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Abstract 

African trypanosomiasis is a neglected tropical disease affecting both animals 

and humans in sub-Saharan Africa.  The disease is caused bythe protozoan 

parasite Trypanosoma brucei, which is transmitted by the tsetse fly (Glossina 

sp.) vector.  In animals, infection leads to severe muscle atrophy and anaemia 

resulting in significant production and economic losses.  In humans, infection 

leads to both neurological and cardiac dysfunction and can be fatal if untreated.  

While the neurological-related pathogenesis is well studied, and indeed is 

responsible for the colloquial name “Sleeping Sickness”, the cardiac 

pathogenesis remains unknown.  Previous studies interpreted cardiac dysfunction 

as being due to immune/inflammatory responses.  However, recent work 

examining the parasite’s interaction with the blood brain barrier, the traversal 

of which is important for development of neurological signs, has identified direct 

immune/inflammatory independent mechanisms involving calcium (Ca2+) 

signalling.  The current study exposed isolated ventricular cardiomyocytes and 

adult rat hearts to T. brucei to test whether trypanosomes can alter Ca2+ 

signalling and cardiac function independent of a systemic immune/inflammatory 

response. 

Using a high-throughput method of observing spontaneous contractile activity in 

isolated cardiomyocytes, we were able to determine that the presence of T. b. 

brucei parasites resulted in more cardiomyocytes exhibiting spontaneous 

contractile events.  Moreover, when the parasites were removed by careful 

centrifugation, the culture supernatant had the same effect.  Confocal Ca2+ 

imaging identified an increase in the frequency of arrhythmogenic spontaneous 

diastolic sarcoplasmic reticulum (SR)-mediated Ca2+ release (Ca2+ waves).  

Studies utilising specific inhibitors, recombinant protein and RNA interference all 

demonstrated that this altered SR function was due to cathepsin-L; a cysteine 

protease produced by T. brucei (TbCatL).  Experiments utilising a Langendorff 

perfusion method revealed that trypanosome culture supernatant could induce 

ventricular premature contractions in 50% of a cohort of ex vivo whole rat 

hearts. 

Mechanistic experiments were performed on single isolated cardiomyocytes 

stimulated at 1.0 Hz and perfused first with control media followed by 
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trypanosome culture supernatant.  The protocol utilised triple caffeine 

applications: (i) prior to stimulation to empty the SR of Ca2+, (ii) after perfusion 

with control media and after supernatant to determine the SR Ca2+ content and 

sarcolemmal extrusion of Ca2+ following each solution.  Results were normalised 

to a parallel set of cardiomyocytes perfused with control media only as time 

controls.  These experiments revealed a 10-15% increase in SR Ca2+ reuptake by 

the SR Ca2+ ATPase (SERCA) but a reduced SR Ca2+ content suggesting a 

concomitant increase in SR-mediated Ca2+ leak.  This conclusion was supported 

by the data demonstrating that TbCatL increased Ca2+ wave frequency.  These 

effects were abolished by autocamtide-2-related inhibitory peptide (AIP), 

highlighting a role for Ca2+/calmodulin kinase II (CaMKII) in the TbCatL action on 

SR function.  When cytosolic diastolic Ca2+ was measured in cardiomyocytes with 

SR function inhibited by ryanodine and thapsigargin, trypanosome supernatant 

prevented a decline in cytosolic diastolic Ca2+ that was observed in control 

media.  AIP did not abolish this effect suggesting that TbCatL may raise diastolic 

Ca2+ that could activate CaMKII leading to the observed effects. 

These data demonstrated for the first time that African trypanosomes alter 

cardiac function independent of a systemic immune response via a mechanism 

involving extracellular cathepsin-L-mediated changes in SR function. 

Utilising the same (culture adapted and monomorphic) strain of T. brucei as the 

in vitro experiments, Lister 427, in a rat model of infection we found no 

significant increase in the arrhythmia frequency as measured by a 15 min 

electrocardiogram (ECG).  However, when hearts were removed and Langendorff 

perfused with the addition of isoproterenol the arrhythmia frequency was 

increased.  When the pleomorphic strain T. b. brucei TREU 927 was used in rats 

with continuous ECG recording from biopotential telemetry there was a 

significant increase in arrhythmia frequency in the infected rats.  When hearts 

were removed and Langendorff perfused with isoproterenol there was a similar 

increase in arrhythmia frequency as observed with the 427 infected hearts.  This 

suggests that a cardiac dysfunction phenotype is present during trypanosome 

infections in an animal model providing the basis for future therapeutic work. 

The relationship between arrhythmogenic SR-mediated Ca2+ release and TbCatL 

has parallels with endogenous extracellular cathepsin-L (CatL).  It has been 
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demonstrated that a basal level of CatL is necessary for normal cardiac function.  

However, in coronary heart disease (CHD) CatL levels are increased in the serum 

of patients correlating with the severity of disease.  The effects of raised CatL 

on cardiac function remain unknown.  Work in our lab has identified that ex vivo 

Langendorff perfused hearts that have undergone a 30 min period of ischaemia 

followed by 90 min reperfusion show greater CatL activity in coronary effluent 

than hearts perfused without ischaemia.  In addition, preliminary data collected 

in this thesis suggest that human patients that have suffered a myocardial 

infarction and have undergone reperfusion via percutaneous coronary 

intervention (PCI) showed higher CatL levels in post-reperfusion serum samples 

compared to pre-reperfusion serum.  When severity of heart function in patients 

(measured as left ventricular volume at systole and diastole, ejection fraction, 

infarct size and area at risk) was assessed by magnetic resonance imaging (MRI) 

in a preliminary study, there was a positive correlation with serum CatL levels.  

Using recombinant CatL on isolated rat ventricular cardiomyocytes it was found 

that the SR Ca2+ content and the stimulated Ca2+ transient were significantly 

reduced in a concentration dependent manner.  This suggests a CatL dependent 

SR dysfunction.  This conclusion was supported by an increase in Ca2+ wave 

frequency measured by confocal Ca2+ imaging in isolated cardiomyocytes. 

The work in this thesis demonstrates a role for both mammalian-derived and 

exogenous extracellular cathepsin-L proteases in arrhythmogenic SR-mediated 

Ca2+ release.    
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CO2 Carbon dioxide 
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ELISA Enzyme-linked immunosorbent assay 
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GPCR G-protein coupled receptor 
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HCO3
- Bicarbonate 

HEPES 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid 
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HMI-9 Trypanosome growth media 

hr Hour, time unit 

Hz Hertz, frequency unit 

I/R Ischaemia/reperfusion 

IC50 Concentration of compound at which there is 50% inhibition of 

target 

ICa Calcium ion current 

ICa L L-type calcium ion current 

ICa T T-type calcium ion current 

If Funny current 

IFNγ Interferon gamma 

IgG Immunoglobulin G 

IK1 Inwardly rectifying potassium ion current 

IKr Rapid outwardly rectifying potassium ion current 
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IKto Transient outward potassium ion current  
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IL-1 Interleukin 1 

IL-10 Interleukin 10 
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INa Sodium ion current 

INa/Ca Sodium/calcium ion exchanger current 

IP3 Inositol triphosphate 

IP3R Inositol triphosphate receptor 

ISO Isoproterenol 

JTV519 1,4-benzothiazepine based calcium ion channel blocking drug 

K+ Potassium ion 

K11777 N-methyl-piperazine-Phe-homoPhe-vinylsulfone-phenyl 

(Cathepsin L inhibitor) 

KCl Potassium chloride 

Kd Dissociation constant 

kDa Kilo Dalton, protein mass 

Km Affinity constant 

KSERCA SERCA activity 

L Litre, volume unit 

L/L0 Length over minimum length 
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λ Wavelength 

LAMP Loop-mediated isothermal amplification of DNA 

LASER Light amplification by stimulated emission radiation 

Leu Leucine (amino acid) 

LSCM LASER scanning confocal microscopy 

LTCC L-type calcium channel 

M Molar, concentration unit 

MES 2-(N-morpholino)ethanesulfonic acid 

MgCl2.6H2O Magnesium chloride hexahydrate 
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MI Myocardial infarction 
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min Minute, time unit 
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MRI Magnetic resonance imaging 

mRNA Messenger ribonucleic acid 
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NA Numerical aperture, lens curvature unit 

Na+ Sodium ion 

NaCl Sodium chloride 
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NaHCO3 Sodium bicarbonate 

NaOAc Sodium acetate 

NaOH Sodium hydroxide 

NCX Sodium/calcium ion exchanger 

NECT Nifurtimox-eflornithine combination therapy 

nM Nanomolar, concentration unit 

NO Nitric oxide 

NTC No template control 
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O2 Oxygen gas 

°C Degrees Celsius, temperature unit 

P Probability 
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PCI Percutaneous coronary intervention 

PCR Polymerase chain reaction 
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PKC Protein kinase C 
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Po Open probability 
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qRT-PCR Quantitative real-time polymerase chain reaction 

QT Time interval from beginning of Q to end of T wave on ECG 
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wave on ECG 

QT90 Time interval from beginning of Q to 90% return to baseline of T 

wave on ECG 

QTc Time interval from beginning of Q to end of T wave on ECG 

corrected for heart rate 

RCF Relative centrifugal force 

RISK Reperfusion injury salvage kinase 

Rmax Fluorescence ratio at saturatingly high [Ca2+]i 

rmCatL Recombinant mouse cathepsin-L 

Rmin Fluorescence ratio at minimal [Ca2+]i 

Rn Normalised fluorescence of reporter dye (quantitative real-time 

polymerase chain reaction) 

RNA Ribonucleic acid 

RNAi Ribonucleic acid interference 

RNS Reactive nitrogen species 

ROS Reactive oxygen species 

RQ Relative quantity 

RT Reverse transcriptase 

RyR Ryanodine receptor 

s Second, time unit 

SA Sino-atrial 

SAPO Specified Animal Pathogens (Scotland) Order 

SEM Standard error of the mean 

Ser Serine (amino acid) 

SERCA Sarco (endo)plasmic reticulum calcium ion ATPase channel 

siRNA Small interfering ribonucleic acid 

SN Supernatant 

SR Sarcoplasmic reticulum 

ssRNA Single stranded ribonucleic acid 



25 
 
Stage I Haemolymphatic stage of trypanosomiasis 

Stage II Meningoencephalitic stage of trypanosomiasis 

STEMI ST elevated myocardial infarction 

τ Constant of decay (time taken to decay to 1/e) 

T. b. brucei 

GVR35 

Strain of Trypanosoma brucei brucei 

T. b. brucei 

Lister 427 

Strain of Trypanosoma brucei brucei 

T. b. brucei 

TREU 927 

Strain of Trypanosoma brucei brucei 

T. b. 

rhodesiense 

IL1825 

Strain of Trypanosoma brucei rhodesiense 

TbCatB Trypanosoma brucei derived cathepsin B 

TbCatL Trypanosoma brucei derived cathepsin L 

TbCatL Trypanosoma brucei derived cathepsin L gene 

TcoCatB Trypanosoma congolense derived cathepsin B 

TcoCatL Trypanosoma congolense derived cathepsin L 

TcrCatB Trypanosoma cruzi derived cathepsin B 

TcrCatL Trypanosoma cruzi derived cathepsin L 

Θ Half the angle of the collection cone of a lens 

Thr Threonine (amino acid) 

TJ Tight junction 

TLF Trypanosome lytic factor 

Tm Melting point – temperature at which dsDNA denatures into two 

separate strands of DNA 

TnC Troponin C 

TNFα Tumour necrosis factor α 

TnI Troponin I 

TRIS tris(hydroxymethyl)aminomethane 

TSF Trypomastigote soluble fraction 

T-tubule Transverse tubule 

µL Microlitre, volume unit 

µM Micromolar, concentration unit 

µm Micrometre, length unit 

VF Ventricular fibrillation 

VPC Ventricular premature complex 

VSG Variable surface glycoprotein 

VT Ventricular tachycardia 

WHO World health organisation 

WO Washout 
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1.1 Introduction 

In a multicellular organism it is important to deliver oxygen and nutrients to all 

the cells of all the tissues and organs of the organism that cannot be achieved by 

diffusion alone.  The nutrient rich media or blood must be delivered somehow to 

an organism’s tissues.  The solution of millions of years of evolution is a 

muscular pump pushing blood through a circulatory system.  In mammals this is 

achieved by the four-chambered muscular heart.  The heart is a syncytium of 

contractile cells that under normal circumstances work together to contract 

synchronously to deliver the vital nutrient and oxygen rich blood to the tissues.  

In order for this to happen a series of events occur from electrical depolarisation 

of pacing cells spreading to the contractile cells resulting in mechanical work 

and the heart beat.  This is achieved by a secondary messenger of calcium ions 

(Ca2+).  A series of channels and pumps within the contractile cells or 

cardiomyocytes enables the continual cycling of Ca2+ from the extracellular 

space into the cardiomyocyte, induction of Ca2+ release from intracellular 

stores, activation of the contractile myofilaments within the cardiomyocyte that 

constitutes the shortening of the cell or systole.  The Ca2+ is then recycled in the 

same quantities in an elegant balance of fluxes back into the intracellular store 

and the extracellular space by channels and pumps constituting the relaxation of 

the cell or diastole.  This cycle must continue without fatigue for the duration of 

the organism’s life with the ability to adapt to the ever changing environment an 

animal encounters from rest and relaxation to emergency activity when chasing 

prey or escaping predators. 

When this delicate balance of Ca2+ fluxes goes astray, the result can be 

disastrous with dysynchrony of the heart beat as arrhythmias and failure of 

contraction.  This leads to failure of the pump and insufficient delivery of blood 

to the tissues.  There are many known causes of disruption to the Ca2+ flux 

balance of the cardiomyocyte and heart as a whole but equally many unknown 

and in hitherto unexplored potential sources of Ca2+ signalling dysfunction.  One 

such unexplored source is African trypanosomiasis which will be investigated in 

this thesis.  This work has also led to interesting parallels in known causes of 

Ca2+ signalling dysfunction such as ischaemia/reperfusion (I/R) injury, which will 

also be explored.  This chapter will discuss the literature in the context of 

African trypanosomiasis, and also with respect to Ca2+ handling dynamics in I/R 
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injury and heart failure.  The following chapters will investigate the role of a 

potential common factor – the cysteine protease cathepsin-L. 

1.2 What is Trypanosomiasis? 

Trypanosomiasis is a vector-borne parasitic disease caused by kinetoplastid 

protozoa of the genus Trypanosoma spp.  There are multiple trypanosome 

species causing different diseases in different hosts transmitted by insect 

vectors throughout the tropical world.  In sub-Saharan Africa, multiple species of 

trypanosome cause disease in animals, (Animal African trypanosomiasis (AAT); 

‘Nagana’) and humans (Human African trypanosomiasis (HAT); ‘Sleeping 

Sickness’).  HAT is caused by two subspecies of T. brucei transmitted by tsetse 

flies of the genus Glossina.  Specifically, they are T. b. rhodesiense causing East 

African HAT and T. b. gambiense type I and II causing West African HAT.  The 

main species causing AAT in cattle and other ruminants are T. vivax, T. 

congolense and T. brucei causing severe muscle wastage, anaemia and loss of 

productivity(1).   T. b. brucei also causes severe disease in equines and canines 

with T. simiae causing high mortality in pigs(1).  In latin America T. cruzi, 

transmitted by triatomine insects, is maintained in >100 species of mammalian 

hosts a reservoir (2).  T. cruzi is transmitted to humans by the triatomine 

vectors(3) causing Chagas disease characterised by dilated cardiomyopathy and 

arrhythmias discovered by Carlos Chagas in 1909(4).  In Asia T. evansi causes 

‘Surra’ a wasting disease in camels, water buffalo and horses.  T. evansi and the 

equine infective relative T. equiperdum are T. brucei derivatives that are 

mechanically or sexually transmitted no longer requiring the tsetse vector due to 

partial or complete loss of the kinetoplast(5).  Much of the focus of this thesis 

will be on T. b. brucei as a model for HAT.  However, animal infections should 

not be ignored as they have significant economic impact in sub-Saharan Africa 

with an estimated 48 million cattle infected with losses of $1-1.2 billion 

annually(6;7).  Cattle are not only important for meat and milk, but are also have 

impact on livelihoods in poor areas of Africa as a means of traction where 

mechanical farm equipment is too expensive or cannot be maintained(6).   
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1.2.1 Lifecycle of Trypanosoma spp. 

Trypanosomes are transmitted by blood-feeding tsetse flies of the genus 

Glossina.  There are about 30 different species and subspecies of tsetse broadly 

categorised into three groups with different habitat predilections with different 

abilities to transmit  different species and strains of trypanosome(8).  Tsetse flies 

are viviparous, i.e. produce a fully developed live larva, which burrows into the 

soil, pupates and emerges as an adult fly one month later.  The fly becomes 

infected when it takes a blood meal from an infected mammalian host (Figure 

1.1).  Short-stumpy bloodstream form trypomastigote parasites taken into the 

fly’s digestive tract undergo several differentiation steps involving metabolic 

and anatomical changes(9) to become procyclic trypomastigotes during the 

following 3-5 weeks(10).  The procyclics then leave the fly’s midgut, transform 

into epimastigotes and migrate to the salivary gland.  In the salivary gland the 

epimastigotes transform into infectious metacyclic trypomastigotes.  When the 

infected tsetse fly bites a susceptible individual the metacyclics are injected 

into the host.  There they transform into long-slender bloodstream form 

trypomastigotes and are carried in the mammalian host’s bloodstream to other 

sites such as lymph nodes, spleen, liver, heart, eyes and endocrine organs in 

what is known as the haemolymphatic or stage I disease(10).  The long-slender 

bloodstream forms multiply by binary fission.  In density-dependent manner a 

proportion of the long-slender trypomastigotes terminally differentiate into 

short-stumpy trypomastigotes(11) and can be transmitted to more tsetse flies 

when they take a blood meal and ingest the short-stumpy bloodstream form 

trypomastigotes(12) perpetuating the cycle.   
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Figure 1.2: Schematic representation of bloodstream form T. brucei from International Laboratory 
for Research on Animal Diseases with permission(14). 
 

1.2.3 How do Trypanosomes Survive in the Host? 

1.2.3.1 Variable Surface Glycoprotein 

Trypanosomes are surrounded by a variable surface glycoprotein (VSG) coat that 

protects against complement-mediated lysis.  T. brucei has >1000 VSG genes of 

which only one at a time are expressed from one of multiple telomeric VSG 

expression sites.  The mammalian host’s immune system eventually recognises 

and mounts an effective immune response against the predominant VSG variants 

leading to antibody-mediated lysis of the trypanosomes.  However, 

trypanosomes will continually switch VSG expression to produce unique VSG 

proteins that the host’s antibody response will not recognise.  In this way an 

infection can last many years(15-17).  The continual switching of VSG coats makes 

development of an effective vaccine for HAT and AAT almost impossible(18). 

1.2.3.2 Resistance 

Wild animals have developed tolerance of trypanosome infections as have the 

indigenous Bos taurus derived breeds of cattle (N’dama).  Bos indicus (Zebu) 

derived breeds of cattle remain susceptible(19).  In the case of HAT there is a 

continual evolutionary battle between host and parasite.  While T. brucei and 
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other trypanosome species are infective to many mammalian species, usually 

only T. b. gambiense and T. b. rhodesiense are infective to humans.  This is due 

to trypanosome lytic factors (TLFs), which are present in normal human serum 

and destroy trypanosomes infective to animals(20-22).   

1.2.4 What are the Clinical Features of Trypanosomiasis? 

1.2.4.1 Animal African Trypanosomiasis 

AAT occurs in livestock throughout the tsetse belt of Africa (Figure 1.3).  The 

host-parasite interaction produces extensive immune-mediated pathology and 

severe anaemia(23), including cardiac involvement with perimyocarditis observed 

in both field(24;25) and experimental infections(26-28).  Clinically infected animals 

lose condition, become weak and unproductive often resulting in death.  All 

aspects of production are affected including fertility, milk yields, growth and 

work output.  Therefore treatment and control strategies need to incorporate 

AAT in addition to HAT to improve the socio-economic situation as well as 

physical health of at risk communities.  
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Figure 1.3: Tsetse Belt in Africa. 
Natural habitat regions of the trypanosome vector tsetse flies (Glossina spp.) are shown in green.  
The areas left for cattle rearing are shown in blue. 

1.2.4.2 Human African Trypanosomiasis 

Historically HAT has had epidemics and resurgences over the last century.  At 

the turn of the 20th century it was estimated that many hundreds of thousands of 

people were killed(8).  However, in the first half of the 20th century strong 

measures were taken including cull of the animal reservoir and destruction of 

the tsetse habitat combined with advances in insect vector control which led to 

a reduction in the reported cases by the 1960s(8).  Unfortunately factors such as 

war, famine and socio-economic instability led to reduced surveillance and 

vector control resulting in a resurgence of the disease by the late 1990s.  The 

World Health Organisation (WHO) estimated there were over 300,000 cases in 

1998(29).  This resurgence led to a concerted effort by WHO and local 

governments to improve human case detection and treatment and better vector 
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control(10).  As a result WHO now reports that the reported number of human 

cases in Africa were 9875 in 2009, 7139 in 2010 and 6743 in 2011(30).  The 

changing pattern of reported HAT cases from 2009 to 2011 shows a favourable 

picture of the epidemiological situation in Africa (Figure 1.4); however these 

figures should be taken with caution.  It is estimated that there may be as many 

as 10 times more cases that go unreported.  One study in particular noted that in 

Uganda, 2005 that  T. b. rhodesiense cases were underestimated by a factor of 

12(31).  Therefore, despite encouraging statistics, it is increasingly important to 

maintain a high level of surveillance, treatment and control in endemic 

countries to prevent a possible resurgence of the disease.  Approximately 70 

million people are still at risk of infection(32).  Finding new drug targets will aid 

in the WHO’s goal of eradication by 2020 by improving treatment administration 

and response, reducing drug resistance and reducing cost. 
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Figure 1.4: WHO reported cases of HAT. 
The black ‘border’ indicates the division between T. b. gambiense and T. b. rhodesiense.  Uganda 
can have infections of both species of trypanosome(33). 
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Traditionally HAT disease is described in two stages, the early haemolymphatic 

stage (Stage I) and the late meningoencephalitic stage (Stage II), the latter being 

characterised by central nervous system (CNS) invasion{Bucheton, 2011 385 /id}.  

Without treatment HAT is often fatal(35;36), however there are reports of 

untreated cases of T. b. gambiense being cleared from hosts or developing a 

long-lasting serological response without symptoms(37-40).  T. b. gambiense 

accounts for at least 96% of HAT cases(41) and has a chronic progressive course 

typically lasting around 3 years(38), although there have been reports of 

recrudescence after decades(42) and more acute progressions of disease as 

well(43;44).  T. b. rhodesiense typically has a much more acute course with death 

occurring within weeks or months(36).   

Stage I clinical signs are usually non-specific with an onset typically 1-3 weeks 

following the tsetse bite.  The signs include headache, malaise, arthralgia, 

weight loss, fatigue and intermittent fever(10;45).  Often patients presenting with 

these signs are mis-diagnosed with malaria(10).  Progression begins to manifest as 

lymphadenopathy, splenomegaly, hepatomegaly; cardiac signs including 

myocarditis, perimyocarditis and congestive heart failure; ophthalmological signs 

such as iritis, keratitis and conjunctivitis; endocrine dysfunction and fertility 

problems(8;10).   

The intermittent periods of fever can last up to a week separated by intervals of 

several days to months(46).  These episodes correspond to a type I inflammatory 

reaction associated with macrophage activation, interferon γ, tumour necrosis 

factor α (TNFα), reactive oxygen species (ROS) and nitric oxide (NO)(8).  The 

immune/inflammatory reaction controls parasitaemia levels and tissue invasion 

but itself can have damaging consequences(47).  The host can also mount type II 

immune reactions which consists of interleukin-10 (IL-10) production than can 

have anti-inflammatory properties(47).   

Stage II disease is characterised by sleep disturbances giving HAT its colloquial 

name ‘Sleeping Sickness’(48).  The disease disrupts the circadian rhythm of the 

sleep/wake cycle resulting in a fragmented sleep pattern rather than a true 

inversion of sleep(49).  Other neurological signs include; tremors, fasciculations, 

motor weakness, limb paralysis and abnormal movement.  These disorders are 

rarely seen during Stage I and increase in frequency with the duration of the 
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disease(45;50).  Psychiatric symptoms such as irritability, psychotic reactions, 

aggressive behaviour, or inactivity with apathy can dominate the clinical 

picture(50).  Death occurs from the progression of neurological signs, 

inflammation and multiple organ failure(10). 

1.2.4.3 Cardiac Abnormalities in HAT 

Cardiac involvement is frequently seen in patients with T. b. gambiense 

infection.  Signs are evident on the electrocardiogram (ECG) as corrected QT 

(QTc) prolongation (an indicator of the time taken for ventricular depolarisation 

and repolarisation), repolarisation changes and low voltage(51-54).  Blum et al. 

(2007) reported prolongation of QTc, repolarisation changes and low voltage 

were observed in 50% of stage I patients and up to 71% of stage II HAT 

patients(51).  Palpitations (arrhythmic heart beats) were reported in 18% of  T. b. 

gambiense infected individuals compared with non-infected controls reporting 

5% of individuals with palpitations(51).   QTc prolongation carries an increased 

risk for ventricular arrhythmia and sudden cardiac death(55).  These ECG changes 

have been attributed to perimyocarditis without myocardial necrosis as 

demonstrated by negative troponin measurements(51;55-58).  In T. b. rhodesiense 

infections perimyocarditis can be more severe(59;60).  Post mortem examination 

of animals(26-28) and humans(56;57) revealed that trypanosomes infiltrate the 

myocardium leading to a mononuclear inflammatory response and fibrosis, which 

may progress to heart failure.  Adams et al. (1986) found in a study of 16 HAT 

deaths from T. b. gambiense that two were a result of pulmonary oedema from 

cardiac failure(56).  Bertrand et al. (1973) identified inflammation of the 

conduction system of the heart in 70% of 100 patients examined(57), however 

conduction problems were uncommon despite this finding.  Two studies assessing 

atrio-ventricular (AV) block identified type I AV block in 3.7% and 14% of patients 

examined(61;62), type II AV block in 1% and 2.5% respectively(61;62), and type III AV 

block was found in one patient described in a case report(63).  Enlargement of 

the cardiac silhouette of >50% of the thoracic diameter on radiographic 

examination has been reported in 40 (34%) of 118 patients(61) and 14 (24%) of 59 

HAT patients(64).  Whether the enlargement was due to true cardiomegaly or if it 

was pericardial effusion was not examined in these studies(61;64).  

Echocardiography findings are not commonly looked for, however one study 

identified right-ventricular dilatation in 16 (64%) of 25 HAT patients and 
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pericardial effusion in three (12%) individuals(64).  Blum et al. (2007) assessed 

troponin and NT-proBNP (N-terminal prohormone of brain natriuretic peptide) as 

indicators of systolic cardiac function in HAT patients(51).  The troponin levels, an 

indicator of myocardial damage and necrosis, were within the normal range.  

NT-proBNP, an indicator of excessive myocardial stretching, was significantly 

higher in patients than in non-infected controls (p<0.001)(51).  The ejection 

fraction was predicted by using suggested gender and age specific criteria for 

NT-proBNP(65).  An ejection fraction of <40% was predicted in 14 (24%) of 59 

patients suggesting consistent with left-ventricular systolic dysfunction(51).  

While the cardiac abnormalities reported in the literature can be attributed to 

inflammation and fibrosis, recent evidence has shown direct effects of 

trypanosomes and their secreted factors within in vitro blood brain barrier (BBB) 

models(66-69).  Whether African trypanosomes and their secreted products can 

have a direct effect on the myocardium has not been explored and will therefore 

be investigated in this thesis. 

1.2.5 How is HAT Diagnosed? 

Due to the non-specific clinical signs of HAT the mainstay of diagnosis is by 

laboratory examination of blood and/or cerebrospinal fluid (CSF)(70;71).  A three-

stage programme is used in current control strategies for HAT surveillance; 

screening, diagnostic confirmation and staging(8). 

1.2.5.1 Screening 

The most efficient and low cost method available is the card agglutination test 

for trypanosomiasis (CATT), however this is only available for HAT caused by T. 

b. gambiense(10).  The test was developed in the 1970s and can be performed on 

serum, capillary blood from a finger prick or blood from impregnated filter 

papers(72-74).  CATT is reported to have a sensitivity of 87-98% and specificity of 

93-95%(75-78) making it an effective tool for screening large numbers of 

individuals.  However, due to the test not being 100% sensitive, individuals with 

suggestive clinical features such as a tsetse bit ‘chancre’ further examination is 

warranted even in the case of a negative CATT(8). 
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1.2.5.2 Diagnostic Confirmation 

Microscopic examination of the blood and/or lymph node aspirates is required 

for confirmation (Figure 1.5).  Lymph node aspiration is commonly from the 

cervical lymph nodes and has a sensitivity of 40-80% depending on the parasite 

strain and stage of disease(79).  The test is more sensitive during Stage I 

disease(79).  Examination of blood films has a low sensitivity so concentration 

techniques such as centrifugation are routinely performed(80).  Diagnosis using 

the DNA Polymerase Chain Reaction (PCR) is becomingly an increasingly accurate 

tool with reported sensitivity of 99% and specificity of 97.7% in a systematic 

review of 16 studies(81).  Unfortunately PCR is not generally an available option 

in the field.  An attractive alternative is loop-mediated isothermal amplification 

of DNA (LAMP) which has been developed for both T. b. rhodesiense and T. b. 

gambiense(82-84).  LAMP has the benefit that DNA can be amplified with high 

specificity rapidly under isothermal conditions with simple incubators.  The DNA 

amplification can be monitored either spectrophotometrically or with the naked 

eye without the use of expensive dyes. 

 

Figure 1.5: Photomicrograph of Giemsa stained T. b. gambiense. 
Blood smear from patient with African trypanosomiasis. Image approved for reproduction by 
Centers for Disease Control and Prevention. 
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1.2.5.3 Staging 

Treatment of HAT depends heavily on the stage of disease as the drugs for Stage 

II disease are required to enter the CNS and are often highly toxic (see below).  

Therefore, diagnostic staging by examination of CSF via lumbar puncture is 

considered essential before Stage II drugs are administered(85).  The current WHO 

definition of Stage II disease is when there are >5 leukocytes.µL-1 CSF, 

trypanosomes or protein content of >370 mg.L-1(29).  Many use the >5 

leukocytes.µL-1 CSF guideline, however uncertainty surrounds the cohort of 

patients that have 6-20 leukocytes.µL-1 CSF as they may have variable signs of 

neuroinflammation and variable responses to first-line treatments(8;85;86).  

Microscopic finding of trypanosomes is unequivocal for diagnosis but a PCR 

positive on CSF is controversial as patients that have achieved a successful 

resolution of Stage I disease may still have a positive PCR result(87;88).  CNS 

staging is still a controversial area with a lack of a gold standard with which to 

compare new methodologies(10).  However new markers are being tested such as 

chemokines and acute phase proteins(10). 

1.2.5.4  T. b. rhodesiense 

Unfortunately there is no serological screening test for T. b. rhodesiense yet.  

Current strategies consist of clinical signs and history of exposure.  However, 

parasitological examination is often more straightforward as parasitaemias are 

higher than for  T. b. gambiense(8).  As a result WHO launched an initiative in 

2006 in collaboration with the Foundation for Innovative Diagnostics (FIND) to 

improve diagnosis and staging of HAT cause by both  T. b. rhodesiense and  T. b. 

gambiense(89).   

1.2.6 What are the Current Treatment Strategies? 

As HAT has two stages, the haemolymphatic stage and the meningoencephalitic 

stage, the treatment strategies must be adapted accordingly.  Stage II is 

characterised by individual parasites crossing the blood brain barrier (BBB) 

therefore drugs to treat Stage II must be able to cross the BBB.  
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1.2.6.1 Pentamidine 

Pentamidine is the drug of choice for Stage I West African HAT.  It can be given 

intramuscularly for one week or as an intravenous infusion(8).  The drug is usually 

effective for early stage disease, but has the potential complications of 

hyperglycaemia or hypoglycaemia, prolongation of the QT interval on the ECG, 

hypotension, and gastrointestinal features(8;10) (Table 1.1).  Pentamidine is less 

effective for intermediate stage disease (10-20 leukocytes.µL-1 CSF) (section 

1.2.5.3)(90-92) with up to 48% treatment failure in one study(92). 

1.2.6.2 Suramin 

Suramin is used for Stage I East African HAT but avoided for West African HAT 

due to increased prevalence of Onchocerca spp. which are very effectively killed 

by Suramin increasing the risk of severe allergic responses in patients(8).  

Recommended dosing regimens are complex lasting up to 30 days.  Potential 

adverse reactions are frequent but often mild and reversible such as 

nephrotoxicity and peripheral neuropathy.  Acute and late hypersensitivity 

reactions can occur, so a lower test dose is trialled before treatment(8) (Table 

1.1). 

1.2.6.3 Melarsoprol 

Melarsoprol, an organoarsenic compound, is the most widely used treatment for 

Stage II East African HAT and West African where eflornithine is unavailable.  

Treatment regimens differ depending on the parasite subspecies (Table 1.1).  

Adverse reactions are frequent and can be life-threatening.  The most important 

is an encephalopathic syndrome which occurs in an average of 4.7% of patients 

with  T. b. gambiense infections and 8.0% of patients with  T. b. rhodesiense 

infections, with fatality rates of 44% and 57% respectively(93;94).  Other adverse 

reactions are skin reactions such as pruritus and maculopapular eruptions, 

peripheral neuropathies, cardiac arrhythmias(93) and thrombophlebitis if 

injection technique is poor(8).  In several areas up to 30% treatment failures have 

been reported suggesting emerging resistance in which a P2 adenosine 

transporter is implicated(95). 
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1.2.6.4 Eflornithine 

Eflornithine, an ornithine decarboxylase inhibitor, has been made widely 

available to patients thanks to efforts from WHO and pharmaceutical 

companies(10).  It is used in combination with the drug nifurtimox, nifurtimox-

eflornithine combination therapy (NECT)(10).  Mortality from eflornithine is 

significantly less than from melarsoprol with 1 (0.7%) out of 143 vs. 3 (2.1%) out 

of 144 patients dying from treatment(96).  Eflornithine is now recommended as 

the first-line treatment for Stage II West African HAT(97-99), but not for East 

African HAT as  T. b. rhodesiense is innately less susceptible to the drug than  T. 

b. gambiense(100).  Unfortunately eflornithine has a short half-life meaning that 4 

intravenous infusions must be given daily making it awkward to administer in 

rural public treatment facilities (Table 1.1).  Adverse reactions included 

cytotoxicity leading to anaemia, leukopaenia and thrombocytopaenia (25-50%), 

gastrointestinal signs (10-39%) and convulsions (7%)(101). 
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Table 1.1: Standard treatment options for HAT and main adverse reactions. 
Drug Stage Route of 

Application 
Dosing Adverse Reactions 

Trypanosoma brucei gambiense 

Pentamidine* First Intramuscular 4 mg.kg-1 q 24 h 
for 7 days 

Hypoglycaemia, injection site 
pain, diarrhoea, nausea, 
vomiting, prolongation of QT 

Eflornithine Second Intravenous 
(30 min 
infusion) 

100 mg.kg-1 q 6 h 
for 14 days 

Diarrhoea, nausea, vomiting, 
convulsions, anaemia, 
leukopaenia, 
thrombocytopaenia 

Melarsoprol† Second Intravenous 2.2 mg.kg-1 q 24 h 
for 10 days 

Encephalopathic syndromes, 
pruritus, peripheral 
neuropathies, 
thrombophlebitis 

Trypanosoma brucei rhodesiense 

Suramin* First Intravenous Test dose 4-5 
mg.kg-1 day 1, then 
20 mg.kg-1

 q 7 days 
for 5 weeks (max 
dose 1g per 
injection) 

Hypersensitivity reactions 
(acute and late), 
albuminuria, cylinduria, 
haematuria, peripheral 
neuropathy 

Melarsoprol* Second Intravenous 3.6 mg.kg-1 q 7 
days for 3 weeks 
(max dose 180 mg 
per injection) 

Encephalopathic syndromes, 
pruritus, peripheral 
neuropathies, 
thrombophlebitis 

*  Endemic countries: according to national legislature or guidelines   
 † Only where eflornithine is not available or where melarsoprol is first-line treatment.  
Reproduced with permission from Brun et al. 2010(8)  

1.2.7 How do Trypanosomes Cross the Blood Brain Barrier 

1.2.7.1 Blood Brain Barrier 

Much of the severity of HAT and the eventual death of a sufferer stems from the 

parasite crossing the BBB.  The BBB serves to maintain a constant internal 

environment vital for CNS function by strictly regulating the passage of 

molecules across blood vessels(102;103).  The BBB consists of multiple layers; the 

endothelial cells of the vasculature, endothelial basement membrane, 

parenchymal basement membrane and foot processes of the astrocytes of the 

brain parenchyma(104) (Figure 1.6).   



Chapter 1  General Introduction 44 
 

 

Figure 1.6: Schematic drawing of the layers of the blood brain barrier. 
Trypanosomes cross from the lumen of the vessel between the tight junctions of the endothelial 
cells and across the endothelial basement membrane into the perivascular space.  They can then 
cross the parenchymal basement membrane and between the foot processes of the astrocytes that 
make up the astrocyte glia limitans and enter the brain parenchyma. 

1.2.7.2 Parasite Proteases and the BBB 

In order to enter tissues or individual cells many parasites produce and secrete 

proteases to facilitate their passage across the skin, epithelial cell layers or 

plasma membranes(105-108).  Therefore it is possible that T. brucei spp. could 

produce and secrete proteases to facilitate traversal of the BBB.  Indeed, this 

appears to be the case, as studies have identified that trypanosomes express 

phosphatases on their external surface and can release cysteine proteases and 

metallo-proteases(67;109-111).  Further work by Grab and colleagues have identified 

using in vitro BBB models that cysteine proteases, specifically the cathepsin-L 

like cysteine protease (TbCatL) is necessary for traversal of their BBB 

models(66;112-114).  RNA interference of TbCatL in  T. b. brucei led to infected 

mice surviving 60 days longer with a 50% reduced ability of the parasites to cross 

the BBB(112).  Human infective trypanosomes such as T. b. rhodesiense have a 

much greater efficiency of traversal of the BBB model consisting of a monolayer 

of human brain microvascular endothelial cells (HBMECs) crossing paracellularly 
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without disruption of the barrier measured by transendothelial resistance(67).  It 

was found that T. b. rhodesiense had higher levels and activity of TbCatL and 

therefore may be the critical factor in BBB traversal(69).  Nikolskaia et al. (2006) 

were able to inhibit traversal of the HBMEC model with a cathepsin-L specific 

inhibitor, K11777 (N-methyl-piperazine-Phe-homoPhe-vinylsulfone-benzene) but 

not a cathepsin-B specific inhibitor, CA074 (L-3-trans-(propylcarbamyl)oxirane-2-

carbonyl)-L-isoleucyl-L-proline)(69).  Interestingly, incubation of T. b. brucei in 

media from T. b. rhodesiense with the HBMEC model enhanced traversal(69).  

They also showed the comparative contributions of protease activity in the 

different subspecies of T. brucei (Figure 1.7) as measured by a fluorometric 

activity assay with the fluorescent substrate Z-Phe-Arg-AMC (this technique was 

also used in this thesis and is described in detail in General Methods).  They 

showed that T. b. rhodesiense possessed approximately 8-fold more active 

cysteine proteases than T. b. brucei (Figure 1.7A). The cysteine protease 

inhibitors E-64 and K11777 decreased peptidase activity by 94%, showing that 

they were detecting mainly the activity of papain-like cysteine proteases.  In 

contrast, CA074 led only to a 25% decrease in the overall activity of 

bloodstream-form lysates, suggesting that TbCatB is a minor component in these 

lysates.  Analysis of bloodstream-form secretion products (supernatants) showed 

that T. b. rhodesiense secreted 10-fold more active cysteine proteases (85% 

inhibition with E-64) than did T. b. brucei (30% inhibition with E-64; Figure 

1.7B).  No inhibition was observed using CA074, suggesting that the bloodstream-

form trypanosomes secrete TbCatL but not TbCatB.  To further characterise 

TbCatL expression by T. b. gambiense, T. b. rhodesiense, and T. b. brucei, they 

conducted Western blots on lysed parasites to confirm that T. b. gambiense and  

T. b. rhodesiense expressed higher levels of TbCatL than T. b. brucei (Figure 

1.7C)(69).  However, a band is still clearly visible for T. b. brucei indicating it can 

produce TbCatL albeit in lower quantities.  It has also been shown in another 

study that T. b. brucei is capable of crossing HBMECs(67). 
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Figure 1.7: Cysteine protease activity from T. brucei spp. 
(A) Protease maximal rate of activity from lysates of T. b. rhodesiense (Tbr) and T. b. brucei (Tbb).  
Incubated with DMSO vehicle, E-64 to differentiate serine protease activity, CA074 to discriminate 
between TbCatB activity and K11777 to discriminate between TbCatL activity.  (B) As in (A) but 
with culture media supernatants.  (C) Western blot of T. b. gambiense (Tbg), T. b. rhodesiense 
(Tbr) and T. b. brucei (Tbb) lysates equivalent to 2 x106 parasites incubated for 30 min with 5 mM 
DTT and 20 µM APC336 label with anti-biotin antibody. Figure from Nikolskaia et al. (2006) with 
permission.   

1.2.7.3 Trypanosomes Induce Ca2+ Oscillations in HBMECs 

How does TbCatL enable trypanosomes to cross the BBB?  Nikolskaia et al. (2006) 

demonstrated effectively that trypanosomes induce intracellular Ca2+ fluxes 

within the endothelial cells of their BBB model(69) (Figure 1.8).  HBMECs were 

loaded with Fura-2AM (section 2.6.4 for details on Ca2+ sensitive fluorophores) 

and the 340/380 nm excitation wavelength ratio measured.  Their initial 

interpretation was that the trypanosomes induced the intracellular Ca2+ 

concentration ([Ca2+]i) via mechanical stimulation(67) based on the findings of 

Paemeleire et al. 1999 who found that mechanical stimulation of rat cortical 

capillary endothelial cells induced Ca2+ waves(115).  However when the 

experiments were repeated but with the culture supernatants the [Ca2+]i 

oscillations were also induced(69).  Use of the cathepsin-L inhibitor K11777 

abolished the [Ca2+]i oscillations which was interpreted as TbCatL inducing the 

Ca2+ changes(69).  In conjunction with the Grab group’s previous work(67) it 

appears that the parasites secrete the cysteine protease TbCatL, which induces 

Tbr 
Tbb 
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[Ca2+]i oscillations in HBMECs and allows the parasites to traverse the monolayer 

paracellularly.   

 

Figure 1.8: Ca2+ oscillations of HBMECs. 
Time-lapse images of [Ca2+]i changes in HBMECs measured as the 340/380 nm ratio in Fura 2-AM 
loaded cells.  Figure panel from Nikolskaia et al. (2006) with permission.   

Interestingly, induction of changes in [Ca2+]i by T. cruzi by its cathepsin-L like 

cysteine protease, historically referred to as cruzipain in the literature but more 

recently referred to as TcrCatL, is required for intracellular invasion(116;117).  In 

the case of T. cruzi the TcrCatL activates G-protein coupled receptors (GPCRs) 

which in turn raise [Ca2+]i leading to synaptotagmin VII-dependent lysosome 

migration.  The lysosomes fuse to the parasite attachment site which precedes 

the formation of the parasitophorous vacuole required for cell entry(118;119).  In 

the case of T. brucei spp., which is extracellular, secreted/excreted TbCatL 

appears to activate the GPCR protease-activated receptor 2 (PAR-2) in 

endothelial cells(66).  This in turn raises [Ca2+]i which is thought to increase the 

permeability of the BBB through the effects of phospholipase C (PLC) and protein 

kinase C (PKC)(66).  These effects are hypothesised to act on cytoskeletal 

components resulting in cell retraction and loosening of the tight junctions from 

calmodulin (CaM) activation of myosin light chain kinase (MLCK)(66) (Figure 1.9). 
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Figure 1.9: Proposed model for African trypanosome-induced BBB dysfunction 
It is proposed that TbCatL (aka brucipain) triggers GPCRs such as PAR-2 via Gαq activation 
leading to PLC-mediated Ca2+ release from intracellular stores.  The increase in [Ca2+]i leads to 
calmodulin (CaM) activation of myosin light chain kinase (MLCK) potentially leading to cytoskeletal 
changes and barrier dysfunction.  Ca2+ independent activation of cytoskeleton mediated by Ras-
superfamily GTPases (i.e. RhoA) is also possible via p63RhoGEF.  Parasite and/or host-derived 
proteases may also contribute by degrading or altering adherens junction (AJ) and tight junction 
(TJ) proteins.  Figure from Grab et al. (2009) with permission(66). 

Independent of the parasite effects, the host response may also contribute to 

BBB traversal through processes such as the neuroinflammatory response(120;121).  

There is a fine balance between pro-inflammatory cytokines such as IFN-γ, IL-1 

and TNFα, and counter-inflammatory cytokines such as IL-10(122).  A role for 

cytokines in determining entry of trypanosomes into the CNS was provided by a 

study in knockout mice where the gene for IFN-γ had been disrupted(123).  

Following systemic infection, it was found that trypanosomes accumulated in the 

perivascular regions (Figure 1.6), unable to traverse between the endothelial 
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and the parenchymal basement membranes(123).  These findings suggested that 

lymphocyte-derived IFN-γ is required for trypanosome traversal across cerebral 

blood vessels although it is unclear how at present.  

1.2.8 Trypanosome Cysteine Proteases 

Trypanosomes exhibit protease activity to enable them to carry out regulatory 

functions and to infect hosts(124).  There are several families of cysteine protease 

activity; Clan CA family C2 (calpains) and Clan CD families C13 (GPI:protein 

transamidase), C14 (metacaspase) and C50 (separase) involved in regulatory 

processes within the trypanosome cells(125).  The primary focus in this thesis is 

the Clan CA family C1, papain-like cysteine proteases or the cathepsins.  

Cysteine protease activity very similar to that of the mammalian cathepsin-L was 

identified and localised to the endo-lysosomal system of trypanosomes(126-128).  

The expression of the cathepsin-L-like proteases is developmentally regulated 

among the different life-cycle stages of trypanosome species.  For example, in 

T. brucei spp. greater expression of a cathepsin-L-like cysteine protease is found 

in the bloodstream short-stumpy insect infective stage than the bloodstream 

long slender form or the insect procyclic stage(129;130).  Genes for cathepsin-L-like 

proteases have been described in T. brucei spp.(131;132) and T. cruzi(133), as well 

as T. congolense(134) (a causative agent of AAT).  In addition cathepsin-B-like 

proteases have been described in T. brucei spp.(135), T. cruzi(136;137) and T. 

congolense(138).  From the Tritryp genome resource database 

(www.tritrypdb.org) there are 11 annotated copies of the TbCatL gene in the 

genomes of all species and strains of T. brucei, with no amino acid sequence 

differences; although trypanosomes are diploid and the consensus genome 

sequences are haploid so allelic differences cannot be formally ruled out(139). 

1.2.8.1 Cysteine Protease Activities of Trypanosomes. 

1.2.8.1.1 Trypanosoma brucei spp. 

Cathepsin-L-like protease activity for  T. b. brucei and  T. b. rhodesiense is used 

for degradation of anti-VSG IgG(124), lysosomal protein trafficking(140), 

trypanosome replication(141) and BBB traversal(66;69).  The cathepsin-B-like 

activity is involved in protein turnover in lysosomes(135), transferring 

degradation(142) and cytokinesis(112).  The involvement of Clan CA cysteine 
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proteases in so many cellular processes of parasites makes them attractive 

targets for drug and vaccine development. 

1.2.8.1.2 T. congolense 

T. congolense cathepsin-L activity (TcoCatL) is involved in trypanotolerance in 

cattle(143-146).  Indeed TcoCatL (aka congopain) is being investigated as a vaccine 

target for AAT due to its conserved nature in comparison with VSGs(147) 

Cathepsin-B-like activity (TcoCatB) is involved in degradation of endocytosed 

proteins(138).   

1.2.8.1.3 T. cruzi  

The activities of the T. cruzi cathepsin-L-like cysteine protease (TcrCatL) is 

grouped into two categories; TcrCatL1 and TcrCatL2.  TcrCatL is involved in 

metacyclogenesis, host cell invasion, host cell signalling, amastigote 

survival/nutrition, generation of kinins, inflammation and antigen presentation 

summarised in a review by Caffrey et al. (2011)(124).  The function of cathepsin-

B-like activity (TcrCatB) has yet to be determined.     

In the fight against African trypanosomiasis many of the unique features of 

trypanosomes make attractive targets for new drug development.  This thesis 

will focus on the cathepsin-L like cysteine protease TbCatL secreted/excreted by 

African trypanosomes and its role in altering intra-cardiomyocyte Ca2+ dynamics 

and cardiac function.  Understanding how TbCatL affects Ca2+ signalling may 

yield a potential avenue of treatment that could prevent not only cardiac 

abnormalities but also BBB traversal and limit the disease to Stage I where 

current drug regimens carry less risk.  

1.3 Ca2+ and the Heart 

1.3.1 The Heart  

The synchronous beat of the heart is achieved by the process of excitation-

contraction coupling (ECC), which is the process by which electrical stimulation 

is transformed to mechanical work performed by the muscle. 
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1.3.2 The Cardiomyocyte 

The heart is made up of many different cell types including 

fibroblasts/fibrocytes, endothelial cells, immune cells etc. but the cells that 

give the heart its contractile ability are the cardiomyocytes.  Cardiomyocytes 

are discrete striated cells.  The striations correspond with the light and dark I 

and A bands of the myofilaments made up from the contractile proteins actin 

and myosin.  The darker A band is the overlapping region of the two proteins 

where cross-bridges are formed during the contractile cycle of the muscle.  The I 

band consists of the thinner actin filaments anchored at the Z-line.  The plasma 

membrane (sarcolemma) of cardiomyocytes has invaginations called transverse 

tubules (T-tubules) that are electrically continuous with the sarcolemma.  A 

complex web-like organelle called the sarcoplasmic reticulum (SR) extends 

throughout the cytoplasm.  In close approximation (15-20 nm)(148) with the T-

tubules terminal cisternae form the junctional SR.  There can be unattached 

expansions of SR termed corbular SR.  The remainder of the SR is network SR.  A 

high density of mitochondria provides the energy for cross-bridge cycling (Figure 

1.10).  An understanding of the structure of the cardiomyocyte is important 

when understanding the events that must transpire from the electrical 

depolarisation or action potential to the contraction of the cardiomyocyte and 

the whole heart.    

 

Figure 1.10: Ultrastructure of the cardiomyocyte. 
Figure redrawn and adapted from Katz (2001)(149) with permission. 
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1.3.3 The Cardiac Action Potential 

The cardiac action potential (AP) varies in form depending on the cell type.  

However it broadly fits five phases: 

 Phase 0 – Rapid upstroke 

 Phase 1 – Repolarisation 

 Phase 2 – Plateau 

 Phase 3 – Late repolarisation 

 Phase 4 – Resting membrane potential/Depolarisation (pacemaker cells) 

In the ventricular cardiomyocyte these phases can be easily identified (Figure 

1.11).  When stimulated by the passive current spread from an adjacent 

electrically coupled cardiomyocyte Na+ channels are activated such that the Na+ 

current INa exceeds the transient outward K+ current (IKto).  The activation of Na+ 

channels brings about further activation in a positive feedback loop such that 

there is a rapid upstroke of depolarisation or Phase 0 (200 V.s-1) to 

approximately 35-50 mV(148).  The end of Phase 0 occurs when Na+ channels 

inactivate.  Inward and outward currents are balanced.  Phase 1 is mostly due to 

IKto due to its fast nature leading to the notch which is much more prominent in 

rodents compared to rabbits and humans(148).  Phase 2 or the plateau phase is a 

state of balance brought about by inward Ca2+ current (ICa) through the L-type 

Ca2+ channel (LTCC) and outward current by delayed K+ rectifier currents (IKs, IKr, 

IKur) (slow, rapid and ultra-rapid)(148).  Phase 3 is when repolarisation accelerates 

due to increased IKs, IKr, IKur and inactivation of LTCCs.  The LTCC is inactivated 

both by voltage and Ca2+-dependent means, though the Ca2+-dependent means is 

predominant via CaM binding(150-152).  Phase 4 for ventricular cardiomyocytes is 

maintenance of the resting membrane potential at -80-90 mV predominantly due 

to inward rectifier K+ currents such as IK1 
(148).  
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Figure 1.11: Ventricular cardiomyocyte action potential. 
 

The heart unlike other tissues requires no central nervous system input.  If the 

heart were to be removed and be provided with oxygen and nutrients it would 

continue to beat.  This is achieved by pacemaker cells within the sino-atrial 

node located in the right atrium.  Pacemaker cells have a naturally drifting 

membrane potential (Em) that slowly returns toward zero due to declining 

outward K+ currents and increased inward If, INa/Ca, ICa T, ICa L and INa
(148) (Figure 

1.12).  Once threshold is reached (≈-40 mV) the L-type Ca2+ channels activate 

and depolarise the cell.  All cardiac cells have some degree of pacemaker ability 

but in the normal situation there is a hierarchy of pacemakers defined by the 

rate at which the cells depolarise.  Cells of the SA node are usually fastest 

followed by the AV node, Purkinje cells and finally the cardiomyocytes 

themselves.  The funny current (If) (so-called because it is activated by 

hyperpolarisation as opposed to depolarisation) seems to plays a more significant 

role in the pacemaker ability of other cell types such as the Purkinje fibres 

rather than the SA node, although this is controversial(148). 
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Figure 1.12: Sino-atrial node pacemaker action potential. 
 

Although the heart does not require nervous input to beat it is innervated by the 

sympathetic and parasympathetic nervous systems to modulate the heart rate.  

Sympathetic stimulation results in release of noradrenaline that binds to β-

adrenergic receptors triggering a cascade of cyclic adenosine monophosphate 

(cAMP) mediated affects that serve to increase the rate and force of 

contraction.  One of the main effects is modulation of LTCC activity increasing 

the Ca2+ influx(153) the main component of the pacemaker Phase 0. Conversely 

parasympathetic stimulation via the vagus nerve releases acetylcholine which 

binds to muscarinic receptors which act to decrease cAMP and the slope of the 

pacemaker Phase 0 thereby slowing the heart rate. 

1.3.4 The Electrocardiogram 

The wave of depolarisation initiated at the SA node spreads across the atria to 

the atrio-ventricular (AV) node and then through the conduction system to the 

ventricles.  The ventricles and atria are electrically isolated from one another 

apart from via the AV node.  The depolarisation spreads through the bundle 

branches and through the myocardium (Figure 1.13).  This wave of 
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depolarisation can be recorded as an average electrical potential or the 

electrocardiogram (ECG). 

 

Figure 1.13: Schematic of the conduction system of the heart. 
 

Essentially the heart can be thought of as an electrical dipole much like a 

battery with a positive and negative terminal due to the electrical connectivity 

of the heart through gap-junctions(154).  The ECG leads placed on an individual 

act as a voltmeter.  Beginning with rest there is no net charge as all 

cardiomyocytes will be at their resting membrane potential.  As the AP begins 

usually starting with the pacemaker cells of the SA node a wave of 

depolarisation spreads through the atria(148).  This is a spread from the right 

atrium where the negative electrode is toward the left where the positive 

electrode is so manifests as a positive deflection called the P-wave.  Once the 

atria are depolarised the net change is zero so the ECG trace returns to zero.  
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The next phase is early depolarisation of the ventricles representing the change 

in voltage as the depolarisation spreads across the septum from the left to the 

right so manifests as a negative deflection called the Q-wave.  Then the 

ventricular myocardium depolarises from endocardium to epicardium.  The net 

depolarisation from all dipoles across the myocardium is leftward thus positive 

called the R-wave.  The wave of depolarisation ceases so the trace returns to 

baseline, sometimes with a negative deflection called the S-wave.  

Repolarisation then progresses across the myocardium from epicardium to 

endocardium producing the T-wave (Figure 1.14). 

 

Figure 1.14: The ECG in relation to cardiac polarity (taken from rat). 
Starting top left, depolarisation of the atria is from (-) to (+) therefore positive deflection and 
manifests as the P-wave.  Depolarisation spreads through the conduction system with a net 
change away from (+) manifesting as a negative Q-wave.  Ventricular depolarisation spreads from 
the endocardium to the epicardium with a net voltage change toward (+) as the R-wave.  The S-
wave occurs when there is some voltage change toward (-).  Finally ventricular repolarisation 
occurs as the T-wave.  This can be in either direction depending on the positioning of the leads and 
the position of the heart in the thorax. 
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1.4 Excitation-Contraction Coupling 

At the single cell level the depolarisation of the plasma membrane (sarcolemma) 

spreads through the cardiomyocyte via invaginations called transverse tubules 

(T-tubules).  The distribution of ion channels in the surface sarcolemma differ 

from that of the T-tubules such that the density of Na+ and K+ channels 

responsible for the polarity shifts of the AP are increased(155;156).  The 

depolarisation of the sarcolemma activates the L-type Ca2+ channels which are 

present at a >4 times density in the T-tubules than at the surface(157), this allows 

Ca2+ to enter the cardiomyocyte from the extracellular space(158).  T-type Ca2+ 

channels are not thought to play a significant role in ventricular cardiomyocytes 

in contrast with pacemaker cells(159).  The difference in channel distribution 

reflects the importance of Ca2+ in the generation of cardiomyocyte contractile 

function from the AP.  Indeed, it has been known since the late 19th Century that 

Ca2+ was vital for the heart beat.  Sydney Ringer identified that a frog heart 

ceased to beat when Ca2+ was accidentally removed from perfusion solution(160-

163).  For clarity, the Ca2+ dynamics will be considered for contraction (systole) 

and relaxation (diastole) separately.   The Ca2+ dynamics during systole are 

discussed first (Figure 1.15). 
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1.4.1 Systole 

 

Figure 1.15: Ca2+ dynamics during systole. 
An AP depolarises the sarcolemma and T-tubule activating the voltage-gated LTCC.  Extracellular 
Ca2+ enters through the LTCC before the channel is inactivated by Ca2+ preventing overload.  The 
relatively small amount of Ca2+ that enters activates the RyR triggering release of Ca2+ from the SR 
into the cytosol and binding to the myofilaments causing contraction. 

1.4.1.1 Ca2+ Influx Through the L-Type Ca2+ Channel 

Spatially the T-tubule and terminal cisternae of the intracellular Ca2+ store the 

sarcoplasmic reticulum (SR) are in close apposition in a spaced termed the 

dyadic cleft which can be <1.5 x 105 nm3 in volume(164).  Within these junctional 

spaces are LTCCs on the T-tubule surface and Ca2+ release channels also called 

ryanodine receptors (RyRs) on the SR cisternae membranes(165).  The RyRs are so-

called due to their affinity for the plant alkaloid ryanodine and consist of four 
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560 kDa monomers making the total tetrameric protein the largest yet identified 

at >2000 kDa(166).  In cardiac muscle the arrangement of LTCCs and RyRs is in the 

region of 10-25 LTCCs to 100-200 RyRs(167;168) constituting the ‘couplon’(169), 

although some studies suggest the couplon is smaller with 10-40 RyRs(170-174).  In 

truth it is probably variable(175).  When the LTCCs open upon the change in 

voltage from the AP the local [Ca2+]i rises sharply (<1 ms) in the dyadic cleft to 

10-20 µM free Ca2+(159).  The exact quantity of Ca2+ influx is dependent on many 

factors, species being the main one.  In the rabbit it has been shown Ca2+ entry 

via ICa through the LTCC during the AP is approximately 12 µM, which may even 

be as low as 6 µM due to Ca2+ inactivation of the LTCC(176).  Other studies suggest 

a value of 21 µM for rabbit and 14 µM for rat using voltage clamp(177).  The 

quantity of total Ca2+ required for myofilament activation for a normal 

ventricular twitch has been calculated as approximately 60-70 µM under steady 

state conditions(178).  Taking into account the Ca2+ buffering of the cytosol of 

assumed to be 100:1 (bound:free Ca2+) this would be an increase to 600 nM from 

150 nM free Ca2+(148).  Therefore, an influx of 14-21 µM total Ca2+ (140-210 nM 

free Ca2+) would be insufficient to produce a contraction of normal magnitude 

(~40% of maximum(179)) of the cardiomyocyte due to the small quantity, 

buffering and diffusion of Ca2+(180) (Figure 1.16).  Indeed, a total [Ca2+]i of 20 µM 

would give a contraction force of ~2% of maximum (Figure 1.16).  
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Figure 1.16: Ca2+ requirements for contractile activation. 
Ca2+ requirements for contractile activation based on diastolic [Ca2+]i = 150 nM and total cytosolic 
buffering = 244/(1+673/[Ca2+]i)-28.  This includes TnC, myosin, SERCA, calmodulin, ATP, creatine 
phosphate and sarcolemmal sites.  (Inset) Force is shown as a function of free [Ca2+]i. Force = 
100/(1+n).  Taken from Bers (2000) with permission(179).  

