
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Hamilton, Gregg (2014) Distributed virtual machine migration for cloud
data centre environments. MSc(R) thesis.

http://theses.gla.ac.uk/5077/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/5077/

DISTRIBUTED V IRTUAL MACHINE
M IGRATION FOR CLOUD DATA CENTRE

ENVIRONMENTS

GREGGHAMILTON

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science by Research

SCHOOL OFCOMPUTING SCIENCE

COLLEGE OFSCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

MARCH 2014

c© GREGGHAMILTON

Abstract

Virtualisation of computing resources has been an increasingly common practice in recent

years, especially in data centre environments. This has helped in the rise of cloud comput-

ing, where data centre operators can over-subscribe their physical servers through the use of

virtual machines in order to maximise the return on investment for their infrastructure. Sim-

ilarly, the network topologies in cloud data centres are also heavily over-subscribed, with the

links in the core layers of the network being the most over-subscribed and congested of all,

yet also being the most expensive to upgrade. Therefore operators must find alternative, less

costly ways to recover their initial investment in the networking infrastructure.

The unconstrained placement of virtual machines in a data centre, and changes in data centre

traffic over time, can cause the expensive core links of the network to become heavily con-

gested. In this thesis, S-CORE, a distributed, network-load aware virtual machine migration

scheme is presented that is capable of reducing the overall communication cost of a data

centre network.

An implementation of S-CORE on the Xen hypervisor is presentedand discussed, along

with simulations and a testbed evaluation. The results of the evaluation show that S-CORE

is capable of operating on a network with traffic comparable to reported data centre traffic

characteristics, with minimal impact on the virtual machines for which it monitors network

traffic and makes migration decisions on behalf of. The simulation results also show that

S-CORE is capable of efficiently and quickly reducing communication across the links at

the core layers of the network.

Acknowledgements

I would like to thank my supervisor, Dr. Dimitrios Pezaros, for his continual encouragement,

support and guidance throughout my studies. I also thank Dr.Colin Perkins, for helping me

gain new insights into my research and acting as my secondarysupervisor.

Conducting research can be a lonely experience, so I extend mythanks to all those I shared

an office with, those who participated in lively lunchtime discussions, and those who played

the occasional game of table tennis. In alphabetical order:Simon Jouet, Magnus Morton,

Yashar Moshfeghi, Robbie Simpson, Posco Tso, David White, Kyle White.

Table of Contents

1 Introduction 1

1.1 Thesis Statement . 2

1.2 Motivation . 2

1.3 Contributions . 3

1.4 Publications . 4

1.5 Outline . 4

2 Background and Related Work 5

2.1 Data Centre Network Architectures 5

2.2 Data Centre Traffic Characteristics 7

2.3 Traffic Engineering for Data Centres 9

2.4 Virtual Machine Migration .. 11

2.4.1 Models of Virtual Machine Migration 12

2.5 System Control Using Virtual Machine Migration 13

2.6 Network Control Using Virtual Machine Migration 14

2.7 Discussion . 15

3 The S-CORE Algorithm 16

3.1 A Virtual Machine Migration Algorithm 16

4 Implementation of a Distributed Virutal Machine Migration A lgorithm 19

4.1 Token Policies . 19

4.2 Implementation Setup .23

4.2.1 Implementation in VM vs Hypervisor23

4.2.2 Flow Monitoring . 24

4.2.3 Token Passing . 25

4.2.4 Xen Wrapper . 26

4.2.5 Migration Decision . 27

5 Evaluation 30

5.1 Simulations . 30

5.1.1 Traffic Generation . 31

5.1.2 Global Optimal Values . 31

5.1.3 Simulation Results . 32

5.1.4 VM stability . 34

5.2 Testbed Evaluation . 34

5.2.1 Testbed Setup . 34

5.2.2 Module Evaluation . 36

5.2.3 Network Impact . 39

5.2.4 Impact of Network Load on Migration40

5.3 Discussion . 42

6 Conclusions 45

6.1 Thesis Statement . 45

6.2 Future Work . 46

6.2.1 Incorporation of System-Side Metrics 47

6.2.2 Using History to Forecast Future Migration Decisions. 47

6.2.3 Implementation in a Lower-Level Programming Language 47

6.3 Summary & Conclusions . 48

Bibliography 49

List of Tables

3.1 List of notations for S-CORE. 17

List of Figures

3.1 A typical network architecture for data centres. 17

4.1 The token message structure. .. . 19

4.2 The S-CORE architecture. 24

5.1 Normalised traffic matrix between top-of-rack switches. 33

5.2 Communication cost reduction with data centre flows. 33

5.3 Ratio of communication cost reduction with the distributed token policy. . . 33

5.4 Normalised traffic matrix between top-of-rack switchesafter 5 iterations. . 35

5.5 Testbed topology. 35

5.6 Flow table memory usage. 38

5.7 Flow table operation times for up to 1 million unique flows. 38

5.8 CPU utilisation when updating flow table at varying polling intervals. . . . 41

5.9 PDF of migrated bytes per migration. 41

5.10 Virtual machine migration time. 43

5.11 Downtime under various network load conditions. 43

1

Chapter 1

Introduction

The use of cloud computing has been steadily increasing in recent years for tasks from host-

ing websites to performing business processing tasks. Thishas resulted in a great change

in the way that data centres are architected and operated on aday-to-day basis. With the

costs of setting up and running a data centre requiring a large initial outlay, operators must

ensure that they can recoup the expense and maximise the timebefore they must update their

infrastructure with another outlay for expensive hardware.

Traditional ISP networks are typically sparse and mostly over-provisioned along their back-

bone, as profits for an ISP network come from their ability to provide a desired speed to the

end user. However, as cloud data centre operators turn a profit primarily from the computing

resources they can provide to customers, operators are inclined to provide as many servers as

possible to maximise the number of virtual machines (VMs) they can host on them. The cost

for interconnecting all these servers within a data centre to provide a network with capacity

great enough to allow all-to-all communication can be prohibitively expensive.

Achieving a sensible cost-to-profit ratio from a data centreis a balancing act, requiring oper-

ators to make decisions about the initial network infrastructure to ensure they see a return on

their investment. This often results in the use of Clos fat-tree style topologies that are tree-

like architectures with link capacities becoming more and more constrained and potentially

over-subscribed towards the root of the tree.

Most over-subscribed topologies, such as fat-tree, provide sufficient link capacity for VMs

at lower-level links towards the leaf of the tree, such as within racks. However, as data centre

traffic operates at short timescales and often has long-termunpredictability, a substantial

amount of traffic could be transmitted across over-subscribed network links.

Approaches to deal with link over-subscription in cloud data centre networks often consist of

routing schemes that are non-programmable and pseudo-random, or through the migration

of VMs to new locations within a data centre to reduce link congestion. Routing solutions

1.1. Thesis Statement 2

are often statically configured and do not directly target the problem of reducing congested

links, while migration solutions are often centrally controlled and can be time consuming to

come up with a near optimal solution for a new VM placement scheme.

1.1 Thesis Statement

I assert that a distributed, network-aware VM migration algorithm exploiting network moni-

toring instrumentation in end-systems can reduce congestion across heavily over-subscribed

links under realistic data centre traffic loads, with minimal overhead on the data centre in-

frastructure. I will demonstrate this by:

• Providing an implementation of a distributed VM migration algorithm that is capable

of operating within the bounds of existing data centre network architectures and traffic.

• Enabling a hypervisor to conduct network monitoring for theVMs it hosts, as well as

making migration decisions on behalf of the VMs.

• Defining a mechanism able to identify the location of a remoteVM within a data

centre.

• Evaluating the properties of the algorithm and its implementation over realistic data

centre workloads within simulation and testbed environments, showing that it can ef-

ficiently reduce network congestion, with minimal operational overhead on the infras-

tructure on which it runs.

1.2 Motivation

With the pervasive nature of cloud computing in today’s datacentres, and the related resource

over-subscription that comes with it, data centre operators require new techniques to make

better use of the limited, but expensive, resources they have. In particular, they have to ensure

they make the maximum return possible on their investment intheir infrastructure [1].

Studies have concentrated on the efficient placement, consolidation and migration of VMs,

but have typically focused on how to maximise only the server-side resources [2, 3]. How-

ever, server-side metrics do not account for the resulting traffic dynamics in an over-subscribed

network, which can negatively impact the performance of communication between VMs [4,

5].

Experiments in Amazon’s EC2 revealed that a marginal 100 msecadditional latency resulted

in a 1% drop in sales, while Google’s revenues dropped by 20% due to a 500 msec increase in

1.3. Contributions 3

search response time [6]. It is therefore apparent that something needs to be done to improve

the performance of the underlying network by reducing the congestion across it while still

maintaining the efficiency of server resource usage.

Some VM migration works have considered how to improve overall network performance

as the aim of migration schemes [7, 8]. However, such works are concerned with balancing

load across the network, rather than actively removing congestion from over-subscribed and

expensive links in the network, and often operate in a centralised manner. This leaves a

research gap for a distributed VM migration scheme that is able to actively target the links

most likely to experience congestion in a network, and iteratively remove traffic causing the

congestion to other, less congested and less over-subscribed links.

This thesis presents such a distributed VM migration scheme, aimed at reducing not just the

cost to the operator for running the data centre by making more efficient use of resources,

but also reducing congestion from core links to lower the overall communication cost in the

network.

1.3 Contributions

The contributions of this work are as follows:

• The implementation of a distributed VM migration scheme. Previous studies have fo-

cused on centrally-controlled migration algorithms that do not operate on information

local to each VM.

• A hypervisor-based network throughput monitoring module that is able to monitor

flow-level network throughput for individual VMs running upon it. Existing works

typically instrument VMs themselves, or can achieve only aggregate monitoring of

overall network throughput for each VM.

• A scheme to identify the physical location of a VM within a network topology, in order

to allow for proximity-based weightings in cost calculations. As VMs carry configura-

tion information with them when they migrate, they do not have any location-specific

information. The scheme for location discovery here provides a method of identifying

VM locations, and proximities, without the need to consult acentral placement table.

• An evaluation of the performance that the distributed VM migration scheme should be

able to achieve, in terms of migration times, and the impact on the systems on which

it runs.

1.4. Publications 4

1.4 Publications

The work in this thesis has been presented in the following publication:

• “Implementing Scalable, Network-Aware Virtual Machine Migration for Cloud Data

Centers”,

F.P. Tso, G. Hamilton, K. Oikonomou, and D.P. Pezaros,

in IEEE CLOUD 2013, June 2013

1.5 Outline

The remainder of this thesis is structured as follows:

• Chapter 2 presents an overview existing work on data centre network architectures and

their control schemes. There is a discussion of common data centre architectures and

the control loop mechanisms used to maintain network performance.

• Chapter 3 provides a description of the distributed migration algorithm upon which

this work is based.

• Chapter 4 describes a working implementation of the scheme based on the algorithm

described in Chapter 3. The individual components required for the successful im-

plementation of a distributed migration scheme with an existing hypervisor are intro-

duced.

• Chapter 5 details an evaluation of the distributed migrationalgorithm in both simula-

tion and testbed environments.

• Chapter 6 summarises the findings and contributions of this work, and discusses the

potential for expansion into future work.

5

Chapter 2

Background and Related Work

This chapter presents a background on data centre architectures, and the properties of the

traffic that operate over them. Control loops for managing global performance within data

centres are then discussed, from routing algorithms to migration systems.

2.1 Data Centre Network Architectures

The backbone of any data centre is its data network. Without this, no machine is able to

communicate with any other machine, or the outside world. Asdata centres are densely

packed with servers, the cost of providing a network betweenall servers is a major initial

outlay for operators [1] in terms of networking equipment required.

To limit the outlay required for putting a network infrastructure in place, a compromise often

has to be reached between performance and cost, such as over-subscribing the network at its

core links.

Due to the highly interconnected nature of data centres, several scalable mesh architectures

have been designed to provide networks of high capacity withgreat fault tolerance. DCell [9]

is a scalable and fault-tolerant mesh network that moves allpacket routing duties to servers,

and relies upon its own routing protocol. BCube [10] is anotherfault-tolerant mesh network

architecture designed for use in sealed shipping containers. As components fail over time, the

network within the shipping container exhibits a graceful performance degradation. BCube

makes use of commodity switches for packet forwarding, but doesn’t yet scale above a single

shipping container, making it unsuitable for current data centre environments.

