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Abstract

Maintaining river health is of vital importance to the human populations that depend on

them for drinking water, and for the income generated from industry and leisure activities.

The key to a clear understanding of the current state of the river environment lies in as-

similating the various data that are available for a particular river catchment. As a result

of the large expense involved in extensive data collection programmes, measurements are

often only taken at a handful of monitoring locations, resulting in large portions of a river

network remaining unmonitored and rendering it difficult to assess the health of the river

as a whole. Interpreting observations associated with a particular response variable pivots

on understanding many other variables whose underlying relationships are often highly

complex and which may not be routinely measured. Cutting-edge statistical methods can

play a crucial role in the interpretation of such data, particularly when faced with small

sample sizes and the presence of latent processes. In particular, developing models for

environmental data that relax the assumption of simple linear dependencies between re-

sponse and covariate is a core theme of this thesis, which can enable powerful descriptions

of such complex systems. This approach adopts and promotes modern flexible regression

techniques based on penalised splines, which are motivated and summarised in Chapter 2;

these permit regression relationships to assume a wide variety of non-linear shapes, without

requiring the modeller to impose a priori structure.

This thesis aims to address two related, but distinct regression problems for data collected

within a river catchment. Firstly, the relationship between rainfall data collected at a rain

gauge and subsequent river flow rates collected at a point downstream is tackled in Chapter

3. In this application, it is of particular interest to understand the degree, duration and

time-lag of the influence of a rainfall event on a measurable increase in river flow rates at a

downstream location. This relationship is complex because it is governed by attributes of

iv



the surrounding river environment that may not be readily available, such as soil composi-

tion, land use and ground strata. However, rainfall and flow data are frequently collected

at a high temporal resolution, and Chapter 3 develops models that exploits this feature

that are able to express complex lagged dependence structures between a sequence of flow

rates and a rainfall time series. The chapter illustrates how the resulting model enables

insight into the sensitivity of the river to additional rainfall, and provides a mechanism for

obtaining predictions of future flow rates, without recourse to traditional computationally

intensive deterministic modelling.

This thesis also tackles the problem of constructing appropriate models for the spatial

structure of variables that are carried by water along the channels of the river network.

This problem cannot be approached using traditional spatial modelling tools due to the

presence of the different volumes of water that mix at confluence points, often causing

sudden changes in the levels of the measured variable. Very little literature is available

for this type of spatial problem, and none has been developed that is appropriate for the

large data sets that are becoming increasingly common in many environmental settings.

Chapters 4 and 5 develop new regression models that can incorporate spatial variation

on a stream network that respects the presence of confluences, flow rates and direction,

while including non-linear functional representations for the influence of covariates. These

different model components are constructed using the same modern flexible regression

framework as used in Chapter 3, and the computational benefits of adopting this approach

are highlighted. Chapter 4 illustrates the utility of the new models by applying them

to a large set of dissolved nitrate concentrations collected over a Scottish river network.

The application reveals strong trends in both space and time, and evidence of a subtle

interaction between temporal trend and the location in space; both conclusions would have

been difficult to reach using other techniques.
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Chapter 1

Introduction

1.1 Monitoring of river networks

Rivers and the reservoirs they fill, are primary sources of drinking water for human popu-

lations worldwide, are widely used for leisure and recreational activities and are important

resources for transport, industrial and economic output. Equally as important as the hu-

man benefits, rivers and river banks are habitats and food sources for many endemic species

that are sensitive to their immediate physical environment and climatic change. For exam-

ple, Vörösmarty et al. (2010) find that “nearly 80% (4.8 billion) of the world’s population

(for 2000) lives in areas where either incident human water security or biodiversity threat

exceed the 75th percentile”. Preserving and improving the health of rivers worldwide is

therefore a vitally important issue, and has received much political attention in recent

years. In 1991, the Nitrates Directive (European Parliament (1991)) was introduced, obli-

gating European member states to monitor and report on aspects of water quality. In

particular, the Nitrates Directive requires areas of land that drain into nitrate-polluted

water bodies to be designated ‘Nitrate vulnerable zones’ (NVZ), and upon classification,

measures must be implemented to improve water quality. In 2000, the European Wa-

ter Framework Directive (WFD) (European Parliament (2000)) was introduced and has

1
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been part of UK law since 2003. The WFD consolidated previous policies into a single

broad legislative framework intended to protect all water bodies including rivers, lakes and

groundwaters by setting targets for minimum water health, and encouraging a coordinated

approach to river basin management and monitoring.

Adherence to the WFD obligates government bodies, such as the Scottish Environment

Protection Agency (SEPA) to undertake systematic monitoring and reporting on the state

of their water bodies. As a result of subsequent national-scale water monitoring, a large

amount of data is collected. However, due to the costs associated with obtaining samples,

the data are often collected with a limited spatial coverage. Furthermore, the available

data are often noisy, due to factors such as equipment measurement error and observations

made at the limits of detection of the equipment. It is also common to find large gaps in

the measurement record due to the establishment or termination of sampling regimes at

a particular location. As a result of these and other problems, visual assessment of the

data alone is not sufficient to obtain an understanding of the current state of an aquatic

environment. Statistical modelling therefore plays a crucial role in the interpretation of

these data, and provides a framework within which scientific hypotheses can be tested even

when faced with multiple sources of uncertainty and incomplete data sets.

1.2 Data on river networks

Data collected on quantities occurring in the natural environment often exhibit non-linear

relationships, caused by the complex latent physical systems from which they are gen-

erated. In the case of dissolved pollution carried by river flow, observed processes such

as differing land usages, meteorological conditions and the presence of sewage outlets are

known to induce strong spatial and temporal dependencies into the observed data. Much

of the literature that deals with hydrological and environmental systems takes a determin-

istic approach to modelling, by describing the system through physical process models, for
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summaries in hydrology, see for example Beven (1985) and Shaw (2010). This approach is

very powerful and seeks to build a model that describes a detailed mechanistic represen-

tation of the system of interest. However, these models are often highly computationally

intensive to run, and it is not straightforward to accommodate uncertainty about model

parameters or measurement error resulting from the data collection process.

This thesis explores the use of alternative statistical approaches to describing an environ-

mental system that relies only on the observed data to determine the most appropriate

model structure. An attractive and well established method of statistical modelling is lin-

ear regression analysis, where a set of explanatory variables are modelled as each having a

linear contribution to a single dependent outcome variable. However, when the explana-

tory variables exhibit strong spatial and temporal dependence, standard linear regression

is not an appropriate tool. It is therefore the aim of this thesis to extend current regression

modelling techniques so that the incorporation of complex variation in space and time is

permitted, making use of a flexible framework that avoids imposing the restrictions such

as linearity on relationships between variables in the model that would poorly describe the

true dependence in the data. Capturing spatial and temporal patterns is a computationally

challenging problem in the field of spatial analysis, and so this thesis places a particular

emphasis on choosing algorithms that result in efficient computation.

1.3 Thesis Outline

Although the development of appropriate flexible regression models is the central theme

of this thesis, two related but distinct problems are tackled in particular. The first con-

cerns the statistical representation of the relationship between river flow rates and rainfall,

utilising data from an individual rain gauge and from a single high frequency stream flow

monitoring site. The second problem that this thesis seeks to address is the challenge of

modelling observations on variables such as water temperature, nitrate loads and dissolved
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oxygen concentrations that are attributes of the water that flows through the channels of

a spatial stream network.

1.3.1 Chapter 2: Introducing flexible regression

Non-linearity between variables can result because highly complex deterministic processes

may govern the systems underlying in the variable or because the behaviour of a variable

is dynamic, for example with time, and that the form of the change has no a priori de-

terministic representation nor does it follow a simple parametric form. The latter form of

non-linearity forms a key motivation of this thesis, and Chapter 2 summarises the problem

that arises when standard linear regression is used and the variables involved exhibit these

types of non-linear relationships. An alternative flexible modelling strategy that avoids

these issues and is based on a particular penalised spline regression (P-splines) is presented

together with an overview of how such models are fitted, with some discussion of tech-

niques for obtaining optimal levels of flexibility. The chapter describes extensions to basic

flexible regression models that are often useful in practice, such as modelling bivariate

smooth interactions between two covariates. The chapter summarises key features from

the wider semiparametric modelling literature including the different frameworks available

for achieving parameter estimation. The relevance and importance of sparse matrix algo-

rithms in model fitting is outlined, with emphasis on how these can be exploited during

smoothness parameter selection.

1.3.2 Chapter 3: Flexible rainfall and flow modelling

Chapter 3 investigates the time-lagged relationship between river flow and rainfall, in the

particular setting where only high resolution rainfall and flow time series are available.

Drivers of flow generation are summarised alongside a review of existing modelling ap-

proaches to rainfall-flow modelling. Flexible time-varying coefficient models are proposed,
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that are based on P-splines that are capable of capturing complex time-lagged dependence

between the time series. The proposed models develop existing distributed lag models that

are more commonly utilised in short-term epidemiological studies, by allowing the flexible

lag structure to vary in time. A more general modelling framework is described that allows

the construction of varying-coefficient models in which the coefficients vary in multiple

dimensions. Both of the models developed are applied to data collected on the River Dee

in the North East of Scotland. Chapter 3 closes with some criticism of the adequacy of the

proposed models in the context of the data considered and some potential improvements

that could be made.

1.3.3 Chapters 4 and 5: Flexible models for river networks

Chapter 4 investigates space-time modelling of covariates that are observed at a set of

monitoring sites on a river network. Standard spatial models are not appropriate because

of the unique features that underpin variation on a flow-driven network, such as the flow

direction and presence of confluences that connect different flow channels. Some recently

developed models for such structures from the spatial modelling literature are reviewed and

discussed. A new approach utilising P-splines to represent both the spatial propagation of

network-varying covariate values and non-linear covariate effects is introduced. The models

are extended to allow the inclusion of network-varying smooth effects. Chapter 4 finishes

with a discussion of the current shortcomings of the network models developed, and some

potential avenues for future research.

Chapter 5 builds on Chapter 4 by rigorously testing the performance of the network models

and comparing them to others available in the current literature. The relative performance

is measured and comparisons are made by implementing a large simulation study where

data are generated from a wide variety of realistic river network structures. Predictive per-

formance is particularly emphasised as this is a particularly common goal in environmental
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space-time analysis. Issues such as computation and user-friendly implementations of the

models are also addressed.

1.3.4 Chapter 6: Main findings and future extensions

In Chapter 6, a summary of the main findings and contributions of the thesis is presented.

In addition to this summary, a substantial extension to the work of Chapter 3 is proposed,

that could make use of highly detailed rainfall RADAR data in order to improve model

accuracy and reduce the bias that could arise as a result of the spatio-temporal structure

in rainfall. This extension describes a distributed lag model in which flow levels are de-

pendent on rainfall at both spatial and temporal lags. Chapter 6 also sketches a route for

further developing the river network models of Chapter 4, in which variables measured on

the network could be modelled continuously, rather than with the discrete segment-wise

representation developed in Chapter 4. This model would make use of a more complex

P-splines specification for capturing smooth structure on the bodies of a stream network.



Chapter 2

Flexible modelling with P-splines

In this chapter, the problem of representing non-linear dependence in a regression context

is discussed, and how an attractive solution may be obtained using P-splines, a particular

type of smoothing technique. Dealing with non-linearity in a regression context is central

to appropriately handling environmental data, a point which was particularly emphasised

in Section 1.2. A summary of the ideas underlying P-splines is provided in this chapter and

is framed within the wider context of modelling with generalised additive models, semi-

parametric models and nonparametric regression that are supported by a well developed

literature (Hastie & Tibshirani (1990), Green et al. (1994), Ruppert et al. (2003), Wood

(2006)). Simple motivating examples are provided to support the discussion, and a strong

emphasis is placed on efficient computation, and the different techniques by which the

smoothness control parameters can be estimated.

7
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Figure 2.1: Two simulated examples of noisy, non-linear data relationships. The data
shown in the left panel have been fitted with a quadratic polynomial (red line), while the
data shown in the right panel have been fitted with quadratic (red line) and cubic (green
line) polynomials.

2.1 Regression, smoothing and basis functions

2.1.1 Regression with polynomials

Standard regression models that fit straight-line relationships between response and ex-

planatory variable, are not appropriate when the true relationship exhibits curvature, and

will typically result in strongly correlated residuals. In many instances, the curvature can

be accommodated by fitting polynomials, or other parametric functions of the explanatory

variable: an example of this is illustrated by Figure 2.1. The left hand panel of Figure 2.1

shows the result of fitting a linear model with polynomial terms of the form

yi = f(xi) + εi = β0 + β1xi + β2x
2
i + εi where εi ∼ N(0, σ2)

where 1 ≤ i ≤ n for n data points. The fit appears to be reasonable, as the curvature

present is relatively simple and easily accommodated by a quadratic function. In contrast,

the data shown in the right hand panel of Figure 2.1 exhibit more complex curvature, and
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it is less clear that either the quadratic or the cubic functions fitted can offer a good de-

scription of the observed data structure. In practice, the fits shown in Figure 2.1 might be

deemed reasonable if there were good reason to believe the true regression relationship to

be polynomial a priori. In many instances, polynomial functions require the practitioner to

make strong assumptions about the global behaviour of the fitted function that cannot be

easily justified; for example, in the left panel of Figure 2.1 it is unclear that at lower values

on the x-axis, the response should encounter a turning point and begin to increase as the

fitted quadratic function would. In addition, the range of shapes permitted by polynomial

functions are typically too restrictive to capture non-trivial curvature, which is a feature

that is particularly visible in the data in the right panel of Figure 2.1.

In pursuit of a better alternative, it is helpful to consider the influence of assuming global

parametric structures such as those imposed by polynomial regression. For the fitted

quadratic functions shown in Figure 2.1, the terms {1, xi, x2
i } are non-zero for all values

of x (except at x = 0) which means that each of the parameter estimates β̂0, β̂1 and β̂2

dictate the trajectory of the fitted function f at all observed and unobserved values of xi.

This could be a particularly undesirable property if the goal is to predict outside of the

range of the observed data. Slightly more formally, {1, xi, x2
i } is a basis for f that spans

the space of all quadratic polynomials, and if the true function does not lie in this space,

then the resulting fit to the data may be poor.

2.1.2 Approaches to flexible regression

Flexible regression methods attempt to avoid these undesirable properties by construct-

ing estimates for f that capture the behaviour of the data locally, where f is typically

only assumed to be continuous and differentiable to some degree. There are a number of
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techniques available to achieve this, and one of the most prominent is known as kernel re-

gression (see Bowman & Azzalini (1997) for an overview) which estimates the function f by

weighting the data points with a kernel function K. A common choice is Nadaraya-Watson

kernel regression (Nadaraya (1964), Watson (1964)), which fits f using the estimator

E(yi|xi, h) = f̂(xi) =

∑n
j=1Kh(xi − xj)yj∑n
j=1Kh(xi − xj)

. (2.1)

In Equation 2.1, h is a bandwidth parameter that controls the spread of the chosen kernel

function Kh, and the subsequent smoothness of the fitted function f̂ . As seen in Equation

2.1, kernel regression relies on weighting all of the data points, and its implementation

requires manipulation of n× n matrices. This feature may limit the use of kernel methods

with large data sets, although it should be noted that in many situations the matrices

involved are banded and sparse because the kernel function Kh is usually close to 0 outside

of a narrow interval around each datum. An alternative approach that aims to achieve a

computational cost that scales more favourably with n, starts instead by projecting the

data on to a much smaller set of locally defined basis functions, and then seeks to weight

these functions in such a way that their linear combination provides a good representation

of the data. The basis functions can take a very diverse range of forms, and their local

nature may be as a result of each function having a prominent maximum or minimum, or in

the more direct sense that they have compact support. Some examples of basis functions

in regular use are truncated power functions Ruppert et al. (2003), B-splines (De Boor

(1978), Eilers & Marx (1996)), monotonic I-splines (Ramsay (1988)) and thin-plate splines

(Duchon (1977), Wood (2006)). Regardless of the basis chosen, this is generally referred to

as low-rank smoothing, in the sense that the number of parameters required to construct

the estimated smooth function is typically far fewer than the number of data points.

The main differences between competing approaches for low-rank smoothing lies in the

choice of the number and of the locations of the basis functions, and the subsequent
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mechanism for obtaining parameter estimates. For example, Ruppert et al. (2003) pre-

fer truncated power functions as basis functions, with functions spaced uniformly on the

quantile scale of the data, using a ridge penalty to control smoothness and a mixed model

approach to parameter estimation. Although easy to construct, truncated power functions

are in some instances prone to poor numerical condition, highlighted for example by Eilers

& Marx (2010). The P-splines approach of Eilers & Marx (1996) in contrast, chooses a

rich set of uniformly spaced B-spline basis functions whose linear combination represents

f̂ , together with a roughness penalty on pairs or higher-order neighbourhoods of basis

functions. In order to maintain a clear and simple presentation of the models developed in

this thesis, the smoothing framework proposed by Eilers & Marx (1996) will be adopted

and used throughout this thesis due to its conceptually intuitive approach to fitting smooth

functions. It is acknowledged that different smoothing frameworks could have been chosen,

which would have likely resulted in slight differences in the models subsequently developed.

However, each of the different frameworks are intended to fit smooth functions with min-

imal input from the modeller, and so it is also likely that any differences between them

would be small, and that the results would not be affected.

2.2 P-splines

Section 2.2.1 proceeds by defining B-spline basis functions, which are the functional build-

ing blocks of the P-splines approach. Following this, in Section 2.2.2 the basic principles of

using a set of B-spline basis functions to construct a smooth function is outlined, and the

use of a roughness penalty to control smoothness in the smooth function is also described.

2.2.1 B-splines

A spline is simply a function constructed from polynomial pieces joined together in a spe-

cific way, and a B-spline of degree q in particular has the following general properties that
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were summarised by Eilers & Marx (1996):

1) It consists of q + 1 polynomial pieces, each of degree q

2) The polynomial pieces are joined at q inner knots

3) At the joining points, derivatives up to order q − 1 are continuous

4) The B-spline is positive on a domain spanned by q + 2 knots; elsewhere it is zero

5) At a given x, q + 1 B-splines are nonzero

A comprehensive reference that describes the mathematical properties is given by De Boor

(1978). B-splines are popular choices for smoothing and regression as they are easy to

construct and have attractive numerical properties. Each B-spline is composed of q + 1

polynomial pieces joined at q inner knots, therefore constructing a B-spline basis consisting

of p individual basis functions requires the choice of the location of these knots. Any choice

of knot placement is possible, for example placing them at q evenly-spaced percentiles of

the data may result in an appropriate smooth when the response is observed rarely over

large intervals of a covariate. However, it is more commonly assumed that the knots are

placed at a set of equally spaced at locations (v1, . . . , vp+q+1). Regardless of the knot

choice, De Boor (1978) describes a recursive procedure for evaluating the ith B-spline basis

function of degree q at a point x:

Bq
i (x) =

x− vi
vi+q+1 − vm

Bq−1
i (x) +

vi+q+2 − x
vi+q+2 − vi+1

Bq−1
i+1 (x)

and where

B−1
i (x) =

 1 if vq ≤ x < vq+1,

0 otherwise.
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However, for practical purposes, it is computationally convenient to compute differences

of truncated power functions to construct a B-spline basis of degree q, see Eilers & Marx

(2010) for a summary and an implementation in the R language (R Development Core

Team (2011)). For an illustration of B-spline bases of 10 functions with degrees 0, 1, 2 and

3, see Figure 2.2.

2.2.2 Simple flexible regression

The general idea of smoothing with basis functions is simply to recast the mean function,

f , as a linear combination of the set of basis functions evaluated at each covariate value,

rather than global polynomial functions as used in ordinary regression. For fitting the effect

of a smooth function f of a covariate x = (x1, . . . , xn) on a response y = (y1, . . . , yn), using

a set of p basis functions {Bj() : 1 ≤ j ≤ p}, then a flexible model can be expressed as

yi = f(xi) + εi =

p∑
j=1

Bj(xi)αj + εi (2.2)

where εi ∼ N(0, σ2). For the data shown in the top-left panel Figure 2.3 an example set

of 30 uniformly-spaced basis functions can be constructed, evaluated at each of the data

points xi, so that the resulting matrix of basis function evaluations is given by

B =



B1(x1) B2(x1) . . . B30(x1)

B1(x2) B2(x2) . . . B30(x2)

...
... . . . ...

B1(xn) B2(xn) . . . B30(xn)


. (2.3)

The relatively large number of 30 functions were chosen to illustrate the overfitting that

results from fitting curves using this basis and no smoothness control. For illustration,

the set of 30 basis functions evaluated at each point on a fine grid over the x-axis are

shown in the top right-hand panel of Figure 2.3. In matrix notation, the model described
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Figure 2.2: From top panel: 10 overlapping B-spline basis functions of degree 0, 1, 2
and 3 respectively.
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in Equation 2.2 can be rewritten

y = Bα+ ε

parameter estimates α̂ = (α̂1, . . . , α̂p) associated with each of the basis functions in Equa-

tion 2.3 are available by least squares by minimising the quadratic form

(y −Bα)>(y −Bα) (2.4)

with respect to α. The closed form expression for the minimising value for α of Equation

2.4 is α̂ = (B>B)−1B>y; fitted values for y are then given by

ŷ = Bα̂ = B(B>B)−1B>y = Hy (2.5)

where H is known as the smoother or hat matrix. Here, the choice of the basis size p was

arbitrary and the fitted function f is sensitive to this choice, with wiggliness of f increasing

with p. This is particularly visible for the example data shown in Figure 2.3: the bottom

left panel shows the result of fitting with the basis without any restriction on the curvature,

where the estimated curve is clearly overfitting the data. Fitting with P-splines under the

framework set out by Eilers & Marx (1996) avoids sensitivity to the chosen basis dimension

by incorporating a penalty on neighbourhoods of the parameters α. This is achieved by

including in the least squares objective function the sum-of-squared first order differences

p−1∑
i=1

(αi+1 − αi)2, (2.6)

which has an interpretation as a measure of roughness of α and therefore the smoothness

of the fitted function f̂ . Going further, the roughness expression in Equation 2.6 can be

multiplied by a scalar quantity λ, which in turn increases the influence of the roughness
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Figure 2.3: Top panels from left: plot of non-linear data series; set of 30 overlapping
and uniformly spaced B-spline basis functions which will be used to obtain a smooth fit
to the data series. Bottom panels from left: red line shows an unpenalised fit resulting
from the chosen basis, basis function heights are proportional to the estimated coefficients
α̂; red line shows a penalised fit to the data, basis function heights are visibly smoother
than under the unpenalised fit.
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measure on the estimator of α and curves with different smoothness properties will result.

