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Abstract

In this thesis we present a comprehensive approach for applying model checking

to Agent-Based Learning (ABL) systems. Model checking faces a unique chal-

lenge with ABL systems, as the modelling of learning is thought to be outwith

its scope. The practical work performed to model these systems is presented in

the incremental stages by which it was carried out. This allows for a clearer un-

derstanding of the problems faced and of the progress made on traditional ABL

system analysis. Our focus is on applying model checking to a specific type of

system. It involves a biologically-inspired robot that uses Input Correlation learn-

ing to help it navigate environments. We present a highly detailed PROMELA model

of this system, using embedded C code to avoid losing accuracy when modelling

it. We also propose an abstraction method for this type of system: Agent-centric

abstraction. Our abstraction is the main contribution of this thesis. It is defined in

detail, and we provide a proof of its soundness in the form of a simulation relation.

In addition to this, we use it to generate an abstract model of the system. We give a

comparison between our models and traditional system analysis, specifically sim-

ulation. A strong case for using model checking to aid ABL system analysis is

made by our comparison and the verification results we obtain from our models.

Overall, we present a framework for analysing ABL systems that differs from the

more common approach of simulation. We define this framework in detail, and

provide results from practical work coupled with a discussion about drawbacks

and future enhancements.
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Chapter 1

Introduction

In this thesis we introduce Agent-Based Learning systems (herein referred to as

ABL systems). We describe a formal analysis of some example ABL systems

using model checking combined with abstraction. In the context of this thesis, an

ABL system contains one or more identical agents; where an agent is a system

composed of both hardware and software components.

Historically, studies of ABL systems have relied on simulation; where prop-

erties are inferred from averaging results obtained by running sets of simulations.

Simulation is the prevailing methodology for analysing ABL systems because it

is cheap and relatively easy to do. Additionally, ABL systems are usually con-

sidered too complicated for a more formal method of analysis to be used. In this

thesis we apply the formal method of model checking to ABL systems.

Model checking allows us to formally verify a system’s properties. From this,

definitive statements can be made as to whether a system’s specification has been

fulfilled. As ABL systems are complicated, it is nontrivial to apply model check-

ing to them, and hence a sophisticated abstraction is needed.

There are several reasons for applying a more formal approach to the analy-

sis of ABL systems; e.g., it is often unsatisfactory to rely on approximate results

when systems are mission critical –or contain vulnerable/expensive components.

Additionally, model checking allows us to prove properties that hold for all exe-

cutions of a system –as opposed to just one execution at a time.
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In this thesis we show that formal verification is a viable technique for proving

properties of ABL systems pre-deployment; furthermore, that combining formal

verification with simulation can lead to a greater level of confidence in the ex-

pected behaviour of a system.

Although model checking can be used as a standalone technique, we combine

it with a tailor-made abstraction. Abstraction is a method for reducing the size of

a model while preserving in it the properties of the original system that is being

modelled. Many different abstraction approaches are available, hence identifying

a suitable method for the case of ABL systems is one of our primary goals. In

Chapter 5 we present a method of abstraction which we have adapted and modified

for use with ABL systems. We also provide an extensive proof of the correctness

of this abstraction.

In Chapter 2 we give some background to our area of research, providing a

general description followed by a study of specific aspects in more detail. In

Chapter 3 we describe the preliminary practical work done, which was undertaken

to highlight the problems involved in modelling ABL systems.

We present our most detailed model of a specific type of ABL system in Chap-

ter 4. In addition to our model we present our simulations of this system, and give

a comparison of the results from the different approaches.

The main contribution of this research is focused on in Chapter 5, where our

abstraction method and its proof of soundness are covered. Following this, in

Chapter 6 we present a model that is generated from our abstraction method.

In Chapter 7 we present a comparison of the different analysis techniques for

ABL systems, and describe possible extensions and improvements to our mod-

els. Lastly, we summarise our contribution and propose future work. Additional

material can be found in the appendices.

Note that all the modelling and verifications we present were conducted on

a 2.5Ghz dual core Pentium E5200n processor with 3.2Gb of available memory,

running UBUNTU (9.04), SPIN 6.2.3 [1],1 and PRISM 4.0.3 [2].

1The preliminary SPIN models were checked using versions from 5.2.2 to 6.0.1.

11



1.1 Thesis Statement

It is possible to aid the analysis of an ABL system by using model

checking and abstraction. We create an abstraction method for ABL

systems and develop standardised techniques for modelling their learn-

ing and behaviour.
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1.2 Terminology

Throughout, we use the following notation.

Term Meaning

Robot: the physical system of an agent.
Agent: the software representation of a robot.
Model: the software specification of a system in a

modelling language.
State-space: the underlying set of states and transitions that are

represented by a model. We use it as an alternate
term to finite state machine.

Model checking: when as a verb, to check a model for the satisfaction
of logic formulas.

Property: something that can be true or false for a
given system.

Formula: represents a test for a given property.
Verification: the process of proving a property to be true.
Simulator: the software specification of a system,

from which simulations can be run.
Simulation: a specific run in a simulator, representing

an individual path in the system.
Explicit model: the name of our most detailed model of a

specific environment and robot.
Agent-centric the method we use to represent an entire
abstraction: class of ABL system in one model.
Relative model: a specific PROMELA instantiation of our Agent-centric

abstraction; i.e., one model for one class of system.
Cone of influence: the area used to represent the robot and

environment in a Relative model.
Polar coordinate: (distance, angle),

where distance is measured from a fixed point (pole),
and angle is measured clockwise from a line
projected North from that pole (polar axis).

Table 1.1: Terminology for this thesis.
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1.3 Declaration of joint work

Throughout this thesis we will refer to work covered in the following joint pub-

lications: [3] and [4]. Some of the diagrams in this thesis appear in these pub-

lications. Additionally, some of the text in this thesis is an expanded version of

material from these publications.
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1.4 Motivation

The physical ABL systems we focus on in this work were developed in the Uni-

versity of Glasgow’s Electronics and Electrical Engineering department (EEE).

The researchers at the EEE were interested in assessing learning in biologically

inspired robots. Their particular focus was on the assessment of a variety of sim-

plistic learning algorithms, such as Temporal Difference Learning, Input Corre-

lation Learning (ICO), and Hebbian Learning [5, 6]. Experiments involved the

assessment of how well a particular robot configuration and learning algorithm

fared in a given type of environment. We focused specifically on a type of sys-

tem in which robots emulated primitive beetles. These robots use a dual antenna

system to navigate environments.

The robots had a short pair of antennas which generated an inherent pain sig-

nal from colliding into objects, and a long pair of antennas which they learnt to

use over time. The sense of pain was the stimulus for learning to utilise their long

antennas in order to avoid receiving further pain signals. The particular interest

of researchers at the EEE was whether the robots would be able to successfully

navigate a variety of environments (without crashing) by learning to respond more

(or less) vigorously to signals from their antennas. Specifically, they were inter-

ested in whether a given learning algorithm would eventually stabilise for a given

system setup (as the algorithms were potentially unstable).

The general approach to the assessment of these systems was to develop a

simulator and run simulations to gauge long-term behaviours. In addition, the

physical systems would also be developed and tested. Our agenda was to help

the EEE by providing a more formal and rigorous assessment of these systems.

Particularly assessing whether robots would always eventually avoid colliding into

other objects, and whether a given learning algorithm would stabilise for a specific

type of robot and environment.

15



Chapter 2

Background

In this chapter we introduce the background material to this thesis. We give an

overview of the areas involved in ABL systems and model checking. The spe-

cific ABL systems that we model are described in detail. Following this, we

describe and define the mathematical constructs and techniques associated with

model checking. In Section 2.4 we cover model checkers and modelling lan-

guages, particularly PRISM, PROMELA and SPIN. Then we explain a variety of tech-

niques for abstracting systems. Lastly, we provide a detailed analysis of related

literature.

2.1 Overview

A general overview of our application of model checking to ABL systems is rep-

resented in Figure 2.1, which illustrates the process of modelling a real system

and proving its properties via model checking.

We start with the Real System which is then translated into a software program.

The translation into a program is shaped by the properties of interest; i.e., we can

simplify the program if we are not concerned with all the properties of the sys-

tem. Hence, the translation is done in unison with selecting which of the system’s

properties to check. The next stage is to represent the program as a set of states

and transitions, and from here we combine states or remove them via abstraction.
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Figure 2.1: General overview of our application of model checking.

In parallel with this, the property is translated into a logic formula with a view to

use it for model checking. When the state transition graph has been abstracted as

far as possible, it is translated into a modelling language. Once in this form, the

model is checked for the satisfaction of the logic formula. The result of a failed

verification can be used to refine the model; this involves correcting inaccuracies

and removing unnecessary information. In addition a failed verification may also

indicate a problem with real system, or the property being checked –note that we

have omitted loops that could be involved in correcting the real system, simulation

program, or property. When a verification succeeds, the property is said to have
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been proved.

One of the main obstacles faced when dealing with computerised systems is

being able to achieve validation of design [7]: being able to assert whether a

system will achieve its goal with a measurable degree of accuracy. This type of

validation is necessary for all systems and what level of validation can be achieved

is particularly relevant. We propose that model checking can provide the required

level of validation of design for ABL systems. This is achieved by the automated

verification of their properties in the formal framework of model checking.

Currently, the approach used to predict how successfully an agent in an ABL

system will learn is to run many computer simulations. This process can take large

periods of time and may produce an inaccurate idea of how the real system works;

where the inaccuracy is due to the inability to analyse all possible simulation

setups.

The inefficiency in this approach prompted our research into applying model

checking to ABL systems. Having a general overview of how an ABL system

behaves is not normally sufficient when developing it into a commercial system;

it is more important to have guarantees that the system will never fail in a certain

way, or should always, eventually reach a predefined target. These are the type of

guarantees which we can provide by applying model checking.

Our research has highlighted three main difficulties when deciding how to

model ABL systems; they arise from the underlying complexity of these systems

and are best described as the following questions. Which modelling language and

model checker should we use? How can systems be abstracted to a degree that

yields a tractable state-space, while guaranteeing that the properties of the original

system still hold? And, how can we accurately model and assess a learning agent?

In this thesis we address these questions.

2.2 Physical systems

In this section we describe the physical hardware and underlying electronics of the

ABL systems we model, beginning with a formal definition of an agent followed
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by that of its components.

2.2.1 Agent Definition

We use the definition of an agent from [5]:

“An agent is anything that can be viewed as perceiving its environ-

ment through sensors and acting upon that environment through actu-

ators.”

Figure 2.2: Interaction between agent and environment.

In Figure 2.2 (based on a figure from [5]) the agent perceives information

(percepts) from its environment via sensors. It is able to perform internal calcu-

lations with the information it perceives before using its actuators to interact with

its environment (actions).

2.2.2 Environment

We define an environment as an area in which an agent can navigate. Environ-

ments can contain obstacles, which are impassable by an agent. Environments are

considered to be static areas which have no means of perceiving an agent and no

means to process information.

Obstacles are considered to have a uniform size for a particular environment.

There is also a minimum spacing between obstacles defined for each environment.
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We refer to this distance as the environmental complexity and use this value to

distinguish between environments. The higher the environmental complexity the

smaller the minimum distance between obstacles. It is important to note that

environmental complexity is not defined as a uniform distance between obstacles,

only the minimum: environments can have obstacles placed at distances greater

than its environmental complexity.

2.2.3 Hardware

To model ABL systems we must consider an agent’s hardware components and

the nature of its underlying circuitry. In the systems we model, the agents are bio-

logically inspired robots. They are composed of actuators and sensors, as defined

in Section 2.2.1. In our case, the actuators are motors designed for moving and

turning, and sensors are antennas that receive percepts from the environment. The

antennas are used to sense contact with another surface.

The robot uses an internal feedback loop in order to learn to use its sensors to

activate its motors. This loop involves the robot’s perceived output being fed back

into the calculations for its actions. The robot is to avoid collisions by using its

sensory information to guide its movement.

Percepts

Here we describe the inputs of the robot; i.e., how it uses its antenna sensors. This

will provide a clearer overview of how the robot interacts with its environment.

Figure 2.3.A depicts the basic proportions of an agent in our ABL systems.

Here the proximal sensors are shown to be noncontiguous with the distal sensors

(unlike the situation in the real system, simulations, and models). They are shown

like this to illustrate that they are distinct sensors with a shorter length than the

distal sensors.

When contact is made with a proximal sensor the robot receives a signal of a

preset magnitude that emulates a painful experience for the robot. When contact

is made with the distal sensor it sends a signal to the robot of variable strength,
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Figure 2.3: Generic closed-loop data flow with learning. A: sensor setup of the
robot consisting of proximal and distal sensors. B.1: reflex behaviour; B.2:
proactive behaviour. C: simplified circuit diagram of the robot and its environment
(SP=set point, X is a multiplication operation changing the weight ωd, Σ is the
summation operation, d/dt the derivative, and hp, hd low pass filters).

where the closer to the robot that the sensor is contacted, the stronger the signal.

All the signals are combined within the robot as inputs to its internal feedback

loops.

The robot uses its internal feedback loops to learn to move towards or away

from obstacles. This is achieved by using the difference between the signals re-

ceived from its left and right pairs of antenna sensors, which can be interpreted as

error signals [8]. At any time an error signal x is generated of the form:

x = sensors left − sensorsright (2.1)
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where sensors left and sensorsright denote the signals from the left and right pairs

of sensors. The value of x is then used to generate the steering angle v, where

v = ωd ∗ x, where ωd has a constant polarity. The polarity of ωd determines

whether the behaviour is classed as attraction or avoidance [9]. This calculation

is done as part of an internal feedback loop. The loop here is established as a

result of the robot responding to signals from its sensors by generating motor

actions (with its actuators) which affect future signals from the robot’s sensor

inputs. Hence, the robot’s movement influences its sensor inputs, which forms a

closed loop (nominally a feedback loop, see Figure 2.3.C).

Actuators

The actuators on the robot are what it uses to affect its environment. It has motors,

attached to wheels, for driving itself forward; they propel the robot in a continuous

forward motion. It also has a motor for turning, which it uses to avoid obstacles.

The magnitude and direction of a turn is determined by the robot’s internal feed-

back loop.

Learning

The ABL systems we look at use various learning methods, these include: Tempo-

ral Difference Learning, Input Correlation Learning (ICO), and Hebbian Learning

(see [5] and [6] for more details). Learning dynamically changes a system model

and hence greatly expands the relative state-space for that model. This expan-

sion makes verifying properties less computationally viable. In order to incorpo-

rate learning into our models we must somehow represent the process of learning

within the robot.

Feedback loop In order to learn, a robot interprets the signals from its antenna

sensors into its feedback loop (see Figure 2.3.C). Its actuators allow interaction

with its environment and percepts provide the feedback signal. Thus, represen-

tation of the actuators and percepts is required to model the robot’s learning and

learned behaviour.
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Figure 2.4: Robot setup. A: Distance from centre of robot to far edge of obstacle.
B: lengths of antenna and obstacle. C: diameter of robot.

Robots in our ABL systems respond to input signals by changing trajectory to

avoid collisions. Figure 2.3.B1 and B2 illustrate this response. In B1 the robot

crashes into the box with its proximal antenna (after previously contacting the

box with its distal antenna) and learns that this is painful; consequentially, in B2

it perceives the box as a potentially painful signal with its distal antenna and uses

its actuators to change trajectory and, in doing so, avoids crashing.

This signal and response cycle forms the feedback loop for our ABL systems.

It is the process by which a robot learns in these systems and is best described

by ICO learning. In order to represent this accurately the details of ICO learning

must be expressed in our models.

2.2.4 Input correlation learning

Input Correlation Learning (ICO) involves learning by correlating different sig-

nals from an environment in order to achieve a desired result. In the case of our

ABL systems, robots try to correlate two types of signal, one from their distal an-

tennas and the other from their proximal antennas. A robot receives a pain signal

when it senses an impact on one of its proximal antennas. The desired result is

to avoid experiencing the pain signal; the robot uses its distal antennas for this

purpose. The proportions of the robot and its distal antennas for our ABL systems

are depicted in Figure 2.4.

When a robot receives an impact on a proximal antenna it correlates this signal

with the previous signal from its corresponding distal antenna. Over time the robot

begins to associate between the two antennas and learns to avoid obstacles based
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Figure 2.5: Impact signal correlation with the help of low pass filters. A: the input
signals from both the distal and proximal antennas which are τ temporal units
apart. B: the low pass filtered signals up, ud and the derivative of the proximal
signal u̇p.

on only the signal from its distal antennas.

On a hardware level the robot receives signals at different times, distal then

proximal. Because of this time difference, correlation between the two signals is

not possible. To solve this, the signals from the distal and proximal antennas are

passed through low-pass filters. The filters act as a robot’s short-term memory

allowing it to correlate the signals.

This is illustrated in Figure 2.5 which shows the signals from the distal and

proximal antennas. Signals are represented as simple pulses in Figure 2.5.A. In

Figure 2.5.B the signals have been passed through a low pass filter, where they are

elongated over the time axis. For a correlation to take place we use the derivative

of the proximal signal u̇p. This means that when there is a proximal signal, u̇p
has a peak shifted to earlier in phase than up. This peak can now be correlated

with the distal signal ud. Learning stops if up is constant which is the case when

a proximal antenna is no longer triggered. A sequence of impacts consisting of at

least one impact on a distal antenna followed by an impact on a proximal antenna

causes an increase in the response (by a factor λ known as the learning rate). See

[10] for a more detaied description of ICO/differential Hebbian learning.
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2.3 Model checking

Model checking is a technique in formal methods in which a brute force approach

is applied to prove properties of finite-state systems [7]. The applications of model

checking range from hardware component analysis to network security testing

(software). If a system can be expressed as a state-space, model checking can be

used to analyse it.

In our work we apply model checking to the field of ABL systems. This in-

volves creating a finite state representation of an ABL system (i.e., a state-space);

where the state-space must comprise all possible states of that system. Once mod-

elled as a state-space it can be checked for the satisfaction of logical properties,

which includes checking for: deadlocks, assertions, non-progress cycles, invalid

end states, and properties expressed in temporal logics (see Section 2.4.1, and for

temporal logics Section 2.3.10).

Our goal is to achieve validation of design for ABL systems; this is done by

verifying all properties relevant to a system’s specification. Model checking lets

us check logical properties for all states that relate to the specification, and thus

allows us to achieve our goal.

This section describes details of model checking, these include: the two main

types of model checking that we consider, temporal logics, the different structural

representations of a system as a state-space, techniques specific to the application

of model checking, and techniques specific to the reduction of a model’s state-

space.

2.3.1 Explicit state model checking

Explicit state model checking refers to the way that the state-space is stored when

checking properties. States are represented explicitly; i.e., they are not abstracted

or merged. The advantage of this approach is that it is possible to trace a path

from any given state back to its initial state. This allows us to provide counterex-

ample paths for property violations, as opposed to simply stating that they are

false. A counterexample consists of a path in which the property is violated, and
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by reviewing it one can identify how the violation occurred. It does, however, re-

quire more memory to store an explicit state model than a symbolic state model;

this reduces the maximum size of state-space that can be explored, compared to

symbolic state model checking. The model checker SPIN [1] uses explicit state

representation.

2.3.2 Symbolic state model checking

In symbolic state model checking the state-space is stored in a reduced form. The

state-space is represented symbolically as a binary decision diagram (see Sec-

tion 2.3.9). With this compressed representation, it is possible to check properties

over much larger state-spaces than with explicit state model checking. However,

this method of storage means that counterexample paths cannot be produced. This

is due to the way paths are analysed when checking properties; i.e., groups of

states are dealt with at once, which means that an individual path cannot be pro-

duced from verification results. The model checker PRISM [2] uses symbolic state

representation.

2.3.3 Logical properties

Model checking allows for the checking of properties that are defined in a tempo-

ral logic language. One of the most important features of model checking is the

ability to verify properties specified in temporal logic. In SPIN we verify proper-

ties expressed in Linear-time Temporal Logic (LTL) [11]. In PRISM we specify

our properties in Probabilistic Computational Tree Logic (PCTL) [12].2 These

logics are described in the Section 2.3.10.

2.3.4 State-spaces

State-spaces can be represented as State Transition Graphs (STGs), where they

involve a set of nodes joined by edges. In this context, a node represents a state

2PRISM also supports: CTL, Probabilistic LTL, CSL, and PCTL∗ [13]. Most of which
have not been used and are omitted here.
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and an edge a transition between states. These states and transitions are used

to represent the workings of a system. A state is labelled as the set of atomic

propositions that are true of the system in that state; where an atomic proposition

is a statement concerning variables of a system, which evaluates to true or false at

any state.

These visualisations of the state-space can be more formally represented in

order to apply model checking. For example, they can be represented as Kripke

structures (see Section 2.3.5). Once a system’s state-space is expressed in this

form, model checking allows for automated verification of its properties; these

properties are expressed in temporal logics, e.g., LTL, CTL [14], or PCTL [12].

Model checking allows properties to be tested on all paths within a state-space,

where a path constitutes a set of contiguous transitions and states. This process

allows us to identify states or paths that violate a given property; hence, demon-

strating that the property is false. If no violating states or paths are found then the

property is verified. Therefore, model checking provides a means to exhaustively

test properties of our systems.

Different model checkers use different formal representations of their state-

spaces; we describe some of these representations in the following sections.

2.3.5 Kripke structures

A Kripke structure is a nondeterministic finite state machine designed to represent

the behaviour of a system [7]. Nodes represent different states of a system and

edges represent state transitions. Each node has a label which corresponds to the

set of atomic propositions that hold for that state. The choice of the transition at

a given state is nondeterministic: no transition is more or less likely to occur than

another. Temporal logics can be interpreted in terms of Kripke structures.

Figure 2.6 depicts a Kripke structure containing four states; it is represented

graphically as an STG. The edges are directed, where the arrows denote the direc-

tion of the transition.

The labels for the states are: (A,B), (¬A,B), (A,¬B), and (¬A,¬B). Label

(A,B) represents atomic propositions A ∧ B; i.e., A and B are true in this state.
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Figure 2.6: Kripke structure.

The formal definition of a Kripke structure, from [7], is as follows.

Definition 2.1. A Kripke structure is a tupleM = (S, S0, R, L) where:

• S is a non-empty finite set of states.

• S0 ⊆ S is a set of initial states.

• R ⊆ S × S a transition relation.

• L : S → 2AP a labelling function. For a given state s, the label for s (L(s))

consists of all the atomic propositions that hold in that state.

A path, π, in M, starting at s0 ∈ S0 is an infinite sequence of states π =

s0, s1, s2, . . . where ∀i > 0, (si−1, si) ∈ R. A state s′ ∈ S is reachable in the path

π if ∃s ∈ S such that (s, s′) ∈ R.

If a Kripke structure has a single initial state s0, it is defined more simply as

M = (S, s0, R, L). Kripke structures differ from STGs in the way that states are

labelled because Kripke structures can have labels for states that do not exist in

the real system –as opposed to only those states that exist in the real system.
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2.3.6 Discrete time Markov chains

Discrete Time Markov Chains (DTMCs) differ from Kripke structures in that they

allow the modelling of probabilistic choices, where outcomes are partly random.

From a state in a DTMC, there is a probability assigned to each transition that can

occur. Diagrammatically they are synonymous with Kripke structures, but with

the addition of probabilities on edges.

DTMCs are directed graphs that represent systems where transitions occur at

discrete time-steps. They have a probability assigned to every transition; such that

the sum of all transitions from any given node is 1. Like all of the other Markov

processes considered in this chapter, they abide by the Markov property, which

states that all transitions from a state do not depend on future or past states.

Figure 2.7 illustrates the structure of a DTMC. There are four states s0, s1,

s2, and s3; arrows indicate the direction of an edge (transition). The probability

of a transition is indicated by the number closest to the corresponding edge. This

definition of a DTMC is based on those given in [15, 16].

Figure 2.7: Example DTMC.

DTMCs can be used to represent systems where the likelihood of taking an

action is measurable. For example, suppose there is a robot that, when turning

to avoid an obstacle, three-quarters of the time will turn to its left and otherwise

turn to its right. We can represent this behaviour more accurately with a DTMC

than a Kripke structure. In this example, we do so by assigning a probability
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of 0.75 to the transition corresponding to turning left and 0.25 to the transition

corresponding to turning right.

2.3.7 Continuous time Markov chains

Continuous Time Markov Chains (CTMCs) are an extension to DTMCs where

time is considered to be continuous. The time taken for an event to occur is con-

sidered to be a random variable taken from an exponential distribution. Proba-

bilities are represented over continuous time as rates. Each transition has a rate

assigned to it, which represents the probability of a transition over time. Hence,

instead of a set of transitions and associated probabilities a CTMC has a transition

rate matrix that represents the rates assigned to the transitions between states. The

probability of making a transition between two states by the time t is calculated

by 1− e−λ∗t, where λ is the average number of times that a transition is taken per

unit of time t [16].

2.3.8 Markov decision processes

Markov Decision Processes (MDPs) have the same expressivity as DTMCs with

the addition of being able to represent nondeterministic choices also. Hence,

MDPs can represent graphs where the probability of taking a transition from one

state to another is unknown. (This definition of an MDP is based on that presented

in [17].)

Figure 2.8 illustrates the structure of an MDP. Each state has a set of associated

actions. Edges that connect a state to an action are represented by dashed lines

and denote nondeterministic choice. The actions here are a0 and a1. For each

action, there is a probabilistic choice of transitions (denoted by solid lines). Note

that, for any actions, the probabilities of its associated transitions sum to 1.

From state s2 there is a nondeterministic choice of selecting either action a0

or a1. If a0 is selected then there are two edges that can be chosen. One edge that

represents the transition back to s2, and the other that represents the transition to

s1. The corresponding probabilities are 0.6 and 0.4.
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Figure 2.8: Example MDP.

MDPs are used to represent systems that contain both probabilistic and nonde-

terministic transitions. For example, a robot moving in an environment may have

a trajectory that is determined probabilistically, yet make some choices (how to

respond to an obstacle, say) nondeterministically. This type of system cannot be

represented by a Kripke structure or DTMC alone.

Rewards in MDPs

MDPs may also include a reward function that is associated with each state, and

a value function that calculates the measure of reward associated with a system

path. Having reward functions allows the quantitative assessment of paths in the

MDP. For example, suppose we have a system where a robot is navigating an

environment in search of food, where the environment is composed of both food

areas and obstacle areas. Then if we assign a high value of reward to a robot

finding food, we can check a system for paths where the total reward reaches a

predefined target –a required total amount of food to be eaten.
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2.3.9 Binary decision trees/diagrams

Binary Decision Trees/Diagrams (BDTs/BDDs) are branching directed acyclic

graphs used to represent boolean functions. Each node is a decision node that can

have two child nodes (which are also decision nodes). Child nodes are reached

by the evaluation of boolean variables, where either a 0 or a 1 is chosen for each

variable at a decision node. This explanation is based on that in [7] and [18].

Table 2.1 represents a truth table for a 3-input AND function. The AND func-

tion returns true if all inputs are 1, otherwise it returns false.

x1 x2 x3 AND
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 2.1: AND truth table.

Figure 2.9(a) shows the corresponding BDT. The evaluation of each boolean

input variable is represented by either a dashed or solid line, corresponding to an

evaluation of 0 or 1 respectively. Following a path of input values from x1 results

in either a 0 or a 1 in the leaves at the bottom (represented as squares); a 0 indicates

the function returns false and a 1 indicates true. For example, an input of 0, 0, 0

leads to the bottom left of the BDT, resulting in false.

Figure 2.9(b) shows the equivalent BDD. It is a more compact representation

of a BDT, where decision nodes are combined. It represents the same function as

the BDT; i.e., an input of 0, 0, 0 still evaluates to false.

The ordering of the decision nodes in a BDD can directly affect its size (al-

though, this is not apparent in our example). BDDs are one of the data structures

used for state-space storage in PRISM, where various compression techniques are

applied to them to reduce their storage requirements, e.g., the use of sparse ma-
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(a) BDT of an AND function (b) BDD of an AND function

Figure 2.9: Examples of BDT and BDD representation.

trices [16]. Other data structures used by PRISM include Multi-Terminal BDDs

(MTBDDs) –defined in [19].

2.3.10 Temporal logics

Temporal logics [14] are used to define properties for model checking, and they

consist of a syntax and semantics. Properties contain temporal operators that allow

one to reason about the ordering of events. We are primarily concerned with safety

properties and liveness properties (see Section 2.3.12). These informally have

the form: something bad will never happen, and something good will eventually

happen respectively.

Note that not all LTL properties can be declared as either safety or liveness.

A property that falls into this category is one involving the until operator (U ). For

example, the property x until y (xUy) is both a safety and a liveness property.

This property states that: x is at least true until y is true, and that y is always even-

tually true. The safety part of the property is associated with checking that x is

never false before y; and, the liveness part with checking that y always eventually

becomes true.

33



Syntax and semantics of CTL∗, CTL and LTL The properties that we define

for our PROMELA models are written in LTL. Here we derive LTL from its superset

CTL∗. We provide a formal definition of these languages as follows, where the

definitions are taken from [20].

Definition 2.2. The logic CTL∗ [21] is defined as a set of state formulas, where

the CTL∗ state and path formulas are defined inductively below. The quantifiers

A and E are used to denote for all paths, and for some path respectively (where

Eφ = ¬A¬φ). In addition, X , U , <>, and [ ] represent the standard next time,

strong until, eventually and always operators (where <> φ = trueUφ and [ ]φ =

¬ <> ¬φ respectively). Let AP be a finite set of propositions. Then:

• for all propositions p ∈ AP , p is a state formula;

• if φ and ψ are state formulas, then so are ¬φ, φ ∧ ψ, and φ ∨ ψ;

• if φ is a path formula, then Aφ and Eφ are state formulas;

• any state formula φ is also a path formula;

• if φ and ψ are path formulas, then so are ¬φ, φ ∧ ψ, φ ∨ ψ, Xφ, φUψ, <> φ,

and [ ]φ.

Definition 2.3. CTL [22] is a branching time logic which expands the state-space

in a tree structure. It allows for quantification over paths, but cannot describe

individual paths –like LTL. The logic CTL is the sublogic of CTL∗; where its

temporal operators X , U , <>, and [ ] must be immediately preceded by a path

quantifier.

Definition 2.4. The logic LTL [11] is also a subset of CTL∗. It is obtained by

restricting the set of CTL∗ formulas to those of the form Aφ, where φ does not

contain A or E. When referring to an LTL formula, the A operator is generally

omitted and instead the formula φ is interpreted as “for all paths φ”.

Definition 2.5. For a model M, if the CTL∗ formula φ holds at a state s ∈ S

then we writeM, s |= φ (or simply s |= φ when the identity of the model is clear

from the context). The “models” relation |= is defined inductively below. Note

that for a path π = s0, s1, . . ., starting at s0, first(π) = s0 and, for all i ≥ 0, πi is

the suffix of π starting from state si. Then:
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• s |= p, for p ∈ AP if and only if p ∈ L(s);

• s |= ¬φ if and only if s 6|= φ;

• s |= φ ∧ ψ if and only if s |= φ and s |= ψ;

• s |= φ ∨ ψ if and only if s |= φ or s |= ψ;

• s |= Aφ if and only if π |= φ for every path π starting at s;

• π |= φ, for any state formula φ, if and only if first(π) |= φ;

• π |= ¬φ if and only if π 6|= φ;

• π |= φ ∧ ψ if and only if π |= φ and φ |= ψ;

• π |= φ ∨ ψ if and only if π |= φ or π |= ψ;

• π |= φUψ if and only if, for some i ≥ 0, πi |= ψ and πj |= φ for all 0 ≤ j < i

(note that if i = 0 then the property is trivially true, and there is no need to

evaluate j);

• π |= Xφ if and only if π1 |= φ;

• π |=<> φ if and only if πi |= φ, for some i ≥ 0;

• π |= [ ]φ if and only if πi |= φ, for all i ≥ 0.

Syntax and semantics of Probabilistic CTL (PCTL) We use the temporal

logic of PCTL [12] to describe properties in our PRISM models. PCTL allows

us to express properties to do with probabilistic models; i.e., models with proba-

bilities associated with transitions. The following definitions are taken from [23]

(for a more explicit definition of PCTL see [24]).

Definition 2.6. For a state s, Pathfins and Paths denote the sets of all finite and

infinite paths starting from s. In order to quantify the probability that a DTMC

satisfies a given property, we define, for each state s ∈ S, a probability measure

Probs over a Paths.

• For a finite path π ∈ Pathfins , the probability of path π occurring is Ps(πfin).

The ith state of path π is denoted π(i).

• Let n be the number of states in the path π such that n = |πfin|.
• If n = 0, then Ps(πfin) = 1;

• otherwise Ps(πfin) = [ P (π(0)) × P (π(1)) × ...P (π(n)) ].

There is also need to define the cylinder set C(πfin).
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• C(πfin) is the set of all infinite paths π that occur after πfin.

Definition 2.7. The set of PCTL state and path formulas are defined inductively

over a finite set of propositions, over system variables. The probability measure

Probs is unique such that ProbsC(πfin) = Ps(πfin), when ∀ πfin ∈ Pathfins .

There is also a bounded until operator U≤k.

• π1U≤kπ2 is true if π1Uπ2 is true and π2 is satisfied within k time steps.

We also define how a state s satisfies a property.

• Let ./ be a relation where ./ ∈ {≤, <,>,≥}.
• Let P be a probability.

• Let ψ be a path property.

State s satisfies P./p[ψ] if the probability of taking a path from s that satisfies ψ

is within the parameters of the relation ./.

• State formulas include true, false, (vi = di) and (vi 6= di). Also, if φ and ψ are

state formulas, then so are ¬φ, φ ∧ ψ and φ ∨ ψ.

• If φ is a path formula, then P./p[φ] is a state formula for any ./ ∈ {≤, <,>,≥}.
It is also the case that any state formula φ is also a path formula.

• Other path formulas are Xφ, φUψ and φU≤kψ, provided that φ and ψ are state

formulas

Definition 2.8. PCTL logic is the set of all state formulas. For a DTMC, D, if

the PCTL formula φ holds at a state s ∈ S then this can be shortened to: D, s |=
φ. If the formula φ does not hold then we write D, s 6|= φ. For a path formula ψ

and a state s, Ps(ψ) is defined as Probs({π ∈ Paths : π |= ψ}) where Probs is

the probability measure on
∑

s, as defined in Definition 2.7. The relation, |=, is

inductively defined below.

• s |= true, and s 6|= false.

• s |= (vi = di), if and only if s = (e1, e2, ... ek) and ei = di.

• s |= (vi 6= di), if and only if s = (e1, e2, ... ek) and ei 6= di.

• s |= ¬φ if and only if s 6|= φ.

• s |= φ ∧ ψ if and only if s |= φ and s |= ψ.

• s |= φ ∨ ψ if and only if s |= φ or s |= ψ.

• s |= P./p[φ] if and only if Ps(φ) ./ p.
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• π |= Xφ if and only if π(1) |= φ.

• π |= φU≤kψ if and only if for some i ≤ k, π(i) |= ψ and πj |= φ ∀ 0 ≤ j < i.

• π |= φUψ if and only if for some k ≥ 0, π |= φU≤kψ.

Given D = (S, s0, P ), if πs is a path starting from any state s ∈ S, then we say

that D, πs |= φ if and only if Ds, πs |= φ, where Ds = (S, s, P ).

2.3.11 Büchi automata and LTL

One of the most efficient algorithms for model checking LTL properties is the

automata-theoretic approach [25]. Although we will not describe the algorithms

in detail, we provide a little background theory here.

Definition 2.9. A state-space A is a tuple A = (S, s0, L, T, F ) where:

1. S is a non-empty, finite set of states

2. s0 ∈ S is an initial state

3. L is a finite set of labels (on transitions)

4. T ⊆ S × L× S is a set of transitions, and

5. F ⊆ S is a set of final states.

A run of A is an ordered, possibly infinite, sequence of transitions

(s0, l0, s1), (s1, l1, s2), . . .

where si ∈ S and li ∈ L for all i > 0. An accepting run of A is a finite run in

which the final transition (sn−1, ln−1, sn) has the property that sn ∈ F .

In order to reason about infinite runs of an automaton, alternative notions of

acceptance are required; e.g., Büchi acceptance. We say that an infinite run (of a

state-space) is an accepting ω-run (i.e., it satisfies Büchi acceptance) if and only

if some state in F is visited infinitely often in the run. A Büchi automaton is a

state-space defined over infinite runs (together with the associated notion of Büchi

acceptance).

Every LTL formula can be represented as a Büchi automaton (see, for exam-

ple [26] and [27], and references therein).
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(a) ¬[ ] p (b) ¬ <> q

Figure 2.10: Example Büchi automata

In Figure 2.10 we give Büchi automata for the negation of the LTL formulas

[ ]p (p is true at every state) and <> q (q is true eventually). Note that any path

of an automaton A has associated paths in the Büchi automaton. For example,

consider the Büchi automaton of Figure 2.10 (a). If π is a path in A for which p

becomes false at some state s say, it would be possible to loop around the state

labelled T0:init until s is reached, then make a transition to the (acceptance)

state labelled accept all. The infinite continuation of π would result in infinite

looping around the acceptance state in the Büchi automaton. Thus π would be

accepted. Similarly, a path π′ in A for which q is never true would be accepted by

the Büchi automaton of Figure 2.10 (b).

Note that the state labels of Figure 2.10 are not significant, apart from the fact

that the acceptance states are prefixed with the term accept. Büchi automata are

used when model checking with SPIN, where they are represented as never claims

(see Section 2.4.1). The labels used here are those generated for the corresponding

never claims by SPIN.

2.3.12 Searching a state-space

When model checking, the verification of properties is achieved by searching a

model’s state-space. Here, we describe two general types of property and one of

the most common algorithms used to check them. We do this with reference to

SPIN, as this is the most relevant context for our work (we justify our choice of

model checker in Section 2.4.4).
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Safety properties

A safety property is verified in SPIN if, when model checking, there is no coun-

terexample path produced. Specifically, all paths within a model’s state-space are

checked for a violation of the safety property.

An example of a safety property is: “the red button is never pressed”. To

check this property SPIN searches for a counterexample where the “red button” is

pressed. If SPIN cannot find this, then the property is verified. Otherwise, SPIN

produces a finite counterexample path in the model which includes a state that

violates this property.

Liveness properties

A liveness property is verified in a different manner than a safety. Although, it

still involves searching for a counterexample, and if this cannot be produced then

the property is verified. For this check, SPIN searches the model’s state-space for

infinite paths (cycles), which violate the liveness property.

