
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
Gingell-Littlejohn, Marc (2014) Cellular senescence and renal 
transplantation. MD thesis. 
 
 
http://theses.gla.ac.uk/4986/ 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given. 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4986/


1 

 

  Cellular Senescence and Renal Transplantation 

 

 

                                                        

  

                                     Marc Gingell-Littlejohn 

                   MD (Malta), MRCSEd, USMLE 

 

 
 
 
 
        Submitted in fulfilment of the requirements for the Degree of Doctor of Medicine 
 

 
 
                                        
  
                                        Department of Surgery 
                    College of Medical, Veterinary and Life Sciences 
                                     Institute of Cancer Sciences 
                                        University of Glasgow 
 
                                              
                     
                                 
 

 
  
 
                                       
                                      February 2014                  
 

 

 

 

 



1 

 

 Table of Contents 

        

      Chapter 1 

BIOMARKERS OF AGEING, RENAL ALLOGRAFT FUNCTION AND 
TRANSPLANTATION .............................................................................................. 12 

1.1  Introduction ............................................................................................................ 12 

1.1.1  ESRF and Donor Organ Shortfall ................................................................ 12 

1.1.2  Renal Replacement Therapy ........................................................................ 14 

1.1.3  Extended Criteria Donation ......................................................................... 15 

1.1.4  Serum Creatinine ......................................................................................... 16 

1.1.5  Estimated Glomerular Filtration Rate (eGFR) ............................................. 17 

1.1.6  Urinary Protein Creatinine Ratio ................................................................. 18 

1.1.7  White Cell Count ......................................................................................... 18 

1.1.8  Human Leukocyte Antigen System ............................................................. 19 

1.1.9  Cellular Senescence ..................................................................................... 20 

1.1.10  Cellular Senescence and Age Related Diseases......................................... 24 

1.1.11  Senescence and the Kidney ........................................................................ 27 

1.1.12  Biomarkers of Ageing ................................................................................ 28 

1.1.13  Telomeres ................................................................................................... 28 

1.1.14  The Structure and Function of Telomeres ................................................. 29 

1.1.15  The “End Replication Problem” ................................................................ 31 

1.1.16   Senescence and STASIS ........................................................................... 36 

1.1.17  Cyclin Dependant Kinase 2A - CDKN2A ................................................. 38 

1.1.18  CDKN2A functions in vitro and in vivo .................................................... 38 

1.1.19  CDKN2A, Tumour Suppression and the Senescent Phenotype ................ 40 

1.1.20  Telomeres, p16, p21 and senescence ......................................................... 41 

1.1.21  Epigenetic regulation of renal function and Model testing ........................ 42 

1.2  Hypothesis .............................................................................................................. 44 

1.3 Aims ........................................................................................................................ 44 



2 

 

1.4  Materials and Methods ........................................................................................... 45 

1.4.1  RNA extraction using TRIzol® technique.................................................... 45 

1.4.2  DNA extraction ............................................................................................ 45 

1.4.3  Spectrophotometry ....................................................................................... 46 

1.4.4  Gel Electrophoresis ...................................................................................... 46 

1.4.5  DNase Treatment ......................................................................................... 46 

1.4.6  cDNA Synthesis ........................................................................................... 47 

1.4.7  Taqman RT-PCR ......................................................................................... 47 

1.4.8  Telomere Assay Protocol ............................................................................. 51 

1.4.9  Statistics ....................................................................................................... 56 

1.4.10  Ethics.......................................................................................................... 56 

1.5  Renal Database ....................................................................................................... 56 

1.6  Study Population .................................................................................................... 57 

1.7  Results .................................................................................................................... 57 

1.7.1  Demographics, Biological Age and Donor Chronological Age .................. 57 

1.7.2  BoA and Correlation with Renal Function Post-Transplant ........................ 59 

1.7.3  Biological Age and Serum Creatinine ......................................................... 63 

1.7.4  Biological Age and UPCR ........................................................................... 63 

1.7.5  ECD Kidneys and DCA vs Renal Function ................................................. 64 

1.7.6  ECD Kidneys and DCA vs Post-operative WCC ........................................ 66 

1.7.7  CDKN2A, Delayed Graft Function and Rejection ...................................... 68 

1.7.8  Univariate Regression Analysis ................................................................... 69 

1.7.9  Multivariate Regression Analysis ................................................................ 73 

1.8  Discussion .............................................................................................................. 75 

1.8.1  CDKN2A – most robust BoA in modern era ............................................... 75 

1.8.2  CDKN2A, SASP and rejection .................................................................... 77 

1.8.3  CDKN2A based pre-transplant scoring system ........................................... 77 

1.9  Conclusion ............................................................................................................. 79 

 



3 

 

 

Chapter 2 

PHENOTYPIC CHARACTERISATION OF THE AS/AGU MUTANT RAT……...80 

2.1  Introduction ............................................................................................................ 80 

2.1.1  AS/AGU PKCγ mutation ............................................................................. 80 

2.1.2  Physiological calculation of renal blood flow and GFR .............................. 81 

2.1.3  Inulin clearance and the measurement of true GFR..................................... 82 

2.1.4  Serum Creatinine Clearance and estimated GFR (eGFR) ........................... 83 

2.2  Hypothesis .............................................................................................................. 84 

2.3  Aims ....................................................................................................................... 85 

2.4  Methods .................................................................................................................. 85 

2.4.1  Animal Groups and Housing ....................................................................... 85 

2.4.2  Preparation of FITC-Inulin Solution ............................................................ 85 

2.4.3  Experimental Design and Surgical Technique ............................................. 86 

2.4.4  GFR Analytical Technique .......................................................................... 90 

2.4.5  GFR and IR Injury Studies - Initial Testing Phase ...................................... 93 

2.4.6  Biochemical Serum and Urine Analysis ...................................................... 95 

2.4.7  Immunohistochemical analysis for bio-age in rat kidney ............................ 96 

2.4.8  TUNEL assay protocol ................................................................................ 96 

2.4.9   SA-Beta-Gal Staining on Tissue Sections .................................................. 98 

2.4.10 IHC using MOUSE p16 Antibody F-12 ................................................... 100 

2.4.11 IHC using MOUSE p21 Antibody C-19 ................................................... 101 

2.5  Results .................................................................................................................. 102 

2.5.1  GFR Validation .......................................................................................... 102 

2.5.2  Parallel Strain Analysis .............................................................................. 105 

2.5.3  Biochemical Analysis ................................................................................ 106 

2.5.4  Subgroup Analysis – Sex Differences ....................................................... 109 

2.5.5  Ischaemia Reperfusion Injury Studies ....................................................... 109 

2.5.6  Global Urine Analysis................................................................................ 109 



4 

 

2.5.7  Individual Strain Urine Analysis ............................................................... 111 

2.5.8  Immunohistochemistry .............................................................................. 111 

2.6  Discussion ............................................................................................................ 115 

2.6.1  GFR and Renal Function ........................................................................... 115 

2.6.2  The possible role of Protein Kinase C in explaining differences in GFR .. 116 

2.6.3  Urea Transport ........................................................................................... 118 

2.6.4  Mammalian Urea Transporters .................................................................. 120 

2.6.5  IR Studies - Urine Biochemistry ................................................................ 123 

2.6.6  IR Studies - Urine Urea and Specific Gravity ........................................... 124 

2.6.7  IR Studies - Immunohistochemistry .......................................................... 125 

2.7  Conclusion ........................................................................................................... 134 

 

 

Chapter 3 

ISCHAEMIA REPERFUSION INJURY AND ANTI-ISCHAEMIC COMPOUNDS – 
AN EXPERIMENTAL ANIMAL MODEL 

3.1  Introduction .......................................................................................................... 136 

3.1.1  mTOR inhibitors and AZ-6 ........................................................................ 137 

3.2  Hypothesis ............................................................................................................ 140 

3.3  Aims ..................................................................................................................... 140 

3.4  Methods ................................................................................................................ 140 

3.4.1  Animal Groups and Housing ..................................................................... 140 

3.4.2  Experimental Design and Surgical Technique ........................................... 141 

3.5  Results .................................................................................................................. 145 

3.5.1  Biochemical Analysis ................................................................................ 145 

3.5.2  Bioage Genetic Expression and Immunohistochemical Staining .............. 152 

3.5.3  Gene Expression Analysis Assays ............................................................. 152 

3.6  Discussion ............................................................................................................ 156 

3.6.1  Biochemical response to AZ-6................................................................... 156 



5 

 

3.6.2  mTOR Inhibitors and Renal Function........................................................ 157 

3.6.3  CDKN1A and CDKN2A ........................................................................... 158 

3.6.4  Telomere Length and CDKN2A synchrony .............................................. 160 

3.6.5  Model Testing, Biological Ageing and Novel Clinical Entities ................ 161 

3.7  Conclusion ........................................................................................................... 162 

General Summary ....................................................................................................... 163 

Acknowledgements ..................................................................................................... 164 

References ................................................................................................................... 165 

List of Publications ..................................................................................................... 195 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

 

LIST OF FIGURES 

 

Figure 1.1  Diagram depicting primary causes and consequences of cellular senescence  
Figure 1.2 Mammalian telomere structure and microscopic appearance  
Figure 1.3 The “End Replication Problem”  
Figure 1.4 Telomeres, Hayflick limit and Crisis  
Figure 1.5 Critical telomere shortening and p53  
Figure 1.6 Pathways controlled by the CDKN2A locus  
Figure 1.7 Real time Taqman PCR reaction  
Figure 1.8 Scatter plots showing the correlation between biomarkers of ageing and 

donor chronological age 
 

Figure 1.9 Scatter plots showing the relationship between telomere length and renal 
function, as measured by MDRD 4 eGFR 

 

Figure 1.10 Scatterplots showing the relationship between CDKN2A and renal function, 
as measured by MDRD 4 eGFR 

 

Figure 1.11 The relationship between WCC at 2 years and DCA  
Figure 1.12 Boxplot depicting a significantly lower WCC in ECD kidneys at 2 years  
Figure 2.1 Depiction of surgical setup  
Figure 2.2 Images of surgical technique  
Figure 2.3 Dependence of FITC Inulin fluorescence on pH  
Figure 2.4 Schematic representation of operative methods  
Figure 2.5 Graphical representation of plasma FITC Inulin concentration through a 

typical experiment 
 

Figure 2.6 Scatterplot showing the expected increase in GFR with weight for both AS 
and mutant strains 

 

Figure 2.7 Total GFR difference between control and mutant strain  
Figure 2.8 Corrected GFR difference between control and mutant strain  
Figure 2.9 Mammalian urea transporters  
Figure 2.10 Biological processes implicated in IR Injury  
Figure 2.11 Outcomes of the p16 and p21 cellular pathways  
Figure 2.12 Immunohistochemical staining for senescence markers  
Figure 3.1 A model of mTOR signalling cascade and its function  
Figure 3.2 Clustered Bar Graph with 95% CI error bars  
Figure 3.3 Changes in corrected creatinine compared to Group I  
Figure 3.4 Weight recordings for experimental groups I-V  
Figure 3.5 Compound treatment effects on CDKN2A transcriptional expression in two 

human primary cell types, HDF and HREpi 
 

Figure 3.6 Expression levels for CDKN1A in rat kidney ischemia model with or 
without AZ-6 treatment 

 

Figure 3.7a Nuclear histoscores for p16 protein in rat kidney tissue sections  
Figure 3.7b Nuclear histoscores for p21 proteins in rat kidney tissue sections  

 



7 

 

 
LIST OF TABLES 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 1.1 Mastermix preparation  
Table 1.2 Plate layout of both telomere and 36B4 plates  
Table 1.3 Roche Lightcycler® Telomere Running Conditions  
Table 1.4 Roche Lightcycler® 36B4 Running Conditions  
Table 1.5 Demographics  
Table 1.6 DCD and ECD correlations with renal function and glomerular damage  
Table 1.7 Correlation between DCA and ECD kidneys with WCC at 6 months, 1 

year and 2 years 
 

Table 1.8 Association between DGF and rejection episodes with renal function 
up to 5 years 

 

Table 1.9 Univariate linear regression analysis at 6 months  
Table 1.10 Univariate linear regression analysis at 1 year  
Table 1.11 Multivariate model outcome for eGFR at 6 months  
Table 1.12 Multivariate model outcome for eGFR at 1 year.  
Table 1.13 A donor risk classification based on ECD and CDKN2A  
Table 2.1 Rodent GFR experimental documentation  
Table 2.2 Demographics of rodent population for GFR studies  
Table 2.3 Demographics of rodent population for biochemical studies  
Table 2.4 Reagents used in SA-Beta-Gal Staining  
Table 2.5 Final SA-Beta-Gal solutions at pH4 and pH6  
Table 2.6 Results of GFR analysis  
Table 2.7 GFR comparison between strains  
Table 2.8 Mean GFR between female and male strains  
Table 2.9 Biochemical differences between AS and AS/AGU rats  
Table 2.10 Urine Biochemical changes in response to IR injury  
Table 2.11 IR Injury Urine Biochemical data  
Table 2.12 TUNEL IHC – Control vs IR Injured Kidneys  
Table 2.13 SA β GAL IHC Results – Control vs IR Injured Kidneys  
Table 2.14 p16 IHC Results – Control vs IR Injured Kidneys  
Table 2.15 p21 IHC Result s– Control vs IR Injured Kidneys  
Table 3.1 The five separate groups used in the animal model  
Table 3.2 Details of the group demographics, weight, individual creatinine values 

and adjusted creatinine/100gr body weight 
 

Table 3.3 Creatinine values at Day 3  
Table 3.4 Creatinine values at Day 6  
Table 3.5 Creatinine values at Day 10  
Table 3.6 Clustered Bar Graph with 95% CI error bars  
Table 3.7 Changes in corrected creatinine compared to Group I  
Table 3.8 Changes in corrected creatinine compared to Group II  



8 

 

 
LIST OF ABBREVIATIONS 

AKI Acute Kidney Injury 
ATN Acute Tubular Necrosis 
ARF Alternate Reading Frame / Acute Renal Failure 
AS/AGU Albino Swiss/Albino Glasgow University 
ANOVA Analysis of Variance 
AZ Astra Zeneca 
APKD Adult Polycystic Kidney Disease 
BMI Body Mass Index 
BoA Biomarker of Ageing 
cAMP cyclic Adenosine Monophosphate 
CDKN2A Cyclin Dependant Kinase 2A 
CIT Cold Ischaemic Time 
CC Correlation Coefficient 
CKD Chronic Kidney Disease 
CNI Calcineurin Inhibitor 
CVD Cerebro Vascular Disease 
DBD Donation After Brain Death 
DCA Donor Chronological Age 
DCD Donation after Cardiac Death 
DDR DNA Damage Response 
DEPC Diethylpyrocarbonate 
DGF Delayed Graft Function 
DNA Deoxyribonucleic acid 
ECD Extended Criteria Donor 
ESRF End Stage Renal Failure 
FAM 6-carboxy-fluorescein 
FITC Flourescein Isothiocyanate Inulin 
GFR Glomerular Filtration Rate 
GN Glomerulonephritis 
HDF Human Diploid Fibroblast 
HLA Human Leukocyte Antigen 
HPRT Hypoxanthine Phosphoribosyltransferase 
HIF Hypoxia Inducable Factor 
IHC Immunohistochemistry 
IL Interleukin 
IMCD Inner Medullary Collecting Ducts 
IRI Ischaemia Reperfusion Injury 
Kda Kilodalton 
OPTN Organ Procurement and Transplantation Network 
MDRD Modification of Diet in Renal Disease 
MHC Major Histocompatibility Complex 
MMP Matrix Metalloprotein 
M.O.M Mouse on Mouse 
miRNA micro Ribonucleicacid 



9 

 

 

 

 

 

mTOR Mammalian Target of Rapamycin 
NCE Novel Clinical Entity 
NICE National Institute for Health and Clinical Excellence 
NKF National Kidney Foundation 
NO Nitric Oxide 
PBL Peripheral Blood Leukocyte 
PBS Phosphate Buffered Saline 
PCR Polymerase Chain Reaction 
PHD Prolylhydroxylase 
PKC Protein Kinase C 
PNF Primary Non Function 
PTEN Phosphatase and Tensin Homologue 
RB Retinoblastoma 
SA β Gal Senescence Associated Beta Galactosidase 
SASP Senescence Associated Secretory Phenotype 
SG Specific Gravity 
STASIS Stress or Aberrant Signaling Induced Senescence 
TAMRA 6-carboxy-tetramethyl-rhodamine 
TCR T Cell Receptor 
TL Telomere Length 
TLR Toll-like Receptor 
TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling 
UNOS United Network for Organ Sharing 
UPCR Urinary Protein Creatinine Ratio 
UT Urea Transporter 
VEGF Vascular endothelial growth factor 
WCC White Cell Count 
WBC White Blood Cell 



10 

 

 

 

 

 
To my wife Elaine for her unconditional support throughout the years of research and 

writing of this thesis. To my family and my children Nick and Andy who brought smiles and 

joy during those difficult moments. Lastly, to Nicky BC (1982-2009) whose courage and 

strength during his battle with leukaemia continues to motivate me as a person and a 

devoted surgeon. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 



11 

 

 

 

 

 

 

I declare that, except where explicit reference is made to the contribution of others, that 

this dissertation is the result of my own work and has not been submitted for any other 

degree at the University of Glasgow or any other institution.  

 
 
 
 
 
Signature:         
 
 
Printed name:    Marc Gingell-Littlejohn 

 
 

 

 

 

 

 
 

 

 



12 

 

Chapter 1  

 

BIOMARKERS OF AGEING, RENAL ALLOGRAFT FUNCTION 

AND TRANSPLANTATION 

 

1.1  Introduction 

 

1.1.1  ESRF and Donor Organ Shortfall 

Renal transplantation is the optimum treatment for kidney failure, but is limited by donor 

shortage. A large proportion of end stage renal failure (ESRF) patients must therefore 

receive alternative renal replacement therapies in the form of peritoneal, or haemodialysis. 

This treatment results in increasing morbidity, particularly affecting the cardiovascular 

system, a severely reduced lifespan and poorer quality of life. Older and marginal donors 

are increasingly used to meet this shortfall in kidney supply even though elevated numbers 

of senescent cells within chronologically older organs may negatively influence transplant 

outcome (1-4).  In essence, such organs will have more ’miles on the clock’ and thus not 

work as well, or last as long. Even though such organs may function adequately in the 

short term, the presence of substantial physiological senescence will make them more 

susceptible to the effects of transplant-related stresses (5;6). As a consequence, the 

biological age of the organ, rather than just its chronological age, may have a major impact 

on organ function post transplant. This is also pertinent to delayed graft function (DGF).  

This short term outcome, defined as failure of serum creatinine to fall by half within seven 

days of transplant, or need for dialysis within seven days of the transplant except dialysis 

performed for fluid overload or elevated serum potassium levels (7) affects around 40% of 

deceased donor kidney transplants in the UK and is a strong independent risk factor for 

long term deleterious outcomes. Its multifactorial causes remain poorly identified, but are 

thought to be related to cellular damage induced by multiple redox reactions during cold 

storage, reperfusion, drug toxicity and other related factors. 

In the early decades of renal transplantation, strict donor criteria were used for deceased 

and live donors, such that virtually all kidneys came from relatively young people with 
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excellent health who died suddenly due to an isolated event, such as trauma or brain 

haemorrhage.  As the treatment became established, increasing numbers of patients were 

listed for transplantation, creating a shortfall of young and previously healthy donors, 

putting the transplant community under considerable strain.  In order to address this, an 

expanded donor pool began to be utilised comprising kidneys from older patients, many 

with pronounced cardiovascular problems.   

These so-called extended criteria donors (ECD) were needed in order to match the 

increasing need for organs and address the extremely high rates of death among patients 

waiting for a kidney transplant: more than 40% of those waiting will die within 5 years, a 

prognosis worse than for many cancers.  As time has passed, we have therefore moved into 

an era where the “extended criteria donor” has become the standard donor, with younger 

and healthier deceased donors increasingly rare.  Although such organs incur elevated risks 

of DGF and ultimately have unfavorable long term outcomes compared with younger 

donor kidneys, average results remain far superior to alternative treatment modalities, such 

as haemodialysis. Some grafts however perform poorly – or never function adequately, a 

clinical condition termed primary non-function (PNF).  The reasons for this phenomenon 

are unclear but seem likely to relate to the inability of older kidneys to tolerate and recover 

from the multiple injurious processes associated with transplantation. Poor function 

however, is difficult to predict as many older organs perform adequately despite advanced 

chronological age (8;9). 

DGF is itself a form of acute renal failure resulting in post-transplantation oliguria, 

increased allograft immunogenicity, increased risk of acute rejection episodes, and 

decreased long term survival (10). Most deceased donors (up to 50%) and some live 

donors (up to 5%) manifest some degree of DGF. Improvements in the management of 

donors and recipients as well as other therapeutic modalities have done little to modify the 

rates of this clinical state, however it has recently been shown that machine cold perfusion 

does have a positive effect on Donation after Cardiac Death (DCD) kidneys (11). The 

effects of reducing the cold ischaemic time are well known and universally practised (12). 

An inherent problem when studying DGF and its interpretation in clinical trials is 

ambiguity regarding its definition. Early renal function post transplantation ranges from 

total anuria or non oliguric acute tubular necrosis (ATN), to slow recovery of function, to 

rapid and immediate function (10). The definition for DGF in this thesis is “Failure of 

serum creatinine to fall by 50% in the first 7 days post transplantation or need for dialysis 
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during the first 7 days post transplantation except haemodialysis for volume overload or 

hyperkalaemia” 

Dependent upon the numbers of senescent cells present in the organ, tissue integrity may 

be impaired and the capacity to withstand stress reduced. Furthermore, senescence-

associated upregulation of pro-inflammatory cytokine gene expression may lead to chronic 

persistent inflammation.  As a consequence, the biological age of the organ, rather than just 

its chronological age, may have major impact on organ function post transplant. This 

would imply that the expression of genes involved in cellular processes regulating 

biological ageing, should provide suitable reporters for investigating such a hypothesis. 

In fact, robust and reproducible studies have shown that gene expression of senescence 

markers of a donor organ (bioage), can predict renal function in vivo, irrespective of 

classical parameters currently in use, particularly donor chronological age and other co-

morbidities such as impaired pre-retrieval serum creatinine(13;14).  

Life expectancy can vary considerably between neighboring communities and reliance on 

donor age alone, as the strongest predictor of function may prove increasingly costly and 

misleading.  

 

1.1.2  Renal Replacement Therapy 

Haemodialysis is a method for removing waste products from the body for patients in end 

stage renal failure. It is one of three forms of renal replacement therapy together with 

peritoneal dialysis and kidney transplantation. Kidney transplantation is highly cost-

effective and is the treatment of choice for many patients with ESRF. There are over 

37,800 patients with end-stage renal failure in the UK. Nearly 21,000 are on dialysis, 

whilst the remainder have a transplant. Of those on dialysis, 76% are on haemodialysis and 

24% on peritoneal dialysis. The indicative cost of maintaining a patient with end-stage 

renal failure on renal replacement therapy (dialysis) is £35,000 per patient per year for a 

patient on hospital haemodialysis. Kidney transplantation leads to an overall cost benefit of 

£25,800 per annum. (NHS Blood and Transplant Data – October 2009). It can be seen 

therefore that besides transplantation offering improved quality of life and an enhanced 

lifespan to patients in ESRF, there is an overwhelming economic advantage to 

governmental health budgets. 
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1.1.3  Extended Criteria Donation 

The clinical characteristics that differentiate marginal renal allografts are derived from the 

social and medical history of the donor (age, history of hypertension or diabetes, the risk of 

transmitting infectious disease and/or malignancy), the cause of donor death (trauma vs. 

cerebrovascular accident), the mechanism of donor death (brain death or DBD vs. cardiac 

death or DCD), the anatomy of the allograft (vessel abnormalities), the morphology on 

biopsy (glomerulosclerosis, interstitial nephritis and/or fibrosis), and the functional profile 

(serum creatinine or calculated glomerular filtration rate) prior to transplantation (15;16). 

Kidneys transplanted from older donors are considered to be from the expanded pool 

because these allografts have a higher rate of delayed graft function, more acute rejection 

episodes, and decreased long-term graft function. Several factors, including prolonged cold 

ischemia time (CIT), increased immunogenicity, impaired ability to repair tissue and 

impaired function with decreased nephrons mass may contribute to this (17). But recently, 

Ojo et al. have demonstrated that the recipients of expanded kidneys receive the benefit of 

extra life-years when compared to wait-listed dialysis patients (18). Still, placement of 

these organs is often difficult and delayed, and some centres continue to prefer not to 

utilize them (19).  

Three additional significant donor medical risk factors were identified by the Organ 

Procurement and Transplantation Network (OPTN): history of hypertension, 

cerebrovascular accident as a cause of death, and final pre-procurement creatinine > 

133µmol/L. Donor kidneys were characterized according to combinations of these four 

parameters, and a relative risk of graft loss was determined for each donor profile. The 

ECD kidney was precisely defined as any kidney whose relative risk of graft failure 

exceeded 1.7 when compared to a reference group of ideal donor kidneys i.e those from 

donors of chronological age 10–39 years, who were without hypertension, who did not die 

of a cerebrovascular accident, and whose terminal pre-donation creatinine level was < 

133µmol/L. Using this definition based on the relative risk of graft loss, all donors over 

age 60 and donors aged 50–59 with at least two of the three medical criteria are identified 

as ECD (20). 

Therefore according to OPTN and United Network for Organ Sharing (UNOS), an 

Expanded Criteria Donor (ECD) is one which is (21): 

a. 60 years or over  
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b. 50-59 years with at least 2 of the following three medical criteria 
i. Cerebro-Vascular Accident as the cause of death 
ii. History of hypertension 
iii. Pre retrieval creatinine more than 133µmol/L 

 
 

Classically, donor chronological age has been used as one of the most important predictors 

of post transplant performance irrespective of concurrent donor or recipient factors. Donor 

chronological age has therefore been the “Gold Standard” marker for post transplant 

function since the birth of renal transplantation in the 1950s. It is well known that 

increasing chronological age is related to poorer performance, however chronologically 

older kidneys may actually have excellent function for extended periods of time. This is 

because the kidneys chronological age does not always reflect the extent of cellular 

damage and hence it’s biological age. Older kidneys may have very few “miles on the 

biological clock” and perform better. This principle also applies to kidneys from young 

donors with significant co-morbidities such as hypertension, diabetes, smoking history and 

death by cerebro-vascular incident. Kidneys from such donors could be allocated to an 

older population of recipients or possibly rejected for transplantation, should the biological 

age prove to be significantly raised and hence the importance of a modern scoring system 

incorporating BoAs. 

 

1.1.4  Serum Creatinine 

Creatinine is a breakdown product of creatine phosphate in muscle. Depending on the 

individuals muscle mass, the rate of production of serum creatinine is approximately 

constant and falls within a specific range of values (~80-120 µmol/L). In general, patients 

with a larger Body Mass Index (BMI) have a higher baseline creatinine value. Men who in 

general have more muscle mass than women, also have higher serum concentrations. 

Creatinine is chiefly filtered out of the blood by the kidneys, specifically in the glomerulus 

and the proximal tubules. There is very little tubular reabsorbtion and therefore if the 

filtration system of the kidney is impaired, the level of creatinine in the blood rises. This is 

used as the cheapest and most effective way of determining an individuals kidney function. 

The concentration of creatinine in the plasma varies in parallel to that of urea. Urea serves 

an important role in the metabolism of nitrogen containing compounds by animals and is 

the main nitrogen-containing substance in the urine of mammals. Further expansion on 

serum urea and its physiology is not within the scope of this thesis. It is important to 
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mention however that blood urea concentration and serum creatinine will not be raised 

above the normal range until 50-75% of total kidney function is lost. Hence, the more 

accurate Glomerular Filtration Rate or its approximation of the creatinine clearance is 

measured whenever renal disease is suspected. 

 

1.1.5  Estimated Glomerular Filtration Rate (eGFR) 

The Glomerular Filtration Rate (GFR) is traditionally considered the best overall index of 

renal function in health and disease. Because GFR is difficult to measure in clinical 

practice, most clinicians estimate the GFR from the serum creatinine concentration, the 

eGFR. However, the accuracy of this estimate is limited because the serum creatinine 

concentration is affected by factors other than creatinine filtration (22;23). To compensate 

for these limitations, several formulas have been developed to estimate GFR and 

Creatinine Clearance from serum creatinine concentration, age, sex, and body size (24-31). 

True GFR values are obtained by the inulin method, but this is time consuming and 

invasive and so not suitable for routine clinical practise. (Reference is made to Chapter 2 of 

this thesis for methodology of GFR determination) 

 

A GFR of <60 mL/min/1.73m2 represents loss of  ≥50% of kidney function in adults, 

resulting in an increased rate of Chronic Kidney Disease (CKD) complications (32).  A 

decreased GFR is associated with numerous complications, including hypertension, 

anaemia, malnutrition, bone disease, neuropathy, and decreased quality of life. All can be 

prevented or ameliorated by earlier treatment of CKD. Cardiovascular events are more 

common in patients with CKD (33-36) and CKD appears to be a risk factor for Cerebro-

Vascular Disease (CVD). CVD in patients with CKD is treatable and potentially 

preventable. 

 

In 2000, Levey et al. (37) published the MDRD 4 equation, which uses age, sex, ethnicity, 

and serum creatinine to predict the GFR: 

 

GFR = 186(Cr-1.154 x age-0.203) x (1.212 if black) x (0.742 if female) 

 

In 2002, the National Kidney Foundation (NKF) revised its practice guidelines for CKD 

and now recommends the use of a four-variable modification of diet in renal disease 
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(MDRD 4 equation) or the Cockcroft–Gault equation for creatinine clearance (CLcr) to 

estimate the glomerular filtration rate and better detect early-onset CKD (32;38).  

 

1.1.6  Urinary Protein Creatinine Ratio 

Proteinuria may be a sign of renal damage. Since serum proteins are readily reabsorbed 

from urine, the presence of excess protein indicates either an insufficiency of absorption, 

or impaired filtration through the glomerulus. Although the eGFR is considered to be the 

best overall index of renal function, it is relatively insensitive at detecting early renal 

disease and does not correlate well with tubular dysfunction (39). The urine 

protein/creatinine ratio (UPCR) detects total urinary protein due to glomerular and/or 

tubular pathology (the urine albumin/creatinine ratio detects protein leakage from the 

glomerulus and has a greater sensitivity than UPCR for low levels of proteinuria). The 

UPCR is recommended by NICE as a method for quantification and monitoring of 

proteinuria. Significant proteinuria is usually referred to as a level more than or equivalent 

to 50mg/mmol (NICE CKD Guidelines 2008) 

 

1.1.7  White Cell Count 

The number of white blood cells (WBC) in the blood is often an indicator of disease. There 

are normally between 4×109 and 11×1010 white blood cells in a litre of blood, and ranging 

from 7 and 21 microns in diameter, they make up approximately 1% of blood in a healthy 

adult. An increase in the number of WBCs or leukocytes over the upper limits is termed 

leukocytosis, and a decrease below the lower limit is termed leukopenia. 

Some medications can have an impact on the number and function of white blood cells. 

Drugs which can cause leukopenia include immunosuppressive agents used in 

transplantation such as sirolimus, mycophenolate mofetil, tacrolimus, and cyclosporine. 

Renal transplant recipients are frequently monitored to assess for changes in total white 

cell count (WCC). A higher than normal WCC may indicate underlying inflammation or 

infection. A low WCC may also indicate infection but may also be a sign of over-

immunosuppression necessitating a reduction in dose. The drug Mycophenolate Mofetil 

(an antimetabolite) is frequently implicated with leokopenia and subsequent neutropenia. 

Patients experiencing acute allograft rejection need potent immunosuppressive agents such 

as targeted monoclonal antibodies resulting in an increased risk of leukopenia. 
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1.1.8  Human Leukocyte Antigen System 

The human leukocyte antigen (HLA) system, the major histocompatibility complex (MHC) 

in humans, is controlled by genes located on chromosome 6. It encodes cell surface 

molecules specialized to present antigenic peptides to the T-cell receptor (TCR) on T cells. 

MHC molecules that present antigen (Ag) are divided into 2 main classes. 

Class I MHC molecules are present on the surface of all nucleated cells and platelets. 

These polypeptides consist of a heavy chain bound to a β2-microglobulin molecule. The 

heavy chain consists of 2 peptide-binding domains, an Ig-like domain, and a 

transmembrane region with a cytoplasmic tail. The heavy chain of the class I molecule is 

encoded by genes at HLA-A, HLA-B, and HLA-C loci. Lymphocytes that express CD8 

molecules react with class I MHC molecules. These lymphocytes often have a cytotoxic 

function, requiring them to be capable of recognizing any infected cell. All nucleated cells 

express class I MHC molecules and can thus act as antigen-presenting cells for CD8 T 

cells (CD8 binds to the nonpolymorphic part of the class I heavy chain). Some class I 

MHC genes encode non classical MHC molecules, such as HLA-G (which may play a role 

in protecting the fetus from the maternal immune response) and HLA-E (which presents 

peptides to certain receptors on natural killer cells). 

Class II MHC molecules are usually present only on professional Ag-presenting cells (B 

cells, macrophages, dendritic cells, Langerhans' cells), thymic epithelium, and activated 

(but not resting) T cells; most nucleated cells can be induced to express class II MHC 

molecules by interferon (IFN)-γ. Class II MHC molecules consist of 2 polypeptide (α and 

β) chains; each chain has a peptide-binding domain, an Ig-like domain, and a 

transmembrane region with a cytoplasmic tail. Both polypeptide chains are encoded by 

genes in the HLA-DP, -DQ, or -DR region of chromosome 6. Lymphocytes reactive to 

class II molecules express CD4 and are often helper T cells. With respect to MHC 

compatibility, a renal transplant match is currently based primarily on HLA locuses A, B 

and DR, however, ABO incompatibility is no longer a barrier to transplantation (40). The 

recognised role of CDKN2A in determining renal function post transplant (13;14) paves 

the way for accurate determination of biological age of the graft prior to implantation and 

enhanced donor-recipient matching criteria. 

 



20 

 

1.1.9  Cellular Senescence 

Cellular senescence was originally described more than 40 years ago as a process that 

limited the proliferation of somatic human cells in culture (41). In this seminal paper from 

Hayflick and Moorhead (1961), it was suggested that normal somatic cells could only 

escape from senescence by assuming a cancer like phenotype. In addition, it was also 

suggested that cessation of cell growth in culture, may reflect senescence or ageing in-

vivo. Recent data have confirmed these previous observations - cellular senescence induces 

cell cycle arrest and is important for tumour suppression, the ageing process itself and 

beyond simple cellular growth arrest – the emergence of complex senescent phenotypes, as 

detailed below. 

 

Cellular senescence refers to the essentially irreversible growth arrest that occurs when 

cells that can divide encounter significant stressor stimuli. With the possible exception of 

embryonic stem cells (42) most division-competent cells, including some tumour cells, can 

undergo senescence when appropriately stimulated (43;44). Causes of senescence are 

multifactorial. It is widely established that the limited growth of human cells in culture is 

due in part to telomere attrition. Telomeric DNA is lost with each S phase because DNA 

polymerases are unidirectional and cannot prime a new DNA strand, resulting in loss of 

DNA near the end of a chromosome – “the end replication problem”; additionally, most 

cells do not express telomerase, the specialized enzyme that can restore telomeric DNA 

sequences de novo (45;46). Eroded telomeres also generate a persistent DNA damage 

response (DDR), which initiates and maintains the senescence growth arrest (47-50). 

 

Many cells senesce when they experience strong mitogenic signals, such as those delivered 

by certain oncogenes (51-54) or when damage to the structure of DNA is detected, 

particularly DNA double strand breaks (55-57). Thus, many senesce-inducing stimuli 

cause a certain degree of genomic damage. Senescent cells are not quiescent or terminally 

differentiated cells, although the distinction is not always straightforward. Senescent cells 

in fact, display several phenotypes, which, in aggregate, define the senescent state. In 

addition, the expression of CDKN2A is characteristic of most cells in this state and other 

cells with neoplastic transformation. 

 

The content of this thesis attempts to elucidate such hallmarks of senescence and relates 

them primarily to organ function following kidney transplantation.  
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Salient features of senescent cells are generally (but not limited) to the following: 

 

- Late senescence growth arrest is essentially permanent and cannot be reversed by 

known physiological stimuli. Senescence is reversible if the state is early 

senescence (58;59). 

- Senescent cells increase in size, sometimes enlarging more than twofold relative to 

the size of non-senescent counterparts (60). 

- Senescent cells express Senescence Associated Beta Galactosidase (61), which 

partly reflects the increase in lysosomal mass (62). 

- Most senescent cells express CDKN2A, which is not commonly expressed by 

quiescent or terminally differentiated cells (53;63-66). 

- There is generally increased telomere attrition in relation to the senescence state. 

- In some cells, CDKN2A, by activating the pRB tumour suppressor, causes 

formation of senescence-associated heterochromatin foci (SAHF), which silence 

critical pro-proliferative genes (67). 

- Senescent cells with persistent DDR signalling secrete growth factors, proteases, 

cytokines, and other factors that have potent autocrine and paracrine activities (68-

71). This is known as the senescence-associated secretory phenotype (SASP). 
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Figure 1.1 Diagram depicting primary causes and consequences of cellular senescence 

 

 

It has become increasingly clear that cellular senescence is a crucial anticancer mechanism 

that prevents the growth of cells at risk for neoplastic transformation. The stimuli that elicit 

a senescence response all have the potential to initiate or promote carcinogenesis. 

Moreover, to form a lethal tumour, cancer cells must acquire a greatly expanded growth 

potential and ability to proliferate while expressing activated oncogene (72) traits that are 

suppressed by the senescence program.  

Further to the above, cellular senescence depends critically on two powerful tumour 

suppressor pathways: the p53 and pRB/p16INK4a pathways (43;48;52;70-80). Both 

pathways integrate multiple aspects of cellular physiology to determine and orchestrate cell 

fate. In humans and mice, most, if not all, cancers (43;48;52;73-83) harbour mutations in 

one or both of these pathways. Moreover, defects in either pathway compromise cellular 

ability to undergo senescence, and greatly increase organismal susceptibility to cancer. 
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Dismantling the senescence response by inactivating p53 causes a striking acceleration in 

the development of malignant tumours (75).  In addition, some tumour cells retain the 

ability to senesce (44), and do so in vivo in response to chemotherapy for example (70;82) 

or, in some tissues, after reactivation of p53 (84;85) In these cases, the senescence 

response is associated with tumour regression. It is interesting to note that the regressing 

tumour elicits an inflammatory response that stimulates the innate immune system, which 

in turn eliminates the senescent cells. 

