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Abstract 

Pulmonary arterial hypertension (PAH) is a progressive and debilitating disease 

characterised by increases in pulmonary vasoconstriction and excessive 

remodelling of the pulmonary arteries.  Together, these processes lead to 

sustained elevations in pulmonary arterial pressure, right heart failure and 

eventual death if left untreated.  Despite the number and variety of treatment 

options available, the survival rate in incident and prevalent cases of PAH 

remains poor.  Therefore, a better understanding of the pathobiology of PAH is 

required to generate novel therapeutic approaches with improved efficiency in 

patients.  In PAH there is a well described gender bias.  Women are consistently 

reported to represent up to 75% of the total PAH population; however, the 

reasons for this female predominance remain unclear.  Recently, estrogen has 

been implicated as a major risk factor, for example, elevated estrogen levels 

and alterations in estrogen metabolism are closely correlated with PAH 

development in females.  The role of testosterone in PAH is currently under 

investigated. 

Effects of estrogen are mediated through two classical estrogen receptors (ER)-α 

and –β, or the novel G-protein-coupled estrogen receptor (GPER).  Expression of 

all of these receptors is identified in pulmonary vasculature, including in smooth 

muscle and endothelial cells.  The role they play in PAH pathogenesis in females 

is largely undetermined.  Given the diverse effects of estrogen described in the 

pulmonary vasculature during PAH, for example, proliferative effects in 

pulmonary artery smooth muscle cells (PASMCs), we hypothesised that estrogen 

receptors play an integral role in PAH in females.  To examine this, we used both 

translational and experimental studies to characterise ERs in PAH.  Chronic 

hypoxic male and female mice, and mice over-expressing the serotonin 

transporter (SERT+ mice), which demonstrate female susceptibility, were used to 

investigate the effects of an ERα antagonist in vivo.  GPER knockout mice were 

also investigated in chronic hypoxia.  In situ and in vitro studies in human 

PASMCs with ER agonists and antagonists added clinical relevance to our 

findings.  In addition, testosterone manipulation was investigated in male mice 

by castration in vivo. 
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Immunohistochemistry, immunoblotting and qRT-PCR analysis demonstrated that 

ERα was increased in PASMCs and pulmonary arteries from female PAH patients 

and chronic hypoxic mice, respectively.  On the other hand, ERβ was decreased 

in PAH and hypoxia.  It was also observed that females expressed higher levels of 

ERα in PAH compared to males whereas ERβ was lower in females.  PAH was 

assessed by measuring right ventricular systolic pressure (RVSP), right ventricular 

hypertrophy (RVH) and pulmonary vascular remodelling and muscularisation.  

Chronic hypoxia induced-pulmonary hypertension (PH) was attenuated in female 

mice dosed with the ERα antagonist MPP, shown by marked reductions in RVSP 

and pulmonary vascular remodelling.  Hypoxic male mice remained unaffected 

by MPP treatment.  Spontaneous PH and chronic hypoxia induced-PH observed in 

female SERT+ mice were reversed by treatment with MPP.  Immunoblotting and 

qRT-PCR analysis revealed that the possible mechanism involved in the 

beneficial effect of MPP in females in vivo involved restoring the dysfunctional 

bone morphogenetic protein receptor-2 (BMPR2) axis observed in PAH.  This 

effect was only observed in female mice.  In addition, chronic hypoxia induced-

PH in male and female mice was unaffected by GPER deletion.  Expression of 

GPER between female non-PAH controls and PAH patients was unchanged. 

In isolated human PASMCs estrogen induced proliferation was inhibited by MPP, 

but not PHTPP or G15, an ERβ and GPER antagonist, respectively.  The ERα 

agonist, PPT stimulated proliferation of human PASMCs.  Both estrogen and PPT 

induced proliferation was dependent on downstream PI3K/Akt and ERK MAPK 

activity.   

In males, testosterone deprivation by surgical castration had no effect on 

chronic-hypoxia induced PH.  RVSP, RVH and pulmonary vascular remodelling 

were unchanged in hypoxic castrated mice relative to sham controls.  

Testosterone levels, assessed by enzyme linked immunosorbent assay (ELISA) 

demonstrated no effects of hypoxia on plasma testosterone levels.  Testosterone 

levels were approximately halved by castration.  qRT-PCR analysis showed that 

in mouse lung there were also no difference in expression of the androgen 

receptor (AR) and 5α-reducatse, the testosterone metabolising enzyme.  

Testosterone had no effect on proliferation of human PASMCs, although its 

primary metabolite, dihydrotestosterone (DHT), stimulated proliferation in a 

dose-dependent manner. 
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In summary of these findings, we have identified an ERα-dependent mechanism 

of PAH in females, but not in males.  ERα is noticeably increased in female 

human PASMCs from PAH patients compared to male PAH patients.  Additionally, 

ERα activation in female human PASMCs leads to proliferation driven by PI3K/Akt 

and ERK MAPK activation.  Treatment with an ERα antagonist attenuated the 

development of chronic hypoxia induced-PH in females but not males, and 

reversed PH in SERT+ female mice.  We demonstrate that the mechanism 

attributed to the beneficial effect of MPP in vivo involved restoration of the 

dysfunctional BMPR2 signalling axis.  Our results suggest that increased ERα 

expression may drive PAH development in females.  Furthermore, we 

demonstrate that ERα does not play a key role in the development of hypoxia 

induced-PH in male mice.  In addition we conclude that testosterone does not 

contribute to chronic hypoxic-PH observed in males.  We suggest that altered 

local synthesis and metabolism in the lung and right ventricle may however, 

facilitate progression of established PAH in males and worsening survival rates.  

Overall, our results provide evidence for ERα in PAH development and implicate 

targeting ERs as a novel therapeutic target in PAH treatment. 
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Chapter 1. 

Introduction 
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1.1 The Pulmonary Circulation 

1.1.1  Structural Organisation 

The function of the pulmonary circulation is primarily gas exchange facilitating 

oxygen (O2) uptake and removal of carbon dioxide (CO2).  The structural and 

functional organisation of the pulmonary circulation reflects this purpose.  The 

pulmonary circulation continuously receives the entire cardiac output from the 

right ventricle which receives mixed venous blood draining into the right atria 

from the systemic circulation via the inferior and superior vena cava.  The 

pulmonary artery originates in the right ventricle where it bifurcates to become 

the left and right pulmonary artery, both of which extend into the hilum of their 

corresponding lungs.  The anatomy of the left lung is subdivided in to two 

segments, the superior and inferior lobes separated by the oblique fissure and 

each lobe receives a branch from the left pulmonary artery.  The right lung is 

divided into three lobes (superior, middle and inferior) separated by interlobular 

fissures and each is supplied with a branch resulting from the bifurcation of the 

right pulmonary artery.  Each of these five lobes can be further subdivided 

anatomically into bronchopulmonary segments and contain its own segmental 

bronchi and corresponding pulmonary arterial branch.  Each segment is 

functionally and anatomically distinct and as a consequence can function as a 

single entity meaning a single bronchopulmonary segment can be removed 

without affecting surrounding segments (Sealy et al. 1993).  Ultimately, the 

branching pattern differs between the left and right lung.  Distal branching in 

each lung continues in parallel series with the bronchial tree until the terminal 

alveoli are reached equivalent to fifteen orders of branching (Figure 1-1). 

1.1.2  Functional Organisation 

The primary lung function is closely related to structural and functional changes 

in the intima and media of pulmonary arteries as the branching system 

converges in the terminal alveoli.  In humans, the smallest noncapillary blood 

vessels are defined as an order 1 vessel.  This numbering continues with each 

proximal branch point until the main pulmonary artery (order 15) is reached 
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known as the Diameter-Defined Strahler’s system (Mandegar et al. 2004).  The 

proximal elastic arteries (orders 15-13; >1000µm diameter) are highly compliant 

and typically have an internal diameter greater than 1mm with increased elastic 

laminae in the tunica media to facilitate compliance.  The more distal muscular 

arteries (orders 13-4) are typically between 100 and 1000µm in diameter.  They 

progressively lose compliance with continual branching as a direct consequence 

of increased smooth muscle and decreased laminae in the tunica media.  

Phenotypically these arteries are defined by the predominance of smooth muscle 

in the media essential for blood pressure maintenance (HEATH & EDWARDS 

1958).  As the branching continues into orders 4-1 (<200µm diameter), medial 

smooth muscle becomes completely diminished and the resulting vessels are 

extremely thin-walled composed of endothelial cells and pericytes 

(undifferentiated smooth muscle cells) which function to facilitate blood-gas 

exchange in the alveoli (Figure 1-2). 

The human lung has a network of over 300 million arteries, veins and capillaries 

throughout the 15 orders of branching defined as the capillary network.  Each 

capillary has an internal diameter less than 10µm and supplies blood to several 

alveoli.  The capillary network functionally facilitates blood oxygenation 

therefore a diffuse network of capillaries is essential across the lung.  Following 

completion of circulation through the pulmonary capillaries, the re-oxygenated 

blood enters the pulmonary venous circulation via the venules and pulmonary 

veins until the main left and right pulmonary veins in corresponding lungs enter 

into the left atria. 
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Figure 1-1: Branching of pulmonary vasculature. 
Left, a typical lung cast is shown of pulmonary arterial branching.  Right, Distal branching in each 
lung reaching the alveoli equates to 15 orders of branching in the Strahler model.  

 

Figure 1-2: Musculature in the pulmonary arteries. 
In the distal pulmonary arteries there is a complete loss of smooth muscle in the media replaced by 
thin walls composed of endothelial cells and pericytes.  Adapted from (MacLean et al. 2000). 
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1.1.3  Structure of the Pulmonary Vascular Wall 

The architecture of the normal pulmonary vasculature is engineered to ensure a 

high compliance, low resistance network providing an extensive surface area to 

facilitate gas exchange.  In general the pulmonary vasculature has three 

concentric layers, adventitial, medial and intimal layers each composed of 

phenotypically distinct cells (Figure 1-3).  The outermost adventitial layer exists 

as a collagen matrix and contributes to the structural integrity of the vessel 

wall.  In this layer, pulmonary artery fibroblasts (PAFs) are the predominant cell 

type and have been identified to play an important role in response to 

environmental stimuli (Stenmark et al. 2006).  The longitudinal medial layer 

comprises several populations of pulmonary artery smooth muscle cells (PASMCs) 

including immature and differentiated smooth muscle cells with an underlying 

elastic layer (Stenmark & Frid 1998).  The medial layer is the predominant layer 

in the vascular wall capable of regulating vascular tone and blood pressure as 

PASMCs are the only cell type that produces a contractile response on 

stimulation.  The innermost intimal layer exists as a monocellular endothelial 

layer attached to an underlying connective tissue matrix, termed the basement 

membrane.  The pulmonary artery endothelial cells (PAECs) surround the lumen 

and are the only cell type in constant physical contact with blood flow therefore 

are proposed to be crucial in monitoring and regulating the luminal environment 

via release of various factors (Aaronson et al. 2002). 
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Figure 1-3: Cell types in the pulmonary vascular wall. 
Endothelial, smooth muscle cells, and fibroblasts compose the intimal, medial and adventitial layers 
of the pulmonary vascular wall, respectively.  Upon stress, for example hypoxia, immune cells such 
as macrophages, monocytes and dendritic cells, infiltrate the endothelial monolayer and stimulate 
pulmonary vascular remodelling. 
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1.1.4  Function of the Pulmonary Circulation 

In the adult human circulation, both the left and right ventricles are arranged in 

parallel.  Therefore, pulmonary blood flow is exactly equal to that of the left 

ventricle cardiac output and pulmonary arterial pressures (PAP) are directly 

related to cardiac output (Mandegar et.al. 2004).  The pulmonary circulation is 

normally a high flow, low-resistance, low-pressure system that transports blood 

into the pulmonary micro-circulation where the most important function is gas 

exchange.  Essentially, deoxygenated blood arriving from the systemic 

circulation is oxygenated by the rapid unloading of excess CO2 and subsequent 

binding of O2 molecules to haemoglobin, which resides within the red blood 

cells.  This maintains metabolic processes throughout the body. 

In addition to gas exchange, the lung also has important non-respiratory 

functions.  This includes a primary defence system whereby the pulmonary 

circulation acts as a physical barrier by filtering and preventing the passage of 

inhaled foreign bodies and pathogens from the respiratory system to the 

cardiovascular system (Comroe, Jr. 1966).  Within the cardiovascular system, it 

also acts as a physical barrier to prevent the passage of potentially lethal 

thrombi and embolic occlusion of essential arterial beds which may otherwise 

lead to infarction.  The pulmonary circulation is also proposed to function as a 

blood reservoir (Comroe, Jr. 1966).  The pulmonary vessels normally contain up 

to 500ml of blood and most of this can be rapidly mobilised to supply the left 

ventricle and maintain cardiac output. 

1.1.5  Control of the Pulmonary Circulation 

Major structural and functional differences exist between the systemic and 

pulmonary circulation.  The pulmonary circulation is a high flow, low-resistance, 

low pressure system to avoid the consequences of Starling forces which would 

otherwise flow the lung with oedema fluid.  Whilst in the systemic circulation, 

approximately 80% of vascular resistance is maintained by small muscular 

arterioles, resistance in the pulmonary circulation is relatively evenly distributed 

(MacLean et.al. 2000).  The pulmonary arteries contain less medial smooth 

muscle and elastin and therefore a thinner wall allowing for greater 
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distensibility (Kilner 2004).  As a consequence, PAP is typically 24/9mmHg and 

significantly lower than systemic arterial pressure (SAP), which is typically 

120/80mmHg (Morgan et al. 2004).  Similarly, the pressure gradient throughout 

the pulmonary circulation is 7-9mmHg, and up to ten-fold lower than those 

which exist in the systemic circulation. 

1.1.6  Pulmonary Vascular Resistance 

The pulmonary vascular resistance (PVR) is defined as the total peripheral 

resistance of flow which must be overcome to maintain continuous blood flow 

through the pulmonary arteries.  The laws of physics therefore predict that in 

blood flow through the pulmonary vasculature, PVR is inversely proportional to 

the fourth power of the radius of the lumen.  In other words, even small changes 

in the lumen size in pulmonary arteries can significantly change PVR and 

therefore PAP.  Intimal thickening and narrowing of the lumen in diseases such 

as pulmonary hypertension consequently results in sustained increases in PAP. 

1.1.7  Passive Regulation and Distribution of Blood Flow 

The relatively low pulmonary pressures combined with the mid-entry point of 

the artery into the lung and gravity contributes to an uneven distribution of 

blood flow throughout the pulmonary circulation.  For example, when upright, 

pulmonary blood flow to the apex of the lung is extremely low, whilst blood flow 

to the base of the lung is greatly increased.  Passive pressure distribution can be 

explained by subdividing the lung into three zones determined by the relative 

values of the pulmonary arterial pressure (Pa), pulmonary venous pressure (Pv), 

an alveolar pressure (PA) (Figure 1-4).  Zone 1 describes the upper portion of the 

lung, the apex, where blood flow is extremely low, and this can be explained 

because the apex alveolar pressure is greater than both the arterial and venous 

pressures (PA>Pa>Pv), resulting in collapse of the highly compliant vasculature.  

In zone 1, alveolar dead space occurs because the region is still being ventilated 

but not perfused.  In Zone 2, the mid-portion of the lung, arterial pressure is 

greatest, however alveolar pressure still exceeds venous pressure (Pa>PA>Pv) and 

therefore blood flow remains impaired.  As a result, in zone 2, the perfusion 

pressure and vessel recruitment for the pulmonary circulation increases.  Zone 3 
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at the base of the lung is below heart-level and therefore both the arterial 

pressure and venous pressures exceed alveolar pressure (Pa>Pv>PA) which allows 

the vessels to be maximally distended at all times.  During periods of increased 

blood flow there is substantial recruitment of the pulmonary vasculature in zone 

1 and 2 allowing an even distribution of blood flow throughout the lung (Harf et 

al. 1978). 
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Figure 1-4: Passive distribution of blood flow through the lung. 
Each lung is divided into three zones as determined by pulmonary arterial pressure (Pa), pulmonary 
venous pressure (Pv) and pulmonary alveolar pressure (PA). 
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1.1.8  Active Regulation and Distribution of Blood Flow 

In addition to passive distribution and regulation of blood flow in the pulmonary 

circulation, the active regulation is also an important determinant in pulmonary 

arterial pressure.  Active factors include circulating hormonal influences, 

respiratory gases and sympathetic nerves.  These factors all influence pulmonary 

vascular tone by affecting PVR. 

The pulmonary circulation is innervated by both the sympathetic (adrenergic) 

and parasympathetic (cholinergic) branches of the autonomic nervous system 

(Dawson 1984).  In addition, nonadrenergic noncholinergic (NANC) nerves 

regulate vascular tone (Kubota et al. 1988).  Stimulation of the sympathetic 

nervous system results in increased neuron firing, increased PVR, and as a 

consequence increased PAP (Kadowitz et al. 1974).  The pulmonary vasculature, 

particularly the PASMCs expresses α- and β-adrenoceptors, where stimulation by 

noradrenaline produces vasoconstriction and vasodilation, respectively (Hyman 

et al. 1986; Hyman et al. 1990). 

In contrast, the parasympathetic branch of the autonomic nervous system 

appears much less dense in the pulmonary arteries compared to the sympathetic 

innervations (Downing & Lee 1980).  Additionally, release of the post-ganglionic 

neurotransmitter acetylcholine has less of an effect on pulmonary vascular tone 

and PVR or PAP (Murray et al. 1986).  Functional NANC nerves have also been 

identified in pulmonary arteries, although the role of NANC nerves in the 

regulation of vascular tone remains to be described in vivo.  It has been 

observed however, in isolated pulmonary arteries that nitric oxide mediates 

relaxation which is completely unaffected by adrenergic and cholinergic 

blockade (Scott & McCormack 1999). 

 

1.2 Pulmonary Arterial Hypertension 

1.2.1  Classification 

Pulmonary arterial hypertension (PAH) is a debilitating disease characterised by 

excessive vasoconstriction and progressive remodelling in pulmonary arteries 
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leading to obliteration of pulmonary arteries and resulting in right heart failure 

and eventual death.  PAH is typically diagnosed with right heart catheterisation 

and if mean pulmonary arterial pressure (mPAP) exceeds 25mmHg at rest 

(normal mPAP value at rest is 12-16mmHg).  However, due to the diverse 

aetiology of PAH, initial diagnosis can be complicated and particularly in the 

context of a patient with multisystem disorder.  For this reason, classification of 

different groups/forms of PAH has been developed.  In the latest consensus 

meeting, the World Health Organisation (WHO) produced the Dana Point (2008) 

classification (Rosenkranz & Erdmann 2008) which led to well defined PAH 

groups.  Importantly, the subgroups of PAH share a common phenotypic 

pathobiology (Voelkel & Cool 2004).  The current Dana Point is listed in Table 1-

1.  Group 1 PAH is categorised into idiopathic PAH (IPAH), heritable PAH (HPAH), 

drug- and toxin-induced, and associated PAH (APAH), as well as persistent 

pulmonary hypertension of the new born (PPHN).  In the developing world, PAH 

can also be associated with sickle cell disease and schistosomiasis, although PAH 

due to these diseases is rare in the Western World (Peacock et al. 2013).  

Furthermore, non-arterial pulmonary hypertension can be classified into the 

following groups: pulmonary veno-occlusive disease (PVOD) and/or pulmonary 

capillary hemangiomatosis (PCH) (Group 1’); pulmonary hypertension owing to 

left heart disease (Group 2); pulmonary hypertension owing to lung disease 

and/or hypoxia (Group 3); chronic thromboembolic hypertension (CTEPH) (Group 

4), and pulmonary hypertension with unclear multi-factorial mechanisms (Group 

5). 

Despite well defined groups of PAH, symptoms develop gradually and patients 

typically remain undiagnosed.  This can be a result of the generic signs and 

symptoms associated with PAH development and patients present asymptomatic 

with mild to moderate PAH (Simonneau et al. 2009).  Only in late-stage/severe 

PAH are clinical signs apparent such as dyspnoea, angina-like chest pain, and 

fatigue.  The severity of PAH in patients is also categorised using the New York 

Heart Association (NYHA) functional classification system (class I-IV) (Table 1-2).  

The functional classification of a patient is considered both at rest and during 

physical activity and is determined by their physical limitations.  For example, in 

mild/early-stage PAH, patients appear asymptomatic and reside within class I 

whereas those most affected (late-stage PAH with right heart failure) are class 
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IV.  The NYHA (class I-IV) system is important in both the choice of PAH therapy 

and an accurate predictor of patient mortality. 
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Table 1-1: World Health Organisation (WHO) Clinical Classifications of Pulmonary 
Hypertension. 
Updated Dana Point, 2008.  BMPR2: bone morphogenetic receptor type 2; ALK-1: activin receptor 
like-kinase-1; HIV: human immunodeficiency virus. 

 
Group 1: Pulmonary Arterial Hypertension (PAH) 

 1.1 Idiopathic 
1.2 Heritable 

1.2.1 BMPR2 
1.2.2 ALK-1, endoglin (with or without hereditary hemorrhagic 

telangiectasia) 
1.2.3 Unknown 

1.3 Induced by drugs and toxins 
1.4 Associated with PAH 

1.4.1 Connective tissue diseases 
1.4.2 HIV infection 
1.4.3 Portal hypertension 
1.4.4 Congenital heart disease 
1.4.5 Schistosomiasis 
1.4.6 Chronic haemolytic anaemia 

1.5 Persistent pulmonary hypertension of the newborn 
 
Group 1’: Pulmonary veno-occlusive disease (PVOD) and pulmonary capillary 
hemangiomatosis (PCH) 
 
Group 2: Pulmonary hypertension due to left heart disease 

2.1 Systolic dysfunction 
2.2  Diastolic dysfunction 
2.3 Valvular disease 

 
Group 3: Pulmonary hypertension due to lung diseases and hypoxemia 

3.1 Chronic obstructive pulmonary disease (COPD) 
3.2 Interstitial lung disease 
3.3 Other pulmonary diseases with mixed restrictive and obstructive 

patterns 
3.4 Sleep-related breathing behaviour 
3.5 Alveolar hypoventilation disorders 
3.6 Chronic exposure to high altitudes 
3.7 Developmental abnormalities 

 
Group 4: Chronic thromboembolic pulmonary hypertension (CTEPH) 

 
Group 5: Pulmonary hypertension with unclear or multi-factorial mechanisms 

5.1 Hematologic disorders: myeloproliferative disorders, splenectomy 
5.2 Systemic disorders: sarcoidosis, pulmonary Langerhands cell 

histiocytosis, lymphangioleiomyomatosis, neurofibromatosis, 
vasculitis 

5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, 
thyroid disorders 

5.4 Other: tumoral obstruction, fibrosing mediastinitis, chronic kidney 
failure on dialysis 
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Table 1-2: Current WHO/NYHA Functional Classification of patients with Pulmonary 
Hypertension 

 
Current World Health Organisation (WHO) / New York Heart Association 
(NYHA) Classification of functional status of patients with pulmonary 
hypertension   
 
Class I Patients with pulmonary hypertension but without 

resulting limitation of physical activity.  Ordinary 
physical activity does not cause undue dyspnoea or 
fatigue, chest pain, or near syncope 

Class II Patients with pulmonary hypertension resulting in 
slight limitation of physical activity.  They are 
comfortable at rest.  Ordinary physical activity 
causes undue dyspnoea or fatigue, chest pain or near 
syncope. 

Class III Patients with pulmonary hypertension resulting in 
marked limitation of physical activity.  They are 
comfortable at rest.  Less than ordinary activity 
causes undue dyspnoea or fatigue, chest pain or near 
syncope. 

Class IV Patients with pulmonary hypertension with inability 
to perform any physical activity without symptoms.  
These patients manifest signs of right heart failure.  
Dyspnoea and/or fatigue may be present at rest and 
increased by almost any physical activity. 
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1.2.2  Epidemiology and Prognosis 

PAH is a rare disease with an annual incidence of approximately 2-3 per million 

of the population (Frost et al. 2011; Humbert et al. 2006; Ling et al. 2012).  The 

recent REVEAL Registry demographics suggest that the modern PAH patient 

population in the US with WHO Group I PAH (including idiopathic, familial, or 

associated with collagen vascular disease, congenital systemic-to-pulmonary 

shunts, portal hypertension, drugs or toxins, HIV infection, and miscellaneous 

conditions [such as splenectomy or hemoglobinopathies]) is older (mean age at 

diagnosis, 47 years) and has a higher female preponderance (Badesch et al. 

2010; Frost et.al. 2011; Thenappan et al. 2010).  The female to male ratio 

reported is as strong as 4.3:1 amongst the total PAH group (Walker et al. 2006) 

and 4.1:1 in the IPAH and APAH subcategories (Badesch et.al. 2010).  This 

female prevalence has increased since the NIH Registry in the mid-1980s (Rich et 

al. 1987) and in most clinical trials, approximately three-quarters of patients are 

females.  The reported incidence of PAH also appears to comprise a majority of 

patients in the IPAH and APAH category where the most common underlying 

associated conditions are connective tissue disease and congenital heart disease 

(Badesch et.al. 2010). 

Observed survival rates in the PAH patient population are 83%, 67% and 58% at 1, 

2 and 3 years, respectively (Humbert et al. 2010a) although younger patients 

(aged <50 years) are reported to have better survival rates (Ling et.al. 2012).  

Mortality rates in PAH are closely associated with right ventricular 

haemodynamic function and exercise limitation, however building evidence also 

shows that male sex is associated with poorer survival (Humbert et.al. 2010a; 

Humbert et al. 2010b; Sztrymf et al. 2008).  It may therefore be important to 

consider the influence of gender on disease occurrence and outcomes.  

Moreover, the survival in incident PAH (newly diagnosed) is worse than in 

prevalent patients and survival outcomes also vary considerably among different 

aetiologies of PAH.  For example, systemic sclerosis associated PAH patients 

have poorer survival than those with IPAH (Benza et al. 2012; Humbert et.al. 

2010b).  Whilst survival rates have improved in PAH in comparison with the 

established NIH Registry, recent studies indicate that PAH nonetheless remains a 

progressive, fatal disease despite advances in diagnosis and therapies (Humbert 

et.al. 2010a; Thenappan et.al. 2010). 
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1.2.3  Current Treatment Options in PAH  

Patients in the modern treatment era respond better to PAH therapies; however 

the 5 year survival rate of 65% remains troubling (Thenappan et al. 2012).  

Treatment of PAH is initiated according to the clinical aetiology and functional 

impairment (NYHA Class I-IV) of each patient.  Current therapeutic options 

target the increased pulmonary vascular resistance (PVR) associated with 

elevated vasoconstriction in the pulmonary arteries and aim to re-establish the 

balance between vasoconstriction and vasodilation.  These include targeting 

chronically impaired prostacyclin and nitric oxide synthesis, and over-production 

of endothelin (Figure 1-5).  Whilst some of them also have anti-proliferative 

properties and offer prevention of remodelling, none of the currently available 

treatments initiate regression of remodelling and the disease remains incurable.  

In addition, calcium channel blockade can be used to attenuate pulmonary 

artery vasoconstriction.  In PAH, combinations of these treatments provide the 

most effective therapeutic approach. 

1.2.3.1 Prostanoid Therapy 

Prostacyclin, synthesised in pulmonary artery endothelial cells, is a potent 

vasodilator, inhibits platelet aggregation and has anti-proliferative properties 

(Geraci et al. 1999; Hoshikawa et al. 2001).  Endothelial dysfunction is well 

described in PAH and in line with this, prostacyclin synthase is reported to be 

reduced in PAH patients (Christman et al. 1992; Galie et al. 2003) resulting in a 

deficiency of prostacyclin (PGI2) in small- and medium-sized pulmonary arteries 

(Tuder et al. 1999).  Prostanoid therapy has been a mainstay in the treatment of 

PAH for over a decade.  Currently there are three FDA (Food and Drug 

Administration) approved prostanoids: epoprostenol, treprostinil and iloprost. 

Epoprostenol is the first FDA approved prostanoid and is the first line of 

treatment for critically ill class III and IV symptoms because it is the most rapidly 

effective therapy.  Given intravenously, epoprostenol improves NYHA functional 

class, exercise tolerance, haemodynamics and survival and quality of life in PAH 

(Barst et al. 1996; McLaughlin et al. 2002; Sitbon et al. 2002).  Epoprostenol is a 

short acting vasodilator which requires chronic intravenous infusion, a major 
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limitation in its use.  Common side effects observed include headache, jaw pain, 

flushing, nausea, diarrhoea, skin rash and musculoskeletal pain. 

Treprostinil is a modern generation prostanoid with greater stability and a longer 

half life, and can be administered subcutaneously, intravenously, or as inhaled 

therapy.  Subcutaneous administration of treprostinil is most widely used and 

improves exercise capacity and haemodynamics in all aetiologies of PAH in a 

dose-dependent manner.  The intravenous and inhaled forms of treprostinil 

however, show greater tolerability and maintain improvements in 

haemodynamics (Gomberg-Maitland et al. 2005; Laliberte et al. 2004; 

McLaughlin et al. 2010).  Side effects with intravenous treprostinil are similar to 

that of intravenous epoprostenol.  Subcutaneous treprostinil is also associated 

with pain and erythema at the site of injection. 

The most recently FDA approved prostanoid is inhaled iloprost.  As iloprost 

dilates both systemic and pulmonary vasculature, inhalational administration 

and nebuliser therapy may bypass side effects associated with intravenous 

prostanoids.  Iloprost shows considerable improvements in NYHA functional class 

and survival in patients with IPAH, CTEPH and PAH associated with connective-

tissue diseases (Ewert et al. 2011; Goldsmith & Wagstaff 2004).  Due to the short 

half-life, lasting approximately 30-60 minutes, iloprost is taken six to nine times 

daily (Hoeper et al. 2000; Olschewski et al. 2002). 

1.2.4 Endothelin Antagonists 

In the dysfunctional endothelium, increased production of endothelin 1 (ET-1) 

stimulates vasoconstriction and proliferation of smooth muscle cells in 

pulmonary arteries (McCulloch et al. 1998).  In addition, plasma levels of ET-1 

are known to be increased in PAH and correlate with severity of PAH and 

prognosis (Rubens et al. 2001).  Effects of ET-1 are mediated through two main 

endothelin receptors, (ETA and ETB), both of which are G-protein coupled 

receptors.  ETA receptors are found primarily in the smooth muscle cells and are 

associated with vasoconstriction and proliferation in pulmonary arteries (Zamora 

et al. 1993).  On the other hand, ETB is mainly found in endothelial cells and to a 

lesser extent in smooth muscle cells (Hori et al. 1992; Zamora et.al. 1993).  In 

the lung, ETB receptor is involved in ET-1 clearance and stimulates the release of 
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nitric oxide and PGI2 which leads to pulmonary artery vasodilation (Fukuroda et 

al. 1992).  Following this, ETA receptor antagonists therefore provide the best 

endothelin based therapy for treating PAH. 

Currently, both selective and non-selective ET receptor antagonists (ERA) are 

approved for PAH therapy.  Bosentan is an oral non-selective ERA proven to 

improve haemodynamics in APAH (Sitbon et al. 2005) and portopulmonary 

hypertension (Hoeper et al. 2005) with NYHA functional class II and III.  Bosentan 

is associated with increased hepatic function, syncope and flushing and should 

be monitored carefully. 

Sitaxsentan and ambrisentan are selective ETA antagonists and, in theory, offer 

more selective blockade of ET-1 vasoconstrictor effects whilst maintaining 

vasodilator properties through ETB.  Improved exercise capacity and sustained 

improvements in haemodynamics were observed with both sitaxsentan and 

ambrisentan and approved for therapy in NYHA functional class II-IV (Barst et al. 

2006; Klinger et al. 2011); however sitaxsentan treatment has subsequently been 

withdrawn owing to fatal liver failure and acute hepatitis. 

Interestingly, it has been reported recently that women with PAH exhibit a 

greater clinical benefit from ERAs than men in terms of improvements in 

exercise capacity (Gabler et al. 2012).  Gender influences in treatment-response 

requires further investigation. 
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Figure 1-5: Targets of current treatment options in PAH therapy. 
Current PAH treatments target impaired NO (phosphodiesterase type 5 inhibitors) and prostacyclin 
synthesis (prostacyclin analogues), and over-production of endothelin (Endothelin receptor 
antagonists) to re-establish a balance between vasoconstriction and vasodilation.  Adapted from 
(Humbert et al. 2004). 
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1.2.4.1 Phosphodiesterase Type-5 Inhibitors 

Nitric oxide (NO) is a potent endogenous, endothelium derived vasodilator that 

directly relaxes PASMCs through stimulation of soluble guanylate cyclise and 

increased production of intracellular cyclic guanosine monophosphate (cGMP).  

Phosphodiesterase type-5 (PDE-5) degrades cGMP and is abundantly expressed in 

the lung with increased activity in PAH (Black et al. 2001).  Inhibition of this 

process using PDE-5 inhibitors such as sildenafil or tadalafil improves 

vasodilation.  In addition, these treatments have anti-proliferative properties 

(Wharton et al. 2005).  Indeed, both sildenafil and tadalafil have demonstrated 

acute and long-term beneficial effects in patients with PAH with improvements 

in NYHA functional class and exercise capacity reported (Galie et al. 2005; Galie 

et al. 2009).  Currently, these are the only two FDA approved oral PDE-5 

inhibitors for the treatment of functional classes II-III.  Minor adverse effects of 

PDE-5 inhibitors generally include headache, flushing and dyspepsia. 

1.2.4.2 Calcium Channel Blockers 

Calcium channel blockers (CCBs) are utilised in PAH patients who respond 

positively to an acute vasoreactivity test with inhaled nitric oxide, intravenous 

adenosine, or intravenous epoprostenol.  The pulmonary vasculature is only 

responsive to local mediators in approximately 5-10% of all PAH patients, 

therefore CCBs are of limited use.  In PASMCs, CCBs reduce intracellular Ca2+ and 

cellular hyperpolarisation resulting in pulmonary vascular smooth muscle 

relaxation.  Clinical trials using CCBs in PAH demonstrate improved survival rates 

in patients (Rich et al. 1992).  The agents most commonly used are long-acting 

nifedipine, diltiazem, or amlodipine.   

1.2.4.3 Combination Therapy 

Combination therapy is generally considered most effective in treatment of PAH 

and maximises clinical benefit by targeting different mechanisms of action 

(Benza et al. 2007).  For example, adjunctive therapy with sildenafil or bosentan 

has produced marked improvement in patients receiving prostacyclin therapy 

(Hoeper et al. 2003).  Overall, combination therapy aims to increase efficacy 

and reduce toxicity to improve functional status and quality of life in patients 

who are unresponsive to monotherapy. 



 

47 
 

1.2.5  Future Perspectives in the Treatment of PAH 

Current treatments for PAH improve symptoms and reduce severity of the 

haemodynamic disorder, however, gradual deterioration in a patient’s condition 

is still an issue and often necessitates a lung transplant after years of therapy.  

For this reason, new therapeutic options have been investigated and emerging 

trends pharmacologically target the vascular remodelling process with anti-

mitogenic, pro-endothelial function, pro-angiogenic, and anti-oxidative actions.  

In addition, regeneration using cell therapy is a novel and interesting 

therapeutic option. 

1.2.5.1 Tyrosine Kinase Inhibitors 

Recently, platelet-derived growth factor (PDGF) has been identified as a potent 

mitogen in pulmonary arteries contributing to pulmonary vascular remodelling 

and the progression of PAH (Barst 2005).  PDGF exists in five isoforms (PDGF-AA, 

PDGF-BB, PDGF-CC, PDGF-DD, and PDGF–AB) which share structural and 

functional properties with other growth factors such as vascular endothelial 

growth factor and exert their effects through two receptors, PDGFR-α and –β 

(Andrae et al. 2008; Fredriksson et al. 2004).  The PDGFRs belong to a family of 

transmembrane receptor tyrosine kinases (RTKs) and dimerisation of these 

receptors leads to an increase in kinase activity, for example Ras/MAPK, PI3K 

and phospholipase Cγ activity resulting in activation of mitogenic, pro-

migratory, and anti-apoptotic genes which contribute to the vascular 

remodelling process.  Indeed, PDGF stimulates proliferation of PASMCs 

(Schermuly et al. 2005) and over-expression of PDGF mRNA was demonstrated in 

lungs from patients with severe PAH (Humbert et al. 1998).  In vitro, the small 

molecule RTK inhibitor ST1571 (Imatinib) was found to inhibit PDGF-related 

migration, proliferation and gene transcription in human PASMCs (Pullamsetti et 

al. 2012).  Moreover, in two experimental models of PAH, Imatinib reverses 

established PAH (Schermuly et.al. 2005).  RTKs are at an early stage of clinical 

evaluation in PAH patients.  A phase II clinical study showed Imatinib reduced 

PVR, and improved cardiac output in a PAH treatment group (Hoeper et.al. 

2000); however due to serious adverse events, for example subdural 

haematomas, Imatinib was withdrawn in 2013.  The rationale behind use of RTKs 
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in PAH is very strong; however, the need to develop a safe and effective 

molecule is proving difficult. 

1.2.5.2 Cell Based Therapies 

It has been identified that PAEC apoptosis contributes to vascular cell 

proliferation in the lung and stimulates to the formation of intimal lesions 

(Taraseviciene-Stewart et al. 2001).  Disruption of endothelial integrity in 

pulmonary arterioles contributes to endothelial dysfunction associated with 

abnormal vasomotor tone and increased smooth muscle cell growth and arterial 

remodelling.  The recent interest in the role of apoptosis in the pathogenesis of 

PAH raises the possibility that novel treatments targeted toward repairing or 

regenerating lung microvascular endothelial cells.  This may provide greater 

potential for reversing both structural and functional vascular abnormalities in 

established PAH.  Indeed, cell-based gene delivery is effective in preventing 

monocrotaline-induced PAH using a variety of different therapeutic transgenes, 

including VEGF (Campbell et al. 2001), prostacyclin synthase, and endothelial 

nitric oxide synthase (eNOS) (Campbell et al. 1999).  In addition, endothelial 

progenitor cells (EPCs) have been explored as a potential source for 

neovascularisation and intravenous infusion of EPCs in patients with IPAH has 

beneficial effects on exercise capacity and pulmonary haemodynamics (Wang et 

al. 2007).  Perhaps, the combination of progenitor cells with the over-expression 

of therapeutic transgenes can provide a synergistic effect in the vasculature and 

promote regeneration of the endothelium. 

1.3 Pathobiology of PAH 

PAH is a complex disease with a multifactorial pathobiology.  Pulmonary vascular 

proliferation, vasoconstriction, and in situ thrombosis are all involved in the 

pulmonary vascular remodelling process that underlies severe PAH.  Within the 

pulmonary arteries, vasoconstriction initiated by hypoxia, elevations in 

cytoplasmic Ca2+ or decreased voltage-gated K+ channel depolarisation, is 

recognised to play a pivotal role in increasing pulmonary vascular resistance 

(PVR) and, hence, elevated pulmonary arterial pressure (PAP) (Mandegar et.al. 

2004) (Figure 1.6).  Sustained pulmonary vasoconstriction can influence PASMC 

hypertrophy and hyperplasia (Hishikawa et al. 1994) and vascular remodelling 
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involving all components of the vascular pulmonary vascular wall (smooth muscle 

cells, endothelial cells, and fibroblasts) ensues.  Together, the 

hyperproliferative and vasoconstrictive pulmonary arteries exert an excessive 

burden on the pressure-intolerant right ventricle.  Initially, the right ventricle 

undergoes compensatory hypertrophy to accommodate increased after-load and 

to overcome the downstream pressure, however over time this leads to right 

sided heart failure which is the primary cause of mortality in PAH patients 

(Humbert et.al. 2004). 

1.3.1  Pulmonary Vasoconstriction 

Pulmonary vasoconstriction is an important contributor to the elevated PVR and 

PAP observed in PAH.  In particular, hypoxic pulmonary vasoconstriction (HPV) is 

a major determinant of PAH development.  HPV is an important intrinsic 

adaptive mechanism unique to the lung which redirects the blood flow from 

poorly ventilated areas of the lung into a better ventilated area to improve 

ventilation-perfusion matching and to maximise oxygenation (Madden et al. 

1992).  In instances of chronic obstructive pulmonary disease (COPD) and high 

altitude pulmonary oedema, sustained alveolar hypoxia drives a PAH phenotype 

(Mandegar et.al. 2004).  The mechanism by which hypoxia stimulates pulmonary 

vasoconstriction is unclear, although studies point to several possible pathways.   

1.3.1.1 Hypoxic Pulmonary Vasoconstriction and Ca2+ Homeostasis 

The extent of pulmonary vasoconstriction is dependent on the levels of cytosolic 

Ca2+ and activity of voltage-gated L-type Ca2+ channels which are regulated by 

membrane potential and Ca2+ sensitivity of the contractile apparatus (actin and 

myosin).  Smooth muscle contraction is directly triggered by a rise in cytosolic 

free Ca2+ concentration which forms a complex with calmodulin (CaM).  The 

Ca2+/CaM complex interacts with contractile proteins, actin and myosin, and 

activates myosin light chain kinase (MLCK), which in turn, phosphorylates the 

myosin light chain (MLC).  This process stimulates the activation of myosin 

ATPase to generate energy and the subsequent formation of crossbridges leading 

to smooth muscle contraction and vasoconstriction (Somlyo & Somlyo 1994) 

(Figure 1-7).  On the other hand, relaxation of smooth muscle cells is initiated 

by a decrease in intracellular Ca2+ [Ca2+]i due to Ca2+ uptake by the sarcoplasmic 
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reticulum Ca2+-ATPase pump (SERCA) within smooth muscle cells and the Ca2+ 

extrusion by Na+-Ca2+ exchanger.  In addition, smooth muscle cell contraction is 

dependent on regulation of myosin light chain phosphatase (MLCP) activity.  The 

decreased [Ca2+]i initiates dissociation of the Ca2+/CaM complex and the 

phosphorylated MLC is dephosphorylated by MLCP (Somlyo & Somlyo 1994) 

(Figure 1-7). 