The new objective function then becomes

(y −Bα)>(y −Bα) + λα>D>Dα (2.7)

where

D =



−1 1 0 0 0 . . . 0

0 −1 1 0 0 . . . 0

0 0 0 −1 1 . . . 0

...
...

...
...

... . . .


. (2.8)

Higher order penalties than that implied by Equation 2.8 are possible, for example by

incorporating the squared second order differences

p−2∑
i=1

(αi+2 − 2αi+1 + αi)
2, (2.9)

whose corresponding difference matrix is defined as

D =



1 −2 1 0 0 0 . . . 0

0 1 −2 1 0 0 . . . 0

0 0 0 1 −2 1 . . . 0

...
...

...
...

...
... . . .


, (2.10)

different shaped smooths with different properties will result. It is helpful to consider why

this happens: in the case of Equation 2.6, fitted functions that are just horizontal lines

incur the lowest penalty (because in this case α1 = α2 = . . . = αp), and so the first order

roughness penalty represents deviations from a constant function. For the second order

case in Equation 2.9, the lowest penalty is incurred when αi+2 − αi+1 = αi+1 − αi, for

1 ≤ i ≤ p − 2, which occurs when the fitted function is linear, and hence the penalty

represents deviations from a straight-line relationship for a given set of α. As a result of
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these differencing properties, when λ→∞ under first order difference penalties the fitted

function f̂ tends to a constant, whereas under second order differences the result is a linear

f̂ . The latter is typically the preferred behaviour when λ→∞, because a linear model is

often viewed as a default model choice when no smoothness is expected, and makes sense

as a limiting case under strong smoothing. Other differencing choices could be used, but

without strong prior scientific knowledge they risk introducing bias, for example when the

true relationship in the data is linear and strong smoothing results in some other fitted

function. As a result of these considerations, second order difference penalties are used

throughout this thesis in combination with a set of degree 3 B-spline basis functions, the

latter ensures that the resulting curves are relatively smooth and twice differentiable which

are attractive properties for many environmental modelling applications. Although these

choices are made in a way that seems slightly ad-hoc, it is not likely that the results and

subsequent inferences would be substantially altered if different choices (i.e. higher order

differences and higher degree basis functions) were made.

In the case of continuous responses and assuming Gaussian errors, for a fixed value of λ,

α is estimated by solving the equations

B>y = (B>B + λD>D)α

The scalar α>D>Dαmeasures the roughness of f via the parameters α. λ is a smoothness

control parameter that modulates the extent to which α>D>Dα influences the estimates

of α resulting from 2.7, and restricts the range of shapes that f can take across values of

x. The benefit of enforcing this restriction is clear by considering the bottom right panel

of Figure 2.3 where α̂ has been estimated with λ = 10 and the result is a smoother, more

parsimonious fit to the data.

When f̂ is wiggly, the fit to each data point is closer and the sum of squares (y−Bα)>(y−
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Bα) is small and α>D>Dα is large; correspondingly when f̂ is smooth, the fitted function

has less scope to achieve a good fit to each datum and (y − Bα)>(y − Bα) is larger

and α>D>Dα is smaller. The introduction of the λ parameter provides a mechanism

for choosing an optimal smoothing level: small λ yields less penalised models with low

residual variance but a large effective number of parameters, while larger λ yields more

structured models with higher residual variance and a lower dimension. Therefore, a trade

off between model compexity and fit must be achieved for which some algorithms are

described in Section 2.3.

2.2.3 Additive modelling

General and detailed discussions of additive models are available in Hastie & Tibshirani

(1990), Green et al. (1994), Ruppert et al. (2003), Wood (2006) and Fahrmeir et al. (2013),

that each include extensions such as complex mixed effects models and modelling with non-

normal responses. Here attention is focused on additive models using the P-splines frame-

work described in Marx & Eilers (1998). The flexible regression described in Section 2.2.2

generalises to the setting of additive models, where a set of q covariates {x1, . . . ,xq} is

to be regressed on y and the contribution of each is assumed to take the form of some

unknown smooth function fj:

yi = β0 +

q∑
j=1

fj(xi,j) + εi.

Parameter estimates are available by penalised least squares using

α̂ = (X>X + P )−1X>y

where the model matrix X can be written in the augmented form

X =

[
1 B1(x1) B2(x2) . . . Bq(xq)

]
. (2.11)
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In Equation 2.11, Bj() is the B-spline basis expansion of qj basis functions of the jth

covariate, xj. The penalty matrix P = P (λ) = P (λ1, . . . , λq) is a block diagonal matrix

which is now a function of m smoothness control parameters such that

P =



λ1D
>
1D1 0 . . . 0

0 λ2D
>
2D2 . . . 0

...
... . . . ...

0 0 . . . λqD
>
qDq


.

Expressions for the variance of the fitted values and model parameters are available via

Var (α̂) = Var
[
(X>X + P (λ))−1X>y

]
= σ̂2(X>X + P (λ))−1X>X(X>X + P (λ))−1

Var (ŷ) = Var
[
X(X>X + P (λ))−1X>y

]
= σ̂2X(X>X + P (λ))−1X>X(X>X + P (λ))−1X> (2.12)

Estimating the residual variance requires some notion of the model and residual degrees

of freedom, dfmodel and dferror respectively. For a standard Gaussian linear model these are

defined simply as a function of the idempotent projection matrix, H defined as ŷ = Hy

so that

dfmodel = tr (H) dferror = tr (I −H) (I −H)>

= tr
[
X(X>X)−1X>

]
= tr(I) + tr(HH>)− 2tr(H)

= tr
[
X>X(X>X)−1

]
= tr(I)− tr(H)

= tr [Ip] = p = n− p.

Here, p is simply the number of columns of X or the number of parameters being fitted,

and it follows that the residual variance is estimated as σ̂2 = RSS
dferror

= RSS
n−p . By analogy with
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linear modelling, Hastie & Tibshirani (1990) estimate that the model and residual degrees

of freedom in a semiparametric model can be obtained from the equivalent smoothing

matrixH as defined in Equation 2.5. In this case, H is not a projection matrix and is not

idempotent and therefore for additive and other semiparametric models

dfmodel = tr(H) = tr
[
X(X>X + P )−1X>

]
dferror = tr (I −H) (I −H)> (2.13)

= tr
[
X>X(X>X + P )−1

]
= tr(I) + tr(HH>)− 2tr(H)

In particular, Ruppert et al. (2003) show that for moderate levels of λ, RSS/(n− dfmodel),

is a biased estimator for σ̂2 and that σ̂2 = RSS/(n − 2tr(H) + tr(HH>)) should be used

instead. dfmodel is known as the effective degrees of freedom or effective dimension, and in

order to distinguish it from the ordinary linear model definition it is denoted ED throughout

this thesis. Since each smooth component involved in an additive model involves several

basis parameters, it is also useful to define the model degrees of freedom associated with

each smooth component. Assuming a model matrix of the form described in Equation

2.11, the fitted values can be written

ŷ = Hy

= X(X>X + P (λ))−1X>y

= X1(X>X + P (λ))−1X>1y

+XB1
(X>X + P (λ))−1X>B1

y

+XB2
(X>X + P (λ))−1X>B2

y

+
...

...

+XBq
(X>X + P (λ))−1X>Bq

y

= H0y +H1y +H2y + . . .+Hqy

where XBi
is the model matrix X in which all elements not associated with the smooth

component Bi have been set to zero. Then the effective degrees of freedom associated with
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smooth component i is given by EDi = tr(H i).

2.2.4 Interaction terms

Often in practical modelling applications, the individual effects of two covariates x1 and

x2 may not be adequate to account for variation in a response, because the smooth effect

of x1 depends in turn on the level of x2. In such a setting, a bivariate smooth interaction

term is required, and in the setting of P-splines this corresponds to fitting a surface to

represent the joint effect of x1 and x2. If the marginal basis matrices for the two covariates

of interest are called Bp1(x1) and Bp2(x2) with dimensions n× p1 and n× p2 respectively,

then the basis matrix for the interaction surface is the row-wise Kronecker product or box

product (Eilers et al. (2006)) of these, which is defined as

Bp1(x1)�Bp2(x2) = (Bp1(x1)⊗ 11×p2)� (1p1×1 ⊗Bp2(x2)) (2.14)

where � is the element-wise or Hadamard product and ⊗ is the Kronecker product. The

matrix in Equation 2.14 has p1× p2 columns, each of which is associated with a parameter

in the parameter vector α = (α11, . . . , α1p2 , . . . , αp11, . . . , αp1p2). It then remains to choose

a suitable penalty on the flexibility of the fit described by [Bp1(x1)�Bp2(x2)]α. Using

the same ideas that underlie the penalties constructed for univariate smooth functions, a

sensible roughness measure might sum squared differences along each margin of the grid

of parameters expressed by the ‘flattened’ vector α:

p2∑
j=1

p1−2∑
i=1

(αi,j − 2αi+1,j + αi+2,j)
2

+

p2−2∑
j=1

p1∑
i=1

(αi,j − 2αi,j+1 + αi,j+2)2

In matrix notation, Equation 2.15 can be expressed

α>
(
D>p1

Dp1 ⊗ Ip2 + Ip1 ⊗D>p2
Dp2

)
α
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where Dp is a second order difference matrix with p columns, and Ip is the p× p identity

matrix. Finally, at least a single smoothness control parameter is required to control the

influence of the roughness penalty and the resulting wiggliness of the surface estimated by

the parameters α. There are two possible options, using a single smoothing parameter λ:

λα>
(
D>p1

Dp1 ⊗ Ip2 + Ip1 ⊗D>p2
Dp2

)
α, (2.15)

or using a pair of parameters (λ1, λ2)

α>
(
λ1D

>
p1
Dp1 ⊗ Ip2 + Ip1 ⊗ λ2D

>
p2
Dp2

)
α. (2.16)

Equation 2.15 describes an isotropic smooth, in which the strength of penalisation is the

same across both axes (x1 and x2) of the space and results in an isotropic smooth. Isotropic

smooth surfaces are special cases that are useful when the units of the two covariates are

the same, or where the smoothness associated with axis defined by each variable is thought

to be the same. Under the assumption of isotropy, only a single smoothing parameter is

needed to represent the smoothness of the surface, which grants a level of computational

ease. However, it is usually not possible to make the assumption of isotropy, in which case

Equation 2.16 describes the more appropriate penalty term.

In general, interaction smooths are computationally expensive due to the requirement of

handling a matrix of dimension p1× p2. However, in the special case where the data lie on

a regular 2D (or higher dimensional) grid of x1 and x2, Equation 2.14 is column equivalent

to

B(x1)n×p1 ⊗B(x2)n×p2

and Eilers et al. (2006) show how in this case, and in more general cases where the model
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matrix is constructed from a sequence of Kronecker products, that much of the computa-

tional overhead can be reduced by exploiting properties of Kronecker products.

2.2.5 Varying coefficient models

So far, the models described are designed to smooth the data directly or to represent the

influence of a covariate or a set of covariates on a response variable as smooth functions.

However, it is sometimes necessary to construct a model in which the linear (or smooth)

effect of one covariate is allowed to change smoothly and non-linearly according to the

influence of another, and the result is called a varying coefficient model (Hastie & Tibshirani

(1993)). This is particularly useful in settings where patterns change with time, and is

the main idea underpinning the models that are developed in Chapter 3. For example,

considering a covariate x = (x1, . . . , xn), a response y = (y1, . . . , yn) and a time index

t = (t1, . . . , tn), then a time-varying coefficient model for y and x could be expressed using

P-splines as follows

yi = f(ti)xi + εi

=

p∑
j=1

αjBj(ti)xi + εi (2.17)

where f is a smooth function that is constructed from a set of p evenly spaced B-spline basis

functions. The model described by Equation 2.17 is different from the bivariate interaction

described in Section 2.2.4 because at a particular time point, the impact of xi on yi is

linear, but the gradient associated with this linear effect has the flexibility to vary with

time. In matrix notation, Equation 2.17 can be re-expressed as

y = ((11×p ⊗ x)�B(t))α+ ε (2.18)

where � is the element-wise product and ⊗ is the Kronecker product. Parameter estimates

can be obtained in the same manner as previously described, by penalised least squares,
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by minimising

(y − ((11×p ⊗ x)�B(t)α))> (y − ((11×p ⊗ x)�B(t)α)) + λα>D>Dα

where λα>D>Dα is a roughness penalty over neighbourhoods of the parameter vector α.

Applications of this type of model include 3D imaging (Heim et al. (2007)), proportional

hazards modelling (Lambert & Eilers (2005)), phenology (Roberts (2008)) and spectroscopy

(Eilers & Marx (2002)).

2.2.6 Sparse matrices

A matrix is deemed to be sparse when a high proportion of its elements are equal to

zero. The importance of sparsity lies in its potential to reduce the computational cost

associated with linear algebra, by avoiding performing any multiplications that involve

zero elements. Well established algorithms exist for storing sparse matrices and for per-

forming linear algebra, described for example by Davis (2006) and Ng & Peyton (1993).

Most of these algorithms are implemented in low level C code for speed, but have more

recently been incorporated in R (R Development Core Team (2011)) via high level func-

tions in the packages Matrix (Bates & Maechler (2013)) which is a general-purpose suite

of sparse matrix software, spam (Furrer & Sain (2010)) which is tailored to some specific

computations that arise in Bayesian spatial modelling and SparseM (Koenker & Ng (2013)).

Sparsity is relevant to the current flexible regression context because a defining character-

istic of a B-spline basis function is that it is non-zero over only a short interval. Model

matrices for P-splines are therefore typically sparse, particularly when the basis dimension

is very large (p > 100) and some authors have taken steps to exploit this structure, see

for example Eilers & Marx (2010). This is especially helpful in situations where very large

Kronecker product bases are required for capturing smooth interaction terms, as described

in Section 2.2.4, and also when matrices composed of dummy variables are involved in the
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Kronecker product as is encountered in Section 4.5.

There are a number of steps in the estimation of semiparametric models that are par-

ticularly computationally burdensome and can be sped up by sparse matrix algorithms:

constructing and storing the model matrix X may be difficult when large Kronecker prod-

uct matrices are involved, and most importantly, obtaining repeated evaluations of the

diagonal elements of the hat matrix H when selecting smoothing parameters.

2.3 Smoothing parameter selection

High values of λ result in stronger smoothing, while small values allow more flexibility in

the shape of the fitted curve. An example is given in Figure 2.4, where estimation with

small values of λ results in fitted curves that overfit the data, and higher values over-

smoothing.

After inspection of the different strengths of smoothness shown in Figure 2.4 it seems un-

controversial that the green line, representing a moderate level of smoothness, with λ = 2,

provides a good representation of the underlying signal in the data. In fact, for simple

univariate regression settings such as that presented in Figure 2.4, visual selection of dif-

ferent smoothness scenarios may be adequate for selecting an optimal value that neither

overfits or oversmooths. However, in more complex settings where the model is composed

of smooth functions of multiple variables, implying several smoothing parameters, selection

of the optimal λ parameters is much more difficult or impossible by such visual inspection

alone, and a more formal approach is usually adopted. The problem of automatic smooth-

ing parameter selection is still an area of intensive research, and a number of competing

approaches currently exist that are suitable for fitting models in which multiple smoothing

parameters are to be chosen.
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Figure 2.4: Three different smoothing strengths applied to the data example shown in
Figure 2.1. Red curve corresponds to λ = 10−4, green curve to λ = 2 and the blue curve
to λ = 103.

2.3.1 Automatic selection with performance criteria

The optimal smoothing parameter vector λ = (λ1, . . . , λq) should strike a balance between

a good model fit as measured by the residual sum of squared errors, and model complexity

as measured by the effective degrees of freedom described in Equation 2.13. A popular

suggestion to achieve this balance has been to select the λ that optimises some model

fit performance criterion, for example, Eilers & Marx (1996) advocate minimising Akaike’s

Information Criterion, Akaike (1973), (AIC) which is defined by Hastie & Tibshirani (1990)

for semiparametric models as

AIC =
1

n
(y −Hy)>(y −Hy) + 2tr(H)

over a logarithmic grid of λ values. Wood (2000) proposes an efficient Newton search

procedure for minimising the Generalized Cross-Validation score (GCV) of Craven &Wahba
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(1978) over λ where

GCV =
1
n
(y −Hy)>(y −Hy)

(1− tr(H)/n)2

However, Hurvich & Tsai (1989) find evidence that AIC has a tendency to overfit due to

bias when samples are small, and is particularly conspicuous when the dimensionality of

the model approaches that of the sample size. Therefore Hurvich et al. (2002) propose a

‘bias - corrected’ AIC called AICc, defined as

AICc = log(σ̂2) + 1 +
2(tr(H) + 1)

n− tr(H)− 2
(2.19)

where σ̂2 = (y −Hy)>(y −Hy)/n, and is designed to more strongly penalise complex

models, and is thought to be more appropriate when overfitting can occur such as in

semiparametric regression. A comparison of how these three criteria compare for a single

set of data across a range of λ values is shown in Figure 2.5, where it can be seen that

the strongest smooth (largest λ) has been selected using AICc and the weakest by AIC.

Of course, many other measures of model performance exist such as the Unbiased Risk

Estimator (UBRE) of Craven & Wahba (1978), or the Bayesian Information Criterion (BIC)

of Schwarz (1978).

2.3.2 Calculating tr(H)

Regardless of the particular performance measure, the main hindrance to performing an

effective selection procedure is computational, because each evaluation of the measure

requires the calculation of ED(λ) = tr(H). Since H is n × n, evaluation of its trace

is burdensome for large n. Some relief may be found by rearranging Equation 2.13 by



Chapter 2. Flexible modelling with P-splines 29

−10 −5 0 5 10

−
6

−
5

−
4

−
3

−
2

−
1

0

log lambda

A
IC

/G
C

V
/A

IC
c

AIC

GCV

AICc

Figure 2.5: Profiles of AIC, GCV and AICc across a log grid of values of λ for the data
shown in the right panel of Figure 2.1. Vertical dashed lines correspond to the minimum
values for each profile: for AIC the minimum is achieved when λ = 0.07, for GCV the
minimum is at λ = 0.24 and for AICc the minimising λ = 0.54.

recognising that the trace operation is invariant under permutation and so

tr(H) = tr
[
B(B>B + λD>D)−1B>

]
(2.20)

= tr
[
(B>B + λD>D)−1B>B

]
=

p∑
i

p∑
j

[
(B>B + λD>D)−1 �B>B

]
ij

and hence it is only required to manipulate p×p matrices. This reduces the computational

overhead and is worthwhile when p << n, however in some settings, for example those

arising in the river network modelling described in Chapters 4 and 5, both p and n may

both be large enough that a single evaluation of tr(H) can be very expensive. In such

cases, it can be helpful to find a rapid approximation to tr(H), provided that the associated

approximation error is small relative to the features of the criterion surface over λ.

The overall fit of each smooth component is robust to modest changes in the associated λ

smoothing parameter, which is a feature that can be exploited to obtain faster evaluations

of a performance criteria that depends on λ. Therefore, a fruitful approach might lie in

finding a way to approximate tr(H), assuming that the approximation can be obtained
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more cheaply than performing the exact calculations described in Equation 2.20. Two re-

sults due to Hutchinson (1989) mean that this is possible.

Lemma 1: (Hutchinson (1989)) Let A be an n × n symmetric matrix and let u =

(u1, . . . , un)> be a vector of n independent samples from a random variable U with mean

zero and variance σ2. Then

E(u>Au) = σ2tr(A) (2.21)

Proposition 1: (Hutchinson (1989)) Let A be an n× n symmetric matrix with non-zero

trace. Let U be the discrete random variable which takes the values 1, -1, each with

probability 1
2
and let u = (u1, . . . , un)> be a vector of n samples from U . Then u>Au is

an unbiased estimator of tr(A) and

Var(u>Au) = 2
∑
i 6=j

a2
ij (2.22)

Moreover, U is the unique random variable amongst zero mean random variables for which

u>Au is a minimum variance, unbiased estimate of tr(A).

Lemma 1 and Equation 2.21 show how it is possible to obtain an unbiased stochastic

estimate of the trace of a matrix using a random vector u. Furthermore, Proposition 1

and Equation 2.22 show that by choosing for u the particular random vector composed of

-1 and 1 each appearing with probability 1
2
, the estimator has minimum possible variance.