Although still debatable, studies argue that cellular senescence restrains cancer by 

imposing a block to the proliferation of damaged/stressed cells (86). It is surprising, then, 

to see that senescent cells also can promote cancer progression. Even though senescence 

per se is closely associated with cancer, it is not within the scope of this thesis to focus on 

the cancer phenotypic pathway; instead an increased emphasis of senescence in relation to 

ageing and organ function will be reviewed in more detail. Albeit, because all pathways are 

very closely related, a brief mention on senescence and tumour progression will ensue 

precisely because the idea of senescence causing tumourigenesis seems paradoxical and a 

very brief explanation is thus merited. 

Firstly, it is important to remember that cancer is primarily an age-related disease (87;88). 

Age is the largest single risk factor for developing a malignant tumour, and cancer 

incidence rises approximately exponentially after about age 50 in humans. In these 

respects, cancer is very similar to the degenerative diseases of ageing. How the senescence 

response actually promotes cancer in later life is still debatable. Senescent cells increase 

with age in a variety of mammalian tissues (61;89-93).  It is not known whether this rise is 

caused by increased generation, decreased elimination, or both. Whatever the genesis, the 

age-related increase in senescent cells occurs in mitotically competent tissues, which, of 

course, are those that give rise to cancer. 

Second, the senescent associated secretory phenotype (SASP) can affect the behaviour of 

neighbouring cells. Strikingly, many SASP factors are known to stimulate phenotypes 

associated with aggressive cancer cells (70;94). Senescent cells also secrete high levels of 

interleukin 6 (IL-6) and interleukin 8 (IL-8), which can stimulate premalignant and weakly 

malignant epithelial cells to invade a basement membrane (69). 

It has also been shown through the work of several groups that senescent cells can 

stimulate tumourigenesis in vivo. Senescent, but not non-senescent, fibroblasts stimulate 
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premalignant epithelial cells, which do not ordinarily form tumours, to form malignant 

cancers when the two cell types are co-injected into mice (95). Further, co-injection of 

senescent, but not non-senescent, cells with fully malignant cancer cells markedly 

accelerates the rate of tumour formation in mice (70;95-98). Thus, at least in mouse 

xenografts, senescent cells have been shown to promote malignant progression of 

precancerous, as well as established cancer cells, in vivo. 

In summary therefore, senescent cells arrest growth owing to cell intrinsic mechanisms, 

imposed by the p53 and pRB/p16INK4a tumour suppressor pathways, and cell non-

intrinsic mechanisms, imposed by some of the proteins that comprise the SASP. The 

growth arrest is the main feature by which cellular senescence suppresses malignant 

tumourigenesis but can contribute to the depletion of proliferative (stem/progenitor) cell 

pools. Additionally, components of the SASP can promote tumour progression, facilitate 

wound healing, and, possibly, contribute to ageing. 

 

1.1.10  Cellular Senescence and Age Related Diseases 

In most age-related diseases, normal cellular/tissue functions fail and thus, most age-

related pathologies are degenerative in nature. Cancer in contrast requires the cell to 

assume a completely new phenotype and can hardly be considered a degenerative process.  

There is increasing evidence that cellular senescence contributes to ageing and age-related 

diseases other than cancer. 

Among the more compelling evidence that senescent cells can drive degenerative ageing 

pathologies are the phenotypes of transgenic mice with hyperactive p53. Two landmark 

papers described mouse models with induced, chronically elevated p53 activity (99;100). 

These mice were exceptionally cancer-free (as expected) since p53 is a critical tumour 

suppressor. What was surprising was their shortened life span and premature ageing. 

Notably, cells from these mice underwent rapid senescence in culture (99). Moreover, 

tissues from these mice rapidly accumulated senescent cells, and, in lymphoid tissue, the 

p53 response shifted from primarily apoptotic to primarily senescent in vivo (101). Thus, 

there was a strong correlation between excessive cellular senescence and premature ageing 

phenotypes. 
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In all these (and other) models of both accelerated and normal ageing, it is important to 

note that the crucial roles for the p53 and/or pRB/p16INK4a pathways are not singular. 

There is mounting evidence that these pathways interact and modulate each other (102-

105). 

Although these mouse models and other findings indicate a strong association between 

ageing phenotypes, certain pathologies and cellular senescence, other processes 

undoubtedly also contribute to ageing and age-related disease. One such process is cell 

death. In addition, some cells in ageing organisms simply lose functionality, which 

certainly also contributes to ageing phenotypes. Neurons, for example, lose the ability to 

form synapses, despite cell bodies remaining viable, which is an important component of 

many neurodegenerative pathologies (106).  Likewise, cardiomyocytes lose synchronicity 

of gene expression, which almost certainly affects heart function (107). 

So how is it that senescent cells promote age related pathologies? and in particular 

relevance to renal transplantation, how is it that senescence contributes to impaired renal 

function several months or years after implantation?  

There are currently three theories that may explain this phenomenon:  

Firstly, as suggested by Liu et al. (98), cellular senescence can deplete tissues of stem or 

progenitor cells. This depletion will compromise tissue repair, regeneration, and normal 

turnover, leading to functional decrements (108). Secondly, the factors that senescent cells 

secrete affect vital processes, such as cell growth and migration, tissue architecture, blood 

vessel formation and differentiation, so are tightly regulated. The inappropriate presence of 

these factors can disrupt tissue structure and function. Thirdly, the SASP includes several 

potent inflammatory cytokines (109). Low-level, chronic, “sterile”inflammation is a 

hallmark of ageing that initiates or promotes most, if not all, major age-related diseases 

(110;111). Chronic inflammation can destroy cells and tissues because some immune cells 

produce strong oxidants. Also, immune cells secrete factors that further alter and remodel 

the tissue environment, which can cause cell/tissue dysfunction and impair stem cell 

niches. As will be shown in the results section to this thesis, increased donor chronological 

age and extended criteria kidneys are associated with lower white cell counts at six, twelve 

and twenty four months post transplant.  The reason behind this most probably attributed to 

increasing doses of immunosuppression administered to counteract clinical or subclinical 
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rejection episodes, as a result of transplanted organs with increased background 

inflammatory oxidative damage.  

Concrete evidence that senescence drives the ageing process remains contentious however. 

Studies have shown that organisms in which cells fail to undergo senescence do not live 

longer; rather, they die prematurely of cancer (81). Several other studies are ongoing to 

elucidate cause and effect in this particular field (112).  

Surprisingly, it has recently been shown that the senescence response may have a role in 

tissue repair. The SASP is associated with the secretion of growth factors and proteases 

that participate in wound healing, attractants for immune cells that kill pathogens, and 

proteins that mobilize stem or progenitor cells. Thus, the SASP may serve to communicate 

cellular damage/dysfunction to the surrounding tissue and stimulate repair, if needed 

(113;114). It could be that this new senescence associated function in tissue repair is 

suggesting that the growth arrest was selected during evolution to suppress tumourigenesis, 

and possibly excessive cell proliferation or matrix deposition during wound repair. 

In summary therefore, cellular senescence seems to be a part of four complex processes 

(tumour suppression, tumour promotion, ageing, and tissue repair), some of which have 

apparently opposing effects.  Upon experiencing a potentially oncogenic insult, cells assess 

the stress and must “decide” whether to attempt repair and recovery, or undergo 

senescence. After an interval or “decision period”, the length of which is imprecisely 

known, the senescence growth arrest becomes essentially permanent, effectively 

suppressing the ability of the stressed cell to form a malignant tumour.  

One early manifestation of the senescent phenotype is the expression of cell surface–bound 

IL-1α (115). This cytokine acts in a juxtacrine manner to bind the cell surface–bound IL-1 

receptor, which initiates a signalling cascade that activates transcription factors (NF-κB, 

C/EBPβ). The transcription factors subsequently stimulate the expression of many secreted 

(SASP) proteins, (68;71;109) including increasing the expression of IL-1α and inducing 

expression of the inflammatory cytokines IL-6 and IL-8. These positive cytokine feedback 

loops intensify the SASP until it reaches levels found in senescent cells. SASP components 

such as IL-6, IL-8, and Matrix Metalloproteinases (MMPs) can promote tissue repair, but 

also cancer progression. Some SASP proteins, in conjunction with cell surface ligands and 

adhesion molecules expressed by senescent cells, eventually attract immune cells that kill 

and clear senescent cells. A late manifestation of the senescent phenotype is the expression 
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of microRNAs (mir-146a and mir-146b), which tune down the expression IL-6, IL-8, and 

possibly other SASP proteins. MicroRNAs (miRNA) are non-coding, single-stranded RNA 

molecules that are involved in the regulation of a variety of biological processes, including 

embryogenesis, differentiation, and senescence. The CDKN2 locus is complex, comprising 

a series of developmentally and epigenetically regulated transcript isoforms. We have 

demonstrated that transcriptional regulation of CDKN2 isoforms by certain miRNAs are 

able to predict the functional status of renal allografts up to six months post transplant. We 

have also demonstrated an association with rejection episodes and have proved an 

association between certain miRNA levels and increasing cold ischaemic time (CIT) 

(McGuinness et al, Sci Trans Med. In submission). The data from this research indicates 

that miRNA profiling has clear potential to be used for pre transplant assessment of post 

transplant allograft function. 

The reason for which certain miRNAs tune down the expression of senescence associated 

interleukins is not really understood but is primarily believed to prevent the SASP from 

generating a persistent acute inflammatory response (116). Despite this dampening effect, 

the SASP can nonetheless continue to generate low level chronic inflammation.  

The accumulation of senescent cells that either escape or outpace immune clearance and 

express a SASP at chronic low levels is hypothesized to drive ageing phenotypes. Thus, 

senescent cells, over time, develop a phenotype that becomes increasingly complex, with 

both beneficial (tumour suppression and tissue repair) and deleterious (tumour promotion 

and ageing) effects on the health of the organism. 

 

1.1.11  Senescence and the Kidney 

Ageing is associated with renal structural changes and functional decline. The age-related 

loss of renal parenchyma approximates 10% per decade of increasing age (117). This loss 

is accompanied by a decrease in renal plasma flow (118-121) and tubular dysfunction 

(122). The average age related loss in glomerular filtration rate (GFR) is reported as 0.40–

1.02 ml/min per year (123-125) and has been attributed to a reduced number of functioning 

glomeruli and an increased number of sclerotic glomeruli (126). 

The kidney is one of the organs that ages fastest, and expression of senescence markers 

have been shown to correlate best with renal ageing and function (13;14). Classically, 

organs from older donors show poorer function post transplant and have a decreased 
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lifespan. Although this holds true in most cases, there are times when such organs perform 

excellently and last beyond their life expectancy. The theory put forward from the results 

of this thesis indicate that such variation in organ function could be attributed to the 

difference in biological age. In fact, the data shows that CDKN2A is the single, strongest 

biomarker of ageing (BoA) for renal function up to 1 year post operative.  

  

Although the assay used in this thesis targeted specifically the CDKN2A transcript of the 

CDKN2 locus, a recognized limitation of a typical CDKN2A assay is the inability to 

discriminate between the two CDKN2 locus transcripts corresponding to the cognate 

proteins  for  p16INK4A and p14ARF. Both transcripts share a common functionality in 

cell cycle G1 control (105;127) and therefore studies determining the contribution p14ARF 

to transplant outcome and function will be of great interest. 

 

1.1.12  Biomarkers of Ageing 

A valid biomarker of ageing must demonstrate variation of sufficient magnitude in short-

term longitudinal or in cross-sectional studies to be of predictive value within a population 

or cohort with regard to physiological capacity at a later chronological age. Indeed, it was 

Baker and Sprott who coined the most accurate definition for a true biomarker of ageing 

(BoA) (125) 

 “A biological parameter of an organism that either alone or in some multivariate 

composite will, in the absence of disease, better predict functional capacity at some later 

age than will chronological age”   

To date very few biomarkers of ageing have been tested (128), namely Senescence 

Associated β Galactosidase (SA-β-GAL), advanced glycation end products, lipofuscin etc. 

However, only 2 have been conclusively validated in the literature: Cyclin Dependant 

Kinase 2A (CDKN2A) and telomere length (13;14). 

 

1.1.13  Telomeres 

Traditionally, bio-ageing has been assessed through a measurement of telomere length.  

Telomeres are nucleo-protein complexes with a DNA component consisting of a simple 

repeat sequence (TTAGGG)n and are approximately 8-11 kilo base pairs long, decreasing 
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by approximately 30% throughout the human lifespan (129).  They are found at the end of 

each chromosome and shorten in normal dividing cells because of the “end replication 

problem”. The primary role of telomeres is to provide stability and protection of 

chromosomes (130). The proteins maintaining the structure of the telomere, also function 

in sensing, signalling and repair of DNA damage as will be discussed below. 

 

1.1.14  The Structure and Function of Telomeres 
 
Besides the (TTAGGG)n repeat sequence, telomeres possess an obligate single-stranded 3 

end overhang, measuring a few hundred nucleotides (131). The single-stranded overhang 

can fold back on the double-stranded telomere to form what is called the t-loop (132). 

Double-stranded telomere sequences are bound directly by two sequence-specific DNA 

binding proteins TRF1 (telomeric repeat binding factor 1) and TRF2 (telomeric repeat 

binding factor 2), which in turn interact with a larger number of proteins.  

TRF2 is critical for telomere end protection and can facilitate formation of the t-loop 

conformation. Disruption of TRF2 leads to loss of the protective capped structure, resulting 

in a change of conformation in the 3 end overhang and loss of chromosome ends 

(133;134). TRF1 can serve to modulate telomere length, but it also serves to facilitate 

DNA replication through the telomere repeats, which act as fragile DNA sites (135;136). 

TRF1 and TRF2 each interact with a common factor - TIN2 (TRF1- interacting nuclear 

factor) (8), which form part of a six-member complex, termed shelterin, that also includes 

POT1 (protection of telomeres protein 1) and TPP1 (tripeptidyl peptidase I) (137).  

TRF2-interacting protein as its name suggests, is a TRF2 interacting factor which is 

recruited to telomeres through its interaction with TRF2 and where it may act to aid in 

repression of non-homologous end joining (138;139). TIN2 itself also interacts with the 

subcomplex of shelterin that binds the single-stranded overhang - TPP1 and POT1, two 

oligonucleotide/ oligosaccharide binding (OB)-fold containing proteins (140-142).  

POT1 directly binds the single-stranded telomere sequences and interacts directly with 

TPP1. POT1 and TPP1 serve a role in protecting the single-stranded portion of the 

telomere because loss of POT1 impairs telomere capping (143-146). In addition, POT1 and 

TPP1 can control telomerase action at telomeres. Overexpression of POT1 leads to 

telomere shortening by inhibiting telomerase action at the telomere (147). In contrast, 

POT1 and TPP1 in vitro serve as potent enhancers of telomerase (148;149), thus this 
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single-stranded telomere complex serves an important role in regulating telomerase at the 

telomere. 

 

 

 

 

 

 
 

 

 

 
Figure 1.2  Mammalian telomere structure and microscopic appearance 
 
A simplified diagram of telomere structure and subcellular location. Telomeres are located at the 
ends of linear chromosomes; in humans, they are composed of hundreds to thousands of tandem 
DNA repeat sequences: hexameric TTAGGG in the leading strand and CCCTAA in the lagging 
strand. Additional protective proteins are also associated with telomeric DNA and are collectively 
called shelterin (TRF1, TRF2, TIN2, POT1, TPP1). The 3′ end of the telomeric leading strand 
terminates as a single-stranded overhang, which folds back and invades the double-stranded 
telomeric helix.  (Figure adapted from: Calado RT, Young NS. Telomere diseases. N Engl J Med. 
2009;361:2353–2365) 
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1.1.15  The “End Replication Problem”  
 

The so-called "end-replication" problem applies primarily to somatic cells and is a direct 

consequence of DNA polymerase's biochemical properties (Figure 1.3). DNA polymerase 

requires short RNA primers to initiate replication, and it then extends the primers in a 5'-

to-3'-direction. Thus, as the replication fork moves along the chromosome, one of the two 

daughter strands is synthesized continuously. The other daughter strand, known as 

the lagging strand, is synthesized discontinuously in short fragments known as Okazaki 

fragments, each of which has its own RNA primer. The RNA primers are subsequently 

degraded, and the gaps between the Okazaki fragments are then filled in by the DNA repair 

machinery. A problem arises at the end of the chromosome, however, because the DNA 

repair machinery is unable to repair the gap left by the terminal RNA primer. 

Consequently, the new DNA molecule is shorter than the parent DNA molecule by at least 

the length of one RNA primer.  

 

The ends of telomeres in germline and immortal cell populations are replicated by the 

enzyme telomerase, a specialised ribonucleoprotein.  Here, it functions to maintain a 

constant telomere length. In human cells, shortening of telomeres is fundamental to 

replicative senescence and is considered to be an anti-neoplastic mechanism (150). Indeed, 

unrestrained telomere attrition can expose chromosome ends, trigger cell cycle checkpoints 

and lead to a senescent state (151) (M1 in Figure 1.4). Cells that are driven to continue 

dividing by abnormal stimuli develop massive genomic instability or crisis (M2 in Figure 

1.4). Germline cells and immortal cell populations like most cancer cell lines possess 

mechanisms (telomerase activation or an alternative mechanism) to preserve their telomere 

length indefinitely despite cell division, thus protecting their genome (152). 
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Figure 1.3  The “End Replication Problem” 

 
The 3'–5' leading strand (above) is copied continuously to the end of the DNA molecule using 
DNA polymerase; the 5'–3' lagging parental strand (below) is copied in discontinuous Okazaki 
fragments initiated by labile RNA fragments (black boxes). The RNA primers are degraded, the 
internal gaps are filled, and the Okazaki fragments ligated. The terminal gap is not filled, leaving 
an unreplicated terminal region varying between the size of the RNA primer and the Okazaki 
fragment. The function of telomerase is to fill the terminal gap in the telomere. If telomerase is not 
present, as is generally true for human cells in vitro, the 5' end of the progeny strand is shortened 
every time the cell divides and DNA is replicated, eventually resulting in cessation of division.
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Figure 1.4 Telomeres, Hayflick limit and Crisis 

 
Telomerase is active in germline cells, maintaining long stable telomeres, but is repressed in most 
normal somatic cells, resulting in telomere loss in dividing cells. At M1, the Hayflick limit, there is 
a presumed critical telomere loss in one or perhaps a few chromosomes signalling irreversible cell 
cycle arrest. This corresponds to the phenotype of replicative senescence. Transformation events 
may allow somatic cells to bypass M1 without activating telomerase. When chromosomes become 
critically short on a large number of telomeres, cells are genomically unstable and enter crisis 
(M2). Rare clones that activate telomerase escape M2, stabilize their genome, and acquire 
indefinite growth capacity. (Figure adapted from: Melk and Halloran – Cell Senescence and its 
implications for nephrology, J Am Soc Nephrol 12: 386, 2001) 
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The term cellular senescence was coined by Hayflick and Moorhead who described the 

phenomenon that human diploid fibroblasts have a limited proliferative capacity in culture 

(41). After 50–70 generations, human fibroblasts show a permanent and irreversible 

growth arrest change in cell morphology. Subsequently, it was shown that replicative 

senescence occurs as soon as telomeres become critically shortened (46). Bodnar et al 

showed how telomerase, an enzyme that maintains telomere length, is able to rescue 

fibroblasts from replicative senescence (45). As the majority of human cells do not express 

telomerase, their ability to divide is therefore limited to a certain threshold (Hayflick 

number). If telomeres become critically short, they have the potential to unfold from their 

presumed closed structure, this may precipitate chromosomal fusions. The cell may detect 

this uncapping as DNA damage and then either stop growing (entering senescence), or 

begin programmed self-destruction (apoptosis). Alternatively, the cell may enter a state of 

immortality, depending on the cell's genetic background/p53 status (153) (Figure 1.5). 
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Figure 1.5  Critical telomere shortening and p53 

 
Telomere shortening activates p53 and drives formation of epithelial cancers through gene 
amplification and deletion. Telomeres shorten progressively with cell division due to the end-
replication problem in cells with no telomerase. Critical telomere shortening compromises the 
telomere cap and results in a DNA damage response that activates the p53 tumour suppressor 
protein. This activation of p53 induces replicative senescence in cultured human fibroblasts, 
impairs stem cell self renewal, induces apoptosis in tissue progenitor cells, causes premature ageing 
and strongly suppresses tumour formation. If p53 is mutated or deleted, these responses to telomere 
dysfunction are mitigated and chromosomal fusions are tolerated. Chromosome breakage 
subsequently occurs predisposing to translocations, deletions and amplifications with resultant 
carcinogenesis. (Adapted from: Artandi and DePinho – Telomeres and telomerase in cancer, 
Carcinogenesis Vol.31 no.1 pg 10, 2010) 
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Paradoxically therefore, an age-related decline in telomere length may promote genetic 

instability and increase the risk of malignancy (154). This is associated with an increase in 

oxidative damage accruing in biologically ageing tissues. Organs deteriorate as more and 

more of their cells die off or enter cellular senescence. A wide range of different diseases 

exhibit accelerated telomere attrition including psychological, cardiovascular, 

neurodegenerative, renal, osteo- and hepatic diseases (1;4;155-160). With respect to 

patients in end stage renal failure (ESRF), Carrero and colleagues, first showed that 

shortened telomere length is associated with higher levels of DNA damage (8-OH-dG) and 

increased mortality in haemodialysis patients (161). These findings were independent of 

age and gender which may be considered strong confounders for telomere length in 

humans (162). Such data proves invaluable as a means of progression to studies in 

enhancing the quantity of kidneys available for transplantation. Interestingly, the latter 

study also confirmed observations by Nawrot et al that females show less age related 

telomere attrition. They hypothesize that oestrogen may directly or indirectly exert 

protective effects on telomere length due to its anti inflammatory and anti oxidant 

properties (155;163;164).  

 

Replicative senescence and critical telomere attrition result in the activation of a number of 

cyclin dependent kinase inhibitors. Typically, p21 expression is elevated following acute 

oxidant insult followed by elevation of CDKN2A (p16INK4a) expression, necessary for 

the maintenance of the senescent state (165). 

 

1.1.16   Senescence and STASIS 

In addition to progressive telomere shortening (leading to replicative senescence as 

detailed above), telomere dysfunction can be initiated by a change of state (uncapping) that 

leads to a rapid induction of growth arrest. This is also termed senescence (44;54;61;166-

179). As depicted above, when the telomeric DNA structure or sequence is altered, or 

telomere proteins are depleted or mutated, cells undergo chromosome end-associations and 

fusions leading to growth arrest or death. This growth arrest is similar to telomere based 

replicative senescence in most, but not all, regards. For example, in both types of growth 

arrest a) cells cannot divide even if stimulated by mitogens b) cells remain metabolically 

active and c) cells show characteristic changes in morphology. 
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It has been shown that growth inhibitory genes can be activated in cell culture and in vivo 

due to a variety of environmental stresses in a process called “Stress or Aberrant Signaling 

Induced Senescence” - STASIS (also called premature senescence, culture shock and 

stress-induced senescence) (44;53;168;178;179). While cells undergoing replicative 

senescence can be immortalized by expression of hTERT (telomerase reverse transcriptase 

– a catalytic subunit of the enzyme telomerase) to maintain telomere homeostasis, this does 

not occur in cells undergoing growth arrest due to STASIS (167;169;171-173). This has 

led many authors to follow a simple definition for replicative senescence to be: ‘Growth 

arrest under adequate culture conditions if telomeres are rate-limiting for continued cell 

proliferation and hTERT can directly immortalize the cells.’  It is important to make this 

distinction as the triggering agents are different (short telomeres versus a stress or damage-

induced signaling pathway that may or may not involve telomeres i.e telomere dependant 

or telomere independent). 

 

STASIS may be an evolutionarily conserved mechanism that helps guard cells against 

oncogenic insults. It would be advantageous to prevent normal and pre-cancerous cells 

from proliferating if placed in an inappropriate environment (e.g. not receiving the proper 

mitogens or other signals from their neighbors), or following stresses likely to induce 

multiple mutations (44). Treatment of most types of tumour cells with conventional 

anticancer therapies activates DNA damage-signaling pathways and can induce a rapid 

onset of STASIS. Another example of the induction of STASIS apart from oncogenic 

stimuli or cancer treatment is the cellular response to oxidative damage (44;179). Of 

particular importance is the fact that in these instances, the expression of hTERT does not 

result in the bypass of STASIS, thus demonstrating that this type of growth arrest does not 

involve counting cell replications (e.g. telomere-based replicative senescence) 

(53;54;61;166-179). 

 

In both replicative senescence and STASIS, the initiating event can be triggered by similar 

mechanisms including recognition by cellular sensors of DNA double-strand breaks 

leading to the activation of cell-cycle checkpoint responses and recruitment of DNA repair 

foci. There is much research underway trying to elicit  the diverse signaling pathways that 

cause cells, in some contexts, to undergo replicative senescence and in other contexts to 

initiate STASIS or apoptotic signaling programs.  
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1.1.17  Cyclin Dependant Kinase 2A - CDKN2A 

CDKN2A plays an important role in regulating the cell cycle, and mutations in this gene 

increase the risk of developing a variety of cancers. Increased expression of CDKN2A at 

the cellular level, is a robust marker of the senescent state and has also been shown to 

reduce the proliferation of stem cells (180). The amount of CDKN2A increases 

dramatically as tissue ages in both humans and rodents (181-185) and could potentially be 

used as a test that measures how fast the body's tissues have aged at a cellular level. This 

would be of enormous significance to the transplant community in particular, by allowing 

for enhanced screening methods in the selection of kidneys from chronologically older and 

marginal donors. 

 

1.1.18  CDKN2A functions in vitro and in vivo 

Senescence is a tumour suppressor mechanism, and many cancers contain cells that have 

escaped from senescence to become immortalized. Immortalization is associated with loss 

of normal function of the tumour suppressor locus, CDKN2A. Two proteins, CDKN2A 

(p16INK4A) and CDKN2A isoform 4 (p14ARF in humans; p19ARF in rodents), are 

encoded by this locus (186).  

 

CDKN2A is a specific inhibitor of cyclin dependent kinase 4 (cdk4) and cyclin dependent 

kinase 6 (cdk6), which participate in the cyclin D-dependent phosphorylation of the 

retinoblastoma susceptibility gene product, Rb (187). Hypophosphorylated pRB acts with 

E2F proteins to repress transcription of genes necessary for the G1–S phase transition. 

Hyperphosphorylation of Rb inactivates its growth-suppressive properties, allowing cells 

to enter S phase.  

 

P14ARF is an alternate reading frame (ARF) product of the CDKN2A locus. Therefore, 

both CDKN2A and p14ARF are involved in cell cycle regulation. p14ARF inhibits murine 

double minute (mdm2), thus promoting p53, which promotes p21 activation, which then 

binds and inactivates certain cyclin-CDK complexes, which would otherwise promote 

transcription of genes that would carry the cell through the G1/S checkpoint of the cell 

cycle. Loss of p14ARF by a homozygous mutation in the CDKN2A gene will lead to 
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elevated levels of mdm2 and, therefore, loss of p53 function and eventual loss of cell cycle 

control. Mdm2 is therefore an important negative regulator of the p53 tumour suppressor 

(188). 
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Figure 1.6  Pathways controlled by the CDKN2A locus 

 
The CDKN2A gene locus encodes two proteins p16INK4a and p14ARF in humans. In the p16 
pathway, high levels of p16 inhibit the conversion of Cyclin Dependant Kinases 4 & 6. This 
enables product of Retinoblastoma (pRB) to remain hypophosphorylated and therefore interacts 
with E2F to inhibit cell cycle progression. Conversely, low levels of p16 would allow activation of 
Cyclin D which hyperphosphorylates pRB and allows E2F to promote cell cycle progression. In the 
p14 pathway, high levels of p14 would inhibit MDM2. Low levels of MDM2 would allow for 
uninhibited and therefore greater levels of p53 leading to apoptosis directly and activation of p21 
pathway leading to cell cycle arrest. 
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1.1.19  CDKN2A, Tumour Suppression and the Senescent Phenotype 

Several lines of evidence indicate that CDKN2A is a tumour suppressor. Firstly, its gene 

maps to 9p21, a chromosomal locus rearranged in many human cancers (189). Secondly, 

CDKN2A is commonly deleted, mutated, or hypermethylated and transcriptionally 

silenced in tumours that retain wild-type Rb, and ectopic expression of CDKN2A in these 

cells at high levels results in G1 arrest (190-195). Furthermore, CDKN2A-deficient mice 

are susceptible to several types of malignancies (196), and germ line mutations of 

CDKN2A in humans are associated with familial syndromes involving malignant 

melanoma and pancreatic cancer (197-200). 

 

The precise mechanism by which CDKN2A exerts its tumour suppressive effects is less 

clear. One straightforward suggestion is that inactivation of CDKN2A is required for 

malignant cells to enter S phase efficiently. However, many normal cells express 

CDKN2A throughout G1 and are able to proliferate, suggesting that other mechanisms of 

tumour suppression must be operating. An alternative mechanism involves the link 

between CDKN2A expression and cellular senescence (63;65;196;201). As fibroblasts or 

epithelial cells age, CDKN2A levels increase dramatically, and it has been proposed that 

loss of CDKN2A expression is required for cells to escape senescence during their 

progression to malignancy. Another possibility is that CDKN2A plays a role in the 

maintenance of genome integrity (202). Frequently, following DNA damage, normal cells 

arrest their proliferation at cell cycle checkpoints, the most prominent of which occur at the 

G1-S and G2-M boundaries. Arrest allows time for repair prior to continued cell cycle 

progression. One G1 arrest checkpoint is controlled by p53 (203;204). In response to DNA 

damage, p53 levels increase by a post-transcriptional mechanism, resulting in the 

transcriptional activation of p21, a universal inhibitor of cyclin-dependent kinases, which 

can mediate G1 arrest (205-207). Inactivation of p53 is the most common genetic event in 

human cancer, suggesting that loss of a DNA damage induced G1 checkpoint is an 

essential step in tumour progression. This allows damaged DNA to be replicated, which 

leads to the accumulation of additional mutations and the eventual emergence of a 

malignant clone. 
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1.1.20  Telomeres, p16, p21 and senescence 

Many senescence inducing stimuli cause genomic damage or epigenomic disruption. 

Besides increased expression of CDKN2A (p16INK4a), the limited growth of human cells 

in culture is due in part to telomere erosion. Also, many cells senesce when they 

experience strong mitogenic signals, such as those delivered by certain oncogenes or 

highly expressed pro-proliferative genes (51-54).   

 

Senescence is not a static condition. Stein et al (1999), postulated different age related 

patterns of accumulation of CDKN2A and p21 in Human Diploid Fibroblasts (HDFs). 

Because p21 and CDKN2A have very different age-related patterns of accumulation in 

HDFs, they proposed that replicative senescence in HDFs comprises two events: an 

increase in p21 that is driven by the “mitotic clock” and an upregulation of CDKN2A as 

part of a program of differentiation that is turned on in senescent cells.  

 

Firstly, the progressive age-dependent accumulation of p21 suggests that it occurs as a 

consequence of replication related processes such as telomere shortening (46), DNA 

demethylation (208), and the effects of DNA damage (209;210). It results in inactivation of 

all G1 cyclin-Cdks, such that pRb fails to be phosphorylated, E2F transcription factors are 

not released, late-G1 genes necessary for DNA synthesis are not expressed, and the cells 

become irreversibly arrested in G1 phase.  

 

Secondly, they hypothesized that at senescence a program of differentiation is initiated that 

involves the accumulation of CDKN2A, as well as changes in the morphology, size, and 

functional attributes of the cells (61;63;65;211-215). The concomitant decline of p21 from 

its peak in early senescence could occur owing to decay of the replication-related signals 

that drove its increase as the cells were ageing, or p21 might be down regulated as a 

necessary part of the putative differentiation program. Consequently, in late senescent cells 

Cdk inactivation and the cell cycle arrest are maintained through the combined effect of 

CDKN2A and p21. A further explanation of this is found in Chapter 2 of this thesis. 

 

The kidney itself is potentially, an ideal marker for the measurement of human senescence. 

Most studies would agree that there is an age dependant decline in renal function (GFR). In 

fact, GFR descent usually begins around 30 to 40 years of age and appears in both males 
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and females. This finding has also been reproduced in the animal model presented in 

chapter 2 of this thesis. In humans, the average rate of decline in GFR averages about 

0.8mL/min/1.73m2 after age 30. There have also been suggestions that the decline in GFR 

accelerates after age 65 to 70 (216;217). Longitudinal studies by Lindeman et al and Rowe 

et al have shown that a decline in glomerular filtration rate is part of ageing and can be 

considered as one of the many biological manifestations of senescence rather than a result 

of the disease processes that commonly accompany senescence e.g atherosclerosis and 

congestive heart failure (218;219). It thus may be fitting to apply the Baker and Sprott 

criterion to the use of kidney tissue as an indicator of organ specific and possibly even total 

body senescence.  

Although the change in telomere length (TL) with chronological age is undeniable, the use 

of TL as a marker of ageing has recently been questioned. Several authors have recently 

reviewed the literature with respect to the utilisation of telomere length as a biomarker of 

ageing. They conclude that whilst there is clear evidence that telomeres are involved in 

ageing and diseases of premature ageing, the data supporting TL as a biomarker of ageing 

is inconclusive (128;220;221). There are a number of potential reasons highlighted by this 

review including; the high degree of inter-individual variability at similar chronological 

ages and the lack of definitive association between telomere length and functional 

capacity. Indeed in order to fully conform to Baker and Sprott’s definition of a BoA, 

telomere length must predict lifespan better than chronological age. Studies investigating 

this specific issue are again inconclusive. Issues with methodology are also potentially 

confounding as certain studies use southern blot analysis to determine TL whereas the 

others use q-PCR. This further highlights the importance of future standardisation of 

research protocols to prevent potential issues with interpretation of results. 

CDKN2A on the other hand has been validated as both a robust biomarker of ageing and 

shows significant relation to renal function in the post transplant phase when assessed prior 

to implantation (13;14) as demonstrated below. 

 

1.1.21  Epigenetic regulation of renal function and Model testing 

Assessment of organ bioage therefore, together with the testing of models for bioage 

effects and epigenetic regulation could be of vital significance to optimize patient selection 

and counseling prior to transplantation. The most well studied epigenetic regulatory 
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mechanisms include covalent chemical modification of DNA (methylation), chromatin 

(covalent histone post-transcriptional modifications) and non-coding RNAs (miRNAs). 

These mechanisms are ultimately related to the regulation of gene expression and 

chromatin structure. Epigenetics is the study of phenotypic changes that occur in a cell 

independent of changes to the underlying genome (222). It refers to functionally relevant 

modifications to the genome that do not involve a change in the nucleotide sequence. 

Genetic programmes for development, differentiation, and response to stress at a cellular or 

organ level can be altered by epigenetic modifications. Indeed, as a parallel project, Shiels 

lab has shown the importance of epigenetic regulation on the performance of kidney 

transplants post-operatively with promising results (McGuinness et al, Sci Trans Med. In 

submission). Renal function is complex and multifactorial and the most clinically relevant 

consequences of dysfunction are subtle and systemic.  Agents tested in vitro and effective 

in cytoprotection were evaluated in in-vivo studies (Chapter 3) for their effects on 

preserving renal function in the context of renal ischaemia reperfusion injury. The rodent 

model is the most reproducible and appropriate one in which to study these systems and is 

widely used in the published literature.  The validity of this model is confirmed by the fact 

that a variety of drug agents established in clinical transplantation have been developed in 

this way. As discussed in further detail in Chapter 2, the AS/AGU rat was chosen as an 

ideal target to study the effects of premature ageing on ischaemia reperfusion injury on the 

kidney thereby mimicking a similar scenario to ECD kidneys undergoing transplant related 

stress. The thesis provides sound evidence that TL is not an ideal biomarker in determining 

post transplant renal function when compared to CDKN2A. This finding was carried 

forward to a comprehensive in vivo animal model to test the protective effects of novel 

clinical entities (NCE) with respect to IR injury in the kidney. NCEs were vigorously 

validated in vitro prior to their application in vivo and such experiments also serve as a 

platform to engage in further studies involving NCEs and renal allograft transplantation in 

rodents (Whalen et al in prep). 
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1.2  Hypothesis  
 

i. Biological, as opposed to chronological age - the previous gold standard for predicting 

post transplant allograft function, is a better predictive and prognostic marker for 

allograft function. 

ii. Use of a validated Biomarker of Ageing (CDKN2A) offers superior predictive and 

prognostic power for determination for post transplant allograft function. 

iii. Telomere length known as the “Gold standard”  Biomarker of Ageing is not as robust 

as CDKN2A in predicting renal function 

 

 

1.3 Aims 
 

i.  Is telomere length a validated Baker and Sprott Biomarker of ageing?  

ii. Is CDKN2A superior to TL and donor chronological age in predicting post transplant 

renal function? 

iii. Can we use CDKN2A and/or TL in a multivariate model to better predict post 

transplant renal function? How do they cross-compare? 

iv.  In the evaluation of deceased kidneys, is a pre-transplant scoring system incorporating         

biomarkers of ageing a realistic target for the future? 
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1.4  Materials and Methods 

 

1.4.1  RNA extraction using TRIzol® technique 

The following method is a slightly modified version of the manufacturer’s protocol. Time 

zero pre-implantation kidney biopsies are stored in RNA Later® (Invitrogen) and 

refrigerated at 4°C.  

50-100mg of kidney tissue is homogenised in 1ml of TRIzol® solution. Samples are then 

incubated at room temperature for 10-15 minutes to allow for cell membrane dissociation. 

Samples are then centrifuged at 12,000 x g for 10mins at 4°C. The supernatant is then 

transferred to a fresh tube taking care not to remove any liquid from the interphase. 200µl 

of chloroform is then added per 1ml of TRIzol®  used initially. The eppendorf tubes are 

shaken vigorously by hand for 15secs and left at room temperature for 2-3 mins. Samples 

are then centrifuged at 12,000 x g for 15mins at 4°C. The colourless upper (aqueous) phase 

is transferred into a fresh tube. During RNA precipitation, an equal volume of isopropanol 

is added, mixed well and transferred to -20°C for 1hr. The samples are then centrifuged at 

12,000 x g for 20mins at 4°C. RNA is now pelleted at the bottom of the tube. As much 

supernatant as possible is removed without disturbing the pellet. 1ml of ice cold 75% 

ethanol in DEPC treated water is added, sample is vortexed and re-centrifuged at 12,000 x 

g for 20mins at 4°C. The supernatant is then removed and the pellet is washed with ethanol 

and centrifuged once again. Supernatant is finally removed and the pellet left to air dry for 

10-15 mins. Once most ethanol has evaporated, the pellets are dissolved in DEPC treated 

or nuclease free water approx 30-50µl and stored at -80°C. 

