF: tumour necrosis factor; IL6: 

interleukin 6; IFNG: interferon gamma). The network was generated on IPA.  Colour indications: 

red - increase, gray - no change, white - not detected. Asterisk indicates more than one isomers.  
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6.3 Discussion 

To complement previous proteomic profiling of primary mesenteric VSMCs across 

WKY, SHRSP and reciprocal 2a-congenic strains, and in order to further investigate the 

altered sphingosine signalling in HTN (Yogi et al., 2011), untargeted metabolomic profiling 

was conducted in primary VSMCs from WKY, SHRSP and SW2a, under basal and S1P-

stimulated conditions. 

Initially, data quality was assessed by PCA plots, where all samples (vehicle and S1P-

stimulated) were plotted together for increased reliability. Relatively low percentages of PC1 

and PC2 as well as not clear clustering of samples imply small differences across and within 

strains, before and after S1P-stimulation. This is further supported by the relatively small 

ratio of significantly changing metabolites to total metabolites identified, across all 

comparisons. However, such a result could be attributed to the small number of replicates 

(N=4) and the dynamic nature of metabolome, which can compromise reproducibility. 

Alternatively, the fact that metabolome is a highly diverse entity which may not be entirely 

characterised by a single analytical platform, may suggest that more significant differences 

exist in a different component of the metabolome that were not identified in this analysis. 

Further investigation of this assumption would be worthwhile by conducting analysis on a 

different platform, or a more specified lipidomic analysis. 

Considering time limitations, from a large number of comparisons across strains and 

conditions, we focused on particular intersects according to the most interesting questions 

to be tested in each case. 

At basal conditions, the SHRSP had more different profile to SW2a and WKY, than the 

SW2a to WKY. This suggests that the congenic interval is having a profound effect on the 

SW2a metabolic profile, which is likely to contribute to their improved BP phenotype. 

Specifically, the majority of changes in SHRSP compared to SW2a indicated decreased 

nucleotide, amino acid and carbohydrate metabolism, whereas comparison with WKY 

showed altered lipid metabolism. This demonstrates that metabolic processes are 

genetically regulated in a different manner across the strains, which are likely to also 

regulate BP. Therefore, the main focus was to identify 'unique' metabolites changing in 

SHRSP versus SW2a and in SHRSP versus WKY, and more importantly to identify 'in common' 

metabolites between these two comparisons, changing in the same direction. These 

molecules were investigated as potentially deleterius against high BP. On an IPA-generated 



Sofia Tsiropoulou Chapter 6 197 

network, several of the altered metabolites were connected, directly or indirectly, to NO, 

Ca2+, cAMP and H2O2, indicating potential association with pathways implicated in vascular 

tone regulation and oxidative stress.  

Inosine and hypoxanthine, two sequential products of the adenine-adenosine (purine) 

metabolic pathway, mapped to the above network through association with NO, uric acid 

and xanthine dehydrogenase (XDH), and were significantly reduced in SHRSP versus SW2a. 

The purine degradation pathway has been implicated in oxidative stress and enzymes such 

as XDH, which uses hypoxanthine as substrate, are known drug targets for CVD (Rekhraj et 

al., 2013, Feig et al., 2008). Moreover, both hypoxanthine and inosine have been identified 

as plasma metabolic biomarkers for myocardial injury (Lewis et al., 2008). The observed 

decreased levels in SHRSP imply increased XDH activity and elevated oxidative stress, which 

is corrected in SW2a by introduction of the congenic interval. Another interesting 

metabolite, which exhibited small but significant reduction in SHRSP compared to SW2a, was 

L-ornithine. In VSMCs arginase hydrolyses L-arginine to produce L-ornithine, which is further 

metabolised into polyamines to promote SMC proliferation and collagen synthesis (Morrison 

and Seidel, 1995, Durante et al., 1998, Durante et al., 2001). Decreased levels in SHRSP may 

imply increased polyamine synthesis and vascular remodelling of MRAs, which is attempted 

to be prevented by the congenic interval in SW2a. In addition, homoarginine, an aminoacid 

derived from lysine and known to inhibit arginase (Hrabak et al., 1994), was decreased in 