An example of a liveness property is: “the red button is always eventually

pressed”. In this case, a counterexample is a path where the “red button” is never

pressed. Once again, if no counterexample can be produced then the property is

verified. To disprove a liveness property requires the demonstration of an infinite

path in which the goal property does not hold. For this example, an infinite path

constitutes looping behaviour (includes a cycle), where the model is able to go

through this cycle infinitely often without the button being pressed. Hence, SPIN

identifies a counterexample of this property as one that contains this violating

cycle.

Depth-first search

When exploring a state-space, one of the common algorithms used is Depth-First

Search (DFS). It is a simple algorithm for traversing a state-space, and can be

used to check an LTL formula on-the-fly. The algorithm involves searching one

path through a state-space at a time. When exploring a path, every new state
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//Stores states in current path (ordered set).
Stack D = {}
//Stores all states visited so far (unordered set).
Statespace V = {}

Start()
{

Add_Statespace(V, A.s0)
Push_Stack(D, A.s0)
Search()

}

Search()
{

s = Top_Stack(D)

for each (s, l, s’) that is in A.T
if In_Statespace(V, s’) == false
{

Add_Statespace(V, s’)
Push_Stack(D, s’)
Search()

}

Pop_Stack(D)
}

Figure 2.11: Basic DFS algorithm.

encountered is stored in a state vector and every path is stored on a stack. The stack

represents the sequence of states that compose the current path being explored.

The basic algorithm for DFS is shown in Figure 2.11. It is described with

reference to a Büchi automaton, A.

DFS can be used to check for safety properties by adding a check for the

property into the Search function. This check is applied to every state that is

explored. If the property is found to be false for any state, then the contents of

the stack can be used to create a counterexample (a series of states that lead to the

violation).

An extension to the DFS algorithm is used to check liveness properties, namely

Nested DFS (NDFS). NDFS performs a similar search as DFS, but with the pur-

pose of exposing infinite cycles in the state-space. When checking for a liveness

property, if a path is found with a state which violates that property, then NDFS

searches for a transition back to a state that has already been visited on this path.

40



If such a state is found, this implies that there is an infinite cycle that violates the

liveness property.

2.3.13 State-space explosion

State-space explosion is a common problem in the field of model checking, and

concerns the rapid exponential growth of a model as its number of variables or

processes increase. Therefore, as a system becomes more complex (requiring

more variables to represent it) the state-space of its model will become too large

to check. To overcome this limitation, techniques have been developed to reduce

the impact of state-space explosion. One such technique is to use compression

when model checking. Additionally, there are the more advanced techniques of

partial order reduction and symmetry reduction. We describe these three tech-

niques here.3

Compression

When exploring a state-space it is common to try to reduce the memory require-

ments by applying a form of compression. The hash-table storage structure is

commonly used as a basic form of compression for storing states, where the use

of a hash function prevents multiple storage of the same state. Two main cate-

gories of compression techniques are lossless and lossy. Lossless compression

reduces the memory requirements by increasing the run-time when performing an

exhaustive verification. Lossy also reduces the memory required for a verifica-

tion, but by using approximation techniques. However, unlike lossless, it cannot

guarantee that the search of the state-space is exhaustive.

A form of lossless compression used in SPIN is Collapse compression. It in-

volves collapsing the global state of the system into separate components and then

storing combinations of those components into larger vectors called Global State

Descriptors (GSDs). Local variables (smaller state components) are stored sep-

arately from the global data objects, and assigned small unique index numbers.

3Note that these techniques are not restricted to SPIN.
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The index numbers are then combined with the global data object in the GSDs.

This reduces the amount of memory for each global state, but the extra indexing

increases the run-time.

A form of lossy compression is Bitstate-hashing (also used by SPIN). The

hash function here uses a checksum polynomial. Using this type of hash function

can result in hash-crashing; i.e., in the case of model checking, a situation where

different states are incorrectly stored in the same slot of a hash-table. This can lead

to inaccurate verification results, as the state-space may not be fully explored.

Partial order reduction

Partial Order Reduction (POR) [1, 28] is a technique whereby an equivalence is

determined between paths. Rather than searching the whole state-space, a reduced

number of representative paths are explored. This results in a reduction in the

number of paths followed when model checking, and often resulting in fewer

states. This is done in such a way as to ensure that, if a property being checked

does not hold for all paths, at least one error path is exposed. Equivalent paths are

identified and represented by equivalence classes.

The basic premise of POR is that, in some cases, the specific ordering of cer-

tain transitions in a path does not affect the truth, or otherwise, of a property.

POR can be applied if the interleaving of different transitions does not affect the

property that is to be checked.

POR is available with SPIN, and is applied in an on-the-fly manner by de-

fault. The equivalence used in this case is φ-stutter equivalence, where φ is an

LTL formula.4 To ensure that a suitable set of representative paths are explored,

SPIN selects a subset of transitions from any reached state s (ample(s)) rather than

the entire set of enabled transitions from s (enabled(s)). This is done in a fairly

conservative way, often with the result that ample(s) = enabled(s). However, the

selection process is safe –no error paths are missed. Details of the selection pro-

cess can be found in [1].
4Another equivalence used in POR is trace equivalence [29]. This is not used in SPIN and so

we do not discuss it here.
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SPIN determines φ-stutter equivalence by identifying a set of operations that

do not affect the property to be checked and are independent of the operations

available at the same state. We illustrate this concept in Figure 2.12. Here φ

denotes the formula [](x < 2) (i.e., x is always less than 2). Note that φ

cannot involve the “next time” operator X .

Figure 2.12: Example of POR. Each state is labelled with the values of the tu-
ple (x,y,z). The transitions are represented by arrows with their associated
operation beside them. Paths 1 and 2 are φ-stutter equivalent.

Figure 2.12 illustrates two paths that are φ-stutter equivalent, with respect to

property φ. Path 1 goes through an additional transitions (which involves a loop

back to the same state: (1,1,0)) compared to Path 2 which includes some dif-

ferent states (with different values of z). However, property φ only concerns x,

and x is consistent between the paths. Therefore, with respect to φ the paths are

φ-stutter equivalent. This effectively means that SPIN can just explore one of these

paths when verifying property φ, instead of both.

Symmetry reduction

Symmetry reduction [30, 31] involves exploiting symmetry between states in or-

der to reduce the size of a state-space. Symmetry between states is determined by

identifying a symmetry group of a state-space’s underlying Kripke structure.
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Symmetry reduction also exploits equivalence, but this time between states.

Rather than storing all explored states, only certain representative states are stored.

The underlying symmetry must either be provided to the model checker explicitly

(by the modeller) [20], or can be inferred from the underlying symmetry of the

system topology (e.g., using TopSpin [30]).

Although we do not apply symmetry reduction during model checking, we do

apply it to our models explicitly in their definition. This is done by identifying and

then merging states that are equivalent with the property of concern. For example,

suppose we are modelling a robot and a food source, where the robot can contact

the food source at three distinct points. We can reduce the state-space of this

model if we are only interested in whether the robot makes contact with the food

source and not the exact point of contact. Here, we can merge three distinct states,

with different contact points, as they are equivalent for the purpose of our model.

A more detailed explanation of how we apply this technique is given in Chapter 5.

2.4 Model checkers and modelling languages

In this section we cover several modelling languages and model checkers that

were considered for the purpose of modelling ABL systems. First, we describe

in detail the PROMELA modelling language, its associated model checker SPIN,

and the embedded C code that can be utilised in PROMELA. Then we describe the

PRISM language and model checker, and lastly we cover several hybrid modelling

languages and their associated model checkers. We conclude with a comparison

and summary of the languages and checkers discussed.

2.4.1 PROMELA and SPIN

Here we cover the model specification language PROMELA and the associated

model checker SPIN [1]. PROMELA is a highly expressive language, and is a natural

language for representing reactive systems –such as our ABL systems.
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PROMELA

PROMELA provides a comprehensive set of programming constructs that enable

models to be developed quickly and intuitively. Table 2.2 describes the datatypes

available in PROMELA, and Figure 2.14 presents a simple sample of PROMELA code.

The sample code involves two robots passing messages to one another; where

one robot is sending signals, and the other is receiving signals and performing a

drilling operation. In the subsequent sections we describe the main constructs of

PROMELA, with reference to this example in Figure 2.14.

Type Values Size (bits)
bit, bool 0, 1, false, true 1
byte 0...255 8
short -32768...32767 16
int -231...231 -1 32
unsigned 0...2n ≤ 32

Table 2.2: Numerical datatypes in Promela.

Typedefs A typedef is a user-defined construct, and it can be assigned any of

the legal datatypes. Typedefs provide a useful means of grouping data for mes-

sage transfer via channels, and for defining multi-dimensional arrays. Figure 2.13

shows how to use a typedef to represent a coordinate.

typedef coord {int x; int y};

Figure 2.13: typedef example.

Proctypes A proctype is a template for a type of process and consists of a set of

statements. Different parameter values are used to instantiate multiple processes

of that type (e.g., client and server processes).

In Figure 2.14 there are three processes declared, which are: signalRobot,

boringRobot, and init. The init process is used to initiate variables and

run proctypes –here it runs boringRobot.
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mtype = {yes, no};
chan bore = [1] of {mtype};
byte drill;

active proctype signalRobot()
{
here: if

:: (drill==0) -> bore!yes; goto here;
:: (drill==1) -> bore!no; goto here;
fi;

}

proctype boringRobot()
{

byte power = 1;
do
:: ((power==1)&&(drill==0)) -> bore?yes; drill = 1;
:: ((power==1)&&(drill==1)) -> bore?no; drill = 0;
:: (power==0) -> drill = 0;
od;
}

init
{

drill = 0;
run {boringRobot();}

}

Figure 2.14: PROMELA code Boring example.
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active proctype signalRobot()
{...}

Figure 2.15: proctype example.

Notice that in Figure 2.15 the signalRobot has an associated active

keyword, this indicates that it should run as soon as model checking begins. The

use of the active label means that a process does not need to be initiated via the

init process. Within the Boring example the signalRobot process is used to

send messages to the boringRobot process, telling it to bore if it is not and to

stop if it already is.

If statements An if statement contains one or more lines between the reserved

words “if” and “fi”. Each line begins with “::” and represents an option in

the statement. A line can start with a guard (test) which if passed the subsequent

commands are performed.

here: if
:: (drill==0) -> bore!yes; goto here;
:: (drill==1) -> bore!no; goto here;
fi;

Figure 2.16: if statement example.

In Figure 2.16 there are two options, their guards are passed if drill==0

or drill==1. For this statement we have added a label “here” and the com-

mand “goto” such that after an options’ commands are evaluated the proctype

(containing the if statement) loops back to the beginning of the statement.

Do loops A do loop is similar to the if statement. The options are contained

between “do” and “od”.

In Figure 2.17 there are three options, their guards relate the values of vari-

ables power and drill. Unlike the if statement, once a set of commands are

evaluated the proctype loops back to the beginning of the statement without the

need for a label.
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do
:: ((power==1)&&(drill==0)) -> bore?yes; drill = 1;
:: ((power==1)&&(drill==1)) -> bore?no; drill = 0;
:: (power==0) -> drill = 0;
od;

Figure 2.17: do loop example.

Note that when evaluating an if statement or do loop, if no guards are ful-

filled the proctype in which it is contained waits at the beginning of the statement.

If all guards are fulfilled then one option is chosen nondeterministically and its

commands are evaluated.

Channels A channel provides a means of information transfer between pro-

cesses. Channels are FIFO queues, and messages are written to and read form

channels. Various operations can be performed on a channel, such as random and

non-destructive reads. The queue length of a channel can be set to zero, which

allows it to be used as a semaphore or rendezvous channel. This type of channel

can be used as a lock for shared resources.

chan bore = [1] of {mtype};

Figure 2.18: chan example.

In Figure 2.18 the channel bore is declared. It has a length of 1, and in the

Boring example it is used to send “yes” and “no” messages from the signalRobot

to the boringRobot. The statement “bore!” indicates a write operation (of

the message “yes” or “no”), and “bore?” a read operation (the read operation is

destructive –i.e., it removes the message from the channel).

Atomic statements Atomic statements provide a user-implemented means of re-

ducing the number of interleaved paths when checking a model’s state-space. This

is achieved by combining statements, so that their associated transitions are forced

to execute consecutively. This is effective, provided that the sequence of transi-

tions cannot block in the middle, causing atomicity to be broken. The advantages

of this are best described in the following example.
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Suppose we have an agent in a grid, which can move between grid cells and

scan the grid cell it is in. The agent’s movement is controlled by one process and

its scanning by another. Consider the situation when the agent moves diagonally

in the grid, from (x,y) to (x+ 1, y + 1). SPIN interprets this by incrementing each

coordinate separately, creating an intermediate state with a coordinate (x + 1, y)

or (x, y + 1), depending on the order of commands. If the coordinates’ updates

are not combined in an atomic statement then the robot’s scanning process can

interrupt the its movement process, causing additional paths to be created. This

is illustrated in Figure 2.19 (Original), where a scan takes place at a grid cell

(1,0) that the agent should not be on. Using an atomic statement means that the

two coordinate updates occur consecutively, i.e. are not interrupted. Hence, the

scanning process waits until the agent has completed its movement, resulting in

a reduction in the number of paths. This reduction is shown by the comparison

between the Original and Atomic STGs.

Figure 2.19: Advantages of atomic and d step statements. The state labels are of
the form (x,y,scan).

D step statements A d step statement is a more restrictive version of an atomic

statement because it does not allow any nondeterminism, blocking, or jumping
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inline SYMBOLIC_NAME(parameters) {
//Segment of code.

}

Figure 2.20: inline example.

to or from the instructions it contains. Additionally, rather than just reducing the

number of paths, it actually stops extra states from being created. In Figure 2.19,

the D step graph shows the combining of coordinates’ updates to result in the

removal of the extra state, (1,0,0). That is, the update of both x and y coordinates

are forced to occur in one transition.

Inline functions An inline function in PROMELA is similar to a C macro. The

body of an inline function replaces its symbolic name in the PROMELA code. The

inline function can take in parameters, but does not have a return value; it may,

however, be used to change the value of any variable it refers to. The format of an

inline function is shown in Figure 2.20.

Never claim

LTL properties that are to be checked for in SPIN are defined in terms of PROMELA,

within a construct known as a never claim. A never claim can be thought of

as a PROMELA encoding of a Büchi automaton (see Section 2.3.11) representing

the negation of the property to be checked. A never claim for the property [ ]p,

corresponding to the Büchi automaton in Figure 2.10 is given in Figure 2.21.

SPIN

SPIN is an explicit-state model checker used to verify properties for models spec-

ified in PROMELA. It allows properties to be expressed as LTL formulas, which it

can then verify automatically.

In this section we cover some of the main features of SPIN. First, we de-

scribe how SPIN checks a property using a never claim. Next we cover the in-built
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/*
* Formula As Typed: [] p

* The Never Claim Below Corresponds

* To The Negated Formula !([] p)

* (formalising violations of the original)

*/

never { /* !([] p) */
T0_init:
if
:: (! ((p))) -> goto accept_all
:: (1) -> goto T0_init
fi;
accept_all:
skip
}

Figure 2.21: Never claim for property [ ]p

property checks provided in its verification process. We also describe message se-

quence charts, which allow the flow of information in its models to be observed.

Lastly, we describe SPIN’s application of fairness on a verification: weak fairness.

This is a way of limiting the types of path that could be deemed as error paths.

Never claim checking

SPIN creates a state-space for each process defined in a PROMELA specification.

It then constructs the asynchronous product, A, of these automata and a Büchi

automaton ¬B corresponding to any never claim defined. The automata A and

¬B are then executed in alternate steps –the propositions in ¬B being evaluated

with respect to the current values of the variables in A. Automaton A can be

thought of as a graph in which the nodes are states of the system and in which

there is an edge between nodes s1 and s2. If at state s1, some process can execute

a statement (make a transition) then this results in an update from state s1 to state

s2.

Deadlock checking One of the basic checks done via model checking with SPIN

is the check for a reachable system deadlock. This is an in-built check in SPIN,
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active proctype Blender() {

end: do
:: (on == 1) -> foodToLiquid = 1;
:: (broken == 1) -> assert(on == 0);

progress: maintenance = 1;
broken = 0;

od;
}

Figure 2.22: PROMELA code Blender example.

automatically applied when running a verification. A system deadlock can occur

when one or more processes fail to make progress in an asynchronous model.

For example, a mutual exclusion scenario is a situation where checking for a

system deadlock is valuable. Assume we have two processes, A and B, and one

shared resource, X . Only one process can access X at a given time. Verifying

that there is no deadlock here ensures that each process has terminated in a valid

end state; i.e., they are not in an undesired state, potentially waiting to access the

resource X indefinitely.

Assertion checking Assertion checking in SPIN provides the user with a means

to check a global invariant. An assert statement is embedded within the declara-

tion of a process and evaluated whenever the corresponding transition is executed.

If the expression is false, an error is reported. If there is no error message, then

the assertion is true.

Figure 2.22 is a sample of PROMELA code, representing the behaviour of a

blender. The behaviour of the blender is contained within the proctype statement.

It can be on or off, broken or fixed, and may be undergoing a maintenance op-

eration or not, where the maintenance of the blender involves a human. It seems

appropriate that the blender should be off while a maintenance operation is going

on. To test this, we use an assertion to check whether the blender is off before

maintenance takes place. To do this we place the statement assert(on ==

0); within the Blender process as illustrated in Figure 2.22. Now, when we

run a verification on this model, SPIN will produce an error if our assertion is
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violated (is found to be false).

Non-progress checking In addition to adding assertions to PROMELA, one is

able to reference lines of code with labels. One such label is a progress label,

which is used in the verification process to ensure that a model will always make

progress. What constitutes progress is decided by what the label refers to. If there

are potentially infinite execution cycles in the verification process, we may want

to be assured that, during these cycles, the model continues to make progress in a

certain way. To do this we can add a progress label to a line of PROMELA that we

want the system to continuously pass through. Then by adjusting the verification

process to check for non-progress cycles (an option when running a verification

with SPIN), if there are cycles that do not pass through the progress label infinitely

often SPIN will report an error message.

In Figure 2.22 we have placed a progress label beside the assignment:

maintenance = 1. This application of the label means that all cycles must

pass through the maintenance operation infinitely often. Hence if the blender

process is able to run infinitely often, then we can be confident that it will continue

to be maintained.

Invalid end-state checking Another label in the verification process is the end

label. It is used when one wants to identify sections of PROMELA code at which a

verification can terminate, when checking properties. By default, when checking

a property with SPIN the only valid end points are those where all instantiated

processes have reached the end of their code, which may not reflect the actual end

point of the model.

In Figure 2.22 an end label is placed beside the do loop, which means that

the process can legally terminate while still in the do loop; i.e., during verification

no error will be given if at the end of the model’s execution sequence the blender

process has not terminated. This seems like a reasonable end point for this model

because the blender can now be left in a state where it is awaiting use.
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Message sequence charts Message Sequence Charts (MSCs) are a graphical

representation of communications within a SPIN model. Vertical lines represent

processes and horizontal/diagonal arrowed lines express information transfer be-

tween processes, where information transfer involves message passing between

channels. Boxes are used to represent message passing, where a box is shown

on a vertical line that represents the process which is involved in the information

transfer. Each box contains the name of the process that is using the channel and

the time-step at which a message pass occurs (within a path of the model). Time-

steps represent uniform amounts of time, where each time-step is a discrete point

in time in a model. The time-step in each box is the total number of time-steps that

have passed since the instantiation of the model. Figure 2.23 illustrates one ex-

ample; we give other examples of MSCs associated with the SPIN practical work

presented in Section 3.1.

Figure 2.23: Example MSC.

Figure 2.23 depicts an agent (robo) sending a message to its sensor (sensorLong)

via a channel. The first message sent is represented by “2!3, 4, 0”, where ‘2’ is the
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index for the receiving end of the channel, and the ‘!’ indicates that a message has

been sent. The numbers following ‘!’ denote the message. An arrow from one

box that makes contact with another box indicates that its associated message has

been received.

MSCs allow counterexamples (error paths) in a model to be explored graphi-

cally. This can aid in the identification of errors within the model. This analysis

also means that the exact point at which a property is violated can be identified.

Weak fairness SPIN implements the feature of weak fairness, which allows

greater user control on what constitutes a counterexample during verification.

Weak fairness is applied when verifying an LTL formula, and allows us to pre-

vent SPIN from exploring unfair paths. Weak fairness ensures that any process

that has a continuously enabled transition, will eventually execute that transition.

It allows us to avoid pathological paths in which a property fails to hold, due to

a process unfairly failing to gain control of execution. Figure 2.24 illustrates a

potentially infinite cycle which, without weak fairness, would violate the LTL

formula: [ ] <> (x == 4). Note that the label on each state indicates the value of

x.

In Figure 2.24, the use of weak fairness forces the continuously enabled tran-

sition from state (3) to (4) to be executed.

Embedded C code

A useful feature of SPIN is that it allows for the use of C code embedded within

a PROMELA specification as C code macros. The primary reason for this is to

provide support for programs already written in C code with minimal translation

into PROMELA [1], not for use in hand-written PROMELA specifications. However,

in our case, the increased accuracy afforded by the use of mathematical functions

available using C code outweighs the increased complexity resulting from its use.

Embedded C code allows one to reduce a model’s state-space by changing

variables from PROMELA into C code, where the variables no longer create new

states (although it is possible to include them as state variables if necessary). For
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Figure 2.24: Example of weak fairness.

example, variables used for intermediate calculations that are not relevant (i.e., do

not constitute a state vector) can be stored and manipulated in C code. This gives

a significant advantage in terms of the tractability of a state-space by reducing the

number of states.

In this section we describe the semantics of the embedded C code.

c decl A c decl primitive can appear only in the global declarations of a

PROMELA specification. It allows for C code datatypes to be embedded into a

model. Example 2.25 shows how a c decl primitive is inserted into a PROMELA

program.

c decl {
typedef struct polarCoord {

int d,a;
} polarCoord;

}

Figure 2.25: c decl example

Here the C code typedef is used to create a struct that is a polar co-
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ordinate (containing a distance and an angle). This coordinate can be used in

calculations within the PROMELA or in other sections of embedded C code, and it

can be referenced in LTL formulas when checking properties of the model.

c state A c state primitive can appear only as a global declaration. It al-

lows for C code variables to be defined in the PROMELA code that are part of the

model’s state-space. The c state variables can be defined as Global, Local, or

Hidden. Global variables have a common value for all processes; additionally,

they are used when generating the state-space of the model. Hidden variables are

declared globally in the PROMELA code although they are not used when generat-

ing the model’s state-space. They can, however, be used for calculations in the

PROMELA code. Local variables are local to a process, but will still be part of the

state-space. In Example 2.26 three declarations of c state variables are given.

c state ‘‘polarCoord obPos’’ ‘‘Global’’
c state ‘‘polarCoord agentPos’’ ‘‘Hidden’’
c state ‘‘polarCoord antenPos’’ ‘‘Local proc1’’ ‘‘now.agentPos’’

Figure 2.26: c state example

There are three possible fields for each declaration, they are: variable type

and name, visibility, and initial value. Note that the local variable (antenPos)

has the name of the process it is local to after the Keyword Local. Also note,

antenPos is initiated to the same value as agentPos.

c code A c code primitive can appear anywhere within a PROMELA specifi-

cation. Once reached, the C code within the c code primitive is executed uncon-

ditionally and automatically. Example 2.27 shows how it is used.

do
:: c code {position1.d++; now.agentPos.d++;}
od;

Figure 2.27: c code example

Here the C code is simply incrementing two integers in structs. The “now.”

prefix indicates that it is referring to the internal state vector for the model. (The
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internal state vector is used to generate the state-space for the model.)

c expr A c expr primitive is equivalent to the c code primitive except that

it is not executed unconditionally. It is only executed if it returns a non-zero

value when its test is evaluated. Example 2.28 presents a conditional statement

that could be used in a c expr. If the positions are equal (a non-zero value is

returned), the c code primitive is executed.

do
:: c expr {position1.d == position2.d}

c code {now.agentCrash = true;}
od;

Figure 2.28: c expr example

c track Any C code variables that directly affect the value of PROMELA vari-

ables must be tracked during a verification. The c track primitive allows us to

do this. Each c track declaration refers to the memory location and size of a

C variable to be tracked. The use of this primitive allows the associated variables

to be tracked during the verification of the model, while allowing for the normal

verification of properties. It is important to note that even if an embedded C code

variable does not directly affect a PROMELA variable, it may affect it indirectly so

will still need to be tracked. A c track declaration is shown in Example 2.29.

c track ‘‘&moveDist’’ ‘‘sizeof(int)’’

Figure 2.29: c track example

The C code variable moveDist is tracked using the c track primitive. Here

‘&’ denotes the memory location, while “sizeof{int}” indicates that the vari-

able is the size of an integer.

2.4.2 PRISM

PRISM is both a modelling language and a model checker [2], and we describe

each of them in this section. We use PRISM for some of our preliminary models in
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Section 3.2, and we highlight our reasons for using PRISM in Section 2.4.4.

PRISM: language

The PRISM modelling language [13] allows the inclusion of probabilistic transi-

tions within a model; it can be used to represent DTMCs, MDPs, and CTMCs.

(see Sections 2.3.6, 2.3.8, and 2.3.7 respectively). The basic datatypes of the

PRISM modelling language are shown in Table 2.3.

Type Values Size (bits)
bool false, true 1
int -231...231 -1 32
double -263...263 -1 64

Table 2.3: Numerical datatypes in PRISM.

We will now describe the main constructs of PRISM.

Modules A module contains a number of local variables. At any time, the values

of these variables represent the state of that module. The global state of a model

is represented by the states of all its modules. Modules also contain commands,

which describe the behaviour of each module.

Commands Commands are the executable statements in modules. They com-

prise a label (name), a guard statement, and one or more variable updates. A guard

statement must be satisfied before the corresponding update(s) can be executed;

where each update has a given probability, and the probabilities within a command

sum to 1. Example 2.30 shows a command in PRISM.

[example] (test=0) -> 1.0 : (object’=1);

Figure 2.30: Guard example

Here, the name of the command is example and the parenthetic statement,

between the name and the arrow, (test=0), is the guard. The guard must be
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satisfied before the update executes. The number following the arrow is the prob-

ability of the update being executed. Once the guard is satisfied, the probability

of the update executing is 1.0. The update changes the next value of the variable

object (object’) to 1.

Formulas Formulas provide a shorthand way of writing PRISM code. They con-

sist of a unique name (identifier) and an expression; wherever the name is, the

expression will be used in its place. Example 2.31 shows a formula in PRISM.

formula f1 = min( 10, max( x, y));

Figure 2.31: Formula example

Formula f1 finds the maximum of x and y, then chooses the minimum of that

and 10. Example 2.32 shows how f1 can be used.

PRISM: model checker

PRISM is a symbolic-state model checker that is used to check probabilistic proper-

ties and perform quantitative analysis [14]. In PRISM, properties can be expressed

in PCTL. The logic PCTL is given in full in Section 2.3.10. Here we demon-

strate the structure of common PCTL properties, as expressed in PRISM.

P operator The P operator is used in PCTL properties; it is used to check the

probability of an event’s occurrence. The following examples of the P operator

highlight two ways in which it can be used.

Example 2.33 states that the probability of pathProperty being satisfied

is greater than 0.5.

Example 2.34 is a query, expressing the question: what is probability that the

pathProperty is satisfied by the paths from the initial state.

[ ] (f1 = 10) -> (x’ = 0);

Figure 2.32: Formula example
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P > 0.5 [pathProperty]

Figure 2.33: P operator: property example

P = ? [pathProperty]

Figure 2.34: P operator: query example

S operator The S operator is used to reason about the steady-state behaviour of

a model. This refers to the behaviour of a model in the long-run or in equilibrium.

To assess this, all states are generated and the probability of being in any given

state, at any time-step, in an infinite run is calculated. The following examples of

the S operator highlight two ways in which it can be used.

S > 0.5 [pathProperty]

Figure 2.35: S operator: property example

Example 2.35 states that when a model is in equilibrium, it is in a state where

the probability of pathProperty being satisfied is greater than 0.5.

S = ? [pathProperty]

Figure 2.36: S operator: query example

Example 2.36 is a query expressing the question: what is the probability that

when the model is in equilibrium it is in a state where pathProperty is sat-

isfied. Note that in all these examples the property (pathProperty) refers to

some checkable test; e.g., it could be x = 0.

2.4.3 Hybrid model checkers and modelling languages

In this section we describe a number of hybrid model checkers.

Overview

Hybrid models represent systems that exhibit behaviour which is subject to both

discrete and continuous change. Discrete change is associated with the software

of a system, and continuous change with the hardware. Hence, hybrid systems
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combine software and hardware components; e.g., they have both a processor and

mechanical elements. Hybrid modelling languages and model checkers have been

developed to represent this type of system.

Hybrid model checkers provide a customised means of modelling hybrid sys-

tems by allowing for a reduction in a model’s state-space by bounding variables

within states. This bounding can be customised to restrict variables to a set range

of values; (i.e., a form of data abstraction where this range of values compose a

single state in the model). There are many hybrid modelling languages and model

checkers that apply this form of data abstraction, and here we discuss some of the

more established ones.

HyTech

HyTech is the name of both a symbolic-state model checker and its modelling

language [32]. It uses hybrid automata to model systems, specifically linear hybrid

automata, which have transitions for capturing discrete change and differential

equations for capturing continuous change.

Linear hybrid automata are a subclass of hybrid automata that can be analysed

automatically by computing with polyhedral state sets (a set of states that can be

reached via one another, as time elapses).

HyTech provides diagnostic and debugging information as well as the standard

true or false verifications. It provides time-stamped events which lead to error

paths in verification.

Examples of modelling real systems are described in [33]. A case study is

presented in which a fire brigade robot is modelled as an STG (see Section 2.3.4).

HyTech allows for the discrete transitions of this STG to become continuous;

hence, generating a more accurate representation of a real system. The properties

of interest, in this case, relate to questions such as: do the robots try and put out

the fire without having any water?

This case study also covers the concept of synchronisation in the real system

and how this can be represented in the model. For example, suppose a robot is

listening when a civilian cries for help. In this situation, the listening robot always
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hears the civilian as soon as they cry; hence, the synchronisation of these actions

should be assumed by the model. By synchronising these actions the model’s

state-space can be reduced when checking properties. This is an abstraction of the

real system because it assumes that the two separate actions are synchronised and

combines them as one action. Although this abstraction seems reasonable, it poses

a problem because it means that the model is no longer an exact representation

of the real system. In [33], the issues with this type of abstraction (based on

synchronisation) are referred to as the instantaneous transition problem.

Instantaneous transition problem In traditional state transition systems it is

assumed that moving from one state to another is instantaneous. For real systems,

such as ABL systems, this is not the case. For example, in ABL systems agents

cannot respond infinitely fast within their environment. To combat this issue the

concept of synchronisation points is introduced in [33]. These allow the coordi-

nated treatment of a common resource; e.g., a position in an environment, to be

treated as a common resource. Hence, if multiple agents want to move to the same

position, their actions would have to be dealt with by each agent sending a request

to synchronise with the common resource. By having to synchronise before mov-

ing, the agents’ actions are resolved in a way that better represents the real system

–as opposed to agents instantly appearing at a position, or instantly crashing into

one another.

We use a similar concept to synchronisation points in our practical work (see

Section 3.1.1), to more accurately model our ABL systems. Other useful papers

describing systems that have been modelled in HyTech, and which include tutori-

als that introduce the language are [34] and [35].

Alternative hybrid model checkers

A similar hybrid model checker to HyTech is the Polyhedral Hybrid Automaton

Verifier (PHAVer). It has some improvements over HyTech, which are discussed

in [36]. PHAVer is a tool for verifying safety properties of linear hybrid automata,

providing infinite precision arithmetic in a robust implementation. Infinite pre-
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cision arithmetic refers to calculations that are limited in precision by memory

constraints. In [36] a comparison of PHAVer and other hybrid model checkers

is given; where PHAVer is shown to outperform HyTech and others, including

CheckMate [37] and HSolver [38].

The HySAT modelling language takes advantage of SAT solvers by integrat-

ing an arithmetic constraint solver with a tightly bounded model checker (iSAT)

[39]. It uses bounded model checking and temporal formulas in order to obtain

propositional SAT (boolean or propositional satisfiability) problems, on which it

uses SAT solvers to perform verification.

2.4.4 Comparison of model checkers and their languages for
ABL systems

It could be that there are no appropriate languages to model a system, in which

case a new language may need to be created; or, it may be an option to represent a

system in multiple languages to model it fully. This multi-language representation

can be done by automatically converting from one language to another. In [40]

one such automatic language converter is discussed.

For our ABL systems, we primarily use PROMELA and SPIN. PROMELA provides

an expressive language and SPIN an established model checker with many inbuilt

state-space reduction techniques (see Section 2.3.13). It is also important to note

that none of the hybrid model checkers looked at here seemed to provide signif-

icant advantages that would make them worth using in preference to SPIN (for

modelling our ABL systems): where it is already possible to use bounded vari-

ables or even unseen variables within embedded C code sections of the PROMELA.

Although we focus on using SPIN, we also use PRISM to generate some proba-

bilistic models of our ABL systems. The use of a probabilistic modelling language

allows for a larger variety of properties to be checked and provides a means to rep-

resent the likelihood of any transition being taken in our system models. For these

models, transitions can be assigned a precise probability of being taken. PRISM

also allows us to quantify the results from our verifications such that we can de-
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termine the precise probability of a formula being fulfilled. Our PRISM models are

described in Section 3.2.

Deriving the probabilities from our ABL systems, however, is imprecise. For

example, suppose a robot is trying to turn 90◦ clockwise. The probability assigned

to this action affects the accuracy of all properties, yet quantifying the precise

probability of an exact 90◦ turn is not feasible. Hence, some actions are better

represented without an associated probability. Additionally, PRISM does not have

en equivalent to PROMELA’s embedded C code, which makes in unable to express

our systems with the same accuracy. Therefore, we primarily model our ABL

systems using PROMELA, and check their properties using SPIN.

2.5 Abstraction

In model checking, abstraction refers to the simplification of a system’s specifica-

tion in order to produce a model with a tractable state-space. An abstracted model,

or abstract model, should still include all states and transitions that concern prop-

erties that require checking. The intention is that from checking properties of an

abstract model one can infer that they hold for the original system.

When modelling a system, its properties are expressed using a set of Atomic

Propositions (AP ); where each atomic proposition in AP evaluates to either true

or false. An alternative to the 2-value evaluation of an atomic proposition, is the

3-value abstraction technique. Here atomic proposition can be assigned the value

of unknown, which gives a formal representation of neither true nor false. The

3-value abstraction technique is used in [41, 42], and abstraction specifically for

hardware verification in [43].

Abstraction involves the simplification of a specification which, consequen-

tially, could add errors to the results of checking properties. Therefore, techniques

for bounding these errors have been developed. They are used to quantify the

likelihood of properties that are true for abstract models being true for their orig-

inal systems. In [44] the modelling of a probabilistic system is presented, where

a coffee-delivering robot system is represented as an MDP (see Section 2.3.8)
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and used to explain abstraction and error bounding techniques. Additionally, a

methodology for generating abstract models automatically from an MDP repre-

sentation is presented.

The technique proposed for bounding errors in [44] is as follows. First, choose

a set of immediately relevant atoms (IR). Set IR is comprised of the atoms which

have the greatest impact on the reward function of the model. Next, a set of

relevant atoms (R) is chosen, where R is defined as the smallest set of atoms that

satisfy the following rules: R includes at least all the atoms in IR; and if there is

an atom x which is in set R and is the result of an action A on another atom y,

then y is also in set R.

Our systems are abstracted based on the properties that we wish to check, and

we do not use rewards. It is conceivable to incorporate rewards into our models,

as the choice of property to check implies a notion of reward. Hence, we apply

the same methodology, but without the MDP formalism of rewards.

In [45] a method of approximating to the minimal abstraction is presented.

This is referred to as inexact abstraction. In this case the abstraction can be de-

rived directly from the text of the program without having to construct the origi-

nal transition system. The approach of inexact abstraction is conservative, which

means that it is restricted to properties with the for all (∀) path qualifier of the

form ∀ CTL (see Section 2.3.10). Therefore, if a property is true for the ab-

stracted model then it is also true for the original system. However, if a property

is shown to be false no conclusion can be drawn with respect to original system.

The technique of counterexample abstraction is presented in [46]. It uses an

automatic iterative abstraction methodology, which involves analysing the con-

trol structures within a program to create an initial abstract model. States in the

abstract model are generated by clustering states from the real system. This pro-

duces an abstract model based on a set of AP . The labelling for a cluster of states

is the same as for all of the individual states in the cluster.

A model is checked for properties that fulfill the system’s specification, where

a counterexample demonstrates an error. If these properties are shown not to

hold for the abstract model then they are referred to as spurious counterexamples.
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These are used to highlight states and transitions that cause the abstract model

to be inaccurate. The states are then removed from the abstraction, or simply

altered enough to make the property hold. Iterating this process is used to refine

the abstract model to make it more concise and accurate.

2.6 Autonomous agents and multi-agent systems

In this section we discuss literature specific to the area of multi-agent systems

(herein referred to as MA systems).5 Most of the papers here appear in the Au-

tonomous Agents and Multi-Agent Systems journals.

2.6.1 Representing MA Systems

There are many difficulties when modelling systems that comprise autonomous

agents. One of the main difficulties is how to represent an autonomous agent in

a modelling language. Modelling different types of agents can be time consum-

ing when there is no common language to describe an agent’s behaviour. In this

situation each agent is analysed individually, which can lead to no obvious com-

monality between agents and no reusable description of an agent. In light of this,

common languages have been developed called agent-oriented languages, such

as 2APL [48], 3APL [49], and AgentSpeak [50]. AgentSpeak is a logic-based

programming language centred on the Beliefs, Desires, and Intentions (BDI) ar-

chitecture.

The BDI architecture represents an agent as balancing its time equally between

“choosing what to do” and “doing it”. The time taken for an agent to plan ahead

(think) –as opposed to just choosing an action at a given time– is not within the

scope of the BDI architecture.

BDI represents three aspects of an agent, they are its: state represented by its

beliefs, goals represented by its desires, and intentions represented by its plans to

5MA systems overlaps with some ABL systems, but they do not necessarily involve a learning
element. A broad introduction to MA systems is given in [47].
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achieve the goals. It provides a software model for intelligent agents that separates

them into the three discrete elements of beliefs, desires, and intentions.

Figure 2.37: Generic BDI architecture.

Figure 2.37 is based on a figure from [51], and represents the generic architec-

ture of a BDI agent. It shows how the agent receives information from its percepts

(sensors) into the belief revision function (BRF). The BRF receives the combina-

tion of information from an agent’s percepts in order to generate new beliefs; its

formation of new beliefs is also affected by the agent’s current beliefs.