 

1.4.2  DNA extraction 

The Maxwell® 16 DNA purification robot kits by Promega were used for for DNA 

isolation from both blood and tissue samples. The sample was collected in 200µl of elution 

buffer and centrifuged to pellet the beads. Samples were then aliquoted into separate 100µl 

volumes and stored at -20°C. 
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1.4.3  Spectrophotometry 

The Nanodrop® UV spectrophotometer is used for analysis. 1.6µl sample is placed on the 

pedestal after using an appropriate blank. The machine subsequently forms a column of 

fluid through which the absorbance of the sample is measured, particularly at the 260nm, 

280nm and 230nm wavelengths. RNA and DNA samples should give a 260/280 ratio 

between 1.8 and 2. 

 

1.4.4  Gel Electrophoresis 

A common method used to assess the integrity of total RNA is to run an aliquot of the 

RNA sample on a denaturing agarose gel stained with ethidium bromide (EtBr). Intact total 

RNA will have a sharp, clear 28S and 18S rRNA band in eukaryotic tissue. The 28S rRNA 

band should be approximately twice as intense as the 18S rRNA band. This 2:1 ratio 

(28S:18S) is a good indication that the RNA is completely intact. Partially degraded RNA 

will have a smeared appearance, will lack the sharp rRNA bands, or will not exhibit the 2:1 

ratio of high quality RNA. Completely degraded RNA will appear as a very low molecular 

weight smear. Inclusion of RNA size markers on the gel will allow the size of any bands or 

smears to be determined and will also serve as a good control to ensure the gel was run 

properly. 

Gel construction (1%) for control of RNA degradation involves making a 0.5x TBE Buffer 

in the following quantity: 950 ml d H2O + 50 ml 10xTBE. 100 ml of this is then poured 

into beaker and 1g of Agarose added (per 100mls of 0.5x TBE Buffer). The beaker is then 

placed in the microwave for 1 min+ 30 sec+ 30 sec. Ethidium bromide (10mg/ml) is added 

to the gel solution (5µl for every 100 ml of gel). The solution is allowed to cool in the 

beaker for 20 minutes. As crystals start to form, hot gel solution is poured into the chamber 

for setting. The remaining 900ml of 0.5xTBE Buffer is used for the running chamber. 

                         

1.4.5  DNase Treatment  
(Promega RQ1 RNase-Free DNase®) 

Prior to the conversion of mRNA to cDNA, it is necessary to perform DNAse treatment to 

remove all remaining genomic DNA. Per 4µg of RNA, 1µl of DNAse is added together 
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with 1.5µl of buffer DNAse and 0.5µl of RNAse inhibitor (RNAse out) (The latter is 

necessary in order to de-activate any remaining enzymes capable of degrading RNA in the 

sample). The sample is made up to 30µl with DEPC treated water and placed at 37°C for 

30mins. 1µl of STOP solution is then added per tube. This solution inhibits DNAse. 

Subsequently, the sample is placed at 65°C for 10mins and immediately on ice. Nanodrop 

is then repeated. 

 

1.4.6  cDNA Synthesis  
(Roche Transcriptor Reverse Transcriptase) 

After purification of RNA, conversion to cDNA is necessary in order to proceed to q-PCR. 

For this a standard manufacturer’s protocol is used comprising an initial 1µg of RNA 

(DNAse treated), 1.2µl of Random Hexamers and Xµl of H20 (nuclease free) to make a 

total of 13µl volume. This is mixed carefully and pulse spun. Samples are then placed at 

65°C x 10mins (Biometra Thermal Cycler®) and following this, immediately on ice. 0.5µl 

of RNAse out, 0.5µl of Transcriptor® Reverse Transcriptase, 2µl of dNTP and 4µl of 

5xRT Buffer are added to make a total of 20µl volume. The eppendorf is mixed and pulse 

spun. The following cycles are undertaken: 25°C for 10mins, 55°C for 30mins, 85°C for 

5mins and 4°C for 10mins. Samples are stored at -20°C until further use. 

 

1.4.7  Taqman RT-PCR 

Taqman RT-PCR is a cDNA-specific 5’ nuclease assay for quantitatively detecting RT-

PCR products using a non-extendable oligonucleotide hybridisation probe. The probe is 

labelled with a reporter fluorescein dye, 6-carboxy-fluorescein (FAM), at the 5’ end and a 

quencher fluorescent dye, 6-carboxy-tetramethyl-rhodamine (TAMRA), at the 3’ end. 

When the probe is intact, the reporter dye emission is quenched due to the physical 

proximity of the reporter and quencher fluorescent dyes. During the extension phase of the 

PCR cycle, the nucleolytic activity of the Taq DNA polymerase cleaves the hybridisation 

probe and releases the reporter dye from the probe. With each cycle of PCR amplification 

there is an increase in fluorescence emission which is monitored in real-time using the ABI 

Prism 7700 sequence detector. 
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The sequence detector is a combination thermal cycler, laser and detection software system 

that automates 5’ nuclease-based detection and quantitation of nucleic acid sequences. A 

computer algorithm compares the amount of reporter dye emission (Rn+) with the 

quenching dye emission (Rn–) during the PCR amplification, generating a ∆Rn  value (Rn+/ 

Rn–). The ∆Rn value reflects the amount of hybridised probe that has been degraded. The 

algorithm fits an exponential function to the mean ∆Rn values of the last three data points 

for every PCR extension cycle, generating an amplification plot. 

Taqman RT-PCR was performed for CDKN2A and simultaneously performed using 

primer/probe sets for hypoxanthine phosphoribosyltransferase (HPRT), housekeeping 

genes used as internal references. The amplification of the endogenous control allowed us 

to standardise the amount of RNA in each reaction. 

A threshold was set at a point where this amplification appeared linear. The resultant 

threshold cycle number (Ct) for both of these genes was recorded for each sample. This 

allowed Ct values to be normalized to the endogenous housekeeping gene.  

The comparative Ct method of calculating gene expression was then performed. This 

involved comparing the Ct values of the samples of interest with a control or calibrator 

such as a non-treated sample or RNA from normal human tissue.  The comparative Ct 

method is also known as the 2–∆∆Ct method, where ∆∆Ct = ∆Ct Sample – ∆Ct Reference. Here, 

∆Ct Sample is the Ct value for any sample normalized to the endogenous housekeeping gene 

(Ct Sample – Ct Housekeeping gene) and ∆Ct Reference is the Ct value for the calibrator also 

normalized to the endogenous housekeeping gene (Ct Reference – Ct Housekeeping gene). 

For the ∆∆Ct calculation to be valid, the amplification efficiencies of the target and the 

endogenous reference housekeeping gene must be approximately equal. This can be 

established by looking at how ∆Ct Sample varies with template dilution. If the plot of cDNA 

dilution versus ∆Ct Sample is close to zero, it implies that the efficiencies of the target and 

housekeeping genes are very similar. 
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The primers used for CDKN2A and HPRT qPCR are listed below followed by a 

diagrammatic representation of the steps involved in the real-time Taqman PCR reaction is 

presented in Figure 1.7  [Adapted from Applied Biosystems Taqman Manual] 

 

 

 

 

 

HPRT 

Forward Primer (5/-CTTGCTCGAGATGTGATGAAG-3/), 

Reverse Primer (5/-CAGCAGGTCAGCAAAGAATTTATAG-3/), 

Probe (5/-FAM-ATCACATTGTAGCCCTCTGTGTGCTCAAGGTAMRA-3/) 

 

CDKN2A 

Forward Primer (5/-CATAGATGCCGCGGAAGG-3/), 

Reverse Primer (5/-CCCGAGGTTTCTCAGAGC-3/), 

Probe (5/-FAM-CCTCAGACATCCCCGATTG-TAMRA-3/) 
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Figure 1.7 Real time Taqman PCR reaction 

1.  The primers and probe anneal to the cDNA transcript. There is no fluorescence because the 
reporter dye emission is quenched   2.  The primers are extended during the extension phase of the 
PCR cycle  3.  The 5’-3’ exonuclease activity of the DNA polymerase cleaves the hybridised probe 
and releases the reporter dye emission resulting in an increase in reporter fluorescent dye emission 
4. The primers continue to be extended until polymerisation of the amplicon is complete. (Adapted 
from AB Taqman® Gene Expression User Manual 2012) 

 
 

 

 

 



51 

 

1.4.8  Telomere Assay Protocol  
(Roche Light Cycler 480®) 

For this assay 35ng of DNA was required per well. Each sample was assayed in triplicate 

in both the telomere and 36B4 reference plates. To each well 5µl of DNA was added 

(7ngDNA/µl). In total 35µl was made (245ng DNA) of each sample (7x5µl 6 wells for two 

plates plus 1 well extra). DNA was diluted in nuclease free H2O. Before aliquoting the 

DNA it was heated to 65oC for 10 minutes then vortexed and centrifuged briefly to ensure 

it was thoroughly resuspended. Samples were stored at 4oC until required. For absolute 

quantification analyses, serial dilutions of a standard with known concentration were used 

to create a standard curve. The standard curve (reference DNA) was then used to determine 

the relative telomere lengths of the the unknown samples ratio of telomere repeat copy 

number to single gene copy number. The methodology adopted is based on Cawthon’s 

technique first described in 2002 (223). (Our standard was chosen to be a young healthy 

male PhD student and was used for all previous and subsequent telomere analyses in the 

laboratory) The ratio of telomere repeat copy number to single gene copy number of the 

unknown sample is compared to that of our reference DNA (standard) to give the T/S ratio. 

Indeed, T/S = 1 when the unknown DNA is identical to the reference DNA in its ratio of 

telomere repeat copy number to single gene copy number. The crossing point (CP – the 

point at which the fluorescence of a sample rises above the background fluorescence) of 

the standards and the samples was in fact used to calculate relative DNA concentrations. 

As with the samples, each standard was assayed in triplicate in both the telomere and 36B4 

plates. The DNA concentration of the standards for this assay ranged from 100ng to 

3.125ng, they were prepared by serial dilution (1:2).  To each well 5µl of standard DNA 

was added. A reference positive control (calibrator) was required in each plate.  The 

concentration of this sample should fall within the range of the standard curve 

(approximately half way). Therefore for this assay 50ng of DNA was required per well for 

the reference positive control. As with the samples, the reference sample was assayed in 

triplicate in both the telomere and 36B4 plates. To each well 5µl (10ng/µl) of reference 

DNA was added. Therefore 35µl (350ng) of reference sample was needed (7x5µl 6 wells 

for two plates plus 1 well extra). DNA was diluted in nuclease free H2O. Before aliquoting 

the DNA, it was heated to 65oC for 10 minutes then vortexed and centrifuged briefly to 

ensure DNA was thoroughly resuspended. Samples were stored at 4oC until required. 
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The following sequence of telomere primers were used:  

Telo 1 Sequence (5’ to 3’) 

CGG TTT GTT TGG GTT TGG GTT TGG GTT TGG GTT TGG GTT 

Telo 2 Sequence (5’ to 3’) 

GGC TTG CCT TAC CCT TAC CCT TAC CCT TAC CCT TAC CCT 

The following sequence of 36B4 primers were used: 

36B4d Sequence (5’ to 3’) 

CCC ATT CTA TCA TCA ACG GGT ACA A  

36b4u  Sequence (5’ to 3’) 

CAG CAA GTG GGA AGG TGT AAT CC 

Master Mix Preparation utilised the SYBR Green I Master from Roche. The kit contains 2x 

SYBR Green I Master Mix and H2O PCR Grade. The only other reagents that needed to be 

added to the master mix were the primers. The total reaction volume per well is 20µl; 5µl 

of this is the sample/standard DNA therefore the remaining 15µl is comprised of the 

master mix. Consequently the total volume of master mix required is 1500µl (96 wells x 

15µl plus 4 extra wells). The master mix is prepared as indicated in Table 1.1: 

 

Reagent Master mix TEL  Reagent Master mix 36 B4 

 
Vol reqd 
per well(µl) 

Vol reqd 
for 100 wells(µl)  

 
Vol reqd 
per well(µl) 

Vol Reqd 
for 100 wells(µl) 

     
2x master mix 10 1000  2x master mix 10 1000 
Telo 1 0.75 75  36B4d 0.4 40 
Telo 2 0.75 75  36B4u 0.4 40 
H2O 3.5 350  H2O 4.2 420 
total 15 1500  total 15 1500 

 

Table 1.1  Mastermix preparation  

The table shows the mastermix preparation for both telomere and 36B4 plates.  Per well total 
reaction volume = 20µl 
 



53 

 

As indicated in Table 1.2, in each plate there were 6 standards, a reference sample (SC 

positive control), a no template control (negative control – no DNA is added to this well 

only master mix. The purpose of this is to make sure that there is no contamination of any 

reagents) and 24 unknown samples. Plate layout was as follows: 

 

 1 2 3 4 5 6 7 8 9 10 11 12 

te
lo

m
er

e 
& 

36
B

4 

A SD1 SD1 SD1 1 1 1 9 9 9 17 17 17 
B SD2 SD2 SD2 2 2 2 10 10 10 18 18 18 
C SD3 SD3 SD3 3 3 3 11 11 11 19 19 19 
D SD4 SD4 SD4 4 4 4 12 12 12 20 20 20 
E SD5 SD5 SD5 5 5 5 13 13 13 21 21 21 
F SD6 SD6 SD6 6 6 6 14 14 14 22 22 22 
G SC SC SC 7 7 7 15 15 15 23 23 23 
H ntc ntc ntc 8 8 8 16 16 16 24 24 24 

 

        Table 1.2  Plate layout of both telomere and 36B4 plates 

 

All standards/samples were heated to 95oC for 5 minutes and then transferred to ice. The 

plate was wrapped in foil to protect it from light and centrifuged at ~2000rpm for 2 

minutes. Various stages of heating and cooling are undertaken in the Light Cycler RT-PCR 

machine. Conditions are different for both telomere (Table 1.3) and 36B4 plates (Table 

1.4). 
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Program Name Heat Start (HS) 
Cycles 1 Analysis Mode None 
Target (oC) Acquisition 

Mode 
Hold 
(hh:mm:ss) 

Ramp Rate 
(oC/s) 

Acquisitions 
(per oC) 

95 None 00:10:00 4.4  
 
Program Name Amplification (Amp) 
Cycles 30 Analysis Mode Quantification 
Target (oC) Acquisition 

Mode 
Hold 
(hh:mm:ss) 

Ramp Rate 
(oC/s) 

Acquisitions 
(per oC) 

95 None 00:00:05 4.4  
59 None 00:00:10 2.2  
72 Single 00:02:00 4.4  
 
Program Name Melt 
Cycles 1 Analysis Mode Melting Curves 
Target (oC) Acquisition 

Mode 
Hold 
(hh:mm:ss) 

Ramp Rate 
(oC/s) 

Acquisitions 
(per oC) 

95 None 00:00:30 4.4  
65 None 00:00:30 2.2  
95 Continuous 00:02:00 0.29 2 
 
Program Name Cool 
Cycles 1 Analysis Mode None 
Target (oC) Acquisition 

Mode 
Hold 
(hh:mm:ss) 

Ramp Rate 
(oC/s) 

Acquisitions 
(per oC) 

40 None 00:00:10 2.2  
 

Table 1.3  Roche Lightcycler® Telomere Running Conditions 
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Program Name Heat Start (HS) 
Cycles 1 Analysis Mode None 
Target (oC) Acquisition 

Mode 
Hold 
(hh:mm:ss) 

Ramp Rate 
(oC/s) 

Acquisitions 
(per oC) 

95 None 00:05:00 4.4  
 
Program Name Amplification (Amp) 
Cycles 35 Analysis Mode Quantification 
Target (oC) Acquisition 

Mode 
Hold 
(hh:mm:ss) 

Ramp Rate 
(oC/s) 

Acquisitions 
(per oC) 

95 None 00:00:05 4.4  
58 None 00:00:15 2.2  
72 Single 00:00:15 4.4  
 
Program Name Melt 

Cycles 1 Analysis Mode Melting Curves 

Target (oC) Acquisition 
Mode 

Hold 
(hh:mm:ss) 

Ramp Rate 
(oC/s) 

Acquisitions 
(per oC) 

95 None 00:00:30 4.4  

65 None 00:00:30 2.2  

95 Continuous 00:02:00 0.29 2 

 
Program Name Cool 
Cycles 1 Analysis Mode None 
Target (oC) Acquisition 

Mode 
Hold 
(hh:mm:ss) 

Ramp Rate 
(oC/s) 

Acquisitions 
(per oC) 

40 None 00:00:10 2.2  
 

Table 1.4  Roche Lightcycler® 36B4 Running Conditions 
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1.4.9  Statistics 

Data analyses were performed using SPSS statistical package version 17. The adjusted R2 

was used to indicate the extent to which the dependant variable (eGFR) is explained by the 

independent variable in question. The association was deemed to be statistically significant 

if the p value < 0.05 (ANOVA). Prior to multivariate regression, preliminary analysis was 

conducted to ensure no violation of the assumptions of normality, linearity and 

multicollinearity. Any missing values were removed by listwise deletion. Bonferroni’s 

adjustment was used to calculate the exact p value for the multivariate models. 

 

1.4.10  Ethics 

This is an ongoing prospective study which has been approved by the Regional Ethics 

Committee of the North Glasgow NHS Trust. Donors from the national pool donated their 

organs for transplantation. The recipient of the organ provided pre-operative written 

informed consent for tissue analysis and scientific research. Samples were anonymised and 

subsequently analyzed. 

 

1.5  Renal Database 
 

The author was responsible for maintaining an up to date renal database of all donor 

kidney tissue samples taken during renal transplantation at the Transplant Unit, Western 

Infirmary, Glasgow. After appropriate ethics was obtained from the local Research and 

Development department, time zero, pre implantation biopsies were removed as a wedge 

or needle biopsy and placed into RNA Later at -20°C. Samples were then transferred to the 

laboratory for genetic analysis. Results from final analysis was inputted into an extensive 

database containing several details regarding both donor and recipient characteristics. 

These parameters included: degree of HLA mismatch, Cold Ischaemic Time, Mode of 

Death, Donor co morbidities, type of immunosuppression, rates of rejection, serum 

creatinine and eGFR calculations at 6 months, 1 year, 2 years and 5 years post transplant. 

Information was updated on a regular basis and statistical analysis was performed using 

Statistical Package for the Social Sciences (SPSS), version 17. The primary outcome 

measured throughout this thesis focused on the relationship between BoAs and renal 
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function as measured by serum creatinine and eGFR and UPCR at several time points. 

Secondary outcomes including rates of delayed graft function, effect of angiotensin 

converting enzyme inhibitors/angiotensin II receptor blockers and variations of 

immunosuppression were also analysed in various statistical methods. 

 

1.6  Study Population 
 

The global study population is representative of the national UK deceased donor pool. A 

total of 133 transplant patients were included which were performed in the Western 

Infirmary, Glasgow between March 2008 and July 2011. All transplants were followed up 

for post-operative clinical data. Telomere length was calculated for 43 transplanted 

kidneys. A separate group (n=33) yielded CDKN2A expression. There were 15 matched 

samples as a result of small biopsy specimens allowing RNA or DNA to be obtained 

separately and not together. Table 1.5 shows the demographic data for the CDKN2A and 

telomere groups. Patients, in whom genetic data was not available, were included in the 

global cohort for clinical analysis. The primary causes of end stage renal disease (ESRF) in 

the recipients were hypertensive nephropathy, diabetic nephropathy, Adult Polycystic 

Kidney Disease (APKD), chronic pyelonephritis/reflux disease, IgA nephropathy and the 

glomerulonephritides. The immunosuppressive regimen consisted primarily of basiliximab 

at induction and day 4 with a maintenance regime consisting of tacrolimus, mycophenolate 

mofetil and prednisolone. 

 

 

1.7  Results 
 

1.7.1  Demographics, Biological Age and Donor Chronological Age 

Prior to analysing the predictive power of biomarkers of ageing on renal function, data 

were validated by determining the association between telomere length and CDKN2A. A 

Pearson correlation between the two revealed no statistical significance (p=0.87, n=15).  

Telomere length and CDKN2A were then separately correlated with donor chronological 

age.  Telomere length was shown to inversely correlate with chronological age (p=0.036, 
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CC=-0.242, Figure 1.8a), while CDKN2A levels positively associated with increasing 

chronological age (p<0.001, CC=0.597, Figure 1.8b). These findings indicate that 

CDKN2A is more robustly associated with the chronological ageing process in kidney 

tissue when compared to telomere length as seen by a stronger correlation coefficient (CC).  

There was no difference in demographic and clinical data between both CDKN2A and 

telomere groups (Table 1.5). 

 

 

 

 

 

 

 

 

 

 

 

** Unpaired t-Test 

  * Fisher’s exact test 

Table 1.5  Demographics  

Demographic and important clinical parameters were compared between the separate CDKN2A 
group and the telomere group. There were no significant differences between the two groups which 
would account for the different correlations with renal function. 

 

 

CDKN2A 

n=33 

Mean (SD) 

Telomere 

n=43 

Mean (SD) 

 

p value 

Donor Gender** (male/female) 15/18 20/23 0.589 

Donor Age** 48.0 (15.7) 51.8 (15.51) 0.189 

DCD/DBD organ* 4/29 9/34 0.677 

Mismatch at all A,B,DR Loci* 

(yes/no) 
8/25 10/33 0.607 

Recipient Age** 50.6 (12.7) 49.7 (12.6) 0.344 

Cold Ischaemic Time** 15.5 (3.9) 13.9 (4.0) 0.267 
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1.7.2  BoA and Correlation with Renal Function Post-Transplant 

Pearson correlation showed a significant association between shortening telomere length 

and deteriorating eGFR at 6 months and at 1 year post-transplant (p=0.038 & p=0.041, 

Figure 1.9). However, increasing levels of CDKN2A expression were associated with 

decreasing eGFR levels at 6 months and 1 year post-transplant (p=0.020 & p=0.012, 

Figure 1.10). 
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                          Figure 1.8  Scatter plots showing the correlation between biomarkers of ageing and donor chronological age 

a. Negative correlation between Donor Chronological Age and Telomere Length. n=43, CC: -0.242, p = 0.036 

b. Positive correlation between Donor Chronological Age and CDKN2A. n=33, CC: 0.597, p<0.001 
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                   Figure 1.9  Scatter plots showing the relationship between telomere length and renal function, as measured by MDRD 4 eGFR  

a. Telomere Length vs MDRD 4 eGFR at 6 months:  n=43, CC: 0.317, p =0.038 

b. Telomere Length vs MDRD 4 eGFR at 1 year:  n=41, CC: 0.320, p =0.041 
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                  Figure 1.10  Scatterplots showing the relationship between CDKN2A and renal function, as measured by MDRD 4 eGFR  

a. CDKN2A vs MDRD 4 eGFR at 6 months.  n=33, CC: -0.403, p=0.020 

b. CDKN2A vs MDRD 4 eGFR at 1 year.  n=32, CC: -0.439, p=0.012 
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1.7.3  Biological Age and Serum Creatinine 

Bivariate correlations of BoAs and serum creatinine show varied results. When analysing 

CDKN2A with serum creatinine, there was no significant association at 6 months but this 

changed at 1 year, when the two displayed strong statistical correlations as shown below: 

CDKN2A Expression vs Serum Creatinine at 6 months:- Pearson Correlation coefficient 

0.261, n=33, p=0.142 

CDKN2A Expression vs Serum Creatinine at 1 year:- Pearson Correlation coefficient 

0.418, n=32, p=0.017 

Telomere length displayed strong associations at both time points as shown. There was a 

significant relationship at 6 months which was not seen with CDKN2A: 

Telomere  Length vs Serum Creatinine at 6 months:- Pearson Correlation coefficient =       

- 0.362, n=43, p=0.017 

Telomere Length vs Serum Creatinine at 1 year:- Pearson Correlation coefficient=  - 0.413, 

n=41, p=0.007 

 

1.7.4  Biological Age and UPCR  

The quantification of tubular and/or glomerular damage was gauged using the Urinary 

Protein Creatinine Ratio – UPCR (mg/mmol) at routine clinic follow up visits. In 

accordance with NICE guidelines a value of more than 50 mg/mmol was classified as 

significant proteinuria. There was a significant relationship between CDKN2A and UPCR 

at 6 months (p=0.012, CC:0.44, n=32) and at 1 year (p=0.036, CC:0.42, n=25) 

consolidating the hypothesis that increased levels of CDKN2A reflect increased cellular 

damage at both tubular and glomerular level. This finding is associated with impaired 

clearance at the glomerulus (higher serum creatinine and lower eGFR) as shown above. 

There were no associations between telomere length and UPCR.  
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1.7.5  ECD Kidneys and DCA vs Renal Function 
 

Since donor chronological age is a strong contributor to the ECD criteria and has been used 

as the “Gold standard” in determining organ quality over the years, a separate individual 

analysis has also been undertaken (Table 1.6). Both donor age and ECD kidneys show 

strong significant univariate associations with both renal function (up to 5 years post 

transplant) and tubulo-glomerular damage (up to 2 years post transplant). There is also a 

significant inverse correlation with recipient White Cell Count up to 2 years post 

transplant. 
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SC: Serum Creatinine 
eGFR: MDRD 4 eGFR 
r: Correlation Coefficient 
z: Mann-Whitney U z coefficient 

 

Table 1.6  DCD and ECD correlations with renal function and glomerular damage 

(SC, eGFR and UPCR) 

Correlation for Donor Chronological Age (DCA) and Extended Criteria Donor (ECD) kidneys with 
renal function (SC & eGFR) and tubulo-glomerular damage (UPCR). DCA and ECD status 
accurately predict post transplant renal function up to 5 years whilst a significant correlation with 
UPCR is seen up to 2 years post transplant. 

 

 

Variable Donor Chronological Age Extended Criteria Donor 

 n r p-value n z p-value 

SC 6 months 132 0.29 0.001 125 -3.32 0.001 

eGFR 6 months 120 -0.36 <0.001 118 -4.08 <0.001 

UPCR 6 months 107 0.28 0.003 105 -3.62 <0.001 

SC 1 year 123 0.35 <0.001 114 -3.59 <0.001 

eGFR 1year 104 -0.48 <0.001 103 -4.66 <0.001 

UPCR 1year 86 0.31 0.004 85 -3.04 0.002 

SC 2 years 85 0.42 <0.001 80 -2.83 0.005 

eGFR 2 years 72 -0.56 <0.001 72 -3.87 <0.001 

UPCR 2 years 54 0.33 0.016 54 -2.89 0.004 

SC 5 years 38 0.42 0.008 38 -2.12 0.034 

eGFR 5 years 37 -0.51 0.001 37 -2.77 0.006 

UPCR 5 years 24 0.15 ns 24 -1.77 ns 
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1.7.6  ECD Kidneys and DCA vs Post-operative WCC 

Interestingly, a significant inverse correlation was seen between the donor chronological 

age and ECD status with recipient WCC (Table 1.7). The association holds for ECD 

kidneys at 6 months, 1 year and 2 years whilst Donor Age holds at 1 and 2 years 

 

 

 

 

 
r: Correlation Coefficient 
z: Mann-Whitney U z coefficient 

Table 1.7  Correlation between DCA and ECD kidneys with WCC at 6 months, 1 year 

and 2 years.  

 

The hypothesis underlying an inverse correlation relies on the relationship between 

increasing immunosuppression and its effect on total WCC. It is postulated that increasing 

DCA or ECD kidneys with a larger bioage have larger amounts of cellular and 

extracellular inflammation (a result of increased wear and tear). This leads to worsening 

renal function post transplantation due possibly to increased episodes of rejection which 

may even be sub clinical. As a consequence increasing doses of immunosuppressive agents 

are generally administered to counteract the deterioration in renal function with a 

consequent fall in WCC. Another possibility is a direct drop in WCC as a result of the 

systemic inflammatory response syndrome (SIRS). 

 The relationship between CDKN2A and WCC with respect to the above approaches 

significance at 1 yr (p=0.051) but there is no relationship at 6 months and 2 years. This 

implicates that there are other factors other than bioage that are contributing to the 

postulated inflammatory state 

 

Variable Donor Chronological Age Extended Criteria Donor 

 n r p-value n z p-value 

WCC 6 months 120 -0.15 ns 118 -3.00 0.003 

WCC 1 year 104 -0.24 0.015 103 -2.53 0.011 

WCC 2 years 71 -0.27 0.023 71 -1.99 0.046 
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Figure 1.11  The relationship between WCC at 2 years 
and DCA n=71, CC: -0.27, p: 0.023 

Figure 1.12  Boxplot depicting a significantly lower WCC in 
ECD kidneys at 2 years. n=71, z: -1.99, p: 0.046 



68 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SC: Serum Creatinine 
eGFR: MDRD 4 eGFR 
z: Mann-Whitney U z coefficient 

 

Table1.8  Association between DGF and rejection episodes with renal function up to 5 
years.  

Note that both DGF and 1 or more episodes of rejection are associated with worse renal function 
and increased tubulo-glomerular damage (UPCR) up to 5 years post transplantation 

 

1.7.7  CDKN2A, Delayed Graft Function and Rejection 

Increased expression of CDKN2A in pre-implantation biopsies was significantly 

associated with DGF (MWU, p=0.032). Although somewhat underpowered, median 

CDKN2A expression levels in patients with DGF were compared with those grafts that 

showed primary function (DGF CDKN2A mean expression = 2.61 (SD 0.56, n=6) vs 

Variable Delayed Graft Function ≥ 1 Rejection Episodes 

 n z p-value n z p-value 

SC 6 months 120 -2.68 0.007 113 -3.54 <0.001 

eGFR 6 months 121 -3.62 <0.001 113 -3.39 0.001 

UPCR 6 months 108 -2.009 0.045 100 -1.30 ns 

SC 1 year 105 -3.24 0.001 103 -3.50 <0.001 

eGFR 1year 105 -3.50 <0.001 103 -3.37 0.001 

UPCR 1year 87 -1.10 ns 85 -2.06 0.039 

SC 2 years 72 -2.74 0.006 71 -3.36 0.001 

eGFR 2 years 72 -3.04 0.002 71 -3.21 0.001 

UPCR 2 years 54 -2.51 0.012 53 -2.51 0.012 

SC 5 years 38 -1.75 ns 37 -2.89 0.04 

eGFR 5 years 37 -2.08 0.037 36 -2.43 0.015 

UPCR 5 years 24 -2.57 0.009 23 -2.12 0.034 



69 

 

primary function CDKN2A mean expression = 1.61 (SD 1.30, n=27)). DGF in itself was 

significantly correlated with graft rejection episodes (Fisher’s exact test, n=113, p=0.001). 

This data suggests that high levels of CDKN2A are linked to increased allograft 

immunogenicity resulting in increased rejection episodes in the long term and may also 

play a role in the aetiology of DGF through a similar mechanism.  

A total of 112 patients with rejection data were analysed. Biopsy proven evidence of acute 

rejection was present in 25.0% (n=28) of the total. All such grafts were viable at 6 months 

with a median eGFR of 39.05 ml/min/1.73m2 (SD 17.16) however, there was 1 graft failure 

at 1 year, with a median eGFR for all other grafts (n=27) of 39.70 ml/min/1.73m2 

(SD18.09). There was no direct statistical relationship between CDKN2A and rejection 

itself (p=0.741) 

 

1.7.8  Univariate Regression Analysis 

Univariate linear regression was used in order to assess the individual predictive power of 

multiple variables on eGFR, serum creatinine and UPCR. Each variable was used to 

predict function at both 6 months (Table 1.9) and 1 year (Table 1.10) post-transplantation. 

The results indicated that CDKN2A, ECD, and donor chronological age were the strongest 

univariate predictors for eGFR. Telomere length in contrast displayed a poorer predictive 

ability in general. As expected, other clinical variables that are included in ECD criteria 

(donor age, donor hypertension, death by CVA but not high serum creatinine) significantly 

predicted eGFR at both timelines. Interestingly, there was a small but significant 

association for recipients who suffered any form of glomerulonephritis (GN) resulting in 

end stage renal failure. Recipients with ESRF second to GN displayed poorer renal 

function at both timelines (MWU - 6 months p=0.05, 1 year p=0.04). The adjusted R2 

indicates the extent to which the dependant variable (Serum Creatinine, MDRD 4 eGFR or 

UPCR) is explained by the model. The model was deemed to be statistically significant if 

the p value <0.05 (ANOVA). Important univariate associations displayed in Table 1.9 and 

1.10 include: 
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6 months: Donor chronological age predicted 14.3% of the variability in eGFR whilst ECD 

kidney category predicted 12.1%. CDKN2A predicted 13.5% of the eGFR, whilst telomere 

length predicted 7.9%.  

1 year: Donor chronological age predicted 21.4% of the eGFR whilst ECD kidney 

category predicted 17.4%. CDKN2A predicted 16.6% of the eGFR, whilst telomere length 

remained at 7.9%.  
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Variable Serum Creatinine MDRD 4 eGFR UPCR 

 n Adjusted  
R2 

p-
value n Adjusted  

R2 
p-
value n Adjusted  

R2 
p-
value 

CDKN2A 
expression 

33 0.038 ns 33 0.135 0.020 32 0.005 ns 

Telomere Length 43 0.110 0.017 43 0.079 0.038 36 -0.009 ns 

Donor 
Chronological 
Age 

132 0.029 0.029 120 0.143 <0.001 107 0.014 ns 

GN in recipient 112 0.021 ns 112 0.029 0.040 99 -0.006 ns 

ECD Kidney 125 0.020 ns 118 0.121 <0.001 105 0.062 0.006 

Donor 
Hypertension 

107 0.002 ns 107 0.051 0.011 94 -0.008 ns 

CVA in Donor 123 -0.001 ns 111 0.057 0.007 98 0.022 ns 

Donor pre-
retrieval 
Creatinine > 
133µMol/L 

121 -0.004 ns 110 -0.008 ns 98 0.050 0.015 

Mismatch at A, B 
and DR Loci 

114 -0.008 ns 114 -0.009 ns 102 0.008 ns 

Previous 
Transplant 

132 0.021 ns 120 0.000 ns 108 0.009 ns 

Cold Ischaemic 
Time 

126 0.015 ns 114 0.019 ns 102 0.013 ns 

Donor Sex 133 0.015 ns 120 -0.001 ns 108 -0.008 ns 

DCD/DBD 63 0.000 ns 63 -0.003 ns 53 -0.017 ns 

 
GN: Glomerulonephritis 
DCD: Donation after Cardiac Death 
DBD: Donation after Brain Death 
CVA: Cerebro Vascular Accident 
ECD: Extended Criteria Donor 

 

Table 1.9  Univariate linear regression analysis at 6 months 

The table shows the predictive power of CDKN2A, Telomere length and other relevant clinical 
variables on renal function as measured by serum creatinine, eGFR and UPCR at 6 months. Note 
the superior predictive strength of CDKN2A, DCA and ECD Kidneys on eGFR in particular.  
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Variable Serum Creatinine MDRD 4 eGFR UPCR 

 n Adjusted  
R2 

p-
value n Adjusted  

R2 
p-
value n Adjusted  

R2 
p-
value 

CDKN2A 
expression 

32 0.147 0.017 32 0.166 0.012 27 -0.040 ns 

Telomere Length 41 0.149 0.007 41 0.079 0.041 32 -0.033 ns 

Donor 
Chronological Age 

123 0.066 0.002 104 0.214 <0.001 86 0.030 ns 

GN in recipient 105 0.013 ns 105 0.028 0.048 87 -0.007 ns 

ECD Kidney 114 0.062 0.004 103 0.174 <0.001 85 0.046 0.027 

Donor 
Hypertension 

100 0.034 0.036 100 0.069 0.005 82 -0.012 ns 

CVA in Donor 114 0.010 ns 95 0.075 0.004 78 0.016 ns 

Donor pre-retrieval 
Creatinine > 
133µMol/L 

113 -0.007 ns 95 -0.011 ns 79 0.094 0.004 

Mismatch at A, B 
and DR Loci 

98 -0.010 ns 98 -0.010 ns 80 0.008 ns 

Previous 
Transplant 

123 0.018 ns 104 0.000 ns 86 0.023 ns 

Cold Ischaemic 
Time 

117 0.014 ns 98 0.014 ns 80 0.007 ns 

Donor Sex 124 0.012 ns 105 -0.009 ns 87 -0.012 ns 

DCD/DBD 49 0.008 ns 49 0.001 ns 36 -0.019 ns 

 
GN: Glomerulonephritis 
DCD: Donation after Cardiac Death 
DBD: Donation after Brain Death 
CVA: Cerebro Vascular Accident 
ECD: Extended Criteria Donor 

 

Table 1.10  Univariate linear regression analysis at 1 year 

The table shows the predictive power of CDKN2A, Telomere length and other relevant clinical 
variables on renal function at 1 year. Note again the superiority of CDKN2A over telomere length 
in particular. The strength of donor chronological age and ECD kidney status is more pronounced 
at this point, explaining 21.4% and 17.4% of the eGFR. Only ECD kidney status is able to 
significantly predict all 3 variables at 1 year. 
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The results derived from the above tables indicate that CDKN2A is a significant univariate 

predictor for eGFR and serum creatinine at 1 year. It is the stronger predictor of the two 

BoAs. The strongest clinical variables to challenge CDKN2A are ECD kidney status and 

Donor Chronological Age. Interestingly, donor chronological age is able to challenge ECD 

kidney status and CDKN2A in predicting eGFR, but falls short of being able to contribute 

to the quantity of proteinuria (UPCR) at both 6 months and 1 year. ECD Kidneys on the 

other hand together with impaired serum creatinine is able to predict UPCR at both 

timelines. 

Since the aim of this thesis was to suggest an accurate pre-transplant scoring system for 

kidneys prior to implantation, the relationship of post operative factors such as delayed 

graft function, rejection and other post-operative variables were omitted from both the 

univariate and multivariate analysis. 