1.4.1.2 Ca2+ Induced Ca2+ Release from the SR 

During the 1970s and 1980s Fabiato demonstrated in experiments where the 

sarcolemma was carefully removed from canine Purkinje cells that the 

additional Ca2+ required came from the SR(180-184).  Removal of the sarcolemma 

and T-tubules allows the [Ca2+]i to equilibrate with [Ca2+] of the solution the cell 

is bathed in.  By altering the [Ca2+] of the bathing solutions it was possible to 

identify that application of increasing amounts of trigger Ca2+ resulted in a 

greater release of Ca2+ from the SR.  A solution with [Ca2+] of 100 nM allowed 

accumulation of Ca2+ in the SR.  Changing the solution [Ca2+] to 250 nM for 30 ms 

induced a release of Ca2+ from the SR of 1.7 µM and contraction of the 

cardiomyocyte.  Interestingly, when [Ca2+] increased to 10 µM and applied for 

150 ms the peak SR Ca2+ release was reduced to 1.2 µM and a smaller 

contraction(184).  This suggests that high [Ca2+] inactivates SR Ca2+ release i.e. 

there is a peak activating concentration before a decline beyond that 
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concentration producing a bell curve of activation when tension is plotted 

against [Ca2+].  In addition to a concentration effect, there was also a time-

dependent effect.  Fabiato (1985) tested different trigger Ca2+ activation times 

of 1, 5, 10, 20 and 50 ms with increasing [Ca2+].  It was found that the longer 

trigger times resulted in reduced tension i.e. reducing the peak of the bell-

shaped curve(184).  Thus, this work by Fabiato suggests that a small Ca2+ influx of 

~250 nM induces Ca2+ release from the SR amplifying the original trigger Ca2+ 

such that contraction occur.  Moreover, an increase in the trigger [Ca2+] leads to 

an increase in the [Ca2+] amplification and subsequent contraction of the 

cardiomyocyte i.e. it is of a graded nature. However, beyond the optimal [Ca2+] 

~10 µM there is an inactivating effect producing the characteristic bell curve.  

Interestingly, one of the main hallmarks of ECC is the Em dependent bell-shaped 

curve for ICa, change in [Ca2+]i and contraction performed in intact 

cardiomyocytes(148;185-189).  The fact that there is such a close relationship with 

the change in Em and ICa, contraction and Δ[Ca2+]i (Figure 1.17) suggests that ICa, 

contraction and Δ[Ca2+]i are themselves closely associated.  It has been 

demonstrated that a change in ICa leads to the change in [Ca2+]i, which then 

leads to the change in contraction.  This explains the observation of 40% 

contraction despite a Ca2+ influx that would only normally produce a 2% of 

maximum contraction, and that when extracellular Ca2+ is manipulated there is a 

change in amplification.  Therefore the LTCC trigger activates the release of the 

SR Ca2+ store which supports a theory of Ca2+ induced Ca2+ release (CICR) in the 

heart. 
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Figure 1.17: Voltage dependence of ICa, Ca2+ transient amplitude, contraction and charge 
movement in isolated guinea-pig ventricular cardiomyocytes. 
ICa and Ca2+ transient amplitude data from Beuckelmann & Wier (1988)(185), charge movement from 
Hadley & Lederer (1991)(190) and contraction from Bers (2001)(148).  All data were normalised to 
their respective maxima.  Figure from Bers (2001)(148). 

Thus, the relatively small rapid Ca2+ influx through the LTCC is enough to 

activate the RyRs releasing Ca2+ from the SR(159) (CICR).  If Ca2+ activates the 

RyR, what prevents a positive feedback loop?  The LTCC follows the Em 

dependent bell-shaped curve as mentioned (Figure 1.17) demonstrating that 

higher ICa from the LTCC does not result in a runaway release of SR Ca2+.  Fabiato 

(1985) proposed that the RyR had two binding sites with different affinities and 

association constants(184).  The initial trigger Ca2+ would bind with lower affinity 

but rapid onset resulting in SR Ca2+ release.  The second inhibitory site would 

have a higher affinity for Ca2+ but a slower onset thereby inactivating the RyR a 

short time after influx, potentially explaining the reduced contraction at longer 

stimulation times(184).  This was shown not to be the case when intact 

cardiomyocytes were studied, in fact contraction increased at higher [Ca2+] in 

experiments using flash photolysis of caged Ca2+(191).  Cannell et al. (1987) found 

that if cardiomyocytes were rapidly repolarised during the rising phase of the 

Ca2+ transient the peak was reduced(187).  If there is a second inhibitory binding 

site on the RyR then in order to reconcile the findings of Cannell et al. the 

quantity of Ca2+ influx through the LTCC in the short time taken to deactivate 

the LTCCs must be increased for RyR inactivation to occur.  However, they 
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calculated that the repolarisation of -24 mV to -54 mV would only increase Ca2+ 

influx by 20% according to the increased electrochemical gradient(159).  A 

potential of -54 mV is the same potential at which the fast Na+ channels 

inactivate marking the end of the effective refractory period therefore making 

the cardiomyocyte vulnerable to an early after depolarisation (covered in more 

detail in section 1.6.2.2) potentially leading to an arrhythmia(192).  So if Fabiato’s 

suggestion that there was sufficient influx during the repolarisation to inactivate 

CICR(184) was correct then Ca2+ could not be released and arrhythmic contractions 

could not occur.  However, Cannell et al. observed that Ca2+ influx due to the 

electrochemical gradient upon repolarisation was not sufficient to explain the 

reduction in Ca2+ transient peak they observed(187) so another theory of 

inactivation is likely. 

1.4.1.3 Local Control of CICR 

1.4.1.3.1 Historical Models 

Traditionally researchers had perceived the Ca2+ in the cardiomyocyte to be in a 

‘common pool’ i.e. the SR is recharged by and releases into the same space.  

Unfortunately, a common pool model of CICR cannot amplify trigger Ca2+ and 

still be able to prevent positive feedback.  This is because experimental 

evidence shows that when the cardiomyocyte is repolarised during the release 

phase (159) thereby inactivating the LTCC trigger, the Ca2+ transient peak is 

reduced.  If a common pool model were true then the Ca2+ released would be 

expected to continue the release process, i.e. the process would be autonomous 

but this is not the case.  Therefore, to attempt to establish a mathematical 

model of CICR, Stern (1992) looked at the ultrastructure of the cardiomyocyte 

and compared it to that of skeletal muscle(165).   Due to the fact that the LTCC 

and RyR were in direct apposition in skeletal muscle(193) Stern considered local 

control theories(194).  The first type was a synaptic type model where one LTCC is 

apposed with one RyR.  In a synapse model the control could occur either; by 

random inactivation of the RyR and the local Ca2+ diffuses away; or by Ca2+ 

dependent inactivation of RyR and the local Ca2+ diffuses away.  However, while 

this model permits the amplification of Ca2+, it requires high conductance of the 

RyR for [Ca2+]i to rise sufficiently to induce contraction(194).  The second model 

Stern tried was one where one LTCC could activate several RyRs, the ‘cluster-
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bomb model’.  This is a model where one LTCC can recruit a cluster of RyRs 

allowing for a graded response with amplification of the initial trigger Ca2+.   

1.4.1.3.2 Experimental Evidence 

Experimental evidence for a localised SR Ca2+ release came from Cheng et al. 

(1993) in the form of local spontaneous Ca2+ release events of 200 nM amplitude, 

2 µm diameter and 25 ms half-time decay termed ‘Ca2+ sparks’(195).  Ca2+ sparks 

occur randomly at a low frequency of ~100.s-1 independent of Ca2+ influx at rest 

but several thousand can be synchronised by ICa through the LTCC which 

summates in time and space to form the stimulated Ca2+ transient(148).  Due to 

the randomness of RyR opening at rest the process is best thought of in terms of 

stochastic probabilities.  For example, at 10 µM [Ca2+] within the dyadic cleft 

there is less than one free Ca2+ ion available (0.04) with 15 membrane-bound to 

activate a RyR within a 15 nm radius (dimension of the cleft)(148). In these terms 

the RyR activation is described in terms of open probability (Po).  It was initially 

proposed that a Ca2+ spark was the Ca2+ release event of a single RyR as the 

individual Ca2+ flux of a Ca2+ spark was calculated as 2 x 10-17 mol.s-1 (4 pA)(196), 

but appears to actually be from a cluster of 6-20 RyRs which would support the 

cluster-bomb model(148).    

1.4.1.3.3 How Does Local Control Work? 

Local control of Ca2+ sparks comes from the theory that Ca2+ release from a 

cluster of RyRs or ‘couplon’ is effectively an all-or-none phenomenon(194) so the 

release within a cluster can be regenerative.  However, the physical distance 

between clusters and the requirement for high local [Ca2+] to stimulate a cluster 

prevents them from activating one another as the released Ca2+ from 

neighbouring clusters will have diffused away.  Therefore the Ca2+ release is 

limited to local regions of the cardiomyocyte and does not normally propagate 

i.e. the spatial and temporal characteristics of stochastic RyR opening prevent 

the general propagating regeneration of a common pool model.   The gradation 

of response that was observed by Cannell et al. (1987)(187) can be explained by 

increases in Ca2+ influx recruiting more clusters of RyRs than by altering the 

amount of Ca2+ released from a cluster.  That way, as mentioned above, the Ca2+ 

sparks from each cluster summate synchronously brought about by depolarisation 

of the sarcolemma during an AP. 
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1.4.1.3.4 Amplification of Ca2+ 

The amplification of Ca2+ to 200-400 µM which can diffuse to the 

myofilaments(159) is a function of the fractional SR Ca2+ release which is 

dependent on both trigger Ca2+ and the SR Ca2+ content(197-199).  During a normal 

cardiomyocyte contraction the fractional release of the SR is 43 and 55% of its 

Ca2+ in rabbit and rat respectively(197;198).  This fractional release changes in 

response to altered trigger Ca2+ reflecting the graded nature of CICR(198).  

Interestingly, when the SR Ca2+ is altered and reduced to ~50% of normal the 

fractional release becomes effectively nil(199) i.e. ICa cannot trigger CICR.  This 

could be due to an altered Ca2+ sensitivity of the RyR within the SR serving to 

prevent further depletion and allow refilling of the SR(148).  This may indeed be a 

mechanism of terminating normal SR Ca2+ release to prevent a positive feedback 

loop.  When SR Ca2+ content is increased the fractional release elicited is 

increased sharply suggesting a Ca2+ sensitising effect of the RyR within the SR.  

This may explain increased spontaneous release of Ca2+ in the case of SR Ca2+ 

overload (discussed in section 1.6).     

1.4.1.3.5 Prevention of Positive Feedback 

How does local control prevent positive feedback?  There are 3 possibilities; i) 

local depletion of the SR Ca2+, ii) inactivation of the RyR and iii) stochastic 

attrition(194;200;201).  Stochastic attrition means that if the LTCC and the RyRs of 

the associated couplon happen to be closed (channels have a finite probability of 

closing at any given time) at the same moment, then local [Ca2+]i would fall to 

levels such that Ca2+ release from the SR is stopped.  In a synapse model this 

would be quite likely, but for a cluster-bomb model would be harder to achieve 

as both the LTCC and all the RyRs of the cluster would have to be closed at a 

given time.  SR Ca2+ depletion as a mechanism by which positive feedback is 

prevented can be tested with ryanodine or caffeine.  These drugs act to induce 

Ca2+ release from the SR.  When Cheng et al. (1993) and Satoh et al. (1997) 

performed these experiments, they found that there were long-lasting local 

elevations in [Ca2+]i which did not decline over time(195;202).  If SR Ca2+ depletion 

was the mechanism then on the time-scale of a Ca2+ spark (~25 ms) one would 

expect a decrease in [Ca2+]i to prevent regeneration of Ca2+ release, but the 

work of Cheng and Satoh shows [Ca2+]i elevations lasting >200 ms(195;202).  This 

was confirmed by Sham et al. (1998) who found that early LTCC openings 
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produced events called Ca2+ spikes but that prolonged openings of the LTCC 

could not reactivate SR Ca2+ release(200).  These results argue against SR Ca2+ 

depletion as the prolonged LTCC opening should have elicited a response as the 

SR was not prevented from refilling.  The results also argue against stochastic 

attrition as there is a finite probability of channel opening as well as closing so 

prolonged LTCC opening should have elicited a response if this were the case.  

Therefore some form of inactivation is more likely.  Fabiato (1985) proposed 

that positive feedback of CICR was prevented by a second inactivating Ca2+ 

binding site on the RyR(184) i.e. Ca2+ dependent activation.  However this was 

shown not to be the case with intact cardiomyocytes(191).  The work of Sham et 

al. (1998) with Ca2+ spikes demonstrated a use-dependent inactivation due to 

the failure of prolonged LTCC openings to induce SR Ca2+ release.  These 

experiments used a high concentration of EGTA (4 mM) to produce the Ca2+ 

spikes.  The problems that could arise are; i) additional Ca2+ buffering may 

decrease the ability of RyR to trigger neighbouring RyRs, ii) reduce local [Ca2+]i 

around RyRs, which may either reduce local activation or limit inactivation, and 

iii) cytosolic Ca2+ buffering may decrease SERCA uptake of Ca2+ leading to SR Ca2+ 

depletion(148).  There is probably a combination of factors affecting termination 

of SR Ca2+ release.  Wang et al. (2001) showed a coupling fidelity between SR 

Ca2+ depletion and RyR inactivation of 0.71 at first trigger but dropping to 0.30 

following a second stimulation at the same site(203).  This suggests a use-

dependent inactivation. 

1.4.1.3.6 A Likely Model? 

Each of the above proposed models have evidence against them.  Sobie et al. 

(2002) devised another theory supported by experimental data(204).  Anatomical 

observations suggest that RyR clusters are arranged in arrays with touching 

vertices with an accessory protein located at each vertex called FK-506 binding 

protein (FKBP)(205;206).  Therefore Sobie et al. (2002) proposed the ‘sticky cluster’ 

model where FKBP and RyR are coupled allowing for simultaneous 

openings/closings of RyRs within clusters(207).  In this model the coupling can be 

defined by a co-operativity factor with a maximum of 1 and <1 being reduced 

coupling that prolongs the duration of Ca2+sparks i.e. lower co-operativity results 

in less efficient termination of Ca2+ sparks.  Increases in local and SR [Ca2+] does 

not affect duration but the frequency of Ca2+ sparks (in a non-linear fashion).  
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These observations are seen with a RyR cluster size of 50(204).  In this model 

inactivation or adaptation of the RyRs is not required with the coupling of FKBP 

although the model does not specifically rule it out.  Stochastic attrition, 

however, is intrinsic to this model and together with SR Ca2+ regulation of RyR 

and co-operativity with FKBP provides a model that stands up to the 

experimental data.      

1.4.1.4 Activation of the Myofilaments 

Once the RyRs have been activated and [Ca2+]i rises Ca2+ can bind to troponin C 

(TnC), part of the thin filament regulatory complex (Figure 1.18).  After Ca2+ 

binding TnC binds more strongly to troponin I (TnI) which pulls TnI from its actin 

binding site.  The troponin/tropomyosin complex rolls deeper into the groove of 

the actin filament revealing the myosin binding domains of the actin filament.  

The myosin heads then attach forming a cross-bridge utilising the myosin ATPase 

to convert the chemical energy held within adenosine triphosphate (ATP) into 

mechanical energy. At rest, myosin is complexed with ATP or in a rapidly 

equilibrated state with adenosine diphosphate (ADP) and the inorganic 

phosphate (Pi) so ATP is technically hydrolysed but the energy has not been 

utilised yet(208;209).   As [Ca2+]i rises the myosin-ADP-Pi complex interacts with 

actin as the troponin/tropomyosin complex rolls from the binding site releasing 

the Pi rapidly utilising the energy.  The actin-myosin complex further pushes the 

troponin/tropomyosin complex into the actin groove which facilitates myosin 

binding at neighbouring TnC sites.  The actin-myosin complex passes through two 

more energy state with ADP bound encompassing the ‘power stroke’ or myosin 

head rotation.  Actin affinity increases through these steps until ADP dissociates.  

Under normal [ATP]i the actin-myosin complex binds ATP readily  inducing 

dissociation of actin from myosin.  The cycle continues until [Ca2+]i declines.   

Without ATP the cross-bridges remain firmly attached in the state of rigor(148).  

The Ca2+-force interaction is reciprocal because cross-bridge binding and force 

generation enhance the affinity of Ca2+ binding to TnC which slows Ca2+ 

dissociation prolonging the active state. 
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Figure 1.18: Ca2+ activation of the myofilaments. 
Ca2+ binds to troponin C (TnC; blue) causing it to bind more strongly to troponin I (TnI; red).  The 
troponin/tropomyosin complex (black/green) rolls into the actin (grey) groove revealing the binding 
site for myosin (orange).  Binding of myosin further pushes the troponin/tropomyosin complex into 
the groove facilitating neighbouring myosin heads to bind (co-operative activation).  Figure from 
Bers (2008)(159) with permission.  

1.4.1.5 Inositol 1,4,5-Triphosphate Receptors 

While RyRs are the primary Ca2+ release channel in the SR there are also inositol 

1,4,5-triphosphate receptors (IP3Rs).  These are similar to RyRs in that they are 

large tetrameric intracellular Ca2+ release channels located in the SR membrane 

that are activated by Ca2+(210).  However, IP3Rs require IP3 in addition to Ca2+ to 

be activated, therefore making them subject to the control of extracellular 

ligands that engage phospholipase C-activating sarcolemmal receptors such as 

GPCRs and tyrosine kinase(210).  IP3Rs are less abundant than RyRs (<1:50-100 of 

RyRs)(211) but recent work shows they play a role in ECC(212).  IP3 signalling has 

been known about in ventricular cardiomyocytes for nearly 30 years(213) but 

purely as augmentation of RyR Ca2+ signalling(214).  Signore et al. (2013) 

demonstrate a new mechanism that regulates ECC via ion channels and NCX 

resulting in depolarised resting membrane potential and prolongation of the 

AP(212).  Therefore Ca2+ release from the IP3R doesn’t appear to affect 

contraction but can enhance Ca2+ transients via ion flux modulation.  They found 



Chapter 1  General Introduction 69 
 

that inhibition of RyRs had no effect on IP3R AP modulation but intracellular Ca2+ 

buffering did(212).  This suggests the existence of IP3 signalling domains distinct 

from the dyadic cleft(215).  The precedent for this is IP3-dependent perinuclear 

Ca2+ signalling involved in excitation-transcription coupling as evidenced from 

imaging, immunofluorescence studies and electron microscopy(216-218). 

The relative quantities of IP3 and IP3Rs are much lower than other tissues(219) and 

in relation to RyRs in the heart(220) such that it is unlikely to have a significant 

effect on [Ca2+]i.  Instead, it is more likely that any effect IP3Rs have is local.  

Roderick and Knollmann (2013) suggest that Ca2+ released from adjacent IP3Rs 

may “prime” the RyR for activation by LTCC Ca2+ influx and potentially decrease 

the cytosolic Ca2+ buffering in the vicinity of the dyad(215).  Sigmore et al. (2013) 

also demonstrate activation of NCX the inward currents of which may explain the 

prolonged AP they observed(212).  There was no depletion of intracellular Ca2+ so 

other channels must be affected in addition to NCX.  This has potential as a 

source of arrhythmia generation as a previous study examining the Fas ligand 

causing IP3-mediated AP prolongation and depolarised resting membrane 

potential resulted in an increased arrhythmia frequency(221).  Arrhythmias are 

discussed in a later section. 

1.4.2 Diastole 

For the cardiomyocyte to relax again and allow the whole heart to relax and fill 

with blood before the next contraction, a series of events must occur to 

dissociate the Ca2+ from the myofilaments and recycle the Ca2+ from the cytosol 

back to the SR.  Several mechanisms exist and there are species differences in 

terms of the proportion of Ca2+ removed from the cytosol by each mechanism.  

Figure 1.19 shows that during diastole Ca2+ is removed from the cytosol 

predominantly by reuptake to the SR by the sarco (endo)plasmic reticulum 

ATPase pump (SERCA) but also by sarcolemmal extrusion by the Na+/Ca2+ 

exchanger (NCX)(158).  Other mechanisms of Ca2+ removal such as the 

sarcolemmal (plasma membrane) Ca2+ ATPase pump (PMCA) and the 

mitochondrial Ca2+ uniporter account for <25% of Ca2+ extrusion(222;223).  One 

study demonstrated that the time constant of decay (τ) for the PMCA was longer 

at 13.0 s in rat and 10.4 s in rabbit than either SERCA at 0.18 s and 0.29 s 

respectively or NCX at 1.73 s and 1.0 s so would have little effect in the normal 



Chapter 1  General Introduction 70 
 

heart beat(224).  In the rat 92% of Ca2+ removal is due to SERCA and 7% due to NCX 

vs. 70% and 28% respectively in rabbit ventricular cardiomyocytes(224).  Human 

cardiomyocytes have similar Ca2+ handling properties to rabbits with SERCA 

contributing 63% and NCX contributing 37% Ca2+ removal in normal human 

cardiomyocytes(225). 

 

Figure 1.19: Ca2+ dynamics during diastole. 
Ca2+ dissociates from the myofilaments and is removed from the cytosol via two main routes, 
sarcolemmal extrusion by the Na+/Ca2+ exchanger and back into the SR by the SR Ca2+ ATPase 
pump (SERCA).  There is some Ca2+ extrusion by the plasma membrane Ca2+ ATPase (PMCA) 
and into the mitochondria but this is less than 25%. 

1.4.2.1 Relaxation of the Myofilaments 

The myofilaments remain active after [Ca2+]i has decreased prolonging the active 

state of contraction i.e. a lag between decline in [Ca2+]i and relaxation(159).   
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Bers (2008) suggests that increased Ca2+ affinity for TnC as a result of cross-

bridge binding during contraction and slowed dissociation explains the lag 

between [Ca2+]i and myofilament relaxation(159).  Evidence in support of this is 

that acceleration in [Ca2+]i accelerates relaxation proportionately whereas 

protein kinase A (PKA) dependent TnI phosphorylation (which accelerates TnC 

Ca2+ dissociation without altering [Ca2+]i decline) has a much weaker lusitropic 

effect(226).  Altering TnC Ca2+ dissociation has been shown to influence 

relaxation(226-229) therefore there is a dynamic interplay between Ca2+ binding, 

cross-bridge co-operativity  and myofilament deactivation.  Once the [Ca2+]i has 

decreased the myosin remains in complex with ATP in the technically hydrolysed 

state (myosin-ADP-Pi) ready for the release of Ca2+ during the next cycle.   

1.4.2.2 SR Ca2+ Re-uptake 

The main route for Ca2+ to leave the cytosol is via re-uptake to the SR.  This is 

achieved by the sarco (endo)plasmic reticulum Ca2+ ATPase pump (SERCA).  

SERCA is a member of the P-type ion transporting ATPases.  The SERCA protein in 

cardiac muscle and slow twitch skeletal muscle is SERCA2a which has 4 fewer 

amino acids than the fast twitch skeletal muscle counterpart SERCA1a(230;231).  

The general structure of SERCA consists of a cytoplasmic nucleotide binding 

domain where ATP binds to provide the energy for the pump action with the 

phosphorylation site at aspartate-351, a β strand domain and a hinge 

region(232;233).  There are 10 membrane spanning domains (M1 - M10), 5 of which 

have cytoplasmic helical stalks.  Ca2+ binds with high affinity (Km < 1 µM) to the 

cytoplasmic side of the pump.  The Ca2+ is bound to M4-M6 and M8 possibly 

forming a channel(234;235).  The terminal phosphate of the bound ATP is 

transferred to aspartate-351 inducing the transition state of occlusion where 

Ca2+ cannot be released either side.  The phosphorylation causes a transition 

from the E1 form of the protein to E2 which has a much lower Ca2+ affinity (~ 1 

mM) thereby releasing the Ca2+ against a concentration gradient into the SR(148).  

In E2 form protons are taken up and the aspartate-351 is dephosphorylated 

causing the protein to transition to a second occluded state.  ATP binds to the 

nucleotide binding domain restoring the protein to the E1 state releasing the 

protons ready to accept Ca2+ for the next cycle (Figure 1.20).  It has been 

calculated that the likely range of SERCA concentration is 15-75 µM depending 

on species with rats having up 100 µM and rabbits about 19 µM(236).  With an 
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estimated turnover of 10-15 ions.pump-1.s-1 in dog and guinea-pig(237;238) and ~4 

fold lower affinity for Ca2+ than SERCA1a(237) each pump would only have to cycle 

once to remove 50 µM Ca2+ from the cytosol(148). 

 

Figure 1.20: SERCA Ca2+ transport. 
Starting from top left, two Ca2+ ions bind with high affinity (< 1 µM).  Bound ATP is used to 
phosphorylate aspartate-351 altering the protein conformation from E1 state so that the Ca2+ ions 
are occluded.  The protein undergoes further conformational change to E2 and releases the Ca2+ 
ions due to the reduced affinity (~ 1 mM).  Protons are carried to reverse the conformational 
change from E2 to E1.   

1.4.2.3 SERCA Regulation 

In contrast with skeletal muscle, cardiac SERCA is regulated by the protein 

phospholamban (PLB)(239).  PLB exists as a homopentamer (22 kDa; from five 6080 

Da monomers).  Each monomer consists of a hydrophilic cytosolic domain and 

hydrophobic transmembrane α-helix(240).  PLB is an endogenous inhibitor of 

SERCA acting to decrease Ca2+ transport and ATPase activity by reducing the 

affinity of SERCA for Ca2+(241;242).  This essentially shifts the Ca2+ re-uptake curve 

to the right.  PLB can be phosphorylated at either/both of two residues; serine-

16 by protein kinase A (PKA)(239;240;243) and/or at threonine-17 by Ca2+/Calmodulin 

Kinase II (CaMKII)(244;245).  This changes the conformation of PLB causing it to 

dissociate from SERCA which restores the higher Ca2+ affinity thereby increasing 

Ca2+ uptake to the SR (Figure 1.21). 
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Figure 1.21: Schematic of PLB-SERCA Interaction. 
PLB can exist as the monomer or the pentamer with a dissociation constant Kd1.  Monomeric PLB 
binds to SERCA with a dissociation constant Kd2.  Heterdimeric PLB-SERCA inhibits the ATPase 
but phosphorylation of PLB or Ca2+ binding to the pump can remove the inhibition. Figure from 
Kimura et al. (1997)(246) with permission. 

1.4.2.4 Sarcolemmal Extrusion of Ca2+ by Na+/Ca2+ Exchange 

 After SR re-uptake the next main contributor to reduce [Ca2+]i during diastole is 

the Na+/Ca2+ exchanger (NCX).  NCX is a ~110 kDa 938 amino acid protein with 9 

transmembrane domains and a 550 amino acid cytoplasmic loop between the 5th 

and 6th transmembrane domains(247;248).  The cytoplasmic loop does not appear to 

be necessary for Na+ or Ca2+ transport(249) but does appear to be involved in 

allosteric regulation by Ca2+(250;251).  The NCX exchanges 3 Na+ for 1 Ca2+ resulting 

in an electrogenic current (INa/Ca) which can act in either direction and 

contributes to the cardiac AP (Figure 1.11 &Figure 1.12).  The direction NCX acts 

depends on Em following a driving force equal to Em – ENa/Ca (where ENa/Ca = 3ENa – 

2ECa with ENa and ECa being the respective equilibrium potentials)(252).  Extrusion 

of Ca2+ is referred to as forward mode and removes the same [Ca2+] that entered 
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the cardiomyocyte via the LTCC during systole in order to maintain balance(253).  

Extrusion of Ca2+ occurs as a single Ca2+ ion binds to the E1 state NCX on the 

cytoplasmic side.  This induces a conformational change through which NCX 

changes to the E2 state facing outward.  The Ca2+ is released and three 

extracellular Na+ ions can bind the E2 NCX.  This induces a conformational 

change back to E1 releasing the Na+ inside the cardiomyocyte cytoplasm{Hilgemann, 

1991 757 /id} (Figure 1.22). 

 

Figure 1.22: NCX Ca2+ transport in forward mode. 
Starting from top left, a high [Ca2+]i results in one Ca2+ ion binding to NCX causing a conformational 
change to the occluded form and then further change to the E2 conformation facing the exterior of 
the cardiomyocyte.  The Ca2+ is released and 3 Na+ ions bind before a conformational change to an 
occluded state followed by return to E1 occurs.  The Na+ ions are released and Ca2+ can bind 
again.  Figure drawn from description by Hilgeman et al. (1991){Hilgemann, 1991 757 /id}.   

Reverse mode NCX will bring Ca2+ into the cytoplasm and is governed by high 

[Na+]i shifting Em to more positive values than the equilibrium potential(252).  This 

will occur normally during depolarisation of the AP but only for a short time (<1 

ms) before Ca2+ influx through the LTCC activates CICR and [Ca2+]i rises switching 

NCX back to forward mode(159).  There are species differences in [Na+]i which 

determines the extent of Ca2+ extrusion by NCX.  Rats for example have a higher 

resting [Na+]i so Na+ influx with concomitant Ca2+ extrusion by NCX has less drive 

meaning SERCA competes more effectively to reduced [Ca2+]i thereby loading the 

SR at rest.  This can be readily seen in resting rat cardiomyocytes as increased 

spontaneous contractile activity as the SR Ca2+ is higher which increases the 

sensitivity and Po of the RyR(199).  In the rabbit and human [Na+]i is lower such 
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that the Ca2+ extrusion has a greater drive due to a higher differential 

concentration thereby increasing Ca2+ extrusion.  SERCA competes relatively less 

effectively so the SR Ca2+ will have a tendency to decrease at rest(252).  

1.4.2.5 Other Ca2+ Removal Mechanisms 

There are two other sources of Ca2+ removal from the cytosol; the sarcolemmal 

(plasma membrane) Ca2+ ATPase (PMCA) and the mitochondrial Ca2+ uniporter.  

The PMCA is a P-type ATPase like SERCA so it utilises the energy from ATP to 

transport ions.  The PMCA can be stimulated by PKA and calmodulin(255;256) 

enhancing both Vmax and Km.  However, during normal Ca2+ transients the 

transport rate is <1µM.s-1 so would take about 60 s to produce relaxation by 

itself(257).  When compared with the LTCC (300 µM.s-1), RyR (1000 µM.s-1), SERCA 

(200 µM.s-1) and NCX (30 µM.s-1) the transport of PMCA seems to be less 

important(148).  Its purpose is more likely to be a longer term Ca2+ balance. 

Mitochondrial transport in terms of ECC is also of limited importance as 

experiments by Bassani et al. (1992) demonstrated that inhibition of SERCA and 

NCX resulting in relaxation occurring over tens of seconds(257).  However Ca2+ 

fluxes may still be important in terms of mitochondrial function. 

1.5 β-Adrenergic Stimulation 

During situations of physiological or pathological stress the body responds with 

increased sympathetic tone leading to release of catecholamines such as 

adrenaline and noradrenaline.  These ligands bind the adrenergic receptors 

including β1 receptors in the heart.  The β receptors are large 7 transmembrane 

proteins with a ligand binding domain on the extracellular side and the 

cytoplasmic C-terminal attached to GTP-binding protein (G-protein) (Figure 

1.23A).  Activation of the receptor results in dissociation of the α subunit which 

stimulates adenylyl cyclase (AC) to produce cyclic AMP (cAMP).  Cyclic AMP 

activates PKA (and CaMKII potentially through PKA(258)) which phosphorylates; i) 

troponin I in the myofilaments acting to decrease sensitivity thereby improving 

lusitropy during diastole, ii) LTCC(153) increasing ICa, iii) PLB by PKA at serine-

16(239;240;243) (and by CaMKII at threonine-17(240;244;245)) decreasing SERCA 
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inhibition, iv) RyR increasing Po
(259) (Figure 1.23A).  These changes all serve to 

increase the inotropy and chronotropy of the heart(148).   

 

Figure 1.23: β-adrenergic signalling in the cardiomyocyte. 
(A) Non-failing myocardium – β stimulation activates PKA which phosphorylates PLB disinhibiting 
SERCA, RyR increasing Po, LTCC increasing Ca2+ influx and desensitises the myofilaments 
facilitating increased lusitropy.  (B) Failing myocardium – proposed sequence of events from 
prolonged β-adrenergic exposure, PKA hyperphosphorylates RyR increasing Po such that Ca2+ 
leaks at rest spontaneously, SERCA activity is downregulated and NCX is upregulated depleting 
the SR.  Figure from Brum et al. (2006)(260) with permission. 
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1.6 Abnormal Ca2+ Dynamics and Arrhythmias 

Diseases of the heart can affect Ca2+ dynamics via alteration of RyRs, associated 

proteins, spatial organisation of couplons, RyR Ca2+ sensitivity, SR Ca2+ content 

and Ca2+ leak(222).  In the normal situation CICR occurs as Ca2+ influx through the 

LTCC triggers Ca2+ release from the RyR as described above.  The Ca2+ release 

from an individual couplon or Ca2+ release unit is termed a Ca2+ spark(195) which 

will occur simultaneously across all couplons within the cardiomyocyte leading to 

a synchronous rise in [Ca2+]i and contraction of the cell.  Under certain 

circumstances, SR-mediated spontaneous Ca2+ release without a LTCC trigger can 

occur.  In this case, the SR-mediated Ca2+ release is not synchronised by an AP 

throughout the T-tubules and results in an asynchronous propagating rise in 

[Ca2+]i and wave of contraction.  This event is called a Ca2+ wave(261).  

1.6.1 Ca2+ Waves  

Some types of arrhythmias can be traced back to abnormalities of Ca2+ handling, 

specifically Ca2+ waves when the SR is overloaded with Ca2+(262;263).  The Ca2+ 

waves occur when spontaneous Ca2+ sparks leak from the SR at a sufficient 

quantity (~100 s-1) to trigger neighbouring couplons(261).  Spontaneous Ca2+ 

release from the SR can be thought of in terms of a “threshold theory”(264).  

When the SR [Ca2+] reaches threshold spontaneous Ca2+ release occurs, either 

from increasing the Po of the RyR(265) or the magnitude of the Ca2+ sparks(195).  

The normal SR threshold can be reached sooner by either increasing Ca2+ influx 

or decreasing Ca2+ efflux which will also elevate [Ca2+]i thereby increasing the 

drive for NCX.  The influx of Na+ being electrogenic can trigger a delayed after 

depolarisation (DAD) which, if large enough, can trigger an AP.  The SR Ca2+ 

release threshold depends on the properties of the RyR.  If the Po is increased, 

then the threshold is effectively lowered as a smaller [Ca2+] will trigger a release 

of Ca2+.  Experimentally the Po can be increased (and threshold reduced) by 

caffeine(266) whereas tetracaine has the opposite effect (reducing Po and 

increasing the threshold)(267).  As would be expected of a Ca2+ stimulated 

receptor, RyR Po is increased by higher SR and intracellular [Ca2+](268;269).  

Stimulation with a β-adrenergic agonist can elevate Ca2+ influx via PKA-mediated 

phosphorylation of the LTCC(153) which will lead to an increased SR Ca2+ content.   

Likewise, the SR content can be increased by decreasing NCX action by raising 
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[Na+]i through inhibition of the Na+/K+ ATPase with cardiac glycosides(270).  

Alteration of RyR properties can occur pathologically altering its Ca2+ sensitivity.  

For example, in the disease catecholamine polymorphic ventricular tachycardia 

(CPVT) there is a mutation in the RyR(271;272) which increases Po in response to 

PKA-mediated phosphorylation beyond the normal level(273).  CPVT can also occur 

from mutations in the calsequestrin gene (CASQ2)(274) and a triadin mutation has 

been reported(275).  In the case of heart failure, there are reports of 

hyperphosphorylation of the RyR resulting in dissociation of FKBP12.6(276).  

FKBP12.6 acts as a diastolic inhibitor of RyR reducing Po and aberrant Ca2+ 

release i.e. stabilising the closed state of the channel(276). However, in heart 

failure this hypothesis remains controversial as phosphorylation of the RyR in 

different models of heart failure is inconsistent(277-280).  SERCA may also play a 

role in the generation of Ca2+ waves.  The obvious effect is increased SERCA 

activity brought about by phosphorylation of PLB from β-adrenergic 

stimulation(239;240;243) and disinhibition leads to a greater quantity of Ca2+ being 

pumped into the SR(192).  However, SERCA can also have an opposite effect by 

decreasing Ca2+ wave propagation(281;282) as the Ca2+ must diffuse through the 

cytoplasm from release site to release site past network SR containing SERCA i.e. 

SERCA is uptaking the released Ca2+ before it reaches the next release site(192). 

1.6.2  Progression to Arrhythmias 

1.6.2.1 Delayed After Depolarisations 

Spontaneous Ca2+ release can lead to the generation of an “aftercontraction” or 

escape beat.   At the single cell level, for an arrhythmic contraction to occur 

there is the generation of a transient inward current(283) which can lead to a 

second depolarisation of the cardiomyocyte occurring after the primary SA 

nodal-derived AP.  This is called a delayed afterdepolarisation (DAD).  This has 

been shown to correlate with SR Ca2+ overload under voltage-clamp 

conditions(284).  The inward current has been shown to be initiated by the 

presence of Ca2+ at the inner surface of the sarcolemma from Ca2+ release from 

SR overload(270;285).  An electrogenic Ca2+ triggered sarcolemmal ion transporter is 

the NCX and the transient inward current has been attributed to inward NCX 

current(286).  The inward current, if large enough can reach threshold and 

depolarise the cell to trigger an AP(287).  However, the whole heart is a syncytium 
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of electrically coupled cells via connexin-43 gap-junctions(154).  Any inward 

current occurring in one cell would be diluted across the coupled cells therefore 

many cells would have to exhibit a DAD simultaneously in order for an ectopic 

beat to occur(192).  Winslow et al. (1993) used an atrial model comprising an 

array of 512 x 512 cardiomyocytes which suggested as many as 1,000 would be 

needed for an ectopic beat(288). 

1.6.2.2 Early After Depolarisations 

Ca2+ waves can also be implicated in other kinds of arrhythmogenic disturbances 

such as spatially discordant alternans (SDA), repolarisation changes and early 

after depolarisations (EADs)(289).  EADs can occur when AP duration is prolonged 

which allows the L-type Ca2+ current to recover during the plateau phase of the 

AP(286).  This enables a second upstroke to occur.  Unlike DADs which are 

mediated through the NCX, EADs are likely to be mediated through the L-type 

channels as Em has not sufficiently repolarised to allow Na+ channels to have 

recovered from inactivation.  EADs are thought to be involved in arrhythmias 

with prolongation of the electrocardiographic QT interval, although this is 

difficult to test as it would require AP recording in intact hearts(286).  Yet studies 

have shown that EADs appear to be synchronous events and not wave 

phenomena as seen in DADs which appear to show spatially heterogeneous Ca2+ 

increases(290;291).   

1.6.2.3 Treatment Strategies 

There are three ways to target arrhythmias from Ca2+ waves; i) abolish the Ca2+ 

waves, ii) prevent Ca2+ waves producing a DAD (or EAD), iii) stop the DAD 

producing an ectopic beat.  Preventing ectopic beats from DADs has been 

attempted with the local anaesthetics encainide and flecainide that reduce the 

excitability of the sarcolemma.  Unfortunately they were shown to have 

dangerous adverse effects including sudden death(292).  Preventing Ca2+ waves 

from producing DADs would require inhibition of NCX to prevent the electrogenic 

influx of Na+ but this could have unwanted effects in terms of Ca2+ handling and 

may end up causing more Ca2+ waves as SERCA will no longer have competition 

and could overload the SR with Ca2+(293).  With regard to abolishing Ca2+ waves 

there are two approaches; prevent the SR Ca2+ overload that produces the 
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waves, or prevent the waves occurring despite Ca2+ overload.  Preventing SR Ca2+ 

overload can be achieved by reducing the [Na+]i thus increasing NCX mediated 

Ca2+ efflux.  Local anaesthetics such as lidocaine and mexiletine inhibit the 

tetrodotoxin sensitive Na+ channel thereby decreasing [Na+]i resulting in 

increased Ca2+ efflux activity by NCX(294).  This must be carefully balanced so as 

not to cause a DAD via increased NCX activity.  Prevention of Ca2+ waves without 

altering SR Ca2+ overload which would be best achieved by targeting the RyR and 

reducing Po effectively increasing the SR Ca2+ release threshold but without 

altering systolic Ca2+ release(192).  The RyR is regulated by FKBP12.6 during 

diastole preventing Ca2+ leak.  The drug JTV519 (K201) has been suggested to 

increase FKBP12.6 binding decreasing the RyR Po and has been shown to 

decrease occurrence of ventricular arrhythmias(273).  However, other studies 

propose no effect on FKBP12.6 binding from use of JTV519, although Ca2+ wave 

frequency is reduced(295;296).  The local anaesthetic tetracaine has also been 

shown to reduce RyR Po
(297) and increase the SR Ca2+ release threshold(267).  It was 

shown to abolish Ca2+ waves in cardiomyocytes subjected to Ca2+ overload by 

excessive β-adrenergic stimulation(298).  Unfortunately tetracaine would be an 

inappropriate drug as it has antagonistic effects at Na+ channels required for 

APs; however a compound with more target specificity may be an attractive 

option.  

1.6.3 Ca2+ Handling in Heart Failure 

Heart failure (HF) is a disease state with weakening of myocardial contractility 

ultimately resulting in deterioration of ventricular pump function.  This can 

occur following a severe myocardial insult such as a myocardial infarction (MI) 

where large areas of the myocardium have a reduced blood supply due to 

narrowing or blockage of the coronary arteries resulting in ischaemia.   The 

remaining viable tissue can be taxed beyond its means and begin to fail.  The 

characteristic cardiomyocyte features of HF are reduced systolic Ca2+ transient 

amplitude and prolonged Ca2+ transient duration(299-302) with a concomitant 

reduction in the SR Ca2+ content(303-306).  The reduction in SR Ca2+ is thought to be 

due to an increase in diastolic Ca2+ leak from the SR from the RyR(299) but could 

equally be due to reduced SERCA activity or protein levels and increased NCX 

activity.  Reduced SERCA activity thereby reducing Ca2+ re-uptake to the SR 

during diastole could occur from reduction in SERCA expression as described by 
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Mercadier et al. (1990) in human heart failure(307) or by reduced activity due to 

increased inhibition by PLB(308).  In human heart failure it has been shown that 

there is decreased phosphorylation of PLB at the PKA phosphorylated serine-16 

residue(309) and that the same is true in a rat model of heart failure(310).  Current 

thinking is that CaMKII plays a role a role in heart failure through altered 

phosphorylation of PLB at the threonine-17 residue phosphorylated by 

CaMKII(311).  Increased NCX activity is thought to play a role in heart failure(312-

315), acting as increased competition for SERCA thereby reducing SR Ca2+ content, 

however these changes are inconsistent(302).  Another potential reduction in Ca2+ 

release is a reduced trigger Ca2+ from the LTCC.  Indeed, it has been found that 

LTCC number has been reduced in HF(316).  However, another study shows that 

the activity of LTCCs increases(317) which reflects an increase in β-adrenergic-

mediated phosphorylation of LTCCs(318).  What seems to be widely accepted 

though is diastolic Ca2+ leak from the SR(319-323), but the mechanism by which the 

leak occurs remains open to debate(276;277;324).  There is some evidence to suggest 

that hyperphosphorylation of the RyR at the CaMKII site Ser2815 can result in an 

increase in diastolic Ca2+ leak(280;319), while the others propose PKA-mediated 

hyperphosphorylation of the RyR resulting in dissociation of the regulatory 

protein FKBP12.6(276;324).  Figure 1.23B shows the proposed changes present in 

heart failure.  Many of the changes are a result of a chronic β-adrenergic 

stimulation leading to a refractory state where further stimulation has no effect 

therefore patients will be unable to adapt to an increase in cardiac workload(325).  

1.6.4 Ischaemia/Reperfusion Injury 

Coronary heart disease (CHD) is the leading cause of death worldwide with an 

estimated 7 million deaths annually(326).  The disease is a narrowing and eventual 

blockage of the coronary arteries that supply the myocardium with blood.  The 

result of blockage is myocardial infarction (MI) creating a region of ischaemia 

distal to the obstruction.  Currently the most effective strategy for reducing the 

size of the infarct and improving clinical outcome is early reperfusion with use 

of thrombolytic therapy or percutaneous coronary intervention (PCI)(327).  PCI is a 

surgical procedure where a balloon is inserted into the blocked/narrowed 

coronary artery via a remote vessel, often a femoral or radial artery, and 

inflated to open the lumen of the affected coronary artery and restore blood 

flow to the ischaemic myocardium.  Unfortunately the process of restoring blood 
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flow can itself be damaging – termed myocardial reperfusion injury.  The injury 

results in death of cardiomyocytes that were viable immediately prior to 

reperfusion(328).  Myocardial reperfusion injury consists of four types of 

dysfunction.  The first is myocardial stunning, a persistent mechanical 

dysfunction despite no irreversible damage and restoration of normal coronary 

flow(329).  This phenomenon is usually reversible days to weeks after the initial 

insult.  The second type is the no-flow phenomenon where there is microvascular 

damage preventing restoration of blood flow to the affected region(330).  The 

third type is reperfusion arrhythmia brought about by Ca2+ overload and 

modulation of the Ca2+ handling proteins such as LTCC, RyR, SERCA and NCX(331-

337) as discussed in section 1.6.1.  The fourth type of cardiac dysfunction is 

termed lethal reperfusion injury(327).  There are multiple contributing factors; 

oxygen, Ca2+ and pH paradoxes and inflammation.  Oxygen paradox is where 

reperfusion of the ischaemic tissue results in oxidative stress and release of 

reactive oxygen species (ROS) and myocardial enzymes(338) including 

cathepsins(339;340).  Ca2+ paradox occurs when intracellular Ca2+ rises secondary to 

sarcolemmal damage and ROS effects inhibiting SERCA(341-344) and increasing Po of 

the RyR(341;345-347).  The increase in Ca2+ can overload the cardiomyocyte leading 

to a state of hypercontracture and can overload the mitochondria leading to 

opening of the mitochondrial permeability transition pore (MPTP)(328) which 

causes cell death by uncoupling of oxidative phosphorylation and ATP 

production.  The pH paradox happens when rapid reperfusion washes out the 

lactic acid from anaerobic respiration leading to activation of the Na+/H+ 

exchanger and Na+/HCO3
- symporter overwhelming the cell’s pH buffering 

capacity(348), which can depress force of contraction, raise diastolic [Ca2+]i
(148).  

Finally inflammation; the infarct zone attracts neutrophils during the first 24 

hours causing vascular plugging, release of degradative enzymes such as cysteine 

proteases and ROS(349) (Figure 1.24). 
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Figure 1.24: Mediators of Reperfusion Injury 
During ischaemia several biochemical and metabolic processes contribute to injury.  Mitochondrial 
re-energisation (purple), generation of ROS (orange), [Ca2+]i overload (green), rapid restoration of 
pH (blue) and inflammation (red) all interact to mediate cardiomyocyte death through the opening 
of the MPTP causing hypercontracture of the cardiomyocyte.  Reproduced with permission from 
Yellon and Hausenloy (2007)(327), copyright Massachusetts Medical Society.  

1.6.4.1 Treatment Strategies 

Previous attempts at targeting individual mediators of lethal reperfusion injury 

have produced inconsistent results that have not translated to clinical studies, 

which have been extensively reviewed in Yellon and Hausenloy (2007)(327).  The 

current thinking is to target multiple mediators to achieve a synergistic effect.  

For example, ischaemic post-conditioning targets several mediators and has 

been shown to reduce myocardial injury in a clinical study of patients with acute 
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MI undergoing PCI(350).    Ischaemic post-conditioning was identified by Zhao et 

al. (2003) who reduced infarct size from 47% to 11% after a 45 min period of 

ischaemia in dogs.  This was achieved by inducing three 30 s cycles of ischaemia 

during reperfusion(351).  Post-conditioning acts to reduce oxidative stress, Ca2+ 

overload, improve endothelial cell function, reduce cardiomyocyte apoptosis, 

reduce neutrophil accumulation(352) as well as delaying the restoration of normal 

pH(353).  In addition, post-conditioning also activates the reperfusion injury 

salvage kinase (RISK) pathway(354) and inhibits MPTP opening(355).  Preconditioning 

is a similar phenomenon whereby infarct size can be reduced by initiating 

transient periods of ischaemia before the sustained ischaemic event and appears 

to act in a similar way as post-conditioning(356).  Several studies have tested 

post-ischaemic conditioning and reduced infarct size by up to 36% with improved 

coronary blood flow(350;357;358).  The disadvantage of post-ischaemic conditioning 

is that it requires surgical intervention and so is only available to patients with 

acute MI undergoing PCI.  Therefore, pharmacologically targeting the mediators 

recruited by post-conditioning or indeed others that activate the RISK pathway 

or inhibit MPTP opening would be attractive targets.  Hausenloy and Yellon have 

shown that agents that activate phosphatidylinositol-3-OH kinase (PI3K)-Akt and 

p42/p44 extracellular signal-regulated kinases (Erk 1/2) have reduced infarct 

sizes by up to 50%(354;356).  Other strategies examined have been atrial natriuretic 

peptide before PCI which reduced infarct size by 15% and improved ejection 

fraction by 5% but had no effect on mortality(359), glucagon-like peptide 1 which 

reduced infarct size by up to 45%(360), erythropoietin which reduced infarct size 

by 42%(361) and atorvastatin which reduced infarct size by 48%(362).  Inhibition of 

the MPTP has been investigated and shown that with cyclosporine or sanglifehrin 

A (MPTP inhibitors) that infarct sizes can be reduced by 50%(363).  The role of 

degradative enzymes such as the cysteine proteases were investigated in the 

1980s by Bolli and colleagues which showed that the cysteine proteases could 

play a role in acute MI but that general proteolysis was not the method by which 

they acted based on the technique they used(364).  However they acknowledge 

that their technique of measuring tyrosine release is not specific enough to 

detect selective proteolysis of particular proteins(364).  They did however identify 

proteases that could have a role in acute MI through specific inhibition with 

leupeptin, pepstatin and antipain, specifically cathepsins A, B, D, L and H. A 

second study by the same group examined infarct size after ischaemia with 
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protease inhibition but found no significant change(365).  However, recent 

evidence has emerged that suggest proteases and their inhibition do have a 

significant role in ischaemia/reperfusion injury in the brain following 

stroke(366;367).   

1.6.5 Endogenous Cathepsins 

The maintenance of a healthy organism requires controlled biosynthesis, 

maturation, function and terminal breakdown of proteins.  Proteolytic enzymes 

contribute to these processes by cleaving peptide bonds resulting in the target 

protein’s destruction, maturation or modulation of its biological activities(368).  

These proteolytic enzymes are broadly categorised as matrix metalloproteinases 

(MMPs) and cathepsins, derived from the Greek word kathépsin meaning to 

digest or boil down first identified in the 1920s(369).  The cathepsins can be 

classified according to substrate specificity; serine cathepsins (A and G), aspartic 

cathepsins (D and E) and cysteine cathepsins (B, C, F, H, L, K, O, S, W, V and 

X)(370), which are the primary focus of this thesis.  The cathepsins were shown to 

be localised within acidic intracellular organelles such as lysosomes and 

endosomes where their primary function was to break down unwanted 

proteins(371-374).   

1.6.5.1 Cathepsins in the Whole Body 

Recent studies reveal a much wider role for cathepsins in health such as antigen 

presentation in the immune system(375), collagen turnover in bone and 

cartilage(376;377) and neuropeptide and hormone processing(378;379).  A list of 

currently known cysteine cathepsins and their physiological functions is 

presented in Table 1.2 from Brix et al. (2008)(380).  Recent work has also shown a 

wider range of active locations and pH for cathepsins such as secretory 

vesicles(381;382), the cytosol(383-385), and the nucleus(386;387) each of which are 

shown in Table 1.2.  
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Table 1.2: Clan C1A cysteine proteases. 
Name Tissue Expression Function pH 

Cathepsin B Ubiquitous Lysosomal, extracellular; 
proteolytic processing of amyloid 
precursor protein, tumour invasion 
and metastasis 

pH 4-6 
(optimal), 
pH 7 (stable) 

Cathepsin C Ubiquitous Lysosomal; activates granulocyte 
serine proteases, factor XIII 
neuraminidases 

pH 6 
(optimal), 
pH 4-7.5 
(stable) 

Cathepsin F Heart, skeletal 
muscle, brain, testis, 
ovary 

Lysosomal; role in tumour invasion 
and metastasis 

pH 5.2-6.8 
(optimal), 
pH 4.5-7.2 
(stable) 

Cathepsin H Brain, kidney, liver; 
inflamed tonsil 

Lysosomal; invariant chain (Ii) 
degradation 

pH 6.8 
(optimal), 
pH 5-8 
(stable) 

Cathepsin K Predominantly in 
bone (osteoclasts); 
present in most 
epithelial tissues 

Lysosomal, extracellular; 
osteoclastic bone resorption; 
fibrinogen and ECM degradation 

pH 6 
(optimal), 
pH 4-8 
(stable) 

Cathepsin L Ubiquitous Lysosomal, extracellular, nuclear 
(truncated); antigen presentation, 
Ii degradation, cell cycle 
regulation  

pH 6 
(optimal), 
pH 4-7 
(stable) 

Cathepsin S Alveolar 
macrophages, 
spleen, testis, 
epithelial cells; CD4+ 
T-cells  

Lysosomal, extracellular; Ii 
degradation, artherogenesis, 
antigen presentation, 
angiogenesis, elastinolytic activity 

pH 6 
(optimal), 
pH 4.5-8 
(stable) 

Cathepsin V (L2) Predominantly in 
thymus, testis; 
present in brain, 
corneal epithelium, 
skin 

Lysosomal; antigen presentation, Ii 
degradation 

pH 5.7 
(optimal), 
pH 4-7.2 
(stable) 

Cathepsin W Spleen, natural killer 
and cytotoxic T-cells 

Immune response, regulation of T-
cell cytotoxic activity 

Not reported 

Cathepsin X Widely expressed; 
ubiquitous in primary 
tumours 

Lysosomal; non-proteolytic in cell 
adhesion 

Not reported 
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Moreover, the cysteine cathepsins have been shown to have roles in various 

disease processes such as cancer(388), obesity(389-391), rheumatoid arthritis(392;393) 

as well as cardiovascular diseases such as atherosclerosis(394-399) and 

cardiomyopathy(400-402) demonstrated in both animal models and human cases.  

For example, in cancer, cathepsins B, F, H, K, L, V, S and X have been shown to 

be overexpressed in many carcinomata and frequently associated with a poor 

prognosis(403-408).  In the case of obesity and type II diabetes, deletions of 

cathepsins K or L have been shown to limit obesity, and cathepsin S has been 

shown to be increased in both clinical cases of type II diabetes and in diabetes-

prone mice(391;409-411).  The cathepsins B, L, K and S are reported to be involved in 

rheumatoid arthritis and osteoarthritis as levels of these cathepsins are 

increased within the synovial fluid of patients with these conditions(368). 

1.6.5.2 Cathepsins and the Cardiovascular System 

As well as cancer and metabolic diseases such as diabetes, cysteine cathepsins 

also play a role in cardiovascular disease.  For example, cathepsins B, L and S 

have been shown to be increased in atherosclerotic lesions of mice(412).  

Moreover, cathepsins K and S were found to be overexpressed in human 

atherosclerotic lesions(398), and more recently, cathepsin L protein expression 

has also been shown to be increased in atherosclerotic lesions with a 

concomitant increase in circulating serum levels(413).  Cathepsins also play a role 

in restenosis and neointima formation following PCI(414).  Cathepsins contribute 

to extracellular matrix (ECM) remodelling as part of their protease activity(414), 

which suggests a possible role in remodelling diseases such as restenosis and 

neointima formation.  In a rabbit model of balloon injury (a method of PCI where 

inflation of a balloon inserted into the coronary vessel via the femoral artery 

restores the lumen of the occluded artery), cathepsin S mRNA and protein 

expression were increased(415).  A similar study in rats utilising a carotid balloon 

injury showed increased mRNA and protein expression of both cathepsins S and 

K(416).  By their ECM remodelling activity, cathepsins also play a role in aneurysm 

formation.  When human patients with abdominal aortic aneurysm were assessed 

it was found that the lesion showed increased protein expression of cathepsins K 

and S with a concomitant decrease in the natural cathepsin inhibitor, cystatin 

C(417).  Moreover, further studies have demonstrated increased proteolytic 

activity of cathepsins B and L in the wall of the aneurysm and associated 
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thrombus(418-420).  In the same study by Liu J et al. (2006) that examined serum 

cathepsin-L (CatL) levels in patients with atherosclerosis, raised serum levels of 

CatL were also found in patients with aneurysm(413). 

1.6.5.3 Cathepsins in the Heart 

Within the heart, cysteine cathepsins are expressed in all cell types (Figure 

1.25).  The upshot of this is that cysteine cathepsins have multiple roles in 

cardiac disease.  A study by Cheng et al. (2006) showed that cathepsins B, S and 

K mRNA and protein expression were increased in hypertrophic and failing 

myocardium in the Dahl salt-sensitive rat model of hypertension(421).  Moreover, 

when immunohistochemistry for cathepsins K and S was performed on the 

myocardium from the same rats, there was increased staining in cardiomyocytes, 

intra-coronary smooth muscle cells and macrophages compared to normal 

control myocardium(421).  When the hypertensive rats were treated with the 

broad spectrum cysteine protease inhibitor E-64 (trans-epoxysuccinyl-L-

leucylamido-(4-guanido) butane) or a CatS specific inhibitor, elastinolytic 

activity in the myocardium was blunted(421;422).  Cysteine cathepsins also play a 

role in cardiomyopathy.  Further studies by Cheng et al. (2012) have observed 

increased mRNA expression of cathepsins B, L, S and/or K in both dilated and 

hypertrophic cardiomyopathy in human disease(423).  
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Figure 1.25: The cathepsin cysteine proteases expressed in cardiovascular cells. 
(A) Macroscopy of whole heart.  (B) Microscopy of the myocardium, scale bar = 50 µm. Cats = 
cathepsins; CFC = cardiac myofibroblast; CMC = cardiomyocyte; SMC = smooth muscle cell; and 
EC = endothelial cell.  Figure from Cheng et al. (2012) with permission(423). 

Although other cathepsins have been studied in cardiovascular disease such as B, 

K and S(423), CatL is gaining interest.  CatL is a ubiquitously expressed 

homoeostatic enzyme involved in many disease processes(368).  Within the heart 

it is known that a basal level appears to be necessary, as a CatL knockout mouse 

model shows a dilated cardiomyopathy phenotype(402).  It also seems to play a 

role in cardiovascular disease involved in remodelling post-infarction(424) and 

atherosclerosis(413) and appears to be increased in the serum of individuals with 

coronary heart disease(425;426).  However, the consequences of raised serum 

levels remain unclear as do the potential mechanisms of action.  What has been 

shown, in the case of coronary artery disease, is a positive correlation of serum 

CatL levels and severity of disease(425).  Specifically, there were three findings; i) 

patients with unstable angina pectoris had higher serum CatL levels than those 

with stable angina pectoris, ii) of patients with acute coronary artery disease, 

those with acute MI had higher CatL serum levels than those with unstable 

angina pectoris, iii) patients with previous chronic MI had the highest serum CatL 

of all(425).  Furthermore, there is a strong correlation between percentage of 

stenosis of the left anterior descending coronary and serum CatL levels in 
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individual patients(413).  A recent study by Liu A et al. (2013) investigated the 

role of CatB in myocardial infarction(427).  In that study rats were subjected to 

left anterior descending coronary artery ligation followed by intraperitoneal 

administration of the CatB specific inhibitor CA074Me at a dose of 10 mg.kg.day-1 

or equivalent volume of vehicle for 4 weeks.  They found the treated rats 

demonstrated smaller decreases in cardiac function, decreased cardiomyocyte 

hypertrophy and decreased fibrosis(427).  In addition, the serine cathepsin CatA 

and the aspartic cathepsin CatD have also been shown to be released and have 

increased proteolytic activity in hearts that have undergone 

ischaemia/reperfusion both experimentally and clinically(368;428-431).   