Beliefs are what the agent thinks about the state of its environment. Based on

these beliefs, the agent generates options that can be chosen from its current state.

The number of options generated is affected by the intention of the agent, where

the agent’s intention is the current plan it is following. Options are evaluated with

the desires of the agent –the agent’s goals. The filter generates new intentions

based on beliefs, options, and previous intentions. Having the intentions in a

feedback-loop with the rest of the model allows the agent to form new plans from

those it is already committed to.
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2.6.2 Formal approaches

This section focuses on attempts to formally represent and analyse MA systems.

In [52] a formal development framework for describing an MA system is pre-

sented. Three attributes which are common to the logic used to represent MA

systems are highlighted, they are: an informational component, which represents

an agent’s beliefs or knowledge; a dynamic component, which represents dynamic

activity in the system; and a motivational component, which represents an agent’s

desires, intentions, and goals. The framework only focuses on temporal logic and

it has been developed for the specification, verification, and implementation of

MA systems. However, the framework specifically focuses on the areas of pro-

cess control, electronic commerce, and information management.

In [53] an extension to the open-source model checker MCMAS [54] is pre-

sented (MCMAS-P ) that is specialised for MA systems where there is an arbitrary

number of agents in a system. Specifically, [53] introduces a technique for deal-

ing with agents as parameterised interleaved systems. This technique identifies

the maximum number of agents required in a model such that the results from its

verification also apply to models with any larger number of agents.

Other formal approaches that involve the verification systems for MA pro-

grams based on the BDI framework include [55] and [56]. Their approaches in-

volve getting the output of a BDI agent programming language into a format that

can be verified by a model checker. In [56] the agent program model checker

Agent Java PathFinder (AJPF) is used to generate Kripke structures which can

then be verified by SPIN. The AJPF code is also used to generate DTMCs which

are then able to be verified in PRISM. A comparison of verification results (run-

times) shows that converting a AJPF model and verifying properties with SPIN is

more efficient than simply verifying the properties with AJPF.

Model checking with AgentSpeak

This section describes combining model checking with the AgentSpeak repre-

sentation of an agent. Automatic construction of a model from an autonomous

agent’s specification in AgentSpeak is discussed in [57]; One of the initial hurdles
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is that, unlike model checkers, AgentSpeak is not restricted to finite state systems.

To overcome this, a new restricted version of AgentSpeak is introduced called

AgentSpeak(F).

In [57], once an agent is represented in AgentSpeak(F) it can then be auto-

matically translated into two modelling languages, PROMELA and Java PathFinder

(JPF) [58]. From this, two separate models are generated and compared. The

comparison shows a clear advantage of using PROMELA and SPIN opposed to JPF.

This advantage is highlighted by the difference in time and memory to verify the

same AgentSpeak(F) representation: verifying the system took SPIN 65.78 sec-

onds using 210.51 MB of memory, and took JPF 18.49 hours using 366.68 MB of

memory.

Alternate versions of AgentSpeak have been used for describing the behaviour

of real-time agent-based systems, such as AgentSpeak(RT) [59]. AgentSpeak(RT)

is further extended in [60] where it is also able to represent hard and soft deadlines

within its BDI framework.

Extending BDI for learning The MA systems described here do not have a

learning element: they are based on the BDI framework, which does not explicitly

accommodate agents’ learning. In the models generated, the implementation of

the BRF function simply adds and removes beliefs based on the information from

an agents’ percepts, while the BRF’s interpretation of perceptual information is

unchanged.

It could be possible to extend this BDI framework to incorporate learning. One

approach is to have a notion of variable beliefs, as opposed to beliefs based solely

on current perceptual information. These beliefs would vary with new perceptual

information and have an impact on the options available to each agent.

Some AgentSpeak interpreters have already been developed to incorporate

predefined BRFs, which allows for more complicated belief revisions, e.g., re-

solving the perception of conflicting information in [61] is incorporated into the

interpreter Jason [62].
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UML representation

Having a high-level representation of an MA system provides more flexibility in

what techniques can be used to analyse them. This is particularly true of model

checking, where the systems must be abstracted to a relatively high level before

checking properties. In this section we describe a method of representing an MA

system in a UML framework.

In [63] an extension of UML that includes the representation of agents is pre-

sented. The aim is to create a unified framework for modelling MA systems.

Extending UML in this way is not new, but here there are three key differences to

previous approaches. These differences are (taken verbatim from [63]):

“the proposal of a clear definition and representation of the elements

that compose MA systems, the clear definition and representation of

the relationships between the elements in static diagrams, and the rep-

resentation of the interactions between all elements in a dynamic dia-

gram.”

Having this high level UML description as a standard way to describe MA

systems could allow for automated translation into a modelling language. This

proposal is based on having the extended UML as a well-defined input for a trans-

lator program. However, UML representation is designed for translation to OO

programming languages, not modelling languages. This makes this extension bet-

ter suited for creating software simulators rather than verifiable models.

Argumentation

Argumentation is a method for resolving a controversial standpoint. In an MA

system this could relate to how an agent should proceed when only having limited

information. Argumentation is a mechanism for forming and revising beliefs and

decisions, as well as describing rational interactions in MA systems [64]. It is

presented as an alternate method for making decisions based on incomplete infor-

mation (nonmonatomic reasoning). It is more related to the decision process of an

agent than to representing a whole system.

71



Grouping agents

Another direction of MA systems research involves treating a group of agents as

a single entity. In [65] this is referred to as the Gaia methodology. The Gaia

methodology is a standardised way of translating from a requirements capture

to a grouped, agent model. For the Gaia methodology to be applied, there are

three main assumptions placed on the system. These are that: agents always share

common goals, there is a static organisational structure of the agents, and there is

no uncertainty in the system.

The Gaia methodology promotes the use of fixed infrastructures, which gears

it more toward industry, and particularly manufacturing; yet even regarding more

fluid infrastructures, it can be used to provide a standardising process that moves

from requirements to a model.

Similar work on treating a system of agents as a single entity is covered in

[66]. Here a group of agents is treated as a new, different agent; this new agent is

then modelled separately from the original agents. This approach is presented as

a form of abstraction.

Pattern identification Further work on grouping agents involves identifying

patterns within MA systems. In [67] a standardised way to identify agent-oriented

patterns is introduced, where a pattern is identified for a problem specification of

a system.

Defining a system of agents as a pattern allows them to be represented as one

entity. This can allow for simplified analysis: if a pattern is known to satisfy

certain properties then identifying this pattern in a system’s specification allows

one to infer that the same properties hold for this system. Models can also be

simplified by being broken down into known patterns.

Some more work on the formal aspects of multi-agent systems is presented in

an annual workshop –Formal Aspects of multi-agent systems (see, for example,

[68]). Approaches tend to focus on protocol verification, formalisation of goals

and plans, and knowledge-based agents.
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2.6.3 Environment modelling

Modelling an environment is an intricate part of modelling any MA system be-

cause all interactions within an MA system must occur in its environment, and

must abide by the laws imposed by this environment. In this section we describe

techniques for representing an environment in an MA system.6

Classically, the environment was not seen as an explicit part of a system, but

as an external part. This notion is contested in [70], where it is proposed that

the environment is an explicit part of any MA system. An argument is presented

advocating the inclusion of the environment in the system model. The general

principle of the argument in [70] is summarised thus:

“...the environment provides the surrounding conditions for agents to

exist, which implies that the environment is an essential part of every

multi-agent system.”

Having an explicit representation of the environment means that an agent’s

actions can be described as situated actions; i.e., an agent’s actions have different

meanings depending on the state of the environment. A description of an environ-

ment in the case of an MA system, is given in [70] as:

“The environment is a first-class abstraction that provides the sur-

rounding conditions for agents to exist and that mediates both the

interaction among agents and the access to resources.”

Figure 2.38 illustrates this explicit representation (it is a simplified version of

a figure from [70]). The dashed lines (both types) indicate data flow, and arrowed

lines indicate interaction. The deployment context is the traditional view of the

environment as an external set of resources that an MA system interacts with. The

application environment is a layer between the agents and the deployment con-

text, which acts as an interface. The application environment is split into distinct

6An accumulation of research on the topic of environments in MA systems was published in
the Autonomous Agent and Multi-Agent Systems journal 2007, and summarised in [69].
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Figure 2.38: Explicit representation of an MA system’s environment.

components, which have their values combined to give the current state of the

system.

The data flow of information shows how an agent’s perception of the environ-

ment is affected by the following: its communication with the environment, its

interaction with the environment, the state of the environment, and the environ-

ment’s laws. This representation takes into account dynamic properties (dynam-

ics), which directly affect the state of the environment; it also takes into account

the effect of monitoring the deployment context, which indirectly affects the state

of the environment.

An alternate, explicit representation of an environment is given in [71], where

an environment is formally defined with set notation. This definition is composed

of four components. These are: structural, dynamism, agents manipulating dy-

namism, and interference with dynamism. The structural component represents
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the state of the environment, and it is decomposed into the following four parts:

entities (these are objects within the system e.g., an agent), properties (these are

measurable system values e.g., temperature), embodiments (how an agent relates

to the environment e.g., an agent embodies a robot), and constituents (these are

sets of entities unioned with sets of properties).

The dynamism of the environment is used to express the evolution of environ-

mental entities. It is decomposed into activities which involve a set of constituent

entities, a time interval, and an evolutionary strategy. An evolutionary strategy

represents an activity’s effect on the set of constituent entities over time.

The manipulation of dynamism describes how agents are able affect the activi-

ties of the environment according to reaction laws (a set of logical rules governing

environmental interactions). The interference with dynamism describes how the

different elements of dynamism interact with one another, and specifies the ways

in which entities interfere.

The body of work on environmental representation suggests that formally

defining the environment is necessary to accurately model an MA system; yet,

there is still no overriding standard for representing an environment. Therefore,

decomposing an environment into its components is a different process for each

system. The decomposition of an environment presented in [70] and [71] is used

in order to generate a software simulation, rather than a model that can be verified.

These approaches are too detailed to be useful in a model checking context.

2.6.4 Representing learning in MA systems

In this section we give a summary of approaches to dealing with learning agents

in MA systems.

A comparison between two commonly used learning techniques, temporal dif-

ference (TD) and evolutionary learning methods is presented in [72]. More specif-

ically, the Sarsa (TD) and NEAT (evolutionary) methods are compared; where

both methods have been shown to be empirically successful [72]. Our interest

lies in the idea of trying to create a benchmark test for learning techniques. The

comparison of the techniques is trial-based, where the context of the learning is
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of significant importance (benchmark test). Benchmark testing for learning al-

gorithms, in this way, helps provide an appropriate context for modelling them.

Defining a good benchmark test is essential for fair comparisons between different

methods. The type of ABL system we model can act as a benchmark for imple-

menting other algorithms in place of the ICO learning that we currently consider.

MA cooperative agent learning

In this section we discuss the issues that relate to coordinated actions in MA sys-

tems.7 Here we refer to the issues that arise when coordinated actions occur in

MA systems as the coordination problem.

The coordination problem arises when different agents have to coordinate to

achieve a common goal. In [74] reinforcement learning is used to deal this prob-

lem. The agents’ behaviours are affected by a course-grained and a fine-grained

algorithm in order to converge to a common behaviour that will enable them to

achieve their goals. These algorithms are formally shown to achieve convergence,

and can be used to predict the steady-state behaviour of system.

Further work on the coordination problem is described in [75]. It describes dis-

tributed learning techniques that improve coordination among autonomous agents.

Cooperative learning is applied to modelling infinite state-space MDPs in [76],

with an aim to cause agents’ behaviours to converge into a predictable optimal pol-

icy behaviour. Here a formula is used to calculate whether the agents’ behaviour

will converge to this.

Identifying convergent behaviour in MA systems allows (model checking) ver-

ification to be applied only to the convergent behaviour –as opposed to the pre-

convergent behaviour. For example, suppose there are two robots each with a set

behaviour. By calculating the convergent behaviour before generating the model,

we can create a model that simply represents the convergent behaviour and only

apply model checking to that. This approach can reduce the size of a model pro-

vided that properties of the pre-convergent behaviour do not need to be verified.

7A broad survey of literature on cooperative agent learning in MA systems is presented in [73].
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Chapter 3

Preliminary ABL models

In this chapter we describe the modelling and verification of three ABL systems

in PROMELA and SPIN respectively. Each physical system is explained using the

term robot, and its model is explained using the term agent. This is a necessary

distinction between the real system, which uses actual robots, and the models,

where these robots are represented by software.

We then present our PRISM models. The first two of these are based on the same

systems as those described in the PROMELA models. The others focus on modelling

learning specifically, where the first two are based on theoretical systems, while

the final system involves a learning robot, designed for obstacle avoidance.

All the models in this chapter are preliminary models in our research. Most

are simpler versions of the final ABL system models covered in Chapter 4 and

Chapter 6.

3.1 PROMELA models

In this section we describe three systems and models that represent incremental

steps in the generation of the Explicit model (see Chapter 4) of the ABL system

we described in Section 2.2.3. First, we describe a basic system model, which

involves two agents trying to navigate in a small, enclosed environment without

colliding into one another. In Section 3.1.2 we present a slightly more complicated

77



version of the scenario that we call colliding robots, in which the agents have a

avoidance field that they use to send information to one another. We then describe

a model of a system that involves robots that use dual antennas to navigate an

environment and avoid collisions. Finally, we sum up the merits and drawbacks

of the preliminary models and explain how we plan to proceed.

3.1.1 Colliding robots

In this section we consider a system that involves two robots trying to avoid one

another in a walled environment. Each robot has a proximal sensor that tests for

the presence of an obstacle directly in front of it; these sensors are used to avoid

colliding with obstacles, other robots, or the perimeter wall.

We begin by modelling each agent and the environment as processes. The

environment is represented as a grid where coordinates are stored in a global, two-

dimensional array; where each element of the array is indexed by a coordinate of

the grid and describes what is held at that coordinate. For this model we use a 8×7

array. The grid is surrounded by a perimeter wall, which is stored in the array as

a wall of obstacles. The environment process has access to the location of the

agents and the array of grid cells. An agent communicates with the environment

via channels, and the environment responds using a different channel for each

agent. (The PROMELA data structures we refer to here, processes and channels, are

described in Section 2.4.1.)

Agents move by choosing nondeterministically whether to move up, down,

left, or right. When an agent chooses an adjacent grid cell to move to, it first turns

to face this direction and uses its proximal sensor to test if the grid cell is unoc-

cupied. This test is done by sending the environment a message that contains the

coordinate that the agent is trying to move to, via a channel; where this channel

is used to represent a robot’s proximal sensor probing the environment. The en-

vironment responds with either “clear” or “nogo”. This indicates whether the

adjacent cell contains an obstacle or not. If the adjacent cell is occupied, the robot

again chooses an adjacent cell (turns) and checks it. When an empty cell has been

located, the agent moves into that cell. The agents proceed to move in this fashion

78



–randomly–, with the only goal of trying to avoid collisions.

The MSC in Figure 3.1 shows how the agents and environment pass messages.

The full code of this model is given in Appendix A.1.

Assumptions

We make assumptions about this system to simplify our PROMELA models, they

are: that an agent can sense only one grid cell in front of it (in the direction it is

facing), and that an agent’s proximal sensor detects obstacles, other agents, and

the perimeter wall.

Figure 3.1: MSC for Colliding robots.

Figure 3.1 represents the communication between two agents interacting with

their environment, namely robo:2, robo:3, and environment:1 respec-

tively (MSCs are described in Section 2.4.1). Each agent sends a message to the

environment using its proximal sensor, and the environment responds. Specifi-

cally, robo:2 sends a message querying whether the cell with coordinate (2,2)

is free; the response clear is sent back, and then robo:2 moves to that coor-
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dinate. The agent robo:3 then queries whether (2,2) is free and receives a

nogo message, because the coordinate is now occupied.

Verification

In the real system it is impossible for these two robots to collide because they are

each checking for potential collisions continuously and independently. To make

our model a closer representation of this system, it is necessary to check to see if

we can replicate this perfect avoidance behaviour in our model.

The following proposition definitions (in 3.1) and LTL formula (3.2) specify

the property of perfect avoidance behaviour for this model.

define p roboX[0] == roboX[1];

define q roboY[0] == roboY[1];

define v validator == 1;

(3.1)

[ ] ( ! (p && q && v)) (3.2)

Formula 3.2 expresses the property that it is always false that the agents share

the same coordinates –once the systems has been initiated (validated). It tests

whether the agents’ coordinates are the same at any time step. Variables p and

q are true if the agent’s coordinates are equal, while v is true once the system

is instantiated. The validator makes sure that the test is not carried out until the

roboX and roboY arrays have been assigned values, where these arrays hold the

coordinates of the agents. These arrays are indexed by an agent’s identification

number, such that roboX[0] is the x coordinate of agent number 0. The full

verification output is in Appendix A.2.

Time-step jumping problem The property expressed by Formula 3.2 (perfect

avoidance behaviour) does not hold for all paths of our model; hence, the ver-

ification shows the property to be false (we refer to this as failed verification).

Examination of a counterexample, produced by SPIN, shows how the verification

fails. We refer to the cause of this failed verification as the time-step jumping
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problem (similar to the instantaneous transition problem in Section 2.4.3).

This problem occurs when both agents approach each other as shown in Fig-

ure 3.2, and then both select the same coordinate to move to. Each agent is able to

receive a clear message from the environment before they move, which means

that they are able to collide –occupy the same grid cell in the model.

Figure 3.2: Example of the time-step jumping problem.

This problem highlights the issue of abstracting the environment to a grid rep-

resentation. Each movement in a grid is a jump, while in reality it is a gradual

process. In the actual system the robots’ sensors are continuously testing for ob-

stacles as the robots begin to move into a cell; where, due to this continuous

testing, the robots recognise the potential for a collision as they are moving into

the new grid cell and turn to avoid, before colliding.

This issue can also be caused by the shape of the agents and their sensor range.

For example, if the agents are circular, as shown in Figure 3.2, then the agents can

notice one another before the full movement into the gird cell takes place. Yet, if

the agents are square then their corners will collide as soon as they move, even the

smallest amount, into the new grid cell. This is simply an alternate cause of the

same problem. The real issue remains: we need to represent the real system in the

model, and the robots can always avoid each other in the real system.

Another issue highlighted by this failed verification is with the use of buffered

channels. Between a message being sent and received it is possible for another

process to execute a transition. For example, suppose a robot sending a message
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enquiring if a cell is free. While the clear message is being sent back, it is pos-

sible for the other agent to move into the cell between the sending and receiving

of the message.

A solution to this problem that helps more accurately model the ABL system

is to have an additional state per grid cell that represents the situation when an

agent is approaching that cell. When the agent is in this approaching cell state, it

performs another test to see if the cell is clear. This test includes checking that no

other agents are in the approaching cell state for that cell. In this way, two agents

cannot be in the same cell. This solution emulates the synchronisation points

described in Section 2.4.3, in that both agents have to synchronise on a transition

into a new cell. This solution is modelled and checked with the same definitions

and formula as before. The property is now true.

Verifying this property demonstrates that the agents cannot now occupy the

same cell at the same time. Hence, the real robot’s behaviour is more accurately

represented, but at the cost of additional complexity in the model.

The verification output provided by SPIN is shown in Figure 3.3. The first

three lines indicate the version of SPIN used, and the fact that POR and compres-

sion are applied (see Sections 2.3.13 and 2.3.13 respectively). The term “never

claim” is described in Section 2.4.1. The “states stored”, “depth”, and

the “total actual memory usage” are also significant. The states stored

corresponds to the number of states encountered for the DFS of the state-space,

and the depth reached refers to the length of the longest path explored. If the

models or LTL formula get more complicated the amount of memory usage can

become a limiting factor when trying to run verifications. The full code for the

agents with the approaching-cell state is given in Appendix A.3.

3.1.2 Avoidance field robots

In this section we describe a system involving two robots in a walled environ-

ment. Each robot has a sensor that allows the robot to test an adjacent square for

the presence of an obstacle or an avoidance field. An avoidance field is a area

surrounding each robot. The field is used by the robot as an avoidance signal, and
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Figure 3.3: Verification output: agents not colliding by using approaching-cell
state.

it is employed in order to help prevent collisions. The environment is represented

as a 8× 7 grid, surrounded by a perimeter wall. The robots aim to avoid colliding

with obstacles, the perimeter wall, and other avoidance fields.

Assumptions

We assume that: an agent can sense only one cell in front of it (in the direction

it is facing), and an agent’s sensor detects obstacles, other avoidance fields, other

agents, and the perimeter wall. Avoidance fields surround and cover each agent as
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a 3× 3 grid, with the agent at its centre.

System model

The MSC in Figure 3.4 shows that the agents and the environment interact sim-

ilarly to the previous model. The agents “robo:2” and “robo:3” send mes-

sages to the environment “environment:1”, which responds with a “nogo”

or “clear” message. Each message that an agent sends consists of its response

channel, the coordinates it is moving to, and its id.

Figure 3.4: MSC of agents with avoidance fields.

Figure 3.5 represents the two agents and their avoidance fields in the environ-

ment. Note that the avoidance field of the second robot overlaps with the perimeter

wall.

Verification

We want to verify that the addition of avoidance fields, and sensors to detect them

make it impossible for the agents to collide. The property used is the same as that

used in the previous model.

84



Figure 3.5: Agents with avoidance fields.

Figure 3.6: Example of the agents’ avoiding colliding with their avoidance fields.

The time-step jumping problem discussed in Section 3.1.1 is no longer an issue

with this model. This is because the agents are now unable to move to a position

diagonally beside each other, as shown in Figure 3.6, without detecting and then

avoiding the other’s field. The full code for the Avoidance fields model is given in

Appendix A.5.

3.1.3 Dual antenna robots

The third system we model involves two robots that are trying to avoid one another

using a dual antenna system. The proportions of the agents are set to a more

accurate scale than in the previous models. In order to get the scale more accurate
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the resolution of the environment’s grid is increased to a 22× 22 array, where the

outer grid cells form the perimeter wall. Each agent covers an area of 2× 2 cells,

with distal antennas four cells long and proximal antennas one cell long. The

antennas are arranged as pairs, a left and a right, each containing one proximal

and one distal antenna. As in previous models the agents try to navigate their

environment without colliding into anything.

System model

The MSC in Figure 3.7 demonstrates how the agents interact with each other

and the environment. The agents are represented by processes robo:3 and

robo:4. Each agent sends messages to the environment via its proximal and dis-

tal antennas. The process sensorLong:2 represents the agents’ antennas (all

long and short range antennas). When an agent receives a message of “clear”

back from its antennas (sensorLong:2) it processes the message, and then

tries to move forward to a new cell. In order to move, a message is sent to the

environment:1 process. Note that this process is different from the previous

models because here it is used to synchronise the agents’ movements. This means

that an agent cannot move into a new grid cell without the cell being empty.

In this model the agents are much more closely based on the definition of

an agent from Section 2.2.1; where sensors and actuators are treated separately

from the agent. Actuators act as a bridge between an agent process (the agent’s

internal processing) and the environment’s process –relaying to the environment

what action that agent is taking. The sensor processes each hold a perception of

the environment which they relay to the agent processes. Agents’ decisions are

made based on information from the sensors.

The number of directions that an agent can be orientated is increased to eight,

from four in previous models. This increase allows all adjacent grid cells to be

accessed by an agent. Even though it is possible to measure the direction an agent

is facing to a single degree, a further increase in accuracy would greatly increase

the state-space of the model. It would also require a higher resolution of grid

to allow for the new turning and movement precision. Alternatively, the agent’s
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Figure 3.7: MSC of dual antenna robots.

movement could be estimated to be one of the eight adjacent grid cells based on

the angle that the agent is facing. (This is essentially the same thing as still using

only eight directions.)

Instead of static, cell-to-cell movements like in the previous models, this model

is designed to better emulate the continuous driving of real robots –they make

small adjustments as they move. Each agent reassesses its direction every time it

arrives at a new grid cell, and having a higher resolution of the grid means that

calculations for a new move are performed at much smaller intervals than before.

Figure 3.8 illustrates the agents in their environment.

The calculations for an agent’s movement are based on the difference in the

signals from the antennas. The antennas’ function is as described in Section 2.2.3,

where each antenna produces varying strength signals depending on how close an

obstacle is to it. Once the agent processes the antennas’ signal, it turns to avoid

the closest obstacle. This emulates the avoidance behaviour of the real robots. An
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Figure 3.8: Example of agents with dual antennas.

abridged version of the PROMELA code for this model is given in Appendix A.6.

Assumptions

Antennas are treated as perfect springs, which allows us to neglect their resistance

on the agent when they contact an obstacle. Therefore, whenever an antenna is

contacted by an obstacle it contracts in length to the distance from its base to the

obstacle. This happens without impacting on the position of the obstacle or the

agent. It is important to note that, because of this contraction, only one obstacle

can be sensed on a pair of antennas (left or right) at a time. For an agent, an

obstacle is anything in the environment other than free-space. If there is more

than one obstacle along the line of an antenna, then the closest obstacle provides

the signal to the agent (as the antenna has contracted to that distance).

Representing the environment as a gird while having long antennas on the

agents introduces discrepancies in the size of the antennas in different situations.

For simplicity, we assume that these discrepancies are negligible.

These discrepancies are shown in Figure 3.9. They are apparent when an agent

is facing in different directions, where they occur in both the angle at which the

agent’s antennas project and in their length and size. The angle of projection

changes slightly between the directions that an agent can face. This change can
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Figure 3.9: Agent turning 45◦ clockwise

be seen by comparing the agent facing North to it facing North-East. Additionally,

when the agent faces diagonally, its proximal antennas cover three grid cells, as

opposed to two. The increase in antenna coverage allows the detection of objects

directly in front of the agents, as with the real system. The discrepancy in antenna

length is shown comparing the distal antennas of the two agents. It is due to

the diagonal distance across a grid cell being greater than the distance across it

horizontally or vertically.

The process of an agent’s learning is not considered in this model. Here, we

are concerned with modelling the system when the agents have a fixed level of

knowledge. In the real system, the agents begin by not knowing how to interpret

signals from their distal antennas, then learn how to interpret them to avoid collid-

ing with obstacles. All the following verifications are done with the assumption

that the agents have learnt how to respond to their distal antennas.

Verification

As this model is more complex, its verification is a much more memory intensive

process than for the previous models. The greater number of variables create a

much larger state-space, which requires us to refine the PROMELA code to be as

efficiently expressed as possible before we verify the model. This involves iden-

tifying all situations where the state-space can be reduced by combining states
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using e.g., atomic statements (see Section 2.4.1). Note that for the following ver-

ifications, when we refer to colliding with obstacles this includes the perimeter

wall, but not the other agent.

The first property we verify specifies that: an agent never crashes into obsta-

cles, which is represented by Formula 3.4 (referring to the Definitions in 3.3).

define a roboX[0];

define b (roboX[0] + 1);

define c roboY[0];

define d (roboY[0] + 1);

define e (xAxis[a].yAxis[c] == 1);

define f (xAxis[a].yAxis[d] == 1);

define g (xAxis[b].yAxis[c] == 1);

define h (xAxis[b].yAxis[d] == 1);

(3.3)

[] ! (e || f || g || h) (3.4)

Variables a, b, c, and d are used to store the agent’s coordinates. Variables e,

f, g, and h are propositions to determine whether the agent has collided with any

obstacle. The term xAxis[a].yAxis[c] denotes the array element that is a

grid cell a along the x-axis and c up the y-axis. The propositions evaluate to true

if any portion of the agent occupies a cell for which the associated array element

is set to 1.

The second property is: the agents do not collide with each other or any obsta-

cle, which is represented by Formula 3.7 (referring to the Definitions in 3.5 and

3.6).
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define a roboX[0]; define i (xAxis[a].yAxis[c] == 1);

define b (roboX[0] + 1); define j (xAxis[a].yAxis[d] == 1);

define c roboY[0]; define k (xAxis[b].yAxis[c] == 1);

define d (roboY[0] + 1); define l (xAxis[b].yAxis[d] == 1);

define e roboX[1]; define m (xAxis[e].yAxis[g] == 1);

define f (roboX[1] + 1); define n (xAxis[e].yAxis[h] == 1);

define g roboY[1]; define o (xAxis[f].yAxis[g] == 1);

define h (roboY[1] + 1); define p (xAxis[f].yAxis[h] == 1);

(3.5)

define q ( (xAxis[a].yAxis[c] == xAxis[e].yAxis[g]) ||

(xAxis[a].yAxis[c] == xAxis[e].yAxis[h]) ||

(xAxis[a].yAxis[c] == xAxis[f].yAxis[g]) ||

(xAxis[a].yAxis[c] == xAxis[f].yAxis[h]) )

define r ( (xAxis[a].yAxis[d] == xAxis[e].yAxis[g]) ||

(xAxis[a].yAxis[d] == xAxis[e].yAxis[h]) ||

(xAxis[a].yAxis[d] == xAxis[f].yAxis[g]) ||

(xAxis[a].yAxis[d] == xAxis[f].yAxis[h]) )

define s ( (xAxis[b].yAxis[c] == xAxis[e].yAxis[g]) ||

(xAxis[b].yAxis[c] == xAxis[e].yAxis[h]) ||

(xAxis[b].yAxis[c] == xAxis[f].yAxis[g]) ||

(xAxis[b].yAxis[c] == xAxis[f].yAxis[h]) )

define t ( (xAxis[b].yAxis[d] == xAxis[e].yAxis[g]) ||

(xAxis[b].yAxis[d] == xAxis[e].yAxis[h]) ||

(xAxis[b].yAxis[d] == xAxis[f].yAxis[g]) ||

(xAxis[b].yAxis[d] == xAxis[f].yAxis[h]) )

(3.6)
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[] !(i || j || k || l || m || n || o || p || q || r || s || t)

(3.7)

This property is also shown to be true. Success of the final verification shows

that once the agents have learnt to use their distal antennas they are able to avoid

all collisions in this type of environment.

3.2 PRISM models

In this section we present a variety of PRISM models.

3.2.1 Colliding robots

This model involves two agents that can detect an obstacle in the square in front

of them. There are four variations of the agents considered here. Two variations

where the agents move asynchronously; the first where they move in four direc-

tions, and the second in eight directions. The other variations are where the agents

are forced to move synchronously; the third in four directions, and the fourth in

eight directions. Checking different variations allows us to assess how each one

affects the properties of the system.

Here, the agents are in a square grid, surrounded by a perimeter wall com-

posed of obstacles. We use a different size of grid from the Colliding robots in

Section 3.1.1. For verification we use a 22× 22 grid. This matches the same scale

and size as the Dual antenna robots in Section 3.1.3.

Assumptions

Each agent can only move forward one grid cell in one time step; and when an

agent detects an obstacle, it can turn either left or right. Unlike the SPIN models,

turning left or right is no longer a nondeterministic choice, as the agents now have

0.5 probability for turning left and 0.5 of turning right.
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Apart from the addition of probabilistic choice and the two 8-directional vari-

ations, these models adhere to the same assumptions as with the Colliding robots

SPIN model (for details see Assumptions in Section 3.1.1).

Verification

The initial verification is carried out on two variations. These are where agents

move asynchronously, with one using four directions of movement, and the other

eight directions. We check the PCTL Formula 3.8, which queries the probability

of the agents eventually occupying the same grid cell.

P = ? [ F [ (x1 = x2) & (y1 = y2) ] ] (3.8)

For both variations, the probability of them eventually occupying the same cell

(colliding) is 0.0. This emulates the perfect avoidance behaviour of the latter SPIN

Colliding robots model.

Although these verifications are successful, a more interesting verification is to

assess whether this property holds when the agents are forced to synchronise their

movement; i.e., using the second two variations. Checking these variations with

the same PCTL formula gives the probability of the agents eventually colliding

as 1.0.

After deriving that the agents in the second two variations are able to collide,

we can now query the probability of them colliding, at any given time step, when

the model is in a steady state (see Section 2.4.2). This is queried by the PCTL

Formula 3.9.

S = ? [ (x1 = x2) & (y1 = y2) ] (3.9)

Forcing the agents to synchronise their movements gives the steady state prob-

abilities of both agents occupying the same grid cell (having collided) as: 0.0104

for the 4-directional agents, and 0.0064 for the 8-directional (to four decimal

places).
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Analysis

Querying Formula 3.9 over a range of grid sizes generates the graphs in Fig-

ure 3.10 and Figure 3.11. They show the probability of agents colliding as the

size of the grid (n× n) ranges from where n = 2 to n = 20.

Colliding likelihood

Figure 3.10: 4-directional agents, probability of colliding.

Colliding likelihood

Figure 3.11: 8-directional agents, probability of colliding.

As the grid size increases, the likelihood of a collision decreases. The non-

linear relationship between size and likelihood is due to the way the agents nav-

igate. By constantly trying to move forward, they tend to move to the perimeter

wall of the environment and then simply navigate around it. Note that, in Fig-

ure 3.10 there are no collisions in the smallest grid simply because the agents

are unable to move. An abridged version of the PRISM code for this model is in

Appendix B.1.
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3.2.2 Dual antenna robots

This model is the PRISM equivalent of the Dual antenna robots SPIN model, from

Section 3.1.3. As with the PRISM Colliding robots, we model the same four varia-

tions of robot. However, we are only interested in the variations where the agents

are forced to move synchronously. The other variations are excluded because, as

previous verifications show, their agents do not collide –even with only a basic

sensor.

The assumptions here are the same as with the SPIN model, but with the same

discrepancies as the PRISM Colliding robots model has with its equivalent SPIN

model. Here, we query the probability of the agents colliding using the following

PCTL formula.

P = ? [ ((x1=x2) & ((y1=y2) | (y1=(y2+1)))) | ((x1=(x2+1)) &

((y1=y2) | (y1=(y2+1)))) ]

(3.10)

Checking Formula 3.10 shows that the probability of the agents colliding is

0.0. As with the equivalent SPIN model, when the agents have the long distal

antennas they cannot collide. An abridged version of the PRISM code for this

model is in Appendix B.2.

3.2.3 Learning models

The first system in this section is loosely based on an example from [5]. Here we

create rudimentary learning agents using PRISM. The agents differ from our defi-

nition in Section 2.2.1. Here, actuators and sensors are not explicitly represented.

However, they are implicitly represented; e.g., the agent picks a bean from a bag

(actuator), and identifies the colour (sensor).

The final model applies the same approach to model learning, but applies it to

our ABL system, described in Section 2.2.3. It involves an agent learning to avoid

obstacles in an open environment.
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Bean bag prediction

For these models, agents are trying to assess the colour ratio of beans in a bag.

There are two possible colours, blue or red, and there is a predefined ratio of the

colours in each bag. The agents try to use the knowledge of what colours they

have already seen, in order to predict the ratio of colours for that bag.

Bag ratios are: 100% blue, 70% blue and 30% red, 30% blue and 70% red, and

100% red. After a certain number of beans are picked, the agent predicts the ratio.

Their selection is limited to the four possible ratios, stated above.

Here, the agent’s prediction involves counting the number of red beans picked,

and remembering the total number of beans picked. In Table 3.1, redCount

refers to the number of red beans counted, and beanTotal the total. Once a

given number of beans has been picked, the agent applies the following calcula-

tions.

If (calculation) Then (prediction)
redCount = 0 100% blue bag
0 < redCount < (beanTotal/2) 70% blue bag
(beanTotal/2) <= redCount < beanTotal 70% red bag
redCount = beanTotal 100% red bag

Table 3.1: Bag prediction calculations.

This prediction emulates a robot using the BDI representation of learning.

The current beliefs of the agent are represented by which bag ratio it believes it is

taking beans from. The desire of the agent is to identify the correct type of bag

ratio, and its intention is to pick beans to decided the ratio. It revises its beliefs

after each new bean is picked.

We assess the ability to predict the correct bag ratio after every bean picked.

Figure 3.12 shows four graphs where the probability of the agent predicting each

type of bag ratio is plotted against the number of beans picked from the bag. These

graphs represent the bag ratio of 70% blue and 30% red.

As more beans are picked, the probability of the agent predicting the correct

ratio increases; i.e., probability of choosing a 70% blue bag, the correct answer,
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(a) Predicting 70% blue (correct choice). (b) Predicting 70% red.

(c) Predicting 100% blue. (d) Predicting 100% red.

Figure 3.12: Probability of correctly predicting bag: 70% blue, 30% red beans.

tends to 1.0 as the Bean Limit increases.

In Figure 3.13, the graphs represent the bag ratio of 100% blue. The same

trend as with the previous bag ratio is observed here.

Analysis These models highlight the type of analysis that can be performed on

a rudimentary learning system. Although the system is relatively simple, it still

represents an agent with memory, and demonstrates how the prediction method

can be quantified over different bag sizes and ratios. It is this quantification of

properties that is of interest, as it allows direct comparison of prediction methods

(learning methods). The PRISM code for this model is shown in Appendix B.3.

Learning obstacle avoidance

For this model we represent a robot that is learning to avoid obstacles in an open

environment. Instead of explicitly representing the environment, an agent simply

has a probability of encountering an obstacle when it moves forward. We are

not as interested in proving that the agent will always learn to avoid obstacles,
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(a) Predicting 70% blue. (b) Predicting 70% red.

(c) Predicting 100% blue (correct choice). (d) Predicting 100% red.

Figure 3.13: Probability of correctly predicting bag: 100% blue beans.

but in quantifying aspects of the system. For example, what is the probability of

the agent doing something –as opposed to whether it will eventually or never do

something. Specifically, we are calculating the most efficient angle to turn for a

type of environment.

Learning is represented by the assessment of the efficiency of a chosen turning

angle. Each choice is assessed probabilistically over a given number of obstacle

encounters. The agent assesses which angle has been most efficient over the set

number of encounters –in some situations several angles my be equally efficient.

We assess two variants of this model; one where efficiency is determined by the

energy consumption of the agent, and the other where it is determined by the

avoidance of collisions.

In the first variant of the model we assess efficiency by the amount of energy

the agent expends to avoid an obstacle. The more the agent has to turn to do this,

the more energy it uses. When an agent collides with an obstacle it has to turn a

full 90◦ to continue moving forward. The degree of the angle turned is used as the

amount of energy expended by turning. Hence, if the agent can avoid an obstacle

by turning 30◦ before a potential collision then it will save 60 units of energy (as

opposed to 90◦ from a collision).
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We measure the efficiency of the agent’s choice in different environment types.

Each type has a different probability of encountering an obstacle, where there are

two different sizes of obstacle. These are: a large obstacle which requires a large

turn, and a small obstacle which requires a small turn. There is also a different

probability associated with encountering each type of obstacle. The efficiency we

are interested in is for specific environment types; i.e., environments with different

ratios of large to small obstacles.