 

1.7.9  Multivariate Regression Analysis 

Proceeding from univariate linear regression models, several predictors were selected into 

a multivariate linear regression analysis model using renal function as the dependant 

variable. For simplicity, only the MDRD 4 eGFR was used as the dependant variable for 

renal function. Preliminary analysis was conducted to ensure no violation of the 

assumptions of normality, linearity and multicollinearity. Any missing values were 

removed by pairwise deletion. Models were created for both six month and one year 

timelines and included three principle pre-transplant variables. The covariates were based 

on CDKN2A and the stronger clinical univariate predictors: ECD and presence or absence 

of glomerulonephritis in the recipient. Since donor hypertension, donor chronological age 

and death by CVA are already included under ECD criteria, they were not included as 

separate covariates in the model. The addition of telomere length to any model severely 

weakened it’s associations with renal function resulting in a statistically insignificant 

outcome. This supports the hypothesis that although telomere length is the “gold standard” 

biomarker of ageing, it’s importance in predicting renal function is somewhat diminished 

or (if used in the context of Baker and Sprott) insignificant. A total of two models were 

formulated at 6 months and 1 year timelines with a p-value of <0.017 taken to be 

statistically significant using Bonferroni’s correction. At 6 months, the model approached 

statistical significance (p=0.021) as outlined in Table 1.11. Statistical significance was 
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reached at 1 year where the model predicted 27.1% of the eGFR (Adjusted R2 0.271, n=31, 

p=0.008 ANOVA) with respective individual contributions outlined in Table 1.12. 

 

 

 

 

 
Table 1.11  Multivariate model outcome for eGFR at 6 months.  
 
Multivariate model outcome for eGFR at 6 months. The model approaches statistical    significance 
using the strict Bonferroni correction (p=0.021) 

 

 

 

 

 

 

 

Table 1.12  Multivariate model outcome for eGFR at 1 year.  
 
Multivariate model outcome for eGFR at 1 year. The model explains 27.1% of the eGFR  
(p=0.008) 

 

 

 

 

Independent Variable Standardised Coefficients 
(Beta) p-value 

CDKN2A -0.397 0.034 

ECD Kidney -0.211 0.233 

Recipient Glomerulonephritis -0.293 0.088 

Independent Variable Standardised Coefficients 
(Beta) p-value 

CDKN2A -0.428 0.019 

ECD Kidney -0.236 0.166 

Recipient Glomerulonephritis -0.311 0.061 
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1.8  Discussion 
 

1.8.1  CDKN2A – most robust BoA in modern era 
 

The results demonstrate that the pre-transplant expression of two independent BoAs 

correlates with renal function post-transplant. Greater biological age, as determined by 

shorter telomere length, or higher relative CDKN2A expression, correlated with poorer 

post-transplant function. This is in keeping with observations in the field. Classically, 

organs from older donors show poorer function post-transplant and have a decreased 

lifespan. Although this holds true in most cases, there are times when such organs perform 

very well and last beyond their life expectancy. The results indicate that such variation in 

organ function could be attributed to the difference in biological age. The data also 

indicates that pre-transplant CDKN2A expression is the strongest biomarker of renal 

function up to 1 year post-operatively. When used in the context of Baker and Sprott’s 

criterion, CDKN2A appears to be significantly more robust as a BoA than telomere length. 

The latter may be viewed as an effective but imprecise BoA. Distinguishing between age-

related telomere attrition and disease-related attrition is difficult (221). Using both together 

as a composite measure, alongside chronological age, should be of further benefit in this 

context. Clinical translation of this should be straightforward, as the methodology is 

readily adaptable to implementation when the organ is undergoing cross-match.  

 

In comparison to previous studies, the estimated Glomerular Filtration Rate (eGFR) was 

used primarily as a marker for renal function. It is traditionally considered to be the best 

overall index of renal function in health and disease (37) and the National Kidney 

Foundation now recommends the MDRD 4 to estimate the GFR and better detect early 

onset kidney disease.  Although the eGFR is considered to be the best overall index of 

renal function, it is relatively insensitive at detecting early renal disease and does not 

correlate well with tubular dysfunction (32;38). 

 

McGlynn et al and Koppelstaetter et al have previously shown that CDKN2A is stronger 

than donor chronological age (DCA) at predicting post transplant function when serum 

creatinine is used as the marker for renal function. The results of this thesis at 1 year post-

op confirm this finding (Table 1.10). However, when eGFR is used to measure renal 
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function, DCA seemed to have a better predictive power than CDKN2A in univariate 

linear regression analysis (Table 1.10). Further results from univariate regression analysis 

revealed that the predictive power of CDKN2A on eGFR was almost equal to that of ECD 

kidney criteria (Tables 1.9 and 1.10). In multivariate analysis, the only statistically 

significant contribution to both models is CDKN2A, indicating its predictive superiority in 

this limited cohort. 

Despite increasing efforts by the transplant community to increase the availability of donor 

organs, there remains a significant shortfall with several thousand patients dying on the 

waiting list each year. The introduction of ECD kidneys has thus improved the quantitative 

discrepancy of the problem but we are still a distance from achieving satisfactory targets. 

Novel techniques of organ discrimination are therefore of huge importance in this respect. 

With the standard incorporation of biomarkers in assessing organ quality pre-operatively, it 

would seem logical that transplantation would be safer and an increase in the number of 

kidney transplants would subsequently ensue. CDKN2A is also related to DGF (Section 

1.6.7) which in itself is associated with poorer graft performance and decreased long term 

survival (224;225). The reason for this remains to be determined, but may relate to 

biologically older organs being less tolerant to physical stress and requiring more time to 

recover from peri-transplant ischaemia reperfusion injury. 

Why CDKN2A expression levels, in this study, have been observed to be a stronger 

biomarker of ageing than telomere length remains to be proven. Both fulfil the Baker and 

Sprott criterion, but the weakness of telomere length in predicting functional capacity in a 

solid organ is apparent. A contributory factor may be the extent of inter individual 

variation in telomere length at a given chronological age (13;221;226). The data is thus 

consistent with that of Koppelstaetter et al (2008), who previously demonstrated that 

telomere length was inferior to CDKN2A in determining variability on post-transplant 

serum creatinine levels in renal allografts. Inter-individual variation in CDKN2A 

expression at a given chronological age has not been fully determined, though increased 

expression of CDKN2A at the cellular level,  remains a robust marker of a senescent state 

and its elevated expression is coincident with a reduction in cellular proliferation (180). In 

essence, its expression may be viewed as an ‘off switch’ for the cell and hence the degree 

of inter-individual variation observed with telomere length, is not expected to be as great. 

These observations have direct relevance for any future strategies employing biomarkers of 

ageing either clinically, or epidemiologically. Telomere length is currently used widely in 



77 

 

this context. The University of Glasgow is currently evaluating CDKN2A similarly, in 

large epidemiological studies, to evaluate its robustness with greater analytical power. 

 

1.8.2  CDKN2A, SASP and rejection 
 

One potential risk of high CDKN2A expression in the allograft is that it may pre-dispose to 

immune phenomenon (rejection episodes). Leakage of cell internal epitopes coincident 

with the senescence associated secretory phenotype (SASP) will result in new epitopes 

being exposed to the recipient immune system, as a direct function of the number of 

senescent cells in the donor organ. The SASP is associated with the secretion of growth 

factors and proteases that participate in wound healing, attractants for immune cells that 

kill pathogens and proteins that mobilize stem or progenitor cells. Thus, the SASP may 

also serve to communicate cellular damage/dysfunction to the surrounding tissue and 

stimulate repair, if needed (113;114). Some SASP proteins, in conjunction with cell 

surface ligands and adhesion molecules expressed by senescent cells, eventually attract 

immune cells that kill and clear senescent cells. A related manifestation of the senescent 

phenotype is the expression of micro-RNAs. CDKN2 associated micro-RNA expression 

profile in ‘zero hour’ pre-transplant renal allograft biopsies is also linked to clinico-

pathological and functional characteristics post-transplant. Evidence in support of this has 

recently been forthcoming as indicated above.  

 

1.8.3  CDKN2A based pre-transplant scoring system 
 

Based on current findings relating to the predictive power of CDKN2A on eGFR, it would 

follow that a scoring system incorporating biological markers would provide additional 

information for patients and clinicians during the organ selection process. Reference is 

made to larger studies such as the one in use by the OPTN in the US for deceased donor 

kidneys based on ten pre-transplant covariates, the Kidney Donor Risk Index (227). 

Undoubtedly, this novel scoring system adds a vital tool to the allograft allocation process. 

Importantly however, it does not include reference to biological age which may be viewed 

as an essential parameter of modernised scoring systems. In addition, the study itself 

showed similar results with age matching alone allowing for the possibility of a simpler 

scoring technique with equal efficacy. A 4 tier categorical scoring system is therefore 
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proposed, based on biological age of the graft and ECD (M Gingell-Littlejohn et al, PLOS 

One 2013). Allografts are classified Category I to Category IV based on a straight forward 

assessment outlined below, with Category I allografts predicting better performance than 

Category 4 (Table 6) 

 

 

 

 

Category I 
SCD Kidney and CDKN2A 

expression levels < 1.8 

Category II 
SCD Kidney and CDKN2A 

expression levels > 1.8 

Category III 
ECD Kidney and CDKN2A 

expression levels < 1.8 

Category IV 
ECD Kidney and CDKN2A 

expression levels > 1.8 

 

 

Table 1.13  A donor risk classification based on ECD and CDKN2A 

 
Suggested Donor Kidney Classification system incorporating CDKN2A as the biomarker of ageing 
and ECD kidney criteria. (SCD – Standard Criteria Donors, ECD – Extended Criteria Donors). 
Predicted kidney function and incidence of graft failure increases with higher category placement. 
(Adapted from: M Gingell-Littlejohn et al, PLOS One 2013) 
 
 

 

The mean value for CDKN2A gene expression (1.8) was used as the cut-off value in the 

scoring system. Moreover, it can be seen from the scatter plots of CKDN2A vs eGFR at 1 

year that renal function deteriorates significantly at CDKN2A expression levels above 1.8. 

ECD kidneys occupy both category III and category IV in this pre-transplant scoring tool 

meaning that ECD status carries a poorer prognosis than CDKN2A itself. The allocation of 

CDKN2A to a higher tier in this scoring system would require further studies to strengthen 

the correlations observed above. Since DCA forms part of ECD criteria, it was not used as 
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a single determinant of transplant function in multivariate analysis or the categorical 

scoring system. 

 

1.9  Conclusion 

A further benefit from these data, is that strategies to mitigate the rate of biological ageing 

applied to living donors would be expected to have an impact on post-transplant outcomes. 

Reduction of psychological and psychosocial stress and improved lifestyle via changes to 

diet and exercising might readily be considered (226;228;229). Biomarkers, specifically 

CDKN2A, may well expand the field of octogenarian donation for example, by 

discriminating organs with “less miles on the clock”. Larger multicentre studies are needed 

to strengthen the hypothesis and the proposed scoring system suggested in this thesis. It is 

envisaged that the biomarker CDKN2A will be integrated into a similar, robust and 

validated pre-transplant scoring system for all kidneys and other transplanted organs in the 

near future. Unfortunately, there remains a significant shortfall of organs across all 

transplant specialties, with several thousand patients dying on the waiting list each year. 

The introduction of ECD kidneys has improved the quantitative discrepancy of supply and 

demand but we are still a distance from achieving satisfactory targets. Novel techniques of 

organ discrimination are therefore of critical importance in this respect. With the standard 

incorporation of biomarkers in assessing organ quality pre-operatively, it would seem 

logical that transplantation would be safer and an increase in the number of kidney 

transplants would subsequently ensue. Genetic testing can be done in approximately four 

hour turnaround time and this would have minimal effect on the total cold ischaemic time 

of most transplants. 
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Chapter 2  
 

PHENOTYPIC CHARACTERISATION OF THE AS/AGU MUTANT 
RAT 
 

2.1  Introduction  
 

2.1.1  AS/AGU PKCγ mutation 

The mutant rat sub-strain (AS/AGU) arose spontaneously as a result of a specific single 

gene mutation in a colony of Albino Swiss (AS) rats in the Laboratory of Human 

Anatomy, Glasgow University (230). It was initially characterised as giving rise to a 

movement disorder phenotype, which was shown to be primarily attributable to age-

dependent progressive loss of dopaminergic neurones of the substantia nigra pars 

compacta, as occurs in Parkinson’s Disease (231) 

The mutation was identified by positional cloning as a loss of function mutation in the 

gene encoding the protein kinase PKCγ (232). PKCγ is a member of an important family of 

cell signalling molecules with a wide range of functions in various cell types. This 

knowledge enhances the importance of this strain, as it provides a defined molecular 

change from which all subsequent physiological and pathological changes derive. 

Subsequently, the strain was demonstrated to display accelerated ageing in the kidney (P 

Shiels pers com., University of Glasgow). This strain has subsequently been regarded as a 

unique model of diseases of ageing and organ dysfunction. In particular, with evidence for 

premature renal senescence, the strain is an ideal model for renal dysfunction and 

transplant related pathologies. Furthermore, it is pertinent to neurodegeneration of the 

basal ganglia and/or aminergic systems such as Parkinson’s disease (for which there is no 

similar laboratory model), Multiple Systems Atrophy, Supranuclear Palsy etc.  

The accelerated ageing resulting from the PKC gamma mutation engenders a state of 

elevated oxidative stress in affected cells, tissues and organs, which predisposes to 

subsequent pathology (233). This is pertinent to renal dysfunction, in particular to 

transplant related pathologies, such as delayed graft function, late graft dysfunction as well 

as the poorer performance of marginal and older, donor organs. All these aspects of renal 
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transplantation are affected by biological ageing (234-237). Recent human and rodent data 

on senescence associated genes, particularly CDKN2A, match the accelerated ageing 

phenotype in the AS/AGU rat (231;238-243). This has been shown primarily in the renal 

and central nervous system. Phenotypic characterisation of the renal pathway however 

(with validated GFR studies) has never been described in detail. The aim of this chapter is 

thus to primarily support the genetic data on the AS/AGU rat with respect to premature 

deterioration in renal function and translate this into a validated animal model. The animal 

model comprises control AS and mutated AS/AGU rats. The classic inulin infusion 

technique was utilised as this is the gold standard measurement of GFR in animals. The 

response to IR injury was also measured between the two strains in this chapter. The use of 

anti-ischaemic compounds was directed on AS rats only and is explained in more detail in 

Chapter 3. Indeed, the testing of novel anti-ischaemic compounds in a model that is an 

excellent surrogate for human renal transplantation, is aimed at addressing the need to 

enhance organ half life. Any agents tested in these circumstances, will be evaluated with 

direct translation to a human setting. It is hoped that this will impact on the availability of 

useful organs for transplantation, their preservation time prior to transplantation, organ half 

life and subsequent performance post-transplant. Addressing any of these factors will help 

alleviate the shortfall in available donor organs, with direct patient and health care benefits. 

Significantly, the use of the AS/AGU and its parent strain will offer a longitudinal 

component to the study of BoAs. 

 

2.1.2  Physiological calculation of renal blood flow and GFR 

Since renal function depends on the clearance of the plasma by the functioning nephron, 

the blood flow to the kidneys is of natural importance. The measurement of renal blood 

flow (RBF) and more importantly, the glomerular filtration rate (GFR) are essential in the 

analysis and description of renal function. Characterization of the rat model was based on 

GFR studies for which the concept of clearance is inevitably introduced. Clearance is 

defined as the volume of plasma which is cleared of substance in unit time. The units of 

clearance are volume/time, usually ml/min. 

Cx=UxV / Px 
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Where Cx is the clearance of x, Ux is the urine concentration of x, Px is the plasma 

concentration of x and V is the urine flow (ml/min). The formula can also be expressed in 

terms of the units of measurement: 

Cx= Ux (mg/ml) x V (ml/min) / Px (mg/ml) 

Clearance in itself actually represents a theoretical volume of plasma which is completely 

cleared of substance x, in 1 minute, because in reality no aliquot of plasma is completely 

cleared of any substance by its passage through the kidney. Nevertheless, the clearance 

formula has considerable usefulness in renal physiology and for assessing renal function in 

disease. Clearance of inulin as described below is used to measure GFR (whilst p-

aminohippuric acid is used to measure the renal blood flow) and therefore it is imperative 

to understand the technical requirements for accurate clearance measurements. Since the 

plasma concentration of substance x must be known accurately, it must either be constant 

or changing in a predictable way so that an accurate average concentration can be 

calculated. Therefore, clearance measurements are only suitable for the steady state 

determinations of GFR and RBF and cannot be used when transient changes are occurring. 

An additional requirement is that urine flow must be adequate to collect sufficient amounts 

for the assay in the clearance period. 

 

2.1.3  Inulin clearance and the measurement of true GFR 

The most precise measurement of renal function in mammals is the physiological 

measurement of Glomerular Filtration Rate (GFR), obtained with a substance called inulin 

(244). Inulin is an uncharged polyfructose molecule with an average molecular weight of 

~5000 and is not bound to plasma proteins. It is not a normal constituent of the body, but 

can be injected or infused intravenously in order to measure the inulin clearance. After 

passing freely through the glomerulus inulin travels down the tubule without being 

subtracted, added, synthesized or metabolized by the tubular cells (245). This is essential 

because once plasma concentrations have reached a steady state, the quantity that is 

excreted in the urine per unit time will be equal to that which is filtered through the 

glomerulus.  

The amount of inulin excreted per minute is UinV, i.e the urinary inulin concentration, Uin 

(mg/ml) multiplied by the urine flow, V (ml/min), and therefore is the amount which 
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entered the nephrons by being contained in filtered plasma. The volume of plasma from 

which the amount UinV mg/min of inulin  was derived must therefore have been:  

UinV / Pin 

And this is the clearance formula, where Pin is the plasma concentration (mg/ml). Thus the 

inulin clearance is equal to the glomerular filtration rate (GFR). The inulin clearance 

measurement (and hence the GFR measurement) is independent of the plasma inulin 

concentration.  

In humans, the normal inulin clearance (GFR) is 125ml/min per 1.73m2 body surface area. 

Even taking into account body surface area, GFR is low in infants and decreases in old age. 

On a day to day basis however, the GFR is remarkably constant in man. Variations in 

excretion of water and solutes depend on changes in tubular reabsorption and secretion, not 

on GFR changes. Because inulin is not a normal constituent of the body, and 

measurements of inulin therefore involve inulin infusions, it is rarely used clinically. In 

humans therefore, “Gold standard” GFR is computed from the clearance of injected, 

radioactive exogenous markers (the iodothalamate clearance) and is associated with little 

bias (246). In clinical practice however, GFR usually is not measured directly because of 

the cost, invasiveness, and possible radioactive exposure associated with the procedures. 

Alternatively, eGFR is computed from serum concentrations of endogenous markers, such 

as serum creatinine. 

 

2.1.4  Serum Creatinine Clearance and estimated GFR (eGFR) 

Renal function in man is estimated using plasma concentrations of creatinine, a byproduct 

of muscle metabolism. It is freely filtered by the glomerulus, but also actively secreted by 

the peritubular capillaries in very small amounts such that creatinine clearance 

overestimates actual GFR by 10-20%. This margin of error is acceptable in humans 

considering the ease with which creatinine clearance is measured. Unlike precise GFR 

measurements involving constant infusions of inulin, creatinine is already at a steady-state 

concentration in the blood and so measuring creatinine clearance is much less cumbersome 

in practise. Plasma creatinine concentration does not appreciably rise until 50–75% of 

kidney function is lost (247), and is therefore not an accurate index of acute renal function 

change. Furthermore, recent reports indicate that estimates of creatinine clearance in 
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humans do not reflect true renal function in many circumstances such as declining renal 

function, body fluid expansion, spinal cord injury, normal aging, renal transplant, and 

following administration of certain drugs (248-252). 

Estimation of glomerular filtration rate is important in assessing and following up renal 

function as serum creatinine is not reliable enough in reflecting the true glomerular 

filtration rate (253-255). The performance of the modification of diet in renal disease study 

group (MDRD) and Cockroft-Gault formula have been extensively assessed in native 

kidneys. The Nankivell formula was developed specifically for assessing glomerular 

filtration of the transplanted kidney (256). Gaspari et al (257) have shown the effectiveness 

of the MDRD formula and its superiority to Nankivell and Cockcroft Gault equations. 

Similarly, a rise in serum cystatin C levels have been shown to predict renal function more 

accurately than serum creatinine(258;259). 

 

2.2  Hypothesis 

i. Biomarkers of ageing can be exploited in animal models to investigate events 

associated with ischaemia-reperfusion. 

ii. The mutant AS/AGU rat possesses inferior renal function to its parent strain when 

matched for age. 

iii. The mutant AS/AGU strain is less resistant to the effects of IR Injury and hence 

may serve as the perfect animal model to characterise ECD kidneys in-vivo. 

iv. This model can be used to assess interventions using anti-ischaemic compounds for 
benefit in reducing the harmful short and long term effects of ischaemia-
reperfusion injury on the kidney. 
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2.3  Aims 
 

i. Can the genetic data (showing increased renal senescence in the mutant AS/AGU 
strain over its parent strain) be reproduced in an animal model to show a 
phenotypically valid difference between the two strains? 

ii. Is the mutant strain less tolerant to IR Injury? 

iii. Can this model serve as a platform for the testing of anti-ischaemic compounds? 

 

2.4  Methods 
 

2.4.1  Animal Groups and Housing 

The experiments were carried out on both male and female rats. Both control - Albino 

Swiss (AS) and mutant - Albino Swiss/Anatomy Glasgow University (AS/AGU) were fed 

a standard diet and tap water ad libitum. Animals were housed in the Joint Research 

Facility – University of Glasgow under standardized conditions in plastic-metal cages, 

light-dark cycle 12/12 hours, temperature 22 +/-2 °C, humidity 50 +/-5 %.  

 

2.4.2  Preparation of FITC-Inulin Solution 

Flourescein Isothiocyanate Inulin (FITC-Inulin) (Sigma-Aldrich) was used for GFR 

experiments and the fluorescence of urine and plasma was calculated 

spectroflourometrically using the fluorescence microplate reader BIO-TEK flx-800. The 

emission and absorbance wavelengths were 495nm and 530nm respectively. This 

technique offers high sensitivity and can detect concentrations of FITC down to 1µg/ml in 

tissue fluid. Measurements of fluorescence in the urine and plasma provided quantitative 

data on the filtration process across the glomerulus, which was then calculated according to 

the equation: 

GFR= UV/P 

Where U= Urinary Inulin Fluorescence, V= Urine volume, P= Plasma Inulin Fluorescence 
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0.2% w/v FITC Inulin solution was made by dissolving 40mg of FITC Inulin in 20mls of 

0.9% Physiological Saline Solution (Baxter Pharmaceuticals). 1% FITC Inulin w/v was 

also made by dissolving 10mg FITC Inulin per ml of 0.9% Physiological Saline Solution. 

The solutions were warmed in a water bath to facilitate dissolution and dialysed with 

physiological saline overnight through a 1Kda semi permeable membrane in order to 

remove any unbound Flourescein (Gebaflex 1Kda dialysis tubes). Dialysis tubes were 

protected from light to avoid disassociation prior to infusion. 

 

2.4.3  Experimental Design and Surgical Technique 

The animals were weighed and subsequently anaesthetised using Isoflurane for induction 

of at a concentration of 4% in Oxygen. An intraperitoneal injection of Inactin 

(Thiobutabarbital sodium salt hydrate, Sigma Aldrich) (100g/ml) was subsequently 

administered at a dose of 1ml/kg. If the animal showed signs of arousal, then it was 

additionally  maintained on isoflurane 0.5-1 % in 1L/min Oxygen. A heated surgical table 

was utilised to maintain body temperature of the animal at 37°C. 

The femoral vessels were then exposed in animals weighing more than 280 grams (the 

common iliac vessels were utilised for smaller animals). Fine bore polyethylene tubing 

(Smiths Medical) (0.96mm) was inserted into the vein under microscopic vision and 

secured in place using 3/0 silk sutures. A bolus of 0.4mls 1% FITC Inulin was 

administered via a 1ml syringe with a 23 gauge needle, which fitted exactly into the 

polyethylene tubing emerging from the vessel. An intravenous infusion of 0.2% FITC 

Inulin was subsequently commenced at a rate of 3mls/hr using a programmable syringe 

pump (World Precision Instruments – NE300). A similar sized cannula was then inserted 

into the accompanying artery and a sample of 0.4 mls blood is removed from the animal.  

This was centrifuged at 5000rpm for 10 minutes and the plasma transferred to a 200µl 

eppendorf for storage up to 72 hours at 4°C. The arterial line was flushed with heparin 

/saline (1%/0.9%) with a v/v ratio of 1:5 so as to maintain patency. Laboratory biochemical 

analysis was then performed on the stored plasma sample for multiple parameters as 

indicated in the text below (Companion Animal Diagnostics, University of Glasgow).  

A midline laparotomy was then made and the ureters of each kidney identified and ligated 

distally. A fine microcatheter (0.61mm) was inserted into each ureter and secured using 3/0 

silk sutures. Urine was collected from each kidney into a separate tube at 30 minute 



87 

 

intervals and a blood sample (80µl) was taken simultaneously. The 30 minute interval 

blood samples were spun at 11,000 rpm for 8 minutes and the plasma aliquoted into a fresh 

eppendorf taking care not to remove any of the interphase. After every blood sample, the 

arterial line was flushed with heparin/saline. 

Equilibrium is reached in the plasma, when the amount of FITC inulin infused is equal to 

filtration by the kidneys. Several initial experiments indicated that equilibrium is 

established between 60-120 minutes after the 0.4ml whole blood sample is obtained for 

laboratory analysis (data not shown). A 0.4ml volume of whole blood is needed (to give 

approximately 200µl plasma for laboratory biochemical analysis) which results in 

temporary elevated plasma inulin levels, disturbing equilibration phase. 30 minute 

sampling is maintained for up to 3 hours in order to ensure a steady state of plasma inulin 

from which to calculate individual kidney GFR.  

Subsequently, the kidney pedicle of the left kidney was dissected in order to clearly display 

the renal artery and vein and a vascular occluding clamp was applied for exactly 10 

minutes. This produced a recoverable injurious state (primarily Acute Tubular Necrosis – 

ATN) lasting approximately 30-40 minutes (information based on several preliminary 

tests). Urine samples were then collected at 15 minute intervals post clamp release in order 

to quantitatively characterize the animal’s response to ischaemia-reperfusion (IR) injury.  

A maximum of two hours of urine collection post clamping was performed. 

The procedure was terminated at approximately 6 hours from initiation of anaesthesia by 

Schedule 1 killing. Tissues were immediately placed in 10% formalin for future 

histological analysis, RNA Later® for genetic expression analysis and liquid nitrogen for 

immunohistochemistry. 
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Figure 2.1  Depiction of surgical setup 

Rat Model Clearance study depicting the surgical setup in characterizing the renal phenotype of the 
AS/AGU mutant. Note cannulation of individual ureters to asses function of both kidneys. Also 
note cannulation of left femoral or iliac vessels to allow infusion of inulin and repeated arterial 
blood sampling. 
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Figure 2.2  Images of surgical technique 

Dissection and cannulation of the left femoral vessels and ureters. The groin is dissected and the 
femoral vessels are exposed beneath the inguinal ligament (a). The vein is carefully dissected from 
the artery and a clamp is placed proximally. A venotomy is made and the primed cannula 
containing inulin and is ready to be introduced (b). The venous cannula is introduced and the artery 
is subsequently dissected. Similarly, a clamp is placed proximally and an arteriotomy is made to 
allow the passage of a cannula for repeat blood sampling (c & d). The ureters of both kidneys are 
then cannulated. Here, the left kidney is visible with a cannula inserted into the ureter (e). The 
procedure continues with minimal physiological disturbance and the urine is collected in separate 
eppendorfs (f) 

a b 

c d 

e f 
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2.4.4  GFR Analytical Technique 

Urine from each 30 minute interval was immediately measured on table using a Gilsons 

pipette in a reverse manner so as to give an accurate measurement of volume per unit time 

per kidney. After a gentle spin to remove sediment, a 10µl aliquot per sample was then 

transferred to a single well in the fluorescent plate (Thermo-Scientific F96 Microwell 

Plates). 40µl of 500mM HEPES buffer solution (dissolved 59.6g of HEPES in 500 ml of 

deionized water and adjusted pH to 7.4 using 10N NaOH) was then added to the sample to 

make up a total well volume of 50µl. This stage is necessary since fluorescence of urine or 

plasma may vary across a pH range (260) (Fig 2.3). The process is repeated for all urine 

and separated plasma samples, such that for each time point during the experiment there is 

a plasma fluorescence value (assayed in triplicate), a urine fluorescence value and an 

accurate urine volume per kidney. The unclamped kidney serves as an internal control for 

the experiment. (See Table 2.1) 

 

 

 

Figure 2.3  Dependence of FITC Inulin fluorescence on pH 

Dependence of fluorescence of FITC-Inulin in the range pH 4-9 (Adapted from FITC Inulin 
manual - TdB Consultancy) 
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Fig 2.4  Schematic representation of operative methods 

The twelve steps shown above were standard protocol for all GFR/IR Injury experiments 
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Table 2.1  Rodent GFR experimental documentation 

The table was used for every GFR experiment documented. Note how the final plasma 
concentrations of FITC (column 6) is an average of 3 individual readings whenever possible 
(columns 3-5). This is because it is essential to have reached plasma equilibrium before 
determining GFR. Baseline sample is the  first sample (usually 60-90mins) from which GFR 
analysis commences. FL=Flourescence, Rt=right, Lt=left 
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1 

Plasma 

2 

Plasma 

3 

Plasma 
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Urine 
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Kidney 
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Rt Kidney 
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2 
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5 
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2.4.5  GFR and IR Injury Studies - Initial Testing Phase 

Prior to official GFR studies, a period of initial testing addressing critical experimental 

conditions was undertaken. Factors to be determined included:  

- Rate of FITC Inulin decomposition after preparation 

- Ideal concentration of FITC Inulin infusion 

- Ideal concentration for FITC Inulin bolus 

- Ability to tolerate a 3ml/hr infusion for 6 hours without adverse physiological 

effects 

- Time before equilibrium of 0.2 % FITC in rodent plasma with a 3ml/hr infusion? 

 

A total of 24 animals were utilised for actual GFR experiments. A further 6 animals (not 

included in this thesis) were used for preliminary testing described above. With the period 

of experimentation for one animal lasting approximately 10 hours (7 hours surgery & 

preparation, 3 hours analysis), the total time of testing approached 300 hours. Initial 

experiments using FITC Inulin by Qi et al (261) showed that dialysis through a semi-

permeable membrane is necessary to remove unbound inulin  prior to experimentation and 

that the process should last for approximately 12hrs. Based on initial fluorescence 

readings, the amount of unbound inulin removed through this process was calculated as 

being between 0.2% and 0.4%. The ideal concentration which allowed for stability of FITC 

Inulin in solution for up to 24 hours at 4°C was approximately to 2% w/v. Higher 

concentrations of FITC Inulin especially above 10% form precipitates on standing, since 

inulin tends to form crystalline aggregates (FITC Inulin – TdB consultancy). Despite 

refrigeration and a dark environment, there was a 8.94% reduction in fluorescence over 7 

days and therefore most FITC Inulin solutions were prepared 24-48 hrs in advance. 

A total of 16 animals from the GFR cohort above were analysed for IR studies. This is 

because urine urea and SG parameters were commenced after having started GFR studies. 
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                              FITC Concentration 

 

Figure 2.5  Graphical representation of plasma FITC Inulin concentration through a 

typical experiment 

Line graph depicting plasma FITC concentration over time with steady equilibrium phase achieved. 
Initial bolus of 0.4mls 1% FITC tends to overshoot the eventual equilibrium concentrations in the 
plasma. This is compounded by the removal of a whole blood sample after arterial cannulation. 
This results in a smaller circulating blood volume which is replaced by the constant infusion of 
0.2%  FITC Inulin which has a background fluorescence value of approximately 7000. Note how 
plasma FITC level increases post clamping due to decreased excretion from the renal system 
setting a new equilibrium until renal function is restored in the damaged kidney at which point 
baseline Inulin concentration begins to approach its pre clamping levels. 
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Both male and female rats were used. 12 control AS rats and 12 mutant AS/AGU rats were 

analysed for GFR studies, biochemical profile and recovery from a set ischaemic insult to a 

unilateral kidney.   The tables below depict the demographics of the rat population for both 

the GFR and biochemical studies. 

                                            

 AS (Control) n=12 AS/AGU (Mutant) n=12 

Male 6 7 

Female 6 5 

Mean Age (Months) 10 9.8 

Mean Weight (grams) 311.50 306.08 

 

Table 2.2  Demographics of rodent population for GFR studies (n=24) 

 

2.4.6  Biochemical Serum and Urine Analysis 

An extended biochemical kidney profile was performed on both AS (control) and mutant 

(AS/AGU) strains on whole blood samples. To increase the power in this arm of the 

experiment,  blood was also taken from other animals due to be sacrificed by a schedule 1 

killing. Urine from each animal was also sampled by aspirating the urinary bladder. The 

analysis was performed on 200µl of separated plasma via an automated laboratory process 

at Glasgow University, Veterinary Diagnostic Services. Blood samples were measured 

with the automated Olympus AU5400 analyser. The urine specific gravity was measured 

with a refractometer at room temperature. The variables sampled were: 

Plasma: Sodium, Potassium, Sodium/Potassium Ratio, Chloride, Calcium, Phosphate, 

Urea, Creatinine, Cholesterol, Total Protein, Albumin, Globulin, Albumin/Globulin ratio 

Urine: Specific Gravity, Protein, Creatinine, Protein/Creatinine ratio.  
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 AS (Control) n=37 AS/AGU (Mutant) n=27 

Male 21 15 

Female 16 12 

Mean Age (Months) 8.6 8.8 

Mean Weight (grams) 319.8 309.8 

 

Table 2.3  Demographics of rodent population for biochemical studies (n=64) 

 

2.4.7  Immunohistochemical analysis for bio-age in rat kidney 

Renal tissue from 6 animals (n=3 AS, n=3 AS/AGU) were subject to 

immunohistochemical (IHC) analysis to monitor for the presence of apoptosis – TUNEL 

assay and lipofuscin SA β Gal together with the presence of senescence proteins p16 and 

p21. The kidneys were cut processed, stained and scanned for HistoPath scoring (i.e 

clinically based scoring). All stained sections were doubled scored by two judges. The 

absolute difference between individual histoscores was lower than 50 in the majority 

(96%) of cases, which proved the reliability of the ratings for both judges. 

 

2.4.8  TUNEL assay protocol  

(Chemicon, ApopTag Plus Peroxidase In Situ Apoptosis Detection Kit S7101) 

Dewaxing and rehydration -  2 x 2 mins in Xylene (Dewaxing), 2 x 2 mins 100% alcohol 

(Rehydration), 2 mins 90% alcohol, 2 mins 70% alcohol and final rinse in water. 

Preparation of 20µg/ml Proteinase K solution in PBS (Dilute 200µg/ml stock solution). 

100µl is required per kidney slide - Sections were ringed with DAKO pen to create a 

barrier and proteinase K solution was added to the slide and incubated at 25oC for 15 

minutes (humidified chamber to ensure constant temperature). Then, proteinase K solution 

was removed and slides were washed twice in dH2O for 2 minutes. 
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Preparation of 3% H2O2 in dH2O (40mls H2O2 in 360mls dH2O) – slides were treated with 

H2O2 for 5 mins at room temperature (on stirrer) and then washed twice in water for 5 

minutes. 75µl of equilibration buffer was added to the slide and incubated at 25oC for 10 

minutes ( in a humidified chamber). 

Preparation of working strength TdT Enzyme (70% Reaction Buffer : 30% TdT Enzyme). 

55µl is required per slide - equilibration buffer was tapped from the slide and applied 55µl 

of working strength enzyme. Incubation at 37oC for 1hour (humidified). For negative 

control TdT enzyme was not added equilibration buffer left on slide. 

Preparation of working strength stop/wash buffer (1ml stop/wash buffer : 34mls dH2O) -  

slides were placed in a coplin jar/staining dish with stop/wash buffer and agitated for 15 

seconds, then washed for 10 minutes on a stirrer at room temperature (RT). 

Removal of aliquot of anti-digoxignenin conjugate from stock, 65µl is required per slide, 

and then warmed to room temperature -  slides were washed three times in TBS for 1 

minute on stirrer at RT. Anti-digoxignenin was applied to slides (65µl) and incubated at 

25oC for 30 minutes (humidified chamber). Slides were washed four times in TBS for 2 

minutes on stirrer at RT. 

Preparation of working strength peroxidase substrate (1:50 DAB Substrate : DAB dilution 

buffer i.e 60µls DAB Substrate : 3mls DAB dilution buffer). 75µl DAB needed per slide – 

application of peroxidase substrate to slide and incubation at RT for 10 minutes. Slides 

were washed in running water for 10 minutes. 

Haematoxylin Counterstain – Slides were stained in Harris haematoxylin for 1 minute,  

rinsed in running water and inserted into scots tap water substitute (for 1minute, care was 

taken with respect to intensity of blue colour) and finally rinsed again in running water 

Dehydrate and mounting: 1 min 70% alcohol, 1 min 90% alcohol, 2 x 1 min 100% alcohol, 

2 x 1 min xylene, mount in DPX 
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2.4.9  SA-Beta-Gal Staining on Tissue Sections 

Tissue Fixation: Slides are incubated in 95% Ethanol for 10 minutes then allowed to dry in 

air and stored at 4 o C until required.  

Reagent Preparation -  For SA-Beta-Gal staining, two solutions are required: one pH4 

solution and one pH6 solution. The pH4 solution acts as a positive control as it should stain 

all cells blue in colour. The reagents required for both solutions are the same: 

• Potassium Ferricyanide (400mM) 
• Potassium Ferrocyanide (400mM) 
• Magnesium Chloride (MgCl2 200mM) 
• Sodium Chloride (NaCl 1500mM) 
• Citric Acid (800mM) 
• Sodium Phosphate (800mM) 

 

 All solutions are prepared in PBS. MgCl2, NaCl, Citric Acid, Sodium Phosphate are all 

stored at 4oC. Potassium Ferricyanide and Potassium Ferrocyanide are stored in aliquots at 

-20oC 

 

 

 

 

 

Table 2.4  Reagents used in SA-Beta-Gal Staining 

 

pH4 and pH6 solution preparation – Next step involved preparing the Citric Acid 

(400mM)/Sodium Phosphate (400mM) pH4 and Citric Acid (400mM)/Sodium Phosphate 

(400mM) pH6 solutions: equal volumes of citric acid (800mM) and Sodium Phosphate 

(800mM) were added to two beakers. One beaker made to pH4 and the other to pH6.  