Intracellular Ca2+ is elevated in PASMCs exposed to hypoxia (Wang et al. 2005) 

and in line with this, during acute hypoxia a biphasic contraction is reported to 

coincide with elevated levels of Ca2+ (Robertson et al. 2000) which is sustained 

during hypoxia and is reversed following exposure to normoxia (Robertson et.al. 

2000).  Depolarisation and the opening of L-type Ca2+ channels are reported to 

account for the influx of Ca2+ during hypoxia (Bakhramov et al. 1998).  Indeed, 

inhibition of these channels has been shown to attenuate hypoxia induced-

vasoconstriction in pulmonary arteries (Jin et al. 1992; Leach et al. 1994).  The 

PASMCs are proposed to be the cell type responsible for monitoring the hypoxic 

environment in the vasculature.  This is supported by the observation that HPV 

still occurs in endothelium-denuded pulmonary arteries (Marshall & Marshall 

1992) (Figure 1-8). 

1.3.1.2 Hypoxic Pulmonary Vasoconstriction and K+ homeostasis 

Voltage-gated K+ channels also play an important role in the regulation of 

vascular tone and work in concert with L-type Ca2+ channels to mediate 

contraction.  In a resting smooth muscle cell, the membrane is permeable to K+ 

and voltage-activated K+ channels allow an efflux of K+ out of the cell initiating 

membrane hyperpolarisation and the closure of voltage-gated L-type Ca2+ 

channels.  Closure of K+ channels on the other hand, leads to depolarisation and 

increased [Ca2+]i. 

At rest, the PASMC membrane is more permeable to K+, however during hypoxia 

K+ currents are inhibited resulting in depolarisation of the PASMC membrane and 

an influx of Ca2+ via L-type Ca2+ channels (Yuan et al. 1993; Yuan et al. 1998).  In 

PAH, altered activity of K+ channels is reported resulting in sustained membrane 

depolarisation.  In PASMCs, downregulation of Kv1.5 and Kv2.1 channels is 
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observed in rats with chronic hypoxia-induced PAH (Michelakis et al. 2002b) and 

Kv1.5 expression is reduced in patients with IPAH (Yuan et.al. 1998). 

1.3.1.3 Hypoxic Pulmonary Vasoconstriction and Reactive Oxygen Species 

The redox hypothesis of HPV suggests that redox-sensitive membrane Kv channels 

are decreased via adaptive mitochondrial derived reactive oxygen species (ROS). 

Generation of ROS occurs during hypoxia shifting the cellular balance toward a 

more reduced state and initiates depolarisation of the PASMC membrane and 

consequently pulmonary vascular contraction (Michelakis et al. 2002a).  NADPH-

oxidases, the enzymes that function to generate superoxide, have also been 

proposed as possible oxygen sensors of HPV.  Evidence suggests that NADPH-

oxidase is activated in response to hypoxia in PASMCs (Marshall et al. 1996) and 

that the generation of superoxide and formation of hydrogen peroxide (H2O2) 

mediate HPV in the lung (Weissmann et al. 1998).  This is confirmed by the 

ability of NADPH-oxidase inhibitors to attenuate HPV in intact lungs (Weissmann 

et al. 2000).  Whilst it is suggested the role of ROS is pivotal in HPV, their exact 

role still remains unclear as there is no consensus to whether ROS production is 

increased or decreased in hypoxia. 
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Figure 1-6: Pathophysiological processes involved in PAH development and progression. 
Vasoconstriction, vascular remodelling, and in situ thrombosis contribute to the development of and sustained elevations in pulmonary vascular resistance (PVR) 
observed in PAH leading to increases in pulmonary arterial pressure (PAP).  Cyt=cytosolic; Em= extracellular membrane; SMC=smooth muscle cell; EC=endothelial 
cell.  Adapted from (Mandegar et.al. 2004). 
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Figure 1-7: Signal transduction mechanisms underlying smooth muscle cell contraction. 
Intracellular Ca

2+
 is a major determinant of smooth muscle cell (SMC) contraction.  As free Ca

2+ 
enters the SMC it forms a complex with calmodulin (CaM).  The CaM 

complex then activates myosin light chain kinase (MLCK) which subsequently phosphorylates myosin light chain (MLC).  Myosin light chain phosphatase (MLCP) 
inactivates this complex.  This stimulates ATPase activity and initiates cross-bridging between actin and myosin and contraction.  SMC contraction is also initiated by 
inhibition of K

+
 efflux by voltage-activated K

+
 channels leading to sustained depolarisation.  Calcium channel blockers (CCBs) used in PAH treatment inhibit L-type Ca

2+
 

channels and Ca
2+

 entry thereby reducing intracellular Ca
2+

 signalling and SMC contraction. 
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Figure 1-8: Proposed mechanisms involved in hypoxic pulmonary vasoconstriction 
Hypoxia results in decreased activity and expression of Kv channel function leading to elevated intracellular K

+
 and membrane depolarization.  Increased Ca

2+
 occurs 

via influx via L-type Ca
2+

 channels.  Increased activity of receptor-operated Ca
2+

 channels (ROC) and store-operated Ca
2+

 channels further contribute to increased 
intracellular Ca

2+
.  Together, these mechanisms lead to smooth muscle cell contraction and if sustained will promote proliferation. 
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1.3.2  Pulmonary Vascular Remodelling  

Under normal conditions, the structure of the pulmonary arterial wall is 

maintained by a fine balance between proliferation and apoptosis of PASMCs, 

PAECs and fibroblasts.  In PAH this balance is disrupted, and PAH is characterised 

by intimal thickening and muscularisation of the distal, previously non-muscular 

pulmonary arteries, resulting in a narrowed lumen and subsequent impairment 

of blood flow.  This process is termed pulmonary vascular remodelling and is 

considered the hallmark in PAH (Tuder et al. 2009).  Pulmonary vascular 

remodelling involves all three cell types in the vascular wall and arises from an 

increase in proliferation combined with suppression of apoptosis (Mandegar 

et.al. 2004). 

1.3.2.1 The Role of Smooth Muscle Cells in Pulmonary Vascular 
Remodelling 

Smooth muscle cells underlie the pulmonary vascular remodelling process.  

Smooth muscle hypertrophy and hyperplasia play an integral role in intimal and 

medial thickening which is widely observed in mild/early-stage PAH (Figure 1-9).  

In addition, smooth muscle cells and fibroblasts begin to produce increased 

matrix proteins, including collagen and elastin, within the media and adventitia 

contributing to medial thickness (Jeffery & Morrell 2002).  During PAH, changes 

in the phenotype of PASMCs are also described, for example, PASMCs taken from 

PAH patients exhibit a more proliferative phenotype (Eddahibi et al. 2001).  An 

increased migratory smooth muscle cell phenotype is also described.  One 

common feature to PAH is the distal progression of smooth muscle cells into the 

normally non-muscular small peripheral pulmonary arteries resulting in 

muscularisation of the terminal portion of the pulmonary artery (MacLean et.al. 

2000).  Migration from the media to the subendothelial layer results in a layer of 

cells situated between the endothelium and the internal elastic lamina, termed 

the neointima (Yi et al. 2000).  In the neointima, the smooth muscle cell 

phenotype alters from contractile to synthetic and secretes excessive 

extracellular matrix proteins contributing significantly to increased vascular 

resistance (Olschewski et al. 2001). 
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1.3.2.2 The Role of Endothelial Cells in Pulmonary Vascular Remodelling 

In severe and end-stage PAH, another important form of vascular remodelling is 

observed involving disorganised proliferation and apoptosis of endothelial cells 

leading to formation of ‘plexiform lesions’ (Cool et al. 1997; Tuder et al. 1994).  

Plexiform lesions (Figure 1-9) are typically seen arising from smaller resistance 

arteries (200-400µm) distal to the bifurcation site and are described as complex, 

glomeruloid-like vascular structures (Cool et al. 2005; Sakao et al. 2009).  They 

appear to have a complex inflammatory microenvironment distinct from 

remodeled arteries in PAH lungs.  The continuous proliferation and sprouting of 

vascular channels is associated with up-regulation of hypoxia and shear stress-

induced angiogenic mediators, such as HIF1a, VEGF-α and TGF-β1 (Jonigk et al. 

2011).  In addition, loss of tumour suppressor gene peroxisome proliferator-

activated receptor-γ (PPAR-γ), is reported in plexiform lesions of PAH patients 

(Ameshima et al. 2003).  PPAR-γ is antiproliferative and anti-inflammatory 

(Jiang et al. 1998) and has previously been shown to mediate an important 

protective role in experimental PAH (Hansmann et al. 2008).  Decreased 

production of vasodilators (Tuder et.al. 1999) and increased production of 

vasoconstrictors (Giaid et al. 1993) is also described in these plexiform lesions.  

Regardless of the histopathologic subtype involved, pulmonary vascular 

remodelling always results in obstruction of the lumen and the impairment of 

blood flow leading to increased vascular resistance. 

Importantly experimental animal models of PAH fail to recapitulate the severe 

vascular phenotype in PAH with neointimal formation and plexiform lesions.  The 

role plexiform lesions play in the pathogenesis of human PAH is therefore 

controversial.  However, the discovery of novel animal models of PAH appears to 

show endothelial cell proliferation, luminal obliteration and severe PAH as a 

result of plexiform lesions and neointimal changes.  For example, S100A4/Mts1 

protein over-expressing mice (Dempsie et al. 2011; Greenway et al. 2004), 

schistosomiasis murine model (Crosby et al. 2010) and administration of VEGF 

receptor antagonist Sugen 5416 + hypoxia rat model (Abe et al. 2010).  Since 

these lesions appear to have morphology similar to human plexiform lesions, a 

better understanding of human pathology is achievable. 
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1.3.2.3 Downstream Signalling Involved in Vascular Remodelling 

Akt, or protein kinase B, is a serine/threonine-specific protein kinase that plays 

a critical role in cell apoptosis, proliferation and migration.  In addition, Akt 

signalling is a critical mediator of cardiac hypertrophy, survival and stress.  It is 

recognised that the survival signal mediated by various growth factors and 

cytokines involves phosphatidylinositol 3’-kinase (PI3K)/Akt signal transduction 

pathway.  Vascular endothelial growth factor (VEGF) and platelet derived growth 

factor (PDGF) can induce PI3K activity in aortic endothelial cells (Guo et al. 

1995; Xia et al. 1996) and PASMCs (Goncharova et al. 2002).  Recent evidence 

has also highlighted an important role of increased thrombin-induced Akt 

phosphorylation in PASMCs in IPAH and CTEPH resulting in increased proliferation 

and leading to medial hypertrophy and vascular remodelling (Ogawa et al. 2013).  

Interestingly, Akt phosphorylation is also regulated by estrogen.  Reduced Akt 

signal transduction by estrogen reverses remodeling secondary to PH (Nadadur et 

al. 2012) and significantly reduces Akt signalling during right heart failure in PH 

(Nadadur et al. 2012). 

The mitogen-activated protein kinase (MAPK)/ extracellular signal-related kinase 

(ERK) pathway is also crucially involved in vascular remodeling and cardiac 

hypertrophy.  MAPK cascades are highly conserved signal transduction pathways 

and are believed to regulate cell and myocyte growth in response to 

developmental signals or physiologic and pathologic stimuli (Meng et al. 2011).  

Previous studies have demonstrated that ERK and p38 MAPK expression are 

increased in cardiac hypertrophy (Altamirano et al. 2009; Streicher et al. 2010).  

In the pulmonary vasculature, MAPK/ERK also plays a central role in smooth 

muscle cells in response to mechanical, hypoxic and growth-factor induced 

stimuli, in particular promoting PASMC growth (Mandegar et al. 2004).  Estrogen 

is also involved in regulation of ERK and leads to a decline in ERK1 

phosphorylation in right heart failure PH (Nadadur et al. 2012).  Collectively, 

this shows that PI3K/Akt and MAPK/ERK pathways play a pivotal role in 

regulating PASMC proliferation and migration and cardiac hypertrophy.        
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A. B.

C. D.

 

Figure 1-9: Histopathological changes observed in pulmonary vascular remodelling in 
human PAH. 
Top Left, A: a normal pulmonary artery.  Top Right, B: smooth muscle cell hypertrophy and 
proliferation leading to medial hyperplasia typically observed in mild/moderate human PAH.  
Bottom Left, C: adventitial fibrosis observed in moderate PAH.  Bottom Right, D: a plexiform lesion 
characterised by lumen obliteration observed in severe/end-stage PAH.  Adapted from (Cool et.al. 
2005). 
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1.4  Genetic Basis of Pulmonary Arterial Hypertension 

1.4.1  Bone-Morphogenetic Protein Receptor-Type 2  

PAH is a disease with an underlying genetic susceptibility.  The term heritable 

PAH (HPAH) has recently been adopted to account for PAH in families in which a 

specific genetic mutation infers susceptibility to disease development.  The 

inheritance pattern in HPAH is described as autosomal dominant implying each 

child of an affected individual is at a 50% risk of inheriting the mutant allele 

(Thompson & McRae 1970).  Like IPAH, the development of HPAH has a marked 

female predominance and in addition exhibits a genetic anticipation.  That is, 

patients with a HPAH typically present at earlier ages (Loyd et al. 1995) and are 

more likely to be female.  A candidate gene approach lead to the discovery of 

the first gene associated with HPAH.  A marker for HPAH localised on 

chromosome 2q31-32 (Nichols et al. 1997) was identified as a receptor in the 

TGF-β superfamily, bone-morphogenetic protein receptor-type 2 (BMPR2) (Lane 

et al. 2000).  Mutations in BMPR2 are responsible for approximately 80% of HPAH 

cases (Morrell 2010).  However, an incomplete penetrance is described as only 

10-20% of mutation carriers develop PAH (Newman et al. 2004).  This strongly 

suggests the presence of modifying genetic or environmental factors that infer 

an increased or decreased risk.  Indeed, alterations in estrogen metabolism and 

estrogen metabolites are associated with disease penetrance in female patients 

with a BMPR2 mutation (Austin et al. 2009). 

Although BMPR2 mutations and subsequent dysfunctional TGF-β signalling 

represent the majority of HPAH cases, alternative pathogenic mutations in the 

TGF-β family underlie PAH susceptibility.  Particularly mutations in activin 

receptor-like kinase 1 (ALK-1) are observed in hemorrhagic telangiectasia (HHT) 

and individuals present with PAH that is clinically and histopathologically 

indistinguishable from other forms of HPAH (Machado et al. 2009).  Patients with 

ALK-1 mutations, and therefore defective Smad signalling, typically have shorter 

survival times compared to BMPR2 carriers and non-carriers (Girerd et al. 2010). 

1.4.2 Normal BMP/BMPR2 and TGF-β Signalling 

BMPs are the largest group of cytokines within the TGF-β superfamily.  They are 

primarily involved in regulating growth, differentiation and apoptosis in smooth 
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muscle cells.  When co-expressed with type I BMP receptor, BMPR2 has high 

affinity for ligands BMP-2, -4, and -7.  Receptor-ligand binding stimulates 

phosphorylation of Smad1, -5 and -8, which in canonical signalling, then 

associate with Smad-4 in the cytoplasm to translocate to the nucleus (Morrell et 

al. 2009) (Figure 1-10).  The co-Smad complex is involved in regulation of 

transcription of Smad-responsive genes, for example the inhibitor of DNA binding 

family of proteins (Ids) (Miyazono & Miyazawa 2002).  Id proteins are basic helix-

loop-helix transcription factors that lack a DNA binding domain.  Four members 

of the Id family (Id1-4) have been identified in mammalian cells.  They are 

encoded by separate genes and demonstrate different expression patterns, 

hence they have various functions in several different organs.  For example, Id2 

expression is high in immune cells and developing epithelial cells, whereas Id1 

and Id3 are expressed in developing lung mesenchyme (Rudarakanchana et al. 

2002).  Id1 and Id3 are now known to be the most abundantly expressed Id 

transcripts in PASMCs and are regulated by BMP-4 and -6 (Yang et al. 2013).  Id 

signalling and other downstream signalling complexes from Smad are switched 

off by Smad ubiquitination and regulatory factors (Smurfs) (Shi et al. 2004). 

1.4.3 Consequences of Dysfunctional BMP/BMPR2 and TGF-β 
Signalling 

A critical reduction in BMPR2 expression and function due to mutations as 

observed in HPAH, leads to deficient Smad signalling.  The growth inhibitory 

effects of BMPs have been shown to be Smad1 dependent (Yang et al. 2005).  In 

particular, a loss of signalling by the Smad1/5 pathway in response to BMP2 and 

BMP4 is described following BMPR2 mutation and therefore a reduction in smooth 

muscle cell apoptosis (Yu et al. 2005).  Knockdown of BMPR2 with siRNA has also 

been demonstrated to increase the susceptibility of pulmonary artery 

endothelial cells to apoptosis (Teichert-Kuliszewska et al. 2006).  Additionally, in 

experimental PH, heterozygous BMPR2+/- mice when chronically infused with 

serotonin, develop more severe PH compared with wildtype littermates (Long et 

al. 2006).  Thus BMPR2 dysfunction also increases the susceptibility to PH when 

exposed to other environmental stimuli.  In the presence of BMPR2 mutations, 

the disruption of the normal Smad signalling pathway can also lead to activation 

of alternate p38 mitogen-activated protein kinase/extracellular signal-related 

kinase (MAPK/ERK) pathways which lead to smooth muscle cell proliferation and 
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inhibition of apoptosis (Yu et al. 2005).  It has been identified that Id1 and Id3 

induction is dependent on BMPR2 as mutations in BMPR2 reduce the BMP-4 and -6 

stimulated inductions of Id1 and Id3 in PASMCs (Yang et al, 2013).  Recently it 

has been shown that agents enhancing BMP/Smad/Id signalling are effective at 

restoring the growth suppressive effects of BMP in BMPR2 mutant cells (Yang et 

al. 2010; Yang et al. 2013). 
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Figure 1-10: BMPR2 and downstream signalling cascade.  When co-expressed with type 1 BMP receptor (BMPR1), BMPR2 has high affinity for ligands BMP-2, -4 
and -7.  In canonical signalling, ligand-receptor activation stimulates phosphorylation of Smad-1, -5 and -8 and this complex further dimerises with Smad-4 to form a 
co-Smad.  This co-Smad complex then translocates to the nucleus and regulates transcription of genes involved in growth, differentiation and apoptosis.  Dysfunctional 
BMPR2 mutations in HPAH can lead to activation of an alternate downstream signalling pathway and activation of mitogen activated protein kinases (MAPK) and as a 
consequence smooth muscle cell proliferation and inhibition of apoptosis.   
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1.4.4  Serotonin Transporter 

Additional genes also account for HPAH cases.  In particular polymorphisms in 

the serotonin transporter (SERT) may influence development of PAH in the 

presence or absence of BMPR2 mutations.  SERT is encoded by the solute carrier 

family 6 member 4 (SLC6A4) gene located on chromosome 17 position 17q11.2.  

Long (L) and short (S) functional polymorphisms are found within the promoter 

region of SERT.  The S allele results in reduced SLC6A4 transcription and 

therefore reduced SERT protein expression whereas the L allele is associated 

with a two- to threefold higher rate of gene transcription (Lesch et al. 1996).  

Indeed, the LL allele SERT polymorphism has been identified in a small cohort of 

IPAH patients (Eddahibi et.al. 2001).  SERT plays an integral role in development 

of both experimental and human PAH where it is responsible for mitogenic and 

vasoconstrictive actions of serotonin (Eddahibi et al. 1999; MacLean et al. 1996).  

Mice over-expressing the human SERT gene construct (SERT+ mice) develop 

severe PAH (MacLean et al. 2004).  In line with this, mice with targeted over-

expression of SERT in the PASMCs develop PAH (Guignabert et al. 2006), whilst 

mice devoid of the SERT gene are protected against the development of hypoxia-

induced PAH (Eddahibi et al. 2000). 

1.5  Serotonin Biosynthesis and Metabolism 

Serotonin (5-hydroxytryptamine, 5-HT) was identified chemically in 1948 

following its isolation from serum, originating in platelets (RAPPORT et al. 1948).  

Localisation of serotonin was subsequently found as a major neurotransmitter in 

the central nervous system and in the periphery in the gastrointestinal tract.  

The intestinal enetrochromaffin cells are the main site of serotonin synthesis 

with over 80% of peripheral synthesis originating in the gastrointestinal tract.  

The remaining 20% is synthesised in other cell types including serotonergic 

neurons and PAECs (Hoyer et al. 2002).  The highest concentration of serotonin 

is found in the platelets which act as a store for up to 99% of total peripheral 

serotonin via the serotonin transporter (SERT).  Although circulating serotonin is 

very low (i.e. <1nM) it controls many important physiological actions, in the 

cardiovascular system (Berger et al. 2009), the brain (e.g. control of respiration, 

memory, nociception and behaviour) and the intestine (Hoyer et.al. 2002). 



 

64 
 

Endogenous serotonin arises from biosynthesis from the precursor amino acid 

tryptophan (Figure 1-11).  Decarboxylation of tryptophan is catalysed by the 

enzyme tryptophan hydroxylase (TPH) to produce 5-hydroxytryptophan which 

undergoes further decarboxylation by the aromatic L-amino acid decarboxylase 

finally producing serotonin.  TPH is the rate-limiting enzyme in this two step 

biosynthetic pathway.  Currently, two genes which encode for TPH have been 

identified: Tph1 and Tph2 (Walther & Bader 2003).  These Tph isoforms share a 

71% sequence homology.  Despite being functionally identical, TPH2 is expressed 

exclusively in the brain whereas TPH1 is responsible for serotonin synthesis in 

the periphery (Nakamura & Hasegawa 2007). 

Serotonin degradation and inactivation occurs rapidly through oxidative 

deamination catalysed by the enzyme monoamine oxidase (MAO) in the liver and 

lung.  MAO exists in two isoforms, MAO-A and MAO-B, encoded by different 

genes.  MAO-A preferentially degrades serotonin to produce 5-hydroxyindol-

acetaldehyde which is subsequently oxidised to 5-hydroxyindole acetic acid (5-

HIAA) by aldehyde dehydrogenase.  5HIAA is the primary metabolite of serotonin 

and is excreted in the urine. 

 



 

65 
 

 

Figure 1-11: Serotonin Biosynthesis and Metabolism. 
Serotonin (5-HT) is synthesised from amino acid precursor tryptophan.  Conversion to 5-hydroxy-L-
tryptophan is catalysed by the rate-limiting action of tryptophan hydroxylase (TPH).  Subsequent 
conversion by non-specific  decarboxylase enzymes produce serotonin.  Serotonin metabolism by 
both monoamine oxidase and aldehyde dehydrogenase produces the primary metabolite 5-
hydroxyindoleacetic acid (5-HIAA).  Adapted from (Druce et al. 2009). 
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1.6  Physiological Functions of Serotonin 

Under normal circumstances, the lung vascular bed in not exposed to excessive 

serotonin levels.  However, there is evidence during PAH that there is decreased 

serotonin storage within platelets leading to enhanced plasma concentration of 

‘free’ serotonin (Herve et al. 1995).  Accumulating evidence exists describing a 

pivotal role for serotonin in development of experimental and human PAH 

(MacLean & Dempsie 2010).  Within the pulmonary circulation, serotonin 

signalling is mediated via three distinct pathway components through which 

serotonin may facilitate PAH development.  These are TPH-1, SERT and the 5-HT 

receptors, and the downstream signalling pathways activated by SERT and 5-HT 

receptors. 

1.6.1  Tryptophan Hydroxylase-1 

Peripheral synthesis of serotonin is initiated by the rate-limiting enzyme 

tryptophan hydroxylase-1 (TPH-1).  Although TPH1 is predominantly expressed in 

the intestinal enterochromaffin cells, local serotonin synthesis within the PAECs 

mediating paracrine effects are also considered important in the periphery.  

Local serotonin production in the PAECs is believed to facilitate a mitogenic and 

vasoconstrictive microenvironment in which PASMCs promote hyperplasia.  

Indeed, it has recently been shown that expression of the Tph1 gene is increased 

in lungs and PAECs from patients with IPAH (Eddahibi et al. 2006). 

Experimentally, development of chronic hypoxia-induced PH and 

dexfenfluramine-induced PAH is ablated in Tph1-/- mice devoid of peripheral 

serotonin synthesis supporting the importance of serotonin in disease 

development (Dempsie et al. 2008a; Morecroft et al. 2007).  Previously, in 

unpublished work, we have demonstrated that there is low TPH1 expression in 

PAECS from normoxic mice, however after exposure to hypoxia TPH1 is 

abundantly expressed suggesting that hypoxia induces TPH1 expression and de 

novo synthesis of serotonin.  Hypoxia and mechanical stretch have previously 

been shown to increase TPH1 expression in rabbit lung (Pan et al. 2006).  This is 

consistent with the observation that serotonin is overproduced in lungs and 

PAECs from patients with IPAH (Eddahibi et.al. 2006).  Together, this evidence 
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indicates that peripheral serotonin plays an essential role in the development of 

PAH. 

1.6.2  5-HT Receptors 

The actions of serotonin in the periphery are numerous and complex.  This arises 

from the vast number of 5-HT receptor subtypes.  To date, there are 14 known 

structurally distinct receptors categorized into seven major subtypes (5-HT1-7) 

(Figure 1-12).  These are defined by their structure and coupling to downstream 

signal transduction pathways (Alexander et al. 2006).  Multiple splice variants 

also exist for certain receptors producing several isoforms for one receptor 

subtype, for example 5-HT1 comprises of 5-HT1A, 5-HT1B, 5-HT1D.  With the 

exception of the 5-HT3 receptor, which is a ligand-gated ion channel, 5-HT 

receptors are members of the G-protein-coupled receptor (GPCRs) superfamily 

(Hoyer et.al. 2002). 

The 5-HT GPCRs all share a similar structural homology.  They contain an 

extracellular N-terminus domain responsible for ligand binding, seven 

transmembrane α-helices, and an intracellular C-terminal domain.  Ligand 

binding initiates activation of the associated G-protein.  G-proteins exist as 

heterotrimeric structures composed of α, β, and γ subunits.  These are typically 

classified by the Gα subunit into four classes of subunits distinguished from each 

other by their sequence homology.  These include: Gs, Gi, Gq and G12/13 (Table 1-

3).  Each respective G-protein activates its own unique signal transduction 

pathway.  The effector for both the Gs and Gi pathways is the cyclic-adenosine 

monophosphate (cAMP) generating enzyme adenylate cyclase (AC).  In the Gs 

class, AC is activated and ATP catalyses conversion of cAMP, which in turn, 

activates cAMP-dependent protein kinase (PKA).  In contrast, interaction with 

the Gi subunit inhibits AC activation.  The effectors of the Gq and G12/13 subunits 

are phospholipase Cβ (PLCβ) and small G-proteins, respectively.  Typically, when 

the receptor is inactive, the receptor remains bound to an also inactive Gα-

subunit bound to guanosine diphosphate (GDP).  Upon ligand activation, a 

conformational change promotes exchange of a molecule of GDP for guanosine 

triphosphate (GTP).  In turn, G-protein activation results in dissociation of the 

Gα subunit from the Gβγ complex, and both entities activate downstream 

signalling pathways. 
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1.6.2.1  5-HT1 Receptor Subtypes 

The 5-HT1 receptor class comprises of five receptor subtypes: 5-HT1A, 5-HT1B, 5-

HT1D, 5-HT1E and 5-HT1F.  In humans, these receptors share 40-63% sequence 

homology.  The latter two subtypes are represented in lower case as their 

physiological role remains to be determined.  The 5-HT1 receptors are all 

coupled to the Gi protein and therefore stimulation of this receptor results in 

inhibition of AC and cAMP production.  Expression of all 5-HT1 receptors has been 

identified in both the CNS and the periphery and the functional roles of 5-HT1A, 

5-HT1B and 5-HT1D are well characterised in various tissues.  Specifically in the 

cardiovascular system, 5-HT1B and 5-HT1D receptors predominate (Hoyer et.al. 

2002). 

The 5-HT1B receptor is well characterised in the pulmonary circulation in both 

experimental and human PAH.  Experimentally, the 5-HT1B receptor has been 

shown to be involved in the development of chronic hypoxia induced-PAH, as 

well as in the contractile responses mediated by serotonin in the pulmonary 

arteries (Keegan et al. 2001).  Increased expression of 5-HT1B in pulmonary 

arteries from monocrotaline-treated rats also supports a role for 5-HT1B in PAH 

development (Wang et al. 2001).  Indeed, 5-HT1B receptor knockout mice exhibit 

a reduction in right ventricular systolic pressure (RVSP) and pulmonary vascular 

remodelling following exposure to hypoxia (Keegan et.al. 2001).  In addition, in 

small resistance pulmonary arteries from fawn-hooded rats which develop 

exaggerated hypoxia-induced PAH, serotonin-induced vasoconstriction is 

inhibited by the 5-HT1B selective antagonist SB224289 (Morecroft et al. 2005). 

In humans, 5-HT1B is implicated in both serotonin-induced pulmonary arterial 

vasoconstriction in small and large pulmonary arteries (MacLean 1999; Morecroft 

et al. 1999) and also in PASMC proliferation.  Moreover, pulmonary arteries from 

PAH patients show elevated expression of the 5-HT1B receptor (Launay et al. 

2002).  Evidence for a functional role of 5-HT1 in human pulmonary arteries 

originated from studies which described a vasoconstrictive property of 

sumatriptan (a 5-HT1B/D receptor agonist) (Macintyre et al. 1992).  Furthermore, 

the serotonin-induced vasoconstriction in these arteries was indeed inhibited by 

the 5-HT1B/D antagonist, GR55562, which supports 5-HT1B/D mediated 

vasoconstriction (MacLean et.al. 1996).  In addition, in PAH lungs, hypoxia 
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reduced cGMP and eNOS levels and raised vascular tone markedly potentiate 5-

HT1B mediated responses in pulmonary arteries (MacLean 1999).  It has also 

recently been demonstrated that the 5-HT1B receptor can mediate proliferation 

in PASMCs (Lawrie et al. 2005).  In the systemic circulation, serotonin mediates 

vasoconstriction via 5-HT2A receptor (Hoyer et al. 1994), therefore the 5-HT1B 

receptor could be a pulmonary selective target for PAH therapy. 

Functional interactions exist between the 5-HT1B receptors and SERT.  In the 

pulmonary circulation, this results in heightened vasoconstriction and 

proliferation.  Indeed, dual inhibition of both the 5-HT1B receptors and SERT is 

more effective in preventing hypoxia-induced PH in mice than inhibition of SERT 

alone implicating a synergistic effect between the receptor and transporter of 5-

HT (Morecroft et al. 2010).  In addition, dual blockade of both 5-HT1B and SERT is 

more effective at inhibiting serotonin-induced proliferation in both non-PAH and 

IPAH PASMCs (Morecroft et.al. 2010).  The interaction arises from stimulation of 

the 5-HT1B receptor which results in activation of rho small G protein and its 

downstream mediator ROCK.  This in turn facilitates the nuclear translocation of 

SERT-induced phosphorylated ERK1/2 and transcriptional regulation of 

proliferative genes including GATA-4 and cyclin D1 (Liu et al. 2004). 

1.6.2.2  5-HT2 Receptor Subtypes 

The 5-HT2 class of receptor share 46-50% sequence homology and couple 

preferentially to Gq, activating PLC to increase the formation of inositol 1,4,5 

trisphosphate (IP3) and 1,2-diacylglycerol (DAG).  In turn, these second 

messengers increase cytosolic Ca2+ (Hoyer et.al. 2002).  The 5-HT2A receptor is 

widely expressed in the CNS and periphery, and has been implicated in 

vasoconstriction and proliferation in PASMCs in PAH (Dempsie et al. 2008b).  5-

HT2A receptors are also demonstrated to be involved in platelet aggregation and 

thrombosis (Nagatomo et al. 2004). 

In experimental PAH, antagonism of 5-HT2A inhibits monocrotaline-induced PAH 

in mice (Hironaka et al. 2003), and also inhibits serotonin-induced pulmonary 

vasoconstriction in vessels from both normoxic and hypoxic rats (Morecroft et.al. 

2005).  In isolated rat PASMCs, activation of 5-HT2A receptors has also been 

shown to directly inhibit Kv1.5 channels, which results in decreased K+ cellular 
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efflux and depolarisation mediating vasoconstriction (Cogolludo et al. 2006).  

Moreover, serotonin-induced proliferation in rat pulmonary arterial fibroblasts is 

5-HT2A receptor mediated (Welsh et al. 2004). 

In humans, the 5-HT2A receptor is present in human pulmonary arteries, although 

it only contributes to vasoconstriction when serotonin levels are much higher 

than the physiological range (Morecroft et.al. 1999).  Ketanserin, a selective 5-

HT2A receptor antagonist is a proven therapy for PAH, however it’s clinical 

effectiveness is limited by the expression of 5-HT2A in systemic arteries where it 

also mediates serotonin-induced vasoconstriction (Dempsie et.al. 2008a; 

Frishman et al. 1995).  In one clinical trial, ketanserin failed to improve 

pulmonary haemodynamics in either primary or secondary PH (Frishman et.al. 

1995). 

The 5-HT2B receptor has also been identified to mediate multiple effects in the 

pulmonary vasculature.  In vivo, the development of hypoxia-induced PH is 

inhibited in mice deficient for the 5-HT2B receptor, and similarly in mice treated 

with the 5-HT2B selective antagonist RS-127445 (Launay et.al. 2002).  In addition, 

this receptor is regarded to play a key role in regulating plasma serotonin levels 

in mice (Callebert et al. 2006).  The 5-HT2B receptor is also associated with 

promoting cell cycle progression in fibroblasts (Nebigil et al. 2000) and cell 

survival in cardiomyocytes (Nebigil et al. 2003) suggesting it may contribute to 

remodelling and cardiac hypertrophy.  Albeit the 5-HT2B receptor is up-regulated 

in pulmonary arteries removed from pulmonary hypertensive patients, loss of 5-

HT2B receptor function appears to predispose to dexfenfluramine-induced PAH in 

humans (Blanpain et al. 2003). 

1.6.2.3  Additional 5-HT Receptor Subtypes 

In addition to the well defined effects of 5-HT1 and 5-HT2 receptors, the 

expression of additional 5-HT receptors has also been observed in the pulmonary 

circulation.  mRNA transcripts for the 5-HT1A, 5-HT1D, 5-HT3A, 5-HT3B, 5-HT4, 5-

HT6, and 5-HT7 receptors have been identified in rabbit pulmonary arteries 

(Molderings et al. 2006).  Multiple physiological functions for these receptor 

subtypes exist in the periphery; however they appear to play a minor role in the 

receptor-dependent effects of serotonin in the pulmonary circulation.  The 
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serotonin-receptor mediated effect in PAH are assumed to be driven via 5-HT1B, 

5-HT2A and 5-HT2B. 
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1B 1D 1E 1F 2A 2C2B 5A 5B  

Figure 1-12: Classification of 5-HT receptor subtypes. 
Those highlighted in red have been identified to mediate serotonin-induced effects in experimental 
and human PAH.  The physiological role of 5-HT receptors -5 and -6 in pulmonary hypertension is 
undetermined. 

 

Table 1-3: 5-HT receptor subtype signalling pathways. 
All 5-HT receptors are G-protein-coupled receptors (GPCRs) with the exception of 5-HT3 which is 
a ligand gated ion channel.  Activation of GPCRs activates downstream intracellular second 
messenger cascades. 

 

5-HT1

5-HT2

5-HT3

5-HT4

5-HT5

5-HT6

5-HT7

Gi/o

Gq/11

Ligand-gated  Na+ and K+ cation channel

Gs

Gi/o

Gs

Gs

cAMP

IP3 and DAG

Depolarisation

cAMP

cAMP

cAMP

cAMP

Receptor Type Mechanism

 

 



 

73 
 

1.6.3  Serotonin Transporter 

1.6.3.1 Structure 

The serotonin transporter (SERT) is encoded by a single gene located on 

chromosome 17q11.2.  Transcriptional regulation and function of SERT is 

controlled by a repetitive element of varying length in the promoter region of 

the gene (Ramamoorthy et al. 1998).  The alleles are commonly composed of 

either 14 short (S) or 16 long (L) repeated elements.  The L allele is associated 

with a two-to threefold higher rate of SERT gene transcription and increased 

mRNA expression, protein expression and functional activity (Lesch et.al. 1996).  

Structurally, SERT consists of an intracellular N terminus domain, 12 

transmembrane domains (6 extracellular; 5 cytoplasmic loops) and an 

intracellular C-terminus (Torres et al. 2003) (Figure 1-13). 

1.6.3.2 Function 

SERT operates as a Na+-dependent transporter, utilising the Na+ concentration 

gradient to facilitate serotonin transport across the membrane (Torres et.al. 

2003).  Binding of Na+, Cl- and serotonin induces a conformational change in the 

transporter allowing exposure of the serotonin binding site to the opposite side 

of the membrane and thus transport of substrate and ions.  Specifically the 

aspartic acid residue (D98) situated at transmembrane domain 1 (TMD1) is 

essential for serotonin recognition (Nelson 1998).  Inactivation of SERT is 

mediated by binding to an intracellular K+ via an active cysteine residue located 

on TMD3, which is consequently transported outside the cell.  Typically, 

serotonin is transported into the cell via SERT and this direction of transport is 

energetically unfavourable (net loss of K+).  To compensate, the Na+/K+-ATPase-

mediated continuous influx of K+ coupled with the continuous efflux of Na+ acts 

as an equilibrator to maintain the transmembrane concentration gradient. 

SERT activity can also be regulated via pre- and post-translational modifications.  

Allelic variation is responsible for pre-translational modification leading to 

altered expression and activity of SERT as discussed earlier.  On the other hand, 

post-translational modifications can be mediated by protein kinase C (PKC), 

protein phosphatase 2A (PP2A) and p38 (Ramamoorthy et.al. 1998). Multiple 

serine and threonine phosphorylation sites have been located on the cytoplasmic 
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domains responsible for SERT expression and trafficking from the cell 

membrane.  Activation of PKC has been shown to phosphorylate SERT in a Ca2+-

dependent manner, resulting in internalisation and decreased activity.  

Conversely, PPA2 maintains higher levels of SERT as its inhibition results in 

increased SERT membrane sequestration.  On the other hand, the mitogen 

activated protein kinase (MAPK) p38 regulates the activity in a manner distinct 

from PKC by regulating the delivery of SERT to the membrane and reducing SERT 

expression (Samuvel et al. 2005).  Moreover, it is observed that serotonin can 

also directly decrease SERT phosphorylation (Ramamoorthy et.al. 1998).  This 

negative feedback mechanism may act to prevent the internalisation of SERT in 

circumstances where extracellular serotonin levels are enhanced.  Together, 

these studies highlight the importance of SERT regulation on expression and 

function. 
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Figure 1-13: Structure of the Serotonin Transporter. 
The serotonin transporter exists as an intracellular N-terminus, 12 transmembrane domains and an 
intracellular C-terminus.  The serotonin transporter structure also contains several sites that 
undergo post-translational modification, shown here in red. 
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1.7  Serotonin Hypothesis of PAH 

The ‘serotonin hypothesis’ of PAH arose in the 1960s when an ‘epidemic’ of PAH 

was reported in women taking the appetite suppressant drug, aminorex.  In fact, 

aminorex was associated with a >30 fold increased incidence of PAH (Abenhaim 

et al. 1996; Kramer & Lane 1998).  In the 1980s, the new generation of 

anorexigens, the fenfluramines, were also found to be associated with PAH.  The 

anorexigens and fenfluramines were later identified to be indirect serotonergic 

agonists evoking release of serotonin by acting as SERT substrates (Rothman et 

al. 1999).  Following the observation from a multicentre study that the incidence 

of PAH had a strong correlation with these appetite suppressant pills, there was 

a complete withdrawal of all aminorex/fenfluramine-based anorexigens for 

clinical use in obesity. 

Both aminorex and fenfluramine are amphetamine-like drugs.  They influence 

serotonin signalling by interacting with SERT.  Inside the cell, these substrates 

compete with monoamines for vesicular sequestration via the vesicular 

monoamine transporter (VMAT).  Once inside the cell they subsequently disrupt 

vesicular monoamine storage and promote serotonin release (Rothman et.al. 

1999).  Often the fenfluramines were co-administered with phentermine (‘fen-

phen’) which is also a SERT substrate and MAO inhibitor.  Combined, these 

treatments potentiated accumulation of plasma serotonin via increased 

serotonin release and decreased metabolism.  These observations formed the 

basis of the ‘serotonin hypothesis’. 