SHRSP compared to WKY. Low levels could suggest increased arginase activity influencing 

vascular remodelling in SHRSP. Moreover, low homoarginine concentrations, in plasma, have 

been associated with myocardial dysfunction and increased risk of fatal cardiovascular 

events in human studies (Pilz et al., 2011). Finally, [SP (16:0)] N-(hexadecanoyl)-sphing-4-

enine-1-phosphocholine, also known as palmitoyl sphingomyelin, was an interesting 

metabolite displaying slight, yet significant decrease in SHRSP compared both to WKY and 

SW2a. Not much is known about the specific role of palmyitoyl sphingomyelin in cell 

function and disease. However, the family of sphingomyelins are known to be metabolised 

in ceramide and bioactive lipids, which mediate VSMC proliferation, apoptosis and 

constriction in a number of cardiovascular diseases (Pavoine and Pecker, 2009). Therefore, 

the observed low concentrations in SHRSP could reflect potentially increased levels of 

ceramides in SHRSP, which have not been detected on this analytical platform. 

Upon S1P-stimulation, metabolic profiles of the parental strains exhibited the larger 

number of differences, supporting Yogi’s data (Yogi et al., 2011) on significantly altered 
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signalling induced by S1P between the two strains. Further, SHRSP and SW2a displayed the 

most comparable profiles, which imply similar responses to stimulation. Such result is in 

contrast to the findings under basal conditions, which demonstrated greater similarities 

between SW2a and WKY. Therefore, it becomes obvious that S1P signalling is most likely 

regulated by components lying outside the congenic interval. For this reason, the most 

interesting metabolites to be further examined were those changing 'in common' between 

SHRSP versus WKY and SW2a versus WKY. (S)-3-methyl-2-oxopentanoic acid was one of the 

above metabolites having a consistently decreased trend across SHRSP and SW2a. It is 

known to participate in isoleucine degradation, and has not been related to any other 

processes or diseases. Therefore further investigation on its potential association to BP 

regulation processes is needed. The rest of the 'in common' metabolites presented low 

confidence due to either noisy peakML chromatograms or significance driven by one outlier, 

and they were not pursued further. Subsequently, focus was on the 'unique metabolites 

changing between SHRSP and WKY. Tyramine, a trace amine derived from tyrosine and 

involved in the release of catecholamines, displayed increased concentrations in SHRSP 

versus WKY. Tyramine has been reported to induce vasodilatation in raised-perfusion-

pressure MRAs from Sprague-Dawley rats (Anwar et al., 2012), in contrast to its 

vasoconstrictive effects on mesentery from Wistar (Elliott et al., 1989) and on rat aortic rings 

(Fehler et al., 2010). Consequently, addressing the effects of tyramine on SHRSP 

mesenterium would aid the interpretation of its increased levels in SHRSP. Lastly, inosine 

concentration was elevated in SHRSP compared to WKY but not SW2a. S1P is known to 

regulate accumulation of cAMP in VSMCs (Damirin et al., 2005), which in turn is involved in 

the purine metabolism and can be associated with observed increases in levels of AMP and 

inosine. Considering the significantly decreased levels of inosine in SHRSP versus SW2a at 

baseline, it is obvious that S1P stimulation causes an increase in SHRSP to reach SW2a levels. 

This effect seems to be dependent on the congenic interval and is a priority finding for 

further investigation. 

The last set of comparisons examined changes in the metabolic profiles of each strain 

before and after S1P-stimulation. The majority of changed metabolites were unique to each 

strain, with very few 'in common' metabolites identified. This finding demonstrates 

differential responses of each animal to the stimulation and suggests a combined effect of 

the genetic background and the congenic interval in S1P-signalling. Indeed, on a network 

generated on IPA, with S1P at the apex, metabolites identified in the three comparisons 
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were connected to S1P through intermediate molecules associated with different processes.  