The final  SA-Beta-Gal solutions were prepared as follows: 

   MW Conc Reqd  
Vol Soln 
Reqd Amt Reqd (g) 

Potassium Ferricyanide(400mM) 329.2 400 mM 5000 0.6584 
Potassium Ferrocyanide(400mM) 422.4 400 mM 5000 0.8448 
MgCl2 (200 mM) 203.31 200 mM 4000 0.162648 
NaCl in 1X PBS 58.44 1500 mM 40000 3.5064 
Citric acid 294.1 800 mM 30000 7.0584 
Sodium Phosphate 142 800 mM 30000 3.408 
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  pH6  
   Total Volume Reqd =30mls 
µL/slide Ingredients Final Conc (per 1ml) Required Volume 
20 xl -Gal ( 50mg/ml) 1mg 600ul 

12.5 Potassium 
Ferricyanide(400mM) 5mM 375ul 

12.5 Potassium 
Ferrocyanide(400mM) 5mM 375ul 

10 MgCl2 (200 mM) 2mM 300ul 
100 NaCl (1500mM) 150mM 3000ul 

100 
Citric acid (400 mM)/ 
Sodium Phosphate 
(400mM) PH 6.0 

40mM 3000ul 

 PBS  22350ul 

 

  pH4 +ve control  
   Total Volume Reqd =10mls 
µL/slide Ingredients Final Conc (per 1ml) Required Volume 
20 xl -Gal (50mg/ml) 1mg 200ul 

12.5 Potassium 
Ferricyanide(400mM) 5mM 125ul 

12.5 Potassium 
Ferrocyanide(400mM) 5mM 125ul 

10 MgCl2 (200 mM) 2mM 100ul 
100 NaCl (1500mM) 150mM 1000ul 

100 
Citric acid (400 mM)/ 
Sodium Phosphate 
(400mM) PH 4.0 

40mM 1000ul 

 PBS  7450ul 

 

Table 2.5  Final SA-Beta-Gal solutions at pH4 and pH6 

 

Tissue Rehydration – tissue allowed to warm up to room temperature and rehydrated in 

DPBS for 10 minutes. 

SA-Beta-Gal Staining – Hydrophobic barrier with DAKO pen followed by 200µls of pH6 

solution to each slide with the exception of the positive control. To the positive control 

slide 200µls of the pH4 solution was added. Slides placed in an incubation tray and 

incubated at 37oC for ~48 hours.  

Counterstaining with Nuclear Fast Red Solution was prepared as follows - 25g of 

Aluminium Potassium Sulphate Dodecahydrate (Sigma #237086) was dissolved in 500ml 
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dH2O. 0.5g of Nuclear Fast Red (Sigma #60700) added to this solution and heated to 

dissolve. Filter and removal of SA-b-Gal solution from slides. Washed in running water 

and slides placed in Nuclear Fast Red Solution for 30 seconds. Again washed in running 

water. 

Dehydrating and mounting slides – Slides incubated in  70% alcohol for 1 minute,  90% 

alcohol for 1 minute, 100% alcohol for 2x1 minute, xylene for 2x1 minute. Sections 

mounted onto coverslips with DPX. 

 

2.4.10  IHC using MOUSE p16 Antibody F-12  

(Santa Cruz # sc-1661 Mouse Monoclonal Ab)  

Tissues were fixed in 95% Ethanol for 10mins, then allowed to air dry and warm up to 

room temperature. Subsequently, tissues were rehydrated in PBS for 5 minutes. Sections 

were then treated with 3% H2O2 for 10minutes on a stirrer (40mls 30% H2O2 – 360mls 

dH2O). Sections then washed in running water. Slides dried and barrier formed with 

DAKO pen.  M.O.M Mouse blocking reagent prepared by adding 2 drops of Blocking 

Reagent stock solution to 2.5mls TBS. 200µls of blocking reagent added to slide and 

incubated at 37oC for 1 hour. Slides were then washed for 2 x 2 minutes in TBS. 

Preparation of M.O.M Diluent – Addition of 300µls protein concentrate to 3.75mls TBS. 

1o Antibody prepared using a 1:100 dilution in M.O.M diluents and addition of 200µls 

M.O.M diluent to each slide. Slides incubated for 5 minutes at RT and M.O.M diluent 

removed from slides. 200µls 1o Ab added to each slide. For the negative control only 

M.O.M diluent was used. Slides were then incubated in primary antibody at 4 o C 

overnight.  

Slides were then washed for 2x2mins in TBS and M.O.M Biotinylated Anti-Mouse IgG 

reagent prepared by adding 10µls Biotinylated Anti-Mouse IgG Reagent to 2.5mls M.O.M 

diluent.  200µls of Biotinylated Anti-Mouse IgG Reagent was added to each slide and they 

were incubated for 5 minutes at RT. The Biotinylated Anti-Mouse IgG Reagent was 

removed and slides washed 2x2 minutes in TBS. 

VECTASTAIN Elite ABC Reagent prepared by adding 2 drops of Reagent A to 2.5mls 

TBS, mixed and added to 2 drops of Reagent B. This had to sit for thirty minutes before 

use and then 200µls of VECTASTAIN Elite ABC Reagent was added to each slide. 
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Incubation was for 5 minutes at RT. VECTASTAIN Elite ABC Reagent removed and 

slides washed for 2x5 minutes in TBS. 

DAB substrate (Vector, Sk-4100) prepared by adding 5ml of distilled water to 2 drops of 

buffer stock and mixed, 4 drops of DAB stock and mixed, 2 drops of hydrogen peroxide 

and mixed. Sections incubated with DAB substrate at room temperature until colour 

developed (approx 10 minutes). Slides were then washed in running water for 10 minutes 

and stained in Harris haematoxylin for 1 minute, rinsed in running water, turned blue with 

scots tap water substitute and lastly rinsed in running water. Dehydration and mounting of 

slides: 1 min 70% alcohol, 1 min 90% alcohol, 2 x 1 min 100% alcohol, 2 x 1 min xylene, 

sections mounted onto coverslips with DPX. 

 

2.4.11  IHC using MOUSE p21 Antibody C-19 

(Santa Cruz # sc-397 Rabbit anti Mouse)  

Tissues were fixed in 95% Ethanol for 10mins, then allowed to air dry and warm up to 

room temperature. Subsequently, tissues were rehydrated in PBS for 5 minutes. Sections 

were then treated with 3% H2O2 for 10minutes on a stirrer (40mls 30% H2O2 – 360mls 

dH2O). Sections then washed in running water. Slides dried and barrier formed with 

DAKO pen. Blocking solution prepared: 20% Goat Serum in TBS (needed 200µls solution 

per slide). Section were covered with 200µls blocking solution and incubated for 1 hour at 

37oC – use incubator. Blocking solution was blotted from the section and incubated in 

primary antibody at 4 o C overnight (1:100 in antibody diluent (DAKO, S0809) for the 

negative control, only antibody diluent was used). Antibody was removed from the section 

and slides washed for 2x5mins in TBS. Secondary antibody was prepared – Goat anti 

Rabbit secondary (DAKO, P0448), 1:200 in 20% Goat Serum in TBS solution. Sections 

incubated with secondary antibody for 30 mins at 37oC and slides washed for 2x5mins in 

TBS. DAB substrate (DAKO DAB REAL #K5007) was prepared (200uls per slide). 1X 

Substrate Buffer : 50X DAB + Chromagen (i.e for 5ml solution, 500uls DAB Chromagen 

was added to 4500uls DAB Substrate Buffer). Sections were incubated with substrate at 

room temperature until colour developed (10 minutes).  Slides were then washed in 

running water for 10 minutes and stained in Harris haematoxylin for 1 minute, rinsed in 

running water, turned blue with scots tap water substitute and lastly rinsed in running 
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water. Dehydration and mounting of slides: 1 min 70% alcohol, 1 min 90% alcohol, 2 x 1 

min 100% alcohol, 2 x 1 min xylene, sections mounted onto coverslips with DPX. 

 

2.5  Results 
 

2.5.1  GFR Validation 

In order to validate the GFR results, a graph of total GFR (ml/min) vs body weight was 

plotted (Fig 2.6). As would be expected, this shows increasing values of GFR as rodent 

body weight increases (R2 Linear =0.533), implicating that total rodent GFR results were 

following a reliable trend. 

 

 

                   
 

Figure 2.6  Scatterplot showing the expected increase in GFR with weight for both AS 

and mutant strains (n=24) 
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As indicated above, the GFR in the rodent population varies significantly with weight (p = 

<0.001). The increasing size of the kidney in larger animals is associated with greater 

nephron mass and hence greater filtration rates. It follows that unless rats involved in the 

experiments were all of identical size, then figures for GFR will be skewed by weight. To 

compensate for this confounding variable, all GFR variables were corrected to 100 grams 

of body weight (bw).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.6  Results of GFR analysis 

Database extract of results from GFR experiments showing details of total, split and corrected 
GFR/100gr bw.(AS n=12, AS/AGU n=12) 

Strain 

Age 
in 
Mon
ths 

Weight 
(gr) Sex 

Total 
GFR 
ml/min 

Split 
Right 
ml/min 

Split 
Left 
ml/min 

GFR/
100gr 
bw 

                
AS 4.9 228 F 0.84 0.48 0.36 0.37 
AS/AGU 4.5 210 F 0.61 0.34 0.27 0.29 
AS 5.1 226 F 0.87 0.48 0.39 0.38 
AS/AGU 4.7 200 F 0.5 0.26 0.24 0.25 
AS 5.6 220 F 1.02 0.52 0.50 0.46 
AS/AGU 5.2 207 F 0.64 0.4 0.24 0.31 
AS 6 360 M 1.08 0.6 0.49 0.30 
AS/AGU 5.5 306 M 0.96 0.47 0.49 0.31 
AS 6.2 350 M 1.05 0.59 0.46 0.30 
AS/AGU 5.5 318 M 1.18 0.6 0.58 0.37 
AS/AGU 7.5 230 F 0.44 0.22 0.22 0.19 
AS 7.4 256 F 0.83 0.43 0.40 0.32 
AS 7.9 280 F 0.97 0.45 0.52 0.35 
AS/AGU 8.7 246 F 0.93 0.5 0.43 0.38 
AS/AGU 15.6 376 M 1.24 0.69 0.55 0.33 
AS 14.7 266 F 1.2 0.62 0.58 0.45 
AS 15.1 370 M 1.08 0.53 0.55 0.29 
AS/AGU 16.5 384 M 0.8 0.43 0.37 0.21 
AS 15.6 418 M 1.19 0.63 0.56 0.28 
AS/AGU 16.5 412 M 1.33 0.71 0.62 0.32 
AS 15.7 388 M 1.51 0.73 0.79 0.39 
AS/AGU 16.8 408 M 1.06 0.65 0.41 0.26 
AS 15.8 376 M 1.13 0.63 0.51 0.30 
AS/AGU 11.7 376 M 1.12 0.65 0.47 0.30 
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 AS AS/AGU 

Mean GFR ml/min/100gr bw 0.3492 0.2933 

SD 0.0617 0.0577 

SEM 0.0178 0.0167 

N 12 12 

 

Table 2.7  GFR comparison between strains 

Results of students t-test analysis to compare mean GFR between the two strains. A statistically 
significant difference between strains holds (p=0.032) 

 

 

 

eGFR / 100g bw 

(ml/min) AS  ♂ AS ♀ AS/AGU ♂ AS/AGU ♀ 

Mean 0.31 0.39 0.30 0.28 

Std Error of Mean 0.016 0.023 0.019 0.031 

Range 0.11 0.14 0.16 0.19 

Minimum 0.28 0.32 0.21 0.19 

Maximum 0.39 0.46 0.37 0.38 

 

Table 2.8  Mean GFR between female and male strains 
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2.5.2  Parallel Strain Analysis 

Figure 2.7 shows a symmetrical increase in GFR between both strains with increasing age. 

The scatterplots with a line of best fit indicate that even at a young age there is a difference 

in total GFR between the two strains, with GFR consistently lower in the mutant rats. As 

expected, the GFR increases with age/weight however the values for AS/AGU mutant are 

consistently lower. 

When GFR is corrected for body weight, it is possible to visualise the age related decline 

in GFR. This is shown in Figure 2.8 where both strains show an equal rate of deterioration 

in GFR with age. The graph indicates that the mutant strain shows a compromised GFR 

pattern from a young age which persists into adulthood and declines at the same rate as the 

parent strain. The difference in the corrected GFR/100g body weight between the two 

strains was statistically significant (t-test, n=24) (p=0.0321, 95% CI 0.0052 - 0.1064). 

 

 

Figure 2.7  Total GFR difference between control and mutant strain 
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Figure 2.8  Corrected GFR difference between control and mutant strain 

 

Calculations based on the line of best fit in Figure 2.8 show that at 5 months of age, the 

corrected GFR for AS strain was 0.36ml/min whilst that for the AS/AGU strain was 

0.30ml/min. Similarly at 17.5 months of age, the AS strain GFR was 0.34ml/min whilst 

that of the mutant AS/AGU was 0.28ml/min. These results confirm a superior GFR for AS 

rats at both time points however, the rate of decline of GFR is equal between both strains – 

0.02ml/min/100gr bw over a period 12.5 months. There is no data to deduce whether the 

decline in GFR occurs at 0 to 5 months of age or whether the mutant strain possesses an 

intrinsically lower GFR from birth. 

 

2.5.3  Biochemical Analysis 

The results of a comprehensive biochemical analysis between the two strains is outlined 

below. The table incorporates number of animals sampled per group, mean value, standard 

deviation and the p value for comparison of significance between the two groups (t-test) 
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A significant difference in plasma urea concentrations and urinary creatinine between the 

strains was observed. Mutant AS/AGU displayed higher plasma urea and lower urinary 

creatinine than the control strain. Other parameters did not appear to differ between the 

two strains however there was variability in cholesterol levels with mutant strains 

possessing higher levels than the control strain, this difference approaching statistical 

significance (p=0.066) 
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Parameter 
AS AS/AGU p value 

(t-test) n mean SD n mean SD 

Sodium (mmol/L) 35 146.45 3.96 27 145.29 3.8 0.224 

Potassium (mmol/L) 27 5.12 1.19 26 5.23 1.09 0.287 

Chloride (mmol/L) 35 104.01 7.75 27 103.34 5.02 0.454 

Calcium (mmol/L) 31 2.63 0.41 27 2.63 0.29 0.619 

Phosphate (mmol/L) 36 3.01 0.68 27 2.89 0.47 0.827 

Urea (mmol/L) 34 7.14 1.53 27 8.68 1.97 0.002 

Creatinine (µmol/L) 36 47.28 8.27 27 45.52 10.49 0.808 

Cholesterol (mmol/L) 34 2.81 0.81 27 3.09 0.82 0.066 

Total Protein (g/L) 32 62.53 15.1 27 61.04 10.72 0.982 

Albumin (g/L) 30 29.83 6.77 27 29.74 5.21 0.931 

Glucose (mmol/L) 11 9.1 0.72 10 8.83 0.60 0.368 

Urine SG 13 0.97 0.28 10 1.04 0.01 0.436 

Urine Protein (g/L) 11 451.64 351.58 13 409.00 413.02 0.790 

Urine Creatinine 
(µmol/L) 11 11,299.27 3,621.70 13 8,168.54 3,599.89 0.046 

Urine Urea (mmol/L) 8 637.87 157.59 9 513.55 243.28 0.237 

UPCR 13 4.01 4.28 13 3.44 2.41 0.697 
 

Table 2.9  Biochemical differences between AS and AS/AGU rats 

An extensive panel of biochemical parameters was tested on plasma pertaining to both strains. 
Samples were machine analysed at the University of Glasgow – Veterinary Diagnostic Services. 
Note the statistical difference in plasma urea concentration and urinary creatinine (bold). Changes 
in plasma cholesterol levels show a strong trend between the two strains. 
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2.5.4  Subgroup Analysis – Sex Differences  

A subgroup analysis for sex differences showed that in both groups analysed as a whole 

(AS + AS/AGU), male rats had a significantly lower serum albumin (mean F = 32.29g/L 

vs mean M = 27.97, p = 0.007) and had significantly much increased levels of proteinuria 

(mean F = 173.00g/L vs mean M = 644.77g/L, p = <0.001) with significantly higher UPCR 

than their female counterparts (mean F = 5.73 vs mean M = 1.39, p = <0.001). The 

difference in serum urea between female and male rats approached significance, with 

females possessing higher concentrations (mean F = 8.36 mmol/L vs mean M = 7.42 

mmol/L, p = 0.054) 

 

2.5.5  Ischaemia Reperfusion Injury Studies 

Ischaemia Reperfusion Injury (IRI) was performed on a unilateral kidney following a 

period of GFR testing. Any ischaemic insult to the kidneys would alter the equilibrium 

state of plasma in the circulation. The mean time needed for a steady plasma concentration 

of inulin following the removal of 400µL of blood for laboratory analysis was 103mins 

(SD 30.5mins). Due to easier access to the left kidney pedicle, one or two vascular clamps 

were placed for sufficient time to allow injury and adequate recovery 

(anuria/oliguria/polyuria) within the experimental time period. The maximum clamp time 

for this was established to be 10 minutes. Preliminary studies showed that further 

ischaemia resulted in prolonged periods of anuria whilst shorter insults did not induce the 

required IRI. The urine specific gravity and urine urea concentration before and after 

clamping of the selected kidney were used to biochemically deduce the functional recovery 

and extent of injury. This was supplemented with immunohistochemical analysis for 

senescence associated proteins SA β Gal, p16, p21 and TUNEL assay for extent of 

apoptosis in the damaged renal tissue. In this way, IR injury is assessed in triplicate – 

physiologically, genetically and morphologically. 

 

2.5.6  Global Urine Analysis  

In both groups (AS+AS/AGU, n=16) analysed as a whole using the 2 sided student t-test, 

there was a significant difference between pre and post IRI urine urea concentration (mean 

pre-IRI urea concentration 572.25mmol/L, mean post-IRI urea concentration 
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381.88mmol/L, p=0.012). However, a significant difference in urine specific gravity was 

not observed (mean pre-IRI urine SG 1.047; mean post-IRI urine SG 1.042, p=0.160). The 

latter is most likely related to suboptimal measurements for urine SG, since scale readings 

on the refractometer were maximally limited to 1.050 with many readings marginally 

surpassing the limit described. Of the latter two parameters therefore, the urine urea 

concentration is taken as the more precise biochemical measurement of IRI. To further 

enhance the accuracy of this test and control for changes in plasma urea between the 

groups, the urine/plasma urea ratio pre and post IRI was additionally calculated. Pre and 

post IRI mean urine urea/plasma ratio for both AS+AS/AGU rats shows a statistically 

significant difference (mean pre IRI ratio = 1.59, mean post IRI ratio = 3.02, p=0.03). 

The same was repeated between strains to ascertain whether the mutant shows biochemical 

changes indicating that it is less tolerant to IRI than the control. Table 2.10 shows the 

results of urine SG and urine urea concentrations for both groups and individual AS and 

mutant AS/AGU rats. 

 

Table 2.10  Urine Biochemical changes in response to IR injury 

The table shows  mean changes in urine specific gravity (SG) and urine urea concentration for total 
cohort (n=16) and both mutant (n=8) and control (n=8) rats before and after ischaemia reperfusion 
injury (IRI). Diff = Difference between mean pre and post values 

 

 

Strain 

Mean 

SG pre 

IRI 

Mean 

SG post 

IRI 

Diff 
p 

value 

Mean 

Urea pre 

IRI 

mmol/L 

Mean 

Urea 

post IRI 

mmol/L 

Diff 

mmol/L 

p 

value 

AS + 

AS/AGU 
1.047 1.042 0.005 0.160 572.25 381.88 190.37 0.012 

AS 1.051 1.042 0.009 0.106 637.88 444.25 193.63 0.086 

AS/AGU 1.045 1.041 0.004 0.700 513.55 326.44 187.11 0.068 
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2.5.7  Individual Strain Urine Analysis  

When analysing the individual strain biochemical response to IRI (Table 2.10), there was 

no difference between pre and post IRI mean urine SG in either AS rats (p=0.106, n=8) or 

AS/AGU rats (p=0.700, n=8) (t-test). In addition, there is no significant difference between 

pre and post IRI mean urine urea concentration for AS rats (p=0.086) and neither for 

AS/AGU rats (p=0.068) (t-test).  

The calculated pre and post IRI urine/plasma urea ratio for AS rats shows no statistical 

significant difference (pre IRI mean ratio = 1.32, post IRI mean ratio = 2.69, p=0.100). The 

same is true for AS/AGU strain (pre IRI mean ratio = 1.86, post IRI mean ratio = 3.35, 

p=0.166). The urine/plasma urea ratio was used to correct for a statistically significant 

difference in plasma urea concentration between the strains, yet still give an indication of 

the extent of tubular function post IRI. A higher ratio is synonymous with worsening 

tubular function and the results may indeed be clinically relevant as they indicate poorer 

recovery in the mutant strains tubular function post IR injury.  

 

2.5.8  Immunohistochemistry 

Tables 2.12 to 2.15 summarise the results of staining for senescence proteins in animals 

exposed to IR injury. The tables show the p value following analysis of 

Ischaemia/Reperfusion against control kidneys. In each table, the first column (AS) shows 

the p value in each cell of IR vs Control for Nuclear, Cytoplasmic and combined Nuclear + 

Cytoplasmic scoring (Mann-Whitney U Test). TUNEL and SA β GAL showed no 

differences, however there were differences in p16 and p21 expression in the mutant 

AS/AGU rat. 
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Table 2.11 IR Injury 
Urine Biochemical data 
 
 
 
 
*Time to reach plasma inulin 
equilibrium after removing 
400microL sample from animal 
 
 
(  )Difficulty cannulating femoral 
artery resulted in a delay in 
obtaining blood samples 

 

ND – Not determined 
SG – Specific Gravity 
UP – Urine / Plasma 
 

Note: Urine SG and Urine Urea 
not obtained on first 4 
experiments 

 

Strain Age in 
Months 

Weight 
(gr) Sex 

Ischaemic 
Insult Left / 
Right Kidney 

Clamp 
Time 
(mins) 

Time to reach 
plasma inulin 
steady state* 
(mins) 

Urine 
SG pre 
IRI 

Urine 
SG post 
IRI 

Urine 
Urea pre 
IRI 

Urine 
Urea post 
IRI 

 
UP Urea 
pre IRI 

UP Urea 
post IRI 

AS 4.9 228 F Left 5 60 ND ND ND ND ND ND 

AS/AGU 4.5 210 F Left 5 90 ND ND ND ND ND ND 

AS 5.1 226 F Left 5 70 ND ND ND ND ND ND 

AS/AGU 4.7 200 F Right 5 60 ND ND ND ND ND ND 

AS 5.6 220 F Left 8 85 >1.050 1.042 ND ND ND ND 

AS/AGU 5.2 207 F Left 8 95 >1.050 1.052 ND ND ND ND 

AS 6 360 M Left 12 110 1.058 1.055 808 570 107.73 76 

AS/AGU 5.5 306 M Left 12 120 ND ND ND ND ND ND 

AS 6.2 350 M Left 10 140 1.048 1.049 729 570 86.79 67.86 

AS/AGU 5.5 318 M Right 10 90 1.056 1.048 941 475 104.56 52.78 

AS/AGU 7.5 230 F Right 10 150 >1.050 1.054 710 281 72.45 28.67 

AS 7.4 256 F Left 10 65 >1.050 1.036 539 171 50.37 15.98 

AS 7.9 280 F Left 10 85 1.053 1.02 494 142 58.81 16.90 

AS/AGU 8.7 246 F Left 10 135 1.051 1.016 451 92 49.02 10.00 

AS/AGU 15.6 376 M Left 10 140 1.043 1.049 470 529 65.28 73.47 

AS 14.7 266 F ND ND (255) ND ND ND ND ND ND 

AS 15.1 370 M Left 10 130 >1.050 >1.050 790 870 123.44 135.94 

AS/AGU 16.5 384 M Left 10 70 1.04 1.042 253 232 34.19 31.35 

AS 15.6 418 M Left 10 80 >1.050 >1.050 802 588 112.96 82.82 

AS/AGU 16.5 412 M Left 10 100 1.032 1.028 276 299 40.59 43.97 

AS 15.7 388 M Left 10 150 1.054 1.05 473 400 57.68 48.78 

AS/AGU 16.8 408 M Left 10 105 1.034 1.032 235 189 39.83 32.03 

AS 15.8 376 M Left 10 150 1.042 1.028 468 243 73.13 37.97 

AS/AGU 11.7 376 M Left 10 90 >1.050 >1.050 717 523 89.63 65.38 
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TUNEL 

AS  AS/AGU AS + AS/AGU 

C 

n=3 

I/R 

n=3 
p value 

C 

n=3 

I/R 

n=3 
p value 

C 

n=6 

I/R 

n=6 
p value 

Nuclear 68 95 0.12 72 97 0.13 70 96 0.025 

Cytoplasm 31 38 0.18 31 41 0.51 31 40 0.13 

Nuclear + Cytoplasm 50 67 0.31 52 69 0.42 51 68 0.17 

C=Control 
I/R= Ischaemia/Reperfusion 

Table 2.12  TUNEL IHC – Control vs IR Injured Kidneys 

Neither AS nor AS/AGU rats showed any significant change in staining patterns however there was 
a significant difference in the overall AS + AS/AGU nuclear staining between I/R and control 
kidneys p=0.025. Each value represents the mean score from both judges individual calculation of 
the 3 animals per group. When comparing uninjured kidneys in AS and AS/AGU groups, there is 
no difference in the quantity of apoptosis or indeed p16 expression, p21 expression and SA β GAL 
as seen in the tables below. 

 

 

SA β GAL 

AS  AS/AGU AS + AS/AGU 

C 

n=3 

I/R 

n=3 
p value 

C 

n=3 

I/R 

n=3 
p value 

C 

n=6 

I/R 

n=6 
p value 

Nuclear 1 0 0.12 0 1 0.38 1 1 0.67 

Cytoplasm 6 11 1.0 5 16 0.37 6 14 0.57 

Nuclear + Cytoplasm 4 6 0.44 3 9 0.45 4 8 0.93 

 
C=Control 
I/R= Ischaemia/Reperfusion 

Table 2.13  SA β GAL IHC Results – Control vs IR Injured Kidneys 

 No significant changes relating to SA β GAL was observed in either group. 
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p16 

AS  AS/AGU AS + AS/AGU 

C 

n=3 

I/R 

n=3 
p value 

C 

n=3 

I/R 

n=3 
p value 

C 

n=6 

I/R 

n=6 
p value 

Nuclear 56 51 0.82 32 54 0.51 44 53 0.63 

Cytoplasm 23 29 0.40 18 38 0.046 21 34 0.029 

Nuclear + Cytoplasm 40 40 0.93 25 46 0.024 33 43 0.19 

 
C=Control 
I/R= Ischaemia/Reperfusion 

Table 2.14  p16 IHC Results – Control vs IR Injured Kidneys 

Increased expression of the p16 protein was present in mutant rat kidneys exposed to IR injury 
particularly in the cytoplasm. Similar changes were not observed in the AS rat indicating a possible 
degree of increased tolerance to IR when compared to its AS/AGU counterpart. 

 

 

 

p21 

AS  AS/AGU AS + AS/AGU 

C 

n=3 

I/R 

n=3 
p value 

C 

n=3 

I/R 

n=3 
p value 

C 

n=6 

I/R 

n=6 
p value 

Nuclear 61 82 0.28 52 73 0.046 57 78 0.11 

Cytoplasm 42 45 0.82 33 79 0.83 38 62 0.63 

Nuclear + Cytoplasm 52 64 0.75 43 76 0.42 48 70 0.42 

 
C=Control 
I/R= Ischaemia/Reperfusion 

Table 2.15  p21 IHC Result s– Control vs IR Injured Kidneys 

Expression of p21 was statistically more evident in the nucleus of the mutant strain undergoing IR 
Injury. The same change was not present in AS animals undergoing a similar insult. This 
consolidates findings in table 2.14. 
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2.6  Discussion 
 

2.6.1  GFR and Renal Function 

The discovery of the mutant AS/AGU rat substrain was initially prompted by an unsteady 

movement disorder in a colony of AS rats. Studies by Payne, Davies and colleagues at the 

University of Glasgow discovered several associated pathological features including 

impaired cerebral glucose uptake and a parkinsonian gait due to loss of dopaminergic 

neurones of the substantia nigra pars compacta (231). The latter was found to be attributed 

to a PKCγ mutation in the AS/AGU colony (238).  

Unpublished data by Wright et al. showed that in addition to enhanced neurodegeneration, 

the mutant rat strain also displayed genetic evidence of premature renal senescence. 

Progressing further, the work in this thesis is aimed at physiologically characterizing the 

the renal phenotype of the mutant strain with GFR, biochemistry, immunohistochemistry 

and the response to ischaemia-reperfusion injury (IRI) as confirmed by the IHC studies 

presented. 

A nephron is a single functioning unit of a kidney and comprises the glomerulus, 

bowman’s capsule and associated tubules. Formation of urine begins at the glomerulus 

itself with the generation of a plasma ultrafiltrate. The rate of formation of this ultrafiltrate 

(glomerular filtration rate or GFR) has become a mainstay for evaluating renal function 

and monitoring the progression of kidney disease in humans (262;263). 

Thus, the GFR is arguably one of the most important parameters in human physiology and 

plays a fundamental role in nephrology. In both clinical practice and research, comparisons 

of GFR between and within subjects are of vital importance. Other markers of renal 

function are similarly important clinically although there are inherent limitations to the use 

of so called “dynamic equilibrium” markers such as serum creatinine and cystatin C. The 

serum creatinine itself varies considerably with muscle mass and protein intake whilst it is 

claimed that cystatin C is generated at a constant rate and thus is superior to serum 

creatinine as a marker of GFR. Indeed, cystatin C correlates with GFR more precisely than 

serum creatinine does (264). However, cystatin C has also been shown to be associated, 

independently of glomerular filtration rate, with inflammation, glucocorticoids, thyroid 

function, obesity, smoking, diabetes, age, sex, and race (265;266). Cystatin C is helpful for 
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diagnosing CKD, but, similar to serum creatinine, one needs to be aware of the causes of 

modest elevations. 

Because GFR varies with weight and height, it is important that GFR comparisons include 

some adjustment for body size. The traditional adjustment method in humans has been to 

divide GFR by body-surface area (BSA) and to standardize it to 1.73 m2 (267). During the 

animal studies described, GFR values were standardised to 100 grams body weight. GFR 

studies in this thesis were performed via a classical inulin infusion technique. A bolus of 

0.4ml inulin was administered in order to saturate plasma inulin concentration and attempt 

to reduce the time taken for equilibration. Indeed, as can be seen in Figure 2.5 the inulin 

concentration initially overshot steady state value and gradually reduced to equilibrium. 

This is disrupted by bloodletting for laboratory analysis. The explanation for this lies in the 

reduction of blood volume during the procedure which is promptly replaced by FITC from 

the infusion pump at a background fluorescence of 7000. A rate of 3mls/hr was chosen as 

this maintained a well filled state and ensured that hypotension was not a confounding 

variable in the studies. This is evidenced by uninjured kidney urine output and previous 

initial experiments (5 animals) together with recommendations by experts in the field of 

rodent renal research (Dilworth, Clancy and colleagues; University of Manchester).  

GFR validation studies proved that actual GFR values would increase with weight of the 

animal. This step acted as an internal control for subsequent experiments and provided 

reassurance that the method of GFR calculation was correct and fit for further experimental 

evaluation between strains. Since each kidney was catheterised individually, an 

independent value for GFR was obtained enabling accurate calculations for total and split 

GFR per kidney. Parallel strain analysis however provided an essential conclusion to the 

original hypothesis of this thesis. It is shown in Figures 2.7 and 2.8 that from the youngest 

animal specimens examined, there is a difference in both total GFR and corrected GFR 

between strains. Biochemically, a significant difference in plasma urea concentration and 

urinary creatinine between the strains was observed. Mutant rats displayed higher plasma 

urea (p=0.002) and lower urine creatinine (p=0.026) 

 

2.6.2  The possible role of Protein Kinase C in explaining differences in GFR 

Since the AS/AGU mutant is known to possess the PKCγ mutation, it may be that the 

difference in renal function between the two strains is explained by a difference in PKCγ 
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expression. Although Payne and colleagues determined the mutation to affect central 

dopamine neurotransmission in rats (231), there has been no evidence to support as yet the 

possible contribution of PKCγ to the inferior values of GFR observed in the AS/AGU 

strain. 

The parallel strain analysis (Figs 2.7, 2.8) indicated that at the youngest age analysed  (i.e. 

4.5 months), there is a statistically significant difference in GFR between the two strains. 

This means that the mutant strain is possibly undergoing sub-optimal organogenesis in-

utero resulting in decreased filtration mass. Alternatively, there is a rapid descent in renal 

function from birth to the earliest analysis point at 4.5 months. Should the latter be the 

case, one would expect a continuous decline in renal function, thereby increasing the 

difference in GFR between the two strains as they age and a graph showing 2 lines of best 

fit diverging from each other. Instead, the difference observed in renal function, present at 

4 to 5 months, remains constant throughout the lifetime of the two strains. This maintained 

difference is statistically significant and scientifically relevant, as this indicates that the 

PKCγ gene is a possible target for amelioration/deterioration of kidney function. Further 

studies establishing renal function before and after loss of PKCγ gene function are 

therefore of clinical relevance.  

The role of protein kinase C (PKC) in kidney organogenesis has in fact been described 

previously. From early stages of development, ureteric bud branching is one of the most 

important processes in renal organogenesis, and reciprocal induction by ureteric bud and 

metanephric mesenchymal cells is important for ureteric bud branching and mesenchyme-

to-epithelial conversion (268). For signal transduction mechanisms in various biologic 

processes and in controlling gene expression during organ development, PKC, a 

serine/threonine kinase, is recognized as a key enzyme (269). In addition, it is involved in 

the regulation of growth and differentiation during development. Kidney development is 

governed by proliferation, differentiation, and apoptosis. Several isoforms of PKC are 

expressed during kidney development, and it has been shown that inhibition of PKC by a 

sphingolipid product, ceramide, interferes with nephron formation (poor branching of 

ureteric buds) and induces apoptosis in the developing kidney (270). 

PKC is also involved in regulation of the growth and differentiation of many other organs 

during development, and so far, expression of PKC-alpha, -delta, and -zeta in the 

developing kidney has been detected by Northern blot analysis (271).  
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The group of classical or conventional PKC (cPKC) consists of the α, βI, βII and γ 

isoforms, all of which depend on calcium,  or its analogue phorbol 12- yristate 13-acetate, 

and in most cases phosphatidylserine for activation. Tissue homeostasis is of course 

dependent on the balance between cell proliferation and cell death. An imbalance can 

result in diseases linked with unwanted apoptosis or unwanted cell growth. PKC appears to 

also have a role in both processes, not only by stimulating cell cycling and proliferation but 

also by stimulating apoptosis. The conventional PKCs (of which PKCγ is a member) are 

predominantly anti-apoptotic, being principally involved in promoting cell survival and 

proliferation (272). It is plausible to assume that inactivation (or impairment) of PKCγ 

leads to decreased cell survival and augmented rates of apoptosis resulting in decreased 

tissue biomass. However, it’s role  in the mediation of ischaemia reperfusion injury is still 

unclear. 

 

2.6.3  Urea Transport 

In mammals, urea is the predominant end-product of nitrogen metabolism and plays a 

central role in the urinary concentrating mechanism. Urea accumulation in the renal 

medulla is critical to the ability of the kidney to concentrate urine to an osmolality greater 

than systemic plasma. Urea formed in the liver via the urea cycle enters the circulation and 

is freely filtered by the kidney. The amount of filtered urea excreted is regulated and 

depends on the physiological status of the animal. Protein restriction causes a decrease in 

the fraction of filtered urea excreted (273;274). This response reduces the loss of nitrogen 

from the body and serves to maintain plasma urea concentration, which would otherwise 

decrease in direct proportion to the lowering of nitrogen intake (275-279). Studies have 

suggested that the decrease in urea excretion with low protein intake is a result of increased 

urea absorption from the collecting ducts (278;280). In agreement, measurements in 

isolated perfused inner medullary collecting ducts (IMCD) show an increase in urea 

transport in the initial IMCD after dietary protein restriction (279;281).  

Regulation of urea transport forms an integral part of the urinary concentrating mechanism. 

During antidiuresis, increased plasma vasopressin stimulates a rapid increase in urea 

transport in the IMCD allowing urea to enter the medullary interstitium (282). Increasing 

urea transport in the IMCD in conjunction with Na,K,2Cl cotransport in the thick 

ascending limb of the loop of Henle (283) enables the establishment and maintenance of 
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the hypertonic medulla which, in turn, provides the osmotic gradient required for water 

reabsorption (284). Urea absorbed in the IMCD is furthermore secreted into thin ascending 

and descending limbs and descending vasa recta in a process called urea recycling. This 

recycling pathway limits urea diffusion from the inner medulla allowing the maintenance 

of the corticopapillary osmotic gradient. The IMCD (285) and the descending vasa recta 

(286;287) have been recently shown to contain several urea transporters. 

Several hypotheses are discussed as to why the mutant AS/AGU rats may in fact possess a 

higher plasma urea concentration. Firstly, the difference could be due to a mild, chronic 

form of dehydration (The AS/AGU mutant displays a particular dental development 

abnormality. The two lower incisors tend to overgrow and thicken resulting in a form of 

inhibition to normal feeding habits) This may lead to changes in the baseline level of 

vasopressin and physiological mechanisms to preserve blood urea concentrations so as to 

maintain a reserve of urea to enable urine to be concentrated should the need arise. Another 

reason for the elevated plasma urea in the mutant rat could be a higher metabolic rate 

resulting in increased protein catabolism and increased urea formation. This will explain, 

not only higher plasma urea concentrations, but also the difference in weight between the 

two strains. It is possible that the mutation in PKC affects thyroid status, however this 

would be accompanied by other clinical signs such as over-activity and impaired sleeping 

patterns which were not seen in the mutant strain. Also, thyroid function tests were not 

performed to prove this and such a theory is only speculative. A third theory to explain the 

increase in plasma urea is simply a lower intrinsic GFR in the mutant. Urea is freely 

filtered at the glomerulus and the serum urea concentration may be used as an index of the 

glomerular filtration rate (GFR). However, a number of non-renal factors also affect the 

serum urea concentration e.g. a high protein diet. There is also significant reabsorption of 

urea from the lumen of the nephron by passive diffusion (this is primarily the reason why 

serum creatinine is considered a better test of renal function in a clinical setting). The 

amount of urea reabsorbed in the nephron increases at high serum urea concentrations e.g. 

in renal failure, or if the flow rate through the nephron is reduced e.g. dehydration. 