These results suggest that the Monte Carlo estimator tr(H) ≈ t̃r(H) = 1
s

∑s
i u
>
i Hui can

be used for suitably large enough s. In practice, this can be evaluated by making use of

the Choleski decomposition L, which is defined as LL> = (B>B+λD>D). The Choleski

decomposition is a square root matrix which has sparseness properties that inherit from
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(B>B + λD>D) and can therefore be obtained cheaply.

tr(H) = tr
[
B(B>B + λD>D)−1B>

]
= tr

[
BL−1L−TB>

]
≈ 1

s

s∑
i

u>i BL
−1L−TB>ui

=
1

s

s∑
i

s∑
j

[
(U>BL−1)2

]
ij

where U = (u1, . . . ,us) is the matrix whose columns are the s random vectors drawn as

described in Equation 2.22. When tr(H) is required for new λ it is necessary to recalculate

L, however, the sparsity pattern for L depends onB andD and not on λ and it is therefore

only necessary to recalculate the entries that are non-zero. In many scenarios where large B-

spline bases are required, L can be very sparse, and using the update.chol.spam function

in the R library spam, the updating of these elements can be performed very quickly. A

further saving can be made by using the same U matrix for each evaluation of tr(H) that

is required: consequently U>B only needs to be calculated once at the outset, and every

subsequent evaluation of tr(H) depends only on solving the system of equations U>B = L

for each new L. Using a fixed set of random vectors (u1, . . . ,us) makes sense if s can be

chosen to be large enough so that the bias associated with the surface t̃r(H(λ1, . . . , λq))

is acceptably small. In Section 5.2.2, some simulations show that relatively small (and

computationally cheap) s, s ≥ 50, result in estimates of tr(H), AICc and subsequent

minimising values of λ that are very close to that which would be obtained using exact

expressions.
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2.3.3 P-splines using Bayesian analysis

2.3.3.1 A link between penalised LS and a Bayesian approach

A connection can be made between the penalised least-squares criterion in Equation 2.7

and a Bayesian model formulation. The stochastic analogue of the difference penalties

applied to the parameter vector α is a Gaussian kernel of the form

p(α) ∝ exp

(
− 1

2τ 2

[
k−1∑
i=1

(αi − αi+1)2

])

= exp

(
− 1

2τ 2
α>D>Dα

)
(2.23)

where smoothness is controlled by the variance parameter τ . For fixed τ and assuming a

Gaussian likelihood with fixed variance, the posterior density resulting from Equation 2.23

is given by

p(α|y) ∝ p(y|α)p(α)

∝ exp

(
− 1

2σ2
(y −Bα)>(y −Bα)− 1

2τ 2
α>D>Dα

)

and therefore up to a constant of proportionality,

log [p(α|y)] = − 1

2σ2
(y −Bα)>(y −Bα)− 1

2τ 2
α>D>Dα. (2.24)

Equation 2.24 is the negative of the penalised least squares criterion, and therefore the

posterior mode of p(α|y) for fixed λ = σ2

τ2 is the solution to Equation 2.7 namely, at

α̂ = (B>B + λD>D)−1B>y.
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2.3.3.2 Bayesian inference in semiparametric regression

Building on this idea, P-spline models can be fitted in a Bayesian framework by apply-

ing appropriate random walk priors over neighbourhoods of spline basis coefficients. This

area has been developed particularly as a result of the work described by Lang & Brezger

(2004) which is implemented in the general purpose software package BayesX (Brezger et al.

(2005)). Parameter estimation and inference is usually achieved using posterior sampling

based on MCMC algorithms such as Gibbs sampling or Metropolis-Hastings schemes. Al-

though the details differ from the penalised-likelihood methods described so far, most of

the matrices involved in the respective calculations are the same - for example the prior

precision matrix for parameters α is the cross-product D>D of the differencing matrix.

As a result, the Bayesian approach is equally able to exploit matrix sparsity to perform

faster calculations, which is a key feature of the BayesX software.

The Bayesian approach is particularly attractive as it permits the fitting of a very rich class

of models with complex hierarchical structures, for example enabling models with variable

or adaptive smoothness, such as that described in Lang et al. (2002). Since smoothness is

controlled by the variance parameter σ2 of a random walk prior distribution, treating σ2 as

random means that uncertainty about optimal smoothing is included in the estimates for

all other parameters. This is an important property, because in cases where the observed

data may be equally well described by a wide range of smoothness strengths, the plug-

in estimate obtained from performance criterion minimisation is unable to represent this

source of model uncertainty.

2.3.4 Smoothing as a mixed model

Many authors have realised the connection between spline smoothing and linear mixed

effects models (LMMs) with general and comprehensive summaries available in Ruppert
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et al. (2003) and Wood (2006) for example. The connection is attractive, as LMMs are

supported by an extensive literature and well developed software, rendering models so

formulated very easy to fit. In order to fit a LMM we need to be able to write down the

model in the form

y = Xa+Zb+ ε (2.25)

where a corresponds to a set of fixed effects parameters, and b to a set of random effects. In

addition, we require b ∼ N(0,Σ) and ε ∼ N(0, σ2In). Considering the case of a univariate

P-spline smooth

y = Bα+ ε (2.26)

the stochastic analogue of the quadratic penalty defined in Equation 2.7 is a Gaussian prior

for the set of α, proportional to exp
(
−λ

2
α>D>Dα

)
. However, the matrix D>D is not of

full rank, and therefore its inverse (D>D)−1 is not defined. This is most easily illustrated

by observing that α>D>Dα is an expression of squared differences of α, and as a result

is unchanged by the addition of a constant to α, i.e. α>D>Dα = (α+ c)>D>D(α+ c).

Consequently, it is necessary to perform a reparameterisation so that the covariance matrix

is defined. The spectral decomposition of the penalty or prior precision matrix D>D =

V UV where V is an orthogonal matrix whose columns are the eigenvectors of D>D,

and U is a diagonal matrix whose diagonal elements are the corresponding eigenvalues.

Rewriting Equation 2.26 as y = Zb + ε where Z = BV and b = V α, we have that

b ∼ N(0, 1
λ
U−1). This is because

Var(b) = Var(V α)

= λ−1V >(D>D)−1V

= λ−1V (V UV )−1V

= λ−1U−1.
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SinceD>D has at least one zero eigenvalue, at least one element of b is unpenalised and is

therefore implicitly a fixed effect. If there are p zero eigenvalues, then we can further define

V = [V 1|V 2] where V 1 is the n × (n − p) matrix of columns of V corresponding to the

non-zero eigenvalues of D>D and V 2 is the n× p matrix of columns of V corresponding

to the zero eigenvalues. Correspondingly, we can set b = (b1, b2), and finally suppose that

U 1 is the square diagonal matrix that contains only the positive eigenvalues of D>D as

its diagonal elements. Then, we can write

y = Bα+ ε = Xb1 +Zb2 + ε

X = BV 1

Z = BV 2

b2 ∼ N

(
0,

1

λ
U−1

1

)

which is in the form described by Equation 2.25. It is then relatively straightforward to

fit the model described in Equation 2.27 using software containing highly efficient routines

developed for linear mixed models, such as the packages nlme (Pinheiro et al. (2013)) and

lme4 (Bates et al. (2013)) written in the R language. In this section, the reparameterisation

required to fit using mixed model software was illustrated with the example of a single

univariate smooth model. Although this is restrictive, the ideas generalise to a very wide

class of semiparametric models that include tensor product terms and non-Gaussian error

processes. For a detailed discussion of such extensions see Lee (2010).

2.4 Chapter summary

This chapter has described the principles underlying smoothing with P-splines. An overview

of constructing appropriately penalised smooth curves, additive models and varying coeffi-

cient models has been outlined. A discussion of the most common ways in which parameter

estimates are obtained for semiparametric models was provided, which is more complex
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than in general linear models due to the presence of smoothness controlling parameters.

The Bayesian approach described in Section 2.3.3 potentially offers the greatest flexibility

and scope to fit models with complex hierarchical structures which would be very diffi-

cult for the other approaches. The mixed model representation outlined in Section 2.3.4

is particularly appealing, because in common with the Bayesian approach, the smoothing

parameters can be represented as variance components estimated as part of the model

fitting, avoiding the use of plug-in estimation used in Section 2.3.1. Once the model is

represented as a mixed model, well developed software can be used for model fitting. How-

ever, in both the Bayesian representation of P-splines and that of the mixed model, the

main disadvantage can be computation. In the Bayesian case, MCMC is usually required

for inference and is very costly if many tens of thousands of samples are required to achieve

convergence to the target distribution. For the mixed model, a single reparameterisation

based on the spectral decomposition of the penalty matrix is required to allow the semi-

parametric model to be written in the appropriate form. This approach has complexity

O(n3) which is prohibitive for some of the river network models described in Chapter 4,

but also results in the storage of an n×n orthogonal matrix of eigenvectors which can also

be difficult when n is large.

Since the goal of this thesis lies in constructing appropriate models for environmental data,

and is not intended to provide a comparison of techniques for parameter estimation, we

adopt the conceptually simplest approach of those described in this chapter which is to

minimise some performance criterion as summarised in Section 2.3.1. In the chapters that

follow, the thesis seeks to exploit features of matrix sparsity that render fast model fitting

under this framework, which is a primary concern for large data sets. However it is noted

that under some circumstances, in particular when the errors are serially correlated, the

performance of smoothing parameter selection is not always reliable (Wang (1998), Currie

& Durban (2002)), and when this is thought to be occurring some discussion has been

provided along with suggestions for future improvement.



Chapter 3

Distributed lag models for rainfall and

stream flow data

This chapter addresses the problem of modelling the lagged temporal dependence between

high frequency time series of river flow rates and rain gauge data, each collected at single

locations in space. In particular, the models developed in this chapter are applied to data

that was collected on the River Dee in the North East of Scotland.

3.1 Introduction

Modelling river flow has long been of interest to environmental scientists. In particular,

relating river flow to covariates such as hill slope gradient, ground canopy coverage, rainfall

and snow-melt has been an important goal, often forming the basis of large catchment-

scale models known as distributed models (Beven (1985)). These models commonly make

use of rich data sets including high resolution satellite imaging to estimate land usage or

snow coverage in discrete areal units. Such data are costly and scarce, and often all that

is readily available are average river flows and meteorological data observed at point lo-

cations. While large scale distributed models are unavailable in such situations, flexible

37
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statistical models may be invaluable in providing simplified approximations to the system

of study. Our interest lies in capturing changes in the temporal dependence of river flow on

rainfall using approximations based on flexible regression methods, that are particularly

useful when covariates that would have allowed physically-based models to be constructed

are absent.

The rainfall-flow relationship is the ensemble of a number of interacting physical processes,

most of which are unobserved. River flow is partly generated by a slow ‘baseflow’ process

where infiltration of rainfall from surrounding land seeps out over long periods of time, in a

manner which depends on the sponge-like water storage properties of surrounding ground

strata (Shaw (2010)). Baseflow accounts for much of the river flow that persists during

very dry summer months. In contrast, a faster responding ‘runoff’ process causes a more

instantaneous response of flow to rainfall and accounts for much of the river flow during

storms and prolonged rainy periods (Beven (1985)). Fast runoff arises when antecedent

soil moisture increases to a level where rainfall can move more quickly near the soil surface

without being absorbed, and can result in a more rapid increase in flow over periods of

hours. Baseflow and runoff are for most catchments, the two most important drivers of

variation in flow levels, with the influence of each determined by physical factors including

soil and subsurface composition, surrounding land usage, evaporation and transpiration.

Accumulation and ablation of transient snow packs also form a key feature in the hydrology

of many temperate and high altitude river systems, causing baseflow and runoff to decrease

during winter periods and increase suddenly during warmer winter and early spring months.

Snow deposition, as well as depth and density, are highly spatially heterogeneous and are

less commonly and reliably measured than rainfall data, and in catchments prone to heavy

snowfall and accumulation, modellers must be mindful of the increased uncertainty that

this presents in rainfall-flow relationships during winter periods.
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The dynamics underlying river flow generation are complex and are difficult to capture even

in detailed physical models, and in addition, hydrologists are often interested in identifying

when latent processes are most active, such as the influence of accumulation and melting of

snow. Without detailed covariate data, we proceed by utilising flexible statistical methods

with the aim of constructing a framework that allows us to approximate flow generating

processes without attempting to identify the individual contributing components, that

act over different timescales. The work described here is based on simple point-based

rainfall data, but the wider modelling aim is to investigate methods by which complex

environmental processes in both space and time can be approximated by semiparametric

models.

3.1.1 Data

One particular aim is to develop a framework within which inference about the latent

meteorological drivers of flow is possible. For example, it is speculated that recent climatic

change has reduced the depth and duration of high altitude snow accumulation in some

river networks, which changes the hydrology, and in turn the ecology of some river systems.

Snow accumulation is not measured reliably and widely enough to directly detect such

changes and so we hope to build towards an indirect method of detecting these types of

patterns. Although the methods that are subsequently developed are applicable to any

river system, we focus attention here to the River Dee in the North East of Scotland. The

source of the River Dee is in the Cairngorm Mountains of Scotland, and it extends 141km

before reaching the North Sea in Aberdeen with a total catchment area covering 2100km2

(Baggaley et al. (2009)), see Figure 3.1. The River Dee is an important water resource,

contributing around 50% of the total water supply to over 500,000 people for both drinking

and industrial purposes, and is also of interest to environmental and conservation scientists

with much of the river lying within reserved conservation areas (Langan et al. (1997)).
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Figure 3.1: Geographical location and outline of the River Dee. Approximate locations
of Polhollick flow monitoring site is identified by a red circle, location of the rain gauge
at Braemar identified by a yellow circle (image provided by the James Hutton Institute).

The influence of different flow drivers is best illustrated with graphical summaries of hourly

rainfall and flow data collected on the River Dee (that is later used in modelling): hourly

rainfall accumulations (mm) collected to the nearest 0.1mm at Braemar and river discharge

data (m3s−1) are collected from Polhollick, both located in the North East of Scotland and

whose approximate locations are shown in Figure 3.1. Previous work on the River Dee

showed that hourly flows are the highest resolution necessary to identify peak flow levels

(Baggaley et al. (2009)).

The top left panel of Figure 3.2 displays a late winter period where little rainfall is observed

but there is some flow variability remains, some small oscillation are also visible that occur

on a daily cycle that could indicate the influence of melting snow. The top right panel dis-

plays a summer scenario with sparse rainfall, alongside low levels of river flow that appear

to respond sluggishly to intermittent rain storms; this is typical of a period when baseflow

dominates. The lower panels display a November period in which flow and rainfall are at

high levels and a strong and immediate response to rainfall impulse is evident - a strong

indication that runoff dominates during this period. The nature of the responsiveness is

more easily seen in the bottom right panel of Figure 3.2 which shows a single week from

its left-hand neighbour. It is evident from Figure 3.2 that the flow response to rainfall
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Figure 3.2: Rainfall and flow responses from the River Dee for four selected months in
2006. Continuous lines are flow rates (m3s−1); vertical line segments are hourly rainfall
levels (mm).

varies throughout the year, in accordance with seasonal changes in rainfall patterns. It is

also clear that the influence of a unit of rainfall is delayed and spread over time, caused

by spatial separation (and intervening ground conditions) of rainfall across the catchment

and flow gauges.
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3.2 Modelling with distributed lag models

3.2.1 The distributed lag model in rainfall and flow models

Approaches to modelling the temporal dependence of flow on rainfall often assume that

rainfall r(t) and flow f(t) are determined by the convolution

f(t) =

∫ ∞
0

h(s)r(t− s)ds

where t is a point in time, s is a lag variable and h is some response function. This is

known as the instantaneous unit hydrograph (Nash (1957)), describing the impact over

time that a unit of rainfall has on flow. Jakeman et al. (1990) suggested filtering rainfall

data to first estimate ‘effective runoff’ before proceeding to estimate h. Direct approaches

to modelling rainfall and flow include the nonlinear autoregressive moving average with

exogeneous inputs (NARMAX) model of (Tabrizi et al. (1998)) which represents flow rates

f as a degree l polynomial function g of rainfall and an error sequence:

f(t) = gl[f(t− 1), . . . , f(t− nf ), r(t), . . . , r(t− nr),

ε(t− 1), . . . , ε(t− nε)] + ε

Wong et al. (2007) propose ‘functional coefficient modelling’ in which river flow is modelled

as flexible functions of rainfall and previous flow levels so that

f(t) = g1(r(t− 1)) + . . .+ gl(r(t− l)) + β1(f(t− d))f(t− 1)

+ . . .+ βp(f(t− d))f(t− p) + ε(t)

Where {g1, . . . , gp, β1, . . . , βp} are unknown functions. It has been recognised that the form

of the time dependence between flow and rainfall is an important model choice, and some

authors have implemented polynomial constraints (Tabrizi et al. (1998)) on neighbouring
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lag variables or used local polynomial smoothers (Wong et al. (2007)). More generally,

models of the form

E(y(t)) = α + β0x(t) + β1x(t− 1) + . . .+ βlx(t− l)

where the impact of one time-dependent variable, x(t), on another, y(t), is spread over

time, can be called a distributed lag model. We refer to the βis as lag coefficients, and

these can be considered as forming a discrete estimate, ĥ, of the underlying function h,

which we term the lag structure. In many time series settings, multicollinearity emerges

when a time-dependent variable is transformed to a set of l lagged covariates and care must

be taken in estimation to avoid the highly variable estimates that result from an uncon-

strained regression. Typically some constraint is applied to the βls, a common choice being

the Almon lag (Almon (1965)) in which the lag coefficients must lie on a polynomial of

order p, fp(l), l ∈ {1, . . . , L}, or the Koyck lag (Koyck (1954)) in which the lag coefficients

are subject to a geometric decay constraint determined by the lag number.

3.2.2 The distributed lag model in air pollution

DLMs have seen much development (Zanobetti et al. (2000); Muggeo (2008); Welty et al.

(2009); Gasparrini et al. (2010)) in the context of the delayed impact of urban air pollution

on daily mortality counts. In this setting interest lies in specifying plausible shapes for DL

curves and in particular the ‘mortality displacement’ effect, a phenomenon characterised

by negative coefficients in the tail of the estimated lag structure, see Figure 3.3 for an

illustration.

Zanobetti et al. (2000) propose a generalised model taking a penalised spline approach to

modelling DL curves while Welty et al. (2009) discuss a Bayesian approach with penalties

on parameters determined by carefully chosen priors. Others (Muggeo (2008); Gasparrini

et al. (2010)) allow lag coefficients to change with temperature in addition to lying on a
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Figure 3.3: Example of a distributed lag curve showing the estimated impact of air
pollution on mortality, where the y-axis scale shown in the middle of the plot represents
the relative influence of each lagged days’ air pollution on mortality. The ‘mortality
displacement’ effect is characterised by the negative coefficients labelled by ‘B’ and the
positive coefficients that are present at lower and higher lags, labelled by ‘A’ and ‘C’
respectively. Reproduced from Zanobetti et al. (2000).

low-rank smooth curve, so that a surface of lag coefficients results. Muggeo (2008) presents

a framework where dependence of the DL curve on temperature is piecewise linear, with

unknown breakpoints. Gasparrini et al. (2010) propose DL curves that lie on a bivariate

surface parameterised by splines defined on lag index and temperature values.

Smoothing on model parameters rather than data, as is the case with DL curve estimation,

is a situation where appropriate smoothness levels are not easily judged by visual inspection

of the fitted model. For this reason, a P-splines approach (Eilers & Marx (1996)) as

summarised in Section 2.2.2 is convenient and is adopted here, where a rich set of uniformly

spaced B-spline basis functions, together with a roughness penalty on neighbouring basis

functions yields a fitted function with the appropriate level of smoothness. The strength

of the roughness penalty is most easily selected by minimising an information criterion

such as AICc (Hurvich et al. (2002), Section 2.3). We proceed to construct a DL model

for rainfall and river flow rates, relaxing the assumption of a fixed lag structure; the use
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of P-splines are found to facilitate specification of flexible models while maintaining a high

level of computational efficiency by taking advantage of sparse model objects.

3.3 Time varying DLM

We set up a model for flow at time t, f(t), in terms of a weighted sum of preceding upstream

rainfall (r(t− 1), . . . , r(t−L)) with weights (β1, . . . , βL), subject to the constraint that the

βl lie on a spline constructed from a set of I degree 3 basis functions {B1(·), . . . , BI(·)}.

The form of the model is

f(t) = α +
L∑
l=1

βlr(t− l) + ε(t) where βl =
I∑
i=1

aiBi(l)

= α +
L∑
l=1

I∑
i=1

aiBi(l)r(t− l) + ε(t)

where α is an intercept term and ε(t) is an IID error process. We further allow the rela-

tionship between each rainfall lag variable r(t− l) and f(t) to change smoothly with time,

the form of which depends on a further set of J B-spline basis functions {B1(·), . . . , BJ(·)}

so that ai =
∑J

j=1 bijBj(t). This gives the representation

f(t) = α +
L∑
l=1

I∑
i=1

J∑
j=1

bijBj(t)Bi(l)r(t− l) + ε(t).

In matrix notation,

f = Zθ + ε = [1,X]θ + ε = (f(t1), . . . , f(tn))>

X = BJ�RBI = (BJ ⊗ 1′I)� (1′J ⊗RBI)

θ = (α, b) = (α, b11, b21, . . . , bI1, . . . , b1J , b2J , . . . , bIJ)>
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Where the ith row of BJ is {B1(ti), . . . , BJ(ti)}, ith row of R is (r(ti − 1), . . . , r(ti − L))

and � is the Box product as used by Eilers et al. (2006). The intercept included in the

specification represents flow rates after rainfall has not been observed for over L lags.

We wish to control the level of smoothness in the fitted coefficients in two ways: by how

each rainfall lag variable r(t − l) influences f(t) as t changes; and by how different the

influence of r(t− l) and r(t− l + 1) is allowed to be at any time t. These constraints will

be represented by two different roughness penalties. The first term, λ1D
>
1D1, penalises

the ‘wiggliness’ of the βis through time, and so D1 is a block matrix where each block is

a quadratic difference matrix P J with J columns so that

P Jb =
I∑
i=1

J−2∑
j=1

(bi,j+2 − 2bi,j+1 + bi,j)
2

and, in Kronecker notation, D1 = P J⊗II . The second penalty term, λ2D
>
2D2, controls

differences between βl and βl+1, l ∈ {1, . . . , L − 1} at any time t and this is achieved

similarly by penalising differences between bi,j, bi,j+1 and bi,j+2 for i ∈ {1, . . . , I} and

j ∈ {1, . . . , J − 2}, so that D2 = IJ⊗P I . Combining the two penalties and for fixed

values of λ1 and λ2, the parameter estimates θ̂ are obtained by penalised least squares by

θ̂ = Sf =
(
Z>Z + λ1D

>
1D1 + λ2D

>
2D2

)−1
Z>f

with standard errors given by s.e.(θ̂) =
√

diag(H>H) where H = ZS

3.4 General specification

More generally, DLMs can be specified so that the lag structure varies with any set of

covariates. For example, if the βis are required to change smoothly and non-linearly with
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one additional covariate, a model matrix with one additional Box product, �, must be

constructed.