Nonetheless, all three strains appeared to respond to S1P-stimulation mainly through 

alterations in their lipid profile. However, the lack of a larger number of common consistent 

changes between SHRSP and SW2a limits identification of potentially interesting metabolites 

implicated in the altered sphingosine signalling in HTN. This finding may suggest further that 

filtering through SW2a and WKY for identification of candidates for S1P-mediated BP 

regulation is not the most appropriate strategy, at least for the metabolite profile, or that 

another analytical platform is needed to capture these metabolic changes.  

In WKY, S1P-stimulation induced increase in myo-inositol levels. This carbohydrate, 

apart from being the structural component in the synthesis of inositol phosphates, it has 

been reported to prevent and reverse endothelial dysfunction in rat mesenteric vessels, 

through scavenging of superoxide (Nascimento et al., 2006). Therefore, further 

characterisation of its relation to S1P signalling in VSMCs would be of interest. Moreover, 

stimulated WKY exhibited diminished levels of homoarginine, which may impact on arginase 

activity towards VSMC proliferation and collagen synthesis (Hrabak et al., 1994). In SHRSP, 

S1P-stimulation elevated concentration of N,N-Dimethylsphing-4-enine, which is a 

sphingosine kinase inhibitor (Edsall et al., 1998). This metabolite has been implicated in 

reduction of MAPK and NADPH oxidase activities, VCAM1 expression, intracellular calcium 

and formation of actin stress fibres (Wu et al., 2004, Ibrahim et al., 2004, Xia et al., 1998, 

Meyer zu Heringdorf et al., 1998, Hanna et al., 2001). Thus, increased levels upon S1P 

stimulation could be potentially beneficial on VSMC function and structure and consequently 

on BP regulation. Furthermore, inosine was considerably elevated in stimulated SHRSP, 

which suggests that in this strain sphingosine signalling significantly affects purine 

metabolism. This could be mediated by cAMP, which participates in purine metabolism and 

its intracellular levels are known to be regulated by S1P (Damirin et al., 2005, Van Brocklyn 

et al., 1998).  

In conclusion, the effect of the congenic interval on the metabolic profile appears to be 

more profound under basal conditions, whereas S1P signalling may be predominantly 

regulated by components lying outside the interval. However, metabolic responses to 

stimulation seem to be, not surprisingly, a combined effect of the genetic background and 

the congenic interval. Further investigation by use of complementary analytical platforms 

would allow more comprehensive capturing of metabolic changes. Moreover, the putative 

metabolites identified in this analysis, will have to be validated to authentic standards by 
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MS/MS fractionation and verified by WB and enzymatic activity assays, on control and S1P-

stimulated cells, before generation of new testable hypothesis.  



 

7 General Discussion 
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 The growing problem of elevated blood pressure (BP) over the last decades has 

become one of the major contributors to the present pandemic of cardiovascular disease 

(CVD) (Levenson et al., 2002b, Carretero and Oparil, 2000). Hypertension (HTN) is a trait of 

large phenotypic variance with a clear genetic predisposition (Franceschini et al., 2011). By 

2025, approximately 1.56 billion adults are predicted to suffer from essential hypertension 

(EH), which makes the need for better understanding of its pathophysiology and genetics 

highly pressing. Over the past few years, an increasing number of large scale-genetic studies 

in human, including several GWAS (Levy et al., 2009, Ehret, 2011, Johnson et al., 2011), has 

accelerated the current understanding of the polygenic nature of BP regulation. However, 

only in few cases the reported SNPs implicate a specific gene of high effect (Padmanabhan et 

al., 2010) and, collectively, they represent, only a small fraction of BP heritability and have 

small size effects that do not explain BP phenotypic variance. This could be attributed to 

multifactorial upstream regulation of the candidate gene expression, as well as downstream 

regulation of the protein levels and activity, which would be reflected on the metabolic 

profiles of cells, tissues, organs and ultimately on the phenotype. 