Comparison of the degree of elevation between the serum urea and the serum creatinine 

concentration is useful in differentiating between pre-renal and intrinsic renal failure. In 

pre-renal failure the serum urea is disproportionately higher than the serum creatinine, 

whereas in intrinsic renal failure they rise in parallel. Thus, one reason to criticise this 

theory is the fact that no difference in serum creatinine between the strains was observed 

and this indicates that the changes in renal function between the strains may be too small to 
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be detected by serum and urine biochemical analysis alone. The relative proportion of 

muscle mass is small in rodents when compared to humans. This raises questions as to the 

diagnostic accuracy of creatinine with such animals in a similar way to humans in a 

cachexic state. Since creatinine is a product of muscle metabolism, smaller organisms 

would have little variation in plasma creatinine levels and it would take increasing GFR 

derangement in order to show an appropriate rise in serum creatinine. A final theory to 

explain serum urea differences relates to specific urea transporters in the nephrons as 

explained below.  

 

2.6.4  Mammalian Urea Transporters 

The majority of mammals consume diets that are high in protein. Under most 

circumstances, this dietary protein intake greatly exceeds that which is necessary for the 

support of anabolic processes. Excess protein is catabolized by the liver, which results in 

the formation of large amounts of urea by the ornithine-urea cycle. Urea is freely filterable 

by the kidney and the excretion of this urea constitutes a large osmotic load to the kidney. 

Most solutes excreted in such large amounts would obligate large amounts of water 

excretion by causing an osmotic diuresis.  

In mammals, there are two urea transporter genes: UT-A (SLC14A2) and UT-B 

(SLC14A1). Multiple protein isoforms derived from each gene are produced by alternative 

splicing and alternative promoters (288). Along the nephron, the specialized urea 

transporters UT-A1, UT-A2, UT-A3, and UT-B are involved in complex urea reabsorption 

and recycling pathways that allow large amounts of urea to be excreted without obligating 

water excretion (Figure 2.9) 
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Figure 2.9  Mammalian urea transporters 

Diagram showing the location of the major transport proteins involved in the urine concentrating 
mechanism in the outer and inner medulla. UT, urea transporter; AQP, aquaporin; NKCC/BSC, 
Na-K-2Cl cotransporter; ROMK, renal outer medullary K channel, C1C-K1, chloride channel. 
Adapted from Sands JM. Mammalian urea transporters. Annu Rev Physiol 2003;65:543-66. 

 

 

 

Urea transporter A1 (AT-A1) transports urea across the apical membrane into the 

intracellular space of luminal cells in the inner medullary collecting duct of the kidneys. 

UT-1 is activated by ADH, but is a passive transporter. It reabsorbs up to 40% of the 

original filtered load of urea (288). UT-A2 transports urea across the apical membrane into 

the luminal space of cells in the thin descending loop of Henle. UT-A3 transports urea into 

the interstitium of the Inner Medullary Collecting Duct. UT-A4 has been detected in rat but 

not mouse kidney medulla and UT-A5 is not expressed in the kidney but in the testis.  
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UT-A1 and UT-A3 contain several sites for phosphorylation by protein kinase A (PKA), as 

well as PKC and tyrosine kinase. In the inner medullary collecting duct, increases in 

intracellular calcium and activation of PKC mediate hyperosmolality-stimulated urea 

permeability (289;290), whereas increases in cAMP mediate vasopressin-stimulated urea 

permeability (291). Thus both hyperosmolality and vasopressin rapidly increase urea 

permeability, but they do so via different second messenger pathways. 

UT-B protein is expressed in erythrocytes and vasa recta (292-294), suggesting that urea 

transport in erythrocytes and descending vasa recta occurs via UT-B protein. Studies of 

microcirculatory exchange between ascending and descending vasa recta indicates that 

urea transporters (UT-B) are necessary to counterbalance the effect of aquaporin-1water 

channels in the descending vasa recta, i.e., in the absence of UT-B, the efficiency of small 

solute trapping within the renal medulla is decreased, slowing the efficiency of 

countercurrent exchange and urine-concentrating ability (295;296). Consistent with this 

hypothesis, urea recycling is impaired in the vasa recta of UT-B knockout mice (108). 

Thus the production of maximally concentrated urine requires UT-B protein expression in 

erythrocytes (297;298) and in descending vasa recta (295;296). 

A statistically significant difference in urinary creatinine was also observed with the 

control AS strain excreting larger quantities compared with its AS/AGU counterpart. The 

difference may be related to the larger muscle mass of the control strain and the greater 

GFR in the parent strain. A difference in serum cholesterol levels was also observed 

approaching statistical significance (p=0.066) with mutant strains possessing a higher 

serum levels. The hepatic mobilisation and metabolism of the cholesterol pathway is 

complex and beyond the scope of this thesis. Serum levels could however be impaired by 

the mutant PKC mutation resulting in a hypercholesterolaemic state.  

Subgroup analysis with respect to urinary protein and serum albumin shows increased 

UPCR / proteinuria in male rats over females. The result holds true when the analysis is 

performed for all control and mutant rats (p=<0.001). The most common cause of 

proteinuria in adults is diabetic nephropathy, however a total of 21 animals were tested 

with random serum glucose samples and no difference was observed between control 

(mean 9.1mmol/L) and mutant (mean8.83mmol/L).  Individual glucose samples reflected a 

euglycaemic state in all animals. Proteinuria, more specifically albuminuria is one of the 

first signs of kidney damage. The presence of excess protein in the urine indicates either an 

insufficiency of absorption or impaired filtration. With severe proteinuria, 
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general hypoproteinaemia can develop which results in diminished oncotic pressure. 

Symptoms of diminished oncotic pressure may include ascites, oedema and hydrothorax 

which were never observed in any of the rat species. It is not possible to ascertain a clear 

cause for this finding without formal histological analysis and indeed histopathology to 

characterise interstrain or intersex differences in both normal and IR states was not 

performed. It is however a point of interest in future related experimental work. 

 

2.6.5  IR Studies - Urine Biochemistry 

Ischaemia reperfusion is a pathological condition characterised by an initial restriction of 

blood supply to an organ followed by the subsequent restoration of perfusion and the re-

establishment of oxygenation. It results in a severe imbalance of metabolic supply and 

demand, causing tissue hypoxia. Eventual restoration of blood flow and oxygenation is 

frequently associated with an exacerbation of tissue injury and a profound inflammatory 

response termed reperfusion injury. 

During the laboratory experiments for this project, animals were given a standard 10 

minute ischaemic insult to a unilateral kidney following completion of formal GFR studies. 

This amount of IR injury generally allowed for intra-operative recovery of urine output 

from the damaged kidney within 30 to 90 minutes. Urine specific gravity together with 

urine urea concentration was analysed from the injured kidney before and after the timed 

insult which inevitably resulted in a degree of generalised tubular dysfunction. The aim of 

this was to help characterise the degree of renal injury via urine biochemistry and perform 

a comparison between mutant and control rats. The renal damage was also measured with 

IHC staining techniques. 

When tubular dysfunction is established, damage to the tubular cells impairs the 

adjustment of  the composition and volume of urine in several ways. Firstly, the 

countercurrent mechanism may be impaired, water reabsorption is reduced and large 

volumes of dilute urine are passed. Secondly, the tubules cannot secrete hydrogen ion and 

therefore cannot reabsorb bicarbonate normally and cannot acidify the urine. Thirdly, 

reabsorption of sodium and exchange mechanisms involving sodium are impaired and the 

urine contains an inappropriately high concentration of sodium relative to the state of 

hydration. Failure of sodium reabsorption in the proximal tubule contributes to impairment 

of water reabsorption at this site. Potassium reabsorption in the proximal tubule is also 
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impaired and potassium depletion may occur. Lastly, reabsorption of glucose, phosphate, 

urate and amino acids is impaired and there is often glycosuria, phosphaturia and 

generalised aminoaciduria. Uraemia may occur if fluid and electrolyte depletion causes 

renal circulatory insufficiency. Thus the effects of acute tubular dysfunction on serum 

plasma include a metabolic acidosis with low plasma bicarbonate, hypokalaemia, 

hpophosphataemia, hypouricaemia, haemoconcentration (if fluid deplete) and a normal 

plasma urea unless dehydration sets in. The effects on the urine are polyuria, 

inappropriately low osmolality and specific gravity and inappropriately low urea 

concentration. In most cases there is mild proteinuria and casts are present in the urine 

 

2.6.6  IR Studies - Urine Urea and Specific Gravity 

In order to estimate the degree of damage to the renal tubules, the pre and post ischaemia 

reperfusion urea and SG were measured from the clamped kidney. The hypothesis in this 

thesis is that the mutant AS/AGU rat displays an advanced senescence phenotype and 

would be intrinsically less tolerant to the stress of any ischaemic insult. It would also in 

theory recover over a longer period of time from a standard insult. The specific gravity 

(which is directly proportional to urine osmolality and reflects solute concentration) 

measures urine density, or the ability of the kidney to concentrate or dilute the urine over 

that of plasma. Damage to the kidney's tubules affects the ability of the kidney to re-absorb 

water. As a result, the urine remains dilute and this is reflected in a low specific gravity. 

Analysis of urine urea in both groups as a whole (AS + AS/AGU) showed a significant 

difference in concentration with post ischaemia urine containing a lower concentration of 

urea (p=0.012). The changes in the control AS group showed a decrease in urea 

concentration post IR injury with a trend towards significance (p=0.086) whilst there was a 

decrease in urea with a trend towards statistical significance in the mutant AS/AGU group 

(p=0.068). With impaired ischaemic tolerance resulting in a higher degree of acute tubular 

necrosis (ATN), the secretion of urea into the distal convoluted tubule is increasingly 

impaired, as is the ability to reabsorb water into the systemic circulation. The result is more 

dilute urine and lower urine urea concentrations.  

The urine/plasma urea ratio may be seen as a more accurate figure as it takes into account 

the difference in plasma urea concentration between the two strains. Outcome of urine 

specific gravity testing shows a decrease in SG post IR injury reflecting a degree of tubular 
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damage as indicated in the preceding text, however results were not statistically significant 

in either of the groups studied and there was difficulty measuring urine SG above 1.050 on 

the refractometer. In all urine biochemical analyses performed, there was a change between 

pre and post IR injury ratios that did not reach statistical significance. This is possibly due 

to the relatively smaller numbers in each group (n=8 per group). As is noted here, the 

numbers for the above IRI studies are smaller per group when compared to the GFR 

studies (GFR n=12 / group vs IRI n=8 / group) because biochemical urine testing 

commenced at a slightly later period. 

 

2.6.7  IR Studies - Immunohistochemistry 

Together with the biochemical analysis of serum and urine, renal tissue sections from six 

animals were subject to immunohistochemical staining to monitor for the presence of 

proteins p16 and p21. In addition, the extent of apoptosis was gauged using the TUNEL 

assay and SA β Gal for accumulation of the biomarker of senescence – lipofuscin. The 

animals were sacrificed by Schedule 1 technique approximately 120 minutes +/- 30 mins 

following the release of clamps and the organs were immediately placed in liquid Nitrogen. 

This implies that any tissue changes noticed during the IR injury experiments were allowed 

to take place within the aforementioned time frame between clamp release and animal 

sacrifice. A brief description of the physiological, genetic and molecular mechanisms 

involved in IR injury is therefore warranted to enable a better understanding of the results. 

A wide range of pathological processes contribute to ischaemia reperfusion injury. 

Hypoxia is associated with impaired endothelial cell barrier function (299) due to 

decreases in adenylate cyclase activity and intracellular cAMP levels with a concomitant 

increase in vascular permeability and leakage (300). In addition, IR injury leads to the 

activation of cell death programs, including apoptosis (nuclear fragmentation, plasma 

membrane blebbing, cell shrinkage and loss of mitochondrial membrane potential and 

integrity), autophagy-associated cell death (cytoplasmic vacuolization, loss of organelles 

and accumulation of vacuoles with membrane whorls) and necrosis (progressive cell and 

organelle swelling, plasma membrane rupture and leakage of proteases and lysosomes into 

the extracellular compartment) (301) At this point some cells may choose to enter a state of 

senescence (Figure 2.10) 
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The ischaemic period in particular is associated with significant alterations in the 

transcriptional control of gene expression (transcriptional reprogramming). For example, 

ischaemia is associated with an inhibition of oxygen sensing prolylhydroxylase (PHD) 

enzymes because they require oxygen as a cofactor. Hypoxia-associated inhibition of PHD 

enzymes leads to the post-translational activation of hypoxia and inflammatory signalling 

cascades, which control the stability of the transcription factors hypoxia-inducible factor 

(HIF) and nuclear factor-κB (NF-κB) (302), respectively. Despite successful reopening of 

the vascular supply system, an ischaemic organ may not immediately regain its perfusion 

(no reflow phenomenon). Moreover, reperfusion injury is characterized by autoimmune 

responses, including natural antibody recognition of neoantigens and subsequent activation 

of the complement system (autoimmunity) (303). Despite the fact that ischaemia and 

reperfusion typically occurs in a sterile environment, activation of innate and adaptive 

immune responses occurs and contributes to injury, including activation of pattern-

recognition receptors such as Toll-like receptors (TLRs) and inflammatory cell trafficking 

into the diseased organ (innate and adaptive immune activation) (304). 
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Figure 2.10  Biological processes implicated in IR Injury 

The effects of IR injury are multiple and not completely understood. The inflammatory response to 
“sterile” injury has many similarities to that observed in microbial infections. Tissue hypoxia 
during the ischaemic period results in the transcriptional activation of inflammatory gene 
programmes. Such mechanisms are dependent on Toll-like receptor (TLR) – dependant 
stabilisation of the transcription factor NF-κB. TLR 4 in particular may have a detrimental role in 
mediating kidney injury and has been implicated in early graft failure. NF-κB itself is a protein 
complex that controls DNA transcription. It is found in almost all animal cell types in response to 
stress, infection and other stressors. It plays a key role in regulating the immune response to 
infection and has been linked to cancer and autoimmune diseases. Dendritic cells and macrophages 
play an important role in the innate and adaptive immune response of acute IR injury. They are key 
initiators, potentiators and effectors of innate immunity in kidney IRI and induce injury either 
through inflammatory signals to other effector cells or directly through the release of soluble 
mediators. In addition, dendritic cells (potent antigen presenting cells) contribute to the innate 
immune response by activating NKT cells and promoting inflammation (Adapted from: Eltzschig 
HK, Eckle T. Ischemia and reperfusion--from mechanism to translation. Nat Med 2011.) 

 

 

When damage accumulates irreversibly, mitotic cells from renewable tissues rely on either 

of two mechanisms to avoid replication. They can permanently arrest the cell cycle 

(cellular senescence) or trigger cell death programs. Apoptosis is the best-described form 

of programmed cell death, but autophagy, (a lysosomal degradation pathway essential for 

homeostasis) may contribute to cell death too. Unlike mitotic cells, postmitotic cells like 

neurons or cardiomyocytes cannot become senescent since they are already terminally 

differentiated. The fate of these cells entirely depends on their ability to cope with stress. 
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Autophagy then operates as a major homeostatic mechanism to eliminate damaged 

organelles, long-lived or aberrant proteins and superfluous portions of the cytoplasm. 

As described in chapter 1, the following mechanism in response to cellular stress is 

paramount to the work performed in this thesis and merits further discussion. Cellular 

senescence actually refers to the arrest in the G1 phase of the cell cycle of continuously 

proliferating cells, in response to stress that puts them at risk of malignant transformation 

(305). Senescent cells adopt a flattened, enlarged morphology and exhibit specific 

molecular markers like SA β GAL, senescence-associated heterochromatin foci and the 

accumulation of lipofuscin granules (306;307). There are many stimuli leading to the 

senescencent state. Among them, telomere shortening, DNA damage and oxidative stress 

are the best described (305;308). In spite of the diversity of these stimulatory signals, they 

only converge onto two major effector pathways: the p53 pathway and the pRB pathway 

(figure 2.11). In normal conditions, the tumour suppressor protein p53 is constitutively 

targeted to proteosome-mediated degradation by MDM2, but upon mitogenic stress or 

DNA damage, MDM2 activity is suppressed and functional p53 is able to activate the 

cyclin dependent kinase inhibitor p21 which stops the cell cycle. In the second pathway, 

the retinoblastoma protein pRB is  activated by p16 after cellular stress or DNA damage 

and then binds to members of the E2F family of transcription factors, known to regulate 

cell cycle progression (309;310). The two pathways manifest ample crosstalk in the control 

of cellular senescence, and can also overlap with death pathways (311;312). 
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 Figure 2.11  Outcomes of the p16 and p21 cellular pathways 

 When dividing cells are exposed to genetic stress, the cell cycle must be arrested immediately to 
ensure the integrity of the DNA and/or the cell cycle control. To prevent an unscheduled entry into 
S-phase, the activity of the Cyclin-CDK complex is suppressed by an association with CDK 
inhibitors. Dependent on the extent of the damage, the cell must determine whether to arrest the 
cell cycle and enter senescence, repair the DNA, or to enter the apoptosis/autophagy pathway. 
(Adapted from Vicencio JM, Galluzzi L, Tajeddine N, Ortiz C, Criollo A, Tasdemir E, et al. 
Senescence, apoptosis or autophagy? When a damaged cell must decide its path--a mini-review. 
Gerontology 2008.) 

 

 

 

 

IHC analysis of kidneys exposed IR injury show significant changes in levels of p16 and 

p21 protein expression primarily in the mutant AS/AGU strain. AS rats showed no 

difference between control and IR subjected kidneys. Closer to the IR insult (i.e earlier in 

the senescence cycle), one would expect to see higher levels of p21 which would 

eventually give way to p16 for maintenance of the senescence state. Indeed, after 
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senescence is achieved, p21 declines considerably to an amount that was consistent with a 

reversible arrest earlier in the lifespan. P16 increases as p21 declines and reduces the 

number of targets for p21 through its inhibitory effect on cyclin D1-Cdk4/6 complex 

formation. Elevated p16 is critical to maintain the senescent cell cycle arrest as p21 

declines from its maximum at the initiation of senescence. Studies on replicative 

senescence outline two events : an increase in p21 that is driven by the “mitotic clock” and 

an upregulation of p16 as part of a program of differentiation that is turned on in senescent 

cells. First, the progressive age-dependent accumulation of p21 suggests that it occurs as a 

consequence of replication- related processes such as telomere shortening (313), DNA 

demethylation (314), and the effects of DNA damage (315;316). It results in inactivation of 

all G1 cyclin-Cdks, such that pRb fails to be phosphorylated, E2F transcription factors are 

not released, late-G1 genes necessary for DNA synthesis are not expressed, and the cells 

become irreversibly arrested in G1 phase (317). In parallel, an efficient G1 block may also 

be assured by inactivation of proliferative cell nuclear antigen (PCNA) by association with 

p21 and cyclin D1. Second, at senescence a program of differentiation is initiated that 

involves the accumulation of p16, as well as changes in the morphology, size, and 

functional attributes of the cells (318-325). The concomitant decline of p21 from its peak 

in early senescence could occur owing to decay of the replication-related signals that drove 

its increase as the cells were aging. Consequently, in late senescent cells Cdk inactivation 

and the cell cycle arrest are maintained through the combined effect of p16 and p21.  

One of the most widely used methods for detecting DNA damage in situ is TdT-mediated 

dUTP-biotin nick end labeling (TUNEL) staining (326). TUNEL staining was initially 

described as a method for staining cells that have undergone programmed cell death, or 

apoptosis and exhibit the biochemical hallmark of apoptosis—internucleosomal DNA 

fragmentation(327-331). TUNEL staining relies on the ability of the enzyme terminal 

deoxynucleotidyl transferase to incorporate labeled dUTP into free 3'-hydroxyl termini 

generated by the fragmentation of genomic DNA into low molecular weight double-

stranded DNA and high molecular weight single stranded DNA. Results for the 6 animals 

(and 12 kidneys) analysed for such changes showed a global difference in nuclear staining 

(p=0.025) as shown in Table 2.12, although there was no inter or intra-strain difference 

with this particular assay. It could be concluded therefore that under the above 

experimental conditions, molecular changes with respect to DNA fragmentation and 

apoptosis are not primarily observed.  
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A similar association was seen with the biomarker of ageing SA β GAL (Table 2.13) - a 

hydrolase enzyme that catalyses the hydrolysis of β – galactosides into monosaccharides in 

senescent cells. Staining with this method showed no significant difference across all 

groups. In addition (as was observed with the TUNEL assay) there was no difference 

between IR exposed kidneys and controls. This finding does not conform with similar 

experiments within our laboratory and is reflective of a relatively short IR injury time 

being insufficient to produce statistically significant differences with these markers. It is 

also reflective of the lack of relative sensitivity of these particular markers. The increase in 

cellular lysosomal content in ageing cells is thought to be caused by the accumulation of 

non-degradable intracellular macromolecules and organelles in autophagic vacuoles (332). 

In vivo, this process is manifested by the accumulation of lipofuscin in ageing post-mitotic 

cells (333). Also, these secondary lysosomes are loaded with non-degradable material that 

are not available for further digestion of macromolecules, forcing cells to synthesise more 

primary lysosomes in an attempt to continue with normal cellular function. Most of the 

newly formed primary lysosomes appear to fuse with these lipofuscin-containing acidic 

vacuoles, contributing further to their increase in size and content of hydrolytic enzymes 

(332). 

P16 staining however, proved different in that both interstrain and intrastrain differences 

were observed (Table 2.14). In all three groups (Nuclear, Cytoplasm and Nuclear + 

Cytoplasm) there were no intra-strain differences observed for AS rats. With the AS/AGU 

strain we observe a significant difference in cytoplasmic staining (p=0.046) but not 

nuclear. When nuclear and cytoplasmic staining are analysed together there is again a 

significant intrastrain difference for the AS/AGU rat (p=0.024). The analysis of both 

strains together shows a difference in cytoplasmic staining between IR kidneys and 

control. The results drawn from p16 staining therefore implicate that following IR injury to 

rat kidneys for a period of 10 minutes, there is a significant increase in p16 protein present 

in the AS/AGU renal cell cytoplasm within a mean period of 105 minutes (range 75-135 

mins). The reason for cytoplasm predominant p16 has only recently come to light and is of 

relatively new scientific interest (334). Classically, the only function attributed to p16 has 

been cell cycle regulation and this function takes place in the nucleus. There is however, 

considerable evidence that certain tumours exhibit significant p16 levels in the cytoplasm 

(335). In addition, cytoplasmic p16 has been associated with tumour progression and 

prognosis in certain kinds of neoplasms such as breast cancer, where the presence of p16 

was preferentially confined to the nucleus in fibroadenoma and nuclear/cytoplasmic or 
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exclusively cytoplasmic in carcinoma (336;337) Other similar changes have been seen in 

colorectal cancers (336;338;339), astrocytomas and uterine leiomyomas (340-342) and 

gastrointestinal stromal tumours (343). Proteomic and post-translational studies have been 

performed in an attempt to clarify the function of p16 in the cytoplasm. These studies have 

shown that p16 is expressed in the cytoplasm and the nucleus, depending on post-

translational modifications or its capability to form a complex with other proteins (344). 

Nevertheless, further work is needed to elucidate the molecular mechanisms involving 

cytoplasmic location of p16, its functions and its connection with oncogene-induced 

senescence and failure of the p16 tumour suppressor function. In essence, as occurs with 

other proteins involved in cell cycle regulation, p16 localization in the cytoplasm may 

represent an alternative mechanism for modulating different pathways, instead of simply a 

way to inactivate the cell cycle control function. 

With p21 staining there was a similar pattern between strains i.e there were no significant 

changes observed in the nuclear or cytoplasmic AS control strain (Table 2.15).  However, 

in contrast to p16, there was a significant change in nuclear p21 levels (but not 

cytoplasmic) for the AS/AGU strain (p=0.04). This further supports findings that the 

AS/AGU strain is less resilient to ischaemia reperfusion insults and that (as in p16) within 

a mean period of 105 minutes, a visible change in p21 levels are observed. The reasons 

behind these findings may indeed be related to the ageing phenotype displayed by the 

AS/AGU rat and may be related somehow to the PKCγ mutation although further genomic 

and proteomic studies are necessary to further clarify this association. The mechanisms 

which regulate the cellular localisation of p21 in different cell types are not yet clear. 

Recently, evidence has accumulated that the cyclin kinase inhibitor, p21, is a 

multifunctional cell cycle-regulatory molecule that contributes to the regulation of 

apoptosis, as well as associating and inhibiting Cyclin-CDKs or proliferating cell nuclear 

antigen (PCNA) (345). It has been shown to protect cells from apoptosis when exposed to 

hydrogen peroxide (346;347) and also protects cells from cytokine induced apoptosis 

(348;349). In contrast, a number of reports suggest that p21 possesses pro-apoptotic 

functions under certain conditions in specific systems (350-353). Again, the mechanism by 

which p21 can regulate the apoptotic pathway is not well understood. While cell cycle 

inhibition by p21 is a nuclear event (since p21 binds and inhibits CDKs and/or PCNA in 

the nuclei), the regulation of apoptosis may be a nuclear or cytoplasmic event, or both. 

Since there are differing apoptosis signal cascades, one induced by DNA damage and 
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another being the death signal from the cell membrane or cell organelle, various regulatory 

points in the apoptosis signal cascades exist. Thus, the influence and activity of p21 on the 

apoptosis signal cascade may depend on the cell type or the cell conditions. 

 

 

 

 

   

 

   

 

Figure 2.12  Immunohistochemical staining for senescence markers 

Immunohistochemistry showing staining patterns in kidney parenchyma at 20x magnification. 
Arrows mark: a) Very weak SA β GAL pattern was seen in all experimental subjects. b) TUNEL 
assay revealing dark staining in kidney cells exposed to IR injury. The difference between IR and 
control kidneys was not statistically significant here c) p16 staining is evident in tubular cells 
entering senescence d) p21 showing a similar staining pattern in cells exposed to the ischaemic 
insult described.  

 

 

 

a) b) 

c) d) 
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2.7  Conclusion 

The AS/AGU mutant rat is shown to possess several characteristics which make it a 

suitable model to study the effects of senescence and ischaemia reperfusion injury on renal 

tissue. Firstly, the strain displays an inferior GFR at all age groups when corrected for 

body weight. This is most likely related to decreased functional nephrons mass (as a result 

of premature senescence) associated with the premature ageing process and is in keeping 

with unpublished data from Wright et al (University of Glasgow). In addition the mutant 

strain has a higher serum urea and a lower urinary creatinine, which further reflect its 

impaired renal function. Reasons for such differences in its biochemistry and senescent 

state are not entirely clear but may be related to the PKCγ  mutation which itself plays a 

crucial role in several signal transduction cascades. A more complete understanding of the 

functions of individual PKC isoforms in the kidney, and further development of isoform-

specific inhibitors or gene therapy will be necessary for the future treatment of cellular 

dysregulation in renal disease.  

IR injury experiments have shown that the AS/AGU rat is also ideal for testing ischaemia 

related senescent changes and provides a model more reminiscent of the condition of 

extended criteria kidneys in human transplantation than current rodent models. The studies 

indicate that the AS/AGU strain shows immunohistochemical evidence of impaired 

tolerance to moderate levels of IR injury. It displays a relatively prompt cell 

protection/senescent mechanism, demonstrated by higher p16 and p21 expression in the 

cytoplasm and nucleus when recovering from an ischaemic insult. Indeed, no such 

immunohistochemical changes were observed in the parent AS strain. Further studies with 

a larger number of animals, lengthier ischaemic times and transplantation itself would be 

beneficial to support these findings. Moreover, the addition of formal histological analysis 

including electron microscopy would be of additional value in further characterizing the 

phenotype of this uniquely mutated rodent.  

We have seen in the first chapter of this thesis that donor chronological age is a key 

predictor of DGF and renal function suggesting that strategies to protect biologically aged 

kidneys from transplant associated injury would prolong graft survival and improve 

observed renal function.  This inevitably results in improved quality of life and patient 

survival, eventually resulting in significant health economic benefit due to reduced 

morbidity and hospitalization. These studies are the platform on which we can eventually 
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provide a reliable and objective molecular test to identify kidneys that will respond poorly 

to ischaemia reperfusion and thus benefit most from protective translational strategies. 
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Chapter 3 
 

ISCHAEMIA REPERFUSION INJURY AND ANTI-ISCHAEMIC 
COMPOUNDS – AN EXPERIMENTAL ANIMAL MODEL 
 

3.1  Introduction 

Acute kidney injury (AKI) refers to a complex disorder that comprises multiple causative 

factors and occurs in a variety of settings with varied clinical manifestations that range 

from a minimal but sustained elevation in serum creatinine to anuric renal failure. AKI 

sustained during temporary interruption of blood supply to kidneys as occurs in 

experimental ischaemia reperfusion (IR), mimics to a certain extent the damage sustained 

during cold ischaemic time in kidney transplantation. In transplantation however, a cascade 

of events besides the IR injury phase itself contributes to global graft injury. In DBD 

donors for example, the pre-retrieval phase is notoriously associated with a cascade of 

events such as complement activation and cytokine release leading to microvascular injury 

and tubular necrosis.  

Even when retrieved under ideal circumstances i.e live donation, the graft endures at least a 

modest ischaemic insult. During deceased donation, the inflammatory mechanisms are 

triggered during the pre-retrieval process and further inevitable injury occurs during the 

longer preservation period. In all cases, injury is then exacerbated as warm host blood 

circulates the organ with initiation of host innate and adaptive immune response and no 

reflow phenomena. Recognition of the importance of these injuries to long-term graft 

survival continues to gain intense interest among scientists and clinicians in a race to 

determine optimal countermeasure strategies. Several groups have published results on 

specific compounds or biological agents, which have been shown to influence the effects 

of IR injury. However, such experiments have been mostly limited to in vitro cell lines 

and/or small mammal experiments. Examples of such include endothelin receptor 

antagonist which inhibits the potent vasoconstrictor effect of endothelin (354), PARP (355) 

and Caspase (356) inhibitors which work as anti apoptotic agents, complement (357;358) 

and interleukin receptor antagonists (359;360) which function as anti-inflammatories and 

erythropoietin working as both an anti-inflammatory and anti-apoptotic agent (361). 
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3.1.1  mTOR inhibitors and AZ-6 

This chapter focuses on the use of a specific compound (AZ-6) in an animal model to 

establish its effect on renal physiology when injected intravenously before or after a 

predetermined length of ischaemia reperfusion injury. Physiological outcomes i.e serum 

creatinine values and weight were also determined for intravenous injection and no IR 

injury in a separate arm. AZ-6 is an mTOR inhibitor (provided by the pharmaceutical 

company Astra Zeneca) identified  previously, through blinded testing and ranking in vitro 

of 11 separate novel chemical entities (NCE), as the best NCE to mitigate the effects of 

oxidative damage in primary human renal epithelial cells (Moulisova et al in preparation). 

The choice of compound was based on its ability to minimize the effects of an oxidative 

insult on cellular biological age, as measured by CDKN2A expression in both Human 

Diploid Fibroblasts (HDF) and Human Renal Epithelial Cells (HREpi). These data 

indicated that this compound might mitigate the acceleration of bio-ageing induced by 

acute stress and could therefore be utilised in further trials relating to transplantation 

associated ischaemic injury. Whilst much of the work relating to this compound revolves 

around the effects on bio-age, the chapter focuses on experimental design, surgical 

technique, animal housing and testing such compounds in vivo, relative to any future 

clinical translation in man. 

The first mTOR inhibitor was discovered in 1975 when researchers discovered that a 

bacterium Streptomyces hygroscopicus produced an antifungal, later called Rapamycin 

(362). Further studies revealed that Rapamycin itself did not only have antifungal 

properties but also significantly suppressed the immune system by blocking G1 to S phase 

in T-Lymphocytes and hence it’s widespread use in transplantation today (363). mTOR, 

also known as mammalian target of rapamycin (or FK506) is actually a serine/threonine 

protein kinase that also regulates protein synthesis, cell survival and cell motility (364). 

Much of the literature in transplantation, related to the use of mTOR inhibitors regards 

calcineurin inhibitor (CNI) sparing regimes (365-367). CNI’s are notorious for causing 

long term chronic allograft nephropathy (and hence may contribute to decreased long term 

graft survival) but till today, these agents are still in use as first line immunosuppressive 

drugs together with steroids and anti-metabolite agents such as mycophenolate mofetil. 

mTOR signalling is aberrantly activated in many human cancers and has a central role in 

the regulation of cancer cell growth by control of the initiation of mRNA translation into 

protein. Aberrant activation of mTOR is thought to occur in ~50% of human malignancies 
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(368). A possible mechanism is increased activation of Akt (protein kinase B) arising from 

the loss of tumour suppressor gene PTEN (phosphatase and tensin homologue) function. 

Such loss is observed in many cancers including renal cell carcinoma (369). 

The mTOR signalling pathway is highly complex and detail of this would deviate from the 

full purpose of this thesis. However, a brief explanation is merited on the basis of it’s 

central role as a proposed therapeutic agent in the experimental animal groups. mTOR 

exists in the form of two molecular complexes, mTORC1 and mTORC2, but only the 

former is generally susceptible to inhibition by rapamycin analogues. The two best 

characterised pathways lying downstream of mTOR are mediated by ribosomal protein S6 

kinase (S6K1) and by eukaryotic initiation factor binding protein (4EBP1). Activation of 

either PI3K and/or Akt and/or loss of PTEN suppressor function results in activation of 

S6K1 and 4EBP1by mTOR kinase. mTOR inhibitors bind with high affinity to a 

cytoplasmic protein FKBP-12 to form a complex that interacts with mTOR kinase. This 

blocks downstream signalling events, affecting the synthesis of cell cycle regulators such 

as cyclin D and decreasing hypoxia-inducible transcription factor (HIF) expression. It is 

mainly through the synthesis of HIFs that mTOR controls the production of proteins 

involved in angiogenesis (e.g. VEGF) and in other responses that increase supplies of 

nutrients and energy for growing cells (Figure 3.1) 
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            Figure 3.1  A model of mTOR signalling cascade and its function 

This diagram outlines how mTOR integrates nutrient and growth factor-derived signaling inputs to 
regulate translation initiation. Mitogen signaling to RTKs activates PI3K and Akt. Akt is 
phosphorylated on T308 by PDK1 and by mTORC2 (consisting of mTOR, mLST8, and rictor) on 
S473, leading to its full activation, which in turn phosphorylates TSC2, leading to activation of 
Rheb GTPase and mTORC1 (consisting of mTOR, mLST8, and raptor) activation. The energy- 
sensing pathway (i.e., through amino acids and ATP) is linked to mTOR signaling through LKB1. 
LKB1 activates AMPK, which in turn activates TSC1/2, leading to mTORC1 inhibition. Activation 
of mTORC1 phosphorylates S6K1 and 4E-BP1 and leads to release of 4E-BP1 from elF-4E, which 
play fundamental roles in top-dependent and cap-dependent translation, respectively. mTORC1 
initiates a negative feedback loop to modulate Akt activity through S6K1. (Adapted from Wan X, 
Helman LJ. The biology behind mTOR inhibition in sarcoma. Oncologist 2007 Aug;12(8):1007-
18) 
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3.2  Hypothesis 
 

iv. Biomarkers can be exploited in animal models to investigate events associated with 

ischaemia-reperfusion. 

v. Such a model can be used to assess interventions using anti-ischaemic compounds for 

benefit in reducing the harmful short and long term effects of ischaemia-reperfusion 

injury on the kidney 

vi. mTOR inhibitors show a promising role in the reduction of IR injury when 

administered systemically at the time of injury  

 

3.3  Aims 
 

i. Can we match in vitro experiments to reduce or minimize cellular stress in the face of 

IR injury in vivo within a suitable animal model? 

ii. Can the effect of such a compound (AZ-6) on renal tissue, be determined 

biochemically and/or genetically + immunohistochemically using markers validated in 

vivo in Chapter 1  

 

3.4  Methods 
 

3.4.1  Animal Groups and Housing 

The experiments were carried out on both male and female Albino Swiss rats aged between 

6 and 9 months and weighing between 218 grams and 412 grams. Nutrition consisted of a 

standard rodent diet and tap water ad libitum. Animals were housed in the Joint Research 

Facility – University of Glasgow under standardized conditions in plastic-metal cages, 

light-dark cycle 12/12 hours, temperature 22 +/-2 °C, humidity 50 +/-5 %. The study was 

approved by the University’s Ethics committee. 
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3.4.2  Experimental Design and Surgical Technique 

There were 5 separate groups of animals with n=4 per group. Each group consisted of 2 

male and 2 female rats: Group I: Nephrectomy only, Group II: Nephrectomy / 

Contralateral 30 minute IR Injury, Group III: Nephrectomy / AZ-6, Group IV: 

Nephrectomy / pre IR injury AZ-6 / Contralateral 30 minute IR Injury, Group V: 

Nephrectomy / post IR injury AZ-6 / Contralateral 30 minute IR Injury (Table 3.1). 

The animals were anaesthetised using Isoflurane for induction of anaesthesia at a 

concentration of 4% in Oxygen. The animal was then maintained on Isoflurane 0.5% in 

Oxygen. A heated surgical table was utilised to maintain body temperature of the animal at 

37°C. A subcutaneous injection of buprenorphine at 0.05mg/kg was administered upon 

induction and a 22G cannula was inserted into the tail vein (when required) at this stage. 

The cannula was flushed with 0.5ml of unfractionated heparin to maintain patency. Group 

III and group IV received an IV injection of AZ-6 at this stage. The dose for AZ-6 

treatment was estimated at 0.8 μmol/kg of body weight after extrapolation from in vitro 

tests and after consultation with Astra Zeneca. The drug was dissolved in normal saline 

and 1% DMSO and administered i.v. (tail vein). 