Let x1(t), . . . , xr(t) be r n-length time-dependent covariates and J1, . . . ,J r be marginal

basis matrices defined on the xi() so that the mth row of J i is

[B1(xi(m)), . . . , BJi(xi(m))] ,

and Ji is the size of the basis set defined on the ith covariate. A general multidimensional

DLM model matrix is defined as

X = J1�J2� . . .�J r�RBI

where RBI is defined as in Section 3.3 and the corresponding θ is a vector of spline

coefficients and an intercept with length 1 + I
∏r

i=1 Ji. Since the model sets up a smooth

in r + 1 dimensions (r for coefficient bases and 1 for lag structure basis) we require r + 1

penalty terms, these can be expressed as a sequence of Kronecker products with identity

matrices

Di =

[⊗
j<i

Ij

]
⊗ P i ⊗

[⊗
j>i

Ij

]

where
⊗

j<i Ij = I1 ⊗ . . .⊗ I i−1, and each Di corresponds to a roughness penalty on the

ith dimension of the tensor smooth defined by X.

3.4.1 Computational aspects

The models described in Sections 3.3 and 3.4 potentially require the storage and manipu-

lation of n × (1 + IJ) and (1 + IJ) × (1 + IJ) matrices which can be expensive. Currie
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et al. (2006) describe how, if model matrices arising in tensor-product type models can be

factorised so that X = X1 ⊗X2, then much of the computational and storage overhead

can be bypassed. In the present case, X cannot be so factorised, due to the row-wise

tensor product matrix structures. However, significant savings can be made by exploiting

the sparseness properties of many of the model objects. Since a set of penalised B-splines

is used, all basis matrices are sparse, and additionally their rows are defined on consecu-

tive sequences of integers (time and lag indices here) and are therefore banded. Therefore

RBI is a banded sparse matrix, and hence X = BJ�RBI is banded, and in turn, Z>Z

and
(
Z>Z + λ1D

>
1D1 + λ2D

>
2D2

)
are banded and sparse. Hence we are required only

to manipulate a banded sparse matrix object which is faster than the general sparse case,

and dramatically reduces storage requirements. The sparseness properties are further en-

hanced by the zero-inflated distribution of hourly rainfall data. In R sparse matrix algebra

is easily performed using the Matrix package (Bates & Maechler (2013)). It is also noted

that recent work by Lee & Durbán (2011) develop the idea of ‘nested’ B-spline basis in

order to reduce the computational complexity in tensor product smooths, and it should be

a key component in further work to investigate its application in the present context.

In order to choose an appropriate ‘rich’ basis size when applying models of Sections 3.3

and 3.4, a short iterative process is required to determine a minimal basis size such that

on application of different strength penalties, a broad range of smoothing strengths result,

and in particular, when λ = 0 the model overfits the data. Having selected a rich basis, the

optimal penalties λi are found by searching a logarithmic grid for the values that minimise

AICc.

3.5 Time varying DLM on simulated data

Before applying the models in Section 3.3 to river flow data, we first apply the methods

to simulated data to examine how well the model captures different lag structures in the



Chapter 3. Distributed lag models for rainfall and stream flow data 49

presence of different error processes, and to test the performance of AICc in selecting

an appropriate level of smoothness for the fitted DL curves. Three time series of flow

data were constructed by convoluting the 2006 Braemar hourly rainfall data described in

Section 3.1.1, with three different DL curves defined up to 50 lags so that,

fij(t) =
L∑
l=1

βlir(t− l) + εj

where βL1 and βL2 are time invariant and are based on Gamma distribution functions

(shown in Figure 3.4), and βL3 varies smoothly over time between the shapes of βL1 and

βL2. Furthermore, ε1 ∼ N(0, 0.04), ε2 ∼ N(0, 0.16) and ε3 follows a normal random walk

process through time with σ = 0.01 so that nine possible scenarios result. We then sim-

ulated 200 times from each of the nine scenarios and fitted the time varying model of

Section 3.3, with L = 50 lags and moderate basis sizes of I = J = 20. Since our main

interest is in recovering the underlying DL structures, the fitted DL curves can be com-

pared against the true curve using 95% pointwise simulation envelopes and the root mean

squared error (RMSE), both shown in Figure 3.4.

From Figure 3.4 it can be seen in all cases that the DLM recovers the underlying lag

structure well, with the 95% envelope functions lying close to the true curve. Some detail

is lost in some of the fitted functions at the ‘peak’ of the estimates, particularly where

the peak is pointed, which is likely to be a result of the choice of basis size being slightly

too small. The random walk process is included as an example of a strongly correlated

error process that environmental data often exhibit, and while the model performs less

favourably than with independent errors, it still succeeds in recovering the shape of the

underlying function.



Chapter 3. Distributed lag models for rainfall and stream flow data 50

Figure 3.4: True DL curves with pointwise 95% simulation envelopes plotted in grey.
Each row corresponds to simulations under differing DL shapes shown in black, and each
column to differing error structures ε1, ε2 and ε3, respectively. The third row shows a
mid-July snapshot of the true DL surface and 95% simulation envelopes under the time
varying DL scenario. Mean RMSE values are quoted at the top of each panel.
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3.6 Application to the River Dee

The River Dee data described in Section 3.1.1 is now considered with the model of Sec-

tion 3.3. High resolution data is relatively scarce and what follows has been fitted to the

8861 average hourly flows and rainfall for the year 2006 only; ideally several years data

would be considered and adjustment made to account for seasonal and inter-annual varia-

tion.
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A rich basis was first chosen, with I = 50 and J = 100 selected so that, without penalty

terms (i.e.. λ1 = λ2 = 0), the model overfits the data. A large number (L = 100) of

lags were chosen and the optimal λ1 and λ2 were found by the method described in Sec-

tion 3.4.1. The fit of the model can be examined by inspecting plots of observed and fitted

values during different parts of 2006, shown in Figure 3.5.

In the upper plot of Figure 3.5 we see a period of very low rainfall and low flow; the

model performs poorly where rainfall has not been observed for more than L = 100 hours,

with the intercept α = 12.7 left to account for the remaining recession of flow levels. By

contrast, the lower plot corresponds to a wet period and the model fits well, despite the

extreme levels reached in river flow.
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Figure 3.5: Fitted flows alongside flows observed on the River Dee: dashed lines repre-
sent observed flow levels, solid lines represent fitted flows and vertical line segments are
hourly precipitation and grey shaded areas are 95% confidence regions.
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We can also examine the fitted DL curves which are shown in Figure 3.6. There is clear

evidence of differences in the estimated lag structures throughout the year: in summer

months, lag structures are mostly flat, indicating a slow and delayed response, and during

wet autumn months are sharply peaked and very tightly contained within their 95% con-

fidence intervals. A strong and consistent responsiveness in flow levels when rainfall has

been heavy or prolonged is visible, for example during November 2006, with a clear peak

in lagged influence that most likely indicates the predominance of fast-moving runoff. At

other times less consistent or interpretable response functions are estimated; for example in

January 2006, shown in Figure 3.6, responses appear very high, suggesting extremely high

influence of rainfall up to the most distant lags which is unlikely to be the case as snow

is the most likely flow driver at this time. During periods in which freezing temperatures

are common rainfall data can be unreliable as snow and ice accumulate in the measuring

device until they melt, often much later. We therefore interpret the estimates for January

and winter months with caution, and note that they indicate the presence of some effect

yet to be accounted for.

In the final weeks of observation, a sustained period of heavy rain and an overall increase

in flow with progressively more extreme peaks is observed. The lag structures within this

period gradually increase in height, particularly in the ‘peak’ of influence at approximately

a 10 hour lag. Such changes in lag structure are consistent with an increase in ground

saturation causing a higher proportion of rainfall to convert to runoff, with flow levels

subsequently appearing to be highly sensitive to new rainfall. It is therefore desirable to

construct a model that attempts to account for temporal variation in lag structures during

wet periods using information on long-term ground wetness.
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3.6.1 A ‘ground-wetness’ varying DLM on River Dee data

We now consider introducing a covariate representing unobserved antecedent ground wet-

ness, for which a 30 day moving-window mean of observed hourly rainfall with exponentially

decaying weights is constructed as a proxy, which we now call W (t). The choice of 30 days

represents the belief that variation in rainfall response is driven by a larger ensemble of

precipitation outwith the largest lag of the DLM of Section 3.6, particularly during pro-

longed wet periods. A number of window widths were tried and the resulting model was

not found to be sensitive to small changes. An alternative approach might make use of

catchment-specific water residence time distributions, if known, to inform the weights and

window widths in construction of such a proxy. In what follows, W (t) is assumed to be

the only modifying factor of the lag structure and is intended to account for much of the

temporal variation in the βi observed in Section 3.3 during wet periods. In similar notation

to Section 3.3 the model is specified as

f(t) = α +
L∑
l=1

J∑
j=1

M∑
m=1

cjmBm(W (t))Bj(l)r(t− l) + ε(t).

Estimation proceeds as in Section 3.3, where the coefficient vector θ = (α, c11, . . . . . . , cJM).

The model parameters were L = 100, M = 50, J = 100 again, representing an overfitted

model when the penalty vector λ = 0. It was found when selecting optimal λ with AICc

that there was a tendency to choose undersmooth estimates for variation in the W (t)

dimension, hence it was decided to use the ‘optimal’ estimate as a lower bound on λ.

By visual inspection of the resulting parameter surface, a penalty was selected that was

at least as strong as that chosen by minimising AICc in order to avoid overfitting. The

intercept term was similar to that in Section 3.3 with an estimate of α = 12.2. Interest lies

in how the βi respond to different levels ofW (t). The top panels of Figure 3.7 illustrate the

changes in lag structure at different quantiles of the distribution ofW (t); at higher levels of

W (t) more peaked and overall larger lag structures are visible, particularly at the highest

levels of W (t). In the bottom panels of Figure 3.7, images illustrating the changes in lag
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structure across the range of W (t), and through time, are given. An important feature

here is the shift in peak influence from later lags to earlier lags which is visible as W (t)

increases. It is also notable that less dominant peaks later in the lag structure appear at

the lowest and highest levels of W (t).

Figure 3.7: Top: Lag structure at 50% and 75% quantiles of W (t) indicating different
rainfall response scenarios for different wetness conditions; the with grey band represents
pointwise 95% confidence intervals around the fitted DL function shown by the solid red
line. Bottom left: contour plot of lag structure estimates as they vary with increasing
W (t), corresponding surface of standard errors are shown in the bottom right panel.
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3.7 Discussion

We have proposed flexible and computationally attractive DLMs with roughness penal-

ties that are successful in capturing the dependence between river flow and a sequence
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of preceding rainfall measurements. In Section 3.6, a complex and time varying relation-

ship between river flow and rainfall was identified, with Section 3.6.1 uncovering evidence

that some of this variability arises through a complex interaction between slowly changing

ground wetness and the time when rain falls. It was also found that the degree and loca-

tion of peak influence in the lag structure can change dramatically, and that these were

persistent features under the use of different strength penalties.

3.7.1 Residual autocorrelation

Figure 3.5 shows that fitted flow levels exhibit a weaving pattern around the observed data,

which would indicate the presence of a serially correlated error sequence, and some simple

plots of the autocorrelation function confirmed that this was indeed the case. Although

the simulations in Section 3.6 show that the underlying DL curves could be recovered effec-

tively under strongly correlated errors, the smoothing parameters are likely to have been

underestimated as noted by Wang (1998) and the associated standard errors are likely also

to be underestimated as a result of such autocorrelation. A possible adjustment might

involve fitting a model to the residuals, and adjusting the hat matrix H by the estimated

residuals variance matrix as Bowman et al. (2009) did in the context of spatio-temporal

modelling. If required, approximate hypothesis tests could then be constructed, as in Bow-

man et al. (2009), to assess and compare aspects of competing models, in particular to

determine whether a time varying model is required over a fixed lag structure.

It is also likely that some of the residual autocorrelation is induced by spatio-temporal

heterogeneity in the rainfall process that can not be well represented by point-location

rainfall data. Bias in lag structures can arise when the underlying weather is dynamic,

for example, when rain storms occur near to the rain gauge but are not recorded. It is

therefore the intention in future research to represent river flow as both a temporal and
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spatial ensemble of rainfall, using data containing information on the spatial position of

rainfall events.

3.7.2 Model misspecification

The issue of biased estimation may arise if the temporal extent and influence of baseflow is

not adequately characterised. In the current context an intercept term is all that accounts

for the decay in flow rates after rainfall has been absent for L or more hours. More

sophisticated approaches might treat L as unknown, or assume a very large L in order

to fully incorporate baseflow response into the DL specification. Both approaches may

require more structured penalties, for example imposing stronger penalties at higher lags

than shorter ones so that models in which βi → 0 as i → ∞ are preferred; see Muggeo

(2008) for such an application using health data that incorporates an additional ridge

penalty. More complex still, an adaptive smooth could be used in which the difference

penalty is allowed to vary across the space spanned by the basis, either in some prespecified

parametric way or in a way described by a further non-parametric surface. It is expected

that rainfall occurring in the more recent past has a far higher influence on current river

flow than older rainfall, and that the decay in lagged influence should be rapid. Therefore,

the use of P-splines with a uniformly spaced B-spline basis could be an inefficient way to

represent this curve, because allowing sufficient detail at short lags encourages too much

flexibility at higher lags and requires a large number of basis functions. A direct approach

to solving this might be to use a monotonic I-spline basis that would ensure monotonic

decreasing behaviour after a certain lag, or simply increasing the strength of the penalty

function as the lag number increases. However, a more elegant approach might be to relax

the uniformity of the spacing of the B-spline basis, and allow a higher density spacing

at short lags, as illustrated by Figure 3.8 where the knot spacing is determined by the

quantiles of a Gamma distribution function chosen with a mode near shorter lags. This

approach could significantly reduce the number of functions required to represent a lag

structure in which the ‘tail’ of the function is very smooth; however, the interpretation of
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the difference penalty on such a basis can no longer be interpreted as a measure of global

roughness of the function.

Figure 3.8: Example of unevenly spaced B-spline basis, where knots are placed at
quantile of a Gamma distribution function with a mode at shorter lags and the x-axis
represents the lag index.
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A related issue was the tendency to encounter undersmoothing as a result of choosing

smoothing parameters by grid search over AICc. As a practical measure, in Section 3.6.1

the selected parameters were treated as lower bounds on smoothing to maintain a realistic

level of wiggliness. Some of this undersmoothing may result partially from the type of

misspecification described above; however, an important component of further work will

be to ensure that automatic smoothness selection can achieve reliably smooth estimates,

particularly when the underlying AICc profile is very flat and the optimal selection based on

a grid search may be very sensitive to small changes in the data. One way in which to deal

with this issue would be to take a fully Bayesian approach to modelling, based on the ideas

described in Section 2.3.3, using random walk priors on pairs of neighbouring coefficients

to penalise the smooth distributed lag curve. An attractive property of this approach is

that when there is high uncertainty about how smooth the fitted curve should be, this will

be reflected by a large amount of spread in the corresponding posterior distribution for the

random walk variance, and the posterior distributions for the spline coefficients incorporate
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this additional level of uncertainty.

3.7.3 Towards a spatial distributed lag model

As already suggested in Section 3.7.1, rainfall data collected at a single location in space

limits the ability of the model to fit the flow rates observed, because the rain gauge data

contains little information about the localised spatial structure of precipitation. For ex-

ample, under scenarios in which localised rain storms occur nearby to, but not at the rain

gauge site, the DLM fit to river flow levels will likely be very poor. Therefore, the most

important extension that could be made to modelling river flow with distributed lag models

would incorporate spatial rainfall data that can account for the influence of precipitation

occurring at all locations in the upstream area that drains to the flow monitoring location.

Given this spatial data, one possibility would be to extend the single-input distributed lag

model to a set of DL curves indexed in space, each representing the influence and drainage

speeds of a single sub region. This idea is more complex and is developed in more detail

in Section 6.2.



Chapter 4

Flexible regression for river networks

This chapter attempts to address the problem of modelling data that arise on a stream

network. The unique features of river networks are described in detail, alongside the dif-

ficulties these present for traditional spatial modelling. An approach to building spatial

models for river network data using flexible regression techniques is explored, and is found

to be particularly useful in order to characterise the complex spatial and temporal depen-

dencies that are often exhibited by environmental data. The models developed are fitted

to data collected on the River Tweed, a large river network located in the South East of

Scotland.

4.1 Introduction

Large data sets arising on stream and river networks are increasingly common because of

widespread environmental monitoring programs, with attributes such as dissolved pollu-

tant concentrations, stream temperature and measures of biodiversity (i.e. counts of birds

and insects) collected along the branches of many rivers. These data are often used to

address vital questions pertaining to the effects of climate change on habitat and species

distributions, as well as other anthropogenic impacts on in-stream habitat and aquatic

61
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pollution. It is therefore critical that appropriate statistical methods, which adequately

account for the different sources of variability are used to make valid inferences from stream

network data.

It is typical to find evidence of residual spatial autocorrelation in spatial modelling set-

tings, where the dependent variable is spatially indexed, and spatial statistical models for

stream networks are no different. This residual variation is usually the result of some

unobserved confounding variables that are correlated in space and if left unaccounted for,

can cause the model variance and parameters to be unreliably estimated, and partly as a

result of this, spatial statistical modelling is a key area of statistical research for which a

large literature exists. Most of the established literature assumes that the spatial region

of interest is a simple subset of R2 and that Euclidean separation is the natural measure

of spatial separation. The spatial association between two locations is often characterised

as a function that decreases with increasing spatial separation. An example where these

assumptions are not appropriate is the case of a set of connected stream segments that

makes up a river network, where observations are made on the tributaries, lakes and other

water bodies of which the river is comprised.

In standard spatial modelling applications with environmental data, Tobler’s first law of

geography is generally assumed to be true, namely that ‘Everything is related to everything

else, but near things are more related than distant things’ Tobler (1970). In practice, such

an assumption is justified when, after accounting for covariate data that is available using a

linear or additive model, spatial correlation is conspicuous in the residuals. Geostatistical

models typically then make use of a continuous covariance function whose argument is the

Euclidean separation between two points, to account for the remaining spatial variation.

This spatial variation is often imagined to arise from one or a number of underlying and

unmeasured variables that drive the response of interest. For example, the prevalence of

respiratory disease is primarily driven by smoking prevalence and social deprivation and
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to a lesser extent by other factors such as air pollution. For a variety of reasons including

the difficulty in adequately measuring social deprivation, strong residual spatial structure

remain when building simpler regression models, and a common remedy is to introduce a

spatially smooth set of random effects to account for these spatially structured effects, for

a recent example see Lee & Mitchell (2014).

In the air pollution scenario, it makes sense to think of how air pollutant concentrations

decrease with distance from a point source, and one might imagine that the decline in

concentration might be the same in any direction around the source at the same distance

(assuming there is no wind). By contrast, the change in concentration of a dissolved pollu-

tant in a stream is not described by the same type of process, because the mixing of water

at confluences means that abrupt changes in concentration are likely as the path of the

river is followed. Even after accounting for this mixing process, Euclidean distance sepa-

rating two points on the river network is unlikely to well describe the correlation between

them, particularly for pollutants that are driven by neighbouring land types and uses. For

example, a meandering river might pick up large quantities of nitrate from surrounding

farm land, and although the locations at which the meander starts and ends may be close

in Euclidean separation, the water may have travelled some distance between them and

exhibit strong dissimilarity in nitrate concentrations as a consequence. For these reasons,

additional consideration is required for modelling data on river networks, and a brief his-

tory of developments in this area is now provided.

4.2 Literature review

There is an emerging literature that attempts to incorporate the unique features of a river

network into an appropriate spatial model. The most important of these features is the in-

adequacy of Euclidean distance as an appropriate measure of spatial separation. Clement
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et al. (2006) approach this issue by treating river based monitoring sites as nodes on a

directed acyclic graph (DAG) and measurements in time are modelled using an autore-

gressive process, computational details are described in Clement & Thas (2007).

Ver Hoef et al. (2006) replace Euclidean distance with stream distance which is defined

as ‘the shortest distance between two locations, where distance is only computed along

the stream network’ and is also used by Cressie et al. (2006) and Gardner et al. (2003).

Ver Hoef et al. (2006) and Cressie et al. (2006) both show that substituting stream dis-

tance for Euclidean distance does not, in general, produce a valid spatial covariance model

except when the exponential covariance model is used. Ver Hoef et al. (2006) and Cressie

et al. (2006) subsequently develop a broad class of valid spatial covariance models that use

stream distance in addition to weights that determine influences of inflows and outflows

at confluence points as well as the flow connectedness of observation points. In particular,

these models assign a correlation of zero to pairs of locations which are not flow-connected.

Ver Hoef & Peterson (2010a) developed the theory further by defining ‘tail-up’ and ‘tail-

down’ moving average constructions, that allow for correlation between pairs of locations

which are not flow-connected. Subsequent applications of these developments include Pe-

terson & Ver Hoef (2010), Garreta et al. (2010), Peterson et al. (2013),. Much of the

methodology developed by Ver Hoef and Peterson is now implemented in the R package

SSN (Hoef et al. (2014)) and uses a standardised S4 object to store the essential features

of a river network that are required for modelling.