To further dissect the genetic components of EH, the present study employed high-

throughput, untargeted proteomic and metabolomic profiling, on a well characterised 

animal model of human EH, the SHRSP. These high-resolution powerful approaches were 

combined with chr.2 congenic stains, which had been previously generated in our laboratory 

using the SHRSP and WKY parental strains and had confirmed that the congenic interval is 

involved in BP regulation. Our results demonstrate that the chr.2 congenic interval affects BP 

phenotype through regulation of vascular reactivity and mechanics of resistance arteries, 

and that these events are primary to vascular remodelling. Alterations in vascular reactivity 

are confirmed at the molecular level in the proteomic and metabolomic screenings, along 

with highly de-regulated antioxidant responses. Finally, proteomics analysis identifies up-

regulation of NPR3 in SHRSP, a protein which is correlated to a GWAS discovery in humans.  

Below are discussed in more detail the aims of this work, the results in association to 

existing knowledge as well as the potential and limitations of our studies.  

The SHRSP is an experimental rat model resembles the human pathophysiology of HTN 

and has been used extensively in high-throughput genomic studies, offering the advantage 

of increased genetic homogeneity. Previous genetic linkage studies have identified QTLs 

associated with BP regulation and salt-sensitivity on chr. 2, 3 and 14 (Luft et al., 1988, 

McBride et al., 2005, McBride et al., 2003). Construction of chr.2 reciprocal congenic stains 
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in our laboratory, using SHRSP and WKY as the parental stains, combined with microarray 

gene expression profiling in kidney from salt-loaded rats, identified positional candidate 

genes for salt-sensitive hypertension. Sphingosine-1-phosphate receptor 1 (S1pr1) and 

vascular adhesion molecule (Vcam1) lie on the chr.2 congenic interval implicated in salt-

sensitivity and were differentially expressed across the strains (Graham et al., 2007). 

Additionally, glutathione S-transferase mu 1 (Gstm1) was identified as another chr.2 

positional and functional candidate for BP regulation, lying outside the region implicated in 

salt-sensitivity (McBride et al., 2003). Construction of congenic strains has been widely used 

for the dissection of QTLs and identification of candidate genes underlying complex, 

multifactorial diseases (Wallace et al., 2004, Kumarasamy et al., 2011, Ariyarajah et al., 

2004). 

However, as differential expression profiling of candidate genes at the mRNA level, 

does not always correlate with phenotypic variance, alterations at the protein and 

metabolite levels need to be investigated in order to obtain a clearer picture of 

multifactorial traits such as HTN. Use of large-scale proteomic and metabolomic screenings 

are becoming essential for comprehensive characterisation and comparison of phenotypic 

alterations induced by genomic changes, at health and disease (Geiger et al., 2010, Mittler et 

al., 2009). Such high-resolution, system-wide, (semi)-quantitative approaches offer new 

potential in post genomics and systems biology. However, analysis and interpretation of 

such gigabyte-large datasets remain challenging.  

The present study combined shotgun proteomics and metabolomics, with chr.2 

congenic and Gstm1-transgenic strains, aiming to identify potential biomarkers for EH and 

salt-sensitivity, as well as altered processes in HTN related to S1P/S1PR1 signalling and 

regulated by the congenic interval. Comparison of the parental WKY and SHRSP strains, 

exhibiting two extreme BP and salt-sensitivity phenotypes, with the SW2k-congenic, the 

SW2a and WS2a reciprocal-congenic and the Gstm1-transgenic strains of intermediate BP 

and salt-sensitivity phenotypes, offered the potential of more restrictive identification of 

components underlying these differences. Moreover, during these studies, 3 major 

disciplines were combined: biology for sample preparation, analytical chemistry for sample 

processing and bioinformatics for data analysis.  