The animal’s abdomen was shaved and subsequently prepped and draped in a sterile 

manner using Chlorhexidine solution. A midline laparotomy was performed and the 

bowels displaced medially to display the pedicle of the right kidney, which was 

subsequently ligated using a prolene 5/0 tie. The kidney was then freed from its 

ligamentous attachments including the ureter, removed from the animal and placed in 

liquid Nitrogen. The ureter was then ligated at its distal end. Haemostasis was achieved in 

all procedures with virtually no blood loss. Attention was then focused on the left kidney 

pedicle where the vein and artery were displayed with both blunt and sharp dissection. A 

haemostatic clamp was placed over both artery and vein in groups II, IV and V at specified 

time points during the procedure for a period of 30 minutes. Upon release of the clamp, 

adequate observation of reperfusion to the kidney was mandatory in order to proceed with 

recovery. The abdomen was subsequently closed with 3/0 silk to the muscular layer and to 

the skin. The animal was recovered in standard heated and carpeted cages for a period of 1-

2 hours and each rat received a 2ml subcutaneous injection of normal saline. During the 

post-operative period up to sacrifice on day 10, the animals were weighed on a daily basis 

and blood samples were obtained at day 3, 6 and 10 via the tail vein under minimal 

sedation. A 300µl sample was obtained and subsequently spun down at 3000rpm for 
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10mins. The plasma was removed (approx 100µl) and stored at 5°C for up to 5 days. 

Analysis for plasma creatinine was via an automated laboratory process at Glasgow 

University, Veterinary Diagnostic Services using the automated Olympus AU5400 

analyser. Although it was not the case with any of the animals in this study, weight loss 

exceeding more than 20% of the original body weight was an indication to sacrifice 

prematurely. There were no operative or post-operative deaths, however 2 animals (1 in 

Group III and another in Group V) required a repeat laparotomy during the recovery period 

because of pallor and suspected intra-abdominal bleeding. A washout was performed in 

both cases with visible clot in between small bowel loops but no obvious bleeding point 

identified. Animals were sacrificed by schedule 1 killing on day 10 at which point a blood 

sample was taken by cardiac puncture. The animals organs i.e lung, heart, liver and left 

kidney were subsequently frozen in liquid nitrogen for subsequent IHC analysis with 

similar organ biopsies stored in RNA Later® for gene expression analysis. 

The reason for performing nephrectomy in all groups was to avoid confounding results in 

creatinine values by a contralateral unaffected kidney. As explained earlier in chapter 2, 

creatinine in itself is not the ideal marker for subtle changes in GFR and clearance studies 

using inulin are otherwise better suited. The caveat to this however is that the GFR studies 

performed in our lab can only be performed on animals with no recovery. We therefore 

used the serum creatinine estimations in this part of the study as a guide for further genetic 

and proteomic studies. 
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GROUP PROCEDURE 

I Nephrectomy only (sham) 

II IR Injury 

III AZ-6 

IV IR injury + AZ6 pre 

V IR injury + AZ-6 post 

 

Table 3.1  The five separate groups used in the animal model  

All animals received a right sided nephrectomy. IR Injury was of 30 minute duration in all 

groups 
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Group Sex 
             Day 3 

 
Day 6 

 
Day 10 WEIGHT in grams (Days post-op) 

Creat Adj Creat Creat Adj Creat Creat Adj Creat 0 1 2 3 4 5 6 7 8 9 10 

I 

                                    
M 69 18.25 59 15.53 61 15.68 404 396 377 378 377 385 384 380 380 388 389 
M 53 15.32 49 13.92 57 15.70 368 363 349 346 355 353 355 352 359 358 363 
F 61 25.52 56 23.83 52 21.67 250 249 242 239 242 240 236 235 237 240 240 
F 57 23.46 55 23.40 53 22.08 254 253 248 243 240 239 238 235 239 237 240 

 
                                    

II 

M 81 27.74 56 19.18 60 20.27 312 302 289 292  -   -   -  292 296 296 296 
F 68 29.57 57 25.00 56 24.35 232 224 224 230  -   -   -  228 230 230 230 
M 78 22.81 - - 53 15.41 356 352 339 342  -   -   -  338 338 338 344 
F 85 37.95 61 26.99 52 22.81 242 238 227 224  -   -   -  226 226 226 228 

 
                                    

III 

M 100 29.59 58 16.57 58 16.11 370 352 340 338 340 347 350 344 352 354 360 
F 73 32.88 66 30.00 66 30.00 230 230 222 222 222 221 220 215 218 220 220 
M 90 28.85 63 20.19 54 16.98 318 320 306 312 310 310 312 307 312 318 318 
F 79 36.57 61 27.48 61 25.85 232 232 218 216 218 219 222 220 228 232 236 

 
                                    

IV 

M 58 16.20 54 15.25 53 14.80 372 360 360 358 352 354 354 354 354 354 358 
F 100 42.37 66 28.45 54 23.48 246 242 234 236 230 232 232 230 228 228 230 
F 117 51.77 71 31.42 61 26.07 238 234 226 226 220 224 226 226 228 234 234 
M 82 22.91 64 17.68 58 15.68 390 384 368 358 352 356 362 362 360 364 370 

 
                              

V 

M 119 38.39 68 21.25 53 16.06 360 354 334 310 308 311 320 320 324 328 330 
F - - 67 27.69 54 22.13 258 256 250 248 248 242 242 245 244 244 244 
F 95 42.41 75 34.09 57 25.91 236 232 224 224 223 220 220 223 222 224 220 
M 89 24.45 62 16.85 49 13.17 382 384 368 364 368 366 368 364 365 368 372 

Table 3.2  Details of the group demographics, weight, individual creatinine values and adjusted creatinine/100gr body weight 
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3.5  Results 

 

3.5.1  Biochemical Analysis 

The mean baseline creatinine was calculated from a representative cohort of 20 AS rats in 

an extended research database and was found to be 47.3µMol/l with the mean weight being 

313.6 grams. The corrected mean baseline serum creatinine per 100 grams body weight 

was 15.08µMol/l and was used as the baseline value in all groups. Serum creatinine values 

were determined at 3 three time points post IR injury – Days 3, 6 and 10. The animals were 

sacrificed by schedule 1 killing on the 10th post operative day.  

Although the serum creatinine is not an ideal marker for quantifying renal damage, it 

served as a valuable initial test on which to base further experimental – genetic and 

immunohistochemical analysis. The serum creatinine is usually unaffected until roughly 

50% of kidney function is lost. Initial testing shows that there was a significant difference 

between the mean (body weight corrected/100gr) baseline creatinine of untreated animals 

(n=20) vs those in Group I that received a right sided nephrectomy at day 3 (diff=5.01; 

p=0.04). However, the data show that there is some form of compensatory renal 

hypertrophy up to day 6 when significant differences between the two groups is lost 

(diff=3.55; p=0.15). A similar finding is seen at day 10 (diff=3.16; p=0.18).  

Tables 3.3, 3.4 and 3.5 below show the mean corrected creatinine values for all groups of 

animals at days 3,6 and 10. Figure 3.2 shows a clustered graph depicting information in the 

three tables above with 1SD error bars. There were two missing creatinine values due to 

technical sampling errors (Day 3 Group V and Day 6 Group II) ,which meant that mean 

values were calculated on 3 animals in the respective group. 
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  DAY 3 Group I Group II Group III Group IV Group V 

N  4 4 4 4 3* 

  Mean 20.64 29.50 31.97 33.29 35.08 

  Std. Error of Mean 2.34 3.14 1.77 8.27 5.44 

  Std. Deviation 4.68 6.29 3.53 16.55 9.42 

*Missing data 

Table 3.3  Creatinine values at Day 3 

Peak creatinine values are seen on day 3 and are highest in Group V. There is a 
statistically significant increase in creatinine for group III (AZ-6 only) (p=<0.01) and 
Group V (AZ-6 post) (p=0.04) when compared to sham operation in Group I. The 
difference approaches significance in Group II (IR Injury only) (p=0.06). There is no 
difference however in Group IV (AZ-6 pre) (p=<0.19) indicating a possible protective 
effect of AZ-6 on renal tissue in the face of ischaemia reperfusion injury when 
administered pre-operatively. 

 

  DAY 6 Group I Group II Group III Group IV Group V 

N  4 3* 4 4 4 

  Mean 19.17 23.72 23.54 23.19 24.97 

  Std. Error of Mean 2.59 2.35 3.14 3.96 3.77 

  Std. Deviation 5.18 4.06 6.27 7.93 7.54 

*Missing data 

Table 3.4  Creatinine values at Day 6 

Creatinine values begin to normalise and approach Group I levels. As indicated in table 3.6, there is 
no significant difference in creatinine values between Groups II to V when compared to Group I at 
this point indicating that recovery is more or less equal between the groups independent of AZ-6 
administration or IR injury. 
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  DAY 10 Group I Group II Group III Group IV Group V 

N  4 4 4 4 4 

  Mean 18.78 20.69 22.23 20.00 19.31 

  Std. Error of Mean 1.79 1.96 3.40 2.81 2.88 

  Std. Deviation 3.57 3.92 6.79 5.61 5.76 

 

Table 3.5  Creatinine values at Day 10 

Creatinine values further approach those seen in Group I, with a similar pattern to Day 6. Still, 
there is no significant difference between creatinine levels in Group II to V when compared to 
Group I. Although not significant statistically, creatinine levels in Group IV and V were closest to 
those of the control Group I. 

 

 

Figure 3.2  Clustered Bar Graph with 95% CI error bars 

The graph gives a better depiction of the mean adjusted creatinine values in each group at different 
time points. The mean corrected creatinine of 15.08µMol/l is used for all Groups at Day 0, 
although this time point is just a reference point and not actually utilised in the study. 
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Change in Mean 

Corrected Creatinine vs 

Group I (Nephrectomy 

only) 

p value 

Group II 

Day 3 8.87 0.06 

Day 6 3.92 0.27 

Day 10 1.93 0.49 

Group III 

Day 3 11.33 <0.01 

Day 6 4.39 0.32 

Day 10 3.55 0.40 

Group IV 

Day 3 12.67 0.19 

Day 6 4.03 0.43 

Day 10 1.23 0.72 

Group V 

Day 3 12.79 0.04 

Day 6 5.8 0.25 

Day 10 0.54 0.87 

 

Table 3.7  Changes in corrected creatinine compared to Group I 

This table confirms the findings presented in earlier results and shows the absolute change in 
corrected serum creatinine when compared to Group I (Nephrectomy only). Note that the largest 
differences in creatinine occur at day 3 where statistical differences exist in Groups III and V 
(unpaired t-test). The statistically non-significant result in Group IV Day 3 is possibly due to high 
standard deviation and standard error of the mean. There are no other significant time points at any 
other days 
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Figure 3.3  Changes in corrected creatinine compared to Group I 

The graph depicts more clearly the changes in serum creatinine when compared to the control 
Group I. Initial significant changes, at day 3 are seen in Groups III (p=<0.01) and V (p=0.04). 
Despite the graph showing very similar bar lengths to those in Group V, mean change was not 
significant, possibly due to high SEM + SD in the group. It is also interesting to note that the most 
rapid decline in creatinine levels occurs fastest in Group V where the graph shows only very 
minimal change from control creatinine at Day 10. The difference in creatinine is not significant 
when compared to Group I, meaning that pre-IR injury state is reached. The same result, however 
is seen in all groups at Day 10 and therefore neither treatment arm is the more valid 
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Change in Mean Corrected 

Creatinine vs Group II 

(Nephrectomy + IR Injury) 

p value 

Group IV 

Day 3 3.79 0.68 

Day 6 0.52 0.92 

Day 10 0.70 0.84 

Group V 

Day 3 5.56 0.38 

Day 6 1.24 0.80 

Day 10 1.39 0.70 

 

Table 3.7  Changes in corrected creatinine compared to Group II (control) 

The table shows that when Group II (Nephrectomy and IR Injury) is used as the control, there is no 
difference in biochemical recovery rates over 10 days when using AZ-6 either before or after the 
ischaemic insult is applied. 
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Figure 3.4a-e.  Weight recordings for 
experimental groups I-V 

The graphs show a clear distinction between female and 
male weights in all groups (n=2 male and n=2 
female/group). A clear demonstration of the acute stress 
response is shown to surgery with increased catabolism 
and weight loss evident, particularly in the first 3 post-
operative days. Marked weight loss is evident in Group 
III, M1 and Group V, M1 both of which underwent a 
repeat exploratory laparotomy from the recovery area. 

a) b) c) 

d) e) 
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3.5.2 Bioage Genetic Expression and Immunohistochemical Staining 
(The following subsection is adapted from work performed by Dr V. Moulisova PhD) 

 

Prior to In vivo animal model testing, AZ-6 was selected from several compounds tested in 

vitro on HDFs (Human Diploid Fibroblasts) and on HREpi (Human Renal Epithelial Cells) 

in the presence and absence of an oxidative challenge. It displayed a protective effect on 

CDKN2A expression in both cell lines compared to control in both stress and no stress 

conditions (Figure 3.5). 

 

3.5.3 Gene Expression Analysis Assays 
 

Total RNA was extracted from human cells and rat kidney tissues using standard Trizol 

method, concentrations were measured on NanoDrop. After DNase treatment with RQ1 

DNase (Promega), the concentration of RNA samples was measured again to keep the 

same amount of RNA for the reverse transcription step. RNAseOUTTM Recombinant 

Ribonuclease Inhibitor (Invitrogen) was used during all procedures with RNA. 

Transcriptor reverse transcriptase (Roche) was used for synthesizing the cDNA; per 100 µl 

of reverse transcription reaction, 1.6 µg and 2.5 µg of RNA was used in experiments with 

human cells and rat tissue, respectively. All cDNA samples were kept in -20°C until used 

for TaqMan qPCR. For single qPCR reactions with human cell samples, 16 ng of cDNA 

was amplified in total volume of 10 µl, and each reaction mix consisted of a specific 

TaqMan probe (10 nM for 18S, 200 nM for HPRT1 and CDKN2A), a set of forward and 

reverse primers (360 nM for 18S, 300 nM for HPRT1 and CDKN2A) and 2x concentrated 

TaqMan Universal Master Mix (Roche).  

 

The sequences for primers and probes for housekeeping genes (18S rRNA and HPRT1), 

and for CDKN2A are listed below:  

 

18S rRNA Forward: 5'- TTG ACT CAA CAC GGG AAA CC-3', 18S rRNA Reverse: 5'-

CGT TCT TAG TTG GTG GAG CG-3', UPL probe No. 77: 5'-GGTGGTGG-3'; HPRT1 

Forward: 5'-CTT GCT CGA GAT GTG ATG AAG G-3', HPRT1 Reverse: 5'-CAG CAG 

GTC AGC AAA GAA TTT ATA G-3', Probe: 5'-FAM-ATC ACA TTG TAG CCC TCT 
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GTG TGC TCA AGG-TAMRA-3'; CDKN2A Forward: 5'-CAT AGA TGC CGC GGA 

AGG T-3', CDKN2A Reverse: 5'-CCC GAG GTT TCT CAG AGC CT-3', Probe: 5'-FAM-

CCT CAG CAT CCC CGA TTG AAA GAA CC-TAMRA-3'.  

 

For single Q-PCR reactions with rat kidney samples, 25 ng of cDNA was amplified in total 

volume of 10 µl, and each reaction mix consisted of 2x concentrated TaqMan Universal 

Master Mix (Roche), and 20x concentrated individual validated TaqMan assay from 

Applied Biosystems (Rn01527840, Rn00580664, and Rn00589996 primer-probe mix for 

HPRT1, CDKN2A, and CDKN1A, resp.).  For rat and human samples, quantitative PCRs 

were done on LightCycler® 480 Real-Time PCR System (Roche) and AB 7500 Fast Real-

Time PCR System (Applied Biosystems), respectively. 

 

Custom designed TaqMan Low Density Array (TLDA) cards with 32 Gene Expression 

Assay targets pre-loaded into each of the wells were used for human cell samples. For one 

port, reaction mix in total volume of 110 µl contained 170 ng cDNA and 2x TaqMan 

Universal Master Mix (Roche). TLDA cards were run on AB 7500 Fast Real-Time PCR 

System (Applied Biosystems). For analyses, manufacturer’s software together with 

MicroSoft Excel and GraphPad Prism software was used. 
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Figure 3.5  Compound treatment effects on CDKN2A transcriptional expression in 

two human primary cell types, a) HDF and b) HREpi.  

Relative quantification is displayed as a fold change from control non-stressed cells. Values higher 

than 1represent increased expression, values lower than 1 signify decreased expression. Statistical 

analysis was performed individually for nonstressed (black) and stressed cells (striped bars) by 

one-way ANOVA with Dunnett’s post-test; samples were compared to controls; * where P<0.05, 

** where P<0.01. (Adapted from: Anti-ageing Effects of mTOR Inhibition by a Reduction of 

Oxidative Stress in the Kidney. Vladimíra Moulisová et al. Aging and Diseases of Aging 

Conference, Tokyo, Japan. October 2012. Poster.) 
 

 

During In vivo testing AZ-6 was able to counteract the effects of acute cellular stress 

following IRI as determined by CDKN1A expression levels (Figure 3.6). 

 

3.5a) 

3.5b) 
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Figure 3.6  Expression levels for CDKN1A in rat kidney ischemia model with or without 

AZ-6 treatment 

All values are means with SD; ns = non-significant; * = significant difference with P<0.05; ** = 
significant difference with P<0.01; *** = significant difference with P<0.001 (Adapted from: Anti-
ageing Effects of mTOR Inhibition by a Reduction of Oxidative Stress in the Kidney. Vladimíra 
Moulisová et al. Aging and Diseases of Aging Conference, Tokyo, Japan. October 2012. Poster.) 

 

During IHC analysis for p16 and p21 protein, AZ-6 offered significant protection to the 

kidney in the face of IR injury as determined by decreased levels of expression in the 

treated groups relative to the controls. 
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Figure 3.7a) p16 and Figure 3.7b) p21 Histoscore 

Nuclear histoscores for p16 and p21 proteins in rat kidney tissue sections. * = significant difference 
with P<0.05; ** = significant difference with P<0.01; *** = significant difference with P<0.001. 
(Adapted from: Anti-ageing Effects of mTOR Inhibition by a Reduction of Oxidative Stress in the 
Kidney. Vladimíra Moulisová et al. Aging and Diseases of Aging Conference, Tokyo, Japan. 
October 2012. Poster.) 

 

3.6  Discussion 
 

3.6.1  Biochemical response to AZ-6 

The data presented give a clear indication about the efficacy of AZ-6 in reducing the 

adverse effects of IR injury on renal tissue. The results are more robust in the genetic and 

IHC analysis however, the initial experiments involving serial creatinine and body weight 

measurements bring to light several important conclusions. Firstly, the results show that 

AZ-6 is a safe compound when administered as an intravenous preparation in the 

recommended dose of 0.8 μmol/kg of body weight and all animals survived the 

experimental 10 day phase. There were 2 post operative complications related to bleeding 

(1 male rat in Group III and 1 male rat in group V). It is difficult to conclude for certain 

whether such spontaneous bleeds were secondary to the administered compound itself or 

iatrogenic. The impression of the author performing these experiments is that AZ-6 does 

induce a temporary coagulopathic state leading to the possibility of spontaneous 

haemorrhages. This is consolidated by the fact that re-laparotomy could not isolate a 

particular bleeding point per se. Secondly, it is interesting to note that at day 10 the groups 

that approximated control serum creatinine more closely were those that received IR injury 

7a) 7b) 
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and AZ-6. This observation is not statistically significant however in the face of results 

obtained in genetic analysis and IHC, this finding would make sense and may be of clinical 

relevance. Importantly however, the group that received AZ-6 only (Group III) possessed 

the highest creatinine values at day 10. This observation is minimal and not statistically 

significant from other groups however, it could be that AZ-6 may not provide the 

anticipated “nephroprotective” effect as measured by serum creatinine in an unstressed 

situation. It follows therefore, that the IR injury in itself is necessary for the maximal 

nephroprotective ability of AZ-6. This could be in part associated with the reperfusion 

process that results in release of NO and other chemokines into the circulation resulting in 

improved tissue and cellular penetration of the compound. 

 

3.6.2  mTOR Inhibitors and Renal Function 

Most studies related to mTOR nephrotoxicity have been centred on the original drug 

Sirolimus (Rapamycin). Sirolimus is not usually a first line immunosuppressive agent in 

the UK although it is commonly used when intolerance to mycophenolate or tacrolimus is 

observed. The perfect immunosuppressive agent would be able to suppress the immune 

response whilst simultaneously avoiding toxicity of any form. Despite excellent 

immunosuppressive capabilities, these agents have an incessant list of reported side effects 

of which nephrotoxicity is almost always reported. Immunosuppressive agents have a 

narrow therapeutic index and a broad availability in patient response necessitating serum 

level drug monitoring. Sirolimus exposure leads primarily to cell-cycle arrest in the early 

G1 phase of T and B lymphocytes (370;371)  

There are conflicting reports in the literature as to the nephroprotective vs nephrotoxic 

effects of sirolimus in the acute injury phase in particular. In the longer term, it is well 

known to be minimally nephrotoxic after renal and solid organ transplantation (372;373) 

and prevents acute rejection by inhibition of cytokine and growth factor-mediated 

lymphocyte proliferation, especially the proliferation and clonal expansion of interleukin-2 

stimulated T lymphocytes (374). Importantly, other cells are also a direct target of this 

drug, including endothelial, smooth muscle, mesangial and renal tubular cells (375-377). 

Sirolimus however, has also been linked with high levels of proteinuria (second to 

decreased tubular protein reabsorption, increased VEGF secretion and podocyte 

dysregulation), cast nephropathy, ARF in association with myoglobinuria and delayed graft 



158 

 

function. Liberthal et al reported that rapamycin inhibits growth factor induced 

proliferation of cultured proximal tubular cells and supports their apoptosis by blocking the 

survival effects of the same growth factors (374). Accordingly, sirolimus impaired 

recovery from experimental acute renal failure induced by renal artery occlusion due to the 

combined effects of increased tubular cell loss (apoptosis) and inhibition of regenerative 

proliferation. These effects were attributable to the inhibition of p70 S6 kinase (374). Thus, 

during periods of renal allograft injury, sirolimus may be harmful due to its negative 

effects on tubular cell regeneration and survival [(374;375)]. The same may be true at the 

glomerular level in inflammatory states that require intact cell proliferation for repair 

and/or compensatory mechanisms (376).  Other authors have shown that both sirolimus 

and its successor everolimus are able to limit infarction and apoptosis in heart muscle and 

preserve renal function after IR injury in rats (378;379). Low doses of everolimus have 

also been shown to limit proteinuria in rats affected by nephrotic syndrome (380) 

 

3.6.3  CDKN1A and CDKN2A 

Most of the genetic expression data presented in this chapter is based on the theory put 

forward in the first chapter of this thesis. Renal ischaemia reperfusion injury is known to 

shorten telomeres and upregulate stress-induced genes, such as the cyclin-dependent kinase 

(CDK) inhibitor 1A. CDKN1A is the gene responsible for encoding the p21 protein, a cell 

cycle regulator that has been reported at increased levels after stress events and senescence 

associated changes in the kidney, and is considered as a marker of cellular stress. 

CDKN2A provides later onset correlated changes with CDKN1A in renal tissue subject to 

ischaemia (235).  

As can be seen in Figure 3.6 there was a statistically significant decrease in CDKN1A gene 

expression in both IR groups treated with AZ-6 (Groups IV and V) in comparison to the IR 

group without treatment (Group II). There was also a further decrease in CDKN1A 

expression in Group III, the non ischaemic control group. The results therefore indicate 

that AZ-6 reduces cellular stress even in the absence of IR injury and shows a protective 

effect when the kidney has been exposed to IR injury and treated with AZ-6 either before 

or after the ischaemic insult. These results were also strengthened in the IHC analysis 

where kidneys undergoing treatment with AZ-6 demonstrated less p21 and p16 staining 

when compared to controls in Group II undergoing an ischaemic insult only. Results for 
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p21 IHC actually showed a significant difference between all AZ-6 groups and control IR 

injury group Figure 3.7a, whilst for p16 there was a difference between control group and 

Groups III and V but not Group IV (Figure 3.7b) where AZ-6 was administered prior to the 

IR insult. The results indicate therefore that AZ-6 is preventing to a certain extent, renal 

cells from entering a state of senescence, maintaining ultimately their functional capacity 

and contributing to an improved renal clearance. During the dynamic senescence process, a 

programme of differentiation is initiated that involves the accumulation of p16 as well as 

changes in the morphology, size and attributes of the cells (320). After senescence is 

achieved, p21 declines considerably to an amount that was consistent with a reversible 

arrest earlier in the lifespan. p16 also increases as p21 declines and reduces the number of 

targets for p21 through its inhibitory effect on cyclin D1-Cdk4/6 complex formation 

(381;382). The low levels of staining present for both p21 and p16, when compared to 

controls is a valid observation that AZ-6 is preventing cells from entering the senescent 

state and thus retain maximal functional capacity. 

The experimental model presented gives good insight into the tolerability of the compound 

AZ-6. At the recommended dose of 0.8μmol/kg there were no mortalities, although at day 

3 there seemed to be a rise in serum creatinine with AZ-6 administration alone. This 

however needs to be confirmed with further trials as a high standard deviation and SEM 

was observed. There were 2 morbidities from what was clinically judged to be a 

coagulopathy concerning 2 animals that were found to have significant post operative ooze 

requirng a relaparotomy and washout with no actual bleeding point found. There is no 

evidence in the literature associating mTOR inhibitors with a coagulopathic state and 

neither with decreased platelet function. In fact rapamycin has been shown to be 

prothrombotic through its effects on platelet aggregation enhancement (383). The weights 

of the animals receiving only AZ-6 (Group III) remained constant throughout the post-

operative period when correcting for the initial catabolic decline in response to surgery. 

This is further evidence as to the tolerability of the compound in the unstressed state. In 

animals receiving IR injury and AZ-6, there were no significant changes in weight from 

Day 0 when compared to sacrifice at day 10. The model tested creatinine values at 3,6 and 

10 days based on a preliminary literature review into animal model testing. It is clearly 

seen however that the rise in creatinine in these animals is greatest at day 3 with creatinine 

values at 6 and 10 days being almost equal. 
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3.6.4 Telomere Length and CDKN2A synchrony 
 

It is clear that critically short telomeres result in apoptosis, cell senescence, and 

chromosomal instability in tissue culture and animal models. Most telomeric studies are 

based upon, and have found associations between peripheral blood telomere length with 

diseases of aging (385) and longevity (386). Tissue surrogate markers, such as peripheral 

blood leukocytes (PBL), sputum, and buccal cells, can be easily and inexpensively 

collected and TL in these tissues may be a potential tool to screen individuals for their 

future risk of cancer or end organ damage (synchrony). Indeed there have been many 

studies to date that have analysed TL in surrogate tissues in relation to cancer risk, 

however the results are disappointingly inconsistent with positive, negative or null 

associations mostly from retrospective case controlled studies (387). Hodes et al (388) 

present a plausible hypothesis regarding the variability of surrogate tissue TL predicting 

cancer risk. They state that when TL in PBL become critically shortened due to exposure 

to risk factors, they may in turn trigger compensatory mechanisms, such as increased 

telomerase activity and an alternative non-telomerase-based mechanism lengthening 

telomeres that maintain TL integrity. This is in contrast to our general understanding of 

shortening telomeres with environmental stressors. In addition, an inherent problem when 

examining PBL TL is that different subtypes of PBL may possess differing TL and in fact, 

most studies examine a pool of mixed blood leukocytes (387). 

The literature for CDKN2A leukocyte synchrony in relation to longevity is very sparse and 

this is probably because CDKN2A is a marker of oxidative stress at organ level only. In 

addition, there are almost no studies relating the association of CKN2A expression as a 

surrogate for peripheral organ quality. However, there are very few studies comparing the 

synchrony of CDKN2A with the onset of cancer. In fact, epigenetics, particularly DNA 

methylation at gene promoter regions for p16, has recently been reported to play a role in 

the development of gastric carcinoma (389). Shiels lab at the University of Glasgow is 

currently correlating PBL and renal allograft CDKN2A and TL in pre and post perfusion 

timelines of recipients undergoing kidney transplantation. This will be one of the first 

studies to show a possible dynamic association of organ and PBL bioage. The implications 

of finding a surrogate marker for end organ damage are vast and will have an enormous 

economic impact, particularly in relation to patient safety and quality of care. 
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3.6.5  Model Testing, Biological Ageing and Novel Clinical Entities 

As shown in this work, bioage is a key determinant of cellular responses to stress and can 

be seen as an essential tool in providing information about safety and suitability for 

experimental compounds and NCEs. Bioage therefore can be used as a screen for NCEs in 

the context of healthy tissue and that which is diseased or exposed to increasing levels of 

stress. It can also be used to address inter-individual responses to treatment or disease. An 

NCE is a molecule developed by a particular pharmaceutical company or laboratory, in the 

early drug discovery stage, which after undergoing clinical trials may translate into a drug 

that could be a cure for some particular disease. Synthesis of an NCE is the first step in the 

process of drug development. 

Many different intrinsic and extrinsic factors may induce ageing and associated diseases 

of ageing (e.g. oxidative stress, inflammation, genetic modulators, telomere attrition, 

mitochondrial dysfunction and nutritional differences). Assessing their impact is not 

straightforward, as human ageing is a heterogeneous gradual and complex process for 

which very few validated biomarkers exist and many of which do not translate well 

from model organisms (221). Biological ageing (i.e. ageing at the level of the cell, tissue, 

organ and organism) is thus not well understood. 

Health status (whether at organ level or individual level) is classically based on 

chronological age and this is still widely used as a determinant of organ quality in clinical 

transplantation. Using biological age in order to override the predictive capacity of 

chronological age requires very sensitive and specific markers. There are indeed very few 

validated biomarkers in the literature that fulfil Baker and Sprott’s 1988 criteria of which 

CDKN2A and telomere length were primarily studied in this thesis. Telomere length has 

proven to be a significantly weaker biomarker and is lost in multivariate analysis primarily 

because of inter-individual variation in telomere length which is subject to various socio-

economic and lifestyle confounding factors. Also, as published by Shiels et al, it is difficult 

to extrapolate cellular observations to the organ and organism as a whole and in addition, 

telomere biology is slightly different between species (4;221) 

The ability of a cell to optimally respond to stressful stimuli is dependent on its ability to 

sense the damage and respond accordingly, in the face of the metabolic and oxidative 

conditions at that time. It has been postulated that one way in which this critical cellular 
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response can be dealt with is via the concept of the MTR trinity. This is composed of 

mitochondrion, telomere & ribosome biogenesis. Through this triad critical DNA damage 

is sensed by the telomere nucleo-protein complex which also plays a role in effector 

mechanisms such as senescence. Energy production and apoptosis are facilitated by  

mitochondria, as well as the requisite protein synthetic pathways which are controlled via 

ribosomal DNA (165;226;384) 

 

The evaluation of cellular stress responses is paramount to many NCE testing protocols. 

Most cytotoxicity testing for such NCEs typically assess extreme toxicity i.e cell death and 

are less able to detect subtle damage in which the cell may eventually enter a state of 

senescence or even neoplasia. In inherent problem when interpreting NCE testing is that 

studies involving small mammals e.g mice and rats, do not always correlate with human 

responses to such compounds. Attempts to overcome these shortfalls have used gene array, 

proteomic and metabolic analyses to match in vitro and in vivo data sets and to cross 

compare responses in different species.  

The studies performed by Shiels laboratory (Moulisova et al. in prep) has sought to utilize 

a novel approach to NCE (AZ-6) testing in human cells. Instead of utilizing immortalised 

or conditionally immortalised cell lines, studies were conducted on fibroblasts and renal 

epithelial cells (primary cells) in order to closely characterise and mimick as much as 

possible, the human cell stress response system with validated BoAs such as CDKN2A. 

Thus, the use of such a model incorporates to a greater degree the efficacy of NCE testing 

and accounts for greater inter individual variation in health and disease settings. It is thus 

shown that bioage has an important role in determining NCE safety and can be used as a 

basis for studying future compounds both in vitro and in vivo. 

 

3.7  Conclusion 

Initial biochemistry and robust genetic testing have shown that AZ-6 can modulate cellular 

stress responses in the face of IR injury both in-vitro and in vivo. Remarkably, bioage as 

measured by CDKN1A / CDKN2A and their precursor proteins p21 / p16 is ameliorated 

when compared with suitable controls. Future studies on similar animal models engaging 

the use of serum creatine as a preliminary marker for end organ damage would be better 

suited utilising additional creatinine values at 24, 48 and 72 hours, serum urea and cystatin 



163 

 

C. The dosing of AZ-6 is also of primary importance for future studies. A single dose was 

given to each animal at a particular time point, however repeated doses or alterations in 

concentrations of AZ-6 are a possibility. The model could be extended to rodent 

transplantation, where an extra factor – cold preservation will be tested in addition to IR 

injury. It’s efficacy in the prevention of allograft rejection will be of significant interest.  

 

General Summary 
 

With the current crisis of organ shortage and an increasing number of dialysis patients, 

studies directed at ameliorating such a substantial organ discrepancy are of considerable 

importance to the transplant community. The use of extended criteria donation has helped 

to compensate the disparity of organs however, we are still a long way from achieving 

satisfactory targets. Still there are many organs from older donors that are discarded 

primarily on the basis of chronological age. It is here that biological age may display a 

crucial role in allowing the transplant team to characterize donor organs with greater 

accuracy. Indeed both biological and chronological age are very closely related and ECD 

criteria are based very much on the latter, albeit with other clinical variables. However the 

biomarker of ageing CDKN2A which is suitably represented by Baker and Sprott’s 

criteria, displays closer variabilities with post-operative transplant function, at least up to 

one year. Telomere length known as the “Gold standard” biomarker of ageing does not 

display as robust a role in predicting organ function as CDKN2A. The classification of 

organs represented in this text from category I-IV serves merely as a guide to future studies 

and is yet to be validated in larger clinical trials. It is however a simple and rapid 

assessment tool. (Gingell-Littlejohn et al PLOS One 2013)  

Relatively advanced cellular senescence was displayed in the mutant AS/AGU rat kidney 

when compared to the parent AS strain. This was exploited in a unique animal model to 

study the effects of ischaemia reperfusion injury on the mutant kidney, hence mimicking to 

a certain degree the transplant related injuries in ECD kidneys. Although ischaemic times 

in the model were moderate in nature, there was nonetheless a difference in the tolerance to 

IR injury between parent and mutant strain as evidenced by increased p16 and p21 staining 

in AS/AGU rats. Such a model therefore is exclusive in that interventions to improve ECD 
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renal function post-transplantation can accurately and conveniently be represented and 

studied at a pre-clinical level. 

Anti-ischaemic compounds have been the subject of much debate over the years, however 

a single “Holy Grail” compound able to completely abolish the injurious effects of IR 

injury has never been elicited. mTOR inhibitors however, display several cellular effects 

and act as potent immunosuppressants. They (AZ-6) have also been shown to partially 

mediate the detrimental effects of IR injury on the native kidneys of AS rats in a 

specifically designed animal model as shown. Further studies encompassing transplanted 

kidneys from mutant AS/AGU rats exposed to such a promising agent would be of 

undoubted importance to the clinical field of transplantation, potentially leading to 

immeasurable economic and patient benefits. 
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Abstract

CDKN2A is a proven and validated biomarker of ageing which acts as an off switch for cell proliferation. We have
demonstrated previously that CDKN2A is the most robust and the strongest pre-transplant predictor of post- transplant
serum creatinine when compared to ‘‘Gold Standard’’ clinical factors, such as cold ischaemic time and donor chronological
age. This report shows that CDKN2A is better than telomere length, the most celebrated biomarker of ageing, as a predictor
of post-transplant renal function. It also shows that CDKN2A is as strong a determinant of post-transplant organ function
when compared to extended criteria (ECD) kidneys. A multivariate analysis model was able to predict up to 27.1% of eGFR
at one year post-transplant (p = 0.008). Significantly, CDKN2A was also able to strongly predict delayed graft function. A pre-
transplant donor risk classification system based on CDKN2A and ECD criteria is shown to be feasible and commendable for
implementation in the near future.
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Introduction

Kidney transplantation is the optimum treatment for renal

failure but is restricted by donor shortage. A large proportion of

End Stage Renal Failure (ESRF) patients must therefore receive

alternative replacement therapies in the form of peritoneal dialysis,

or haemodialysis. Such treatment results in increasing morbidity

particularly affecting the cardiovascular system, a severely reduced

lifespan and poorer quality of life. ‘‘Extended Criteria Donor’’

(ECD) kidneys are increasingly used to meet this shortfall in kidney

supply.

In accordance with the Organ Procurement and Transplanta-

tion Network (OPTN) and United Network for Organ Sharing

(UNOS), an Expanded Criteria Donor (ECD) is one which is: [1].

a. 60 years or over

b. 50–59 years with at least 2 of the following three medical

criteria

i. Cerebro-Vascular Accident as the cause of death

ii. History of hypertension

iii. Pre retrieval creatinine more than 133 mmol/L

Although ECD organs incur elevated risks of Delayed Graft

Function (DGF) and ultimately have unfavorable long-term

outcomes compared with younger donor kidneys, average results

remain far superior to alternative treatment modalities, such as

haemodialysis. Some grafts, however, perform poorly – or never

function adequately – and thus display Primary Non Function

(PNF). The reasons for this phenomenon are unclear, but seem

likely to relate to the inability of older kidneys to tolerate and

recover from the multiple injurious processes associated with

transplantation. In essence, such organs will have more ‘miles on

the clock’ and thus not function as well, or last as long. The

presence of substantial cellular senescence will make them more

susceptible to the effects of transplant-related stresses. [2,3] In

general, however, poor function is difficult to predict as many

older organs perform adequately despite advanced chronological

age. [4,5] Dependent upon the numbers of senescent cells present

in an organ, tissue integrity may be impaired and the capacity to

withstand stress reduced. Furthermore, senescence-associated

upregulation of pro-inflammatory cytokine gene expression may

lead to chronic persistent inflammation. We have therefore

hypothesised that the biological age of the organ, rather than just

its chronological age, may have a major impact on allograft

function and that this may be directly relevant to discriminating

between ECD organs.

This would imply that the expression of genes involved in

cellular processes regulating biological ageing, should provide

suitable reporters for investigating such a hypothesis. Indeed,

robust and reproducible studies have shown that gene expression

of senescence markers in a donor organ (organ bioage), can predict

renal function in vivo, irrespective of classical parameters
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currently in use, such as donor chronological age and sub optimal

pre-retrieval serum creatinine [6,7].

To date, of those putative biomarkers of ageing (BoA) that have

been tested, very few meet the Baker and Sprott criteria required

for validation. [8] This dictates that a valid BoA must demonstrate

variation of sufficient magnitude in short-term longitudinal, or in

cross-sectional studies, to be of predictive value within a

population or cohort with regard to physiological capacity at a

later chronological age, in the absence of disease. [9] Failures

include Senescence Associated b Galactosidase (SA-b-GAL),

advanced glycation end products and lipofuscin, which were

originally supported by substantial in vitro evidence. [10] In vivo,

only two BoA have been validated with respect to renal function:

Cyclin Dependant Kinase 2A (CDKN2A) and telomere length

[6,7].