While mesh networks can provide scalable performance boundsas the networks grow, the

wiring schemes for mesh networks are often complex, which can make future maintenance

and fault-finding a non-trivial task. The high redundancy oflinks in mesh networks that

2.1. Data Centre Network Architectures 6

happens to allow for good fault tolerance also increases theinfrastructure setup cost due to

the volume of networking hardware required.

The more commonly used alternative to mesh networks in the data centre are multi-tiered

tree networks. The root of the tree, which is the core of the network, has switches or routers

that provide a path between any two points within a data centre. From the root, the network

branches out to edge, or leaf, interconnects that link individual servers into the network. In

a multi-rooted tree, there are often two or more tiers of routers providing several levels of

aggregation, or locality, within which shorter paths may betaken, without the need for all

packets to pass through the core of the network. Multi-tiered trees are also often multi-rooted

trees, providing redundant paths among any two points in thenetwork, while still requiring

less wiring and less network hardware than mesh networks.

The most often used architecture in data centres is a slight variation of a multi-tiered tree,

known as a fat tree, which is based upon a communication architecture used to interconnect

processors for parallel computation [11]. Instead of having links of equal capacity within

every layer of the tree, bandwidth capacity is increased as links move away from edges and

get closer to the core, or root, of the tree. Having increasedcapacity as we move towards

the core of the tree can ensure that intra-data centre trafficthat may have to traverse higher-

level links has enough capacity for flows between many servers to occur without significant

congestion.

The costs of housing, running and cooling data centres continues to rise, while the cost

of commodity hardware, such as consumer-level network routers and switches, continues

to drop. Data centre operators have not been blind to this, and have adapted multi-rooted

fat tree topologies to make use of cheap, commodity Ethernetswitches that can provide

equal or better bandwidth performance than hierarchical topologies using expensive high-

end switches [12].

A typical configuration for a fat tree network is to provide 1 Gbps links to each server, and

1 Gbps links from each top of rack switch to aggregation switches. Further layers up to the

core then provide links of 10 Gbps, increasing capacity for traffic which may have to traverse

the core of the network. Amazon is known to use such an architecture [13].

Tree-like networks are typically over-subscribed from ratios of 1:2.5 to 1:8 [12], which can

result in serious congestion hotspots in core links. VL2 [14] has been developed in order

to achieve uniform traffic distribution and avoid traffic hotspots by scaling out the network.

Rather than make use of hierarchical trees, VL2 advocates scaling the network out horizon-

tally, providing more interconnects between aggregate routers, and more routes for packets

to traverse. A traffic study in [14] found data centre traffic patterns to change quickly and

be highly unpredictable. In order to fully utilise their architecture with those findings, they

made use of valiant load balancing, which makes use of the increased number of available

2.2. Data Centre Traffic Characteristics 7

paths through the network by having switches randomly forward new flows across symmetric

paths.

While some data centre architecture works attempt to expand upon existing network topol-

ogy designs, PortLand [15] attempts to improve existing fattree-style topologies. PortLand

is a forwarding and routing protocol designed to make the operation and management of a

dynamic network, such as a cloud data centre network, where VMs may be continually join-

ing and leaving the network, more straightforward. It consists of a central store of network

configuration information and location discovery, as well as the ability to migrate a VM

transparently without breaking connectivity to the rest ofthe hosts within the network. The

transparent VM migration is achieved by forcing switches toinvalidate routing paths and

update hosts communicating with that VM, and forwarding packets already in transit to the

new location of the migrated VM. PortLand merely adapts existing architectures to provide

a plug-and-play infrastructure, rather than attempting toimprove performance in any serious

way. This is revealed through the evaluation, which measured the number of ARP messages

required for communication with the central network manager component as the number of

hosts grows, rather than evaluating the protocol under varying application traffic loads.

Multi-rooted tree architectures are currently the most used architecture for data centre net-

works but they do have problems with high over-subscriptionratios. While studies such as

VL2 have further adapted multi-rooted tree architectures,they still do not completely over-

come the over-subscription issue, requiring other, more targeted action to be taken.

2.2 Data Centre Traffic Characteristics

Several data centre traffic studies have been produced. As part of the VL2 work, a study

of a 1,500 server cluster was performed over two months [14].The findings of the traffic

study were that 99% of flows were smaller than 100 MB, but with 90% of the data being

transferred in flows between 100MB and 1GB. The break at 100 MB is down to the file

system storing files in 100 MB-sized chunks. In terms of flows, the average machine has

around 10 concurrent flows for 50% of the time, but will have more than 80 concurrent

flows at least 5% of the time, with rarely more than 100 concurrent flows. The ratio of traffic

within the data centre to traffic outside the data centre is 4:1. In terms of traffic predictability,

they take a snapshot of the traffic matrix every 100s, finding that the traffic pattern changes

constantly, with no periodicity to help in predictions of future traffic. To summarise, the VL2

study reveals that the majority of flows consist of short, bursty traffic, with the majority of

data carried in less than 1% of the flows, and most machines have around 10 flows for 50%

of the time, and the traffic changes rapidly and is unpredictable by nature.

Other studies reinforce the fact that data centre traffic is bursty and unpredictable [16, 17].

2.2. Data Centre Traffic Characteristics 8

Kandula et al. [16] performed a study into the properties of traffic on a cluster of 1,500

machines runningMapReduce[18]. Their findings on communication patterns show that

the probability of pairs of servers within a rack exchangingno traffic is 89% and 99.5% for

server pairs in different racks. A server within a rack will also either talk to almost all other

servers within a rack, or fewer than 25%, and will either not talk to any server outside the

rack, or talk to 1-10% of them. In terms of actual numbers, themedian communication for a

server is two servers within a rack and four servers outside its rack. In terms of congestion,

86% of links experience congestion lasting over 10 seconds,and 15% experience congestion

lasting over 100 seconds, with 90% of congestion events lasting between 1 to 2 seconds.

Flow duration is less than 10 seconds for 80% of flows, with 0.1% of flows lasting for more

than 200 seconds, and most data is transferred in flows lasting up to 25 seconds, rather than

in the long-lived flows. Overall, Kandula et al. have revealed that very few machines in the

data centre actually communicate, the traffic changes quitequickly with many short-lived

flows, and even flow inter-arrivals are bursty.

A study of SNMP data from 19 production data centres has also been undertaken [17]. The

findings are that, in tree-like topologies, the core links are the most heavily loaded, with edge

links (within racks) being the least loaded. The average packet size is around 850 bytes, with

peaks around 40 bytes and 1500 bytes, and 40% of links are unused, with the actual set of

links continuously changing. The observation is also made that packets arrive in a bursty

ON/OFF fashion, which is consistent with the general findings of other studies revealing

bursty and unpredictable traffic loads [14, 16].

A more in-depth study of traffic properties has been providedin [19]. SNMP statistics from

10 data centres were used. The results of the study are that many data centres (both private

and university) have a diverse range of applications transmitting data across the network,

such as LDAP, HTTP, MapReduce and other custom applications.For private data centres,

the flow inter-arrival times are less than 1 ms for 80% of flows,with 80% of the flows also

smaller than 10KB and 80% also lasting less than 11 seconds (with the majority of bytes in

the top 10% of large flows). Packet sizes are also grouped around either 200 bytes and 1400

bytes and packet arrivals exhibited ON/OFF behaviour, withthe core of the network having

the most congested links, 25% of which are congested at any time, similar to the findings

in [17]. With regard to communication patterns, 75% of traffic is found to be confined within

racks.

The data centre traffic studies discussed in this section have all revealed that the majority

of data centre traffic is composed of short flows lasting only afew seconds, with flow inter-

arrival times of less than 1 ms for the majority of flows, and packets with bursty inter-arrival

rates. The core links of the network are the most congested indata centres, even although

75% of traffic is kept within racks. All these facts can be summarised to conclude that

data centre traffic changes rapidly and is bursty and unpredictable by nature, with highly

2.3. Traffic Engineering for Data Centres 9

congested core links.

2.3 Traffic Engineering for Data Centres

In order to alleviate some of the congestion that can occur with highly unpredictable intra-

data centre traffic several control loop schemes have been devised. The majority of control

loops available nowadays are for scheduling the routing of individual flows to avoid, or limit,

congested paths.

Multi-rooted tree architectures provide at least two identical paths of equal cost between

any two points in the network. To take advantage of this redundancyEqual-Cost Multi-Path

(ECMP)routing [20] was developed. In ECMP, a hash is taken over packet header fields that

identify a flow, and this hash is used by routers to determine the next hop a packet should take.

By splitting a network and using a hash as a key to routing, different hashes will be assigned

to different paths, limiting the number of flows sharing a path. A benefit of the hashing

scheme is that TCP flows will not be disrupted or re-routed during their lifetime. However,

ECMP only splits by flow hashes, and does not take into account the size of flows. Therefore,

two or more large flows could end up causing congestion on a single path. Similarly, hashing

collisions can occur, which can result in two large flows sharing the same path.

Valiant Load Balancing (VLB), used in VL2 [14], is a similar scheme to ECMP. However,

rather than computing a hash on a flow, flows are bounced off randomly assigned interme-

diate routers. While the approach may more easily balance flows, as it uses pseudo-random

flow assignments rather than hash-based assignments, it is not any more intuitive than ECMP.

By not targeting the problem of unpredictable traffic, and merely randomising the paths for

flows, link congestion can still occur.

While the works discussed above make unintuitive decisions about routing flows in the data

centre, there has been a move towards works that dynamicallyadapt to the actual traffic

characteristics.

Hedera[21] is a flow scheduling system designed to provide high bisection bandwidth on

fat tree networks. Built upon PortLand and ECMP, it uses adaptive scheduling to identify

large flows that have been in existence for some length of time. After identifying large flows,

it uses simulated annealing to schedule paths for flows to achieve close-to-optimal bisec-

tion bandwidth. Their evaluations found that a simple first-fit approach for assigning large

flows beat ECMP, and their simulated annealing approach beat both ECMP and the first-fit

approach. However, as they did not have access to data centretraffic traces, they evaluated

their algorithms upon synthetic traffic patterns designed to stress the network, rather than

attempting to generate synthetic traffic patterns using reported data centre traffic character-

istics.

2.3. Traffic Engineering for Data Centres 10

MicroTE [22] makes use of short-term predictability to schedule flows for data centres.

ECMP and Hedera both achieve 15-20% below the optimal routingon a canonical tree topol-

ogy, with VL2 being 20% below optimal with real data centre traces [22]. While studies

have shown data centre traffic to be bursty and unpredictableat periods of 150 seconds or

more [16, 17], the authors of MicroTE state that 60% of top of rack to top of rack traffic is

predictable on the short timescales of between 1.6 and 2.6 seconds, on average, in cloud data

centres. The cause of this is said to be during thereducestep in MapReduce, when clients

transfer the results of calculations back to a master node ina different rack. MicroTE is

implemented using theOpenFlow[23] protocol that is based on a centralised controller for

all switches within a network. When a new flow arrives at a switch, it checks its flow table

for a rule. If no rule exists for that flow, it contacts a singlecentral OpenFlow controller that

then installs the appropriate rule in a switch. In MicroTE, servers send their average traffic

matrix to the central OpenFlow controller at a periodicity of 2 seconds, where aggregate top

of rack to top of rack matrices are calculated. Predictable traffic flows (flows whose average

and instantaneous traffic are within 20% of each other) are then packed onto paths and the re-

maining unpredictable flows are placed using a weighted formof ECMP, based upon remain-

ing bandwidth on available paths after predictable flows have been assigned. By re-running

the data centre traces, it is shown that MicroTE achieves slightly better performance than

ECMP for predictable traffic. However, for traffic that is unpredictable, MicroTE actually

performs worse than ECMP. An evaluation of the scalability ofMicroTE reveals that the net-

work overhead for control and flow installation messages are4MB and 50MB, respectively,

for a data centre of 10,000 servers, and new network paths canbe computed and installed in

under 1 second. While MicroTE does rely on some predictability, it provides minimal im-

provement over ECMP and can provide poorer flow scheduling than ECMP when there is no

predictability, and also has a greater network overhead than ECMP, making it unsuitable for

data centres where traffic really is unpredictable and not based upon MapReduce operations.