Initially, untargeted metabolomic profiling was performed in urine and plasma from 

normal-salt and salt-loaded parental, SW2k-congenic and Gstm1-transgenic rats. Given the 

different BP phenotypes, the aim was to assess the role of the congenic interval and Gstm1 
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on salt-sensitivity and BP-regulation and identify putative biomarkers. The rich metabolic 

content of urine and plasma, consisting of building blocks and by-products of processes 

occurring throughout the organism, classifies them as biological samples of high prognostic 

and diagnostic value in the biomarker research (Giovane et al., 2008, Barderas et al., 2011). 

Moreover, recent untargeted metabolomic studies were able to associate distinct urine 

metabolite signatures to specific QTLs, suggesting a global impact of genetic loci on 

metabolic pathways (Cazier et al., 2012). In our study, quantitative changes of L-proline and 

linoleic acid in plasma, under normal-salt, were unique to SHRSP, indicating regulation of 

their metabolic pathway by the congenic interval and potential association with Gstm1. 

Upon salt-loading, oleic acid in urine and glutathione disulfide and S1P in plasma, exhibited 

different pattern of change in salt-sensitive versus salt-resistant strains. This demonstrates a 

regulatory role of the congenic interval in salt-loaded conditions, but not of Gstm1, which 

was expected, as this gene is not a candidate for salt-sensitivity. The majority of altered 

metabolites were associated with lipid metabolism, inflammatory response and free radical 

scavenging processes previously shown to be altered in salt-sensitive rats and associated 

with cardiovascular disorders (Spijkers et al., 2011, Liu et al., 2012).  

Subsequently, due to the importance of the resistance vasculature in BP regulation, 

the effect of the congenic interval on structure, mechanical properties and vascular 

reactivity of MRAs was investigated, in parental and 2a-reciprocal congenic strains. 

Remodelling of vessels at 16 weeks of age was not observed across the strains, suggesting 

that structural alterations develop later in life as an adaptive response to increased BP. 

However, MRAs from SHRSP exhibited a tendency to be stiffer, whereas the congenic strains 

displayed an intermediate phenotype, implicating the congenic interval. The above data are 

supported by studies in 24-week-old animals, which demonstrated no significant alterations 

in vessel structure but increased intrinsic wall stiffness in SHRSP/SHR versus WKY (Arribas et 

al., 1997, Gonzalez et al., 2006). However, the effect of the congenic interval was more 

obvious in the vascular reactivity studies, where it corrected for hypercontractility but not 

for the endothelial dysfunction observed in SHRSP, when introgressed into SW2a congenic 

rats. Hypercontractility in SHRSP implicated RhoA/RhoK pathway which is supported by 

studies on hypertensive rat models (Moriki et al., 2004, Kitazono et al., 2002) and is 

potentially affected by the congenic interval. Endothelial dysfunction in the SHRSP and SW2a 

was mediated by NO bioavailability, as shown previously (McIntyre et al., 1997, Kerr et al., 

1999, Ma et al., 2001) and appeared to be independent of the congenic interval. In the 
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reciprocal WS2a congenic strains detrimental effects were not identified, suggesting that 

elements outside the interval regulate these processes or compensate for the loss of the 

'healthy' genes.  

Further investigation of these differences in the vasculature between the stains was 

performed at the molecular level, through MS-based quantitative proteomic analysis of 

primary mesenteric VSMC from the parental and 2a-reciprocal congenic strains. Use of 

triple-SILAC labelling allowed for three-way comparisons across the strains. However, 

challenges in the bioinformatics analysis directed the focus on the comparison between WKY 

and SHRSP. Not surprisingly, differentially regulated proteins were associated to processes 

implicated in BP regulation and HTN, including oxidative stress, vascular tone regulation and 

remodelling. Increased GSTM1 levels in the primary VSMCs from SHRSP, as opposed to 

previously described reduced mRNA and protein levels in the kidney (McBride et al., 2005), 

suggest differences in vascular and renal antioxidant mechanisms. This is further supported 

by the observed reduction in SHRSP, of HMOX and NQO1 detoxification enzymes of the Nrf2 

(nuclear factor (erythroid-derived 2)-like 2) pathway, which has been found to be up-

regulated in the kidney antioxidant response (Wilmes et al., 2011, Zoja et al., 2013). 