Learning the optimal turning angle is not just an exercise in choosing the

smallest angle which avoids all obstacles, as the most efficient turning angle for a

type of environment need not avoid all obstacles. In fact, the most efficient choice

of angle is based on the frequency of different types of obstacle. For example,

suppose an agent is in an environment where there is a majority of easily avoided

obstacles with few requiring large angles to avoid. Here it may be more efficient

to use a small turning angle for this type of environment, and just collide using

the full 90 units for the few large obstacles.

The graphs in Figure 3.14 show the most efficient turning angles to choose.

The efficiency is based on the amount of energy expended after 100 obstacles have

been encountered by the agent. Each plot in the graphs represents an energy level.

The plot representing <= 800 represents the probability of the agent expending,

at most, 800 units of energy for the different turning angles (x-axis). On the x-

axis a value x represents an x × 10◦ turn. Each graph represents a different type

of environment.

In environment (a) 70% of obstacles require a 70◦ turn to avoid, and 30%

require a 30◦ turn to avoid. Environment (b) is reverse of the latter, while (c) has

50% of each type of obstacle.

From the results we can derive the most efficient turning angles for each en-

vironment type, they are: for (a) a turning angle of 70◦ is most efficient, for (b)

angles of 30◦, 40◦, 50◦, and 70◦, and for (c) angles of 30◦ and 70◦.

In the next variant of the model the agent learns every time it collides with

an obstacle to turn more as a response to the next obstacle encountered. In Fig-

ure 3.15 the graphs show the likelihood of the agent learning to choose a certain
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(a) More large obstacles.

(b) More small obstacles.

(c) Equal of both obstacles.

Figure 3.14: Probability of using <= than the energy units: 800, 750, 700.

angle to turn when encountering an obstacle.

The graphs show how as the total number of collisions increase as the agent

converges to a turning angle of 70◦. This is to be expected, as this agent is trying

to avoid all collisions in this scenario. We derive from this result the number of

collisions it takes before an agent settles on its final turning angle. This model’s
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(a) More large obstacles.

(b) More small obstacles.

Figure 3.15: Probability of choosing <= than the angles: 30◦, 40◦, 50◦, 60◦, 70◦.

code is in Appendix B.4.

Analysis Having a direct comparison of the most efficient turning angle and of

the turning angle which a learning agent will finally use, gives us a different way

of assessing our ABL systems.

However, there is a disadvantage associated with this PRISM model. In order

to have results as probabilities the system needs to be quantified in terms of prob-

abilities. In the case of our systems the probability of an event taking place is

commonly unknown –or can only be estimated.

Conversely, if probabilities can be assigned accurately, then the type of quan-

titative analysis that can be performed is very useful. For example, suppose we

know the component failure rates, or their error margins. If the antennas have a

0.1% chance of not registering a contact, this can be expressed in our model. Also,
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if the turning motors are only 90% accurate, then when an agent tries to turn x◦

we can apply a probability that it makes the desired turn or turns a bit too much

or little. This type of expressivity is not possible in our PROMELA models.
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Chapter 4

Explicit model and simulations

In this section we describe in detail the Explicit model, the system it represents,

and the simulations of this system. The Explicit model is based on the ABL

systems found in [77]. The system it models differs from the previous systems in

Chapter 3, as there is now only one robot. However, it still represents a natural

progression in complexity from the preliminary models. This complexity arises

from the addition of learning to our model, and from the increase in precision of

its representation of the system.

Firstly, we give an overview of the physical system, followed by a detailed

description of simulations of this system. We cover the implementation of our

model and the results obtained from it. Lastly, we present a comparison between

the results of the model and the simulator.

4.1 System model

The type of ABL system we analyse here involves an individual robot that has sets

of dual antennas, two proximal (short) and two distal (long). The robot uses ICO

learning (see Section 2.2.4) to improve its response to contacting obstacles with

its distal antennas, in order to better avoid them.

This robot is situated in a well defined environment that contains a set of ob-

stacles. The possible distributions of obstacles are governed by rules, e.g. en-
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vironmental complexity. Environmental complexity is assigned an integer value

that governs the minimum possible distance between any two obstacles in an en-

vironment. For a full description of the system hardware see Section 2.2.3.

Note that our simulations and models are different to those described in [77] as

there are no boundaries imposed on our environments. The removal of boundaries

is a simplification that allows us to present a proof of concept analysis with a

simpler system. Removing the boundaries also helps us in our abstraction (see

Chapter 5). To accommodate the removal of the boundaries we allow the agent

to wrap around the environment once it reaches the edge; such that it appears at

the opposite side of the environment, in the direction it was facing (the details

of the wrapping function are described in Section 4.3). The addition of a formal

definition of the minimum distance between obstacles is also a simplification of

the systems in [77]; although, restricting this distance does not limit the scope

of our approach, as different minimum distances can be chosen for modelling

other systems. The minimum distance between obstacles takes into account the

wrapping of the environment such that the edge of the environment is considered

contiguous with the side that it wraps around to.

The purpose of analysing this ABL system is to assess how well the robot is

able to avoid obstacles, and to show how successful the robot is at using learning

to navigate its environment.

4.2 Simulations

In this section we describe the simulations carried out for this system. The sim-

ulations were done in MATLAB (MATLAB, 2010). The use of simulation is the

standard methodology for analysing this type of system. Here, we describe the

simulation code and the results obtained by simulation.

The simulator generates a variety of environments, each environment differing

in their distribution of obstacles. The robot is represented as an agent that is

measured in pixels. An example of the geometry of a simulation is shown in

Figure 4.1.
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Figure 4.1: Example of the simulation set-up.

In a simulation, the agent is positioned at the coordinates rx(t),ry(t). At

each time-step, the agent moves forward one pixel (hypotenuse) at an angle θ

(degrees from North); where the change in coordinates is represented by the fol-

lowing equations:

rx(t) = rx(t-1) + sin(θ) (4.1)

ry(t) = ry(t-1) + cos(θ) (4.2)

The variables in the simulations are stored as floating points. Their coordinates

are rounded to integer values when determining whether the agent has collided,

but the floating point precision is maintained for movement and learning calcu-

lations. The steering angle of the agent is v and is added to θ every time-step;

i.e., θ(t+1)= θ(t) + v. The steering angle is generated from the combination of

the signals from the antennas; where the signals are combined as in Equation 2.1,

from Section 2.2.3. Note that the turning angle can be positive or negative, result-
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ing in the agent turning clockwise or anticlockwise respectively.

A set of simulation runs were performed using this setup. The results from

these are shown in Figure 4.2.

Figure 4.2 shows the plots of the total number of impacts on distal and proxi-

mal antennas over time. The graphs show that, initially, the number of distal and

proximal events are close together; this is because the agent has not learned to

respond to its distal antennas yet. Over time, the number of proximal events stops

increasing as the agent begins to respond to its distal antennas, and hence begins

to avoid colliding with its proximal antennas.

Five of the graphs in Figure 4.2 show the predicted behaviour: they show that

the agent initially collides with its proximal antennas until it learns to avoid ob-

stacles with its distal antennas. However, with graph F it is unclear as to whether

the number of proximal events actually stop increasing. In addition to this, the

number of distal events continues to rise, suggesting that the agent is continually

contacting obstacles. While this is not problematic for this system, it is unusual.

All the agents in the other simulations eventually manage to find a clear path

through their environments.

In Section 4.3 we present a PROMELA model representation of this setup, and

results from verifying various properties. As we explain in Section 4.4, our results

led us to believe that the setup for the simulation illustrated in Figure 4.2.F would

eventually stabilise.

4.3 Explicit model

The Explicit model is described in this section. First, we present an overview

of the model; next we cover the assumptions made about the system, and then

describe the model’s PROMELA code and associated functions. We conclude with a

detailed analysis of the verifications applied to the model and the results obtained

from them.
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Figure 4.2: Simulation runs for a range of starting directions. A 0◦, B 15◦, C 30◦,

D 40◦, E 50◦, F 58◦.
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4.3.1 Overview

The Explicit model resembles the system’s simulation code as closely as possible.

This allows us to be confident about the accuracy of the model. Note that even

though the code of the model and simulator may be similar, the model allows us to

reason about all possible paths; while the simulator is restricted to only one path

at a time. We discuss this in detail in Section 7.5.

We represent the environment as a polar gird; where the centre of the environ-

ment is the pole, and angles are measured clockwise from a ray projected North

from the pole (this represents the polar axis). The agent, environment, and each

obstacle have their centre points stored as polar coordinates. This representation

allows for more precise angles to be stored, which is important for these ABL

systems because the robots turn an exact angle to avoid obstacles.

As with the simulations, this model has one agent in an open environment;

where the agent is learning to use its distal antennas to avoid colliding into obsta-

cles. However, in the Explicit model we use a circular area for the environment.

This makes our polar representation less complex for calculating the edges of the

environment. Although we use a circular environment for these models, the use of

a square, or another shape, for the environment is within the scope of our approach

(we address this in Chapter 7).

Figure 4.3 shows an example of an agent in an explicit environment. Here,

there are fewer obstacles than in the simulation example (see Figure 4.1), but it

is important to note that they are both governed by the same environmental com-

plexity. Given an environmental complexity, it is possible to represent a variety of

different configurations of obstacles.

4.3.2 Assumptions

The assumptions we make for this model are the same as those made for the

simulator, they are the following. Antennas are assumed to behave as perfect

springs, and to only be able to sense one obstacle on a pair of proximal and distal

antennas at a time. If there is more than one obstacle along the line of an antenna,
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Figure 4.3: Example of an agent in an environment in the Explicit model.

then the closest obstacle is used to produce the signal to the agent. An obstacle is

anything in the environment other than free space. The agent starts in the centre

of an environment, and there are no obstacles to inhibit it from doing so.

4.3.3 PROMELA code

In this section we give a reduced version of the code used to model this system.

First, we give an overview of the code followed by a table of all the inline macro

functions (see Section 2.4.1 for inline macros). Next, we describe the PROMELA

code, and explain how it is altered for each Explicit model.

Overview

In order to maintain accuracy in the model, we use geometric calculations in em-

bedded C code. This requires the setup of some c track (see Section 2.4.1) vari-

ables, which are used to monitor the relevant values in the calculations –including
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them as part of the state-space.8

Each Explicit model contains a set of obstacles stored in an array (this is

named arrObs[OBMAX] in Figure 4.4). The number of obstacles in the array

varies depending on the size and complexity of the model. In order for models to

be generated faster, we automate the calculations for a set of legal obstacles. This

allows us to generate a random environment for every model. This auto-generation

code requires as input: an environmental complexity, a size of obstacle, and a size

of environment. From these values, the auto-generation code produces a random

array of legal obstacles. Note, for these models we stipulate that there are no ob-

stacles in the centre of the environment, hence we use this as the robot’s default

starting position. This need not be a fixed restriction and starting point, but it is

pragmatic to make sure each model begins without the agent on top of an obstacle.

The main body of the code is in the process robot(), which defines the

behaviour of the agent. Here, the agent is running an infinite loop where it either

continues sensing and trying to avoid obstacles, or it has reached the edge of the

environment and is wrapped (WRAP) to the other side. Each of the inline macro

functions used in this model are described in Table 4.1.

In Figure 4.4 we present a reduced version of an Explicit model’s PROMELA

code. The process robot() uses a d step statement to combine transitions.

This better emulates the continuous movement and assessment of the robot in the

physical system, where the robot is moving, learning, and turning at the same

time.

If doWrap is 0, then the agent has not reached the edge of the environment and

continues to drive forward while responding to signals from its antennas to avoid

obstacles. If doWrap is 1, then the agent has reached the edge of the environment

and the WRAP function is called.

There is a special inline macro function to deal with the situation when an

agent collides with an obstacle head on, the HEAD ON function. This type of

collision is unique because it means that the agent has crashed into an obstacle

8Note that c track variables do not need to be considered as part of the state-space as they
can be declared with the parameter “Unchecked” which stops them contributing to the state-
space. However, they will still be stored on the search stack during verification.
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Name Purpose

SCAN APPROACHING OBS

scans the area in front of the robot for
obstacles. This area is restricted to dis-
tances and angles at which an obstacle may
interact with the robot. Uses function
GET OB REL TO ROBOT.

GET OB REL TO ROBOT
calculates the centre of an obstacle relative to
the centre of the robot.

RESPOND
updates the signal from the
robot’s antennas then calls the
RESPOND TO OB BY TURNING function.

RESPOND TO OB BY TURNING

turns the robot in response to the signals from
its antennas. If the signals indicate a proximal
reaction then the LEARN function is called.
If the obstacle is touching the robot then the
CRASH function is called.

LEARN causes the robot to learn; i.e., increments ωd.

CRASH

evaluates the movement of the robot after it
has collided with an obstacle. If collision is
head-on then the HEAD ON function is called.
Otherwise a proximal turning response oc-
curs.

HEAD ON
evaluates the movement of the robot after it
has collided head-on with an obstacle. Even-
tually results in a proximal turning response.

MOVE ROBOT
moves the robot forward, in the direc-
tion of its current orientation. Calls the
MOVE FORWARD function.

MOVE FORWARD

calculates the new position of the robot after
moving forward. If the robot has reached the
perimeter of the environment, sets a variable
(doWrap) to 1.

WRAP

wraps the position of the robot to the other
side of the environment, using the point at
which the robot approaches the perimeter of
the environment and the orientation of the
robot as it approaches.

Table 4.1: Inline functions
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Figure 4.4: PROMELA code for the Explicit model

without contacting any of its antennas. In this case the agent continues to try to

drive forward, and this results in it slipping to one side of the obstacle, which

causes contact with one of its proximal antennas. Because it is largely random

as to which side the robot slips to, we select which agent’s antenna is contacted

nondeterministically. Note that there is a small additional assumption here: that

the agent slides to one side of the obstacle. This is a result of the surfaces of the

obstacle and the robot being rounded and the fluctuations in the wheels’ driving

forces. (This behaviour can be observed in the physical system.)

If there is contact with the agent’s proximal antennas then the LEARN() func-

tion is called. The LEARN() function implements the ICO learning from Sec-

tion 2.2.4. If there is a correlation between distal and proximal signals then this

causes the agent to respond more vigorously to signals from its distal sensors.
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Specifically, the function compares the previous antennas’ signals (Prev x) with

the current signals (x) to determine whether to increment the learning weight (ωd)

of the agent. When model checking, different learning weights represent different

states in the system as the agent exhibits different behaviours for different weights.

The init declaration is the setup procedure for the model. In here the array of

obstacles is initialised with the coordinates of the centre points of all the obstacles,

and the agent’s process is started.

The functions called in the PROMELA are declared in the underlying C code

where real variables are used in their calculations. It should be noted that these

real variables are maintained and stored throughout verification of the model. In

order for some of these values to generate different states in the model their values

are rounded to whole numbers and stored separately as part of the state vector.

4.3.4 Verification

As with the simulations, we are concerned with whether the agents manage to

learn to avoid obstacles. To assess this we define two properties using LTL for-

mulas. The properties are as follows.

• 1P: That the signal produced from the proximal antennas will eventually stay

zero, indicating that the agent is now only using its distal antennas.

• 2P: That the learning value eventually stabilises, indicating that the agent has

finished learning –stopped crashing.

These properties are formally defined in the following formulas; where 1P is

represented by Formula 4.3, and 2P is represented by Formula 4.4.

<> [ ]( ((x >= 6) | | (x <= -6)) (4.3)

<> [ ] (ωd <= Max ωd) (4.4)

In Formula 4.3, x denotes the signal difference between the agent’s antennas;

it ranges from −6 to 6, where both extremes indicate a proximal reaction. In For-

mula 4.4, the constant Max ωd represents the maximum level of learning possible
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for a particular model. It is calculated through a series of simpler verifications

where it is iteratively narrowed down until its highest possible value is found. It

is possible to include an additional state variable in the model that would remove

the need for calculating Max ωd. That is, the C code variable pLearn could be

tracked as a state variable. This becomes equal to 1 whenever learning occurs,

and to 0 after learning. By using this we can define the alternate Formula 4.5,

which represents the property that it will eventually, always be true that pLearn

remains equal to 0; hence, that learning stabilises (stops).

<> [ ] ( pLearn == 0 ) (4.5)

The drawback of tracking pLearn as a state variable is that it will increase

the state-space of the model. For verifying these Explicit models it was straight-

forward to get the verifications without it and we were also interested in the value

of Max ωd for a given model. However, if we are no longer interested in Max ωd

and are to increase the size and number of environments for the models, then using

pLearn in this way would speed up the verification process.

Property 1P was checked and shown to be false. Initially, it was suggested

that this indicated that the agent was unable to learn to avoid colliding with obsta-

cles. However, from this failed verification we examined a counterexample, which

highlighted a path in the model that caused the verification to fail. It showed that

the property was not violated because of the agent being unable to learn to avoid

obstacles that it could sense, but was violated because the agent was always able

to collide, head on, with obstacles that it could not sense. That is to say: there was

sufficient space between the agent’s antennas for an obstacle to pass, undetected.

The agent’s ICO learning, meant that this type of collision did not trigger it to

learn, as ICO learning requires the presence of a previous distal signal to correlate

the proximal signal with. This initial check allowed us to redefine property 1P, so

that it related to the learning of the agent. It also prompted discussion about the

effectiveness of the robot’s parameters in the physical system.

We redefined property 1P such that it better reflects the learning of the agent.

Hence, the property is only violated if there is a proximal reaction that was pre-
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ceded by a distal reaction. We now checked whether it is eventually, always true

that a proximal reaction implies that there was no previous distal reaction. This

new version of the property is expressed in Formula 4.6.

<> [ ]( p → !d ) (4.6)

Here, we define p as ((x <= -6)||(x >= 6)) (proximal signal), and d

is defined as ((Prev x != 0)&&(Prev x > -6)&&(Prev x < 6)) (dis-

tal signal). This property is shown to be true for our set of example environments.

The properties 1P (as Formula 4.6) and 2P were verified on six automatically

generated environments. Each model has the same environmental complexity, but

a different distribution of obstacles. The six environments used for the verifica-

tions are shown in Figure 4.5. These are the starting locations of the models. The

agent is in the centre facing East, and the obstacles are shown as hollow, grey

circles.

Figure 4.5: Environments E1 - E6.

The results of the verifications for the models in Figure 4.5 are presented in

Table 4.2. Here, the environment’s labels, E1→ E6, correspond to those in Fig-

115



Environment Property Max ωd Stored states Max search depth Time (sec)
E1 1P 1 273664 547323 2.19

2P 273734 547323 2.26
E2 1P 1 150562 300979 1.03

2P 150492 300979 1.04
E3 1P 0 670 1339 0.00

2P 670 1339 0.00
E4 1P 0 77034 154067 0.16

2P 77034 154067 0.28
E5 1P 1 218326 436647 1.36

2P 218372 436647 1.73
E6 1P 1 61256 122507 0.28

2P 61434 122507 0.52

Table 4.2: Verification results for the Explicit model

ure 4.5. Max ωd is calculated separately for each environment. Note that in envi-

ronments E3 and E4 the maximum learning possible is actually zero. This is not

because the agents don’t interact with the obstacles, but because those interactions

don’t involve contact with their distal antennas. The prior contact with the distal

antennas is the key component of ICO learning; therefore, without it no learning

takes place.

In E3 and E4, the agents have continuous proximal collisions with an obsta-

cle; they turn 90◦ on each impact, and then repeat the proximal collision from a

different angle. Hence, these models get locked into repetitive sequences of prox-

imal collisions and therefore exhibit no variance in behaviour (no learning). As

a consequence, the state-spaces for these models are much lower than the others.

This is an interesting observation for an individual environment; though, as the

number of obstacles is increased then the likelihood of this decreases. In fact, for

this type of environment, this scenario is not useful if learning is to be assessed.

Table 4.2 also shows the total states stored when running the verifications.

In E3 and E4, the number of Stored states are low relative to the other models

because of the lack of learning and distal reactions in these models. The Max

search depth is the length of the longest path explored when verifying the property.

On the right of the table the time taken to run each verification is displayed in

seconds. Properties 1P and 2P were successfully verified for each model.
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4.4 Comparison and analysis

In this section we present a comparison between the simulations and the verifica-

tions of the Explicit model for analysing this ABL system.

The trends observed in the simulations were backed up by the verification

results from the Explicit model. Although, as noted in Section 4.2, the simulations

were unable to make any definitive statements about whether the agents would

eventually stop learning, once they began to learn to avoid obstacles. What the

Explicit model provides are definitive statements.

Figure 4.6 shows the extended run of the simulation setup of graph F, from

Figure 4.2. After running verifications with the Explicit model, we showed that

this simulation setup should eventually stabilise. Hence, there should be no more

distal or proximal events, which was not shown in the simulation. This prompted

us to query the results shown in graph F, and in doing so we ran an extended

simulation to see if, indeed, the system did eventually stabilise. This extended

run shows that the agent’s distal and proximal events do eventually stabilise, as

our Explicit model predicted. This demonstrates a benefit from applying model

checking alongside simulation for ABL system analysis.

Figure 4.6: Simulation run starting direction G 58◦ with extended running time.

The use of simulation is cheap: straightforward to implement and run. Ad-
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ditionally, it provides a reasonable assessment of the trends for the behaviour of

agents in a given environment. The use of model checking however, allows for

more definitive statements to be made, and when used in unison with simulation

can help guide the simulations. This guidance is exemplified by the benefit of

the extended run in Figure 4.6. Of course, in a different simulation run perhaps

the properties that were verified by model checking could have been shown. It is

impossible to be sure though. Running simulations for as long as is necessary also

poses a problem because it is not always apparent from the system’s specification

as to how long it will take to stabilise. For example, the batch of simulations

from Figure 4.2 took approximately 60 minutes total run time. Additionally, the

extended run was required that took a further 25 minutes. The benefits of model

checking here are that it is much faster (a matter of seconds per verification, see

Tables 4.2 and 6.1) and it never misses an error path. Although, of course, it is the

definition of the property being checked that determines what an error path is.

Having to generate a different model for each environment greatly increases

the amount of time it takes to model a type of system. While it can provide some

specific analysis of individual environments, having a way to model different ex-

amples of a specific type of system in one model would provide a means for much

more efficient and thorough analysis. This is the type of model that we can gener-

ate with our Agent-centric abstraction. We describe this abstraction methodology

in Chapter 5.
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Chapter 5

Agent-centric abstraction

In this chapter we describe our abstraction methodology, and present a proof of

its correctness. We begin with an overview of the Agent-centric abstraction, and

following this we define the scope of the abstraction by explaining the parameters

and calculations involved in generating it. We formally define all the components

and functions that are required to prove the correctness of the abstraction, and then

present its proof.

5.1 Overview

The previous models that we have presented deal with a certain type of ABL

system and focus on specific instances of it. By focusing on a specific agent,

environment, and type of learning, we can formally reason about this system’s

properties, but not about all instances of this type of system. Here, we propose

something with a larger scope. The idea behind Agent-centric abstraction is to be

able to reason about an entire class of ABL system in one model; as opposed to

creating an Explicit model for each variation of the type.

In order to achieve our Agent-centric abstraction, we have to make some as-

sumptions about the type of system that we are dealing with. It is our experience

gained via the Explicit model (see Section 4.3) that informs these assumptions.

Our assumptions are deliberately strict –restricting us to systems involving a sin-
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gle robot and a given complexity of environment. This simplification allows us to

describe our approach more clearly, and to prove its soundness more succinctly.

Our approach can be extended to more elaborate systems. Some examples are

discussed in Chapter 7.

Agent-centric abstraction essentially involves merging states from different

(Explicit) models into a single state in a model called the Relative model. These

different states are associated with different environments, and different positions

of the robot, but are equivalent from the perspective of the robot. This abstracted

model is referred to as the Relative model because it represents the system relative

to the perspective of the robot.

Figure 5.1: States from Explicit models merged into the Cone of influence repre-
sentation (centre) via Agent-centric abstraction.

Figure 5.1 illustrates the main concept of Agent-centric abstraction. Multiple

explicit environments are mapped to the Cone Of Influence (COI) representation

of the system. The COI representation can be visualised here in the centre of the

figure (it is defined in Section 5.2.3).
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In the Relative model, we only consider the position of any obstacle relative to

the agent at any state; i.e., we only consider the presence or otherwise of an obsta-

cle within a conical area in front of the robot (within the COI). This information

is all that is required to determine the next movement of the agent. Because of

the equivalence of states that are merged in the Relative model, any property that

holds for it also holds for any Explicit model that satisfies our assumptions for

the system. We will describe an instantiation of the Relative model in Chapter 6.

Of course, using a single abstracted model (rather than an entire class of models)

to verify our properties is far more efficient. However, we must prove that the

equivalence holds, and that this implies the preservation of properties. We do this

in Section 5.5.

In order to show the value of our approach we provide a proof that there exists

a modified simulation relation between the Explicit and Relative models of the

system, such that the Relative model simulates the Explicit model.

5.2 Assumptions

The assumptions for the abstraction are informed by our verifications with the

preliminary and Explicit models, they are as follows.

• A1: No two obstacles can be in the COI at any time.

• A2: No obstacle can cause the robot to learn via a collision that does not involve

contact with the robot’s distal sensors.

• A3: No turn and movement sequence (within one time-step in the system), by

the robot, to avoid one obstacle can cause an immediate collision into another

obstacle.

The parameters that are used in these calculations are the: diameters of the

robot and obstacles, length of and angle between antennas, maximum turn and

movement of the robot (within one time-step in the system), and environmental

complexity (see Section 4.1). We calculate the constraints for assumptions A2 and

A3 below.
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(a) (b)

Figure 5.2: (a) Direct collision without contacting antennas. (b) Indirect collision
without contacting antennas.

Two of the main situations that can lead to a violation of these assumptions

are as follows. One, shown in Figure 5.2(a), where an obstacle collides directly

into the agent from the front, we refer to this as a direct collision. Two, shown in

Figure 5.2(b), where an agent turns to avoid one obstacle and collides into another

without it first contacting an antenna, we refer to this as an indirect collision. To

assess whether the first situation is possible requires a straightforward calculation

while to assess the latter requires a more convoluted one.

Note that for the situation described in A3 to occur, an additional assumption

is inferred: that an obstacle can get into a position behind the robot’s antenna that

makes the indirect collision possible. For our calculations we make this assump-

tion, as a worst case scenario. That is, we assume that an obstacle can end up in

this position, and calculate whether it is then possible for a indirect collision to

occur.

An Explicit model can be used to discover whether it is, in fact, possible to

manoeuvre an obstacle to such a position for a given environment. In the Agent-

centric abstraction, however, we are concerned with all variations of a type of
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environment. Therefore, we assume the worst case scenario is possible. As a

consequence of this additional assumption, even if our calculations show that A3

is false, it is still possible that the obstacle could never have been in a position

to cause the collision in the first place. Hence, these calculations simply act as

suggestions as to what should be represented in the model.

5.2.1 Direct collision

In Figure 5.2(a), a direct collision occurs when an obstacle passes between a

robot’s antennas. This is possible when the combination of the angle between

antennas and diameter of an obstacle allow the obstacle between the antennas

without contacting them.

Figure 5.3: Measurements for a direct collision, without contacting antennas.

Figure 5.3 illustrates the Critical distance which is calculated to determine

whether an obstacle can fit between the antennas without contact. The relevant

parameters for this calculation are as follows: antLen, the length of an antenna;

obDia, the diameter of an obstacle; obRad, the radius of an obstacle; antAng,

the angular distance between the antennas; roDia, the diameter of the robot; and
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roRad, the radius of the robot. The Critical distance and whether it leads to a

Direct collision are calculated in Equations 5.1.

Critical distance = 2 ∗ (tan(0.5 ∗ antAng) ∗ (obRad+ roRad))

Direct collision =


true, if (Critical Distance > obDia)

false, otherwise

(5.1)

Indefinite proximal reactions

In addition to the calculation of Critical distance , it is necessary to calculate the

possibility of Indefinite Proximal Reactions (IPRs). This is the situation in which

the obstacle cannot pass between the antennas without contact, but only the prox-

imal antennas are contacted. If IPRs are possible then the robot can continuously

learn avoidance behaviour without being able to apply it within its environment.

However, this is only the case when a proximal reaction is sufficient to trigger a

learning response.

Figure 5.4: Identifying indefinite proximal reactions from a direct collision sce-
nario.

Figure 5.4 shows the measurements taken for this calculation. The value of
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Maximum proximal length (MPL) and whether it leads to an IPR are calculated

in Equations 5.2.

MPL = (obRad÷ (sin(0.5 ∗ antAng)))− roRad

IPR =


true, if (proximal length ≥ MPL)

false, otherwise

(5.2)

Even where a correlation between the distal and proximal antennas is needed

to trigger learning, the possibility of continuous learning can occur. For example,

suppose a distal reaction to one obstacle causes the robot to have direct collision

with its proximal antennas with another obstacle. The robot’s response to the

first obstacle may have been optimal avoidance behaviour, but as a result of the

consequent and unavoidable proximal reaction, the agent will incorrectly learn

to respond more vigorously to its distal antennas. For our models, however, this

situation violates assumption A1.

5.2.2 Indirect collisions

These calculations involve checking how far apart obstacles can be while still

causing an indirect collision; i.e., what is the least complex environment that still

allows an indirect collision to occur.

Figure 5.5(a) shows the precursor to an indirect collision, where obstacle A

passes by the robot’s antenna without contact. Then contact is made with obstacle

B, causing the robot to turn anticlockwise. The robot then continues to move

forward, which causes A to collide with its side (which we refer to as an indirect

collision).

Figure 5.5(b) highlights the measurements for where A collides with the side

of the robot. The lowest position of A, indicated by the label A2 and a black

centre, is the farthest position that obstacle A can be from obstacle B that still

causes an indirect collision. MaxTurn represents the maximum angle that the

robot can turn from a contact on its opposite antenna’s farthest point (the point
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(a) (b)

Figure 5.5: (a): Turning response. (b): Obstacle positions in a turning response.

where B contacts the right antenna) that still allows A into a position where an

indirect collision is possible.

(a) (b)

Figure 5.6: (a) Turn and move into indirect collision. (b) Minimum environmental
complexity measure.

Figure 5.6(a) shows the robot’s turn and subsequent movement in response to

sensing obstacle B. Figure 5.6(b) highlights the farthest distance between the two

obstacles that can lead to an indirect collision: shows the minimum environmental

complexity (labelled Minimum Complexity) which could lead to an indirect col-

lision. To calculate this distance we add, the: diameter of the robot (roDia),
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(a) (b)

Figure 5.7: (a) Maximum turn, and distance between obstacles. (b) Geometric
calculations for pre-turn obstacle.

length of its antenna (antLen), radius of both obstacles (obDia), and distance

that obstacle A is from behind the robot (at position A1) before the turn to the

final collision takes place.

In Figure 5.7(a), for A to collide with the robot it has to move from position

A2 to position A3. This measurement is represented by X in Figure 5.7(b). The

position A1 is the farthest that obstacle A can be from the robot while still being

able to move onto line X. Here, A can get as close to the antenna as possible, but

without touching it; hence, we can calculate M as the radius of an obstacle plus

the minimum unit of distance from an antenna that does not result in detection. We

use M to calculate the distance Y, where if Y is greater than X then the obstacle is

already in an invalid position (possibly overlapping with the robot), and therefore

there is no Possible Indirect Collision (PIC) for this system. These calculations

are shown in Equations 5.3.
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Z = 90 - (antAng÷ 2)

X = (obRad+ roRad) ∗ tan(Z)

M = roRad + 1

N = antAng÷ 2

Y = M÷ (sin(N))

PIC =


false, if (Y ≥ X)

true, otherwise

(5.3)

Figure 5.8: Identifying indefinite proximal reactions from an indirect collision
scenario.

Next we calculate the distance between A and the robot. This measurement is

represented by H in Figure 5.8. It represents the distance from the centre of A to

the centre of the robot. Since H remains the same when the robot turns, we use it

in Equations 5.4 to calculate the Maximum Distance Between Obstacles (MDBO)

–this is between the centre points of obstacles.

128



P =
√
(obRad+ roRad)2 + X2

L =
√
Y2 − M2

V = P - L

H =
√
M2 + V2

MDBO = H+ roRad+ antLen+ obRad

(5.4)

By adjusting the variables it is also possible to calculate whether IPR can oc-

cur from this situation. Unlike the situation with IPR for a direct collision, this is

potentially an issue even if the robot correlates signals to learn. For example, sup-

pose the robot responds to a distal signal by turning directly into another proximal

collision. The calculation adjustment is shown in Equations 5.5.

...

M = roRad

...

IPR =


true, ((roRad+ obRad) < V < (roRad+ ProxLen))

false, otherwise

(5.5)

The only alteration to the formula is with M. However, this changes the calcu-

lation. Note that if PIC was true before then it does not need to be recalculated, as

the value of Y will now be lower.

These calculations provide a static check that the assumptions A2 and A3 are

satisfied. Thus, demonstrating that no direct or indirect collisions can occur, and

that our Agent-centric abstraction can be applied (without having to consider these

situations). However, if the calculations indicate that these collisions can occur,

this is still based on the assumption of the worst case scenario and therefore it

only suggests that these situations should be considered in the model, opposed to

guaranteeing that they occur.

Note that these calculations are used here to restrict a system to the specific

Agent-centric abstraction we present. By applying the same concept of a COI

129



representation, but adjusting how obstacles are encountered, these situations can

be included. For example, by allowing obstacles to enter from the side of the COI

we can represent indirect collisions.

5.2.3 Cone of influence

The Cone Of Influence (COI) is a cone-shaped area in front of the robot which

represents the set of coordinates at which an obstacle can interact with the robot.

Its size is calculated from the specification of the robot, environment, and the

obstacles within the environment.

For the Agent-centric abstraction we present here, the maximum distance be-

tween any two points in the COI is less than the minimum distance between any

two obstacles in an environment (environmental complexity); i.e., only one obsta-

cle can be in the COI at once. When obstacles appear in the COI, they do so from

the front. This is because the robot is continuously moving forward and that the

environmental complexity selected is low enough that no obstacle can enter from

the side of the COI (see Section 5.2.2). The COI represents all possible encounters

of an obstacle for a given class of system.

Figure 5.9: Agent-centric abstraction COI representation.

The COI is shown in Figure 5.9. The widest point of the COI is calculated by

adding the distance between the tips of the robot’s antennas to the radius of two

obstacles. Also, the edge of the cone must be at least the width of an obstacle’s

radius from the robot’s antennas.

130



5.3 Formal definitions

We aim to prove that a simulation relation exists between an Explicit model and

the model generated from our Agent-centric abstraction, the Relative model. In

order to show this, we must first provide formal definitions of both models and the

components of the ABL system that they represent. In the first section, we discuss

the notation used in all the subsequent definitions, followed by definitions of each

component. We use set-notation in our definitions.

5.3.1 Notation

In this section we define the symbols, models, and special terms that aid the de-

scription of our functions. The notation we use is as follows.

• Let A represent the set of all angles (in degrees).

Thus A = {θ ∈ N0 : 0 ≤ θ ≤ 359}
• Let D represent the set of possible distances in an Explicit model.

Thus D = {η ∈ N0 : 0 ≤ η ≤ 400}
• Let A′ ⊆ A such that A′ = {θ ∈ N0 : 0 ≤ θ ≤ 79}
• Let D′ ⊆ D such that D′ = {η ∈ N0 : 0 ≤ η ≤ 90}
• Let σ represent a set of all possible values of the agent’s antennas’ signals. Thus

σ = {η ∈ Z : −6 ≥ η ≤ 6}
• Let C represent a coordinate as a distance-angle pair (d, a); where d ∈ D and a

∈ A
• Let ωd represent the value which quantifies the agent’s learning, (learning weight)

such that ωd ∈ {η ∈ N0 : 0 ≤ η ≤ ωdMAX}, where ωdMAX is assigned to the

highest possible value of agent’s learning weight.

• Let SL(x) represent the set of coordinates of all obstacles’ centre-points that are

in the COI and would cause that obstacle to touch section x of the left antenna,

where x ranges from 1→ 6.

• Let SR(x) represent the set of coordinates of all obstacles’ centre-points that are

in the COI and would cause that obstacle to touch section x of the right antenna,

where x ranges from 1→ 6.
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5.3.2 Explicit model definition

The Explicit model is a detailed model of a unique environment containing obsta-

cles and a robot (as described in Section 4.3). A state in this model consists of: the

coordinates of the centre point of a robot, its current trajectory in its environment,

the signal difference of its antennas, and its learning weight.

A state comprises the following variables: eA, eD , rA, aDif , and lW . Angle

eA and distance eD represent the polar coordinate (eD ,eA) of the agent relative

to the centre of the environment. Angle rA is the direction the robot is facing

relative to North. The difference between the antenna signals is aDif , and lW is

robot’s learning weight. These variables are bound by the following constraints:

eA ∈ A, eD ∈ D, rA ∈ A, aDif ∈ σ, and lW ∈ ωd.

Definition 5.1. We define an Explicit model as a Kripke structure ME , where

ME = (APE, SE, sE0, RE, LE). Set APE contains all atomic propositions (AP )

inME . Set SE contains all states sE , where sE is a tuple, sE = (eA, eD, rA, aDif, lW ).

The initial state sE0 = (0, 0, 0, 0, 0), where the robot is in the centre of the en-

vironment, facing North. The transition relation RE ⊆ SE × SE . Each el-

ement in this relation is a transition from a state sEn to sEn+1, where sEn =

(eA, eD, rA, aDif, lW ) and sEn+1 = (eA
′
, eD

′
, rA

′
, aDif

′
, lW

′
). (The over-line

implies an explicit value.) The function LE : SE → 2APE , returning the set of AP

true at a state.

Assumption

In an Explicit model there are no obstacles within 91units from the centre of the

environment. This ensures that for both our models the agents start in free-space;

i.e., in their initial state they are not in contact with any obstacle.

5.3.3 Relative model definition

The Relative model is an abstraction of the Explicit model, which uses the COI

representation of an ABL system (see Section 5.2.3). In order to translate from the

Explicit model to the Relative model we need to calculate the COI representation
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for a state in the Explicit model.

A state comprises the following variables: relA, relD , aDif , and lW . The

variables aDif and lW are the same as with the Explicit model. Angle relA and

distance relD represent the polar coordinate (relD ,relA) of the nearest obstacle

relative to the centre of the agent. These variables are bound by the following

constraints: relA ∈ A′, and relD ∈ D′.