Another flow scheduler isDeTail [24]. It tackles variable packet latency and long flow com-

pletion time tails in data centres for deadlines in serving web pages. Link-layer-flow-control

(LLFC) is the primary mechanism used to allow switches to monitor their buffer occupancy

and inform switches preceding it on a path, using Ethernet pause frames, to delay packet

transmissions to reduce packet losses and retransmissionsthat result in longer flow com-

pletion times. Individual packets are routed through lightly loaded ports in switches using

packet-level adaptive load balancing (ALB). As TCP interprets packet reordering as packet

loss, reordering buffers are implemented at end-hosts. Finally, DeTail uses flow priorities

for deadline-sensitive flows by employingdrain bytecounters for each egress queue. Simu-

lations and testbed experiments show that DeTail is able to achieve shorter flow completion

times than flow control and priority queues alone under a variety of data centre workloads,

such as bursty and mixed traffic. Unlike ECMP and VLB, DeTail adapts to traffic in the net-

2.4. Virtual Machine Migration 11

work and schedules individual packets based on congestion,rather than performing unbal-

anced pseudo-random scheduling. However, DeTail pushes extra logic to both the switches

and end-hosts, rather than tackling the problem of placement of hosts within the network

infrastructure to achieve efficient communication.

The works above have discussed control loops in data centre networks that are focused on

traffic manipulation, typically through flow scheduling mechanisms. However, there are

ways to engineer and control data centre networks other thanby manipulating traffic alone.

The following sections discuss VM migration, and how it can be used by data centre opera-

tors to improve the performance and efficiency of their networks.

2.4 Virtual Machine Migration

Given the need for data centre operators to recover the cost of the initial outlay for the

hardware in their infrastructures, it is in their intereststo try and maximise the use of the

resources they hold.

To meet the need to recover outlay costs, hardware virtualisation has become commonplace

in data centres. Offerings such as VMware’s vSphere [25] andthe Xen hypervisor [26]

provide hardware virtualisation support, allowing many operating systems to run on a single

server, in the form of avirtual machine (VM). Hypervisors and VMs operate on the basis of

transparency. A hypervisor abstracts away from the bare hardware, and is aproxy through

which VMs access physical resources. However, the VMs themselves, which contain an

operating system image and other image-specific applications and data, should not have to

be aware that they are running on a virtualised platform, namely the hypervisor. Similarly,

with many VMs sharing a server, the VMs should not be aware of other VMs sharing the

same resources.

Xen, the most common open source hypervisor, operates on a concept of domains. Domains

are logically isolated areas in which operating systems or VMs may run. The main, and

always-present, domain isdom0. dom0 is the Xen control domain, and an operating system,

such as Ubuntu Linux [27], runs in this domain, allowing control of the underlying Xen hy-

pervisor and direct access to the physical hardware. In addition to dom0, new guest domains,

referred to asdomUcan be started. Each domU can host a guest operating system, and the

guest operating system need not know that it is running upon avirtualised platform. All calls

to the hardware, such as network access, from a domU guest must pass through dom0.

As dom0 controls hardware access for all domU guests, it mustprovide a means for shar-

ing access to networking hardware. This is achieved throughthe use of a network bridge,

either via a standard Linux virtual bridge, or via a more advanced bridge such as the Open

vSwitch [28] virtual switch. Open vSwitch provides a compatibility mode for standard Linux

2.4. Virtual Machine Migration 12

virtual bridges, allowing it to be used as a drop-in replacement for use with Xen. With a vir-

tual bridge in place in Xen’s dom0, packets from hosts running in domU domains can then

traverse the bridge, allowing communication between VMs onthe same server, or commu-

nication with hosts outside the hypervisor.

With the solutions above, instead of running services on a 1:1 ratio with servers, data centre

operators can instead run many services, or VMs, on a single server, increasing the utilisation

of the servers. With many-core processors now the norm, running many VMs on a server

can make better use of CPU resources, so that, rather than running a set of services that may

not be optimisable for parallelised operations, many VMs and other diverse and logically

separated services can be run on a single server.

In a modern data centre running VMs, it can be the case that, over time, as more VMs are

instantiated in the data centre, the varying workloads can cause competition for both server

and network resources. A potential solution to this is VM live migration [29]. Migration

allows the moving of servers around the data centre, essentially shuffling the placement of

the VMs, and can be informed by an external process or algorithm to better balance the use

of resources in a data centre for diverse workloads [2].

VM migration involves moving the memory state of the VM from one physical server to

another. To copy the memory of the VM requires stopping execution of the VM and reini-

tialising execution once the migration is complete. However, live migration improves the

situation by performing a “pre-copy” phase, where it startsto copy the memory pages of the

VM to a new destination without halting the VM itself [29]. This allows the VM to continue

execution and limit the downtime during migration. The memory state is iteratively copied,

and any memory pages modified, or “dirtied”, during the copying are then re-copied. This

process repeats until all the memory pages have been copied,at which point the VM is halted

and any remaining state copied to and reinitialised on the new server. If memory is dirtied

at a high rate, requiring large amounts of re-copying, the VMwill be halted and copied in a

“stop-and-copy” phase.

The remaining sections of this chapter will focus on variousaspects of VM migration, in-

cluding models of migration, and a variety of VM migration algorithms, identifying their

benefits and shortcomings.

2.4.1 Models of Virtual Machine Migration

While VM migration can be used to better balance VMs across theavailable physical re-

sources of a data centre [2], VM migration does incur its own overhead on the data centre

network, which cannot be ignored.

2.5. System Control Using Virtual Machine Migration 13

It has been shown that VM downtime during migration can be noticeable and can negatively

impact service level agreements (SLAs) [30]. The setup usedin the aforementioned work

was a testbed running the Apache web server, with varying SLAs attached to various tasks

such as the responsiveness of a website home page, or the availability of user login function-

ality. The testbed was evaluated using a workload generatorand a single VM migration, with

the finding that it is possible to have a 3 second downtime for such a workload. This result

reveals that migration can have a definite impact on the availability of a VM, and migration

is a task whose impact, in addition to the benefit gain after migration, must be taken into

consideration.

As VM migration carries its own cost in terms of data transferred across the network and

the downtime of a VM itself, a method for considering the impact is to generate models for

VM migration. [31] shows that the two most important factorsin VM migration are link

bandwidth and page dirty rate of the VM memory. It derives twomodels for migration: an

averagepage dirty rate andhistory-basedpage dirty rate. The models were evaluated against

a variety of workloads including CPU-bound and web server workloads, with the finding that

their models are accurate in 90% of actual migrations. This shows that migration impact can

be successfully predicted in the majority of cases, and models of VM migration have been

used in studies of migration algorithms [3, 7].

2.5 System Control Using Virtual Machine Migration

VM migration has typically been used to improve system-sideperformance, such as CPU

availability and RAM capacity, or minimising the risk of SLA violations, by performing

migrations to balance workloads throughout data centres [2, 3, 32, 33].

SandPiper [2] monitors system-side metrics including CPU utilisation and memory occu-

pancy to determine if the resources of a server or individualVM or application are becoming

overloaded and require VMs to be migrated. SandPiper also considers network I/O in its

monitoring metrics, but this can only be used to greedily improve network I/O for the VM

itself, rather than improving performance across the wholeof the network, or reducing the

cost of communication across the network. Mistral [32] attempts to optimise VM migration

as a combinatorial optimisation problem, considering power usage for servers and other met-

rics related to the cost of migration itself but it does not attempt to improve the performance

of the data centre network infrastructure. A compliment to VM migration is, if servers are

under-utilised, making better use of the server resources available by increasing the system

resources available to VMs using themin, max andshares parameters available in many

hypervisors [34] to increase the share of CPU and memory resources available to the VMs.

A wide area of concern for which VM migration is seen as a solution is maintaining SLAs

2.6. Network Control Using Virtual Machine Migration 14

and avoiding any SLA violations [33, 35], or avoiding SLA violations during migration [3].

Such works make use of workload predictability [33] and migration models to achieve their

goals [3]. Workload forecasting has also been used to consolidate VMs onto servers while

still ensuring SLAs are met [36, 37].

However, these works again make no attempt to improve the performance of the underlying

network, which is the fundamental backbone for efficient communication among networked

workloads.

2.6 Network Control Using Virtual Machine Migration

The works discussed above in Section 2.5 make no attempt to target improving the perfor-

mance of the core of the network through VM migration. This section will identify works

that specifically address the problem of maintaining or improving network performance.

Studies have attempted to use VM placement to improve the overall data centre network

cost matrix [38, 39]. VM placement is the task of initially placing a VM within the data

centre, and is a one time task. Migration can be formulated asan iterative initial placement

problem, which is the situation in [39]. However, initial placement does not consider the

previous state of the data centre, so formulating migrationas iterative placement can cause

large amounts of re-arranging, or shuffling, of VMs in the data centre, which can greatly

increase VM downtime and have a negative impact on the network, due to the large number

of VMs being moved.

Network-aware migration work has considered how to migrateVMs such that network switches

can be powered down, increasing locality and network performance, while reducing energy

costs [40]. However, the work can potentially penalise network performance for the sake of

reducing energy costs if many more VMs are instantiated and can’t be placed near to their

communicating neighbours due to networking equipment being powered down.

Remedy[7] is an OpenFlow-based controller that migrates VMs depending upon bandwidth

utilisation statistics collected from intermediate switches to reduce network hotspots and

balance network usage. However, Remedy is geared towards load-balancing across the data

centre network, rather than routing traffic over lower level, and lower cost links in the net-

work to improve pairwise locality for VMs.

Starling [8] is a distributed network migration system designed to reduce network commu-

nication cost between pairs of VMs and makes use of a migration threshold to ensure costly

migrations with little benefit to outweigh the disruption ofmigration are not carried out. Star-

ling makes use of local monitoring at VMs to achieve its distributed nature. It can achieve

up to an 85% reduction in network communication cost, although the evaluation has a strong

2.7. Discussion 15

focus on evaluating running time for applications, rather than assessing the improvement in

network cost. While Starling is novel and aims to improve network performance, it does not

make use of network topology information, such as hops between VMs, to identify traffic

passing over expensive, over-subscribed network paths, socannot actively target the act of

reducing communication cost from high layer, heavily congested links..

2.7 Discussion

In this chapter I have introduced data centre network architectures and various network con-

trol mechanisms. I discussed how resource virtualisation,through VM migration, is now

commonplace in data centres, and how VM migration can be usedto improve system-side

performance for VMs, or how load can be better balanced across the network through strate-

gic VM migration.

However, all the VM migration works in this chapter have not addressed the fundamen-

tal problem of actively targeting and removing congestion from over-subscribed core links

within data centre networks. The remainder of this thesis will attempt to address this problem

by presenting a VM migration scheme for distributed migration to reduce the overall com-

munication cost in the network, through a discussion of the implementation of the scheme

and simulation and testbed evaluations of the scheme.

16

Chapter 3

The S-CORE Algorithm

As has been identified in Chapter 2, existing VM migration algorithms do not actively con-

sider the layout of the underlying network when making migration decisions, nor do they

actively attempt to reduce traffic on the most over-subscribed network links.

This chapter summarises a distributed VM migration algorithm, S-CORE, which considers

the cost of traffic travelling over various layers in a data centre topology where each layer

can have an increasing link cost towards increasingly over-subscribed links at the the core of

the network. The aim of the algorithm in S-CORE is to iteratively reduce pairwise commu-

nication costs between VMs by removing traffic from the most costly links.

The theoretical basis behind S-CORE has previously been presented in [41] and the full theo-

retical formulation and proof behind S-CORE can be found in [42], which can be referenced

for the full details of the algorithm. A summary of the important aspects of the S-CORE

algorithm, required for the work presented in this thesis, is discussed here.

3.1 A Virtual Machine Migration Algorithm

Modern data centre network architectures are multi-layered trees with multiple redundant

links [4, 12]. An illustration of such a tree is provided in Figure 3.1, from [43].

Let V be the set of VMs in a data centre, hosted by the set of all servers S, such that every

VM u ∈ V and every server̂x ∈ S. Each VMu in the data centre is unique and it is assigned

a unique identifierIDu.

Each VM is hosted by a particular server and letA denote anallocationof VMs to servers

within the data centre. Let̂σA(u) be the server that hosts VMu for allocationA, u ∈ V and

σ̂A(u) ∈ S. LetVu denote the set of VMs that exchange data with VMu.

The data centre network topology dictates the switching androuting algorithms employed

in the data centre, and the topology in Figure 3.1 is used for the purposes of illustrating the

3.1. A Virtual Machine Migration Algorithm 17

Internet

Servers

ToR

S

AS

AR

CR

S S S

AS

AR

CR

Servers

ToR

Servers

ToR

Servers

ToR
b b b b b b

b b b

b b b AR AR

CR: Core Router
AR: Access Router
AS: Aggregate Switch

S: Switch
ToR: Top of Rack Switch

Figure 3.1: A typical network architecture for data centres.

algorithm presented here. However, the S-CORE algorithm is applicable to any data centre

topology, so the algorithm presented here is not specific to any one topology.