1.6.5.4 Cathepsin-L  

Among the cysteine cathepsins, the most extensively described in health and 

disease is CatL(423).  As with the other cathepsins (Table 1.2), CatL is normally 

located within the lysosome with an optimal activity at pH 5.5-6.0(372) but is 

active at neutral pH(380).  It has been demonstrated that in transgenic CatL 

knock-out mice that there is accumulation of material within enlarged lysosomes 

with ventricular dilatation and impaired cardiac contraction(401;402).  Therefore, 

these data suggest that a basal level of CatL is essential for maintenance of 

normal cardiac structure and function.  Recent work has shown that cathepsins, 

including CatL, can be released/secreted into the extracellular space and have 

proteolytic activity resulting in ECM remodelling(368).  Moreover, as discussed 

above, serum levels of CatL have been shown to be increased with coronary 

heart disease(413;425;426).  Yet, despite this evidence, the consequences of raised 

serum levels of CatL remain unknown.  A study by Sun et al. (2011) induced MI 

utilising a permanent coronary artery ligation technique in CatL deficient 

transgenic mice(424).  Induction of MI in the complete absence of CatL in all cell 

types increased infarct size at day 14 post-MI.  Sun et al. (2011) suggested that 

this was caused by a reduced level of blood/bone marrow derived cell 

mobilisation to the site of injury to aid cardiac repair (due to their reduced 

ability to remodel the ECM to enable mobilisation)(424).  They also suggested that 

absence of CatL led to a reduced level of myofibroblasts and circulating 

fibroblasts, which would normally limit infarct dilatation(424).  In another study 

by the same group, Sun et al. (2013) also demonstrated that in CatL deficient 

mice that had undergone aortic banding, to increase afterload thereby inducing 
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left ventricular hypertrophy, had significantly worse systolic and diastolic 

function as well as reduced survival(432).  They suggested that CatL lysosomal 

protein degradation and activation of autophagy ameliorated the hypertrophic 

response to the aortic banding(432).  It is important to recognise that in both 

these studies transgenic mice with a complete CatL deficiency from conception 

were used.  A deficiency from conception in all cell types will result in complex 

compensatory biochemical changes and alterations in cellular structure 

(specifically lysosomal structure), and is highly likely to lead to different 

responses to induction of MI or aortic banding.  The recognition of potential 

compensatory effects becomes apparent when considering reducing the effects 

of CatL as a potential treatment for disease.  When the effect of 

pharmacologically inhibiting CatL in other body systems as opposed to transgenic 

knock-out has been investigated, the inhibitors cause only a partial and 

temporary deficiency and may therefore result in a different response(433).  

Overall, these observations suggest that whilst a complete CatL deficiency is 

deleterious to cardiac function, excess CatL may also be harmful, especially 

given the correlation of serum CatL levels and severity of disease in patients 

with coronary heart disease.  

1.7 Overall Aims 

The overall aims of this thesis are to: 

1. Identify whether trypanosomes can have a direct effect on Ca2+ handling 

in ventricular cardiomyocytes via a secreted/excreted factor. 

2. Identify the potential mechanism by which the trypanosomes can exert 

their effects and whether it is the same mechanism involved in Ca2+ 

signalling within HBMECs. 

3. Characterise the Ca2+ handling disturbances in isolated ventricular 

cardiomyocytes. 

4. Develop an in vivo model with which the cardiac phenotype of a 

trypanosome infection can be investigated. 
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5. Investigate the parallels/differences between the Ca2+ handling effects of 

trypanosome derived cathepsin-L and mammalian derived cathepsin-L.
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2.1 Trypanosome Culture and Supernatant Preparation 

2.1.1 Axenic Culture of Trypanosoma brucei brucei 

Cultures of Trypanosoma brucei brucei strain Lister 427 were maintained 

axenically in logarithmic growth phase from cryo-preserved stabilates (section 

2.1.2) in a modified version of HMI-9 media which is widely used to culture 

mammalian bloodstream form trypanosomes(434;435).  The composition of the 

modified HMI-9 media was: IMDM (Iscove’s Modified Dulbecco’s Medium with 

Glutamax (Life Technologies)) supplemented with; βBCPT (0.05 mM 

bathocuprinone disulphonic acid, 1.5 mM L-cysteine, 2 mM sodium pyruvate, 

0.16 mM thymidine, 0.2 mM β-mercaptoethanol), 1 mM hypoxanthine, 1.4 mM 

glucose, 0.125 mM adenosine, 0.125 mM guanosine, 30 μg.mL-1 kanamycin, 10 

u.mL-1 penicillin, 10 u.mL-1 streptomycin and 1 mg.mL-1 methyl cellulose.  

Parasites were cultured in the modified HMI-9 supplemented with 20% v/v Serum 

Plus®, (a serum supplement containing Foetal Bovine Serum (SAFC Biosciences)) 

in a humid incubator at 37 °C, 5% CO2 (in air).  Trypanosome cultures were 

maintained in 25 cm2 vented top tissue culture flasks to ensure adequate 

diffusion of CO2 into the media for appropriate pH buffering at ~pH 7.4 due to 36 

mM sodium bicarbonate (NaHCO3) and 25 mM HEPES within the IMDM 

(Invitrogen).  Phenol red within the media enabled visualisation of correct pH 

balance of the cultures.  Counting of parasites was done in quadruplicate using 

an improved Neubauer Haemocytometer (Figure 2.1) and new trypanosome 

cultures in modified HMI-9 were seeded and maintained to achieve a 

concentration of 5.0 x 105 parasites.mL-1 for experimentation.  Parasite cultures 

typically achieved a doubling time of 8 hr.  For example, if a 10 mL culture of 

5.0 x 105 parasites.mL-1 was required in 48 hr and the doubling time was 8 hr 

(determined from up to once daily haemocytometer counts), then the number of 

doubling times in 48 hr will be 6 (48 hr/8 hr).  From a desired concentration of 

5.0 x 105 parasites.mL-1 this would be a seeding concentration of 7.8 x 103 

parasites.mL-1 ((5.0 x 105)/26).  If the concentration of parasites in the seeding 

culture is 5.0 x 105 parasites.mL-1 then the volume of seeding culture required to 

achieve 5.0 x 105 parasites.mL-1 in 48 hr would be 15.6 µL.mL-1 (7.8 x 103/5.0 x 

105).  Therefore, for a 10 mL culture 156 µL of seeding culture would need to be 

added to 10 mL modified HMI-9.  The fresh trypanosome culture will then act as 

the seeding culture for the next fresh culture in 48 hr etc.  Cultures were 
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maintained in this fashion for up to 4 weeks or until the culture failed to 

grow/parasites died. 

 

Figure 2.1:  Counting trypanosomes with a Neubauer Improved Haemocytometer. 
Cartoon representation of the haemocytometer grid viewed with through a standard light 
microscope.  Trypanosomes were counted in each primary square to make the quadruplicate 
count.  Cells crossing left-hand and upper borders were counted (black dots), cells crossing right-
hand and bottom borders were not (light grey dots). (Figure from open source). 

2.1.2 Stabilate Preparation 

A stock of parasites was preserved in cryo-storage (stabilates) for the purposes 

of new trypanosome cultures in case of culture contamination or overgrowth.  

Trypanosomes were cultured to a concentration of ~5.0 x 105 parasites.mL-1.  

Modified HMI-9 media without added antimicrobials, with 10% glycerol added as 

a cryo-protectant was prepared as stabilate media.  Trypanosome cultures in 

modified HMI-9 were centrifuged at a relative centrifugal force (RCF) of 857 g 

for 10 min and the supernatant carefully aspirated.  The remaining pellet of 

parasite cells was gently resuspended in stabilate media to a concentration of 

5.0 x 105 parasites.mL-1.  The resuspended parasite culture was placed in 1 mL 

aliquots into cryo-tubes and labelled appropriately.  The cryo-tubes were frozen 

slowly in an insulated container with isopropyl alcohol in an outer layer in a -80 
ºC freezer for 24 hr.  This method prevents the formation of large ice crystals 
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that could disrupt and kill the cells.  The frozen stabilates were then removed 

and stored in liquid nitrogen until required. 

2.1.3 Stabilate Thawing 

When a new culture of trypanosomes was required modified HMI-9 media with 

40% Serum Plus® (and antimicrobials) was pre-warmed to 37 ºC in the incubator.  

The extra Serum Plus® provides additional metabolic support for the freshly 

thawed trypanosomes.  An aliquot of stabilate was gently warmed by hand and 

added by pipette to 4 mL modified HMI-9 with 40% Serum Plus® without 

agitation.  The trypanosome culture in modified HMI-9 with 40% Serum Plus® was 

monitored and counted daily, and reseeded as appropriate.  After 72 hrs the 

trypanosomes were transferred to modified HMI-9 with 20% Serum Plus®, and 

were maintained as described in 2.1.1. 

2.1.4 Preparation of Live Trypanosomes for Experimentation 

Modified HMi-9 as in section 2.1.1 (hereafter referred to as control media) 

containing live trypanosome cultures at a concentration of ~5.0 x 105 

parasites.mL-1 was decanted from the tissue culture flask into an appropriately 

sized centrifuge tube.  The pH of the cultures and control media were checked 

using a pH meter.  The pH was maintained by the 25 mM HEPES, 36 mM NaHCO3 

within the IMDM of the modified HMI-9 and 5% CO2 within the incubator and was 

measured as pH 7.40 ± 0.02, but if >0.02 different then the pH of the control 

media was adjusted to match the trypanosome culture with sodium hydroxide 

(NaOH) or hydrochloric acid (HCl) as appropriate.  The living parasites were then 

incubated with isolated adult rat left ventricular cardiomyocytes. 

2.1.5 Preparation of Supernatant 

Cultures of trypanosomes as above were counted (section 2.1.1) and carefully 

aspirated from the tissue culture flasks into sterile centrifuge tubes.  

Supernatant was prepared by centrifugation of cultured trypanosomes at 857 g 

for 10 min.  A low RCF was used to avoid causing cell lysis and the liberation of 

intracellular proteins.  The supernatant was carefully aspirated using a pipette 

filler into a fresh centrifuge tube, the remaining pellet of cells was either 

discarded into 3% trigene disinfectant, or used for stabilate preparation (section 
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2.1.2).  To ensure there was no contamination with live trypanosomes, 

supernatant was further filtered using a 0.2 μm syringe filter (Sartorius Stedim).  

Control media was treated in an identical manner to the supernatant 

(centrifuged and filtered). The supernatants were temperature matched and pH 

adjusted to the control HMI-9 batch used for each experiment (section 2.1.4). 

2.2 Trypanosome Infections – In Vivo ECG Acquisition 

2.2.1  T. b. brucei Lister 427 Infection Model 

2.2.1.1 Preparation of Trypanosomes 

Trypanosoma brucei brucei Lister 427 were grown in mice to adapt them to in 

vivo conditions.  This step was performed by Mrs. Anne-Marie Donachie, a 

technician from the Wellcome Trust Centre for Molecular Parasitology, 

University of Glasgow.  The parasites were grown in the mice for 2-3 days with 

daily venepuncture to check parasitaemia levels.  When parasites were 

detectable the mice were sacrificed and blood collected in heparin.  A sample of 

the blood was counted with a Neubauer improved haemocytometer in triplicate 

(section 2.1.1).  The parasites were diluted under sterile conditions to 1.0 x 105 

parasites in a 200 µL volume of  Carter’s balanced salt solution (CBSS; 25 mM 

HEPES, 120 mM NaCl, 5.4 mM KCl, 0.55 mM CaCl2, 0.4 mM MgSO4, 5.6 mM Na2PO4  

and 11.1 mM glucose, pH 7.4).     

2.2.1.2 ECG Acquisition 

Adult male Wistar rats (250-300 g) were allowed a 7 day acclimatisation period 

upon delivery to the biological services unit.  Animals were kept at the 

Cardiovascular Research Unit, University of Glasgow in a dedicated room 

licensed under the Specified Animal Pathogens (Scotland) Order 2009 (SAPO).  

Rats were anaesthetised by inhalation of isoflurane gas at 4-5% delivered in 1-1.5 

L.min-1 oxygen in an induction box.  The rats were removed from the box when 

there was loss of the righting reflex.  The animals were maintained on isoflurane 

delivered via facemask.  The gas was reduced based on assessment of the 

animals’ vital parameters to a final plane of anaesthesia at 1-1.5% in 1 L.min-1 

O2.  The ECG was recorded via the placement of intradermal electrodes.  The 

placement sites on the rat were caudal aspects of the left and right carpi and 
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the medial aspects of left and right crura.  The sites were cleaned with 

chlorhexidine as were the electrode tips.  Appropriate earthing and positioning 

was used to minimise signal noise.  To ensure reproducibility for the same rats 

and between rats, all animals were positioned identically based on an outline 

drawn on a corkboard.  Electrodes were placed in the same manner (Figure 

2.2A). The ECG was recorded for 15 min with an IWX228 bioamplifier (iWorx, 

USA).  Rats were then infected with 1.0 x 105 parasites in a 200 µL 

intraperitoneal injection, control rats were injected with 200 µL CBSS.  The ECG 

was recorded for a further 15 min following the injection before rats were 

recovered. 

 

 

 

 



Chapter 3  The Effects of Trypanosoma brucei  99 
 

 

Figure 2.2: Photographs of the infected rat ECG acquisition. 
(A) Rat anaesthetised and in position within the “black outline” drawn on the corkboard.  ECG leads 
are placed in a lead II format (blue lead negative, green lead positive, grey lead earth/ground).  
Leads are taped down to minimise noise.  The corkboard is coated in clear plastic to facilitate easy 
cleaning. (B) Computer and ECG acquisition equipment.  An earthing lead connects the device to 
ground via a plumbed basin.   

2.2.1.3 Health Monitoring and Parasitaemia Checks 

Infection with T. brucei Lister 427 can cause anaemia, weight loss and 

immunosuppression.  Eventually the parasitaemia becomes fulminant, which is 

fatal if allowed to persist.  Parasitaemia was measured daily.  A drop of blood 

was obtained by a small puncture of the lateral tail vein.  The blood was 

expressed on to a glass slide and viewed with a 40x objective lens on a standard 

light microscope.  The slide was examined and the number of parasites counted 

and compared to the description of Herbert and Lumsden (1976)(436) (Figure 2.3).   
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Figure 2.3: Chart and tables for estimating trypanosome parasitaemia. 
Circles are the view down a 40x objective lens at blood films at different quantities of parasite.  The 
numbers are the anti-log of the parasitaemia .mL-1.  For fewer parasites a greater quantity of fields 
must be analysed – numbers are given in the tables.  Fewer than 1 x 105.4 parasites.mL-1 are not 
detectable from blood films. (Figure from Herbert and Lumsden (1976)(436).  

In addition, general clinical parameters were checked – adverse effects were 

recognised as lassitude persisting beyond 72 hours, or weight loss equal or 

greater than 25%, extreme pallor, hypothermia, sunken eyes, hunched posture, 

and staring coat, or where the parasitaemia exceeds 5.0 x 108 parasites.mL-1 for 

more than 2 consecutive days.  In these cases animals were withdrawn from the 

study and humanely euthanized.   

2.2.1.4 Terminal Data 

Infected and control animals were anaesthetised again after 4 days and the ECGs 

were repeated.  Animals were sacrificed and the lungs, liver and spleen 

weighed.  The hearts were removed and Langendorff perfused (section 2.5).  

The pseudo-ECG was recorded for a 15 min steady state period followed by the 

addition of 100 nM ISO and the ECG recorded for 15 min.  The concentration of 

ISO was increased 10 x every 15 min to 100 µM.   
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2.2.1.5 Data Analysis 

ECG data were collected using the IWX228 bioamplifier and LabScribe 2 software 

(iWorx) at a sampling rate of 2,000 Hz.  The ECG from the last min of each 15 

min period was averaged using the advanced ECG analysis module of the 

programme and exported to Origin6.1 (OriginLab) for QT interval measurement 

(section 2.5.4.1).  The entire traces were assessed for arrhythmic events 

according to the Lambeth Conventions(437) (section 2.5.4.2). 

2.2.2  T. b. brucei TREU 927 Infection Model 

2.2.2.1 Trypanosome Preparation 

A limitation of T. brucei Lister 427 is that it follows a logarithmic growth curve 

in vivo until the death of the infected host, therefore, the T. brucei brucei TREU 

927 strain was used.  The 927 parasites were prepared as described for 427 

(section 2.2.1.1) by Anne-Marie Donachie.  Blood taken from infected mice was 

examined and the parasites counted with a haemocytometer. 

2.2.2.2 Telemetry Probe Implantation 

One of the main limitations of the 427 infection model with 15 min ECG 

recordings is that isolated arrhythmic events may be missed.  To counteract this 

problem, continuous ECG recordings were made using a CA-F40 biopotential 

telemetry implant (Data Sciences International). 

2.2.2.3 Animals 

Male Wistar rats aged 8-10 weeks were acquired from a licensed commercial 

breeder in the UK (Harlan Laboratories, UK).  Animals were housed in pairs for a 

minimum of 7 days before use to allow an acclimatisation period.  Thereafter 

animals were housed individually in order for the telemetry receiver plates to 

receive only one signal.  Animals were housed in isolated accommodation under 

the SAPO licence as required for animals with trypanosome infections.  They 

were given free access to water and food pellets. 
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2.2.2.4 Theatre Preparation 

Telemetry probes were implantated under a surgical procedure (Figure 2.4).  

The animals were intended to be recovered from the procedure so operations 

were performed under aseptic conditions as much as practicable.  The surgical 

area was prepared with the appropriate equipment required for the procedure 

(Figure 2.4(i)).  The telemetry probe can be re-used between animals.  The 

leads of the probe were sealed with sutures to prevent solutions from tracking 

up the electrode wires into the transmitter.  The device was soaked in enzyme 

(Tergazyme®, Alconox, Inc. USA) to degrade biological material adhering to the 

device and leads for ≥5 h.  The device was rinsed in water and then soaked in a 

cold sterilising solution consisting of peracetic acid (0.9-1.1%), hydrogen 

peroxide (<1.0%) and acetic acid (4.9-5.5%) (Actril®, Minntech BV, Netherlands) 

for ≥5 h.  The device was rinsed with sterile saline and stored in sterile saline 

sufficient to completely cover the device for up to 24 hours if to be implanted 

(Figure 2.4(i)).  Devices not required for implantation were stored dry and 

sterilised when required.  The surgical area was disinfected with chlorhexidine 

gluconate spray (Ecolab, UK) and covered with a sterilised drape.  A heating pad 

to keep animals warm was covered in another sterile drape.  Surgical 

instruments were autoclaved at 134 ºC prior to surgery and decontaminated 

between procedures (if more than one was performed) using a hot-bead 

steriliser (Germinator 500, SouthPointe Surgical Supply, USA).  Animals were 

placed in a warming box immediately after regaining consciousness to provide a 

warm environment to recover in (Figure 2.4(ii)).  Oxygen and anaesthetic agent 

were checked and filled as necessary. 

2.2.2.5 Anaesthesia and Preparation of Animals 

Rats were collected and weighed.  Animals were anaesthetised using an 

inhalational vs. injectable agent for the greater control and least cardio-

respiratory depressive effects of anaesthetic agents(438).  The inhalational 

anaesthetic used was isoflurane (Isoflo, Abbot Laboratories, USA) delivered in 

100% O2.  Animals were anaesthetised by placing them in a pre-filled induction 

box as shown in Figure 2.4(iii).  Once there was a demonstrable loss of righting 

reflex animals were moved to facemask on 4% isoflurane at 1.5 L.min-1.  Fur was 

clipped with electric clippers over the thoracic region of the dorsum (Figure 
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2.4(iv)) and on the ventrum over the right pectoral and xyphoid (Figure 2.4(v)).  

The clipped areas of skin were cleaned with warmed 10% surgical skin 

disinfectant (Hibiscrub, Ecolab Ltd) and gauze swabs (Figure 2.4(v-vi)).  The 

animal was moved to the surgical table and positioned in ventral recumbency 

(Figure 2.4(vii)) on the heated pad to maintain the animal’s temperature.  Peri-

operative analgesia of 5 mg.kg-1 carprofen (Rimadyl, Pfizer Animal Health) was 

administered with 5 mL of 0.9% sterile saline subcutaneously (Figure 2.4(viii)) to 

maintain fluid balance under anaesthesia. 

2.2.2.6 Surgical Procedure 

The animal was placed in ventral recumbency and maintained with isoflurane 

and 100% O2 via facemask throughout the procedure.  Depth of anaesthesia was 

monitored by measuring the respiratory rate and testing the pedal pain 

withdrawal reflex and the isoflurane % altered accordingly from initial induction 

at 4.0-4.5% to a stable surgical plane of anaesthesia of 1.5-2.0%.  A sterile drape 

with cut window was draped over the animal.  A 25 mm horizontal incision was 

made with a scalpel blade toward the caudal edge of the clipped area of skin, 

mid thoracic region (Figure 2.4(ix)).  This allowed the telemetry probe to be 

inserted over the back without impeding the animal’s normal behaviour once 

recovered.  The subcutaneous fascia was bluntly dissected with scissors (Figure 

2.4(x) to create a pocket large enough to accommodate the probe.  The probe 

was orientated with anchor points dorsal and leads caudal (Figure 2.4(xi)) and 

then inserted into the pocket (Figure 2.4(xii)).  The probe was anchored with 1.5 

metric nylon suture (W319, Johnson & Johnson) through the skin and anchor 

points on the probe (Figure 2.4(xiii)).  A saline soaked sterile swab was placed 

over the surgical site and the animal was rotated carefully into dorsal 

recumbency to expose the ventral sites (Figure 2.4 (xiv)).  Starting with the 

xyphoid site a 10 mm incision was made with a scalpel blade and subcutaneous 

fascia bluntly dissected (Figure 2.4(xv)).  A tract was dissected carefully 

subcutaneously around the thorax with scissors toward the right of the animal to 

allow the positive lead marked red by the manufacturer of the probe to be 

passed (Figure 2.4(xvi)).  A haemostat was carefully passed through the tract 

and the scissors removed (Figure 2.4(xvii)).  The appropriate biopotential lead 

was grasped with the tip of the haemostat and pulled through to the xyphoid 

(Figure 2.4(xviii-xix)).  A length of the silicone sheath of the biopotential lead 
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was carefully removed to expose a length of the wire.  Figure 2.4(xix) shows the 

lead pulled through and exposed wire after removal of a length of the red 

silicone.  Using a 21-gauge needle a small tract was created through the 

underlying muscle for the exposed wire to pass through (Figure 2.4(xx)).  The 

exposed wire is in direct contact with the muscle so will return an electrical 

signal to the transmitter.  The removed silicone insulation was replaced over the 

exposed end not in the muscle to insulate against interference and noise and 

sutured into place with 1.5 metric nylon (Figure 2.4(xxi)).  An additional suture 

was place proximal to the wire insertion for further anchoring.  The ventral skin 

incision was closed with 1.5 metric polyglactan 910 (Vicryl, W9386, Johnson & 

Johnson, UK) in a simple continuous pattern (Figure 2.4(xxii)).  The procedure 

was repeated passing to the left of the animal for the negative electrode over 

the right pectoral to prevent the leads crossing over one another and potentially 

introducing noise to the signal (Figure 2.4(xxiii-xxiv)).  The animal was returned 

to ventral recumbency.  The leads were coiled and tucked into the pocket with 

the probe and positioned to minimise discomfort to the animal (Figure 2.4(xxv)).  

The skin was closed in a simple continuous pattern with 1.5 metric polyglactan 

910.  The gaseous anaesthesia was reduced to 0% during closing and the animal 

allowed to recover on 100% O2 followed by room air until pedal withdrawal and 

palpebral reflexes had returned.  The animal was then placed in the warm box 

to come round to full consciousness (Figure 2.4(xxvii)).  Rats were monitored 

daily for signs of discomfort and wound healing and cleanliness.  No follow-up 

analgesia was necessary as rats were comfortable and displaying normal 

behaviour (Figure 2.4(xxviii)). 
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Figure 2.4: Photographs of the steps of the telemetry probe implantation procedure. 
 

2.2.2.7 Trypanosome Infection 

Rats were allowed to recover from surgery for 7 days and then were infected as 

described for the 427 model (section 2.2.1.2).  Infection was with 1.0 x 105 T. 

brucei TREU 927 in 200 µL CBSS via intraperitoneal injection.  Control rats were 

injected with the same volume of CBSS.  Rats were monitored as described 

above (section 2.2.1.3). 

2.2.2.8 Data Acquisition and Analysis 

Cages with implanted rats were placed onto receiver pads.  The implanted 

probes were activated magnetically.  Telemetry signals were relayed via a data 

exchange matrix to the computer loaded with the acquisition software 

Dataquest™ OpenART v4.2 (Data Sciences International).  Raw ECG data was 

collected continuously at 2,000 Hz sampling frequency for 2 weeks and saved 

daily.  Files were exported to Ponemah v4.8 (Data Sciences International) for 

analysis.  The probes have a battery life of 6 months when in continuous use.  
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ECGs were recorded continuously for the duration of the model.  ECGs were 

assessed for arrhythmia frequency and QT intervals as described later (section 

0). 

 

2.3 Ventricular Cardiomyocyte Isolation 

2.3.1 Isolation of Adult Rat Left Ventricular Cardiomyocytes 

Adult male Wistar rats (250-300 g) were humanely euthanized in accordance 

with Schedule 1 of the UK Animal (Scientific Procedures) Act 1986, Directive 

2010/63/EU of the European Parliament and the ethical review panel of the 

University of Glasgow.  Rats were first concussed followed by immediate cervical 

dislocation.  Complete severance of the spinal cord was confirmed by manual 

palpation.  The rat was placed in dorsal recumbency and the heart removed by 

thoracotomy (Figure 2.5A) into ice-cold isolation buffer.  The heart was gently 

squeezed to express blood from the ventricles and placed in a second beaker of 

isolation buffer.  The isolation buffer used was a modified isolation Krebs-

Henseleit (MIKH) solution.  The composition of MIKH was as follows (in mM): NaCl 

(120), KCl (5.4), HEPES (20), NaH2PO4 (0.52), MgCl26H2O (3.5), Taurine (20), 

Creatine (10), Glucose (11.1), pH was adjusted to 7.4 at 37 ºC with NaOH.  The 

inclusion of taurine has been suggested to protect the isolated cells from Ca2+ 

overload during Ca2+ paradox(439;440).  The washed heart was finely dissected to 

remove extraneous tissue and clear the area around the aorta.  The heart was 

cannulated via the aorta in retrograde Langendorff perfusion as shown in Figure 

2.5B and C.  It is important that the cannula stops short of the aortic valve so 

that the perfusion pressure closes the aortic valve and pushes the perfusion 

solution into the coronary vessels (Figure 2.6).  The aorta was tied to the 

cannula with a 1.5 metric nylon suture (Pearsall’s Ltd) using a surgeon’s knot 

(defined as 2 throws, 1 turn and 1 throw before tying) to ensure a tight locking 

knot.  Successful cannulation was confirmed by the perfusate leaving the heart 

becoming transiently sanguineous and the coronary vessels becoming clear.  

Hearts were perfused at a rate of 7 mL.min-1 with MIKH for a period of 5 min to 

ensure complete clearing of blood from the myocardium and coronary 

circulation.   
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Figure 2.5: Photographs of rat heart removal and cannulation. 
(A) Thoracotomy of the rat with ribcage reflected to show thoracic and proximal abdominal organs 
in situ.  (B) Langendorff isolation set up with cannulated heart.  The heart is perfused in retrograde 
Langendorff perfusion with MIKH warmed to 37 ºC in the water bath and by the heat exchange 
column.  Perfusion is maintained by constant flow perfusion pump calibrated to deliver 7 mL.min-1.  
MIKH containing 0.5% BSA is in a separate reservoir with a 3-way tap to switch between solutions.  
(C) Close-up of cannulated heart tied in place with clear perfusate indicating successful perfusion 
of the coronary vessels. 

 



Chapter 3  The Effects of Trypanosoma brucei  111 
 

 

Figure 2.6: Langendorff perfusion of the heart. 
The aorta is transected between the heart base and aortic arch to leave a straight cut (dashed 
line).  The cannula is inserted through the aortic opening, marked as the black ellipse, but care 
taken not to push through the aortic valve (labelled).  When perfusion solution is pumped through 
the cannula the perfusion pressure closes the aortic valve as the afterload would during diastole in 
vivo.  The perfusion pressure therefore pushes the solution into the coronary vasculature, indicated 
by the blue arrows, to supplement the excised heart with the Krebs-Henseleit solution.    

Following the clearance of blood hearts were perfused with MIKH with 0.83 

mg.mL-1 collagenase I (Worthington Biochemical Corporation) and 0.1 mg.mL-1 

protease XIV (Sigma-Aldrich) at the same flow rate for 8-12 min depending on 

particular enzyme requirements to get the best quality and yield of 

cardiomyocytes.  Optimisation experiments were performed as detailed below 

when a new batch of enzyme was purchased.  The collagenase is activated by 

the protease and digests the extracellular matrix of the heart to liberate 

individual cells.  After perfusion with enzyme the hearts were perfused for 6.5 

min with MIKH containing 0.5% bovine serum albumin (BSA).  The BSA provides 

substrate and stops continued digestion of the tissue.  Any minor leakiness of 

cardiomyocyte membranes can also be sealed by the BSA(441) and prevent influx 

of extracellular Ca2+ that can cause a hypercontractile state in the 

cardiomyocyte.  The ventricles were cut from the cannula and the right ventricle 

separated and discarded.  The left ventricular free wall and the interventricular 

septum were cut into strips and gently mixed to yield a single cell suspension in 
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MIKH containing 0.5% BSA.  The Ca2+ in solution ([Ca2+]o) was raised in this 

suspension via stepwise increments of 100 µM until 1.0 mM was reached to guard 

against Ca2+ paradox(439).  Ca2+ paradox occurs when Ca2+ is removed, such as in 

the case of enzymatic digestion, and monovalent cations such as Na+ enter the 

cardiomyocyte down the electrochemical gradient(439).  If [Ca2+]o is returned to 

physiological concentration (1.8 mM) immediately, then Ca2+ can enter the cell 

suddenly down its concentration gradient and kill the cell.  By restoring [Ca2+] 

gradually, the ion concentrations are able to equilibrate without killing the 

cell(439).  Cells were viewed on the light microscope for yield, quality and 

viability.  Cell morphology appropriate for experimentation was the torpedo-like 

rod shape, striations and clear sarcolemma (membrane).  Ball shaped cells were 

hypercontracted cells following an influx of Ca2+ through a damaged 

sarcolemma(442) (Figure 2.7). This protocol is an amalgam of multiple techniques 

described in the literature, reviewed in Louch et al. (2011), that have been 

found to be optimal for this set-up(443).  The protocol was fully characterised for 

each enzyme batch used.   

 

Figure 2.7: Photomicrographs of isolated cardiomyocytes. 
(A) View of isolated rat left ventricular cardiomyocytes with 10x objective lens.  Rod shaped cells 
are viable contractile cells.  Ball shaped cells are hypercontracted cardiomyocytes following influx 
of extracellular Ca2+.  These cells are not viable. (B) View of single cardiomyocyte with 40x 
objective lens showing striations, intact sarcolemma and straight ends.  Lower left of same image 
shows a hypercontracted cardiomyocyte. 
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Isolated cells were assessed for total yield, percentage of viable rod shaped cells 

(Figure 2.7) and percentage of cells exhibiting spontaneous contractile activity.  

Viability counts were performed at 0 and 1.0 mM Ca2+ and again in the 1.0 mM 

Ca2+ after 2 hr.  When a new batch of enzyme was purchased, similar 

experiments were performed to ensure optimisation and consistency of the 

percentage rods achieved between batches. 

2.3.2 Isolation of Adult Rabbit Left Ventricular Cardiomyocytes 

Isolation of rabbit cardiomyocytes was performed by Mrs. Aileen Rankin, a 

technician in Prof. Godfrey Smith’s lab; a similar protocol to adult rat 

cardiomyocyte isolation.  Adult New Zealand White rabbits (2-2.5 kg) were given 

an intravenous injection of 500 U heparin and an overdose of sodium 

pentobarbitone (100 mg.kg-1).  Hearts were rapidly excised as described for the 

rat and cannulated in retrograde Langendorff perfusion via the aorta.  The 

cannulated hearts were perfused with 150 mL of MIKH of the same composition 

as in 2.3.1 at a rate of 25 mL.min-1 (37 ºC) to rinse away blood and reduce 

probability of clot formation.  The MIKH was supplemented with 1.4 mg.mL-1 

collagenase I and 0.1 mg.mL-1 protease XIV and perfused for ≈7 min.  Hearts 

were then perfused with MIKH containing 0.1% BSA for ≈6 min to provide 

substrate for superfluous enzyme and seal up cardiomyocyte membranes to 

prevent hypercontraction and cell death.  Hearts were cut down and the atria 

removed.  The experiments presented in this thesis used cardiomyocytes from 

the left ventricle.  The left ventricles were cut into strips and mixed in 20 mL 

0.1% BSA MIKH with 0.125 mM CaCl2 in a culture flask for 30-60 min.  The cells 

were allowed to settle and the supernatant removed.  The cells were then 

resuspended in 0.1% BSA MIKH with 0.25 mM CaCl2 and the process repeated.  

This was done again for 0.5 and 1.0 mM CaCl2.  The gradual increase in [Ca2+] 

was performed to protect the cells from Ca2+ paradox(439) (section 2.3.1). 

2.4 Cardiomyocyte Spontaneous Contractile Activity 
Measurements 

Isolated rat left ventricular cardiomyocytes (section 2.3.1) were incubated at 

room temperature for 30 min with live trypanosome culture at a concentration 

of ~5.0 x 105 parasites.mL-1 or control media (i.e. modified HMI-9 prepared the 
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same way but without parasites) in a ratio of 1:3; cells (~1.0 x 105 

cardiomyocytes in 1 mL MIKH at 1.0 mM Ca2+) : culture/media (3 mL).  The ratio 

of 1:3 was calculated to achieve a physiological [Ca2+]o based upon the [Ca2+] of 

the IMDM of the media (section 2.1.1) reported by the manufacturer as 1.97 mM.  

Following incubation the cardiomyocytes were loaded onto a glass cover slip in a 

tissue bath (Cell Microcontrols) and viewed on an inverting light microscope 

(Nikon) with a 10x 0.25 Numerical Aperture (NA) lens.  A quantity of 10-15 rod 

shaped cardiomyocytes per field over 10 fields was viewed for 1 min per field 

and the number of cells exhibiting at least one spontaneous contractile event 

recorded. 

A further cohort of cardiomyocytes were incubated at room temperature for 30 

min in control media or trypanosome culture supernatant prepared as previously 

described (section 2.1.5).  The filter size of 0.2 µm meant parasite 

secretory/excretory products would remain in the media.  The ratios were 1:3 as 

with live trypanosomes above.  Cardiomyocyte spontaneous contractions were 

recorded and expressed a percentage of total cells as above. 

2.5 Langendorff Perfusion of ex vivo Whole Rat Hearts 

2.5.1 Principles of Langendorff Perfusion 

As described above (section 2.3.1), the principle of Langendorff perfusion is to 

supply an excised heart with its oxygenation and nutrient requirements.  This is 

achieved via cannulation of the aorta taking care not to advance beyond the 

aortic valve (Figure 2.6).  The mock extracellular solution containing oxygen and 

glucose is then perfused down the aorta against the closed valve thus forced by 

the pressure of the column of fluid in the aorta and perfusion apparatus into the 

coronary vessels to supply the myocardium.  The mock extracellular solution is 

removed via coronary veins to the right atrium.  The chambers of the heart 

remain essentially “dry”.  This technique was devised by Oscar Langendorff in 

1895(444).  Langendorff perfusion offers many advantages: simplicity of 

preparation, low cost, reproducibility and isolation from other physiological 

systems and exocrine control such as sympathetic tone(445).  It must also be 

considered the potential limitations; heart function is deteriorating with time (5-

10% deterioration of contractile and chronotropic function per hour)(445;446). 
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2.5.1.1 Constant Flow vs. Constant Perfusion Pressure 

There are two modes of perfusion used for the Langendorff technique.  

Langendorff himself used a constant perfusion pressure system with a sealed 

pressurised chamber with manometer(444).  The simplest way of maintaining a 

constant perfusion pressure is with a set height of a column of fluid such as 

positioning of the reservoir a known height above the preparation thus using 

gravity to maintain the pressure.  The disadvantage of using gravity fed 

perfusion pressure is the volume of fluid required.  To reduce the fluid required 

there are negative feedback pressure control loop peristaltic pump systems 

available(447).  Constant pressure systems are useful when reliance of coronary 

tone auto-regulation is required and if a regional ischaemia is performed, i.e. 

ligation of part of the vascular bed where constant flow would result in 

increased pressure in the remaining vasculature(445).  Constant flow systems 

simply rely upon a peristaltic pump to deliver the perfusate and are useful if for 

studying function when no vascular interventions such as regional coronary 

occlusions are required that with constant flow can increase the pressure and 

alter potentially damage tissue causing artefactual changes.  For this thesis, the 

constant flow system was used as no vascular interventions were required 

because only the ECG was measured. 

2.5.1.2 Measuring Physiological Parameters 

2.5.1.2.1 Electrocardiogram 

The Langendorff technique lends itself well for measurement of the 

electrocardiogram (ECG) due to excellent access to the epicardium.  Electrodes 

can be placed in a tissue bath surrounding the heart to measure the ECG with 

placement of the negative electrode adjacent to the right atrium and the 

positive electrode adjacent to the left ventricular free wall.  Data acquired can 

be used to measure common ECG parameters such as PR interval, QRS duration 

and QT interval as well as identifying occurrence of arrhythmic events.   

2.5.1.3 Potential Problems 

To limit preparation failure and ensure high quality, repeatable data it is 

important to consider the potential problems that can arise and minimise them. 
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2.5.1.3.1 Temperature 

Maintenance of a physiological temperature throughout the experiment is 

important.  Variations in temperature can affect myocardial contractility and 

heart rate in the steady state(446;448;449).  Temperature can also have effects of 

myocardial viability following ischaemia/reperfusion models where lower 

temperatures can have a cardioprotective effect(450-454).  The heart has a large 

surface-to-volume ratio making radiant heat loss a large problem.  This can be 

minimised by: warming the perfusate to physiological temperatures, use of a 

heat exchange column to minimise radiation of heat from the perfusate before it 

enters the heart, submersion of the cannulated heart in an organ bath or 

exposure to a radiant heat source.  In the case of an ischaemia/reperfusion 

model where perfusion is interrupted partially (regional ischaemia) or totally 

(global ischaemia) then non-perfusion sources of heat must be considered. 

2.5.1.3.2 Perfusion Flow Rate 

The perfusion flow and pressure must be maintained throughout the experiment.  

Restrictions in flow can occur in diameter changes of the tubing from one region 

of the system to another, potential blockages in the coronary vessels (air emboli 

or thrombi) or experimental interventions.  Therefore it is important to measure 

the coronary flow from the heart.  The simplest way to achieve this is to collect 

the coronary effluent for a fixed period of time and measure the quantity of 

fluid collected. 

2.5.1.3.3 Maintenance of equipment 

One of the most common reasons for preparation failure is microbial 

contamination of the perfusion system(445).  This can be minimised by the design 

of the system limiting the number of connectors and avoiding side branches 

where stagnant fluid can collect.  The apparatus must be thoroughly cleaned 

before and after use with heated (>80 ºC) double-distilled water to ensure 

adequate removal of bacterial substrates such as glucose.  Periodic (2 weekly) 

deep cleaning with Decon 90, ethanol or 10% HCl can be employed.  In our 

system a second heat exchange coil can be used while the other is being deep 

cleaned.  Plastic tubing is periodically replaced as necessary particularly in the 

case of use of trypanosome supernatant and media where the media is ideal for 

bacterial growth. 
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2.5.2 System Design and Implementation 

The system used in our laboratory consists of two reservoirs containing perfusion 

solution, which are kept at 37 ºC in a water bath (Figure 2.8).  A three-way stop-

cock allows switching between the reservoirs so that a drug may be added to one 

and a control reservoir remains.  A peristaltic pump set to a constant flow rate 

(dependent on experimental requirements) delivers perfusion solution via a heat 

exchange column and bubble trap to the cannulated heart.  Although care is 

taken to avoid any air in the system, the bubble trap serves as a secondary 

measure to ensure no air enters the heart potentially causing an air embolus and 

damage to the myocardium.  The heart is cannulated to a 3 mm outer diameter 

cannula (Harvard Apparatus) via the aorta.  Care is taken to ensure the cannula 

does not pass the aortic valve.  A small incision is made in the right ventricular 

outflow tract to allow free drainage of coronary effluent and prevent 

development of back-pressure.  The heart is submerged into a heat-jacketed 

organ bath to maintain temperature of the preparation. 
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Figure 2.8: Langendorff system. 
The heart is cannulated via the aorta and perfused.  To maintain temperature the perfusion solution 
reservoir is kept in a water bath set to 37 ºC and the supply to the heart passed through a heat 
exchange column.  The heart is submerged in a heated organ bath.  Perfusion solution is delivered 
via a peristaltic perfusion pump set to a constant flow rate.  Two reservoirs with a tap to switch 
enable specific quantities of drug or different solutions to be perfused during an experimental 
protocol.  The figure shows a magnified portion with the heart.  ECG electrodes can be suspended 
in the organ bath in close proximity with the heart top record the ECG.  A water-filled polyethylene 
balloon can be affixed to a cannula and inserted into the left ventricle via the left atrium if required.  
A haemostat valve would enable a solid-state catheter to be inserted without introduction of air and 
simultaneous fine control of balloon inflation, but was not conducted for this study.  
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2.5.3 Exclusion Criteria 

Inclusion and exclusion criteria are useful when considering consistency and 

reproducibility.  Keeping to a short as time as possible from animal sacrifice to 

cannulation is important to minimise myocardial damage or 

preconditioning(455;456).  In the rat a time of <3 min is acceptable(455).  High flow 

rates in a constant pressure system (or low perfusion pressures) are indicative of 

damage to the aorta or damage to the aortic valve.  If flow rates are low or 

perfusion pressures high this can be an indicator of an obstruction; either 

obstruction of the coronary ostia by inappropriate cannulation or an embolus of 

air or particulate matter.  Highly arrhythmic hearts could be inadequately 

perfused.  It is good practice to set exclusion criteria during a steady state 

period.  The table below shows exclusion criteria for commonly used 

mammals(445) those of the rat were adopted for this thesis:  

Table 2.1: Exclusion criteria for Langendorff perfusion of mice, rats and rabbits 
Parameter Mouse Rat Rabbit 

Time to perfusion (min) >4 >3 >3 

Arrhythmia Duration (min) >3 >3 >3 

Heart rate (beats per min) <320 or >620 <70 or >400 <150 or >190 

 

2.5.4 Data Analysis 

2.5.4.1 Electrocardiography 

The ECG (or pseudo-ECG since this is no longer a living animal) can be measured 

by placement of electrodes in close approximation with the epicardium over the 

right atrium and left ventricle.  The resulting change in voltage or ECG (section 

1.3.4 for details on the ECG) was recorded with an iWorks/CBS systems 

bioamplifier.  ECG parameters that can be measured are: PR interval, QRS 

duration and QT intervals (Figure 2.9).  Parameters were measured manually as 

recommended by the AHA/ACCF/HRS recommendations for standardisation and 

interpretation of the electrocardiogram(457).  QT length, determined by the end 

of the T wave at the isoelectric point or by intersection of the tangent of the 
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steepest part of the T wave with the isoelectric point(457), was measured.  The 

QT interval was also measured at 90% repolarisation(458) (QT90) and at 50% 

repolarisation(459) (QT50), so as to have a clearly defined end point.  QT intervals 

were corrected for heart rate using the Framingham method(460): 

QTc = QT + 0.154x(1-RR) 

 

Figure 2.9: Measurable ECG parameters. 
Example rat ECG with the parameters of PR interval, QRS duration and QT intervals highlighted.  
For this thesis the QT90 and QT50 were also measured by taking the 90% and 50% repolarisation 
points of the T wave respectively to reproducibly determine an end point of T.  

2.5.4.2 Arrhythmia Classifications 

To maintain consistency and enable comparison with available literature 

arrhythmias were classified according to the Lambeth Conventions(437).  

Specifically, ventricular premature complexes (VPCs) were defined as discrete 

and identifiable premature QRS complexes (premature in relation to the P 

wave).  Bigeminy, defined as alternating P-QRS, VPC, is classed as a distinct 

variant of VPC.  Runs of 2-3 VPCs were defined as salvos, >4 as ventricular 

tachycardia (VT).  Ventricular fibrillation (VF) was defined as a signal from which 

individual QRS complexes cannot be distinguished and a rate cannot be 

measured.  Occurrence of VPCs as defined was counted and expressed as the 

number of events per min.  The VPC is premature in relation to the P wave and 

has an identifiable QRS shape although wider (Figure 2.10).  
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Figure 2.10: ECG recording of a rat heart with VPC. 
Example recording from a rat heart in Langendorff perfusion.  The trace shows and example of a 
premature complex in relation to the P wave.  The complex resembles a QRS but is wide and 
bizarre. 

2.6 Measuring Intracellular Calcium 

2.6.1 Ca2+ Fluorophores for LASER-Scanning Confocal 
Microscopy 

In order to measure intracellular Ca2+ dynamics with LASER-Scanning Confocal 

Microscopy (LSCM), a suitable probe is required.  The conventional method is to 

use a Ca2+ sensitive fluorescent indicator or fluorophore(461), an excitable 

molecule with an affinity for the molecule or ion of interest; Ca2+ in the case of 

the work presented in this thesis.  Numerous fluorophores have been 

developed(462).  They have different Ca2+ affinities and excitation/emission 

spectra such as the non-ratiometric rhod and fluo dyes(462) and the ratiometric 

indo and fura dyes(463).  The principle of fluorescence imaging is that the 

fluorescent molecule is loaded into cells and bind to the molecule/ion of 

interest.  The fluorophore contains electrons that are excitable at a specific 

energy or wavelength.  The cells are then subjected to electromagnetic 

radiation at that excitation wavelength.  High energy photons at the excitation 

wavelength (energy) of the fluorophore are absorbed and elevate the electrons 

from their ground state to a higher energy level.  After a time in the order of the 

nanosecond range(464) the electrons fall to their original ground state after 
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internal conversion releasing photons of lower energy or wavelength than the 

original photon (Figure 2.11). 

 

 

Figure 2.11: Schematic of fluorescence 
High energy photons excite electrons of the fluorophore from the ground state to the higher energy 
excited state.  Internal conversion de-excites the electrons without emitting radiation, this takes ≈ 
10-14 – 10-10s before the electron returns to its ground state by emission of another photon, this time 
at a lower energy.  Imaging techniques can be used to excite fluorophores at one wavelength and 
collect emission light at a longer wavelength. 

For LSCM (section 2.7), a fluorophore excitable at an operational wavelength is 

needed.  The LSCM has an argon-LASER that operates in the blue region of the 

electromagnetic spectrum, specifically an optimum wavelength of 488 nm(465).  

Ca2+ sensitive fluorophores have been developed that excite at this wavelength 

such as fluo-3(462). 

Excited State 

Ground State 
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Figure 2.12: Emission spectrum for fluo-3 
Emission spectra for different global intracellular concentrations of Ca2+ ([Ca2+]i).  Concentrations 
marked in red are expected values for systolic and diastolic [Ca2+]i 

(466) making fluo-3 a good choice 
for intracellular Ca2+ imaging. (Figure from Invitrogen) 

Fluo-3 makes an ideal choice at normal global intracellular concentrations of 

Ca2+ ([Ca2+]i) as ~1.0µM, the expected [Ca2+]i  during systole(466), and 100 nM, the 

expected [Ca2+]i  for diastole(466).  Both fluorescence levels for systolic and 

diastolic [Ca2+]i are represented and a sufficient distance apart to give good 

resolution (Figure 2.12).  The optimal sensitivity of the fluorophore is most 

reliable at [Ca2+] closest to the dissociation constant (Kd)
(467) which has been 

reported as 558 ± 14 nM in the case of fluo-3 in cardiomyocytes(468).  Lower 

affinity indicators can be used for higher expected [Ca2+]i without saturation(461). 

2.6.2 Loading Cardiomyocytes with Fluorophore 

It is necessary for the fluorophore to be able to enter the cell to measure [Ca2+]i.  

This can be achieved by methods such as microinjection, diffusion from patch-

clamp pipettes and ester loading(469).  Most fluorophores are cell impermeable so 

they can be modified with acetoxymethyl esters (AM) which results in an 

uncharged molecule which is cell permeable(470;471).  Once the AM fluorophore is 

within the cell, esterases cleave the AM moiety and the impermeable indicator 

remains inside the cell. 
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2.6.3 Disadvantages of Ca2+ Sensitive Fluorophores 

2.6.3.1 Ca2+ Buffering 

When using fluorophores it is important to consider disadvantages.  Since Ca2+ 

sensitive fluorophores function by binding Ca2+, high concentrations of the 

fluorophores can alter the Ca2+ buffering of the cell(472).  For experiments 

presented in this thesis the manufacturer’s recommended concentration of 5 µM 

of fluo-3 was used which should not significantly affect buffering for these 

experiments(473).  

2.6.3.2 Cytotoxicity 

Other disadvantages to be aware of are that some fluorophores can be cytotoxic 

resulting in inhibition of proliferation in some cell types(469).  However, the 

cardiomyocytes used in the studies presented here were not used for any other 

purpose following imaging.   

2.6.3.3 Photobleaching 

Excessive illumination of the fluorophores can lead to bleaching and production 

of Ca2+ insensitive forms of the fluorophores(474).  It is therefore important to 

reduce illumination to a level that limits photobleaching but maintains an 

adequate signal to noise ratio.  Signals from non-ratiometric dyes are more 

sensitive to the artefact of photobleaching than signals from ratiometric dyes, as 

a ratio of two wavelengths can control for bleaching(469).  However, ratiometric 

indicators can have the problem that photobleaching of the two excitation of 

emission wavelength maxima can occur at different rates(474).  For the LSCM 

experiments presented in this thesis the LASER power output was kept to 15%.  

For both LSCM and epifluorescence experiments the protocol length was kept as 

short as possible and freshly loaded cells used frequently to limit any 

photobleaching artefact. 

2.6.3.4 Compartmentalisation 

A particular problem of the fluorophores, especially AM loaded indicators, is 

compartmentalisation.  The indicators when bound to AM ester can not only 

easily cross the plasma membrane of cells but also cross organelle membranes 
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within the cell.  The indicator will be present at different concentrations within 

the organelles compared to cytosol(469).  There are many differences between 

cell type, loading conditions and type of indicator.  To try to limit 

compartmentalisation for these experiments loading temperature was kept at 

room temperature(475) and loading time was kept to 10 min. 

2.6.3.5 Dye leakage 

Over time the fluorophores can leak from the cells into the extracellular 

medium.  The leakage can be suppressed by low/room temperature(476-478) so the 

indicators were loaded at room temperature and LSCM experiments performed 

at room temperature. 

2.6.3.6 Differential Pathlength and Dye Loading 

Non-ratiometric indicators in particular are subject to the effect of differential 

pathlength and dye loading.  Differences in cellular morphology can cause 

heterogeneity in dye loading.  Emitted photons from different regions of the cell 

have different “paths” to the detector and therefore have different levels of 

quenching (Figure 2.13).  This can lead to apparent differences in [Ca2+]i, which 

are artefacts.  The simplest way to correct for this phenomenon is to ratio the 

raw fluorescence signal (F) with the baseline (F0)
(479).  This method will only 

work if the cell does not change position.  In the case of contracting 

cardiomyocytes this is difficult, since the ends of the cell move.  To limit this, in 

the analysis for F/F0 ratio was calculated from a 20 pixel band adjacent to Ca2+ 

wave initiation point with the cell(296).  Alternatively, a ratiometric indicator can 

be used, which controls for movement and differential dye loads.  In the case of 

Fura dyes, there are two excitation wavelength maxima from which the ratio 

between the two is calculated.  Any changes of pathlength or dye loading 

happen to the dye and so both wavelengths will be affected equally so the ratio 

will not change.  Unfortunately there are no available ratiometric indicators 

with an appropriate excitation/emission spectrum for use with an argon LASER 

for LASER-scanning confocal microscopy. 
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Figure 2.13: Diagram of differences in resting fluorescence signals due to different path lengths. 
Differences in cell morphology can lead to alterations of fluorescence quenching from photons 
following different pathlengths.  This can lead to artefacts in [Ca2+]i assessment if the ratio of F/F0 is 
not taken.  

2.6.4 Ratiometric Ca2+ Fluorophores for Epifluorescence 
Microscopy 

To measure the stimulated Ca2+ transient Fura-2 and Fura-4 were used.  In 

contrast with Fluo-3, the Fura dyes are ratiometric.  Ratiometric dyes can either 

have two excitation (Fura) or two emission wavelength maxima (Indo)(463).  The 

major advantage of using a ratiometric dye is that differential pathlength 

(Figure 2.13) and differences in dye loading are corrected for.  In the case of 

Fura dyes there are two peaks of excitation at 340 nm and 380 nm for Ca2+ 

bound and unbound, respectively, and emission at 510nm (Figure 2.14 Figure 

2.15).  When Ca2+ is released from the sarcoplasmic reticulum (SR) during systole 

[Ca2+]i it binds to fluorophore in the cytosol and is excited by 340 nm light.  

During diastole, when Ca2+ is taken back up into the SR, the [Ca2+]i drops below 

the Kd and Ca2+ dissociates from the dye.  The unbound dye is excited by 380 nm 

light so the 340 nm signal reduces and the 380 nm signal increases.  When the 

ratio of 340/380 nm is calculated the transient rises and falls with the release 

and reuptake of Ca2+.  As with the Fluo dyes there are different Fura dyes with 

different affinities.  For greater resolution at lower [Ca2+]i, such as diastolic 

[Ca2+]i, or low amplitude Ca2+ waves a higher affinity dye is more useful, such as 

Fura-2 with a Kd of 181 ± 52 nM(480).  For higher [Ca2+]i a lower affinity dye such 

as Fura-4F with a Kd of 1.16 ± 0.016 µM is more useful(480). 
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Figure 2.14: Emission spectrum for Fura-2. 
Emission spectra for different global intracellular concentrations of Ca2+ ([Ca2+]i).  In contrast with 
Fluo-3 the spectrum has two excitation peaks for Ca2+ bound dye (green arrow) and unbound dye 
(purple arrow). Concentrations marked in red are expected values for systolic and diastolic 
[Ca2+]i

(466) making fura-2 a good choice for intracellular Ca2+ imaging closer to diastolic or minimum 
[Ca2+]i. (Figure from Invitrogen). 

 

 

Figure 2.15: Emission spectrum for Fura-4F. 
Emission spectra for different global intracellular concentrations of Ca2+ ([Ca2+]i).  The two 
excitation peaks for Ca2+ bound dye (green arrow) and unbound dye (purple arrow) are shown. 
Concentrations marked in red are expected values for systolic and diastolic [Ca2+]i

(466) making fura-
4F a good choice for intracellular Ca2+ imaging closer to systolic or peak [Ca2+]i. (Figure from 
Invitrogen).  
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2.7 Imaging Ca2+ with LASER-Scanning Confocal 
Microscopy 

2.7.1 Principles of Image Collection 

Adult rat left ventricular cardiomyocytes were loaded with Fluo-3AM, excitable 

at 488 nm.  Once excited the emitted photons are >515 nm.  The confocal 

microscope has an Argon LASER with peak radiation intensity at 488 nm(465).  The 

LASER light at the excitation wavelength is passed through a series of 

dichromatic mirrors, which reflect wavelengths shorter than the determined 

wavelength and allow longer wavelength light through.  The excitation LASER 

light is reflected through scanning mirrors that continually rotate through the x 

and y dimensions in an arc.  This allows the user to set the scan dimensions and 

scan the whole specimen or specific regions.  The directed excitation light is 

focussed onto the specimen through the objective lens of the microscope (Figure 

2.16A).  Emitted light from the excited fluorophore within the specimen is 

collected through the objective lens and de-scanned by the rotating scan mirror 

i.e. allowing the emitted light to return on the excitation path to the 

dichromatic mirrors.  The light then passes through the dichromatic mirrors as it 

is now a lower energy and longer wavelength and hits the photo detector, in this 

case a photo multiplier tube (PMT).  A pinhole allows only light from the in-focus 

focal plane of the specimen; all other focal plane light is blocked (Figure 2.16B).  

As out of focus emission light is rejected, only fluorescence from the focal plane 

is detected so the interfering fluorescence from the rest of the cell is 

eliminated.  This allows for a much better estimation of fluorescence, thus 

[Ca2+]i, in the area of interest.  
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Figure 2.16: Principles of LASER-scanning confocal microscopy 
(A) Excitation of fluorophore within the cell.  The LASER emits light at the excitation wavelength 
(488 nm) passed through a series of dichromatic mirrors (one shown for simplicity).  The scanning 
mirror directs the beam through x and y axes to scan the specimen.  (B) The dichromatic mirrors 
reflect wavelengths shorter than the determined wavelength and allow longer wavelengths through.  
Emitted light at a longer wavelength (>515 nm from Fluo-3) passes through the dichromatic mirror.  
A pinhole at the photo detector allows only light from the plane of focus through to the detector to 
give a more accurate estimation of dye fluorescence without interference from other focal depths. 

2.7.2 Spatial and Temporal Resolution 

Since the image is generated by scanning a LASER across the specimen point by 

point it takes a period of time, so the whole cell is never imaged at any one 

time.  This presents a problem when trying to capture relatively short-lived 

events such as spontaneous releases of Ca2+.  Conventional images generated are 

512 x 512 pixel arrays.  The typical speed of scan is 500 lines per second so a 

5122 array takes approximately 1s to acquire.  This time can be reduced by 

reducing the area scanned or bi-directional scanning.  The spatial resolution is 

less straight forward due to the effects of diffraction.  Due to the diffraction of 

light a point source of light cannot be imaged as a single intense point, instead it 

has an intense peak with peaks and troughs of intensity rippling outward, called 

the Airy disc.  The resolution of the image can be determined from the 

wavelength of the light and the numerical aperture (NA) of the lens.  A lens with 
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higher NA has greater light capturing efficiency(481) and is defined by half the 

angle of the collection cone (θ) and the refractive index of the immersion 

medium (n) to give: NA = nsinθ.  The x-y resolution can then be calculated using 

the Rayleigh/Abbe formula(482): 

 r = 0.61λ/NA 

where r is the radius of the Airy disc between intensity peak and first zero.  

Images for this thesis were collected using a Zeiss LSM 510 with a 63x 1.2 NA 

water immersion lens.  Therefore we can calculate the size of the Airy disc and 

x-y resolution at 515 nm as 0.52 µm.  In the z dimension or axial resolution the 

formula is(482): 

r = 2λ/nsin2θ 

using the same λ and NA we get a z resolution of 0.72 µm.  The pinhole aperture 

was set to 1.0 Airy unit to improve axial resolution.  This ensures that only the 

first order maxima of the diffraction pattern are accepted into the photo 

detector.  If the pinhole aperture were set to >1.0 Airy unit then second order or 

greater maxima of the diffraction pattern would be allowed through leading to 

loss of resolution.  The trade-off by reducing the light permitted through is a loss 

of image brightness.  

2.7.3 Image Acquisition 

The depth of scan for confocal imaging systems at visible wavelengths is up to 40 

µm, beyond this spherical aberration is a problem i.e. the image becomes 

distorted by the surface geometry of the lens(483).  This is suitable for isolated 

ventricular cardiomyocytes having a typical depth of ~20 µm.  Ca2+ waves can 

occur at frequencies greater than the scan time and so be missed or only 

partially resolved if LSCM scanning speed is 1 frame.s-1.  Therefore Ca2+ wave 

imaging in this thesis was performed using a different technique.  The scan area 

was reduced to a single line which the LASER scans back and forth.  This 

technique is referred to as line-scanning.  Each scan progresses across the region 

of interest selected by the user to give length across the cell in the x dimension.  