Definition 5.2. We define a Relative model as a Kripke structure MR. MR =

(APR, SR, sR0, RR, LR). Set APR contains all AP inMR. Set SR contains all

states sR, where sR is a tuple, sR = (relA, relD, aDif, lW ). The initial state

sR0 = (0, 0, 0, 0), where the robot is in free-space. The transition relation RR

⊆ SR×SR. Each element in this relation is a transition from a state sRn to sRn+1,

where sRn = (relA, relD, aDif, lW ) and sRn+1 = (relA
′
, relD

′
, aDif

′
, lW

′
).

The function LR : SR → 2APR , returning the set of AP true at a state.

5.4 Function definitions

Several functions are used to map states to successor states in the Explicit and

Relative models. We refer to these as transition functions, and they are FE and

FR. Additionally, we have translation functions T1 and T2 that are used to translate

from a state in one model to a state in the other.

5.4.1 Transition function FE

Transition functions FE and FR determine transitions in the Explicit and Relative

models respectively. In fact, a transition (sEn, sEn+1) in the Explicit model in-

volves first projecting the current state sEn to a state in which the agent is in the

centre (pole) of its COI, executing a transition from this state, then reflecting back

into the Explicit model. Specifically the projection is to a state in the Relative

model (a state sRn). So transition function FE is composed of the other functions,

T1 (projection in the Relative model),FR (transition in the Relative model), and T2
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(reflection back to the Explicit model). This situation is illustrated in Figure 5.10.

Figure 5.10: Mapping of the transition function FE .

Note that Kn stores information about the original state (the position of the

agent in its environment) that is necessary for the reflection T2 back to the Ex-

plicit model. We refer to this information as the key. Specifically this a triple,

{eA, eD, rA}, where (eA, eD) is the polar coordinate and rA is the facing direc-

tion of the robot in the Explicit model.

Figure 5.11: Visualisation of transition function FE .

The transition FE is further illustrated in Figure 5.11. On the left, there is an

example of a state transition in the Explicit model. The transition is from state

sEn to sEn+1. Firstly, state sEn is translated to sRn. From here, in the Cone of

influence representation, the transition function FR is illustrated. Once the turn

and movement calculations are preformed, the resulting state sRn+1 is reflected
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back to the Explicit model using the translation function T2. In T2, the state sRn+1

is combined with the key to arrive at the successor state of sEn, sEn+1.

5.4.2 Translation function T1

The translation function T1 maps a state from the Explicit model (sEn) to an equiv-

alent state in the Relative model (sRn). To calculate this translation, we take the

coordinate of the agent in the Explicit model and isolate a COI around it. Once

in this representation the translation is complete. The calculations for this are as

follows.

Coordinates of the nearest obstacle

In the first part of the translation we determine the closest obstacle to the agent,

and whether that obstacle is in the agent’s COI. The following definitions describe

an obstacle that is within an agent’s COI.

• Let O represent the coordinates of all the obstacles in the Explicit model such

that O ⊆ D ×A.

• Let Z represent all the coordinates that make up the agent’s COI in the Explicit

model such that Z ⊆ D ×A.

• Let ob=O ∩Z where |ob| ∈ {∅, 1}. The value of |ob| determines whether there

is an obstacle in the COI.

If there is an obstacle in the COI then the polar coordinates of its centre point

are known, we denote them as (oA, oD). Using these coordinates and the co-

ordinates (eA, eD) and angle rA from state sEn we can begin converting to the

equivalent state in the Relative model, sRn. Note that when |ob| = ∅, the state is

mapped to relA = 0 and relD = 0, implying that the agent is in free-space.

Figure 5.12 shows the triangles which represent the Euclidean distances of the

agent and the obstacle relative to the centre of the environment. The coordinates

of the agent and the obstacle are used to generate them. Triangles 41 and 42
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Figure 5.12: Triangles representing the calculations to convert from the Explicit
to the Relative model.

are made between the centre of the environment and the position of the agent

or obstacle, respectively. Triangle 43 is calculated from triangles 41 and 42.

It is used to calculate the agent’s COI, and the position of the obstacle inside it

–relative to the centre of the agent.

Euclidean distances of the agent

If |ob| = 1, then we calculate the Euclidean distances from the axes to the centre

of the agent. There are two Euclidean axes. One runs in line with polar axis

(due North), the other runs perpendicular to this, passing horizontally through

the pole. The measurements from these axes to the centre of the agent (in triangle

41) are represented by line lengths lOrg and hOrg , length horizontally and height

vertically respectively. These lines are combined with the line eD , representing

the distance from the origin to the centre of the agent, to form a triangle. The

angle formed at the origin is oZ . Calculations for41 are shown in Equation 5.6.
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oZ = eA%90

(lOrg , hOrg) =



(eD , 0 ), if eA ∈ {90, 270}

(0 , eD), if eA ∈ {0, 180}

((sin(oZ ) ∗ eD),

(cos(oZ ) ∗ eD)), if eA ∈ {a : (0 ≤ a ≤ 90)

∪(180 ≤ a ≤ 270)}

((cos(oZ ) ∗ eD),

(sin(oZ ) ∗ eD)), otherwise

(5.6)

Euclidean distances of the obstacle

Next we calculate the Euclidean distances from the axes to the centre of the ob-

stacle that is nearest to the agent (where the obstacle’s coordinate is represented

by ob). The measurement from these axes to the centre of ob (in triangle 42) are

represented by line lengths lNew and hNew, length horizontally and height ver-

tically respectively. These lines are combined with the line oD to represent the

distance from the origin to the centre of the nearest obstacle, and they form the

triangle 42. The angle formed at the origin is nZ. The values of triangle 42 are

calculated as shown in Equation 5.7.
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nZ = oA%90

(lNew , hNew) =



(oD , 0 ), if oA ∈ {90, 270}

(0 , oD), if oA ∈ {0, 180}

((sin(nZ ) ∗ oD),

(cos(nZ ) ∗ oD)), if oA ∈ {a : (0 ≤ a ≤ 90)

∪(180 ≤ a ≤ 270)}

((cos(nZ ) ∗ oD),

(sin(nZ ) ∗ oD)), otherwise

(5.7)

Distances between the agent and obstacle

Using triangles 41 and 42, we calculate the distance between the obstacle and

the agent to generate triangle 43. This is done by calculating the horizontal and

vertical distances between them, lF in and hFin respectively. Angle fZ is formed

at the centre of the robot of the new triangle43, which has sides lF in and hFin.

The calculations for triangle43 are shown in Equation 5.8.
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lFin =



lOrg + lNew , if ((eA ∈ {a : (0 ≤ a < 180)}∩

oA ∈ {b : (180 < b < 360)})∪

(eA ∈ {a : (180 < a < 360)}∩

oA ∈ {b : (0 ≤ b < 180)}))

|lOrg − lNew |, otherwise

hFin =



hOrg + hNew , if (((eA ∈ {a : (0 ≤ a < 90)

∪(270 < a < 360)})

∩(oA ∈ {b : (90 < b < 270)}))∪

(eA ∈ {a : (90 < a < 270)}∩

(oA ∈ {b : (0 ≤ b < 90)∪

(270 < b < 360)})))

|hOrg − hNew |, otherwise

fZ = arctan(hFin/lFin)

(5.8)

Relative position of the agent to the obstacle

Next we calculate the relative position of the agent to the obstacle, horizontally

(fR) and vertically (fU ). Calculating whether the agent is further up and whether

it is further right of the obstacle is necessary for calculating the angle of the obsta-

cle relative to the agent (relA). The values of fU and fR are calculated as shown

in Equation 5.9.
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fR =



1, if ((eA ∈ {a : (0 ≤ a ≤ 180)}∩

oA ∈ {b : (0 ≤ b ≤ 180)} ∩ (lOrg > lNew))∪

(eA ∈ {a : (180 ≤ a < 360)}∩

oA ∈ {b : (180 ≤ b < 360)} ∩ (lOrg < lNew))∪

(eA ∈ {a : (0 ≤ a < 180)} ∩ oA ∈ {b : (180 < b < 360)}))

0, otherwise

fU =



1, if (((eA ∈ {a : (0 ≤ a ≤ 90) ∪ (270 ≤ a < 360)})

∩(oA ∈ {b : (0 ≤ b ≤ 90) ∪ (270 ≤ b < 360)})

∩(hOrg > hNew))∪

(eA ∈ {a : (90 ≤ a ≤ 270)}∩

oA ∈ {b : (90 ≤ b ≤ 270)}

∩(hOrg < hNew))∪

((eA ∈ {a : (0 ≤ a ≤ 90) ∪ (270 ≤ a < 360)})∩

oA ∈ {b : (90 ≤ b ≤ 270)}))

0, otherwise

(5.9)

Polar angle from the agent to the obstacle

Once we have the position of the agent relative to the obstacle and 41 and 42,

we can calculate the relative angle and the relative distance from the agent to the

obstacle (relA and relD). The angle relA is measured from the farthest anti-

clockwise point in the agent’s COI (40◦ anticlockwise from the direction that the

agent is facing). The distance relD is the distance from the centre of the agent

to the centre of the obstacle. The calculations for relA and relD are shown in

Equation 5.10.
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relA = ((90 + (180 ∗ fR) + (2 ∗ fZ ∗ |fR − fU |)− fZ )− rA+ 400)%360

relD =
√
(hFin2 + lFin2)

(5.10)

5.4.3 Transition function FR

The function FR represents a transition in the Relative model; mapping from a

state sRn to sRn+1 where (sRn, sRn+1) ∈ RR. This function represents the agent’s

reaction to its antennas’ signals, and its forward movement.

The first part of the function involves calculating the signal difference between

the antennas, aDif ′ (the previous difference being aDif ). Using this and the

agent’s learning weight lW, next we calculate the orientation of the agent relative

to the obstacle, producing relA∗. The agent is then turned using relA∗. Finally,

the agent is moved forward, which produces the values of relA′ and relD′.

Note that relA∗ is not the final relative angle, because when the agent is moved

forward the relative angle is changed; i.e., the final relative angle is relA′.

Difference in antenna signals

Calculating aDif ′ uses the coordinates (relD, relA). If relA and relD are both

0, then aDif ′ is assigned 0, otherwise we use the Equation 5.11.

Each section of an antenna produces a different signal, so it is necessary to

calculate the specific section that the obstacle is contacting. For each section of

antenna we identify a set of coordinates, where a set consists of the centre-points

of all obstacles that could touch that section of antenna (see SL(x) and SR(x) in

Section 5.3.1). It is important to note that the closer the section of antenna is to

the centre of the agent, the higher the precedence its signal has when calculating

aDif ′; e.g., if an obstacle covers coordinates in two sections of an antenna, the

resulting signal is the value from the section that is closer to the centre of the

agent. The calculation of aDif ′ is as follows.
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aDif ′ =



−6, if ((relA, relD) ∈ SL1)

−5, if (((relA, relD) ∈ SL2) ∩ ((relA, relD)\SL1))

−4, if (((relA, relD) ∈ SL3) ∩ ((relA, relD)\SL2)∩

((relA, relD)\SL1))

−3, if (((relA, relD) ∈ SL4) ∩ ((relA, relD)\SL3)∩

((relA, relD)\SL2))

−2, if (((relA, relD) ∈ SL5) ∩ ((relA, relD)\SL4)∩

((relA, relD)\SL3))

−1, if (((relA, relD) ∈ SL6) ∩ ((relA, relD)\SL5)∩

((relA, relD)\SL4))

6, if ((relA, relD) ∈ SR1)

5, if (((relA, relD) ∈ SR2) ∩ ((relA, relD)\SR1))

4, if (((relA, relD) ∈ SR3) ∩ ((relA, relD)\SR2)∩

((relA, relD)\SR1))

3, if (((relA, relD) ∈ SR4) ∩ ((relA, relD)\SR3)∩

((relA, relD)\SR2))

2, if (((relA, relD) ∈ SR5) ∩ ((relA, relD)\SR4)∩

((relA, relD)\SR3))

1, if (((relA, relD) ∈ SR6) ∩ ((relA, relD)\SR5)∩

((relA, relD)\SR4))

0, otherwise

(5.11)

Angle turned

Next we use aDif ′ to calculate how the agent’s turn affects the angle of the obsta-

cle relative to the agent, relA∗.
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relA∗ =

relA+ (aDif ′ ∗ lW ), if (0 ≤ (relA+ (aDif ′ ∗ lW )) ≤ 80)

0, otherwise
(5.12)

Move forward

Now that the agent’s turn response has been calculated we can move the agent for-

ward to calculate the new relative coordinate (relA′, relD′), and the new learning

weight (lW ′).

Figure 5.13: Triangles representing the calculations for a transition in the Relative
model.

Figure 5.13 illustrates how relA′ and relD ′ are calculated as the agent moves

forward. Moving forward forms a new, smaller triangle with the vertical line pro-

jected from the pole. This is used to calculate the new relative angle and distance

to the obstacle, relA′ and relD ′ respectively. The learning weight lW ′ is calcu-
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lated from the signal difference and the relative distance to the obstacle, Dif ′ and

relD ′ respectively.

relD ′ =
√

(relD2 − 2(relD ∗ cos(|relA∗ − 40|)) + 1) (5.13)

tA = arctan(

√
relD2 − (relD ∗ cos(|relA∗ − 40|))2

(relD ∗ cos(|relA∗ − 40|)− 1)
) (5.14)

relA′ =

40− tA, if (tA < 40)

40 + tA, otherwise
(5.15)

lW ′ =


lW + 1, if (((aDif ′ ≥ 6) ∪ (aDif ′ ≤ −6))∩

((aDif ≤ 5) ∩ (aDif ≥ −5) ∩ (aDif 6= 0)))

lW , otherwise

(5.16)

5.4.4 Translation function T2

The translation function T2 is applied to a state in the Relative model to map it

to a state in the Explicit model. It uses the values aDif and lW from the state

sRn, and eA, eD, and rA from the key, Kn (see Section 5.4.1). Because every

state in the Relative model can be mapped to a number of possible states in the

Explicit model,Kn is used to identify the exact state to map to, as it references the

previous state in the Explicit model. Translation function T2 uses the state sRn+1

and Kn to calculate sEn+1, where state sEn+1 = (eA′, eD′, rA′, aDif ′, lW ′).

Figure 5.14 represents the variables used in this translation. Three right angle

triangles are used to represent the angles and distances between the origin, the

original position of the agent, and the new position of the agent. They are the

triangles comprised of: 41, the North line at original position of the agent and the

origin; 42, the new position of the agent and North line at its original position;

and43, the new position of the agent and the North line at the origin. State sEn+1

is calculated with reference to these triangles, as follows.
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Figure 5.14: Triangles representing the calculations for the translation from the
Relative to the Explicit model.

Orientation of agent

Variables aDif ′ and lW (from sRn), and angle rA (fromKn) are used to calculate

the new angle that the agent is facing rA′, as indicated in Equation 5.17.

rA′ = (rA+ (aDif ′ ∗ lW ) + 360)%360 (5.17)

Euclidean distances of the original position of the agent

Next, we use the angle and distance from the agent’s original position to the centre

of the environment, eA and eD respectively, to generate 41.9 First, we calculate

the Euclidean distances from the axes to the centre of the agent. The measure-

ments from these axes to the centre of the agent are represented by line lengths

lOrg and hOrg, length horizontally and height vertically respectively. These lines

are combined with the line eD, which represents the distance from the origin to

the centre of the agent, to form the triangle41. The angle formed at the origin is

oZ. The values are calculated as in Equations 5.18.

9Note that this was already calculated in T1 (in Section 5.4.2). Hence, in the model we simply
store and then reuse this, opposed to recalculating it.
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oZ = eA%90

(lOrg , hOrg) =



(eD , 0 ), if eA ∈ {90, 270}

(0 , eD), if eA ∈ {0, 180}

((sin(oZ ) ∗ eD),

(cos(oZ ) ∗ eD)), if eA ∈ {a : (0 ≤ a ≤ 90)

∪(180 ≤ a ≤ 270)}

((cos(oZ ) ∗ eD),

(sin(oZ ) ∗ eD)), otherwise

(5.18)

Euclidean distances of the agent’s new position relative to its original

We now calculate the Euclidean distances from the new axes centred at the agent’s

original position. Lines are drawn perpendicular from each axis to the centre of

the agent (horizontally and vertically). The measurements of these lines are repre-

sented by the variables lNew and hNew, length horizontally and height vertically

respectively. These lines are combined with a line representing the agent’s move-

ment in one time-step (1 unit at an angle of rA′ from North) to form the triangle

42. The angle it forms at the new axis is nZ. The values are calculated in Equa-

tions 5.19.
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nZ = rA′%90

(lNew , hNew) =



(1, 0) : if rA′ ∈ {90, 270}

(0, 1) : if rA′ ∈ {0, 180}

((sin(nZ ) ∗ 1 ),

(cos(nZ ) ∗ 1 )) : if rA′ ∈ {a : (0 ≤ a ≤ 90)

∪(180 ≤ a ≤ 270)}

((cos(nZ ) ∗ 1 ),

(sin(nZ ) ∗ 1 )) : otherwise

(5.19)

Euclidean distances of the new position of the agent relative to the axes

After calculating triangles 41 and 42, we use their measurements to calculate

the distance between the new position of the agent and the environment’s axes to

make triangle 43. We do this in the same way as with the original position, by

calculating the horizontal and vertical distances with lF in and hFin, respectively.

Here, lF in and hFin form the sides of triangle43, with fZ being the angle made

at the origin. These calculations are shown in Equations 5.20.
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lFin =



|lOrg − lNew |, if ((eA ∈ {a : (0 ≤ a < 180)}∩

rA′ ∈ {b : (180 < b < 360)})∪

(eA ∈ {a : (180 < a < 360)}∩

rA′ ∈ {b : (0 ≤ b < 180)}))

lOrg + lNew , otherwise

hFin =



|hOrg − hNew |, if (((eA ∈ {a : (0 ≤ a < 90)

∪(270 < a < 360)})

∩(rA′ ∈ {b : (90 < b < 270)}))∪

((eA ∈ {a : (90 < a < 270)})∩

(rA′ ∈ {b : (0 ≤ b < 90)∪

(270 < b < 360)})))

hOrg + hNew , otherwise

fZ = arctan(hFin/lFin)

(5.20)

Calculate eD′

The hypotenuse of 43 is the distance from the centre of the environment to the

centre of the agent eD ′, and is calculated by Equation 5.21.

eD ′ =
√

(hFin2 + lFin2 ) (5.21)

Quadrant of the agent after moving

Next we calculate the new position of the agent relative to its original position,

farther right horizontally (fR) and farther up vertically (fU ). The calculations

shown in Equations 5.22.
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fR =



0, if (((eA ∈ {a : (0 ≤ a < 90)}) ∩ (rA′ ∈ {b : (180 ≤ a ≤ 360)})

∩(lNew > lOrg))∪

((eA ∈ {a : (90 ≤ a < 180)}) ∩ (rA′ ∈ {b : (180 ≤ a ≤ 360)})

∩(lNew > lOrg))∪

((eA ∈ {a : (180 ≤ a < 270)}) ∩ ((rA′ ∈ {b : (180 ≤ a ≤ 360)})

∪(lNew < lOrg)))∪

((eA ∈ {a : (270 ≤ a < 360)}) ∩ ((rA′ ∈ {b : (180 ≤ a ≤ 360)})

∪(lNew < lOrg))))

1, otherwise

fU =



0, if (((eA ∈ {a : (0 ≤ a < 90)}) ∩ (rA′ ∈ {b : (90 ≤ a ≤ 270)})

∩(hNew > hOrg))∪

((eA ∈ {a : (90 ≤ a < 180)}) ∩ ((rA′ ∈ {b : (90 ≤ a ≤ 270)})

∪(hNew < hOrg)))∪

((eA ∈ {a : (180 ≤ a < 270)}) ∩ ((rA′ ∈ {b : (90 ≤ a ≤ 270)})

∪(hNew < hOrg)))∪

((eA ∈ {a : (270 ≤ a < 360)}) ∩ (rA′ ∈ {b : (90 ≤ a ≤ 270)})

∩(hNew > hOrg)))

1, otherwise

(5.22)

Calculate eA′

Calculating the polar angle of the agent relative to the environment (eA′) depends

on where the new position of the agent is relative to its original position. Hence,

we use fU and fR to calculate it in Equations 5.23.
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eA′ =



0, if (((eA == 0) ∩ (rA′ == 180)

∩(hNew ≤ hOrg))∪

((eA == 180) ∩ (rA′ == 0)

∩(hNew ≥ hOrg))∪

(((eA == 90) ∩ (rA′ == 270))

∪((eA == 270) ∩ (rA′ == 90))

∩(lNew == lOrg)))

90, if (((eA == 270) ∩ (rA′ == 90)

∩(lNew > lOrg))∪

((eA == 90) ∩ (rA′ == 270)

∩(lNew < lOrg)))

180, if (((eA == 0) ∩ (rA′ == 180)

∩(hNew > hOrg))∪

((eA == 180 ) ∩ (rA′ == 0)

∩(hNew < hOrg)))

270, if (((eA == 90 ) ∩ (rA′ == 270)

∩(lNew > lOrg))∪

((eA == 270) ∩ (rA′ == 90)

∩(lNew < lOrg)))

(90− fZ ), if ((fR == 1) ∩ (fU == 1))

(90 + fZ ), if ((fR == 1) ∩ (fU == 0))

(270− fZ ), if ((fR == 0) ∩ (fU == 0))

(270 + fZ ), if ((fR == 0) ∩ (fU == 1))

rA′, otherwise

(5.23)

Once eA′, eD ′ and rA′ are calculated, we combine them with aDif ′ and lW ′
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Figure 5.15: Simulation relation.

to produce the successor state in the Explicit model, sEn+1.

5.5 Simulation relation

A simulation relation [78] is a relation between the states of two Kripke structures,

M and M′ that preserves properties expressed by LTL formulas. If we have a

model M that is too large for us to verify properties for, and it is possible to

create a model M′ that simulates M, then we can verify properties of M′ and

thus infer that they hold forM. We illustrate the concept of a simulation relation

(H) via Figure 5.15. The simulation relation here is:

H = {(s0, s′0), (s1, s′1), (s2, s′1), (s3, s′1), (s4, s′1), (s5, s′1),

(s6, s
′
2), (s7, s

′
3), (s8, s

′
3), (s9, s

′
4), (s10, s

′
5)}

(5.24)

Note that paths P1 and P2 inM are mapped to paths P1′ inM′, and P3 to P2′.

In this section we introduce a slightly modified form of simulation, namely φ-

simulation. Here φ represents a set of atomic propositions: APφ. We show that

φ-simulation applies between the Kripke structures of the Explicit and Relative

models. The set APφ contains all atomic propositions from the variables that the
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models have in common. The common variables between state vectors are aDif

(antennas’ signal difference) and lW (learning weight). Given a property ψ that is

represented by a formula composed of atomic propositions APψ, and where these

are only atomic propositions relating to aDif and lW , such that APψ ⊆ APφ.

Then, if the Relative model φ-simulates the Explicit model, ψ holding for the

Relative model implies that it also holds for the Explicit model.

Herein, we prove the existence of this φ-simulation relation between the Ex-

plicit and Relative models. We begin this proof by asserting that the translation

function T1 maps every state in the Explicit model (ME) to a state in the Rel-

ative model (MR). Furthermore, we propose that the φ-simulation relation ap-

plies to the models as MR φ-simulates ME (denoted by ME �φ MR). We

use Hφ to denote the φ-simulation relation where Hφ ⊆ SE × SR and Hφ =

{(sEn, T1(sEn)) | sEn ∈ SE}.

5.5.1 φ-Simulation relation

Our relation φ-simulation relation, is defined as follows.

Let APφ denote a set of all atomic propositions that relate to the common

variables aDif and lW . For any state s, let Lφ(s) denote the label of s with

respect to APφ (i.e., the set of propositions from APφ that are true at s). The

following definition is adapted from [7].

Definition 5.3. Given two structuresM= (S, s0, R, L) andM′= (S ′, s′0, R
′, L′)

whose sets of propositions containAPφ, a relationHφ ⊆ (S×S ′) is a φ-simulation

relation betweenM andM′ if and only if for all Hφ(s, s′):

1. Lφ(s) = Lφ(s′)

2. For every state s1 ∈ S such that R(s, s1), there is a state s′1 ∈ S ′ with the

property that R′(s′, s′1) and Hφ(s1, s
′
1).

We say thatM�φM′ if there exists a φ-simulation relationHφ such thatHφ(s0, s
′
0).

From this we derive the following theorem (also adapted from [7]).

Theorem 5.4. SupposeM�φM′. Then for every LTL formula that represents a

property ψ, where APψ ⊆ APφ:M′ |= ψ impliesM |= ψ.
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5.5.2 Proof that our abstraction is sound

In order to prove that satisfaction of an LTL formula for the Relative model im-

plies its satisfaction for any Explicit model with an environment of same type, we

must demonstrate that there is a φ-simulation relation, Hφ, between our models

such thatME �φMR. Therefore, we need to determine that the relation Hφ (i.e.

the set of pairs of states (sEn, sRn)) satisfies the conditions of Definition 5.3. In

this section we use the term model to denote the underlying Kripke structures as-

sociated with a PROMELA specification (see Definitions 5.1 and 5.2 for the Kripke

structures of the Explicit and Relative models respectively).

Before we define this φ-simulation, we justify our approach with reference to

Figure 5.16. Consider transition (sEn, sEn+1) in the left model (ME). State sEn is

mapped to a state sRn in the right model (MR) using function T1, and then there

is a transition from sRn to sRn+1 via FR. The function FR takes the position of an

obstacle relative to the centre of the agent and calculates the agent’s turn, move-

ment, and learning to produce the next state. The relative position of the obstacle

is used to calculate the new antenna difference signal aDif ′, which in reference

to the code is denoted as x (aDif and lW in reference to the code are denoted

as Prev x and ωd respectively). Once sRn+1 is calculated, it is mapped back to

sEn+1 via T2 using the key Kn. The key is used to identify a unique successor

state inME , as a state inMR can be mapped to many states. Identified by Kn

are the original coordinates of the agent relative to the centre of the environment.

Given this information and the result of the agent’s turn, movement, and learning

from FR, we can now calculate sEn+1 (the unique successor state of sEn).

Note that sEn to sRn, and sEn+1 to sRn+1 can be matched because their COI

representations hold the same information. Specifically, the relative position be-

tween an agent and an obstacle is the same in both explicit and relative represen-

tations. Therefore, the antenna signals (x and Prev x) and the learning weight

(ωd) are also the same –as they are only affected by the relative position of an

obstacle. (These functions are defined in Section 5.4.)

To formally prove the existence of a φ-simulation relation we must fulfil the

conditions of Definition 5.3. For our proof of a φ-simulation we determine that
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Figure 5.16: Deterministic function mapping. Grey arrows indicate translations
between models, and black arrows indicate transitions within models.

the set APφ contains all atomic propositions from the variables aDif and lW .

Specifically relating to the code, these variables are x, Prev x, and ωd. Both

properties 1P and 2P, that we check inME andMR (see Sections 4.3 and 6.1),

refer to these variables and, hence, are contained within the set APφ.

We defineHφ ⊂ (SE×SR) as follows: Hφ = {(sEn, sRn) : sEn ∈ SE and sR =

T1(sE)}. For any state sE , the agent’s learning weight and the relative position of

any obstacle to it are identical in sE and T1(sE); so x, Prev x, and ωd are the

same for both of states. Hence the atomic propositions in the formulas 1P and

2P are the same in sE and T1(sE). So for any (sE, sR) ∈ Hφ, Lφ(sE) = Lφ(sR).

(Fulfilling Definition 5.3.1.)

Now consider Definition 5.3.2, where for a transition (sEn, sEn+1) inME we

must show that, if Hφ(sEn, sRn) then there exists an sRn+1 such that (sRn, sRn+1)

is a transition in MR and Hφ(sEn+1, sRn+1). We consider separately the cases

where, at sEn there is/is not an obstacle in the COI representation.

If there is an obstacle in the COI, the transition from sRn in MR is purely

deterministic. Function T2 is the inverse of T1 (it maps a state from the MR to

one in theME , using Kn as defined in Figure 5.16). Since T1(sEn+1) = sRn+1,

then Hφ(sEn+1, sRn+1).

Suppose then that there is no obstacle in the COI. Then sEn is mapped via T1 to

a free-space state inMR. That is, state sRn in Figure 5.17 such thatHφ(sEn, sRn).
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Figure 5.17: Nondeterministic function mapping. Grey arrows indicate transla-
tions between models, and black arrows indicate transitions within models.

The set of free-space states inMR have no obstacles in their COIs and the only

difference between them is the value of the learning weight ωd. From a free-space

state sRn there is a nondeterministic choice to transition back to itself (no obstacle

in the COI and the same ωd value), or to any state in which there is an obstacle at

the boundary of the COI (see the right hand side of Figure 5.17,MR).

Note that all states sEn inME (for which there is no obstacle in the COI) are

mapped via T1 to a free-space state sRn inMR. The nondeterministic choice of

transitions from sRn are illustrated by the transition from free-space to free-space

(sRn to sRn), and transitions to the different sRn+1 states.

For the possible sRn+1 states, all legal positions of an obstacle at the bound-

ary of the COI are considered (see Section 5.2.2). Hence, the available set of

transitions from a free-space state encompasses all possible, legal and subse-

quent encounters with an obstacle. Therefore, for every transition (sEn, sEn+1)

inME , where Hφ(sEn, sRn), there is a matching transition FR inMR such that

FR(sRn) = sRn+1 and T2(sRn+1) = sEn+1, and hence Hφ(sEn+1, sRn+1). (Fulfill-

ing Definition 5.3.2.)
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Chapter 6

Application of Agent-centric
abstraction for PROMELA

In this chapter we describe the implementation of our Agent-centric abstraction

for a PROMELA model.

6.1 PROMELA Relative model

The Relative model is derived directly from the specification of the ABL system

described in Section 2.2.3, and generating it involves the rigorous calculations

dictated by the Agent-centric abstraction. We model the same system as for the

Explicit model in order for a direct comparison of approaches; where the veri-

fications involve the same properties, and the results are presented in the same

format.

We give outline code for the Relative model specification in Figure 6.1. The C

macro functions are included in the Appendix C.3.

The process moving represents the agent in the COI, where the do loop is

used to determine between situations when the agent encounters an obstacle and

when they are in free-space.

If there is an obstacle in the COI then the C macros for responding, moving,

and learning are called (these are similar functions to those described in the Ex-
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Figure 6.1: Promela code for the Relative model

plicit model, in Table 4.1). If there is a collision (obDist<30) then the agent

turns 90◦, which is represented by a transition to a free-space state. From here the

next obstacle to enter the COI arrives from a legal angle and distance –specified

by the Agent-centric abstraction calculations. For the Relative model, this is any-

where along the front curve of the COI (see Figure 6.2). Note that it is also

possible that no obstacle appears and that the agent moves forward into another

free-space state.

6.1.1 Assumptions

The assumptions made about this system are the same as for the Explicit model

and simulator, see Chapter 4. This environmental complexity is also the same,

which fulfils assumption A1 from the Agent-centric abstraction. That is, it only

allows one obstacle in the COI at any given time. The exact parameters used for

the COI representation are shown in Figure 5.9.

Figure 6.2, represents the specification we use for the COI in our Relative

model. The antennas are separated by a 60◦ angle, measured from the centre of

the robot, and are divided into six sections of 10 units per section; where the first

10 unit section (section 1, closest to the robot) represents the proximal antennas
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Figure 6.2: Cone of influence specification for the Relative model.

and the rest represent the distal antennas (sections 2→ 6). Note that the proximal

antennas overlap with section 1 of the distal antennas and make contact instead of

them; hence, section 1 of the distal antennas are omitted from our models.

The COI represents only the area of the system that we are concerned with,

in regards to the type of properties to be checked. For this type of ABL system,

we are concerned with properties that relate to learning and, consequentially, to

collisions with obstacles. Therefore, this specification of the COI is sufficient for

our Relative model.

The Relative model needs to fulfil all the assumptions for the Agent-centric ab-

straction (see Section 5.2). Hence, we apply Formulas 5.1 and 5.2 to our system’s

parameters in 6.1 and 6.2 respectively. (Note that in all the following calculations

we only show up to 2 decimal places for brevity.)

Critical distance = 2 ∗ (tan(0.5 ∗ 60) ∗ (10+ 20)) = 34.64

Direct collision =


true, if (34.64 > 20)

false, otherwise

(6.1)
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MPL = (10÷ (sin(0.5 ∗ 60)))− 10 = 10

IPR =


true, if (10 ≥ 10)

false, otherwise

(6.2)

These calculations show that both indefinite proximal reactions (IPR) and di-

rect collisions are possible for this specification. This is not an issue in our case,

as ICO learning is not affected by these kind of collisions; hence assumption A2

holds. Next we calculate for the possibility of indirect crashing, with a view to

fulfilling assumption A3. Hence, we apply Formulas 5.3 and 5.4 to our system’s

parameters in 6.3 and 6.4 respectively (abridged version of IPR calculation).

Z = 90 - (60÷ 2) = 60

X = (10 + 20) ∗ tan(60) = 34.64

M = 10+ 1 = 11

N = 60÷ 2 = 30

Y = 11÷ (sin(30)) = 22

(Y < X) ∴ PIC = true

P =
√
(10+ 20)2 + 34.642 = 45.82

L =
√
222 − 112 = 19.05

V = 45.82 -19.05 = 26.77

H =
√
112 + 26.772 = 28.95

MDBO = 28.95+ 20+ 60+ 10 = 118.95

(6.3)

...

M = 10

...

IPR =


true, ((10+ 20) < 28.50 < (20+ 10))

false, otherwise

(6.4)
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Property Max ωd Stored states (×105) Max search depth Time (sec)
1P 6 121413 28881 0.32
2P 118129 28881 0.26

Table 6.1: Verification results for the Relative model.

Since the maximum distance between obstacles (that could cause an indirect

collision) is less than the environmental complexity for our system (154), we do

not consider indirect collisions for our Relative model. Additionally, the length

of our proximal antenna is the same as the radius of an obstacle and therefore

indefinite proximal reactions cannot occur either, and assumption A3 also holds.

6.1.2 Verification

We check properties 1P and 2P, represented by Formula 4.6 and Formula 4.4

respectively (see Section 4.3).10 The property 1P is that the agent will eventu-

ally avoid all obstacles that it contacts with its distal antennas and, hence, has

learnt successful distal avoidance behaviour. Property 2P is that the agent will

eventually be equal to, or less than its maximum level of learning (that learning

stabilises). Note that the additional verifications to calculate the maximum level

of learning are still required –here the maximum level is 6 (Max ωd = 6).

As with the Explicit models, the verifications are successful. In this case,

there is only one verification required for each property –as opposed to running

verifications on a set of explicit environments. The learning rate is again assumed

to be 1. Results are given in Table 6.1.

6.1.3 Analysis

The verification of the properties for the Relative model required a larger state-

space than with the Explicit model, but there is much more information derived.

From property 1P we can infer that in all variations of this type of environment,

the agent eventually learns to stop all avoidable collisions. Hence, we assert that

10Verifying only properties 1P and 2P was sufficient to satisfy the aims of the researchers at the
EEE, however verifying other properties is possible (see Chapter 7 for more explanation).
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eventually it is always the case that if an agent detects an obstacle with a distal

antenna it will avoid it.

Property 2P is verified with a maximum learning level of 6; where this level

applies to all variations of the environmental class. We infer from this that re-

sponding to obstacles to this extent (with this level of learning) is sufficient to

avoid all collisions for this type of environment –collisions that are detectable

with distal sensors.

The representation of an Explicit model provides an exact cut off point as

to when an agent will finish learning for a particular environment. This precise

evaluation is important when using a specific environment. However, the Relative

model provides guarantees that have a much broader scope; i.e., wherever this

system is deployed, if the environment fits the given specification, then we know

that it will work correctly.
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Chapter 7

Analysis and extensions

By applying model checking to ABL systems we have managed to improve the

level of analysis that is commonly applied to them. Reasoning about properties

over all possible paths in a system in one test provides a significant advantage

over the testing of one path at a time. Additionally, exploiting the model checking

framework further with the Agent-centric abstraction allows for more economic

testing of a system: testing all possible environments in one model.

For our ABL systems the goal was to focus specifically on verifying properties

that concerned the robot’s learning. In the Explicit and Relative models we only

considered the properties 1P and 2P (see Section 4.3.4). These properties were

sufficient to satisfy the researchers from the EEE, as verifying these properties

indicated the success and stability of the robot’s learning. Although, our models

are not restricted to these properties. For example, suppose that if the robot ex-

ceeds a given number of collisions it becomes inoperable. In this scenario we can

consider properties of whether the agent’s total number of collisions always stays

within a given upper limit, or indeed always eventually reaches the given limit.

Additionally, with the Explicit model we can consider positional properties of the

robot. For example, verifying that an agent will never reach a specific location be-

fore passing through a given area. However, these types of additional properties

are outside the scope of our research.

Model checking is surely a valuable technique in this field, yet we do not
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advocate the use of model checking alone. We propose that model checking can be

used alongside more traditional techniques, such as simulation; advocating model

checking as an enhancement to the analysis of ABL systems, not as a replacement.

In this chapter we begin by discussing some related work. Next, we compare

model checking with simulation, and then go on to describe problems with our

model checking approach and future enhancements to it.

7.1 Related work

There are several avenues of research which have some overlap with our analy-

sis of ABL systems. Some of which we cover in this section, highlighting the

differences with our approach.

The subject of motion planning for robots with similar goals to ours (such

as obstacle avoidance) is covered in [79]. As with our work, the focus is on

having formal guarantees that the continuous motion of a robot satisfies a specific

temporal logic formula. However, in [79] the approach to calculating the motion

of the robot is discretized such that the robot only has macro movements between

cellular divisions of an environment. In addition, the position of the robot within

an environment is of greater importance than with our models. Particularly, the

specific sequence of movements is important (e.g., did the robot move around the

environment in the correct order, from area r1 to r2, to r3, and etc?).

Verification of an agent-based system is also considered in the domain of

human-robot interaction in [80]. Here the scenario of robot helpers is discussed,

where these systems are represented in the multi-agent modelling, simulation, and

development environment, Brahms [81]. Like our approach, PROMELA and SPIN

are used to formally verify system properties. However, in order to verify with

SPIN an automatic converter from Brahms to PROMELA is used.

There has been considerable work done analysing MA systems by using Kripke

modelling techniques. In [82] the behaviour of Unmanned Ariel Vehicles (UAVs)

is formally analysed in the design phase through Kripke modelling and then model

checking. Specifically, a group of UAVs are formalised with a Kripke model, then
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properties of communication between the UAVs are expressed in temporal logic

and verified using model checking tools.