The ‘serotonin hypothesis’ was consistent with reports based on elevated 

circulating levels of serotonin in PAH patients and individuals with platelet 

storage disorders who also appear susceptible to PAH (Herve et al. 1990; Herve 

et.al. 1995).  However, controversy in the ‘serotonin hypothesis’ was highlighted 

following the observation that serotonin levels were not necessarily elevated 

with fenfluramine treatment.  The ‘fen-phen’ combination was associated with 

decreases in plasma serotonin levels in humans (Rothman & Baumann 2002) and 

patients receiving fenfluramines had plasma serotonin levels within the normal 

physiological range (Kawut et al. 2006).  This converging evidence suggests that 

elevated plasma serotonin levels are not essential in the development of 

anorexigen-induced PAH.  Perhaps serotonin concentrations in local 
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microenvironments surrounding PASMCs and PAECs may be more indicative of 

susceptibility to anorexigen-induced PAH. 

Experimentally the ‘serotonin hypothesis’ has been supported.  It has been 

shown previously that dexfenfluramine-induced PAH is evident in wildtype mice 

although this effect is ablated in Tph1-/- mice.  This definitively shows that 

dexfenfluramine mediates PAH via a peripheral serotonergic mechanism 

(Dempsie & MacLean 2008).  Dexfenfluramine also promotes development of PAH 

in rats by potentiating acute hypoxic pulmonary vasoconstriction (Eddahibi et al. 

1998).  However, the exact role of the fenfluramines in PAH remains obscure as 

dexfenfluramine has also been shown to protect against the development of 

both hypoxia- and monocrotaline-induced PAH (Rochefort et al. 2006). 

Non-serotonergic mechanisms have also been reported for fenfluramines in PAH.  

For example, the fenfluramine, dexfenfluramine, has been reported to directly 

inhibit K+ channels (Weir et al. 1996) and increase intracellular Ca2+ (Reeve et al. 

1999) which act to promote vasoconstriction and proliferation.  In addition, 

metabolism of dexfenfluramine produces the metabolite nordexfenfluramine 

which exhibits agonistic activity at 5-HT2A, 5-HT2B, and 5-HT2C receptors 

(Rothman & Baumann 2002).  The roles of the 5-HT2A and 5-HT2B receptors in 

PAH were described previously. 

1.8  Serotonin Transporter in PAH 

The SERT is particularly highly expressed in both platelets and lungs.  Serotonin 

mediates its effects by binding to cell surface serotonin receptors, which initiate 

intracellular signalling, or it can be transported into the cell via SERT (Figure 1-

14).  In both experimental and human PAH, SERT is proposed to play a key role 

in disease pathogenesis.  There is evidence suggesting a link between SERT 

polymorphisms with the development of PAH.  In one report, the L allele variant 

was found to be more prevalent in the homozygous form in 65% of IPAH patients 

associated with increased expression and activity of SERT, compared to 27% in 

controls (Eddahibi et.al. 2001).  Additionally, the LL genotype is observed in 56% 

of patients with chronic obstructive pulmonary disease associated with more 

severe PAH (Eddahibi et al. 2003).  Patients with this polymorphism appear to 

have an earlier age of diagnosis and/or shorter survival rate in IPAH and HPAH 
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compared to those with an S-allelic polymorphism.  Interestingly in HPAH, an 

interaction between SERT polymorphisms and BMPR2 mutations is also proposed 

determining susceptibility to PAH (Willers et al. 2006).  Ubiquitous SERT over-

expression and/or activity are observed in the pulmonary arteries and lungs from 

patients with both IPAH and HPAH, and secondary PAH (Eddahibi et.al. 2001).  

Furthermore, PASMCs derived from IPAH patients exhibit an exaggerated 

proliferative phenotype in response to serotonin or serum dependent on SERT 

activity (Eddahibi et.al. 2006).  Serotonin-induced proliferation in PASMCs 

involves SERT-dependent generation of reactive oxygen species (ROS), activation 

of the extra-cellular regulated kinase (ERK) and the RhoA/ROCK pathway (Liu 

et.al. 2004; MacLean & Dempsie 2010).  Once inside the nucleus, pERK1/2 can 

further phosphorylate mitogenic transcription factors such as GATA-4 and cyclin 

D1.  The serotonin-induced proliferation in PAFs is also mediated via SERT, as 

citalopram can successfully block these effects (Welsh et.al. 2004).  Hence, 

evidence suggests that internalisation of serotonin through SERT is essential for 

the mitogenic properties of serotonin in PASMCs and PAFs.  On the other hand, 

SERT expression is low in PAECs and is believed not to be involved in the 

formation of plexiform lesions observed in severe/end-stage PAH (Eddahibi et.al. 

2001). 

In experimental PAH an increase in SERT mRNA levels has also been observed in 

lungs from rats exposed to chronic hypoxia localised to newly remodelled distal 

pulmonary arteries.  Basal SERT expression was absent suggesting that in vivo, 

large pulmonary arteries do not phenotypically express SERT under normoxic 

conditions and that induction occurs in response to hypoxia (Eddahibi et.al. 

1999).  Indeed, mice over-expressing SERT (SERT+ mice) exhibit increased RVSP 

and pulmonary vascular remodelling, and also develop exaggerated hypoxia-

induced PAH (MacLean et.al. 2004).  Interestingly, it was later identified that 

only SERT+ female mice develop an exaggerated PAH phenotype implicating a 

gender susceptibility dependent on circulating serotonin.  Indeed, 17β-estradiol, 

the main circulating female hormone, increased expression of SERT in PASMCs 

(White et al. 2011).  Similarly, mice with targeted SERT over expression in 

PASMCs develop PAH (Guignabert et.al. 2006).  Pulmonary arterial remodelling in 

SERT+ mice is associated with elevated RhoA/ROCK signalling and ROCK 

inhibition ablates PAH in SERT+ mice (Mair et al. 2008).  Conversely, mice devoid 
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of the SERT gene are less susceptible to the development of hypoxia-induced 

PAH (Eddahibi et.al. 2000).  In addition, the SERT inhibitor citalopram protect 

against hypoxia-induced PAH in mice (Morecroft et.al. 2010) and fluoxetine 

attenuates monocrotaline-induced PAH in rats (Guignabert et al. 2005).  

Monocrotaline-induced PAH in rats is associated with an up-regulation of SERT, 

and the protective effects of statins described in monocrotaline-induced PAH is 

dependent on down-regulation of SERT (Laudi et al. 2007). 

Continually building evidence supports the ‘serotonin hypothesis’ of PAH.  

Substantial evidence exists implicating serotonin signalling, particularly SERT 

and 5-HT receptors, in the vascular remodelling process and pulmonary arterial 

vasoconstriction.  Targeting heightened serotonin signalling offers new 

pulmonary-specific therapeutic targets for PAH.  Certainly, a combined approach 

targeting dual inhibition of the 5-HT1B receptor and SERT would provide a novel 

and effective treatment for PAH. 

 



 

80 
 

NH2

COOH

5-HT2A

NH2

COOH

5-HT1B

NH2 COOH

SERT

Endothelium

Internal Elastic 

Laminae

Smooth Muscle

5-HT 5-HT 5-HT

5-HT

5-HT5-HTT1
TPH-1

Regulation of Transcription

e.g. GATA-4, cyclin D1

Nucleus

Contraction

MAPK

ROS

ROCK

Interaction with

other PAH signalling

Pathways

e.g. BMPR2

 

1-14: Serotonin signalling in the pulmonary vasculature. 
Serotonin is synthesised in the endothelium by tryptophan hydroxylase (TPH-1).  Serotonin is then 
released and mediates effects on underlying smooth muscle via 5-HT receptors and the serotonin 
transporter (SERT).  Specifically stimulation of 5-HT1B and 5-HT2A initiates smooth muscle 
contraction.  5-HT1B can also stimulate proliferation. 
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1.9 Estrogen 

1.9.1 Synthesis and Metabolism 

The female sex hormones are steroid hormones which comprise both estrogens 

and progesterones.  The primary source and synthesis of these hormones occurs 

in the ovarian follicles and the corpus luteum in the female reproductive tract 

and play a key role in development of secondary sex characteristics.  To a lesser 

extent, estrogen synthesis can also take place in liver and adipose tissue and 

expression of estrogen-synthesising enzymes in vascular smooth muscle and 

endothelial cells (Tofovic 2010) implicates the importance of ‘local’ estrogen 

synthesis and autocrine/paracrine effects of estrogen in the periphery and 

cardiovascular tissues (Simpson & Davis 2001).  The synthesis of estrogens is 

controlled by the hypothalamic-pituitary-gonadal axis (HPG axis) which involves 

various endocrine hormones secreted from the hypothalamus and pituitary gland 

of the brain.  In particular, luteinising hormone (LH) released from the pituitary 

stimulates synthesis of estrogen, and follicle stimulating hormone (FSH) 

increases transcription of aromatase, the enzyme specific to estrogen synthesis.  

The continuous modulation of this group of hormones in females by positive-and 

negative-feedback forms the basis of the reproductive cycle.  Estrogens exist as 

three major naturally occurring isoforms: estrone (E1), estradiol (E2) and estriol 

(E3).  Estradiol is the predominant circulating hormone in pre-menopausal 

women, whilst estrone is important during the menopause and estriol during 

pregnancy. 

 
The biosynthesis of estrogen is initiated by the synthesis of androstenedione 

from the precursor cholesterol (Figure 1-15).  Androstenedione provides an 

intermediate stage in metabolism from which estradiol can be synthesised by 

two distinct pathways, either immediately or through testosterone.  The 

cytochrome P450 enzyme CYP19A1, or aromatase, converts androstenedione to 

estrone, which in turn is converted to estradiol by 17β hydroxysteroid 

dehydrogenase –type 1 (17βHSD-1).  Alternatively, reduction of androstenedione 

to testosterone, which requires a second 17βHSD isoform (17βHSD-2) occurs 

followed by aromatisation of testosterone to estradiol.  The molecular biology 

and steroidogenesis of estrogen is well described (Payne & Hales 2004).   
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Estradiol is then rapidly metabolised by oxidation (Figure 1-14).  Oxidative 

metabolism occurs primarily in the liver producing hormonally non-estrogenic 

metabolites ready for elimination from the body.  Estradiol and estrone are in 

equilibrium with 17βHSD-1, and oxidation/reduction occurs at the carbon-17 

(C17) position and favours formation of estrone.  Further metabolism of estradiol 

occurs, for example, at the C16, C4 and C2 positions producing biologically 

active metabolites.  Several members of the cytochrome P450 (CYP450) family 

are essential in mediating this nicotinamide adenine dinucleotide phosphate 

(NADPH)-dependent oxidative metabolism of estradiol.  Specifically CYP1A1, 

CYP1A2 CYP1B1, and CYP3A4 appear critical in the formation of 2- and 4-

hydroxy-derivatives.  The 2-hydroxylation pathway is the major metabolic 

pathway in the liver whereas 4-hydroxylation constitutes a relatively minor 

pathway in estrogen metabolism.  The 2-and 4-hydroxy-derivatives are then 

further converted to 2- and 4-methoxy metabolites by the catechol-O-

methyltransferase (COMT) enzyme.  Elimination of these metabolites can occur 

at either the hydroxyl- or methoxy-metabolite stage if they undergo sulphation 

by sulphotransferases (SULTs) to hormonally inactive water-soluble metabolites 

and subsequent excretion by the kidneys via urine.  There are multiple pathways 

via which estradiol can be metabolised (Zhu & Conney 1998). 

 



 

 

 

 

 

 

 

Binding to Estrogen Receptors
Genomic and Non-genomic mediated effects

 

Figure 1-15: Estrogen biosynthesis and metabolism. 
Androstenedione is derived from the precursor cholesterol.  Estradiol is synthesised immediately by aromatase (CYP19A1) to estrone (E1) or through testosterone by 
17β hydroxysteroid dehydrogenase (17βHSD-1).  Further metabolism of estradiol by cytochrome P450 enzymes (CYP450) CYP1A1, CYP1A2, CYP3A4 and CYP1B1 
produces 2-and 4-hydroxy-metabolites.  Subsequently these are metabolised to 2- and 4-methoxy-metabolites by cathecol-O-methyltransferase (COMT).  Adapted 
from (Tsuchiya et al. 2005). 
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1.9.2  Estrogen Effects in the Systemic Circulation 

Estrogen exerts diverse cardiovascular effects in both males and females.  There 

is a wealth of evidence implicating cardio-protective and vaso-protective effects 

of estrogen in cardiovascular disease.  Indeed, the incidence of cardiovascular 

disease is higher in men than that of age-matched pre-menopausal women, 

although these gender differences narrow after the menopause when the 

protection against cardiovascular disease is lost (Meyer et al. 2006).  A strong 

link between estrogen levels and hormone replacement therapy and 

cardioprotection is proposed (Rosano et al. 2003). 

Estrogen intimately regulates fundamental cardiovascular functions, including 

blood pressure, blood flow, vasodilation and vasoconstriction, vascular 

inflammation and remodelling atherosclerosis through diverse effects on various 

components of the vascular wall, such as endothelial and smooth muscle cells.  

Both acute and long term vasodilator effects of estrogen are mediated in part 

via generation of endothelium-derived NO and are attenuated by NO synthase 

(NOS) inhibitors (Caulin-Glaser et al. 1997).  Additionally, estrogen treatment 

can attenuate the vasoconstrictive properties of many mediators including 

phenylephrine and 5-HT in aorta and coronary arteries and decreases 

sympathetic nervous system –induced vasoconstriction (Dubey et al. 2004). 

Experimental studies also indicate that estrogen can protect blood vessels from 

atherosclerosis lesion formation in apolipoprotein E (ApoE) deficient mice (ApoE-

/-) (Bourassa et al. 1996), lower plasma levels of low density lipoprotein 

cholesterol (LDL) and raise levels of high density lipoprotein cholesterol (HDL) 

(Soma et al. 1993; White 2002).  Estrogen also appears to have a blood pressure 

lowering effect evidenced by changes in blood pressure throughout the 

menstrual cycle (Dunne et al. 1991) and during pregnancy (Siamopoulos et al. 

1996). 

Endothelial progenitor cells (EPCs) derived from bone marrow cells, are actively 

involved in cardiovascular homeostasis.  EPCs repair endothelial damage and 

function and promote angiogenesis (Mayr et al. 2011).  In fertile women, EPC 

populations are higher than in men; however, their numbers are subject to 

fluctuations with the hormonal cycle and fall after the menopause (Fadini et al. 
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2008).  The number and function of EPCs may therefore reflect the degree of 

cardiovascular protection in females and explain the lower prevalence of 

cardiovascular disease in premenopausal women. 

1.9.3  Estrogen Metabolite Effects in the Systemic Circulation 

Catcholestradiols and methoxyestradiols also exert cardio-protective effects in 

the cardiovascular system.  The effects of these metabolites are unlikely to 

involve estrogen receptors however, as catecholestradiols have approximately 

one-fourth the binding affinity of estradiol, and methoxyestradiols do not 

significantly bind to ERs (Dubey et al. 2000).  Estrogen metabolites exert effects 

on endothelial and vascular smooth muscle cells.  2-methoxyestradiol, 2-

hydroxyestradiol and 4-methoxyestradiol all inhibit migration, proliferation and 

collagen synthesis in human and rodent vascular smooth muscle cells.  The 

mechanism of this inhibition involves blocking free-radical production as both 2-

hydroxyestradiol and 2-methoxyestradiol are potent anti-oxidants (Seeger et al. 

1997).  In endothelial cells, 2-hydroxyestradiol and 2-methoxyestradiol stimulate 

the generation of the potent vasodilator prostacyclin and NO (Seeger et al. 

1999).  In vivo, 2-methoxyestradiol has been shown to attenuate both renal and 

cardiovascular injury by reducing blood pressure and cardiac hypertrophy 

associated with chronic NOS inhibition (Tofovic et al. 2005a). 

1.9.4  Estrogen Effects in the Pulmonary Circulation 

There is a striking female predominance reported in idiopathic and familial 

forms of PAH with females up to four times as likely to present with disease as 

males (Badesch et.al. 2010; Humbert et.al. 2006).  Endogenous and exogenous 

sex hormones represent a biologically relevant potential risk factor, and in 

particular estrogens are implicated in PAH pathogenesis.  For example, 

polymorphisms in aromatase, the estrogen synthesising enzyme, and ESR1/ERα, 

are associated with elevated estrogen levels in the lungs of female patients and 

predispose to portopulmonary hypertension (Roberts et al. 2009a; White et al. 

2012a).  Additionally, altered estrogen metabolism by CYP1B1 is implicated in 

idiopathic and heritable PAH (White et.al. 2012a) and CYP1B1 represents a 

modifier gene that drives susceptibility in females heritable PAH patients 

harbouring a BMPR2 mutation (Austin et.al. 2009; West et al. 2008). 
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Despite the well observed female susceptibility in clinical PAH, this is not 

translated to the currently utilised animal models of PH.  In fact, males exhibit 

more severe monocrotaline- and hypoxia-induced PH compared to females 

(Rabinovitch et al. 1981) and estrogen exerts protective effects on pulmonary 

vasculature and improves right ventricular contractility (Giuberti et al. 2007; 

Lahm et al. 2012a; Resta et al. 2001).  This is defined as the ‘estrogen paradox’ 

whereby the higher incidence and prevalence of PAH in females in the clinic is 

not represented by the animal models most commonly used to study the disease.  

For this reason, the observed gender bias in human PAH remains unclear. 

Estrogen mediated protection in PH appears to involve several mechanisms.  

Estrogen is reported to inhibit induction of endothelin-1, a potent mitogen and 

vasoconstrictor in pulmonary arteries, following chronic hypoxia (Earley & Resta 

2002), an effect which is absent in ovariectomised rats.  Estrogen may also 

increase vascular NO production (Gonzales et al. 2001) and prostacyclin 

(Sherman et al. 2002).  Together these effects of estrogen promote pulmonary 

vasodilation.  This effect was confirmed in pulmonary arteries from proestrous 

females, characterised by physiologically high estrogen levels, whereby the 

vasoconstrictor response to vasoactive agents such as KCl and phenylephrine, 

and hypoxia was attenuated (Lahm et al. 2007).  Additionally, estrogen is 

suggested to have inhibitory effects of Ca2+-dependent mechanisms of smooth 

muscle cells contraction (Murphy & Khalil 2000), protein kinase C (Kanashiro & 

Khalil 2001) and Rho-kinase (Shimokawa & Takeshita 2005).  The latter may also 

have important implications for inhibiting smooth muscle cell proliferation and 

migration. 

Increasing evidence from experimental animal studies implicates a protective 

role of estrogen in PH.  In vivo, estrogen ameliorates monocrotaline induced-PH 

in mechanisms dependent on NO and prostacyclin stimulation and a decrease in 

signalling through the endothelin-1 pathway (Yuan et al. 2013).  Estrogen also 

appears important in attenuation of hypoxia induced-PH in male rats by reducing 

pulmonary vascular remodelling (Lahm et.al. 2012a).  In the heart, estrogen also 

mediates RV cardioprotective effects.  Estrogen induces RV angiogenesis and 

reverses right ventricular hypertrophy (Nadadur et al. 2012; Umar et al. 2011a), 

and importantly restores RV contractility and function by enhancing right 

ventricular ejection fraction and cardiac output (Lahm et.al. 2007; Matori et al. 
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2012; Umar et.al. 2011a).  Since RV function is the most important prognostic 

factor in determining survival in PAH and women often have improved survival 

rates, it may not be surprising that estrogen exerts beneficial effects in the RV.  

Certainly, there is a correlation between estrogen levels and RV function 

described in humans (Ventetuolo et al. 2011). 

The absence of a suitable model in which to study the female predisposition to 

PAH however, has limited research into the role of estrogen in PAH 

pathogenesis.  In recent models of pulmonary hypertension dependent on 

serotonin, estrogen has been identified as a risk factor in pulmonary arteries.  In 

SERT over-expressing mice (SERT+), S100A4/Mts1 over-expressing mice and in 

dexfenfluramine-induced PH a female susceptibility is described dependent on 

circulating endogenous estrogen (Dempsie et.al. 2011; Dempsie et al. 2013; 

White et.al. 2011).  In particular, estrogen was shown to increase expression of 

tryptophan hydroxylase -1 (TPH1), the enzyme responsible for 5-HT synthesis, 

and 5-HT1B in pulmonary artery smooth muscle cells (White et.al. 2011) 

suggesting estrogen may stimulate a mitogenic environment in smooth muscle 

cells in females.  The complexity of the ‘estrogen paradox’ suggests that 

multiple pathways must be involved in generating the female predisposition.  For 

example, although in IPAH and HPAH women are over represented, estrogen 

appears protective in development of PAH in high-altitude natives distinct from 

IPAH and HPAH (Scherrer et al. 2006) and postmenopausal women with systemic 

sclerosis are at increased risk for development of PH (Scorza et al. 2002).  The 

interest in addressing the gender bias in PAH is continually expanding. 

1.9.5  Estrogen Metabolite Effects in the Pulmonary Circulation 

Evidence also suggests that metabolites of estrogen also play an important role 

in pulmonary vasculature and PAH.  In general it is regarded that metabolites of 

the 16-hydroxylation and 4-hydroxylation pathways have proinflammatory, 

mitogenic and angiogenic properties, whilst the 2-hyroxylation pathway 

produces estrogen metabolites with anti-inflammatory, antiproliferative and 

antiangiogenic properties (Dubey et.al. 2004) (Figure 1-16).  Like estrogen, the 

majority of studies implicate a protective role of non-estrogenic 

hydroxyestradiols and methoxyestradiols metabolites in the pulmonary 

circulation. 
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In monocrotaline and hypoxia-induced PH, 2-hydroxyestradiol and 2-

methoxyestradiol have been shown to attenuate pulmonary vascular and cardiac 

remodelling, as well as reducing mortality (Tofovic et al. 2005b; Tofovic et al. 

2005c; Zhang et al. 2007).  Pharmacological concentrations of 2-

methoxyestradiol also inhibits serum induced proliferation in pulmonary artery 

endothelial cells, smooth muscles cells and fibroblasts (Tofovic et al. 2008).  A 

recent study suggests reduced activity of the 2-hydroxylation pathway and 

reduced 2-hydroxyestradiol to 16α-hydroxyestrone ratios in urine in women with 

familial PAH (Austin et.al. 2009).  In line with this, administration of exogenous 

16α-hydroxyestrone to female mice induces PH (White et al. 2012).  A shift 

toward the 16-hydroxylation pathway may therefore be pathogenic in PAH in 

females.  Moreover, increased expression of CYP1B1, the major enzyme in the 4-

hydroxylation pathway is increased in IPAH and HPAH (White et al. 2012).  This 

may also have important implications in PAH development in females by 

increasing potentially mitogenic and inflammatory metabolites although the 4-

hydroxylation pathway has not been investigated in experimental PH. 
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Figure 1-16: Effects of estrogen metabolites in pulmonary arteries. 
17β-estradiol is metabolised by cytochrome P450 (CYP) enzymes to produce 2- and 4-
hydroxyestradiol metabolites.  Further metabolism by catechol-O-methyltransferase (COMT) 
produces 2- and 4-methoxyestradiols, respectively.  Both 2-hydroxy and 2-methoxyestradiol have 
been shown to inhibit pulmonary artery smooth muscle cell (PASMC) proliferation, whilst 16α-
hydroxyestradiol stimulates proliferation.  The effect of 4-hydroxylation is on PASMC is unknown.  
(* studied in experimental PH).  Adapted from (Mair et al, 2013). 
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1.10 Estrogen Receptors 

The impact of estrogen physiology in reproductive functions and in wider roles 

including modulation of inflammation, brain and behaviour, and cardiovascular 

functions, is achieved through activation of cellular hormone-specific estrogen 

receptors (ERs).  Two distinct types of signalling are described for estrogen: non-

rapid ‘genomic’ signalling and rapid ‘non-genomic’ signalling (Mendelsohn 2002).  

In the genomic pathway, estrogens bind to intracellular ERs inducing a 

conformational change and results in direct regulation of gene transcription.  In 

contrast, non-genomic signalling occurs rapidly through the activation of second 

messengers and signal transduction.  Recent identification of ERs located on the 

plasma membrane may also be accountable for rapid non-genomic estrogen 

signalling (Aronica et al. 1994; Pietras & Szego 1977).  Therefore activation of 

both intracellular and/or membrane receptors mediate physiological estrogen 

responses. 

 

1.10.1  Classical Estrogen Receptors: Subtypes and 
Structure 

The classical ERs belong to the steroid/thyroid superfamily of nuclear receptor 

transcription factors.  Until 1995 it was assumed there was only one ER 

responsible for mediating all of the physiological and pharmacological effects of 

natural and synthetic estrogens.  This receptor is now referred to as ERα 

following the cloning of the second ER, ERβ from various species (Enmark et al. 

1997; Mosselman et al. 1996; Tchoudakova et al. 1999; Todo et al. 1996; 

Tremblay et al. 1997).  ERα and ERβ are the products of separate genes, ESR1 

and ESR2 on chromosome 6q25.1 and chromosome 14q23.2, respectively (Enmark 

et.al. 1997; Menasce et al. 1993).  For ERα, at least two splice variants are 

recognised (ERα-36 and ERα46), whereas four splice variants exist for ERβ (ERβ2, 

-4, -5, and Xexon5).  They are composed of three independent but interacting 

functional domains: the NH2-terminal or A/B domain, the C domain or DNA-

binding domain (DBD), and the D/E/F or ligand-binding domain (LBD) (Figure 1-

17).  The DBD is involved in DNA recognition and binding and is the most 

evolutionary conserved domain in ERs.  It contains two zinc fingers which play a 

crucial role in receptor dimerisation and in binding of receptors to specific 

estrogen receptor response elements (EREs) in target genes. 
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On the other hand, the LBD of the NH2-terminal is not highly conserved, and 

represents the most variable domain in both sequence and length.  LBD mediates 

ligand binding, receptor dimerisation, and transactivation of target gene 

expression by binding estrogen as well as other estrogenic ligands.  

Transcriptional activation is facilitated by two distinct activation functions (AF), 

AF-1 and AF-2 in the LBD.  AF-1 is constitutively active independent of the 

presence of a ligand but provides a more robust up-regulation of gene 

transcription in synergy with AF-2 (Kushner et al. 2000).  Both ER isoforms show 

a degree of selectivity with respect to AF regions: ERα predominantly mediates 

transcriptional activation via AF-1 whilst ERβ appears to regulate transcription 

via AF-2 function.  Interestingly, comparison of the AF-1 domains in the two ERs 

has identified that ERα and ERβ often have opposing actions under the same 

conditions in the same cells lines (Nilsson et al. 2001). 

 

1.10.2  Classical Estrogen Receptors: Activation and 
Mechanism of Action 

Binding of estrogens and/or pharmacological agents to the ERs induces 

conformational changes in the receptor and this promotes changes in the rate of 

transcription of estrogen regulated genes.  AF-1 and AF-2 must interact with co-

regulator complexes (either co-activators or co-repressors) to activate or 

suppress gene expression, although there are far fewer nuclear receptor co-

repressors.  Briefly, four major signalling mechanisms of classical ERs have been 

described (Figure 1-18).  In classical genomic signalling, ERs must cooperate as 

dimers in order to translocate from the cytosol to the nucleus.  Following 

receptor dimerisation in the cytosol upon ligand binding, activation involves 

dissociation from chaperone proteins followed by the direct activation of EREs in 

the promoters of target genes in the nucleus.  As a consequence of gene 

regulation, protein translation is affected resulting in alterations in cell 

function.  Alternatively, interaction with other transcription factor complexes 

lacking ERE-sequences, for example Fos/Jun complexes (Kushner et al. 2000) 

occurs in the tethered pathway via the ER dimer complex and by utilising 

activator-protein-1 (AP-1).  Another alternative mechanism of ER action involves 

ligand-independent activation through other signalling pathways, for example 

growth factor signalling.  In this instance, growth factor signalling leads to 
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activation of kinases that may phosphorlyate and thereby initiate dimerisation of 

ERs and regulation of target genes. 

 
In addition to the classical genomic pathway of estrogen involving slow 

transcriptional effects, there are well depicted rapid effects occurring within 

seconds or minutes of estrogen addition.  Although these rapid effects have been 

extensively studied it is still unclear whether or not classical membrane-bound 

ERs are involved or if there is a distinct membrane associated receptor.  For 

example, these effects may be attributed to the third estrogen receptor, 

GPR30/GPER, which is a G-protein coupled receptor (Carmeci et al. 1997; 

Filardo et al. 2000; Moriarty et al. 2006). 

 

1.10.3  The Novel G Protein-Coupled Receptor, GPR30/GPER: 
Structure and Mechanism of Action 

Both genomic and rapid signalling events initiated by estrogen have solely been 

attributed to membrane bound classical ERs, ERα and ERβ.  However, in the last 

few years, the discovery of a 7-transmembrane G protein-coupled receptor, 

GPR30/GPER, has been attributed to both rapid and transcriptional events in 

response to estrogen (Filardo & Thomas 2005; Nilsson et.al. 2001; Prossnitz et 

al. 2008).  GPER was identified in multiple organs, and in ER-negative breast 

cancer cell lines (Carmeci et al. 1997) and as such has suggested a possible link 

to physiologic responses in estrogen-responsive tissues and cancers.  The 

functional role of GPER involves the rapid activation of mitogen activated 

protein kinases (MAPK) (Filardo et al. 2000), PI3K activation and calcium 

mobilisation (Bologa et al. 2006) and hence rapid responses in target organs.  For 

GPER-mediated transcriptional activation, GPER signalling requires epidermal 

growth factor receptor (EGFR) and occurs through rapid ERK1/2 phosphorylation 

in triggering the genomic response to estrogen leading to stimulation of c-fos 

and cyclin D1 expression (Maggiolini et al. 2004).  Rapid signalling events 

mediated by GPER leading to transcriptional activation and ligand-dependent 

activation in the genomic model of ER activity may work in concert to generate 

estrogen mediated alterations in gene expression. 

 



 

 

 

 
 

A/B C D E FERβ
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A/B C D E FERα
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Figure 1-17: Schematic representation of estrogen receptor subtypes ERα and ERβ. 
The domains of the receptor include the DNA-binding domain (DBD), the ligand-binding domain (LBD) and two transcriptional activator functions (AF-1 and AF-2).  
Percentage sequence homology between ERs is indicated in ERβ.  The central and most conserved domain is the DBD. 
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Figure 1-18: Schematic representing the possible mechanisms of action utilised by ERs. 
ER- estrogen receptor; TF, transcription factor; PI3K, phosphoinositide-3-kinase; MAPK, mitogen-
activated protein kinase; GF, growth factor; P, phosphorylation.  Adapted from (Heldring et al. 
2007a)..
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1.11 Estrogen Receptors in Disease 

Estrogens influence many physiological processes in mammals.  As well as a 

fundamental role in reproduction, estrogens are known to be involved in 

cardiovascular and respiratory health, bone integrity, immune responses and 

cognition and behaviour.  For example, women show a significant increase in 

blood pressure following the onset of menopause (Dubey et al. 2002).  It is 

therefore not surprising that ERs have a wide tissue distribution and also differ 

in their distribution patterns (Nilsson et.al. 2001).  Given this widespread role of 

estrogen, pathophysiological implications are evident and a divergent role 

between genders in many diseases is plausible. 

 

1.11.1  Estrogen Receptors in Cancer 

Estrogen plays a central role in the development of breast cancer and cancers in 

other estrogen sensitive tissues such as the endometrium and ovaries (Zhu et al. 

2012).  ER positive breast cancer is in fact accountable for almost 75% of all 

breast cancers.  ERα is considered pro-proliferative in certain tissues and 

cancers whereas ERβ is more widely regarded as possessing anti-proliferative 

properties (Paruthiyil et al. 2004).  In particular, ERα status is the most 

important predictor of breast cancer prognosis (Burns & Korach 2012) and 

several sequence variations or single nucleotide polymorphisms (SNPs) in ESR1 

are associated with either an increased or a decreased risk of breast cancer 

(Yaich et al. 1992; Zuppan et al. 1991).  In breast cancer, binding of estrogen to 

ERs stimulates tumour development and progression by regulating estrogen-

dependent transcription of proliferative factors and mediators of cellular growth 

(Deroo & Korach 2006).  An increase in cell division and DNA synthesis is 

regarded to increase risk for replication errors and detrimental mutations 

resulting in disruption of normal cellular processes such as apoptosis, 

proliferation and DNA repair.  Currently, both selective estrogen receptor 

modulators (SERMs) and aromatase inhibitors are used in the treatment of ER-

positive breast cancer.   

 
Non-small-cell lung cancer (NSCLC) is also influenced by hormonal status in 

which aromatase is considered a key predictive biomarker for treatment.  Both 
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ERα and ERβ are expressed in normal and cancerous lung epithelium and 

estrogen elicits gene transcription that stimulates cell proliferation and inhibits 

cell death (Kazmi et al. 2012).  Additionally, GPER expression is enhanced in 

lung cancer cells and tumours compared to normal lung (Jala et al. 2012). 

 

1.11.2  Estrogen Receptors in Cardiovascular Disease 

Given that the incidence of cardiovascular disease is low in premenopausal 

women but increases substantially to levels comparable to men following the 

menopause, infers that estrogens may protect the female cardiovascular system.  

Functional ERs have been detected in human endothelial cells, vascular smooth 

muscle cells and in cardiomyocytes and it is well established that estrogen can 

cause vasodilation by both ER-dependent and independent mechanisms (Dubey 

et.al. 2002). 

 
Polymorphisms in both ERs have been associated with cardiovascular disease.  

Identified polymorphisms in ERα have been linked to severity and risk of 

coronary artery disease (Kunnas et al. 2000; Lu et al. 2002; Pollak et al. 2004) 

and increased risk of myocardial infarction and blood pressure in men (Peter et 

al. 2005; Shearman et al. 2003).  In females, reduced levels of ERα by epigenetic 

regulation and gene methylation have also been associated with development of 

coronary artery disease (Losordo et al. 1994) whereas ERα appears highly 

expressed in normal arteries.  In carotid arteries of healthy female mice, the 

protective effects of estrogen in response to vascular injury are mediated by ERα 

(Pare et al. 2002).  ERα activation in carotid artery also stimulates eNOS and NO 

production promoting vasodilation and inhibition of inflammation (Chambliss et 

al. 2000) and prevents endothelial injury.  On the other hand, ERβ 

polymorphisms have attributed to left ventricular mass and left ventricular wall 

thickness in women with hypertension (Peter et.al. 2005) and with blood 

pressure in men (Ellis et al. 2004; Pedram et al. 2008).  In line with this, anti-

fibrotic effects in the heart appear ERβ dependent (Pedram et.al. 2008) and 

estrogen therapy can reduce cardiac hypertrophy in ERα deficient mice but is 

ineffective in ERβ deficient mice (Babiker et al. 2004) suggesting a crucial role 

for ERβ in cardiac hypertrophy.  In addition, ERβ knockout mice show abnormal 

vascular function and hypertension as well as increased mortality (Pelzer et al. 
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2005; Zhu et al. 2002).  Together these studies implicate a wide variety of roles 

for ERs in the heart and vasculature. 

 
GPER is also widely distributed in cardiovascular tissue including the human 

heart (Kvingedal & Smeland 1997; Owman et al. 1996) and aortic endothelial and 

smooth muscle cells (Takada et al. 1997).  Indeed, GPER is an important 

regulator of estrogen in the cardiovascular system (Olde & Leeb-Lundberg 2009).  

Rapid events mediated by estrogen, such as vasodilation have been attributed to 

GPER activation (Lindsey et al. 2011) and is regarded to be an endothelium 

dependent NO-derived mechanism (Broughton et al. 2010).  In addition, GPER 

mediated regulation of blood pressure and vascular tone has been described 

(Haas et al. 2009; Martensson et al. 2009).  GPER characterisation in 

cardiovascular disease remains the least well defined, however, the 

understanding of ERs in cardiovascular disease is consistently improving and ER 

targeted therapies become an increasingly viable treatment of cardiovascular 

disease. 

 

1.11.3  Estrogen Receptors in Pulmonary Hypertension 

Gender appears to exert regulatory effects on human lung development and in 

healthy and diseased lung.  Expression of ERs has been identified in human lung 

(Mollerup et al. 2002) suggesting estrogens play an important role in the lung.  In 

fact, ERα and ERβ are required for the formation and maintenance of full 

competent alveoli in female mice, but not in male mice (Massaro & Massaro 

2004; Massaro & Massaro 2006).  In addition, female ERβ knockout mice have 

abnormal lung structures creating systemic hypoxia leading to ventricular 

hypertrophy and hypertension (Morani et al. 2006).  It is likely then, that the ER 

pathway way contributes to sexual dimorphism in lung physiology and 

pathophysiology. 

 
Despite the well documented female susceptibility of PAH in females the 

‘estrogen paradox’ continues to impede experimental investigations into the 

gender disparity.  Recent evidence however, suggests the action of estrogen in 

the lung during PH is ER-dependent.  In males, estrogen-induced rescue of PH is 
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believed to be mainly mediated through ERβ by reducing pulmonary fibrosis 

(Umar et.al. 2011a).  In addition, Genistein, a natural soybean-derived 

phytoestrogen which shows much higher affinity for ERβ than ERα attenuates 

development of monocrotaline-induced PH in male rats (Matori et.al. 2012).  

Furthermore, estrogen-induced protection against right heart failure in both 

male and female rats is reported to be directly mediated through ERβ (Nadadur 

et.al. 2012).  On the other hand, important protective effects of estrogen on 

haemodynamics and RVH in hypoxic PH are demonstrated to be mediated by ERα 

(Lahm et.al. 2012a).  A role for both ERs in the lung during PH development is 

likely and further studies utilising intact females investigating endogenous and 

exogenous estrogen and ERs is required to complete the gender puzzle. 

 
In clinical PAH, altered ER expression and signalling in the lung is reported.  

ESR1/ERα transcript is increased in lungs of female patients with PAH relative to 

non-PAH controls (Rajkumar et al. 2010) and polymorphisms in ESR1 have also 

been associated with an increased risk of developing portopulmonary 

hypertension (Roberts et al. 2009).  Additionally, an evolutionary conserved 

estrogen receptor binding site has been identified in BMPR2, and estrogen 

signalling through ERα suppresses the BMPR2 signal (Austin et.al. 2009).  In 

contrast, in animal studies, ERα protein expression in the lung is unchanged in 

rats with right heart failure compared to control rats, although ERβ is 

significantly reduced in lungs from rats with right heart failure (Matori et.al. 

2012).  The loss of ERβ expression is rescued with Genistein therapy.  Alterations 

in ER signalling and/or tissue distribution during PAH may therefore contribute 

to the female predominance in PAH. 

 
Very little is known about the role of ERs in the right ventricle.  Expression of 

ERα and ERβ has been confirmed in the right ventricle suggesting estrogen may 

mediate effects on cardiomyocytes in PAH (Matori et.al. 2012; Nadadur et.al. 

2012).  Indeed expression of ERβ is significantly reduced in the RV from rats with 

right heart failure (Matori et.al. 2012).  Moreover, estrogen exerts beneficial 

effects on RV function in monocrotaline- and hypoxia-induced PH (Lahm et.al. 

2012a; Umar et.al. 2011a) where the mechanism of action is ER dependent.  The 

loss of ERβ also results in development of right ventricular hypertrophy (Morani 
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et.al. 2006).  To date, there is no clinical data in humans investigating the role 

of ERs in the RV.  However, together with the current animal studies, it is 

conceivable that estrogen does mediate a cardioprotective function through ERs 

given that RV function strongly correlates with estrogen levels (Ventetuolo et.al. 

2011). 

1.12 Estrogen Receptors as a Therapeutic Target in 
Pulmonary Hypertension 

There is no doubt that estrogen has a fundamental role in the physiology and 

pathophysiology of various organs, including the lungs and cardiovascular 

system.  Development of new therapies targeting estrogen receptors in 

pulmonary hypertension may provide novel treatment options considering the 

female preponderance. 

Selective estrogen receptor modulators (SERMs) are an interesting class of 

compounds that act on estrogen receptors.  They are characterised by their 

varying actions between tissues, thereby granting the possibility to selectively 

inhibit or stimulate estrogen-like action in target tissues.  Such selectivity is 

made possible by the fact that the estrogen receptors of different target tissues 

vary in chemical structure.  These differences allow estrogen-like drugs, such as 

SERMs, to act in different ways with the estrogen receptor of different tissues.  

For example, tamoxifen, the first SERM to be extensively researched for breast 

cancer, is an antagonist in the breast reducing cell proliferation, but in the 

uterus acts as an agonist inducing cell proliferation.  On the other hand, 

raloxifene, is an antagonist at breast and uterine tissue, reducing breast cancer 

risk without stimulation of uterine cell division.  However, raloxifene has 

estrogen agonistic properties toward the bone and cardiovascular system (Black 

et al. 1994; Leung et al. 2007); it may therefore be possible to develop a SERM 

therapy in PAH. 

It has been reported that raloxifene improves endothelial function by increasing 

plasma nitric oxide and inhibition of endothelin-1 in healthy post-menopausal 

women (Saitta et al. 2001).  In monocrotaline induced-PH, raloxifene attenuates 

progression of right ventricular hypertrophy and pulmonary arterial thickening 

(Nishida et al. 2009).  Since raloxifene activates ERβ more effectively than ERα, 
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this supports previous studies which show estrogen mediated protection is ERβ-

dependent (Matori et.al. 2012; Umar et.al. 2011a).  In addition, raloxifene 

enhances endothelial derived NO to promote vasodilation in isolated rat 

pulmonary arteries (Chan et al. 2007).  Importantly, the pulmonary vasodilator 

response to raloxifene is sex dependent relaxing pulmonary blood vessels in male 

rats more effectively than female rats (Chan et al. 2005) although it is unknown 

whether similar sex-related effects occur in vivo in the pulmonary circulation.  