Both of the approaches of Ver Hoef & Peterson (2010a) and Clement & Thas (2007) are

powerful and allow broad classes of models to be fitted to river network data. However,

neither approach easily allows the incorporation of smooth covariate effects, which is par-

ticularly important for capturing seasonal patterns and changes over longer periods of

time. An attractive approach is then to place the emphasis on the direct modelling of

these trends, using suitable forms of flexible regression. This line of thinking is also well
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developed, for example in the geoadditive models of Kammann & Wand (2003) and more

generally in the semiparametric and additive modelling frameworks described, for example,

by Ruppert et al. (2003) and Wood (2006). An attractive approach would satisfy the dual

goals of capturing spatial variation on the path of the river network while respecting be-

haviour at confluence points and incorporate smooth temporal and other covariate effects.

The aim of this chapter then is to develop methods of flexible regression for data located

on the branches of a river network. In Section 4.3 the River Tweed data are described that

will subsequently be the focus of the work documented in this chapter, followed by some

developments in Section 4.4 that allow network data to be modelled using the P-splines

framework described in Chapter 2. In Section 4.5 a more general framework allowing

smooth additive and spatial interaction components is described and developed, which is

in turn applied to the River Tweed data. Section 4.6 closes the chapter with a discussion

of the findings and points for further research.

4.3 The River Tweed data

In this chapter, the data that forms the focus and motivation behind the models that are

developed come from the River Tweed in South East Scotland and have been supplied

by the Scottish Environment Protection Agency (SEPA). SEPA is responsible for a broad

range of environmental regulation and monitoring, and as such is involved in the collection

and analysis of water quality data from rivers and lochs across Scotland. The importance

of this is underlined by European Union policies such as the Nitrates Directive (European

Parliament (1991)) and the Water Framework Directive (European Parliament (2000)),

which set targets in terms of water quality and ecological status.
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Data on the Tweed catchment are available from January 1987 to August 2011 for each of

eighty three monitoring stations on the river, although the range and sampling frequency of

observations varies across the stations. The River Tweed has been selected because it lies

in a nitrate vulnerable zone and is highly heterogeneous in terms of nitrate pollutant levels.

It is also a highly dendritic network, which makes it particularly challenging from a spatial

modelling perspective. Figure 4.1 illustrates both of these properties by superimposing the

main tributaries of the river over a physical map of the surrounding area and shows the

mean nitrate pollutant measurement at each active station during February 2004. Stations

which were inactive during February 2004 are represented by empty circles.

Although nitrate level is not the only measurement available over the River Tweed and

other rivers monitored by SEPA, it will form the focus of the work in this chapter. High

levels of nitrate can cause damaging algae build up called eutrophication that results in

reduced dissolved oxygen levels in affected water bodies, which can severely impact endemic

aquatic ecosystems. Drivers of nitrate pollution on the River Tweed are diffuse sources such

as sewage effluent and runoff from fertiliser. Two different types of nitrate measurement

are available, namely Nitrate (N) and Total Oxidised Nitrate (TON), both measured in

milligrams per litre. TON is the sum of nitrate and nitrite concentrations, although the

latter tends to be very small, so the two measures are treated as equivalent and this will be

assumed in the analysis. In order to improve normality and stabilise the variance, nitrate

level will be analysed on the log scale.

The analysis of concentrations of dissolved pollutants hinges critically on knowledge of

river flow levels around the time of a pollutant concentration measurement. Unfortu-

nately, reliable flow data are only available at a limited set of locations on the Tweed and

consequently, SEPA uses a hydrological model to estimate relative flow levels for each of

the 298 separate stream segments. This is an adequate representation because, in later

analysis, only relative flow across the stream segments is required. In cases where there is
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Figure 4.1: The River Tweed catchment, with sampling stations colour coded by nitrate
level recorded in February 2004. Stations where no measurement was available at this
time point are indicated by open circles. The map is based on Google maps, and can be
produced using the RgoogleMaps package described by Loecher (2014).

concern about the quality of flow information, an alternative is to follow Ver Hoef et al.

(2006) by using a proxy such as ‘stream order’, which indexes each stream segment by its

location in the hierarchy of tributaries to the main river. However, flow rates and volumes

represent a source of uncertainty in models for dynamic systems such as river networks

that should ideally be accounted for. It is therefore a shortcoming of any procedure to

assume as fixed such quantities without knowing how much variation is likely to underlie

them - this point is discussed in more detail in Section 4.6.

4.4 Network smoothing

In keeping with Chapter 2, we wish to represent a river network as a structure over which

smoothing using an appropriately constructed basis representation might allow insight into
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spatial trends and patterns in a computationally efficient manner.

4.4.1 Penalised splines

A desirable approach would involve constructing an appropriate B-spline basis over the

branches of the network, but this faces the difficulty of constructing appropriate penalties

across confluence points and matching the derivatives of the fitted values. One possibil-

ity that avoids this issue would be to partition the network into p homogeneous stream

stretches, associate a parameter with each, and impose some type of roughness penalty

over these. We can then enumerate these stream segments from 1 to p and associate with

each segment a mean pollutant level ({β1, . . . , βp}) so that

E(Z(x, y))) = βi (4.1)

where Z represents the spatial process at a location (x, y) on the ith stream segment. Es-

sentially, Equation 4.1 reduces the spatial network to a set of non-overlapping piecewise

constants. Conveniently, the partitioning described above exists inherently in the way

data are stored by SEPA, where every observation arises from one of a set of homogeneous

‘stream units’, although by the SEPA definition, there may be several stream units lying

between two adjacent confluence points.

Since there are typically fewer observations than stream units, the estimation process is

ill-defined and some additional information is required to describe how pollutant concen-

trations propagate through parts of the network that are not monitored. It is expected

that there should be strong smoothness in the underlying mean surface across the net-

work driven by many underlying factors such as the continuous nature of river flow, and

the spatial homogeneity of surrounding land-types and land uses. This smoothness can be

represented by application of some type of roughness penalty on adjacent stream segments.
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Figure 4.2: The top plot uses different colours to show the decomposition of the river
network into a large number of small ‘stream units’. The bottom plot gives a schematic
representation of a confluence, with model parameters (βa, βb), flows (fa, fb) and the
corresponding outgoing versions (βc, fc).
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The form of the roughness penalty that is used could take many forms, but a simple

one may use the basic idea of mass balance, in which case it is helpful to consider the

idealised network illustrated by Figure 4.2. The pollutant level at location c is driven

by the flow levels upstream at b and a, but these contributions are clearly dependent

on the relative levels of flow each contributes to c. It is therefore desirable that mean

pollutant levels associated with each segment ought to reflect this property. In fact, it is

also straightforward to incorporate information relating to flow levels, or some proxy, into

a roughness penalty. If the flow levels are denoted by fa, fb, fc, where a and b flow into c,

for segments a, b and c, then we expect fc = fa + fb and the mixing of pollutants to be

controlled by the relative flows of the inputs, fa
fc

and fb
fc
. Following the principle of mass

balance, the combined pollution input fa
fc
βa + fb

fc
βb and the output βc are identical if

fa
fc
βa +

fb
fc
βb = βc

fa
fc

(βa − βc) +
fb
fc

(βb − βc) = 0. (4.2)

In typical spline smoothing scenarios, a balance must be struck between an appropriate

sum of squared differences between spline coefficients, representing roughness, and the least

squares objective measuring model fit. Smoothness across a flow-directed confluence can

therefore be measured by

f 2
a

f 2
c

(βa − βc)2 +
f 2
b

f 2
c

(βb − βc)2. (4.3)

In matrix notation the model described can be written as

y = Bβ + ε

where y, β, and ε ∼ N(0, σ2) denote the vectors of responses, parameters and errors

respectively, and the design matrix B is simply an n × p indicator matrix whose ith row
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has the value 1 in the column corresponding to the stream unit of yi and 0’s elsewhere.

The model is then fitted by minimising the penalised sum of squares

(y −Bβ)>(y −Bβ) + λ
∑
i,j∼k

(
f 2
i

f 2
k

(βi − βk)2 +
f 2
j

f 2
k

(βj − βk)2

)
= (y −Bβ)>(y −Bβ) + λβ>D>sDsβ (4.4)

where i, j ∼ k denotes that stream segments i and j are upstream neighbours of k joined

through a confluence point. Here Dsβ expresses differences in adjacent stream segments

and Ds is similar in structure to what is described in Equation 2.10. The rows of Ds con-

sist of multiples of proportional flow contributions for the pair that the row corresponds

to. The parameter λ controls smoothness by modulating the influence of the roughness

measure in the minimisation. λ has an interpretation in terms of both the extent to which

Equation 4.2 holds, and as a measure of spatial dependence not accounted for by an inter-

cept term and covariates. For example, when λ = 0, the β are not identifiable where there

is no data; for low and moderate λ, all of the β are identified and are relatively similar

across confluences subject to Equation 4.2; when λ → ∞, β → 0 and this represents a

lack of spatial (network) structure in the data. This penalty describes a conditional in-

dependence model for stream units where measurements on the network are assumed to

propagate via a mixing process at each confluence, rather than as a function of spatial

location.

Although the penalty described in Equation 4.4 is based on the idea of two stream seg-

ments flowing into a single downstream segment, it can also be applied in situations where

no confluence exists, for example if a break point is introduced in the middle of a segment

resulting in one upstream segment and one downstream. The point at which the occurs

is not a confluence, as it has one incoming stream segment, i, flowing into an outgoing

segment k, but this can still be represented by Equation 4.4 using the proportions fi
fk

= 1

and fj
fk

= 0, (since there is only one upstream segment, j is treated as contributing no flow
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to the outgoing k).

As in previous chapters, a procedure is required to determine the optimal penalty pa-

rameter λ. Conditional on λ, the solution to this least squares problem is β̂ = (B>B +

λD>D)−1B>y, and associated standard errors, and degrees of freedom are readily calcu-

lated using Equations 2.12 and 2.13, respectively. For an illustration of the impact of using

different values of λ to smooth the nitrate concentrations observed on the River Tweed in

February 2004, see Figure 4.3.

Figure 4.4 shows the effects of smoothing on the average nitrate measurements from Febru-

ary 2004. The right hand panel shows the effects of P-spline smoothing while the left shows

the use of standard two-dimensional Euclidean smooth, also using P-splines, both with 12

degrees of freedom. In the right panel, the network structure is represented through sharp

changes at confluences that depend on flow estimates directly around each confluence point.

For example, the relatively high concentrations of pollution exhibited by some of the tribu-

taries in the northern periphery of the network are not immediately inherited by the larger

and relatively unpolluted streams into which they flow, as a result of the weighted penalty

described in Equation 4.4.

4.5 Spatiotemporal models for networks

If the aim is to estimate the levels of pollution over a network at a single time point, then

the approach outlined in Section 4.4.1 may be sufficient. Where observations are avail-

able over time, the nature of spatial and temporal effects and their potential interactions

becomes of considerable interest and, in contrast with approaches based on covariance

functions, flexible regression methods can be extended relatively straightforwardly.
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Figure 4.3: Plots showing the effect of different levels of spatial smoothing on the River
Tweed, for nitrate data observed in February 2004. Top (from left to right) λ = 0, 0.1;
middle (from left to right) λ = 10, 100; bottom (from left to right) λ = 10000, 108.
Stream segment colours represent the estimated nitrate concentration under the partic-
ular smoothing scenario. Coloured points represent mean observed nitrate levels at each
monitoring location.
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Figure 4.4: Left plot is a Euclidean distance smooth estimate. Right plot is a network
smooth estimate.

There are many current examples of spatiotemporal models and Cressie & Wikle (2011)

describe a modern introduction to a wide variety of modelling tools. Applications of

space-time models are diverse and include disease mapping (MacNab & Dean (2002)), air

pollution (Shaddick & Wakefield (2002)), house prices (Gelfand et al. (2004)) and rainfall

(SansÃş & Guenni (1999)). Since long-term monitoring on a stream network is common,

it makes sense to model stream data in the same framework; and some studies that have

taken this approach include Cressie & Majure (1997), Clement & Thas (2007) and Militino

et al. (2008). It is important to note that these examples do not consider the essential

network features of river distance, flow connectedness and flow weighting and that as there

is currently no general modelling framework for space-time stream network data. One

example of a spatiotemporal model in this context is that of Money et al. (2009) who

use a Bayesian maximum-entropy method to fit their models, however the low number of

flow-connected locations in their data inhbit the use of more complex spatial statistical

stream network models. Also, Gardner & McGlynn (2009) use a ‘tail-up’ model for nitrate

data that accounts for flow-connectednessof the data locations, but the analysis is primar-

ily spatial because only a small set of time points are available within a time interval of

approximately one year.
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There are three main variables which need to be accommodated in a spatiotemporal model

for the River Tweed. One is space expressed through the river network locations (si), the

second is time (ti) measured on a scale of years to express long-term trends, and the third

is time within the year (zi) to express the seasonal changes which are often exhibited in

environmental measurements. The P-spline additive models described in Chapter 2 are

natural tools to consider, as they provide a framework within which flexible regression can

be extended to a wide variety of data structures. In the present setting, a very simple

additive model is

yi = µ+ fs(si) + ft(ti) + fz(zi) + εi (4.5)

where the three functions fs, ft, fz describe spatial, temporal and seasonal trends, y is

the pollutant response and εi denotes error terms assumed to have a N(0, σ2) distribution.

If each of the trend functions is estimated by B-splines then, following the ideas in Sec-

tion 2.2.2, they can be represented as Bsβs, Btβt, Bzβz where the columns of the design

matrices evaluate each basis function at the observed values of the relevant covariate. The

spatial network component fs is represented by the piecewise constant structure described

in Section 4.4.1, while cubic B-splines are good choices of basis functions for the temporal

and seasonal effects, as it is expected that the estimated effects here will be simple smooth

functions. The full model can be represented as y = Bβ + ε, where B combines the

columns of the individual design matrices, with an initial column of 1’s.

It remains to construct suitable penalty terms to induce smoothness on the estimates of

the trend functions. First-order differences were the natural choice for the spatial network

parameters, as described in Section 4.4.1 and computed through a difference matrix. For

cubic B-splines, second-order differencing of the parameter vector is the more standard
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choice. The smoothness penalty can then be expressed as

β>Pβ = λsβ
>
sD

>
sDsβs + λtβ

>
t D

>
t Dtβt + λzβ

>
zD

>
zDzβz,

where the matrix P has block-diagonal form and combines the individual penalties so that

P =



0

λsD
>
sDs

λtD
>
t Dt

λzD
>
zDz


.

and β = (µ,βs,βt,βz). Cyclical behaviour in the seasonal term can be induced by re-

quiring the coefficients of the first r basis functions to be identical with the last r basis

functions. The penalty
∑r

k=1(βz,k − βz,p+1−k)
2 achieves this, with r = 3 for cubic splines

and can be adopted into the definition of Dz. The limit under strong smoothing of this

penalty yields a constant function, which may not be appropriate when a very strong pe-

riodic signal is present; as an alternative, Eilers & Marx (2010) describe a special penalty

that yields a sum of a sine and cosine as the limiting behaviour under strong smoothing.

In the presence of an overall mean parameter µ in Equation 4.5, the identifiability of each

additive component can be achieved by the addition of a ridge penalty, as described by

Eilers & Marx (2002). This corresponds to a penalty of the form β>Qβ, where Q is a

diagonal matrix constructed from the vector (0, νs1s, νt1t, νz1z), with the ridge parameters

denoted by νs, νt, νz and with 1a denoting a vector of 1’s whose length is determined by

the number of basis functions in the term denoted by a. The fitted model can then be

expressed through the parameter estimates β̂ = (B>B + P +Q)−1B>y. Denoting this

as Hy, standard errors for β̂, and so for fitted values, are available from the diagonal

elements of HH>, multiplied by an estimate of the error variance which is constructed as
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σ̂2 = RSS/(n − ED) where RSS denotes the residual sum-of-squares and ED the approx-

imate degrees of freedom for the model, as defined in Equation 2.13. A penalised spline

approach to (generalised) additive modelling is described by Marx & Eilers (1998), and

many subsequent authors including Wood (2006), where further details are available.

The additive model described above is a natural starting point but it is implausible that the

spatial pattern of pollution will change in exactly the same way over time, or throughout

the year, at every location. It is therefore more appealing to consider an interaction model

of the form

yi = µ+ fs(si) + ft(ti) + fz(zi) + fs,t(si, ti)

+fs,z(si, zi) + ft,z(ti, zi) + εi,

where the functions fs,t and fs,z allow for differing temporal trends at different locations

on the network. The term ft,z allows an adjustment to the overall seasonal component,

allowing different patterns in different years. The interaction terms can also be conveniently

represented in spline basis form, using a basis formed by all possible products of the spline

basis functions on each separate variable, as described in Chapter 2. More precisely, we

can write

fs,t(si, ti) =

p1∑
j=1

p2∑
k=1

βjkBj(si)Bk(ti)

where Bj(si) and Bj(ti) denote individual B-spline functions parameterising evolutions in

space and time. This has the simple interpretation that the parameters associated with

each stream unit are now allowed to evolve smoothly over time. Corresponding structures

and interpretations can be adopted for the space-season and time-season interaction terms.
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In matrix notation, the model matrix is

B =

[
1 Bs Bt Bz Bs�Bt Bs�Bz Bt�Bz

]

where � is the row-wise tensor product defined as A�Y = (A ⊗ 1′) � (1′ ⊗ Y ) and �

denotes the Hadamard (element-wise) product; see Eilers et al. (2006).

Smoothness in the model terms is induced by applying appropriate penalties, and cor-

responding penalty parameters λi for each term and allowing anistropic smooths for the

2-dimensional components Bs�Bt, Bs�Bz and Bt�Bz. In the case of main effects, these

are constructed through the difference matrices described above. Penalties for the inter-

action terms can be constructed by considering the coefficients {βjk} in matrix form and

applying smoothness penalties to both the rows and the columns. For example, space-time

smoothness is induced by applying a first-order network penalty to the columns of the

matrix {βjk} and a second order difference penalty over the rows. As described above,

identifiability is ensured, and ill-conditioning avoided, by adding a ridge penalty for each

term in the model, expressed in a diagonal matrix Q. Other constraints or penalties ex-

ist that could have achieved a similar effect, for example constraints that force the mean

value of each component to be zero. However, the straightforward specification of the

ridge penalty and the subsequent retention of sparseness of model objects makes this a

convenient choice, as discussed in the subsection on computational details below. Each of

the λi is estimated by a short search procedure to find values that minimise the corrected

AIC (AICc) as defined in Section 2.3.1.

Tensor product spline smooths such as those specified in Section 3 rely on many basis

parameters to represent each bivariate interaction and may therefore be intensive to fit. In

the present case, the model matrix B is mostly composed of terms involving Bs, an n× ps

matrix where ps is the size of the network partition. Bs contains exactly n nonzero entries.
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If V denotes the n× q matrix evaluating the bases for the other terms in the model, then

Bs�V is at least 100(1 − 1
ps

)% sparse and much more so if V is sparse. Sparse matrix

algorithms can be used to decrease storage requirements and vastly increase performance.

For example, the B that was fitted to the Tweed data, was 16000× 5000 where ps = 298

and was 99.8% sparse.

Figures 4.5 and 4.6 shows the results of fitting this interaction model to the Tweed data,

using AICc to select all the penalty parameters. The top left hand plot, together with those

in the second row, show estimates of the main effects for space, year and day of year. This

highlights that areas of high pollution are present in the tributaries to the North East of

the River Tweed. Across the years the overall pollution levels are relatively stable, but

with some indication of a slight decreasing trend. The overall seasonal effect is strong, as

expected, with a gentle decrease from February to August and a sharper rise at the end of

the calendar year. The shaded bands in Figure 4.5 correspond to two standard errors on

either side of the estimates and these indicate high precision, as a result of the substantial

size of the data set. The top right hand plot shows the estimate of interaction between

year and season. The values of the adjustments plotted here are small, indicating that the

change in seasonal pattern over the years is modest. The two plots in Figure 4.6 show

fitted values at two specific spatial locations, along with a comparison of a simple main

effects model (green) and the interaction model (red). This shows clear improvement at

some sites as a result of fitting the interaction terms.

4.5.1 Residual correlation

Having established a spatial interaction model for the River Tweed nitrate data that is

appropriate for its network structure, it remains to check the assumption of independence

made of the residuals. Informal plotting of the variogram clouds (Diblasi & Bowman

(2001)) of the residuals uncovered some strong evidence of the presence of residual temporal
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Figure 4.5: Clockwise from top left: main effect of space where darker grey corresponds
to higher mean nitrate levels; image plot interaction showing interaction between the
seasonal pattern and longer-term trend; plot showing estimated seasonal pattern (black
line), with 95% confidence bands (grey shaded region), and partial residuals; plot showing
long-term trend (black line) with 95% confidence bands (grey shaded region) and partial
residuals.
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Figure 4.6: Comparison of fitted values for simple main effects model without interac-
tion terms (green line) and the full model (red) with 95% confidence bands (grey shaded
region), confidence bands after correction for residual correlation (dotted line) and data
points (plotted as circles). Top shows fitted values at Gala Water Foot monitoring station;
bottom shows those for Norham Gauging Station.

autocorrelation, and to a lesser extent some spatial autocorrelation. Evidence of residual

temporal correlation at short time lags is to be expected, particularly as the model accounts

for temporal structure only over longer time periods. Under the assumption of independent

errors, all standard error estimates are likely to be underestimated when the underlying

error process is correlated, so they must be adjusted appropriately. As a conservative

measure, it was decided to fit a separable spatiotemporal model to the errors so that

Σ̂ij = Cov(εi, εj) = ωij σ
2 exp

{
−dij
ρ
− |ti − tj|

ψ

}

where ωij is the product of the flow proportions contributed by each upstream segment that

lies between segments i and j. The spatial and temporal correlation in the error process
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is assumed to depend on ti− tj, the time lag, and dij, the network separation measured in

numbers of stream units. The correlation model was fitted by weighted least squares.