In [83] and [84], multiple agents act as a swarm system where they are anal-

ysed in hierarchical layers of abstraction in order to use temporal logic to formally

capture behavioural information (for a specific layer of abstraction). In the case

study presented in [83], swarm robots navigate an environment via specific loca-

tions while avoiding: colliding with other swarm members, crashing into large

polygonal obstacles, and moving outside a given area of a swarm cluster. These

papers present a fully automated framework in which swarm-robot control-laws

can be constructed, where controlling the essential features of a swarm is dealt

with as a model checking problem.

Similar work on swarm systems uses model checking to verify whether given

temporal logic properties are satisfied by all possible behaviours of a swarm [85].

Here the focus is on a particular swarm control algorithm which has been used and

tested on real systems. The algorithm is refined using temporal analysis via model

checking. This process of refinement involves iterating from highly abstract mod-

els to much more detailed models which are, ideally, to a level of detail equivalent

to that of the real systems. Our research shares the concept of applying temporal

analysis via model checking to an already existing system (using it as a reference

point to assess results and refine models).

In [86] probabilistic model checking is applied to swarms systems. Model

checking is proposed as an alternative to the common analysis of simulation –as

we also advocate. PRISM is used to verify formulas relating to the behaviours of the

swarms systems. Particularly, the behaviour of a foraging swarm colony is anal-

ysed, where PCTL formulas are used to quantify the energy usage of the swarm

over time in different scenarios. This is similar to the energy level quantification

from our PRISM models (see Section 3.2.3).

Although much of this related work applies similar analysis and techniques

that we use, it does not, however, completely overlap with our research. Much of

the work agrees with our assertion of the common approach of simulation being

insufficient to formally verify given properties of a system, and each also pro-

164



poses model checking as a potential solution. In our work we uniquely focus on

the modelling of an unsupervised learning algorithm (ICO learning) as part of

the agent in our model. We also utilise PROMELA’s embedded C code to provided

highly detailed models of our systems without producing intractable state-spaces.

This removes the need to apply the methodology of using hierarchical levels of

abstraction, or alternate specialised languages, in order to formally analyse prop-

erties of our ABL systems.

7.2 A note on polar coordinate representation

One of the main modelling choices for both the Agent-centric abstraction and the

Explicit models was to use polar coordinates to express the location of obstacles

and robots. This choice is made because of the type of property that is of interest:

the robot’s learning. By using this representation we are better able to express the

precise turns of a robot when it encounters an obstacle, or another robot. Turns

are symptomatic of the robot’s learning itself; hence, expressing them with more

accuracy allows for the level of learning to also be expressed more accurately.

A problem with using a polar coordinate representation is that as two lines

diverge from the polar axis the angle between them remains the same while the

distance between them increases. This becomes problematic when representing

areas as polar coordinates. For example, as a robot is moved farther from the

centre of the environment its area needs to be recalculated at every position of

movement. We use a conversion to the Cartesian coordinate systems when recal-

culating areas, before translating back into polar coordinates.

Initially our Explicit model represented all areas as sets of coordinates. Now

it is only the centre coordinates that are used in the state-space representation,

while in the underlying embedded C code we preform the necessary calculations to

generate the distances travelled and the areas occupied by the robot and obstacles.

This allows us to preserve the angular information in the state-space, which we

can then use to check properties, while maintaining accuracy in the mechanics of

the model’s transitions.
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7.3 A note on PRISM

Although PRISM was only used in our preliminary models it proved an effective

means of analysis for ABL systems.

The development of our PRISM models highlighted the type verification and

analysis that can be done with this type of system. Additionally, the Learning

obstacle avoidance PRISM model, in Section 3.2.3, showed the scope of our Agent-

centric abstraction applications. Although this model was not generated from our

Agent-centric abstraction, it did use a basic version of the COI by only considering

interactions with the robot. It also had obstacles appear in a similar fashion as

with the Relative model. With further development, full Agent-centric abstraction

could be used to develop a more comprehensive PRISM model.

7.4 Comparison of classical closed-loop simulation

and model checking methodologies

New strategies had to be developed to translate the behaviour-based approach into

a form suitable for model checking. For simulation we used an existing framework

to easily calculate the position of obstacles on the sensors, the new direction of the

robot, and etc. In comparison, the PROMELA model was rather cumbersome, in that

we had to construct a number of C code functions, in addition to just using pure

PROMELA. However, we were able to adapt the code to represent the behaviour

of the system. In order to simplify the PROMELA model we kept C code functions

used for calculation hidden from the user (in included files). These functions can

be reused in future models.

The advantage of the model-checking approach was that we could simply

specify LTL properties to define behaviour that was expected for all paths for

our model. That is, we did not have to run an exhaustive set of simulations to

verify behaviour –the model checker would find any error path if it existed. In

addition, our Relative model allowed us to check certain properties for all possi-

ble environments: if there was any distribution of obstacles for which one of our

166



properties did not hold, the model checker would find it. Having the capacity to

examine error trails allowed us to not only debug our models, but to identify the

pathological case in which one of the initial properties did not hold (i.e., the sit-

uation in which the robot hit an obstacle head on, without it first making contact

with a distal sensor). This allowed us to strengthen the property to ignore this

unusual case.

In addition, model checking allows us to identify deficiencies before, during,

and after learning. That the robot cannot see obstacles which are hitting it head

on is clearly a deficiency of its sensor distribution. While simple to spot in our

example, more complex sensor motor setups will make it much more difficult

to identify deficiencies which might occur only rarely. However unlikely, if these

cases could cause damage to the robot or a deterioration its performance (say) then

they need to be tackled appropriately. Model checking can help here (alongside

classical simulation) to identify these problems in the design phase of a robot and

will lead ultimately to a more reliable system.

The main drawback of the model checking approach is that it requires expert

knowledge, both to construct a PROMELA specification with just the right level of

abstraction, and to develop LTL properties to capture identified error behaviour.

While the level of mathematical expertise required for our Explicit model is high,

an even greater degree of theoretical knowledge is essential for the Relative model.

7.5 Model checking versus simulation for

verification

By representing the same hardware system (see Section 2.2.3) for our simulator

and our Explicit and Relative models we are able to compare the two approaches.

Our system is simple, and subject to a number of assumptions. Indeed either

approach requires assumptions to be made. The important issue is that the same

assumptions are made in all cases, so that a fair comparison can be made. Our

goal here is to illustrate the technique rather than to present a comprehensive suite

of models.
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Figure 7.1: Comparison of approaches
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Model checking involves analysis of a state-space. While in the classical sim-

ulation we could implement all variables as floating point (given analytical ex-

pressions of the entire environment), in model checking we need to discretise

variables so that we can set up our state-space. Generally, the granularity of any

discretisation of a robot simulation is determined by the signal to noise ratio of

the sensors of the real robot and imperfections of its actuators [87, 88, 89]. This

holds true for both classical simulation and model checking.

Simulation is equivalent to examining individual paths through a state-space.

Exhaustive simulation (to cover all eventualities) is either very time-consuming

or impossible. Model checking allows us to examine all possible paths, and to

precisely express the property of interest (rather than relying on observation of

simulation output). As illustrated in Figure 7.1, a single simulation is equivalent

to a single path in our model. Often a simulation run is actually equivalent to a

prefix of a path in our model (consisting of the first n states of the path, for some

finite number n). A simulation is necessarily terminated at some point, whereas

verification involves exploring all paths until either there are no further states, or

until a cycle is detected.

Both simulation and model checking involve a degree of abstraction. The

user of the technique must decide which aspect of the system to represent in their

simulation/model. Our Explicit model is deliberately abstracted to the same de-

gree as the simulation setup, so no additional information is lost. It is therefore

straightforward to infer that we are modelling the same thing in each case. The

power of model checking in this case is that, as described above, we can formally

define a property and automatically check every path. Note that in the Explicit

model there are few decision points (and so there are few paths), but in general a

state-space contains many paths. For example, if there were multiple robots (as

in the preliminary models Chapter 3), the ordering of steps taken by the different

robots would lead to different paths, with different outcomes.

Having demonstrated the power of model checking with our Explicit model,

we introduced the Relative model, which is a far more compact model, which

not only merges symmetrically equivalent views (from the robot’s perspective),
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but combines equivalent environments into the same model. There are two ma-

jor benefits to this Agent-centric abstraction. The specification of the Relative

model is a much neater representation than the Explicit specification; e.g., fewer

individual transitions need to be considered. In addition, results of verification

hold for all environments (within a class of environment), which avoids the neces-

sity of repeating the same experiments for similar, but different, environments. A

drawback of the approach is that it requires expert knowledge of the system (e.g.,

intimate prior experience with the Explicit model). In addition, it differs so greatly

from the physical system (and the simulation environment) that complex mathe-

matical proof is required to ensure that the abstraction is sound; i.e., it preserves

the properties in question.

7.6 Explicit model and Agent-centric abstraction: prob-

lems, improvements, and extensions

The main contribution of this thesis is the Agent-centric abstraction. However, in

its current form it seems quite restrictive. In this section we describe the problems

with developing a Relative model, and the improvements and additions that can

be made to this abstraction that make it applicable to a much broader scope of

ABL system.

The environments and robot behaviour that were represented in both our sim-

ulation setup and PROMELA specifications (with their associated models) were de-

liberately chosen to be simple. Whether creating a computer-based closed-loop

simulation, or a PROMELA specification, it is necessary to make assumptions about

the system that we are modelling. In either case we can not have limitless pos-

sibilities about the number of obstacles, or their shape. In addition we have to

decide a priori whether to consider a fixed boundary, and, if so, the nature of the

boundary.

The purpose of this work is to demonstrate the effectiveness of model check-

ing (as a complementary approach to simulation), not to consider all possible en-

vironments or robot behaviour. In this section we discuss how we could adapt our
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models to consider more complex scenarios. Note that, in all cases modifications

are made to the PROMELA specification (SPIN produces the underlying models).

In each of the cases below, we assume that only the specified modification is to

be implemented. Clearly we could combine the modifications in any way we like,

but we only consider one at a time here, to make our explanation simpler. For each

modification we first consider how the Explicit model’s PROMELA specification

would be adapted. The specification would be modified in much the same way

as the simulation code would be modified. The corresponding Relative model’s

specification would, in all cases, require more detailed consideration.

When considering a new model we always start by using an Explicit model

that is close to implementation level, and abstract from there (removing unneces-

sary variables, for example). Creating a Relative model requires experience of the

Explicit model so as to gauge what the equivalence classes are. For example, in

the Relative model considered in Chapter 6, the equivalence classes correspond to

the possible positions of a single obstacle in the COI.

In each of the modifications listed below we indicate the corresponding equiv-

alence class. Note that proof of soundness would involve proving that every state

in a corresponding Explicit model maps to an equivalence class representative

(and so to a state in the Relative model). We do not include all possible extensions

here, just indicate a few that could be implemented very easily.

• Inclusion of Environment Boundaries Boundaries can easily be included in

our Explicit model. In this case the boundary would be incorporated as a set of

unreachable coordinates. The agent would respond to a signal from its sensors

resulting from a collision with a boundary in the same way as it would a colli-

sion with an obstacle. Depending on the shape of the boundary (and assuming

a single obstacle), the equivalence classes in the Relative model would corre-

spond to the possible positions of an obstacle and a segment of boundary in the

COI.

• Arbitrary/Dynamic Boundaries Any Explicit model would assume that a bound-

ary was fixed. However, there is plenty of scope for allowing arbitrary boundary

shapes, or dynamic boundaries in our Relative model, provided of course that
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we assume (as we would do for simulation) that the possible types of bound-

ary belong to a finite set. The equivalence classes in this case would be as for

the previous example, but the number of possible different types of segment of

visible boundary in the COI would increase.

• Increased Complexity This would mean allowing for there to be more than

one obstacle within the COI at any time. The Explicit specification could be

modified to accommodate this very easily (the array containing the positions of

the obstacles would simply have to be altered). Assuming that there are at most

N obstacles within the COI at any time, the equivalence classes (and hence the

states in the Relative model) correspond to the possible positions of up to N

obstacles within the COI.

• Additional Robots Our Explicit model involves a process definition of a robot,

and a single instantiation of that process (agent). Adding additional robots

would simply involve instantiating multiple agent processes (either with learn-

ing, or not). Our Relative model concerns the view of a single robot. Any ad-

ditional robots would be viewed as dynamic obstacles. The behaviour of other

robots (whether learning or not), would only be relevant within the COI (e.g., all

possible movements of the other robots after a collision need to be considered).

• Alternative Learning Algorithm Both of our PROMELA specifications can be

adapted very easily to accommodate an alternative learning algorithm. This

would involve altering our C code functions determining the progress of the

agent from any state after a collision. We could use our models to compare the

consequences of different algorithms.

• Dynamic Obstacles/Different Obstacles By defining obstacles as processes,

they could be defined as dynamic, either following a prescribed path, or fol-

lowing a nondeterministic path. Similarly, obstacles could be defined to have a

variety of shapes and sizes, provided they can be defined and constrained before

modelling. Dynamic obstacles, and different shapes and sizes of obstacle in the

Relative model would require a minimal revision of the code (again requiring

the different possibilities to be defined a priori). For example, dynamic obsta-

cles would have a predefined behaviour when they were encountered in the COI
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–this could be also be a nondeterministic behaviour.

• Measuring explicit time It is not possible to represent explicit time (for exam-

ple to measure the amount of time between events) using SPIN alone, although

the temporal ordering of events is clearly representable. When there is only one

agent, there is a correlation between the number of global transitions between

events, and the time between the events. It would therefore be possible to give

a (discrete) representation of time using SPIN in this case. However, concurrent

events are executed sequentially by SPIN, and so, when there is more than one

component (i.e., agent) there is no such correlation. In order to prove quanti-

tative properties, such as time between events, or the probability of an event, a

more specialised model checker, such as the timed model checker Uppaal [90]

or the probabilistic model checker PRISM [2] would be required. (In Section 3.2

we present PRISM models which apply probability and quantitative assessment

to our systems.)
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Chapter 8

Conclusion

We have presented various different approaches for applying model checking to

ABL systems. The main objective was to provide an alternative to the prevailing

methodology of simulation. Simulation may be cheap and easy to implement,

but rigorous analysis is not possible without exhaustive simulation and physical

experiments. In many of the ABL systems we examined, exhaustive simulation

and experimental analysis are unfeasible at best, and impossible at worst. Through

many examples of using model checking to represent and check various ABL

systems, we present a strong case for its use; particularly as a tool to use alongside

traditional approaches, opposed to a standalone paragon.

The development of the Agent-centric abstraction adds additional strength to

our case for applying model checking. Its development was a result of wanting

to formally analyse types of ABL system more efficiently. Through our definition

and proof of a simulation relation we hope to persuade the reader of the soundness

of this abstraction, and the scope of its application.

The Agent-centric abstraction provides an effective abstraction process for

dealing with an entire class of systems in one model. The fundamental concept of

this abstraction is widely applicable within the area of our systems. What we have

presented here is a framework for the verification of properties in ABL systems.

Additionally, we have highlighted how embedded C code functions can be utilised

for modelling ABL systems with SPIN, by running them along side the PROMELA

174



model without adding to its state-space.

By proving the existence of a simulation relation between our Explicit model

and Relative model, we show that it is possible to maintain the accuracy of the

Explicit model while extending the scope to that of the Relative model. Our tran-

sition functions allow the abstraction framework to provide an automatic proof of

a simulation relation. Hence, using our framework guarantees the soundness of

the abstraction as part of its application.

The instantiation of our abstraction is presented in the Relative model. It pro-

vides a solid practical example of the effectiveness of our approach, which is

strengthened through comparison with both Explicit models and simulation. Ad-

ditions to our approach are describe in Chapter 7, where we give a better idea of

the scope of Agent-centric abstraction.

A fundamental understanding of the hardware involved in our systems is es-

sential to its modelling, we cover this information in Section 2.2.3. By breaking

down the hardware interactions into a set of functions, we are able to abstract the

representation of learning for our models. In both our Explicit and Relative mod-

els we demonstrate an effective representation of the ICO learning algorithm. This

is achieved by abstracting the process of learning to just its trigger and behavioural

response. Here, the trigger is the situation where a distal and subsequent proximal

signal are correlated. The behavioural response is the increased sensitivity in the

robots distal antennas.

We cover a broad background of literature in this area, with specific focus on

the mathematical constructs associated with model checking. We also present a

detailed description of both model checkers used in our practical work, including

many of the model checking techniques available with them. Having an in depth

knowledge of the tools at our disposal allowed for more effective models to be de-

veloped. For example, a full understanding of the embedded C code for PROMELA

gave us much more accurate and powerful models. Additionally, the application

of weak fairness in our multi-agent systems guaranteed that, for their verification,

both agents were able to transition.

Throughout, we have shown the ways in which model checking can be applied
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to ABL systems. By modelling existing systems like the ones from [77] we have

learnt to recreate results that were obtained by simulation and experimentation.

Our verification results for our Explicit and Relative models showed that even the

state-spaces of our most complicated and accurate models can be tractable.

Principally, we have developed various models and techniques for modelling

ABL systems, classifying the benefits and costs of each approach. We suggest that

there is room for further development of our approach by expanding the scope of

our Agent-centric abstraction and developing a custom-made tool to help auto-

mate the modelling of these systems.

8.1 Outstanding issues and implementations

While we have covered a broad application of model checking to ABL systems,

including our Agent-centric abstraction with its proposed additions, one of the big

future endeavours for this work is the development of a fully automated tool for

dealing with this type of system.

We have already developed some automated code for the generation of envi-

ronments for the Explicit model based on system parameters (see Appendix D).

The combination of this with a model checking application seems feasible. This

application would take in parameters of the obstacles and robots, the environmen-

tal complexity of the system, and perhaps also a learning algorithm to implement.

From this it will be able to produce an Explicit model or a Relative model of the

system.

There is also a much broader application for the basic representation of a robot,

environment, and obstacles. For example, although the models would be geared

toward obstacle avoidance, it is a simple change to represent obstacle attraction

(by altering the polarity of ωd, see Section 2.2.3). Additionally, fundamentally dif-

ferent types of model can be produced; e.g., by having obstacles represent some-

thing different, or altering the robot’s method of learning. In fact, the scope of this

framework can be exploited in many ways.

In addition to the auto-generation of an environment for an Explicit model,
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this application could also include some visualisations of the system. We have

already developed some auto-generation code of visualisations for models, using

Gnuplot scripts (see Appendix D). These scripts can also be applied to a SPIN

counterexample trace in order to generate a graphical representation of the pre-

cursor to a failed verification; i.e., the agent can be viewed as it fails to navigate

its environment. (Note that the Figure 4.3 and Figure 4.5 were generated with our

scrips.)

Another enhancement to this tool could be the inclusion of some form of auto-

matic Theorem prover [91] into the application. This could aid in the proof of the

simulation relation, or simply highlight the cases where a proof cannot be found.

Combining the visualisations with the auto-generated code and automated

proof into a comprehensive tool would be one of the next stages in the advance-

ment of this research.
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Appendix A

PROMELA models

Here, we include the relevant code from the preliminary PROMELA and SPIN mod-

els.

A.1 Colliding robots
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A.2 Colliding robots verification output

pan: claim violated! (at depth 87)
pan: wrote pan_in.trail
pan: reducing search depth to 87
pan: end state in claim reached (at depth 87)
pan: wrote pan_in.trail
pan: reducing search depth to 86
(Spin Version 5.2.2  7 September 2009)
              + Partial Order Reduction
              + Compression
Full statespace search for:
              never claim             +
              assertion violations    + (if within scope of claim)
              acceptance   cycles     + (fairness disabled)
              invalid end states       (disabled by never claim)
Statevector 67 byte, depth reached 38049, errors: 8400
   249745 states, stored
 17913752 states, matched
 18163497 transitions (= stored+matched)
        0 atomic steps
hash conflicts:   7475575 (resolved)
Stats on memory usage (in Megabytes):
   20.721 equivalent memory usage for states (stored*(Statevector + overhead))
   10.235 actual memory usage for states (compression: 49.39%)
              statevector as stored = 23 byte + 20 byte overhead
    2.000 memory used for hash table (w19)
    0.003 memory used for DFS stack (m86)
   12.146 total actual memory usage
nr of templates: [ globals chans procs ]
collapse counts: [ 4886 487 211 8 2 ]
unreached in proctype robo
              line 37, "pan_in", state 26, "end"
              (1 of 26 states)
unreached in proctype environment
              line 52, "pan_in", state 8, "sendRobo!nogo"
            line 54, "pan_in", state 14, "sendRobo!nogo"
            line 68, "pan_in", state 38, "end"
            (3 of 38 states)
unreached in proctype :init:
            (0 of 8 states)
unreached in proctype :never:
            (0 of 8 states)
pan: elapsed time 608 seconds
pan: rate 411.06228 states/second
pan: avg transition delay 3.345e05 usec
174.24user 423.22system 10:07.52elapsed 98%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+3260048outputs (0major+3264minor)pagefaults 0swaps
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A.3 Colliding robots (approaching-cell)

mtype = { clear, nogo};
byte roboX [2];
byte roboY [2];
byte roboAppX [2];
byte roboAppY [2];
bit validator = 0;
/*Each Robo sends its receive chan and the coords that it wants to test, to the environment*/
chan coordSend = [1] of { chan, byte, byte, byte};
proctype robo(byte roboID) {
               chan thisFeeler = [1] of { mtype};
               byte futureX;
               byte futureY;
               mtype futureState = nogo;
reset:        atomic { futureX = roboX[roboID]; futureY = roboY[roboID] };
move:          do
               ::    futureY = futureY + 1; break;
               ::    futureY = futureY  1; break;
               ::    futureX = futureX  1; break;
               ::    futureX = futureX + 1; break;
               od;
testApproach:               coordSend!thisFeeler, futureX, futureY, roboID;
waitApproach:                thisFeeler?futureState;
               if 
               :: (futureState == clear) > atomic { roboAppX[roboID] = futureX; roboAppY[roboID] = 
futureY }; goto testMove; 
               :: (futureState == nogo) > goto reset;
               fi;
testMove: coordSend!thisFeeler, futureX, futureY, roboID;
waitMove: thisFeeler?futureState;
               if 
               :: (futureState == clear) > atomic { roboX[roboID]=futureX; roboY[roboID]=futureY }; 
goto move;
               :: (futureState == nogo) > atomic { roboAppX[roboID] = futureX; 
roboAppY[roboID] = futureY }; goto reset;
               fi;
}
proctype environment() {
               byte posY;
               byte posX;
               byte count;
               byte roboID;
               chan sendRobo;
/*The "validator" is set to 1 here so that the validation test doesn't act on the arrays at 
instantiation.*/
               validator = 1;
/*Reset "count" reset count and wait for new request from the robots.*/
waitTest: count = 0; coordSend? sendRobo, posX, posY, roboID;
               if
               :: posX > 2 > sendRobo!nogo; goto waitTest;
          :: posX < 0 > sendRobo!nogo; goto waitTest;
          :: posY > 2> sendRobo!nogo; goto waitTest;
          :: posY < 0 > sendRobo!nogo; goto waitTest;
          :: else > goto roboTest;
          fi; 
roboTest: do
          ::          if
                      :: (count != roboID && (  ( (posX == roboX[count]) && (posY == roboY[count]) ) 
|| 
                            ( (posX==roboAppX[count]) && (posY==roboAppY[count]) )  ))> sendRobo!
nogo; goto waitTest;
                      :: else >  if
                                   :: (count >= 1) > sendRobo!clear; goto waitTest; 
                                   :: else > count = count + 1; goto roboTest;
                                   fi;
                      fi;
          od;
          goto waitTest;
}
init {
          atomic { roboX[0] = 1; roboY[0] = 2; roboX[1] = 2; roboY[1] = 3 };
          run environment(); atomic { run robo(0); run robo(1) };
}
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A.4 Colliding robots (approaching-cell)

verification output

warning: for p.o. reduction to be valid the never claim must be stutterinvariant
(never claims generated from LTL formulae are stutterinvariant)
depth 0: Claim reached state 5 (line 19)
Depth=  411540 States=    1e+06 Transitions= 1.58e+06 Memory=   343.504 t=   3.11 R=   3e+05
Depth=  416528 States=    2e+06 Transitions= 3.28e+06 Memory=   378.465 t=    6.7 R=   3e+05
pan: resizing hashtable to w21..  done
(Spin Version 5.2.2  7 September 2009)
              + Partial Order Reduction
              + Compression
Full statespace search for:
              never claim          +
              assertion violations + (if within scope of claim)
              acceptance   cycles  + (fairness disabled)
              invalid end states    (disabled by never claim)
Statevector 63 byte, depth reached 416528, errors: 0
  2247944 states, stored
  1476357 states, matched
  3724301 transitions (= stored+matched)
        1 atomic steps
hash conflicts:   2988721 (resolved)
Stats on memory usage (in Megabytes):
  177.936  equivalent memory usage for states (stored*(Statevector + overhead))
   81.659  actual memory usage for states (compression: 45.89%)
           statevector as stored = 18 byte + 20 byte overhead
    8.000  memory used for hash table (w21)
  305.176  memory used for DFS stack (m10000000)
  394.668  total actual memory usage
nr of templates: [ globals chans procs ]
collapse counts: [ 43801 359 213 4 1 ]
unreached in proctype robo
           line 42, "pan_in", state 40, "end"
           (1 of 40 states)
unreached in proctype environment
           line 59, "pan_in", state 8, "sendRobo!nogo"
            line 61, "pan_in", state 14, "sendRobo!nogo"
            line 76, "pan_in", state 38, "end"
            (3 of 38 states)
unreached in proctype :init:
            (0 of 10 states)
unreached in proctype :never:
            line 24, "basicRobots1App.ltl", state 8, "end"
            (1 of 8 states)
pan: elapsed time 7.88 seconds
pan: rate 285272.08 states/second
pan: avg transition delay 2.1158e06 usec
7.86user 0.34system 0:08.20elapsed 99%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+8outputs (0major+101186minor)pagefaults 0swaps
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A.5 Avoidance field robots

mtype = { clear, nogo};

byte roboX [2];
byte roboY [2];

byte roboDistalXBL [2];
byte roboDistalYBL [2];

bit validator = 0;

/*Each Robo sends its receive chan and the coords that it wants to test, to the environment*/
chan coordSend = [1] of { chan, byte, byte, byte};

proctype robo(byte inX, inY, roboId) {
chan thisDistal = [1] of { mtype};

byte curX = inX;
byte curY = inY;
byte roboID = roboId;
byte futureX;
byte futureY;
mtype futureState = nogo;

reset:         atomic {futureX = curX; futureY = curY};
setDistal:  atomic {

if 
:: (curX == 0) -> roboDistalXBL[roboID] = (curX);
:: else -> roboDistalXBL[roboID] = (curX-1);
fi;
if 
:: (curY == 0) -> roboDistalYBL[roboID] = (curY);
:: else -> roboDistalYBL[roboID] = (curY-1);
fi

};
move: do

::    futureY = futureY + 1; break;
::    futureY = futureY - 1; break;
::    futureX = futureX - 1; break;
::    futureX = futureX + 1; break;
od;

testMove: coordSend!thisDistal, futureX, futureY, roboID;

waitDistal: thisDistal?futureState;
if 
:: (futureState == clear) -> atomic { curX = futureX; curY = futureY}; 

atomic { roboX[roboID]=curX; roboY[roboID]=curY}; goto setDistal;
:: (futureState == nogo) -> goto reset;
fi;

}

183



proctype environment() {
byte posY;
byte posX;
byte count;
byte roboID;
chan sendRobo;

/*The "validator" is set to 1 here so that the validation test doesn't act on the arrays at 
instantiation.*/

validator = 1;

/*Reset "count" reset count and wait for new request from the robots.*/
waitTest: count = 0; coordSend? sendRobo, posX, posY, roboID;

/*The Robots environment is a grid (8x8), but the edging lines are considered as a wall*/
if
:: ((posX <= 7) && (posX >= 0) && (posY >= 0) && (posY <= 7))->  goto waitDistal;
:: else -> sendRobo!nogo; goto waitTest;
fi; 

waitDistal: count =0;

/*"count" only goes to '1' because there are only 2 Robots at the moment.*/
distalTest: do

  :: if
:: ((count <=1) && (count != roboID) && (posX>=roboDistalXBL[count]) && 
    (posX <= (roboDistalXBL[count] + 2)) && 
    (posY >= roboDistalYBL[count]) && (posY <= (roboDistalYBL[count] + 2))) -> 

sendRobo!nogo; goto waitTest;
:: else -> count = count+1;

if
:: (count <=1)-> goto distalTest;
:: (count >1) -> sendRobo!clear; goto waitTest;
fi;

fi;
od;

}

init {
atomic { roboX[0] = 7; roboY[0] = 7; roboX[1] = 6; roboY[1] = 5; roboDistalXBL[0] = 6; 
roboDistalYBL[0] = 6; roboDistalXBL[1] = 5; roboDistalYBL[1] = 4};

run environment(); atomic { run robo( roboX[0],  roboY[0], 0); 
run robo( roboX[1],  roboY[1], 1)};

}
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A.6 Dual antenna robots (abridged code)

typedef Array { byte yAxis[22]; };
mtype = { clear, nogo};
Array xAxis[22];
byte roboDirection[2]; /*0 N, 1 NE, 2 E, 3 SE, 4 S, 5 SW, 6 W, 7 NW.*/
byte roboX[2];
byte roboY[2];
byte testV;
chan sensLongTest = [1] of { chan, chan, byte};
chan enviMove = [0] of { byte};

inline calcMove( iLeft, iRight) {
errorVal = (iRight - iLeft);
if
:: (errorVal>0)->atomic{roboDirection=((roboDirection+1)%8)};goto move; 
:: (errorVal<0)->atomic{roboDirection=((roboDirection+7)%8)};goto move; 
:: else->goto move;
fi; }

proctype environment() {
byte newRoboX;
byte newRoboY;
byte roboID;

roboMove: enviMove?roboID;
atomic { newRoboX = roboX[roboID]; newRoboY = roboY[roboID]};

/*Moving the robot on the grid is an atomic, as the environment is not deemed to
need to calculate where the robot moves too.*/
atomic { if

:: (roboDirection[roboID] == 0)-> 
  xAxis[newRoboX].yAxis[(newRoboY-1)] = 0; 

xAxis[(newRoboX+1)].yAxis[(newRoboY-1)] = 0; /*Remove old pos.*/
  xAxis[newRoboX].yAxis[(newRoboY+1)] = 2; 

xAxis[(newRoboX+1)].yAxis[(newRoboY+1)] = 2; /*Add new.*/
:: (roboDirection[roboID] == 1)-> 
  xAxis[newRoboX].yAxis[(newRoboY-1)] = 0; 

xAxis[(newRoboX-1)].yAxis[(newRoboY-1)] = 0; 
  xAxis[(newRoboX-1)].yAxis[newRoboY] = 0; /*Remove old pos.*/
  xAxis[newRoboX].yAxis[(newRoboY+1)] = 2; 

xAxis[(newRoboX+1)].yAxis[(newRoboY+1)] = 2; 
  xAxis[(newRoboX+1)].yAxis[newRoboY] = 2; /*Add new pos.*/

//Repeated for each direction...
fi;};

goto roboMove;};

proctype robo(byte roboId) {
chan feelerLeft = [1] of { byte};
chan feelerRight = [1] of { byte};
byte roboID = roboId;
byte infoLeft;
byte infoRight;
byte errorVal;
mtype futureState = nogo;

testMove: sensLongTest!feelerLeft, feelerRight, roboID;
feelerLeft?infoLeft; 
feelerRight?infoRight;
calcMove( infoLeft, infoRight);
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/*Reflex Sensor is combined with the movement phase.*/
move: if
:: (roboDirection[roboID] == 0)-> if

:: ((xAxis[roboX[roboID]].yAxis[(roboY[roboID]+2)]!=0)||
(xAxis[(roboX[roboID]+1)].yAxis[(roboY[roboID]+2)]!=0))->

atomic{roboDirection=((roboDirection+1)%8)};goto move;/*Turn right*/
:: else->atomic{roboY[roboID]=(roboY[roboID]+1)};enviMove!roboID;fi;

:: (roboDirection[roboID] == 1)-> if
:: ((xAxis[(roboX[roboID]+1)].yAxis[(roboY[roboID]+2)]!=0)||
(xAxis[(roboX[roboID]+2)].yAxis[(roboY[roboID]+1)]!= 0)|| 
(xAxis[(roboX[roboID]+2)].yAxis[(roboY[roboID]+2)] == 1))->

atomic{roboDirection=((roboDirection+1)%8)};goto move;/*Turn right*/
:: else-> atomic {roboX[roboID] = (roboX[roboID] +1); 
roboY[roboID]=(roboY[roboID]+1)};enviMove!roboID;fi;

//Repeated for each direction...
fi;
goto testMove;
}

proctype sensorLong() {
byte posX;
byte posY;
byte roboID;
byte thisRoboDire;
chan roboLeft;
chan roboRight;

waitTest: sensLongTest? roboLeft, roboRight, roboID;

atomic { posX = roboX[roboID]; posY = roboY[roboID]; }
thisRoboDire = roboDirection[roboID];

if
:: (thisRoboDire == 0)-> atomic { if

:: (xAxis[ (posX-1) ].yAxis[ (posY+2) ]!= 0)->roboLeft!(2);
:: else -> if

:: ( xAxis[ (posX-2) ].yAxis[ (posY+3) ]!= 0)->roboLeft!(4);
:: else -> if

:: (xAxis[ (posX-3) ].yAxis[ (posY+4) ]!= 0)->roboLeft!(6);
:: else ->  if 

:: (xAxis[(posX-4)].yAxis[(posY+5)]!= 0)->oboLeft!(8);
:: else -> roboLeft!(10); fi;

fi;
fi;

fi; };
atomic { if
:: (xAxis[(posX+2)].yAxis[(posY+2)]!= 0)-> roboRight!(2);goto waitTest;

:: else -> if
:: ( xAxis[(posX+3)].yAxis[ (posY+3) ]!= 0)->roboRight!(4);
:: else -> if

:: ( xAxis[(posX+4)].yAxis[ (posY+4) ]!= 0)->roboRight!(6);
:: else ->  if 

:: (xAxis[(posX+5)].yAxis[(posY+5)]!= 0)->roboRight!(8);
:: else -> roboRight!(10); fi;

fi;
fi;

fi; };

//Repeated for each direction...
fi;
goto waitTest; }

186



init {
atomic { /*Grid Walls*/

xAxis[0].yAxis[0] = 1; xAxis[1].yAxis[0] = 1; xAxis[2].yAxis[0] = 1; 
xAxis[3].yAxis[0] = 1; xAxis[4].yAxis[0] = 1; 

xAxis[5].yAxis[0] = 1; xAxis[6].yAxis[0] = 1; xAxis[7].yAxis[0] = 1; 
xAxis[8].yAxis[0] = 1; xAxis[9].yAxis[0] = 1; 

xAxis[10].yAxis[0] = 1; xAxis[11].yAxis[0] = 1; xAxis[12].yAxis[0] = 1; 
xAxis[13].yAxis[0] = 1; xAxis[14].yAxis[0] = 1; 

xAxis[15].yAxis[0] = 1; xAxis[16].yAxis[0] = 1; xAxis[17].yAxis[0] = 1; 
xAxis[18].yAxis[0] = 1; xAxis[19].yAxis[0] = 1; 

xAxis[20].yAxis[0] = 1; xAxis[21].yAxis[0] = 1; xAxis[0].yAxis[1] = 1; 
xAxis[0].yAxis[2] = 1; xAxis[0].yAxis[3] = 1; 

xAxis[0].yAxis[4] = 1; xAxis[0].yAxis[5] = 1; xAxis[0].yAxis[6] = 1; 
xAxis[0].yAxis[7] = 1; xAxis[0].yAxis[8] = 1; 

xAxis[0].yAxis[9] = 1; xAxis[0].yAxis[10] = 1; xAxis[0].yAxis[11] = 1; 
xAxis[0].yAxis[12] = 1; xAxis[0].yAxis[13] = 1; 

xAxis[0].yAxis[14] = 1; xAxis[0].yAxis[15] = 1; xAxis[0].yAxis[16] = 1; 
xAxis[0].yAxis[17] = 1; xAxis[0].yAxis[18] = 1; 

xAxis[0].yAxis[19] = 1; xAxis[0].yAxis[20] = 1; xAxis[21].yAxis[1] = 1; 
xAxis[21].yAxis[2] = 1; xAxis[21].yAxis[3] = 1; 

xAxis[21].yAxis[4] = 1; xAxis[21].yAxis[5] = 1; xAxis[21].yAxis[6] = 1; 
xAxis[21].yAxis[7] = 1; xAxis[21].yAxis[8] = 1; 

xAxis[21].yAxis[9] = 1; xAxis[21].yAxis[10] = 1; xAxis[21].yAxis[11] = 1; 
xAxis[21].yAxis[12] = 1; xAxis[21].yAxis[13] = 1; 

xAxis[21].yAxis[14] = 1; xAxis[21].yAxis[15] = 1; xAxis[21].yAxis[16] = 1;
xAxis[21].yAxis[17] = 1; xAxis[21].yAxis[18] = 1; 

xAxis[21].yAxis[19] = 1; xAxis[21].yAxis[20] = 1; xAxis[0].yAxis[21] = 1; 
xAxis[1].yAxis[21] =1; xAxis[2].yAxis[21] = 1; 

xAxis[3].yAxis[21] = 1; xAxis[4].yAxis[21] = 1; xAxis[5].yAxis[21] = 1;
xAxis[6].yAxis[21] = 1; xAxis[7].yAxis[21] = 1; 
xAxis[8].yAxis[21] = 1; xAxis[9].yAxis[21] = 1; xAxis[10].yAxis[21] = 1; 

xAxis[11].yAxis[21] = 1; xAxis[12].yAxis[21] = 1; 
xAxis[13].yAxis[21] = 1; xAxis[14].yAxis[21] = 1; xAxis[15].yAxis[21] = 1;

xAxis[16].yAxis[21] = 1; xAxis[17].yAxis[21] = 1; 
xAxis[18].yAxis[21] = 1; xAxis[19].yAxis[21] = 1; xAxis[20].yAxis[21] = 1;

xAxis[21].yAxis[21] = 1;

/*Obstacles*/
/*xAxis[8].yAxis[20] =1; xAxis[8].yAxis[19] =1;*/

/*Robots*/
roboX[0] = 2; roboY[0] = 4; 
xAxis[2].yAxis[4] = 2; xAxis[2].yAxis[5] = 2; xAxis[3].yAxis[4] = 2; 
xAxis[3].yAxis[5] = 2;

roboX[1] = 14; roboY[1] = 10;
xAxis[14].yAxis[10] = 2; xAxis[14].yAxis[11] = 2; xAxis[15].yAxis[10] = 2; 
xAxis[15].yAxis[11] = 2;};

testV = 5; run environment(); run sensorLong(); 
atomic {run robo(0); run robo(1)};
}
#include "newRobots2NoCrash.ltl"
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Appendix B

PRISM models

Here, we include the relevant code from all the PRISM models.