The effect of tamoxifen in the pulmonary circulation and experimental PH is 

unknown. 

1.13 Testosterone 

1.13.1  Synthesis and Metabolism 

Testosterone is the main steroid hormone in the androgen group, although the 

androgen group comprises testosterone precursors and metabolites.  

Testosterone is primarily biosynthesized in the testes of males and in the ovaries 

of females, although small amounts are also secreted from the adrenal cortex, 

skin and adipose tissue (Channer 2011).  In men, testosterone plays a central 

role in the development of male reproductive tissues as well as promoting 

secondary sex characteristics.  Other roles for testosterone have also been 

described, such as in the prevention of osteoporosis (Tuck & Francis 2009) and as 

a risk factor in cardiovascular disease (Nettleship et al. 2009) and prostate 

cancer (Hyde et al. 2012). 

Androstenedione is a 19-carbon steroid hormone produced as an intermediate in 

the biochemical pathway that produces both the androgen testosterone and the 

estrogens, estrone and estradiol.  Androstenedione originates either from 

conversion of dehydroepiandrosterone (DHEA) or from 17α-hydroxyprogesterone 

by the enzymes CYP17A1 and 3β-hydroxysteroid dehydrogenease-1 (3β-HSD1), 

respectively (Figure 1-19).  These two metabolites share a common precursor- 

17α-hydroxypregnenolone, a product of oxidative metabolism of cholesterol.  

DHEA can be further metabolised to androstendiol by 17β-HSD2 whilst 17α-

hydroxyprogesterone is converted to androstenedione by CYP17A1.  Formation of 

testosterone from androstendiol and androstenedione involves 3β-HSD isoforms, 

3β-HSD1 and 3β-HSD-2 and -3, respectively.  Testosterone can then be 
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bioconverted into 17β-estradiol via aromatase, or into its immediate 5-alpha 

reduced dihydro-metabolites: 5α-DHT, via the enzyme 5α-reductase and 5β-DHT 

via the enzyme 5β-reductase.  Subsequently, these dihydro-androgens undergo a 

3α- or 3β-hydroxylation via the enzymes 3α- or 3β-HSD to produce biologically 

inactive tetrahydro-androgens which are excreted.  It is important to note that 

the dihydro-and tetrahydro-androgens are non-aromatisable, thus they cannot 

be bioconverted into estrogens. 

Like other steroid hormones, the synthesis of testosterone is regulated by the 

HPG-axis.  LH secreted from the pituitary stimulates Leydig cells in the testes to 

produce testosterone and testosterone negative feedback to the pituitary blocks 

the actions of gonadotropin releasing hormone (GnRH) from the hypothalamus. 

The physiology of testosterone is complex as the amount of biologically active 

testosterone is determined by sex hormone binding globulin (SHBG) and albumin.  

Approximately only 1-2% of testosterone is “bioavailable” or “free”, whereas the 

majority circulates bound to SHBG (50-60%) and serum albumin (40—50%) (Dunn 

et al. 1981). 

1.13.2  Androgen Receptor: Activation and Mechanism of 
Action 

Testosterone exerts its effect in cells by binding to the androgen receptor (AR).  

The AR belongs to the superfamily of nuclear receptors responsible for mediating 

transcriptional events in cells and the AR gene is located on the X chromosome 

at position 12.  Testosterone can activate AR directly, or following its conversion 

to DHT by the enzyme 5α-reductase.  In fact, DHT is 10-times more potent in 

activation of AR than testosterone itself (Liu et al. 2003).  . 

Generally, activated AR upon ligand binding undergoes conformational changes 

to form a homodimer after dissociation from heat shock proteins and 

translocates to the nucleus to interact with androgen response elements (AREs) 

in the promoters of target genes.  In the AR protein, the LBD is involved in 

dimerisation and ligand binding, whilst the DBD region allows AR to bind to DNA 

in cells.  No membrane bound AR has been characterised, however as well as 

genomic transcriptional events, testosterone can mediate non-genomic rapid 
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signalling events involving second messenger cascades including cytosolic 

calcium, and activation of protein kinase A, protein kinase C and MAPK (Kousteni 

et al. 2001). 

The actions of testosterone are mainly mediated by binding to AR.  Given that 

testosterone exerts broad biological effects on many target organs, expression of 

AR is also found in non-reproductive tissues.  AR is known to be expressed in 

other tissues such as skeletal muscle (Snochowski et al. 1980), bone (Riggs et al. 

2002) and the brain (McGill, Jr. et al. 1980).  Importantly, AR is also found in 

cardiomyocytes (Marsh et al, 1998), endothelial cells, vascular smooth muscle 

cells and fibroblasts (Lin et al. 1982).  AR is also important in the developing 

lung and during lung cancer (Mikkonen et al. 2010).  Therefore, testosterone and 

DHT effects are implicated in the heart and vasculature. 
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Figure 1-19: Androgen biosynthesis and metabolism. 
Circulating carbon-19 precursors are converted to intermediates dehydroepiandrosterone (DHEA) 
and 17α-hydroxyprogesterone.  Further metabolism of these produces testosterone via the 
hydroxysteroid dehydrogenase enzymes.  Testosterone metabolism by aromatase produces 
estradiol, or by 5α-reductase enzymes produces the primary metabolite dihydrotestosterone (DHT).  
DHT is inactivated by conversion to 3α-and 3β-androstanediol which are excreted in urine. 



 
 

1.14 Androgen Effects in Systemic Circulation 

1.14.1  Testosterone and DHT 

As male sex is regarded as a major risk factor for the development of 

cardiovascular disease, it is thought that androgens, including testosterone, 

promote detrimental effects on the heart and vasculature.  In fact, androgen 

replacement is associated with cardiovascular-related adverse events in men of 

all ages (Basaria 2010; Fernandez-Balsells et al. 2010).  Moreover, high 

testosterone levels are associated with higher mortality rates due to 

cardiovascular disease and diabetes (Araujo et al. 2011; Grossman & Messerli 

2011; Stanworth & Jones 2009). 

Several lines of evidence implicate a negative effect of testosterone in 

vasculature.  Both testosterone and DHT stimulate proliferation of rat vascular 

smooth muscle cells (Fujimoto et al. 1994) and DHT increases macrophage and 

foam cell and plaque formation in atherosclerosis (McCrohon et al. 1999; 

McCrohon et al. 2000) suggesting a promitogenic and proinflammatory effect of 

these androgens in cardiac vasculature.  Testosterone is also reported to 

increase synthesis of angiotensin-II, a potent vasoconstrictor and mitogen known 

to induce hypertension and atherosclerosis (Reckelhoff et al. 2000) and lowers 

HDL and raises LDL in vascular smooth muscle cells (Goh et al. 1995).  In 

contrast, in cholesterol fed rabbits, testosterone appears anti-atherosclerotic 

independent of lipids (Alexandersen et al. 1999).  On the other hand, in clinical 

data, men with an aromatase deficiency exhibit accelerated atherogenesis 

(Reckelhoff 2001).  Perhaps the disparity between studies reflects local 

metabolism of testosterone to estrogen which exerts protective effects on the 

endothelium (Dubey et.al. 2002). 

In addition, in rat models of hypertension, males exhibit higher blood pressure 

than age-matched females, which is prevented by castration and reproduced 

following testosterone treatment in spontaneously hypertensive (SHR) and Dahl 

salt-sensitive rats (Dubey et.al. 2002; Reckelhoff 2001).  Epidemiological studies 

also show an inverse correlation between testosterone and blood pressure in 

men (Khaw & Barrett-Connor 1988).  There is strong evidence that both 

testosterone and DHT cause structural and morphological changes in the human 
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heart (Achar et al. 2010) and act through the AR to initiate cardiac hypertrophy 

(Hayward et al. 2000).  Altered metabolism of estrogen is predicted to play a 

pivotal role in testosterone-induced cardiac hypertrophy as males with LVH have 

increased expression of 5α-reductase and AR in the heart (Thum & Borlak 2002).  

Moreover, treatment with an AR antagonist significantly improves LVH in 

patients (Baltatu et al. 2003).  The effect of endogenous and exogenous 

androgens on cardiac remodelling and function remains controversial, however, 

and is further complicated by aromatisation to estrogen. 

1.14.2  DHEA 

Extensive evidence implies a beneficial effect of DHEA on cardiovascular 

function.  Numerous epidemiological studies have indicated that low plasma 

levels of DHEA and its sulphated form, DHEAS, are associated with elevated 

cardiovascular risk (Abbasi et al. 1998; Shono et al. 1996), cardiovascular 

morbidity (Alexandersen et al. 1996; Trivedi & Khaw 2001), coronary artery 

disease (Herrington et al. 1990; Ishihara et al. 1992; Mitchell et al. 1994) or 

atherosclerotic vascular diseases (Bernini et al. 1999; Bernini et al. 2001) 

irrespective of gender. 

In animal studies, administration of DHEA attenuates development of 

atherosclerosis and plaque progression (Aragno et al. 2000; Ayhan et al. 2003; 

Eich et al. 1993; Gordon et al. 1988) and protects against ischemic-reperfusion 

injury and kidney injury following hypertension (Aragno et.al. 2000; Ayhan et.al. 

2003).  In addition, DHEA is suggested to have a protective effect on the 

endothelium, increasing endothelial proliferation and preventing endothelial cell 

apoptosis independent of AR and ERs (Liu et al. 2007; Williams et al. 2002).  

Antioxidant properties of DHEA have also been described in the heart and 

vasculature (Savineau et al. 2013). 

1.15  Androgen Effects in Pulmonary Circulation 

1.15.1  Testosterone and DHT 

There is very limited data on the role of androgens in the pulmonary circulation 

and in PAH.  In the few studies to date, testosterone has been identified as a 

potent vasodilator in isolated human pulmonary vasculature (Rowell et al. 2009; 
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Smith et al. 2008).  It is in fact a more potent vasodilator than estrogen in this 

vascular bed (English et al. 2001).  The effect of testosterone is proposed to be a 

rapid, non-genomic effect independent of AR and the endothelium and NO 

(Jones et al. 2002; Yue et al. 1995).  Instead, the mechanism of vasodilation 

appears to involve inhibition of Ca2+ entry via voltage gated calcium channels 

(Hall et al. 2006; Scragg et al. 2004).  Moreover, the action of testosterone is 

direct and not dependent on conversion to estrogen by aromatase as both 

aromatase inhibition and ER antagonism fail to prevent the vasodilatory response 

(Deenadayalu et al. 2001; Teoh et al. 2000; Tep-areenan et al. 2002) 

In vivo, a correlation between the RV and testosterone is proposed.  The degree 

of RVH in rats exposed to high altitude is greater in castrated males treated with 

testosterone (Vander et al. 1978) and the effects of hypoxia and testosterone 

appear additive.  Recently, the first evidence for a role of testosterone in PH 

was reported.  Hemnes et al (2012) showed that testosterone induced right 

ventricular fibrosis and increased cardiac myocyte size in the pulmonary artery 

banding (PAB) model of PH.  The effects of testosterone in the RV were observed 

in the absence of any effects on haemodynamic properties, for example, right 

ventricular systolic pressure and cardiac output were unaffected by testosterone 

manipulation.  This suggests, at least in PH, that the effects of testosterone are 

primarily involved in dysfunctional RVH and during RV stress and increased 

afterload in PAH drive the differences in survival rates between males and 

females (Hemnes et al. 2012). 

1.15.2  DHEA 

The effect of DHEA on PAH has been investigated in humans and animal models.  

It has been described as having a multifunctional protective role in PAH.  In rats, 

DHEA treatment prevents and reverses chronic hypoxia induced-PH involving a 

decrease in pulmonary artery remodelling, especially PASMC proliferation and 

prevention of RVH (Hampl et al, 2003; Bonnet et al, 2003).  Indeed, in patients 

with PH associated with chronic obstructive pulmonary disease (COPD), chronic 

DHEA treatment improves pulmonary haemodynamics (Dumas de la Roque et al, 

2012). 
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In isolated PASMCs, DHEA directly inhibits Ca2+ influx and decreases KCl-induced 

contraction in isolated pulmonary artery (Bonnet et al, 2003).  Vasodilator 

properties of DHEA have also been demonstrated in chronic hypoxic male rats 

and monocrotaline models associated with both opening of voltage gated 

potassium channels (Farrukh et al, 1998; Gupte et a, 2002) and increased 

expression and function of pulmonary artery Ca2+-activated K+ channels (Bonnet 

et al, 2003; Hampl et al, 2003).  Additionally, an antioxidant property of DHEA in 

human PASMCs decreases proliferation and resistance to apoptosis by modulating 

mitochondrial functions (Dumas de la Roque et al, 2010).  In line with this, DHEA 

reverses pulmonary arterial remodelling by various pathways such as normalising 

RhoA/ROCK activity in hypoxia (Homma et al, 2007), decreasing Src/STAT3 

activation with resorted BMPR2 (Paulin et al, 2011) and decreased accumulation 

of HIF-1α in PASMCs during hypoxia (Dessouroux et al, 2008).  DHEA may 

therefore provide a promising therapeutic option in PAH therapy. 
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1.16 Aims  

The principal aim of this research was to investigate the role of classical 

estrogen receptors ERα and ERβ, and the novel G-protein coupled receptor, 

GPER in PAH in males and females.  We also wished to determine the role of 

testosterone in development of PAH in males.  These aims were investigated 

using the following approaches: 

• Determine localisation of estrogen receptors lung and pulmonary artery 

smooth muscle cells in experimental and translational PH (Chapter 3) 

• Characterise ERα in two in vivo models of PH: chronic hypoxia and SERT+ 

mice (Chapter 3) 

•  Determine a mechanism for estrogen and estrogen receptor signalling in 

experimental and translational PH (Chapter 3) 

• Characterise the role of GPER in GPER-/- male and female mice in the 

chronic-hypoxic PH model (Chapter 4) 

• Identify the influence of testosterone in PH development in vitro and in 

vivo by testosterone manipulation (castration) (Chapter 5). 



 
 

Chapter 2. 

Materials and Methods 
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2  

2.1 Materials 

All chemicals and reagents obtained were of the highest grade and quality and 

supplied by the following companies: Innovative Research of America (Florida, 

USA), Sigma Aldrich (Poole, UK); Tocris Bioscience (Bristol, UK); Invitrogen 

(Paisley, UK), Fisher Scientific (Loughborough, UK) and Applied Biosystems/Life 

Technologies (Paisley, UK).  All cell culture reagents were provided by Sigma 

Aldrich (Poole, UK) or Gibco (Paisley, UK), unless otherwise stated.  Fetal Bovie 

Serum was supplied by Sera Laboratories International (West Sussex, UK). 

2.2 Ethical Information 

All experimental animal procedures conform with the United Kingdom Animal 

Procedures Act (1986) and with the ‘Guide for the Care and Use of Laboratory 

Animals’ published by the US National Institutes of Health (NIH publication No. 

85-23, revised 1996), and ethical approval was also granted by the University 

Ethics Committee.   

Experimental procedures utilising human pulmonary artery smooth muscle cells 

(hPASMCs) conformed with the principles outlines in the Declaration of Helsinki 

and were approved by Cambridgeshire 1 Research Ethics committee (REC 

reference: 08/H0304/56). 

2.3 Methods 

2.3.1 Animal Models 

2.3.1.1  Wildtype Mice 

Wild-type inbred C57BL/6JOlaHsd male and female mice were obtained from 

Harlan Laboratories, Carshalton, UK.  Mice were shipped at 6 weeks of age and 

were housed in the Central Research Facility in the University of Glasgow for one 

week to acclimatise before exposure to any surgical procedures. 
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2.3.1.2  SERT+ Mice 

Mice over-expressing the human serotonin transporter gene transcript were 

generated and supplied by Professor Tony Harmer, University of Edinburgh, UK.  

SERT+ mice were generated using the C57BL/6 x CBA wild-type strain.  The 

transgene was introduced using a 500-kb yeast artificial chromosome (YAC35D8) 

containing the human SERT gene flanked by 150 kb of 5’ and 300kb of 3’ 

sequence, with the “short” allele of the SERTLPR in the promoter region in the 

10-repeat allele of the variable number tandem repeat in intron 2.  In situ 

hybridisation analysis has previously shown that the expression of the human 

SERT gene closely resembles the pattern of the endogenous mouse SERT gene.  

Genotyping was performed by PCR on tail biopsies to confirm the expression of 

the human SERT transgene.  C57BL/6 x CBA littermate mice were studied as 

controls for SERT+ mice.  

2.3.1.3 GPER(-/-) Mice 

GPER(-/-) mice were supplied by Frederick Leeb-Lundberg (Lund University, 

Sweden).  The mouse model was developed with a completely disrupted GPER 

gene locus.  This was achieved using a targeting vector containing a lox-flanked 

mGPER ORF and a lox-flanked TkNeo cassette assembled from a murine 129/SvJ 

BAC-clone.  To provide negative selection, the long arm was flanked with a 

PGKDt-a expression cassette.  The GPER gene was deleted by transient 

expression of cAMP response element- recombinase.  This targeting strategy 

resulted in deletion of the whole GPER open-reading frame.  The chosen three 

clones were injected into C57BL/6 blastocysts which were implanted into 

pseudopregnant females and the deletion was backcrossed six generations into 

the C57BL/6 genetic background.   C57BL/6 mice were therefore studied as wild 

type controls for GPER(-/-) mice. 

All mice were housed with littermates in the Central Biological Research Facility 

at the University of Glasgow.  In all mouse studies, mice were exposed to a 

continuous 12 hour light/dark cycle with access to food and water ad libitum. 
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2.3.2 MPP Dihydrochloride Administration 

Under general anaesthesia, 1%-3% (v/v) isoflurane supplemented with O2, pellets 

containing either MPP Dihydrochloride [chemical name- 1,3-Bis(4-

hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole 

dihydrochloride] (MPP) (0.56mg/14 day pellet, Innovative Research of America, 

Florida, USA) or vehicle pellets were inserted subcutaneously into the dorsal 

neck using a sterile 12-gauge hypodermic needle prior to hypoxic exposure for 14 

days.  The unique engineering of the Matrix Driven Delivery (MDD) pellet system 

effectively and continuously allowed the diffusion of MPP into the animal at a 

concentration of 2mgkg-1day-1.  Vehicle pellets are composed and designed to 

perform exactly as active pellets, but contain no active product.  The unique 

engineering of the Matrix Driven Delivery (MDD) pellet system effectively and 

continuously allowed the diffusion of MPP into the animal at a concentration of 

2mgkg-1day-1.  Vehicle pellets are composed and designed to perform exactly as 

active pellets, but contain no active product.  This is the first study to 

administer MPP in pellet form, although, previously this pellet delivery system 

has been shown to work effectively at releasing 17β-estradiol in mice (White et 

al, 2011) and we therefore consider this an effective, consistent and reliable 

method of drug delivery.  Limitations of these pellets however, include the 

inability to compensate for varying body weights over the experiment duration.  

48 hours after insertion of MPP/vehicle pellets, mice were exposed to 14 days 

chronic hypoxia. 

2.3.3  Chronic Hypoxia 

The development of hypoxia induced-pulmonary hypertension (PH) was achieved 

using a hypobaric hypoxic chamber.  Mice were subjected to 14 days of an 

atmospheric pressure of 550mbar.  The gradual depressurisation from ~1000mbar 

(ambient room pressure) to 550mbar reduces the oxygen availability from ~21% 

O2 to ~10% O2 and results in sustained hypoxic pulmonary vasoconstriction and 

the development of PH.  During this time, room temperature was maintained at 

21˚C-23˚C with a relative humidity of 30 – 50% and mice were re-housed with 

clean bedding and food/water every 5–7 days. 



 
 

113 
 

2.3.4  Bilateral Orchidectomy 

For pre-operative care, male mice were administered the analgesic 

buprenorphine (0.1mgkg-1) and 4mlkg-1 sterile saline via intra-peritoneal 

injection.  Bilateral orchidectomy, (removal of both testicles) was performed 

under general anaesthesia (1%-3% (v/v) isoflurane supplemented with O2) in 6 

week old male C57BL/6 wild-type mice.  This technique removes the sex organs 

responsible for the production of the male sex hormone, testosterone.  Briefly, a 

small incision was made in the scrotum, each testicle was then pushed down 

through the incision and removed via cauterisation through the vas dererens.  1–

2 surgical staples were used to close the ventral incision in the scrotum.  

Surgical staples were used for accuracy and consistency, and moreover to reduce 

the chances of infection as a complication during suturing.  For post-operative 

care, a non-steroidal anti-inflammatory drug, carprofen (2.5mgkg-1) and 4mlkg-1 

sterile saline were administered via intra-peritoneal injection.  Staples were 

removed one day following surgery and mice were given a further 4 weeks to 

recover from surgical procedure as well as allowing complete depletion of 

circulating testosterone levels.  An interval of 14 days post orchidectomy surgery 

has previously demonstrated the absence of any detectable plasma testosterone 

levels (Wichmann et al. 1996).  Sham- operated mice received a lateral incision 

in the scrotum although the testes and vas deferens remained intact.  At 10 

weeks, mice were placed in 14 days of hypobaric hypoxia and the assessment of 

PAH was performed on removal at 12 weeks. 

One week following surgery, mice were monitored on a daily basis, and 

thereafter on a weekly basis, to ensure full recovery from surgery with an 

absence of any infections at both the wound site and overall general health. 

Experimental design for each in vivo study described above is shown in Figure 2-

1.  In all studies, C57Bl/6 mice were used at 6-12 weeks of age; however SERT+ 

mice and wildtype counterparts were required to be used at 20 weeks (~5-6 

months) as it is at this age only that female mice exhibit the PH phenotype.  One 

limitation of using mice of varying ages, and of interest in this study, is the 

concentration of circulating estrogen in these mice may fluctuate at different 

ages. 
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Figure 2-1: In vivo study design. 
(A). C57Bl/6 male and female mice were dosed with MPP/vehicle for 2 weeks in the 
presence/absence of hypoxia.  In vivo haemodynamics were assessed in these mice at 8 weeks of 
age.  (B). SERT+ female mice were dosed with MPP/vehicle from 20 weeks of age for 2 weeks in 
the presence/absence of hypoxia and haemodynamics assessed at 22 weeks.  (C). Male mice 
underwent sham/orchidectomy surgery at 6 weeks of age.  Following 4 weeks recovery, mice were 
placed in normoxic/hypoxic conditions for 2 weeks and haemodynamics were assessed at 12 
weeks. 
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2.4 Assessment of PAH 

2.4.1  Haemodynamic Measurements 

The induction of general anaesthesia was supplied via exposure to 3% (v/v) 

isoflurane supplemented with O2.  Acceptable anaesthesia at this point was 

observed by shallow abdominal respiration prior to removal and weight 

measurements.  Mice were then placed in a facemask and continuously received 

1-2% (v/v) isoflurane to maintain adequate general anaesthesia.  Before 

initiation of surgical procedure, general anaesthesia was confirmed by assessing 

the absence of hind limb and tail reflex.  These reflexes were also routinely 

assessed throughout the procedure.   

2.4.1.1 Mechanism of fluid filled catheter system 

Haemodynamic pressures were measured using a fluid filled catheter system 

implanted transdiaphragmatically into the right ventricle or directly into the 

carotid artery for measurement of right ventricular systolic pressure and 

systemic arterial pressure, respectively.  Fluctuations of vascular pressure 

caused a pulsation of the saline column within the catheter leading to changes in 

the resistance.  These changes in pressure were converted to an electrical signal 

and the output measured using a digital recorder (BIOPAC Systems, Inc, USA).  

The sampling rate was recorded as 200 samples/second.      

2.4.1.2 Calibrating the system 

The catheter was calibrated using a sphygmomanometer to a baseline of 0mmHg 

or atmospheric pressure (open to air) and a maximum of 150mmHg.  In addition, 

pressure tubing was assessed to ensure they were free of air bubbles.  A wave 

test was also applied to check for oscillations as an indicator of harmonic 

characteristics of the system (one oscillation was observed before wave returned 

to baseline).      

2.4.1.3 Accuracy of system 

Although use of the fluid filled catheter system is advantageous in that it 

provides direct and continuous measurements of arterial pressure, this system is 

not suited for continuous prolonged recording.  Common sources of error 
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associated with the fluid filled catheter system include clotting or kinking in the 

cannula and bubbles in the cathter-transducer system resulting in decreased 

resonant frequency.  Continuous flushing of the catheter system with heparin to 

prevent clotting of the catheter may result in volume overload in the mouse.  

Moreover, there is associated morbidity and mortality with use of this surgical 

system.  Use of the Millar catheter with a transducer mounted on the catheter 

tip would minimise these inaccuracies and the pressure-volume loop (PV loop) 

system would provide a more thorough analysis of the heart functionality, 

including stroke volume and end-systolic and –diastolic volumes in future studies.    

2.4.2  Right Ventricular Systolic Pressure 

Right ventricular systolic pressure (RVSP) was measured by a transdiaphragmatic 

approach.  Briefly, a small portion of skin was removed from the ventral chest to 

expose the anterior sternum.  A 25mm gauge heparinised needle was then 

advanced into the mid-portion of the abdomen using a micromanipulator.  A 

negative pressure reading was indicative of entry into the diaphragm and used as 

a marker for gauging to the right ventricle.  The right ventricle was punctured 

through the right ventricular free wall and the pressure was confirmed by a 

characteristic waveform such as in Figure 2-2.  From this recording, a 

measurement of RVSP was deduced and used as an indice of PAH.  Following a 

five-to-eight minute trace, a control was performed by advancing the needle 

further into the heart to obtain left ventricular (LV) pressure and a typical LV 

waveform.  At necropsy validation of right ventricular pressure was also assessed 

microscopically by confirming the presence of a puncture wound in the right 

ventricle free wall.  The continuous measurement of RVSP was achieved using a 

calibrated 25mm gauge heparinised saline filled needle attached to an Elcomatic 

E751A pressure transducer connected to a MP100 data acquisition system 

(BIOPAC Systems Inc, Santa Barbra, USA).  Specifically, mean RVSP, systolic and 

diastolic RVSP were measured at three independent areas of the trace which 

were steady.  In each instance, the same peak following the reduction in 

transmural pressure was recorded. 
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Figure 2-2: Representative image of right ventricular pressure. 
Three second representative recording of right ventricular pressure in a normoxic wild type mouse.  
Approximate heart rate= 360.0 beats per minute (bpm).  Low heart rates indicated could be a result 
of prolonged anaesthesia (normal adult mouse heart rate= ~500-600bpm). 
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Figure 2-3: Representative image of systemic arterial pressure. 
Three second representative recording of systemic arterial pressure in a normoxic wild type mouse.  
Approximate heart rate= 300.0 beats per minute (bpm).  Closure of the aortic valve is indicated by 
the dicrotic notch.  Low heart rates indicated could be a result of prolonged anaesthesia (normal 
adult mouse heart rate= ~500-600bpm). 
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2.4.3  Systemic Arterial Pressure 

Systemic arterial pressure (SAP) was obtained by cannulation of the left common 

carotid artery.  The carotid artery was exposed by an incision in the ventral neck 

and located by blunt dissection down the muscle lying inferior to the trachea.  

The left common carotid artery is typically positioned ~2mm lateral (left) and 

less than ~1mm posterior to the trachea.  Precision dissection was used to 

isolate the carotid artery from the vagus nerve running parallel to the artery and 

without severing the nerve.  To tie the artery distally to the heart a suture (5.0 

silk non-braided) was used and an arterial clip (Harvard Apparatus, Boston, USA) 

was placed on the artery to occlude blood flow through the lumen proximal to 

the heart.  Following an incision through the arterial wall, a heparinised saline-

filled polypropylene cannula (Harvard Apparatus, Boston USA) was advanced 4-

5mm into the artery and secured in place using a suture and the arterial clip 

removed.  Continuous measurement of SAP was obtained using the same 

technique as for RVSP with an Elcomatic E751A pressure transducer and an 

MP100 data acquisition system (BIOPAC Systems Inc, Santa Barbra, USA).  A 

typical SAP waveform is shown in Figure 2-3. 

Following measurement of RVSP and SAP, mice were killed by cervical 

dislocation.  The heart and lungs were then dissected out immediately en bloc 

and placed in ice cold physiological saline solution (PSS; pH 7.4; mmol/L, NaCl 

119, NaHCO3 25, KCl 4.7, KH2PO4 1.2, MgSO4 0.6, CaCl22.5, C6H12O6 11.1).  Liver, 

spleen, kidneys and uterus/testis were also dissected out and snap frozen in 

liquid nitrogen for storage in -80˚C conditions until further use. 

2.4.4 Right Ventricular Hypertrophy 

The right ventricle (RV) and the left ventricle plus septum (LV+S) were dissected 

free from surrounding pericardial fat and large blood vessels at necropsy.  The 

RV was dissected from the LV+S and both were dry blotted.  Right ventricular 

hypertrophy (RVH) was measured as a ratio of the right ventricular free wall (RV) 

over the LV+S and the ratio (RV/LV+S) was used in PAH assessment. 
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2.4.5  Pulmonary Vascular Remodelling 

3µm sagittal sections of lung were stained with α- smooth muscle actin (α-SMA) 

and microscopically examined in a blinded fashion.  Pulmonary arteries assessed 

were <80µm external diameter and were not associated with an airway.  The 

arteries were considered muscularised by the presence of a distinct think 

vascular wall visible for at least half the diameter of the vessel.  Four to six lung 

sections were analysed per group and approximately 100 arteries were counted 

per sagittal lung section.  The percentage of remodelling was expressed as a 

percentage from the number of muscularised vessels/total number of vessels x 

100. 

2.5 Histology 

2.5.1  Fixation 

Human lung sections were supplied by Prof. Nicholas Morrell (Papworth Hospital, 

Cambridge, UK).  Information regarding the part of lung removed from the 

patients at the hospital is unknown.  Patient information for lung sections is 

depicted in Table 2-1.  Low patient numbers are due to the rare nature of the 

PAH and are described as a limitation in experiments. 

Following death, the superior and inferior lobe from the right lung were 

dissected free and harvested in 10% (v/v) neutral buffered formalin (NBF: 90% 

distilled H2O, 10% formalin, 33mmol/L NaH2PO4, 45mmol/L Na2HPO4) for 24 

hours under gentle agitation.  Formalin fixed lungs were then paraffin-embedded 

and 3µm sagittal sections cut and mounted onto salinised glass microscopic 

slides.   

2.5.2  Immunolocalisation of Estrogen Receptors in the Human 
Lung   

3µm human lung sections were de-parrafinised in xylene and rehydrated through 

100% ethanol to 70% ethanol and deionised water (100% xylene > 100% ethanol > 

90% ethanol > 70% ethanol > deionised water; 10 minutes each step).  Following 

rehydration, heat-induced epitope retrieval was performed for 20 minutes in 

10molL-1 citric acid buffer (pH6.0) and then cooled to room temperature.  Lung 
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sections were rinsed in deionised water for 10 minutes and then 

phosphobuffered saline (TBS).  Endogenous peroxidise activity was then blocked 

via incubation in methanol containing 3% (v/v) hydrogen peroxide (H2O2) for 20 

minutes at room temperature (Sigma Aldrich, Poole, UK).  Non-specific blocking 

using Normal Horse Serum (2.5%) (Vector Laboratories, Peterborough, UK) was 

performed for 1 hour at room temperature before addition of primary antibody 

or IgG control overnight at 4oC in diluent (15% (v/v) primary antiserum, 10% 

(w/v) BSA in PBS).  See Table 2.2 for antibody concentrations.  A negative 

control was also utilised by incubating a slide with antibody diluent only and 

appropriate IgG controls were used.  Subsequently, sections were washed in TBS 

for 2 x 10 minutes at room temperature.  Secondary incubation using anti-rabbit 

horseradish peroxidise polymer (Vector Laboratories, Peterborough, UK) was 

performed for 1 hour at room temperature followed by 2 x 10 minute washes in 

PBS.  Following secondary incubation, protein visualisation was achieved under 

the microscope with the DAB substrate kit (3,3- diaminobenzidine, hydrogen 

peroxide and nickel solution; Vector Laboratories, Peterborough, UK) until a 

dark-brown staining was apparent which was typically 3-5 minutes.  To stop the 

immunoperoxidase reaction sections were placed in deionised water.  Sections 

were counterstained in haematoxylin and allowed to develop a blue/purple 

background before sections were dehydrated in an increasing ethanol gradient to 

histoclear (70% ethanol > 90% ethanol > 100% ethanol > 100% xylene; 10 minutes 

each step).  Finally, glass coverslips were mounted onto each slide using Tissue-

Mount (Sakura Finetek, Alphen aan den Rijnm, Netherlands). 

2.5.3  Alpha Smooth Muscle Actin and Von Willebrand Staining  

α-SMA staining was used to confirm pulmonary vascular remodelling and 

muscularisation in mouse models and smooth muscle staining in human lung 

sections.  Von Willebrand staining (vWF) was utilised to confirm endothelial cells 

staining in human lung sections.  3µm mouse/human lung sections were de-

parrafinised in xylene for 30 minutes and rehydrated through an alcohol gradient 

to water (100% ethanol (x2), 90% ethanol (x1) and 70% ethanol (x1)).  Heat-

induced epitope retrieval was carried out in 10mmol-1 citric acid buffer (pH6.0) 

for 20 minutes followed by a period to cool.  Non-specific blocking using Normal 

Horse Serum (2.5%) (Vector Laboratories, Peterborough, UK) was performed for 1 

hour at room temperature before addition of primary antibody or IgG control 
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overnight at 4oC in diluent (15% (v/v) primary antiserum, 10% (w/v) BSA in 

PBS).α-SMA/vWF primary antibodies were incubated over night at 4oC in diluent 

(15% (v/v) primary antiserum, 10% (w/v) BSA in PBS).  Endogenous peroxidise 

activity was then blocked via incubation in methanol containing 3% (v/v) 

hydrogen peroxide (H2O2) for 20 minutes at room temperature (Sigma Aldrich, 

Poole, UK).  Incubation with anti-rabbit horseradish peroxidise polymer 

conjugated secondary antibody (ImmPress anti-rabbit IgG peroxidise, Vector 

Laboratories, Peterborough, UK) was performed for 1 hour at room temperature 

followed by 2 x 10 minute washes in PBS.  α-SMA/vWF staining was then 

visualised using DAB substrate kit producing a dark-brown colour within 3-5 

minutes.  Sections were counterstained with Harris haemotoxylin to develop a 

blue/purple background for clearer visualisation.  Sections were then 

dehydrated in increasing ethanol concentrations to histoclear before mounting.  

Concentrations of antibodies used in immunohistochemistry are depicted in 

Table 2-2. 
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Table 2-1: Clinical characteristics for human lung sections.  All available information for 
patients from Papworth Hospital, Cambridge is depicted in table.  Duration of disease length and 
treatment course was unavailable.  HPAH=heritable PAH; IPAH=idiopathic PAH. 

 

 Available Patient Information BMPR2 Mutation 

Control   

1. Female; No information available  

PAH   

1. 
 
 

2. 

Female; HPAH; aged 38 years; transplant; 
mean PAP 56mmHg; IV epoprostinil 
treatment 
 
Female; HPAH; aged 30 years; transplant; 
mean PAP 46mmHg; IV iloprost and 
sildenafil 

No 
 
 

Yes 

   

3. Female; IPAH; aged 44; transplant; mean 
PAP 86mmHg; IV epoprostinil 

No 
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Table 2-2: Antibodies used for Immunohistochemistry.  α-SMA=alpha smooth muscle actin; 
BMPR-II=bone morphogenetic protein receptor-II; ERα=estrogen receptor alpha; ERβ=estrogen 
receptor beta; GPER= G-protein coupled estrogen receptor; vWF=Von Willebrand Factor. 

Antibody Type (Clone) Source 
(Catalogue number) 
 

Immunohistochemistry 
Dilution used 

α-SMA Rabbit polyclonal Abcam (ab5694)  1:500 (0.2µgml-1) 
 

ERα Rabbit polyclonal Santa Cruz (sc-7207) 1:200 (1µgml-1) 
 

ERβ Rabbit polyclonal Abcam (ab-3577) 1:200 (5µgml-1) 
 

GPER Rabbit polyclonal Abcam, (ab-39742) 1:100 (5µgml-1) 
 

vWF Rabbit polyclonal Dako (A0082) 1:1000 (0.1µgml-1) 
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2.6 Vascular Reactivity 

2.6.1 Small Vessel Wire Myography 

Intralobar pulmonary artery was used for determination of pulmonary vascular 

reactivity.  Briefly, the intralobar pulmonary artery (~250µm diameter) was 

dissected from the left lung located posterior to the hilum.  Once isolated, the 

surrounding parenchyma and airway smooth muscle was gently removed from 

the pulmonary artery and the artery was placed in ice cold PSS until use. 

Small vessel wire myography was used to assess the vascular reactivity in mice.  

A 4-channel wire myograph (DMT Multi Wire Myograph, Denmark) organ bath was 

prepared with 5ml of PSS, heated to 37oC ± 0.5oC and continuously bubbled with 

16% O2, 5% CO2 and 79% N2, designed to replicate gas composition and conditions 

observed in the lung in vivo.  Following dissection from the lung, intra-lobar 

artery was divided into 2mm segments and two sections of stainless steel wire 

(40µm diameter, 3cm length) were passed through the vessel lumen and tied to 

their respective mounting jaws on the myograph and the vessel was securely 

tightened (Figure 2-4).  Once mounted the vessels were allowed to equilibrate 

for ~30 minutes under resting/zero tension. 

2.6.2 Application of Tension 

The pulmonary circulation is a low pressure system with pulmonary arterial 

pressures between 9-18mmHg.  To replicate in vivo pressures, control vessels 

from normoxic mice were set up with a tension to achieve a normal transmural 

pressure from 12-16mmHg representative of a normoxic mouse pressure in vivo. 

On the other hand, vessels from hypoxic mice were set up at tensions equivalent 

to their elevated in vivo mean pressures observed in PAH (25-30mmHg).  These 

pressures were achieved by altering the force transducer in millinewtons (mN) 

and the pressure was deduced from the force of the tension using the equation 

in Figure 2-5.  For these, resting/zero tension when no force is applied (Xo), 

active tension when force is applied and wires are stretched (Xi) and passive 

force (F) values were required.  In addition, 2 (mm) was used as the constant for 

vessel length (L).  The internal circumference with wires just touching before 



 
 

125 
 

application of tension is equal to (2+π) x wire diameter (40µm)= 205.6 µm.  

Tension was applied incrementally until the appropriate pressure was achieved. 

 
Figure 2-4: Wire myograph set-up. 
Used to study small resistance vessels, vascular reactivity in the lung was assessed in 2mm 
sections of pulmonary intralobar artery. 

Potassium chloride (KCl) was the contractile agent used to initiate depolarisation 

and contraction in smooth muscle cells.  KCl-induced smooth muscle cell 

contraction is due to membrane depolarisation causing Ca2+ entry through 

voltage-operated Ca2+ channels and a reduction in K+ efflux (Ganitkevich et al. 

1991).  After a 30 minute equilibration, the response to 50mmolL-1 KCl was 

determined for a 30 minute period.  The maximum KCl response produced from 

two consecutive readings was used to normalise the contraction in these vessels.  

A contractile response of ≥ 1 millinewton (mN) was considered sufficient to 

perform a cumulative concentration response curve. 

2.7 Serotonin Cumulative Concentration Response Curve 

A baseline tension was established in vessels prior to commencing the 

cumulative response curve to the potent pulmonary vasoconstrictor serotonin 

(Sigma Aldrich, Poole, UK).  Curves were initiated at the lowest concentration of 

1x10-9 molL-1 and increased in 0.5 log increments to a final organ bath 

concentration of 1x10-4 molL-1.  For consistency between vessels and 

experiments, serotonin was added once the vascular response had reached a 

plateau which was typically following ~3 minutes.  Data was analysed using 

Myodaq/Myodata 2.01 M610+ software and GraphPad Prism 5.0© was used to 

derive Emax and EC50 values. 

2mm intra-
lobar 

pulmonary 
artery 
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 (2π) x F

2 x L (205.6 + 2(Xi – Xo)) / 1000
Pi=

 

 

Figure 2-5: Equation to calculate transmural pressure.  
The calculated Pi value must be divided by 0.1333 in order for successful conversion to mmHg.  
F=force (mN); L=length of vessel (2mm); Xi=active tension; Xo=resting/zero tension.  205.6µm is 
the calculated internal circumference of the wires when using 40µm diameter wires. 

2.8 Tissue Culture 

All tissue culture procedures were carried out in sterile conditions using a 

Biological Safety Class II vertical laminar flow cabinet.  Human pulmonary artery 

smooth muscle cells (PASMCs) were the cell model utilised, provided by 

Nicholas. W. Morrell, University of Cambridge, UK.  Cells were stored at 37oC 

and maintained in 5% CO2, 95% air. 