As shown in Figure 3.1, the topology has multiple layers, or levels, which network com-

munication can travel over. At the highest and most over-subscribed level are a set of core

routers. At the level below are access routers, which interconnect the core router and ag-

gregate switches from the level below. The aggregate switches are, in turn, connected to

switches which then connect to the top of rack switches.

Network links that connect top of rack switches to switches below the aggregate switches

will be referred to hereafter as1-level links, and those between the switches and aggregate

switches as2-level links, and so on.

Table 3.1: List of notations for S-CORE.

Notation Description
V Set of all VMs in the data centre
Vu Set of VMs that communicate with VMu
A Allocation of VMs to servers
Aopt Optimal allocation
Au→x̂ New allocation after migrationu→ x̂

ℓA(u, v) Communication level between VMsu and VMv

ci Link weight for ai-level link
λ(u, v) Traffic load between VMu and VMv per time unit
CA(u) Communication cost for VMu for allocationA
CA Overall communication cost for allocationA

u→ x̂ Migration of VM u to a new server̂x
cm Migration cost

Due to the cost of the equipment, the capacity at different levels as we progress up the tree

is typically increasingly over-subscribed, with the greatest over-subscription at the highest

3.1. A Virtual Machine Migration Algorithm 18

levels of the tree.

When a packet traverses the network between two VMs, it will incur a communication cost

(in terms of resource usage, which is the shared bandwidth ofthe network), which will

increase as the packet travels through many different levels of the topology hierarchy, due

to varying over-subscription ratios [12]. When moving up from the lowest levels to highest

levels of the hierarchy, the communication cost,ci, will increase, i.e.,c1 < c2 < c3 < c4. The

value of link weights can be determined by data centre operators by taking into account their

operational costs for setting up the different layers of their topology (i.e., more expensive

networking hardware at the core of the network than at the edges), or by using other factors

such as the over-subscription ratio of the different levelsin their network hierarchy.

The problem of communication cost reduction and the concepts of VM allocation, com-

munication level, and link weights, with important notations are formalised and listed in

Table 3.1.

Theoverall communication costfor all VM communications over the data centre is defined

as the aggregate traffic,λ(u, v), for all communicating VM pairs and all communication

levels,ℓA(u, v), multiplied by their corresponding link weightci.

CA =
∑

∀u∈V

∑

∀v∈Vu

λ(u, v)

ℓA(u,v)
∑

i=1

ci. (3.1)

LetAopt denote anoptimal allocation, such thatCAopt ≤ CA, for any possibleA. It is shown

in [42] that this problem is of high complexity and is NP-complete, so there exists no possi-

ble polynomial time solution for centralised optimisation. Even if there was, the centralised

approach would require global knowledge of traffic dynamicswhich can be prohibitively

expensive to obtain in a highly dynamic and large scale environment like a data centre.

This calls for a scalable and efficient alternative, and thuswe have formulated the following

S-CORE distributed migration policyfor VMs: A VM u migrates from a serverx to another

server̂x, provided that Equation 3.2 is satisfied, i.e., given the observed amount of aggregate

traffic, a VMu individually tests the candidate servers (for new placement) and migrates only

when the benefit outweighs any cost incurred during migration cm. As noted above, [42] can

be referred to for the full definition and proof of the S-CORE scheme.

2
∑

∀z∈Vu

λ(z, u)

ℓA(z,u)
∑

i=1

ci −

ℓAu→x̂ (z,u)
∑

i=1

ci

 > cm, (3.2)

19

Chapter 4

Implementation of a Distributed

Virutal Machine Migration Algorithm

Given the S-CORE algorithm presented in Chapter 3, a realisation of this algorithm must

be developed in order to evaluate its real-world performance and to overcome any imple-

mentation issues not covered by the theoretical algorithm,such as determining the location

between two VMs in a data centre.

This chapter describes an implementation of the S-CORE VM migration system, incorporat-

ing the S-CORE algorithm, and addresses the rationale behind the implementation choices,

as well as addressing the practical problems posed by today’s data centres on how such a

distributed algorithm may successfully and efficiently operate.

4.1 Token Policies

One of the main tasks in any VM migration algorithm is the order in which to migrate

VMs. As S-CORE operates in a distributed manner and is not controlled through a central

mechanism, VMs must explicitly know when they are allowed tomigrate. This is achieved

in this implementation through the use of a token that is passed among VMs. A basic token

contains slots, with each slot containing a VM ID and a communication level for each VM.

The structure of the basic token is shown in Figure 4.1. In order to make use of the token

policy, each VM in a data centre is assumed to have a unique identifier, which is already the

v0

b b b

v0 ⊕ 1 v0 ⊕ (|V| − 1)

Figure 4.1: The token message structure.

4.1. Token Policies 20

case in data centres (and computer networks in general) as systems would not be uniquely

reachable otherwise.

When a VM holds the token, it is able to make a migration decision for itself based upon

its current communication cost and the communication cost if it migrates elsewhere. It may

also update communication cost values for other VMs it communicates with. For example,

if VM u holds the token, thenlu can update its own token entry, as VMu is aware of its

own highest communication levelℓAu . VM u is also aware of the communication level of

those VMs it communicates with (i.e.,v ∈ Vu), and can updatelv if the new communication

cost,ℓA(u, v), is higher than the existing recorded communication cost inthe token. After

deciding whether to migrate, the VM holding the token can then pass it to the next VM listed

in the token, dependent upon the token passing policy in place.

Given the generality of S-CORE, token policies can be based on anumber of heuristics, and

can even be calculated using metrics that are gathered centrally or in a distributed manner.

The token can also be extended to provide extra information within each slot, such as the

cost of migration itself for a particular VM.

This section discusses only the operational details of eachtoken passing policy, and not

necessarily the details of initial token construction for each policy.

Four token policies were implemented for this work:

• Round-robin

• Global

• Distributed

• Load-aware

The round-robin token policy is a simplistic policy wherein a token is constructed and it

is passed from VM to VM in strict token slot order (i.e., the order in which the token was

constructed, which could be ordered by VM ID). This policy may not be the most efficient,

as it cannot skip passing the token to VMs that will not be migrated, resulting in migration

iterations potentially being wasted.

The centralisedglobal token policy gathers communication statistics over a time period and

centrally computes communication costs and a migration order dependent on the greatest

pairwise communication cost reductions for VM pairs. This can be potentially costly in

terms of the time required to perform a central migration optimisation calculation on a data

centre consisting of tens or hundreds of thousands of VMs, where communication cost data

may go stale quickly. It also has the potential to greatly impact the performance of all VMs in

the data centre as the data is transmitted to and gathered in acentral location, which is not a

4.1. Token Policies 21

desirable trait for an algorithm meant to improve the network performance or communication

efficiency of VMs.

Thedistributedtoken policy does not require a centrally calculated token.Instead, it starts

passing the token among VMs for whom network communication passes through the highest-

layer links in the network. As the highest layer core links are the most costly, and most over-

subscribed, it is a reasonable assumption to make that migration at this level is most likely

to take place over communication at lower levels, as there are higher gains to be achieved by

migrating VMs away from using high-level links.

The highest communication level for each VM is initialised to zero. The token starts by

being passed to a VM with communication passing through the highest layer and with the

lowest VM ID of all VMs communicating over that layer (which can be achieved through

a leader election algorithm in which VMs participate, but isnot discussed here). This VM

updates the token with its own communication cost, and also updates the communication cost

of any neighbouring VM, if required. After making its own migration decision, the token

is passed to the next VM communicating at that layer in the data centre. If no other VM is

available at that layer, or no other VM at that layer remains that still has to make a migration

decision, the token is passed to a VM communicating across the next-highest layer. When

all VMs and layers have been exhausted, the policy restarts from the beginning, with the VM

communicating at the highest layer with the lowest VM ID.

The details of the distributed token policy are presented inAlgorithm 1.

A feature of the distributed token policy is the ability for aVM to determine communication

costs for VMs it communicates with. This is discussed in detail in Section 4.2.5.

The final token passing policy to be introduced is the load-aware token policy. It is a vari-

ant of the distributed token policy and considers aggregatenetwork load of incoming and

outgoing traffic for each VM. Unlike the distributed token policy, which passes the token to

VMs at the same communication level in VM ID order, the load-aware policy passes the to-

ken among VMs at the same communication level, starting withto the VM with the highest

aggregate load in that level first. This requires a small number of comparisons before the

token is passed to the VM with the next-highest aggregate load (or the VM with the highest

aggregate load in the next communication level). However, as migration is expected to be

most likely to happen at the higher layers, and the greatest cost reductions can be expected

from migrations at higher layers at the core of the network, this could allow for a more effi-

cient migration phase, and allow the state of all VM placements in the data centre to reach

close-to-optimal sooner than in the distributed token policy. Unlike the global token policy,

which requires central aggregation of statistics and a central calculation, which can be costly

and unscalable, the load-aware token policy is able to make use of statistics available locally

at VMs.

4.1. Token Policies 22

Algorithm 1 Distributed Token Policy

1: cl← lu ⊲ cl maintains the current value oflu
2: found← FALSE ⊲ Flag regarding next VM

3: for ∀v ∈ Vu do ⊲ Update VMs connected tou
4: if lv < ℓA(u, v) then
5: lv ← ℓA(u, v)
6: end if
7: end for

8: z ← u⊕ 1 ⊲ Pick the next VM afteru
9: while cl ≥ 0 && !found do

10: while lz 6= cl do
11: z ← z ⊕ 1 ⊲ Pick the following VM
12: end while
13: if lz ← cl then
14: found← TRUE ⊲ Next node is found
15: else ⊲ Next node is not found at this level
16: cl← cl− 1 ⊲ Go to a lower level
17: z ← v0 ⊲ and start from the beginning
18: end if
19: end while

20: if !found then ⊲ No unchecked VMs are left
21: Pick VM z : minIDx{∀x ∈ V : lx = max∀v∈V(lv)}
22: end if
23: Sendtoken to VM z

4.2. Implementation Setup 23

The four token policies discussed above have been implemented as part of the S-CORE

migration system, the implementation details of which are now introduced.

4.2 Implementation Setup

This section discusses the implementation-specific details and problems that had to be over-

come to provide a real-world implementation for the S-CORE migration scheme.

S-CORE was implemented on top of the Xen [44] hypervisor, running Ubuntu 12.04 as

dom0 (domain zero, the control domain started by Xen on boot,and which controls all

guest domain VMs). In order to communicate with and control Xen, we used thexm [45]

management interface. xm is written in Python and controls all VM duties within Xen, such

as VM instantiation, migration and probing of VM information and state.

To allow for easy communication with the functions of xm required for S-CORE, and given

the distributed and periodic nature of the algorithm where ahypervisor must make a migra-

tion decision only when a co-located VM receives the token, S-CORE has been implemented

in Python.

To enable network communication between co-located VMs on aserver, as well as between

VMs and the outside world, a network bridge is created in dom0through which the net-

work traffic to and from all VMs on a physical host passes. Whilethe basic Linux bridge

utilities offer limited capabilities and do not allow access to individual flow statistics, Open

vSwitch [28] can be used as a drop-in replacement with Linux bridge compatibility enabled.

Open vSwitch provides flow-level access and manipulation toenable flow-level monitoring

at the hypervisor level for all local VMs, rather than on a perVM basis.

4.2.1 Implementation in VM vs Hypervisor

The S-CORE algorithm expects VMs to pass the token amongst themselves and make their

own migration decisions. However, this is unsuitable in practice. In system virtualisation,

the general paradigm is that virtualised hosts should not beaware that they are running within

a VM. Therefore, the hypervisor should be transparent to theVM, and a VM should have no

direct control communication to the hypervisor on which it runs.

As the hypervisor initiates and performs VM migration, thiscreates a problem if a VM itself,

which is not aware of the hypervisor, wishes to migrate. Enabling or adding any such ability

to VMs would violate the fundamental transparency between VMs and their hypervisor.

Since the hypervisor can monitor all network traffic to and from each VM it hosts, the above

problem was avoided by implementing S-CORE within dom0 of the Xen hypervisor itself,

4.2. Implementation Setup 24

dom0

Open vSwitch

domU domU domUdomU

bridges

Xen

Flow Monitoring

Token Passing

Migration
Decision

S-CORE

Figure 4.2: The S-CORE architecture.

instead of within VMs. The modular architecture of S-CORE is shown in Figure 4.2. The

benefit of such a modular architecture is not only to keep transparency intact but also to make

the system easily upgradable.