Each pass of the LASER adds a line of pixels in the y dimension to give time 



Chapter 3  The Effects of Trypanosoma brucei  131 
 

producing a “waterfall” image.  Each pixel in the images produced equates to 

0.27 µm in x and 3.07 ms in y.  The scanning LASER line was orientated parallel 

with the long axis of the cell (Figure 2.17A) and placed approximately 

equidistant between the outer edge of the cell and the nucleus/nuclei to ensure 

the nuclear area was not included in the scan line and alter the fluorescence 

signal(296).   

 

Figure 2.17: Line-scan confocal imaging. 
(A) Isolated cardiomyocyte loaded with Fluo-3 dye.  The yellow line indicates the scan dimension 
selected by the user.  Care is taken to ensure the nucleus (green ellipse) is not included in the scan 
line.  (B) The same cell imaged in standard light transmission mode with the scan line denoted by 
the dotted line.  Note that the nucleus is not clearly visible.  (C) Section of a waterfall image 
showing a Ca2+ wave in progress with distance across the cell in the x dimension and time in the y 
dimension.  The cell is typically scanned for 1min which equates to 30,000 scans. 

2.7.4 Image Analysis 

Images were acquired using the Zeiss LSM 510 imaging system and software.  

Waterfall images were exported to ImageJ (National Institutes of Health, USA) 

and converted to greyscale TIFF files.  These files were de-compressed in Paint 

Shop Pro 5 (Corel) where wave velocity was calculated by measuring the 

difference in pixel co-ordinates between initiation point and end point of each 
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wave and calculating the wave propagation gradient.  Uncompressed TIFF files 

were processed in a programme written by Dr. Francis Burton (Nbands) that 

measures the mean fluorescence output from a 20 pixel band defined by the 

user.  This output file was imported into the graph analysis software Origin6.1 

(OriginLab).  The baseline fluorescence F0 was measured from each trace and 

applied to the raw data to give the F/F0.  Data are expressed as the ratio of 

F/F0. 

2.8 Imaging Ca2+ with Ratiometric Epifluorescence 
Imaging 

2.8.1 Principles of Epifluorescence Microscopy 

Essentially the technique is very similar to LSCM.  The Ca2+ fluorophores used in 

these experiments was ratiometric, i.e. difference wavelengths of excitation 

depending on whether the dye Ca2+ bound or not (section 2.6.4).  For the 

experiments in this thesis Fura-2 and Fura-4F were used.  Both have excitation 

wavelengths of 340 nm and 380 nm (Ca2+ bound and unbound) so the confocal 

LASER source is not appropriate.  Therefore the fluorophore was excited with a 

mercury vapour arc lamp with a spinning wheel monochromator (Cairn 

Research).  Within the unit a diffraction grating splits the white light into its 

constituent wavelengths.  A spinning disc of excitation filters switches rapidly 

between the two excitation wavelengths alternating between 340 nm and 380 

nm at a rate of 250 Hz.  A dichromatic mirror reflects the excitation light 

through the objective to illuminate and excite the fluorophore epifluorescently 

in the specimen on the microscope stage.  The emitted light at a longer 

wavelength of 510 nm is allowed to pass through the dichromatic mirror to be 

detected by the PMT (Figure 2.18). 
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Figure 2.18: Epifluorescence imaging. 
Multispectral light is emitted by the mercury vapour arc lamp.  Collimating mirrors reflect the light 
onto a diffraction grating which splits the light into its component wavelengths.  These are then 
collimated and pass through an excitation wavelength filter.  The user can define the wavelengths 
with many filters in the monochromator unit.  For excitation of Fura dyes excitation wavelengths of 
340 nm and 380 nm (ultraviolet – shown in blue and purple) were required.  A spinning wheel 
enables rapid switching between the two wavelengths.  The dichromatic mirrors (one shown for 
simplicity) reflect light of wavelengths shorter than the user selected wavelength through the 
objective lens of the microscope to illuminate the specimen epifluorescently and excite the 
fluorophore.  Emitted light (at 510 nm) (shown in green) is collected by the objective lens and 
passes through the dichromatic mirrors which allow light of longer wavelengths than selected 
through to the PMT photo detector.   

In contrast with LSCM light from the whole specimen is collected from different 

focal planes rather than a single point.  In these experiments we are interested 

in the global change in [Ca2+]i so the resolution of a single scanning point is not 

necessary. 
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2.8.2 Data Acquisition and Analysis 

Isolated cardiomyocytes were loaded with 5 µM Fura-2AM or Fura-4F-AM for 

10min.  The cells were then diluted with test solution (see individual chapter 

methods for details) and incubated for 30 min.  This step allowed de-

esterification of the fluorophore as well as incubating the cells with test 

solution.  Cardiomyocytes were then loaded into a tissue bath (Cell 

Microcontrols) and superfused with test solutions at 37 ºC by gravity fed 

perfusion pen with active pump outflow.  Cells were field stimulated with 2.0 ms 

duration voltage pulses delivered through parallel platinum wires (stimulation 

voltage set to 1.5 times the threshold).  The stimulation simulates the action 

potential that depolarizes the sarcolemma leading to the Ca2+ release and 

reuptake cycle (section 1.4).  When the Fura dye is excited (section 2.6.4), the 

output signal is detected sequentially for each excitation wavelength by the 

PMT.  The output signal is sent to an oscilloscope for visualisation of the signals 

and an analogue to digital converter (Axon Instruments).  The signal is sampled 

at 5000 Hz to generate a trace for each excitation wavelength using Clampex 

10.3 (Axon) and the ratio 340/380 calculated online.  The ratio trace is the 

change is fluorescence corrected for movement artefact, differential dye-

loading and differential pathlengths (section 2.6.4.).  From the ratio trace it is 

possible to calculate [Ca2+]i using the following(463): 

[Ca2+] = Kd x β(R – RMin)/(RMax – R) 

Kd is the dissociation constant of the dye.  β is the relative change in 

fluorescence between zero and saturating [Ca2+] at 380 nm.  R is the ratio signal.  

RMin is the minimum ratio before stimulation, which was reduced by 10% to 

account for the higher diastolic [Ca2+]I in rat cardiomyocytes.  RMax is the 

saturation fluorescence achieved by killing the cell with a sharp micropipette at 

the end of the protocol to release Ca2+ bound dye to give maximum signal.  RMin 

and RMax were determined for each cell. β was measured by Dr. Chris Loughrey 

when the system was set-up and calibrated.  For Fura-2 Kdβ = 1.2 x10-6 and for 

Fura-4F Kdβ = 2.8 x10-6. 

Data were plotted in Origin6.1 (OriginLab) and converted to [Ca2+], which is the 

Ca2+ transient.  Average transients were calculated using macros written by Prof. 
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Godfrey Smith, University of Glasgow.  Differentiation plots and exponential 

decay functions were calculated using the software’s own functions. 

2.9 Dissection of T. brucei Mechanism 

2.9.1 Specific Protease Inhibitors 

T. brucei secretes a cathepsin-L-like cysteine protease that induces Ca2+ 

signalling in the endothelial cells of a blood brain barrier model(69).  Given the 

importance of Ca2+ signalling in excitation-contraction coupling of the heart it 

was prudent to test if a cysteine protease could be affecting Ca2+ in 

cardiomyocytes.  The cysteine protease activity of T. brucei  consists of two 

cysteine proteases TbCatL and TbCatB(112) so specific protease inhibitors for 

TbCatL and TbCatB were tested.  K11777 (N-methyl-piperazine-Phe-homoPhe-

vinylsulfone-phenyl) has been developed and used against the cathepsin-L-like 

cysteine protease of the related parasite T. cruzi(484;485) and TbCatL(69).  Figure 

2.19 shows the chemical structure and irreversible binding of K11777 to the 

active site of TbCatL.  By blocking the active site of TbCatL, it is unable to act 

as a protease and cleave proteins.  The reported IC50 of K11777 is 0.06 µM(484) so 

K11777 was added in excess at a concentration of 10 µM to control media and 

supernatant and spontaneous contractile events in cardiomyocytes measured as 

described above (section 2.4). 
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Figure 2.19: Structure and binding of K11777. 
(A) Structural representation of K11777 shows the interacting domains, P1, P1’, P2 and P3. (B) 
Representation of K11777 in the active site of TbCatL.  The hydrophobic regions in light green are 
pockets for the interacting domains of K11777 appropriately labelled.  The dark green area shows 
where the polar residues of TbCatL interact with the ligand forming a non-polar C-C bond. (Figure 
adapted from Kerr et al. (2009)(485). 

CA074 (L-3-trans-(propylcarbamyl)oxirane-2-carbonyl)-L-isoleucyl-L-proline) has 

been used to inhibit TbCatB(69;486).  Figure 2.20 shows the chemical structure and 

irreversible binding to the active site of TbCatB blocking its protease action.  

CA074 has an IC50 of 2.24 nM(487), and was added to control media and 

supernatant at a concentration of 10 µM and a population assay performed as 

described above (section 2.4).  
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Figure 2.20: Structure and binding of CA074. 
(A) Structural representation of CA074. (B) (left) Representation of CA074 in the active site of 
TbCatB.  The hydrophobic regions in purple are pockets for the interacting domains of CA074.  (B) 
(right) CA074 interactions with residues in the active site of CA074. (Figure adapted from Kerr et al. 
(2010)(486). 

2.9.2 Recombinant T. brucei Cathepsin-L 

2.9.2.1 Manufacture of T. brucei Cathepsin-L 

Recombinant TbCatL was kindly donated by Dr. Ana-Paula C. A. Lima of Instituto 

de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro and 

Prof. James H. McKerrow, University of California San Francisco Medical School.  

Recombinant TbCatL was stored at-80 ºC and activated with the reducing agent 

dithiothreitol (DTT) (concentration determined by enzyme activity assay 

described below) prior to each use. 

2.9.2.2 Recombinant TbCatL Activity Assays 

The activity of the recombinant TbCatL can be measured by the cleavage of a 

fluorogenic substrate and subsequent measurement of the fluorescence on a 

spectrophotometer.  The fluorogenic peptidyl substrate benzyloxycarbonyl-
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phenylalanyl-arginine-7-amido-4-methyl-coumarin (Z-FR-AMC) has been used to 

test activity in TbCatL and shown to be effective with 120 M substrate converted 

by 1 M TbCatL min-1 with a peak activity at pH 5.0(129).  The substrate Z-leucine-

arginine-AMC (Z-LR-AMC) was also effective at converting 130 M.min-1 at pH 

6.0(129). TbCatL recognises the phenylalanyl-arginine residue of the substrate and 

cleaves the fluorogenic AMC moiety.  In a spectrophotometer (Wallac Envision) 

reaction wells in a black background light-absorbent 96 well plate (Corning) are 

exposed to light at the excitation wavelength of 360 nm (Figure 2.21).  Light at 

the emission wavelength of 480 nm is detected by a photo multiplier tube and 

recorded as arbitrary units of fluorescence (section 2.6.1 for details on 

fluorescence).   

 

Figure 2.21: Schematic of a fluorogenic activity assay. 
Z-FR-AMC substrate is not fluorescent until cleaved.  TbCatL recognises the phenylalanyl-arginine 
(FR) residues and cleaves the fluorescent 7-amido-4-methyl-coumarin (AMC) moiety.  Excitation 
light at 360 nm excites the AMC which emits at 480 nm.  The change in fluorescence from baseline 
is an indicator of enzyme activity.  

Using a similar method to that described in Caffrey et al. (2001)(129), 

recombinant TbCatL was diluted to 0.1 µg.mL-1 in assay buffer (0.1 M NaOAc pH 
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5.5 plus DTT at 0.1, 0.5, 1.0 and 2.0 mM).  Enzyme in assay buffer or assay 

buffer without enzyme as a blank control (100 µL) was added to 20 µM 

fluorogenic substrate in the 100 µL of assay buffer in triplicate in a 96 well black 

plate, and measured in a spectrophotometer at 37 ºC at excitation and emission 

frequencies of 360 and 480 nm for 30 min.  The relative fluorescence of the 

blank control with the appropriate concentration of DTT was subtracted and 

plotted as arbitrary relative fluorescence units (Figure 2.22A(i)).  The mean 

activity curves were differentiated to give the peak rate of conversion.  DTT at 

1.0 and 2.0 mM showed the maximal activity of the enzyme; (218 vs. 2278 vs. 

5040 vs. 6548 vs. 6560 units.s-1; 0 vs. 0.1 vs. 0.5 vs. 1.0 vs. 2.0 mM DTT; Figure 

2.22A(ii)). 
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Figure 2.22: Activity assays and cardiomyocyte population assay to test activating quantity of DTT 
for TbCatL. 
(A) (i) Activity assay with 0.1 µg.mL-1 TbCatL in 0.1 M NaOAc and 20 µM fluorogenic substrate Z-
FR-AMC at 0, 0.1, 0.5, 1.0 and 2.0 mM DTT.  Data are plotted as mean ± SEM curves (n=3) of 
arbitrary relative fluorescence units. (ii) Maximum rate of conversion of substrate by 0.1 µg.mL-1 
TbCatL as fluorescence units.s-1 by differentiation of the curves in (i).  (B) Population assay of adult 
rat left ventricular cardiomyocytes in media with different concentrations of DTT.  Data are 
expressed as mean ± SEM. n = number of cells from (isolations).  Statistics were performed by 
multiple linear regression analysis and P≤0.05 considered significant. 

2.9.2.3 Assessment of DTT Effects on Cardiomyocyte Spontaneous 
Contractile Events 

A cohort of cardiomyocyte population assays was performed with different 

concentrations of DTT to test that concentrations of DTT necessary for 

recombinant CatL activation did not have a significant effect on spontaneous 
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Ca2+ release.  Briefly, cardiomyocytes were prepared as above (section 2.3.1) 

and incubated with control media (section 2.1.1) with 0.5, 1.0 and 2.0 mM DTT.  

Cells were loaded into a tissue bath and viewed through a 10x objective lens and 

10 fields of ~10 rod-shaped cardiomyocytes were viewed for 1 min per field.  

The numbers of cells showing spontaneous contractile events per min were 

recorded and expressed as percentage change over media control.  Trypanosome 

culture supernatant was tested alongside as a positive control for differential 

contractility when compared to DTT.  Supernatant showed a significant increase 

over control as expected (Chapter 3) (100 ± 4.1 vs. 129.3 ± 4.1%; control (n = 

1051 cells from 8 hearts) vs. Supernatant (n = 1232 cells from 8 hearts; P<0.05).  

DTT had no significant effect compared to control; (109.0 ± 4.7, vs. 94.9 ± 14.8 

vs. 102.4 ± 16.3%, 2 mM DTT (n = 1013 cells from 8 hearts) vs. 1 mM DTT (n = 874 

cells from 7 hearts) vs. 0.5 mM DTT (n = 852 cells from 7 hearts); P>0.05 when 

compared to control media; Figure 2.22B).  When compared to supernatant 

there was still a significant difference (P = 0.05).  Therefore an activating 

concentration of 2.0 mM DTT results in maximal recombinant TbCatL activation 

without having a significant effect on the cardiomyocytes. 

2.9.2.4 Recombinant TbCatL in Cardiomyocyte Spontaneous Contractile 
Event Measurements 

Recombinant TbCatL was prepared by adding at a dilution factor of 1:50 (volume 

of 8 µL) to 300 µL control media (as described in section 2.1), 100 µL of 

cardiomyocytes in MIKH and 4 µL of 0.1 M DTT giving a final concentration of 2 

mM DTT.  The 1:50 dilution of TbCatL gave a final concentration of 2 nM TbCatL 

as used in Caffrey et al. (2001)(129).  The solution was incubated at room 

temperature for a period of 30 min to allow the DTT to activate the TbCatL and 

for the cardiomyocytes to be exposed to the active TbCatL, as with the 

supernatant and control media experiments described above (section 2.4).  The 

percentage of cardiomyocytes exhibiting at least one spontaneous contractile 

event min-1 was measured.  
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2.9.3 RNA Interference of T. brucei Cathepsin-L 

2.9.3.1 RNA Interference  

RNA interference (RNAi) was performed in Trypanosoma brucei brucei 2T1 (a cell 

line derived from bloodstream form Lister 427)(488).  The trypanosomes were 

transfected with the plasmid pTL107 (an extrachromosomal circular piece of 

DNA from which genes of interest may be expressed), which was derived from 

the commercial plasmid pGL2084, a Gateway® (Invitrogen) modified version of 

the plasmid pRPaisl(489).  The pTL107 plasmid contains a tetracycline inducible 

stem-loop RNAi cassette and target region of the gene of interest, TbCatL.  The 

target region of the TbCatL gene contained in pTL107 corresponded to 

nucleotides 409-986 of the open reading frame, with the following 

oligonucleotides used to generate the TbCatL gene construct; forward 5’-GGG 

GAC AAG TTT GTA CAA AAA AGC AGG CTG CAG TGA CCC CAG TGA AGG A-3’ and 

reverse 5’-GGG GAC CAC TTT GTA CAA GAA AGC TGG GTA GAC ATT GGT TTG 

TGC CCT T-3’.  Trypanosomes containing this construct were kindly 

manufactured and provided for use in this study by Nathaniel Jones, University 

of Glasgow.  The trypanosomes containing the plasmid were selectively 

maintained in culture with modified HMI-9 by addition of 2.5 µg.mL-1 hygromycin 

and 0.5 µg.mL-1 phleomycin as the RNAi plasmid had resistance genes to these 

antimicrobials so that successful transfectants can be selectively maintained.  

Addition of 1.0 µg.mL-1 tetracycline induced the transcription of the RNAi 

cassette providing a dsRNA stem in the stem-loop construct homologous to 

TbCatL.  RNAi induction was performed in two independent biological 

duplicates.  Using two independent clones controlled for replication of 

phenotype upon RNAi induction over two independent transfection events i.e. 

the phenotype observed was not a random effect of the transfection, but due to 

inducible interference of TbCatL. 
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Figure 2.23: The RNAi pathway in Trypanosomatids 
The mechanism by which dsRNA (or dsRNA in the stem of stem-loop constructs) is recognised and 
cleaved into 25 nucleotide segments is governed by the RNase III-related enzyme Dicer.  The 
small interfering RNA (siRNA) fragments are unwound to form single-stranded RNAs (ssRNA) by 
RNase-H-containing protein that belongs to the argonaute (AGO1) family or Slicer.  The ssRNAs 
display sequences recognised by the messenger RNA (mRNA) transcribed from the gene of 
interest which are then specifically targeted and degraded before translation. (Redrawn from 
Balana-Fouce and Reguera(490)).   

The parasite’s inherent RNAi system recognises the double-stranded RNA (dsRNA) 

via the recently characterised RNase III-related enzyme Dicer(491), which then 

degrades dsRNA into small interfering RNAs (siRNA) 25 nucleotides in length.   A 

second enzyme belonging to the argonaute (AGO) family (‘slicer’) recognises and 

binds the siRNA, unwinds it to form single-stranded RNA (ssRNA), which then 

binds to homologous sequences in the messenger RNA of the gene of interest, 

TbCatL in this case.  The TbCatL mRNA is then degraded by the trypanosomes’ 

inherent degradation mechanisms (Figure 2.23)(490). 
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2.9.3.2 Growth Curves 

The RNAi specificity and degree of TbCatL knockdown was tested in the two 

independent biological duplicates.  RNAi was induced with 1 µg.mL-1 tetracycline 

and growth curves performed on induced vs. uninduced cultures in triplicate for 

the two biological duplicates.  Cultures for growth curves were initiated with 1.0 

x 105 parasites.mL-1 in modified HMI-9 with the addition of hygromycin and 

phleomycin as above.  The cultures were counted in triplicate with an improved 

Neubauer haemocytometer (section 2.1.1) at 24, 48 and 72 hr time points post-

induction.  The cultures were reseeded every 24 hrs as a 1:10 dilution into fresh 

modified HMI-9 media with added antimicrobials to ensure a sufficient quantity 

of parasites to count accurately without overgrowth of the culture.  It has been 

shown that TbCatL is essential for growth of the parasite(492) so successful 

induction of RNAi should manifest as a negative growth phenotype.   

2.9.3.3 Real time Quantitative PCR to Confirm Inhibition of TbCatL 
Expression 

During RNA interference the mRNA for the gene of interest becomes degraded 

(Figure 2.23).  In order to test the efficiency of the RNAi it is possible to 

indirectly measure the amount of mRNA by using the quantitative Real-Time 

Polymerase Chain Reaction (qRT-PCR).  RNA cannot serve as a template for PCR 

as the technique only works on double stranded DNA.  Therefore, the mRNA 

must be converted to double-stranded complementary DNA (cDNA) by a method 

called reverse transcription.  The qRT-PCR is then performed on the cDNA. 

2.9.3.3.1 RNA Extraction 

The process of RNA extraction is complicated by the presence of ribonuclease 

enzymes (RNases) which are ubiquitous in the environment on skin of the user 

and often the laboratory bench and can rapidly degrade a sample.  To minimise 

the risk of degradation the work area was cleaned with 70% ethanol and use of 

RNaseZap™ (Ambion), which destroys environmental RNases.  Gloves and 

equipment (e.g. pipettes) were treated with RNaseZap.  Tubes and pipette tips 

certified as RNase/DNase free were used throughout the extraction protocol.  

RNA was extracted from parallel cultures (section 2.9.3.2) grown to 5.0 x 105 

parasites.mL-1 in 10 mL culture (5.0 x106 parasites) using the RNeasy® (QIAgen) 

kit.  Parasites were pelleted by centrifugation at 1,500 g for 10 min.  The cells 
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were lysed with a buffer containing guanidine-isothiocyanate and β-

mercaptoethanol, which disrupts the cell membranes releasing the cellular 

contents into the lysate and inactivates RNases that could degrade the RNA.  The 

lysate was homogenised by passing ≥5x through a 23-guage needle.  One volume 

of 70% ethanol was added to the lysate and mixed by pipetting.  The ethanol 

provides the appropriate conditions for RNA binding in the next step.  The 

ethanol/lysate mixture was added 700 µL at a time to a spin-column with an RNA 

binding silica membrane and centrifuged for 15 s at ≥8,000 g.  The column was 

retained and the flow-through discarded.  The column was then washed with 

proprietary buffers (RWT and RPE) designed to support RNA binding and wash out 

contaminants such as intracellular proteins.  A final centrifugation step dried the 

column removing any remaining ethanol.  The dry column was then placed in a 

sterile RNase free collection tube and 30 µL RNase free water added to the 

column and centrifuged for 1 min at 8,000 g.  The water neutralises the pH and 

reduces the RNA-binding affinity to the membrane thus eluting the RNA(493).  RNA 

quantity was measured by absorbance of 220-320 nm wavelength light in a 

microvolume spectrophotometer (Nanodrop ND-1000, Thermo Scientific).  The 

relationship of concentration of nucleic acid and absorbance is linear (Beer-

Lambert Law), which therefore enables a readout on-screen of the RNA 

concentration in the sample as ng.µL-1. 

2.9.3.3.2 Synthesis of cDNA  

For qRT-PCR the RNA must be transcribed to its complementary DNA (cDNA).  

This is initiated by an oligonucleotide primer of poly-thymine (oligo-dT primers) 

that binds to the polyadenylated tail of the mRNA.  The primers then direct the 

reverse transcriptase (RT) to synthesise a single strand of cDNA using dNTPs 

(adenine (A), thymine (T), cytosine (C) and guanine (G)).  This forms an 

mRNA/DNA hybrid.  To make the cDNA double-stranded the mRNA is degraded 

which is achieved by RNase H.  The remaining single-stranded DNA forms a 

hairpin loop due to hydrophobic interactions and serves as the primer for the 

second complementary strand by a DNA-dependent DNA polymerase (Figure 

2.24). 
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Figure 2.24: Synthesis of cDNA by reverse transcription. 
Oligo-dT primers recognise and bind to poly-adenylated tail of mRNA.  Reverse transcriptase 
transcribes the mRNA into complimentary strand of DNA.  RNase H degrades the mRNA and the 
remaining ssDNA acts as primer for DNA polymerase to synthesise the remaining strand to 
produce dsDNA complimentary to the original mRNA in the sample.   

For preparation of cDNA, approximately 1.0 µg of total RNA was treated with 

DNaseI (TURBO DNase (Ambion)) to remove any contaminating genomic DNA.  

Samples were incubated in a reaction volume of 25 µL (containing 2.5 µL of 10x 

enzyme buffer and 1 µL DNase) for 25 min at 37 ºC.  Following the incubation, 

2.5 µL of a DNase inhibitor was added to stop the reaction.  

Reverse transcription was carried out using the Omniscript RT kit (Qiagen) with 

5.0 μM of each oligo dT primer (QIAgen).  The kit contains the reverse 

transcriptase (RT), dNTPs and an enzyme buffer containing Mg2+ for optimal 

enzyme activity.  The Omniscript RT kit performs three functions: i) RNA-

dependent reverse transcription to form the first cDNA strand from the mRNA, ii) 

RNase H activity to degrade the mRNA and iii) DNA dependent polymerase to 

synthesise dsDNA from the ssDNA.  An additional RNase inhibitor (RNase-Out 

(Invitrogen) was added to protect samples (Table 2.2), which according to the 

manufacturer does not affect the RNase H capability of the Omniscript RT.  A 

parallel reaction was carried out without RT to confirm successful cDNA 
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synthesis and rule-out genomic DNA contamination.  This process creates cDNA 

for all mRNA in the sample.   

To measure the gene of interest PCR must be performed. 

Table 2.2: Reverse Transcription Reaction Components 
Component Volume (per reaction) Final Concentration 

10x RT Buffer 5.0 µL 1x 

dNTP mix (5 mM each) 5.0 µL 0.5 mM per dNTP 

Oligo-dT primer (10 mM) 5.0 µL 1 µM 

RNaseOut (10 units.µL-1) 2.5 µL 25 units 

Reverse Transcriptase 2.5 µL 10 units 

RNase free H2O Variable* To final volume of 50 µL 

RNA (1µg) Variable* 1 µg  

TOTAL 50 µL  

* Variable depending on concentration of RNA in sample.  Final volume made up with RNase free 
H2O. 

2.9.3.3.3 Quantitative RT-PCR 

The Polymerase Chain Reaction (PCR) works by taking a small quantity of target 

DNA and amplifying it to detectable quantities.  The amplification is a three step 

process: first by denaturing the dsDNA through heating (~90-98 ºC) to break the 

DNA into separate strands.  Secondly, short DNA sequences (primers), designed 

by the user, complementary to flanking regions of the gene of interest then 

anneal to the single strands when the temperature is reduced to 50-65 ºC.  

Thirdly, the samples are heated to 72-80 ºC to allow the DNA polymerase to 

synthesise complementary strands from added nucleotide bases (adenine, 

thymine, cytosine and guanine (dNTPs) directed by the primers.  The process is 

repeated 30-40 times, each step doubling the quantity of DNA for the gene of 

interest (Figure 2.25).  The requirements for a PCR reaction are: 
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Table 2.3: Components and functions of a PCR reaction. 
Component Function 

Buffer Maintains reaction mix at appropriate pH and provides Mg2+ 
for polymerase activity. 

Deoxynucleotide 
Triphosphates (dNTPs) 

Provide energy and nucleotides for the synthesis of DNA.  
Quantities are balanced to reduce mismatch errors. 

Specific Primers Short DNA sequences (20-30 nucleotides) that bind to 
complementary DNA sequences flanking the gene of interest 
and provide an initiation point for the polymerase to act 

Polymerase Heat stable enzyme that adds the complementary dNTP to 
the DNA template (A binds with T vv. C binds with G vv.)  

Template dsDNA Sample to be amplified 

 

When setting up the PCR heat cycler several stages must be programmed: 

1. Initiation: The reaction is heated to 90-98 ºC and held for up to 10 min.  

This step is required for full denaturation of the DNA. 

2. Denaturation: The reaction is heated to 90-98 ºC for up to 1 min to 

disrupt the hydrogen bonds between the complementary bases of the two 

DNA strands to separate them. 

3. Annealing: The reaction is cooled to 50-65 ºC for up to 1 min to allow the 

primers to bind to their complementary sequences on the ssDNA 

template.  The DNA polymerase then binds to the primer-template hybrid. 

4. Elongation: The reaction is heated to 72-80 ºC (for time determined by 

the length of sequence to be amplified).  The polymerase synthesises a 

new strand by adding dNTPs to the template strand in the 5’-3’ direction 

of the new strand (3’-5’ of the template) 

5. Cycle Repeats: Steps 2-4 are repeated 30-40 times to amplify the DNA 

product 
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6. Final Elongation: A final longer elongation step of up to 15min may be 

added to ensure any remaining ssDNA is completely extended. 

7. Final Hold: If further analysis is to be performed on the sample they can 

be held on the cycler plate at 4 ºC. 

Over the course of the 30-40 cycles the reaction goes through 3 phases.  The 

first phase is the exponential phase where there are sufficient reagents to 

amplify all the available templates in the annealing/elongation steps.  Beyond 

approximately cycle 15 the reaction enters the linear phase where reagents are 

diminishing.  The final phase is the plateau phase where all reagents have been 

consumed and no more products can be synthesised.  With conventional PCR the 

product is analysed at the end of the reaction so, depending on cycle number, is 

likely to be in the plateau phase.  Real-time PCR has the advantage of measuring 

the increase in product over the course of the reaction using fluorophore probes 

so determining the point at which the plateau is reached. 

For the PCR conducted in this thesis only qRT-PCR was performed.  The principle 

of qRT-PCR is that a DNA binding fluorophore fluoresces when bound and excited 

in the cycler unit so that the relative quantity of DNA can be measured.  There 

are several methods available; the SYBR green was employed in this thesis.  The 

SYBR green fluorophore binds to the minor groove of dsDNA.  As the reaction 

progresses more dsDNA is present so more dye is in a bound state and excitable. 
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Figure 2.25: Amplification of template DNA by PCR: 
Schematic of PCR showing (1) denaturation of DNA at 90-98 ºC, (2) annealing at 50-65 ºC and (3) 
elongation at 72-80 ºC. Black “ladders” represent template DNA to which blue primers anneal and 
green synthesised DNA elongates by DNA polymerase (blue ellipses).  The synthesised DNA is 
used as further template in the next cycle to amplify exponentially over the course of the reaction.  
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Samples and reagents were thawed and kept on ice.  Reactions were prepared in 

a laminar flow hood to minimise aerosol contamination and personal protective 

equipment was worn to prevent user contamination of samples.  Synthesised 

cDNA was diluted 1:5 with RNase/DNase free H2O to increase volume and 

decrease pipetting error and 100ng of cDNA (2 µL) per reaction well used.  The 

oligonucleotide primers used were designed by Dr. Liam Morrison, University of 

Glasgow and were: TbCatL forward 5’-TCT CGG ATA TGA CAC GTG AAG AGT-3’ 

and reverse 5’-TCT GCG CAG CTG CAA AGT-3’.  To offset individual reaction 

error from differing starting quantities of DNA the TbCatL product must be 

normalised to an endogenous control gene that is unlikely to be altered in 

quantity by the addition of the RNAi plasmid.  This allows small differences to be 

detected in gene expression as any over/under expression due simply to 

different starting template quantities will also be evident in the endogenous 

control gene.  Therefore, by using a stable endogenous control gene small 

changes in template concentration will also affect the endogenous gene by the 

same amount and so be removed when normalised.  As a result and subtle 

variations in the gene of interest without any change to endogenous gene can be 

accepted with greater confidence.  For example, if hypothetical samples A and B 

have different gene expressions, B is higher say, without an endogenous control 

it is not known whether B is truly higher, or if B had a higher starting quantity of 

template DNA.  But if a set of primers for an endogenous control gene is used on 

aliquots from the same samples and that control gene is stable under the 

experimental manipulation, i.e. RNAi in this case won’t alter its expression, then 

if B did have a greater starting concentration the endogenous control gene will 

also be increased.  So if the situation arose where B was actually increased and 

there was a higher concentration of template then the endogenous control 

would be raised but by a smaller amount than B.  Therefore when B was 

normalised sample B with endogenous primers the true change would become 

evident.  This does not control for pipetting error because each well on the plate 

is unique so triplicates of each sample and primer set should be performed, i.e. 

samples A and B need to be run in triplicate for both target gene primers and 

endogenous control primers, so 6 wells for each sample, 3 with target gene 

primers and 3 with endogenous control primers.  GPI-8 is a ubiquitously 

expressed transamidase that adds glycophosphatidylinositol (GPI) anchors to cell 

surface proteins(494), and was used as the endogenous control.  The primers 
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were: forward 5’-CGA AGC GCA TTT GGA TAG-3’ and reverse 5’-ACG GCG TGA 

TGA CAG TGA AG-3’. 

RT-PCRs were carried out in triplicate per individual sample, to control for 

pipetting error, on a 7500 Real-Time PCR system (Applied Biosystems), using 

approximately 100 ng cDNA, 1 x Power Sybr green master mix (Applied 

Biosystems) and 4.0 μM of the respective oligonucleotide primers, in a final 

reaction volume of 25 μL per well. The SYBR green mix contains the reporter 

fluorophore that binds to the dsDNA and reports the quantity, AmpliTaq Gold 

DNA polymerase, dNTPs and a ROX dye that is used to offset non-PCR related 

fluorescence.  The ROX dye is a passive reference dye, i.e. it does not change 

fluorescence during PCR, therefore is used as a control for potential changes in 

fluorescence due to non-PCR factors such as instrumentation variability, well 

volume and pipetting error.  The samples run were 3 separate cultures each of 

induced RNAi (1 µg.mL-1 tetracycline) and uninduced RNAi (no tetracycline) for 

both biological duplicates (STL 349 and STL 350).  Each was duplicated again 

with GPI-8 primers as endogenous normalisation control.  In parallel samples 

without template DNA (no template controls (NTCs) were also run as a control 

for contamination.  These are wells with identical components of primer and 

SYBR mix but no template DNA so that if any signal should be detected, there is 

cross-contamination of target DNA in the reaction components and the final 

result not be accepted. The samples and master mix of primers and SYBR mix 

were added to a 96-well plate and covered with an adhesive optical film to 

minimise sample evaporation.  Cycle conditions were; 10 min heat-activation of 

the polymerase, then 40 cycles of 95 ºC for 10min and 60 ºC for 1 min for 

denaturation and annealing/elongation.   

2.9.3.3.4 Melting Curve Analysis 

A melting curve analysis step was added to the protocol to test for non-specific 

contaminating DNA.  SYBR green binds to all dsDNA in a sample, not only the 

target DNA.  To ensure that minimal non-specific contaminating DNA is included 

in the fluorescence signal a melting curve step is added to the protocol.  This 

step is performed after the final cycle where the samples are heated slowly from 

60 ºC up to 95 ºC causing the DNA to denature while collecting fluorescence.  

The melting point (Tm) is the temperature at which the dsDNA denatures into 
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two separate strands of ssDNA.  Different lengths and base compositions of DNA 

will have different Tm so if the sample is purely from the amplification of the 

target DNA with the specific primer set the melting curve analysis should have 

one distinct peak (Figure 2.26B).  If there is contaminating DNA or excessive 

primer-dimer formation (primers annealing to themselves) the melting curve will 

have multiple peaks.  For this thesis samples were checked in this way and no 

contamination was detected. 

2.9.3.3.5 Amplification Curve Analysis  

The principal of quantifying a target gene with qRT-PCR is determining the point 

at which the fluorescence signal reaches a detectable threshold (Ct).  The level 

of fluorescence is directly proportional to the quantity of DNA in the sample.  

The cycler machine software automatically normalises the fluorescence against 

the non-PCR background fluorescence detected by the reference dye which 

controls for sample evaporation and pipetting error.  The reference dye used by 

the Applied Biosystems 7500 machine is ROX.  The normalised fluorescence of 

the reporter (Rn) is not detectable for the initial cycles of the reaction as the 

quantity of DNA is still too low.  This level of unchanging fluorescence before the 

DNA has reached sufficient concentration is referred to as the baseline 

fluorescence.  The machine software automatically selects and subtracts this 

baseline from Rn to give the change in fluorescence ΔRn.  Once the quantity of 

DNA reaches sufficient levels the fluorescence is detectable and increases.  The 

point at which this occurs, or the cycle number it occurs, is the cycle threshold 

(Ct) (Figure 2.26A).  Although this can be manually determined by the user, for 

the purposes of this thesis, the Ct detection threshold was set automatically by 

the Applied Biosystems software.  The Ct value determines the quantification of 

the DNA i.e. the more DNA template you begin with the earlier fluorescence 

becomes detectable.  Therefore Ct is inversely proportional to DNA quantity. 
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Figure 2.26: Amplification plot and melting curve examples. 
(A) Amplification plot example showing two hypothetical samples and a no template control (NTC).  
The threshold has been set in the exponential phase of the reaction.  The Ct is the cycle number at 
which normalised fluorescence reaches the threshold. (B) Melting curve analysis example for the 
same hypothetical samples.  One major peak is visible so there is no contaminating DNA or primer-
dimer formation. (Figure adapted from www.medscape.com). 

The relative gene expression was measured for the induced RNAi cultures 

compared to uninduced cultures.  Relative gene expression was calculated using 

the comparative Ct method or 2-ΔΔCt method(495): 

Threshold 
Ct 

A 

B 
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Fold change = 2-ΔΔCt 

Where ΔΔCt = [(Ct target gene – Ct reference gene)SAMPLE A – (Ct target gene – Ct 

reference gene)SAMPLE B].  For Ct values the mean of triplicates is used.  This 

method was appropriate since the starting cultures were from the same seeding 

culture. 

An example calculation is shown: 

      [ENDO] TbCatL 

  

TbCatL    
CT 

GPI‐8     
CT 

CT           CT           
2‐CT 

(RQ) 

   18.89 21.142     

   18.825 21.883     

   18.829 21.532     

350 
Uninduced 

MEAN  18.85 21.52 ‐2.67 0.00  1.00 

SEM  0.02 0.21        
 

      [ENDO] TbCatL 

  

TbCatL    
CT 

GPI‐8     
CT 

CT           CT          
2‐CT 

(RQ) 

   22.584 21.291     

   22.299 21.854     

   22.414 21.511     

350 Induced 

MEAN  22.43 21.55 0.88 3.55  0.09 

SEM  0.08 0.16        

Figure 2.27: Sample calculations using 2-∆∆Ct method. 
Data acquired with the Applied Biosystems 7500 was imported into Excel (Microsoft).  The mean Ct 
was calculated for the triplicates.  First change in Ct (∆Ct) was calculated and then change in Ct 
compared to uninduced culture (∆∆Ct).  To get relative quantity ∆∆Ct was raised to the negative 
power.   

2.10 Statistical Analysis  

2.10.1 Student’s Two-Sample T-Test 

When only two incubation solutions were tested a two-sample Student’s T-Test 

was the appropriate statistical test.  The dependent variable was percentage of 
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cells exhibiting spontaneous contractile activity.  Any two groups were incubated 

in solutions separately and are therefore independent of one another.  The 

distribution of percentages in the two groups was checked to be normally 

distributed (Figure 2.28).  

The null hypothesis (H0) was that the two means were equal, the test hypothesis 

(H1) was that they were not.  The t statistic is determined by the difference 

between the means divided by the variability or standard error of the mean 

(SEM).  If the difference in the two group means is greater than the SEM then the 

t statistic is large and there is evidence to reject H0.  Standard statistical tables 

generate a probability or P value that H0 is not rejected incorrectly (Type I 

error) or accepted incorrectly (Type II error).  A P value of <0.05 has been used 

as acceptance criteria for H1 in this thesis. 
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Figure 2.28:  Normality distribution plots for media and supernatant. 
(A) Histogram of frequency of observations of % cells exhibiting spontaneous contractile activity 
with normal distribution curve in control media. (B) Histogram and normal distribution curve for cells 
incubated in supernatant.  The data are independent, continuous and follow the assumption of 
normality making a two-sample Student’s T-test appropriate.  

2.10.2 Student’s Paired T-Test 

When two dependent groups are compared to one another, for example, Chapter 

4 presents some data from individual cells perfused with media followed by 

supernatant (section 4.2.3); a paired t-test was used.  Normality was checked 

for data as described in 2.10.1 and P<0.05 used as acceptance of H1 criteria. 
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2.10.3 ANOVA and Multiple Linear Regression 

When more than two groups were compared a multiple linear regression of 

categorical variables was used.  The dependent variable was the percentage of 

cells exhibiting spontaneous contractile activity within the 1 min observation 

period.  The categorical predictors were the different solutions they were 

incubated in.  Using an experiment discussed in section 3.3.8 as an example the 

solutions compared were control media vs. wild type trypanosome supernatant 

vs. uninduced RNAi supernatant vs. induced RNAi supernatant.  The ANOVA 

question is normally, is the mean percentage of cells showing spontaneous 

contractile activity the same for all incubation solutions?  The model is: 

Table 2.4: Formulae for ANOVA statistical analysis 
Control Media (M) y = meanM + error 

WT Supernatant (S) y = meanS + error 

Uninduced RNAi Supernatant (U) y = meanU + error 

Induced RNAi Supernatant (I) y = meanI + error 

 

However, the disadvantage is that this method introduces error for each 

comparison.  A more robust method is to make the comparisons simultaneously 

using a multiple linear regression and minimise the sum of squared deviations 

i.e. the error.  The categorical predictors remain the same as does the response 

variable, however “dummy” indicators are created and all compared to the 

control group, in this example control media. 

Table 2.5: Formulae for dummy indicators for each incubation solution 
WT Supernatant X1 = 1 for cells incubated in WT SN, 0 otherwise 

Uninduced RNAi Supernatant X2 = 1 for cells incubated in media U SN, 0 otherwise 

Induced RNAi Supernatant X3 = 1 for cells incubated in media I SN, 0 otherwise 

 

The model becomes (m = mean): 

y = mM + (mS – mM)X1 + (mU – mM)X2 + (mI – mM)X3 + error 

y = β0 + β1X1 + β2X2 + β3X3 + error 



Chapter 3  The Effects of Trypanosoma brucei  159 
 

The data must be normally distributed which is checked by the plotting of 

residuals i.e. the difference between the observed data and the expected data.  

The data are normally distributed if residuals are spread evenly about the graph 

of expected cumulative probability vs. observed cumulative probability (Figure 

2.29). 

  

Figure 2.29: Residual plot for RNAi example data. 
The plot of residuals tests the distribution of data for normality.  The data lie evenly spread and 
close to the expected cumulative probability therefore the data are normally distributed.  

Multiple linear regression analyses were performed using SPSS 19 (IBM) software.  

The software produces summary tables of the statistical analyses shown below 

for the example data.  A P value is produced for the whole dataset acquired by 

ANOVA testing whether the means are different or not, which in this case is 

=0.001.  Comparisons were made to control media referred to as “constant” in 

the table.  The linear regression returns P values for each comparison showing 

significance for the wild-type supernatant and the uninduced RNAi supernatant, 

i.e. sufficient evidence to reject H0 (means are the same) for wild-type 

supernatant and uninduced RNAi supernatant but not for induced RNAi 

supernatant (Figure 2.30).  
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Figure 2.30: Output tables for RNAi example data from SPSS software. 
The first table is the ANOVA analysis output returning a significance value for general difference 
between means.  Wild-type supernatant (SN), uninduced RNAi supernatant (SN349un) and 
induced RNAi (SN349i) are compared to control media (constant).  The second table using the 
same nomenclature produces columns for difference in mean (B) with SEM to return a t statistic 
and P value.    

  

 

ANOVAb 

Model Sum of Squares df Mean Square F Sig.

1 Regression 3152.730 3 1050.910 8.031 .001a

Residual 3140.485 24 130.854   

Total 6293.215 27    

a. Predictors: (Constant), SN349un, SN349i, SN 

b. Dependent Variable: % Cells waving 

 

 
 

Coefficientsa 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 100.000 4.324  23.129 .000

SN 22.129 6.114 .639 3.619 .001

SN349i -3.036 6.114 -.088 -.497 .624

SN349un 16.229 6.114 .469 2.654 .014

a. Dependent Variable: % Cells waving 
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3 CHAPTER 3 – The Effects of Trypanosoma 
brucei on Isolated Cardiomyocytes and Whole 
Hearts 
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3.1 Introduction 

3.1.1 African Trypanosomiasis 

Human African Trypanosomiasis (HAT or Sleeping Sickness) is a neglected disease 

caused by blood-borne protozoan parasites of the genus Trypanosoma. The 

parasites are transmitted to hosts by the tsetse fly (Glossina spp.) when it bites 

and takes a blood meal.  There are two forms; East African, caused by 

Trypanosoma brucei rhodesiense, and West African, caused by Trypanosoma 

brucei gambiense.  HAT is classically described as a chronic disease 

characterised by two stages{Bucheton, 2011 385 /id}.  The first being the haemo-

lymphatic stage and the second being the meningo-encephalitic stage 

characterised by sleep disturbances(45;48) giving it the colloquial name of 

“Sleeping Sickness”.  Stage I disease with  T. b. gambiense infection is variable 

with some reports describing acute progression(43;44) while more commonly 

progression tends to be months to years(38).  Although HAT is described as fatal if 

left untreated for  T. b. gambiense(35) and  T. b. rhodesiense(36), there are 

reports of untreated cases of  T. b. gambiense being cleared from hosts or 

developing a long-lasting serological response without symptoms(37-40).  T. brucei 

infection of livestock also impacts upon human health through loss of 

productivity and mortality(7) , which has a significant impact on the economic 

development of sub-Saharan Africa.  In humans, the West African form is by far 

the most common accounting for 96% of cases(41).  The World Health Organisation 

(WHO) have listed the reported number of human cases in Africa as 9875 in 

2009, 7139 in 2010 and 6743 in 2011(30).   Approximately 70 million people are 

thought to still be at risk in 36 sub-Saharan African countries(32)  as well as an 

estimated 48 million cattle with losses of $1-1.2 billion annually(6). 

3.1.2 Cardiac Involvement in HAT 

The second stage of HAT typically manifests as neurological disturbances(8) and, 

often overlooked, cardiac alterations(51) perceived by patients as palpitations.  

Post mortem examination of animals(26-28) and humans(56;57) revealed that 

trypanosomes infiltrate the myocardium leading to a mononuclear inflammatory 

response, fibrosis and heart failure.  When the electrical activity of the heart is 

measured using an electrocardiogram (ECG), abnormalities such as prolongation 
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of corrected QT (QTc), repolarisation changes and low voltage have been seen in 

50% of stage I and up to 71% of stage II HAT patients(51).  Palpitations are also 

reported in 18% of patients compared to 5% in controls(51). The current paradigm 

is that this is associated with inflammation and/or treatment.   

3.1.3 Trypanosome Secreted Factor Affects Ca2+ Signalling in a 
Blood Brain Barrier Model 

In a blood brain barrier (BBB) model it has been identified that a secreted factor 

is required for crossing the BBB, which then results in the neurological 

disturbances seen in clinical HAT(69).  The study reported that the factor induced 

a spontaneous rise in Ca2+ within the endothelial cells that constitute the model.  

They proceeded to further characterise the factor as a cysteine protease  whose 

effect could be abrogated with a cathepsin L specific inhibitor (K11777) but not 

with a cathepsin B specific inhibitor (CA074)(69).  

3.1.4 Ca2+ in the Cardiomyocyte 

Sarcoplasmic reticulum (SR)-mediated Ca2+ release, during the process of 

excitation-contraction coupling, leads to cardiomyocyte and whole heart 

contraction (systole).  Cardiomyocytes relax (diastole) by lowering intracellular 

Ca2+ concentration ([Ca2+]i) predominantly by SR-mediated Ca2+ uptake via the 

sarco (endo)plasmic reticulum Ca2+ ATPase (SERCA) pump but also sarcolemmal 

extrusion via the sodium/calcium exchanger (NCX)(158).  Under certain 

circumstances (e.g. heart failure), SR-mediated Ca2+ release can also occur 

spontaneously in the absence of electrical excitation in the form of propagating 

Ca2+ waves(261).  These events are linked to impaired contraction, abnormal 

electrical activity, ventricular premature complexes (which can cause 

palpitations) and the triggering of fatal arrhythmias(192).  

If a cysteine protease secreted from African trypanosomes can induce 

spontaneous Ca2+ release within a BBB in vitro model it may also alter [Ca2+]i 

dynamics in cardiomyocytes via induction of Ca2+ waves potentially leading to 

subsequent propagation that causes ventricular premature complexes or 

palpitations. 
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3.1.5 Aims  

The literature reports the presence of trypanosomes within the myocardium of 

the host, which may lead to a mononuclear inflammatory cell infiltrate(26;57;496).  

It has been postulated by Morrison et al. (1981)(26) that trypanosomes could 

release substances that affect the myocardium without an inflammatory 

component. This is in reference to a study by Galvao-Castro et al. (1978)(497) 

where trypanosomes were found within the myocardium without an 

inflammatory cell infiltrate in mice, which had been sublethally irradiated to 

immunocompromise the host mice.  It is possible therefore that African 

trypanosomes could lead to abnormalities in cardiomyocyte [Ca2+]i dynamics 

independent of a systemic immune response. 

The aims of this chapter are to: (i) establish if trypanosomes can have a direct 

effect on cardiomyocyte function independent of an immune response; (ii) 

identify how the trypanosomes can have that effect and whether it is the same 

factor identified as being necessary for BBB traversal; and (iii) determine if 

trypanosomes can have a direct effect on whole heart function independent of 

an immune response.   
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3.2 Methods 

3.2.1 Adult Cardiomyocyte Isolation 

Left ventricular cardiomyocytes were isolated from adult male Wistar rats (250-

300 g) as described in section 2.3.1.  Briefly, the rats were euthanized and the 

hearts removed and perfused via the aorta in Langendorff perfusion.   The hearts 

were enzymatic ally digested with a collagenase and protease mix dissolved in 

MIKH (for composition see section 2.3.1) followed by MIKH with BSA.  The [Ca2+]o 

was then increased from 0 mM to 1.0 mM incrementally by 100 µm every 5 min.  

The cardiomyocytes were then re-suspended in MIKH containing no BSA with a 

[Ca2+]o of 1.8 mM.  

3.2.2 Preparation of Trypanosomes, Media and Supernatant 

Populations of Trypanosoma brucei brucei strain Lister 427 were maintained 

axenically in logarithmic growth phase in a modified version of the HMI-9 

medium which is widely used to culture mammalian bloodstream form 

trypanosomes(434). The modified HMI-9 composition is detailed in section 2.1.1.  

Briefly, (i) control media and (ii) supernatant were prepared identically as 

described in section 2.1.5.  Every supernatant batch prepared was temperature 

matched and pH adjusted to the control media batch used for each experiment, 

the pH was 7.40 ± 0.02 at 37 °C. 

3.2.3 Light Microscopy-Based Spontaneous Contractile Activity 
Measurements 

Cardiomyocytes were incubated for 30 min in either supernatant or control 

media and then placed onto a cell bath containing the incubation solution.  10 

separate fields containing approximately 10-15 cardiomyocytes were then 

imaged using a light microscope with a x20 objective lens and charge-coupled 

device (CCD) camera for 1 min per field.  For each experimental test solution, 

individual cells were marked on screen once a single spontaneous contractile 

event occurred within that cell during the 1 min time period.  Mean data was 

then collated from the 10 fields as a percentage of cells which had at least one 

wave within a 1 min time period.  The percentage change of cardiomyocytes 
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exhibiting contractile events was calculated as the percentage increase over the 

level of contractile events in control media which was set as 100%.  

3.2.4 Confocal Fluorescence-Based [Ca2+]i Measurements 

Intact isolated cardiomyocytes suspended in MIKH with a [Ca2+]o of 1.8 mM 

(section 3.2.1) were loaded with a Ca2+ sensitive fluorophore (5.0 μM Fluo-3AM, 

(Biotium Inc., Hayward, CA)) by incubation for ~10 min. The MIKH was then 

removed and the cells re-suspended in fresh 1.8 mM [Ca2+]o mixed 1:4 with 

media or supernatant and incubated for 30 min.  The incubation also served to 

ensure complete de-esterification of the fluorophore. Cardiomyocytes were 

allowed to settle on a coverslip, placed on a bath (Cell Microcontrols, Norfolk, 

VA).  Cardiomyocytes were then superfused with control media or supernatant 

by perfusion pen fed from solution reservoirs by gravity with an active suction 

outflow.  The cells were field stimulated with 2.0 ms duration voltage pulses 

delivered through parallel platinum wires (stimulation voltage set to 1.5 times 

the threshold) at a frequency of 1.0 Hz for a period of 45 s.  Superfusion was 

maintained but stimulation was stopped and the cell allowed to rest for a 

further 45 s before rapid application of a 10 mM bolus of caffeine for 20 s to 

assess the SR Ca2+ content(498).  Confocal line-scan images of the cardiomyocytes 

were recorded using a LSM 510 confocal system (Zeiss).  Fluo-3 was excited at 

488 nm (Ar LASER) and measured >515 nm using epifluorescence optics of an 

inverted microscope with a 63X/1.2 NA water-immersion objective lens.  

Fluorescence was acquired in line-scan mode at 3.07 ms.line-1
 (1 line = 512 

pixels); pixel dimension was 0.27 m.  The scanning LASER line was orientated 

parallel with the long axis of the cell and placed approximately equidistant 

between the outer edge of the cell and the nucleus/nuclei to ensure the nuclear 

area was not included in the scan line(296).  Fluorescence data were expressed as 

a ratio of the quiescent fluorescence (F/F0).  F/F0 measurements were 

calculated from a 60 s period of line scan trace adjacent to the point of event 

initiation in order to limit movement artefact(296).  The Kd of Fluo-3 is reported 

as 558 ± 15 nM (n=6) in intact cardiomyocytes(468). 
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3.2.5 Field Stimulation and Fluorescence-Based [Ca2+]i 

Measurements  

Intact cardiomyocytes in MIKH with a [Ca2+]o of 1.8 mM (section 3.2.1) were 

loaded with a ratiometric Ca2+ sensitive dye.  Fura-4FAM (Invitrogen) has greater 

sensitivity at peak systolic cytosolic Ca2+ with a published Kd of 1.16 ± 0.016 µM 

Ca2+ and Fura-2AM (Biotium Inc., Hayward, CA) has greater sensitivity to detect 

diastolic cytosolic Ca2+ with a published Kd of 0.18 ± 0.05 µM Ca2+(480).  Cells in 

MIKH were incubated with Fura-4F-AM for 10 min to allow the dye to cross the 

cell membrane.  Cells were then diluted 1 in 4 in control media or supernatant 

at room temperature for 30 min.  The cardiomyocytes were allowed to settle on 

a coverslip, placed on a bath (Cell Microcontrols, Norfolk, VA) and superfused 

with control media/supernatant as described in section 3.3.4, at 37 °C.  Cells 

were field stimulated with 2.0 ms duration voltage pulses delivered through 

parallel platinum wires (stimulation voltage set to 1.5 times the threshold).  

After superfusion with control media or supernatant, the SR Ca2+ content was 

determined by rapid application of 10 mM caffeine.  Stimulation was stopped at 

the application of the caffeine.  The fluorophore fluorescence ratio (340/380 nm 

excitation; R340/380nm) was measured using a spinning wheel spectrophotometer 

(Cairn Research Ltd; sampling rate of 5000 Hz) through epifluorescence optics of 

a x40/1.3 NA oil immersion lens (Nikon) and data were analysed offline.  The 

mean fluorophore fluorescence ratio was obtained by averaging 10 steady state 

transients (Origin).   

3.2.6 RNA Interference of Trypanosoma brucei cathepsin L 

3.2.6.1 Preparation of RNAi clones  

Trypanosoma brucei brucei 2T1 (a bloodstream form cell line derived from the 

Lister 427 strain) was transfected with pGl2084; a Gateway® (Invitrogen, U.K.) 

modified version of the plasmid pRPaisl(499).  The pRPaisl plasmid has a 

tetracycline inducible stem-loop RNAi cassette(488).  The target region of the 

Trypanosoma brucei cathepsin-L gene (TbCatL) was from nucleotides 409-986 of 

the open reading frame, with the following oligonucleotides used to generate 

the construct; forward 5’-GGG GAC AAG TTT GTA CAA AAA AGC AGG CTG CAG 

TGA CCC CAG TGA AGG A-3’ and reverse 5’-GGG GAC CAC TTT GTA CAA GAA 
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AGC TGG GTA GAC ATT GGT TTG TGC CCT T-3’(489).  The cells containing the 

plasmid were selectively maintained in culture by addition of 2.5 µg.mL-1 

hygromycin and 0.5 µg.mL-1 phleomycin.  The transfection and generation of two 

independent TbCatL RNAi clones was carried out by Nathaniel Jones of the 

Wellcome Trust Centre for Molecular Parasitology. 

3.2.6.2 Growth Curves to Assess Phenotype of RNAi  

RNAi was induced with 1 µg.mL-1 tetracycline and growth curves performed on 

induced vs. uninduced cultures in triplicate for the two biological duplicates.  

Cultures for growth curves were initiated with 1.0 x 105 parasites.mL-1 and were 

counted in triplicate with an improved Neubauer haemocytometer as described 

earlier (section 3.2.2) at 24, 48 and 72 h timepoints post-induction.   

3.2.6.3 RT-PCR to Confirm Inhibition of TbCatL Expression 

RNA was extracted from cultures grown in parallel using the RNeasy® kit 

(QIAgen).  For preparation of cDNA, approximately 1 g of total RNA was treated 

with TURBO DNase (Ambion) according to the manufacturer’s protocol. The 

reverse transcription was carried out using Omniscript RT kit (Qiagen) with 5 M 

oligo dT primers.  Real-Time PCRs were carried out in triplicate per individual 

sample on a 7500 Real-Time PCR system (Applied Biosystems), using 

approximately 100 ng cDNA, 1 x Power SYBR green master mix (Applied 

Biosystems) and 4 M of the respective oligonucleotide primers, in a final 

reaction volume of 25 L. The oligonucleotide primers used were: TbCatL 

forward 5’-TCT CGG ATA TGA CAC GTG AAG AGT-3’ and reverse 5’-TCT GCG CAG 

CTG CAA AGT-3’, with GPI-8 as the constitutively expressed endogenous control; 

forward 5’-CGA AGC GCA TTT GGA TAG-3’ and reverse 5’-ACG GCG TGA TGA 

CAG TGA AG-3’.  Specificity of knock-down was confirmed by analysis of T. 

brucei cathepsin B (TbCatB) gene expression on the same samples using TbCatB 

primers; forward 5’- TCC CAG CAG CTT CGA TTC C-3’ and reverse 5’- GCG GAC 

TGA TCT GCA ATT TGT-3’.  Relative gene expression was calculated using 

previously described methods(495). 
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3.2.7 Langendorff Perfusion of Ex Vivo Adult Rat Hearts 

Adult male Wistar rat hearts were excised and cannulated via the aorta and 

initially perfused in Tyrodes solution; 116 mM NaCl, 20 mM NaHCO3, 0.4 mM 

Na2HPO4, 1.0 mM MgSO4-7H2O and 4.0 mM KCl.  D-glucose was added on the 

same day as intended use to a final concentration of 11 mM.  The solution was 

bubbled with 95% O2 / 5% CO2 for 15-20 min to oxygenate and buffer before 

CaCl2 was added to a concentration of 1.8 mM.  Hearts were cannulated via the 

aorta and perfused with Tyrodes at 10 mL.min-1 to clean out the blood from the 

coronary vasculature.  Hearts were then perfused for 10 min in control media to 

achieve a steady state, followed by either control media for time-controls or 

supernatant (10 min) and then washout with control media (10 min).  Solutions 

were maintained at 37 °C gassed with 100% O2 mixture (pH at 7.4).  Constant 

flow was used (10 mL.min-1).  The ex vivo Langendorff perfused heart was ideal 

for these experiments because it enabled the translation of single cell data to 

the whole organ in the absence of the immune/inflammatory response that 

would be apparent in vivo.  Pseudo-ECG was recorded (iworx) and the mean 

number of ventricular premature complexes (VPCs) was obtained from the 5 min 

at the end of each section of the protocol to ensure data was analysed from 

steady state.  The ECG was also analysed for QT interval, the last 1 min of each 

section of steady state ECG trace was averaged using LabScribe2 (iWorx) and 

measured manually as recommended by the AHA/ACCF/HRS recommendations 

for standardisation and interpretation of the electrocardiogram(457).  QT length, 

determined by the end of the T wave at the isoelectric point or by intersection 

of the tangent of the steepest part of the T wave with the isoelectric point(457), 

was measured.  The QT interval was also measured at 90% repolarisation(458) 

(QT90) and at 50% repolarisation(459) (QT50), so as to have a clearly defined end 

point (Figure 3.9B), for media and supernatant.  These data (n = 12) were 

normalised to time control hearts that were perfused only with media for the 

duration of the experiment (n = 6).  QT intervals were corrected for heart rate 

using the Framingham method(460): 

 

QTc = QT + 0.154x(1-RR) 
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3.2.8 Statistical Analysis 

Data are expressed as mean ± SEM.  For Ca2+ transient amplitude and Ca2+ wave 

parameters comparisons were performed by applying the paired Student’s t-test.  