Having obtained an estimate for Σ̂, the standard errors for the fitted values were then

adjusted by

s.e.{ŷ} =

√
var
{
Ĥy

}
=

√
diag(ĤΣ̂Ĥ

>
)

where Ĥ is the projection or hat matrix given by B(B>B+P +Q)−1B>. The estimated

parameters in the correlation model were ρ = 8.3 and ψ = 27.4 which represents moderate

residual temporal correlation and (after adjusting with weights) weak residual spatial cor-

relation. These parameters refer to a spatial scale in miles relative to a catchment diameter

of approximately 70 miles, and a temporal scale in days, relative to a span of 26 years for

the whole data set. The overall variance parameter σ2 was estimated as 0.1554, which is

very close to the estimate under an independence assumption (0.1442). The corresponding

adjustments to standard errors are displayed in Figure 4.6 as dashed lines, from which it

is clear that the increases in width over the independence model are not sufficiently large

to lead to any substantive change in conclusions.

It would be possible to consider incorporating the correlation structure into the fitting

process for the model. This would, however, considerably increase the complexity of the

computations, particularly as sparsity would be compromised. The post-fitting adjustment

approach combines computational efficiency with an effective first-order approximation to

the correlation structure, which has been used to good effect in similar settings, as discussed

by Giannitrapani et al. (2011).
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4.5.2 Visualisation

While simple spatial terms can be plotted in map or network form, interactions with spatial

components are more problematic to view. Figure 4.6 shows temporal effects at particular

point locations on the River Tween network. An alternative illustrated in Figure 4.7 is to

display the estimated spatial effects at different time points, here at three different months

(January, June and November) in 2005. This helpfully focuses attention on the spatial ar-

eas where seasonal change is strongest. However, changes in colour alone can be difficult to

assess, especially where those changes are modest. The plots shown in Figure 4.7 represent

the values over the network as ‘nodes’, plotted approximately in the geographical midpoint

of each stream unit. In addition to colour code, each node has radius proportional to

the estimated nitrate pollutant level (on the original rather than log scale). This form of

display is particularly effective at illustrating changes over time as small changes in size

are more easily identifiable than small changes in colour.

A more satisfactory solution involves animation of the spatial pattern across time. This

kind of effect can be achieved with graphical tools such as those provided by the rpanel

package (Bowman et al., 2007) for R (R Development Core Team, 2011). This allows

the time setting for the spatial display to be controlled through a slider. In a similar

manner, sliders can also be used to control the degrees of smoothing through interac-

tive selection of values for the approximate degrees of freedom. Since visualising and

understanding spatiotemporal model fits is challenging from static printed plots, two an-

imations of the fitted models are provided online at http://vimeo.com/46476977 and

http://vimeo.com/46321492. These illustrate spatial and temporal variation in the fit-

ted mean nitrate levels in both network and node form. The effect of the spatial penalty

across neighbouring stream units is more evident in the first, while the degree of pollution

and change through time is arguably better represented by the second.
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Figure 4.7: Estimated spatial effects at three different months (January, May and
October) in 2005, indicated by colour and scaling of ‘nodes’ located at the stream units.

4.6 Discussion

In this chapter, flexible regression models were proposed that respect the unique spatial

structure of data arising on river networks that can be easily extended to build spatio-

temporal models for capturing complex spatial change. The results of fitting the models to

the River Tweed nitrate data revealed evidence of strong overall seasonal patterns, but only

a small degree of overall change in nitrate levels over the 26 year period. Perhaps of greater

interest is the insight gained from interaction terms between space and time components,

which permitted spatially-varying effects that do so while respecting the flow-driven struc-

ture of the stream network. It is clear from Figure 4.6 that local differences in seasonal

and long-term effects account for a substantial proportion of variation at a specific site

over time. This strongly supports the argument in favour of building and retaining well

designed long-term monitoring networks, in order to gain insights into variation across a

network as a whole which in turn can help to identify the effects of local environmental

damage.

Attention has focused on the estimation of model terms and their standard errors, as these

give clear and interpretable insight into the structure of the data. More formal methods
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of model comparison can be implemented for example through the approximate F-tests

described by Bowman et al. (2009) in the spatiotemporal setting.

4.6.1 Model mispecification

The penalised models described use a discrete approximation to represent what is a contin-

uous spatial process defined along the path of a set of stream segments. This approximation

is useful because it allows the influence of confluences to be easily represented by assuming

conditional independence of upstream and downstream segments. In addition to provid-

ing the necessary model structure to allow network-indexed variables to be estimated on

unmonitored segments, the particular choice of penalisation renders all of the matrices

involved in model fitting very sparse and therefore computationally straightforward to

store and manipulate. The sparseness property allows complex network models to be con-

structed and further covariates to be included without the computational limitations which

can hamper other approaches such as those based on Gaussian processes and covariance

functions. The issue of computational speed is particularly relevant to the method used to

select optimal smoothing parameters, especially because data sets exist with numbers of

stream segments of the order 103 and 104, and with similar numbers of data points. For

these reasons, the models developed in this chapter are particularly appropriate for very

large or densely sampled networks.

Despite these advantages, the most obvious problem with the model thus specified is that

variability that occurs at small scales and within stream segments cannot be captured. If

this is found to occur, it will be necessary to perform the type of adjustment described in

Section 4.5.1 in order to obtain more realistic standard error estimates. However, this is

not an elegant solution, and a desirable but more complicated approach would involve the

construction of a higher order B-spline basis on the network, that can represent smooth



Chapter 4. Flexible regression for river networks 86

changes within stream segments. Since this is a much more complex problem, Section 6.3

is dedicated to sketching a potential solution to this issue.

It is also important to note that the log transformation performed on the nitrate data

at the outset of the study means that the additive mass-balance argument made to mo-

tivate the spatial penalty described in Section 4.4.1 should be treated as representing an

approximation of the true mixing process of pollutants at confluences. Although this does

not diminish the generality of the methodology developed, a further refinement that would

remove the approximation would involve modelling the nitrate data on its original scale

and assume some positive and non-normal error structure, using for example a Gamma or

log-Normal distribution.

4.6.2 Link to Gaussian Markov Random Fields

The penalised model specification can be translated into a Bayesian hierarchical model

using a similar argument to that in Section 2.3.3. The stochastic analogue of the quadratic

difference penalty in the penalised least squares criterion described in Equation 4.4, is the

prior

β ∼ N

(
0,

1

τ
(D>D)−1

)
. (4.6)

Equation 4.6 describes a special case of a Gaussian Markov Random Field (GMRF), Rue &

Held (2005)) prior for β, where a GMRF is a multivariate Gaussian distribution in which a

least one pair of the βi are conditionally independent of each other. This condition is easily

seen to be satisfied by considering the result (Rue & Held (2005)) that if x ∼ N(a,Q−1),

then xi and xj are conditionally independent iff Qij = Qji = 0; as noted previously, D>D

is sparse and therefore Equation 4.6 describes a GMRF prior. There is a particularly

strong connection with conditional autoregressive (CAR) models, which are special cases

of GMRFs and are often used in applications such as disease mapping, and where spatial
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dependence is defined in a similar manner through a first order neighbourhood relation-

ship. A Bayesian approach has attractive features, particularly because sampling from

the posterior distribution allows uncertainty associated with smoothing parameters to be

integrated out. At present, smoothing parameters are selected through a grid search over

a range of candidate values, which can be cumbersome for multidimensional smooths or

many covariates. In addition, for MCMC updates, the conditional independence structure

of the random effects βi lends itself to the efficient block updating for GMRFs described

by Fahrmeir & Lang (2001). It is noted however, that significant computational demands

can be made by the fitting of Bayesian space-time models in which anisotropic smooth-

ing is required due to the presence of multiple smoothing parameters that must each be

updated using a Metroplis-Hastings sampler. An important element of future work might

seek to compare the current penalised least squares approach with this Bayesian framework.

4.6.3 Comments on the use of flow data

Regardless of estimation procedure used, some measure of proportional flow volumes are

required for each stream unit in the network partition so that the idea of mass balance can

be used across confluences. Flow data used here for the River Tweed was not observed,

and instead came from modelled values used by SEPA. Ideally, observed flow data, where

available, could allow a model to adapt to different flow settings over time, as observed

by Cressie & O’Donnell (2010). Alternatives to using modelled flow data might be to use

some proxy based on a notional stream order, such as Shreve order (Shreve (1966)). Of

course, flow levels are highly variable in time, and so any flow measure is limited in its

ability to inform flow mixing across confluences at anything other than the broadest time

scales. Since it is important that this uncertainty is accounted for by the model, a more

robust approach might treat the flow rates as random quantities that have prior distribu-

tions that might be informed by whatever data are available. It is highly likely that this
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would require a Bayesian hierarchical approach to model fitting.



Chapter 5

Validation of river network models

5.1 Introduction

Chapter 4 proposes a new approach to modelling stream network data that is capable of

capturing complex and smoothly-varying changes across space and also smooth space-time

interaction, and was subsequently able to provide new insights into the River Tweed data.

In order for the models to be widely adopted, it is important that practitioners can be con-

fident of the conditions under which they will perform well, and that they are appropriate

tools for investigating a particular problem. An important consideration is that additive

models with stream network components and multidimensional smooths, as described in

Chapter 4, are complex to implement and it is necessary to remove this barrier. The goal

of this chapter is therefore to address three related questions:

1) Can general purpose software be written that fits a broad class of river

network models, and if so, how should the data be formatted?

2) Does the performance of the models described in Chapter 4 depend on the

particular spatial covariance structure of the data, and if so to what extent?

89
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3) Do the models perform well in comparison with other approaches that are

already established in the stream network modelling literature?

To address 1), an R (R Development Core Team (2011)) package was developed that imple-

ments the stream network models outlined in Chapter 4. The package fits additive models

to stream network data and automatically selects smoothing parameters, all through a

user-friendly high-level interface. Using this software, 2) can be investigated by carrying

out a simulation study aimed at assessing the empirical model fit performance of the pe-

nalised models described in Chapter 4 and O’Donnell et al. (2013). The fitting of stream

network models is often motivated by a desire to make predictions at unmonitored spatial

locations, and consequently the study emphasises predictive performance and discovering

conditions that give rise to different levels of accuracy and interval coverage.

Although Chapter 4 described new models for stream network data, other techniques exist

in the literature, and in particular those of Ver Hoef et al. (2006) and Ver Hoef & Peter-

son (2010a) are supported by well-developed software and have been used in a growing

number of studies. Their approach is to build random variables whose spatial covariance

is appropriate for stream networks; in particular, they build a Gaussian process where the

covariance matrix is a function of separation defined by stream distance along the path of

the stream network and incorporates the influence of relative flow levels and confluences.

We therefore aim to address 3) by comparing the performance of the models of Chapter

4 and O’Donnell et al. (2013) with those of Ver Hoef et al. (2006) as part of the same

simulation study. In order to distinguish between the two approaches we henceforth ab-

breviate and refer to the approach of Ver Hoef et al. (2006) as VHPT, and those detailed in

O’Donnell et al. (2013) as OD. The overall aim of this comparison is to provide clear practi-

cal guidance about the relative costs and benefits associated with each modelling approach.
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This chapter has the following structure: Section 5.2 discusses issues around designing

user-friendly software to implement the models of Chapter 4 in a computationally con-

venient manner. Section 5.3 provides a summary of some of the theoretical aspects of

the modelling framework proposed by Ver Hoef & Peterson (2010a), while Section 5.4 de-

scribes the design and implementation of a comprehensive simulation study that will enable

comparison between the relative performances of the two approaches across a variety of

realistic simulated stream network data. In Section 5.5 the relative performance of each

model is evaluated based on the results of the simulation study, and the main differences

are summarised. Finally, some discussion follows in Section 5.6 about the implications of

the results for practitioners, and for future development of both techniques.

5.2 Software for penalised network models

In order to enable other users to use the methodology described in Chapter 4, an R pack-

age was developed that allows the general specification of additive models for data arising

on stream networks. Importantly, the class of models described in Ver Hoef & Peterson

(2010a) are well supported by the R language R Development Core Team (2011) software

library SSN (http://cran.r-project.org/web/packages/SSN/index.html), and to ease

the fitting of such models, they define a new standard S4 object (Chambers (2008)) which

stores all of the attributes of a stream network that are required for modelling and visu-

alisation, and these are in turn obtained from a Geographical Information System (GIS).

In writing software for the models of O’Donnell et al. (2013), it makes sense to adopt this

framework in order to allow users to use both approaches on their data with little additional

effort. This section discusses the design and use of such software, and in particular Section

5.2.1 discusses issues associated with selecting optimal smoothness parameters using gen-

eral purpose optimisation; Section 5.2.2 investigates the accuracy and computational speed

associated with using the trace approximation algorithm that was introduced in Section

2.3.2; Section 5.2 concludes the section by describing the software that was developed for

http://cran.r-project.org/web/packages/SSN/index.html
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fitting additive models for spatial stream networks, and its basic functionality.

5.2.1 Smoothing parameter selection

To automate the selection of smoothing parameters required for fitting the models described

in O’Donnell et al. (2013), there are a number of issues that must be addressed. The use

of the bias-corrected AIC (AICc, 2.19, Hurvich et al. (2002)),

AICc = log(σ̂2) + 1 +
2(tr(H) + 1)

n− tr(H)− 2
,

as a way of achieving bias-variance trade-off across a range of values of the smoothing

parameters can be problematic when the number of parameters to be smoothed is greater

than the number of observed data. In these cases, it is possible for low values of λ to

cause tr(H) − 2 to approach n and as a result, AICc exhibits very sharp local maximum

and minimum points in this region. Since these typically occur when λ is close to zero,

and these are unlikely to be realistic values for the smoothing parameter that achieves a

parsimonious fit to the data, it is necessary to avoid these regions of the AICc surface when

attempting to find a minimising value for λ. In order to reduce the number of evaluations

required to find a minimum and avoid the use of a grid search procedure, it would be

attractive to use a general-purpose optimiser. As a consequence of the issue arising from

tr(H) − 2 → n, the optimiser should be steered away from small values of λ that cause

this behaviour, and it is for this reason that a box-constrained Nelder-Mead optimisation

algorithm was chosen for this purpose, implemented in the R package dfoptim (Varadhan

et al. (2011)).

Although general-purpose optimisers are very efficient, many repeated evaluations of AICc

are still required which can be very computationally expensive for large n or nseg. As

discussed in Section 2.3.1 this is due to the need to calculate the effective dimension tr(H)
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for many different configurations of λ. Therefore, we resort to the trace approximation

that is described in Section 2.3.2, where a Monte-Carlo estimate of the trace operation can

be obtained by

tr(H) ≈ 1

s

s∑
i

s∑
j

[
(U>BL−1)2

]
ij

where U is a matrix of s random column vectors composed of uniformly generated ran-

dom sequences of 1 and -1, L is the (sparse) Choleski decomposition of (X>X +D) that

depends on the vector λ. Using the precalculation steps described in Section 2.3.2 in com-

bination with the sparse matrix algorithms, we now show that the computational burden

of obtaining optimal smoothness parameters is greatly reduced, without any substantial

loss of accuracy.

5.2.2 Validation of the trace approximation

The approximation of tr(H) that is discussed in Sections 2.3.2 and 5.2.1 must first be

checked for accuracy and computational feasibility before being used in the simulation

study that follows. To do this, three features of the approximation will be tested: 1) the

percentage error associated with selecting a smoothing parameter using the approximation

compared to performing the exact calculation of the trace; 2) the time taken to select a

smoothing parameter as the number of samples s involved in making the approximation

increases; 3) the difference in computation time taken to select a smoothing parameter for

different sized stream networks.

In order to test these three features, it will be necessary to generate data from different real-

isations of a spatial process on stream networks with different numbers of stream segments.

As will be discussed in greater detail in Section 5.4.1, the software package SSN contains

functionality that makes this straightforward to do. Data were generated 500 times from
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moderately smooth tail-up processes (also described in further detail in Section 5.3) on

stream networks with 500 stream segments, and for each of these, stream network models

were fitted to select the optimal smoothing parameter based on 10, 20, 50, 100, 500, and

1000 samples of the trace matrix. The results associated with this simulation experiment

are shown in the top panel of Figure 5.1, where the distribution of percentage differences

between the optimal λ selected using the trace approximation and the exact trace are plot-

ted against the number of samples involved in the approximation. It should be noted that

the percentage differences were calculated on the original scale of the smoothing parameter

λ, and not on the log transformed scale, and therefore even in the least accurate scenario

in which only s = 10 samples were used, more than 50% of the estimated differences are

within the range of (−7%, 7%) which are all deviations small enough to only have a very

small impact on the resulting parameter estimates. As the number of samples increase,

the error rate quickly becomes negligible, and values beyond s = 100 are likely to be un-

necessary. It is therefore clear that for even small values of s the trace approximation is

accurate enough for use in smoothing parameter selection.

In addition to comparing relative errors in the selected smoothing parameter, it is possible

to evaluate 2) by comparing the relative computation times associated with different num-

bers of random samples, s, used in the trace approximation. In the middle panel of Figure

5.1, the ratio of the time taken to select a smoothing parameter using the approximation

to tr(H) to using the exact calculation is shown. For s ≤ 100, the computation time

associated with the trace approximation is shown to be much faster cutting the time by

between 30% and 50%. For s = 500 and above, the approximation is much slower, but

as mentioned above, the increased accuracy that this buys is not likely to be necessary to

obtain an optimal smoothing parameter under the Nelder-Mead optimisation

Finally, it is important to test the relative computational cost associated with using the

trace approximation compared to using the exact trace calculation, for each of a range of
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stream network sizes in order to address 3). 500 simulations of spatial data were generated

on large stream networks with 100, 500, 1000 and 2000 stream segments, and the time

taken to obtain an optimal value for the smoothing parameter was recorded for models

using the trace approximation, and for models using exact evaluations of the hat matrix

trace. For each of these scenarios, the number of samples s was fixed at 100. The results

of this simulation study are shown in the bottom panel of Figure 5.1, where the ratio of

computer times associated with using the trace approximation compared to using the exact

trace is plotted alongside the number of stream segments involved in each scenario. It is

clear that on average, the trace approximation yields much faster selection, and is slower

only occasionally on the smallest of the networks. It is also interesting to note that as

the stream network increases, the ratio of the speed of the approximation relative to the

exact calculation also increases, which makes this approximation particularly useful for

large river networks.

5.2.3 smoothnetwork software and data format

The techniques described in Chapter 4 and smoothness selection as discussed in Section

5.2.1 have been integrated into the R software package smoothnetwork. A key feature of

this package is the ability to fit additive models based on P-spline smoothing, and river

network spatial effects using an interface that is similar to that used in the generalised

additive model fitting software mgcv (Wood (2006)). In particular, specification of smooth

functions of covariates is made straightforward, by adopting a function similar to the

s function used in mgcv. To avoid conflicts with mgcv, we use a function called m for

specifying smooth functions within the top level function smnet. For example, given a

response vector y, and covariate vector x each of length n, to fit the univariate additive
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Figure 5.1: Top: Percentage difference in estimated smoothing parameter resulting
from exact and approximate hat matrix traces for a range of approximation accuracy
levels. Middle: Time taken to select an optimal smoothing parameter across a range of
approximation accuracies. Bottom: Time difference (s) between smoothing parameter
selection using exact and approximate matrix traces across a range of stream network
sizes.
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model

yi = α +m(xi) + ε

= α +
k∑
j=1

bjBj(xi) + ε

where k is the number of B-spline basis functions that are to be used to represent the

smooth m, the statement

smnet(y ∼ m(x, k = k), data = df).

is used. The data object containing the covariate x and the response variable y is the data

frame df. More complex models can also be fitted, for example if a response y is available

at a set of geographical locations, (easting, northing). Suppose in addition that a vector

of stream segments s is available that describes the network location upon which each

observation arises, where si ∈ {1, . . . , p}. Then the more complex spatial river network

model

yi = α +m(eastingi, northingi) + βsi + ε

= α +
k∑
j=1

k∑
l=1

bjlBj(eastingi)Bl(northingi) + βsi + ε, (5.1)

where βsi is a stream segment specific parameter for observation i, defined with an asso-

ciated penalty as described in Section 4.4.1. Equation 5.1 describes a model that allows

spatial variation both in Euclidean space as indexed by the eastings and northings of each

observations, and spatial variation that respects the network structure. In order to accom-

modate the latter network component within the smoothnetwork software, the additional
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operator network is used, and the model is specified as follows

smnet(y ∼ m(easting, northing, k = 10)

+ network(adj = adj, wgt = wgt, locs = s),

data = df)

where adj is a p× p binary adjacency matrix whose ith row describes the stream segments

directly upstream of segment i. wgt is the vector of length k describing the proportion

of flow each stream segment contributes to its downstream neighbour and s is a length k

vector of integers describing the stream segment from which each observation yi was taken.

5.3 Models based on covariance functions

5.3.1 Moving average construction

As discussed in Section 5.1, Ver Hoef et al. (2006) show that the use of a standard geosta-

tistical model, using as a separation metric distance along the paths of the stream network,

does not in general result in valid covariance structures, except when an exponential co-

variance function is used. As a result, Ver Hoef et al. (2006) and Cressie et al. (2006) seek

to build appropriate covariance models through the use of moving average constructions.

This construction states that a random variable Z can be defined as the convolution of a

moving average function g and a white-noise process W so that

Z(s|θ) =

∫ ∞
−∞

g(x− s|θ)dW (x), (5.2)
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where x and s are locations on the real line. Z then has covariance defined in terms of the

choice of moving average function g:

Cov(Z(s), Z(s+ h)) = C(h|θ) =

∫ ∞
−∞

g(x|θ)g(x− h|θ)dx. (5.3)

Since the argument x is defined on the real line in Equations 5.2 and 5.3, some additional

work is required to adapt the process Z and the moving average function g to the context

of a stream network, which is a set of connected line segments embedded in R2. This is

a more complex domain and so it is necessary to first establish some terminology that

defines the topology, locations, and distance metrics that make up a stream network, and

we adopt the nomenclature used in Ver Hoef et al. (2006).