Moreover, NPR3, which maps to the chr.2 congenic interval, was up-regulated in SHRSP. As a 

receptor of C natriuretic peptide (CNP), an identified EDHF factor (Laurant et al., 1997), NPR3 

increased levels could be interpreted as an attempt of SHRSP to correct for 

hypercontractility and endothelial dysfunction, which was observed in MRAs. Furthermore, 

in support of the data implicating RhoA/Rock signalling in MRA hypercontractility, this 

pathway was found to be significantly altered in SHRSP during the proteomics analysis and 

CAV1 which induces RhoA activation (Dubroca et al., 2007) was also up-regulated in SHRSP. 

Lastly, proteins related to sphingosine signalling were also differentially expressed in SHRSP, 

including down-regulated EZR, a member of the RhoA/Rock pathway, and up-regulated 

SOD2 and CTSD antioxidant enzymes, as well as COL3A1, which has been implicated in 

stiffness of MRAs and therefore supports the findings of the myography functional studies 

(Briones et al., 2007, Campbell et al., 1991).  

To further investigate the effect of S1P-signalling on HTN and assess contribution of 

the congenic interval, metabolomic screening was conducted on VSMC used in the 

proteomics analysis, at basal conditions and upon S1P-stimulation. Under basal conditions, 

the effect of the congenic interval was more profound on the metabolic profile of SW2a, 

which may be linked to their improved BP phenotype. S1P-stimulation induced more 
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differences in the metabolic profiles of SHRSP v WKY, which is supported by altered S1P 

signalling in VSMCs (Yogi et al., 2011). Differences between SHRSP and SW2a were fewer, 

suggesting that S1P signalling is predominantly regulated by components outside the 

congenic interval. However, responses to stimulation were different across all strains which 

suggests a combined effect of the genetic background and the congenic interval on S1P 

signalling regulation and implies that filtering through the SW2a congenic strain for 

identification of candidates for S1P-mediated BP regulation, may not by the most 

appropriate strategy, at least in the VSMC metabolite profiling. Two interesting metabolites 

were elevated in stimulated SHRSP compared to the other strains. Effects of S1P-signalling 

on inosine levels appeared to be mediated by the congenic interval, which suggests that in 

SHRSP, sphingosine signalling significantly affects purine metabolism potentially through 

cAMP (Damirin et al., 2005, Van Brocklyn et al., 1998). Additionally, S1P-signalling in SHRSP 

may be related to BP-regulation through tyramine, which has vasodilatory properties in rat 

MRAs (Anwar et al., 2012) and could have a protective role against the hypercontractility 

described in the myography studies.  

Collectively, this study followed a holistic approach aiming to capture a clearer picture 

of the genetic determinants underlying BP regulation in the SHRSP. Combination of high-

throughput proteome and metabolome profiling with chr.2 congenic and transgenic strains 

allowed identification of candidate metabolites and proteins whose altered quantitative 

profiles may underlie salt-sensitivity, sphingosine signalling and BP regulation in SHRSP. 

Validation and functional characterisation of these candidates and the implicated pathways 

is the essential step before any further translational studies are curried out in humans. One 

major finding of our study, which could be correlated to a GWAS discovery in humans, is the 

differential protein expression levels of NPR3 in SHRSP. The largest GWAS meta-analysis of 

>200.000 human subjects identified NPR3 - C5orf23 as one of the 29 loci harbouring 

validated SNPs associated with systolic BP (Ehret, 2011). Therefore, further work needs to be 

prioritised towards the elucidation of the pathways linking NPR3 and HTN. Particular focus 

should be placed on pathways implicated in regulation of vascular reactivity in resistance 

arteries, based on the results from our vessel-myography functional studies and the 

knowledge that CNP has been identified as a potential EDHF in vasodilation (Chauhan et al., 