2.8.1  Human Pulmonary Artery Smooth Muscle Cells 

Briefly, PASMCs utilised were derived from pulmonary arteries (1-3mm arterial 

diameter) from non-heritable idiopathic PAH patient origin or were obtained 

from non-PAH donors undergoing lung biopsies and studied as controls.  Patient 

information for cell lines utilised is depicted in Table 2-3.  PASMCs were grown 

in a 75cm2 culture flask and media was replaced every 48 hours.  Cells were 

grown in Dulbeccos’s Modified Eagle Medium (DMEM; Gibco, Paisly, UK) 

supplement with 10% (v/v) fetal bovine serum (Sera Laboratories International, 

West Sussex, UK), 2mmolL-1 glutamine, and sterile filtered antibiotic antimycotic 

solution (contains 10,000 unitsml-1 penicillin G, 10mgml-1 streptomycin sulphate 

and 25µgml-1 amphotericin B; Sigma Aldrich, Poole, UK).  Cells were passaged 

when the monolayer approached 90% confluency to prevent cell growth arrest by 

cell contact inhibition.  For passaging, cells were rinsed with two washes of 

0.06% (v/v) trypsin-ethylenediamine tetra-acetic acid (EDTA) (trypsin-EDTA; 

Gibco, Paisly, UK) and placed at 37oC to encourage the monolayer to detach 

from the flask surface.  Once 95% cells were detached, which was typically 

following less than 5 minutes incubation, 10ml 10% (v/v) FBS DMEM was added to 

the flask to neutralise the trypsinisation reaction.  For plating of cells, cell 

density was assessed using a haemocytomoeter. 
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2.8.2 Proliferation Assays Using [3H]-Thymidine Incorporation 

The [3H] thymidine incorporation assay is a reliable assay used to measure 

proliferation by directly measuring DNA synthesis.  It utilises a strategy wherein 

radioactive labelled [3H]-thymidine is incorporated into new strands of 

chromosomal DNA during mitosis.  PASMCs (passage 3-5) were seeded in 24 well 

plates (growth area 2.0cm2) at a density of 10,000 cells per well and grown to 

60% confluency in 10% (v/v) FBS DMEM.  Cells were then quiesced in 0.2% (v/v) 

FBS phenyl-red free DMEM for a period of 24 hours prior to addition of agonist for 

72 hours.  After 48 hours, where appropriate, all antagonists were added 30 

minutes before addition of agonist.  Drugs applied were replaced every 48 hours 

and for the last 24 hours, 0.1µCi [3H]-thymidine was added to each well.  To stop 

the experiment following 72 hours incubation, cells were washed twice in PBS.  

Protein was precipitated by three washes in 5% (w/v) trichloroacetic acid 

followed by addition of 0.3molL-1 NaOH for 30 minutes to promote cell lysis.  The 

total volume of each well (500µl) was then transferred to a 1.5ml eppendorf and 

1ml Eicoscint A scintillation fluid (Eicoscint, Atlanta, USA) was added to each 

tube.  The radioactivity level of [3H]-thymidine was measured as an index of 

DNA synthesis in a Wallac Scinitillation counter (PerkinElmer, Cambridge, UK).  

Data are expressed as fold change compared to 2.5% FBS control.  Proliferation 

data are expressed as fold change compared to 2.5% FBS control. 

Estrogen receptor agonists: PPT (chemical name: 4,4',4''-(4-Propyl-[1H]-pyrazole-

1,3,5-triyl)trisphenol); DPN (chemical name: 2,3-bis(4-Hydroxyphenyl)-

propionitrile) and G1 (chemical name: (±)-1-[(3aR*,4S*,9bS*)-4-(6-Bromo-1,3-

benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]- 

ethanone) were used at a concentration range between 0.001-10 nmolL-1.  All 

estrogen receptor antagonists: MPP (MPP dihydrochloride); PHTPP (chemical 

name: 4-[2-Phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol) 

and G15 (chemical name: (3aS*,4R*,9bR*)-4-(6-Bromo-1,3-benzodioxol-5-yl)-

3a,4,5,9b-3H-cyclopenta[c]quinoline) were used at a concentration of 1µmolL-1. 
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Table 2-3: Clinical characteristics and patient information for human PASMCs.  All available 
patient information received from University of Cambridge is depicted in table below.  HPAH= 
heritable PAH; IPAH= idiopathic PAH. 

 

 

 Available Patient Information BMPR2 Mutation 

Control   

 Female  

1. 58 year old No 

2. 64 year old No 

3. 59 year old No 

4. 
 

5. 

64 year old 
 
72 year old 

No 
 
No 

  
Male 
 

 

1. 62 year old with emphysema No 

2. 72 year old No 

3. 76 year old No 

   

PAH   

 Female  

1. 24 year old; IPAH  

2. 30 year old; HPAH Yes (R899X) 
 

3. 39 year old, HPAH Yes (N903S) 

   

 Male  

1. 23 year old, HPAH Yes 

2. 43 year old, IPAH No 

3. 56 year old, IPAH No 
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2.9 Western Blotting 

2.9.1  Human PASMCs 

Human PASMCs were seeded (passage 3-5) in 6 well plates (growth area 9.6cm2) 

at a density of 25,000 cells per well and grown to 80% confluency in 10% (v/v) 

FBS DMEM.  Cells were then quiesced for 24 hours in 0.2% (v/v) FBS DMEM 

followed by addition of agonist and/or antagonist for experiment dependent 

required times.  The experiment was terminated by placing the 6-well plates on 

ice and the media was immediately aspirated and cells were subsequently 

washed in ice cold PBS three times.  Ice cold radioimmunoprecipitation assay 

(RIPA)-buffer (64mM HEPES, pH7.5, 192mM NaCl, 1.28% (v/v) Triton-X-100, 0.64 

(w/v) sodium deoxycholate, 0.1% (w/v) SDS, 0.5molL-1 sodium fluoride, 5mmolL-1 

EDTA, 0.1molL-1 sodium phosphate, 1µgml-1 soyabean trypsin inhibitor, 1µgml-1 

benzamidine, 0.01mmolL-1 PMSF) was then added to each well for 15 minutes 

under gentle agitation.  Following this, cell lysates were collected by scraping 

and collected samples were stored at -80oC until further use. 

2.9.2  Mouse Pulmonary Arteries 

Main left and right mouse pulmonary arteries and pulmonary trunk were 

dissected out at necropsy as these are the smallest that can be practically 

dissected from the mouse and provide a valid representation of the pulmonary 

circulation.  Immediately following death, the pulmonary arteries were snap 

frozen in liquid nitrogen and transferred to -80oC until required.  Pulmonary 

arteries from one mouse were placed in 150µl of RIPA-buffer with three 5mm 

stainless steel balls (QIAGEN®, Manchester, UK).  Pulmonary arteries were 

homogenised using a QIAGEN® TissueLyser II for 2 minutes (4 x 30 second 

intervals).  Protein samples were then placed on ice to rest for 30 minutes prior 

to being centrifuged at full speed for 15 minutes at 4oC.  Supernatant was 

removed and placed in a fresh tube and then stored at -80oC until use for 

Western Blot protein analysis. 

2.9.3  SDS-PAGE 

Protein was separated using SDS-PAGE (sodium dodecyl sulphate polyacrylamide 

gel electrophoresis), a technique that separates the proteins according to their 



 
 

130 
 

molecular weight.  Briefly, protein samples were loaded at 10-20µgml-1 as 

assessed using a BCA (bicinchoninic acid) Protein Assay (Thermo Scientific) and 

standard curve analysis.  Protein samples were subjected to reducing conditions 

in the presence of NuPAGE® LDS (lithium dodecyl sulphate) Sample Buffer (4X) 

and NuPAGE® Reducing Agent (10X) (10mmolL-1 dithiothreitol) and heated to 

70oC for 10 minutes.  Samples were loaded into NuPAGE® Novex® 4-12% Bis-Tris 

Precast Gels and subjected to 150V constant in the presence of NUpAGE® MES or 

MOPS SDS Running Buffer.  SeeBlue Plus2 pre-strained size standard (1kb) 

(Invitrogen, Paisley, UK) was used as a basis for protein molecular weight 

comparison.  Once the samples had been fractionated they were transferred to a 

polyvinylidene difluoride (PVDF) membrane (Millipore, County Durham, UK) for a 

30V constant for 2 hours to allow high protein absorption.  The protein-loaded 

PVDF membrane was then washed for 15 minutes three times in Tris-buffered 

saline (20mmolL-1 Tris pH7.5, 150mmolL-1 NaCl) containing 0.1% (v/v) Tween-20 

(TBST; Sigma Aldrich, Poole, UK). 

2.9.4  Immunoblotting 

Immunoblotting was the analytical technique used to detect proteins.  Initially, 

membranes were blocked in 5% (w/v) non-fat dry milk suspended in TBST at 

room temperature under gentle agitation to prevent interactions between the 

membrane and primary antibody used for detection of target protein.  Following 

this, membranes were washed as before in TBST and were exposed to primary 

antibody diluted in 5% (w/v) bovine serum albumin (BSA; Sigma Aldrich, Poole, 

UK) in TBST overnight at 4oC.  See Table 2-4 for optimised antibody 

concentrations.  Subsequently, membranes were washed in TBST before addition 

of horse-radish peroxidise (HRP) conjugated secondary antibody diluted in 5% 

(w/v) non-fat dry milk-TBST for 1 hour at room temperature.  Again membranes 

were thoroughly washed in TBST to limit background activity.  Protein was 

visualised using the enhanced chemiluminescent detection system (ECL-

detection system; Amersham Bioscience UK Ltd. Buckingham, UK).  Briefly, 

membranes were exposed for 1 minute to a 1:1 dilution of ECL solution mix, dry 

blotted and placed in a light sensitive cassette.  General purpose Kodak X-ray 

photographic film was used to develop and visualise proteins. 
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2.9.5  Quantitative Analysis of Protein 

α-tubulin was used as a loading control where the molecular weight did not 

overlap with the size of previously analysed proteins.  Equal loading was 

assessed by densitometrical analysis and performed using TotalLab TL100 

software via calculation of protein:α-tubulin ratio. 
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Table 2-4: Table of antibodies used for immunoblotting. 

Primary antibodies were applied to membrane overnight at 4oC in 5% (w/v) BSA-TBST.  
Secondary antibodies were applied for 1 hour at room temperature in 5% (w/v) non-fat dry milk-
TBST  

Reactive 
Protein 

Molecular 
weight 

Primary 
antibody 
dilution 

Supplier 
(Catalogue 
Number) 

Antibody 
Origin 

Secondary 
antibody 
dilution 

BMPR2 115kDa 1:500 BD 
Transduction 
Laboratories 
 

Mouse 
monoclonal 

1:5000 

ERα 66kDa 1:250 Santa Cruz (sc-
7207) 

Mouse 
monoclonal 

1:5000 

ERβ 63kDa 1:1000 Cell Signalling 
Technology 
#5513 
(discontinued) 
 

Rabbit 
polyclonal 

1:5000 

ERβ 55kDa 1:1000 Abcam 
(ab3577)  
 

Rabbit 
monoclonal 

1:5000 

GPER 55kDa 1:250 Abcam 
(ab39742) 
 

Rabbit 
polyclonal 

1:5000 

α-tubulin 50kDa 1:5000 Abcam 
(ab7291) 
 

Mouse 
monoclonal 

1:10,000 
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2.10 mRNA Expression  

2.10.1  Mouse Lungs 

One lobe dissected from the right lung was lysed in 700µl QIAzol Lysis Reagent 

(QIAGEN®
, Manchester, UK).  Briefly the lung lobe was placed in an RNase free 

2ml tube with one 5mm stainless steel ball and homogenised using a QIAGEN® 

TissueLyser II for 2 minutes (4 x 30 second intervals). 

2.10.2  Human PASMCs 

Human PASMCs (passage 3-5) were seeded in 6 well plates at a density of 25,000 

cells per well and grown to 90% confluency in 10% (v/v) FBS DMEM.  Cells were 

washed three times with cold PBS to terminate experiment and 700µl QIAzol 

Lysis Reagent was then added directly to the cells for lysis.  Cells in QIAzol were 

transferred to RNase free tubes for storage at -80oC until further use. 

2.10.3  RNA Extraction 

RNA was extracted from mouse lungs and human PASMCs using the QIAGEN® 

RNeasy Mini Kit (QIAGEN®
, Manchester, UK).  Tubes were brought to room 

temperature allowing dissociation of nucleoprotein complexes.  Chloroform was 

then added directly to the QIAzol and shaken vigorously to encourage phase 

separation in the subsequent step.  Samples were then centrifuged for 15 

minutes at 10,000rpm at 4oC to separate RNA from DNA, and organic proteins 

and lipids.  The upper colourless phase containing the RNA was transferred into a 

clean RNase free tube and 1.5 volumes of 100% ethanol were added to clean the 

RNA by gentle pipette mixing.  Samples were then transferred to a spin column 

and centrifuged at room temperature for 15 seconds at 10,000rpm.  No RNA 

extraction is completely sufficient at eliminating DNA therefore a DNase 

digestion was performed for a more complete DNA removal.  Samples were 

washed in RWT Buffer and then treated with DNase I in RDD Buffer (QIAGEN®
, 

Manchester, UK) for 30 minutes.  Another RWT Buffer wash was performed 

before the RNA extraction was continued.  Samples were washed in RPE Buffer 

twice at room temperature and to eliminate carryover of any buffer the spin 

column was then transferred to a 1.5ml tube.  30µl of RNase free water was 



 
 

134 
 

added directly onto the spin column and samples were then centrifuged at 

10,000rpm for 1 minute at room temperature.  RNA integrity and quantification 

was then assessed immediately using a NanoDrop ND-1000 Spectrophotometer 

(Nano-Drop Technologies, Delaware, USA).  Absorbance of RNA was quantified at 

260nm and 280nm, and the 260/280 ratio was calculated.  A 260/280 ratio of 

≥2.0 was achieved in all samples and was indicative of RNA purity. 

2.10.4  cDNA Synthesis 

High Capacity cDNA Reverse Transcription Kits (Life Technologies, Paisley, UK) 

were used for reverse transcription (RT) of total RNA to single stranded cDNA.  A 

20µl reaction was used with 500ng of RNA.  A master-mix containing dNTPs, 

random hexamers and RNase inhibitor, supplied in the kit, was added to the RNA 

in a 96 well plate and the following cycling conditions were used for 

amplification of cDNA: 10 minutes at 25oC, 30 minutes at 48oC, 5 minutes at 95oC 

and 12oC forever. 

2.10.5  Quantitative Real Time-PCR  

Quantitative real time-PCR (qRT-PCR) was used to validate mRNA expression 

using TaqMan® Gene Expression probes (Applied Biosystems, Paisley, UK).  See 

Table 2-5 for Assay IDs.  mRNA & long non-coding RNA probes (Life Technologies, 

Paisley, UK) consisted of unlabelled PCR primers and a TaqMan® probe with a 

FAM® or VIC® dye label on the 5’ end and a nonfluorescent quencher on the 3’ 

end.  Samples were loaded at 1ug cDNA in triplicate using a 384-well plate 

format.  To assess for reagent and reaction contamination a no template control 

(NTC) was used for each gene tested in triplicate per experiment.  A Viia 7 

machine (Life Technologies, Paisley, UK) was used to assess gene expression 

using the following cycling conditions: 50oC for 2 minutes, 95oC for 10 minutes, 

then 50 cycles of 95oC for 15 seconds and 60oC for 1 minute.  Gene expression 

was defined by the cycle threshold (Ct value) inversely proportional to the 

amount of target nucleic acid in the sample.  Ct values were accepted ≤ 36 given 

technical replicate efficiency and were indicative of positive reactions.  The 

data is represented as the relative quantification (RQ; 2-XXCt) or fold change 

compared to the calibrator. 
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Table 2-5: TaqMan gene expression assay IDs supplied by Applied Biosystems. 
AR=androgen receptor; BMPR2= bone morphogenetic protein receptor-II; ESR1=estrogen receptor 
alpha; ESR2= estrogen receptor beta; Id=Inhibitor of DNA binding; Srd5a1=5α-reductase type I. 

Gene Species Assay ID 

AR Mouse Mm00442688_m1 

BMPR2 Mouse Mn00432134_m1 

ESR1 Mouse Mm00433149_m1 

 Human Hs00174860_m1 

ESR2 Mouse Mm00599821_m1 

 Human  Hs01100353_m1 

GPER Mouse Mm02620446_m1 

 Human Hs01922715_s1 

GAPDH Mouse Mm99999915_g1 

 Human Hs03929097_g1 

Id1 Mouse Mm00775963_g1 
 

Id3 Mouse Mm01188138_g1 
 

Smad1 Mouse Mm00484723_m1 
 

Srd5a1 Mouse Mm00614213_m1 
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2.11  Plasma Testosterone Levels in Mice 

2.11.1  Preparation of Mouse Plasma Samples 

Immediately following necropsy, approximately 1ml of whole blood was removed 

from the open chest of each mouse and stored in a 1.5ml tube.  Whole blood was 

left undisturbed at 4oC for 30 minutes.  Samples were then centrifuged for 15 

minutes at 4000rpm in a refrigerated centrifuge at 4oC, the resulting 

supernatant is designated plasma.  Plasma samples were immediately 

transferred to a clean tube and stored at -80oC until required. 

2.11.2  ELISA 

A testosterone ELISA (R&D Systems™, Abingdon, UK) was performed in mouse 

plasma samples following castration to confirm the successful depletion of 

circulating testosterone levels.  The assay is based on a competitive binding 

technique using a monoclonal antibody specific for testosterone.  Plasma 

samples were diluted 10-fold using calibrator diluent provided.  Reconstituted 

testosterone standard was utilised at concentrations between 10ngml-1 to 

0.041ngml-1 (3-fold dilutions) with 10ngml-1 standard serving as the high standard 

and the calibrator diluent alone serving as the zero standard (B0) (0ngml-1).  

Briefly, primary antibody solution was added to each well of the microplate for 1 

hour at room temperature under gentle agitation.  For non-specific binding (NSB) 

confirmation, 4 wells received no antibody incubation.  Primary antibody was 

then aspirated and all wells of the microplate received a thorough wash four 

times using wash buffer provided.  100µl standard, control (R&D Systems™, 

Abingdon, UK) or sample was added to each well (in triplicate) and 100µl 

calibrator diluent was then added to NSB and to the zero standard (B0) wells.  

50µl testosterone conjugate was added to each well and incubated for 3 hours at 

room temperature under agitation at 500rpm on a horizontal orbital microplate 

shaker.  Following incubation, all wells were washed 4 times with wash buffer 

and substrate solution was added to each well.  At this stage the microplate was 

concealed and protected from light for 30 minutes at room temperature.  Stop 

solution was subsequently applied and the plate was promptly analysed using a 

microplate reader set to 450nm. 
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2.11.3  Standard Curve Analysis 

Triplicate readings for each standard, control and sample were averaged and the 

NSB optical density was subtracted.  A standard curve was created by plotting 

mean absorbance for each standard against the concentration on a logarithmic 

x-axis and a best-fit curve was obtained.  %B/B0 was calculated by dividing 

corrected optical density for each standard or sample by the corrected B0 optical 

density and multiplying by 100. 

2.12  Statistical Analysis 

All statistical analysis was performed using GraphPad Prism 5.0 Inc© software.   

Unpaired student’s t-tests were used for comparing two treatment groups.  One-

Way ANOVA was employed when two or more independent groups were 

compared, followed by Bonferroni’s or Tukey’s post hoc-test where appropriate.  

Two-Way ANOVAs were used to analyse all in vivo experiments where there was 

more than one independent variable and multiple observations for each variable, 

for example, normoxic/hypoxic and vehicle/MPP treatment.  Two-Way ANOVAs 

were followed by a Bonferroni’s post hoc-test.  All data are expressed as mean ± 

standard error of mean (SEM). 
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3  

3.1 Introduction 

The incidence of pulmonary arterial hypertension (PAH) is higher in females 

(Badesch et.al. 2010; Humbert et.al. 2006; Ling et.al. 2012).  For example, the 

female to male ratio is currently reported in the largest REVEAL Registry as 

approximately 4.1:1 in idiopathic pulmonary arterial hypertension (IPAH) and 

3.8:1 in associated PAH (APAH) (Badesch et.al. 2010).  However, despite an 

increased prevalence in females, females with PAH have better right ventricular 

function and survival compared to males (Benza et.al. 2012; Humbert et.al. 

2010a; Shapiro et al. 2012).  Reasons for these gender differences remain 

unclear.  A role for gender-associated factors, such as sex hormones, and in 

particular estrogens, has been proposed to play a pivotal role in PAH 

pathogenesis. 

Until recently, animal models have offered limited insight into gender 

differences in PAH owing to the ‘estrogen paradox’ whereby female rodents 

exhibit less severe hypoxic and monocrotaline PAH compared to males (Benza 

et.al. 2012; Humbert et.al. 2010a; McMurtry et al. 1973; Rabinovitch et.al. 

1981; Resta et.al. 2001; Shapiro et.al. 2012).  In addition, estrogen or estrogen 

metabolites can protect male or ovariectomised female rats against 

monocrotaline and hypoxia induced PAH (Benza et.al. 2012; Farhat et al. 1993; 

Lahm et.al. 2012a; Shapiro et.al. 2012; Yuan et.al. 2013).  However, there is 

converging clinical evidence suggesting that the estrogen pathway is a major risk 

factor in females with PAH (Morse et al. 1999; Pugh & Hemnes 2010).  

Polymorphisms in aromatase (CYP19A1) are associated with higher estrogen 

levels and an increased risk of PAH development in female patients with 

advanced liver disease (Roberts et al. 2009b).  In line with this, physiological 

concentrations of estrogen mediate proliferation of human pulmonary artery 

smooth muscle cells (PASMCs) (White et.al. 2011). Experimentally, in three 

serotonin-dependent models of pulmonary hypertension (PH) there is a female 

susceptibility related to endogenous circulating estrogen (Dempsie et.al. 2011; 

Dempsie et.al. 2013; White et.al. 2011).  In addition, conversion of estrogen to 

active metabolites via cytochrome P450 1B1 (CYP1B1) mediates ER-independent 

effects of estrogen.  Altered estrogen metabolism is implicated in PAH 
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development and CYP1B1 is expressed at elevated levels in lungs from IPAH and 

heritable (HPAH) female patients (White et al. 2012).  Furthermore, CYP1B1 has 

been identified as a modifier gene in bone morphogenetic protein receptor type 

2 (BMPR2) affected female HPAH patients inferring an increased disease risk 

(Austin et.al. 2009; West et.al. 2008). 

Dysfunctional BMPR2 signalling is recognised to play a pivotal role in the 

development of PAH as mutations in BMPR2 are responsible for ~80% of HPAH 

cases (Machado et.al. 2009).  Penetrance for this gene is incomplete however; as 

only 20% of BMPR2 mutation carriers manifest PAH (Newman et.al. 2004).  

Therefore it is assumed additional risk factors, genetic or environmental, are 

involved.  Female gender increases the penetrance of BMPR2 mutations in HPAH 

(Machado et al. 2009) and consistent with this BMPR2 gene expression is higher 

among control males compared to females (Austin et al. 2012).  BMPR2 may be a 

target of ERα (Rajkumar et.al. 2010) and it has been shown that BMPR2 

expression is suppressed via this receptor (Austin et al. 2012) giving a functional 

role for estrogen and ERα in PAH. 

The effects of estrogen are primarily mediated by activation of estrogen 

receptor ERα and ERβ, and these effects can be both genomic and non-genomic.  

Very rapid, non-genomic effects of estrogen have also been described through 

activation of the G-protein coupled receptor, GPER.  ERα and ERβ antagonists 

have been shown to protect against hypoxic PH and monocrotaline PH in male 

rats (Lahm et al. 2012b; Umar et al. 2011b) and indicate both receptors play a 

functional role in the lung during PH.  The potential roles that ERs play in the 

development of PH in ovary intact females, however, have yet to be established. 

The aims of this study were to evaluate gender differences in estrogen receptor 

expression and to characterise the influence of endogenous estrogen activity at 

ERα and ERβ in experimental models of PH.  We hypothesised an ER dependent 

mechanism for estrogen mediated PH in females and suggest that this is a result 

of altered ER expression and signalling.  Moreover we identify novel gender-

specific BMPR2 pathways by which ERα mediates the development of chronic 

hypoxic PH in female mice and spontaneous PH in the SERT+ female mouse 

model.  In addition, we hypothesise that our results are therapeutically relevant 

by using ovary intact females. 
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3.2 Results 

3.2.1  ERα and ERβ are Located in Human Pulmonary Vasculature 

and Expression is Altered in PAH 

ER localisation was investigated in human lung from non-PAH control and PAH 

patients by immunohistochemistry (see Methods: 2.5.2 Immunolocalisation of 

estrogen receptors in human lung).  In females, both ERα and ERβ expression 

was prominent in pulmonary arteries in both non-PAH control and PAH patients 

(Figure 3-1).  ERα was localised to adventitia, smooth muscle cells and 

endothelial cells.  Whilst some ERβ expression was observed in the adventitia 

and smooth muscle cells, expression was largely endothelial.  Smooth muscle 

cell and endothelial cell localisation was confirmed by staining consecutive 

sections with alpha smooth muscle actin (α-SMA) and von Willebrand Factor 

(vWF), respectively. 

Given the expression of both ERs in smooth muscle cells in human lung, we 

investigated the ER expression (both protein and mRNA) in isolated human 

PASMCs from female idiopathic (IPAH) and heritable (HPAH) PAH patients.  ERα 

was significantly elevated in human PASMCs from HPAH patients relative to non-

PAH controls (Figure 3-2A and B).  Additionally, ERβ levels at protein and 

transcript levels were unchanged in control versus both IPAH and HPAH patients 

(Figures 3-2C and D). 

3.2.2  Males and Females Express Different Levels of Estrogen 

Receptors in PASMCs 

We thought it important to also investigate levels of ERs in females compared to 

males in isolated human PASMCs from non-PAH control and PAH patients.  Levels 

of both ERα and ERβ were unchanged between male and female non-PAH 

controls (Figure 3-3A&B).  Interestingly, females expressed significantly higher 

levels of ERα relative to males in PAH (Figure 3-4A).  Conversely, ERβ was 

significantly less in females PAH PASMCs compared to males (Figure 3-4B). 



 
 

142 
 

3.2.3  ERα and ERβ are Expressed in Mouse Lung and Pulmonary 

Arteries 

Following the observation of altered ER expression in human lung in non-PAH 

control and PAH patients, ER expression was investigated in the female and male 

hypoxic mouse model.  In pulmonary arteries from female hypoxic mice there is 

a significant increase in the protein levels of ERα relative to pulmonary arteries 

from normoxic control mice (Figure 3-5A).  mRNA transcript levels for ESR1, the 

gene encoding ERα, were unchanged between normoxia and hypoxia (Figure 3-

5B).  In contrast, ERβ protein was significantly reduced in pulmonary artery in 

hypoxia although ESR2 transcript levels were unchanged in whole lung (Figure 3-

5C&D).  Both ERα and ERβ protein expression was unchanged in the pulmonary 

arteries from hypoxic male mice (Figure 3.6A&B). 



 
 

 
 

 
 
 

ERα

ERβ

Control PAH IgGα-SMA vWF

 
Figure 3-1: Immunolocalisation of ERα and ERβ in human non-PAH controls and PAH patient lung sections.   
ERα and ERβ stained dark brown.  Consecutive sections stained with α-SMA and vWF depicts smooth muscle and endothelial cell staining, respectively.  α-SMA= 
alpha smooth muscle actin; vWF= Von Willebrand Factor.  Arrows indicate smooth muscle and endothelial cell localisation.  Patient information for controls and PAH 
patients are shown in Materials and Methods section Table 2.1.  Scale bar=200µm.  
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Figure 3-2: Estrogen receptor -α and –β expression in control human female PASMCs 
compared to PAH human female PASMCs. 
ERα protein (A) and mRNA transcript (B) was significantly up-regulated in PAH human PASMCs 
compared to controls whereas ERβ protein (C) and mRNA transcript (D) was unaffected. 
Representative blots are shown for ERα and ERβ. Quantitative data are shown as ± SEM and 
analysed using an unpaired t-test.  *p<0.05 vs. control.  Patient information for three individual 
controls (controls 1-3), and three individual PAH patients (patients 1-3) are shown in Materials and 
Methods section: Table 2-3   n=3 individual patients/controls in each blot and the whole blot 
repeated in triplicate.  n of patients is indicated in each individual bar. 
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Figure 3-3: Comparison between ER expression in male and female human PASMCs from 
control non-PAH patients. 
ERα protein (A) and ERβ protein (B) were unchanged between female human PASMCs compared 
to males.  Representative blots are shown for ERα and ERβ. Quantitative data are shown as ± 
SEM and analysed using an unpaired t-test.  Patient information for females (control 1-3), and male 
non-PAH controls (controls 1-3), are shown in Materials and Methods section: Table 2.3.  n=3 
individual patients repeated in triplicate.  n is indicated in each individual bar. 
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Figure 3-4: Comparison between ER expression in male and female human PASMCs from 
PAH patients. 
ERα protein (A) was significantly higher in female human PASMCs compared to males.  ERβ 
protein (B) was significantly reduced in female human PASMCs compared to males. 
Representative blots are shown for ERα and ERβ. Quantitative data are shown as ± SEM and 
analysed using an unpaired t-test.  *p<0.05 vs. control. Patient information for females (patients 1-
3), and male patients (patients 1-3), are shown in Materials and Methods section: Table 2.3.  
Females: n=3 individual patients repeated in triplicate. n is indicated in each individual bar. 
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Figure 3-5: Estrogen receptor expression is altered in female mouse pulmonary artery in 
hypoxia. 
ERα protein in pulmonary artery (A) and mRNA transcript in whole lung (B) was significantly up-
regulated in hypoxia whereas ERβ protein in pulmonary artery (C) and mRNA transcript in whole 
lung (D) was significantly reduced. Representative blots are shown for ERα and ERβ. Quantitative 
data are shown as ± SEM and analysed using an unpaired t-test.  *p<0.05 vs. control. n=3 
pulmonary artery repeated in triplicate for each Western experiment; qRT-PCR, n=6 mouse whole 
lung samples repeated in triplicate.  n of pulmonary artery/lung is indicated in each individual bar. 
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Figure 3-6: Estrogen receptor expression is unchanged in male mouse pulmonary artery in 
hypoxia. 
ERα protein in pulmonary artery (A) and ERβ protein expression (B) unchanged in hypoxia in 
pulmonary arteries from hypoxic male mice.  Representative blots are shown for ERα and ERβ.  
Quantitative data are shown as ± SEM and analysed using an unpaired t-test.  n=3 pulmonary 
artery repeated in triplicate for each Western experiment. 
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3.2.4  Administration of an ERα Selective Antagonist Attenuates 

Development of Hypoxia-Induced PH in Female Mice 

As expression of ERα was increased in pulmonary arteries from female PAH 

patients and hypoxic female mice, this suggests ERα may play a role in the 

development of PAH specific to females.  To investigate this experimentally, 

both male and ovary intact female mice were dosed with the ERα antagonist MPP 

Dihydrochloride (MPP; 2mgkg-1day-1) or vehicle containing pellets during 

exposure to normoxia or 14 days of chronic hypoxia.  At the end of this 14 day 

period, RVSP, pulmonary vascular remodelling and RVH were assessed (see 

Methods: 2.3.3 Chronic Hypoxia).  Female mice developed hypoxia induced PH; 

RVSP, RVH and pulmonary vascular remodelling were all increased (Figure 3-7A-

C).  MPP attenuated the development of hypoxic PH by reducing elevations in 

RVSP (Figure 3-7A) whilst there was no effect on RVH (Figure 3-7B).  

Representative images of RVSP traces in females are shown in Figure 3-8.  

Furthermore, pulmonary vascular remodelling in response to hypoxia was 

significantly reduced by MPP treatment (Figure 3-7C) and muscularisation of 

distal pulmonary arteries was noticeably reduced (Figure 3-9).  The 

administration of MPP had no effect on the systemic circulation as indicated by 

no changes in mean systemic arterial pressure (mSAP) (Figure 3-10A) and heart 

rate (HR) (Figure 3-10B).  In this instance, hypoxia resulted in an increase in HR 

in vehicle treated mice. 

3.2.5  Administration of an ERα Selective Antagonist has no 

Effect of the Development of Hypoxia Induced PAH in Male 

Mice 

The effect of MPP was then assessed in male mice to determine any gender 

differences in the response to the ERα antagonist.  In contrast to the results 

observed in ovary intact females, MPP had no effect on the development of PH 

in males.  MPP has no effect on RVSP, RVH and pulmonary vascular remodelling 

(Figure 3-11A-C).  Representative images of RVSP traces in males are shown in 

Figure 3-12.  MPP treatment also had no effect on pulmonary arterial 
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muscularisation in male mice (Figure 3-13).  In addition, neither hypoxia nor MPP 

treatment had an effect on mSAP and HR in males (Figure 3-14A&B).  Absolute 

values for haemodynamics are depicted in Table 3-1. 

3.2.6  Body Weight and Uterine Weight were Unaffected by ERα 

Selective Antagonism 

Body weight in both females and males were unaffected by hypoxia and 

administration of MPP (Figure 3-15A&B).  Uterine weight at necropsy was also 

investigated as ERα knockout mice are observed to have abnormal reproductive 

function (Lubahn et al. 1993).  However, we observed no difference in uterine 

weight (Figure 3-16A) or in uterine weight to body weight ratio (Figure 3-16B) 

between vehicle treated and MPP treated groups.  In addition, hypoxia had no 

effect on uterine weight.  Absolute values for body weight and uterine weight 

are shown in Table 3-2. 
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Figure 3-7: MPP (2mgkg
-1

day
-1

)
 

attenuates the development of hypoxic pulmonary 
hypertension in female mice.   
Right ventricular systolic pressure (RVSP) (A), pulmonary vascular remodelling (B) and right 
ventricular hypertrophy (C) assessment in female mice.  Data are expressed as ± SEM analysed 
by Two-Way ANOVA followed by a Bonferroni’s post-hoc test.  † p<0.05; † † p<0.01; † † † p<0.001 
vs. normoxic; * p<0.05 vs. vehicle.  n=6-9 per group; n for each group is indicated on bar. 
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Figure 3-8: Representative RVSP traces from female mice. 
Six second representative traces are shown for vehicle treated normoxic and hypoxic females, and 
a female mouse treated with 2mgkg

-1
day

-1
 MPP. 
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Figure 3-9: MPP (2mgkg
-1

day
-1

) attenuates the development of hypoxic-induced pulmonary 
vascular remodelling in females. 
α-smooth muscle actin stains smooth muscle cells dark brown; counterstain is haematoxylin 
(purple/blue).  Representative images are shown from each group.  Scale bar = 20µm. 
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Figure 3-10: MPP (2mgkg
-1

day
-1

) treatment has no effect on systemic parameters in female 
mice. 
Mean systemic arterial pressure (Mean SAP) (A) and heart rate (HR) (B) are unchanged. Data are 
expressed as ± SEM analysed by Two-Way ANOVA followed by a Bonferroni’s post-hoc test.  
*p<0.05 vs. normoxic vehicle.  n=6-9 per group; n of mice for each group is indicated on bar.  Low 
heart rates observed (normal adult mouse ~500-600bpm) due to prolonged anaesthesia.  
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Figure 3-11: MPP (2mgkg
-1

day
-1

) has no effect on the development of hypoxic pulmonary 
hypertension in male mice. 
Right ventricular systolic pressure (RVSP) (A), pulmonary vascular remodelling (B) and right 
ventricular hypertrophy (C) assessment in male mice.  Data are expressed as ± SEM analysed by 
Two-Way ANOVA followed by a Bonferroni’s post-hoc test.  † p<0.05; † † p<0.01; † † † p<0.001 
vs. normoxic.  n=6-9 per group; n of mice for each group is indicated on bar. 
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Figure 3-12:  Representative RVSP traces from male mice. 
Six second representative traces are shown for vehicle treated normoxic and hypoxic males, and a 
male mouse treated with 2mgkg

-1
day

-1
 MPP. 
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Figure 3-13: MPP (2mgkg
-1

day
-1

) has no effect on the development of hypoxic-induced 
pulmonary vascular remodelling in males. 
α-smooth muscle actin stains smooth muscle cells dark brown; counterstain is haematoxylin 
(purple/blue).  Representative images are shown from each group.  Scale bar = 20µm. 
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Figure 3-14: MPP (2mgkg
-1

day
-1

) treatment and hypoxia have no effect on systemic 
parameters in male mice. 
Mean systemic arterial pressure (Mean SAP) (A) and heart rate (HR) (B) are unchanged.  Data are 
expressed as ± SEM analysed by Two-Way ANOVA followed by a Bonferroni’s post-hoc test.  n=6-
9 per group; n of mice for each group is indicated on bar. 
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Figure 3-15: MPP (2mgkg
-1

day
-1

) treatment and hypoxia have no effect on body weight in 
female and male mice. 
Body weight in female (A) and male (B) mice.  Data are expressed as ± SEM analysed by Two-
Way ANOVA followed by a Bonferroni’s post-hoc test.  n=10 mice per group. 
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Figure 3-16: MPP (2mgkg
-1

day
-1

) treatment and hypoxia have no effect on uterine weight in 
females 
Uterine weight in female mice (A) and uterus weight/body weight ratio (B) are unchanged by 
hypoxia and MPP treatment.  Data are expressed as ± SEM analysed by Two-Way ANOVA 
followed by a Bonferroni’s post-hoc test.  n=10 mice per group. 
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Table 3-1: Haemodynamic parameters in male and female mice dosed with MPP (2mgkg
-

1
day

-1
).   

Right ventricular systolic pressure (RVSP); Mean right ventricular pressure (MRVP); right 
ventricular diastolic pressure (RVDP); systolic systemic arterial pressure (sSAP); mean systemic 
arterial pressure (mSAP); diastolic systemic arterial pressure (dSAP); Heart rate (HR).  Data 
expressed as ± SEM analysed by a Two-way ANOVA followed by a Bonferroni’s post hoc test.  
*p<0.05, **p <0.01, ***p<0.001 vs. normoxic mice. † p <0.05, †† p<0.01, ††† p<0.01 vs. vehicle 
dosed mice.  n = 7-14 mice per group. 

Parameter Male Vehicle Male MPP Female Vehicle Female MPP 

     Normoxic 
 

    RVSP, mmHg 22.6 ± 1.1 24.0 ± 0.5 23.1 ± 0.8 22.8 ± 0.7 

MRVP, mmHg 14.8 ± 0.6 15.3 ± 0.5 13.7 ± 0.6 13.7 ± 0.4 

RVDP, mmHg 4.1 ± 0.34 4.4 ± 0.4 3.6 ± 0.5 3.7 ± 0.27 

sSAP, mmHg 119.9 ± 3.6 115.6 ± 2.6 109.9 ± 10.1 108.4 ± 5.7 

mSAP, mmHg 111.9 ± 3.5 98.7 ± 3.9 98.3 ± 12.9 100.7 ± 4.3 

dSAP, mmHg 102.2 ± 3.5 85.5 ± 5.3 83.1 ± 14.7 86.9 ± 4.2 

HR, bpm 406.6 ± 15.7 442.1 ± 8.9 344.7 ± 40.8 396.2 ± 18.5 

     Hypoxic 
 

    RVSP, mmHg 34.1 ± 2.1 *** 33.5 ± 1.9 *** 38.3 ± 1.9 *** 31.0 ± 1.9 *† 

MRVP, mmHg 16.1 ± 0.9 16.1 ± 0.6 18.7 ± 1.8 * 15.7 ± 1.4 

RVDP, mmHg 3.4 ± 0.8 2.8 ± 0.5 5.5 ± 0.6 * 2.9 ± 0.5 ††† 

sSAP, mmHg 113.0 ± 11.6 144.4 ± 15.9* † 131.3 ± 8.2 118.2 ± 8.5 

mSAP, mmHg 97.9 ± 107 107.4 ± 15.2  110.1 ± 8.3 106.7 ± 8.9 

dSAP, mmHg 84.7 ± 12.5 136.0 ± 20.23 **†† 92.1 ± 7.5 96.9 ± 10.5 

HR, bpm 452.9 ± 22.3 436.7 ± 22.7 450.4 ± 20.9 * 431.9 ± 23.9 
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Table 3-2: Ventricle, body weight and uterus weight in male and female mice WT mice dosed 
with MPP (2mgkg

-1
day

-1
).  Right ventricle (RV); left ventricle plus septum (LV + S);  RV/LV+S 

ratio, body weight and uterus weight.  Data expressed as ± SEM analysed by a Two-way ANOVA 
followed by a Bonferroni’s post hoc test.  * p<0.05 ** p <0.01, *** p<0.001 vs. normoxic mice. † p 
<0.05, †† p<0.01 vs. vehicle dosed mice.  n = 5-14 mice per group. 