B.1 Colliding robots (abridged code)

dtmc

// CONSTANTS
const int n; // size of the grid

formula S1up = min( min(1,max(n-y1,0)), max((x1=x2?0:1),((y1+1)=y2?0:1)) );
formula S1right = min( min(1,max(n-x1,0)), max((y1=y2?0:1),((x1+1)=x2?0:1)) );
formula S1down = min( min(1,max(y1-1,0)), max((x1=x2?0:1),((y1-1)=y2?0:1)) );
formula S1left = min( min(1,max(x1-1,0)), max((y1=y2?0:1),((x1-1)=x2?0:1)) );

formula S2up = min( min(1,max(n-y2,0)), max((x2=x1?0:1),((y2+1)=y1?0:1)) );
formula S2right = min( min(1,max(n-x2,0)), max((y2=y1?0:1),((x2+1)=x1?0:1)) );
formula S2down = min( min(1,max(y2-1,0)), max((x2=x1?0:1),((y2-1)=y1?0:1)) );
formula S2left = min( min(1,max(x2-1,0)), max((y2=y1?0:1),((x2-1)=x1?0:1)) );

module Robot1/Robot2
dChoice :[0..3] init 0;
x1 : [1..n] init 5;   // x position of robot.
y1 : [1..n] init 5;   // y position of robot.
apX1 : [1..n] init 5; // x position that the robot is going to move to.
apY1 : [1..n] init 5; // y position that the robot is going to move to.

[move1] (dChoice=0 & S1up=1 & !(y1=n)) -> 1.0 : (y1'=y1+1); // moves up
[move1] (dChoice=0 & S1up=0) -> 0.5 : (dChoice'=1) + 0.5 : (dChoice'=3);
[move1] (dChoice=1 & S1right=1 & !(x1=n)) -> 1.0 : (x1'=x1+1); // moves right
[move1] (dChoice=1 & S1right=0) -> 0.5 : (dChoice'=2) + 0.5 : (dChoice'=0);
[move1] (dChoice=2 & S1down=1 & !(y1=1)) -> 1.0 : (y1'=y1-1); // moves down
[move1] (dChoice=2 & S1down=0) -> 0.5 : (dChoice'=3) + 0.5 : (dChoice'=1);
[move1] (dChoice=3 & S1left=1 & !(x1=1)) -> 1.0 : (x1'=x1-1); // moves left
[move1] (dChoice=3 & S1left=0) -> 0.5 : (dChoice'=0) + 0.5 : (dChoice'=2);

endmodule
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B.2 Dual antenna robots (abridged code)

// GRID WORLD MODEL OF ROBOT
dtmc
// CONSTANTS
const int n; // size of the grid
//Agent 1
const int posX1; // x coordinate.
const int posY1; // y coordinate.
const int inD1;  // facing direction (8).
//Agent 2
const int posX2;
const int posY2;
const int inD2;

// Bracket Structure:
// max (a, b)  --a=~b
// a=( (c6) (c5) (c4) (c3) (c2) (c1) ), b=( (c-6) (c-5) (c-4),(c-3),(c-2),(c-1) )
// c6=max( (()&()?1:0),(()&()?1:0),(()&()?1:0),(()&()?1:0) )
// c6: Check all 4 of the gird cells occupied by the other Robot
//
// All the c-'s are the left-had-side antenna sensor values and the other c's are the 
// right-had-side values. The example below is based on the agent is facing North.
//
// Right 
//c6: max(0,((x1+2)=x2)&((y1+2)=y2)?6:0, ((x1+2)=(x2+1))&((y1+2)=y2)?6:0, 
//       ((x1+2)=x2)&((y1+2)=(y2+1))?6:0, ((x1+2)=(n+1))&((y1+2)=(n+1))?6:0)
//c5: max(0,((x1+3)=x2)&((y1+3)=y2)?5:0, ((x1+3)=(x2+1))&((y1+3)=y2)?5:0, 
//       ((x1+3)=x2)&((y1+3)=(y2+1))?5:0, ((x1+3)=(x2+1))&((y1+3)=(y2+1))?5:0)
//c4: max(0,((x1+4)=x2)&((y1+4)=y2)?4:0, ((x1+4)=(x2+1))&((y1+4)=y2)?4:0, 
//       ((x1+4)=x2)&((y1+4)=(y2+1))?4:0, ((x1+4)=(x2+1))&((y1+4)=(y2+1))?4:0)
//c3: max(0,((x1+5)=x2)&((y1+5)=y2)?3:0, ((x1+5)=(x2+1))&((y1+5)=y2)?3:0, 
//       ((x1+5)=x2)&((y1+5)=(y2+1))?3:0, ((x1+5)=(x2+1))&((y1+5)=(y2+1))?3:0)
//c2: max(0,((x1+6)=x2)&((y1+6)=y2)?2:0, ((x1+6)=(x2+1))&((y1+6)=y2)?2:0, 
//       ((x1+6)=x2)&((y1+6)=(y2+1))?2:0, ((x1+6)=(x2+1))&((y1+6)=(y2+1))?2:0)
//c1: max(0,((x1+7)=x2)&((y1+7)=y2)?1:0, ((x1+7)=(x2+1))&((y1+7)=y2)?1:0, 
//       ((x1+7)=x2)&((y1+7)=(y2+1))?1:0, ((x1+7)=(x2+1))&((y1+7)=(y2+1))?1:0)
//
// Left
//c-6: max(0,((x1-1)=x2)&((y1+2)=y2)?6:0, ((x1-1)=(x2+1))&((y1+1)=y2)?6:0, 
//        ((x1-1)=x2)&((y1+1)=(y2+1))?6:0, ((x1-1)=(x2+1))&((y1+1)=(y2+1))?6:0)
//c-5: max(0,((x1-2)=x2)&((y1+2)=y2)?5:0, ((x1-2)=(x2+1))&((y1+2)=y2)?5:0, 
//        ((x1-2)=x2)&((y1+2)=(y2+1))?5:0, ((x1-2)=(x2+1))&((y1+2)=(y2+1))?5:0)
//c-4: max(0,((x1-1)=x2)&((y1+1)=y2)?4:0, ((x1-1)=(x2+1))&((y1+1)=y2)?4:0, 
//        ((x1-1)=x2)&((y1+1)=(y2+1))?4:0, ((x1-1)=(x2+1))&((y1+1)=(y2+1))?4:0)
//c-3: max(0,((x1-2)=x2)&((y1+2)=y2)?3:0, ((x1-2)=(x2+1))&((y1+2)=y2)?3:0, 
//        ((x1-2)=x2)&((y1+2)=(y2+1))?3:0, ((x1-2)=(x2+1))&((y1+2)=(y2+1))?3:0)
//c-2: max(0,((x1-3)=x2)&((y1+3)=y2)?2:0, ((x1-3)=(x2+1))&((y1+3)=y2)?2:0, 
//        ((x1-3)=x2)&((y1+3)=(y2+1))?2:0, ((x1-3)=(x2+1))&((y1+3)=(y2+1))?2:0)
//c-1: max(0,((x1-4)=x2)&((y1+4)=y2)?1:0, ((x1-4)=(x2+1))&((y1+4)=y2)?1:0, 
//        ((x1-4)=x2)&((y1+4)=(y2+1))?1:0, ((x1-4)=(x2+1))&((y1+4)=(y2+1))?1:0)
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// Robot 1 // Or Robot 2
//-------------------------------------------------------------------------------
//Determine the signal difference in the antennas.
formula S1NAntSig = 

max(0, max(0,((x1+2)=x2)&((y1+2)=y2)?6:0, ((x1+2)=(x2+1))&((y1+2)=y2)?6:0, 
((x1+2)=x2)&((y1+2)=(y2+1))?6:0, ((x1+2)=(n+1))&((y1+2)=(n+1))?6:0)
max(0,((x1+3)=x2)&((y1+3)=y2)?5:0, ((x1+3)=(x2+1))&((y1+3)=y2)?5:0, 
((x1+3)=x2)&((y1+3)=(y2+1))?5:0, ((x1+3)=(x2+1))&((y1+3)=(y2+1))?5:0)
max(0,((x1+4)=x2)&((y1+4)=y2)?4:0, ((x1+4)=(x2+1))&((y1+4)=y2)?4:0, 
((x1+4)=x2)&((y1+4)=(y2+1))?4:0, ((x1+4)=(x2+1))&((y1+4)=(y2+1))?4:0)
max(0,((x1+5)=x2)&((y1+5)=y2)?3:0, ((x1+5)=(x2+1))&((y1+5)=y2)?3:0, 
((x1+5)=x2)&((y1+5)=(y2+1))?3:0, ((x1+5)=(x2+1))&((y1+5)=(y2+1))?3:0)
max(0,((x1+6)=x2)&((y1+6)=y2)?2:0, ((x1+6)=(x2+1))&((y1+6)=y2)?2:0, 
((x1+6)=x2)&((y1+6)=(y2+1))?2:0, ((x1+6)=(x2+1))&((y1+6)=(y2+1))?2:0)
max(0,((x1+7)=x2)&((y1+7)=y2)?1:0, ((x1+7)=(x2+1))&((y1+7)=y2)?1:0, 
((x1+7)=x2)&((y1+7)=(y2+1))?1:0, ((x1+7)=(x2+1))&((y1+7)=(y2+1))?1:0)  ) -

max(0, max(0,((x1-1)=x2)&((y1+2)=y2)?6:0, ((x1-1)=(x2+1))&((y1+1)=y2)?6:0, 
((x1-1)=x2)&((y1+1)=(y2+1))?6:0, ((x1-1)=(x2+1))&((y1+1)=(y2+1))?6:0)
max(0,((x1-2)=x2)&((y1+2)=y2)?5:0, ((x1-2)=(x2+1))&((y1+2)=y2)?5:0, 
((x1-2)=x2)&((y1+2)=(y2+1))?5:0, ((x1-2)=(x2+1))&((y1+2)=(y2+1))?5:0)
max(0,((x1-1)=x2)&((y1+1)=y2)?4:0, ((x1-1)=(x2+1))&((y1+1)=y2)?4:0, 
((x1-1)=x2)&((y1+1)=(y2+1))?4:0, ((x1-1)=(x2+1))&((y1+1)=(y2+1))?4:0)
max(0,((x1-2)=x2)&((y1+2)=y2)?3:0, ((x1-2)=(x2+1))&((y1+2)=y2)?3:0, 
((x1-2)=x2)&((y1+2)=(y2+1))?3:0, ((x1-2)=(x2+1))&((y1+2)=(y2+1))?3:0)
max(0,((x1-3)=x2)&((y1+3)=y2)?2:0, ((x1-3)=(x2+1))&((y1+3)=y2)?2:0, 
((x1-3)=x2)&((y1+3)=(y2+1))?2:0, ((x1-3)=(x2+1))&((y1+3)=(y2+1))?2:0)
max(0,((x1-4)=x2)&((y1+4)=y2)?1:0, ((x1-4)=(x2+1))&((y1+4)=y2)?1:0, 

        ((x1-4)=x2)&((y1+4)=(y2+1))?1:0, ((x1-4)=(x2+1))&((y1+4)=(y2+1))?1:0) );

//Each other direction declared sepatately: formula S1NEAntSig ...and etc.

//Process for an agent (robot).
module Robot1 

d1 : [0..7] init inD1;
x1 : [0..n] init posX1; // x position of robot
y1 : [0..n] init posY1; // y position of robot
 
[] (d1=0 & S1NAntSig=0 & !(y1=n)) -> 1.0 : (y1'=y1+1); //Moves N 
[] (d1=0 & S1NAntSig=0) ->  0.5 : (d1'=1) + 0.5 : (d1'=7); 
[] (d1=0 & S1NAntSig<0) -> 1.0 : (d1'=1);
[] (d1=0 & S1NAntSig>0) -> 1.0 : (d1'=7);

[] (d1=1 & S1NEAntSig=0 & !(y1=n) & !(x1=n)) -> 1.0:(y1'=y1+1)&(x1'=x1+1);//Moves NE 
[] (d1=1 & S1NEAntSig=0) -> 0.5 : (d1'=2) + 0.5 : (d1'=0);
[] (d1=1 & S1NEAntSig<0) -> 1.0 : (d1'=2);
[] (d1=1 & S1NEAntSig>0) -> 1.0 : (d1'=0);

[] (d1=2 & S1EAntSig=0 & !(x1=n)) -> 1.0 : (x1'=x1+1); //Moves E
[] (d1=2 & S1EAntSig=0) -> 0.5 : (d1'=3) + 0.5 : (d1'=1);
[] (d1=2 & S1EAntSig<0) -> 1.0 : (d1'=3);
[] (d1=2 & S1EAntSig>0) -> 1.0 : (d1'=1);

[] (d1=3 & S1SEAntSig=0 & !(y1=0) & !(x1=n)) -> 1.0:(y1'=y1-1)&(x1'=x1+1);//Moves SE
[] (d1=3 & S1SEAntSig=0) -> 0.5 : (d1'=4) + 0.5 : (d1'=2);
[] (d1=3 & S1SEAntSig<0) -> 1.0 : (d1'=4);
[] (d1=3 & S1SEAntSig>0) -> 1.0 : (d1'=2);

[] (d1=4 & S1SAntSig=0 & !(y1=0)) -> 1.0 : (y1'=y1-1); //Moves S
[] (d1=4 & S1SAntSig=0) -> 0.5 : (d1'=5) + 0.5 : (d1'=3);
[] (d1=4 & S1SAntSig<0) -> 1.0 : (d1'=5);
[] (d1=4 & S1SAntSig>0) -> 1.0 : (d1'=3);

[] (d1=5 & S1SWAntSig=0 & !(y1=0) & !(x1=0)) -> 1.0:(y1'=y1-1)&(x1'=x1-1);//Moves SW
[] (d1=5 & S1SWAntSig=0) -> 0.5 : (d1'=6) + 0.5 : (d1'=4);
[] (d1=5 & S1SWAntSig<0) -> 1.0 : (d1'=6);
[] (d1=5 & S1SWAntSig>0) -> 1.0 : (d1'=4);

[] (d1=6 & S1WAntSig=0 & !(x1=0)) -> 1.0 : (x1'=x1-1); //Moves W
[] (d1=6 & S1WAntSig=0) -> 0.5 : (d1'=7) + 0.5 : (d1'=5);
[] (d1=6 & S1WAntSig<0) -> 1.0 : (d1'=7);
[] (d1=6 & S1WAntSig>0) -> 1.0 : (d1'=5);

[] (d1=7 & S1NWAntSig=0 & !(y1=n) & !(x1=0)) -> 1.0:(y1'=y1+1)&(x1'=x1-1);//Moves NW
[] (d1=7 & S1NWAntSig=0) -> 0.5 : (d1'=0) + 0.5 : (d1'=6);
[] (d1=7 & S1NWAntSig<0) -> 1.0 : (d1'=0);
[] (d1=7 & S1NWAntSig>0) -> 1.0 : (d1'=6);

endmodule 
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B.3 Bean bag prediction

// Bean Bag Type Matching
dtmc

d

// Constants
//beanLim should be 1 more than the target number of beans.
const int beanLim; 

//formulae
formula beanHalfLim = (beanLim/2);

module BeanBag

m

s : [0..1] init 0;
thisBean : [0..1] init 0;
bPick : [0..1] init 1;
beanNum : [0..100] init 0; 
beansSoFar : [0..beanLim] init 0;
bagType : [0..4] init 0; // 15 are the different types of bag that can be chosen.
choLim : [1..100] init 100;

�

//bean is Blu 70% or the bean is Red 30%.
[step] (bPick=1 & beanNum<100) > 0.7 : (thisBean'=0)&(bPick'=0)&(beanNum'=beanNum+1) + 0.3 : 
(thisBean'=1)&(bPick'=0)&(beanNum'=beanNum+1); 

�

[step] (bPick=0 & beanNum<beanLim & beansSoFar<beanLim) > 1.0 : (beansSoFar' = beansSoFar + 
thisBean) & (bPick'=1);

�

//This is the decision algoritm. The hypotheses which are used to select the bag type.
[step] (bPick=0 & s=0 & beanNum=beanLim & beansSoFar=0) > 1.0 : (bagType' = 0) & (s'=1);

[step] (bPick=0 & s=0 & beanNum=beanLim & beansSoFar<beanHalfLim &  beansSoFar>0)  > 
1.0 : (bagType' = 1) & (s'=1);

[step] (bPick=0 & s=0 & beanNum=beanLim & beansSoFar>=beanHalfLim &  beansSoFar<(beanLim
1)) > 1.0 : (bagType' = 2) & (s'=1);

[step] (bPick=0 & s=0 & beanNum=beanLim & beansSoFar=(beanLim1))  > 1.0 :  (bagType' = 3) & 
(s'=1);

(

endmodule
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B.4 Learning obstacle avoidance

// Avoiding Obstacles
// This is similar to the bean bag examples except beans are now obstacles
// each obstacle requires a set amount of energy be avoided. 

// We begin with only 3 turns: strong turn, weak turn, and collision (this requires the most turning energy). 
// If a weak turn doesn't avoid an obstacle then a collision still occurs. Using the additional energy for a collision turn.  

dtmc

// Constants
const int obLim; 
const int angChoice;
//Preset Constants
const int collisionE = 9;
const int energyMAX = 900;
const int energyMAXSAFE = energyMAX  collisionE;

module ObAvoid

s : [0..2] init 0;

//Obstacles can either require 70deg or 30deg to avoid them. For Now.
thisOb : [0..collisionE] init 0;
obPick : [0..1] init 1;
obNum  : [0..obLim] init 0; 
energy : [0..energyMAX] init 0;

[step] (obPick=1 & obNum<obLim) > 0.5 : (thisOb'=7)&(obPick'=0)&(obNum'=obNum+1) + 
0.5 : (thisOb'=3)&(obPick'=0)&(obNum'=obNum+1); 

[step] (obPick=0 & obNum<obLim & energy<energyMAXSAFE & thisOb>angChoice & s=0) > 
1.0 : (energy' = energy + collisionE) & (s'=1); 

[step] (obPick=0 & obNum<obLim & energy<energyMAXSAFE & thisOb<=angChoice & s=0) > 
1.0 : (energy' = energy + angChoice) & (obPick'=1); 

[step] (obPick=1 & obNum<obLim & energy<energyMAXSAFE & s=1) > 
1.0 : (energy' = energy + angChoice) & (obPick'=1); 

[step] (obPick=0 & s=0 & (obNum>=obLim | energy>=energyMAX)) > 1.0 : (s'=2); 

endmodule
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Appendix C

Explicit and Relative models

Here, we include the relevant code from the Explicit and Relative models.

C.1 Explicit model Inline and Macros

c_code { 
#define PI 3.141592653
#define DEG 0.01745329
#define ROBORAD 20 
#define OBRAD 10 
#define AAL 11
#define AAR 69 
#define ADIST 8 
#define SENLEN 80
#define LAMBDA 1
#define OMEGAP 15
#define ROBOMOVE 1
#define ENVIRAD 200 
#define ENVIDIAM 400
#define ANTLEN 60
#define CRASHANGFROMCENTRE 9.825648155

//GLOBALS//
double x = 0;
double prevX = 0;
double roboA = 0;
long double enviA = 0;
long double enviD = 0;
double obD = 0;
double obA = 0;
double relD = 0;
double relA = 0;
int moveDist = 1;
int obDist = 0;
int obAng = 0;
int inCone = 0;
int debug = 4;
int testFlag = 0;

};

#define MOVE_FORWARD() { \
/*Declare Locals*/ \
if (now.relDist > 30) { \

long double oZ = 0; \
long double nZ = 0; \
long double fZ = 0; \
long double lOrg = 0; \
long double hOrg = 0; \
long double lNew = 0; \
long double hNew = 0; \
long double lFin = 0; \
long double hFin = 0; \
int oFR = 0; \
int oFU = 0; \
int nFR = 0; \
int nFU = 0; \

\
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enviA, roboA, x, prevX);} \
oZ = fmodl(enviA, (long double)90); \
if ((enviA == 90) || (enviA ==270)) {lOrg = enviD; hOrg = 0; } \
else if ((enviA == 0) || (enviA == 180)) {lOrg = 0; hOrg = enviD; } \
else { \

if ((enviA <=90) || ((enviA >=180)&&(enviA<=270))) { \
lOrg = (sin(oZ*DEG))*enviD; \
hOrg = (cos(oZ*DEG))*enviD; \

} else { \
hOrg = (sin(oZ*DEG))*enviD; \
lOrg = (cos(oZ*DEG))*enviD; \

} \
} \
nZ = fmod(roboA, 90.00);  \
if ((roboA == 90) || (roboA ==270)) {lNew = moveDist; hNew = 0; } \
else if ((roboA == 0) || (roboA == 180)) {lNew = 0; hNew = moveDist; } \
else { \

if ((roboA<90) || ((roboA>180)&&(roboA<270))) { \
lNew = (sin(nZ*DEG))*moveDist; \
hNew = (cos(nZ*DEG))*moveDist; \

} else { \
hNew = (sin(nZ*DEG))*moveDist; \
lNew = (cos(nZ*DEG))*moveDist; \

} \
} \
if ((enviA<180)&&(roboA>180) || (enviA>180)&&(roboA<180)) { lFin = fabs(lOrg - lNew);} \
else { lFin = lOrg + lNew;} \
if ( (((enviA<90)||(enviA>270))&&((roboA>90)&&(roboA<270))) || \
(((enviA>90)&&(enviA<270))&&((roboA<90)||(roboA>270))) ) {  \

hFin = fabs(hOrg - hNew); \
} else { hFin = hOrg + hNew; } \
if ((hFin!=0)&&(lFin!=0)) { fZ = (atan(hFin/lFin)*(180/PI)); } \
else { fZ = 0;} \
enviD = sqrt((lFin*lFin)+(hFin*hFin)); \
if ((enviA >=0) && (enviA <90))  { oFR = 1; oFU = 1;} \
else if ((enviA >= 90) && (enviA <180))  { oFR = 1; oFU = 0;} \
else if ((enviA >= 180) && (enviA <270)) { oFR = 0; oFU = 0;} \
else if ((enviA >= 270) && (enviA <360)) { oFR = 0; oFU = 1;} \
else {if (debug ==1){ Printf("FECKTAL ERROR with enviA = %Lf. \n", enviA);} oFR = 0; oFU = 0;} 

\
nFR = oFR; \
nFU = oFU; \
if ((oFR==1) && (oFU==1)) {  \

if ((roboA>=180) && (roboA<360) && (lNew > lOrg)) { nFR = 0;} \
if ((roboA>=90) && (roboA<270) && (hNew > hOrg))  { nFU = 0;} \

} \
else if ((oFR==1) && (oFU==0)) {  \

if ((roboA>=180) && (roboA<360) && (lNew > lOrg)) { nFR = 0;} \
if ( (((roboA>=270)&&(roboA<360))||((roboA>=0)&&(roboA<90))) && (hNew > hOrg)) { nFU = 

1;} \
} \
else if ((oFR==0) && (oFU==0)) {  \

if ((roboA>=0) && (roboA<180) && (lNew > lOrg))   { nFR = 1;} \
if ( (((roboA>=270)&&(roboA<360))||((roboA>=0)&&(roboA<90))) && (hNew > hOrg)) { nFU = 

1;} \
} \
else if ((oFR==0) && (oFU==1)) {  \

if ((roboA>=0) && (roboA<180) && (lNew > lOrg))   { nFR = 1;} \
if ((roboA>=90) && (roboA<270) && (hNew > hOrg))  { nFU = 0;} \

} \
/*Many catches for when the movement is along the axis lines/opposing them, \
or when both are the same.*/ \
if (roboA==enviA) { enviA = roboA;} \
else if ((roboA==180)&&(enviA==0)&&(hNew>hOrg)) {enviA = 180;} \
else if ((roboA==180)&&(enviA==0)&&(hNew < hOrg)) {enviA = 0;} \
else if ((roboA==180)&&(enviA==0)&&(hNew == hOrg)) {enviA = 0;} \
else if ((roboA==0)&&(enviA==180)&&(hNew>hOrg)) {enviA = 0;} \
else if ((roboA==0)&&(enviA==180)&&(hNew < hOrg)) {enviA = 180;} \
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else if ((roboA==0)&&(enviA==180)&&(hNew == hOrg)) {enviA = 0;} \
else if ((roboA==90)&&(enviA==270)&&(lNew>lOrg)) {enviA = 90;} \
else if ((roboA==90)&&(enviA==270)&&(lNew < lOrg)) {enviA = 270;} \
else if ((roboA==90)&&(enviA==270)&&(lNew == lOrg)) {enviA = 0;} \
else if ((roboA==270)&&(enviA==90)&&(lNew>lOrg)) {enviA = 270;} \
else if ((roboA==270)&&(enviA==90)&&(lNew < lOrg)) {enviA = 90;} \
else if ((roboA==270)&&(enviA==90)&&(lNew == lOrg)) {enviA = 0;} \
else if ((nFR==1)&&(nFU==1)) { enviA = 90 - fZ;} \
else if ((nFR==1)&&(nFU==0)) { enviA = 90 + fZ;} \
else if ((nFR==0)&&(nFU==0)) { enviA = 270 - fZ;} \
else if ((nFR==0)&&(nFU==1)) { enviA = 270 + fZ;} \
if (enviA>=360) {now.enviAng = 0;} \
else {now.enviAng = ((int)(2*enviA)) - ((int)enviA);} \
enviD = ((int)(2*enviD)) - ((int)enviD); \
/*Don't want to wrap from a wrap.*/ \
if ((enviD>=200) && (now.doWrap==0)) { enviD = 200;  now.doWrap=1;} \
now.enviDist = (int)enviD; \
} \

};

#define MOVE_ROBOT() c_code { \
/*Setting the roboA and the moveDist before MOVE_FORWARD() is called*/\

roboA = (double) now.roboAng; \
moveDist = ROBOMOVE; \
MOVE_FORWARD(); \

};

#define GET_OB_REL_TO_ROBOT() {\
/*Declare Locals*/ \
long double oZ = 0; \
long double nZ = 0; \
long double fZ = 0; \
long double lOrg = 0; \
long double hOrg = 0; \
long double lNew = 0; \
long double hNew = 0; \
long double lFin = 0; \
long double hFin = 0; \
int furtherRight = 0; \
int furtherUp = 0; \
double roboED = 0; \
double roboEA = 0; \
double roboFarAntiClock = 0; \
double relAN = 0; \

\
roboA = (double) now.roboAng; \
roboED = (double)enviD; \
roboEA = (double)enviA; \
obD = (double)obDist; \
obA = (double)obAng; \
oZ = ((int)roboEA)%90; \
if ((roboEA == 90) || (roboEA ==270)) {lOrg = roboED; hOrg = 0; } \
else if ((roboEA == 0) || (roboEA == 180)) {lOrg = 0; hOrg = roboED; } \
else { \

if ((roboEA <=90) || ((roboEA >=180)&&(roboEA<=270))) { \
lOrg = (sin(oZ*DEG))*roboED; \
hOrg = (cos(oZ*DEG))*roboED; \

} else { \
hOrg = (sin(oZ*DEG))*roboED; \
lOrg = (cos(oZ*DEG))*roboED; \

} \
} \
nZ = ((int)obA)%90; \
if ((obA == 90) || (obA ==270)) {lNew = obD; hNew = 0; } \
else if ((obA == 0) || (obA == 180)) {lNew = 0; hNew = obD; } \
else { \

if ((obA<90) || ((obA>180)&&(obA<270))) { \
lNew = (sin(nZ*DEG))*obD; \
hNew = (cos(nZ*DEG))*obD; \

} else { \
hNew = (sin(nZ*DEG))*obD; \
lNew = (cos(nZ*DEG))*obD; \

} \
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} \
if ((roboEA<180)&&(obA>180) || (roboEA>180)&&(obA<180)) { lFin = lOrg + lNew;} \
else { lFin = fabs(lOrg - lNew);} \
if ( (((roboEA<90)||(roboEA>270))&&((obA>90)&&(obA<270))) || \
(((roboEA>90)&&(roboEA<270))&&((obA<90)||(obA>270))) ) { \

hFin = hOrg + hNew; \
} else { hFin = fabs(hOrg - hNew);} \
fZ = (atan(hFin/lFin)*(180/PI)); \
if ((roboEA<=180)&&(obA<=180)) { if (lOrg > lNew) { furtherRight = 1;} else { furtherRight = 

0;}} \
else if ((roboEA>=180)&&(obA>=180)) { if (lOrg > lNew) { furtherRight = 0;} else 

{ furtherRight = 1;}} \
else if ((roboEA>180)&&(obA<180)) { furtherRight = 0;} \
else if ((roboEA<180)&&(obA>180)) { furtherRight = 1;} \
else {furtherRight = 0; furtherUp = 0;} \
if (((roboEA<=90)||(roboEA>=270))&&((obA<=90)||(obA>=270))){ if(hOrg > hNew) { furtherUp=1;} 

else { furtherUp=0;}} \
else if (((roboEA>=90)&&(roboEA<=270))&&((obA>=90)&&(obA<=270))) { if(hOrg>hNew) 

{ furtherUp=0;} else { furtherUp=1;}} \
else if (((roboEA<=90)||(roboEA>=270)) && ((obA>=90)&&(obA<=270))) { furtherUp = 1;} \
else if (((roboEA>=90)&&(roboEA<=270)) && ((obA<=90)||(obA>=270))) { furtherUp = 0;} \
if ((furtherRight==1) && (furtherUp==1)) { relAN = 270 - fZ;} \
else if ((furtherRight==1) && (furtherUp==0)) { relAN = 270 + fZ;} \
else if ((furtherRight==0) && (furtherUp==1)) { relAN = 90 + fZ;} \
else if ((furtherRight==0) && (furtherUp==0)) { relAN = 90 - fZ;} \
roboFarAntiClock = ((((int)roboA) - 40)+360)%360; \
relAN = ((int)(2*relAN)) - ((int)relAN); \
relA = (((int)(relAN - roboFarAntiClock))+360)%360; \
relD = sqrt((hFin*hFin) + (lFin*lFin)); \
if ((relA <= 80)&&(relD <= 90)) { inCone = 1;} \
else { inCone = 0;} \
now.relDist = ((int)(2*relD)) - ((int)relD); \

};

#define RESPOND() c_code { \
prevX = x; \
now.prevSig = now.sig; \
if (inCone==1) { \

RESPOND_TO_OB_BY_TURNING(); \
now.sig = (int)(fabs(x)); \

} else { \
/*If not inCone then we need to reset the signals*/ \

x = 0; \
now.sig = 0; \

} \
}; \

#define RESPOND_TO_OB_BY_TURNING() { \
/*Declare Locals*/ \
double theta = 0; \
double opp = 0; \
double adj = 0; \
double sAdj = 0; \
double sHyp = 0; \
int i = 0; \
signed int flag = 0; \
double contactPoint = 0; \
double oAMAX = 0; \
double lowR = 0; \
double highR = 0; \
double dOmegaD = 0; \

\
roboA = (double)now.roboAng; \
dOmegaD = (double)now.omegaD; \
oAMAX = (atan((OBRAD/relD)))*(180/PI); \
lowR = (relA - oAMAX); \
if (lowR < 0) { lowR = 0;} \
highR = (relA + oAMAX); \
if (highR > 80) { highR = 80;} \
if ( (AAL >= lowR) & (AAL <= highR) ) { theta = fabs(AAL - relA); flag = 1;} \
else if ( (AAR >= lowR) & (AAR <= highR) ) { theta = fabs(AAR - relA); flag = -1;} \
else {flag = 0;} \
opp = relD*(sin(theta*(PI/180)));\
if ((flag != 0 ) && (opp <= OBRAD)) { \
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adj = sqrt((relD*relD) - (opp*opp)); \
if (adj <= 80) { \

for (i=0; i<=10; i++) { \
sAdj = OBRAD - i; \
sHyp = sqrt((sAdj*sAdj) + (opp*opp));  \
if ((sHyp != 0) & (sHyp <= OBRAD)) { \

contactPoint = adj - sAdj; \
x = (flag)*(ADIST - ( ( contactPoint-(((int)contactPoint)%10) 

)/10 )); \
x = ((int)(2*x)) - ((int)x); \
break; \

} \
} \

} \
else { x = 0;} \

} \
else { x = 0;} \
if ((x == 0) && (now.relDist <= 30)) { /*This is a crash*/ CRASH();} \
else if (fabs(x) > 5) { roboA = (((int)(roboA + (x*OMEGAP)))+360)%360; LEARN_NOW();} \
else { roboA = (((int)(roboA + (x*dOmegaD)))+360)%360;} \
if (roboA>=360) { roboA=0;} \
now.roboAng = (int)roboA; \

};

#define LEARN_NOW() { \
if ( (prevX>=(-5)) && (prevX<=5) && (prevX!=0) ) { \

now.omegaD = now.omegaD + LAMBDA;\
} \

};

#define CRASH() { \
/*Declare Locals*/ \
double oZ = 0; \
double oOpp = 0; \
double oAdj = 0; \
double oHyp = 0; \
double nZ = 0; \
double nOpp = 0; \
double nAdj = 0; \

\
/*If we crash with no proximal impact --We are inCone*/ \
if ((relA==40) && (relD==30)) { \

now.headOn = 1; /*Fixed Angle is 9.825648155*/ \
} else if ((relA>=30)&&(relA<40)) { \

oZ = relA - 11; \
oHyp = 30; \
oOpp = sin(oZ*DEG)*oHyp; \
oAdj = sqrt((oHyp*oHyp)-(oOpp*oOpp)); \
nOpp = oOpp - OBRAD; \
nAdj = oAdj; \
nZ = (atan(nOpp/nAdj))*(180/PI); \
x = 6; \
roboA = ((int)(roboA + (x*OMEGAP) + nZ))%360; \

} else if ((relA<=50)&&(relA>40)) { \
oZ = (relA - 40) - 11; \
oHyp = 30; \
oOpp = sin(oZ*DEG)*oHyp; \
oAdj = sqrt((oHyp*oHyp)-(oOpp*oOpp)); \
nOpp = oOpp - OBRAD; \
nAdj = oAdj; \
nZ = (atan(nOpp/nAdj))*(180/PI); \
x = (-6); \
roboA = (((int)(roboA + (x*OMEGAP) - nZ))+360)%360; \

} \
now.roboAng = ((int)(2*roboA)) - ((int)roboA); \

};

#define WRAP() c_code { \
/*Declare Locals*/ \
int l = 0; \
long double orgEnviA = 0; \
long double orgEnviD = 0; \
int oppAng = 0; \

\
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roboA = (double)now.roboAng; /*We don't want to change roboAng.*/ \
moveDist = ENVIDIAM; \
oppAng = ((int)(roboA+180))%360; \
roboA = oppAng; /*for MF function.*/ \
orgEnviA = enviA; \
orgEnviD = enviD; \

\
MOVE_FORWARD(); \
for (l=399; l--; l>=0) { \
\

if (enviD > 200) { \
/*Reset the envi Values.*/ \

enviA = orgEnviA; \
enviD = orgEnviD; \
moveDist = l; \
MOVE_FORWARD(); \

} else {break;} \
} \
roboA = (double)now.roboAng; /*Reset the roboAng.*/ \
now.doWrap = 0; \

};

#define TRIVIAL_WRAP() c_code { \
now.enviAng = (now.enviAng + 180)%360; \
now.enviDist = 200; \
enviA = ((int)(2*enviA)) - ((int)enviA); \
enviA = ((int)enviA + 180)%360; \
enviD = 200; \
now.doWrap = 0; \

};

#define SCAN_APPROACHING_OBS() c_code { \
/*Declare Locals*/ \
int j = 0; \
inCone = 0; \
for (j=0; j<OBMAX; j++) { \

obDist = now.arrObs[j].d; \
obAng = now.arrObs[j].a; \
GET_OB_REL_TO_ROBOT(); \
if (inCone==1) {break;} \

} \
};

inline HEAD_ON() { 
/*Promela inline to add nondeterminism. Either we go right or we go left.*/

if
:: (headOn == 1) -> c_code{ Printf("HEADON1 \n"); 

x = 6;
now.sig = 6;
roboA = ((roboA+360)+ (x*OMEGAP) + CRASHANGFROMCENTRE); 
roboA = ((int)(2*roboA)) - ((int)roboA); 
roboA = ((int)roboA)%360; };

:: (headOn == 1) -> c_code{ Printf("HEADON2 \n");
x = (-6); 
now.sig = (-6);
roboA = ((roboA+360) - (6*OMEGAP) - CRASHANGFROMCENTRE); 
roboA = ((int)(2*roboA)) - ((int)roboA); 
roboA = ((int)roboA)%360; };

fi;
/*Now we assign the new value.*/
c_code{ now.roboAng = ((int)(2*roboA)) - ((int)roboA); }; 
headOn = 0;

};
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C.2 Explicit model

/*Explicit Model: Using Functions (Macros)*/

c_decl { #include <math.h> } 
#include "expInlineMacros.h"
#define OBMAX 4

/*Define a polar coordinate to be a distance and angle from origin (pole)*/
/*(Pole: centre of the environment. Polar axis: vertical line directed north.)*/
typedef polarCoord {int d; int a}; 

/*Setting the C_Track variables*/
c_track"&x" "sizeof(double)"
c_track "&prevX" "sizeof(double)"

c_track "&roboA" "sizeof(double)"
c_track "&enviD" "sizeof(long double)"
c_track "&enviA" "sizeof(long double)"

c_track "&obD" "sizeof(double)"
c_track "&obA" "sizeof(double)"
c_track "&relD" "sizeof(double)"
c_track "&relA" "sizeof(double)"

c_track "&obDist" "sizeof(int)"
c_track "&obAng" "sizeof(int)"
c_track "&moveDist" "sizeof(int)"
c_track "&inCone" "sizeof(int)"

/*Array of obstacles in the fixed environment*/
polarCoord arrObs[OBMAX]; 

/*Robot is initiated in the centre of the environment*/
int roboAng;
int enviDist; 
int enviAng ; 
int omegaD;
int sig; 
int prevSig;
byte doWrap; 
byte headOn;
int relDist;
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proctype robot() {
do
:: (doWrap==0) -> d_step{ SCAN_APPROACHING_OBS(); 

RESPOND(); 
MOVE_ROBOT();
HEAD_ON();

}; 
:: (doWrap==1) -> d_step{ WRAP();