ANOVA statistics were used in cases of multiple comparisons.  Multiple linear 

regression analysis was used to compare nominal categorical data with 

continuous variables.  Normality was assessed by plotting of residuals.  

Differences were considered significant when P<0.05.   
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3.3 Results 

3.3.1 Trypanosomes Increase Ca2+ Wave Frequency in 
Cardiomyocytes   

To study whether bloodstream form trypanosomes could have a direct effect on 

cardiomyocytes independent of a systemic immune response, spontaneous 

contractile events were measured.  Isolated cardiomyocytes were incubated for 

30 min with either: modified HMI-9(434) culture media containing approximately 

5.0 x 105 parasites.mL-1, supernatant derived from parasite culture, or control 

media.  The incubated cells were then observed.  Cardiomyocytes exhibiting 

spontaneous contractile events were noted and expressed as percentages of 

total cardiomyocytes examined.  When incubated with live trypanosome culture 

the percentage of cells waving significantly increased to 145% of media levels 

(52.11 ± 1.64% vs. 75.38 ± 5.26% cardiomyocytes exhibiting at least one 

spontaneous contractile event.min-1; control media vs. live trypanosomes; 

P<0.001; Figure 3.1B).  To determine whether the effect on cardiomyocyte 

waving was potentially due to an excreted/secreted factor the populations of 

cardiomyocytes were incubated for 30 min with trypanosome culture 

supernatant. Cells incubated with supernatant showed a significant increase of 

130% in the percentage of cells waving (52.11 ± 1.64% vs. 67.47 ± 1.92% 

cardiomyocytes exhibiting at least one spontaneous contractile event.min-1; 

control media vs. supernatant; P<0.001; Figure 3.1B).    

 

 

 

 

 

 

 



Chapter 3  The Effects of Trypanosoma brucei  172 
 

 
 
 

.  

Figure 3.1: Mean percentage of cells waving. 
(A) Photomicrograph of an isolated rat cardiomyocyte incubated Trypanosoma brucei brucei (grey 
arrow heads). (B) Mean % ± SEM of isolated cardiomyocytes exhibiting ≥1 spontaneous contractile 
event.min-1 in media, live trypanosomes or supernatant (n = cardiomyocytes with number of hearts 
in parentheses).  Statistical analysis was performed by ANOVA with P < 0.05 considered 
significant.  

3.3.2 Contractile Event Frequency Increase Abolished by Heating 

To determine if the supernatant effect was potentially due to a 

secreted/excreted protein (or peptide), a separate set of experiments was 

performed in the group by Elspeth Elliott.  Cardiomyocytes were incubated in 

supernatant heated to >80 ºC as well as control media and untreated 

supernatant.  Data shown are percentage change of cardiomyocytes exhibiting at 

least one spontaneous contractile event over control media.  Untreated 

supernatant showed the same effects as in Figure 3.1 (100 ± 2.68% vs. 133.3 ± 

2.88% ; control media vs. supernatant; P<0.001; Figure 3.2).   When supernatant 

was heat treated the percentage change returned to control levels (100 ± 2.68% 

vs. 105.6 ± 3.86%; control media vs. boiled supernatant; P>0.05; Figure 3.2). 
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Figure 3.2:  Percentage change in cells exhibiting spontaneous contractile events in heated 
supernatant. 
Mean ± SEM percentage change in cells showing contractile activity over control media set to 
100%. Cardiomyocytes were incubated in control media (n=107 cells), trypanosome culture 
supernatant (n=527 cells) or supernatant that had been heated to >80 ºC (n=612 cells) for 30 min.  
Populations of cells were counted for number of cells exhibiting spontaneous contractile events for 
1 min.  Statistical significance was determined by ANOVA and P<0.05 take to be significant. 

3.3.3 Ca2+ Wave Velocity and Frequency are Increased by 
Trypanosome Culture Supernatant 

To characterise the intra-cardiomyocyte [Ca2+]i dynamics underpinning the 

spontaneous contractile events (Figure 3.1), confocal imaging was performed 

(Figure 3.3).  Cells were loaded with Fluo-3 and incubated in media or 

supernatant as above and then superfused with the incubation solution with field 

stimulation at a frequency of 1.0 Hz for 45 s followed by a post-train rest period 

of 45 s (Figure 3.3A).  Line-scan mode was utilised to produce images of time(x) 

vs. distance(y) across the cardiomyocyte (Figure 3.3B(i & ii)).  This revealed that 

the spontaneous contractile events (denoted by an inward deflection in the y-

axis of the image, Figure 3.3C) were preceded by a rise of fluorescence and 

therefore [Ca2+]i, which propagated from one region of the cell to the other 

(Figure 3.3B (i & ii)).  These events were characteristic of spontaneous SR-

mediated Ca2+ release (Ca2+ waves).  Ca2+ wave frequency in cardiomyocytes 

incubated with supernatant was increased to 243% of media levels (0.07 ± 0.02 

vs. 0.17 ± 0.03 waves.s-1; media vs. supernatant; P<0.05; (Figure 3.3B(iii))). Ca2+ 

wave velocity, calculated as Ca2+ wave propagation gradient (Figure 3.3C(i & ii)), 

was increased in supernatant to 107% of media (110.2 ± 2.2 vs. 118.4 ±1 .7 

µm.s1; media vs. supernatant; P<0.05; (Figure 3.3C(iii))). This data was acquired 
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in conjunction with Mrs. Amanda Panissidi, a veterinary undergraduate on a 

summer project under my supervision. 

 

Figure 3.3: Confocal imaging of spontaneous contractile events using Fluo-3AM loaded 
cardiomyocytes.   
Confocal analysis of Ca2+ waves and the caffeine-induced Ca2+ transients (an indication of SR 
Ca2+) content derived from administration of 10 mM caffeine. (A) Protocol used for cardiomyocytes 
perfused with either control media or supernatant.  The blue bracket denotes the part of the 
protocol corresponding to images in Panel B. (B) Top panel (i & ii) shows confocal line-scan 
images of intracellular regions of isolated cardiomyocytes in both control media (i) and supernatant 
(ii). Below panel is the respective line profile trace taken from a 20 pixel region (denoted by 2 
yellow lines in top image). Panel (iii) Mean ± SEM for Ca2+ wave frequency in control media (n=18) 
and supernatant (n=21). (C) Individual representative Ca2+ waves taken for (i) control media and (ii) 
supernatant with (iii) mean ± SEM Ca2+ wave velocity in media (n=53 waves from 18 cells) and 
supernatant (n=158 waves from 21 cells). Mean data were compared using a two-sample Student’s 
T test, P<0.05 was taken to be significant. 
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3.3.4 Supernatant Increases the Rate of Stimulated Ca2+ Transient 
Decline  

Experiments so far have examined diastolic Ca2+ release.  Therefore experiments 

with electrically stimulated cardiomyocytes were required to examine systolic 

Ca2+ release.  Cardiomyocytes were loaded with Fura-4F followed by incubation 

in control media or supernatant for 30 min and then superfused with the same 

solution and stimulated at 1.0 Hz as shown in Figure 3.4.  The Ca2+ transient 

amplitude was not significantly altered, (0.91 ± 0.10 vs. 1.00 ± 0.09 µM; control 

media (n=10) vs. supernatant (n=14); P>0.05; Figure 3.4B(iv)).  The maximum 

rate of Ca2+ transient rise d[Ca2+]i/dtMax was not significantly altered either, 

(77.9 ± 7.7 vs. 76.1 ± 9.1 µM.s-1; control media vs. supernatant; P>0.05; Figure 

3.4B(v)).  The maximum rate of Ca2+ transient fall d[Ca2+]i /dtMin tended to be 

faster in supernatant, (6.6 ± 0.84 vs. 8.9 ± 0.90 µM.s-1; control media vs. 

supernatant; P=0.086; Figure 3.4B(vi)), although not statistically significant.  

However, when the rate constant of transient decay is analysed there is a 

significant increase; (11.3 ± 1.06 vs. 15.7 ± 1.41 s-1; control media vs. 

supernatant; P<0.05; Figure 3.4B(vii)).  These data show a faster Ca2+ transient 

decline.  To determine whether the increased rate of decline was due to 

increased SERCA activity or increased sarcolemmal efflux, a 10 mM bolus of 

caffeine was rapidly applied.  The amplitude of the caffeine-induced Ca2+ 

transient indicates SR Ca2+ content as the caffeine opens the RyR releasing the 

Ca2+ stored within the SR.  The decay indicates sarcolemmal extrusion, which is 

predominantly NCX  function(224), since the SR is effectively open so the activity 

of SERCA is no longer acting to remove Ca2+.  The caffeine-induced Ca2+ transient 

amplitude was not significantly altered (1.12 ± 0.95 vs. 1.08 ± 0.95; control 

media vs. supernatant; P>0.05; Figure 3.4C(ii)), nor is the rate constant of 

decay, (1.19 ± 0.06 vs. 1.22 ± 0.07 s-1; control media vs. supernatant; P>0.05; 

Figure 3.4C(iii)).   
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Figure 3.4: Stimulated (1.0 Hz) epifluorescent imaging of Ca2+ transients with Fura-4F AM 
(A) Protocol used in epifluorescence Ca2+ measurements. (B) (i)  Average trace from last 12 
transients in media (n=10; grey) or supernatant (n=14; black).  (Inset) normalised traces overlaid.  
(B) Mean ± SEM for (ii) peak [Ca2+]i, (iii) minimum [Ca2+]i, (iv) Ca2+ transient amplitude, (v) 
maximum rate of Ca2+ transient rise (d[Ca2+]i/dtmax), (vi) maximum rate of Ca2+ transient fall 
(d[Ca2+]i/dtmin) and (vii) rate constant of decay (s

-1).  (C)  Example traces of caffeine-induced Ca2+ 
transient in cells superfused with media (n=10) and supernatant (n=14).  (i) Mean data for caffeine-
induced Ca2+ transient amplitude and (ii) caffeine transient rate constant of decay.  Statistical 
comparisons were made using a two-sample Student’s T test, P<0.05 was considered significant.  

3.3.5 The Effects of Supernatant on the stimulated Ca2+ Transient 
During β-adrenergic Stimulation  

3.3.5.1 Effects on the Stimulated Calcium Transient 

The sympathetic nervous system and β-adrenergic signalling pathway are 

activated in response to both physiological and pathophysiological stresses.  To 

examine the effects of supernatant under β-adrenergic stimulation, 

isoproterenol was added (ISO; 100 nM) (Figure 3.5A).  Under these conditions 

there was no significant difference in peak [Ca2+]i, (1.71 ± 0.16 vs. 1.89 ± 0.11 

µM; control media (n=13) vs. supernatant (n=13); P>0.05; Figure 3.5C(i)), or 
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amplitude, (1.52 ± 0.15 vs. 1.67 ± 0.10 µM; control media vs. supernatant; 

P>0.05; Figure 3.5C(iii)), of the Ca2+ transient.  However, the diastolic or 

minimum [Ca2+]i was significantly increased in supernatant, (195 ± 10.1 vs. 224 ± 

6.5 nM; control media vs. supernatant; P<0.05; Figure 3.5C(ii)).  The maximum 

rate of Ca2+ transient rise was not altered by supernatant, (157 ± 17.2 vs. 150 ± 

13.1 µM.s-1; control media vs. supernatant; P>0.05, Figure 3.5C(iv)).  In contrast 

to the cohort of cardiomyocytes perfused without the addition of ISO (Figure 

3.4), there was a significant increase of 130% of control levels in maximum rate 

of Ca2+ transient fall, (16.0 ± 1.72 vs. 21.4 ± 1.98 µM.s-1; control media vs. 

supernatant; P<0.05; Figure 3.5C(v)).  This latter result is confirmed by the 

significant increase in rate constant of decay by supernatant to 126% of control 

levels, (16.5±1.34 vs. 20.9±1.31 s-1; control media vs. supernatant; P<0.05; 

Figure 3.5C(vi)), higher than the cohort of cardiomyocytes not treated with ISO 

(Figure 3.4). 

3.3.5.2 Effects on Spontaneous Ca2+ Release 

Diastolic Ca2+ waves became apparent (Figure 3.5A and B) in supernatant.  When 

counted, (Figure 3.5D(i)), Ca2+ wave frequency increases in supernatant over 

time. The Ca2+ wave frequency increased by 840% of control levels, (0.031 ± 

0.013 vs. 0.26 ± 0.087 waves.s-1; control media vs. supernatant; P<0.05; Figure 

3.5D(ii)).  The diastolic wave amplitude was also increased by supernatant to 

633% of control levels, (9.44 ± 6.42 vs. 59.74 ± 20.98nM; control vs. supernatant; 

P<0.05; Figure 3.5D(iii)).  These data are consistent with the findings in the 

confocal studies (Figure 3.3), which also demonstrated that supernatant 

increased the Ca2+ wave induction propensity. 
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Figure 3.5: Stimulated (1.0 Hz) epifluorescent imaging of Ca2+ transients with 100 nM isoproterenol 
(ISO).   
(A) Protocol with 100 nM isoproterenol.  (B) Average trace from last 12 transients of representative 
cells superfused with media (n=13) or supernatant (n=13). (Inset) normalised traces overlaid.  (C(i-
vi) Mean ± SEM data for Ca2+ transient parameters.  (D(i))  Number of diastolic Ca2+ releases 
during superfusion of supernatant (black) normalised to control (grey). (ii) Mean ± SEM Ca2+ wave 
frequency (ii) Ca2+ wave amplitude. Statistical comparisons were performed between control and 
supernatant groups using a two-sample Student’s T test, P<0.05 was considered significant. 



Chapter 3  The Effects of Trypanosoma brucei  179 
 

3.3.6 Ca2+ Waves are Reduced by Cathepsin-L Inhibition but not 
Cathepsin-B Inhibition 

Nikolskaia et al. (2006) reported that the candidate factor allowing BBB 

traversal by induction of cytosolic Ca2+ rises in HBMECs was the cathepsin-L like 

cysteine protease referred to as Trypanosoma brucei Cathepsin-L (TbCatL)(69).  

T. brucei expresses two related Clan CA, Family C1 cysteine proteases; TbCatL 

and TbCatB(112;500).  Given these previous data, cardiomyocytes were incubated 

with or without the specific TbCatL inhibitor K11777(69) (10 µM) and spontaneous 

contractile events assessed within 1 min as in Figure 3.1.  Supernatant increased 

the percentage change of contractile events to 137% of media levels (100.0 vs. 

137.5 ± 5.4% cardiomyocytes with contractile events relative to control media; 

control media vs. supernatant; P<0.001; Figure 3.6A).  K11777 inhibited this 

effect (96.8 ± 5.4 vs. 95.8 ± 2.5% cardiomyocytes with contractile events relative 

to control media; control media + K11777 vs. supernatant + K11777; P>0.05; 

Figure 3.6A).  When repeated with CA074 (10µM; TbCatB-specific inhibitor) the 

percentage increase of cardiomyocytes producing contractile events was 

maintained (103.8 ± 4.0 vs. 127.4 ± 6.4% cardiomyocytes with contractile events 

relative to control media; control media + CA074 vs. supernatant + CA074; 

P<0.001; Figure 3.6A).  These data suggest that the increase in spontaneous 

contractile events can be prevented by application of a CatL specific inhibitor 

(but not by a CatB specific inhibitor), and therefore could be mediated by 

TbCatL.   
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Figure 3.6: Percentage change in spontaneous contractile events with inhibitors and recombinant 
protein. 
Mean % change ± SEM in contractile events over media levels in isolated cardiomyocytes.  (A)  
Specific cathepsin inhibitors. Inhibitors used were; cathepsin L inhibitor K11777 and cathepsin B 
inhibitor CA074.  Inhibitors were added to media as controls.    (B)  Recombinant T. brucei 
cathepsin L. (2 nM and 2 mM dithiothreitol). The control was with appropriate vehicle. P values 
were calculated by multiple linear regression on raw data with P<0.05 considered significant. n = 
number of cells from number of isolations in parentheses. 

3.3.7 Recombinant TbCatL Increases Ca2+ Wave Frequency 

When a recombinant TbCatL (rTbCatL) was added to media at a concentration of 

2nM as shown to be the quantity produced by T. brucei by Caffrey et al. 

(2001)(129) the % increase of cardiomyocytes exhibiting contractile events over 

media was significantly greater than control vehicle (106.9 ± 3.7 vs. 120.8 ± 

7.1%; control media vs. rTbCatL; P<0.05; Figure 3.6B).  This confirms that 

TbCatL is having a direct effect on the cardiomyocytes. 
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3.3.8 Ca2+ Waves are Reduced by RNA Interference of TbCatL 

To confirm that it is TbCatL produced by the parasites that increases Ca2+ waves 

in cardiomyocytes observed in Figure 3.1, we used two independent  T. b. brucei 

clones with RNAi inducible knockdown of TbCatL(489).  Growth curves were 

performed on uninduced trypanosome cultures and cultures induced with 

tetracycline (Figure 3.7A).  TbCatL is essential for survival of the parasite(127) so 

successful induction of RNAi will result in a significant growth curve reduction.  

In both independent clones there was a significant reduction in parasite numbers 

at 48 h (6.84 ± 0.07 vs. 5.78 ± 0.05 log10 parasites.mL-1 for clone STL349 and 6.85 

± 0.03 vs. 6.19 ± 0.11 log10 parasites.mL-1 for clone STL350; uninduced vs. 

induced; P<0.005; Figure 3.7A).  The reduction was even greater at 72 h (7.81 ± 

0.08 vs. 5.68 ± 0.03 log10 parasites.mL-1 for STL349 and 7.88 ± 0.03 vs. 6.27 ± 

0.13 log10 parasites.mL-1 for STL350; uninduced vs. induced; P<0.0005; Figure 

3.7A).  Quantitative RT-PCR on cDNA manufactured from cultures at the 24 h 

time-point using both TbCatB and TbCatL primers shows that there was 

successful induction of RNAi and significantly reduced TbCatL (0.15 ± 0.02 for 

STL349 and 0.095 ± 0.005 for STL350 relative quantitation to uninduced cultures 

(n=3); P<0.05; Figure 3.7B(i)) without significant reduction of TbCatB (1.92 ± 

0.34 for STL349 and 1.79 ± 0.30 relative quantitation to uninduced culture (n=3); 

P>0.05; Figure 3.7B(ii)).  

When cardiomyocytes are incubated with the supernatant from T. brucei STL349 

(Figure 3.7C) the percentage increase in cardiomyocytes exhibiting spontaneous 

contractile events in 1 min over control media when RNAi is induced was 

significantly reduced compared to the same clone when uninduced (97.0 ± 5.1 

vs. 116.2 ± 5.0%; induced vs. uninduced; P<0.05; Figure 3.7C(i)).  The same is 

true for STL350 (102.0 ± 5.7 vs. 116.5 ± 5.6%; induced vs. uninduced; P<0.05; 

Figure 3.7C(ii)).  These data show that the percentage change in contractile 

events over media control was significantly reduced when TbCatL was selectively 

knocked down. 
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Figure 3.7: RNA interference (RNAi) of T. brucei cathepsin L (TbCatL).   
(A) Growth curves of biological duplicates (STL 349 and STL 350) with inducible TbCatL RNAi.  (B)  
Relative gene expression for (i) TbCatL and (ii) TbCatB compared to uninduced culture in triplicate 
cultures for STL349 (n=3) and STL350 (n=3).  (C(i)) Mean ± SEM % change for spontaneous 
contractile events in cardiomyocytes for STL349. Media (n=747(7)), 427 supernatant (n= 817(7)), 
uninduced RNAi supernatant (n=858(7)) and induced RNAi supernatant (n=841(7)). (ii) Mean ± 
SEM % change for spontaneous contractile events in cardiomyocytes for STL350. Media 
(n=1018(11)), 427 supernatant (n= 1427(12)), uninduced RNAi supernatant (n=1597(12)) and 
induced RNAi supernatant (n=1564(12)). n = number of cells from number of isolations in 
parentheses. 

3.3.9 Supernatant Can Cause Arrhythmic Events in Whole Hearts 

As arrhythmias have been reported in some patients with HAT(51) experiments 

were performed with ex vivo Langendorff perfused whole rat hearts.  By 

removing the heart from the animal the immune/inflammatory response is no 

longer a factor and the direct effects of trypanosome culture supernatant on the 

heart can be observed.  The pseudo-ECG was recorded with pellet electrodes 

within an organ bath.  Hearts were perfused for 10 min in media to achieve a 

steady state followed by 10 min with either media for time controls or culture 

supernatant and then another 10 min of washout with media (Figure 3.8A).  The 

pseudo-ECG was examined for arrhythmic events as determined by the Lambeth 

Conventions(437), and described in section 2.5.4.2, during the last 5 min of each 

section of the protocol.  Example ECGs are shown in Figure 3.8B for (i) control 

and (ii) supernatant with ventricular premature complex (VPC).  When the 
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arrhythmia frequency for each individual heart is plotted, all of the hearts that 

show an increase in arrhythmia frequency during the 2nd 10 min are in the 

supernatant perfusion group. During washout 83% of the hearts show a reduction 

in arrhythmia frequency (Figure 3.8C).  The mean is shown by the grey broken 

line with error bars representing SEM.  There was no significant difference in 

mean ± SEM of the arrhythmia frequency between the different time periods of 

the protocol in the time control group (n=6); (0.40 ± 0.28 min-1 vs. 0.33 ± 0.19 

min-1 vs. 0.53 ± 0.27 min-1; 1st 10min vs. 2nd 10min vs. 3rd 10min; P<0.05).  

However, in the group of hearts perfused with supernatant during the 2nd 10min 

(n=12) there was a significant increase in arrhythmia frequency, which then 

reduced during the washout period (0.60 ± 0.26 min-1 vs. 5.15 ± 2.49 min-1; 

P<0.05; vs. 1.36 ± 0.73 min-1; P=0.07).  There was no significant difference 

between steady state and washout in the supernatant perfused group (Figure 

3.8D(i)).   
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Figure 3.8 ECG data from ex vivo perfused rat hearts. 
(A) Langendorff perfusion protocol.  (B) Typical pseudo-ECG recordings (C) Number of arrhythmic 
events per minute in individual hearts.  Time control hearts (n=6) (grey) on the left and supernatant 
exposed hearts (n=12) (black) on the right. The mean is shown with the dashed line, error bars 
indicate SEM. (D) (i) Mean ± SEM of ventricular premature complexes per min for all time controls 
and supernatant perfused hearts during steady state in media (1st 10min), switch to media or 
supernatant (2nd 10min) and media washout (WO) (3rd 10min).  (ii) Mean ± SEM for responder 
hearts in media, media or supernatant, and washout with media. 

3.3.10 Arrhythmic Events Occurred in a Proportion of Hearts  

While the mean data of all the hearts shows an increase in arrhythmia frequency 

in the group of hearts perfused with supernatant, when examined further only a 

proportion (50%) exhibited an increase in arrhythmic events.   When time 

controls vs. only these ‘responders’ are assessed (Figure 3.8D(ii)) there is no 

difference during the steady state period (0.40 ± 0.28 min-1 vs. 0.70 ± 0.37 min-1;  

time control (n=6) vs. supernatant perfused responder (n=6); P>0.05).  During 



Chapter 3  The Effects of Trypanosoma brucei  185 
 

the second 10 min period the responders showed a significant increase in 

arrhythmia frequency (0.33 ± 0.19 min-1 vs. 10.03 ± 4.20 min-1; P<0.05).  There 

was no significant difference between the washout periods (0.53 ± 0.27 vs. 2.03 

± 1.29; P>0.05).   

3.3.11 QT Interval Was Not Affected 

The ECGs collected for arrhythmia analysis (Figure 3.8) were also analysed for 

QT interval.  It has been reported in the literature that ECGs from patients with 

HAT have a prolongation of the QT interval(51), which had been attributed to 

inflammation.  Given the direct effects of supernatant on cardiomyocyte Ca2+
 

handling and arrhythmia frequency in whole hearts it was examined whether 

supernatant could prolong the QT interval.  There was no statistical difference 

in the QT interval; (0.070 ± 0.005 vs. 0.074 ± 0.004 s; control media vs. 

supernatant; P>0.05), QT90 (0.058 ± 0.004 vs. 0.063 ± 0.003 s; control media vs. 

supernatant; P>0.05), or QT50 (0.044 ± 0.004 vs. 0.047 ± 0.004; control media vs. 

supernatant; P>0.05; Figure 3.9C(i-iii)).  When QT was corrected for heart rate 

between individuals there was no statistical difference either for QTc (0.187 ± 

0.005 vs. 0.194 ± 0.005s; control media vs. supernatant; P>0.05), QT90 (0.175 ± 

0.003 vs. 0.177 ± 0.003s; control media vs. supernatant; P>0.05), or QT50 (0.161 

± 0.003 vs. 0.160 ± 0.003; control media vs. supernatant; P>0.05; Figure 3.9D(i-

iii)).  There was no difference in heart rate (mean ± SEM) between media (282 ± 

17 bpm) or supernatant (278 ± 12 bpm) perfused hearts. 
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Figure 3.9: QT intervals from ex vivo whole rat hearts perfused with media and supernatant. 
(A)  Protocol, blue brackets indicate period of protocol from which average ECGs were obtained.  
(B) Representative ECG complex showing how QT (red), QT90 (blue) and QT50 (green) were 
measured. (C) Mean ± SEM for (i) QT, (ii) QT90 and (iii) QT50. (D) Mean ± SEM for (i) QT, (ii) QT90 
and (iii) QT50 corrected for heart rate using the Framingham method.  Data were normalised to time 
matched controls perfused with media throughout the protocol.    
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3.4 Discussion 

3.4.1 Trypanosomes Increase Ca2+ Wave Frequency in 
Cardiomyocytes   

Classically, the clinical focus on HAT has been the neuropsychiatric disturbances.  

However cardiac involvement has been reported(58), but has usually been 

attributed to inflammation(51).  In fact the traditional thinking behind much of 

the pathology of trypanosomiasis has been that it is a result of the 

immune/inflammatory response to invasion of the tissues by the parasite, 

extensively documented in both animals(26-28) and humans(56;57).   Therefore, 

inflammation was thought to be the mediator for the parasites traversing the 

BBB via disruption of the basement membrane leading to the classical CNS 

effects(501).  However later work has shown that the parasites can cross the BBB 

without disruption of the tight junctional proteins between the endothelial 

cells(502). Nikolskaia et al. (2006) demonstrated that T. brucei spp. secrete a 

factor that induces Ca2+ oscillations in human brain microvascular endothelial 

cells (HBMECs)(69).  The hypothesis tested in the current study was that, like the 

HBMECs, trypanosomes could have an effect on cardiomyocytes without an 

immune/inflammatory component.  The results demonstrated in the first part of 

this current study show that isolated adult rat left ventricular cardiomyocytes 

show increased spontaneous contractile activity.  This can be related to altered 

Ca2+ signalling within the cardiomyocyte.  Nikolskaia et al. (2006) postulated 

that the changes in [Ca2+]i  they observed could be due to mechanical 

stimulation by actively swimming parasites, which they subsequently ruled out 

by removing the live parasites from the culture medium, and yet continued to 

observe the same effect(69).  The data presented in this thesis show the increase 

in spontaneous contractions was still apparent when cardiomyocytes were 

incubated in supernatant supporting the evidence presented in Nikolskaia et al. 

(2006)(69).  Further results shown here (Figure 3.2) demonstrate that heat 

treatment of supernatant abrogates the observed effects, suggesting the 

responsible factor is a heat labile excreted/secreted factor.  Particular care was 

taken in preparation of the supernatant to ensure the trypanosomes were not 

lysed, therefore ruling out an intracellular protein released upon parasite death. 
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3.4.2 Ca2+ Wave Velocity and Frequency are Increased by 
Trypanosome Culture Supernatant 

Spontaneous contractions in cardiomyocytes arise from an asynchronous, 

spontaneous release of Ca2+ from the SR, termed a Ca2+ wave(261).  By loading 

cardiomyocytes with Ca2+ sensitive fluorophores it was possible to image the rise 

and fall of cytosolic Ca2+ in response to incubation with the supernatant.  The 

images obtained enabled the spontaneous Ca2+ waves to be further characterised 

to enable inferences on possible mechanisms to be drawn.  As observed in the 

population assay (Figure 3.1), an increased frequency of Ca2+ waves was 

observed in cardiomyocytes incubated with supernatant.  Increased Ca2+ wave 

frequency can occur when individual Ca2+ release events (Ca2+ sparks) trigger 

further release of Ca2+ from the SR through CICR(148).  An increased Ca2+ wave 

frequency is determined by the time taken to reach SR Ca2+ threshold(192).  

SERCA stimulation by a direct or indirect effect of a factor in supernatant would 

increase the rate of accumulation of Ca2+ within the SR and hence decrease the 

time between spontaneous events(192;503).  This may have clinical repercussions as 

increased Ca2+ wave frequency is likely to increase the propensity for whole 

heart arrhythmias(192).   

The velocity of Ca2+ wave propagation is an indicator of cluster to cluster RyR 

activation determined by RyR sensitivity, both dyadic and luminal, and 

refractoriness(222;261;504).  The results reported in this current study show a 

significant increase in velocity of Ca2+ waves present within cells incubated in 

supernatant.  O’Neill et al. (2004) has shown that Ca2+ wave velocity was related 

to SERCA activity and therefore the observed increase in velocity observed in the 

current study may be an expected additional effect of enhanced SERCA 

activity(503).  However, it is acknowledged that the relationship between SERCA 

activity and Ca2+ wave characteristics is complex(505).  

3.4.3 Supernatant Increases the Rate of Stimulated Ca2+ Transient 
Decline  

Experiments were performed on cohorts of cardiomyocytes that were incubated 

and superfused with media or supernatant and field stimulated at 1.0 Hz.  The 

cells were loaded with Fura-4F and the rise and fall in cytosolic Ca2+ measured.  
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The main finding was an enhanced rate of transient decline.  SERCA activity 

(KSERCA) was estimated by measuring the rate constant of decay of the 

electrically stimulated Ca2+ transient.  However, since Ca2+ is removed from the 

cytosol by reuptake into the SR by SERCA and extrusion by NCX(158), an increase 

in rate constant could have sarcolemmal efflux contributions.  Although SERCA 

and NCX are not the only mechanisms involved Ca2+ removal during relaxation, 

the sarcolemmal Ca2+ ATPase pump and mitochondrial Ca2+ uptake contribute 

minimally, accounting for <25% of Ca2+ extrusion(222;223) and occurring over a 

much slower time course than either SERCA or NCX(224).  In the rat 92% of Ca2+ 

removal is due to SERCA and 7% due to NCX vs. 70% and 28% respectively in 

rabbit left ventricular cardiomyocytes(224).  In humans, the Ca2+ removal 

contributions have been reported as 63% due to SERCA and 32% due to NCX(225), 

therefore more similar to rabbit.  If a high concentration caffeine bolus is 

rapidly applied to the cell, as well as being an indicator of [Ca2+]SR, the rate 

constant of decay of the caffeine-induced Ca2+ transient can indicate potential 

alterations in NCX with a much smaller component due to the other mechanisms.  

When the rate constant of decay of the caffeine-induced Ca2+ transient was 

measured there was no statistically significant difference.  This suggests no 

significant alteration of extracellular extrusion, although the NCX current was 

not directly measured.  It can be inferred that the logical explanation for an 

increased rate of Ca2+ transient decline is an increased KSERCA.  This can be 

measured as in Bode et al. (2011) by subtracting the rate constant of decay of 

the electrically stimulated Ca2+ transient from that of the caffeine-induced Ca2+ 

transient(506) which gives a significant increase in KSERCA of 143% (10.1 ± 1.10 vs. 

14.5 ± 1.39s-1; control vs. supernatant; P<0.05).  This compares well with the 

increase of 139% (11.3 ± 1.06 vs. 15.7 ± 1.41s-1; P<0.05) when using the rate 

constant of decay for the electrically stimulated transient alone.  Since KSERCA is 

increased it would be expected that there would be a concomitant increase in 

the caffeine-induced transient amplitude reflecting a higher [Ca2+]SR yet this was 

not found.  The possible mechanisms underlying these findings form the basis for 

the next chapter. 



Chapter 3  The Effects of Trypanosoma brucei  190 
 

3.4.4 The Effects of Supernatant on the Stimulated Ca2+ Transient 
During β-adrenergic Stimulation  

Cohorts of cardiomyocytes were treated as above but with the addition of 100 

nM isoproterenol (ISO).  β-adrenergic agonists such as ISO bind to the G-protein 

coupled β-adrenergic receptor which then stimulates adenylyl cyclase elevating 

cyclic AMP which activates protein kinase A (PKA).  PKA, among other functions, 

phosphorylates the RyR which may increase its sensitivity and also 

phosphorylates the Ser16 residue on phospholamban (PLB), an inhibitory protein 

of SERCA(148).  Another kinase also plays a role in the β-adrenergic cascade, Ca2+ 

calmodulin kinase II (CaMKII) through activation by PKA and directly from β-

adrenergic stimulation(258).  Importantly, CaMKII also has phosphorylation sites on 

the RyR and Thr17 on PLB.  Between stimulation pulses, diastolic release events 

of Ca2+ can be observed in cells incubated and superfused with supernatant in 

the presence of ISO.  The rate constant of stimulated transient decline is also 

greater than without ISO as would be expected(507).  The fact that these effects 

are not present in the control media suggests the effects of the secreted factor 

on SR functions are enhanced by β-adrenergic stimulation.     

3.4.5 Ca2+ Waves are Reduced by Cathepsin-L Inhibition but not 
Cathepsin-B Inhibition 

The cysteine protease activity of trypanosomes comprise of TbCatL and 

TbCatB(492).  Nikolskaia et al. (2006) demonstrated that TbCatL activity was 

responsible for the Ca2+ rises in HBMECs enabling traversal of their in vitro BBB 

model.  They found that the cathepsin-L specific inhibitor K11777 abrogated the 

parasite traversal of the model but not the cathepsin-B specific inhibitor 

CA074(69).  Given the role of Ca2+ rises in the HBMEC model and the key role of 

Ca2+ in E-C coupling, K11777 and CA074 were applied to cohorts of 

cardiomyocytes that were then examined utilising spontaneous contractile 

activity assays (section 3.2.3).  The addition of CA074 to cardiomyocytes did not 

alter the supernatant effect on spontaneous contractile activity of cells.  When 

K11777 was applied to cardiomyocytes incubated in supernatant, the number of 

cardiomyocytes exhibiting spontaneous contractile activity was reduced to the 

same level observed in control media.  This result supports the hypothesis that it 
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is the cathepsin-L-like cysteine protease TbCatL that could be causing an 

increase in waves.     

American trypanosomiasis (aka Chagas Disease), caused by Trypanosoma cruzi, is 

characterised by significant cardiac pathology.  Interestingly, a study by Barr et 

al. (1996) demonstrated a protease within the trypomastigote soluble fraction 

(TSF) that induces Ca2+ transients in canine cardiomyocytes(508).  The protease 

has since been shown to be an orthologous protease to TbCatL(509).  The result 

described by Barr et al. (1996) was that Ca2+ release was independent of an 

inward L-type Ca2+ current and due to SR Ca 2+ release mediated by a pertussis 

toxin (PTx) sensitive g-protein coupled receptor(508).  The data presented in this 

chapter interpreted in context of the literature would suggest that TbCatL may 

activate a g-protein coupled receptor, causing activation of a secondary 

messenger, which then leads to spontaneous release of Ca2+ from the SR.  Future 

work in the laboratory will aim to elucidate the sarcolemmal target for TbCatL.  

3.4.6 Recombinant Cathepsin-L Increases Ca2+ Wave Frequency 

The increase of Ca2+ waves has been abrogated by application of a cathepsin-L 

inhibitor which suggests an association of TbCatL and increased spontaneous Ca2+ 

release.  To support this finding a cohort of spontaneous contractile activity 

assays was performed with recombinant TbCatL.  These experiments showed the 

expected response of increased numbers of cells exhibiting Ca2+ waves.  This 

suggests that it is TbCatL that is having a direct effect on spontaneous 

contractile activity of cardiomyocytes. 

3.4.7 Ca2+ Waves are Reduced by RNA Interference of TbCatL 

The use of recombinant TbCatL shows a gain of function effect, but to prove 

that TbCatL is definitively the responsible factor experiments were performed to 

show a loss of function phenotype.  TbCatL is essential for parasite survival(492) 

meaning that a complete gene knockout is not possible, so an inducible RNA 

interference (RNAi) approach was employed.  Two independent clones of T. b. 

brucei were transfected with an inducible RNAi construct of the Trypanosoma 

brucei cathepsin-L (TbCatL) gene.  Growth curves were performed to test 

efficacy of the RNAi which showed the expected defect in growth associated 
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with knockdown of an essential gene(492).  Quantitative PCR confirmed successful 

knockdown of TbCatL with additional PCR using TbCatB specific primers to 

ensure specificity of knockdown.  When cardiomyocytes were incubated with 

supernatant from the induced cultures the number of cardiomyocytes exhibiting 

Ca2+ waves was reduced to the levels observed on control media.  To confirm it 

wasn’t a result of the transfection process on the trypanosomes, cardiomyocytes 

were also incubated in supernatant from uninduced cultures, which showed the 

same increase in Ca2+ waves as wild-type T. b. brucei.   

These results demonstrate by three independent methods that TbCatL is 

increasing the number of cardiomyocytes that exhibit Ca2+ waves.  These 

experiments were all performed in isolated cardiomyocytes, thereby removing 

the immune/inflammatory response.  These data demonstrate for the first time 

a direct effect by secreted TbCatL on the Ca2+ dynamics of cardiomyocytes 

independent of an immune/inflammatory response.  These findings also have 

implications in terms of treatment.  Current HAT drugs are difficult to 

administer in the field and cause severe toxic side effects in 5-10% of cases with 

an average case fatality rate of 50%(510).  Inhibitors of cysteine proteases are 

currently being tested as novel trypanocides(492) but may also have a beneficial 

effect not only in limiting BBB traversal but potentially also cardiac dysfunction.  

3.4.8 Supernatant Can Cause Arrhythmic Events in Whole Hearts 

The literature reports ECG abnormalities and patient descriptions of arrhythmic 

disturbances or palpitations(45;51-54) in cases of HAT.  Most notably are ventricular 

premature complexes (VPCs) and a prolonged QT interval.  To explain the 

clinical ECG findings in light of the evidence presented in this study the role of 

Ca2+ waves in arrhythmic heart disease has been considered.  Ca2+ waves have 

been implicated in a number of arrhythmias such as delayed after 

depolarisations (DADs) and early after depolarisations (EADs)(222).     

The data in this chapter shows a significant increase in ventricular arrhythmias, 

specifically VPCs, in ex vivo intact hearts.  These hearts are removed from an 

immune/inflammatory component so this is a direct effect from the 

trypanosome supernatant.  Given the increase in Ca2+ waves observed, the faster 

decline of stimulated transient and the known relationship of Ca2+ release and 
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subsequent efflux by NCX(192) it is reasonable to suggest that the increase in Ca2+ 

waves within ventricular cardiomyocytes is linked to an increased frequency of 

DADs brought about by the electrogenic potential of NCX.  The result is very 

similar to the response to β-adrenergic stimulation.  In the presence of increased 

β-adrenergic stimulation there is increased phosphorylation of phospholamban, 

which reduces the inhibition on SERCA.  The reduced inhibition of SERCA allows 

more Ca2+ to be taken up into the SR during diastole.  Since sarcolemmal 

extrusion (via NCX) and SR reuptake (via SERCA) are the main Ca2+ removal 

mechanisms, they compete for the same diastolic pool of Ca2+ so there is less 

time for NCX to extrude Ca2+ in the presence of enhanced SERCA activity.  

Increased β-adrenergic stimulation also increases Ca2+ influx via stimulation of 

the L-type Ca2+ channel, which will raise diastolic [Ca2+]i thereby increasing the 

diastolic pool of Ca2+ from which SERCA draws resulting in Ca2+ overload of the 

SR.  SR Ca2+ overload would in turn, result in more diastolic Ca2+ waves resulting 

in a greater need for Ca2+ extrusion by NCX leading to more influx of Na+ 

increasing the likelihood of action potential threshold being reached.  The action 

potentials rather than the Ca2+ waves could then propagate from cell to cell 

through gap junctions(154) potentially setting up an arrhythmogenic focus within 

the ventricular myocardium leading to the VPCs observed in this study and in the 

field(51).   

Ca2+ waves can also be linked to EADs(289) and EADs are associated with prolonged 

QT intervals(286) which have been found in HAT patients(51).  However, there was 

no statistically significant difference in QT intervals of hearts perfused with 

control media vs. supernatant (Figure 3.9) or when corrected for heart rate 

using the Framingham method.  These findings suggest that the observed QT 

alterations clinically(51) are less likely to be an acute effect but a more longer 

term effect which was attributed by Blum et al. (2007) to be a result of 

associated myocarditis(51).  QT is prolonged in myocarditis because the 

infiltration of inflammatory cells disrupts the myocardial tissue and can alter the 

electrical conductivity of the heart leading to alterations of depolarisation and 

repolarisation(27;57).  It is possible that in vivo there may be a synergistic effect 

on the myocardium of the direct effects of TbCatL with inflammation. 

When patients with Chagasic cardiomyopathy were examined, a prolonged QT 

interval was found(511).  When investigated utilising mouse models of T. cruzi 
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infection, a similar prolongation of QT was also found, which correlated with the 

histopathological findings of infiltrating lymphocytes and macrophages(512).  This 

could be the case for HAT but in vivo infection models would be required; these 

are presented and discussed in Chapter 5. 

3.4.9 Arrhythmic Events Occurred in a Proportion of Hearts  

Since Ca2+ waves have a low probability (<0.13) of propagating cell to cell(154) 

and DAD amplitude is diminished over a greater number of cells(192), multiple 

adjoining cells would be required to initiate an ectopic beat.  In an atrial 

mathematical model it was identified that 1000 cells would be required in a grid 

of 512 x 512 to initiate an ectopic beat(288).  The data in this chapter suggests 

that TbCatL can induce Ca2+ waves in 67.47% ± 1.92 of cells, therefore a 

proportion of hearts may be expected not to exhibit arrhythmias as a sufficient 

number of adjacent cells would not be waving.  Only a proportion of hearts 

perfused with supernatant showed increased numbers of VPCs whereas none of 

the controls did.  This evidence is supported by clinical field data that shows 

only a proportion of individuals show ECG abnormalities (71%) and palpitations 

(18%)(51). 

3.5 Conclusions 

The data presented in this chapter demonstrates for the first time that T. b. 

brucei can cause direct effects on isolated rat left ventricular cardiomyocytes 

and ex vivo intact whole rat hearts independent of an immune/inflammatory 

response.  How the trypanosomes have this effect is through the action of a 

cathepsin-L like cysteine protease, TbCatL.  A possible mechanism of action is 

that TbCatL acts in a similar way to β-adrenergic stimulation by altering the 

sensitivity of the RyR to Ca2+, and increasing Ca2+ reuptake into the SR by 

increased SERCA activity.  However, this still needs to be investigated further 

and is discussed in Chapter 4.   
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4 CHAPTER 4 – Investigating the Mechanisms of 
Arrhythmogenic Sarcoplasmic Reticulum-
Mediated Ca2+ Release Caused by Trypanosoma 
brucei   
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4.1 Introduction 

4.1.1 Trypanosomes and Intracellular Ca2+ 

The classical major effects of second stage Human African Trypanosomiasis 

(HAT) are the neuropsychiatric disturbances that give the disease its colloquial 

name of “Sleeping Sickness”.  This occurs when the parasites cross the blood 

brain barrier (BBB)(68).  Grab et al. (2004) showed that blood stream form 

trypanosomes induced oscillatory changes in [Ca2+]i within endothelial cells of 

the an in vitro blood brain barrier model which enabled the parasites to cross 

the endothelial monolayer paracellularly(67).  Nikolskaia et al. (2006) 

subsequently demonstrated that the oscillatory changes in [Ca2+]i were caused by 

a cathepsin-L-like cysteine protease (TbCatL)(69).  Grab et al. (2009) later 

postulated the membrane target leading to the oscillatory changes in [Ca2+]i to 

be the g-protein coupled receptor (GPCR) protease activated receptor 2 (PAR-

2)(66).  Interestingly, the related parasite Trypanosoma cruzi, the cause of 

American trypanosomiasis (Chagas Disease) which has notable cardiac 

pathology(513), also produces a protease that induces [Ca2+]i fluctuations in range 

of mammalian cells(514) and cardiomyocytes(508).  These changes in [Ca2+]i are 

associated with host cell invasion as inhibition of Ca2+ transients in host cells 

prevents invasion(515;516).  The changes in [Ca2+]i induced by T. cruzi  were shown 

to be sensitive to inhibition of the pertussis toxin sensitive GPCR(508).  This 

suggests a putative role for Ca2+ in the host cell invasion for T. cruzi.  With 

regard to T. b. brucei it is clear that it can also induce changes in [Ca2+]i in host 

cells such as endothelial cells in vitro.   The novel data presented in the 

preceding chapter demonstrates that Trypanosoma brucei brucei also has an 

effect on spontaneous Ca2+ release in cardiomyocytes.   

4.1.2   African Trypanosomes and [Ca2+]i in the Heart 

As discussed in the preceding chapter recent studies have identified clinical 

manifestations of cardiac pathology such as palpitations and prolonged QTc 

intervals(51) in patients with HAT.  In post-mortem examinations of infected 

humans(56;57) and experimentally infected animals(26-28) there has been significant 

cardiac pathology with the presence of trypanosomes in the myocardium with or 

without inflammatory cell infiltrates(26;497).  The results presented in the 
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preceding chapter demonstrate that trypanosome supernatant increases 

spontaneous Ca2+ release and may also increase ventricular arrhythmia 

frequency in ex vivo rat hearts.  This would suggest that the observed cardiac 

clinical signs in HAT may be related to altered intracellular Ca2+ handling 

induced by TbCatL.  The mechanisms at the level of the SR underlying the 

increase in propensity for spontaneous Ca2+ release in cardiomyocytes induced by 

T. brucei remain unknown and are the focus of this chapter. 

4.1.3 Mechanisms to Explore 

The conclusion that TbCatL causes abnormal SR-mediated Ca2+ release as a result 

of stimulation of SERCA needs to be substantiated.  Firstly, the only evidence for 

this conclusion is an accelerated decline of the Ca2+ transient in supernatant 

perfused cardiomyocytes.  If increased spontaneous Ca2+ release was a result of 

increased SERCA activity, the SR Ca2+ content may be expected to be higher.  

Therefore, paired experiments with the same cardiomyocyte being perfused with 

media followed by supernatant were performed to improve the accuracy and 

reliability of the epifluorescence SR Ca2+ content experiments.  Secondly, 

whether cathepsin-L can lead to altered [Ca2+]i independent of SR Ca2+ release 

and uptake is unknown.  Therefore experiments assessing the diastolic [Ca2+]i 

with SR ATPase and RyR inhibitors were conducted.  Thirdly, alteration of the 

Ca2+ transient decline could be associated with altered myofilament Ca2+ 

responsiveness(148;517), therefore cardiomyocyte length measurements were 

performed in parallel with the epifluorescence Ca2+ measurements to assess 

myofilament Ca2+ sensitivity.  Fourthly, evidence on how the extracellular 

cathepsin-L targets intracellular SERCA is an important question to try to 

answer.  The dual increase of spontaneous Ca2+ release in the form of Ca2+ waves 

and increased SERCA activity suggest that Protein Kinase A (PKA) and/or 

Ca2+/calmodulin Kinase II (CaMKII) may be possible targets(148).  Therefore the 

spontaneous contractile event experiments were performed with PKA and CaMKII 

specific inhibitors.   

4.1.4 Aims of the Chapter 

It is clear that trypanosome supernatant can have a direct affect on 

cardiomyocyte Ca2+ dynamics but the host cell SR-related mechanisms remain 
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unclear.  The primary aim of this chapter is to explore the potential SR-related 

mechanisms by which TbCatL could be eliciting its effects on Ca2+ handling and 

whether CaMKII and/or PKA are potential mediators of the observed effects on 

SR function.    
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4.2 Methods 

4.2.1 Adult Rat Cardiomyocyte Isolation 

Adult rat left ventricular cardiomyocytes were isolated from male Wistar rats as 

described in section 2.3.1.  Briefly, hearts were removed and enzymatically 

digested with collagenase to break down the connective tissue.  Isolated 

cardiomyocytes were prepared as described in in section 2.3.1.  The 

cardiomyocytes were suspended in MIKH containing no BSA with a [Ca2+]o of 1.8 

mM.  

4.2.2 Preparation of Control Media and Supernatant 

Control media and supernatant were prepared as described in section 2.1.5.  

These solutions were then loaded into a gravity fed perfusion system for delivery 

to isolated cardiomyocytes via a perfusion pen at 37 ºC.   

4.2.3 Normal Extracellular Ca2+ Epifluorescence Measurements 

The isolated cardiomyocytes in 1.8 mM Ca2+ MIKH from above were loaded with 5 

µM of the ratiometric Ca2+ fluorophore Fura-4F-AM (Invitrogen) by incubation for 

10 min at room temperature.  The cardiomyocytes were resuspended in 1.8 mM 

Ca2+ MIKH and incubated for 30 min at room temperature for de-esterification.  

Cardiomyocytes were loaded into a tissue bath (Cell Microcontrols) and allowed 

to settle onto a coverslip.  Cardiomyocytes were superfused with normally 

prepared control media or supernatant at 37 ºC by gravity fed perfusion pen with 

active pump outflow.  Cardiomyocytes were field stimulated (1.0 Hz, 2.0 ms 

duration, stimulation voltage set to 1.5 x threshold) and perfused firstly with 

control media (60 s) followed by supernatant (60 s).  Caffeine (10 mM, 20 s; 

without field stimulation) was applied before the protocol, after perfusion with 

media and after supernatant.  The three caffeine boluses and two solution 

changes were all performed in the same isolated cardiomyocyte thus enabling 

accurate paired assessment of SR Ca2+ content between media and supernatant.  

Parallel experiments were performed with media for both 60 s periods as time-

controls.  The results obtained with supernatant were normalised to these time-

controls.  The Fura-4F fluorescence ratio (340/380 nm excitation; R340/380nm) was 
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measured with a spinning wheel spectrophotometer (Cairn Research Ltd) at a 

sampling rate of 5,000 Hz.  [Ca2+]i was calculated from R340/380nm as described in 

General Methods.  Mean Ca2+ transients were calculated by averaging 12 steady 

state transients using Origin (OriginLab). 

4.2.4 Low Extracellular Ca2+ Epifluorescence Measurements 

Cardiomyocytes were prepared as described above, but [Ca2+]o was increased 

only to 0.5 mM.  The intact cardiomyocytes were then resuspended in MIKH with 

0.5 mM Ca2+ and loaded with 5 µM Fura-4F-AM for 10 min.  Cells were de-

esterified in 0.5 mM Ca2+ MIKH for 30 min before being allowed to settle on a 

cover slip within a tissue bath as described above (section 4.2.4).  Superfusate 

solutions of control media and supernatant were made with [Ca2+]o of 0.5 mM by 

diluting 1 in 4 with 0 mM Ca2+ MIKH.  A test experiment assessing the percentage 

change in cell exhibiting spontaneous contractile events as performed in Chapter 

3 was conducted to examine whether a 1 in 4 diluted supernatant still showed an 

increase in cells exhibiting spontaneous contractile events compared to 1 in 4 

diluted media.  Cells incubated in 1 in 4 diluted supernatant with 0.5 mM [Ca2+]o 

showed a significant increase in contractile events of 300%; (10.33 ± 5.23% vs. 

31.05 ± 6.16% cardiomyocytes exhibiting at least one spontaneous contractile 

event.min-1; control media vs. supernatant; P<0.05; Figure 4.1).  This was 

comparable with the increase in supernatant observed at 1.8 mM [Ca2+]o; (52.11 

± 1.64% vs. 67.47 ± 1.92% cardiomyocytes exhibiting at least one spontaneous 

contractile event.min-1; control media vs. supernatant; P<0.001; Figure 3.1).  

Therefore low [Ca2+]o were performed with a 1 in 4 diluted control media or 

supernatant. 
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Figure 4.1: Spontaneous contractile events in low and normal [Ca2+]o. 
Mean % ± SEM of isolated rat left ventricular cardiomyocytes exhibiting ≥1 spontaneous contractile 
event.min-1 in media and supernatant at 1.8 mM [Ca2+]o and 0.5 mM [Ca2+]o. n = number of 
cardiomyocytes. 

Cardiomyocytes were superfused with the 1 in 4 diluted control media or 

supernatant at 37 ºC with field stimulation as above (section 4.2.3) using the 

same protocol of media (60 s) followed by supernatant (60 s) with three caffeine 

boluses; before protocol, after media and after supernatant.  Results were 

normalised to time-controls. 

4.2.5 First Post-Caffeine Ca2+ Transient Analysis 

As an indicator of Ca2+ influx via the L-type Ca2+ channel (LTCC), the amplitude 

of the first Ca2+ transient following the application of caffeine (10 mM) was 

measured.  The SR is essentially empty of Ca2+ following the application of 

caffeine so the [Ca2+]i will predominately come from what enters through the 

sarcolemma via the LTCC(518).   

4.2.6 Fractional Shortening Measurements 

In parallel with normal 1.8 mM [Ca2+]o epifluorescence measurements cell length 

was also measured.  Edge detection software (Ionoptix) was used to measure the 

change in length of field stimulated (1.0 Hz) isolated cardiomyocytes.  The 

change in length was plotted as a ratio over the diastolic cell length immediately 

before stimulation (L/L0).  Fractional shortening was calculated as the 
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percentage reduction from L0.  To assess changes in myofilament Ca2+ sensitivity 

cell length was plotted against [Ca2+]i during diastole. 

4.2.7 Epifluorescence Measurements of Diastolic [Ca2+]i During 
SR Inhibition 

Fura-2-AM loaded cardiomyocytes were incubated with 1.0 µM thapsigargin 

(Merckmillipore) and 1.0 µM ryanodine (Merckmillipore) for 30 min to inhibit SR 

function.  The cardiomyocytes were then superfused with control media for 1 

min followed by perfusion with supernatant (or media for time-controls) for 4 

min in the continued presence of 1.0 µM thapsigargin and ryanodine.  Changes in 

diastolic [Ca2+]i were assessed using the spinning wheel spectrophotometer as 

above (section 4.2.3). 

4.2.8 Spontaneous Contractile Event Measurement in Isolated 
Cardiomyocytes With H-89 and AIP 

Isolated cardiomyocytes were incubated at a dilution of 1 in 4 with control 

media or supernatant (cells in MIKH:control media/supernatant) for 30 min with 

or without the PKA inhibitor H-89 (N-[2-(p-bromocinnamylamino)ethyl]-5-iso-

quinolinesulphonamide) (Sigma-Aldrich) at a concentration of 10 µM(153;519).  For 

experiments with the CaMKII inhibitor AIP (autocamtide-2 related inhibitory 

peptide) (Merckmillipore) cardiomyocytes were plated in 35mm petri dishes 

(Corning) at a density of 25-50 cells.cm-2 for 60 min(320).  To improve AIP loading 

a myristoylated form was used that has greater cell permeability.  

Cardiomyocytes were viewed under a light microscope and charged-couple 

device (CCD) camera at 20 x magnification enabling observation of ≥10 

cardiomyocytes per field of view.  Individual cardiomyocytes exhibiting at least 

one spontaneous contractile event within 1 min were noted and expressed as the 

percentage of the total examined cardiomyocyte number.  This process was 

repeated over 10 fields and mean data reported. 

4.2.9 Epifluorescence Measurements with CaMKII Inhibition 

Epifluorescence measurements at physiological (1.8 mM) [Ca2+]o in field 

stimulated (1.0 Hz) cardiomyocytes with Fura-4F were performed with the 

CaMKII inhibitor AIP.  Diastolic [Ca2+]i measurements in unstimulated 
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cardiomyocytes with Fura-2AM were also conducted with AIP.  Cells were 

prepared by incubating in petri dishes with AIP for 60 min as above (section 

4.2.8).  The protocols applied in sections 4.2.3 and 4.2.7 were performed in 

separate cohorts of cells and analysed as described. 

4.2.10 Statistical Analysis 

Data are expressed as mean ± SEM.  Paired experiments were normalised to 

time-controls performed in parallel.  Statistical comparisons were made by a 

paired Student’s T-test on the raw data.  Two-sample Student’s T-tests were 

performed on percentage changes over controls.  A significance level of P<0.05 

was considered significant. 
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4.3 Results 

4.3.1 Supernatant Increased the Decay Rate Constant of the 
Stimulated Ca2+ Transient 

The experiments conducted in Chapter 3 were with two separate groups of 

cardiomyocytes at 1.8 mM [Ca2+]o incubated for 30 min.  The data presented in 

that chapter demonstrated an increase in the decay rate constant but no 

statistically significant difference in the amplitude of the caffeine-induced Ca2+ 

transient (albeit with a tendency towards being lower in supernatant; Figure 

3.4).  Although using a 30 min incubation period ensured that the supernatant 

had sufficient time to act, it was not possible to perform paired experiments 

which reduced the sensitivity of the experiments; in particular the peak of the 

caffeine-induced Ca2+ transient.  It also prevented ascertaining whether the 

supernatant could have acute effects. In order to address these issues, paired 

experiments without prior incubation were performed.  Cardiomyocytes were 

perfused for 60 s with media followed by 60 s with supernatant (or media for 

time-controls) (Figure 4.2A).  Results in supernatant were normalised to the 

time-controls.   

4.3.1.1 Physiological [Ca2+]o (1.8 mM) 

Mean data ± SEM was obtained from average Ca2+ transients from the last 12 Ca2+ 

transients in media and supernatant  (Figure 4.2B).  The maximum [Ca2+]i was 

not significantly altered by supernatant; (662.4 ± 56.0 vs. 657.5 ± 55.6 nM; 

control media vs. supernatant; P>0.05; Figure 4.2C(i)), nor was the minimum 

[Ca2+]i significantly altered; (160.6 ± 5.3 vs. 165.7 ± 5.5 nM; control media vs. 

supernatant; P>0.05; Figure 4.2C(i)).  Therefore, the stimulated Ca2+ transient 

amplitude was also not significantly altered by supernatant; (501.8 ± 56.6 vs. 

490.1 ± 55.3 nM; control media vs. supernatant; P>0.05; Figure 4.2C(i)).  This 

data supports the Ca2+ transient findings with incubated cardiomyocytes.   With 

the incubated cardiomyocyte data there was a parallel increase in the decay 

rate constant of 110.4% of control; (12.2 ± 1.2 vs. 13.4 ± 1.4 s-1; control media 

vs. supernatant; P<0.05; Figure 4.2C(ii)).   
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4.3.1.2 Low [Ca2+]o (0.5 mM) 

The same experiments were also performed with control media and supernatant 

diluted 1 in 4 with 0 mM [Ca2+]o MIKH to lower the [Ca2+]o to 0.5 mM (Figure 

4.2A).  These experiments were performed to ensure that the SR Ca2+ content 

had not reached saturation.  Reduction of [Ca2+]o reduced the Ca2+ transient 

amplitude to 45.9% of that in 1.8 mM [Ca2+]o .  Similar to 1.8 mM [Ca2+]o the Ca2+ 

transient peak was not affected by supernatant; (388.5 ± 23.6 vs. 395.6 ± 24.8 

nM; control media vs. supernatant; P>0.05; Figure 4.2C(i)), nor was the Ca2+ 

transient minimum; (158.4 ± 5.3 vs. 154.3 ± 5.2 nM; control media vs. 

supernatant; P>0.05; Figure 4.2C(i)).  Therefore the Ca2+ transient amplitude 

was also unaffected by supernatant; (230.1 ± 23.5 vs. 242.0 ± 24.8 nM; control 

media vs. supernatant; P>0.05, Figure 4.2C(i)).  However, like the 1.8 mM 

[Ca2+]o, the decay rate constant was significantly increased by supernatant to 

112% of control; (8.5 ± 0.4 vs. 9.5 ± 0.4 s-1; control media vs. supernatant; 

P<0.05; Figure 4.2C(ii)). 
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Figure 4.2: Stimulated Ca2+ transients at low and physiological extracellular Ca2+. 
(A) Protocol used in epifluorescence Ca2+ measurements. (B) Whole protocol traces at (i) low 0.5 
mM [Ca2+]o. and (ii) normal 1.8 mM [Ca2+]o  (C(i)) Mean ± SEM for average of last 12 transients for 
stimulated Ca2+ transient parameters (maximum, minimum and amplitude) normalised to time 
controls for low 0.5 mM [Ca2+]o (n = 8) and normal 1.8 mM [Ca2+]o (n = 12); for control media in the 
first minute (white) and supernatant in the second minute (grey).  (ii) Mean ± SEM for average of 
last 12 transients decay rate constant for both low and normal [Ca2+]o.    