 

 Group RV (mg) LV + S (mg) RV/LV+S Body 
weight (g) 

Uterus weight 
(mg) 

      

Normoxic      

Male      

Vehicle 29.6 ± 1.1 111.4 ± 2.3 0.27 ± 0.01 25.8 ± 0.8  

MPP 23.2 ± 0.7 ††† 103.9 ± 2.2 0.22 ± 0.01 24.1 ± 0.3   

Female      

Vehicle 19.6 ± 0.7 87.8 ± 1.6 0.22 ± 0.01 19.6 ± 0.3 85.9 ± 5.7 

MPP 23.1 ± 2.0 79.2 ± 2.7 † 0.26 ± 0.01 † 18.3 ± 0.4 74.9 ± 6.4 

      

Hypoxic      

Male      

Vehicle 25.0 ± 0.9 ** 94.6 ± 3.8 *** 0.27 ± 0.01 24.8 ± 0.8  

MPP 20.9 ± 1.2 85.9 ± 2.1 *** 0.24 ± 0.01 ** 23.2 ± 0.5  

Female      

Vehicle 22.38 ± 0.9 84.61 ± 4.4 0.27 ± 0.01 *** 18.6 ± 0.2  70.9 ± 4.8 

MPP 18.6 ± 0.9 † 70.9 ± 1.4 †† 0.26 ± 0.02 ** 17.1 ± 0.2  72.7 ± 5.3 
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3.2.7  ERα and ERβ Expression is Unchanged in Pulmonary 

Arteries from Female SERT+ Mice 

We wished to investigate the role of ERs in another model of PH which did not 

involve hypoxia.  ER expression was therefore examined in the pulmonary 

arteries from the female mice over-expressing the serotonin transporter (SERT+) 

that are susceptible to PH (MacLean et.al. 2004; White et.al. 2011).  Basal levels 

of ERs were investigated at 2 months of age prior to the onset of spontaneous 

PH.  It was observed that both ERα protein and ESR1 gene transcript were 

unchanged in SERT+ female mice relative to wildtype controls (Figure 3-17A&B).  

On the other hand, ERβ protein was down-regulated in female SERT+ pulmonary 

artery (Figure 3-17C) whereas ESR2 gene transcript was unchanged in whole lung 

relative to wildtype controls (Figure 3-17D). 

3.2.8  Spontaneous PH and Exaggerated Hypoxia-Induced PAH in 

Female SERT+ Mice is Reversed by ERα Selective 

Antagonism 

We wished to investigate if the effect of MPP were consistent in another model 

of PH that did not require chronic hypoxia.  We have previously shown that 

normoxic female SERT+ mice develop spontaneous PH at 5 months of age in an 

estrogen-dependent manner whilst male mice do not (White et al. 2011).  We 

hypothesised that the predominant circulating female hormone estrogen 

mediates the development and progression of PH in this model through activity 

at ERα.  We confirmed that vehicle treated female normoxic SERT+ mice 

demonstrated elevated RVSP and pulmonary vascular remodelling relative to 

vehicle-treated wildtype controls.  This was observed in the absence of RVH in 

normoxic conditions (Figure 3-18A-C) as previously described (White et al. 2011).  

The increase in RVSP and pulmonary vascular remodelling was abolished by MPP 

2mgkg-1day-1. 

We also exposed these mice to hypoxia as we previously showed that the PH 

phenotype was greatly enhanced in SERT+ hypoxic mice.  As before, the hypoxic 
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wildtype mice developed PH demonstrating increased RVSP and this was reduced 

by MPP (Figure 3-18A).  Pulmonary vascular remodelling and RVH were also 

elevated in wildtype mice, although MPP did not influence these.  This data 

supports previous results from this study using the C57Bl/6 wildtype background 

strain of wildtype mouse (Figure 3-7A-C).  Increased RVSP in hypoxic SERT+ 

vehicle-treated mice was reversed by MPP administration (Figure 3-18A).  In 

vehicle-treated SERT+ mice, hypoxia caused enhanced pulmonary vascular 

remodelling relative to hypoxic wildtype vehicle treated mice and this was 

markedly reduced by MPP (Figure 3-18B).  Representative images of RVSP traces 

in SERT+ females are shown in Figure 3-19.  Additionally, pulmonary vascular 

muscularisation, as observed by alpha smooth muscle actin staining was notably 

attenuated in normoxic and hypoxic SERT+ mice following MPP treatment (Figure 

3-20). 

Mean systemic arterial pressure was unaffected by hypoxic and MPP treatment in 

both wildtype and SERT+ mice (Figure 3-21A).  MPP treatment did however, 

noticeably reduce heart rate in normoxic SERT+ mice.  Further in hypoxia, 

wildtype mice had a reduced heart rate compared to normoxic wildtype mice 

(Figure 3-21B).  Absolute values for haemodynamics are shown in Table 3-3. 

3.2.9  Uterine Weight is Reduced Following MPP Administration 

ERα, but not ERβ knockout mice have abnormal reproductive function (Lubahn et 

al, 1993) suggesting that ERα may be central to a role in uterine development.  

In line with this we show in both WT and SERT+ mice that MPP significantly 

attenuates uterine weight (Figure 3-22A).  This is also evident when expressed as 

a ratio over body weight (Figure 3-22B).  Absolute values for body weight and 

uterine weight are depicted in Table 3-4. 
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Figure 3-17: Estrogen receptor expression is unchanged in 2 month female SERT
+
 mouse 

pulmonary artery.   
ERα protein in pulmonary artery (A) and mRNA expression in lung (B) is unchanged in female 
SERT

+
 mice.  ERβ protein in pulmonary artery (C) is decreased in SERT

+
 mice and mRNA 

expression (D) in lung is unchanged.  Representative blots are shown for ERα and ERβ. 
Quantitative data are shown as ± SEM and analysed using an unpaired t-test.  *p<0.05 vs. control. 
n=3 pulmonary artery repeated in triplicate for each Western experiment; qRT-PCR, n=6.  n of 
pulmonary arteries/lung for each group is indicated on bar in graph.  WT= wildtype.   
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Figure 3-18: MPP (2mgkg
-1

day
-1

) attenuates the development of pulmonary hypertension in 
female SERT

+
 mice.   

Right ventricular systolic pressure (RVSP) (A), pulmonary vascular remodelling (B) and right 
ventricular hypertrophy assessment (C).  Data are expressed as ± SEM and analysed using a Two-
Way ANOVA followed by a Bonferroni’s post-hoc t-test.  *p<0.05, ** p<0.01, *** p<0.001 vs. 
normoxic mice.  † p <0.05, †† p<0.01 vs. vehicle dosed mice.  ## p<0.01, ###p<0.001 vs. wildtype 
mice.  n=6-11 mice per group; n of mice for each group is indicated in bar of graph.  WT=wildtype. 
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Figure 3-19: Representative RVSP traces from normoxic female SERT
+
 mice. 

Six second representative traces are shown for vehicle treated WT and SERT
+
 females, and a 

female SERT
+
 mouse treated with 2mgkg

-1
day

-1
 MPP.  WT=wildtype. 
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Figure 3-20: MPP (2mgkg
-1

day
-1

) attenuates pulmonary vascular remodelling female SERT
+
 mice.   

α-smooth muscle actin stains smooth muscle cells dark brown; counterstained with haematoxylin.  Representative images are shown from each group stained with 
alpha-smooth muscle actin.  Scale bar=20µm. 
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Figure 3-21: Systemic parameters in SERT
+
 female mice following hypoxia and MPP (2mgkg

-

1
day

-1
) treatment. 

Mean systemic arterial pressure (Mean SAP) (A) and HR (B) in female SERT
+
 mice.  Data are 

expressed as ± SEM and analysed using a Two-Way ANOVA followed by a Bonferroni’s post hoc t-
test.  **p <0.01, ***p<0.001 vs. normoxic mice; †† p<0.01 vs. vehicle dosed mice n=6-9 mice per 
group; n of mice for each group is indicated in bar of graph.  WT= wildtype. 
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Figure 3-22: MPP (2mgkg
-1

day
-1

) treated WT and SERT
+
 mice exhibit reductions in uterine 

weight. 
Uterine weight in WT and SERT

+
 mice (A) and uterus weight/body weight ratio (B) are reduced in 

by MPP treatment.  Data are expressed as ± SEM analysed by Two-Way ANOVA followed by a 
Bonferroni’s post-hoc test.  † p<0.05 vs. vehicle. n=6-10 mice per group; n of mice for each group 
is indicated in bar of graph.  WT= wildtype. 
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Table 3-3: Haemodynamic parameters in WT and SERT+ mice dosed with MPP (2mgkg
-1

day
-

1
). 

Right ventricular systolic pressure (RVSP); Mean right ventricular pressure (MRVP); right 
ventricular diastolic pressure (RVDP); systolic systemic arterial pressure (sSAP); mean systemic 
arterial pressure (mSAP); diastolic systemic arterial pressure (dSAP); Heart rate (HR).  Data 
expressed as ± SEM analysed by a Two-way ANOVA followed by a Bonferroni’s post hoc test. 
*p<0.05, ** p<0.01, *** p<0.001 vs. normoxic mice.  † p <0.05, †† p<0.01 vs. vehicle dosed mice.  
## p<0.01 vs. wildtype mice.  n = 6-10 mice.  WT= wildtype. 

 

Parameter WT Vehicle WT MPP SERT+ Vehicle SERT+ MPP 

     Normoxic 
 

    RVSP, mmHg 21.4 ± 1.2 20.3 ± 0.8 26.3 ± 1.0 ## 22.1 ± 1.0 † 

MRVP, mmHg 14.13 ± 0.4 12.7 ± 1.0 14.8 ± 0.2 15.8 ± 0.5 # 

RVDP, mmHg 1.6 ± 0.2 0.8 ± 0.3 1.3 ± 0.3 2.8 ± 0.6 ## † 

sSAP, mmHg 84.2 ± 7.7 92.7 ± 4.9 88.8 ± 7.7 99.9 ± 3.6 

mSAP, mmHg 81.9 ± 7.8 85.7 ± 2.8 82.3 ± 8.0 92.6 ± 4.2 

dSAP, mmHg 76.6 ± 7.3 78.2 ± 3.4 72.8 ± 8.9 83.8 ± 5.7 

HR, bpm 419.0 ± 10.9 385.2 ± 19.5 433.8 ± 5.0 354.1 ± 22.3 †† 

     Hypoxic 
 

    RVSP, mmHg 32.5 ± 1.8 *** 26.4 ± 1.4 ** † 31.7 ± 1.6 * 24.2 ± 1.2 †† 

MRVP, mmHg 18.9 ± 0.8 *** 15.2 ± 1.1 15.7 ± 0.8 † 12.4 ± 0.9 * † 

RVDP, mmHg 1.5 ± 0.1 2.6 ± 0.5 * 1.7 ± 0.6 1.5 ± 0.4 

sSAP, mmHg 99.4 ± 3.1 114.6 ± 3.9 ** † 103.8 ± 4.9 106.6 ± 2.1 

mSAP, mmHg 89.3 ± 2.1 98.1 ± 4.2 93.4 ± 4.2 93.9 ± 2.6 

dSAP, mmHg 78.0 ± 3.7 80.9 ± 4.5 80.89 ± 6.2 75.6 ± 3.6 

HR, bpm 357.3 ± 12.1 ** 357.2 ± 13.7 299.3 ± 11.3 *** 338.5 ± 15.3 
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Table 3-4: Ventricle, body weight and uterus weight in WT and SERT+ mice dosed with MPP 
(2mgkg

-1
day

-1
).  Right ventricle (RV); left ventricle plus septum (LV + S); RV/LV+S ratio, body 

weight and uterus weight.  Data expressed as ± SEM analysed by a Two-way ANOVA followed by 
a Bonferroni’s post hoc test. * p<0.05, ** p <0.01, *** p<0.001 vs. normoxic mice. † p <0.05 vs. 
vehicle dosed mice.  ### p<0.001 vs. wildtype mice.   n = 6-12 mice per group. 

 

Group RV (mg) LV + S (mg) RV/LV+S 
Body weight 

(g) 
Uterus 

weight (mg) 

      Normoxic 
 

     Wildtype 
     Vehicle 21.3 ± 1.4 80.9 ± 3.2 0.26 ± 0.02 24.5 ± 0.9 94.5 ± 7.9 

MPP 19.9 ± 2.2 81.7 ± 3.1 0.23 ± 0.01 22.6 ± 1.4 61.1 ± 5.4 † 

SERT+ 
     Vehicle 21.6 ± 1.2 72.3 ± 2.9 0.28 ± 0.01 18.4 ± 0.6 ### 95.7 ± 13.7 

MPP 23.5 ± 2.0 74.6 ± 3.3 0.26 ± 0.02 19.4 ± 0.8 64.79 ± 7.7 † 

      Hypoxic 
 

     Wildtype 
     Vehicle 26.1 ± 3.2 76.1 ± 4.1 0.34 ± 0.04 * 24.9 ± 1.2 90.99 ± 16.7 

MPP 26.3 ± 0.9 * 69.9 ± 1.2 ** † 0.36 ± 0.01 *** 23.4 ± 0.3 63.1 ± 3.3 † 

SERT+ 
     Vehicle 27.3 ± 1.3 66.1 ± 3.2 # 0.41 ± 0.01 ** 18.6 ± 1.4 ### 76.62 ± 9.6 

MPP 22.7 ± 0.8 64.4 ± 1.9 * 0.35 ± 0.01 ** 17.2 ± 0.5 ### 57.5 ± 4.7 † 
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3.2.10 Effects of MPP Administration on Serotonin Induced 

Pulmonary Vascular Reactivity 

To determine if pulmonary vascular reactivity is affected in mice following 

administration of MPP 2mgkg-1day-1, we tested isolated pulmonary arteries by 

wire-myography.  Serotonin is a known potent pulmonary vasoconstrictor, 

therefore serotonin was used to pre-constrict the arteries and measure the 

contractile response.  In addition, estrogen has been shown to relax pre-

constricted pulmonary arteries in an ER-dependent manner (Lahm et al. 2007).   

Pulmonary arteries from female hypoxic vehicle treated mice exhibited an 

increased contractile response to serotonin (Figure 3-23A) and showed higher 

area under the curve (AUC) (Figure 3-23B) values than normoxic vehicle 

pulmonary arteries.  AUC analysis integrated the entire curve and was used as an 

overall measure of the cumulative contractile response for each individual 

treatment (i.e. normoxic or hypoxic conditions ± MPP).  In female mice, 

serotonin-induced vasoconstriction was unaffected by administration of MPP in 

normoxic and hypoxic conditions although there was a trend toward a decreased 

contractile response (Figure 3-23).  MPP administration in male mice showed a 

similar effect on serotonin induced vasoreactivity and hypoxia elevated the 

contractile response to serotonin (Figure 3-24).  As previously reported, the 

potency of serotonin in SERT+ mice is reduced and we observe a rightward shift 

of the dose-response curve and reduced pEC50 in normoxic SERT+ vehicle treated 

mice and a reduction in the maximal contraction (Figure 3-25A).  This is in line 

with a reduced AUC in SERT+ vehicle mice relative to wildtype vehicle mice 

(Figure 3-25B).  This effect was not further influenced by MPP 2mgkg-1day-1 

administration in normoxic conditions.  Additionally, MPP administration in 

normoxic SERT+ mice appears to increase the contractile response to serotonin 

compared to SERT+ vehicle mice as the maximal contraction (Emax) was 

significantly increased in normoxic SERT+ mice treated with MPP compared to 

vehicle controls.  In contrast, in the pulmonary arteries of chronically hypoxic 

female SERT+ mice, MPP administration has no effect on serotonin- induced 

vasoconstriction (Figure 3-26A) or AUC (Figure 3-26B).  In both normoxic and 

hypoxic conditions, the half maximal effective concentration (EC50) was reduced 
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in SERT+ vehicle control mice (Table 3-6).  Values for EC50 and maximal 

responses (Emax) to serotonin are shown in Table 3-5 and 3-6. 
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Figure 3-23: Serotonin- induced pulmonary artery vasoconstriction is unaffected by MPP 
(2mgkg

-1
day

-1
) administration in female mice. 

(A) Percentage contractile response to 50mmol/l KCl are unchanged in response to MPP. (B) Area 
under the curve (AUC) is increased in hypoxic vehicle relative to normoxic vehicle.  Data are 
represented as ± SEM and (A) analysed by a Two-Way ANOVA followed by a Bonferroni’s post-
hoc t-test and (B) analysed by a One-Way ANOVA followed by a Bonferroni’s post hoc test. 
*p<0.05 vs. Normoxic Vehicle.  n=6-8 mice per group.  Values for Emax and EC50 shown in Table 
3.5. 
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Figure 3-24: Serotonin- induced pulmonary artery vasoconstriction is unaffected by MPP 
(2mgkg

-1
day

-1
) administration in male mice.   

(A) Percentage contractile response to 50mmol/l KCl are unchanged in response to MPP.  (B) Area 
under the curve (AUC) is increased in hypoxic vehicle relative to normoxic vehicle.  Data are 
represented as ± SEM and (A) analysed by a Two-Way ANOVA followed by a Bonferroni’s post-
hoc t-test and (B) AUC analysed by a One-way ANOVA followed by a Bonferroni’s post hoc test. 
*p<0.05 vs. Normoxic Vehicle.  n=6-8 mice per group.  Values for Emax and EC50 shown in Table 
3.5. 
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Figure 3-25: Serotonin- induced pulmonary artery vasoconstriction in normoxic female 
SERT

+
 mice is augmented by MPP (2mgkg

-1
day

-1
) administration.   

(A) Percentage contractile response to 50mmol/l KCl are unchanged in response to MPP.  (B) Area 
under the curve (AUC) is decreased in SERT

+
 vehicle relative to WT vehicle.  Data are represented 

as ± SEM and (A) analysed by a Two-Way ANOVA followed by a Bonferroni’s post-hoc t-test and 
(B) by a one-way ANOVA followed by a Bonferroni’s post hoc test.  **p<0.01 vs. vehicle.  n=6-8 
mice per group.  WT= wildtype.  Values for Emax and EC50 shown in Table 3.6. 

** 
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Figure 3-26: Serotonin- induced pulmonary artery vasoconstriction in hypoxic female SERT
+
 

mice is unaffected by MPP (2mgkg
-1

day
-1

).   
(A) Percentage contractile response to 50mmol/l KCl and (B) area under the curve (AUC) are 
unchanged in response to MPP.  Data are represented as ± SEM and (A) analysed by a Two-Way 
ANOVA followed by a Bonferroni’s post-hoc t-test and (B) by a one-way ANOVA followed by a 
Bonferroni’s post hoc test.  n=6-8 per group.  WT=wildtype.  Values for Emax and EC50 shown in 
Table 3.6. 
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Table 3-5: pEC50 and Emax values in female and male mice administered with MPP (2mgkg
-

1
day

-1
).   

pEC50, half maximal effective dose; Emax, maximal effective dose.  Data are expressed as ± SEM 
and analysed by a One-Way ANOVA followed by a Bonferroni’s post hoc test. n=6-8 mice per 
group. *p<0.05 vs. normoxic vehicle.   

 

 

 

 

 

 

 

 

 

 

Table 3-6: pEC50 and Emax values in female SERT
+
 administered with MPP (2mgkg

-1
day

-1
).   

pEC50, half maximal effective dose; Emax, maximal effective dose.  Data are expressed as ± SEM 
and analysed by a One-Way ANOVA followed by a Bonferroni’s post hoc test.  ###p<0.001 vs. WT; 
**p<0.01 vs. vehicle.  n=6-7 mice per group.  WT= wildtype. 

 

Female Vehicle Female MPP Male Vehicle Male MPP 

Normoxic  

pEC50 6.85 ± 0.1 7.24 ± 0.09 7.06 ± 0.3 7.23 ± 0.1 

Emax 161.8 ± 14.1 264.0 ± 16.3 206.0 ± 58.9 233.5 ± 42.8 

n 7 6 6 6 

Hypoxic  

pEC50 7.51 ± 0.3 7.05 ± 0.1 7.42 ± 0.6 6.69 ± 0.3 

Emax 292.4 ± 41.2* 470.0 ± 75.2 446.8 ± 117.9 502.9 ± 48.6 

n 6 8 6 6 

WT Vehicle WT MPP SERT+ Vehicle SERT+ MPP 

Normoxic 

pEC50 7.52 ± 0.3 7.37 ± 0.1 5.54 ± 0.1 ### 5.80 ± 0.1 

Emax 127.6 ± 17.7 137.3 ± 15.4 77.2 ± 4.8 181.0 ± 27.6 ### ** 

n 6 7 6 6 

Hypoxic 

pEC50 7.26 ± 0.2 7.04 ± 0.3 5.82 ± 0.06 ### 5.98 ± 0.1 

Emax 131.1 ± 11.0 120.6 ± 27.4 155.8 ± 12.6 126.5 ± 13.1 

n 6 6 6 6 
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3.2.11 Effects of Estrogen, PPT and DPN on Human 

Pulmonary Artery Smooth Muscle Cell Proliferation 

To summarise our in vivo studies we demonstrated that development of PH in 

hypoxia and in a female susceptible SERT+ model of PH is ERα dependent.  In 

addition, ERα selective antagonism has no effect on development of hypoxia-

induced PH in male mice.  As we also show that there is elevated expression of 

ERα in the PASMCs from PAH females and in the female hypoxic mouse 

pulmonary arteries, we hypothesised that ERα may be promoting PH specifically 

in females.  To determine potential mechanisms by which ERα activation could 

be facilitating PH we examined the role of estrogen and its receptors in cultured 

female human PASMCs using ERα and ERβ selective agonists and antagonists. 

 
Estrogen was examined at physiological concentrations (0.1-1nmolL-1) and a 

supraphysiological concentration of 10nmolL-1.  At 1nmol/l estrogen induced 

proliferation (Figure 3-27A).  The ERα selective agonist, PPT, also caused 

proliferation of PASMCs at 0.01-0.1nmolL-1 (Figure 3-27B) whereas 

diarylpropionitrile (DPN), the ERβ selective agonist, had no effect on PASMCs 

(Figure 3-27C).  Estrogen induced proliferation at 1nmolL-1 was inhibited by ERα 

selective antagonism using MPP (1µmolL-1) whilst ERβ selective antagonism with 

PHTPP (1µmolL-1) had no effect on PASMC proliferation induced by estrogen.  ICI 

182, 780 (1µmolL-1), a non- selective ERα/β antagonist also had no effect on 17β-

estradiol induced proliferation (Figure 3-28). 
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Figure 3-27: 17β-estradiol induces proliferation of female pulmonary artery smooth muscle 
cells through ERα.   
Estrogen (A) and PPT, an ERα agonist (B) induce proliferation at physiological concentrations 
whilst DPN, an ERβ agonist (C) has no effect on proliferation of hPASMCs.  Data are expressed as 
mean ± SEM analysed using a One-Way ANOVA followed by a Tukey’s post hoc test. ††† p<0.001 
vs. 0.2% FBS; * p<0.05, **p<0.01 vs. 2.5% FBS.  Patient information for controls (1, 2, 3 and 5), 
are shown in Materials and Methods section: Table 2.3 (passage 3-5).  n=4 per experiment and 
performed in triplicate in separate female control cell lines. 
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Figure 3-28: 17β-estradiol induced proliferation is inhibited by an ERα antagonist. 
Proliferation of human PASMCs to 1nmol/l of estrogen was inhibited in the presence of the ERα 
selective antagonist, MPP.  PHTPP, an ERβ selective antagonist, and ICI 182, 780 (ICI), a non-
selective ERα/β antagonist has no effect on estrogen induced proliferation.  Data are expressed as 
mean ± SEM and analysed using a One-Way ANOVA followed by a Tukey’s post hoc test. ††† 
p<0.001 vs. 0.2% FBS; **p<0.01 vs. 2.5%; # p<0.05; ## p<0.01 vs. 1nmol/l E2.  Patient information 
for controls (1, 2, 3 and 5) are shown in Materials and Methods section: Table 2.3 (passage 3-5).  
n=4 per experiment and performed in triplicate in separate female control cell lines. 
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3.2.12 Estrogen Requires Downstream MAPK and PI3K/Akt 

Signalling to Promote Human PASMC Proliferation via ERα  

PI3K/Akt and MAPKs can phosphorylate and activate ER and their co-regulators 

to enhance nuclear effects on transcription and regulate cell survival and 

proliferation (Marino et al. 2006).  We therefore examined the proliferative 

effects of estrogen and PPT on human PASMC proliferation in the presence on 

PI3K and ERK/MAPK inhibitors.  Both estrogen and PPT induced proliferation 

were inhibited in the presence of U0126 (10µmolL-1) and LY294002 (10µmolL-1), a 

MEK inhibitor and a PI3K inhibitor, respectively (Figure 3-29). 
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Figure 3-29: 17β-estradiol and PPT induced proliferation is inhibited by pERK and PI3K 
inhibitors.   
Proliferation of human PASMCs to 1nmol/l of estrogen and 0.01nmol/l PPT was inhibited in the 
presence of the U0126 (10µmol/l) and LY294002 (10µmol/l), pERK and PI3K inhibitors, 
respectively.  Data are expressed as mean ± SEM and analysed using a One-Way ANOVA 
followed by a Tukey’s post hoc test.. ††† p<0.001 vs. 0.2% FBS; *p<0.05 vs. 2.5%; # p<0.05; ## 
p<0.01; ### p<0.001 vs. 1nmol/l E2 or 0.01nmol/l PPT.  Patient information for controls (1, 2, 3 and 
5) are shown in Materials and Methods section: Table 2.3 (passage 3-5).  n=4 per experiment and 
performed in triplicate in separate female control cell lines.  
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3.2.13 Estrogen Suppresses BMPR2 Expression and 

Downstream Smad and Id Expression in the Lung via ERα 

To determine the mechanism by which estrogen and ERα interplay and promote 

PH pathogenesis in females we investigated the BMPR2 pathway and downstream 

signalling molecules as dysregulation of this pathway is involved in aberrant 

smooth muscle cell proliferation.  We examined levels of BMPR2, total Smad-1, 

Id1 and Id3 in lung samples from mice dosed with the ERα selective antagonist, 

MPP. 

In chronic hypoxic female mice BMPR2 expression levels (both protein and 

mRNA) are suppressed.  This loss of BMPR2 expression in pulmonary arteries was 

restored in mice treated with MPP (Figure 3-30A).  Additionally we observed 

rescue of the BMPR2 mRNA transcript in whole lung samples from mice treated 

with MPP (Figure 3-30B).  The BMPR2 protein levels in SERT+ female mice were 

unchanged compared to female WT counterparts (Figure 3-30C) although we did 

observe a down-regulation of the mRNA transcript (Figure 3-30D).  In both WT 

and SERT+ mice, treatment with MPP resulted in an increase in BMPR2 protein 

levels (Figure 3-30C).  In SERT+ mice mRNA levels were also increased by MPP 

(Figure 3-30D). 

We also wished to examine further downstream BMPR2 signalling in lungs from 

both hypoxic and SERT+ female mice treated with MPP.  We decided to 

investigate expression levels of total Smad1, Id1 and Id3 as these downstream 

signalling components have also been shown to be decreased in vascular lesions 

and PASMCs from PAH patients (Yang et al. 2008; Yang et.al. 2005).  In normoxic 

female mice, MPP had no effect on expression levels of Smad1, Id1 or Id3 (Figure 

3-31A-C).  Although hypoxia in vehicle treated mice had no effect on either 

Smad1 levels or Id3 levels, Id1 transcript expression was significantly reduced 

(Figure 3-31B).  Consistent with BMPR2, the expression of Id1 mRNA transcript 

was restored in lungs treated with MPP.  Smad1 levels were also increased 

following MPP treatment in female hypoxic lung (Figure 3-31A). 

In whole lung from female SERT+ mice, Smad1 and Id1 levels were unchanged 

between WT vehicle and SERT+ vehicle mice.  Additionally, MPP had no effect on 
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the expression levels of Smad1 and Id1 mRNA transcript compared to vehicle 

treated mice (Figure 3-32A&B).  On the other hand, we observed a significant 

down-regulation of Id3 in SERT+ vehicle mice compared to WT vehicle mice 

(Figure 3-32C).  The loss of Id3 expression was rescued by MPP treatment. 

Interestingly, in male mice, expression levels of BMPR2 and downstream 

signalling mediators Smad1, Id1 and Id3, were unaffected by hypoxia and/or MPP 

treatment (Figure 3-33A-D). 
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Figure 3-30: Regulation of the BMPR2 pathway by MPP (2mgkg
-1

day
-1

) and chronic hypoxia 
in female mouse pulmonary artery and lung. 
BMPR2 expression levels in pulmonary artery (A) and mRNA transcript in whole lung (B) is 
regulated by estrogen and ERα in chronic hypoxia-induced PH.  BMPR2 protein (C) and mRNA 
transcript (D) is also regulated by ERα in SERT

+
 female mouse lung.  Quantitative data are 

expressed as ± SEM and analysed by a one-way ANOVA followed by a Tukey’s post hoc-test.  
*p<0.05, **p<0.01.  n=6 pulmonary artery and whole lung performed in triplicate. 
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Figure 3-31: Effects of MPP (2mgkg
-1

day
-1

) and chronic hypoxia on regulation of the mRNA 
transcript levels and components of the BMPR2 pathway female mouse lung.   
Figure 4.26: (A) Smad-1 (B) Id1 and (C) Id3 expression levels in female mouse lung.  Data are 
expressed as ± SEM and analysed by a one-way ANOVA followed by a Tukey’s post hoc-test.  
*p<0.05, **p<0.01.  n=6 whole lung performed in triplicate. 
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Figure 3-32: Effects of MPP (2mgkg
-1

day
-1

) on regulation of the mRNA transcript levels and 
components of the BMPR2 pathway in SERT

+ 
female mouse lung.   

(A)Smad-1 (B) Id1 and (C) Id3 expression levels in female SERT+ mouse lung.  Data are 
expressed as ± SEM and analysed by a one-way ANOVA followed by a Tukey’s post hoc-test.  
*p<0.05.  n=6 whole lung performed in triplicate. 
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Figure 3-33: Effects of MPP (2mgkg
-1

day
-1

) and chronic hypoxia on regulation of the mRNA 
transcript levels and components of the BMPR2 pathway in male mouse lung 
BMPR2 (A); Smad-1 (B); Id1 (C) and Id3 (D) mRNA transcript levels are unchanged in male mouse 
lung.  Data are expressed as ± SEM and analysed by a one-way ANOVA followed by a Tukey’s 
post hoc-test.  n=6 mice lungs performed in triplicate. 
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3.2.14 Estrogen Receptor Expression in Human PASMCs is 

Regulated by Serotonin 

We have previously demonstrated that estrogen can increase the expression of 

tryptophan hydroxylase 1 (TPH1), SERT and 5-HT1B (White et al. 2011).  Here we 

wished to examine the effects of serotonin on ER expression in human PASMCs. 

In female human PASMCs we demonstrated that expression of ERα protein was 

significantly increased (Figure 3-34A) whilst expression of ERβ was significantly 

decreased (Figure 3-34B) by 1µmol/l serotonin. 
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Figure 3-34: Estrogen receptor expression in female control human PASMCs stimulated 
with 5-HT. 
ERα (A), ERβ (B).  Data are expressed as ± SEM and analysed by One-Way ANOVA followed by a 
Dunnet’s post-hoc test. Representative blots are shown.  n=3 performed in triplicate. *p<0.05 vs. 0, 
control. 



 
 

3.3 Discussion 

In the most recent worldwide registries, it is reported that women develop both 

idiopathic and heritable PAH up to four times as frequently as men (Badesch 

et.al. 2010; Humbert et.al. 2006; Peacock et al. 2007; Thenappan et al. 2007) 

Although women are more susceptible to PAH, paradoxically in animal models, 

male rodents demonstrate more severe hypoxia induced PH (Rabinovitch et.al. 

1981) and estrogens appear to protect against PH in male animal models (Farhat 

et.al. 1993; Lahm et.al. 2012a).  This is known as the ‘estrogen paradox’ of PAH 

and has been central in impeding our understanding of increased susceptibility 

to PAH in women. 

This study aimed to investigate the role of estrogen receptors, in the 

development of PH by utilising translational in vitro and in situ studies and 

experimental in vivo models.  We also wished to determine the influence of 

gender by comparing males and females.  Our results demonstrate that 

activation of ERα plays a key role in the development of PH in two rodent 

models of PH, the hypoxic mouse model and SERT+ mouse.  This is only observed 

in female mice however.  In addition we demonstrate that there is elevated 

expression of ERα in the lungs from female PAH patients and in female hypoxic 

mouse lung.  Furthermore, ERα is noticeably increased in female human PASMCs 

compared to males.  We demonstrate that ERα activation in female human 

PASMCs leads to proliferation driven by PI3K/Akt and ERK MAPK activation.  We 

also suggest that ERα negatively regulates BMPR2 expression in females and 

contributes to the PH phenotype.  Additionally, the pulmonary mitogen serotonin 

can up-regulate ERα expression in PASMCs. 

Altered Expression of Estrogen Receptors in Translational and 

Experimental Pulmonary Hypertension 

We investigated the classical ERs, ERα and ERβ, which predominantly regulate 

gene transcription (Prossnitz et.al. 2008).  We demonstrated expression of both 

ERα and ERβ in adventitial, smooth muscle and endothelial cells in human 

pulmonary arteries.  In humans, expression of ERα and ERβ has been identified in 

endothelial cells and vascular smooth muscle cells of aortic and coronary 
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vasculature as well as in cardiomyocytes (Mendelsohn 2002; Meyer et.al. 2006).  

The presence of both ERα and ERβ mediate physiologically important effects of 

estrogen in human vasculature.  In the lung, ERβ is thought to be the 

predominant ER (Nilsson et.al. 2001), however here we show an important role 

for ERα in PH and our results suggest that it is ERα that drives the PH phenotype 

in females.   

Firstly, we show that expression of ERα (both protein and mRNA) is increased in 

PASMCs from female HPAH patients relative to normal female controls.  This is 

consistent with gene expression data in PAH patients demonstrating an up-

regulation of ESR1 in PAH subjects relative to controls (Rajkumar et.al. 2010).  

Polymorphisms in ESR1 have also been associated with an increased risk of 

developing portopulmonary hypertension independent of gender (Roberts et.al. 

2009b).  Uniquely we report here that there are higher levels of ERα expression 

in female PAH human PASMCs compared with male human PASMCs from PAH 

patients, whilst ERβ expression is greatest in male PAH PASMCs.  One limitation 

of the expression data reported here is the small number of patient samples 

available due to the rare nature of PAH.  However, gender differences in tissue 

localisation of ERs during development and disease is not an entirely novel 

concept and has been reported in other conditions.  In aortic vasculature during 

aneurysm, a correlation between increased ERα expression in females but not 

males has been identified (Laser et al. 2013) and gender differences in vascular 

function has been attributed to differences in expression, distribution and/or 

activity of ERs in response to vasoconstrictors (Ma et al. 2010; Rubanyi et al. 

1997).  In human PAH however, this is the first direct comparison of ERs in 

females versus males.   

In the lungs of female mice, both ERα and ERβ are required for the formation of 

full functional and morphological development of alveoli structures, although 

they have a much smaller effect on alveolar dimensions in male mice (Massaro & 

Massaro 2004; Massaro & Massaro 2006).  It is likely then, that the ER pathway 

contributes more significantly to pathophysiology of female lung compared to 

male lung.  We therefore investigated ER expression in the pulmonary artery 

from chronic hypoxic female and male mice.  It has been identified previously in 

rat lung that ESR1 is a key regulatory component in response to intermittent 

hypoxia and further, is involved in regulation of ESR2 and androgen receptor, 
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which are also differentially expressed in hypoxia (Wu et al. 2008).  We 

demonstrated expression of both receptors in the pulmonary vasculature of 

female mice in line with previous studies (Lahm et.al. 2012a; Umar et.al. 

2011a).  ERα protein expression was elevated by hypoxia in female mice, 

although expression of mRNA was unchanged suggesting post-transcriptional 

regulation of ERα in mouse pulmonary artery by hypoxia.  Consistent with our 

observations that ERβ expression was reduced in human lung from PAH patients 

we show that ERβ expression is also reduced in the pulmonary artery of the 

female hypoxic mouse.  This is also consistent with the down-regulation of ERβ 

observed in the lung and right heart in a right heart failure rat model (Matori 

et.al. 2012).  It has previously been shown that loss of ERβ in female mice leads 

to abnormal lung structures and systemic hypoxia contributing to ventricular 

hypertrophy (Morani et.al. 2006).  ERα may therefore be pathogenic in PH whilst 

ERβ may be protective (Nadadur et.al. 2012; Umar et.al. 2011a).  The reduced 

expression of ERβ we observe in female human PASMCs and in the female model 

of PH may result in a loss of the protective effects of estrogen. 

Estrogen Receptor-α Antagonist MPP, Attenuates RVSP and 

Pulmonary Vascular Remodeling in Chronic Hypoxic-PH and in the 

Female Susceptible SERT+ Model 

We investigated the potential pathogenic role of ERα further by examining the 

effect of the ERα antagonist, MPP, on the development of PH in the chronic 

hypoxic mouse model.  MPP attenuated the development of PH by reducing RVSP 

and pulmonary vascular remodelling in the ovary intact female chronic hypoxic 

mouse, but not in males.  One explanation for this could be the elevated 

expression of ERα in females compared to males and suggests that endogenous 

estrogen is activating ERα receptors to facilitate the development of PH.  In 

addition, estrogen receptor expression was unchanged in the pulmonary arteries 

of hypoxic male mice suggesting that ERα may play less of a pathogenic role in 

males. 

Transcription of ERs is subject to regulation by hypoxia.  Hypoxia response 

elements have been identified on the promoters of both ERα and ERβ (Wu et al. 

2012) and in breast cancer cells, it has been demonstrated that hypoxia induces 
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ESR1 repression at the transcriptional level in a process dependent on hypoxia-

inducible factor 1α (Ryu et al. 2011).  Due to the effect hypoxia may have on 

transcriptional regulation of ERα, we also wished to examine the effects of ERα 

antagonism in a model of PH that did not require hypoxic exposure.  We have 

previously demonstrated that PH develops in SERT+ mice (White et.al. 2011), 

S100A4/Mts1 over-expressing mice (Dempsie et.al. 2011) and mice dosed with 

dexfenfluramine (Dempsie et.al. 2013).  These models are all serotonin-

dependent and PH only develops in ovary intact females.  Further, we 

demonstrate that ovarian estrogen underpins the PH phenotype in these models.  

To investigate if ERα mediates this effect of endogenous estrogen in females, we 

investigated the effect of the MPP in the SERT+ model in the absence and 

presence of hypoxia.  We show that MPP reversed the PH and associated 

pulmonary vascular remodelling in these mice, both under normoxic and hypoxic 

conditions.  This suggests a pivotal role for ERα in the causative effects of 

endogenous estrogen in the development of PH in this model and this was also 

observed independent of any effects of hypoxia.  Previously we have identified 

an estrogen-dependent regulation of the serotonin system in human PASMCs 

whereby estrogen can up-regulate tryptophan hydroxylase-1 (TPH1), SERT and 

the 5-HT1B receptor (White et.al. 2011).  Here we now show that serotonin can 

indeed regulate the expression of both ERα and ERβ expression in human 

PASMCs.  Serotonin induced an up-regulation of ERα whereas the expression of 

ERβ is decreased by serotonin.  This up-regulation of ERα may contribute to the 

pathogenic effects of serotonin in females during PAH. 

Previous studies have shown that exogenous administration of estrogen can 

protect male rodents from hypoxia-induced PH (Xu et al. 2013) and via 

activation of ERα and ERβ (Lahm et al. 2012).  Although these studies are 

valuable, we do not feel our results are directly comparable as we address the 

role of endogenous estrogen and not artificially elevated circulating estrogen, 

acting via ERs in males and females with intact ovaries.  Given the gender 

specific effects of ERα antagonism, this study has highlighted the value of 

understanding the differential role of endogenous estrogen in the development 

of PH in males and females.  Moreover, our results provide more therapeutically 

relevant data owing to the effect of MPP on naturally occurring estrogens.  Males 

have lower circulating levels of estrogen, and as shown here, low ERα expression 
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compared to females, it would not be surprising therefore, if estrogen plays a 

lesser role in the development of PH in males.  In line with this, we have shown 

that inhibition of estrogen synthesis is protective only in female rodent models 

of PH (Mair et al, unpublished).  In addition in females, altered estrogen 

synthesis and/or metabolism (White et al. 2012) may contribute to PH 

development.  Indeed, there is a putative estrogen receptor element in the 

promoter region of the estrogen metabolising enzyme, CYP1B1, suggesting 

metabolism may also be regulated by ERα (Han et al. 2005). 

Despite the incidence of RVH in both our models of PH we did not detect an ERα 

dependent rescue of the RVH nor did ERα antagonism exacerbate RVH.  Women 

are frequently reported to have an improved prognosis compared to men despite 

their predisposition to developing PAH (Benza et.al. 2012; Humbert et.al. 

2010a).  This has been attributed to an RV cardioprotective effect of estrogen.  

Indeed estrogen levels correlate with higher right ventricular ejection fraction 

and survival in females (Kawut et al. 2009; Ventetuolo et.al. 2011).  Genuinely 

protective effects of exogenous estrogen in PH observed in other studies 

(Nadadur et.al. 2012; Umar et.al. 2011a) may therefore arise from a direct 

structural effect on the right ventricle and an influence on right ventricular 

function as opposed to an effect on vascular remodelling and pulmonary 

pressures.  It is possible that the protective influence of estrogen on the right 

ventricle may be mediated predominantly by ERβ (Pedram et.al. 2008).  Further, 

our results suggest that inhibition of ERα is not having a detrimental effect on 

the RV and therefore this may still be a feasible therapeutic strategy in females 

(Barrett-Connor & Bush 1991).  One limitation of measuring RVH via the weight 

ratio of RV/LV+S is perhaps that development of RVH could be masked by 

alterations in LV weight.  Future investigations should consider the weight of RV 

as a ratio to body weight or tibia length.   