As the hypervisor is transparent to resident VMs, VMs cannotdirectly instantiate or conduct

their own migration. By opting to run S-CORE within dom0, takinga migration decision at

the level of dom0 greatly simplifies the implementation of the algorithm. New communica-

tion channels between the VM and hypervisor do not have to be implemented to allow VMs

to initiate migration, so the transparent view that VMs haveof the platform they are running

on does not need to be broken.

While some works do follow the path of removing the aspect of transparency from the

VM [2], there are other benefits to be gained by not instrumenting VMs themselves. With

many public cloud providers in existence enabling users to run their own VMs, instrumenting

the VMs becomes impossible, unless providers wish to supplyusers with their own restricted

VM images. While there are also many private cloud data centres running VMs, it can still be

difficult to instrument VMs themselves, as many different corporate teams may work within

the same data centre and have different requirements, causing them to result to rolling their

own VM images.

4.2.2 Flow Monitoring

To enable an accurate measure of the aggregate throughput between communicating VMs

some form of continual gathering of statistics for flows is required. Open vSwitch provides

per-flow statistics, however, it only maintains flows for as long as they are active and discards

any inactive flows after 5 seconds, hindering the accumulation of any long-term history. To

4.2. Implementation Setup 25

overcome this limitation, a custom flow table for storing flow-level statistics was developed.

For the purposes of S-CORE, the flow table must support the following operations:

• Fast addition of new flows

• Updating existing flows

• Retrieval of a subset of flows, by IP address

• Access to the number of bytes transmitted per flow

• Access to flow duration, for calculation of throughput

The flow table will be periodically updated through polling Open vSwitch for datapath statis-

tics, allowing for the accumulation of flow statistics for aslong as is required. Flows are

stored from when they start until a migration decision is made for a VM. As the most fre-

quent operations on S-CORE’s flow table is the addition of new flows or the updating of

existing flow counters, we require the ability to easily add new flows, and to also perform

quick lookups and updates of existing flows. To achieve this,we use a hash table structure

to store flow data. Each entry stores the MAC address associated with a particular source IP

and a hash table for quick lookup of the destination flow data,using the source IP address as

a key. Each destination hash table is keyed by destination IP, and stores protocol type, source

and destination ports, the number of bytes transmitted in that flow, and a timestamp of when

the flow was started. Open vSwitch identifiesdatapathsas a flow in a single direction, so

bidirectional flows are composed of two individual datapaths. To address this, two of our

flow table data structures are used, with the second storing destination IP addresses as the

main key, allowing fast and easy lookup of bidirectional flows.

Storing both the source and destination flow data structuresallows quick addition of, quick

retrieval of, and quick updating of flows by both source and destination addresses. In partic-

ular, it allows quick and easy retrieval of flows by IP address, so that all flows belonging to

a VM can be retrieved, and the aggregate of those flows to otherVMs can be calculated.

4.2.3 Token Passing

S-CORE is a distributed migration system, requiring the use ofa token passed between VMs

in order to allow the localized migration decisions to take place. As discussed in Section 4.1,

many token policies can be defined, which determine how the token is passed between VMs,

and how each VM must decide whether or not it should migrate. We have implemented four

token passing policies, and the underlying details of how the token passing mechanism is

implemented in S-CORE will be discussed in this section.

As a recap, the token passing policies implemented are:

4.2. Implementation Setup 26

• Round-robin

• Global

• Distributed

• Load-aware

When a VM receives a token for which its VM ID is the next entry, the concerned VM needs

to evaluate the overall communication cost between itself and all neighbors it communicates

with.It must then evaluate if it can achieve a lower overall communication cost by migrating

to a different physical host (or hypervisor). If a lower communication cost is achievable and

the destination host has available resources, then migration should take place.

As each host in a network must be accessible via a unique IP address, the IPv4 address of a

VM has been used as a 32-bit VM ID carried within each token slot. Using the IPv4 address

as the VM index also provides the benefit of allowing the tokento be sent directly next to the

VM ID of the next VM, rather than having to perform some form ofID-to-address mapping.

To efficiently pack the token for network transmission, it isstored and transmitted as a block

of slots of 32-bit and 8-bit unsigned integers, where the 8-bit unsigned integer holds the

communication level for a VM.

Since the implementation stores IP addresses as VM IDs and passes the token to each IP

address in turn, a question arises: How does the dom0 of the hypervisor acquire the token?

Instead of running a token listening server on each VM, a token listening server runs on a

known port in dom0 of each hypervisor. For the token server toreceive the token, a NAT

redirect is installed in dom0’siptables, redirecting messages for a particular port to dom0

itself. When dom0 holds the token for a VM it hosts, it is then able to conduct the migration

decision process on behalf of the VM by accessing the flow table for the VM’s flows and

performing the cost reduction calculation, before forwarding the token along.

Failure recovery when the token is lost (due to a process or communication failure) can be

addressed by an algorithm such as the classic Gallager, Humblet and Spira distributed leader

election algorithm [46] wherein a minimum-weight spanningtree with a single leader is

constructed using only the local knowledge initially available at nodes.

4.2.4 Xen Wrapper

While it may seem straightfoward for dom0 to migrate a VM afterreceiving the token con-

taining the VM’s IP address and deciding that the VM should bemigrated, the process is not

as simple as that.

4.2. Implementation Setup 27

It is only possible to retrieve the MAC addresses of VMs usingthe xm tools as thexm

management interface for Xen (or rather,xend, the control daemon that xm communicates

with) does not store information about the IP addresses of each running VM. The xm toolkit

is itself written in Python, which allowed the creation of Python wrappers around most of

the functions concerned with listing VMs, retrieving network details of a VM, and migrating

a VM.

Given that IP addresses are passed in the token, and xm can retrieve the MAC addresses

of individual VMs, how can these be mapped to each other to identify a particular VM

that should be migrated? As discussed in Section 4.2.2, the flow table also stores a MAC

address alongside each IP address. This allows dom0 to do a lookup for the MAC address

associated with the IP address in the token it has received, and then make calls to xm to find

the particular VM that matches that MAC address, and performa migration, if necessary.

If there is no entry in the flow table that maps the IP address toa MAC address, this means

there has been no communication from that particular VM to any other VM, and therefore

there is no benefit for that VM to gain from being migrated to any other location.

4.2.5 Migration Decision

With Xen’s dom0 now able to monitor the flows for all VMs, and able to receive and send the

token on behalf of a VM, and map the ID in the token to a particular VM, it must also be able

to make a migration decision for the given VM. This section details the final components that

make up the actual migration decision process.

Aggregate Throughput Calculation

When dom0 receives the token for a co-located VM, the first stepis to calculate the aggregate

load between that VM and all the neighbours it communicates with. This is achieved by

looking up S-CORE’s flow table for the source and destination flows associated with that

IP address, and calculating the total number of bytes transmitted. As each flow stores a

timestamp of when it was started, these timestamps can be used to deduce the length of time

for which the flow statistics have been gathered since last being cleared, allowing calculation

of the aggregate throughput in the form of bytes-per-second.

Communication Cost

Once the aggregate throughput to each communicating neighbour has been calculated, the

communication cost must be evaluated. The communication cost is the number of links over

4.2. Implementation Setup 28

which packets from the VM must traverse to communicate with another VM, with each level

of links in the topology having an increasing cost value.

In real terms, the communication cost can be derived from thenumber of hops between a

VM and any neighbour that it is communicating with. This could be achieved by a network

diagnostics tool such astraceroute, but layer 2 switches would not show up as hops in this

case. Another alternative would be a a VM ID lookup service listing the cost for any VM to

communicate with another. However, VM IP addresses are usedas their VM ID, and VMs

carry their IP addresses when they migrate, which renders this method unusable in a data

centre with a dynamically changing VM allocation.

On the contrary, the physical servers and the hypervisors running on them, do not move

around within the data centre (unless for some form of maintenance). This makes a reliable

lookup service based on the addresses of physical servers possible, and is the option chosen

for S-CORE. As a flow table of the IP addresses each VM communicates with is stored,

neighbouring VMs can be probed to find out the IP address of their dom0. Similar to the

token passing method, we can send a customlocation requestpacket to the IP address of

each communicating VM. A NAT redirect in dom0 of each hypervisor will then capture this

packet and pass it to dom0, which can send alocation responsecontaining dom0’s static

address back to the VM.

With that information, the dom0 currently holding the tokencan make a lookup into a pre-

computed location cost mapping with its own IP address and the IP address of each un-

derlying dom0 of communicating VMs. The location cost for each VM is then combined

with each aggregate throughput value to produce an overall communication cost for each

neighbouring VM, as well as a total cost for its current allocation.

With a total cost for its allocation, the VM can then considerif it would be beneficial to

migrate to another location, if a such a suitable location isavailable.

Migration Target

When deciding if migration would be a beneficial move for a VM, hypervisors suitable to

move the VM to must be identified. As our algorithm is distributed, and we do not store a

central list of all the hypervisors (or the underlying servers), we must take an alternative ap-

proach to identifying potential hypervisors as the destination of a migrated VM. An intuitive

way to consider this is that, logically, the biggest cost reduction gains could be achieved by

moving a VM to the same hypervisor as the VM that it has the highest communication cost

with.

As the IP addresses of each hypervisor can be determined, andthe communication cost then

probed, neighbouring VMs can be ordered from highest to lowest communication levels and

4.2. Implementation Setup 29

each hypervisor probed to see if it has sufficient server resources to host the current VM.

A customcapacity requestpacket is sent to the hypervisor of the neighbouring VM with

the highest communication cost, which responds with a custom capacity responsepacket,

detailing how many more VMs it is able to host, and the amount of RAM it has available (to

account for VMs with heterogeneous RAM requirements).

The capacity request and response packets are text-based communications of the form:

• hypervisor capacity request

• hypervisor capacity response <avail doms> <avail mem>

Due to the limited types of data required in the request/response packet pair for capacity

information, use of text-based exchanges is sufficient. However, were the request/response

packets to be extended further (e.g., to include average CPU usage), atype-length-value

(TLV) encoding could be adopted.

If the hypervisor has the capacity to host the additional VM,the dom0 holding the token

will then calculate the overall communication cost for the VM if it were to migrate to that

hypervisor. It will migrate there if the communication costis reduced, and not migrate

otherwise. If the hypervisor hosting the neighbouring VM with the highest communication

cost does not have the capacity to host the VM for which migration is being considered,

the hypervisor of the VM with the next-highest communication cost will be subsequently

considered. This operation is repeated until a hypervisor with available capacity is found,

the overall communication cost of moving to that hypervisoris reduced, and a migration is

conducted. If no suitable hypervisor is found, this step terminates and the token is passed on

to the next VM ID for the next iteration of the migration process.

This completes the discussion of the modules that make up theimplementation of S-CORE.

Both simulations of S-CORE’s performance and the performance of the implementation pre-

sented here, and its impact, on a testbed setup are presentedin Chapter 5.

30

Chapter 5

Evaluation

S-CORE has been evaluated using both a simulation setup and a testbed environment. The

purpose of these evaluations are to determine the feasibility of S-CORE in a real-world envi-

ronment by assessing its scalability properties and its overhead. This chapter presents simu-

lation results of the S-CORE algorithm to show its communication cost reduction properties

and testbed results to show the performance and overhead of the implementation presented

in this thesis.

5.1 Simulations

S-CORE’s communication cost reduction with has been evaluated across the four different

token policies over a layered data centre topology, using thens-3network simulator [47].

The simulated network topology is comprised of 2560 hosts (128 top of rack switches, 20

hosts per rack), which can sufficiently capture the hierarchical link over-subscription ratio at

aggregate and core links found in data centres [4]. In order to model a typical data centre

server environment, each host can accommodate at most 16 VMs, assuming 2 VMs per core,

with each occupying 1GB of RAM. Increasing a VM’s resource requirements is equivalent

to combining, for example, two or more VMs’ resources into one.

A single VM is modelled as a socket application which communicates with one or more

other VMs in the network. Similar to actual virtualisation,each server has a VM hypervisor

network application to manage a collection of VMs, supporting migration into and away

from each server.

Links costs are set asc1 = e0, c2 = e1, c3 = e3 andc4 = e5 for each layer in the topology

hierarchy. VM migration carries its own cost in terms of network bandwidth for moving a

VM’s memory contents and VM downtime, which can negatively affect other VMs commu-

nicating across the network. To account for this in the simulations, a migration overhead

5.1. Simulations 31

cost,cm, is introduced. The migration overhead cost is initially set to zero to allow for a fair

comparison among the centralised approach and S-CORE. However, since a data centre op-

erator may wish to limit the number of migrations a VM undertakes over a temporal interval,

different values associated with the cost of migration can be used. For example, an operator

may wish to limit the number of migrations within a time period, to limit the overall negative

impact on its network. Simulation results for various values of cm which are presented later

in Section 5.1.3.