4.3.2 Supernatant Reduces the SR Ca2+ Content 

SR Ca2+ content has a significant influence on Ca2+ transient characteristics.  To 

determine the SR Ca2+ content the amplitude of Ca2+ transient induced by rapid 

application of 10 mM caffeine (20 s) was measured after perfusion of the 

cardiomyocytes with media and then supernatant in the same cell (Figure 4.3A).  

The paired nature of the protocol enabled more accurate determination of small 

changes in SR Ca2+ content between media and supernatant. 

4.3.2.1 Physiological [Ca2+]o (1.8 mM) 

The caffeine-induced Ca2+ transient was measured in media and supernatant and 

normalised to time-control experiments performed in parallel.  Supernatant had 

no significant effect on the minimum [Ca2+]i (152.9 ± 5.4 vs. 170.2 ± 6.1 nM; 
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control media vs. supernatant; P>0.05; Figure 4.3B(i)).  However, supernatant 

significantly reduced the caffeine-induced Ca2+ peak (913.9 ± 44.4 vs. 865.8 ± 

42.0 nM; control media vs. supernatant; P<0.05; Figure 4.3B(i)), resulting in a 

significantly reduced amplitude of 91.7% of the amplitude in control media 

(760.9 ± 42.9 vs. 698.3 ± 39.4 nM; control media vs. supernatant; P<0.05; Figure 

4.3B(i)).  The decay rate constant of the caffeine-induced Ca2+ transient is an 

indicator of sarcolemmal extrusion of Ca2+ as the SR cannot re-accumulate Ca2+ 

in the continued presence of caffeine.  Supernatant did not significantly alter 

the decay rate constant; (1.68 ± 0.08 vs. 1.45 ± 0.07; control media vs. 

supernatant; P<0.05) (Figure 4.3B(ii)). 

4.3.2.2 Low [Ca2+]o (0.5 mM) 

As with the stimulated Ca2+ transient experiments, caffeine was applied at low 

[Ca2+]o.  Similarly with the normal [Ca2+]o supernatant did not significantly alter 

the minimum [Ca2+]i; (155.5 ± 5.5 vs. 150.3 ± 5.3 nM; control media vs. 

supernatant; P>0.05; Figure 4.3B(i)).  However, supernatant did decrease the 

peak of the caffeine-induced Ca2+ transient to 82.7% of control (1114 ± 51.5  vs. 

921.0 ± 42.6 nM; control media vs. supernatant; P<0.05; Figure 4.3B(i)) and the 

amplitude to 80.3% of control (958.7 ± 52.2 vs. 769.4 ± 41.9 nM; control media 

vs. supernatant; P<0.05; Figure 4.3B(i)).  Supernatant did not significantly affect 

the rate constant of decay; (1.95 ± 0.13 vs. 1.78 ± 0.12 s-1; control media vs. 

supernatant; P>0.05, Figure 4.3B(ii)). 
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Figure 4.3: Caffeine-induced Ca2+ transient parameters at low and normal extracellular Ca2+. 
(A) Protocol used in epifluorescence Ca2+ measurements.  (B) Mean ± SEM for caffeine-induced 
Ca2+ transient parameters (maximum, minimum and amplitude) normalised to time controls for low 
0.5 mM [Ca2+]o (n = 8) and normal 1.8 mM [Ca2+]o (n = 12); for control media in the first minute 
(white) and supernatant in the second minute (grey).  (ii) Mean ± SEM for caffeine-induced Ca2+ 
transient decay rate constant for both low and normal [Ca2+]o. 

4.3.3 Myofilament Ca2+ Sensitivity 

An altered stimulated Ca2+ transient decline could be caused by altered Ca2+ 

sensitivity of the myofilaments.  Therefore to examine whether supernatant 

could increase the Ca2+ transient rate of decline via altered Ca2+ sensitivity of 

the myofilaments, experiments were performed to measure cardiomyocyte 

shortening in parallel with [Ca2+]i measurements following the same protocol as 

used to generated the data in Figure 4.2 &Figure 4.3 (Figure 4.4A).  There was 

no significant difference in the fractional shortening percentage (7.77 ± 1.11 vs. 

7.10 ± 1.01%; control media vs. supernatant; P>0.05; Figure 4.4C(i)).  There was 

also no significant difference in the rates of change of cell shortening during 

contraction (223.0 ± 41.6 vs. 240.1 ± 44.8 µm.s-1; control media vs. supernatant; 

P>0.05; Figure 4.4C(ii)), or lengthening during relaxation (179.5 ± 39.8 vs. 164.5 

± 36.5 µm.s-1; control media vs. supernatant; P>0.05; Figure 4.4C(iii)).  At the 

end of diastole the rates of change of [Ca2+]i are minimal, therefore the minimal 

[Ca2+]i and end-diastolic cell length can be used to assess the myofilament Ca2+ 

sensitivity in the intact cell(520).  There was no statistically significant difference 

between end-diastolic [Ca2+]i (160.6 ± 5.3 vs. 165.7 ± 5.5 nM; control media vs. 

supernatant; P>0.05) or end-diastolic cell length (117.8 ± 3.2 vs. 118.7 ± 3.2 µm; 

control media vs. supernatant; P>0.05; Figure 4.4D). 
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Figure 4.4: Fractional shortening of cardiomyocytes. 
(A) Protocol used in parallel shortening and epifluorescence Ca2+ measurements. (B) Example 
shortening traces for (i) control media and (ii) supernatant as ratios of resting cell length (L/L0). (C(i-
iii)) mean ± SEM of fractional shortening % of resting cell length, rate of change of shortening 
(dL/dtS) and rate of change of lengthening (dL/dtL) for media (white) and supernatant (grey) (n = 
11). (D) Plot of mean ± SEM of end-diastolic [Ca2+]i (x axis) and end-diastolic cell length (y axis).  
Fluorescence ratios were 0.512 and 0.528 for media and supernatant respectively (P>0.05). 



Chapter 4  Investigating the Mechanisms 210 
 

4.3.4 Supernatant Increases Diastolic [Ca2+]i via a Non-SR 
Dependent Route 

In Chapter 3 experiments were conducted with the addition of a β-adrenergic 

agonist (100 nM isoproterenol) to examine the effects under stress.  In these 

experiments the minimum [Ca2+]i was significantly increased to 115% of control 

levels (Figure 3.5).  In order to assess whether supernatant could alter diastolic 

[Ca2+]i in the absence of SR-mediated Ca2+ release or uptake, the higher affinity 

Ca2+ fluorophore Fura-2-AM was utilised in cardiomyocytes where SR function 

was inhibited by the application of both thapsigargin and ryanodine (Figure 4.5).  

In the absence of SR-mediated Ca2+ release, supernatant led to a persistent 

significant elevation of diastolic [Ca2+]i over the 4 min period compared to media 

(Figure 4.5). 

 

Figure 4.5: Diastolic [Ca2+]i measurements with an inhibited SR. 
Fura-2-AM ratio during SR inhibition with thapsigargin and ryanodine in media (open; n = 10) and 
supernatant (grey; n = 11).  Data are normalised to the 60 s time-point.  

4.3.5 Supernatant Does Not Likely Alter the L-Type Ca2+ Channel  

One possible explanation for elevation of diastolic [Ca2+]i could be increased Ca2+ 

influx through the LTCC.  An index of Ca2+ influx through the LTCC is the 

amplitude of the first stimulated Ca2+ transient after application of high 
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concentration caffeine.  Therefore, using the protocol used to generate the data 

in Figure 4.2 &Figure 4.3, the amplitude of the first stimulated Ca2+ transient 

following the application of 10 mM caffeine was measured in 0.5 mM [Ca2+]o and 

1.8 mM [Ca2+]o (Figure 4.6).  Supernatant did not significantly alter the first post-

caffeine Ca2+ transient amplitude in 0.5 mM [Ca2+]o (71.3 ± 6.8 vs. 75.3 ± 7.1 nM; 

control media vs. supernatant; P>0.05; Figure 4.6B(i)) or in 1.8 mM [Ca2+]o (154.4 

± 10.3 vs. 161.5 ± 10.8 nM; control media vs. supernatant; P>0.05; Figure 

4.6B(ii)). 

 

Figure 4.6: First post-caffeine Ca2+ amplitude at low and normal extracellular Ca2+. 
(A) Protocol for epifluorescence Ca2+ measurements, arrows indicate point of the protocol Ca2+ 
transient amplitudes were measured. (B) Mean ± SEM for first post-caffeine Ca2+ transient 
amplitude for media (open) and supernatant (grey) for (i) 0.5 mM [Ca2+]i (n = 8) and (ii) 1.8 mM 
[Ca2+]o (n = 13). 

4.3.6 Supernatant Alteration of SR Function is CaMKII Dependent 

To examine whether CaMKII or PKA are involved in the action of supernatant on 

SR function, inhibitors of these kinases were utilised in cohorts of 

cardiomyocytes incubated in control media or supernatant as described in 

Chapter 3 (section 3.2.3).  The number of cells exhibiting spontaneous 

contractions per min was noted.  The expected increase in spontaneous 

contractile events in supernatant was abolished in the presence of the CaMKII 

inhibitor AIP to 104% of media + AIP levels (P>0.05; Figure 4.7A(i)).  When the 

PKA inhibitor H-89 was used the increase in spontaneous contractile events with 

supernatant was increased as expected to 129% of media + H-89 (P<0.05; Figure 
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4.7A(ii)).  These experiments were performed in conjunction with Ms. Charlotte 

Rossor, a Masters student who was under my supervision at the time and 

presented in her thesis.  

 

Figure 4.7: Percentage change in spontaneous contractile events with AIP or H89. 
Mean ± SEM percentage change in cardiomyocytes with spontaneous contractile events with (i) 
supernatant + AIP (n = 307) vs. media + AIP (n = 121) and (ii) supernatant + H-89 (n = 377) vs. 
media + H-89 (n = 305). 

4.3.7 Supernatant Effects on Ca2+ Handling with CaMKII Inhibition 

Since the increase in spontaneous contractile events expected in supernatant 

was abolished by CaMKII inhibition but not PKA inhibition, further 

epifluorescence Ca2+ measurements were made with the addition of AIP.  A 

separate cohort of cardiomyocytes were incubated with 10 µM AIP for 60 min 

before being loaded into a tissue bath and superfused with media for 1 min 

followed by supernatant for 1 min with 1.8 mM [Ca2+]o .  Parallel time-control 

experiments were also performed in which cardiomyocytes were perfused with 

control media during the second 1 min to which the control media/supernatant 

traces were normalised to control for any alterations in the stimulated Ca2+ 

transients due to time.  When the cardiomyocytes were perfused with 

supernatant and AIP, there was no significant difference in the Ca2+ transient 

amplitude percentage change (97.7 ± 3.2 vs. 104.8 ± 4.6%; supernatant vs. 

supernatant + AIP; P>0.05; Figure 4.8A).  With AIP the significant increase in Ca2+ 
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transient decay rate percentage change was reduced to control levels (110.4 ± 

1.2 vs. 96.8 ± 3.2%; supernatant vs. supernatant + AIP; P<0.05; Figure 4.8A).  

The significant reduction in SR Ca2+ content present with supernatant was 

abolished by addition of AIP (91.8 ± 2.1 vs. 100.1 ± 1.3%; supernatant vs. 

supernatant + AIP; P<0.05; Figure 4.8A).  Experiments utilising thapsigargin and 

ryanodine to inhibit SR function were performed using the same protocol as that 

used to generate the data in Figure 4.5.  In contrast with the data shown so far 

for AIP, there was no change in result.  Supernatant + AIP showed the same 

significant elevation in diastolic [Ca2+]i (Figure 4.8B) as supernatant (Figure 4.5).  
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Figure 4.8: Supernatant effects on Ca2+ parameters with AIP. 
(A) Mean ± SEM % change in supernatant ± AIP over control media for stimulated Ca2+ transient 
amplitude, Ca2+ transient decay rate constant and SR Ca2+ content. (B) Diastolic [Ca2+]i 
measurements with inhibited SR in cardiomyocytes pre-incubated with 10 µM AIP for 60 min.  
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4.4 Discussion 

4.4.1 Supernatant Effects on SR Function 

4.4.1.1 SERCA Activity is Increased by Supernatant 

In Chapter 3 the data presented showed an increase in the decay rate constant 

(Figure 3.4) in the cohort of cardiomyocytes perfused with supernatant.  This 

was attributed to a potential increase in SERCA activity (KSERCA) which led to an 

increase in spontaneous Ca2+ release from the SR.  However this was difficult to 

reconcile without a significant change in the SR Ca2+ content.  Therefore paired 

experiments were conducted where the same cardiomyocyte was perfused with 

media followed by supernatant and normalised to time-controls perfused with 

media.  This enabled more accurate assessment of Ca2+ transient parameters and 

SR Ca2+ content.  The paired experiments supported the findings in Chapter 3 

with a significantly increased stimulated Ca2+ transient decay rate constant of 

110.4% of control in 1.8 mM [Ca2+]o, and again in 0.5 mM [Ca2+]o of 111.1% (Figure 

4.2).  As discussed in Chapter 3 a faster rate of stimulated Ca2+ transient decline 

is either explained by faster SR reuptake by SERCA, or faster sarcolemmal 

extrusion predominantly by NCX(158).  Although other Ca2+ extrusion mechanisms 

such as the PMCA and mitochondria do contribute, it is <25% of total Ca2+ 

extrusion(222;223) over almost ten times longer than extrusion by NCX(224).  To rule 

out faster sarcolemmal extrusion a rapidly applied bolus of high concentration 

caffeine can be used to open the RyR and empty the SR of Ca2+.  The decay rate 

constant of the caffeine-induced Ca2+ transient will consist of sarcolemmal Ca2+ 

efflux without any SR contribution in the continued presence of caffeine, which 

can be measured.  No statistically significant difference in caffeine-induced Ca2+ 

transient decay rate was found therefore NCX involvement is unlikely.  In 

addition the caffeine-induced Ca2+ transient decay rate constant (sarcolemmal 

efflux but no SR reuptake) can be subtracted from the stimulated Ca2+ transient 

decay rate constant (sarcolemmal efflux and SR reuptake) to give the SR 

reuptake or KSERCA
(506).  When this is performed the KSERCA percentage change is 

114.3 ± 2.2% of media control at 1.8 mM [Ca2+]o which compares well with the 

110.4 ± 1.2% observed when using the rate decay constant of the electrically 

induced transient alone (Figure 4.2C(v)).  The same is true for 0.5 mM [Ca2+]o, 

the subtracted decay rate constant % change is 117.3 ± 2.3% over control media 
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which compares well with 111.1 ± 2.2% over media control when using the rate 

decay constant of the electrically induced transient alone (Figure 4.2D(v)).  

Therefore we can conclude that KSERCA is significantly increased by 10-15% at 1.8 

mM [Ca2+]o and 11-17% in 0.5 mM [Ca2+]o.  

4.4.1.2 SR Ca2+ Content is Reduced by Supernatant 

Chapter 3 demonstrated an increase in Ca2+ frequency which has been attributed 

to increased SERCA stimulation, leading to increased SR Ca2+ accumulation rate 

and subsequent decreased time between spontaneous Ca2+ release events(192;503), 

which was observed (Figure 4.2).  There was also an increase in Ca2+ wave 

velocity, which has been shown to be related to increased SERCA activity(503).  

However, if this were the only effect supernatant had we would expect an 

increase in the SR Ca2+ content from the greater Ca2+ accumulation rate.  This 

was not observed in the data presented in Chapter 3.  When the more sensitive 

paired experiments were conducted, what was observed was in fact a significant 

reduction of the SR Ca2+content of 91.7% at 1.8 mM [Ca2+]o, and 80.3% in 0.5 mM 

[Ca2+]o, by measurement of the caffeine-induced Ca2+ transient amplitude.  

Therefore, the hypothesis is that the supernatant, in addition to the SERCA 

effects, may also enhance SR-mediated Ca2+ leak.  This may explain an increase 

in SERCA activity with concomitant decrease in SR Ca2+ content.  Indeed, it has 

been identified in by Antoons et al. (2006) in the muscle-LIM-protein (MLP) 

knock-out mouse that SERCA activity can be increased without an increase in SR 

Ca2+ content(521).  The same study found that the inhibitory peptide of SERCA, 

phospholamban (PLB) has increased levels of phosphorylation at both the serine-

16 and threonine-17 residues which would enhance SERCA activity(521).   Antoons 

et al. hypothesised that in order for SR Ca2+ content to be unaffected yet SERCA 

activity to be increased, there could be a concomitant increase in diastolic Ca2+ 

leak from the RyR potentially mediated by increased phosphorylation(521).  They 

measured phosphorylation at the PKA phosphorylation site serine-2809 identified 

by Rodriguez et al. (2003)(522) but found only a modest increase attributable to 

increased total RyR therefore hypothesised that CaMKII could be phosphorylating 

the serine-2815 residue(523;524) and may therefore be the mediator(521).  If there is 

a similar mechanism involved with supernatant then there could be dual effects 

on SERCA perhaps via PLB and on the RyR phosphorylation altering the open 

probability (Po).  If the RyR Po is increased then the threshold SR Ca2+ content 
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would be reduced increasing the frequency of Ca2+ waves(192).  Specifically, a 

reduced SR Ca2+ release threshold would mean that less Ca2+ in the SR could 

trigger a spontaneous Ca2+ release.  Therefore spontaneous Ca2+ release or Ca2+ 

waves would increase in frequency due to the lower SR Ca2+ release threshold.  

In heart failure it has been reported that there is an increased Ca2+ leak from 

the RyR caused by hyperphosphorylation of the RyR leading to dissociation of the 

regulatory protein FKBP12.6(276).  However, this hypothesis is controversial as 

phosphorylation of the RyR in different models of heart failure is inconsistent(276-

279;525).  There is evidence to suggest increased diastolic Ca2+ leak from the RyR 

due to phosphorylation by PKA(276;324), CaMKII(277;311) or no phosphorylation(279).  

The fact that AIP can abolish the increase in Ca2+ waves but that H-89 does not, 

suggests the effect observed in the current study may be CaMKII mediated 

phosphorylation, however to confirm this phosphorylation status of the RyR 

would need to be examined.  The increased leak can have the result of a 

reduced SR Ca2+ content and the increased Po can increase Ca2+ wave frequency 

leading to arrhythmias(273;322;526) and can also occur with increased SERCA 

activity(521).  This would not necessarily result in a reduced stimulated Ca2+ 

transient amplitude(527), which supports the results of the current study.  In the 

presence of β-adrenergic stimulation there can be an increase in RyR leak and 

sustained increase in Ca2+ waves(192;320), which supports the data presented in 

Chapter 3 and appears to be modulated by CaMKII but not PKA(320). 

4.4.2 Supernatant Does Not Alter Myofilament Ca2+ Sensitivity 

One explanation for an increased KSERCA is altered myofilament Ca2+ 

sensitivity(517).  During the normal contractile cycle Ca2+ is released from the SR 

into the cytosol and binds to troponin C (TnC) of the myofilaments facilitating 

the hydrolysis of ATP by the myosin ATPase to provide the energy for formation 

of the cross-bridges and the power stroke of the contraction.  In order for the 

myofilaments to relax during diastole when [Ca2+]i reduces the myosin ATPase 

must provide more ATP to break the cross-bridges(148).  Under normal 

circumstances, Ca2+ released from the SR binds to TnC(528).  Therefore a decrease 

in myofilament Ca2+ sensitivity would reduce the Ca2+ buffering capacity of the 

myofilaments and therefore increase the diastolic [Ca2+]i
(148).  Decreases in Ca2+ 

buffering would be predicted to increase the available free Ca2+ for the 

stimulated Ca2+ transient as the myofilaments would have a reduced binding 
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capacity(517).  This would result in an increased peak [Ca2+]i and an increased rate 

of Ca2+ transient decay(529;530), which has been shown experimentally with 

exogenous Ca2+ buffers(531).  Alteration of myofilament Ca2+ sensitivity is 

therefore a potential mechanism of the increased KSERCA observed in the current 

study.  With decreased Ca2+ sensitivity of the myofilaments a greater [Ca2+]i 

would be required to induce the same force of contraction or change in 

cardiomyocyte length(148).  Cardiomyocyte length was measured in parallel with 

Ca2+ epifluorescence measurements by edge detection software (Ionoptix) in 

field stimulated cells.  The change in length relative to diastolic cardiomyocyte 

length was calculated and the percentage change in length or fractional 

shortening calculated for media and supernatant normalised to time-controls.  

There was no statistically significant difference, suggesting that supernatant did 

not alter the fraction that cardiomyocytes contract during normal stimulation.  

At end-diastole the rate of change of [Ca2+]i are minimal, thus these values can 

be used to assess myofilaments Ca2+ sensitivity in the intact cell.  No significant 

alteration in myofilaments Ca2+ responsiveness is induced by the supernatant as 

shown in Figure 4.4C suggesting therefore that its contribution to the decline of 

the Ca2+ transient observed is not significant. The supernatant is therefore likely 

to be having an effect on SERCA independent of myofilament Ca2+ sensitivity. 

4.4.3 Effects of Supernatant on Diastolic [Ca2+]i 

Isolated cardiomyocyte experiments where SR-mediated Ca2+ release and uptake 

was inhibited (Figure 4.5) revealed that supernatant elevated [Ca2+]i compared 

with control media.  These experiments do not discriminate between reduced 

Ca2+ efflux and enhanced Ca2+ influx.  However an increased diastolic [Ca2+]i may 

favour spontaneous Ca2+ release from the SR in the form of Ca2+ sparks and 

waves(195) via an increased KSERCA
(507).  One potential mechanism for this increase 

in diastolic [Ca2+]i is reduced Ca2+ efflux via reduced NCX activity, the main 

efflux pathway.  This does not appear to be the case in cardiomyocytes exposed 

to supernatant as the decay rate constant of the caffeine-induced Ca2+ was not 

significantly altered (Figure 4.3).  Alternatively, the increase in diastolic [Ca2+]i 

could be a result of increased influx through the LTCC as the inward Ca2+ current 

serves to trigger Ca2+ release from the SR but also to load the cardiomyocyte 

with Ca2+ to balance the sarcolemmal efflux(182).  Under normal circumstances 

the Po of the LTCC during diastole is low (≈10-5) at resting membrane potential (-
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80 mV)(532).  Choi et al. (2000) measured Ca2+ influx and efflux in quiescent rat 

ventricular cardiomyocytes and found a small component of influx sensitive to 

nifedipine, a LTCC blocker(533).  They used a holding potential of -40 mV (more 

positive than resting) but identified that 0.8 µM.l-1.s-1 Ca2+ flux sensitive to 

nifedipine.  As a result, they calculated the Po at resting potential of 0.006. They 

identified that much of the Ca2+ influx in quiescent cardiomyocytes was Ni2+ 

sensitive, a blocker of NCX, and therefore potentially due to NCX activity in 

reverse mode(533).  Ni2+ though lacks specificity so other Ca2+ influx mechanisms 

could not be ruled out(533).  The data in the current study suggests no alteration 

of the NCX due to no significant differences in caffeine-induced Ca2+ transient 

decay.   Schröder et al. identified that β-adrenergic stimulation either β1 or β2 

could increase the Po of the LTCC such that it was activated in physiological 

Tyrodes solution at resting membrane potential(534).  Thus Po can be altered in 

the presence of a β-adrenergic agonist to increase the current through the 

LTCC(532;535;536).  Therefore supernatant could alter the LTCC Po increasing the 

Ca2+ influx during diastole leading to a higher diastolic [Ca2+]i.  To examine 

whether the LTCC current could be altered usually requires electrophysiological 

measurements of the LTCC current.  However, LTCC modulation can be assessed 

indirectly if the amplitude of first Ca2+ transient following a bolus of high 

concentration caffeine (10 mM) is measured.  The principle is that the caffeine 

increases the Po of the RyR to 1 thereby effectively emptying the SR so it will no 

longer contribute to Ca2+ release.  When field stimulation is applied, the change 

in [Ca2+]i will primarily be due to Ca2+ influx through the LTCC(537).  Eisner et al. 

(2000) applied 10 mM caffeine immediately prior to a stimulation protocol that 

effectively emptied the SR of Ca2+ and measured the Ca2+ transients while 

simultaneously measuring the current across the LTCC.  The amplitude of the 

first Ca2+ transient post caffeine was significantly less than the last Ca2+ 

transient but the current across the LTCC was not changed.  This suggests that 

the difference in Ca2+ transient amplitude is due to the initial SR emptying and 

subsequent refilling with Ca2+(537).  Therefore the amplitude of the first post 

caffeine Ca2+ transient was used as an indicator of Ca2+ influx through the LTCC.  

The amplitude of the first post-caffeine Ca2+ transient was not altered with 

perfusion of supernatant compared to control media suggesting that the LTCC is 

not altered (Figure 4.6).  Under some conditions, in some species, there may be 

Ca2+ entry via reverse NCX activity(507), although the data presented in the 
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current study suggests no alteration of NCX activity in the presence of 

supernatant.  There is some evidence to support another method of Ca2+ influx 

independent of the LTCC and NCX reversal but the mechanism remains 

unclear(538). 

4.4.4 Increase in Spontaneous Ca2+ Release Caused by 
Supernatant is Prevented by CaMKII Inhibition 

The supernatant effects on KSERCA and SR Ca2+ content coupled with increased 

spontaneous Ca2+ release support a hypothesis consistent with a potential β-

adrenergic stimulation phenotype.  β-adrenergic stimulation has the effects of; 

i) increased RyR phosphorylation increasing Po
(276;539) and SR Ca2+ leak(299;323), ii) 

increased LTCC current(153) via PKA mediated phosphorylation, iii) increased 

KSERCA via phosphorylation of the SERCA inhibitory molecule phospholamban (PLB) 

decreasing SERCA inhibition via PKA activity(239;240;243) and CaMKII 

activity(240;244;245), and finally, iv) altered myofilament Ca2+ sensitivity(148).  

Although the data in the present study did not identify alterations in 

myofilament Ca2+ sensitivity or a detectable increase in LTCC current, the 

potential effects on SERCA and RyR suggest there may be a role for PKA and/or 

CaMKII therefore both PKA and CaMKII were investigated further.  A cohort of 

isolated cardiomyocytes was incubated in control media and supernatant as 

discussed in Chapter 3 (section 3.2.3) with the PKA inhibitor H89.  The 

percentage change in number of cardiomyocytes exhibiting at least one 

spontaneous contractile event in 1 min over media control was calculated.  A 

separate cohort was treated with the CaMKII inhibitor AIP.  H89 did not change 

the increase in spontaneous contractile events observed in supernatant 

suggesting that the increased spontaneous Ca2+ release caused by supernatant 

was not PKA mediated.  However, when cardiomyocytes were treated with AIP 

the increase in contractile events in supernatant was abolished, suggesting the 

effect may be CaMKII mediated.  In a study by Kholhaas et al. (2006) enhanced 

SR Ca2+ leak caused by overexpression of CaMKII was prevented by AIP without 

significantly altering the Ca2+ transient amplitude(321).  
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4.4.5 CaMKII Inhibition Prevents Supernatant Effects on SR 
Function 

4.4.5.1 SERCA Activity Increase in Supernatant Prevented by AIP 

Given the result of CaMKII inhibition on spontaneous contractile events the Ca2+ 

epifluorescence experiments were repeated with AIP at normal [Ca2+]i.  There 

was no change in the peak and [Ca2+]i amplitude of the stimulated Ca2+ transient 

when AIP was added to the supernatant.  In the presence of AIP the increase in 

decay rate constant caused by supernatant was reduced from 110.4% to 104.8% 

of control media.  These data support a hypothesis of CaMKII mediated enhanced 

SERCA activity.  Indeed, it has been shown by Picht et al. (2007) that SR-

localised AIP can inhibit a CaMKII-mediated enhancement of SERCA-mediated 

Ca2+ uptake and inhibit CaMKII-mediated phosphorylation of the RyR reducing 

diastolic Ca2+ leak(540).  Since AIP reduces both SR-mediated spontaneous Ca2+ 

release and KSERCA to the levels of control media in the data presented in this 

chapter, the potential mechanism by which supernatant acts is via enhanced 

CaMKII activity.  

4.4.5.2  SR Ca2+ Content Reduction in Supernatant Prevented by AIP 

The reduced caffeine-induced Ca2+ transient amplitude in supernatant was also 

prevented by AIP.  SR Ca2+ in supernatant with AIP was at 100.1% compared to 

91.7% in control media.  When considered with the concomitant reduction in 

spontaneous Ca2+ release without Ca2+ transient amplitude alteration a 

hypothesis of reduced CaMKII mediated SR Ca2+ leak due to inhibition with AIP 

seems likely and is supported by Kholhaas et al. (2006)(321).  In the SR-AIP 

transgenic mouse of Picht et al. (2007) there was a significant reduction in 

diastolic Ca2+ leak from the SR measured as tetracaine-induced shifts in cytosolic 

Ca2+(540).  Tetracaine-induced shifts work by blocking the RyR thereby preventing 

Ca2+ leak.  When applied in a Na+ and Ca2+ free solution the SR Ca2+ content rises 

and cytosolic Ca2+ declines directly proportionally to the leak(323). 

4.4.6 CaMKII Inhibition Does Not Reduce Diastolic [Ca2+]i 

Interestingly, when the experiments with SR inhibition by thapsigargin and 

ryanodine were repeated, the increase in diastolic [Ca2+]i in supernatant was not 
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AIP-sensitive.  The experiments performed in the current study do not 

differentiate between reduced Ca2+ efflux or enhanced Ca2+ influx, but increased 

diastolic [Ca2+]i may favour the production of abnormal SR Ca2+ release via  

CaMKII activation(541).  One potential mechanism for increased diastolic [Ca2+]i is 

reduced NCX activity, the main sarcolemmal extrusion process.  However, the 

data in the current study suggests no effect on NCX function.  Alternatively 

supernatant may have enhanced Ca2+ influx but this is unlikely to be due to the 

LTCC as no difference in first post caffeine Ca2+ transient was apparent and is 

unlikely in quiescent cells(533).  Therefore supernatant may increase diastolic 

[Ca2+]i by another means such as those seen in human brain microvascular 

endothelial cells (HBMECs)(69), an effect potentially mediated by TbCatL action 

on a G-protein coupled receptor (GPCR)-mediated pathway(66).  Further 

investigation in the direction of GPCR targets may reveal a potential 

sarcolemmal target for TbCatL.    

4.4.7 Proposed Mechanism 

Figure 4.9 summarises the proposed mechanism for the SR Ca2+ handling effects 

observed with trypanosome supernatant.    CaMKII inhibition has the effect of 

abolishing the changes in Ca2+ transient decay and SR Ca2+ content that 

supernatant elicits.  The fact that the increase in diastolic [Ca2+]i is not 

prevented by CaMKII inhibition  proposes a hypothesis that; supernatant elevates 

diastolic [Ca2+]i (which could be substantial within sub-cellular compartments) 

that cause CaMKII activation(541), which then increases SR-mediated Ca2+ leak and 

uptake with a net effect being an increase in Ca2+ waves and a reduced SR Ca2+ 

content.   These changes in basal and store-based Ca2+ signalling observed in 

cardiomyocytes parallel those seen in HBMECs exposed to live trypanosomes and 

their culture supernatant(69).  The effect on HBMECs was via a G-protein coupled 

receptor (GPCR) pathway(66).  Activation of this or a similar pathway in 

cardiomyocytes may underlie the supernatant effect on the heart.  Further 

investigation may reveal this sarcolemmal target. 
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Figure 4.9: Proposed mechanism for TbCatL on Ca2+ handling in the ventricular cardiomyocyte 
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5 CHAPTER 5 – Investigating the Cardiovascular 
Effects of Trypanosoma brucei Using an In Vivo 
Infection Model in Rats 
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5.1 Introduction 

5.1.1 Trypanosomiasis and the Heart 

The classical focus of understanding trypanosomiasis has been the neurological 

signs, cardiovascular signs are evident both clinically(51) and histopathologically 

in humans(56;57) and experimentally infected animals(26-28).  The work in the 

preceding chapters demonstrates a direct effect of trypanosomes on the Ca2+ 

dynamics of cardiomyocytes facilitating the abnormal spontaneous diastolic 

release of Ca2+ that can lead to arrhythmias(192).  This has implications not only 

in how HAT manifests in patients but in treatment as well.  The main 

consideration with treatment of HAT is the stage of the disease.  Stage II, once 

neurological signs are evident, signifies that the parasites have traversed the 

blood brain barrier (BBB).  Therefore, treatment strategies for Stage II HAT 

require drugs that cross the BBB.  Several of the drugs have low therapeutic 

margins before adverse reactions are evident(8).  Indeed treatment-induced 

cardiopathy and drug cardiotoxicity has been suspected in cases of sudden death 

in HAT patients(62;542-544), although it should be noted that these reports are 

uncontrolled studies of fewer than 10 patients.  Therefore an understanding of 

the cardiac involvement of African trypanosomiasis may help in; i) the 

development of new drugs and ii) understand and be prepared for cardiotoxicity 

of existing or new drugs.    

There are parallels between the role of induction of Ca2+ fluxes by TbCatL in 

cardiomyocytes and in endothelial cells(69) which also resembles the induction of 

Ca2+ transients with T. cruzi causing American trypanosomiasis (Chagas 

disease)(508).  Therefore understanding the cardiac effects of trypanosomiasis 

may enable the development of drugs that are safer with regard to 

cardiotoxicity.  Interestingly, if TbCatL is a common causative factor in 

alterations in Ca2+ dynamics in both cardiomyocytes and BBB traversal inhibition 

of TbCatL may also reduce BBB traversal. 

5.1.2 Electrocardiographic Findings 

Recent work has begun to look at some of the functional aspects of cardiac 

involvement in HAT.  A detailed study by Blum et al. (2007) assessed the ECGs of 

patients with Stage II T. b. gambiense HAT and compared them to those of 
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healthy controls(51).  They identified a number of differences summarised in 

Table 5.1.  Major changes were defined as low voltage and PR depression which 

occurred at in 71% of HAT patients(51).  They compared this to the frequency of 

histopathological findings on post-mortem examination of 72%(55;56).  The 

repolarisation changes and low voltage were identified at the end of treatment 

which then improved/disappeared 3 months after treatment(51), which they 

attributed to treatment induced/exacerbated inflammation based on anecdotal 

reports(62;542-544) of drug-induced cardiotoxicity.  

Table 5.1: ECG findings in patients with HAT 
 Healthy Controls HAT Patients  

 n %, mean ± SD n %, mean ± SD P value 

PQ 60 163 ± 16.07 ms 59 168 ± 26 ms 0.24 

QRS 60 82 ± 10.97 ms 59 81.6 ± 8.3 ms 0.79 

QTc 60 403 ± 21.01 ms 59 423 ± 3.2 ms <0.001 

Normal (no abnormal findings) 60 65% 59 22% <0.001 

Major changes 60 18% 59 71% <0.001 

Low voltage 60 7% 59 31% <0.001 

AV block I 60 3% 59 8% 0.23 

PR depression 60 0% 59 8% 0.007 

Repolarisation changes 60 5% 59 34% <0.001 

Precordial repolarisation 
changes 

60 2% 59 22% <0.001 

Data from Blum et al. (2007)(51) used with permission. Major changes were defined as; low voltage, 
AV block I, PR depression and repolarisation changes.   

5.1.3   Aims of the Chapter 

Cardiac signs in HAT are usually attributed to perimyocarditis(26-28;51;56;58;61;496).  

However, the data in this thesis offers an alternative explanation for cardiac 

signs at the cellular and ex vivo organ level.  The main aim of this chapter is to 

develop an animal model of trypanosome infection to enable detailed study of 
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electrocardiographic effects of trypanosomes in vivo.  Ultimately, the model 

could be able to be used in future studies to dissect the contribution of a direct 

parasite induced pathology from a systemic immune response and identify 

potential changes in electrocardiographic profile in response to potential drug 

treatments.  In addition, clinical infections of trypanosomiasis are often 

complicated by concomitant infections with other diseases.  For example, Blum 

et al. (2007) found a co-infection rate of 13.3% with malaria which had the 

effect of further prolonging QTc from 419 ± 22 ms in confirmed cases without 

malaria, to 438 ± 29 ms in cases with confirmed malaria(51).  A controlled 

experimental infection model with ECG monitoring should avoid many of the 

complicating factors inherent in patient studies.  
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5.2 Methods 

5.2.1 T. b. brucei Lister 427 Infections 

5.2.1.1 Preparation of Trypanosomes 

Trypanosoma brucei brucei Lister 427 were grown for one passage in mice to 

adapt them to in vivo conditions from being culture adapted.  Lister 427 has 

been grown since the 1960s(545) in media with nutrients in excess thus reducing 

many of the selection pressures normally found in vivo.  Therefore, this passage 

is important to re-adapt the parasites to growth in the mammalian bloodstream 

for in vivo studies.  This step was performed by Mrs. Anne-Marie Donachie, a 

technician from the Wellcome Trust Centre for Molecular Parasitology, 

University of Glasgow.  The parasites were grown in the mice for 2-3 days with 

daily tail venepuncture to check parasitaemia levels.  When parasites reached 1 

x 107 parasites.mL-1 the mice were sacrificed and blood collected in heparin to 

prevent coagulation.  A sample of the blood was counted with a Neubauer 

improved haemocytometer in triplicate.  The parasites were diluted under 

sterile conditions to 1 x 105 parasites in a 200 µL volume of Carter’s balanced 

salt solution (CBSS); 25 mM HEPES, 120 mM NaCl, 5.4 mM KCl, 0.55 mM CaCl2, 0.4 

mM MgSO4, 5.6 mM Na2PO4  and 11.1 mM glucose, pH 7.4.  The 200 µL parasite 

suspension was prepared in a 1 mL syringe for injection.  Matching volumes of 

CBSS were prepared as control injections. 

5.2.1.2 ECG Acquisition 

Adult male Wistar rats (250-300 g) were allowed a 7 day acclimatisation period 

upon delivery to the biological services unit.  Animals were kept at the 

Cardiovascular Research Unit, University of Glasgow in a dedicated room 

licensed under the Specified Animal Pathogens (Scotland) Order 2009 (SAPO).  

Rats were anaesthetised by inhalation of isoflurane gas at 4-5% delivered in 1-1.5 

L.min-1 oxygen in an induction box.  The rats were removed from the box when 

there was loss of the righting reflex.  The animals were maintained on isoflurane 

delivered via facemask.  The gas was reduced based on assessment of the 

animals’ vital parameters to a final plane of anaesthesia at 1-1.5% isoflurane in 1 

L.min-1 O2.  The ECG was recorded via the placement of intradermal electrodes.  

The placement sites on the rat were caudal aspects of the left and right carpi 
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and the medial aspects of left and right crura.  The sites were cleaned with 

chlorhexidine as were the electrode tips.  Appropriate earthing and positioning 

was used to minimise signal noise.  To ensure reproducibility for the same rats 

and between rats, all animals were positioned identically based on an outline 

drawn on a corkboard.  The ECG was recorded for 15 min with an IWX228 

bioamplifier (iWorx, USA).  Rats were then injected via the intraperitoneal route 

with the solutions prepared above (section 5.2.1.1).  The ECG was recorded for a 

further 15 min following the injection before rats were recovered.  See General 

Methods for images of the procedure. 

5.2.1.3 Health Monitoring and Parasitaemia Checks 

Infection with T. brucei Lister 427 can cause anaemia, weight loss and 

immunosuppression.  In some cases the parasitaemia can become fulminant, 

which can be fatal if allowed to persist.  The general health of the animals was 

monitored daily to ensure that welfare was not compromised by the parasite 

infection.  Animals were assessed for lassitude persisting beyond 72 hours, 

weight loss ≥25%, mucous membrane pallor, hunched posture and staring coat.  

In addition, parasitaemia levels were measured daily.  A drop of blood was 

obtained by a small puncture of the lateral tail vein.  The drop of blood 

expressed was smeared to a glass slide and viewed with a 40x objective lens on a 

standard light microscope.  The slide was examined and the number of parasites 

counted and compared to the description of Herbert and Lumsden (1976)(436) and 

described in further detail in section 2.2.1.3.  A parasitaemia level exceeding 

5.0 x 108 parasites.mL-1 for more than two consecutive days was set as a cut-off 

point for the welfare of the animals.  No animal exceeded this level during the 

study.  

5.2.1.4 End ECG and Organ Harvest 

Animals were anaesthetised on the fourth day after infection and the ECG 

recorded for 15 min as described above (section 5.2.1.2).  Following ECG 

acquisition the animals were sacrificed by cervical dislocation while still under 

anaesthesia.  Heart, liver and spleen were removed, mass recorded and 

compared to the tibial length defined as the length from lateral femoral 
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epicondyle proximally to the lateral malleolus distally to control for individual 

size and mass. 

5.2.1.5 In Vivo ECG Data Analysis 

ECG data were collected using the IWX228 bioamplifier and LabScribe 2 software 

(iWorx) at a sampling rate of 2,000 Hz.  The ECG from the last 1 min (to ensure a 

steady state) of each 15 min period was averaged using the advanced ECG 

analysis module of the programme and exported to Origin6.1 (OriginLab) for R-R 

interval and heart rate, P-R interval and QT interval measurement with 

correction for heart rate using the Framingham method(460).  The whole trace 

was manually assessed for arrhythmic events as defined by the Lambeth 

Conventions(437).  Mean ± SEM data for the same animal from day 0 and day 4 

were compared with a paired Student’s T-test.  Comparisons between control 

and infected animals were conducted with a two-sample Student’s T-test.  

P<0.05 was taken to be statistically significant.  

5.2.1.6 Langendorff Perfusion of Ex Vivo Hearts 

The hearts removed from the infected and control rats were immersed in ice-

cold Tyrodes solution; 116 mM NaCl, 20 mM NaHCO3, 0.4 mM Na2HPO4, 1.0 mM 

MgSO4-7H2O and 4.0 mM KCl.  D-glucose was added on the same day as intended 

use to a final concentration of 11 mM.  The solution was bubbled with 95% O2 / 

5% CO2 for 15-20 min to oxygenate and buffer before CaCl2 was added to a 

concentration of 1.8 mM.  Extraneous tissue was carefully dissected away to 

reveal the aorta.  The hearts were blotted dry and quickly weighed before 

cannulation to a Langendorff perfusion apparatus.  The hearts were perfused 

with Tyrodes solution at 10 mL.min-1 and immersed in a water-jacketed chamber 

filled with Tyrodes solution at 37 ºC.  Electrodes were placed in the chamber in 

close approximation with the right atrium for the negative electrode and the 

apex of the left ventricle for the positive electrode and the pseudo-ECG 

recorded.  Hearts were perfused for a period of 15 min steady state followed by 

15 min periods each with the β-adrenergic agonist isoproterenol at 

concentrations of 100 nM, 1 µM, 10 µM and 100 µM. 
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5.2.1.7 Langendorff Data Analysis 

ECG data were collected using the ETH-256 bioamplifier (iWorx) and LabChart 7 

(ADInstruments) software at a sampling rate of 2,000 Hz.  The ECG from the last 

5 min of each 15 min period was averaged using the advanced ECG analysis 

module of the programme and the R-R interval and heart rate, P-R interval and 

the QT interval with correction for heart rate using the Framingham method(460) 

were measured.  Traces were exported to Origin6.1 (OriginLab).  The entirety of 

the traces was manually assessed for arrhythmic events according to the 

Lambeth Conventions(437) and recorded as the frequency min-1.  Mean ± SEM data 

for each isoproterenol concentration were compared to steady state for the 

same animal by paired Student’s T-test.  Comparisons between control and 

infected were performed with a two-sample Student’s T-test.  P<0.05 was taken 

to be statistically significant.  

5.2.2  T. b. brucei TREU 927 Infections 

A limitation of T. b. brucei Lister 427 is that it follows a logarithmic growth 

curve in vivo until the death of the infected host.  This is due to the fact that 

Lister 427 is a ‘monomorphic’ strain of T. b. brucei i.e. it grows in culture as the 

long slender bloodstream form of its lifecycle but has lost the ability to 

differentiate to the short stumpy stage(546).  While this makes 427 a highly useful 

in vitro model organism, it does not provide a robust model of trypanosome in 

vivo infections.  During infections with wild-type ‘pleomorphic’ trypanosomes, as 

parasite numbers increase there is a density-dependent trigger for a proportion 

of the parasites to terminally differentiate to the short stumpy lifecycle stage(11) 

in preparation for transmission to the insect vector(12).  The trigger has not been 

identified but is a secreted factor putatively called ‘stumpy induction factor’ 

(SIF), which increases in concentration with the increase in parasitaemia(11;547).  

The differentiation signal is cAMP-mediated(547) but due to the long-term 

adaptation of 427 to in vitro culture and lack of selection for transmission, and 

therefore differentiation, 427 parasites don not differentiate under this trigger.  

Although SIF remains unidentified much of the regulatory pathways have been 

examined(548;549).  Clinical infections therefore exhibit a cyclical parasitaemia 

that reflects the balance between parasite replication and differentiation, as 

well as the host immune response, such as in cases of T. brucei gambiense 
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infection(10).  A pleomorphic strain of T. b. brucei that results in infections that 

more closely resemble the clinical situation of waxing and waning parasitaemia 

is T. b. brucei TREU 927(550).   

5.2.2.1 Preparation of Trypanosomes 

The 927 parasites were prepared as described for 427 (section 5.2.1.1) by Anne-

Marie Donachie.  Blood taken from infected mice was examined and the 

parasites counted with a haemocytometer. 

5.2.2.2 Telemetry Probe Implantation 

A major limitation of the 15 min ECGs recorded for the 427 infections is the 

short window of observation.  If arrhythmias are occurring at a low frequency, 

then a 15 min ECG may not detect them.  The statistical power is also reduced.  

In addition the animals are under anaesthesia at the time of recording 

introducing potential cardiovascular depressive effects as a result of the use of 

inhalational agents such as isoflurane(551;552).  Therefore the decision was taken 

to implant CA-F40 biopotential recording devices (Data Sciences International) 

into rats to measure the ECG continuously in conscious animals for the duration 

of the study (10-12 days). 

Briefly, adult male Wistar rats (250-300 g) were anaesthetised using an 

inhalational agent for the greater control and least cardio-respiratory depressive 

effects of anaesthetic agents compared with injectable anaesthetics(438) .  The 

inhalational anaesthetic used was isoflurane (Isoflo, Abbot Laboratories, USA) 

delivered in 100% O2.  Animals were anaesthetised by placing them in a pre-filled 

induction box and maintained on a facemask initially with 4% isoflurane at 1.5 

L.min-1 reducing to 1-1.5% during surgery.  Fur was clipped with electric clippers 

over the appropriate surgical sites for probe and lead placements (section 

2.2.2.6).  The clipped areas of skin were cleaned with warmed 10% surgical skin 

disinfectant (Hibiscrub, Ecolab Ltd) and gauze swabs.  The animal was moved to 

the surgical table and positioned in ventral recumbency on a heated pad to 

maintain the animal’s temperature.  Peri-operative analgesia of 5 mg.kg-1 

carprofen (Rimadyl, Pfizer Animal Health) was administered with 5 mL of 0.9% 

sterile saline subcutaneously to maintain fluid balance under anaesthesia.  The 

telemetry device was implanted subcutaneously in the dorsal thoracic region.  
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Tracts were tunnelled under the skin from the implant site to the right pectoral 

and xyphoid regions ventrally where the ECG leads were affixed with 1.5 metric 

nylon suture (Johnson & Johnson).  The surgical incisions were closed with 1.5 

metric polyglactan 910 (Vicryl, Johnson & Johnson).  Further details and 

photographs of the procedure can be found in (section 2.2.2.2).  A proportion of 

these procedures were performed in conjunction with Ms. Charlotte Rossor, a 

Masters student under my supervision. 

5.2.2.3 Trypanosome Infections 

The animals were allowed to recover from the surgical procedure for 1 week 

before they were infected as described for the 427 model in section 5.2.1.1.  

Infection was with 1.0 x 105 T. brucei 927 in 200 µL CBSS via intraperitoneal 

injection.  Control rats were injected with the same volume of CBSS.  Rats were 

monitored daily for clinical signs of infection and parasitaemia levels by 

superficial tail venepuncture. 

5.2.2.4 Data Acquisition and Analysis 

Cages with implanted rats were placed onto receiver pads.  The implanted 

probes were activated magnetically.  Telemetry signals were relayed via a data 

exchange matrix to the computer loaded with the acquisition software 

Dataquest™ OpenART v4.2 (Data Sciences International).  Raw ECG data was 

collected continuously at 2,000 Hz sampling frequency for 2 weeks and saved 

daily.  Files were exported to Ponemah v4.8 (Data Sciences International) for 

analysis.  ECG sections of 30 min were averaged and assessed for R-R interval, 

heart rate, P-R intervals and QT intervals corrected for heart rate using the 

Framingham method.  Longer ECG traces of up to 1 hour were assessed for 

arrhythmias using the Lambeth Conventions as described in section 5.2.1.5. 

5.2.2.5 Organ Harvest and Langendorff Perfusion 

As with the 427 infections, rats were euthanized by cervical dislocation at the 

end of the study (or before if deemed to be suffering according to the clinical 

signs and parasitaemia checks previously described).  The mass of the heart, 

lungs, liver and spleen was recorded and compared to tibial length.  Hearts were 

immersed in ice-cold Tyrodes solution before being cannulated as described in 
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section 5.2.1.6.  The same protocol was employed as the 427 study (section 

5.2.1.6).   

5.3 Results 

5.3.1 In Vivo ECG Parameters for T. b. brucei Lister 427 Infection 

Rats were anaesthetised and their ECGs recorded for the period of 15 min (Day 

0) following infection by intraperitoneal injection with 1 x 105 T. b. brucei Lister 

427 parasites in 200 µL CBSS.  A cohort of rats were injected with 200 µL CBSS 

without parasites as controls.  The animals were maintained and monitored for 4 

days before being anaesthetised again and a final 15 min ECG recorded for each 

animal (Day 4).  Each ECG trace was averaged and heart rate, P-R interval and 

QT intervals determined from the traces.  There was no significant difference in 

the heart rate in the control animals between days 0 and 4 (249 ± 21 vs. 248 ± 21 

bpm; Day 0 vs. Day 4; n = 18; P>0.05; Figure 5.1B(i)), nor was there a significant 

difference in the infected animals (238 ± 19 vs. 226 ± 19; Day 0 vs. Day 4; n = 17; 

P>0.05; Figure 5.1B(i)).  There was no significant difference in P-R interval for 

the control rats (46.6 ± 0.8 vs. 46.4 ± 1.2 ms; Day 0 vs. Day 4; P>0.05; Figure 

5.1B(ii)), nor for the infected rats (46.4 ± 0.6 vs. 45.8 ± 0.8 ms Day 0 vs. Day 4; 

P>0.05; Figure 5.1B(ii)).  The QT changes with heart rate so a correction factor 

is required (QTc).  The correction factor used in the current study is the 

Framingham method.  Blum et al. (2007) identified a prolongation of QTc from 

403 ± 24 ms to 423 ± 21 ms(51).  In the current model no alteration in QT was 

found in the controls between days 0 and 4 (63.3 ± 1.8 vs. 65.7 ± 1.6 ms; Day 0 

vs. Day 4; P>0.05; Figure 5.1B(iii)), and no significant change was found in the 

infected rats either (69.3 ± 3.0 vs. 66.3 ± 3.2 ms; Day 0 vs. Day 4; P>0.05; Figure 

5.1B(iii)).  There was no significant difference in QTc for control (176.6 ± 3.0 vs. 

179.1 ± 2.8 ms; Day 0 vs. Day 4; P>0.05; Figure 5.1B(iv)) or infected animals 

(181.3 ± 3.9 vs. 176.2 ± 3.9 ms; Day 0 vs. Day 4; P>0.05; Figure 5.1B(iv)).  The 

classical end-point of the T wave is the return to the isoelectric point(457).  

However, the T wave tended to approach the isoelectric point asymptotically 

making the true end of T difficult to define.  As described in Chapter 3 (section 

3.2.7) and Rees et al. (1993) the QT90 was also measured for these ECGs(459).  As 

with the standard QT the QT90 was not significantly altered in control (52.4 ± 1.3 

vs. 53.6 ± 1.4 ms; Day 0 vs. Day 4; P>0.05; Figure 5.1B(v)) or infected animals 
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(54.3 ± 2.3 vs. 53.0 ± 2.2 ms; Day 0 vs. Day 4; P>0.05; Figure 5.1B(v)).  When 

corrected for heart rate QTc90 was also unaffected for control (165.7 ± 2.9 vs. 

167.1 ± 2.7; Day 0 vs. Day 4; P>0.05; Figure 5.1B(vi)) and for infected animals 

(166.3 ± 4.1 vs. 162.9 ± 3.4; Day 0 vs. Day 4; P>0.05; Figure 5.1B(vi)). 

5.3.1.1 Arrhythmic Events 

The ECGs were analysed for the occurrence of arrhythmic events as defined by 

the Lambeth Conventions(437).  During the 15 min periods of ECG for both the 

start and end of the study protocol no arrhythmic events were observed.   
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Figure 5.1: In vivo ECG parameters for T. b. brucei Lister 427 infection. 
(A) Protocol used for in vivo T. b. brucei Lister 427 infection model.  ECGs were recorded prior to 
injection with trypanosomes or control vehicle (CBSS).  ECGs were recorded again on day 4 prior 
to sacrifice.  (B(i-vi)) ECG parameters.  QT was corrected for heart rate (QTc) using the 
Framingham method (QTc = QT + 0.154 x (1-RR)).  QT90 was measured from the Q wave to the 
point on the T wave where T amplitude was 10% from the isoelectric point. 
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5.3.2 Ex Vivo Langendorff Perfused Heart Pseudo-ECG 
Parameters for T. b. brucei Lister 427 Infection 

The sympathetic nervous system and β-adrenergic signalling pathway are 

activated in response to both physiological and pathophysiological stresses.  To 

examine the effects of trypanosome infection under β-adrenergic stimulation 

under controlled conditions, a cohort of the hearts were removed from the 

animals and cannulated to a Langendorff perfusion system.  Isoproterenol (ISO) 

was added at increasing doses (100 nM, 1 µM, 10 µM and 100 µM) every 15 min 

(Figure 5.2A).  The raw data for each parameter are shown in Table 5.2 and 

Figure 5.2.   

Table 5.2: T. b. brucei Lister 427 ex vivo Langendorff raw parameters 
ISO 
(µM) 

Heart Rate (bpm) P-R Interval (ms) QTc (Framingham (ms)) 

 Control Infected P value Control Infected P value Control Infected P value 

0 308 ± 26 269 ± 22 0.295 42.3±4.3 39.6±2.5 0.605 195.3±6.8 197.8±3.3 0.750 

0.1 353 ± 25 331 ± 11 0.431 36.1±2.2 34.9±1.7 0.673 195.7±6.0 198.9±3.7 0.665 

1.0 337 ± 10 349 ± 11 0.472 32.2±1.8 36.4±2.6 0.239 197.4±7.0 203.0±3.6 0.502 

10.0 359 ± 10 360 ± 1 0.963 35.9±2.8 37.9±7.9 0.767 199.4±6.2 209.3±0.8 0.343 

100.0 360 ± 14 363 ± 4 0.880 36.5±2.8 37.9±7.3 0.826 201.0±5.8 204.9±2.6 0.685 

 

When normalised to the heart rate at steady state, the control hearts 

demonstrated a slight but not significant increase of 10-17% over steady state 

(1.00 ± 0.08 vs. 1.15 ± 0.08 vs. 1.10 ± 0.03 vs. 1.17 ± 0.03 vs. 1.17 ± 0.05; steady 

state vs. 100 nM vs. 1 µM vs. 10 µM vs. 100 µM ISO; P>0.05; Figure 5.2B(ii)).  

However, infected hearts demonstrated a significant increase of 23-35% over 

steady state (1.00 ± 0.08 vs. 1.23 ± 0.04 vs. 1.30 ± 0.04 vs. 1.34 ± 0.01 vs. 1.35 ± 

0.02; steady state vs. 100 nM vs. 1 µM vs. 10 µM vs. 100 µM ISO; P<0.05; Figure 

5.2B(ii)).  For the P-R interval when normalised to steady state, no significant 

differences were observed for control (1.00 ± 0.10 vs. 0.85 ± 0.05 vs. 0.76 ± 0.04 

vs. 0.85 ± 0.07 vs. 0.86 ± 0.07; steady state vs. 100 nM vs. 1 µM vs. 10 µM vs. 100 

µM ISO; P>0.05; Figure 5.2C(ii)) or infected hearts (1.00 ± 0.06 vs. 0.88 ± 0.04 vs. 
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0.92 ± 0.07 vs. 0.96 ± 0.2 vs. 0.96 ± 0.2; steady state vs. 100 nM vs. 1 µM vs. 10 

µM vs. 100 µM ISO; P>0.05; Figure 5.2C(ii)).  Finally the QTc was assessed, which 

when normalised to steady state showed no significant differences for control 

(1.00 ± 0.03 vs. 1.00 ± 0.03 vs. 1.01 ± 0.04 vs. 1.02 ± 0.03 vs. 1.03 ± 0.03; steady 

state vs. 100 nM vs. 1 µM vs. 10 µM vs. 100 µM ISO; P>0.05 Figure 5.2D(ii)) or 

infected hearts (1.00 ± 0.02 vs. 1.01 ± 0.02 vs. 1.03 ± 0.02 vs. 1.06 ± 0.04 vs. 

1.04 ± 0.01; steady state vs. 100 nM vs. 1 µM vs. 10 µM vs. 100 µM ISO; P>0.05) 

(Figure 5.2D(ii)). 
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Figure 5.2: Ex vivo Langendorff ECG parameters for  T. b. brucei Lister 427 infection. 
(A) Protocol used in Langendorff perfusion experiments.  Increasing concentrations of isoproterenol 
were added every 15 min and the ECG recorded throughout. (B(i)) Raw mean ± SEM for heart rate 
and (ii) normalised to steady state.  (C(i)) Raw mean ± SEM for P-R interval and (ii) normalised to 
steady state.  (D(i)) Raw mean ± SEM for QT interval corrected for heart rate and (ii) normalised to 
steady state. 
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5.3.3 In Vivo ECG Parameters for T. b. brucei TREU 927 Infection 

As discussed in section 5.2.2 a limitation of T. brucei Lister 427 is that it follows 

a logarithmic growth curve in vivo until the death of the infected host as it 

remains as the long slender bloodstream form(546).  Lister 427 has been a useful 

in vitro model of infection due to its ease of culturing (the bloodstream form of 

927, for example cannot be cultured in vitro), but while many of its 

characteristics remain intact for study the loss of pleomorphism in vivo makes it 

harder to assess with infection models.  Therefore, in order to develop a model 

that more closely resembles a clinical infection, a pleomorphic strain was used.  

From the Tritryp genome resource database (www.tritrypdb.org) there are 11 

annotated copies of the TbCatL gene in the genomes of both 427 and 927 with 

no amino acid sequence differences; although trypanosomes are diploid and the 

consensus genome sequences are haploid so allelic differences cannot be 

formally ruled out(139).  A strain of T. b. brucei that exhibits pleomorphism and 

therefore more closely resembles the clinical situation is T. b. brucei TREU 

927(550).   

In the 427 infection model, parasite number increased exponentially over the 4 

day period to a mean peak of 2.51 x 108 ± 1.02 x 108 parasites.mL-1 of blood 

(Figure 5.3A(i)).  In contrast, the parasitaemia in the 927 model follows the 

classical fluctuating pattern.  The 927 infections showed a first peak 

parasitaemia of 3.16 x 107 ± 2.51 x 105 parasites.mL-1 of blood on day 6 before 

returning toward the baseline, followed by a second peak of 3.56 x 107 ± 1.62 x 

107 parasites.mL-1 blood on day 10 (Figure 5.3A(ii)).  
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Figure 5.3: Parasitaemia levels for infection models. 
(A(i)) Parasitaemia levels for T. b. brucei Lister 427 infection model.  Numbers expressed as 
parasites.mL-1 of blood x 108 (n = 21).  (A(ii))  Parasitaemia levels for T. b. brucei TREU 927 
infection model.  Numbers expressed as parasites.mL-1 of blood x 107 (n = 5).  