5.3.2 Terminology

First, an enumeration of each of the segments of a stream network i ∈ I = {1, 2, . . . , nseg}

is defined, where a segment is defined as the stretch of stream between branching or con-

fluence points on the network (Figure 5.2). Locations on different segments may share

the same upstream distance, defined as the distance to the most downstream location on

the network, and so each location is uniquely expressed by xi where x is the distance up-

stream of a point on the ith stream segment. The most downstream location on the ith

stream segment is called li, while the most upstream location is called ui, an example of

this naming structure is given in the middle panel of Figure 5.2. It is then useful to define

the set of stream segments upstream of, and including a location i, which we call Ui ⊆ I,

while the set that excludes i is called U∗i ⊆ I. In a similar fashion, the set of stream

segments downstream of, and including i are called Di ⊆ I, and D∗i ⊆ I if the set excludes

i. This notation is necessary to formally define the concept of flow-connectivity, namely

that Ui ∩ Uj 6= ∅ implies that the stream segments i and j are flow-connected, conversely

if Ui ∩ Uj = ∅ then i and j are flow-unconnected. These definitions are also required to

specify the valid covariance models over the spatial stream-network that are described next
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in Section 5.3.3.

5.3.3 The tail-up model

A stream network can be represented as a collection of connected line segments, and there-

fore to adapt Equation 5.3 to this setting, the integral must be performed in a piecewise

manner over these line segments. One of the most important features of a stream network

is the influence of flow direction on spatial dependence and as a consequence Ver Hoef

et al. (2006) chose moving average functions g(x|θ) that are defined only upstream of a

given location x. Ver Hoef et al. (2006) also recognise that spatial dependence on a stream

network is determined by the relative flow volumes that meet at confluence points, a fea-

ture that is incorporated into the definition of the moving average function by dividing g

at confluences relative to the proportions associated with the stream segments involved.

This results in a scaling of the new segment-wise integral by a weight ωk

Z(si|θ) =

∫ ui

si

g(xi − si|θ)dW (xi) +
∑
j∈U∗

i

 ∏
k∈Bi,j

√
ωk

∫ uj

lj

g(xj − si|θ)dW (xj), (5.4)

where Bi,j = Dj∩Di. If a confluence upstream of segment i has upstream segments j and k,

then 0 ≤ ωj, ωk ≤ 1 and ωj+ωk = 1. A visual representation of a moving average function is

provided in Figure 5.2 which shows how the moving average function ‘splits’ at confluences,

and how locations further upstream have little influence on s1. To avoid truncating the

moving average function, terminal stream segments (those furthest upstream) are treated

as having infinite length. The construction in Equation 5.4 implies non-zero covariance

between Z(s) and Z(s + h) if they are flow-connected, which is particularly desirable

when the observed data are strongly dependent on flow, as may be the case with the

concentrations of dissolved pollutants. Ver Hoef et al. (2006) show that Equation 5.4

implies a covariance between a pair of locations (ri, sj) that is defined as
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Figure 5.2: From top: example of an enumeration of the stream segments in a stream-
network, with locations shown on stream segments using the notation s•, direction of flow
is indicated by the arrowhead; illustration of the naming conventions for the beginning and
end points for each stream segment; visual representation of a moving average function
where the height of each rhombus corresponds to the relative size of the function, and
decreases with distance from the example location s1.
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Cu(ri, sj|θ) =

 πi,jCt(h|θ) if ri < sj are flow-connected,

0 if ri and sj are flow-unconnected,
(5.5)

where πi,j =
∏

k∈Bi,j

√
ωk ∈ [0, 1] represents the influence of the intervening flow weights

on the covariance between flow connected ri and sj. Equations 5.5 and 5.4 define a model

which is referred to as a ‘Tail-up’ model by Ver Hoef & Peterson (2010b), in order to

distinguish it from moving average constructions that permit non-zero covariance between

flow unconnected locations.

Different choices are available for the moving average function g, resulting in a process Z

with different covariance properties. For example the exponential moving average function

is defined as

g(x|θ) = θ1 exp(−x/θr)I(0 ≤ x),

where θr is a range parameter. The moving average function in Equation 5.6 yields the

unweighted covariance function

Ct(h|θ) = θv exp(−h/θr),

where θv is the ‘partial sill’ parameter and is a function of θ1 and θr. Other choices for

the moving average function and their associated covariance functions are described in

Ver Hoef & Peterson (2010b).

5.4 Outline of the simulation study

5.4.1 Simulating network spatial structure

In order to compare the two stream network modelling methodologies, it is important to

simulate data with structures similar to those found in typical stream networks. Since real
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stream networks are often very large, with sparse data coverage, these are features that

are likely to have a substantial impact on the performance of stream network models, and

must form a key component of the study. In addition, realistic dendritic network structures

do not permit divergence or bisection of stream segments, and confluences are restricted to

having at most two upstream tributaries. The SSN software package has functionality that

makes constructing the desired network structures of a specified number of stream segments

straightforward, and as a result the impact of both small nseg = 100 and large nseg = 2000

is investigated. However, constructing valid dendritic networks with several hundred or

more branches is a highly computationally intensive procedure, and so this operation was

performed once at the outset of the study, and these fixed network structures were used to

generate new realisations of spatial processes at each stage of the study. The two particular

networks that were used are shown in Figure 5.3, with the smaller network of 100 segments

shown in the left panel and the larger with 2000 segments on the right.

It is of interest to investigate the impact of the number of observed data points assumed for

each simulation on the relative performance of each model. Therefore, observations were

assumed to be made at each of n = 100 and n = 500 locations, where the locations were

sampled without replacement from a large set of 10000 randomly distributed points that

were generated once to reduce the computational burden. A key component of the study

is in comparing predictive performance, and so an additional 1000 prediction locations

were also generated on each network structure, which were used to assess out-of-sample

predictive accuracy.

5.4.2 Spatial correlation structure of simulated data

In order to build appropriate spatial covariance into data that is simulated at the locations

shown in Figure 5.3, the spatial process defined by the exponential Tail-up model (TU)

described in 5.3 was used. Other covariance functions could have been used within the
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Figure 5.3: Plots depicting the two particular network structures on which all of the
simulated data were generated: on the top is the smaller network with nseg = 100 stream
segments and on the bottom is the large network with nseg = 2000 stream segments. The
prediction locations are shown by black points on each network, magnified examples of
which are shown in the insets.
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class of TU models, but to maintain a feasible number of different factors in the simula-

tion experiment, the effect of generating data from different covariance functions was not

investigated. The impact of response variables that exhibit Euclidean spatial dependence

as well as TU-type dependence across the stream-network was also investigated; this is

important because spatial structure in stream-network data can arise as the result of a

mixture of processes, some of which occur on the network and others in the terrestrial

landscape within which the network is embedded. For a fixed set of network locations

s = (s1, . . . , sn)> with corresponding Cartesian coordinates C = [x>,y>], the process Y ,

was simulated as Gaussian with mean depending on covariates {X1, X2, X3}, and a set of

spatial processes {Z1, Z2}, representing TU and Euclidean structures, respectively. Y can

be expressed as

Y (s)|Z1, Z2 ∼ N

(
β01

> + k1

3∑
i=1

βiXi(s) + Z1(s) + k2Z2(s), σ2I

)
,

Z1(s) ∼ N (0,Φ) , (5.6)

Z2(s) ∼ N (0,Ψ) , (5.7)

Φij =

 πij exp
(
− |si−sj |

rΦ

)
if si and sj are flow-connected,

0 otherwise

Ψij = exp

(
−||ci − cj||

rΨ

)

where |si − sj| was the stream distance between locations si and sj, rΦ and rΨ were range

parameters for each spatial process, and πij was a set of weights determined by the number

and influence of branches between locations si and sj. ci represents the ith row of C. The

processes {X1}, {X2}, and {X3} involved in the linear component β01
> +

∑3
i=1 βiXi(s),

were each based on moderately smooth TU spatial structures, to simulate spatially pat-

terned covariate effects. To simulate the effect of observing a variable that is not related

to the response variable, we set β3 = 0. The remaining variables {X1} and {X2} were set

to have a significant association with Y with coefficients β0 = β1 = β2 = 1. In order to

simulate unobserved confounding, X2(s) was assumed unobserved, and was not included
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Parameter Levels Interpretation
k1 {0.1, 1} Strong/weak linear effect
k2 {0, 1} Presence/absence of Euclidean structure
θv {0.3, 1} Long/short range TU structure
n {50, 500} Small/large number of observations

nseg {100, 2000} Small/large network

Table 5.1: Summary of parameters and associated levels involved in the simulation
study design.

in model fitting.

We varied the spatial components (TU and Euclidean), fixed effects, and covariance param-

eters, as well as the number of network segments and observations (Table 5.1)to generate

a total of 32 different simulation scenarios. The Euclidean component, Z2, was specified

by a fixed range of rΨ = 0.3v where v was the maximum separation between points on

the network, with partial sill of 1. The binary control parameter k2 denoted the pres-

ence or absence of Euclidean spatial structure in the data-generating process for a given

simulation scenario. For the TU component, Z1 the range parameter rΦ was set to take

two possible values, {0.3v, v}, in order to simulate spatial network structures with both

long and short range dependence. The parameter k1 scales the strength of the spatial

component relative to the linear component and was given the values {0.1, 1}. All TU and

Euclidean components require nugget and partial sill parameters that we fixed at 0.1 and

1, respectively.

The choices of spatial structure detailed here combined with the spatial structures of the

observation locations outlined in Section 5.4.1 give rise to a total of 32 different simulation

scenarios. A summary of the parameter choices for each of the scenarios is shown in Table

5.1.
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5.4.3 Model fitting and measuring performance

In addition to fitting the models of VHPT and OD, it was also desirable to compare each

of the model’s relative performance to some baseline model. This model could take a

number of forms, although for simplicity, we used a standard linear regression model that

disregards residual spatial dependence. The three models that were fitted to the vector of

observations Y (s), when only the TU spatial structure was simulated were

VHPT β01
> + β1X1(s) + β3X3(s) + Z1(s) + ε, (5.8)

OD β01
> + β1X1(s) + β3X3(s) + βs + ε, (5.9)

Linear β01
> + β1X1(s) + β3X3(s) + ε, (5.10)

where ε is independent N(0, σ2I) and Z1 is a TU spatial process with unknown sill (θ)

and range parameters (r) as described in Section 5.3. The spatial component βs in (5.9)

was constructed from an n × nseg binary stream segment membership matrix and vector

of nseg spatial parameters. When Euclidean spatial dependence was present in addition to

TU, the following appended models were fitted

VHPT β01
> + β1X1(s) + β3X3(s) + Z1(s) + Z2(s) + ε, (5.11)

OD β01
> + β1X1(s) + β3X3(s) + βs +m(x,y) + ε, (5.12)

Linear β01
> + β1X1(s) + β3X3(s) + ε, (5.13)

where the VHPT model in Equation 5.11 includes an additional Euclidean spatial Z2 pro-

cess with exponential covariance function and unknown range and sill parameters. Simi-

larly, the OD model in Equation includes a bivariate smooth term m(x,y) = B(x,y)γ′ =

(B(x) ⊗ 1k) � (1k ⊗ B(y)) where B(y) and B(x) were B-spline basis matrices each with

k knots; [x>,y>] correspond to the vector of network locations s transformed back to

Cartesian coordinates, and γ was a vector of basis coefficients also estimated by penalised
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least squares, where smoothness was controlled by a single control parameter.

5.5 Results

The performance measures resulting from summarising the model fits under each of the

3 models have been divided into 4 sets of plots. The first two show prediction perfor-

mance - Figure 5.4 displays summaries of predictive performance for models (5.8), (5.9)

and (5.10) fit to data with TU structure, while Figure 5.5 summarizes predictive perfor-

mance for models (5.11), (5.4.3) and (5.13) fit to data with TU and Euclidean mixture

covariance structures. Switching to estimation of fixed effects, Figure 5.6 shows perfor-

mance summaries of models (5.8), (5.9) and (5.10) fitted to TU data, and Figure 5.7 shows

performance summaries of TU/Euclidean mixtures fitted by models (5.11), (5.4.3) and

(5.13).

For Figures 5.4 and 5.5, RMSPE, bias and 90% prediction interval coverage are plotted

across the different spatial structures considered, which are identified on the x-axis, while

results corresponding to sample sizes are shown by differing points and line types within

each panel. Figures 5.6 and 5.7 differ from 5.4 and 5.5 only in that they illustrate per-

formance associated with estimating fixed effects, and therefore the top two panels show

RMSE rather than RMSPE. In this Section, the main findings regarding predictive perfor-

mance are first described for all scenarios, followed by those for fixed effects estimation.

5.5.1 Predictive performance

Under all scenarios, the spatial models outperformed the linear model, and of these, VHPT

performed slightly better than OD (Figure 5.4). Under the nseg = 2000 and n = 100
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Figure 5.4: Predictive performance summaries for VHPT (solid lines), OD (long dashed
lines) and linear models (dot-dashed lines) fit to data with TU spatial structure. The
top panel shows the relative RMSPE for each technique, the middle shows the bias and
the bottom shows the prediction interval coverage. The four x-axes index the different
choices made in fixing the spatial structure of the simulated data. Values for n = 100 are
shown to the left and n = 500 to the right above each parameter combination.



Chapter 5. Validation of river network models 110

1
2

3
4

Segments = 100

S
pa

tia
l R

M
S

P
E

Segments = 2000

−
0.

03
−

0.
01

0.
01

B
ia

s

0.
87

0.
89

0.
91

P
re

di
ct

io
n 

in
te

rv
al

 c
ov

er
ag

e

θv= 0.3

k1 = 0.1

θv= 1

k1 = 0.1

θv= 0.3

k1 = 1

θv= 1

k1 = 1

θv= 0.3

k1 = 0.1

θv= 1

k1 = 0.1

θv= 0.3

k1 = 1

θv= 1

k1 = 1

Figure 5.5: Predictive performance summaries for VHPT (solid lines), OD (long dashed
lines) and linear models (dot-dashed lines) fit to data with TU and Euclidean mixture
spatial structure. The top panel shows the relative RMSPE for each technique, the middle
shows the bias and the bottom shows the prediction interval coverage. The four x-axes
index the different choices made in fixing the spatial structure of the simulated data.
Values for n = 100 are shown to the left and n = 500 to the right above each parameter
combination.
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scenario, the prediction error was almost equivalent for each of the models. Despite some

differences in scale, broadly similar patterns are visible across the different simulated spa-

tial structures; the lowest RMSPE is associated with data exhibiting a long spatial range

and a weak linear component, while the highest RMSPE is associated with short spatial

range and a dominant linear component.

In general, prediction bias is highest overall under the smallest sample size of n = 100

(Figure 5.4). Similar patterns are visible for all three models in the TU only scenario

where the linear model performs only slightly more poorly than the others. When the

Euclidean component is present, the relative performances (Figure 5.5) are less easily in-

terpreted, although VHPT clearly achieves a lower level of bias than OD and the linear

model. However, the bias is relatively small compared to RMSPE, and so all estimates can

be considered unbiased.

When n = 500 most of the empirical interval coverages lie very close to the nominal level

of 90% (Figures 5.4 and 5.5). However, when n = 100 and nseg = 100, VHPT and OD

achieve slightly lower coverages of between 0.87 and 0.89. It is notable that for the model

of VHPT, this feature is only visible when nseg = 2000.

5.5.2 Fixed effects estimation

Similar patterns in RMSE to those in RMSPE were found across each simulated spatial

scenario (Figures 5.6 and 5.7), where VHPT performs the best, closely followed by OD

and the linear model performs relatively poorly. An exception occurs when n = 100 and

nseg = 2000 where the error rates are essentially equivalent. Bias (middle panels of Figures

5.6 and 5.7) is low overall, and is roughly similar for each of the three models. As with

prediction bias, the estimation bias is low relative to RMSE and indicates that these are
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Figure 5.6: Summaries of estimation performance for VHPT (solid lines), OD (long
dashed lines) and linear models (dot-dashed lines) fit to data with TU spatial structure.
The top panel shows the relative RMSE for each technique in estimating the linear param-
eters, the middle shows the bias and the bottom shows the confidence interval coverage.
The four x-axes index the different choices made in fixing the spatial structure of the
simulated data. Values for n = 100 are shown to the left and n = 500 to the right above
each parameter combination.
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unbiased estimates.

For networks with nseg = 100 (bottom left panels of Figures 5.6 and 5.7), empirical cov-

erages for VHPT and OD approaches differ markedly: regardless of spatial structure and

n, VHPT achieves the nominal 90%, while OD coverages are between 70% and 80%. For

larger networks, the coverages occupy a narrower range of values around the target and

VHPT are closest to the 90%. Interestingly, when n = 100, OD performs better than when

additional data are present.

5.5.3 Computation

In addition to the empirical properties of estimation and prediction, we compared the

relative computation times for each of the spatial models. The time taken for the VHPT

model increases rapidly with n, whereas larger models can be fit with OD relatively quickly

(top panel of Figure 5.8). The time taken to fit the model of VHPT remains constant across

nseg, while for the model of OD, the time to fit increases with network size, although the

time taken is still less than under VHPT (bottom panel of Figure 5.8).

5.6 Discussion

In this chapter, two different approaches to modelling stream networks have been com-

pared across a wide variety of simulated data. Across most scenarios, it was found that the

the models of VHPT are most flexible and attain the highest levels of predictive accuracy

while maintaining good estimation of the fixed effects terms, although in certain cases, OD

perform comparably and for a much lower computational cost.
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Figure 5.7: Summaries of estimation performance for VHPT (solid lines), OD (long
dashed lines) and linear models (dot-dashed lines) fit to data with TU and Euclidean
mixture spatial structure. The top panel shows the relative RMSE for each technique in
estimating the linear parameters, the middle shows the bias and the bottom shows the
confidence interval coverage. The four x-axes index the different choices made in fixing
the spatial structure of the simulated data. Values for n = 100 are shown to the left and
n = 500 to the right above each parameter combination.
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Figure 5.8: Plots showing how computation time scales with number of data points
n (top panel) and with number of stream segments nseg (bottom panel). The shaded
regions contain the computation times between the upper 95% percentile and the lower
5% percentile where the dark grey regions correspond to the models of OD and the light
grey regions to VHPT.
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From the outset we aimed to answer the question, when is each model appropriate? The an-

swer to this question as illustrated by the size of the study presented and from the results,

cannot be straightforward and must depend on the particular data under consideration

and the goals of the modeller. The interpretation of the results of the study presented here

is nuanced because the tail-up model of VHPT under comparison is the true model for

the simulated data, and therefore the relative performances of the three models may not

generalise to all real applications. The decision to simulate from this particular covariance

model reflects the type of spatial structures that are typical in practice, and recognises that

the SSN software is a convenient way in which these otherwise highly complex structures

can be readily simulated.

Despite this, some general guidance can be drawn from the study, for example networks

in which more information is available about dependence within stream segments, for ex-

ample, scenarios in which lots of data are available or the network is not very large, the

moving average approach offers a more flexible and realistic description of the spatial struc-

ture of the stream network. This contrasts with the situation in which the ratio of stream

segments to data points is much larger, so that little information on within stream seg-

ment dependence is available, and the predictive accuracy of both models is almost the

same. Under these types of scenarios in the study, spatial dependence is driven entirely

by the confluence mixing and associated flow weights, and such structures form the con-

ceptual underpinning of the models of O’Donnell et al. (2013) and so it is therefore to be

expected that the two models are roughly equivalent. As might be expected, when the

data consist of few data points on a very large network, good estimation and prediction is

strongly inhibited, and this property is reflected by the near-equivalence of parameter es-

timates and prediction errors for each of the models that were fitted under these conditions.

Although differences in methodology drive the differences in performances observed in

this work, it is also the flexibility of the supporting software that can make particular
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approaches more or less attractive for modelling. It is therefore important to emphasise

that the comparison presented is necessarily partial, and that the two frameworks admit

desirable extensions, some of which are exclusive of one another. For example, SSN allows

the fitting of generalised spatial models with a variety of commonly used link functions,

and also permits the fitting of mixtures of spatial covariance structures including the re-

cently developed ‘Tail-down’ construction. On the other hand, the methodology described

by O’Donnell et al. (2013) was primarily concerned with capturing non-linear functional

relationships between covariates, and the software, smoothnetwork, allows the fitting of

additive models based on P-splines, in addition to the network construction described here.

This feature can be particularly useful for capturing spatial and spatio-temporal effects.



Chapter 6

Conclusions and extensions

6.1 Summary of thesis contributions

This thesis has been primarily concerned with developing more flexible ways to represent

the complex hydrological and meteorological relationships that underpin rainfall, flow and

dissolved pollution observed within a river catchment. A common feature of the relation-

ships that have been investigated is that they do not appear to adhere to any a priori

functional form, and this thesis illustrates the utility of smoothing techniques in such con-

texts. Semiparametric models, which are summarised in Chapter 2, are supported by a

well established literature and are powerful devices for exploring non-linearity between

variables in a regression context. The work documented promotes the use of P-splines as

a framework for fitting flexible functions, because of the simplicity involved in setting up a

uniformly spaced basis, the conceptual intuitiveness of applying difference penalties on this

basis to attain appropriate smoothness, and the high level of computational convenience

that can often be exploited. In particular, this thesis emphasises computational simplicity

and therefore presents a suite of methods that are appropriate for exploring the large data

sets that are increasingly common in environmental monitoring and research.