2003). However, it should be kept in mind that translating results from animal models into 

human HTN has proven challenging. The best maybe example coming from GWAS studies, to 

this day, is uromodulin (UMOD), whose discovery in humans was extended to a umod KO 
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mouse model, identifying a novel pathway linking UMOD, sodium homeostasis, and HTN 

(Graham et al., 2014). Moreover, the challenge of multiple causative genes mapping to a 

single GWAS locus, making genetic dissection of the polygenic trait of HTN more complex, 

needs to be circumvented. Recent studies, have shown phenotypic contributions of the five 

out of six genes within the AGTRAP-PLOD1 GWAS locus (Johnson et al., 2011) on CVD 

phenotypes in a rat model of HTN, many of which were previously unattainable in the 

human population. The approach used was introduction of mutations to each of the genes 

within the locus. (Flister et al., 2013).  

The fact that GWAS studies have been unable to identify genetic variants of relatively 

large influence on physiologic responses in HTN, can be attributed to multifactorial 

determination of expression of such traits, as discussed above, and compensatory 

mechanisms. Transcriptional regulation, protein post-translational modifications (PTM) and 

protein-protein interactions could either alter or abolish the function of proteins encoded by 

GWAS candidate genes. Altered protein function could in turn lead to dramatic changes in 

the metabolite profile of cells, tissues, organs and to an ultimately changed phenotype. The 

potential regulatory interactions across the different layers of information in a biological 

system are illustrated in Figure  7-1A. Integration of large 'omics' datasets appears to be the 

next step in studying causal relationships between genes and phenotypic endpoints. A 

growing number of studies support the importance of this integrative approach by 

demonstrating direct functional links between GWAS variants, quantitative metabolic traits 

and an end-point of cardiovascular diseases and identifying new underlying biological 

processes and pathways (Illig et al., 2010, Suhre et al., 2011, Kettunen et al., 2012). In this 

light, the recent generation of SHRSP and WKY genome sequence (Glasgow strains) permits 

integration of transcriptomic with our proteomic and metabolomic studies, towards the 

investigation of the pathophysiology of EH in the SHRSP (Atanur et al., 2013). Rapid and 

continuous development of platforms such as Ingenuity Pathway Analysis (IPA) allow for 

quantitative data integration in cells, tissues or biofluids. Curated knowledge databases are 

used for generation of networks and pathway mapping, which improve the understanding of 

causal network connections across diseases, genes, upstream regulators and intermediate 

metabolic traits. Implementing an integrative approach of high-throughput analyses (Geiger 

et al., 2010, Maier et al., 2013) could lead to identification of genetic variants, signalling 

pathways and metabolic processes that are altered in human disease. (Figure  7-1B) 
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Figure  7-1 - Data integration across the various layers of information. (A) High-level view of 

biological information flow from expression of genes to expression of phenotypes, via the multiple 

'omics' levels of regulation. Adapted from Genomics Sciences Research Complex. (B) Simplified 

schematic of how information from our proteomic and metabolomic studies could be integrated, 

on IPA, with existing genomic and tanscriptomic data, towards identification of candidate 

gene/proteins/metabolites/pathways for further functional validation and generation of new 

hypotheses. Assessment of if and how such findings translate in human EH could lead to a better 

understanding of the disease pathophysiology and lead to generation of new therapeutic targets.  
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Using systems biology tools, data integration could feed into reconstruction of 

dynamic networks with increasing reliability. Moving from working on individual molecules 

to work on networks, which constitute functional processes that link genetic and 

biochemical incidents with biological phenotypes, provide holistic information on living 

systems. Mathematical modelling of network maps provides the means to predict the 

emergent properties of complex systems, such as biological systems, by using sets of 

mathematical rules describing interactions of molecular components (Calder et al., 2010). 

Combination of dynamic network maps with models simulating their mean behaviour allows 

rigorous predictions of the output to specific stimuli, as well as validation of experimental 

data. Applying the predicted models in patho-biological systems at the molecular, cellular, 

tissue/organ and whole animal levels facilitate discovery of novel mechanistic pathways and 

predict the best points at which to intervene to redress the balance. 