5.3.3.1 ECG Parameters 

Another limitation of the 427 study (presented in section 2.2) is the length of 

ECG recording.  While a snapshot at the beginning and end will provide 

information on heart rate, P-R and QT intervals, a 15 min window may be too 

short to identify any arrhythmic events.  To account for the snapshot limitation 

biopotential recording telemetry devices were implanted to record the ECG 

continuously for the duration of the study.  The animals could also be kept 

conscious throughout the study as no need for anaesthesia for ECG recording was 

required.  For heart rate there was no significant difference in the control 
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animals but a tendency to decrease over time (404 ± 18 vs. 348 ± 12 bpm; Day 0 

vs. Day 11; n = 5; P>0.05; Figure 5.4B(i)).  However, there was a significant 

increase in heart rate for 927 infected animals (351 ± 22 vs. 413 ± 18 bpm; Day 0 

vs. Day 11; n = 6; P<0.05; Figure 5.4B(i)).  There was no significant difference in 

P-R interval for control (43.2 ± 1.7 vs. 42.6 ± 1.5 ms; Day 0 vs. Day 14; P>0.05; 

Figure 5.4B(ii)) or infected animals (41.5 ± 1.7 vs. 44.1 ± 3.2 ms; Day 0 vs. Day 

14; P>0.05; Figure 5.4B(ii)).  The QT interval was also not significantly altered 

for control (51.2 ± 4.3 vs. 57.5 ± 8.0 ms; Day 0 vs. Day 14; P>0.05; Figure 

5.4B(iii)) or infected animals (58.1 ± 5.9 vs. 61.2 ± 7.3 ms; Day 0 vs. Day 14; 

P>0.05; Figure 5.4B(iii)).  When corrected for heart rate using the Framingham 

method there was no significant difference for control animals (181.9 ± 4.4 vs. 

190.1 ± 11.8 ms; Day 0 vs. Day 14; P>0.05; Figure 5.4B(iv)) or infected animals 

(185.2 ± 7.2 vs. 192.6 ± 6.9 bpm; Day 0 vs. Day 14; P>0.05; Figure 5.4B(iv)). 

5.3.3.2 Arrhythmic Events 

When ECGs were assessed for arrhythmic events, specifically ventricular 

premature complexes, there was no difference in frequency for control animals 

(0.027 ± 0.019 vs. 0.047 ± 0.017 VPC.min-1; Day 0 vs. Day 14; P>0.05; Figure 

5.4B(v)).  However when the infected animal ECGs were assessed there was a 

significant increase of 539% (0.100 ± 0.034 vs. 0.539 ± 0.194 VPC.min-1; Day 0 vs. 

Day 14; P<0.05; Figure 5.4B(v)). 
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Figure 5.4: In vivo ECG parameters for T. b. brucei TREU 927 infection. 
(A) Protocol used for in vivo T. b. brucei TREU 927 infection model.  Biopotential telemetry devices 
were implanted and animals allowed to recover.  ECGs were recorded continuously for the duration 
of the protocol.  Animals were infected with 1 x 10 5 trypanosomes or control vehicle (CBSS) by 
intraperitoneal injection.  (B(i-v)) ECG parameters from average traces taken prior to injection and 
end of the protocol.  QT was corrected for heart rate (QTc) using the Framingham method (QTc = 
QT + 0.154 x (1-RR)).  Arrhythmia frequency was determined from hour long segments of trace 
taken prior to injection and end of the protocol.  
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5.3.4 Ex Vivo Langendorff Perfused Heart Pseudo-ECG 
Parameters for T. b. brucei TREU 927 Infection 

As with the 427 infections the animals were sacrificed at the end of the 

protocol.  The hearts were cannulated onto a Langendorff perfusion apparatus 

and perfused at 10 mL.min-1 with Tyrodes solution with increasing 

concentrations of ISO every 15 min (100 nM, 1 µM, 10 µM and 100 µM) (Figure 

5.5A).  The raw data for each parameter are shown in Table 5.3 and Figure 5.5. 

Table 5.3: T. b. brucei TREU 927 ex vivo Langendorff raw parameters 
ISO 
(µM) 

Heart Rate (bpm) P-R Interval (ms) QTc (Framingham (ms)) 

 Control Infected P value Control Infected P value Control Infected P value 

0 280 ± 16 239 ± 11 0.073 37.4±3.2 39.1±1.7 0.665 203.3±4.9 187.8±12.0 0.265 

0.1 317 ± 4 350 ± 31 0.321 31.1±2.2 37.1±4.3 0.245 206.3±3.2 194.2±2.2 0.015 

1.0 336 ± 18 345 ± 23 0.780 30.0±2.0 37.5±1.9 0.028 206.5±2.8 202.8±2.8 0.451 

10.0 319 ± 5 350 ± 14 0.073 31.1±2.3 38.3±3.5 0.118 209.1±4.3 206.8±2.4 0.655 

100.0 328 ± 20 356 ± 19 0.334 33.2±3.4 39.5±3.9 0.252 209.5±4.4 211.9±2.8 0.657 

 

When normalised to the heart rate at steady state, the infected hearts 

demonstrated a significant increase in rate over the control increase of 13-20% 

over steady state (1.00 ± 0.06 vs. 1.13 ± 0.01 vs. 1.20 ± 0.06 vs. 1.14 ± 0.02 vs. 

1.17 ± 0.07; steady state vs. 100 nM vs. 1 µM vs. 10 µM vs. 100 µM ISO; P>0.05; 

Figure 5.5B(ii)) compared to an increase of 44-49% over steady state for infected 

hearts (1.00 ± 0.05 vs. 1.47 ± 0.13 vs. 1.44 ± 0.10 vs. 1.46 ± 0.06 vs. 1.49 ± 0.08; 

steady state vs. 100 nM vs. 1 µM vs. 10 µM vs. 100 µM ISO; P<0.05; Figure 

5.5B(ii)).  When the P-R interval was normalised to steady state, there was a 

significant difference between control and infected hearts.  This difference was 

evident as a reduction in normalised P-R interval for control at 100 nM, 1 µM and 

10 µM ISO of 17-20% over steady state; (1.00 ± 0.09 vs. 0.83 ± 0.06 vs. 0.80 ± 

0.05 vs. 0.83 ± 0.06 vs. 0.89 ± 0.09; steady state vs. 100 nM vs. 1 µM vs. 10 µM 

vs. 100 µM ISO; P<0.05; Figure 5.5C(ii)).  However, infected hearts did not show 

the same decrease (0-5% over steady state).  Therefore, the P-R interval was 
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significantly longer relative to control hearts (1.00 ± 0.04 vs. 0.95 ± 0.11 vs. 0.96 

± 0.05 vs. 0.98 ± 0.09 vs. 1.01 ± 0.1; steady state vs. 100 nM vs. 1 µM vs. 10 µM 

vs. 100 µM ISO; P>0.05; Figure 5.2C(ii)).  Finally the QTc normalised to steady 

state was assessed, which showed no significant changes for control hearts (1.00 

± 0.02 vs. 1.01 ± 0.02 vs. 1.02 ± 0.02 vs. 1.03 ± 0.02 vs. 1.03 ± 0.02; steady state 

vs. 100 nM vs. 1 µM vs. 10 µM vs. 100 µM ISO; P>0.05; Figure 5.5D(ii)).  Infected 

hearts showed an increase of 3-13% over steady state in QTc but this was not 

statistically significant (1.00 ± 0.06 vs. 1.03 ± 0.01 vs. 1.08 ± 0.01 vs. 1.10 ± 0.01 

vs. 1.13 ± 0.01; steady state vs. 100 nM vs. 1 µM vs. 10 µM vs. 100 µM ISO; 

P>0.05; Figure 5.2D(ii)). 

 



Chapter 5  Investigating the Effects of T. brucei Using an In Vivo Model 246 
 

 

Figure 5.5: Ex vivo Langendorff ECG parameters for T. b. brucei TREU 927 infection. 
(A) Protocol used in Langendorff perfusion experiments.  Increasing concentrations of isoproterenol 
were added every 15 min and the ECG recorded throughout. (B(i)) Raw mean ± SEM for heart rate 
and (ii) normalised to steady state.  (C(i)) Raw mean ± SEM for P-R interval and (ii) normalised to 
steady state.  (D(i)) Raw mean ± SEM for QT interval corrected for heart rate and (ii) normalised to 
steady state. 
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5.3.5  T. b. brucei TREU 927 Infected Ex Vivo Hearts Show 
Increased Frequency of Arrhythmias in the Presence of 
Isoproterenol 

The pseudo-ECGs from the Langendorff perfused hearts from both models were 

also assessed for the frequency of VPCs during steady state, 100 nM, 1 µM and 10 

µM ISO for both the 427 and 927 models.  There was no significant increase in 

VPC frequency for the 427 model in control hearts (0.35 ± 0.35 vs. 0.1 ± 0.1 vs. 

0.0 ± 0.0 vs. 0.0 ± 0.0 VPC.min-1; steady state vs. 100 nM vs. 1 µM vs. 10 µM ISO; 

n = 4; P>0.05; Figure 5.6B(i)) or the infected hearts (0.0 ± 0.0 vs. 0.45 ± 0.45 vs. 

0.0 ± 0.0 vs. 0.0 ± 0.0 VPC.min-1; steady state vs. 100 nM vs. 1 µM vs. 10 µM ISO; 

n = 4; P>0.05; Figure 5.6B(i)).  Similarly for 927 controls there was no significant 

increase; (0.08 ± 0.08 vs. 0.32 ± 0.23 vs. 0.28 ± 0.15 vs. 0.0 ± 0.0 VPC.min-1; 

steady state vs. 100 nM vs. 1 µM vs. 10 µM ISO; P>0.05; Figure 5.6B(ii)).  

However, infected hearts showed an increase in VPC frequency significant at 1 

µM (0.24 ± 0.16 vs. 5.24 ± 4.99 vs. 5.48 ± 1.83 (P<0.05) vs. 10.4 ± 8.9 VPC.min-1; 

steady state vs. 100 nM vs. 1 µM vs. 10 µM ISO; Figure 5.6B(ii)). 
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Figure 5.6: Arrhythmic events in Langendorff perfused infected and control hearts. 
(A) Protocol used for Langendorff perfusion experiments.  Hearts were perfused at a rate of 10 
mL.min-1 for 15 min steady state followed by 15 min with increasing concentrations of isoproterenol 
(100 nM, 1 µM, and 10 µM). (B) Mean ± SEM for frequency of ventricular premature complexes 
(VPCs) for (i) T. b. brucei Lister 427 and (ii) T. b. brucei TREU 927.  (C-D(i-ii)) Example pseudo-
ECGs from Langendorff perfused heart from 927 infected animal and corresponding model control.  
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5.3.6 Organ Mass Data 

5.3.6.1  T. b. brucei Lister 427 Infection Model 

At sacrifice, on Day 4 post-infection, animals were weighed and organs removed. 

There was no significant difference in body mass between control and infected 

animals (302.7 ± 4.1 vs. 301.0 ± 3.1 g; control (n = 24) vs. infected (n = 21); 

P>0.05; Figure 5.7A(i)).  Heart mass/tibial length ratio was not significantly 

altered (29.3 ± 2.7 vs. 27.8 ± 4.8 mg.mm-1; control vs. infected; P>0.05; Figure 

5.7A(ii)).  Liver mass/tibial length ratio was also not significantly affected, 

although tended to increase (226.5 ± 5.7 vs. 246.2 ± 8.7 mg.mm-1; control vs. 

infected; P>0.05; Figure 5.7A(iii)).  The lung mass/tibial length ratio was not 

significantly altered either (33.1 ± 2.6 vs. 31.4 ± 1.9 mg.mm-1; control vs. 

infected; P>0.05; Figure 5.7A(iv)).  However, spleens were significantly 

increased in mass in infected animals by 199% (13.3 ± 0.4 vs. 26.5 ± 3.4 mg.mm-

1; control vs. infected; P<0.05; Figure 5.7A(v)). 
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Figure 5.7: Organ mass data for T. b. brucei Lister 427 infection model. 
(A(i-v)) Mean ± SEM for body mass and heart, liver, lung and spleen mass to tibial length ratio for 
control (n = 24) and infected (n = 21). (B) Photograph of splenic enlargement. 

 
5.3.6.2 T. b. brucei TREU 927 Infection Model 

As above, organs were weighed and expressed as ratios with the tibial length.  

For the 927 infection model this was on Day 11 post-infection.  Data are 

presented as mean ± SEM.  There was no significant difference in body mass 
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between control and infected animals although infected animals had lost some 

condition by the end of the study (344.0 ± 8.5 vs. 314.7 ± 15.3 g; control (n = 5) 

vs. infected (n = 5); P>0.05; Figure 5.8A(i)).  Heart mass/tibial length ratio was 

not significantly altered (34.1 ± 3.4 vs. 31.8 ± 5.6 mg.mm-1; control vs. infected; 

P>0.05; Figure 5.8A(ii)).  Liver mass/tibial length ratio was also not significantly 

affected (253.3 ± 8.9 vs. 244.7 ± 17.6 mg.mm-1; control vs. infected; P>0.05; 

Figure 5.8A(iii)).  Spleens were significantly increased in mass in infected 

animals by 292% (17.2 ± 1.6 vs. 50.2 ± 7.5 mg.mm-1; control vs. infected; P<0.05; 

Figure 5.8A(iv)).      

 

Figure 5.8: Organ mass data for T. b. brucei TREU 927 infection model. 
(A(i-iv)) Mean ± SEM for body mass and heart, liver and spleen mass to tibial length ratio for 
control (n = 5) and infected (n = 5). 
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5.4 Discussion 

5.4.1 In Vivo ECGs for T. b. brucei Lister 427 Infection 

Given the reported clinical cardiac-related findings in patients with HAT and the 

effects observed and discussed in previous chapters, an experimental infection 

model initially established with cultured Lister 427 trypanosomes was 

conducted.  Adult male Wistar rats were anaesthetised and had their ECG 

recorded before being infected via an intraperitoneal injection of 1.0 x 105 

parasites in 200 µL or equivalent volume of vehicle for controls.  The ECGs were 

recorded again after 4 days.  The ECGs were analysed for P-R and QTc changes 

and occurrence of ventricular arrhythmias that could be associated with 

palpitations.  No significant findings were apparent between the control and 

infected animals, nor were there significant differences between the day 0 and 

day 4 ECG recordings.  Blum et al.(51) attributed their findings of ECG alterations 

in HAT patients to perimyocarditis based on the histological findings of earlier 

studies(55;56;61).  Therefore it is possible the lack of findings in the current model 

is due to the brevity of the infection and subsequent lack of time for 

perimyocarditis to develop(27).  This is perhaps surprising given the increase in 

ventricular arrhythmias observed when ex vivo rat hearts were perfused with 

culture supernatant from in vitro Lister 427 cultures.  The results presented in 

this thesis so far have suggested a direct effect on cardiomyocytes and indeed 

whole hearts independent of an immune/inflammatory response.  A possible 

explanation could be the activity of the secreted TbCatL.  Caffrey et al. (2001) 

showed that TbCatL is present in culture supernatant of T. b. brucei(129) and the 

preceding chapters demonstrate a role for TbCatL in altered Ca2+ dynamics of 

cardiomyocytes.  With the direct application of culture supernatants to isolated 

cardiomyocytes or perfusion through the coronary vessels we know the TbCatL to 

be active and targeted to the tissue of interest.  In an in vivo model, the picture 

is less distinct.  The host will have many proteases (discussed in Chapter 6) and a 

delicate regulatory balance with endogenous inhibitors such as cystatins(553).  

Although information on the host response to TbCatL is scarce there have been 

reports of host inhibitors modulating parasite protease activity in the case of T. 

cruzi infection(554).  A potential future series of experiments would be to 

measure the quantity of TbCatL in the host’s blood by developing a TbCatL-
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specific ELISA and to develop an activity assay to work on the host’s 

blood/serum.     

Four additional reasons may explain the lack of effect observed in vivo using 

Lister 427 cultures despite the occurrence of arrhythmias reported in patients 

with HAT and the ex vivo results presented in this thesis: 

1. The short duration of the 427 in vivo model does not lead to a sufficiently 

large increase in the levels of TbCatL to result in a detectable level of 

arrhythmias in the short time frame measured (particularly given the 

likely role of endogenous inhibitors as discussed above). 

2. The degree of extravasation of the parasite.  It is known that after long-

term infection (weeks) that parasites are seen infiltrating the myocardium 

in both humans(56;496) and animal models(25-28;56).  However, the 427 model 

lasts only 4 days.  Therefore the lack of effect observed with 427 

infection may be due to a lack of sufficient extravasation of the parasite 

due to the brevity of the study.  This in turn may influence the level of 

TbCatL directly in contact with the myocardium.  Myburgh et al. (2013) in 

characterising an in vivo imaging system used Lister 427 as a control for 

vascular leakage following parietal skull thinning surgery i.e. that the 427 

did not extravasate unless there was vascular damage(555). 

3. The amount of TbCatL produced by Lister 427 vs. pleomorphic strains is 

reduced.  Caffrey et al. (2001) demonstrated that short-stumpy form 

trypanosomes produce more TbCatL than long-slender forms(129).  Since 

the 427 strain does not differentiate, then the quantity of TbCatL is likely 

to be reduced and may account for the lack of response observed.  

4. There are also limitations with the assessment of ECG parameters in the 

427 in vivo model.  The length of ECG recording time is sufficient for an 

assessment of ECG parameters such as QTc.  However, if arrhythmic 

events should occur less frequently than the recording time, then the 

events will be missed.   
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5.4.2 Ex Vivo Langendorff Perfused Heart Pseudo-ECGs for T. b. 
brucei Lister 427 Infection 

The sympathetic nervous system and β-adrenergic signalling pathway are 

activated in response to both physiological and pathophysiological stresses.  In 

response to isoproterenol (ISO), cardiomyocytes and ex vivo hearts demonstrated 

enhanced Ca2+ handling effects (i.e. faster Ca2+ transient decline and more Ca2+ 

waves) in response to trypanosome supernatant (Chapter 3).  However, under 

anaesthesia there can be inhibition of the sympathetic nervous system(556;557).  

Anaesthesia may therefore be having the opposite effect, i.e. reducing the 

propensity for arrhythmogenic Ca2+ release and potential VPCs.  To investigate 

the potential importance of the above and also explore the sensitivity of the 

infected hearts to ISO without a systemic autonomic influence, a cohort of 

hearts were removed at the end of the 4 day model and perfused on a 

Langendorff apparatus with increasing concentrations of ISO.  There was a 

significant increase in the heart rate of infected hearts in response to ISO over 

the control hearts.  In addition to the greater metabolic demand in response to 

infection this may indicate a greater sensitivity to β-adrenergic stimulation.   

In response to β-adrenergic stimulation the slope of the pacemaker potential in 

atrial nodal cells is increased leading to a faster rate of depolarisation and 

therefore, more contractions in a given time(558).  This is achieved by activation 

of cAMP, which in turn will interact with ion channels to affect depolarising and 

repolarising currents (If, INa/Ca, ICa T, ICa L and INa
(148)).  The activation of PKA by 

cAMP acts to phosphorylate the LTCC(153) (section 1.5), which increases the 

probability and duration of open state leading to increased force of contraction 

in ventricular cardiomyocytes but also increases chronotropy in SA nodal 

cells(558).  Furthermore, PKA phosphorylates the delayed rectifier K+ channels, 

which increases the repolarising outward K+ currents shortening the ventricular 

action potential (section 1.3.3) permitting more excitations.min-1.  The action of 

PKA on PLB(239;240;243) enables faster Ca2+ transient decline via increased SERCA 

activity (as observed in Chapter 3) and faster SR reuptake of Ca2+ enhancing 

cardiac lusitropy enabling more contractions.min-1.  As well as increased β-

adrenergic stimulation via increased sympathetic tone the hormone adrenaline 

acts similarly(558).  During physiological and pathophysiological stress, such as an 

infection, there are increased levels of circulating adrenaline and noradrenaline.  
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Although there was no observed increase in heart rate in vivo, there may be a 

sensitisation effect of β1 adrenergic receptor(559), an alteration in expression of 

β1 adrenergic receptors, or altered phenotypic expression of β-adrenergic 

receptor polymorphisms(560) leading to the increase in heart rate observed in 

response to ISO ex vivo.  However, further work will be required to ascertain 

what is causing the increased responsiveness to ISO in the infected hearts.  

Interestingly, when the heart rate of the ex vivo hearts perfused with 

trypanosome supernatant (Chapter 3) is compared to the infected ex vivo hearts, 

there was no change over their respective controls.  This suggests that any 

effect on heart rate is most likely not due to acute exposure to TbCatL. 

Although there were no other statistically significant differences in the 

measured ECG parameters, there was a tendency for the control P-R interval to 

decrease in response to ISO as may be expected due to increased AV node 

conduction velocity (dromotropic effect)(558).  The P-R interval remained 

unchanged in the infected hearts, which, when interpreted with the slight 

reduction in control, could suggest some prolongation.  P-R interval of >200 ms 

has been reported in 3.7-14% of HAT patients by other studies(61;62), defined as 1st 

degree AV block.  This would suggest that trypanosome infection may alter the 

AV node conduction velocity, which may contribute to the increase in heart rate 

following application of ISO, although further work measuring conduction 

velocity would be required to confirm this hypothesis.  Blum et al. (2007) 

showed some prolongation of P-R interval suggesting 1st degree AV block but this 

was not significant (3% vs. 8% of subjects; control vs. infected; P=0.23)(51) in 

comparison with their other cardiac findings, which suggests that AV node 

conduction is less likely to play a significant role in the cardiac pathology of 

HAT.   

The QTc was not affected, which would support the findings of the ex vivo study 

of supernatant perfused hearts presented in Chapter 3 and a hypothesis of a 

direct effect on the myocardium by trypanosomes independent of an 

immune/inflammatory component.  This is because prolongation of QTc can be 

attributable to an inflammatory infiltrate of the myocardium disrupting the 

tissue leading to altered electrical conductivity(27;57).  The QTc prolongation 

identified by Blum et al. (2007) was ascribed to an inflammatory infiltrate of the 

myocardium(51).  The fact that prolongation of QTc was not observed in the 
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current study suggests that there may not be a significant inflammatory 

infiltrate acting to disrupt the myocardium therefore, any effects observed may 

be directly mediated by the parasites. 

5.4.3 In Vivo ECGs for T. b. brucei TREU 927 Infection   

To more closely approximate a natural infection the strain T. b. brucei TREU 927 

was used.  These parasites do exhibit the ability to differentiate and so are 

pleomorphic, i.e. exist as both short stumpy and long slender forms.  As a result 

the parasites follow the classical cyclical waxing and waning parasitaemia 

phenotype.  Our 927 infection model was sustainable over a longer time period 

(up to 11 days) than the 4 day infection model of 427.  Recognising the 

limitations of the 427 infection model as discussed above, a decision was taken 

to use both the longer term 927 model of infection and to use biopotential 

recording implants to measure the ECGs of the rats continuously.  This would 

allow for a more complete assessment of the occurrence of ventricular 

arrhythmias than the 15 min “snapshot” taken in the 427 model at the 

commencement and termination of the study.  In addition to examining the ECGs 

for arrhythmias, the heart rate, P-R interval and QTc were also measured on Day 

0 and the end of the study.  The normalised heart rate of the infected animals 

was significantly increased suggesting higher sympathetic tone in response to the 

pathophysiological stress the animals were under(558) or indeed increased 

sensitivity to circulating catecholamines as discussed in section 5.3.2).  The P-R 

interval was not significantly altered nor was QTc.  Therefore, further 

investigation with ISO in the same hearts removed from the animals on 

termination and Langendorff perfused was conducted and discussed in section 

5.4.5.  Interestingly, with the longer period of ECG trace it was possible to 

identify the occurrence of ventricular arrhythmias.  There was a significantly 

higher frequency of VPCs in the ECGs of infected animals over controls.  This 

finding supports the data presented so far in this thesis that African 

trypanosomiasis can increase the propensity of arrhythmias.   
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5.4.4 T. b. brucei TREU 927 Infections Exhibit Greater Arrhythmia 
Frequency than Lister 427 Infections 

As discussed above, 927 is a pleomorphic strain of T. b. brucei meaning it 

differentiates to the insect infective short stumpy form.  The overall lower 

parasitaemia of 927 compared with 427 is due to a significant proportion of 927 

parasites terminally differentiating in a density-dependent manner (i.e. self-

regulating growth) whereas 427 will continue to divide resulting in exponential 

growth until the death of the host.  Interestingly, Caffrey et al. (2001) 

demonstrated that short stumpy form trypanosomes produced almost 5 times the 

amount of cathepsin-L than long slender counterparts of the same strain(129).  

Therefore, as 927 infection is producing more stumpy form trypanosomes then it 

is likely that there is significantly more circulating cathepsin-L that may thus 

contribute to more cardiac arrhythmias.  An unpublished finding (Lorna 

MacLean, personal communication) demonstrates that pleomorphic strains of 

trypanosome such as T. b. brucei GVR35 or T. b. rhodesiense IL1825 produce 

greater quantities of cathepsin-L in general than monomorphic 427.  MacLean 

also measured transendothelial migration using an in vitro BBB model and 

identified that the degree of migration correlated with the quantity of 

cathepsin-L expression.  Moreover, T. b. rhodesiense IL1852 expressed an 

increasing amount of cathepsin-L when incubated with the endothelial cells of in 

vitro BBB model depending on time of incubation from 15 min to 30 min and 60 

min.  At the same time-points, there was a corresponding increase in migration 

of parasites across the endothelial cell layer from ~5.0 x 104 parasites.mL-1 at 15 

and 30 min and ~1.8 x 105 parasites.mL-1 at 60 min(561).  During the same time 

GVR35 showed migration at 30 and 60 min of incubation with ~5.0 x 104 

parasites.mL-1 whereas 427 showed no detectable migration during this time 

period(561).  Therefore, this suggests that while all strains and stages of T. brucei 

spp. produce cathepsin-L(129) and therefore data from each is useful, the amount 

produced and correspondingly the transendothelial migration varies with strain 

and stage(69;129;561).  Furthermore, if cathepsin-L can directly affect the Ca2+ 

handling dynamics of the heart and transendothelial migration is linked, then it 

is reasonable to assume that the increased effect of 927 on cardiac arrhythmias 

over 427 could also partly be due to an increase in extravasation of parasites due 

to increased cathepsin-L levels and those same levels could be having a greater 

effect on the heart.  



Chapter 5  Investigating the Effects of T. brucei Using an In Vivo Model 258 
 

5.4.5 Ex Vivo Langendorff Perfused Heart Pseudo-ECGs for T. b. 
brucei TREU 927 Infection 

As with the 427 infection model the animals were terminated at the end of the 

study and the hearts removed.  The hearts were perfused on a Langendorff 

apparatus with increasing concentrations of ISO in Tyrodes and the ECG 

recorded.  As with the 427 data, the 927 data shows a similar pattern.  The 

normalised heart rate increases by a significantly larger margin in the infected 

animals over the controls.  This again suggests increased sensitivity to 

sympathetic and β-adrenergic stimulation (section 5.4.2.).  However, the 

intrinsic heart rate, i.e. the natural rate of the heart prior to addition of any ISO 

but without any neurohumoral input, was not significantly different from that of 

the controls.  In the presence of increasing concentrations of ISO the heart rate 

increased to a greater degree in the infected hearts.  This would suggest (as 

discussed with the ex vivo 427 infected hearts) that there could be increased 

sensitivity, expression or phenotype of β-adrenergic receptors.  In order to 

investigate the hypothesis of altered β-adrenergic response exerted by TbCatL 

effect on intra-cardiomyocyte Ca2+ handling during trypanosome infection, 

experiments involving assessment of the β-signalling receptors/cascade would be 

required(559).  The data presented in the preceding chapters demonstrates 

TbCatL effects on Ca2+ handling that have similarities with increased β-

adrenergic type effects, such as faster Ca2+ transient decay rate that could be 

inhibited by blocking the actions of CaMKII, posing a putative role for altered 

PLB phosphorylation status(240;244;245).  Diastolic Ca2+ leak from the RyR can also 

be attributable to increased β-adrenergic type effects through phosphorylation 

of RyR(299;323), which could also be inhibited by CaMKII blockade.  Since the single 

cellular effects were greater in the presence of trypanosome supernatant over 

control media to a greater degree with ISO, then this may suggest a potentially 

increased sensitivity to β-stimulation.  Therefore, the similarity of the Ca2+ 

handling effects of TbCatL and β-adrenergic stimulation may result in a 

synergistic effect of TbCatL in the presence of ISO in the infected hearts that 

would not be present in the control hearts that are only exposed to ISO. 

Similar to the 427 model there was reduction of P-R interval in the control 

hearts not mirrored by the infected hearts in response to ISO.  The fact that this 

finding has occurred in both independent in vivo models improves the validity of 
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the observation.  The P-R interval was not prolonged as there was no significant 

difference between controls and infected hearts during the steady state period 

and the value of 37.4 – 39.1 ms tallies well with reported values(562;563).  The 

clinical significance of this is unclear.  A recent study evaluated the prognostic 

value of prolonged P-R interval and found no correlation with cardiac or other 

causes of mortality(564) and Blum et al. (2007) recorded their cases of 1st degree 

AV block as rare and not a greater frequency than controls(51).  This suggests that 

changes in P-R interval are less likely to have clinical significance in HAT.   

The QTc was not significantly altered.  A longer term infection model that shows 

a perimyocarditis, as described in post-mortem studies of infected humans(56;57) 

and animals(26-28), may demonstrate the prolongation of QTc described by Blum 

et al. (2007) and isolate this finding as inflammation associated vs. a direct 

effect of the trypanosomes.  As discussed for the 427 infection model the lack of 

prolongation of QTc suggests no significant immune/inflammatory infiltrate 

disrupting the myocardial tissue, therefore supporting a hypothesis of TbCatL 

mediated effects vs. inflammation. 

5.4.6  T. b. brucei TREU 927 Infected Ex Vivo Hearts Show 
Increased Frequency of Arrhythmias 

In response to the increasing concentration of ISO the frequency of VPCs 

increased in the 927 infected hearts compared to controls but not in the 427 

infected hearts.  The 927 data supports the findings presented in this thesis that 

infection with T. b. brucei has the effect of increasing VPC frequency and 

supports the in vivo results above (section 5.3.3.2).  Interestingly, during in vivo 

infections without pharmacological intervention, there is an increase in VPC 

frequency, yet when the same hearts were removed there were no VPCs 

observed without the addition of ISO.  This supports the hypothesis that the 

arrhythmias may in fact be due to a circulating factor produced during 

trypanosome infection.  Once the hearts are removed from the direct influence 

of the circulation then the effect is lost.  If secreted/excreted TbCatL released 

into the circulation has the effect of increasing cardiac arrhythmias, then 

removal of the heart from the circulation and TbCatL may be expected to result 

in fewer arrhythmias ex vivo compared to in vivo.  When ex vivo hearts are 

perfused directly with trypanosome supernatant, which would contain TbCatL, 
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the arrhythmias can be observed.  When ISO is added VPC frequency increases in 

the infected hearts suggesting increased sensitivity to β-adrenergic stimulation 

as discussed above (section 5.4.2), which increases with the increasing ISO 

concentration.   This raises the question that the hearts may be chronically 

affected by the parasite infection compared with the response of healthy hearts 

perfused with supernatant.  Studies utilising field data would be useful to dissect 

the potential direct effects of trypanosomes on the heart from 

immune/inflammatory changes.  Further work would require the use of AIP, a 

CaMKII inhibitor, or a cathepsin-L inhibitor such as K11777, to determine if the in 

vivo effects observed are inhibited in the same way as the single cell effects.  

The lack of VPCs in the 427 model is difficult to reconcile but may be a result of 

a reduced window of observation compared to the continuous telemetry used in 

the 927 model.  In clinical studies a reported frequency of palpitations of 18%(51) 

would equate to 0.72 individual hearts in the 427 Langendorff study.   

5.4.7 Organ Mass 

5.4.7.1 Spleens were enlarged for both models 

Splenomegaly is common finding in both experimental infections of animals(565) 

and upon post-mortem examination of human infections of 

trypanosomiasis(56;496).  Therefore, the finding of splenomegaly in both the 427 

and 927 models is consistent with the literature.  Although histopathology has 

not been performed for the current study the literature reports that 

splenomegaly is due to lymphocytic infiltrates(56;496). 

5.4.7.2 Liver, lungs and heart mass were not changed 

There were no significant differences in the other organ masses.  This suggests 

that there was no significant inflammatory cell infiltrate that could alter the 

gross organ mass as there was with the spleen.  In order to assess a lower level 

of inflammatory cell infiltration the organs will need to be examined 

histologically, which will be performed in future studies.  An indicator of cardiac 

function is lung and liver mass.  If there is left or right sided heart failure 

cardiac output will be reduced.  As a result oedema will begin to pool in the 

liver for right-sided failure and in the lungs for left-sided failure.  The tissue will 

then become oedematous and therefore have greater mass (tissue and oedema).  
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As no change was observed in the current study, there was no clinical 

manifestation of heart failure in any of the infected animals in either model.    

5.4.8 A Role For Cathepsin-L In HAT 

The preceding chapters have demonstrated that TbCatL from T. b. brucei Lister 

427 can elicit effects on SERCA and the RyR mediated by CaMKII.  In vivo the 

situation is more complex.  It is clear from the literature that while there are no 

thus far identified genetic differences (allelic or gene copy number) between 

strain and sub-species’ repertoires of cathepsin-L genes, there are clear 

differences in the levels of cathepsin-L expression.  This seems to be dependent 

on the lifecycle stage of parasite, as well as sub-species and strain.  It appears 

that the largest quantity of cathepsin-L is produced by T. b. rhodesiense(69;129;561) 

and that the pleomorphic strains during the differentiated stumpy form phase 

produce more than long slender form phases or monomorphic strains locked in 

long slender forms(129;561).  Moreover, the larger the quantities of cathepsin-L 

expressed, the greater the degree of transendothelial migration there is in an in 

vitro model(69;561).  Therefore, the studies in this thesis may have 

underestimated the potential direct effects of trypanosomes on cardiac 

function, as clinically derived isolates of T. brucei spp. causing HAT have higher 

TbCatL levels than either T. b. brucei model used in the current study (69;129;561).  

Future studies examining the in vitro and in vivo effects of a range of clinical 

isolates of T. b. rhodesiense and T. b. gambiense, as well as different strains of 

pleomorphic T. b. brucei, may show a more severe phenotype.  Due to the 

inability to maintain bloodstream stages of pleomorphic strains of trypanosome 

in culture, only Lister 427 has been examined in vitro for this study.  The data in 

this chapter demonstrates that infection with trypanosomes can result in 

increased ventricular arrhythmias.  The result is more pronounced when a 

pleomorphic strain of trypanosome is used and can be related through the 

literature to the level of TbCatL expression.  The use of ISO leads to increased 

heart rate and a higher frequency of VPCs ex vivo suggesting a sensitisation 

effect of TbCatL to β-adrenergic stimulation.  The greater frequency of VPCs in 

vivo without ISO (in the 927 infection model) coupled with the ex vivo whole 

heart data from chapter 3 suggests the cardiac arrhythmia phenotype may be 

due to a secreted/excreted factor rather than an immune/inflammatory 
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response.  Therefore, TbCatL is an attractive target for future study and 

development of potential therapeutic strategies to treat HAT.



 263 
 

 

 

 

 

 

 

 

 

 

6 CHAPTER 6 – The Cardiac Effects of 
Endogenous Extracellular Cathepsin-L  
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6.1 Introduction 

6.1.1 Cathepsins 

The cathepsins are localised within acidic intracellular organelles such as 

lysosomes and endosomes where their primary function is to break down 

unwanted proteins(371-374).  In addition to intracellular protein turnover, 

cathepsins have a wider role in many homoeostatic processes, and have been 

implicated in various diseases discussed in section 1.6.5.1.    The paradigm has 

been that cathepsins are only active at acidic pH, but recent work has shown a 

wider range of active locations and more neutral pH for cathepsins such as 

secretory vesicles(381;382), the cytosol(383-385) and the nucleus(386;387).  Extracellular 

roles for cathepsins have been proposed specifically with regard to extracellular 

matrix (ECM) remodelling(414;566;567).  Under normal physiological conditions the 

cathepsins are primarily intracellular within lysosomes but in pathological 

circumstances such as inflammation and oxidative stress the cathepsins can be 

released to elicit degradative effects on the ECM in cancer, bone and 

cardiovascular tissues(566). 

6.1.2 Cathepsins in the Heart  

Although other cathepsins have been studied in cardiovascular disease such as B, 

K and S(423), cathepsin-L (CatL) is garnering particular attention.  CatL is a 

ubiquitously expressed homoeostatic enzyme involved in many disease 

processes(368).  Within the heart it is known that a basal level appears to be 

necessary, as a CatL knockout mouse model shows a dilated cardiomyopathy 

phenotype(402).  Further evidence in support of the essentiality of basal levels of 

CatL is that a CatL knockout mouse model of myocardial infarction (MI) had 

impaired healing with poorer scar formation and greater cardiac dilatation over 

control mice with MI(424).  However, in patients with cardiovascular disease there 

are reported increases in serum levels of CatL(425;426).  Liu J. et al. (2006) 

examined serum CatL levels in patients with atherosclerosis and demonstrated a 

correlation with the degree of left anterior descending coronary artery stenosis 

and serum CatL(413).  Moreover, Liu Y. et al. (2009) identified that serum levels 

of CatL were significantly increased in patients correlating with severity of 

CHD(425).  They identified CatL was increased significantly from normal levels of 4 
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ng.mL-1 in patients without CHD to 4.7 ng.mL-1 in patients with stable angina 

pectoris, 5.5 ng.mL-1 in patients with unstable angina pectoris and 6.2 ng.mL-1 in 

patients with myocardial infarction(425).  However, while there is a correlation of 

serum CatL and severity of CHD the consequences of elevated levels of CatL 

remain unknown. Cathepsins A and D have previously been studied in the context 

of cardiac ischaemia/reperfusion injury showing increased activity(368;428-431).  For 

example, Linz et al. (2011) identified preserved ventricular wall geometry 

following experimental ischaemia/reperfusion (I/R) injury when CatA was 

inhibited(429).  Decker et al. (1997) visualised the distribution of CatD following 

I/R injury and identified CatD release from cardiomyocyte lysosomes(428).  Tiwari 

et al. (2008) identified that release of CatD during I/R injury correlated with 

myocardial damage with a concomitant increase in lipid peroxides and 

superoxide suggesting a free radical activation by CatD during I/R injury(430).  

CatL on the other hand has been studied with regard to  potential beneficial 

remodelling effects post-MI without reperfusion(424), but despite serum increases 

in CHD little data exists on it with respect to a potential role in I/R injury.  

Inhibition of CatL and CatB has been studied in the context of neuronal 

ischaemia/reperfusion and shows potentially beneficial effects in the initial 24-

48 hours post stroke(366;367).  For example, Anagli et al. (2008) identified that 

cathepsin B and L activity was increased in ischaemic regions of the cerebral 

cortex with a concomitant increase in heat shock proteins, and that inhibition of 

cathepsins B and L resulted in a reduced infarct size by reducing heat shock 

protein levels and serum albumin leakage through the blood brain barrier(366).  

Therefore, inhibition of CatL may have similar effects in cardiac I/R injury.  

Another potential role could be played in reperfusion arrhythmias.  It is well 

known that arrhythmias occur during reperfusion following an ischaemic 

period(568) and is the main cause of sudden cardiac death in humans(569).  

Therefore, given the relationship between arrhythmias and Ca2+ waves, and the 

role TbCatL plays on Ca2+ handling in cardiomyocytes (discussed in Chapters 3 

and 4) it is important to investigate the effects of mammalian cathepsin-L on 

cardiomyocytes Ca2+ handling.  When mammalian CatL is compared to TbCatL 

there is considerable homology between the pre-, pro- and central regions of the 

enzyme(131).  However, a 108 amino acid C-terminal extension distinguishes the 

TbCatL from its mammalian counterpart.  This extension is thought to be 

involved in targeting the enzyme within cells(131).  When the substrate 
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specificities of mammalian CatL, and related parasite cathepsin-L-like cysteine 

proteases has been compared, they show essentially the same enzymatic 

activity(570) but have particular amino acid residue preferences at the P2 position 

of the enzyme(131)  where the S2 region of a substrate would bind (Figure 2.19).  

The significance of these minor differences in amino acid residue preference 

with regard to effects on Ca2+ handling remain unexplored.  Work in the lab 

performed by a student, Katrin Nather, and supervised by me identified that 

increased CatL activity could be detected in an ex vivo model of I/R injury 

compared to control hearts (Figure 6.2).  Therefore the potential role of 

increased CatL activity in I/R injury was investigated.  

6.1.3 Ischaemia/Reperfusion Injury and Heart Failure 

6.1.3.1 Ischaemia/Reperfusion Injury 

Coronary heart disease (CHD) is the leading cause of death worldwide with an 

estimated 7 million deaths annually(326).  Coronary heart disease is a narrowing 

and eventual blockage of the coronary arteries supplying the myocardium with 

blood.  The result of blockage is myocardial infarction (MI) creating a region of 

ischaemia distal to the obstruction.  The most effective strategy for reducing the 

size of the infarct and improving clinical outcome is early reperfusion with use 

of thrombolytic therapy or percutaneous coronary intervention (PCI)(327).  

However the process of restoring blood flow can itself be injurious – termed 

myocardial reperfusion injury.  The injury results in death of cardiomyocytes 

that were viable immediately prior to reperfusion(328).  Myocardial reperfusion 

injury consists of four types of dysfunction.  The first is myocardial stunning, a 

persistent mechanical dysfunction despite no irreversible damage and 

restoration of normal coronary flow(329).  This phenomenon is usually reversible 

days to weeks after the initial insult.  The second type is the no-flow 

phenomenon where there is microvascular damage preventing restoration of 

blood flow to the affected region(330).  The third type is reperfusion arrhythmia 

brought about by Ca2+ overload and modulation of the Ca2+ handling proteins 

such as LTCC, RyR, SERCA and NCX(331-337).  The fourth type of cardiac 

dysfunction is termed lethal reperfusion injury(327).  Lethal reperfusion injury is 

thought to have several mediators.  The first is the oxygen paradox where 

reperfusion of the ischaemic tissue results in oxidative stress and release of 
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reactive oxygen species (ROS) and myocardial enzymes(338) including 

cathepsins(339;340).  The second is the Ca2+ paradox where intracellular Ca2+ rises 

secondary to sarcolemmal damage and ROS effects inhibiting SERCA(341-344) and 

increasing Po of the RyR(344-347).  The increase in Ca2+ can overload the 

cardiomyocyte leading to a state of hypercontracture and can overload the 

mitochondria leading to opening of the mitochondrial permeability transition 

pore (MPTP)(328) which causes cell death by uncoupling of oxidative 

phosphorylation and ATP production.  The third is pH paradox where rapid 

reperfusion washes out the lactic acid from anaerobic respiration leading to 

activation of the Na+/H+ exchanger and Na+/HCO3
- symporter overwhelming the 

cell’s buffering capacity(348).  The fourth is inflammation; the infarct zone 

attracts neutrophils during the first 24 hours causing vascular plugging, release 

of degradative enzymes and ROS(349).  The role of cathepsins in these processes is 

unclear but initial studies suggest that they have degradative effects(428-431;571).  

It is not understood whether they damage cell membranes or mediate their 

effects through activation of surface receptors.  

6.1.3.2 Heart Failure 

Following a severe myocardial insult such as MI the remaining viable tissue can 

be taxed beyond its means and begin to fail.  Heart failure (HF) is a disease state 

with weakening of myocardial contractility, ultimately resulting in deterioration 

of ventricular pump function.  The characteristic cardiomyocyte features of HF 

are reduced systolic Ca2+ transient amplitude and prolonged Ca2+ transient 

duration(299-302) with a concomitant reduction in the SR Ca2+ content(303-306).  The 

specific mechanisms involved in causing the reduced SR Ca2+ content remain 

unclear and intensely debated.  However, in short, SR Ca2+ leak through the RyR 

is generally accepted as an important pathophysiological mechanism(572;573).  

Other less consistent findings are reductions in SERCA expression/function(279;574-

577) and/or increases in NCX function/expression(225;303;306).  These Ca2+ handling 

proteins are all targets for phosphorylation mediated by PKA and CaMKII and 

current thinking is that modulation of the activity of these proteins is more 

important than expression levels(302).  Given the apparent effects on Ca2+ 

handling proteins potentially mediated by CaMKII by TbCatL, it is possible that 

mammalian extracellular CatL could also directly affect cardiomyocyte Ca2+ 
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handling which could offer some explanation to the pathophysiological 

mechanisms in ischaemic heart disease.  

6.1.4 Aims of the Chapter 

Our evidence suggests that extracellular TbCatL can alter intra-cardiomyocyte 

[Ca2+]i and lead to an increase in the frequency of cardiac arrhythmias.  Another 

disease characterised by altered Ca2+ handling and arrhythmias is 

ischaemia/reperfusion injury, which can occur during treatment by PCI following 

acute MI(327).  The role of mammalian extracellular cathepsin-L (CatL) on 

cardiomyocyte function remains unknown.  This is particularly important given 

that CatL is increased in the serum of individuals with cardiovascular 

disease(425;426).     

The aims of this chapter are to establish: i) the activity of CatL at different pH 

levels, ii) through a preliminary study whether CatL levels are increased in the 

serum of human patients that have undergone reperfusion by PCI, iii) through a 

preliminary study what relationship there may be between severity of ischaemic 

heart disease and CatL serum levels in the human patients and iv) what effect 

CatL has on Ca2+ handling in cardiomyocytes.  The hypothesis is that following 

I/R injury, CatL is released and acts on the myocardium by an as yet unidentified 

target to alter Ca2+ handling in cardiomyocytes, potentially contributing to 

reperfusion arrhythmias and impaired cardiac function.  This hypothesis will be 

tested by measuring the serum CatL levels of patients by ELISA, examining data 

gathered at the Golden Jubilee National Hospital, Glasgow, by magnetic 

resonance imaging and a combination of LASER-scanning confocal microscopy 

and epifluorescence microscopy to dissect the Ca2+ handling dynamics of 

cardiomyocytes.  
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6.2 Methods 

6.2.1 Fluorometric Enzyme Activity Assays 

6.2.1.1 Recombinant Mouse Cathepsin-L 

Recombinant mouse cathepsin-L (R&D Systems) was supplied as 20 µL of a 0.5 

mg.mL-1 solution in 25 mM tris(hydroxymethyl)aminomethane (Tris) and 150 mM 

sodium chloride (NaCl).  The enzyme was in the pro-enzyme form and so 

required activation according to manufacturer’s instructions.  Briefly, an aliquot 

(depending on final volume required for experimentation) of the supplied 

solution was diluted to 10 µg.mL-1 in activation buffer (25 mM sodium acetate 

and 5 mM dithiothreitol (DTT) at a pH of 5.0 in water) and incubated for 90 min 

at 37 ºC.  The activated enzyme was diluted to a concentration of 0.05 ng.µL-1 in 

mouse assay buffer (25 mM 2-(N-morpholino) ethanesulfonic acid (MES) and 5 mM 

DTT) made specifically at pH 6.0, 7.0 and 7.4. 

6.2.1.2 Recombinant Human Cathepsin-L 

Recombinant human cathepsin-L (R&D Systems) was supplied as 36.2 µL of a 

0.279 mg.mL-1 solution of 50 mM sodium acetate and 500 mM NaCl at pH 5.0 (10 

µg quantity).  For activation, the enzyme was diluted to 40 µg.mL-1 in human 

assay buffer (50 mM MES and 5 mM DTT at pH 6.0 in water) at room temperature 

for 15 min.  Activated enzyme was diluted to 0.02 ng.µL-1 in assay buffer (as 

above) at pH 6.0, 7.0 and 7.4 for the activity assay. 

6.2.1.3 Recombinant Cathepsin-L Activity Assays 

Activated enzyme in assay buffer was tested at the recommended pH of 6.0, at 

pH 7.0 and physiological pH 7.4 in triplicate.  Assay buffer at the appropriate pH 

was used as negative control blanks.  An aliquot of the fluorescent substrate Z-

leu-arg-AMC (R&D systems) was diluted in human or mouse assay buffer 

(depending on the enzyme to be tested) to a concentration of 20 µM and 

protected from light.  50µL of 20 µM substrate was added to appropriate wells in 

a black maxisorp 96 well plate (Nunc) followed by 50 µL negative control to the 

control wells. 50 µL activated enzyme was added to the test wells immediately 

prior to the reading time as possible, so that enzyme activity could be read 

immediately.  The plate was read on a spectrophotometer for 30 min at an 
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excitation wavelength of 380 nm and emission wavelength of 460 nm 

corresponding with the properties of the fluorescent moiety of the substrate, 7-

amino-4-methylcoumarin (AMC).  

6.2.1.4 Coronary Effluent Activity Assays 

Coronary effluent samples were collected from Langendorff perfused hearts into 

eppendorfs at a ratio of 50:50 with effluent assay buffer (50 mM sodium acetate, 

2 mM ethylenediaminetetraacetic acid (EDTA) and 2 mM DTT) at pH 5.5.  The 

samples were added last in triplicate to a 96 well plate in 50 µL quantities to 

wells already containing 100 µL effluent assay buffer and 50 µL Z-Leu-Arg-AMC 

substrate and read on a spectrophotometer as above.  Tyrodes solution with 

effluent assay buffer mixed 50:50 was used a negative control with added 

recombinant mouse cathepsin-L as the positive control. 

6.2.1.5 Specific Inhibitor Activity Assays 

Aliquots from the effluent samples with peak activity were tested again with 

specific cathepsin inhibitors to confirm CatL activity was present in the effluent 

samples.  The substrate Z-Leu-Arg-AMC is cleaved by both cathepsins B and L, 

and so specific inhibitors of B and L were used to differentiate between these 

cathepsins.  CA074 was used to inhibit cathepsin-B(578) and CAA0225 was used to 

inhibit CatL(579), both at concentrations of 10 µM.  Both inhibitors permanently 

and competitively bind the active sites of their respective targets preventing 

them from cleaving any substrate(578;579).  Samples were run without any 

inhibitor, with CatL inhibitors ± CA074 and with CA074 only.  The same set of 

conditions was run on the same plate with recombinant mouse CatL.  Inhibitors 

with assay buffer only were used as blanks. 

6.2.2 Cardiomyocyte Isolations 

6.2.2.1 Adult Rat Left Ventricular Cardiomyocyte Isolation 

Adult rat cardiomyocytes were isolated as described in section 2.3.1 and 

resuspended in 1.8 mM Ca2+ MIKH. 
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6.2.2.2 Adult Rabbit Left Ventricular Cardiomyocyte Isolation 

Rabbit cell isolation was performed by Mrs. Aileen Rankin as described in section 

2.3.2.  Cells were then suspended in 1.8 mM Ca2+ MIKH ready for 

experimentation. 

6.2.3 Epifluorescence Measurements of the Field Stimulated Ca2+ 
Transient 

6.2.3.1 Cathepsin-L Activation 

Recombinant mouse CatL was activated prior to experimentation.  Two different 

batches were used during the course of the experiments.  The first required 90 

min activation at a concentration of 10 µg.mL-1 at 37 ºC in activation buffer 

(section 6.2.1.1), the second required overnight activation at 100 µg.mL-1 at 

room temperature in activation buffer according to manufacturer’s 

recommendations (R&D Systems).   

6.2.3.2 Cardiomyocyte Preparation 

Intact cardiomyocytes were incubated with Ca2+ sensitive fluorophore (5 µM 

Fura-2-AM (Biotium Inc., Hayward, CA)) for 10 min.  Cells were then re-

suspended in 1.8 mM Ca2+ MIKH with activated CatL or matching volume of 

activation buffer as vehicle control.  Concentrations tested were 0.68 nM, 2.7 

nM and 5.4 nM.  Cells were incubated at room temperature for 30 min to allow 

enzyme to act and cells to de-esterify the Ca2+ sensitive dye. 

6.2.3.3 Stimulated Calcium Transient Acquisition 

Once the cardiomyocytes were prepared they were loaded into a tissue bath 

with field stimulator (Cell Microcontrols) and superfused with 1.8mM Ca2+ KH 

with CatL or vehicle via gravity fed perfusion pen with active outflow.  Cells 

were field-stimulated (0.5 Hz, 2.0 ms duration, voltage set to 1.5 x threshold) 

for 5 min with a signal generator and stimulator (Digitimer Ltd).  The 

fluorescence ratio (340/380 nm excitation wavelength) was measured with a 

spinning wheel spectrophotometer (Cairn Research UK) at a sampling rate of 5 

kHz. Each cell had background light offset on the photomultiplier tube amplifier 

unit (Cairn Research UK).  Minimum ratio (Rmin) was recorded prior to stimulation 
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and maximum ratio (Rmax) was measured by puncturing the cell membrane with a 

sharp glass micropipette manoeuvred by a micromanipulator (Scientifica). 

6.2.3.4 Sarcoplasmic Reticulum Calcium Content 

Sarcoplasmic reticulum (SR) Ca2+ content was determined by rapid application of 

a bolus of 10mM caffeine via the perfusion pen.  Field-stimulation was stopped 

and the perfusion solution immediately changed using a c-flow pinch valve 

system (Cell Microcontrols). 

6.2.3.5 Calcium Transient Analysis 

Fluorescence ratio was converted to Ca2+ using the following calculation: 

[Ca2+]i = ((Ratio – Rmin)/(Rmax – Ratio)) x (1.2 x 10-6) 

Data were analysed offline and mean [Ca2+]i  obtained from the average 

transient generated from the last 12 transients plotted using Origin (OriginLab) 

software. 

6.2.4 Confocal Imaging of Spontaneous SR-mediated Ca2+ 
Release 

6.2.4.1 Confocal Image Acquisition 

Intact cardiomyocytes isolated as described in (6.2.2) were loaded with Fluo-

3AM Ca2+ sensitive fluorophore for 10 min.  Cells were resuspended and 

incubated in 1.8 mM Ca2+ MIKH with 5.4 nM activated recombinant CatL or 

equivalent volume of vehicle for 30 min as in section 6.2.3.2.  Confocal line-scan 

images of cardiomyocytes were recorded using a LSM 510 confocal system 

(Zeiss).  Fluo-3AM was excited at 488nm (Ar LASER) and measured >515 nm using 

epifluorescence optics of an inverted microscope with a 63 x/1.2 NA water-

immersion objective lens.  Fluorescence was acquired in line-scan mode at 3.07 

ms.line-1
 (1 line = 512 pixels); pixel dimension was 0.27 μm.  The scanning LASER 

line was orientated parallel with the long axis of the cell and placed 

approximately equidistant between the outer edge of the cell and the 

nucleus/nuclei to ensure the nuclear area was not included in the scan line.  
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6.2.4.2  Confocal Image Analysis 

Fluorescence data were expressed as the ratio of quiescent fluorescence (F/F0). 

The fluorescence intensity profile was calculated from a 20 pixel band adjacent 

to the point of spontaneous event initiation.  This avoids movement artefact(296).  

Event frequency was calculated as number/time(s).  The event velocity was 

calculated as the gradient of the wave progression across the cell expressed as 

µm.s-1.  Wave decay and amplitude were calculated from the intensity profile 

trace. 

6.2.5 Langendorff Perfusion Global Ischaemia/Reperfusion 

Adult male Wistar rats (250-300 g) were euthanized in accordance with Schedule 

1 of the Animal (Scientific Procedures) Act 1986 and hearts rapidly excised.  

Hearts were cannulated via the aorta in retrograde perfusion.  Tyrodes solution 

at 1.8 mM [Ca2+]o infused with 95% O2 and 5% CO2 was perfused through the 

hearts at 10 mL.min-1.  The perfusion was stopped for a 30 min period of 

ischaemia.  Control hearts (no ischaemia) were perfused continually.  Perfusion 

was restarted and continued for 90 min.  Coronary effluent was collected at 10 

min and immediately prior to ischaemia, and upon reperfusion every minute for 

5 min followed by every 10 min from 10 min.  This technique was in conjunction 

with Katrin Nather, a Masters student under my supervision. 

6.2.6 Enzyme-Linked Immunosorbent Assay of Human Serum 

Samples of serum were obtained from patients presenting to the Golden Jubilee 

National Hospital (GJNH), Clydebank, Glasgow, UK with acute ST segment 

elevation myocardial infarction (STEMI).  Samples were obtained with the 

patient’s written consent and ethical approval from the University of Glasgow 

Ethical Approval Committee.  An arterial blood sample was taken from an 

indwelling catheter inserted on clinical grounds at presentation immediately 

prior to percutaneous coronary intervention (PCI) (section 1.6.4) to reperfuse 

the heart (pre reperfusion sample).  Another arterial sample was taken after 

intervention (immediate post reperfusion sample) as the patient was recovered.  

Blood samples were collected into 5 mL gel separator serum tubes and 

transported to the British Heart Foundation Glasgow Cardiovascular Research 

Centre, University of Glasgow.  The samples were centrifuged at 2,400 g for 15 
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min to separate the serum from the cellular component.  Serum was aspirated 

into 0.5-1.0 mL aliquots and stored at -80 ºC until required.  The quantity of 

cathepsin-L was measured by enzyme-linked immunosorbent assay (ELISA) using 

the manufacturer’s recommended protocol (USCN Life Science Inc.) and 

normalised to the total protein content of the serum determined by 

bicinchoninic acid (BCA) assay.   

6.2.7 Cardiac Magnetic Resonance Imaging 

Patients were invited to return to the GJNH 6 months post primary presentation 

for cardiac magnetic resonance imaging (MRI) with contrast enhancement.  

Contrast enhancement permits visualisation of the blood flow within the tissue 

enabling assessment of infarct size and the area at risk.  The MRI was performed 

by two members of GJNH clinical staff with MRI experience.  Images were 

assessed by clinical staff at GJNH who examined; infarct size, area at risk, 

ejection fraction, left ventricular systolic and diastolic volume indexed to body 

surface area to control for variation in patient size; and the results reported for 

inclusion in this study.  The data was sent to me for correlation with serum CatL 

levels measured by ELISA.  Patient data was tracked by anonymous patient 

identification number. 

6.2.8 Statistical Analysis 

Data are expressed as mean ± SEM.   Statistical comparisons were made by a 

two-sample Student’s T-test on the raw data.  Multiple groups were compared 

with ANOVA.  A significance level of P<0.05 was considered significant. 
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6.3 Results 

6.3.1 Mammalian Cathepsin-L is Active at Physiological pH 

CatL is a lysosomal cysteine protease and therefore usually active at acidic 

pH(368).  The reported optimum pH for CatL is pH 5.5-6.0(371).  However, recent 

findings have identified additional roles for CatL at more physiological pH such 

as in the cytosol(383-385) or extracellular space(580).  To determine if extracellular 

CatL could act on cardiomyocytes at physiological pH enzyme activity assays 

were performed with recombinant mouse CatL at pH 6.0, 7.0 and 7.4.  Figure 

6.1 shows the activity curves (Figure 6.1A) generated when enzyme has been 

incubated with the fluorogenic substrate Z-LR-AMC at 37 ºC and measured at 

excitation and emission wavelengths of 380nm and 460nm respectively on a 

spectrophotometer.    The data show that CatL is active at all tested pH with no 

significant difference; (2.88 x 106 ± 1.07 x 106 vs. 2.82 x 106 ± 1.89 x 105 vs. 2.14 

x 106 ± 5.19 x 106 arbitrary fluorescence units; pH 6.0 vs. pH 7.0 vs. pH 7.4; 

P>0.05, Figure 6.1B).    