Estrogen has also been identified to have an influence on vascular reactivity in 

the systemic and pulmonary vasculature involving both ERα and ERβ.  In systemic 

vasculature, estrogen promotes vasodilation via genomic and non-genomic 

mechanisms attributed to activation of endothelial nitric oxide synthase (eNOS) 

and release of nitric oxide (NO) in aortic and carotid arteries (Pare et.al. 2002; 

Zhu et.al. 2002).  Further, in both normoxic and hypoxic conditions, estrogen is 

reported to attenuate pulmonary artery vasoconstriction (English et.al. 2001; 
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Lahm et.al. 2012a).  In pulmonary vasculature, the onset of the ERα and ERβ-

mediated decrease in vasoconstriction is rapid and is therefore suggested to be a 

non-genomic effect dependent on NO release (Chambliss et.al. 2000; Lahm et.al. 

2007).  In this study we therefore wished to determine the effect ERα 

antagonism had in isolated pulmonary arteries treated with serotonin.  In 

normoxic conditions in both male and female mice, MPP had no effect on 

serotonin induced vasoconstriction.  Hypoxia augmented the response to 

serotonin compared to normoxic conditions, however, MPP had no further effect 

on serotonin induced vasoconstriction in hypoxic male and female mice.  

Certainly there is evidence implicating estrogen mediated-induction of both 

SERT and the 5-HT2A receptor in the brain which is estrogen receptor dependent 

(Sumner et al. 2007) and the 5-HT2A receptor is the predominant receptor 

involved in hypoxic pulmonary vasoconstriction in mice (MacLean & Dempsie 

2010).  Additionally, we investigated the effect of serotonin and ERα antagonism 

in isolated pulmonary arteries from female SERT+ mice.  In this model, the 

vasoconstricive response to serotonin was heightened in SERT+ mice treated with 

MPP independent of hypoxia.  This may be explained by a loss of re-uptake of 

serotonin by SERT contributing to higher concentrations of circulating levels of 

serotonin available to act on serotonin receptors.  Here, in isolated pulmonary 

arteries, there were no sex-dependent effects of ERα antagonism.   

Estrogen-Induced Proliferation is Mediated Through Estrogen 

Receptor-α and Involves Downstream ERK/MAPK and PI3K 

Signalling Mechanisms 

Excessive smooth muscle cell proliferation is a main component of the 

pulmonary vascular remodelling and lesions observed in PAH.  Estrogen is a pro-

proliferative factor in human PASMCs (White et al. 2010; White et al. 2012), 

breast cancer cells (Pattarozzi et al. 2008), and has been shown to have pro-

inflammatory properties in systemic vasculature (Mendelsohn 2002).  This 

suggests that estrogen may mediate proliferation of human PASMCs and may 

contribute to PAH pathology.  We investigated this further by examining ERα 

mediated proliferation in female human PASMCs.  We demonstrate for the first 

time that estrogen can induce proliferation of human PASMCs via ERα activation, 

although the effect of estrogen and the ERα agonist, PPT are not dose 
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dependent.  The absence of a dose dependent effect for estrogen is surprising 

given previous findings highlighted this effect (White et al, 2011), however our 

results are consistent with reporting estrogen-induced proliferation at 1nmolL-1.  

Levels of estrogen receptors between patient human PASMCs may vary and 

contribute to this anomaly for estrogen and PPT induced proliferation.  In 

addition we show an ERβ agonist, DPN, has no effect on proliferation of human 

PASMCs suggesting that ERα is the receptor that mediates estrogen-induced 

proliferation in PASMCs.  Moreover, we determine the pro-proliferative effects 

of estrogen and the ERα agonist, PPT, are dependent on activation of 

downstream PI3K/Akt and ERK/MAPK signalling.  ERK and Akt signalling pathways 

are closely involved in cardiac hypertrophy and pulmonary vascular remodelling 

and estrogen has been shown to regulate activation of both pathways in right 

heart failure (Nadadur et.al. 2012; Zhou et al. 2011).  Additionally, selective 

activation of ERα in endothelial cells in aorta increases ERK expression and 

ERK1/2 mediated cell proliferation and activation of PI3K/Akt in human 

endothelial cells is dependent on ERα but not ERβ (Chambliss et.al. 2000; Meyer 

et.al. 2006).  These results provide some insight into the molecular mechanisms 

by which estrogen and its receptors may mediate pulmonary vascular 

remodelling during PAH and hence MPP attenuates pulmonary vascular 

remodelling in female mice. 

Dysfunctional BMPR2 signalling plays a pivotal role in aberrant smooth muscle 

growth and endothelial cell proliferation and apoptosis in PAH, and mutations in 

BMPR2 are responsible for ~80% of HPAH cases (Machado et.al. 2009).  Loss of 

BMPR2 function mediates proliferation by reducing induction of cell cycle 

inhibitors (Id proteins), particularly Id1 and Id3 in PASMCs (Yang et.al. 2008; 

Yang et.al. 2005).  A gene-gender relationship for BMPR2 was proposed in a 

recent study where BMPR2 expression was shown to be decreased in lymphocytes 

and whole lung from female patients compared with males (Austin et.al. 2012).  

In line with this, BMPR2 is recognised as a gene target of ESR1 (Rajkumar et.al. 

2010).  A highly conserved functional estrogen response element has recently 

been identified in the BMPR2 promoter and estrogen exposure suppresses the 

BMPR2 signal through ERα (Austin et al. 2012).  In the present study, BMPR2 

protein and mRNA expression was decreased following hypoxia consistent with 

previous studies (Long et al. 2009; Takahashi et al. 2006).  Lung BMPR2 
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expression was also decreased in SERT+ mice at mRNA levels but not protein.  In 

both our chronic hypoxic female mouse model and our hypoxia-independent 

SERT+ mouse model, low levels of BMPR2 were rescued by the ERα antagonist.  

Hence in females we have demonstrated high ERα expression supporting human 

PASMC proliferation and decreased BMPR2 expression.  Combined with high 

circulating endogenous estrogen levels in females this may explain the female 

susceptibility to develop PAH and/or the selective beneficial effects of the ERα 

antagonist in females.  Previously, the growth inhibitory effects of BMPs have 

been shown to be Smad1 dependent (Yang et.al. 2005), therefore we also wished 

to determine the influence of estrogen and ERα on Smad-1 expression.  Id1 and 

Id3 have also been reported to be major targets of BMP signalling in PASMCs 

where they are involved in growth suppression. Furthermore, induction of both 

Id1 and Id3 is dependent on intact BMPR2 (Yang et al. 2013).  Indeed, we report 

here that Smad-1 and Id1 and Id3 are also subject to regulation by estrogen via 

ERα and suggest that therapeutic effects of MPP in vivo involve restoring the 

dysfunctional BMPR2 signalling axis in PASMCs. 

Conclusion   

In conclusion, we have determined an ERα dependent mechanism of PAH 

development in females.  Our data supports a hypothesis whereby the higher 

prevalence of PAH in women may be a result of increased ERα distribution and 

signalling.  We suggest that defective estrogen signalling in PAH drives a female 

susceptibility in concordance with defective estrogen metabolism (White et al. 

2012b).  Furthermore, we propose that in PAH, the genetic susceptibility which 

infers an increased risk in females to develop the condition is related to 

interplay between dysfunctional ERα and the BMPR2 signalling axis.  In the 

setting of PH, gender represents an important modifier of disease and should be 

considered carefully in future research and in clinical implications. 
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Chapter 4. 

Influence of the Novel G Protein-Coupled Estrogen 

Receptor, GPER in the Development of 

Experimental Pulmonary Hypertension 
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4  

4.1 Introduction 

The incidence of PAH is well reported to be more prevalent in women than in 

men (Badesch et.al. 2010; Humbert et.al. 2010a; Ling et.al. 2012).  In fact, in 

the most recent registries, the female to male ratio is approximately 4.1:1 in 

idiopathic PAH (IPAH) and 3.8:1 in associated PAH (APAH) (Badesch et.al. 2010).  

Despite clear epidemiologic evidence demonstrating female susceptibility in 

many forms of PAH, the underlying reasons for this gender disparity remain 

unclear.  This female predominance in PAH has led to numerous studies 

investigating the role of gender and sex hormones in the development of 

experimental PAH.  In particular, estrogen has been proposed to play a pivotal 

role in PAH pathogenesis. 

Classically, cellular signalling of estrogen is mediated through two estrogen 

receptors (ER), ERα and ERβ.  These receptors belong to the super family of 

nuclear receptors.  Activation of these receptors results in slow responses to 

estrogen, involving activation of estrogen response elements (EREs) in the 

promoters of target genes, and influencing gene transcription (Heldring et al. 

2007b).  However, in addition to the well studied transcriptional effects of 

estrogen, rapid non-genomic effects of estrogen occurring within seconds to 

minutes have been observed.  These have been attributed to a third estrogen 

receptor, the seven transmembrane G-protein coupled receptor 30 (GPR30) or 

GPER; (Filardo & Thomas. 2007; (Prossnitz et.al. 2008).   

In PAH, a role for both ERα and ERβ in physiology and pathophysiology has been 

described (Lahm et.al. 2012a; Umar et.al. 2011a).  The identification and 

characterisation of GPER in the pulmonary circulation remains to be 

investigated.  However, several promising cardiovascular responses to G1 suggest 

there may be potential for GPER mediated effects in the pulmonary circulation 

and during PAH.  In a cardiovascular setting, estrogens are observed to exert 

protective effects through ERα whilst it is often presumed that ERβ has opposing 

effects to ERα.  Slowly, evidence is building for a role of GPER in some 

physiological and pathophysiological cardiovascular and metabolic conditions in 
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addition to ERα and ERβ.  GPER has been identified in different vasculature 

including mesenteric and carotid artery (Haas et al, 2009; Martensson et al. 

2009) and localised to the smooth muscle and endothelial cells of carotid and 

cerebral arteries (Lindsey et al. 2009).  It is not surprising therefore that GPER is 

involved in vascular reactivity of estrogen.  For example a GPER selective 

agonist, G1 initiates gender-independent relaxation of vascular smooth muscle 

cells (Broughton et al. 2010) although this is dependent on the vascular bed and 

agonist used for contraction as isolated arterial rings pre-contracted endothelin-

1 are relaxed by G1 whilst those contracted with serotonin are unaffected by G1 

(Haas et al. 2009).  In pulmonary arteries, the potential role of estrogen action 

via GPER is unknown.  In addition, G1 has been demonstrated to reduce blood 

pressure (Lindsey et al. 2009) and elicits an antiproliferative effect in 

endothelial cells (Holm et al. 2011).           

Due to the severe lack of evidence investigating the role of GPER in PAH despite 

the well defined influence of estrogen in development of PAH in females, we 

wished to evaluate and characterise GPER.  To our knowledge, this is the first 

study to characterise GPER in translational in vitro and in situ studies of PAH 

and in an experimental in vivo rodent model of PH.  We use a GPER knockout 

mouse (GPER-/-) to investigate GPER in chronic hypoxia induced-PH.  The aims of 

this study were to evaluate the expression of GPER in human and mouse lungs in 

the development of PAH, and to determine any gender differences in activity of 

GPER. 
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4.2 Results 

4.2.1   GPER Localisation in Human Lung and Pulmonary Artery  

Initially we wished to investigate if GPER was expressed in human lung and 

pulmonary artery and then further determine if localisation was cell type 

specific.  We utilised human lung sections from female non-PAH control and PAH 

patients.  To our knowledge, GPER expression in PAH development and 

progression has never been investigated. 

We observed GPER expression in both non-PAH control and PAH patient lungs.  

GPER was found to be localised to some, but not all, human PASMCs in non-PAH 

control and PAH patient lung sections.  In addition, some GPER was also localised 

to endothelial cells in control and PAH patients.  GPER expression was 

determined by positive dark brown staining (Figure 4-1).  Consecutive sections 

stained for alpha smooth muscle actin and von Willebrand factor further 

identified smooth muscle and endothelial cell specific staining, respectively.  

Lung sections were also counterstained with haemotoxylin (purple/blue).  

4.2.2   GPER Expression in Human Pulmonary Artery Smooth 

Muscle Cells 

In isolated human PASMCs, we then examined if there was a difference in 

expression of GPER between non-PAH control and idiopathic PAH (IPAH) and 

heritable PAH (HPAH) patients.  Levels of expression between non-PAH control 

and both IPAH and HPAH were similar at both protein (Figure 4-2A) and mRNA 

transcript levels (Figure 4-2B).



 
 

 
 

Control PAH α-SMA vWF IgG

 

Figure 4-1: Immunolocalisation of GPER in human lung sections. 

Expression of GPER (dark brown staining) is localised to the pulmonary artery smooth muscle cells and endothelial cells as indicated by the black arrow in control and 

PAH lung sections.  Consecutive sections stained for alpha smooth muscle actin (α-SMA) and von Willebrand factor (vWF) are shown, and the IgG control is shown for 

PAH patient.  Patient information is available in Materials and Methods section Table 2.1.  Scale bar=200µm. 
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Figure 4-2: Expression of GPER in isolated female human PASMCs. 

Expression of GPER protein (A) and mRNA transcript (B) is unchanged in IPAH and HPAH human 

PASMCs compared to non-PAH control.  Representative blots are shown.  Quantitative data are 

represented as ± SEM and analysed by an unpaired t-test.  Patient information is available 

Materials and Methods sections Table 2.3; control samples 1,3, 4 and 5 and patients samples 1-3. 

n=3/4 individual control or patients per group repeated in triplicate; n for each group is indicated on 

bar in graph. 
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4.2.3  GPER Expression in Female Mouse Pulmonary Artery and 
Lung in Chronic Hypoxia Induced-PH 

The expression of GPER in mouse pulmonary artery and lung during the 

development of chronic hypoxia induced-PH is unknown.  Here we wished to 

firstly determine if GPER is expressed in female mouse pulmonary artery and 

lung, and secondly investigate if expression levels of GPER are altered during PH 

development. 

Using female mouse pulmonary artery from wildtype mice we observed a 

significant decrease in expression of GPER protein in hypoxic pulmonary artery 

compared to normoxic controls (Figure 4-3A).  On the other hand, expression of 

GPER mRNA transcript was unchanged in whole lung from hypoxic females 

(Figure 4-3B). 

Interestingly, expression of GPER mRNA transcript was much lower in female 

mouse lung in normoxic and hypoxic conditions compared to ESR1, the gene 

encoding ERα (Figure 4-4A&B). 
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Figure 4-3: Expression of GPER in female mouse pulmonary artery and lung. 

Expression of GPER in hypoxic pulmonary artery is decreased relative to normoxic control (A).  

GPER mRNA transcript expression is unchanged in whole lung in normoxic versus hypoxic (B).  

Representative blots are shown.  Quantitative data are represented as ± SEM and analysed by an 

unpaired t-test.  n=6 pulmonary artery/lung per group repeated in triplicate; n for each group is 

indictaed in bar on graph. 
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Figure 4-4: Estrogen receptor mRNA expression in whole lung from female mice. 

Expression of estrogen receptors in (A) normoxic lung and (B) hypoxic lung.  Data are expressed 

as ± SEM analysed by an unpaired t-test.  *p<0.05 vs. ESR1. n=6 mice/lungs.  ESR1=gene 

encoding ERα; ESR2=gene encoding ERβ 

.
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4.2.4   Development of Chronic Hypoxia Induced-PH in Male and 

Female GPER-/- Mice 

GPER is a novel G-protein coupled estrogen receptor and the role of GPER in the 

development of PH is unknown.  To our knowledge, this is the first study 

investigating the role of GPER in an in vivo model of PH.  Here we utilise a GPER 

knockout mouse (GPER-/-) and the chronic hypoxic model of PH to determine the 

influence of GPER in males and females during PH development. 

The development of chronic hypoxia induced-PH was examined by right 

ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH) and 

percentage of pulmonary vascular remodelling and pulmonary artery 

muscularisation.  In both males and females, development of chronic hypoxia 

induced-PH was confirmed by elevations in RVSP, RVH and pulmonary vascular 

remodelling (Figure 4-5A-C).  In normoxic conditions, deletion of GPER had no 

effect on RVSP, RVH and pulmonary vascular remodelling.  This was observed in 

both males and females.  In hypoxia, the development of PH was unaffected in 

males and females by GPER deletion as RVSP (Figure 4-5A) and RVH (Figure 4-5B) 

were unchanged between wildtype (WT) and GPER-/- mice.  On the other hand, 

pulmonary vascular remodelling was increased in GPER-/- females in hypoxia 

relative to hypoxic wildtype mice.  This effect was not observed in male GPER-/- 

mice (Figure 4-5C).  GPER deletion however, had no effect on pulmonary artery 

muscularisation in normoxic and hypoxic conditions in males and females (Figure 

4-6).  We observed no effects on systemic haemodynamics in GPER-/- mice 

relative to wildtype controls.  Mean systemic arterial pressure (mSAP) (Figure 4-

7A) and heart rate (HR) (Figure 4-7B) were unchanged in males and females in 

normoxia and hypoxia.  Absolute haemodynamic values are shown in Table 4-1. 

4.2.5   Effect of GPER on Body Weight and Uterus Weight in 

Chronic Hypoxia Induced-PH 

Wildtype and GPER-/- males exhibited increased body weights relative to 

wildtype and GPER-/- females, respectively.  However, in both males and 

females, body weight was unaffected by hypoxia.  In males, deletion of GPER 

had no effect on body weight in normoxic and hypoxic conditions, although in 
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females, body weight was significantly increased in GPER-/- mice relative to 

wildtype controls (Figure 4-8A). 

The role of GPER in regulating estrogen dependent uterine biology is unclear.  

Here we identified that GPER deletion in female mice has no effect on uterus 

weight.  Uterus weight was expressed as a ratio corrected for body weight given 

the influence GPER had on overall body weight in females (Figure 4-8B).  

Absolute values for body weight and uterus weight are shown in Table 4-2. 
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Figure 4-5: Development of chronic hypoxic PH in male and female GPER
-/-

 mice. 

In vivo, (A) RVSP, (B) RVH and (C) pulmonary vascular remodelling are unchanged in WT versus 

GPER
-/-

 mice in both males and females.  Data are expressed as ± SEM analysed by a Two-Way 

ANOVA followed by a Bonferroni’s post hoc test.  *p<0.05, **p<0.01, ***p<0.001 vs. normoxic; 

†p<0.05 vs. WT.  n=6-9 mice per group; n per group is indicated in the bar in the graph.. 
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Figure 4-6: Pulmonary artery muscularisation in male and female GPER
-/-

 mice. 

Smooth muscle layer stains dark brown with alpha- smooth muscle actin.  Representative images are shown from each group.  Scale bar=20µm. 
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Figure 4-7: Systemic haemodynamic parameters in male and female GPER
-/-

 mice. 

Mean systemic arterial pressure (mSAP (A) and heart rate (HR) (B) are unchanged in male and 

female GPER
-/- 

mice relative to WT controls.  Data are expressed as ± SEM analysed by a Two-

Way ANOVA followed by a Bonferroni’s post hoc test.  n=6-10 mice per group; n of mice per group 

is indicated in the bar in the graph. 
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Figure 4-8: Body weight and uterus weight in male and female GPER
-/-

 mice. 

(A) Body weight is increased in female GPER
-/- 

mice relative to WT controls whilst male GPER
-/-

 

body weight is unaffected.  (B) Uterus weight/body weight ratio is unchanged in female GPER
-/-

 

mice.  Data are expressed as ± SEM analysed by a Two-Way ANOVA followed by a Bonferroni’s 

post hoc test.  ††p<0.01, †††p<0.001 vs. WT; ###p<0.001 vs. female.  n=5-10 mice per group; n 

per group is indicated in bar in graph. 
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Table 4-1: Haemodynamic parameters in male and female WT and GPER
-/-

 mice in chronic 

hypoxia.  

Right ventricular systolic pressure (RVSP); Mean right ventricular pressure (RMVP); right 

ventricular diastolic pressure (RVDP); systemic systolic arterial pressure (sSAP); mean systemic 

arterial pressure (mSAP); diastolic systemic arterial pressure (dSAP); Heart rate (HR).  Data 

expressed as ± SEM analysed by a Two-Way ANOVA followed by a Bonferroni’s post hoc test.  

*p<0.05, **p<0.01, ***p<0.001 vs. normoxic; †† p<0.01 vs. WT.  n = 6-10 mice per group. 

 

Parameter/Group Male WT Male GPER-/- Female WT Female GPER-/- 

 

Normoxic 

 

    RVSP, mmHg 22.52 ± 0.68 24.21 ± 1.07 22.38 ± 0.67 23.98 ± 0.69 

RMVP, mmHg 13.61 ± 0.47 14.36 ± 0.77 14.77 ± 0.46 13.60 ± 1.27 

RVDP, mmHg 1.40 ± 0.40 0.53 ± 0.26 2.74 ± 0.75 1.45 ± 0.67 

sSAP, mmHg 116.6 ± 2.82 99.74 ± 3.38 96.11 ± 1.88 103.2 ± 5.91 

mSAP, mmHg 101.8 ± 1.83 97.85 ± 1.43 92.63 ± 2.70 88.41 ± 7.94 

dSAP, mmHg 83.75 ± 1.55 96.07 ± 3.56 83.59 ± 2.72 73.98 ± 5.74 

HR, bpm 413.8 ± 16.06 470.2 ± 5.00 450.8 ± 12.37 418.2 ± 29.73 

     Hypoxic 

 

    RVSP, mmHg 34.74 ± 0.90*** 32.85 ± 0.66*** 32.76 ± 0.40*** 35.27 ± 1.07*** 

RMVP, mmHg 18.17 ± 0.74*** 18.87 ± 0.62** 19.80 ± 0.68*** 20.39 ± 0.71*** 

RVDP, mmHg 2.21 ± 0.48 2.63 ± 0.38* 2.66 ± 0.39 1.99 ± 0.44 

sSAP, mmHg 123.8 ± 1.61 109.4 ± 3.29†† 113.0 ± 2.09** 111.2 ± 2.83 

mSAP, mmHg 114.3 ± 1.17 101.3 ± 2.54 108.8 ± 1.79 104.9 ± 2.41 

dSAP, mmHg 101.4 ± 2.13*** 89.83 ± 2.68†† 102.8 ± 2.26*** 94.12 ± 2.93** 

HR, bpm 424.1 ± 13.60 437.2 ± 12.92 408.5 ± 13.26 403.1 ± 11.80 
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Table 4-2: Ventricle, body weight and uterus weight in male and female mice WT mice and 
GPER

-/-
 mice 

Right ventricle (RV); left ventricle plus septum (LV + S); RV/LV+S ratio, body weight and uterus 

weight.  * p<0.05 ** p <0.01, *** p<0.001 vs. normoxic mice; †† p<0.01, ††† p<0.001 vs. GPER
-/-

 

mice; ###p<0.001 vs. female mice.  Data are expressed as ± SEM analysed by a Two-Way 

ANOVA followed by a Bonferroni’s post hoc test. n = 6-10 mice per group. 

Group RV (mg) LV + S (mg) RV/LV+S Body  

weight (g) 

Uterus  

weight (mg) 

      

Normoxic      

Male      

WT 31.18 ± 1.58# 112.2 ± 4.74### 0.28 ± 0.02 27.82 ± 0.76###  

GPER-/- 35.14 ± 2.05 128.3 ± 9.55### 0.28 ± 0.03 30.63 ± 1.52###  

Female      

WT 20.47 ± 1.26 81.76 ± 2.85 0.25 ± 0.01 18.90 ± 0.29 82.77 ± 14.22 

GPER-/- 25.79 ± 2.34 91.82 ± 3.88 0.28 ± 0.02 24.52 ± 1.00††† 78.96 ± 18.09 

      

Hypoxic      

Male      

WT 37.81 ± 2.65# 109.7 ± 4.15### 0.35 ± 0.02* 27.55 ± 0.59###  

GPER-/- 45.09 ± 3.16## 109.7 ± 5.09 0.42 ± 0.03** 30.00 ± 0.42###  

Female      

WT 28.02 ± 1.34 79.52 ± 1.78 0.35 ± 0.02*** 19.14 ± 0.24 94.39 ± 11.91 

GPER-/- 32.19 ± 1.28 92.82 ± 2.84 0.35 ± 0.02* 23.20 ± 0.30†† 86.92 ± 9.43 
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4.2.6   Effects of GPER on Human Pulmonary Artery Smooth 

Muscle Cell Proliferation 

Smooth muscle cell proliferation is integral to the pulmonary vascular 

remodelling process.  We therefore utilised human PASMCs in vitro to determine 

the role of GPER using a selective agonist and antagonist. 

The GPER selective agonist, G1, had no effect on proliferation of PASMCs at the 

range of concentrations tested (0.01-10nmolL-1) (Figure 4-9A).  In previous 

studies we have shown estrogen induced proliferation of PASMCs at physiological 

concentrations of 1nmol/l (Dempsie et.al. 2013; White et.al. 2011).  In this 

study we also demonstrate estrogen induced proliferation at 1nmolL-1, however, 

the GPER selective antagonist, G15, has no effect on estrogen induced-human 

PASMC proliferation (Figure 4-9B). 



 
 

219 
 

 

A.

B.

##

2.5% FBS

2.5% FBS
 

Figure 4-9: Proliferation in female human PASMCs is unaffected by a GPER agonist and 

antagonist. 

(A) The GPER selective agonist, G1, has no effect on human PASMC proliferation.  (B) The GPER 

selective antagonist, 1µmolL
-1

 G15, has no effect on estrogen (E2) induced proliferation.  Data are 

expressed as ± SEM analysed by a One-Way ANOVA followed by a Tukey’s post hoc test.  .  n=3 

female control cell lines repeated in triplicate (Controls 1, 4 and 5, See Table 2-3 in Material and 

Methods).   ***p<0.001 vs. 2.5% FBS; ##p<0.01 vs. 1nmoll
-1

 E2. 
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4.2.7  Effect of Serotonin on GPER Expression in Human 

Pulmonary Artery Smooth Muscle Cells 

We have previously demonstrated that physiological estrogen (1nmolL-1) can 

increase the expression of tryptophan hydroxylase 1 (TPH1), the serotonin 

transporter (SERT) and the 5-HT1B receptor in human PASMCs (White et.al. 

2011).  Here we wished to examine the effects of serotonin on GPER expression 

in human PASMCs. 

In female human PASMCs we show that the expression of GPER in human PASMCs 

is unchanged by 1µmolL-1 serotonin (Figure 4-10). 
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Figure 4-10: Serotonin has no effect on GPER expression in female human PASMCs. 

Representative blots are shown.  Quantitative data is expressed as ± SEM analysed by a One-Way 

ANOVA followed by a Tukey’s post hoc test.  n=3 female control cell lines repeated in triplicate 

(Controls 1, 4 and 5, See Table 2-3 in Material and Methods). 
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4.3 Discussion 

It is clear from the most recent epidemiologic data that there is a female 

predominance in many forms of PAH, including IPAH and HPAH (Badesch et.al. 

2010; Humbert et.al. 2006; Peacock et.al. 2007; Thenappan et.al. 2007).  The 

reasons underlying this gender disparity remain unresolved, although several 

lines of evidence suggest estrogen plays a pivotal role in PAH physiology and 

pathogenesis.  The ‘estrogen paradox’ however, has hampered our 

understanding of estrogen in the development of PAH in women. 

In this study, we aimed to investigate the role of the novel estrogen receptor, 

GPER, in the development of PH by utilising translational in vitro and in situ 

studies, and a GPER-/- mouse in the in vivo chronic hypoxic model of PH.  

Importantly we evaluated the role of GPER in vivo in both males and females to 

determine the influence of gender.  Our results demonstrate that development 

of chronic hypoxia induced-PH is likely independent of estrogen mediated 

effects through GPER.  From our translational human data, we also demonstrate 

that GPER is expressed in human lung and localised to smooth muscle cells and 

endothelial cells, however expression is unchanged in PASMCs in PAH.  

Furthermore, estrogen induced proliferation of human PASMCs is independent of 

GPER.  Together our results indicate GPER is not crucial in estrogen mediated 

effects in PH development. 

GPER mediates rapid and transcriptional events in response to estrogen in cells 

lacking classical nuclear ERα/ERβ, through activation of diverse transduction 

cascades like the ERK1/2 pathway (Filardo et al. 2002; Revankar et al. 2005) and 

phosphatidylinositol-3-kinase (PI3K)/Akt (Thomas et al. 2005).  GPER has 

previously been identified in human internal mammary arteries and saphenous 

veins at a level comparable to ERα, although 10-fold lower than ERβ (Haas et al. 

2007).  Expression of GPER has also been detected in mouse mesenteric artery 

(Martensson et.al. 2009), carotid artery (Haas et.al. 2009) and in the 

cardiomyocytes of both the rodent and human heart (Deschamps & Murphy 2009; 

Filice et al. 2009; Patel et al. 2010).  Furthermore, it is clearly evident that 

vascular GPER protein is localised to both endothelial and smooth muscle cells in 

rat aorta, carotid and cerebral arteries, although more intense staining for GPER 
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is demonstrated in endothelial cells (Broughton et.al. 2010).  GPER is therefore 

believed to contribute to cardiovascular actions of estrogens.  Characterisation 

of GPER in the lung however, is less well defined, although enhanced GPER 

expression has recently been attributed to a pathological role in lung cancer 

cells (Jala et.al. 2012; Siegfried et al. 2009).  In particular, GPER expression and 

localisation in human and mouse lung and pulmonary artery in PH is unknown.  In 

the present study we observed GPER expression in both human non-PAH control 

and PAH patient lung sections, although expression levels were low.  

Additionally, we show no difference in protein and mRNA expression levels of 

GPER between non-PAH controls and IPAH and HPAH patients in isolated PASMCs.  

In contrast, protein expression of GPER was significantly reduced in pulmonary 

arteries from hypoxic female mice relative to controls, although this was not 

observed at the mRNA level, suggesting a post-transcriptional regulation of GPER 

in hypoxia.  This data conflicts previous evidence in cancer cells and 

cardiomyocytes where GPER was identified as a target gene of hypoxia inducible 

factor-1α (HIF-1α), leading to an increase in expression upon hypoxic conditions, 

compared to normoxia (Recchia et al. 2011).  The up-regulation of GPER was 

associated with an adaptive response to stressful microenvironments in the rat 

heart during hypertension.  Here, our results may differ due to tissue and 

species differences.  Interestingly, we show in mouse lung that expression levels 

of GPER mRNA transcript are significantly less than ESR1 levels in both normoxic 

and hypoxic conditions, although comparable to ESR2 levels.  Together this data 

suggests that the role of GPER in the lung during PH development may be less 

important than ERα. 

Despite the low expression levels of GPER in the human and mouse lung, we 

wished to characterise the role of GPER in vivo as these represent novel findings 

in the development of PH.  Moreover, we showed a reduction of GPER protein in 

hypoxic pulmonary arteries from females.  We utilised male and female GPER-/- 

mice between 2-3 months of age due to the age dependent development of 

systemic arterial pressure observed in female GPER-/- mice (Martensson et.al. 

2009).  Chronic hypoxia was used to induce PH in GPER-/- mice as it produces 

potent vasoconstriction in pulmonary arteries (Pugh & Hemnes 2010).  In 

normoxic conditions, deletion of GPER had no influence on RVSP, RVH or 

pulmonary vascular remodelling.  Following exposure to chronic hypoxia, we 
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observed development of chronic hypoxia induced-PH in wildtype male and 

female mice as they exhibited elevations in RVSP, RVH and pulmonary vascular 

remodelling.  However, in male and female GPER-/- mice, hypoxia did not 

attenuate, nor did it exaggerate PH development compared to wildtype 

counterparts.  These findings indicate that GPER is not involved in elevated 

pulmonary pressures and cardiac remodelling in chronic hypoxic PH.  

Interestingly, female GPER-/- mice did demonstrate an increase in pulmonary 

vascular remodelling compared to hypoxic wildtype females, although this effect 

was absent in males.  This may suggest that activation of GPER mediates a 

protective effect in hypoxia although the effects are not sufficient enough to 

completely reverse the PH phenotype.  In addition, other ERs or environmental 

stimuli must be involved. 

G1, a GPER selective agonist has been shown to reduce vascular smooth muscle 

(Haas et.al. 2009) and endothelial cell proliferation (Holm et al. 2011).  Indeed, 

whilst the former provides a protective effect against remodelling, inhibition of 

endothelial cell proliferation may prevent re-endothelialisation in arteries 

following injury and contribute to loss of endothelial function.  In contrast to 

vascular cells, in cancer cells, GPER has been demonstrated to mediate 

proliferative effects of estrogen in endometrial cancer cells and aggressive 

disease in breast cancer cells (Filardo et al. 2006).  G1 induces proliferation via 

epidermal growth factor receptor (EGFR)/ERK1/2 mediated pathways leading to 

elevated cyclin D1 and c-fos expression (Maggiolini et.al. 2004; Sirianni et al. 

2008).  The role of GPER activation in pulmonary vasculature and proliferation is 

not clear.  Here we identify that human PASMCs did not respond to G1 between 

0.01–10nmolL-1 concentration range.  This is in line with our data which shows 

that human PASMC proliferation induced by a physiological estrogen 

concentration (1nmolL-1) is unaffected by the GPER selective antagonist, G15.  

Together, our evidence provides the first insight into the role of GPER in isolated 

human PASMCs and indicates that estrogen-induced proliferation in PAH is likely 

GPER independent.  However, future studies in PASMCs using G1 should use a 

larger concentration range to ensure the effects at higher concentrations are 

investigated, for example, 1µmolL-1 has been shown recently to promote 

proliferation in breast cancer associated fibroblasts (Luo et al. 2014). 
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This we believe is the first study to characterise the role of GPER in the 

development of PAH.  Much more evidence is available on the cardioprotective 

effects of GPER in humans and animal models.  In several vascular beds, for 

example, in rat aorta and carotid artery (Broughton et.al. 2010; Lindsey et.al. 

2011) and in porcine coronary artery (Meyer et al. 2010) it is confirmed that G1 

initiates endothelium-dependent vascular relaxation.  In female GPER-/- mice 

there is an age-dependent increase in mean arterial pressure at 9 months 

associated with an increase in vascular resistance as opposed to an increase in 

heart rate and cardiac output (Martensson et.al. 2009), further implicating 

protective effects on GPER in vasculature.  Consistent with this, in our study 

using mice aged 2-3 months, we observed no difference in mean systemic 

arterial pressure (mSAP) and heart rate in our GPER-/- male and female mice.  In 

addition, G1 has been shown to lower blood pressure in normotensive rats and 

relax rodent and human vessels (Haas et.al. 2009).  In isolated hearts, G1 pre-

treatment attenuates ischemia-reperfusion and infarct size potentially through a 

reduction in inflammation (Bopassa et al. 2010; Deschamps & Murphy 2009; Patel 

et.al. 2010).  Although we show here that the potent vasoconstrictor serotonin 

(MacLean & Dempsie 2010) has no effect on GPER expression in PASMCs, further 

characterisation of GPER is required to decipher vasoactive properties which 

may contribute to pulmonary artery vasoconstriction and development of PH. 

The localisation of GPER to human blood vessels clearly implies a role for this 

receptor in cardiovascular disease and there is confounding evidence to support 

this.  Additionally, a role for GPER in some cancer cells, including breast cancer, 

endometrial cancer and lung cancer is proposed.  In contrast, there is sparse 

evidence describing GPER localisation in pulmonary vasculature and this we 

believe is the first study to characterise GPER in this vascular bed.  From this 

study, we conclude that expression of GPER in PASMCs has a limited influence on 

PH pathology independent of gender.  This evidence builds on answering the 

female predominance observed in PAH. 



 
 

Chapter 5. 

Investigating the Influence of Testosterone in the 
Development of Experimental Pulmonary 

Hypertension 
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5  

5.1 Introduction 

Despite a gender bias in PAH with women up to four-fold more likely to present 

with disease compared to men (Badesch et.al. 2010; Walker et.al. 2006), male 

patients show poorer survival in established PAH, even following treatment 

intervention (Benza et.al. 2012; Humbert et.al. 2010a; Humbert et.al. 2010b).  

There is a paucity of studies in PAH investigating male hormones in pulmonary 

vasculature structure and function, but the exact role of androgens in physiology 

and the pathophysiology of PAH remains uncertain.  Androgens may therefore 

play a crucial role in the progression of PAH in males. 

The influence of testosterone on the pulmonary vasculature is a potential 

mechanism by which males may show shortened survival.  However, right 

ventricular (RV) function is the most important prognostic factor and indicator of 

survival in PAH (D'Alonzo et al. 1991).  In line with this, males show a propensity 

to RV dysfunction and lower right ventricular ejection fraction (RVEF) in PAH 

compared to females, (Kawut et.al. 2009) and estrogen levels are shown to 

strongly correlate with improved RV function (Ventetuolo et.al. 2011).  Androgen 

receptors (AR) have been identified in both the RV and left ventricle (LV), 

although the latter has been more extensively studied. Both testosterone and 

the primary metabolite, dihydrotestosterone (DHT) mediate genomic effects 

through the AR, although DHT is 10-times more potent in activation of the AR 

than testosterone (Liu et.al. 2003).  There is convincing evidence that 

testosterone can initiate concentric hypertrophy via AR dependent mechanisms 

(Achar et.al. 2010; Hayward et.al. 2000).  In addition, structural and 

morphological changes in human hearts are associated with alterations in the 

metabolism of testosterone, with elevated levels of the DHT described in human 

left ventricular hypertrophy (Thum & Borlak 2002). 

Recent evidence from the pulmonary artery banding (PAB) model of PAH which 

exhibits severe RVH and RV dysfunction in the absence of pulmonary vascular 

remodeling, describes a pro-fibrotic effect of testosterone in the RV (Hemnes 

et.al. 2012).  Atrial natriuretic peptide (ANP), a marker of cardiac hypertrophy 
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was significantly attenuated following removal of testosterone by castration in 

PAB mice while myocyte size was augmented with chronic testosterone 

replacement.  The MESA-Right Ventricle Study has also shown in men, that 

testosterone is associated with elevated RV mass and right ventricular end- 

diastolic and systolic volumes, whereas this was not observed in women 

(Ventetuolo et.al. 2011).  A potentially negative effect of testosterone in the 

stressed RV may contribute towards dysfunctional and maladaptive RV 

hypertrophy in males. 

On the other hand, testosterone is known to be a potent vasodilator in the 

isolated pulmonary vascular beds and has been extensively studied in isolated 

vessels from humans where the observed effect is independent of gender (Rowell 

et.al. 2009; Smith et.al. 2008).  Importantly, this effect of testosterone is 

accepted to be a rapid, non-genomic effect and is therefore not mediated via AR 

(Jones et.al. 2002; Yue et.al. 1995)  In addition, the effect is not due to 

conversion to estrogen as the vasodilatory response is unaffected by aromatase 

(CYP19A1) inhibition, the enzyme that converts testosterone to estrogen, or by 

estrogen receptor antagonism (Deenadayalu et.al. 2001; Teoh et.al. 2000; Tep-

areenan et.al. 2002). 

Given the high incidence of idiopathic, heritable and some associated forms of 

PAH in women (Benza et.al. 2012; Humbert et.al. 2010a), research addressing 

the gender bias has been focused on estrogen.  However, the effects of 

testosterone may infer a contradiction in PAH with highlighted multiple actions 

in the RV and pulmonary vasculature.  Since survival is worse in males and 

survival is closely linked to RV function, a negative effect of testosterone or its 

metabolites is proposed in the RV.  Here we investigated the effects of 

testosterone in vitro and in vivo to elucidate the role of male hormones in PAH 

development and progression.  We also determine vasoreactive properties in 

pulmonary arteries following testosterone manipulation. 
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5.2  Results 

5.2.1  Castration Does Not Attenuate the Development of Chronic 

Hypoxia Induced-PH 

To investigate the effects of testosterone on PH in vivo, we castrated wildtype 

C57Bl/6 male mice to deplete their endogenous testosterone.  To assess PH 

development, right ventricular systolic pressure (RVSP), pulmonary vascular 

remodelling and right ventricular hypertrophy (RVH) were measured in normoxic 

and hypoxic conditions.  Following 14 days exposure to chronic hypoxia, 

elevations in RVSP, vascular remodelling and RVH parameters were observed.  

Development of chronic hypoxia induced-PH was not attenuated by removal of 

endogenous testosterone by castration.  There were no changes in RVSP, 

pulmonary vascular remodelling or RVH in castrated mice compared to SHAM 

control mice in both normoxic and hypoxic conditions (Figure 5-1A-C).  

Muscularisation of pulmonary arteries assessed by alpha smooth muscle actin, 

also showed no effect of castration in normoxic or hypoxic conditions (Figure 5-

2). 

Similarly, hypoxia and castration had no effect on systemic arterial pressure 

(Figure 5-3), although a reduction in the heart rate in hypoxic SHAM mice was 

reported, compared to normoxic SHAM controls (Figure 5-4).  Absolute values for 

haemodynamic measurements are depicted in Table 5-1. 