118
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6.1.1 Distributed lag models for hydrological data

The work of Chapter 3 focuses on the problem of representing the time-lagged dependence

between high frequency rainfall and flow time series. Previous approaches to modelling can

be roughly separated into two types: the first involves the use of complex deterministic rep-

resentations of the physical environment that affect river flow, while the second constructs

statistical representations of the data generating process, drawing on ideas from traditional

time series analysis. Time series approaches can be computationally convenient and are

designed to represent uncertainty appropriately, both of which are often lacking from a

mechanistic modelling approach. However, time series approaches suffer from being less

powerful, because the level of detail required to capture the dynamics of flow generation

are unlikely to be present in a small set of time series. Section 3.6 demonstrated how a

novel statistical specification using flexibly structured, time-varying coefficient models can

be successful in capturing hidden temporal structure in the relationship between rainfall

and river flow. As a result of this flexible model, it was possible to identify that the degree

of responsiveness of flow rates to preceding rainfall is noticeably amplified when the rainfall

occurs during or after a period in which rainfall has been persistent. This effect is well

known, and is driven by the changing proportion of rainfall that is converted to runoff and

baseflow, which in turn is a complex function of the saturation of the surrounding land.

This led to a refined distributed lag model which was constructed in Section 3.6.1 and was

able to attribute some of the time variation in the rainfall-flow relationship to the impact

of a slowly varying proxy variable, used to represent latent ground saturation processes.

Although the work of this chapter begins from a statistical viewpoint as others have, the

models it describes are successful in accommodating a much wider range of temporal depen-

dence structures than have been previously. The work highlights a novel application and

extension of distributed lag models that are more commonly seen in short-term air pollu-

tion studies and often assume a fixed lag structure. An interesting possibility for extending
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distributed lag models fitted to hydrological data would be to synthesise a model in which

deterministic non-linear structure could be combined with the statistical representation

outlined in this thesis.

6.1.2 Flexible regression for river networks

Chapter 4 is devoted to the problem of constructing appropriate spatial models for data

sampled on a river network. In particular, the work described how to make predictions at

locations in space given a very sparse coverage of sampling points across the spatial stream

network, and how to capture non-linear relationships between covariates and the measured

variable of interest. The solution presented respects the importance of flow-connectivity

and the influence of confluences and relative flow volumes, which are fundamental require-

ments for representing spatial dependence in stream network data. The spatial dependence

was represented in the new model by imposing a quadratic penalty on neighbourhoods of

parameters defined for each stream segment. The penalty incorporated all available in-

formation about flow connectedness, the locations of confluences and relative flow levels.

Chapter 4 successfully described how to exploit the sparse matrices implied by the design

and penalty matrices specification which results in very fast computation and low storage

costs. The models developed were applied to data from the River Tweed, a very large

dendritic network in South East Scotland, where the presence of complex spatio-temporal

structure was identified.

The contribution made by Chapter 4 is important primarily because it is the first major

attempt to embed a valid representation for spatial dependence over a stream network

within an additive model, which is essential for capturing non-linear dependence that is

present in environmental systems. The spatial component itself lends itself to fast compu-

tation compared to other approaches that are based on, for example, Gaussian processes

which require the construction, multiplication and inversion of n× n covariance matrices,
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rendering models with more than n = 103 data points difficult to fit. Finally, as was shown

in Section 4.5, having defined a representation of the spatial structure of the network, it

is relatively straightforward to introduce non-separable space time structure using the ap-

propriate tensor-product basis.

Despite the methodological contributions made by Chapter 4, the utility of the new model

can only be assessed by a comparison with other existing techniques. In particular, the

work described first in the pioneering paper by Ver Hoef et al. (2006) has been particularly

important in the field of stream network modelling, and instrumental to the success of

this approach has been the development of software that eases the process of extracting

and processing data from a geographical information system into an appropriate format

for modelling. Their software permits the fitting of a suite of Gaussian process models

developed for stream network data, where carefully constructed covariance functions are

adapted to the purpose of incorporating flow connectedness, direction and measuring spa-

tial separation along the path of the river instead of standard Euclidean separations.

In recognition of the capability of the existing Gaussian process approach, Chapter 5 pro-

vides a direct comparison of the semiparametric model described in Chapter 4 with those of

Ver Hoef et al. (2006). The comparison was made primarily by a very large empirical study

of the relative performances of the models on some realistic simulated stream network data,

constituting a model validation study that has not previously been undertaken for either

framework. As a result of the comparison, Chapter 5 also describes user friendly software

that was developed for implementing the models of Chapter 4, which is also critical for

their adoption by a wider community of researchers. The chapter provides clear insight into

the performance differences of the models, while also contributing an overall view of the

individual performance of each model across a wide variety of data types. The comparison

highlighted differences between the two approaches, most noticeably when the network is

small and the data are large, in which the model of VHPT performs best. This outcome is
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as expected, since the penalised model approach does not permit variation within stream

segments, and therefore has limited flexibility in cases where sampling has a dense enough

spatial coverage that this can be detected.

6.2 A spatial distributed lag model for grid rainfall data

6.2.1 Rainfall RADAR

The work of Chapter 3 has shown that a suitably parameterised distributed lag function,

can act as a discrete approximation to the true underlying time-lagged relationship that

exists between a single time-series of rainfall at a single location in space and downstream

river flow levels. Section 3.7, highlighted that this relationship is strongly influenced by

spatial heterogeneity in the rainfall process, which cannot be represented by data obtained

from a rain gauge at a single spatial location. Very sparse spatial sampling of precipitation

is also typical in most regions in the UK, which means that the use of multiple rain gauges

is unlikely to provide the required level of detail. Fortunately, other methods exist of

measuring rainfall patterns at high spatial resolutions exist, such as that obtained using

RADAR imaging.

Radio detection and ranging (RADAR) works by measuring the intensity and time delay in

receiving a reflected pulse of radio waves and as a result is able to accurately estimate the

location of objects. RADAR systems are widely used by the UK Meteorological Office to

detect the location and intensity of rainfall events at a fine spatial and temporal resolution

(UK Meteorological Office (2013)), and UK-wide data are available as part of the UK

Meteorological Office NIMROD data set (UK Meteorological Office (2003)) at 1km2 spatial

resolution at 5 minute intervals. An illustration is provided in Figure 6.1 which displays

part of a Meteorological Office rainfall RADAR image for a 5 minute snapshot over the
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Figure 6.1: Rainfall RADAR snapshot over the River Dee catchment at 0015 on October
10th 2004. Black points represent 1km2 cells across the River Dee where the RADAR
observed no rainfall, while elsewhere the corresponding cells are coloured according to
the observed intensity. Red points represent the highest intensity rainfall, green points
represent moderate intensity and blue points represent low intesnity rainfall. Note that
the mountainous west of the catchment experiences much higher precipitation than the
east.

River Dee catchment in Scotland. Although by comparison to individual rain gauges,

RADAR images appear to provide a very rich source of spatial and temporal information,

there are a number of issues with such data which must be considered if these data are to

be used for rainfall flow analysis.

1) RADAR measures reflectivity of layers of the atmosphere, and although

efforts are made to calibrate the observed reflectivity against rain gauge data,

the complexity of atmospheric meteorology means that there is no guarantee

that the RADAR measures correspond to ground observations.
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2) RADAR depends on clear line of sight in order to construct an accurate

image, obstacles such as buildings and mountain regions inhibit this.

3) Rainfall and snowfall are not easily distinguished, and moderate snowfall has

high reflectivity and appears as a heavy rainfall event.

6.2.2 A DLM for spatial rainfall data

An ideal model would allow non-linear, time-lagged dependence between each individual

pixel from each of a set of rainfall RADAR images and a sequence of river flow measure-

ments at a single location. With this type of model structure it could be possible to account

for sudden flow events with functions of the intensity and distance of storms observed in the

RADAR data. This level of spatial detail was not possible using the approach in Chapter

3, and is vital to build a realistic picture of the rain and flow dynamics in the area: for

example, heavy rainfall occurring at points high in the River Dee catchment (shown in the

left side of Figure 6.1) should take longer to appear as a flow increase downstream, than

would a storm that is close to the river flow monitoring location. As a result, a better

but more complex model would also allow spatially-varying time-lagged dependencies, to

better account for spatial heterogeneity in water transit time across the catchment.

In order to allow greater flexibility in model specification, it is likely that a Bayesian

analysis would be an appropriate tool to fit the complex models needed to represent the

responsiveness of river flow to rainfall grid data. However, the models described here could

still be fitted using the more traditional smoothing framework described throughout this

thesis. Letting the time series of n flow observations be denoted by f = (f1, . . . , fn)>

and the pixels of the spatial rainfall grid by r(x,y, t) = (r(x1, y1, t), . . . , r(xk, yk, t)) where

r(xi, yi, t) represents the rainfall intensity at grid cell with centroid (xi, yi), at time t.

Following the ideas in the previous paragraph and directly extending the distributed lag

models of Chapter 3, the expected flow levels µ = (µ1, . . . , µn)> could be represented by a
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weighted sum of rainfall in space and time, up to a maximum time lag of L, such that

f |µ, σ2 ∼ N(µ, Iσ2)

µt =
k∑
i=1

L∑
l=1

r(xi, yi, t− l)β(xi, yi, l) (6.1)

where the k grid cells are those that lie in the area of land that drains to the point at which

f is measured. Equation 6.1 describes flow levels as a linear combination of rainfall, where

the weights β(xi, yi, l) vary in space. Beven (2001) notes that this type of approach has been

attempted, but that correlation between rainfall in space and time means it is difficult to

identify the parameters associated with multiple transfer functions in space; however, with

an appropriate penalisation included in the model specification using the flexible regression

framework used throughout this thesis, it is possible that some progress could be made.

As in Chapter 3, the dimensionality of the model implied by this specification could be

prohibitive, requiring the estimation of potentially many β parameters. By reducing this

large set of parameters to a smaller set of coefficients that are associated with a modest

B-spline basis, the computations could be made feasible. Smoothness across adjacent β

seems justified, because underlying properties of the drainage area in neighbouring grid

cells are likely to share similar land uses, altitudes and gradients, and are therefore more

likely to exhibit similar lagged rainfall-flow relationships, given the same rainfall input. To

achieve this smoothness and reduce the number of parameters to estimate, β(xi, yi, l) is

represented by a 3-dimensional B-spline basis, defined in space and across lags so that

ln[β(xi, yi, l)] =

k1∑
a=1

k2∑
b=1

k3∑
c=1

θa,b,cBa(xi)Bb(yi)Bc(l) (6.2)

where Ba(), Bb() and Bc() represent sets of evenly spaced B-spline basis functions of

dimension k1,k2 and k3, respectively. It is important to maintain the interpretation of a

positive response function β(xi, yi, l) existing at each location i, Equation 6.2 represents

smoothness for the set of β on its log scale in order to maintain an interpretation in terms

of a positive transfer function, i.e. it does not make sense to allow rainfall to reduce levels
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of river flow. Using the above reparametrisation, the problem has been reduced from

estimating k×L parameters, to k1× k2×k3. In order to ensure that the appropriate level

of smoothing is chosen for θ = (θ1,1,1, . . . , θk1,k2,k3)> and in turn β, a smoothness-inducing

prior distribution should also be used:

θ ∼ N(0,Q−1)

Q = λ1D
>
k1
Dk1 ⊗ Ik2×k3

+λ2Ik1 ⊗D>k2
Dk2 ⊗ Ik3

+λ3Ik1×k2 ⊗D>k3
Dk3

where the prior precision matrix Q is constructed from Kronecker products of marginal

penalty matrices D>k1
Dk1 , D

>
k2
Dk2 and D>k3

Dk3 as described in Equation 3.1.

6.2.3 Issues and considerations

Computationally, the model described in Section 6.2.2 could still be very challenging to fit

even after reducing the space and lag parameters to a set of basis parameters, and requires

the estimation of k1 × k2 × k3 parameters associated with this 3-dimensional basis. The

model would be fitted using Bayesian inference, allowing more flexibility in how the model

is specified, but means that some stochastic simulation algorithms such as Gibbs sampling

will be required to draw samples from the relevant posterior distributions. On the other

hand, some of the features that make the models in Chapter 3 easier to fit apply in this

spatial context too, for example spatial rainfall is dominated by an abundance of 0 obser-

vations and so the data can be represented using sparse matrix algorithms.

Conceptually, the spatial DLM is a straightforward extension of the univariate DLM fitted

to the River Dee data, but there are some reasons that the model proposed in Section 6.2.2

is naive. The spatial model assumes that, rainfall is converted to river flow according to
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a fixed response function specific to a particular point in space. Although some account

is taken of the similarity between response functions at two closely located points, there

is no representation of how these might interact. For example, it is likely that following

heavy rainfall at high altitude the response functions at lower altitudes nearby are directly

changed as a result of water running downhill and subsequently saturating low lying areas.

Therefore, a feature of this future work should involve allowing for local interaction in

addition to the smoothness already specified.

6.3 A continuous functional representation for river net-

works

Chapter 4 dealt with representing spatial smoothness on a river network through a set of

penalised piecewise constants that join at confluence points. However, the study of model

fit performance documented in Chapter 5 showed that in settings where high frequency

spatial structure was present and enough data exists to detect it, the models of Ver Hoef

et al. (2006) had much better confidence interval coverage and out-of-sample prediction

than the penalised model, where a piecewise constant network structure was assumed. It

would therefore be a highly desirable extension to Chapter 4 to build a model using a con-

tinuous basis representation of the spatial network, permitting the expected value of the

spatial response at different locations on the same stream segment to lie on a smooth func-

tion. This natural extension has already been suggested by Cressie & O’Donnell (2010),

who describe a need to build models that do not require the assumption of a stationary

process as is the case with models based on covariance functions (such as Ver Hoef et al.

(2006) and Cressie et al. (2006)). A functional approach based on continuous B-spline

basis representation could allow relatively fast computation if the matrices remain sparse,

and could therefore be computationally attractive. In moving towards this smooth model,
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there are three main challenges that must be overcome:

1) constructing an appropriate basis along stream paths

2) respecting the mixing behaviour at confluence points

3) setting up an appropriate roughness penalty on the basis coefficients.

While attempting to address each of these three points, the following section outlines a

more advanced extension to the river network models described in Chapter 4 that could

form a part of future research.

6.3.1 Basis functions on stream paths

One of the simplest ways to set up a basis could involve B-splines uniformly spaced over

all branches of the river network using a basis expansion at each location defined as

(B1(r), B2(r), . . . , Bp(r)) (6.3)

where r is the distance upstream of a given network location from the river mouth. The

advantage of this specification is that the spacing of the functions depends only on p,

the chosen number of functions for the basis and can be adjusted so that each segment

is represented by a minimum number of basis functions. In addition, the basis set is

defined on the distance upstream r, and is therefore not dependent on the locations or

features of particular stream segments in which the location resides. Ordinarily, the fitted

value at a location resulting from this basis would be given by the linear combination

(β1B1(r) + β2B2(r) + . . .+ βpBp(r)), however, this specification implies the same fitted

value at different locations that share the same upstream distance r. This issue can be

avoided most easily by simply allowing the vector of parameters (β1, . . . , βp) to vary across
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the network. In the following section, an attempt to address this issue while maintaining

a relatively simple basis specification is sketched.

6.3.2 Representing mixing behaviour at confluences

Section 6.3.1 describes a simple way to define B-spline basis functions on the connected

stream segments that make up the river network. The next step is to introduce an expanded

set of parameters, and make some adjustments to the basis in Equation 6.3 in order to

incorporate the influence of confluence points, particularly in the case where two upstream

segments contribute very different flow volumes at the point of confluence. In order to

develop this property, a similar argument to that used to justify Equation 4.3 can be

employed.

	
  

Figure 6.2: Illustration of B-spline basis across a confluence, where the basis is ‘split’
at the confluence point.

Figure 6.2 provides a visual representation for one of the basis defined in Equation 6.3,

for three stream segments joined by a confluence point. The functions on the two up-

stream components are symmetrical, in the sense that at locations ri and rj, (distance r
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upstream on segments i and j), the basis expansions are equal as a result of Equation 6.3

that (B1(ri), B2(ri), . . . , Bp(ri)) = (B1(rj), B2(rj), . . . , Bp(rj)). However, Figure 6.2 differs

from Equation 6.3 because the basis defined over the downstream segment (on the right

hand side of Figure 6.2) have been split from the parts of the basis functions that are

defined on the two upstream segments. In other words, any basis function that is non-zero

over both the downstream and upstream segments, is separated into 3 separate functions.

Splitting the basis in this manner allows some notion of basis functions ‘belonging’ to each

segment, which makes it easier to define separate penalties for small scale within segment

smoothness, and for larger scale between segment variability that is due to mixing of water

at confluences.

Following this adjusted basis specification, each stream segment s is then associated with

a set of parameters β(s, 1), . . . , β(s, ps) and each of these in turn corresponds to a set of

ps basis functions, where ps is the number of basis functions that occur on segment s as

defined by the ‘splitting’ procedure just described. The expected value of a response vari-

able on the network y(s, r), is then given by E(y(s, r)) =
∑ps

i=1 β(s, i)B∗i (r, s) where the

B∗i (r, s) denotes the basis functions defined on segment s after the splitting operation. This

specification automatically induces smoothness within each individual stream segment s,

and with the addition of a roughness penalty for each segment smoothness could also be

controlled. However, this description does not allow for borrowing of strength between

stream segments, a mechanism which is now described.

For the idealised confluence shown in Figure 6.2, let the upstream segments be labelled

a and b with the downstream segment called c. Associate with each of these a flow level

fa, fb and fc and a set of basis functions (B1(r, a), . . . , Bpa(r, a)), (B1(r, b), . . . , Bpb(r, b))

and (B1(r, c), . . . , Bpc(r, c)), respectively. Then define the first functions in each set as

B1(r, a), B1(r, b) and B1(r, c), those that lie farthest upstream on their respective stream

segments. In order to enforce smoothness on the fitted function that occurs within each
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stream segment, define the roughness measure R1(β), by

R1(β) =

pa∑
i=2

(β(a, i)− β(a, i− 1))2

+

pb∑
j=2

(β(b, j)− β(b, j − 1))2

+

pc∑
k=2

(β(c, k)− β(c, k − 1))2 . (6.4)

In addition to the above an additional penalty that represents roughness across adjacent

stream segments that are connected by a confluence, and in proportion to the flow contri-

bution of the upstream elements can be constructed.

R2(β) =
f 2
a

f 2
c

(β(a, pa)− β(c, 1))2 +
f 2
b

f 2
c

(β(b, pb)− β(c, 1))2 , (6.5)

using the same idea of mass balance that underpins the simpler penalty shown in Equation

4.2. If a vector of observations y = (y1, . . . , yn) is observed across segments a, b and c, then

incorporating the roughness measures described in Equations 6.4 and 6.5 the parameters

associated with all of the basis functions could be obtained by minimising the objective

function

min
β,λ1,λ2

[
(y −Xβ)>(y −Xβ) + λ1R1(β) + λ2R2(β)

]
.

where

X =



B1(ry1 , a) . . . Bpa(ry1 , a) B1(ry1 , b) . . . Bpb(ry1 , b) B1(ry1 , c) . . . Bpc(ry1 , c)

...
...

...
...

...
...

...
...

...

B1(ryn , a) . . . Bpa(ryn , a) B1(ryn , b) . . . Bpb(ryn , b) B1(ryn , c) . . . Bpc(ryn , c)





Chapter 6. Conclusions and extensions 132

6.3.3 Issues and considerations

In the previous section, a possible method for constructing a smooth functional representa-

tion for responses on river networks based on penalised B-spline basis functions was given.

The ideas are similar to those presented in Chapter 4, except that here, smoothness within

stream segments is possible.

The most important problem that would need to be overcome in implementing this ex-

tended model is the result of choosing the number of B-spline basis functions required to

represent the network. As an illustrative example, assuming a moderate network size of

300 segments of equal length, a conservative choice might be to allow 5 basis functions

per segment. This would result in a total of 1500 parameters to be estimated and could

hamper any possibility of building space-time interaction models if not handled carefully.

On the other hand, the model matrix that would be constructed to fit this model is sparse

by construction, as the fitted value associated with an observation only depends on the

basis functions within the stream segment on which it was measured, and it is highly likely

that very fast bespoke routines could avoid much of the computational cost that would

otherwise be incurred.

6.4 General remarks on future research

The work of each chapter of Chapters 3, 4 and 5 admit some desirable extensions that have

been discussed in detail in the preceding two sections. However, the real potential for the

methodologies described here lies in the possibility of integrating the components of rain-

fall, flow generation and measures on the network into a single modelling framework. To

see the importance of this, consider that the methods developed by Ver Hoef et al. (2006)

and also as described in Chapter 4 and in O’Donnell et al. (2013), the set of weights used to
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represent the proportional influences of upstream segments on downstream segments across

confluences are assumed fixed. This assumption simplifies the analysis, as it means that

the spatial penalty matrix of O’Donnell et al. (2013) and the spatial covariance matrix is a

function of only one or two parameters. In addition, the set of weights are often intended to

correspond to the relative influence of different flow rates, but because river flow is rarely

measured across the whole set of stream segments proxy variables are often used instead,

such as Shreve order sub-catchment drainage area, which might be appropriate when the

measured variables are of a low temporal resolution, but not on shorter time scales when

flow levels can change dramatically and differentially in space.

A relatively simple improvement might be obtained by treating the set of flow weights as

random variables, assigning each an appropriate distribution that is centered on the weight

resulting from a proxy measure or other estimate. This adjustment would be most easily

implemented in a Bayesian hierarchical framework, and allows some measure of uncertainty

about the set of weights. If the data are measured at high temporal resolution, and interest

lies in capturing spatio-temporal structure, then it is important that the set of flow weights

is not only treated as a random variable, but one with a time varying mean component. In

this regard, it would be a very interesting possibility to build a distributed lag model for the

purpose of building this time varying component, that should also vary across the network

allowing a direct connection to be made between rainfall, flow levels and subsequent flow

dependent attributes such as temperature and dissolved pollution.
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