 

 Figure 6.1: Fluorometric activity assay of recombinant mouse CatL at different pH. 
(A) Enzyme activity curves for recombinant mouse CatL.  Activity was determined by cleavage of a 
fluorogenic substrate (Z-LR-AMC) measured at wavelengths of 380 nm excitation and 460 nm 
emission on a spectrophotometer.  Neutral and physiological pH values (7.0 and 7.4) were 
compared to optimum pH 6.0 recommended by the manufacturer.  Assay buffer without enzyme at 
each pH was used as a blank and subtracted from the experimental curves.  Activity is present at 
all pH values (n = 5 triplicates). (B) Mean ± SEM for enzyme activity in arbitrary units at 30 min in 
assay buffer at pH 6.0, 7.0 and 7.4. 
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6.3.2 Cathepsin-L Can be Detected in Coronary Effluent from 
Ischaemic Hearts 

In clinical patients with ischaemic heart disease increased serum levels of CatL 

have been described(425;426).  Sun et al. (2010) found increased CatL activity in 

the myocardium of homogenised murine hearts following experimental induction 

of myocardial infarction(424).  However, it is not clear whether CatL is directly 

released by cells within the heart.  Therefore, ex vivo Langendorff perfused rat 

hearts were subjected to 30 min global ischaemia with a control group of hearts 

perfused continuously.  Coronary effluent was collected at time-points pre and 

post ischaemia and CatL activity measured by a fluorometric enzyme activity 

assay.  Perfusion Tyrodes solution with fluorogenic substrate was used as a blank 

and subtracted from the coronary effluent data to give a relative change in 

fluorescence over Tyrodes and substrate alone.  These experiments were 

performed in conjunction with Katrin Nather under my supervision.  CatL activity 

was detected in the coronary effluents following ischaemia (n = 3) compared to 

control hearts (n = 3) that were perfused throughout the protocol.  No activity 

was detected from coronary effluent samples from the period prior to ischaemia 

in either cohort (Figure 6.2A).  Since the fluorogenic substrate is also cleavable 

by CatB that may be present in the effluent samples the activities of both CatB 

and CatL were dissected using the specific inhibitors CA074 (against CatB) and 

CAA0225 (against CatL) at concentrations of 10 µM.  Activity was inhibited by 

79% with CA074 and by 100% with CAA0225 (Figure 6.2B). 
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Figure 6.2: CatL activity in coronary effluent samples from ischaemia/reperfusion hearts 
(A) Mean ± SEM of CatL activity in arbitrary fluorescence units as measured by fluorometric assay 
with Z-LR-AMC substrate for coronary effluent samples.  (Top) Control (n = 3) hearts perfused with 
Tyrodes at 10 mL.min-1 and (Bottom) ischaemia/reperfusion (n = 3) hearts.  Recombinant mouse 
CatL (rmCatL) at 0.68 nM was used as an assay control.  (B) Mean ± SEM of 30 min post 
reperfusion sample ± CatL inhibitor CAA0225 and/or CatB inhibitor CA074.  Blue lines indicate 
period of ischaemia. Time 0 is the first collection immediately after perfusion is restarted. 

6.3.3 Cathepsin-L is Increased in Serum of Human Patients That 
Have Undergone Reperfusion Following Myocardial 
Infarction 

Patients with coronary artery disease have been shown to have increased serum 

levels of CatL(425;426).  However, to our knowledge no-one has measured the 

levels of CatL following reperfusion.  The data from coronary effluent samples in 

rat hearts suggest that there are increased levels of CatL activity following 

reperfusion.  Therefore, as a preliminary study, serum samples were obtained 

from human patients that presented to the GJNH with a diagnosis of STEMI.  

Whole blood samples (~10 mL) were obtained from an indwelling (arterial) 

catheter inserted on clinical grounds from primary PCI by clinical staff at GJNH 

at the following points; pre-reperfusion by PCI and immediately post 

reperfusion.  Thawed serum prepared as described in section 6.2.6 was 

measured by ELISA for CatL levels.  The concentration of CatL was increased 

upon reperfusion (but not significantly) (4.42 ± 0.95 vs. 6.28 ± 1.50 ng.mL-1; pre-

reperfusion vs. immediately post reperfusion; (n = 4); P = 0.11 and 0.14; Figure 

6.3A).  Total serum protein levels in patients can be altered due to hydration 
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status and fluid therapy during the PCI procedure.  Therefore total serum 

protein was measured by BCA assay and the quantity of CatL normalised to the 

total protein.  There was an increase, albeit not statistically significant, in CatL 

in the immediately post-reperfusion serum (0.070 ± 0.012 vs. 0.110 ± 0.025 

ng.mg-1 total protein; pre-reperfusion vs. immediately post reperfusion; P = 0.09 

and 0.14; Figure 6.3B).  

 

Figure 6.3: Serum concentration of CatL in human patients following myocardial infarction 
(A) Mean ± SEM of serum CatL (n = 4) as determined by specific serum ELISA.  (B) Serum CatL 
normalised to total protein determined by BCA protein assay. 

6.3.4 Serum Cathepsin-L Levels Correlate With Severity of 
Cardiac Dysfunction Measured by MRI 

Patients that had undergone PCI for STEMI were invited back to the GJNH 6 

months after initial presentation for follow-up cardiac MRI.  Three of the seven 

patients returned.  Patients were imaged by experienced clinical staff and the 

images were analysed by Dr. David Carrick at the GJNH, who then forwarded the 

data for correlation with the serum CatL levels for the same patients taken 

immediately post reperfusion.  There was a positive correlation of left 

ventricular end systolic volume with serum CatL levels (R = 0.93; P = 0.24; n = 3; 

Figure 6.4A(i)).  Similarly, there was a positive correlation for left ventricular 

end diastolic volume with serum CatL (R = 0.96, P = 0.17; Figure 6.4A(ii)).  There 

were positive correlations for both infarct size (R = 0.96, P = 0.17; Figure 

6.4A(iii)) and the area of myocardium at risk (R = 0.98, P = 0.14; Figure 6.4A(iv)) 
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with serum CatL.  The ejection fraction correlated negatively with serum CatL (R 

= -0.87, P = 0.33; Figure 6.4A(v)).    

 

Figure 6.4: Serum CatL vs. MRI parameters. 
(A(i-v)) Serum CatL level from immediately post reperfusion plotted against left ventricular end 
systolic volume, left ventricular end diastolic volume, infarct size, area at risk and ejection fraction.  
Linear best fit drawn using graphical software programme, Origin6.1 (OriginLab). 
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6.3.5 Cathepsin-L Reduces Stimulated Ca2+ Transient Amplitude 
in Rat Left Ventricular Cardiomyocytes 

Increased serum levels of CatL have been shown to be associated with an 

increased severity of cardiac disease(425).  To examine whether increased levels 

of extracellular CatL could have a detrimental effect on cardiomyocyte Ca2+ 

handling, epifluorescent Ca2+ measurements were conducted with different 

concentrations of CatL.  Concentrations tested were determined from 

pathological values reported in the literature(425;426), the predicted 

concentrations from Figure 6.1 &Figure 6.2 and the concentration of TbCatL 

based on Caffrey et al. (2001)(129).  Isolated rat left ventricular cardiomyocytes 

were incubated for 30 min with CatL (Figure 6.5A) at a concentration of 0.68 nM 

(1:400), 2.70 nM (1:100) and 5.40 nM (1:50) or vehicle control (Figure 6.5B(i-iv)).  

The peak [Ca2+]i was significantly decreased to 82.9%, 62.3% and 56.3% of control 

respectively (552.2 ± 23.7 vs. 458.0 ± 36.8 vs. 344.3 ± 24.2 vs. 310.9 ± 29.2 nM; 

control vs. 0.68, vs. 2.70 vs. 5.40 nM CatL; P<0.05; Figure 6.5C(ii)).  The 

minimum [Ca2+]i was no significantly altered at 0.68 or 2.70 nM CatL (67.5 ± 1.9 

vs. 57.1 ± 2.5 vs. 65.5 ± 2.8 nM; control vs. 0.68, vs. 2.70 nM CatL; P>0.05; 

Figure 6.5C(iii)).  However, the minimum [Ca2+]i was increased to 138.5% of 

control at 5.40 nM CatL (67.5 ± 1.9 vs. 93.5 ± 6.4 nM; control vs. 5.40 nM CatL; 

P<0.05; Figure 6.5C(iii)).  Ca2+ transient amplitude as a result of the reduced 

peak [Ca2+]i was also significantly reduced at all concentrations of CatL to 82.7%, 

57.5% and 44.8% of control respectively (484.8 ± 22.5 vs. 400.9 ± 35.5 vs. 278.8 ± 

23.8 vs. 217.4 ± 26.5 nM; control vs. 0.68, vs. 2.70 vs. 5.40 nM CatL; P<0.05; 

Figure 6.5C(iv)).  In contrast with the data presented in the preceding chapters, 

mammalian CatL decreased the rate constant of decay to 91.3% of control at 

0.68 nM, and significantly to 61.4 % and 36.2% of control, 2.70 and 5.40 nM CatL 

respectively (12.7 ± 0.7 vs. 11.6 ± 0.8 (P>0.05) vs. 7.8 ± 1.2 vs. 4.6 ± 0.4 s-1; 

control vs. 0.68, vs. 2.70 vs. 5.40 nM CatL; P<0.05; Figure 6.5C(v)).  CatL activity 

was measured by fluorometric activity assay in the cardiomyocyte perfusate 

(arbitrary fluorescence units) and correlated with [Ca2+]i amplitude to give an 

inverse linear correlation with r2 = -0.98 ± 0.90 S.D. (Figure 6.5C(vi)).  Activity 

levels were 0.18 ± 0.02 vs. 1.42 ± 0.19 vs. 2.62 ± 0.04 x 104 arbitrary 

fluorescence units normalised to no enzyme control; 0.68, vs. 2.70 vs. 5.40 nM 

CatL; P<0.05 (Figure 6.5C(vi) inset).   
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Figure 6.5: Stimulated Ca2+ transients at different CatL concentrations.  
(A) Protocol used for epifluorescence Ca2+ measurements.  (B) Example Ca2+ transient traces for 
(i) control, (ii) 0.68 nM CatL, (iii) 2.70 nM CatL and (iv) 5.40 nM CatL.  The stimulus mark is shown 
in (i), the frequency was 0.5 Hz. (C(i)) Average Ca2+ transients for the different concentrations, 
(Inset) normalised average transients from (i). (ii - v) Mean ± SEM for Ca2+ transient parameters; 
control (n = 67), 0.68 nM CatL (n = 23), 2.70 nM CatL (n = 22) and 5.40 nM CatL (n = 18).  (vi) Plot 
of the relationship between CatL activity (measured by cleavage of a fluorogenic substrate) (n = 3) 
against Ca2+ transient amplitude. (Inset) Activity level (RFU) for each concentration tested. 

6.3.6 Cathepsin-L Reduces SR Ca2+ Content in Rat Left 
Ventricular Cardiomyocytes 

Ca2+ transient amplitude is related to SR Ca2+ content therefore high 

concentration caffeine (10 mM; 20 s) was applied rapidly to cardiomyocytes at 

the end of the protocol (Figure 6.6A).  The amplitude of the caffeine-induced 
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Ca2+ transient is an indicator of the SR Ca2+ content.  The rate constant of 

decline is an indicator of sarcolemmal Ca2+ efflux.  The caffeine-induced Ca2+ 

transient amplitude was significantly reduced compared to control at all 

concentrations of CatL (100.0 vs. 78.8 ± 5.0 vs. 81.5 ± 5.2 vs. 60.1 ± 8.5% of 

vehicle control; control vs. 0.68, vs. 2.70 vs. 5.40 nM CatL; P<0.05; Figure 

6.6C(i)).  The rate constant of decay was not significantly altered at 0.68 or 2.70 

nM (100.0 vs. 101.7 ± 6.0 vs. 95.0 ± 8.9% of vehicle control; control vs. 0.68, vs. 

2.70 nM CatL; P>0.05; Figure 6.6C(ii)), but was at significantly reduced at 5.40 

nM CatL; (100.0 vs. 78.9 ± 3.9%; control vs. 5.40 nM CatL; P<0.05; Figure 

6.6C(ii)).   

 

Figure 6.6: Caffeine-induced Ca2+ transients at different CatL concentrations.  
(A) Protocol.  (B) Example caffeine-induced Ca2+ transients. (Inset) Normalised caffeine-induced 
Ca2+ transients from (B). (C(i)) Mean ± SEM caffeine-induced Ca2+ transient amplitude as % 
change of vehicle control (ii) Rate constant of decay as % change of vehicle control. 

6.3.7 Cathepsin-L Reduces Stimulated Ca2+ Transient Amplitude 
in Rabbit Left Ventricular Cardiomyocytes 

The Ca2+ handling dynamics of rat left ventricular cardiomyocytes are different 

to that of human ventricular cardiomyocytes(148) (discussed in section 1.4).  In 

the rat Ca2+ transient decline is predominantly due to SERCA mediated reuptake 

to the SR, with reported percentage contributions of 87-92% in the rat(223;224;581) 

vs. 63% in normal human ventricular cardiomyocytes and 58% in failing 
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cardiomyocytes(225).  The other major contributor to the Ca2+ transient decline 

during diastole is sarcolemmal efflux by NCX.  In the rat this constitutes 7-

9%(223;224;581) vs. 37% in normal human cardiomyocytes and 42% in failing 

cardiomyocytes(225).    Therefore, to examine the SR Ca2+ release in an animal 

model with similarities to human cardiomyocyte Ca2+ handling the rabbit was 

used.  The rabbit exhibits similar Ca2+ handling properties with SERCA reuptake 

contributing 70-74% of the Ca2+ transient decline and NCX contributing 23-

28%(257;582).  Therefore epifluorescence Ca2+ measurements were made in rabbit 

left ventricular cardiomyocytes using the same protocol as for the data shown in 

Figure 6.5 (Figure 6.7A).   The concentration of CatL used was 0.68 nM, which 

was identified by activity assays to be the quantity produced in Langendorff 

perfused hearts and is similar to that reported in patients(425) (Figure 6.7B).  In 

comparison with the rat cardiomyocytes, CatL significantly reduced the peak 

[Ca2+]i to 65% of control (399.6 ± 52.4 vs. 260.1 ± 22.4 nM; control vs. CatL; 

P<0.05; Figure 6.7C(ii)).  Minimum [Ca2+]i was not significantly altered (54.1 ± 

4.6 vs. 53.3 ± 4.3 nM; control vs. CatL; P>0.05; Figure 6.7C(iii)).  The reduced 

peak [Ca2+]i led to a significantly reduced [Ca2+]i amplitude of 60% of control 

(345.5 ± 50.9 vs. 206.8 ± 2.0 nM; control vs. CatL; P<0.05; Figure 6.7C(iv)).  The 

decay rate constant was not significantly altered (7.0 ± 0.2 vs. 6.8 ± 0.3 s-1; 

control vs. CatL; P<0.05; Figure 6.7C(v)), which is similar to the result in rat 

cardiomyocytes at 0.68 nM.  
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Figure 6.7: Stimulated Ca2+ transients with CatL in rabbit left ventricular cardiomyocytes.  
(A) Protocol used in epifluorescence Ca2+ measurements.  (B) Example Ca2+ transient traces for (i) 
control and (ii) 0.68 nM CatL.  The stimulus mark is shown in (i), the frequency was 2.0 Hz. (C(i)) 
Average Ca2+ transients taken from last 12 Ca2+ transients for media (grey) and CatL (black). (ii - v) 
Mean ± SEM for stimulated Ca2+ transient parameters for control (n = 29) and 0.68 nM CatL (n = 
25).  

6.3.8 Cathepsin-L Reduces SR Ca2+ Content in Rabbit Left 
Ventricular Cardiomyocytes 

As with the rat cardiomyocyte experiments, the SR Ca2+ content was measured 

from the amplitude of the caffeine-induced Ca2+ transient at the end of the 

protocol (Figure 6.8A).  The caffeine-induced Ca2+ transient amplitude was 

significantly reduced to 49.8% of control; (466.8 ± 121.4 vs. 232.3 ± 29.0 nM; 

control vs. CatL; P<0.05).  The rate constant of decline, an indicator of NCX 

function, was not significantly altered; (1.22 ± 0.11 vs. 1.25 ± 0.10 s-1; control 

vs. CatL; P>0.05) (Figure 6.8C(i-ii)). 
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Figure 6.8: Caffeine-induced Ca2+ transients in rabbit cardiomyocytes with CatL. 
(A) Protocol used for epifluorescence Ca2+ measurements. (B) Example caffeine-induced Ca2+ 
transients for vehicle control (grey) and 0.68 nM CatL (black).  (Inset) Normalised caffeine-induced 
Ca2+ transients from (B). (C(i – ii)) Mean ± SEM for caffeine-induced Ca2+ transient amplitude and 
decay rate constant for control (n = 29) and CatL (n = 25). 

6.3.9 Cathepsin-L Increases Ca2+ Wave Frequency in Resting 
Cardiomyocytes 

Reduced SR Ca2+ content and reduced stimulated Ca2+ transient amplitude can be 

a result of both increased spontaneous Ca2+ release and altered RyR Po lowering 

the Ca2+ release threshold of the SR(192).  We hypothesised this may be the case 

with the trypanosome CatL (discussion Chapter 4).  Therefore, confocal Ca2+ 

imaging experiments to examine diastolic Ca2+ release were performed.  

Recombinant CatL was used at the same concentration as the recombinant 

TbCatL experiments (1:50 dilution; 2.0 nM).  Resting adult rat left ventricular 

cardiomyocytes were loaded with Fluo-3AM Ca2+ sensitive dye and imaged for 30 

s.  F/F0 fluorescence traces were analysed for Ca2+ wave velocity, amplitude and 

decay rate constant.  CatL increased the wave frequency to 136.7% of control 

levels (0.12 ± 0.02 vs. 0.16 ± 0.02 Ca2+ waves.s-1; control vs. CatL; P<0.05; Figure 

6.9A & B(i)).  The Ca2+ wave velocity was not significantly altered (81.4 ± 1.9 vs. 

83.3 ± 2.6 µm.s-1; control vs. CatL; P>0.05; Figure 6.9B(ii)) nor was Ca2+ wave 

amplitude (6.4 ± 0.6 vs. 7.2 ± 1.0 F/F0; control vs. CatL; P>0.05; Figure 

6.9B(iii)).  
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Figure 6.9: Confocal images of unstimulated cardiomyocytes. 
(A) Rat left ventricular cardiomyocytes were incubated with vehicle control or 5.40 nM CatL for 30 
min and then line-scans performed for 30 s. (i - ii) Representative confocal line-scan image and 
corresponding fluorescence trace (F/F0) for control (i) and CatL (ii).  (B(i - iii)) Ca2+ wave 
characteristics for control cardiomyocytes (grey; n = 73) and cardiomyocytes incubated with CatL 
(black; n = 70).  
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6.4 Discussion 

6.4.1 Mammalian Cathepsin-L is Active at Physiological pH 

Cysteine cathepsins have been shown to be localised to the acidic intracellular 

organelles lysosomes where they degrade unwanted proteins(371;373;374).  It has 

been traditionally thought that cathepsins only had limited activity at pH values 

other than their optimal acidic pH values(395;567;583).  However, recent work has 

shown that cathepsins can not only be active in other more neutral cellular 

compartments such as the cytosol(383-385) and nucleus(386;387), but are secreted 

into and function within extracellular spaces(423).  Indeed, extracellular 

cathepsin expression and activity has been identified in failing cardiac 

tissue(421;422;584) and valve tissues(585-587) from humans and animals.  It has been 

proposed by Punturieri et al. (2000) that there is formation of a localised acidic 

environment in the zone of enzyme/substrate contact via expression of H+-

ATPase in monocyte-derived macrophages maintaining the acidic 

environment(588).  However, a study by Lohmuller et al. (2005) used computer 

modelling to predict substrate cleavage specificity and conditions and found that 

CatL could potentially have activity at cytosolic and nuclear pH values(589).  This 

suggests that extracellular CatL could be active in the extracellular environment 

of the heart.  During ischaemia the tissue becomes acidotic from the build up of 

lactic acid from anaerobic respiration(348), which could favour extracellular CatL 

activity.  Mature CatL has been considered as being unstable at neutral and 

alkaline pH with a rate constant of inactivation 17 fold faster at pH 7.4 

compared with pH 7.0 at a temperature of 37 ºC(372).  There is very little 

information in the literature regarding the activity of extracellular CatL and, 

therefore, to determine if mammalian CatL could be active at physiological pH, 

fluorometric activity assays were performed at pH 6.0, 7.0 and 7.4.  

Fluorometric activity assays using recombinant mouse CatL demonstrated 

activity not only at the optimum pH of 5.5-6.0(371), but at pH 7.0 and 7.4 (Figure 

6.1A & B).  The peak rate of activity occurred within the first 5 min but activity 

was present after the 30 min period of measurement at all three measured pH 

values. 
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6.4.2 Cathepsin-L is Detected in Coronary Effluent from 
Ischaemia/Reperfusion Hearts 

CatL is ubiquitously expressed and has been shown to be expressed in 

cardiomyocytes(421;422) and cardiac fibroblasts(421) as well as many other cell 

types(384).  It has also been shown to be secreted into the extracellular 

environment as a pro-enzyme to be activated by other proteases such as 

metalloproteinases in other body tissues, even at neutral pH(590-592).  In cases of 

cardiovascular disease such as myocardial infarction or coronary heart disease 

higher levels of circulating CatL have been identified(413;425;426) and Sun et al. 

found increased levels of CatL activity in homogenised hearts post-MI(424).  

However, it is not clear whether this is resulting from release of CatL from 

tissues associated with the heart, or derives from other organs/systemic 

processes.  To determine if the heart could directly be releasing CatL during 

ischaemia/reperfusion, CatL activity was measured in the coronary effluents 

from ex vivo rat hearts.  The Langendorff perfused hearts were subjected to a 

30 min period of global ischaemia followed by a 90 min period of reperfusion.  

Activity was detected in the effluent samples which, when specifically inhibited 

was shown to be CatL.  Utilisation of an ex vivo model enabled removal of any 

systemic contribution, therefore enabling us to determine that cells within the 

heart were secreting CatL and could contribute to the reported raised serum 

CatL levels in patients(413;425;426).  These results are supported by similar findings 

of raised CatB levels(571) and the serine protease CatD levels(430), as well as CatL 

levels, in ischaemia/reperfusion injury(431).  It remains unclear exactly how or 

where from the CatL is released; whether it is directly secreted during 

reperfusion or if it is released in response to the injury/cell damage.  Several 

studies have examined the effects on the lysosome in response to 

ischaemia/reperfusion injury.  The “lysosomal hypothesis”(593-595), which suggests 

that I/R injury significantly reduces lysosomal integrity and also alters lysosomal 

distribution within cells(339;340), leading to leakage of lysosomal enzymes into the 

cytoplasm and extracellular milieu causing cell necrosis and apoptosis.  Other 

studies report a Ca2+ mediated redistribution and fusion of lysosomes with the 

plasma membranes and subsequent exocytosis of lysosomal cathepsins in skin 

fibroblasts(596) and Chinese hamster ovary cells(597) in response to injury.  Ichihara 

et al. (1987) demonstrated that this same redistribution and exocytosis process 

of lysosomes could be inhibited in ischaemic rat hearts with the LTCC blocker 



Chapter 6  The Effects of Endogenous Extracellular Cathepsin-L 289 
 

diltiazem, leading to a detectable reduction in CatD (measured in this study), 

and improvement in mechanical function upon reperfusion compared to 

untreated controls(598).  This suggests that cathepsins can be released from cells 

following ischaemia and have potential deleterious consequences.  Therapeutic 

strategies that target inhibition of lysosomal enzyme release or inhibition of the 

enzyme activity following ischaemia could improve recovery.  Therefore, the 

released CatL detected in the coronary effluent could potentially have an effect 

on cardiac function.    

6.4.3 Cathepsin-L is Increased in Serum of Human Patients That 
Have Undergone Reperfusion Following Myocardial 
Infarction 

ELISA has shown that CatL levels are increased in the immediately post-

reperfusion samples, although not statistically significant as only a small number 

have been tested (n = 4).  The quantity of CatL in these MI patients of 6.28 ±  

1.50 ng.mL-1 (Figure 6.3A) corresponds closely to Liu et al. (2009) who report 

levels of 6.1 ± 0.2 ng.mL-1 for acute MI(425).  These data, when interpreted with 

the coronary effluent CatL activity, suggest that CatL could be 

produced/released in the affected region of the heart during ischaemia, which is 

then released into the circulation upon reperfusion.  Studies by Stypmann et al. 

(2002) and Sun et al. (2010) provide evidence to support a beneficial role of 

CatL within the heart(402;424).  Stypmann et al. (2002) examined hearts of a CatL 

gene knockout mouse model and found that there was a dilated cardiomyopathy 

phenotype with interstitial fibrosis and pleomorphic nuclei(402).  They also 

identified that CatL-deficient cardiomyocytes have large fused lysosomes 

containing electron dense heterogeneous material when examined by electron 

microscopy.  Sun et al. (2010), using the same knockout mouse strain, induced 

experimental MI and found greater scar dilatation, wall thinning, reduced left 

ventricular pressure, reduced cardiac output and increase left ventricular 

volume in systole and diastole compared to control wild-type mice that had 

undergone the same MI induction procedure(424).  However, CatL is important for 

protein turnover within cells, activation of MMPs and neovascularisation(599-602), 

all of which would be inhibited in a complete CatL knockout.  Therefore, it 

becomes difficult to determine whether the altered phenotype is a true CatL 

effect or whether it is due to the modulation of other mechanisms.  Moreover, in 
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a full CatL knockout there is likely to be compensatory upregulation of other 

proteases, such as CatB, which may contribute to the detrimental effects rather 

than the lack of CatL(603).  If increased CatL levels were truly beneficial, then 

one would expect increased levels to translate to a correlated improvement of 

clinical signs in patients with cardiovascular disease.  However, the studies that 

report increased CatL do not show improved recovery(425;426).  In fact Liu et al. 

show that CatL is a biomarker for severity of cardiovascular disease(425).  

Although complete absence of CatL seems to be detrimental to cardiac function, 

increased levels of CatL may also be detrimental.  It appears that a fine balance 

of CatL levels is necessary for healthy cardiac function.  Further work with long-

term follow-up CatL measurements correlating with MI recovery in a greater 

number of patients would be interesting to perform.  Sun et al. (2011) suggested 

that CatL promotes fibrosis and therefore limits infarct size(424).  However, the 

long term consequences of fibrosis such as increased arrhythmogenesis, poor 

contraction and reduced lusitropy(604) were not discussed.  Therefore, what may 

be interpreted as a benefit of CatL, may actually be detrimental.  Also of 

interest would be parallel measurements of the endogenous cathepsin inhibitor 

Cystatin C (CysC).  Some studies have shown increases in CysC(605;606) associated 

with increased risk of cardiovascular mortality, while Shi et al. (1999) show 

decreases in CysC in atherosclerosis(417).  If CatL balance is of particular 

importance in ischaemia/reperfusion injury, then there is likely to be a 

contributing component from CysC, although it remains unclear what particular 

role it may play. 

6.4.4 Cathepsin-L Effects on Ca2+ Handling in Rat Left Ventricular 
Cardiomyocytes 

Epifluorescence Ca2+ measurements revealed a significant concentration-

dependent reduction in the stimulated Ca2+ transient amplitude and rate 

constant of decay prolonging the duration of the Ca2+ transient.  There was also 

a significant decrease in the amplitude of caffeine-induced Ca2+ transients 

indicating reduced SR Ca2+ content at all measured concentrations of CatL.  At 

the highest concentrations of CatL (2.70 and 5.40 nM) there was a reduction in 

the rate decay constant of the stimulated Ca2+ transient.  Interestingly, these 

changes in the stimulated Ca2+ transient are similar to those found in models of 

heart failure(299-302), and the reduction in SR Ca2+ content is also recognised in 
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heart failure(303-306).  In heart failure it has been reported that a major factor in 

reduced SR Ca2+ is an increase in Ca2+ leak from the RyR(299).  Other potential 

contributors would be reduced KSERCA and enhanced NCX activity(302).  

6.4.4.1 Ca2+ Transient Amplitude is Reduced in a Concentration Dependent 
Manner by CatL 

Increasing concentrations of CatL showed a strong negative correlation with 

peak [Ca2+]i and consequently [Ca2+]i amplitude. Two explanations for reduced 

stimulated Ca2+ release are; i) failure of RyR activation termed defective 

coupling, and ii) insufficient availability of Ca2+ within the SR(302).  With regard to 

defective coupling, it has been reported that LTCC number (RyR activating 

channels) has been reduced in heart failure(316), but that LTCC activity is 

increased(317).  The reported findings are consistent with an increased level of β-

adrenergic stimulation and subsequent phosphorylation of the LTCC(318).  The 

results with TbCatL suggested no effect on the LTCC but this has not been 

measured with mammalian CatL.  Defective coupling could also occur if there is 

defective interaction between the LTCC and RyR as reported in spontaneously 

hypertensive rats with heart failure(607) and rats with MI(608) i.e. a reduced 

coupling gain of Ca2+ influx and Ca2+ release. With regard to insufficient 

availability of Ca2+ from the SR this was shown to be reduced in the presence of 

CatL and is discussed in section 6.4.4.5. 

6.4.4.2 SERCA Activity is Reduced in a Concentration Dependent Manner by 
CatL 

The decay rate constant of the stimulated Ca2+ transient was significantly 

reduced at the two higher concentrations of CatL.  This shows slower diastolic 

Ca2+ removal, which could be a result of reduced reuptake to the SR by SERCA or 

reduced sarcolemmal efflux.  The application of high concentration caffeine (10 

mM; 20 s) effectively removes SERCA by opening the RyR and emptying the SR of 

Ca2+.  Therefore, to get an indication of KSERCA the decay rate constant of the 

caffeine-induced Ca2+ transient (sarcolemmal efflux) can be subtracted from the 

decay rate constant of the stimulated Ca2+ transient (both SR reuptake and 

sarcolemmal efflux), as conducted by Bode et al. (2011)(506).  KSERCA is reduced 

significantly at 2.70 and 5.40 nM CatL (95.3 ± 6.5 vs. 67.3 ± 11.9 vs. 30.7 ± 3.3% 

of vehicle control; 0.68 vs. 2.70 vs. 5.40 nM CatL).  KSERCA may be reduced in two 
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ways; i) reduced expression(307) or ii) increased inhibition by phospholamban 

(PLB), either by increased quantity in relation to SERCA or altered 

phosphorylation(308).  It has been shown that a decrease in the phosphorylation at 

the PKA dependent site Ser16 occurs in both human(309) and some animal 

models(310) of heart failure.  This is thought to be a result of increased activity of 

the SR-associated phosphatase PP1 which dephosphorylates PLB(310;609) via 

reduced inhibition by the inhibitor I-1(610;611).  The time course for a reduction in 

SERCA expression has been studied in models over the course of several 

weeks(612-615), however, changes in SERCA protein levels can be observed in as 

little as 30 min(616).  Therefore, in 30 min CatL exposed cells it is unclear 

whether there could be an alteration in the phosphorylation status of PLB 

(perhaps via altered phosphatase inhibition), a reduced level of SERCA, or a 

combination of both mechanisms.  The current thinking is that much of the heart 

failure phenotype is due to altered phosphorylation status of Ca2+ handling 

proteins brought about through increased PKA activity through CaMKII 

activation(302), as partial recovery of phosphorylation status results in some 

functional recovery(318;617).  The results presented in the preceding chapters 

suggest that TbCatL could be altering SR-mediated Ca2+ release via CaMKII.  

Therefore, the recombinant mouse CatL may be having effects on similar 

targets.  Further work in future would be required to elucidate the mechanism 

responsible.   

6.4.4.3 Sarcolemmal Extrusion is Reduced at Higher Concentrations of CatL 

NCX function is usually thought to be increased in heart failure(312-315), i.e. more 

Ca2+ extruded from the cytosol reduces the amount available for reuptake by 

SERCA to the SR, but these changes are not consistent(302).  In the present study 

Sarcolemmal extrusion was indirectly assessed by measurement of the decay 

rate constant of the caffeine-induced Ca2+ transient.  At the lower 

concentrations of CatL NCX function was not significantly affected.  However, at 

5.40 nM CatL NCX function was decreased, which is in contrast to many studies 

showing a similar SR-mediated Ca2+ handling phenotype(312-315).  However, during 

ischaemia/reperfusion injury Le et al. (2006) has shown that the time constant 

of decay (τ) (the inverse of rate constant) is increased by about 40%(616), i.e. NCX 

function is decreased.  This is more severe than the NCX effect observed in the 

present study, but the cardiomyocytes examined here were under normal 
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physiological conditions rather than following hypoxic damage.  These results 

suggest that CatL could also have a mild effect on NCX that becomes more 

severe at higher concentrations in addition to the decrease in KSERCA.  However, 

further work would be required to understand this effect more fully. 

6.4.4.4 Diastolic [Ca2+]i is Increased by CatL 

Since KSERCA and NCX activity appear to be decreased in the presence of 5.40 nM 

CatL there should be a rise in the diastolic [Ca2+]i.  This is indeed the case 

(Figure 6.5C(iii)), a finding which parallels those with TbCatL.  At the lower 

concentrations of CatL there was still a significant decrease in KSERCA but no 

significant change in NCX activity or diastolic [Ca2+]i.  It is possible that there 

may be modulation of other Ca2+ extrusion mechanisms.  

6.4.4.5 SR Ca2+ Content is Reduced by CatL 

The significant reduction in caffeine-induced Ca2+ transient amplitude identified 

in the present study is a finding consistent with reduced stimulated Ca2+ 

transient amplitude(303-306).  Reduction in SR Ca2+ content can be a result of; i) 

reduced Ca2+ reuptake or ii) increased Ca2+ leak from the SR through the RyR.  In 

the case of heart failure, SR Ca2+ leak is considered a major contributing factor 

to reduced SR Ca2+ content(319-323).  However, the specific mechanisms are 

contentiously debated at present(276;277;324).  The present study provides evidence 

to support a reduced SR Ca2+ reuptake with the reduced KSERCA but further work 

will be required in future to determine the exact mechanism.  In conjunction 

with SERCA effects there could also be a concomitant leak from the RyR. 

6.4.5 Cathepsin-L Effects on Ca2+ Handling in Rabbit Left 
Ventricular Cardiomyocytes 

Epifluorescence Ca2+ measurements were repeated in rabbit left ventricular 

cardiomyocytes due to the differences in Ca2+ handling properties from 

rodents(257;582).   The data shown in this study suggest that CatL concentrations in 

the region of 0.68 nM are found in both coronary effluents from Langendorff 

perfused hearts that have undergone I/R injury and in the serum of patients that 

have had an MI and subsequent treatment, which correspond with Liu J et al. 

(2006) and Liu Y et al. (2009)(413;425).  Therefore, the epifluorescent Ca2+ imaging 
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experiments were performed with this concentration.  The experiments were 

also performed at a greater stimulation frequency of 2.0 Hz representing a more 

physiological heart rate and hopefully give a better reflection of the potential 

clinical situation.  Figure 6.7 shows a similarly reduced peak [Ca2+]i and [Ca2+]i 

amplitude.  The rate constant of decay was not significantly altered at this 

concentration of CatL.  When compared with the same concentration of CatL in 

rat cardiomyocytes there was also no statistically significant reduction, this was 

only seen at the higher concentrations.  This suggests that KSERCA modulation may 

only be slight in the presence of low concentration CatL vs. higher modulation at 

higher CatL concentrations.  With the significantly reduced Ca2+ transient 

amplitude being observed, this would suggest as discussed above (section 

6.4.4.1) either defective RyR coupling or reduced SR Ca2+ availability(302).  As 

with the rat cardiomyocyte experiments a bolus of high concentration caffeine 

was applied to the rabbit cardiomyocytes at the end of the protocol.  Similarly 

to the results obtained with the rat model, there was a significant reduction in 

the caffeine-induced Ca2+ transient amplitude.  There was no significant change 

in the decay rate constant which is consistent with 0.68 nM CatL in the rat 

cardiomyocyte data.  The reduction in SR Ca2+ content as measured by caffeine-

induced Ca2+ transient amplitude could explain the reduction in stimulated Ca2+ 

transient amplitude(303-306).  Without a significant change in the stimulated Ca2+ 

transient decay rate constant a significant reduction in KSERCA that could explain 

the reduced SR Ca2+ content has little supporting evidence.  A diastolic leak from 

the SR through the RyR may be a more likely explanation. 

6.4.6 Cathepsin-L Increases Ca2+ Wave Frequency in Resting 
Cardiomyocytes 

One measure of diastolic SR Ca2+ “leak” is spontaneous Ca2+ release in the form 

of Ca2+ waves.  Rat left ventricular cardiomyocytes were loaded with Fluo-3 and 

imaged with a LASER-scanning confocal microscope in line-scan mode without 

stimulation.  Since the largest effects on stimulated and caffeine-induced Ca2+ 

transient amplitude and decay were at 5.40 nM CatL, the confocal experiments 

were conducted with the same concentration of CatL.  There was a significant 

increase in the Ca2+ wave frequency.  Increased Ca2+ wave frequency is a 

manifestation of increased Ca2+ leak from the SR(192).  Normally an increase in 

Ca2+ wave frequency occurs when SR Ca2+ content is increased as the release 
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threshold is reached earlier resulting in early release during diastole(192).  

However, it has been reported that in heart failure there can be 

hyperphosphorylation of the RyR resulting in dissociation of FKBP12.6(276).  

FKBP12.6 may act as a diastolic inhibitor of RyR reducing Po and aberrant Ca2+ 

release i.e. stabilising the closed state of the channel(276).  This hypothesis could 

explain a reduced SR Ca2+ content and subsequent reduced stimulated Ca2+ 

transient amplitude and may also lead to reperfusion arrhythmias via 

arrhythmogenic Ca2+ waves(273;322;526;618;619).  However, in heart failure this 

hypothesis remains extremely controversial as findings of RyR phosphorylation in 

different models of heart failure are inconsistent(277-279;525).  The situation with 

TbCatL, as discussed in Chapter 4, suggests a possible CaMKII-mediated effect.  

There is some evidence to suggest that hyperphosphorylation of the RyR at the 

CaMKII site Ser2815 can result in an increase in diastolic Ca2+ leak(280;319).  Other 

suggestions for a similar phenotype in the literature are that RyR activity could 

be enhanced by reactive oxygen species (ROS) or reactive nitrogen species 

(RNS)(620;621).  In the present study the phosphorylation status of the RyR was not 

measured, so whether there is PKA-mediated hyperphosphorylation of RyR as 

proposed by the Marks group(276;324), or whether it is CaMKII-mediated 

hyperphosphorylation as proposed by Bers and colleagues(277;311) or indeed, no 

change in phosphorylation as proposed by Valdivia’s group(279), cannot be 

determined at this time.  Further work assessing the phosphorylation status of 

RyR may help establish by what mechanism CatL is eliciting its effects.  There 

was no significant difference in the velocity or amplitude of the Ca2+ waves 

although both parameters tended to increase. The data presented in Figure 6.9 

is from adult rat cardiomyocytes incubated with 5.40 nM CatL. Ca2+ waves can 

lead to arrhythmias via activation of NCX, triggering an inward electrical current 

through Na+ leading to delayed afterdepolarisations (DAD)(192).  This suggests that 

concentrations of CatL observed in this study and in Liu et al. (2009)(425) could 

play a role in arrhythmias.  Indeed, increased arrhythmia frequency upon 

reperfusion is a hallmark of ischaemia/reperfusion pathology(331-337). 

In the case of reperfusion arrhythmias there is a putative role for ROS(622;623).  It 

has been shown that ROS can increase the Po of the RyR(341;345-347) and that RNS 

stimulated channel activity(624;625).  Interestingly ROS had an inhibitory effect on 

SERCA(342-344;620), which fits the findings of the current study.  The 
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cardiomyocytes in the present study were not subjected to ischaemic conditions.  

However, cathepsins can be released by ROS-mediated loss of lysosomal 

integrity(339;340) and ROS can be released through cathepsin-mediated damage to 

mitochondrial membranes(626).  Therefore, one possible explanation for the 

increased Ca2+ wave frequency and decreased KSERCA observed in the present 

study could be increased ROS production brought about by the presence of CatL.  

However, further experiments establishing a potential role for ROS will be 

required. 

6.4.7 Conclusions 

Little is known about the levels of CatL in patients with cardiac I/R injury.  Work 

conducted in our laboratory has demonstrated for the first time that CatL 

proteolytic activity can be detected in coronary effluent samples from hearts 

that have undergone experimental I/R injury, but not in control hearts perfused 

continuously.  The data presented in this thesis shows preliminary findings that 

serum levels of CatL are increased in human patients that have suffered MI and 

undergone therapeutic reperfusion and there may also be a correlation with 

severity of cardiovascular disease.  However, this data is preliminary and will be 

followed up.  The role that increased levels of CatL play in cardiovascular 

disease is not currently known.  However, the work presented in the current 

study demonstrates that recombinant CatL has a concentration dependent effect 

on the SR Ca2+ content, the amplitude of the stimulated Ca2+ transient and SR-

mediated Ca2+ release of rat cardiomyocytes.  The same effects were observed 

in rabbit cardiomyocytes at a CatL concentration of 0.68 nM.  These findings 

suggest that CatL may cause increased SR-mediated Ca2+ leak through the RyR 

resulting in reduced SR Ca2+ content leading to a reduced stimulated Ca2+ 

transient.  Further work will be required to elucidate the potential sarcolemmal 

target for extracellular CatL and the subsequent signalling to result in the 

observed phenotype.  Current work within our laboratory has started to examine 

the effects of the CatL specific inhibitor CAA0225 on cardiac function and infarct 

size in both ex vivo and in vivo models with promising results, therefore, making 

inhibition of CatL an attractive therapeutic target for ischaemic heart disease.  
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7.1 Study Rationale 

The cardiac effects of American trypanosomiasis (Chagas disease) caused by 

Trypanosoma cruzi are widely known and studied in detail.  However, in the 

case of African trypanosomiasis, for both human (human African trypanosomiasis 

(HAT) or ‘sleeping sickness’) and animal (animal African trypanosomiasis (AAT) 

or ‘nagana’) infections, cardiac involvement is often overlooked entirely due to 

the focus on the more overt signs of neurological disturbances (human) or 

anaemia and muscle wastage (animal).  These clinical signs, when looked for, 

are electrocardiogram abnormalities such as a prolonged QT interval, 

repolarisation abnormalities and arrhythmias manifesting as palpitations in 

patients(51), as well as reports of heart failure, ventricular dilatation and sudden 

cardiac death(28;56;57).  Historically, cases of human(56;57) or experimentally 

infected animals(26-28) have been examined post-mortem and evidence of 

perimyocarditis was identified.  Thus any clinical case reports(62;542-544) or 

controlled studies(51;52) have attributed any cardiac involvement to be as a result 

of inflammation of the myocardium in response to parasite infiltration.  However 

reports of cardiac signs and presence of trypanosomes within the myocardium 

without an inflammatory cell infiltrate are harder to reconcile with a hypothesis 

of inflammation alone(26;497).  In the case of Chagas disease, it has been found 

that the T. cruzi parasites and their culture supernatant are capable of inducing 

spontaneous cytosolic Ca2+ transients in isolated cardiomyocytes(508) but no such 

study has been performed in cardiomyocytes exposed to T. brucei spp. and/or 

their culture supernatant.  The most pertinent studies have been performed by 

Grab and colleagues (2006) assessing the ability of T. brucei spp. to cross the 

endothelial cell layer of the blood brain barrier in vitro (69).  They identified that 

T. b. rhodesiense and T. b. brucei were able to traverse the endothelial cell 

layer via induction of Ca2+ fluxes within the endothelial cells facilitating 

alterations in the cytoskeletal components causing the cells to pull apart and 

fenestrate the layer(66;67;69).  They also identified that the trypanosomes induced 

the Ca2+ fluxes by secreting/excreting a cathepsin-L-like cysteine protease 

(TbCatL)(69).  Therefore the rationale for this body of work was that if T. brucei 

could induce Ca2+ fluxes in BBB endothelial cells, and T. cruzi could induce Ca2+ 

fluxes or transients in cardiomyocytes, then we hypothesise that African 

trypanosomes could also affect intra-cardiomyocyte Ca2+ dynamics in the heart.  
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If evidence supported this hypothesis, then some of the observed cardiac clinical 

findings such as arrhythmias and palpitations may in fact be also attributable to 

a direct result of trypanosome-induced Ca2+ fluxes, in addition to solely the 

inflammatory reaction as previously thought.  This would also have potential 

implications in terms of providing new therapeutic targets and treatments.   

7.2 The Effects of T. b. brucei on the Heart at the 
Cardiomyocyte and Whole Organ Level 

Although HAT is caused by T. b. gambiense (West African) or T. b. rhodesiense 

(East African) these subspecies are difficult to use in the lab, both due to their 

infectious nature to humans and also the difficulty in culturing the bloodstream 

form.  However, the broad similarities of the animal infective subspecies T. b. 

brucei and its comparative safety and ease of culture make it an established 

model species of trypanosome.  The most widely used strain of  T. b. brucei used 

is Lister 427(434).  The first step in establishing the effects of T. b. brucei on Ca2+ 

handling in cardiomyocytes was to enzymatically isolate individual 

cardiomyocytes from whole hearts of rats and expose them to cultures of T. b. 

brucei.  The advantage of the rat cardiomyocyte spontaneous contractile assays 

was the basal level of Ca2+ wave activity, such that any potential alteration to 

Ca2+ handling in the cardiomyocytes by trypanosomes or their supernatant could 

be detected without difficulty. Quantification of the result was achieved by 

recording the percentage of cardiomyocytes exhibiting at least one spontaneous 

contraction min-1.  The result was clearly positive and repeatable, and due to its 

simplicity proved a useful technique with which to test hypotheses before 

investigating further with more involved techniques.  To establish whether the 

effect was from the trypanosomes themselves or a secreted/excreted factor, the 

culture supernatant was applied in the same manner as live cultures and the 

cardiomyocytes observed for spontaneous contractile events.  The result was 

replicated and could be abolished by heating the supernatant - adding support 

for the secreted/excreted factor hypothesis.   

The link with the spontaneous contractions and Ca2+ was established with Ca2+ 

sensitive fluorophores and measurements of the Ca2+ fluxes with LASER-scanning 

confocal microscopy and epifluorescence microscopy.  Both these imaging 

techniques are well documented and used as gold standards for cardiomyocyte 
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Ca2+ studies, such that observations made can be rigorously cross-checked with 

published data and any conclusions be drawn robustly.  This enabled 

determination that the contractions were mediated by spontaneous 

sarcoplasmic-reticulum (SR)-mediated Ca2+ release.  The simplicity of the 

cardiomyocyte population assay provided a high throughput means of 

determining through; i) specific cathepsin inhibition, ii) gain of function effect 

with recombinant TbCatL and iii) loss of function effect with RNA interference 

that the cathepsin-L-like cysteine protease TbCatL caused the effect observed.  

Therefore, the same protease that is responsible for inducing Ca2+ fluxes in BBB 

endothelial cells is also responsible for SR-mediated spontaneous Ca2+ release in 

cardiomyocytes. 

However, despite the strong evidence supporting an effect on cardiomyocyte 

Ca2+ dynamics, further work is required to confirm if this is single cell effect 

contributes to the clinical cardiac manifestations reported.  Therefore, the study 

was expanded to incorporate analysis of whole hearts with ECG recording to 

measure the occurrence of potential arrhythmic events.  Ex vivo rat hearts were 

perfused in Langendorff perfusion with trypanosome culture supernatant or 

control media and their ECGs recorded.  SR-mediated spontaneous Ca2+ release 

can lead to whole heart arrhythmia through activation of the Na+/Ca2+ exchanger 

(NCX).  This may cause a delayed after depolarisation (DAD) which can lead to 

an abnormal or ectopic heart beat if the depolarisation propagates to adjacent 

cells.  This will be perceived as a palpitation in individuals.  If the reported 

arrhythmias and palpitations in HAT patients could be due to the effects of 

TbCatL on SR-mediated spontaneous Ca2+ release then whole hearts exposed to 

supernatant may be expected to have an increased frequency of arrhythmias of 

ectopic origin.  Indeed, in a proportion of the hearts perfused with supernatant, 

there were more arrhythmias observed, specifically ventricular premature 

complexes (VPCs).  This correlates well with the published clinical data that 

reports only a proportion of patients exhibit palpitations.   This result also 

supports for the first time the hypothesis of a secreted/excreted factor having a 

direct effect as these hearts are removed from any neurohumoral response or 

inflammatory processes.   
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7.3 The Mechanisms of SR-Mediated Ca2+ Release 
Caused by T. b. brucei 

Following the results of Chapter 3, the aim of the Chapter 4 was to investigate 

the potential mechanisms behind the SR-mediated Ca2+ release observed.  The 

conclusion that TbCatL causes abnormal SR-mediated Ca2+ release as a result of 

stimulation of SERCA required substantiation.  First, the only evidence for this 

conclusion was an accelerated decline of the Ca2+ transient in supernatant 

perfused cardiomyocytes.  If increased spontaneous Ca2+ release was a result of 

increased SERCA activity the SR Ca2+ content would be expected to be higher.  

Therefore, a paired protocol with the same cardiomyocyte being perfused with 

control media followed by supernatant lead to improvement of the accuracy and 

reliability of the epifluorescence experiments.  Furthermore, a parallel set of 

paired protocol experiments using only control media were performed as time 

controls to which the data was normalised.  Application of caffeine after each 

solution within the same cardiomyocyte allowed a more accurate assessment of 

the SR Ca2+ content and NCX function between control media and supernatant.  

This revised protocol identified that the SR Ca2+ content was in fact reduced by 

supernatant and not increased as would be expected with faster Ca2+ transient 

decline from SERCA stimulation.  The decay of the caffeine-induced Ca2+ 

transient was not significantly altered suggesting that NCX function was not 

affected.   

Despite the reduced SR Ca2+ content, the Ca2+ transient decline was still 

significantly faster and calculation of SERCA activity confirmed that SERCA 

stimulation is still the most likely hypothesis.  However, the increased SERCA 

activity may not be the primary effect but a secondary response to a raised 

diastolic [Ca2+]i.  This hypothesis was tested by the inhibition of SR Ca2+ uptake 

with thapsigargin and release with ryanodine.  These experiments revealed that 

in control media diastolic [Ca2+]i reduced over the course of the protocol but 

that in supernatant the diastolic [Ca2+]i failed to decrease, suggesting that higher 

[Ca2+]i may contribute to the SERCA. 

The contribution of myofilament Ca2+ sensitivity and the LTCC to changes in 

SERCA activity and [Ca2+]i were experimentally ruled out.  
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The concomitant reduced SR Ca2+ content (despite an increased SERCA activity) 

and increase in Ca2+ wave frequency suggested that TbCatL may induce diastolic 

Ca2+ leak from the SR via RyR.  This was probably due to an altered SR Ca2+ 

threshold or RyR sensitivity as SR Ca2+ content is reduced.  If both SERCA and the 

RyR are altered by TbCatL, then the effects may be mediated by a common 

secondary messenger.  Both RyR activity and SERCA activity via modified 

inhibition by PLB can be affected by PKA and/or CaMKII, two phosphorylating 

enzymes normally activated with β-adrenergic stimulation.  Therefore PKA and 

CaMKII inhibitors were tested using the high-throughput cardiomyocyte 

population assay.  This identified that the increase in spontaneous contractile 

events could be abolished by CaMKII inhibition but not PKA inhibition.  With this 

information, the triple caffeine protocol and SR inhibition protocols were 

repeated with CaMKII inhibition.  These experiments identified that the Ca2+ 

transient decline was no longer faster and SR Ca2+ content was the same for 

control media and supernatant; therefore, supporting the hypothesis that both 

RyR and SERCA activity were increased by the supernatant.  Interestingly, the 

increase in diastolic [Ca2+]i in the inhibited SR experiments was not prevented by 

CaMKII inhibition. 

Further work in future would be to identify a sarcolemmal target for TbCatL.  In 

the case of T. cruzi the cathepsin-L-like cysteine protease cruzipain targets the 

pertussis toxin sensitive G-protein coupled receptor(508).  For T. brucei spp. in 

the BBB endothelial cell traversal model one suggested target is another G-

protein coupled receptor activated by proteases called protease-activated-

receptor 2 (PAR-2)(66).  Therefore, a similar target may be involved in the cardiac 

effects presented in this thesis.  Preliminary work performed since completion of 

this work has ruled out PAR-2 in the heart, and so another target remains to be 

discovered.  Also worth investigating further are individual channel currents.  

Although the current study did not show any significant effects on NCX there 

may be more subtle differences only identifiable by direct measurements.  The 

NCX can reverse and be a potential source of Ca2+ influx possibly explaining the 

observed increase in diastolic [Ca2+]i without an L-type component.  Although 

often described as less important there are other Ca2+ handling mechanisms in 

the cardiomyocyte that could be further investigated such as the alternative SR 
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Ca2+ release channel the IP3 receptor or the alternative Ca2+ extrusion 

mechanisms like the plasma-membrane Ca2+ ATPase (PMCA).  

7.4 In Vivo Model of Infection and the Cardiac Effects of 
T. b. brucei 

Traditionally much of the focus of research into HAT has been the neurological 

effects and with AAT the anaemia and muscle atrophy.  Therefore in vivo models 

of infection have focused on these signs.  As a result the development of a 

model of infection that enabled examination of the cardiac effects was required.  

Two strains of T. b. brucei were used; Lister 427 and TREU 927.  Although Lister 

427 proved useful for in vitro studies, its inability to differentiate from long-

slender bloodstream form to short-stumpy form resulted in an in vivo model that 

did not last longer than 3-4 days without killing the host.  As a result it was 

deemed that short ECGs from anaesthetised animals over the course of a 4 day 

infection with 427 was a model with limitations.  The 927 strain was a better 

candidate for analysing chronic infections, as it is pleomorphic, i.e. 

differentiates to the short-stumpy form in a density-dependent manner, giving 

rise to fluctuating parasitaemias that mimic natural infections.  This enabled the 

model to be continued for a longer period of time (up to 2 weeks).  Biopotential 

telemetry devices were implanted to record the ECG continuously from 

conscious animals exhibiting normal behaviours.  The result was a more realistic 

model and it showed a significant increase in ventricular arrhythmias.  

Therefore, this may be a useful model in the future testing of cardiovascular 

effects of potential new drugs and testing whether TbCatL inhibition can reduce 

the occurrence of arrhythmias.  Future development of the model would be a 

longer term study extending to the duration of clinical infections lasting several 

weeks to months to estimate to relative contributions of a direct TbCatL effect 

and the traditional immune/inflammatory component.  There is scope to 

combine cardiovascular monitoring with existing infection models of 

trypanosomiasis.  Combination with new techniques such as in vivo imaging 

systems (IVIS) that use trypanosomes modified with either fluorescent proteins 

or reporter proteins such as luciferase enable visualisation of the course and 

distribution of infection including the CNS(555).  Therefore, IVIS combined with 

biopotential recording could help determine if there is a correlation with 

presence of trypanosomes or whether it is the perimyocarditis.  Such a model 
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may also be useful to test new treatment strategies.  For example, if TbCatL is 

responsible for both BBB traversal and cardiac arrhythmias then IVIS with ECG 

telemetry can test both CNS and cardiac response to TbCatL inhibition.  If 

successful, then potentially progression of HAT to Stage II can be prevented 

enabling the less toxic Stage I drugs in current use to be used instead of the 

more toxic Stage II drugs required to cross the BBB.        

7.5 The Cardiac Effects of Endogenous Extracellular 
Cathepsin-L 

The fact that TbCatL is involved in arrhythmogenic Ca2+ handling in 

cardiomyocytes is interesting.  There are many cardiovascular conditions that 

have abnormal Ca2+ dynamics at the centre of their pathophysiology such as 

heart failure and ischaemia/reperfusion injury.  Of particular note is the role 

that cathepsins have in many of these conditions.  In human clinical patients 

with coronary heart disease there is an increase in circulating levels of 

endogenous cathepsin-L.  Since cathepsin-L can be increased in some cardiac 

diseases and TbCatL can elicit arrhythmogenic releases of Ca2+ in African 

trypanosomiasis the hypothesis arose as to whether the characteristic 

arrhythmias of ischaemia/reperfusion can be caused by raised mammalian 

cathepsin-L. 

There is no literature available on the levels of cathepsin-L for 

ischaemia/reperfusion.  Therefore the first step was to identify if cathepsin-L 

activity could be detected in the coronary effluent of ex vivo hearts that had 

undergone ischaemia/reperfusion experimentally on a Langendorff perfusion 

apparatus.  Using an assay based on cleavage of a fluorescent substrate 

cathepsin-L activity was identified in effluents from hearts that had undergone 

the protocol but not in control hearts that were perfused throughout.  In 

addition, a preliminary study revealed that serum samples from human patients 

that had suffered a myocardial infarction (MI) had elevated levels of cathepsin-L 

supporting the ex vivo heart data.  The same patients also had cardiac magnetic 

resonance imaging on their hearts 6 months after initial presentation to assess 

cardiac function and infarct size.  Although the numbers of patients were very 

low, the initial findings showed a strong correlation of post intervention 

cathepsin-L level and subsequent severity of signs at 6 months.  Specifically 
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whole heart fractional shortening reduced as the cathepsin-L level increased and 

infarct size increased with increased cathepsin-L.  These are interesting findings 

that warrant further investigation.   

Given the effects of TbCatL on Ca2+ handling a similar set of experiments to 

Chapter 3 were performed with recombinant mouse cathepsin-L (rmCatL) on rat 

ventricular cardiomyocytes.  LASER-scanning confocal microscopy revealed a 

similar increase in Ca2+ wave frequency with rmCatL to supernatant perfused 

cardiomyocytes suggesting a similar diastolic Ca2+ leak.  Epifluorescence 

experiments identified a reduction in SR Ca2+ content but also a reduction in 

stimulated Ca2+ transient amplitude which differs from the TbCatL response.  

Interestingly when several different concentrations (as reported in a range of 

papers(413;425;426)) of rmCatL were used there was a concentration dependent 

effect on the reduction of Ca2+ transient amplitude and SR Ca2+ content.  The 

reduction was matched in rabbit ventricular cardiomyocytes, which exhibit 

similar Ca2+ handling properties to human ventricular cardiomyocytes.  The 

observed Ca2+ handling phenotype resembles that of cardiomyocytes isolated 

from patients and animal models with heart failure.  Therefore, there may be 

similar mechanisms involved.  No mechanistic studies with mammalian 

cathepsin-L have been performed yet, but this work will be continued focusing 

on Ca2+ handling protein function and quantity as well as potential targets and 

response to specific cathepsin-L inhibition.  In addition the study has since 

further expanded to incorporate both ex vivo and in vivo models.  Initial findings 

are that cardiac function post ischaemia is improved in ex vivo hearts and in vivo 

following pre-treatment with a cathepsin-L inhibitor.  This makes an attractive 

target for potential treatment in patients with ischaemic heart disease and 

following myocardial infarction that could aid in improving survivability. 

7.6 Final Conclusions 

The working hypothesis from Chapters 3 and 4 is that TbCatL acts on a yet to be 

identified sarcolemmal target which results in an elevation of intracellular Ca2+.  

This elevation in [Ca2+]i activates CaMKII which phosphorylates PLB decreasing 

SERCA inhibition and thereby enhancing its activity, and which also 

phosphorylates the RyR increasing its Ca2+ sensitivity and leak (Figure 7.1).  This 

is the first time African trypanosomes have been shown to have a direct effect 
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on the heart independent of an immune/inflammatory response.  Moreover, this 

pathogenic mechanism provides a platform to support future investigations that 

centre on inactivation of the effects of TbCatL via drugs that act on SR/ER-

mediated Ca2+ signalling in order to address the neurological and cardiovascular 

pathology associated with HAT.  Previous studies have shown that arrhythmias 

associated with disrupted SR function can be treated with flecainide and K201 

(JTV-519)(627) and this suggests a potential therapeutic approach for treatment of 

TbCatL induced cardiac dysfunction and other TbCatL mediated pathologies.  

 

Figure 7.1: Proposed mechanism for TbCatL action on cardiomyocyte Ca2+ handling. 
 

In the case of endogenous cathepsin-L the findings are very much in the 

preliminary stages but offers very interesting prospects for future study and 

development.  Increased levels of cathepsin-L appear to have deleterious 

consequences for cardiomyocyte Ca2+ handling resembling the phenotype of 

heart failure.  Hearts that have undergone experimental ischaemia/reperfusion 

injury and patients that have had a myocardial infarction have increased levels 

of cathepsin-L.  Preliminary results from follow-up work show that inhibition of 

cathepsin-L can have a beneficial effect on cardiac function after ischaemia.  
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Therefore cathepsin-L and its inhibition is an attractive target for the treatment 

of ischaemia/reperfusion injury.  
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