5.1.1 Traffic Generation

A data centre traffic generator to test S-CORE under realistic data centre-style loads was also

used in the simulations, as data centre traffic characteristics have been reported in a number

of measurement studies [4, 16, 48, 49].

The traffic generator maintains 10 active flows, on average, per VM [4, 49]. Most flows

(90%) are smaller than 10 KB, modelling metadata communication or queries, and the

remaining 10% of flows have a mode of 128MB (a common chunk sizeof MapReduce

jobs) [16, 4, 50]. Among all generated flows, 80% of the flows stay within the rack whereas

20% of them leave the rack [16, 49]. The traffic generator models only 20% of top of rack

switches as hotspots because this is the case in real data centres, and even the hotspot top

of rack switches end up exchanging much of their data with only a few other top of rack

switches [48, 16, 49].

The sample of a 10s traffic matrix of all top of rack switches isgiven in Figure 5.1, which

exhibits identical traffic matrix properties with those unveiled in [48].

As can be seen in Figure 5.1, the traffic matrix in data centresis indeed sparse and only a

handful of top of rack switches become hotspots. However, a significant fraction of traffic

amongst hotspots has to be routed over upper layers in the topology hierarchy, resulting in

episodes of congestion and high communication cost.

5.1.2 Global Optimal Values

To have a baseline against which to compare the performance of S-CORE, an optimal value

of the placement of VMs within the data centre, based on communication cost, is required.

However, minimising the overall communication cost for thetopology is an NP-complete

problem, and an exhaustive search across all permutations would be prohibitively time con-

suming. For example, assuming communication within a rack has zero cost, with16×20=320

VMs per rack, a centralised algorithm would need to explore at least(40,960320) combinations.

5.1. Simulations 32

As a benchmark, the centralised optimal values are instead approximated using a genetic

algorithm. The genetic algorithm starts with a population consisting of1, 000 individuals

representing densely-packed VM distributions in a data centre, and stops when there is no

significant improvement in communication cost reduction (< 1%) in 10 consecutive genera-

tions. The crossover operator has been implemented using edge assembly crossover (EAX)

to generate a new child from two parent distributions and thereplacement of individuals is

based on tournament selection. Mutation happens by swapping a random number of VMs

between racks.

Execution time over a medium-load simulation setup is almost 12 hours using a system with

8GB RAM and a 2.66GHz quad-core CPU.

5.1.3 Simulation Results

The results in Figure 5.2 show that, despite the dynamic instantiation of new traffic flows

(i.e., small spikes along the curves), S-CORE can still adapt and converge quickly to ap-

proximation of optimal network-wide VM allocations calculated by the genetic algorithm,

which is computed using the traffic matrix given in Figure 5.1for all scenarios. This optimal

approximation is only used for reference here and should vary over time due to fluctuating

traffic dynamics.

In all four scenarios, theglobal token policy constantly exhibits best performance in termsof

communication cost reduction speed and proximity to the optimal cost. However, it requires

global knowledge of the traffic dynamics and can therefore beprohibitively expensive to

implement in practice, even under a distributed migration algorithm. The basicround-robin

policy exhibits the slowest cost reduction and largest deviation from the approximate optimal

amongst all four token passing policies. The less expensivedistributed and load-aware

token passing policies produce highly comparable performance to the global one. All token

policies converge and stabilise when the VM distribution considerably reduces the overall

communication cost.

To reflect the fact thatcm is often non-zero due to VM migration overhead on the network,

simulations were run with differentcm threshold values.

Figure 5.3 shows that ifcm is increased to 10% of the overall communication cost, a pro-

nounced communication cost reduction can still be seen. Theratio of communication cost

reduction plunges sharply ifcm is further increased to 20% or more. This phenomenon

demonstrates that S-CORE will work well by setting reasonablecm values according to the

policies of a particular data centre operator. For example,if an operator wishes to limit mi-

gration to ensure that the impact upon other tenants in its data centre, they may choose to

increase the migration cost.

5.1. Simulations 33

From ToR Switch
T

o
T

oR
 S

w
itc

h

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.1: Normalised traffic matrix between top-of-rack switches.

0 100 200 300 400
1

1.2

1.4

1.6

1.8

2

2.2

Time(s)

R
a
ti
o
o
f
C
o
m
m
u
n
ic
a
ti
o
n
C
o
s
t

Round Robin
Global

Distributed
Load Aware

Figure 5.2: Communication cost reduction with data centre flows.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Normalized Migration Cost (c
m

)

R
at

io
 o

f C
om

m
. C

os
t R

ed
uc

tio
n

Figure 5.3: Ratio of communication cost reduction with the distributed token policy.

5.2. Testbed Evaluation 34

Figure 5.4 reveals that after VMs migrate, the number of top of rack hotspots is significantly

reduced. Even though there are still top of rack hotspots, these top of rack switches are in

close physical proximity, which means that inter-top of rack traffic flows remain within the

lower levels of the topology hierarchy. An obvious advantage of the locality property of

S-CORE is that these idle servers can be powered down to reduce the energy consumption

of the data centre, addressing the aims of studies on partialshutdown of servers or network

elements [3, 40].

5.1.4 VM stability

VM stability is crucial for dynamic VM migration algorithmsas unstable VM migrations can

themselves potentially have a big impact on the network and servers. VM placement instabil-

ity can occur due to oscillations, where VMs will periodically jump between two placements

in the expectation of gaining some improvement from the new placement, while gaining no

real long-term improvement as it will later decide to revertto its previous placement or move

elsewhere, incurring migration overhead in terms of VM downtime and migration cost.

Whilst no dynamic algorithm can completely eliminate the possibility of VM oscillations,

S-CORE can minimise short-term oscillations due to two reasons. First, S-CORE uses the

average rate of data exchanged between VM pairs over a certain time window, which can

be set suitably long to capture the dynamism of the environment while not responding to

instantaneous traffic bursts. Second, VMs do not migrate arbitrarily nor do they measure

individual flow arrivals and completion. Rather, they only consider migration periodically,

when they receive the migration token, and their computation to derive a migration decision

is based on aggregate traffic load over that period. Therefore, the short-term effects of sudden

arrivals of small flows are cancelled out when averaged over one iteration of the algorithm.

5.2 Testbed Evaluation

5.2.1 Testbed Setup

To test the implementation of S-CORE, rather than just its theoretical properties as were

tested above, an evaluation was performed on a testbed environment.

The testbed, as shown in Figure 5.5, consisted of six 8-port gigabit switches and four servers

interconnected by 1 Gbps links. The switches are arranged toform a typical 3-tier data centre

topology. The servers in the testbed consisted of Intel P4 3GHz servers each with 2GB RAM

running Xen 4.1 with Ubuntu Server 12.04 operating as dom0. The domU guest VMs are

Ubuntu 10.04 images, with 196MB RAM allocated for each guest VM. The experiments

5.2. Testbed Evaluation 35

From ToR Switch

T
o

T
oR

 S
w

itc
h

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.4: Normalised traffic matrix between top-of-rack switches after 5 iterations.

Core

Aggregation

Edge

Figure 5.5: Testbed topology.

5.2. Testbed Evaluation 36

started with two VMs initially located on each server. Each VM hosts a HTTP server as well

as aniperf [51] server and client.

Live migration requires that VM images reside on shared storage, rather on hypervisor

servers themselves, to allow for migration among differenthypervisors to take place. A

Network File System (NFS) server was set up to host VM images.

While the testbed is limited in terms of scalability up to datacentre-sized topologies for

full testbed experiments, the distributed nature of S-CORE allows the evaluation of module

components and their scalability in isolation, or the evaluation of properties such as VM live

migration times that should not be negatively impacted by the size of the testbed.

5.2.2 Module Evaluation

The implementation of S-CORE is built into several modules, addressing the various aspects

of the distributed operation of S-CORE. As with any such modules that run on end-hosts, it

is important to assess the impact that these modules have on system resources, in terms of

memory and processor time consumption. It is also importantto know how the distributed

performance of the modules impacts the network as a whole. This section aims to address

the system-side performance of S-CORE’s modules.

Given that S-CORE modules run within the hypervisor rather than in the VMs themselves, it

is imperative that S-CORE can suitably monitor and perform migration decisions for all the

VMs a hypervisor hosts while consuming minimum hypervisor resources, thus leaving the

majority of resources available to the actual VMs. While a number of studies have revealed

that server and network resources are mostly under-utilised, the aim is to stress test the

implementation to ensure that S-CORE will not misbehave in worst case scenarios.

The first main module in S-CORE is the flow table, which stores TCP and UDP flow data

for the VMs running on the hypervisor. It implements the requirements of adding new flows,

updating the number of bytes transferred for existing flows,retrieving flow data, and clearing

old flows. In order to stress test the resource consumption ofadding flows to the flow table,

experiments were conducted where up to 1 million flows were generated and added to the

table, even though a realistic typical load is only 10 activeflows per VM [4, 16, 48, 49], so 1

million flows are used merely to stress the implementation.

Two different sets of flows were defined: The first set is 1 million flows with all source IP

addresses being unique (type 1). This results in a new entry being created at the root of the

flow table for each flow. The other set is 1 million unique flows,where groups of 1000 flows

originate from the same source IP address (type 2).

To test the memory consumption of adding flows to the flow table, 1 million flows from each

of the two flowsets described above were generated and the size of the table was iteratively

5.2. Testbed Evaluation 37

measured after each flow was added, by reading thevmSizeparameter for the process from

within Linux. The results of this can be found in Figure 5.6.

The size of the flow table scales sub-linearly. With 10,000 flows, the flow table has a memory

footprint of only 4MB and 16MB for type 2 and type 1 flows, respectively; with 100,000

flows, the corresponding footprint is 46MB and 91MB.

The substantially different memory usage values are down tothe structure of the flow table.

As there will be a limited number of VMs running on a server, the flow table stores entries

grouped by IP address at the root of the table. When 1 million flows with unique source

addresses are used, this results in 1 million entries being added to the root of the underly-

ing data structure. However, when there are 1 million flows spread across 1000 source IP

addresses, only 1000 entries are added to the root of the table, with the remaining flow data

added to nested structures associated with these 1000 source entries.

However, a number of studies have reported that the total number of concurrently active

flows between VMs is much more contained: in a production cluster of 1,500 servers, the

median number of active correspondents for a server are two other servers within its rack

and four servers outside the rack. A busy server can talk to all servers in its rack or 1-10%

outside the rack [16]. At the same time, in a large-scale cloud data centre, the number of

concurrent flows going in and out of a machine is still almost never more than 100 [4]. With

a more realistic scenario where every virtual server concurrently sends or receives 10 flows,

with 100 in the worst case, it is anticipated that actual memory consumption of the flow table

will be between 24.75 KB – 186.47 KB for a hypervisor hosting 16 VMs.

To understand the time taken to perform the different operations on the flow table, the time

taken to add, lookup and delete flows has been measured, summing the times over the number

of flows, for the same sets of flows. Figure 5.7 shows the time toperform various flow table

operations with differing numbers of flows in a single operation. From Figure 5.7 it can be

seen that flow addition, lookup and deletion operations all require less time on a flow table

with a type 2 flow set (i.e., few VMs on a hypervisor, each with many flows). Nevertheless,

addition, lookup and deletion operations should not need more than 100ms for a realistic

data centre production workload of 100 concurrent flows.

The flow operation times reveal that all the flow operations scale sub-linearly. For inserting

100, 1000, 10,000 and 100,000 flows, the times are 0s, 0s, 0.001s, 0.07s and 0.94s, respec-

tively. The 0s values are a result of the granularity of Python’s time functions.

As flows are only periodically updated, these times have little effect on the overall running

of the system. Further, assuming 16 VMs each with 20 individual flows, as above, it would

take only a fraction of a second to add or update that many flows. Moreover, flow lookup and

deletion are only performed when a VM migration is being considered, and only 1 source IP

address will be retrieved for those operations, as only the flows to and from a single VM are

5.2. Testbed Evaluation 38

10
0

10
2

10
4

10
60

200

400

600

800

No. of Flows

M
em

or
y

U
sa

ge
 (

M
B

)

Type 1 − 1 src, 1 dst
Type 2 − 1 src, 1000 dst

Figure 5.6: Flow table memory usage.