Irrespective of how informative robust 'omics' characterisations can be, they still pose 

big challenges during data analysis and interpretation, due to the high technical and 

biological variability as well as complexity of the samples. A simple, basic strategy to ensure 

reproducibility and increase confidence is the use of large numbers (>10) of replicates 

(biological, technical, analytical) in every experimental design (Jankevics et al., 2011). A weak 

point of our work was the small numbers of replicates (N=4) included in our metabolomic 

studies, which may explain the substantial variability observed within groups. Another 

challenge in the application of highly sensitive and automated technologies in 'omics' studies 

has been the identification of false-positives. To circumvent such issues, data normalisation, 

multiple testing analyses and the use of appropriate statistical tests are crucial for detection 

of statistically significant signals. However, in-house packages used in this study were under 

constant development, which made the data analysis process long and exigent. A limitation 

of IDEOM, in the case of the metabolomics analysis, was the use of t-test statistical filtering 

for such a large number of comparisons, which may have led to identification of false-

positive, as it does not account for multiple testing. Therefore, the statistically significant 

results were always confirmed through reviewing of the original raw data. A more 

appropriate statistical test for such large datasets would be the Rank Products (RP) non-

parametric statistical test (Breitling et al., 2004). RP is based on ranks of fold changes and 

multiple testing, using false discovery rate (FDR) significance cut-off, and is about to be 

implemented in the next versions of IDEOM. Furthermore, the limited ability of a single 

analytical platform to screen for the global, highly diverse metabolome makes the use of 
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multi-platform approaches demanding, towards the characterisation of complex diseases 

like EH (Mandal et al., 2012, Suhre et al., 2010, Naz et al., 2013). Moreover, due to the fact 

that several chronic diseases are characterised by altered lipid metabolic profile, including 

CVD, there is a growing interest in the area of shotgun lipidomics (Min et al., 2011, Han et 

al., 2011). In the case of proteomics analysis, the imperfect overlap of identifications from 

different search engines, which is reflected on partial overlap of results from different 

quantification algorithms (Searle et al., 2008, Yu et al., 2010), limits an even more robust 

protein identification. In addition, we still need to understand the issues MaxQuant 

presented during the processing of the triple-labelling SILAC datasets. As several new 

versions of MaxQuant have been released since our analysis, it would be worthwhile re-

processing our proteomic data. Another challenge in proteomics analysis is the validation of 

findings through western blot (WB). The fact that our SILAC-proteomics results were not 

reproducible by WB could be attributed to the small number of WB replicates, the small 

magnitude of protein FC or the sensitivity and specificity of the antibodies. However, it is 

important to stress that, despite generally increased sensitivity of antibodies, the inherent 

variability in a WB makes the technique less accurate and reliable, and only substantial MS 

changes can be confirmed. Moreover, in WB only a single signal-band is quantified, whereas 

MS methods measure several individual peptides per quantified protein and generate 

independent measurements, thus increasing the accuracy of the mean (relative) 

quantification. Therefore WB is seriously questioned as a validation method for MS results 

and maybe reproducibility and consistency of the results across multiple replicates is the 

answer to validity. 

In conclusion, this study combined MS-based (semi-)quantitative proteomics and 

metabolomics approaches with congenic strains, to improve our understanding on 

fundamental pathophysiological processes underlying HTN in SHRSP. Despite big challenges 

in the data analysis process, this work identified altered quantitative profiles of molecules 

and processes in health and disease, which once integrated with data from 'omics' studies at 

the gene level will set the basis for generation of new testable hypothesis, aiming to 

elucidate the underpinning molecular mechanisms of these processes. Furthermore, findings 

from our proteomic and metabolomic analyses that are associated with GWAS genetic loci 

could potentially identify novel pathways which would be translated into new drug therapies 

for human EH.  
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