5.2.2  Testosterone levels were halved following castration 

To confirm that castration in mice was effective in reducing testosterone levels, 

an ELISA (R&D Systems, UK) was performed in plasma samples to test remaining 

‘free’ circulating testosterone.  In normoxic SHAM mice we observed 

testosterone levels of 3.59 ± 0.07 ngml-1 which were reduced following 

castration to 1.32 ± 0.009 ngml-1.  In hypoxia we also observed reduced plasma 

testosterone levels following castration from 4.03 ± 0.09 ngml-1 in sham mice 

compared to 1.79 ± 0.02 ngml-1 in hypoxic castrated mice (Figure 5-5). 
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We also wished to determine if exposure to chronic hypoxia had an effect on the 

levels of plasma testosterone in vivo.  Interestingly, no differences were 

observed in testosterone levels between normoxic and hypoxic SHAM mice 

(Figure 5-5). 
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Figure 5-1: Castration has no effect on the development of chronic hypoxia induced- PAH in 
vivo. 
Right ventricular systolic pressure (RVSP; A); pulmonary vascular remodelling (B) and right 
ventricular hypertrophy (RVH; C) were unchanged following castration in both normoxia and 
hypoxia.  Data are expressed as mean ± SEM and analysed by a Two-way ANOVA followed by a 
Bonferroni’s post-hoc test.  Scatter plots were used to identify the spread of data.  **p<0.01, 
***p<0.001 vs. normoxic.  n=4-10 mice per group. 
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Figure 5-2: Castration has no effect on pulmonary vascular remodelling. 
Representative images are shown stained with alpha smooth muscle actin (brown).  Scale bar = 
20µm. 
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Figure 5-3: Castration has no effect on systemic arterial pressure in either normoxia or 
chronically hypoxic conditions.   
Mean systemic arterial pressure (mSAP) is unaffected by removal of testosterone in both normoxia 
and hypoxia.  Data is expressed as mean ± SEM and analysed by a Two-way ANOVA followed by 
a Bonferroni’s post-hoc test.  Scatter plots were used to identify the spread of data.  n=4-6 mice per 
group. 
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Figure 5-4: Castration has no effect on heart rate in either normoxia or chronically hypoxic 
conditions.   
Castration had no effect on heart rate (HR) however HR was significantly reduced in SHAM mice in 
hypoxia.  Data is expressed as mean ± SEM and analysed by a Two-way ANOVA followed by a 
Bonferroni’s post-hoc test.  Scatter plots were used to identify the spread of data.  *p<0.05 vs. 
normoxic.  n=7-10 mice per group. 
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Figure 5-5: Plasma testosterone levels are reduced in mice following castration. 
Plasma levels of testosterone in normoxic and hypoxic mice following castration.  Data is 
expressed as mean ± SEM and was analysed using a non-fit standard curve corrected for the 
dilution factor followed by an unpaired t-test.  #p<0.05 vs. SHAM.  n=6 samples per group. 
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5.2.3  Body Weight and Heart Weight are Decreased Following 

Castration 

Testosterone is an important androgen in regulation of growth and muscle mass 

(Humbert et.al. 2010a; Nunez et al. 1980) we therefore investigated the effect 

castration had on body weight in both normoxic and hypoxic conditions.  In 

normoxic mice no difference in body weight was observed in castrated mice 

compared to SHAM controls.  However, body weight was significantly decreased 

following castration in hypoxic mice compared to SHAM controls (Figure 5-6).  In 

addition, hypoxia had no effect on body weight compared to normoxic mice. 

Total heart weight was also investigated in SHAM controls and castrated mice in 

both normoxia and hypoxia.  Chronic hypoxia had no effect on the total heart 

weight in both SHAM and CAS mice.  Interestingly, in both normoxic and hypoxic 

conditions, castration resulted in a decrease in heart weight (Figure 5-7).  

5.2.4  Left Ventricular Weight in the Heart is Subject to Regulation 

by Testosterone 

Previous studies have identified an association between left ventricle (LV) mass 

and testosterone (Cavasin et al. 2003).  LV weight was significantly reduced in 

male mice that underwent castration in both normoxic and hypoxic conditions.  

Chronic hypoxic treatment had no effect on LV weight in SHAM control mice 

(Figure 5-8).  LV weight expressed as a ratio to body weight showed there were 

no effects of hypoxia on LV weight. 

On the other hand, right ventricle (RV) weight was increased in both SHAM and 

castrated mice following exposure to chronic hypoxia.  Castration in this 

instance had no effect on RV weight in either normoxia or hypoxia (Figure 5-9).  

RV weight expressed as a ratio to body weight was increased in hypoxia (5-10).  

Absolute values for heart weights and body weights are depicted in Table 5-2. 
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Figure 5-6: Body weight was decreased in hypoxic castrated male mice compared to SHAM 
control mice. 
Heart weight is reduced following castration in hypoxia although remains unchanged in normoxia.  
Data are expressed as mean ± SEM and analysed by a Two-way ANOVA followed by a 
Bonferroni’s post-hoc test.  Scatter plots were used to identify the spread of data. ###p<0.001 vs. 
SHAM.   n=9-10 mice per group. 
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Figure 5-7: Heart weight was decreased in castrated male mice compared to SHAM control 
mice. 
Heart weight is reduced following castration, however hypoxia has no effect on heart weight.  Data 
are expressed as mean ± SEM and analysed by a Two-way ANOVA followed by a Bonferroni’s 
post-hoc test.  Scatter plots were used to identify the spread of data.  #p<0.05; ###p<0.001 vs. 
SHAM.  n=10 mice per group. 
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Figure 5-8: Left ventricular weight was decreased in castrated male mice compared to sham 
mice. 
Left ventricular (LV) weight is reduced following castration, however hypoxia has no effect on LV 
weight.  Data are expressed as mean ± SEM and analysed by a Two-way ANOVA followed by a 
Bonferroni’s post-hoc test.  Scatter plots were used to identify the spread of data. ##p<0.01; 
###p<0.001 vs. SHAM.   n=9-10 mice per group. 
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Figure 5-9: Right ventricular weight is unaffected following castration. 
Castration has no effect on right ventricular (RV) weight in either normoxia or hypoxia, however RV 
weight is increased in both sham and castrated mice in hypoxia.  Data are expressed as mean ± 
SEM and analysed by a Two-way ANOVA followed by a Bonferroni’s post-hoc test.  Scatter plots 
were used to identify the spread of data.  *p<0.05 vs. normoxic.  n=9-10 mice per group. 
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Figure 5-10: LV and RV weight expressed as a ratio to body weight. 
(A) LV weight (mg)/body weight (g) ratio is unchanged in hypoxia whereas (B) RV weight 
(mg)/body weight (g) ratio is increased in hypoxia.  This indicates an increase in RV weight relative 
to the body weight in hypoxia.  Data are expressed as mean ± SEM and analysed by a Two-way 
ANOVA followed by a Bonferroni’s post-hoc test.  *p<0.05, **p<0.01 vs. normoxic.      
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Table 5-1: Haemodynamic parameters in SHAM and castrated mice exposed to chronic 
hypoxia. 
RVSP=right ventricular systolic pressure; MRVP=mean right ventricular pressure; RVDP=right 
ventricular diastolic pressure; sSAP=systolic systemic arterial pressure; mSAP=mean systemic 
arterial pressure; dSAP=diastolic systemic arterial pressure; HR=heart rate; SHAM=control; 
CAS=castration.  Data are expressed as ± SEM analysed by a Two-Way ANOVA followed by a 
Bonferroni’s post hoc test.*p<0.05, ***p<0.001 vs. normoxic. n=4-10 shown in table for individual 
parameters. 

Parameter 
Normoxic 

SHAM 
Normoxic 

CAS 
Hypoxic  
SHAM 

Hypoxic  
CAS 

     RVSP, mmHg 20.43 ± 1.05 22.18 ± 0.85 33.78 ± 0.63*** 30.22 ± 1.56*** 
n 8 7 10 8 
 

MRVP, mmHg 9.83 ± 0.53 12.26 ± 1.54 14.98 ± 0.39*** 14.79 ± 0.66 
n 8 7 10 8 
 

RVDP, mmHg 1.15 ± 0.56 1.91 ± 0.58 3.25 ± 0.38* 3.38 ± 0.32 
n 8 7 10 8 
 

sSAP, mmHg 103.4 ± 2.93 114.3 ± 3.85 102.4 ± 8.38 108.9 ± 5.52 
n 6 6 5 4 
 

mSAP, mmHg 88.14 ± 6.5 100.6 ± 2.29 81.9 ± 7.6 102.5 ± 7.16 
n 6 6 5 4 
 

dSAP, mmHg 77.51 ± 8.01 88.71 ± 3.52 77.93 ± 11.22 95.04 ± 9.09 
n 6 6 5 4 
 

HR, bpm 384.7 ± 15.6 415.6 ± 16.4 322.3 ± 17.7* 362.0 ± 18.7 
n 8 7 10 8 
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Table 5-2: Ventricle, heart and body weight in SHAM and castrated mice exposed to chronic 
hypoxia.  RV= right ventricle; LV+S= left ventricle plus septum; SHAM= control; CAS=castration.  
Data are expressed as ± SEM analysed by a Two-Way ANOVA followed by a Bonferroni’s post hoc 
test.  *p<0.05, ***p<0.001 vs. normoxic; #p<0.05, ##p<0.01, ###p<0.001 vs. SHAM control.  n=6-
10 and shown for individual parameters in table. 

 

Group RV (mg) LV + S (mg) RV/LV+S 
Heart 

weight (mg) 
Body 

weight (g) 

      Normoxic 

 
     SHAM 23.6 ± 1.0 111.3 ± 2.7 0.21 ± 0.007 134.9 ± 3.4 24.8 ± 0.34 

n 10 10 9 10 10 
 

CAS 24.2 ± 1.7 96.5 ± 3.1## 0.24 ± 0.01 120.7 ± 2.6# 23.5 ± 0.52 
n 10 10 8 10 10 

      Hypoxic 

 
     SHAM 33.1 ± 2.8* 106.9 ± 2.5 0.31 ± 0.02*** 140.0 ± 3.5 24.5 ± 0.2 

n 10 10 7 10 10 
 

CAS 33.5 ± 2.7* 84.5 ± 3.2### 0.32 ± 0.01*** 
118.0 ± 
4.1### 

20.8 ± 
0.4### 

n 10 10 6 10 10 
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5.2.5   Effect of Castration on Serotonin Induced Pulmonary 

Artery Vasoconstriction 

To determine if castration in male mice had any effect on hypoxic pulmonary 

vascular reactivity we assessed serotonin-induced vasoconstriction in pulmonary 

arteries.  Serotonin was studied as it is a potent pulmonary vasoconstrictor 

(MacLean & Dempsie 2010).  Pulmonary arteries from hypoxic SHAM mice had an 

increased vasoreactivity to serotonin compared to normoxic SHAM mice as 

evidenced by a significantly increased Emax.  In addition, area under the curve 

analysis further highlights the elevated response to serotonin in hypoxic SHAM 

mice compared to normoxic SHAM mice (Figure 5-11A).   

Serotonin induced-vasoconstriction was similar in both normoxic SHAM mice and 

normoxic castrated mice.  Similarly, vasoconstriction was unaffected in arteries 

from hypoxic SHAM mice compared to hypoxic castrated mice (Figure 5-11A).  

Hypoxic castrated mice however, do not exhibit a heightened hypoxic response 

compared to normoxic castrated mice as Emax and AUC (Figure 5-11B) are not 

increased in hypoxia.  Absolute values for pEC50 and Emax are shown in Table 5-3. 
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Figure 5-11: Serotonin- induced pulmonary arterial contraction is unaffected following 
castration in chronic hypoxic mice.   
(A) Cumulative concentration response curve to serotonin shows no effect of castration on vascular 
activity, however, the response to serotonin in SHAM mice is elevated in hypoxia compared to 
normoxic SHAM mice.  (B) Area under the curve (AUC) demonstrates an elevated response in 
hypoxic SHAM mice relative to normoxic SHAM mice.  Data are expressed as mean ± SEM and 
(A) analysed using a Two-Way ANOVA followed by a Bonferroni’s post hoc test and (B) by a one-
way ANOVA followed by a Bonferroni’s post hoc test.  ***p<0.001 vs. normoxic.   n=4-9. 
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Table 5-3: pEC50 and Emax values in male SHAM and castrated mice in normoxic and 
hypoxic conditions.  pEC50, half maximal effective dose; Emax, maximal effective dose; 
CAS=castrated.  Data are expressed as ± SEM and analysed by a One-Way ANOVA followed by a 
Bonferroni’s post hoc test. n=4-9 mice per group. 

Normoxic SHAM Normoxic CAS Hypoxic SHAM Hypoxic CAS 

pEC50 7.14 ± 0.2 7.12 ± 0.2 7.52 ± 0.1 7.89 ± 0.5 
 

Emax 111.9 ± 7.6 119.2 ± 7.25 210.6 ± 29.0*** 163.7 ± 14.3 

n 9 6 4 6 
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5.2.6 Effects of Testosterone and Dihydrotestosterone in Human 

Pulmonary Artery Smooth Muscle Cells 

To further evaluate possible influences of testosterone we investigated 

proliferative responses to testosterone and its primary metabolite, 

dihydrotestosterone (DHT) in human pulmonary artery smooth muscle cells 

(PASMCs).  Data on a role for androgens in pulmonary vasculature and 

specifically in remodelling of the vasculature is lacking.  The effects of these 

androgens were examined within physiological circulating levels (8-30 nmolL-1) 

(Smith et.al. 2008).  Proliferation in human PASMCs was assessed by [3H] 

thymidine incorporation.  At all concentrations investigated, testosterone had no 

effect on proliferation (Figure 5-12A).  On the other hand, DHT had a dose 

dependent effect on proliferation and at 3 nmolL-1 DHT stimulated PASMC 

proliferation as assessed by [3H] thymidine incorporation (Figure 5-12B). 

5.2.7  Androgen Receptor Expression in Chronic Hypoxic Mouse 

Lung 

Both testosterone and DHT mediate their effects through the androgen receptor 

(AR), although DHT is 10 times more potent at this receptor than testosterone 

itself (Liu et.al. 2003).  We therefore wished to investigate the mRNA transcript 

expression of AR in chronic hypoxic mouse pulmonary artery and determine if 

hypoxia has any effect on the expression of this receptor. 

Firstly, AR mRNA transcript was found to be expressed in the lungs of male mice.  

The levels of AR mRNA however, were unchanged between normoxic SHAM mice 

and hypoxic SHAM mice.  Expression of AR was also unchanged between SHAM 

and CAS mice both in normoxic and hypoxic conditions (Figure 5-13).   

5.2.8  5α-reductase Expression in Chronic Hypoxic Mouse Lung 

Testosterone is metabolised by the cytochrome P450 enzyme aromatase 

(CYP19A1) to estrogen.  Alternatively, some testosterone is also metabolised to 
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DHT by the enzyme 5α-reductase.  As our results demonstrated that DHT caused 

proliferation of human PASMCs, we wished to determine if expression levels of 

5α-reductase mRNA were altered during hypoxia-induced PH in mouse lung.  We 

examined 5α-reductase type 1 as this has previously been identified in the lung 

(Kimura et al. 2003). 

We found expression levels of SRD5A1, the gene encoding 5α-reductase type I 

were unchanged between normoxic SHAM mice and hypoxic SHAM mice.  

Additionally, CAS had no effect on the mRNA levels of SRD5A1 in both normoxia 

and hypoxia (Figure 5-14). 
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Figure 5-12: Dihydrotestosterone stimulates proliferation of control male human pulmonary 
artery smooth muscle cells. 
Testosterone has no effect on proliferation (A) whereas DHT at 3nmol/l increases proliferation (B).  
### p<0.01 vs. 0.2% FBS; **p<0.1 vs. 2.5% FBS.  Data are expressed as mean ± SEM and 
analysed by a One-way ANOVA followed by a Bonferroni’s post-hoc test.  n=3 controls performed 
in triplicate (Control 1-3; See Table 2-3 in Materials and Methods Section).  
DHT=dihydrotestosterone. 
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Figure 5-13: Androgen receptor expression is unchanged in hypoxia and following 
castration. 
Data are expressed as mean ± SEM and analysed by a one-way ANOVA followed by a Tukey’s 
post hoc test.  n=6 lungs/group.  AR= androgen receptor. 
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Figure 5-14: 5α-reductase type 1 expression is unchanged in hypoxia and following 
castration. 
Data are expressed as mean ± SEM and analysed by a one-way ANOVA followed by a Tukey’s 
post hoc test.  n=6 lungs/group.  SRD5A1= 5α-reductase type I. 

 



 
 

5.3 Discussion 

There is a paucity of data on male hormones in PAH development and the role 

they play in both physiology and pathophysiology in the lung.  Here we 

investigated the primary circulating hormone in males in vivo by removal of 

testosterone via surgical castration to address the question “does testosterone 

contribute to development and progression of PAH in males?”  We also wished to 

determine the influence of testosterone and its primary metabolite 

dihydrotestosterone (DHT), in translational studies in vitro in human PASMCs. 

In this study we show that development of chronic hypoxia induced-PH is not 

dependent on testosterone as there were no significant alterations in 

haemodynamic measurements in response to castration.  In line with this we 

observed no effect of hypoxia on plasma testosterone levels in our chronic 

hypoxic mouse model.  Muscularisation of pulmonary arteries was also 

unaffected by testosterone manipulation although we found that DHT induced a 

proliferative response in isolated PASMCs.  Our findings imply that testosterone 

may not be involved in regulation of pulmonary pressures although altered 

metabolism and increased DHT in PASMCs may contribute to the remodelling 

process. 

Recent epidemiological evidence from the REVEAL registry supports female 

gender as a risk factor in development of PAH with a female to male ratio of 

4.3:1 reported in the total PAH group (Walker et.al. 2006) and 4.1:1 within 

idiopathic PAH (IPAH) cases (Badesch et.al. 2010).  Estrogen has since been 

regarded as an environmental risk factor in pulmonary artery smooth muscle 

cells (PASMCs) contributing to proliferation and pulmonary arterial remodelling 

(White et.al. 2011).  Further, alterations in estrogen synthesis (Roberts et.al. 

2009b); Mair et al. unpublished), metabolism (Austin et.al. 2009; West et.al. 

2008; White et al. 2012c), and estrogen receptor expression (Rajkumar et.al. 

2010) all contribute to PAH development.  However, in the most established 

animal models, males exhibit more severe hypoxic and monocrotaline induced-

PH compared to females (McMurtry et.al. 1973; Rabinovitch et.al. 1981; Resta 

et.al. 2001).  In line with this, despite an increased prevalence of PAH in women 

than men, the estimated survival rate in men is consistently worse than in 
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women even with treatment intervention (Benza et.al. 2012; Humbert et.al. 

2010a).  The role of testosterone in PAH may therefore have been overlooked. 

Right ventricular (RV) dysfunction is the most important prognostic factor and 

indicator of survival in PAH (D'Alonzo et.al. 1991).  In males, poor survival rates 

are strongly associated with reduced RV function and cardiac output (Humbert 

et.al. 2010a; Kawut et.al. 2009).  Therefore a correlation between testosterone 

and the RV is proposed.  Higher testosterone levels have previously been 

associated with structural effects on the RV contributing to greater RV mass and 

larger RV volumes in men.  On the other hand, estrogen infers protective 

functional effects whereby estrogen levels strongly correlate with increased 

right ventricular ejection fraction (Ventetuolo et.al. 2011).  Indeed there is a 

lower risk of cardiovascular disease in ageing men with a high estrogen/low 

testosterone state (Arnlov et al. 2006; Tivesten et al. 2007).  In a recent study 

by Hemnes et al (2012) lower testosterone levels were reported to be protective 

in mice with RV load stress associated with pathologic hypertrophy (Hemnes 

et.al. 2012).  Additionally, changes in the morphological structure of the RV, 

including increased myocyte size and fibrosis, in relation to testosterone levels 

were found, although this had minimal effects on RV function (Hemnes et.al. 

2012).  Our data are congruent with this study showing that manipulation of 

testosterone via surgical castration had no effect on RVSP at baseline or 

following hypoxia.  However, surprisingly in our study there was no effect of 

castration observed on the right ventricle and both SHAM and castrated mice 

developed RVH to a similar degree.  Although this study does provide evidence 

that testosterone is involved in regulating myocyte size in the LV as castration 

results in decreased LV weight in both normoxic and hypoxic conditions.  This 

perhaps reflects a difference in the PAB model which induces more substantial 

pressure overload in the RV and RV dysfunction compared to the chronic hypoxic 

model.  RV dysfunction in chronic hypoxia may not be severe enough to evaluate 

the benefit of removing testosterone on the RV.  Together, this evidence 

suggests that the effects of testosterone are primarily involved in dysfunctional 

RV hypertrophy.  Following increased afterload inflicted by elevated pulmonary 

pressures during PAH, testosterone may be the underlying cause of the 

difference in survival rate between males and females.   
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The degree of RVH in rats exposed to high altitude is greater in castrated males 

treated with testosterone (Vander et.al. 1978) and the effects of testosterone 

and hypoxia appear additive.  Testosterone biosynthesis also seems to be 

activated by hypoxia (Hwang et al. 2009).  We therefore examined the plasma 

levels of testosterone in mice in the absence of, and following exposure to, 

chronic hypoxia.  No statistically significant difference in ‘free’-circulating 

testosterone levels were observed in normoxic or hypoxic male mice.  However, 

testosterone has a high affinity for sex hormone binding globulin (SHBG) and 

circulates mainly bound to SHBG, with only 1-2% unbound or ‘free’ to exert its 

biological activity (Dunn et.al. 1981).  In fact, as plasma testosterone levels 

increase and SHBG becomes saturated, albumin binding of testosterone 

increases.  The total testosterone unbound changes relatively little over 

physiological concentration ranges (Dunn et.al. 1981).  It may therefore be 

important to disseminate bound and unbound/’free’ testosterone to confirm 

whether the absence or alteration in testosterone levels between normoxia and 

hypoxia relates to SHBG levels.   

It could also be considered that local production of testosterone in either the 

lung or RV may confer a more important influence than total circulating 

testosterone.  Certainly, elevated testosterone in the human heart causes 

structural and morphological changes (Achar et.al. 2010) and local metabolism 

of testosterone is changed in the hypertrophic heart with increased DHT levels 

described in left ventricular hypertrophy (Thum & Borlak 2002).  Here we also 

show that local metabolism of testosterone is possible in the lung, as the lung 

expresses 5α-reductase.  mRNA levels of 5α-reductase are however, unchanged 

between normoxic and hypoxic mice.  Additionally, the presence of the AR also 

infers activity of either/both testosterone and DHT in the lung.  Although we 

show AR transcriptional expression is unchanged in hypoxia consistent with 

previous findings (Khandrika et al. 2009), others have reported increased 

androgen ligand binding to AR in hypoxia (Mitani et al. 2011; Park et al. 2012).  

Together these findings may infer increased activity of testosterone in 

established hypoxic PH.  Further investigation of the protein levels of both AR 

and 5α-reductase are required to confirm these observations. 

In contrast to the detrimental effects of testosterone reported in the heart, 

testosterone-induced vasodilation has been identified in numerous vascular 
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beds, including isolated rabbit coronary arteries and aorta (Yue et.al. 1995), rat 

pulmonary arteries (English et.al. 2001; Jones et.al. 2002), and more recently 

isolated human pulmonary and mesenteric arteries (Jones et al. 2003).  It is in 

fact, a more potent vasodilator than estrogen in pulmonary vasculature (English 

et.al. 2001) and this effect is independent of gender (Rowell et.al. 2009; Smith 

et.al. 2008).  Importantly, the direct vasodilatory action of testosterone is 

accepted to be a rapid non-genomic effect independent of AR (Jones et.al. 

2002; Yue et.al. 1995).  The mechanism is believed to be through inhibition of 

Ca2+ entry via voltage gated calcium channels (Hall et.al. 2006; Scragg et.al. 

2004) and independent of endothelium (Perusquia et al. 1996; Yue et.al. 1995) 

and nitric oxide release (Honda et al. 1999).  However, these studies are carried 

out in the absence of hypoxia and assess vasodilation in pre-constricted isolated 

vessels.  Therefore, we wished to investigate the effects of castration on 

pulmonary vascular reactivity and analyse the hypoxic pulmonary 

vasoconstrictive response.  We examined the response of isolated pulmonary 

arteries to serotonin, a potent pulmonary vasoconstrictor (MacLean & Dempsie 

2010).  In normoxic conditions we observed no effect of castration on serotonin-

induced vasoconstriction.  SHAM mice exhibited an elevated vasoconstrictive 

response to serotonin in hypoxia, however, this response was absent in hypoxic 

castrated mice.  This suggests that hypoxic pulmonary vasoconstriction in males 

may involve an interaction between serotonin and testosterone.  Indeed, 

testosterone has been shown to increase levels of 5-HT2A receptor in male rat 

brain, although this is likely due to its enzymatic conversion to estrogen via 

aromatase (Sumner & Fink 1998).  5-HT2A is the predominant receptor involved in 

serotonin-induced pulmonary vasoconstriction in hypoxia in rodents (MacLean & 

Dempsie 2010).  Thus, reduced testosterone in castrated mice may result in 

lower levels of 5-HT2A in pulmonary arteries and hence attenuate the hypoxic 

vasoconstrictive response to serotonin.   

These findings suggest that although testosterone may infer protective vascular 

effects at baseline, providing rationale for a lower incidence of PAH in men, as 

PH progresses and the environment becomes more hypoxic due to remodelling, 

protective effects of testosterone may be compromised.  Additionally, disease 

progression in men may become more exaggerated due to negative effects of 

testosterone on the right ventricle, leading to right ventricular failure.  Hence, 
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multiple actions of testosterone in the lung and RV, and in normal and diseased 

states complicate the gender paradox in PAH. 

One limitation of this study is the high remaining circulating testosterone in the 

plasma.  This could be due to length of time after surgery in which 

haemodynamic measurements were assessed which may not be adequate to 

completely deplete testosterone levels.  Alternatively, the high testosterone 

could be a result of conversion of DHEA released from the adrenal glands to 

testosterone.  To eliminate these complications in future studies, the 

testosterone levels should be monitored throughout the study to ensure that 

haemodynamic parameters are measured when testosterone levels are low.    

Our results indicate that elevated pulmonary pressures and pulmonary arterial 

muscularisation develop independent of testosterone in chronic hypoxia induced-

PH.  In hypoxic PH, testosterone levels are unchanged, however we suggest 

altered testosterone metabolism in the lung and pulmonary arteries may 

promote enhanced PASMC proliferation via DHT, leading to remodelling as PH 

progresses.  In conclusion we suggest that testosterone may not be involved in 

initiating disease development but rather facilitates disease progression in 

established PAH. 



 

Chapter 6. 

General Discussion 
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6  

6.0 General Discussion 

The impact of sex hormones in the development of PAH is complex and 

incompletely understood owing to the ‘estrogen paradox’.  Both estrogen and 

androgens are vasoactive in the pulmonary vasculature and PASMCs.  The effects 

of estrogen are mediated either through conversion to estrogen metabolites, or 

directly via two classical estrogen receptors, ERα and ERβ.  In the lung, ERα and 

ERβ are expressed in PAECs (Venkov et al. 1996), PASMCs (Karas et al. 1994) and 

the airway (Hamidi et al. 2011).  In general, however, the role and expression of 

ERα and ERβ in physiology and pathophysiology of the pulmonary vasculature is 

not as well described as in the systemic vasculature. 

Increased female susceptibility in human PAH is well described.  Recent 

epidemiological studies highlight this gender bias and the Registry to Evaluate 

Early and Long-term PAH Disease Management (REVEAL) reports a strong gender 

bias whereby 79.5% of prevalent adult PAH patients were female.  This female 

predominance was observed across the majority of PAH subtypes (Badesch et.al. 

2010; Benza et.al. 2012).  In addition, incident cases of PAH in UK and Ireland 

support a female susceptibility with 69.9% PAH cases reported in females (Ling 

et.al. 2012).  Together, this emerging evidence with regard to a gender bias has 

implicated an influence of sex hormones on the pulmonary vasculature and right 

heart.  In particular, estrogen and estrogen metabolites have been attributed to 

PAH development and progression.  Indeed, polymorphisms in aromatase, the 

estrogen synthesising enzyme, have been linked to elevated estrogen levels in 

the lungs of female patients with portopulmonary hypertension (Roberts et.al. 

2009b).  Moreover, altered estrogen metabolism arising from polymorphisms in 

the estrogen metabolising enzyme, CYP1B1, have also been associated with PAH 

development in women (West et.al. 2008).  Currently, no animal model has 

recapitulated this female susceptibility.  Additionally, exogenous administration 

of estrogen appears protective in male rodents (Lahm et.al. 2012a; Resta et.al. 

2001) and paradoxically, male rodents exhibit a susceptibility to both hypoxic- 

and moncrotaline-induced PH and exhibit more severe PH compared to females 
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(Rabinovitch et.al. 1981).  Male rodents are therefore more commonly utilised in 

PAH research although this has offered limited insight into the female gender 

bias observed in human PAH.  For this reason, we investigated the effects of 

endogenous estrogen and estrogen antagonism in both males and females.  We 

hypothesised that there may be a disparity in the effects of an ERα antagonist 

between males and females. 

Here, we provide evidence that development of PAH is ERα dependent in 

females only (Chapter 3).  Dysregulation of the BMPR2 pathway via ERα appears 

central to this gender specific effect.  We observed that expression of ERα 

transcript and protein was increased in PASMCs from female PAH patients 

compared to normal female controls whilst ERβ was down-regulated in PASMCs 

from female PAH patients.  This is consistent with gene expression data that 

implicates up-regulation of ESR1 in PAH pathogenesis (Rajkumar et.al. 2010) and 

polymorphisms in ESR1 associated with higher expression and an increased risk of 

developing portopulmonary hypertension (Roberts et.al. 2009b).  Uniquely we 

report that there are higher levels of ERα in female PAH PASMCs compared with 

male PASMCs from PAH patients.  We suggest it is likely then, that the ERα 

pathway contributes more significantly to pathophysiology of the female lung 

during PAH compared to the male lung.  To translate functional and clinical 

relevance to our findings we investigated the effects of ER agonists and 

antagonists in vitro in isolated human PASMCs.  Consistent with previous findings 

(White et.al. 2011; White et.al. 2012c) we demonstrate that estrogen stimulates 

proliferation of PASMCs at physiological concentrations.  Excessive PASMC 

proliferation is a main component of pulmonary vascular remodelling and 

lesions, and is currently considered irreversible in PAH (Humbert et.al. 2004).  

Indeed we show for the first time that estrogen can induce proliferation in 

PASMCs via ERα activation, whilst an ERβ agonist and antagonist have no effect 

on proliferation of PASMCs.  Moreover, we determine the pro-proliferative 

effects of estrogen and the ERα agonist, PPT, are dependent on activation of 

downstream PI3K/Akt and ERK MAPK signalling (Figure 6-1).  These pathways 

have both been implicated previously in cardiac hypertrophy and pulmonary 

vascular remodelling in right heart failure during PAH (Nadadur et.al. 2012; Zhou 

et.al. 2011).  Pro-proliferative effects of estrogen in PASMCs may therefore be 

essential to the observed female susceptibility in PAH by initiating vascular 
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remodelling involving activation of ERs and transcription of proliferative genes, 

for example cyclin D1 and c-fos.  Of further interest, evaluation of the effect of 

estrogen and ERs in PAECs involved in development of plexiform lesions observed 

in severe PAH may offer some insight into PAH progression in females. 

We investigated ERα in vivo in two models of PAH.  In chronic hypoxia-induced 

PH, the ERα antagonist, MPP attenuated the development of PH in female mice, 

but not in males.  Given the elevated expression of ERα we observed in 

pulmonary arteries from female mice in hypoxia we propose that endogenous 

estrogen activates ERα to facilitate the development of PH in females.  On the 

other hand, ERα expression was unchanged in the pulmonary arteries of hypoxic 

male mice suggesting that ERα may not be involved in pathogenesis of PH in 

males in chronic hypoxia.  Furthermore, we examined the effects of MPP in 

SERT+ mice which demonstrate a female susceptibility dependent on circulating 

estrogen and serotonin.  We show that MPP reversed PH in SERT+ females under 

both normoxic and hypoxic conditions.  Here, we suggest a pivotal role for ERα 

in the causative effects of endogenous estrogen in the development of PH 

independent of hypoxia.  Interactions between the estrogen and the serotonin 

system have been described previously whereby estrogen can up-regulate TPH-1, 

SERT and 5-HT1B (White et.al. 2011).  We now show that serotonin can also up-

regulate the expression of ERα and therefore we propose that synergistically 

these mediators may contribute to the pathogenesis of PAH in females.  In 

addition, we identify an important interaction between ERα and BMPR2 in these 

in vivo models specific to females.  Dysfunctional BMPR2 signalling plays a 

pivotal role in aberrant smooth muscle growth and endothelial cell proliferation 

and apoptosis in PAH.  Loss of BMPR2 function mediates proliferation by reducing 

cell cycle inhibitors, Id1 and Id3 in PASMCs (Yang et.al. 2008; Yang et.al. 2005) 

and is responsible for ~80% of HPAH cases (Machado et.al. 2009).  In the present 

study, we demonstrate decreased BMPR2 expression in the lung (Figure 6-1), 

associated with loss of downstream Smad 1 and Id signalling, following hypoxia 

and in SERT+ female mice.  Interestingly, this loss of expression was restored in 

female mice treated with MPP although male mice remained unaffected.  This is 

consistent with a previous report in which a highly conserved functional estrogen 

response element with a co-repressor function was observed in the BMPR2 

promoter whereby estrogen exposure resulted in suppression of the BMPR2 signal 
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through ERα (Austin et.al. 2009).  In conclusion of our findings, we describe a 

mechanism of female susceptibility in PAH which combines elevated endogenous 

estrogen levels in females during PAH, with increased ERα expression and 

defective signalling, resulting in dysfunctional BMPR2 expression and function 

(Figure 6-1).  Hence in females we propose that the selective effects of the ERα 

antagonist are likely through restoration of the dysfunctional BMPR2 signalling 

axis.  Future studies investigating ERα should examine if the effects of estrogen 

are via membrane bound ERα or an effect on the transcription of genes in the 

nucleus.  In addition, more studies are required to highlight the interactions 

between ERα and the serotonin system, for example, SERT, 5-HT receptors and 

THP-1.  

Given the diverse effects of estrogen on the pulmonary vasculature, we also 

wished to investigate the novel G-protein coupled estrogen receptor, GPER 

which mediates rapid, non-genomic effects of estrogen (Chapter 4).  The 

influence of GPER in pulmonary vasculature and during PAH development and 

progression is unknown.  To our knowledge, this is the first study to determine 

immunolocalisation of GPER to smooth muscle cells in human non-PAH control 

and PAH patient lung.  Immunoblotting and qRT-PCR revealed that expression of 

GPER was however unchanged between female non-PAH control and PAH 

patients.  In contrast, protein expression of GPER was significantly reduced in 

pulmonary arteries from hypoxic female mice relative to controls.  In response 

to hypoxia in cancer cells and cardiomyocytes, it has previously been shown that 

GPER expression is increased as an adaptive response to stressful 

microenvironments (Recchia et.al. 2011).  Here, our results may differ due to 

tissue and species differences.  Regardless, the relevance of this observation of 

a down-regulation of GPER expression to the pathogenesis of experimental PH is 

unclear; therefore we characterised GPER in vivo using GPER-/- mice.  Due to 

age-dependent development of systemic arterial hypertension in female GPER-/- 

mice we investigated chronic hypoxia induced-PH in both male and female aged 

2-3 months (Martensson et.al. 2009).  In both normoxic conditions in the absence 

of PH, and following development of chronic hypoxic-PH we observed no effect 

of GPER deletion in male mice.  In female mice, hypoxic GPER-/- mice exhibited 

exaggerated pulmonary vascular remodelling compared to wildtype hypoxic mice 

although in the absence of any elevations in RVSP and RVH.  We therefore 
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suggest that activation of GPER may mediate a protective effect in hypoxia, 

although the effect is not sufficient enough to reverse completely the hypoxic 

PH phenotype.  However, the implications of this remains unresolved as the 

GPER selective agonist, G1 had no effect on PASMC proliferation.  Moreover, the 

G15, a GPER selective antagonist, did not influence estrogen induced 

proliferation.  In conclusion, our data suggests that activation of GPER has a 

limited effect on PH pathology.  However, further characterisation of GPER is 

required to decipher vasoactive properties in the pulmonary vasculature.  

Certainly, G1 has been shown to lower blood pressure in isolated human aorta 

(Haas et al, 2009) and reduce inflammation in the heart during ischemia-

reperfusion (Deschamps & Murphy 2009). 

Despite clear epidemiologic evidence demonstrating a female predominance in 

the development of multiple forms of PAH, PAH is often more severe in men and 

they show worse survival rates compared to women (Shapiro et.al. 2012).  Here 

we investigated testosterone, the main circulating sex hormone in men, to 

address if testosterone is the key to the gender paradox observed in 

translational and experimental PH (Chapter 5).  Males are demonstrated to 

exhibit more severe hypoxia induced-PH compared to females, however in this 

study we show that elevated RVSP, pulmonary vascular remodelling and RVH in 

hypoxia are not dependent on testosterone.  Our data are congruent with a 

recent study showing that manipulation of testosterone via surgical castration 

has no effect on pulmonary haemodynamics (Hemnes et.al. 2012).  In addition, 

we show that plasma testosterone levels are unaffected in hypoxia.  It would be 

of interest however, to investigate local testosterone production in the lung and 

RV as poor survival rates in males are strongly associated with reduced RV 

function and cardiac output (Humbert et.al. 2010a; Kawut et.al. 2009).  For 

example, high testosterone levels have previously been associated with 

structural effects on the RV contributing to greater RV mass and larger RV 

volumes in men (Ventetuolo et.al. 2011).  Indeed, testosterone has recently 

been shown to increase RV myocyte size and fibrosis in male mice with RV load 

stress (Hemnes et.al. 2012).  Moreover, altered testosterone metabolism and 

elevated DHT levels, the primary metabolite of testosterone, are described in 

left ventricular hypertrophy (Thum & Borlak 2002).  Here, we also demonstrate 

that DHT stimulates proliferation of human PASMCs.  Although we determined 
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that expression of 5α-reductase, the testosterone metabolising enzyme, and 

androgen receptor are unchanged in whole lung from male mice, expression in 

the RV may be of more importance.  Certainly RV dysfunction is the most 

important prognostic factor and indicator of survival in PAH (D'Alonzo et.al. 

1991).   

From this evidence we suggest that the absence of testosterone in females is 

therefore unlikely to drive the female predominance.  We propose that 

testosterone may not be involved in protection against PAH nor is it involved in 

initiating disease development in males.  Instead we suggest that altered 

testosterone levels and/or metabolism of testosterone facilitate disease 

progression in established PAH by multiple actions on RV structure and function. 

In summary, through a translational approach we have identified key concepts 

that have improved our understanding of the female susceptibility in PAH.  This 

includes the up-regulation of ERα in PASMCs which results in dysfunctional 

BMPR2 signalling specific to females.  For future perspective, the estrogen 

pathway and particularly targeting the estrogen receptors provides a novel 

therapeutic strategy and hold promise for treating PAH in females. 

Future Perspectives 

Therapeutic targeting of the estrogen pathway is a promising candidate for PAH 

therapy.  Moreover, this provides the potential for a personalised medicine 

approach to treatment with regards to women who exhibit estrogen responsive 

PAH.  For example, SERMs are currently a successful treatment in women with 

ER positive breast cancer by preventing proliferation of breast cancer cells (Park 

& Jordan 2002; Swaby et al. 2007).  Indeed, raloxifene has already been 

implicated as a beneficial treatment in monocroaline-induced PH with effects on 

vascular and cardiac remodelling (Nishida et.al. 2009).  Future studies are 

required to evaluate the influence of raloxifene and tamoxifen in isolated human 

PASMCs and in additional experimental PH models which better recapitulate the 

human phenotype such as the Sugen-hypoxic model. 

The value of understanding the downstream pathways activated by ERs during 

PAH will also highlight further routes of interest for therapy.  In particular, pro-



 

264 
 

proliferative genes activated by genomic ERs may offer novel targets which 

could be crucial in attenuating or reversing, the pulmonary vascular remodelling 

process which leads to these plexiform lesions, and which obliterate arteries in 

severe/end-stage PAH. 

Targeting the estrogen pathway, estrogens biosynthesis, metabolism or 

activation of ERs, will provide novel therapeutic targets in treatment of PAH 

treating females selectively.  Indeed, antioxidant therapy appears more 

beneficial in treatment of coronary artery disease in females compared to men.  

Gender specific treatments may therefore be a novel approach in treating PAH. 
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Figure 6-1: Key findings and conclusions of estrogen signalling via ERα in PAH (Chapter 3). 
In Chapter 3 of this study we demonstrate (1) ERα is elevated in female human PASMCs, possibly via 5-HT; (2) expression of BMPR2 is reduced in lungs via ERα, and 
(3) in isolated female human PASMCs, estrogen, via ERα, activates pro-proliferative kinases in PASMCs.  It is unclear from this study if the effects on ERK/MAPK and 
BMPR2 are via membrane bound ERα or via an effect on transcription in the nucleus.  Overall, we suggest these mechanisms contribute to SMC proliferation and 
pulmonary vascular remodeling in vivo.  Furthermore, an ERα antagonist, MPP, effectively attenuates development of PH in chronic hypoxic PH and PH in SERT

+ 

female mice. 
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