10
0

10
2

10
4

10
6

0

2

4

6

8

10

No. of Flows

T
im

e
(s

)

Add − Type 1

Lookup − Type 1

Delete − Type 1

Add − Type 2

Lookup − Type 2

Delete − Type 2

Figure 5.7: Flow table operation times for up to 1 million unique flows.

5.2. Testbed Evaluation 39

considered.

While memory usage and time taken are useful metrics in measuring footprint on the hyper-

visor’s dom0, they reveal little about what effect they may have on the actual operation of

dom0. Memory can be provisioned for in advance, and time taken does not tell us how it

is likely to affect the processing capacity of the physical server on which the hypervisor is

running.

In order to evaluate the run-time impact on the processing capability of the physical servers,

the CPU usage of flow table operations in the normal backgroundrunning state of the flow

table was measured. The experiment consisted of running a separate thread maintaining the

flow table which periodically updates itself with new flow information from Open vSwitch,

adding an increasing number of new flows each time. This was varied over update periods

from 1 to 5 seconds. The CPU clock time for adding each flow was measured and calculated

as a percentage of CPU utilisation, as shown in Figure 5.8. It is evident that the performance

impact for adding up to 10,000 flows is negligible for any polling interval accounting for

less than 5% CPU utilisation. In the best case for 10,000 flows added or updated each time,

CPU utilisation was only around 1% at a polling rate of 5 seconds, while the worst case CPU

utilisation was 3.6% at a polling rate of 1 second. For a more realistic load of 1,000 flows,

the best and worst cases are 0.002% and 0.01%, respectively.

When a dom0 holds the token for a particular VM, it must retrieve the flows for that VM,

calculate the aggregate throughput of the flows to each neighbouring VM, retrieve the cost

of the links between them, and derive an overall communication cost for each neighbouring

VM, and an overall allocation cost for the placement of the given VM.

To evaluate the impact of both flow table lookup size and the location lookup cost, an exper-

iment was conducted in which the number of VMs (and hence, thenumber of flows) that the

VM under consideration for migration communicated with wasvaried. The results revealed

that for a VM with 10 communicating neighbours, the runtime is only 0.32s. The runtime

linearly increments to 2.97s and 30.54s for a VM with 100 and 1000 neighbours, respec-

tively. This reveals that, for a VM with a reasonable amount of communicating neighbours

(< 100), the runtime of the communication cost calculation lookupis negligible.

5.2.3 Network Impact

Similar to other data centre management schemes, S-CORE will inevitably impose control

overhead on the network. An improperly designed control scheme may overwhelm the net-

work with additional load due to control packets, but how much overhead will S-CORE

create?

5.2. Testbed Evaluation 40

S-CORE uses a token, which is exchanged between VMs and consists of a 32-bit ID and an

8-bit communication level for each VM to facilitate and control synchronous VM migration.

The size of the token is therefore proportional to the total number of VMs in the data centre.

A typical production data centre has 100,000-500,000 servers, in which case the token size

will merely be between 500KB – 2.5MB.

Live migration requires VM images to reside on shared storage (e.g., using the network

file system (NFS)). As the actual file system is on the shared storage, and mounted on the

servers, only the VM’s memory state will be copied from one server to another over the

network. However, the copying of the memory state from a source server to a destination

server can also be attributed as a network overhead.

During the memory migration, in particular the iterative pre-copy stage [29], the hypervisor

copies all memory pages from the source to destination server. If some memory pages change

(become “dirty”) during this process, they will be re-copied until some pre-defined threshold

has been reached, at which point the VM will be stopped and allremaining memory pages

copied without risk of dirtying. Therefore, the actual amount of data being copied over the

network is largely dictated by the page dirty rate since higher page dirty rates result in more

data being transferred over the network. Figure 5.9 shows the probability density function

(PDF) of the number of migrated bytes for each VM migration captured in the experiments.

The spread appears flat and wide due to the highly varying memory dirty rate at the time

when a VM is being migrated. However, with a minimal Ubuntu 10.4 VM image and a few

lightweight test services running inside, i.e., a HTTP server and SSH server, the VM memory

sizes to migrate are all below 150MB. The mean and standard deviation of migrated bytes

are 127MB and 11MB respectively. However, given the link capacity in today’s cloud data

centre networks, this additional control load is negligible (1 second’s worth of transmission

time over a 1 Gb/s link). Even a typical highly loaded commercial web server can have about

800MB memory usage [29], which is still an affordable network overhead for an infrequent

migration schedule, such as once every few days, or even every few hours, in line with our

iterative, distributed token policy. In addition, as S-CORE migration is intended to lower

overall communication cost, the network overhead of performing a one-off or infrequent

migration for such a service may result in a lower overall communication cost in the long

term, which is beneficial to data centre operators.

5.2.4 Impact of Network Load on Migration

When a VM is being migrated over a highly utilised path, the migration time could be in-

creased which could, in turn, increase the downtime and potentially violate any service level

agreements (SLAs) between the data centre operator and the VM tenant.

5.2. Testbed Evaluation 41

10
0

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

35

No. of Flows

C
P

U
 U

sa
ge

 (
%

)

1s polling interval

2s polling interval

3s polling interval

4s polling interval

5s polling interval

Figure 5.8: CPU utilisation when updating flow table at varying polling intervals.

110 120 130 140 150
0

0.02

0.04

0.06

0.08

MigratedBytes (MB)

P
D
F

Figure 5.9: PDF of migrated bytes per migration.

5.3. Discussion 42

To determine how VM migration could be impacted by network load, an experiment was

run in which two servers (i.e., dom0 of two hypervisors) generated a constant bit-rate UDP

stream as background traffic while migrating a VM from one server to the other. The migra-

tion packets were captured withtcpdump[52] and the total migration time was calculated

by taking the time difference between the first and the last packets received. As migration

time does not equate directly to downtime for live migration, as part of the memory image is

copied while the VM is still running, further measurements had to be taken to determine the

downtime of the VM. The downtime of a VM was determined by probing the migrating VM

with high precision ping,fping [53], with the interval between pings set to 1ms.

Figure 5.10 and Figure 5.11 illustrate the distribution of VM migration time and downtime,

respectively, for the migrated bytes shown in Figure 5.9 under varying background traffic

on their local links. As depicted from Figure 5.10, the mean total migration time increases

from 2.94s for no background traffic to 4.29s with 100Mb/s of background traffic. With a

background traffic load between 100Mb/s and 1Gb/s, migration time increases sub-linearly

from 4.29s to 9.34s. Migration time shows a larger spread forhighly utilised links (≥70% of

link capacity utilised) due to transferring the large spread of migrated memory size, as shown

in Figure 5.9, over the limited amount of available link capacity. In particular, TCP’s con-

gestion control may be triggered in some cases, causing a long tail in migration completion

time.

Most importantly, in data centre environments, the server downtime is more often measured

by the period of time that the VM is unable to service user requests. This happens in the

stop-and-copystage [29] of the live migration process where a VM on a serveris stopped,

and its CPU state and any remaining memory pages are then transferred to another server.

As shown in Figure 5.11, downtime is an order of magnitude smaller than the migration time

and only increases mildly from 16.38ms to 32.63ms with increased background traffic on the

link.

This implies that while higher link utilisation does have some impact on VM migration time

and migration downtime, this does not cause significant service disruption as the amount

of data transferred during this stage is often minimal and can be finished quickly over the

network (most data having been migrated in the previous pre-copy stage [29]), and the total

actual downtime of the VM (which is what data centre tenants care about), is minimal.

5.3 Discussion

This chapter has presented an evaluation of the S-CORE migration system through both

simulations and a testbed environment. The results of the evaluations have shown that the

5.3. Discussion 43

0 0.1 0.2 0.30.40.50.60.70.80.9 1

3

4

5

6

7

8

9

10

11

Background Network Load

T
im

e
(s

)

Figure 5.10: Virtual machine migration time.

0 0.10.20.30.40.50.60.70.80.9 1
10

15

20

25

30

35

40

Background Network Load

�

o
w
n
T
im

e
(m

s
)

Figure 5.11: Downtime under various network load conditions.

5.3. Discussion 44

theoretical basis of S-CORE’s migration algorithm can successfully reduce the overall com-

munication cost for VMs in a data centre across a variety of token passing policies, with

the distributed load-aware token passing policy having thegreatest improvement in overall

communication cost.

The testbed evaluation showed the performance of S-CORE’s various modules and their

impact on the systems they execute on, as well assessing the impact on migration caused

by varying network traffic loads. The results from this showed that, for normal data centre

traffic loads and VM distributions, the time, memory usage, and CPU usage, for adding,

updating and deleting flows were minimal for a migration system such as S-CORE that

operates periodically, as were the times for performing migration calculations. In assessing

migration downtime under varying traffic loads, it was also found that downtimes can be

minimised to the order of milliseconds, with all migration downtimes in the evaluation being

less than 1 second.

45

Chapter 6

Conclusions

Virtualisation has been an increasingly popular mechanismin recent years to make better use

of powerful hardware resources. In particular, VMs have paved the way for cloud comput-

ing, where operators can reap the benefits of over-subscribing hardware resources including

servers and networking resources. With data centres holding tens of thousands, or even

hundreds of thousands, of intercommunicating VMs, pairwise VM traffic can cause a large

degree of congestion, especially in the highly over-subscribed core links of the network.

Chapter 3 summarised an existing distributed migration algorithm, S-CORE, designed to

reduce network communication from costly core links at the high layers of the network

topology, to less costly lower layers.

In this thesis I have discussed an implementation of the S-COREmigration scheme, and

presented an extensive evaluation of S-CORE through both simulations and testbed experi-

ments.

The remainder of this chapter will revisit my thesis statement, and how this thesis has ad-

dressed it, along with the contributions made in this thesisand future work than can be

undertaken to extend the work presented.

6.1 Thesis Statement

The thesis statement is repeated here for reference:

I assert that a distributed, network-aware VM migration algorithm exploiting network moni-

toring instrumentation in end-systems can reduce congestion across heavily over-subscribed

links under realistic data centre traffic loads, with minimal overhead on the data centre in-

frastructure. I will demonstrate this by:

6.2. Future Work 46

• Providing an implementation of a distributed VM migration algorithm that is capable

of operating within the bounds of existing data centre network architectures and traffic.

• Enabling a hypervisor to conduct network monitoring for theVMs it hosts, as well as

making migration decisions on behalf of the VMs.

• Defining a mechanism able to identify the location of a remoteVM within a data

centre.

• Evaluating the properties of the algorithm and its implementation over realistic data

centre workloads within simulation and testbed environments, showing that it can ef-

ficiently reduce network congestion, with minimal operational overhead on the infras-

tructure on which it runs.

To show that I have addressed the statement above, I will summarise the work undertaken in

this thesis, and the results of that work.

I implemented the distributed S-CORE migration system on top of the Xen hypervisor in the

Python programming language, and have shown its performance impact is negligable on a

testbed setup, under data centre traffic characteristics reported in other studies.

The S-CORE modules were implemented within the control domain(dom0) of the Xen hy-

pervisor, and are able to perform network monitoring and migration decision duties on behalf

of the VMs hosted, partially through the use of packet interception to allow the hypervisor

to receive control packets sent to VMs.

S-CORE is able to successfully identify the location of a remote VM by using the IP ad-

dresses of VMs as VM IDs, and having the underlying hypervisor of a VM capture a location

request packet sent to a VM it hosts, with the hypervisor responding with the address of the

physical server. As physical servers do not move, a static mapping of the topology can be

created in advance, and this can be consulted when a locationrequest is made.

Finally, the S-CORE scheme has been evaluated in simulations and on a testbed environment,

using data centre traffic characteristics, with the resultsshowing that S-CORE can monitor

such traffic with minimal impact on the CPU or memory of the physical servers. S-CORE is

also able to make timely migration decisions and can greatlyimprove network performance

in a scalable fashion using its many token passing policies,in particular its load-aware token

passing policy.

6.2 Future Work

This thesis has presented a distributed VM migration policythat is able to remove congestion

from the over-subscribed core links of data centre networksthrough pairwise migration.

6.2. Future Work 47

There are several future paths that this work can follow, which are discussed in this section.

6.2.1 Incorporation of System-Side Metrics

There are many works that focus solely on system-side metrics [2, 34] or network-based

metrics [7, 8], but few do both.

Currently, S-CORE only checks that the destination server for migration has a slot available

for a VM and has sufficient memory capacity to host the source VM under consideration for

migration. However, S-CORE could be extended to balance system-side resources so that,

say, two competing VM workloads are not placed on the same server, if possible.