}; 
od;

};

init {
d_step{ 

/* Set up the polar coordinates of the obstacles - fixed for model */
/*(This setup will be automated with a C function.)*/
arrObs[0].d = 122; arrObs[0].a = 350; 
arrObs[1].d = 121; arrObs[1].a = 69; 
arrObs[2].d = 121; arrObs[2].a = 149; 
arrObs[3].d = 121; arrObs[3].a = 229;

roboAng = 0;
enviDist = 0;
enviAng = 0; 
omegaD = 0; 
doWrap = 0; 
sig = 0;
prevSig = 0;
headOn = 0;
relDist = 200;

c_code{ 
roboA = 0; 
enviA = 0;
enviD = 0;

};
};
atomic{ run robot();};

};
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C.3 Relative model Inline and Macros

c_code { 
#define PI 3.14159265 
#define ROBORAD 20 
#define OBRAD 10 
#define AAL 11
#define AAR 69 
#define ADIST 8 
#define SENLEN 80
#define LAMBDA 1
#define OMEGAP 15
double obD, obA, theta, opp, adj, sAdj, hyp, sHyp, x,
 prevX, dOmegaD, oAMAX, lowR, highR, contactPoint = 0;
int i, testDec  = 0; 
signed int flag = 0;

};

#define MOVE_FORWARD() c_code { \
obD = (double) now.obDist; \
obA = (double) now.obAng; \
theta = fabs(obA - 40);  \
adj = ( obD*cos(theta*(PI/180)) ); \
opp = sqrt( (obD*obD) - (adj*adj) ); \
adj = (adj - 1); \
obD = sqrt( (opp*opp) + (adj*adj) ); \
theta = (atan(opp/adj))*(180/PI); \
if (obA < 40) { obA = 40 - theta; } \
else { obA = 40 + theta; } \
if ((obA < 0) | (obA >= 80)){ obA = 0; obD = 90; now.freeSpace = 1;} \
now.obDist = ((int)(2*obD)) - ((int)obD); \
now.obAng = ((int)(2*obA)) - ((int)obA); \

};

#define RESPOND_TO_OB_BY_TURNING() c_code { \
obD = (double)now.obDist; \
obA = (double)now.obAng; \
dOmegaD = (double)now.omegaD; \
oAMAX = (atan((OBRAD/obD)))*(180/PI); \
lowR = (obA - oAMAX); \
if (lowR < 0) { lowR = 0;} \
highR = (obA + oAMAX); \
if (highR > 80) { highR = 80;} \
if ( (AAL >= lowR) & (AAL <= highR) ) { theta = fabs(AAL - obA); flag = -1;} \
else if ( (AAR >= lowR) & (AAR <= highR) ) { theta = fabs(AAR - obA); flag = 1;} \
else {flag = 0;} \
opp = obD*(sin(theta*(PI/180)));\
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if ((flag != 0 ) && (opp <= OBRAD)) { \
adj = sqrt((obD*obD) - (opp*opp)); \
if (adj <= 80) { \

for (i=0; i<=10; i++) { \
sAdj = OBRAD - i; \
sHyp = sqrt((sAdj*sAdj) + (opp*opp));  \
if ((sHyp != 0) & (sHyp <= OBRAD)) { \

contactPoint = adj - sAdj; \
x = (flag)*(ADIST - ( ( contactPoint-(((int)contactPoint)%10) 

)/10 )); \
x = ((int)(2*x)) - ((int)x); \
break; \

} \
} \

} \
else { x = 0;} \

} \
else { x = 0;} \
if (fabs(x) > 5) { \

obA = obA + (x*OMEGAP); \
now.pLearn = 1; \

} \
else { obA = obA + (x*dOmegaD);} \
if ((obA < 0) | (obA >= 80)) { now.freeSpace = 1;} \
else { now.obAng = ((int)(2*obA)) - ((int)obA);} \
now.sig = (int)(fabs(x)); \

};

#define LEARN() c_code { \
if ((now.pLearn == 1) && (fabs(prevX) > 0) && (fabs(prevX) <= 5)) { \

now.omegaD = now.omegaD + LAMBDA; \
now.freeSpace = 1; \

} \
now.pLearn = 0; \
prevX = fabs(x); \
now.prevSig = (int)(fabs(prevX)); \

};

inline GENERATE_NEW_OB()  { 
obDist = 90; 
freeSpace = 0; 
c_code { 

x=0; 
prevX = 0;

};

do
:: atomic { obDist = 90; obAng=1;}; break;
:: atomic { obDist = 90; obAng=2;}; break;
:: atomic { obDist = 90; obAng=3;}; break; 
:: atomic { obDist = 90; obAng=4;}; break;
:: atomic { obDist = 90; obAng=5;}; break;
:: atomic { obDist = 90; obAng=6;}; break;
:: atomic { obDist = 90; obAng=7;}; break;
:: atomic { obDist = 90; obAng=8;}; break;
:: atomic { obDist = 90; obAng=9;}; break;
:: atomic { obDist = 90; obAng=10;}; break;
:: atomic { obDist = 90; obAng=11;}; break;
:: atomic { obDist = 90; obAng=12;}; break;
:: atomic { obDist = 90; obAng=13;}; break;
:: atomic { obDist = 90; obAng=14;}; break;
:: atomic { obDist = 90; obAng=15;}; break;
:: atomic { obDist = 90; obAng=16;}; break;
:: atomic { obDist = 90; obAng=17;}; break;
:: atomic { obDist = 90; obAng=18;}; break;
:: atomic { obDist = 90; obAng=19;}; break; 
:: atomic { obDist = 90; obAng=20;}; break; 
:: atomic { obDist = 90; obAng=21;}; break; 
:: atomic { obDist = 90; obAng=22;}; break; 
:: atomic { obDist = 90; obAng=23;}; break;  
:: atomic { obDist = 90; obAng=24;}; break;  
:: atomic { obDist = 90; obAng=25;}; break; 
:: atomic { obDist = 90; obAng=26;}; break; 
:: atomic { obDist = 90; obAng=27;}; break; 
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:: atomic { obDist = 90; obAng=28;}; break; 
:: atomic { obDist = 90; obAng=29;}; break; 
:: atomic { obDist = 90; obAng=30;}; break; 
:: atomic { obDist = 90; obAng=31;}; break; 
:: atomic { obDist = 90; obAng=32;}; break; 
:: atomic { obDist = 90; obAng=33;}; break; 
:: atomic { obDist = 90; obAng=34;}; break; 
:: atomic { obDist = 90; obAng=35;}; break; 
:: atomic { obDist = 90; obAng=36;}; break; 
:: atomic { obDist = 90; obAng=37;}; break; 
:: atomic { obDist = 90; obAng=38;}; break; 
:: atomic { obDist = 90; obAng=39;}; break; 
:: atomic { obDist = 90; obAng=40;}; break; 
:: atomic { obDist = 90; obAng=41;}; break; 
:: atomic { obDist = 90; obAng=42;}; break; 
:: atomic { obDist = 90; obAng=43;}; break; 
:: atomic { obDist = 90; obAng=44;}; break; 
:: atomic { obDist = 90; obAng=45;}; break; 
:: atomic { obDist = 90; obAng=46;}; break; 
:: atomic { obDist = 90; obAng=47;}; break; 
:: atomic { obDist = 90; obAng=48;}; break; 
:: atomic { obDist = 90; obAng=49;}; break; 
:: atomic { obDist = 90; obAng=50;}; break; 
:: atomic { obDist = 90; obAng=51;}; break; 
:: atomic { obDist = 90; obAng=52;}; break; 
:: atomic { obDist = 90; obAng=53;}; break; 
:: atomic { obDist = 90; obAng=54;}; break; 
:: atomic { obDist = 90; obAng=55;}; break; 
:: atomic { obDist = 90; obAng=56;}; break; 
:: atomic { obDist = 90; obAng=57;}; break; 
:: atomic { obDist = 90; obAng=58;}; break; 
:: atomic { obDist = 90; obAng=59;}; break; 
:: atomic { obDist = 90; obAng=60;}; break; 
:: atomic { obDist = 90; obAng=61;}; break;
:: atomic { obDist = 90; obAng=62;}; break;
:: atomic { obDist = 90; obAng=63;}; break; 
:: atomic { obDist = 90; obAng=64;}; break;
:: atomic { obDist = 90; obAng=65;}; break;
:: atomic { obDist = 90; obAng=66;}; break;
:: atomic { obDist = 90; obAng=67;}; break;
:: atomic { obDist = 90; obAng=68;}; break;
:: atomic { obDist = 90; obAng=69;}; break;
:: atomic { obDist = 90; obAng=70;}; break;
:: atomic { obDist = 90; obAng=71;}; break;
:: atomic { obDist = 90; obAng=72;}; break;
:: atomic { obDist = 90; obAng=73;}; break;
:: atomic { obDist = 90; obAng=74;}; break;
:: atomic { obDist = 90; obAng=75;}; break;
:: atomic { obDist = 90; obAng=76;}; break;
:: atomic { obDist = 90; obAng=77;}; break;
:: atomic { obDist = 90; obAng=78;}; break;
:: atomic { obDist = 90; obAng=79;}; break;
:: atomic { obDist = 90; obAng=80;}; break;
:: atomic { freeSpace = 1;};         break;
od;

};
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C.4 Relative model

/*Relative Model: Using Functions (Macros)*/

c_decl { #include <math.h> } 
#include "relInlineMacros.h" 

int obDist = 90; 
int obAng = 11; 
int omegaD = 0; 
byte freeSpace = 1; 
byte pLearn = 0;
int prevSig = 0;
int sig = 0;

/*Setting the C_Track variables*/
c_track "&x" "sizeof(double)"
c_track "&prevX" "sizeof(double)"
c_track "&obD" "sizeof(double)"
c_track "&obA" "sizeof(double)"
c_track "&dOmegaD" "sizeof(double)"

active proctype moving()
{

do 
:: ((obDist > 30) && (freeSpace == 0)) -> d_step{RESPOND_TO_OB_BY_TURNING();}; 

  d_step{MOVE_FORWARD(); LEARN();};
:: ((obDist <= 30) || (freeSpace == 1)) -> atomic{GENERATE_NEW_OB();}; 
od;

}
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Appendix D

Basic auto-generation code

Here, we include some additional code based on our ideas for future work. The

shape generation code is used for drawing obstacles and the robot. The line gen-

eration code is used for drawing sensor and boundaries.

D.1 Gnuplot shape generation H code

#define PI 3.14159265
#define DEG 0.01745329
#define OBMINDIST 155
#define OBMINDIST 155

typedef struct {
int d; /*Distance*/
int a; /*Angle*/

} coord_t;
/*Array of the Obstacles*/
coord_t arrObs[4];

coord_t setCoord(int dist, int angle) {
coord_t rtn;
rtn.d = dist;
rtn.a = angle;
return rtn;

}

coord_t genOb(coord_t otherOb, int angFrom) {

double roboA, enviD, enviA = 0;
double oZ, nZ, fZ, lOrg, hOrg, lNew, hNew, lFin, hFin = 0;
int oFR, oFU, nFR, nFU = 0;
int i = 1; 

coord_t rtnOb;
rtnOb.a = 0;
rtnOb.d = 0;

/*Variables for the C code calculations (convert back to "int"s at the end)*/ 
roboA = (double) angFrom; /*Angle ob is to previous one*/
enviD = (double) otherOb.d;
enviA = (double) otherOb.a;

/*Triangle Original*/
oZ = ((int)enviA)%90;
if ((enviA == 90) || (enviA ==270)) {lOrg = enviD; hOrg = 0; }
else if ((enviA == 180) || (enviA == 0)) {lOrg = 0; hOrg = enviD; }
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else {
if ((enviA <=90) || ((enviA >=180)&&(enviA<=270))) {

lOrg = (sin(oZ*DEG))*enviD;
hOrg = (cos(oZ*DEG))*enviD;

} else {
hOrg = (sin(oZ*DEG))*enviD;
lOrg = (cos(oZ*DEG))*enviD;

}
}
/*Triangle New*/
nZ = ((int)roboA)%90; 
if ((roboA == 90) || (roboA ==270)) {lNew = OBMINDIST; hNew = 0; }
else if ((roboA == 180) || (roboA == 0)) {lNew = 0; hNew = OBMINDIST; }
else {

if ((roboA <=90) || ((roboA >=180)&&(roboA<=270))) {
lNew = (sin(nZ*DEG))*OBMINDIST;
hNew = (cos(nZ*DEG))*OBMINDIST;

} else {
hNew = (sin(nZ*DEG))*OBMINDIST;
lNew = (cos(nZ*DEG))*OBMINDIST;

}
}
/*Triangle Final*/
if ((enviA<180)&&(roboA>180) || (enviA>180)&&(roboA<180)) { lFin = fabs(lOrg - lNew);}
else { lFin = lOrg + lNew;}

if ( (((enviA<90)||(enviA>270))&&((roboA>90)&&(roboA<270))) || 
(((enviA>90)&&(enviA<270))&&((roboA<90)||(roboA>270))) ) { 

hFin = fabs(hOrg - hNew);
} else { hFin = hOrg + hNew; }

if ((hFin!=0)&&(lFin!=0)) { fZ = (atan(hFin/lFin)*(180/PI)); }
else { fZ = 0;}

/*The new enviDist for the robot's new position*/
enviD = sqrt((lFin*lFin)+(hFin*hFin));

/*Set up original Quadrant*/
if ((enviA >=0) && (enviA <90))  { oFR = 1; oFU = 1;}
else if ((enviA >= 90) && (enviA <180))  { oFR = 1; oFU = 0;}
else if ((enviA >= 180) && (enviA <270)) { oFR = 0; oFU = 0;}
else if ((enviA >= 270) && (enviA <360)) { oFR = 0; oFU = 1;}

/*Assign default values incare we do not leave the current quadrant.*/
nFR = oFR; nFU = oFU;
/*Test to find the New quadrant that the FINAL coord is in.*/
if ((oFR==1) && (oFU==1)) { 

if ((roboA>=180) && (roboA<360) && (lNew > lOrg)) { nFR = 0;}
if ((roboA>=90) && (roboA<270) && (hNew > hOrg))  { nFU = 0;}

}
else if ((oFR==1) && (oFU==0)) { 

if ((roboA>=180) && (roboA<360) && (lNew > lOrg)) { nFR = 0;}
if ( (((roboA>=270)&&(roboA<360))||((roboA>=0)&&(roboA<90))) && (hNew > hOrg)) { nFU = 

1;}
}
else if ((oFR==0) && (oFU==0)) { 

if ((roboA>=0) && (roboA<180) && (lNew > lOrg))   { nFR = 1;}
if ( (((roboA>=270)&&(roboA<360))||((roboA>=0)&&(roboA<90))) && (hNew > hOrg)) { nFU = 

1;}
}
else if ((oFR==0) && (oFU==1)) { 

if ((roboA>=0) && (roboA<180) && (lNew > lOrg))   { nFR = 1;}
if ((roboA>=90) && (roboA<270) && (hNew > hOrg))  { nFU = 0;}

}

/*Calc new enviA based on which quadrant that fZ is measured in. (fZ = atan(hFin/lFin).)*/
if (roboA==enviA) { enviA = roboA;} /*Then angle doesn't change.*/
else if ((nFR==1)&&(nFU==1)) { enviA = 90 - fZ;}
else if ((nFR==1)&&(nFU==0)) { enviA = 90 + fZ;}
else if ((nFR==0)&&(nFU==0)) { enviA = 270 - fZ;}
else if ((nFR==0)&&(nFU==1)) { enviA = 270 + fZ;}

/*x.5 and less, rounds down. Over this rounds up. 
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The rounding is neccessary because casting rounds down no matter what.*/
rtnOb.d = ((int)(2*enviD)) - ((int)enviD);
rtnOb.a = ((int)(2*enviA)) - ((int)enviA);

return rtnOb;
}
int testDist(coord_t thisOb, coord_t thatOb) {

/*(enviDist, enviAng) are the coordinates of the Robot*/ 
double roboEA, roboED, enviD, enviA, relD = 0;
double oZ, nZ, fZ, lOrg, hOrg, lNew, hNew, lFin, hFin, fHyp, obD, obA = 0;
int relDist = 0;

/*Variables for the C code calculations (convert back to "int"s at the end)*/ 
roboED = (double) thisOb.d; 
roboEA = (double) thisOb.a; 
obD = (double) thatOb.d; 
obA = (double) thatOb.a; 

/*Original Robot Triangle with Origin (Org)*/
oZ = ((int)roboEA)%90;
if ((roboEA == 90) || (roboEA ==270)) {lOrg = roboED; hOrg = 0; }
else if ((roboEA == 0) || (roboEA == 180)) {lOrg = 0; hOrg = roboED; }
else {

if ((roboEA <=90) || ((roboEA >=180)&&(roboEA<=270))) {
lOrg = (sin(oZ*DEG))*roboED;
hOrg = (cos(oZ*DEG))*roboED;

} else {
hOrg = (sin(oZ*DEG))*roboED;
lOrg = (cos(oZ*DEG))*roboED;

}
}

/*New Obstacle Triangle with Origin (New)*/
nZ = ((int)obA)%90; 
if ((obA == 90) || (obA ==270)) {lNew = obD; hNew = 0; }
else if ((obA == 0) || (obA == 180)) {lNew = 0; hNew = obD; }
else {

if ((obA<90) || ((obA>180)&&(obA<270))) {
lNew = (sin(nZ*DEG))*obD;
hNew = (cos(nZ*DEG))*obD;

} else {
hNew = (sin(nZ*DEG))*obD;
lNew = (cos(nZ*DEG))*obD;

}
}

/*Final Distance Triangle between Robot and Obstacle (Final)*/
if ((roboEA<180)&&(obA>180) || (roboEA>180)&&(obA<180)) { lFin = fabs(lOrg + lNew);}
else { lFin = lOrg - lNew;}

if ( (((roboEA<90)||(roboEA>270))&&((obA>90)&&(obA<270))) || 
(((roboEA>90)&&(roboEA<270))&&((obA<90)||(obA>270))) ) { 

hFin = fabs(hOrg + hNew);
} else { hFin = hOrg - hNew; }

/*The relDistance between the two coordinates*/
relD = sqrt((lFin*lFin)+(hFin*hFin));
relDist = ((int)(2*relD)) - ((int)relD); 

return relDist;
}
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D.2 Gnuplot shape generation C code

#include <math.h>
#include <stdio.h> 
#include "obGenFunctions1.h"

int main() {
FILE *fp;
fp = fopen("polarObEnviObCoords.dat", "w");

/*Init Ob values*/
int enviDist = 100;
int enviAng = 175;
int j = 0;
int first = 1;

int debug = 0;

coord_t thisObPoint;
coord_t prevObPoint;
coord_t centreOfOb;
centreOfOb = setCoord(enviDist, enviAng);
prevObPoint = setCoord(0,0);
thisObPoint = setCoord(0,0);

for (j=0; j<360; j++) {

thisObPoint = genOb(centreOfOb, j, 10);

/*Angle comes first with GNUPLOT.*/
if ( (first == 1) || ( (prevObPoint.d != thisObPoint.d) || 
(prevObPoint.a != thisObPoint.a) )  ) {

fprintf(fp, "%d %d\n", thisObPoint.a, thisObPoint.d);
prevObPoint = setCoord(thisObPoint.d,thisObPoint.a);
first = 0;

}
}

fclose(fp);
return 0;

}
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D.3 Gnuplot line generation C code

#include <math.h>
#include <stdio.h> 
#include "obGenFunctions.h"

int main() {

FILE *fp;
fp = fopen("polarRoboSensor.dat", "w");

/*Init Ob values*/
int enviDist = 160;
int enviAng = 210;
int roboFacingAng = 90;
int aRAng = 0;
int j = 0;
int first = 1;

int debug = 0;

coord_t thisObPoint;
coord_t prevObPoint;
coord_t centreOfOb;
centreOfOb = setCoord(enviDist, enviAng);
prevObPoint = setCoord(0,0);
thisObPoint = setCoord(0,0);

aRAng = ((roboFacingAng +360) -30)%360;

for (j=1; j<61; j++) {

thisObPoint = genOb(centreOfOb, aRAng, (20+j));

/*Angle comes first with GNUPLOT.*/
if ( (first == 1) || ( (prevObPoint.d != thisObPoint.d) || 
(prevObPoint.a != thisObPoint.a) )  ) {

fprintf(fp, "%d %d\n", thisObPoint.a, thisObPoint.d);
prevObPoint = setCoord(thisObPoint.d,thisObPoint.a);
first = 0;

}
}

fclose(fp);
return 0;

}

209



D.4 Gnuplot drawing script

reset 

#GNUPLOT setup
set term postscript eps enhanced
set polar 
set grid polar
set angles degrees 
unset key
set size square
set xrange [-200:200]
set yrange [-200:200]
set output "wrapExample.eps"
set xtics 100
set ytics 100

set size 1,1
set multiplot 

#ENVIRONMENT EXAMPLE PLOT
set size 0.5,0.5
set origin 0.0,0.5
set title "EXAMPLE: small"

plot "./autoGeneratedObstacleAndRobotINPUT1.dat" with lines lw 3 lt 1 lc rgb "black", 
     "./autoGeneratedSensorINPUT1.dat" with lines lw 3 lt 1 lc rgb "blue", 
     "./autoGeneratedSensorINPUT2.dat" with lines lw 3 lt 1 lc rgb "blue"

unset multiplot
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D.5 Obstacle auto-generation C code

#include <math.h>
#include <stdio.h> 
#define PI 3.14159265
#define DEG 0.01745329
#define OBMINDIST 155

int main() {
FILE *fp;
fp = fopen("ValidEnviObCoords.txt", "w");
int debug = 1;

/*INPUTS*/
/*(enviD, enviA) are the coordinates of the Robot*/ 
double roboA, enviD, enviA = 0;
double oZ, nZ, fZ, lOrg, hOrg, lNew, hNew, lFin, hFin = 0;
int furtherRight, furtherUp, oFR, oFU, nFR, nFU = 0;

/*Variables from Promela ("now." prefix required)*/
int roboAng = 142; /*Angle ob is to previous one*/
int enviDist = 199;
int enviAng = 96;
int i = 0;
/*Variables for the C code calculations (convert back to "int"s at the end)*/ 
roboA = (double) roboAng;
enviD = (double) enviDist;
enviA = (double) enviAng;

/*First line of obstacles.*/
fprintf(fp, "arrObs[%d].d = %d; arrObs[%d].a = %d; \n", i, enviDist, i, enviAng);

for (i=1; i<20; i++) {

/*Triangle Original*/
oZ = ((int)enviA)%90;
if ((enviA == 90) || (enviA ==270)) {lOrg = enviD; hOrg = 0; }
else if ((enviA == 0) || (enviA == 180)) {lOrg = 0; hOrg = enviD; }
else {

if ((enviA <=90) || ((enviA >=180)&&(enviA<=270))) {
lOrg = (sin(oZ*DEG))*enviD;
hOrg = (cos(oZ*DEG))*enviD;

} else {
hOrg = (sin(oZ*DEG))*enviD;
lOrg = (cos(oZ*DEG))*enviD;

}
}

/*Triangle New*/
/*Changed around h and l as I suspect they're wrong. CHECK CONVERSION FUNCTION.*/
nZ = ((int)roboA)%90; 
if ((roboA == 90) || (roboA ==270)) {lNew = OBMINDIST; hNew = 0; }
else if ((roboA == 0) || (roboA == 180)) {lNew = 0; hNew = OBMINDIST; }
else {

if ((roboA<90) || ((roboA>180)&&(roboA<270))) {
lNew = (sin(nZ*DEG))*OBMINDIST;
hNew = (cos(nZ*DEG))*OBMINDIST;

} else {
hNew = (sin(nZ*DEG))*OBMINDIST;
lNew = (cos(nZ*DEG))*OBMINDIST;

}
}

/*Triangle Final*/
if ((enviA<180)&&(roboA>180) || (enviA>180)&&(roboA<180)) { lFin = fabs(lOrg - lNew);}

 else { lFin = lOrg + lNew;}

if ( (((enviA<90)||(enviA>270))&&((roboA>90)&&(roboA<270))) || 
(((enviA>90)&&(enviA<270))&&((roboA<90)||(roboA>270))) ) { 

hFin = fabs(hOrg - hNew);
} else { hFin = hOrg + hNew; }

/**/
if ((hFin!=0)&&(lFin!=0)) { fZ = (atan(hFin/lFin)*(180/PI)); }
else { fZ = 0;}
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/*The new enviDist for the robot's new position*/
enviD = sqrt((lFin*lFin)+(hFin*hFin));

/*Set up original Quadrant*/
if ((enviA >=0) && (enviA <90))  { oFR = 1; oFU = 1;}
else if ((enviA >= 90) && (enviA <180))  { oFR = 1; oFU = 0;}
else if ((enviA >= 180) && (enviA <270)) { oFR = 0; oFU = 0;}
else if ((enviA >= 270) && (enviA <360)) { oFR = 0; oFU = 1;}

/*Assign default values incare we do not leave the current quadrant.*/
nFR = oFR; nFU = oFU;
/*Test to find the New quadrant that the FINAL coord is in.*/
if ((oFR==1) && (oFU==1)) { 

if ((roboA>=180) && (roboA<360) && (lNew > lOrg)) { nFR = 0;}
if ((roboA>=90) && (roboA<270) && (hNew > hOrg))  { nFU = 0;}

}
else if ((oFR==1) && (oFU==0)) { 

if ((roboA>=180) && (roboA<360) && (lNew > lOrg)) { nFR = 0;}
if ( (((roboA>=270)&&(roboA<360))||((roboA>=0)&&(roboA<90))) && (hNew > hOrg)) 

{ nFU = 1;}
}
else if ((oFR==0) && (oFU==0)) { 

if ((roboA>=0) && (roboA<180) && (lNew > lOrg))   { nFR = 1;}
if ( (((roboA>=270)&&(roboA<360))||((roboA>=0)&&(roboA<90))) && (hNew > hOrg)) 

{ nFU = 1;}
}
else if ((oFR==0) && (oFU==1)) { 

if ((roboA>=0) && (roboA<180) && (lNew > lOrg))   { nFR = 1;}
if ((roboA>=90) && (roboA<270) && (hNew > hOrg))  { nFU = 0;}

}

/*Calc new enviA based on which quadrant that fZ is measured in. (fZ = atan(hFin/
lFin).)*/

if (roboA==enviA) { enviA = roboA;} /*Then angle doesn't change.*/
else if ((nFR==1)&&(nFU==1))      { enviA = 90 - fZ;}
else if ((nFR==1)&&(nFU==0)) { enviA = 90 + fZ;}
else if ((nFR==0)&&(nFU==0)) { enviA = 270 - fZ;}
else if ((nFR==0)&&(nFU==1)) { enviA = 270 + fZ;}

/*x.5 and less, rounds down. Over this rounds up. 
The rounding is neccessary because casting rounds down no matter what.*/
enviDist = ((int)(2*enviD)) - ((int)enviD);
enviAng = ((int)(2*enviA)) - ((int)enviA);

/*arrObs[0].d=80; arrObs[0].a=90;*/
fprintf(fp, "arrObs[%d].d = %d; arrObs[%d].a = %d; \n", i, enviDist, i, enviAng);

/*Reset to the new coords of the latest obstacle.*/
roboA = roboA + 91;
enviD = enviDist;
enviA = enviAng;

}
fclose(fp);
return 0;

}

212



Bibliography

[1] G. Holzmann, The SPIN Model Checker - primer and reference manual.

Addison-Wesley, 2004.

[2] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: A Tool

for Automatic Verification of Probabilistic Systems,” LNCS, vol. 3920/2006,

pp. 441–444, 2006.

[3] R. Kirwan, A. Miller, B. Porr, and P. Di Prodi, “Formal modeling of robot

behavior with learning,” Neural Computation, vol. 25, no. 11, pp. 2976–

3019, 2013.

[4] A. Miller, R. Kirwan, B. Porr, and P. Di Prodi, “Model Checking for Im-

proved Adaptive Behaviour,” in Proceedings of the IET conference on Con-

trol and Automation, June 2013.

[5] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach 2nd

Edition. Pearson Education International, 2003.

[6] R. Sutton and A. Barto, “Reinforcement learning: An introduction,” MIT

Press, 1996.

[7] E. Clarke, O. Grumberg, and D. Peled, Model Checking. Cambridge, MA:

The MIT Press, 1999.

[8] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology. Colorado:

Bradford Book, 1984.

[9] W. Walter, The Living Brain. London: G. Duckworth, 1953.

213



[10] B. Porr and F. Wörgötter, “Strongly improved stability and faster conver-

gence of temporal sequence learning by utilising input correlations only,”

Neural Computation, vol. 18, no. 6, pp. 1380–1412, 2006.

[11] A. Pnueli, “The temporal logic of programs,” Proceedings of the 18th An-

nual Symposium on Foundations of Computer Science, pp. 46–57, November

1977.

[12] H. Hansson and B. Jonsson, “A Logic for Reasoning about Time and Relia-

bility,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535, September

1994.

[13] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of

Probabilistic Real-time Systems,” in Proc. 23rd International Conference on

Computer Aided Verification (CAV’11), ser. LNCS, G. Gopalakrishnan and

S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 585–591.

[14] M. Huth and M. Ryan, Logic in Computer Science: Modelling and Reason-

ing about Systems, 2nd ed. Cambridge University Press, 2004.

[15] S. Meyn and R. Tweedie, Markov Chains and Stochastic Stability, 2nd ed.

Springer-Verlag, 2005.

[16] M. Kwiatkowska, G. Norman, and D. Parker, Modelling and Verification of

Probabilistic Systems, ser. CRM. American Mathematical Society, 2004,

vol. 23.

[17] W. Jamroga, “A Temporal Logic for Markov Chains,” International Confer-

ence on Autonomous Agents, vol. 2, pp. 697–704, 2008.

[18] S. Akers, “Binary Decision Diagrams,” IEEE Transactions on Computers,

vol. c-27, pp. 509–516, 1978.

[19] E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao, “Multi-

Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix

214



Representation.” http://repository.cmu.edu/compsci/453, 1993, p. Paper

453.

[20] A. Miller, A. Donaldson, and M. Calder, “Symmetry in temporal logic model

checking,” ACM Computing Surveys (CSUR), vol. 38, no. 8, 2006.

[21] E. Emerson and J. Halpern, ““Sometimes” and “not never” revisited: on

branching versus linear time temporal logic,” ACM, vol. 3382, no. 1, pp.

151–178, January 1986.

[22] E. Emerson and E. Clarke, “Using branching time logic to synthesize syn-

chronization skeletons,” Science of Computer Programming, vol. 2, no. 3,

pp. 241–266, December 1982.

[23] A. Miller and A. Donaldson, “Property preservation in Quotient Structures,”

University of Glasgow, Tech. Rep. TR-2008-270, 2008.

[24] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic Model Checking,”

LNCS, pp. 220–270, 2007.

[25] M. Vardi and P. Wolper, “An automata-theoretic approach to automatic pro-

gram verification (preliminary report),” in Proceedings of the 1st Annual

IEEE Symposium on Logic in Computer Science. Cambridge, MA, USA:

IEEE Computer Society Press, June 1986, pp. 332–344.

[26] P. Wolper, M. Vardi, and A. Sistla, “Reasoning about Infinite Computation

Paths,” in Proceedings of the 4th IEEE Symposium on Foundations of Com-

puter Science. Tucson, AZ, USA: IEEE Computer Society, 1983, pp. 185–

194.

[27] M. Vardi and P. Wolper, “Reasoning about Infinite Computations,” Informa-

tion and Computation, vol. 115, pp. 1–37, 1994.

[28] D. Peled, “Ten years of partial order reduction,” LNCS, vol. 1427, pp. 17–28,

1998.

215



[29] A. Mazurkiewicz, “Trace theory, Advances in Petri Nets,” LNCS, vol. 255,

pp. 279–324, 1986.

[30] A. Donaldson, “Automatic Techniques for Detecting and Exploiting Sym-

metry in Model Checking,” Ph.D. dissertation, University of Glasgow, June

2007.

[31] A. Donaldson and A. Miller, “Extending Symetry Reduction Techniques to a

realistic model of Computation,” Electronic Notes in Theoretical Computer

Science, vol. 185, pp. 63–76, 2007.

[32] T. Henzinger, P. Ho, and H. Wong-Toi, “HYTECH: a model checker for

hybrid systems,” International Journal on Software Tools for Technology

Transfer, vol. 1, no. 1-2, pp. 110–122, 1997.

[33] U. Furbach, J. Murray, F. Schmidsberger, and F. Stolzenburg, “Hybrid

Multiagent Systems with Timed Synchronization–Specification and Model

Checking,” LNCS, vol. 4908/2008, pp. 205–220, 2008.

[34] T. Henzinger, P. Ho, and H. Wong-Toi, “A User Guide to HyTech,” Technical

Report, vol. TR95-1532, 1995.

[35] T. Henzinger and H. Wong-Toi, “Using HYTECH to Synthesize Control Pa-

rameters for a Steam Boiler,” LNCS, vol. 1165/1996, pp. 265–282, 1996.

[36] G. Frehse, “PHAVer: algorithmic verification of hybrid systems past

HyTech,” International Journal on Software Tools for Technology Transfer,

vol. 10, no. 3, pp. 263–279, 2008.

[37] B. Silva, K. Richeson, B. Krogh, and A. Chutinan, “Modeling and Veri-

fying Hybrid Dynamic Systems Using CheckMate,” Automation of Mixed

Processes, 2000.

[38] S. Ratschan and Z. She, “Safety verification of hybrid systems by constraint

propagation-based abstraction refine- ment,” ACM Trans. Embedded Com-

put. Syst., vol. 6, no. 1, 2007.

216



[39] C. Herde, A. Eggers, M. Franzle, and T. Teige, “Analysis of Hybrid Systems

using HySAT,” ICONS, vol. Proceedings of the Third International Confer-

ence on Systems, pp. 196–201, 2008.

[40] C. Power and A. Miller, “Prism2Promela,” Qualitative Evaluation of Sys-

tems, IEEE, pp. 79–80, September 2008.

[41] S. Shoham and O. Grumberg, “3-Valued abstraction: More precision at less

cost,” Information and Computation, vol. 206, pp. 399–410, 2006.

[42] O. Grumberg, “2-Valued and 3-Valued Abstraction-Refinement in Model

Checking,” in Logics and Languages for Reliability and Security, ser. NATO

Science for Peace and Security Series - D: Information and Communication

Security. IOS Press, 2010, vol. 25, pp. 105–128.

[43] Z. Andraus, M. Liffiton, and K. Sakallah, “CEGAR-Based Formal Hardware

Verification: A Case Study,” Technical Report CSE-TR-531-07, University

of Michigan, 2007.

[44] R. Dearden and C. Boutilier, “Abstraction and Approximate Decision Theo-

retic Planning,” Artificial Intelligence, vol. 89, pp. 219–283, 1997.

[45] E. Clarke, O. Grumberg, and D. Long, “Model Checking and Abstraction,”

ACM Transactions on Programming Languages and Systems, vol. 16, no. 5,

pp. 1512–1542, September 1994.

[46] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-

Guided Abstraction Refinement for Symbolic Model Checking,” Journal of

the ACM, vol. 50, no. 5, pp. 752–794, 2003.

[47] M. Wooldridge, An Introduction to MultiAgent Systems. John Wiley and

Sons, 2009, vol. 2.

[48] M. Dastani, “2APL: a practical agent programming language,” Autonomous

Agents and Multi-Agent Systems, vol. 16, no. 3, pp. 214–248, 2008.

217



[49] K. Hindriks, F. De Boer, W. Van Der Hoek, and J. Meyer, “Agent Program-

ming in 3APL,” in Autonomous Agents and Multi-Agent Systems. Springer,

1999, vol. 2(4), pp. 357–401.

[50] A. Rao, “AgentSpeak(L): BDI agents speak out in a logical computable lan-

guage,” in The 7th European Workshop on Modelling Autonomous Agents in

a Multi-agent world (MAAMAW’96), ser. Lecture notes in Artificial Intelli-

gence. Eindhoven, The Netherlands: Springer, 1996, pp. 42–55.

[51] R. Bordini, J. Hübner, and M. Wooldridge, Programming Multi-Agent Sys-

tems in AgentSpeak Using Jason (Wiley Series in Agent Technology). John

Wiley & Sons, 2007.

[52] M. Fisher, “Temporal Development Methods for Agent-Based Systems,” in

Autonomous Agents and Multi-Agent Systems, J. Rosenschein and P. Stone,

Eds., vol. 10(1). Springer, 2005, pp. 41–66.

[53] P. Kouvaros and A. Lomuscio, “Automatic verification of parameterised

multi-agent systems,” in AAMAS, 2013, pp. 861–868.

[54] A. Lomuscio, H. Qu, and F. Raimondi, “MCMAS: A Model Checker for the

Verification of Multi-Agent Systems,” in CAV. Springer, 2009, pp. 682–

688.

[55] L. Dennis, M. Fisher, M. Webster, and R. Bordini, “Model Checking agent

programming languages,” Automated Software Engineering, vol. 19, no. 1,

pp. 5–63, 2012.

[56] L. Dennis, M. Fisher, and M. Webster, “Using Agent JPF to Build Models

for Other Model Checkers,” in Computational Logic in Multi-Agent Systems

- 14th International Workshop, CLIMA XIV, Corunna, Spain, September 16-

18, 2013. Proceedings, ser. Lecture Notes in Computer Science, vol. 8143.

Springer, 2013, pp. 273–289.

218



[57] R. Bordini, M. Fisher, W. Visser, and M. Wooldridge, “Verifying Multi-agent

Programs by Model Checking,” Autonomous Agents and Multi-Agent Sys-

tems, vol. 12, no. 2, pp. 239–256, 2006.

[58] W. Visser, K. Havelund, G. Brat, and S. Park, “Model Checking Programs,”

in ASE, 2000, pp. 3–12.

[59] K. Vikhorev, N. Alechina, and B. Logan, “Agent programming with priori-

ties and deadlines,” in Proceedings of the Tenth International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan,

May 2011, pp. 397–404.

[60] K. Vikhorev, N. Alechina, R. Bordini, and B. Logan, “An Operational Se-

mantics for AgentSpeak(RT) (Preliminary Report),” in Ninth International

Workshop on Declarative Agent Languages and Technologies (DALT 2011),

Workshop Notes, Taipei, Taiwan, May 2011.

[61] N. Alechina, R. Bordini, J. Hubner, M. Jago, and B. Logan, “Belief Re-

vision for AgentSpeak Agents,” in Proceedings of the Fifth International

Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS

2006). Hakodate, Japan: IEEE Press, May 2006, pp. 1288–1290.
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