This could be formulated as a combinatorial optimisation problem that considers the com-

munication cost reduction as well as system-side workload type (i.e., CPU usage, memory

requirements). To simplify the problem, it could instead beweighted so that communication

cost reduction is prioritised and that VMs within the same rack are then balanced based upon

system-side resource requirements.

6.2.2 Using History to Forecast Future Migration Decisions

Some attempts have been made at using workload forecasting to aid in migration deci-

sions [36, 37]. Using history can help make stable VM placements, and reduce the risk

of oscillations in the migration process, where a VM may repeatedly jump between two

servers.

While S-CORE currently uses network throughput metrics as a form of history for making

informed migration decisions, it does not store history about the migrations that have taken

place. Therefore, there is the possibility that a VM could return to a previous placement

location during a migration phase. Storing migration history could help mitigate any such

risk, however unlikely.

6.2.3 Implementation in a Lower-Level Programming Language

Xen’s management interface,xm is implemented in Python. S-CORE’s modules were im-

plemented in Python for the reasons of ease of communicationwith the xm interface and the

periodic operation of the modules. The the evaluation in Chapter 5 has shown that the impact

on servers and on S-CORE’s performance with this implementation is minimal.

However, should the benefits of a lower-level programming language such as C be desired,

there are tools out there that allow for translating, or compiling, the Python modules into

6.3. Summary & Conclusions 48

C code, which could save performing a full rewrite of the modules in another language.

PyPy [54] and Cython [55] are two such tools.

6.3 Summary & Conclusions

This thesis has presented the implementation of a distributed VM migration scheme known

asS-CORE. S-CORE is capable of performing local monitoring of VM network traffic using

modules written to interact with the Xen hypervisor. The modules are able to operate within

the hypervisor to make migration decisions on behalf of VMs,maintaining transparency for

VMs from the platform on which they are running.

The S-CORE scheme is able to iteratively reduce congestion from heavily over-subscribed

core links in the network and reduce the overall communication cost across the network, un-

like existing migration works, through its distributed migration algorithm and token passing

policies. Simulations and testbed experiments have shown that the implementation of S-

CORE is capable of operating under typical data centre traffic loads in reasonable timescales

with minimal impact on the servers it operates on, or on the VMs it shares a server with.

BIBLIOGRAPHY 49

Bibliography

[1] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “Thecost of a cloud: research

problems in data center networks,”SIGCOMM Comput. Commun. Rev., vol. 39, no. 1,

pp. 68–73, December 2008.

[2] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and gray-box strate-

gies for virtual machine migration,” inProceedings of the 4th USENIX conference on

Networked systems design & implementation (NSDI ’07), April 2007.

[3] A. Verma, P. Ahuja, and A. Neogi, “pMapper: power and migration cost aware appli-

cation placement in virtualized systems,” inProceedings of the 9th ACM/IFIP/USENIX

International Conference on Middleware (Middleware ’08), December 2008, pp. 243–

264.

[4] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P.Lahiri, D. A. Maltz,

P. Patel, and S. Sengupta, “VL2: a scalable and flexible data center network,” inProc.

ACM SIGCOMM’09, 2009, pp. 51–62.

[5] G. Wang and T. S. E. Ng, “The impact of virtualization on network performance of

Amazon EC2 data center,” inProceedings of the 29th conference on Information com-

munications (INFOCOM ’10), March 2010, pp. 1163–1171.

[6] R. Kohavi, R. M. Henne, and D. Sommerfield, “Practical guideto controlled exper-

iments on the web: listen to your customers not to the hippo,”in Proceedings of the

13th ACM SIGKDD international conference on Knowledge discovery and data mining

(KDD ’07), August 2007, pp. 959–967.

[7] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R.Poddar, and A. Iyer,

“Remedy: Network-aware steady state VM management for data centers,” inNET-

WORKING 2012, ser. Lecture Notes in Computer Science, 2012, vol. 7289, pp.190–

204.

[8] J. Sonnek, J. Greensky, R. Reutiman, and A. Chandra, “Starling: Minimizing com-

munication overhead in virtualized computing platforms using decentralized affinity-

Bibliography 50

aware migration,” inParallel Processing (ICPP), 2010 39th International Conference

on, September 2010, pp. 228 –237.

[9] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: a scalable and fault-

tolerant network structure for data centers,” inProceedings of the ACM SIGCOMM

2008 conference on Data communication, August 2008, pp. 75–86.

[10] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu, “BCube:

a high performance, server-centric network architecture for modular data centers,” in

Proceedings of the ACM SIGCOMM 2009 conference on Data communication, August

2009, pp. 63–74.

[11] C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient supercomputing,”

IEEE Trans. Comput., vol. 34, no. 10, pp. 892–901, October 1985.

[12] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network

architecture,”SIGCOMM Comput. Commun. Rev., vol. 38, pp. 63–74, August 2008.

[13] C. Raiciu, M. Ionescu, and D. Niculescu, “Opening up blackbox networks with

CloudTalk,” in Proceedings of the 4th USENIX conference on Hot Topics in Cloud

Computing (HotCloud’12), June 2012, pp. 6–6.

[14] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,

P. Patel, and S. Sengupta, “VL2: a scalable and flexible data center network,” inPro-

ceedings of the ACM SIGCOMM 2009 conference on Data communication, August

2009, pp. 51–62.

[15] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan,

V. Subramanya, and A. Vahdat, “Portland: a scalable fault-tolerant layer 2 data cen-

ter network fabric,” inProceedings of the ACM SIGCOMM 2009 conference on Data

communication, August.

[16] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The nature of data

center traffic: measurements & analysis,” inProceedings of the 9th ACM SIGCOMM

conference on Internet measurement conference (IMC ’09), September 2009, pp. 202–

208.

[17] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data center traffic

characteristics,”SIGCOMM Comput. Commun. Rev., vol. 40, no. 1, pp. 92–99, January

2010.

[18] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,”

Commun. ACM, vol. 51, no. 1, pp. 107–113, January 2008.

Bibliography 51

[19] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data cen-

ters in the wild,” inProceedings of the 10th ACM SIGCOMM conference on Internet

measurement (IMC ’10), November 2010, pp. 267–280.

[20] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” RFC 2992

(Informational), Internet Engineering Task Force, Nov. 2000. [Online]. Available:

http://www.ietf.org/rfc/rfc2992.txt

[21] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hedera: dy-

namic flow scheduling for data center networks,” inProceedings of the 7th USENIX

conference on Networked systems design and implementation (NSDI ’10), April 2010,

pp. 19–19.

[22] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: fine grained traffic en-

gineering for data centers,” inProceedings of the Seventh COnference on emerging

Networking EXperiments and Technologies (CoNEXT ’11), 2011, pp. 8:1–8:12.

[23] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner, “Openflow: enabling innovation incampus networks,”SIG-

COMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, March 2008.

[24] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “Detail: reducing the flow com-

pletion time tail in datacenter networks,” inProceedings of the ACM SIGCOMM 2012

conference on Applications, technologies, architectures, and protocols for computer

communication, August 2012, pp. 139–150.

[25] “VMware vSphere,” accessed: 12 September 2012. [Online]. Available: http:

//www.vmware.com/uk/products/datacenter-virtualization/vsphere/overview.html

[26] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,

and A. Warfield, “Xen and the art of virtualization,” inProceedings of the nineteenth

ACM symposium on Operating systems principles (SOSP ’03), October 2003, pp. 164–

177.

[27] “Ubuntu,” accessed: 29 October 2012. [Online]. Available: http://www.ubuntu.com/

[28] “Open vSwitch,” accessed: 26 November 2012. [Online].Available: http:

//openvswitch.org/

[29] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield,

“Live migration of virtual machines,” inProceedings of the 2nd conference on Sympo-

sium on Networked Systems Design & Implementation - Volume 2 (NSDI ’05), October

2005, pp. 273–286.

Bibliography 52

[30] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual machine live

migration in clouds: A performance evaluation,” inCloud Computing, ser. Lecture

Notes in Computer Science, 2009, vol. 5931, pp. 254–265.

[31] S. Akoush, R. Sohan, A. Rice, A. Moore, and A. Hopper, “Predicting the perfor-

mance of virtual machine migration,” inModeling, Analysis Simulation of Computer

and Telecommunication Systems (MASCOTS), 2010 IEEE International Symposium on,

August 2010, pp. 37 –46.

[32] G. Jung, M. Hiltunen, K. Joshi, R. Schlichting, and C. Pu, “Mistral: Dynamically man-

aging power, performance, and adaptation cost in cloud infrastructures,” inDistributed

Computing Systems (ICDCS), 2010 IEEE 30th International Conference on, June 2010,

pp. 62 –73.

[33] A. Stage and T. Setzer, “Network-aware migration control and scheduling of differ-

entiated virtual machine workloads,” inProceedings of the 2009 ICSE Workshop on

Software Engineering Challenges of Cloud Computing (CLOUD ’09), May.

[34] M. Cardosa, M. Korupolu, and A. Singh, “Shares and utilities based power consolida-

tion in virtualized server environments,” inIntegrated Network Management, 2009. IM

’09. IFIP/IEEE International Symposium on, June 2009, pp. 327 –334.

[35] D. Breitgand and A. Epstein, “SLA-aware placement of multi-virtual machine elastic

services in compute clouds,” inIntegrated Network Management (IM), 2011 IFIP/IEEE

International Symposium on, May 2011, pp. 161 –168.

[36] S. Mehta and A. Neogi, “Recon: A tool to recommend dynamicserver consolidation in

multi-cluster data centers,” inNetwork Operations and Management Symposium, 2008.

NOMS 2008. IEEE, April 2008, pp. 363 –370.

[37] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement ofvirtual machines for

managing SLA violations,” inIntegrated Network Management, 2007. IM ’07. 10th

IFIP/IEEE International Symposium on, May 2007, pp. 119 –128.

[38] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, andE. Snible, “Improving per-

formance and availability of services hosted on IaaS cloudswith structural constraint-

aware virtual machine placement,” inServices Computing (SCC), 2011 IEEE Interna-

tional Conference on, July 2011, pp. 72 –79.

[39] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data center networks

with traffic-aware virtual machine placement,” inINFOCOM, 2010 Proceedings IEEE,

March 2010, pp. 1 –9.

Bibliography 53

[40] V. Mann, A. Kumar, P. Dutta, and S. Kalyanaraman, “VMFlow: Leveraging vm mobil-

ity to reduce network power costs in data centers,” inNETWORKING 2011, ser. Lecture

Notes in Computer Science, 2011, vol. 6640, pp. 198–211.

[41] F. P. Tso, G. Hamilton, K. Oikonomou, and D. P. Pezaros, “Implementing scalable,

network-aware virtual machine migration for cloud data centers,” inCloud Computing

(CLOUD), 2013 IEEE 6th International Conference on, June 2013, pp. 557–564.

[42] F. P. Tso, K. Oikonomou, E. Kavvadia, G. Hamilton, and D.P. Pezaros, “S-CORE:

Scalable communication cost reduction in data center environments,” School of Com-

puting Science, University of Glasgow, Tech. Rep. TR-2013-338, 2013.

[43] Cisco, “Data center: Load balancing data center services,” 2004.

[44] “Xen hypervisor,” accessed: 6 November 2012. [Online]. Available: http://xen.org/

[45] “Xen management user interface,” accessed: 28 November 2012. [Online]. Available:

http://wiki.xen.org/wiki/XM/

[46] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm for minimum-

weight spanning trees,”ACM Trans. Program. Lang. Syst., vol. 5, no. 1, pp. 66–77,

January 1983.

[47] “The ns-3 network simulator.” [Online]. Available: http://www.nsnam.org/

[48] S. Kandula, J. Padhye, and P. Bahi, “Flyways to de-congest data center networks,” in

Proc. ACM HotNets, November 2009.

[49] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data centers

in the wild,” in Proc. ACM SIGCOMM Internet Measurement Conf. (IMC’10), 2010,

pp. 267–280.

[50] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, “Job

scheduling for multi-user MapReduce clusters,” EECS Department, University of Cal-

ifornia, Berkeley, Tech. Rep., April 2009.

[51] “Iperf,” accessed: 18 October 2012. [Online]. Available: http://iperf.sourceforge.net/

[52] “tcpdump,” accessed: 18 October 2012. [Online]. Available: http://www.tcpdump.org/

[53] “fping,” accessed: 9 January 2013. [Online]. Available: http://fping.sourceforge.net/

[54] “PyPy,” accessed: 17 January 2013. [Online]. Available: http://pypy.org/

[55] “Cython,” accessed: 17 January 2013. [Online]. Available: http://www.cython.org/