Telomeres are nucleo-protein complexes at the ends of

chromosomes with a DNA component comprising variable lengths

of a TTAGGG simple repeat. Their primary role includes

maintaining stability and protecting the integrity of chromosomes.

[11] In somatic cells telomeric DNA shortens in length as a

consequence of the end replication problem. [12] The rate of

telomere shortening is directly influenced by oxidative stress. [13]

This provides a rationale for using telomere length as a BoA at the

cellular level and potentially explains the impact of environmental

and lifestyle factors on inter-individual differences in the rate of

ageing, [14] though with the caveat that it acts as a proxy for the

effects of stress and not causal for it [15].

CDKN2A expression is a key age-related component of

senescence in human renal allografts and renal disease. [16,17]

CDKN2A expression is elevated as a function of increasing

cellular stress and organismal ageing. As such, this typically

accompanies the telomere shortening observed during normal

human ageing. CDKN2A acts as a tumour suppressor, is a

component of STASIS (stress and stimulation induced senescence)

[18] and is functionally involved in maintaining cells in a state of

growth arrest. It has previously been demonstrated to be a

significant pre-transplant predictor of post transplant renal

allograft function [6,7,19].

In this study, we have sought to directly compare the expression

of CDKN2A and telomere length in pre-implantation, time zero

biopsies and correlate this with renal function up to 1 year post-

operatively. We have sought to determine associations with donor

chronological age and other important clinical variables in both

univariate and multivariate regression analysis. Included in this

analysis was renal function, assessed using the 4 variable

‘‘Modification of Diet in Renal Disease Study Group’’ formula -

MDRD 4 eGFR (ml/min/1.73 m2), referred to as eGFR in the

subsequent text. These analyses were designed to provide a basic

indication of the importance of each respective BoA and to assess

their capacity pre-transplant to predict post-transplant function

and any associated adverse clinical characteristics, when used

either singly, or in combination. Any indication of suitability in this

respect could then be exploited, to provide a simple pre-transplant

scoring or classification system by assessing BoA expression in the

allograft as it is being cross-matched.

Results

Association between Biological Age and Chronological
Age

Prior to analysing the predictive power of biomarkers of ageing

on renal function, data were validated by determining the

association between telomere length and CDKN2A. A Pearson

correlation between the two revealed no statistical significance

(p = 0.87, n = 15). Telomere length and CDKN2A were then

separately correlated with donor chronological age. Telomere

length was shown to inversely correlate with chronological age

(p = 0.036, CC = 20.242, Figure 1a), while CDKN2A levels

positively associated with increasing chronological age (p,0.001,

CC = 0.597, Figure 1b). These findings indicate that CDKN2A is

more robustly associated with the chronological ageing process in

kidney tissue when compared to telomere length. There was no

difference in demographic and clinical data between both

CDKN2A and telomere groups (Table 1).

BoA and Correlation with Renal Function Post-Transplant
Pearson correlation showed a significant association between

shortening telomere length and deteriorating eGFR at 6 months

and at 1 year post-transplant (p = 0.038 & p = 0.041, Figure 2).

However, increasing levels of CDKN2A expression were associ-

ated with decreasing eGFR levels at 6 months and 1 year post-

transplant (p = 0.020 & p = 0.012, Figure 3).

Univariate Linear Regression
Univariate linear regression was used in order to assess the

individual predictive power of multiple variables on eGFR. Each

variable was used to predict function at both 6 months (Table 2)

and 1 year (Table 3) post transplantation. The results indicated

that CDKN2A, ECD, and donor chronological age were the

strongest univariate predictors for eGFR. Telomere length in

contrast displayed a poorer predictive ability in general. As

expected, other clinical variables that are included in ECD criteria

(donor age, donor hypertension, death by CVA but not high

serum creatinine) significantly predicted eGFR at both timelines.

Interestingly, there was a small but significant association for

recipients who suffered any form of glomerulonephritis (GN)

resulting in end stage renal failure. Recipients with ESRF second

to GN displayed poorer renal function at both timelines (MWU - 6

months p = 0.05, 1 year p = 0.04). Important univariate associa-

tions displayed in Table 2 and 3 include:

6 months. Donor chronological age predicted 14.3% of the

variability in eGFR whilst ECD kidney category predicted 12.1%.

CDKN2A predicted 13.5% of the eGFR, whilst telomere length

predicted 7.9%.

1 year. Donor chronological age predicted 21.4% of the

eGFR whilst ECD kidney category predicted 17.4%. CDKN2A

predicted 16.6% of the eGFR, whilst telomere length remained at

7.9%.

Multivariate Linear Regression Analysis
A multivariate regression model encompassing the three

principle pre-transplant variables was formulated using eGFR as

the dependant variable. The covariates were based on CDKN2A

and the stronger clinical univariate predictors: ECD and presence

or absence of glomerulonephritis in the recipient. Since donor

hypertension, donor chronological age and death by CVA are

already included under ECD criteria, they were not included as

separate covariates in the model. The addition of telomere length

to any model severely weakened it’s associations with renal

function resulting in a statistically insignificant outcome. A total of

two models were formulated at 6 months and 1 year timelines with

a p-value of ,0.017 taken to be statistically significant using

Bonferroni’s correction. At 6 months, the model approached

statistical significance (p = 0.021) as outlined in Table 4. Statistical

significance was reached at 1 year where the model predicted

27.1% of the eGFR (Adjusted R2 0.271, n = 31, p = 0.008

ANOVA) with respective individual contributions outlined in

Table 5.

Pre-Transplant CDKN2A Predicts Renal Function
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CDKN2A, Delayed Graft Function and Rejection
Increased expression of CDKN2A in pre-implantation biopsies

was significantly associated with DGF (MWU, p = 0.032). Median

CDKN2A expression levels in patients with DGF were compared

with those grafts that showed primary function (DGF CDKN2A

mean expression = 2.61 (SD 0.56, n = 6) vs primary function

CDKN2A mean expression = 1.61 (SD 1.30, n = 27)). DGF in

itself was significantly correlated with graft rejection episodes

(Fisher’s exact test, n = 113, p = 0.001). This data suggests that

high levels of CDKN2A are linked to increased allograft

immunogenicity resulting in increased rejection episodes in the

long term and may also play a role in the aetiology of DGF

through a similar mechanism.

A total of 112 patients with rejection data were analysed. Biopsy

proven evidence of acute rejection was present in 25.0% (n = 28) of

the total. All such grafts were viable at 6 months with a median

eGFR of 39.05 ml/min/1.73 m2 (SD 17.16) however, there was 1

graft failure at 1 year, with a median eGFR for all other grafts

(n = 27) of 39.70 ml/min/1.73 m2 (SD18.09). There was no direct

statistical relationship between CDKN2A and rejection itself

(p = 0.741).

Discussion

We have demonstrated that the pre-transplant expression of two

independent BoAs correlates with renal function post-transplant.

Greater biological age, as determined by shorter telomere length,

or higher relative CDKN2A expression, correlated with poorer

post-transplant function [19]. This is in keeping with observations

in the field. Classically, organs from older donors show poorer

function post-transplant and have a decreased lifespan. Although

this holds true in most cases, there are times when such organs

perform very well and last beyond their life expectancy. Our

results indicate that such variation in organ function could be

attributed to the difference in biological age. Our data indicate

that pre-transplant CDKN2A expression is the strongest biomark-

er of renal function up to 1 year post-operatively. When used in

the context of Baker and Sprott’s criterion, CDKN2A appears to

be significantly more robust as a BoA than telomere length. The

latter may be viewed as an effective but imprecise BoA.

Distinguishing between age-related telomere attrition and dis-

ease-related attrition is difficult [8]. Using both together as a

composite measure, alongside chronological age, should be of

further benefit in this context. Clinical translation of this should be

Figure 1. Scatter plots showing the correlation between biomarkers of ageing and donor chronological age. a. Negative correlation
between Donor Chronological Age and Telomere Length. n = 43, CC: 20.242, p = 0.036. b. Positive correlation between Donor Chronological Age and
CDKN2A. n = 33, CC: 0.597, p,0.001.
doi:10.1371/journal.pone.0068133.g001

Table 1. Demographic and important clinical parameters were compared between the separate CDKN2A group and the telomere
group.

CDKN2A n = 33 Mean (SD) Telomere n = 43 Mean (SD) p value

Donor Gender** (male/female) 15/18 20/23 0.589

Donor Age** 48.0 (15.7) 51.8 (15.51) 0.189

DCD/DBD organ* 4/29 9/34 0.677

Mismatch at all A,B,DR Loci* (yes/no) 8/25 10/33 0.607

Recipient Age** 50.6 (12.7) 49.7 (12.6) 0.344

Cold Ischaemic Time** 15.5 (3.9) 13.9 (4.0) 0.267

There were no significant differences between the two groups which would account for the different correlations with renal function (eGFR).
**Unpaired t-Test.
*Fisher’s exact test.
doi:10.1371/journal.pone.0068133.t001

Pre-Transplant CDKN2A Predicts Renal Function
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straightforward, as our methodology is readily adaptable to

implementation when the organ is undergoing cross-match.

In comparison to previous studies, we used the estimated

Glomerular Filtration Rate (eGFR) as a marker for renal function

as it is traditionally considered the best overall index of function in

health and disease. [20] The National Kidney Foundation now

recommends the MDRD 4 to estimate the GFR and better detect

early onset kidney disease. Although the eGFR is considered to be

the best overall index of renal function, it is relatively insensitive at

detecting early renal disease and does not correlate well with

tubular dysfunction [21,22].

We have previously shown that CDKN2A is stronger than

donor chronological age (DCA) at predicting post transplant

function when serum creatinine is used as the marker for renal

function. [7] However, when eGFR is used to measure renal

function, DCA seemed to have a better predictive power than

CDKN2A (Tables 2 and 3). Further univariate regression analysis

revealed that the predictive power of CDKN2A on eGFR was

almost equal to that of ECD kidney criteria (Tables 2 and 3). In

multivariate analysis, the only statistically significant contribution

to both models is CDKN2A, indicating it’s predictive superiority

in this limited cohort.

Despite increasing efforts by the transplant community to

increase the availability of donor organs, there remains a

significant shortfall with several thousand patients dying on the

waiting list each year. The introduction of ECD kidneys has

improved the quantitative discrepancy of such organs but we are

still a distance from achieving satisfactory targets. Novel

techniques of organ discrimination are therefore of huge

importance in this respect. With the standard incorporation of

biomarkers in assessing organ quality pre-operatively, it would

seem logical that transplantation would be safer and an increase in

Figure 2. Scatterplots showing the primary significant relationship between telomere length and renal function, as measured by
MDRD 4 eGFR at a) 6 months and b) 1 year. a. Telomere Length vs MDRD 4 eGFR at 6 months: n = 43, CC: 0.317, p = 0.038, b. Telomere Length
vs MDRD 4 eGFR at 1 year: n = 41, CC: 0.320, p = 0.041.
doi:10.1371/journal.pone.0068133.g002

Figure 3. Scatterplots showing the primary significant relationship between CDKN2A and renal function, as measured by MDRD
4 eGFR at a) 6 months and b) 1 year. a.CDKN2A vs MDRD 4 eGFR at 6 months. n = 33, CC: 20.403, p = 0.020. b.CDKN2A vs MDRD 4 eGFR at
1 year. n = 32, CC: 20.439, p = 0.012.
doi:10.1371/journal.pone.0068133.g003
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the number of kidney transplants would subsequently ensue.

CDKN2A is also related to DGF which in itself is associated with

poorer graft performance and decreased long term survival.

[23,24] The reason for this remains to be determined, but may

relate to biologically older organs being less tolerant to physical

stress and requiring more time to recover from peri-transplant

ischaemia reperfusion injury.

Why CDKN2A expression levels, in this study, have been

observed to be a stronger biomarker of ageing than telomere

length remains to be proven. Both fulfil the Baker and Sprott

criterion, but the weakness of telomere length in predicting

functional capacity in a solid organ is apparent. A contributory

factor may be the extent of inter individual variation in telomere

length at a given chronological age. [6,8,14] Our data are

consistent with those of Koppelstaetter et al [6], who previously

demonstrated that telomere length was inferior to CDKN2A in

determining variability on post-transplant serum creatinine levels

in renal allografts. Inter-individual variation in CDKN2A

expression at a given chronological age has not been fully

determined, though increased expression of CDKN2A at the

cellular level, remains a robust marker of a senescent state and its

elevated expression is coincident with a reduction in cellular

proliferation. [25] In essence, its expression may be viewed as an

‘off switch’ for the cell and hence the degree of inter-individual

variation observed with telomere length, is not expected to be as

great. Our observations have direct relevance for any future

strategies employing biomarkers of ageing either clinically, or

epidemiologically. Telomere length is currently used widely in this

context. We are now evaluating CDKN2A similarly, in large

epidemiological studies, to evaluate its robustness with greater

analytical power.

Based on current findings relating to the predictive power of

CDKN2A on eGFR, it would follow that a scoring system

incorporating biological markers would provide additional infor-

mation for patients and clinicians during the organ selection

process. Reference is made to larger studies such as the one in use

by the OPTN in the US for deceased donor kidneys based on ten

pre-transplant covariates, the Kidney Donor Risk Index. [26]

Undoubtedly, this novel scoring system adds a vital tool to the

allograft allocation process. Importantly however, it does not

include reference to biological age which may be viewed as an

essential parameter of modernised scoring systems. In addition, the

study itself showed similar results with age matching alone

allowing for the possibility of a simpler scoring technique with

equal efficacy. We therefore propose a 4 tier categorical scoring

system based on biological age of the graft and ECD. Allografts are

classified Category I to Category IV based on a straight forward

assessment outlined below, with Category I allografts predicting

better performance than Category 4 (Table 6).

The mean value for CDKN2A gene expression (1.8) was used as

the cut-off value in the scoring system. Moreover, it can be seen

from the scatter plots of CKDN2A vs eGFR at 1 year that renal

function deteriorates significantly at CDKN2A expression levels

above 1.8. ECD kidneys occupy both category III and category IV

Table 2. Univariate linear regression analysis showing the
predictive power of CDKN2A, telomere length and other
relevant clinical variables on renal function at 6 months.

Variable MDRD 4 eGFR at 6 months

n Adjusted R2 p-value

CDKN2A expression 33 0.135 0.020

Telomere Length 43 0.079 0.038

Donor Chronological Age 120 0.143 ,0.001

GN in recipient 112 0.029 0.040

ECD Kidney 118 0.121 ,0.001

Donor Hypertension 107 0.051 0.011

CVA in Donor 111 0.057 0.007

Donor pre-retrieval Creatinine
.133 mMol/L

110 20.008 ns

Mismatch at A, B and DR Loci 114 20.009 ns

Previous Transplant 120 0.000 ns

Cold Ischaemic Time 114 0.019 ns

Donor Sex 120 20.001 ns

DCD/DBD 63 20.003 ns

Note the superior predictive strength of CDKN2A when compared to telomere
length. (GN: Glomerulonephritis, DCD: Donation after Cardiac Death, DBD:
Donation after Brain Death, CVA: Cerebro Vascular Accident, ECD: Extended
Criteria Donor).
doi:10.1371/journal.pone.0068133.t002

Table 3. Univariate linear regression analysis showing the
predictive power of CDKN2A, telomere length and other
relevant clinical variables on renal function at 1 year.

Variable MDRD 4 eGFR at 1 year

n Adjusted R2 p-value

CDKN2A expression 32 0.166 0.012

Telomere Length 41 0.079 0.041

Donor Chronological Age 104 0.214 ,0.001

GN in recipient 105 0.028 0.048

ECD Kidney 103 0.174 ,0.001

Donor Hypertension 100 0.069 0.005

CVA in Donor 95 0.075 0.004

Donor pre-retrieval Creatinine
.133 mMol/L

95 20.011 ns

Mismatch at A, B and DR Loci 98 20.010 ns

Previous Transplant 104 0.000 ns

Cold Ischaemic Time 98 0.014 ns

Donor Sex 105 20.009 ns

DCD/DBD 49 0.001 ns

Note again the superiority of CDKN2A over telomere length in particular. (GN:
Glomerulonephritis, DCD: Donation after Cardiac Death.
DBD: Donation after Brain Death, CVA: Cerebro Vascular Accident, ECD:
Extended Criteria Donor).
doi:10.1371/journal.pone.0068133.t003

Table 4. Multivariate model outcome for eGFR at 6 months.

Independent Variable
Standardised
Coefficients (Beta) p-value

CDKN2A 20.397 0.034

ECD Kidney 20.211 0.233

Recipient
Glomerulonephritis

20.293 0.088

The model approaches statistical significance using the strict Bonferroni
correction (p = 0.021).
doi:10.1371/journal.pone.0068133.t004
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in this pre-transplant scoring tool meaning that ECD status carries

a poorer prognosis than CDKN2A itself. The allocation of

CDKN2A to a higher tier in this scoring system would require

further studies to strengthen the correlations observed above.

Since DCA forms part of ECD criteria, it was not used as a single

determinant of transplant function in multivariate analysis or the

categorical scoring system.

A further benefit from our data, is that strategies to mitigate the

rate of biological ageing applied to living donors would be

expected to have impact on post-transplant outcomes. Reduction

of psychological and psychosocial stress and improved lifestyle via

changes to diet and exercising might readily be considered.

[14,27,28] Biomarkers, specifically CDKN2A, may well expand

the field of octogenarian donation for example, by discriminating

organs with ‘‘less miles on the clock’’. Larger multicentre studies

are needed to strengthen the hypothesis and the proposed scoring

system suggested in this report. It is envisaged that the biomarker

CDKN2A will be integrated into a similar, robust and validated

pre-transplant scoring system for all kidneys and other transplant-

ed organs in the near future.

Methods

Ethics
This is an ongoing prospective study which has been approved

by the Regional Ethics Committee of the North Glasgow NHS

Trust. Donors from the national pool donated their organs for

transplantation. The recipient of the organ provided pre-operative

written informed consent for tissue analysis and scientific research.

Samples were anonymised and subsequently analyzed.

Study Population
The global study population is representative of the national

UK deceased donor pool. A total of 120 transplant patients were

included which were performed in the Western Infirmary,

Glasgow between March 2008 and February 2011. All transplants

were followed up for post-operative clinical data. Telomere length

was calculated for 43 transplanted kidneys. A separate group

(n = 33) yielded CDKN2A expression. There were 15 matched

samples as a result of small biopsy specimens allowing RNA or

DNA to be obtained separately and not together. Table 1 shows

the demographic data for the CDKN2A and telomere groups.

Patients, in whom genetic data was not available, were included in

the global cohort for clinical analysis. The primary cause of end

stage renal disease (ESRF) in the recipients was Adult Polycystic

Kidney Disease (APKD) followed by chronic pyelonephritis/reflux

disease, hypertensive nephropathy, IgA nephropathy and the

glomerulonephritides. The immunosuppressive regimen consisted

primarily of basiliximab at induction and day 4 with a

maintenance regime consisting of tacrolimus, mycophenolate

mofetil and prednisolone.

Human Renal Biopsies and RNA/DNA Extraction
Renal biopsies were obtained on the surgical backbench via

wedge resection or needle biopsy according to the surgeon’s

preference. All biopsies were obtained from ‘‘donation after brain

death’’ (DBD) and ‘‘donation after cardiac death’’ (DCD) donors.

All samples were stored in ‘RNA later’ solution (Ambion, Austin,

TX, USA) at –20uC until processing. RNA was extracted using

Trizol reagent (Invitrogen, Paisley, UK) following manufacturer’s

guidelines. The MaxwellH 16 DNA purification robot kits by

Promega were used for for DNA isolation.

Delayed Graft Function (DGF)
DGF was defined as failure of serum creatinine to fall by half

within seven days of the transplant, or need for dialysis within

seven days of the transplant, except dialysis performed for fluid

overload or elevated serum potassium levels [29].

MDRD 4 eGFR
The final value for the eGFR was calculated electronically by a

biochemical and clinical database – SERPR. The four variables

used in the equation include serum creatinine, age, race and

gender [20].

CDKN2A Expression Determination
Relative quantitative real-time PCR (qRT-PCR) was used to

estimate mRNA levels corresponding to the candidate senescence

associated gene (SAGs) - CDKN2A. Expression levels were

measured against a reference HPRT housekeeping gene on an

ABI PrismH 7700 Sequence Detection System. Sequences of

human TaqManTM Primer/Probe sets designed by Primer

Express algorithm (Applied Biosystems, Austin, TX, USA).

HPRT
Forward Primer (5/2CTTGCTCGAGATGTGATGAAG-3/

),

Reverse Primer (5/2CAGCAGGTCAGCAAAGAATTTA-

TAG-3/),

Probe (5/2FAM-ATCACATTGTAGCCCTCTGTGTGCT-

CAAGGTAMRA-3/)

CDKN2A
Forward Primer (5/2CATAGATGCCGCGGAAGG-3/),

Reverse Primer (5/2CCCGAGGTTTCTCAGAGC-3/),

Probe (5/2FAM-CCTCAGACATCCCCGATTG-TAMRA-

3/)

The comparative threshold cycle method (DDCT) was em-

ployed as the method of choice to quantify relative gene

expression. The quantification result was transformed to an

Table 5. Multivariate model outcome for eGFR at 1 year.

Independent Variable
Standardised
Coefficients (Beta) p-value

CDKN2A 20.428 0.019

ECD Kidney 20.236 0.166

Recipient
Glomerulonephritis

20.311 0.061

The model explains 27.1% of the eGFR p = 0.008.
doi:10.1371/journal.pone.0068133.t005

Table 6. Suggested Donor Kidney Classification system
incorporating CDKN2A as the biomarker of ageing and ECD
kidney criteria.

Category I SCD Kidney and CDKN2A expression levels ,1.8

Category II SCD Kidney and CDKN2A expression levels .1.8

Category III ECD Kidney and CDKN2A expression levels ,1.8

Category IV ECD Kidney and CDKN2A expression levels .1.8

(SCD – Standard Criteria Donors, ECD – Extended Criteria Donors). Predicted
kidney function and incidence of graft failure increases with higher category
placement.
doi:10.1371/journal.pone.0068133.t006
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exponential value, 2–DDCt [30] where Ct is the threshold cycle, or

the cycle when the product was first detected. Before undertaking

this quantitative study we demonstrated that the efficiency of

amplification of reference (HPRT) and test genes were approxi-

mately equal (data not shown).

Telomere Length Determination
Telomere length determination was performed by qPCR using

a Roche Light Cycler LC480. Telomere length analyses were

performed in triplicate for each sample, using a single-copy gene

amplicon primer set (acidic ribosomal phosphoprotein, 36B4) and

a telomere-specific amplicon primer set. Quality control param-

eters employed for the amplifications comprised using a cut off

0.15 for the standard deviation (SD) of the threshold cycle (Ct) for

sample replicates. At a SD above 0.15 the sample was reanalysed.

The average SD across plates was ,0.05.

Relative telomere length was estimated from Ct scores using the

comparative Ct method after confirming that the telomere and

control gene assays yielded similar amplification efficiencies. This

method determines the ratio of telomere repeat copy number to

single copy gene number (T/S) ratio in experimental samples

relative to a control sample DNA. This normalised T/S ratio was

used as the estimate of relative telomere length (Relative T/S).

TELOMERE
Telo 1 Sequence (59 to 39)

CGG TTT GTT TGG GTT TGG GTT TGG GTT TGG

GTT TGG GTT

Telo 2 Sequence (59 to 39)

GGC TTG CCT TAC CCT TAC CCT TAC CCT TAC

CCT TAC CCT

36B4

36B4d Sequence (59 to 39)

CCC ATT CTA TCA TCA ACG GGT ACA A

36b4u Sequence (59 to 39)

CAG CAA GTG GGA AGG TGT AAT CC

Statistics
Data analyses were performed using SPSS statistical package

version 17. The adjusted R2 was used to indicate the extent to

which the dependant variable (eGFR) is explained by the

independent variable in question. The association was deemed

to be statistically significant if the p value ,0.05. Prior to

multivariate regression, preliminary analysis was conducted to

ensure no violation of the assumptions of normality, linearity and

multicollinearity. Any missing values were removed by pairwise

deletion. Bonferroni’s adjustment was used to calculate the exact p

value for the multivariate models.
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Novel cell therapies in transplantation 

Shiels PG, Stevenson KS, Gingell-Littlejohn M and Clancy M 

 

Human organs have a limited capacity for repairing themselves. This capacity 
declines as a function of increasing chronological age, driven by a cocktail of 
biological, psychological, and sociological stressors that can accelerate organ 
degeneration. As a consequence, both transplant recipient survival and donor organ 
function, are affected by these processes. Novel therapies to tackle this are manifold, 
but typically limited in effect. 

Solid organ transplants replace diseased organs with biologically newer, healthier 
whole organs, but this strategy is inherently limited.  The requirement for an 
individual with healthy organs to die or to undergo major surgery in order for an  
organ to be replaced is the central, limiting paradox of whole organ transplantation.    
Stem cell treatments (or novel, cell-based therapies if preferred) represent perhaps the 
most exciting and most logical approach of the many ways this clinical problem is 
being addressed.  The isolation and propagation of stem cell lines promised a more 
permanent and potent method of repair or regeneration of damaged tissue or organs.  
Indeed at the time of James Thompson’s description of the  first embryonic stem cell  
lines in 1998 (Thomson et al 1998) solid organ transplantion had been established for 
nearly three decades and the step to having perfect, quality-controlled neo-organs on a 
shelf ready for surgical implantation appeared small.  Initial perceptions have 
seemingly underestimated the quantum leap from single multipotent stem cell to 
functioning organ.   

The holy grail of cell-based tissue engineering approaches remains the growth of 
functional (and ideally tolerant) neo-organs, which can spontaneously, or surgically, 
assimilate into the body and fulfill the role of a diseased organ.  Whilst pluripotent 
cell lines of infinte prolifereative capacity have  reliably been made to form cardiac 
myocytes, hepatocytes and many of the different renal specific cell types, few have 
been directed into a neorgan of adequate function to establish a role in clinical 
practice and none in the fields currently managed by major abdominal organ 
transplants. 

Therapeutic applications of novel cell lines are far more advanced in 
immunomodulation and the augmentation of tissue repair.  These protection/repair 
therapies have already shown clinical benefit and also have direct implications for the 
treatment of age related disease. Since these approaches are well advanced in clinical 
trials and therefore most likely to find a clinical role in the current abdominal 
transplant field, this chapter, focuses principally on the potential of cell sources to 
protect or repair diseased organs.   



The use of stem cells to grow functional, clinically useful tissue for the treatment of 
the diseases currently best managed by abdominal organ transplants remains entirely 
experimental.  The progress and barriers to clinical use are also discussed. 

 

Defined stem cell populations for clinical application 

Despite this great promise, the use of regenerative medicine to effect repair of solid 
organs and tissues is still in its infancy. The type(s) of cell, or cell population, that is 
required to effect functional recovery remains to be defined, as does the mechanism, 
delivery system and indeed cell numbers to achieve this. 

A range of cell types have been touted and tried as candidates for therapeutic use. 
These include embryo stem cells (ESCs) hematopoietic stem cells (HSCs), 
multipotent stromal cells (MSCs), endothelial progenitor cells (EPCs) and organ 
specific resident stem/progenitor cells, which are known to contribute to solid-organ 
tissue repair. The individual merits of these cells have been reviewed elsewhere 
(Stevenson et al 2009a). Currently, their use has been limited, but the field is 
developing rapidly and early clinical trials for solid organ repair are on going.  

The main focus is on adult cell sources since the use of ESCs remains dogged by 
social and scientific uncertainty, due to moral or ethical issues  or basic technical 
hurdles. The latter include controlling the directed differentiation of ESCs and the 
prevention of neoplasia or tissue dysfunction post transplant. Most current clinical 
potential resides with using adult cell types, such as MSCs. To date, only MSCs have 
been applied successfully in both experimental solid organ transplantation and clinical 
studies. These are discussed below, with reference to clinical applications in 
transplantation. 

 

Multipotent stromal cells 

MSCs were initially described, over thirty years ago by Freidenstein et al (1968) as a 
bone-marrow-derived mononuclear cell population which exhibited a fibroblast-like 
morphology when cultured ex vivo on an adherent substrate, such as plastic. MSCs 
are present in a wide range of adult tissues and exhibit the capacity to be 
differentiated into multiple specialized cell types from all three germ layers. They also 
demonstrate immuno-modulatory properties, though how this is achieved remains 
undefined (for a detailed review see Popp et al 2009). As such, they are of interest due 
to their capacity to makes cells suitable for transplantation. 

Recent clinical trials have tested the capacity of MSCs to treat cardiac, renal and liver 
damage, as noted below.  What remains unclear, however, is the mode of action of 
such cells. It is uncertain whether these cells contribute to tissue building via direct 
differentiation in to tissue specific cells, or modulate immune mediated damage at the 



site of injury, or even provide trophic support for tissue regeneration ( Crop et al 
2009). Even the characterization of these cells is contentious.  

 A basic set of criteria has been proposed by The International Society for Cellular 
Therapy (ISCT) for MSCs (Dominici et al 2006).This appears to function well in 
practice.   

(i)Adherence in vivo when grown on plastic.  

(ii)Expression  of a specific  cell surface marker phenotype comprising(CD73+ 
CD90+ CD105+ CD34- CD45- CD11b- CD14- CD19- CD79a- HLA-DR-)  

(iii) Differentiation potential to osteogenic, chondrogenic and adipogenic lineages. 

One key question at this juncture, is whether the phenotype and properties exhibited 
by MSC in vitro, are maintained in vivo.  MSCs in vitro, grow typically as an 
adherent monolayer, with a distinct immuno-phenotype. When grown under non-
adherent conditions this phenotype changes and the cells grow in spherical clusters. 
This has been proposed to promote intercellular interactions, though this remains to 
be demonstrated formally (Frith et al 2010). 

Some findings however, suggest that MSCs offer exciting therapeutic potential for 
organ transplantation.  Secretory factory derived from MSCs have been demonstrated 
to have both pro-angiogenic and anti-inflammatory  effects, which might be used to 
assist in solid organ and cellular transplantation. Furthermore, MSCs grown in the 
presence of pro-inflammatory cytokines also display enhanced immunosuppressive 
effects, which might be exploited to aid transplant success. (Di Nicola et al 2002; 
Imberti et al 2007; Van Poll et al 2008). The immuno-modulatory effect of MSCs 
appears to be dose- dependent and independent of the major histocompatibility 
complex (MHC) and mediation by antigen-presenting cells or regulatory T cells. (Le 
Blanc et al 2003; Krampera et al 2003) 

 

MSC and solid organ transplantation 

Following on the heels of a range of rodent studies demonstrating that transplanted 
MSCs can improve tissue damage ( Yeagy et al 2011), clinical trials are underway. 
Currently, only three Phase III clinical trials have been concluded. These comprise 
trials for   graft-versus-host disease (GVHD), Crohn’s disease and perianal fistula  A 
such they are not yet directly relevant to abdominal organ transplantation,  and the 
therapeutic approach is immunomodulatory, rather than building/repairing tissue 
architecture. 

Early stage trials for use with solid organs are limited. Initial findings from a safety 
and clinical feasibility study (Perico et al ClinicalTrials.gov, NCT00752479) 
comprising autologous MSC administration in two subjects receiving living-related 



donor kidneys showed that  one year post transplant the patients had stable graft 
function and significantly, an enlargement of the regulatory T cell (Treg) pool in the 
peripheral blood, with a concomitant inhibition of memory T cells. This has 
demonstrated the feasibility of translating beneficial immunomodulatory findings 
from rodent models into a human clinical setting, though caution, based on the low 
power of the study is still advised. 

Ongoing trials using MSC to aid outcome in liver renal transplantation continue at a 
number of centers with results awaited. Promising results on deriving liver and biliary 
cells in vitro using rodent progenitor cells  have already been reported (see Stevenson 
et al 2009b), though these have yet to translate into clinical practice, as deriving 
human equivalents has proven problematic. 

Recently, a significant technical breakthrough was reported with the identification of 
adult nephron progenitors capable of kidney regeneration in zebrafish (Diep et al 
2010). These authors have provided proof of principal, that transplantation of single 
aggregates comprising 10-30 progenitor cells is sufficient to engraft adults and 
generate multiple nephrons. The identification of these cells opens up an avenue to 
isolating or engineering the equivalent cells in humans and developing novel renal 
regenerative therapies. 

 

How MSCs might work 

How MSCs work in clinical trials and animal models, is still debated. Any paracrine 
effect mediated by the secretion of growth factors remains problematic, as the speed 
of efficacy, duration of immuno-modulation and extent of tissue repair cannot readily 
be accounted for. This principally, is due to the transient existence of MSCs following 
in vivo administration  and different syngeneic and allogeneic effects in 
transplantation models (Casiraghi et al 2008; Popp et al 2008). 

Recent data from Stevenson et al (2011) sheds light some light on this, as even in a 
xenotransplant setting paracrine effects can invoke developmental recapitulation 
during organ regeneration. This is discussed more fully below with reference to 
Pathfinder cells. 

 

Considerations for solid organ transplantation 

Give the convincing in vivo demonstrations of the immuno-suppresive effects of 
MSCs,  phase I clinical trials for the treatment of a range of diseases are already 
underway. However, potential pitfalls for their use in organ transplantation remain. 
Firstly, allogeneic MSCs, may induce memory responses, leading to  accelerated graft 
rejection, which would not be observed with autologous MSCs. Secondly and 
conversely,  autologous MSCs might  induce donor-specific hypo-responsiveness 



There is precedent for such a postulate based on previous donor-specific transfusions 
data [Waanders et al 2005]. 

Thirdly, the differentiation potential of MSCs, could lead to the  loss of correct 
pattern of spatio-temporal development in a specific tissue or organ, with the 
formation of atypical cell types in it . Reports already exist of elevated levels of 
calcification in mice treated with MSCs to combat the effects of myocardial 
infarction(Breitbach et al 2007)  

Fourthly, such differentiation and, or, paracrine support for damaged tissue could lead 
to neoplasia. This has yet to be observed in practice and use of such cells in bone 
marrow transplant without serious adverse consequences, over the past 40 years, is 
encouraging in this respect. 

Fifthly, the wide spread dispersal of MSCs in vivo, following infusion, runs the risk 
of stimulating fibrosis through paracrine stimulation of tissue by MSC secreted 
factors. Precedent  for such a scenario exists. Recent clinical data from  experiments 
using adipose derived EPCs showed immediate fibrosis following lipoinjection into 
adipose-tissue (Yoshimura et al, 2008) 

Finally, given that MSC have the capacity to modulate the immune system, the 
question of whether infusions of these cells will compromise overall immune 
surveillance arises. Initial primate studies have indicated that administration of high 
dose allogeneic MSCs  affected allo-reactive immune responses. (Beggs et al 2006)  

 

Pathfinder cells; an alternative to solid organ pancreas transplantation? 

A further cell type with potential for usage in solid organ transplantation has been 
described. These are a novel cell population, termed Pathfinder cells (PCs) (Shiels 
2004; Stevenson et al 2011), isolated from both adult rat and human tissues, so named 
on the basis that they appear to navigate a path towards sites of damage in vivo. PCs 
have proven efficacy in regenerating tissue in a number of solid organ damage 
models. Notably, these cell work across a species barrier, exert their influence on 
damage tissue in a paracrine fashion and have immuno-modualory properties. 

These cells share many properties with MSCs, in that they have an adherent 
phenotype when grown on plastic and can form spherical cell clusters. They display 
paracrine interactions with immune cells already well documented for MSCs. (Yagi et 
al 2010). Unlike MSCs, these cells can be CD90, CD105 and CD73 negative. 

Direct intravenous injection of rat or human PCs into streptozotocin (STZ) induced 
diabetic mice resulted in a paracrine mediated normalization of blood glucose levels 
and restoration of mouse pancreatic architechture. Crucially, the insulin produced by 
these treated animals was principally mouse in origin and was of both type I 
(embryonic) and II (adult) (Stevenson et al 2011), indicative of stimulated 



developmental recapitulation. Notably, the PCS do not persist indefinitely after 
infusion, analogous to MSCs and can only be detected at low levels (<0.1%) 100 days 
after administration. These observations are also in keeping with previous reports 
suggesting a means for novel therapeutic intervention without making differentiated 
cells for transplantation ex vivo (Shiels 2004, Dor et al 2004, Nir et al 2007). 
Significantly, PCs have demonstrated efficacy in both rodent models of renal and 
cardiac ischaemia  which bodes well for their development as a clinical cellular 
therapeutic. 

 

iPS cells 

Derived as an alternative to working with stem cells, induced pluripotent  stem  (iPS) 
cells have been used to derive a number of specialized cell types and may eventually 
have a role in transplantation, though this would seem some way off at present. iPS 
derivation involves genetically manipulating adult cells to express a number of 
transcription factors normally required for maintaining stem cells in an 
undifferentiated state (Meissner et al 2007; Okita et al 2007). iPS cells show many 
similarities to ESCs in morphology, proliferation and the capacity for teratoma 
formation. Tumour formation in chimaeras, following iPS cell implantation, precludes 
their use in transplantation. Recently, iPS cells have shown success when used to 
provide a model system for studying complex human disease conditions (Zhang et al 
2010). Such studies are an important correlate for the development of improved 
clinical strategies to treat disease. More recently, however, Pasi et al (2011) have 
reported that iPS cells are genetically unstable and possess a range of abnormalities 
more associated with neoplastic transformation, which suggests a serious impediment 
to their use as a therapeutic cell source. 

 

Neo-organogenesis for transplantation 

Most current approaches, with the exception of Pathfinder cell therapy,  use stem or 
progenitor cells to build tissue directly, not  by way of induction of natural 
developmental pathways. Extensive work has allowed the definition of many stem 
cell subtypes, many of which are pluripotent, as defined above, but persuading these 
cells to form the correct three dimensional tissue architecture of mature organs has 
proved far more problematic. 

All abdominal organs develop from a stem cell population which aggregate, separate 
from surrounding structures (in the case of the kidney with the formation of a tough 
connective tissue capsule) and induce a complex network of  blood vessels which 
allow growth to the large size of mature organs.  Further ingrowth of additional cell 
types such as neuroendocrine pancreatic cells may also be necessary before the 
mature organ is properly formed (Figure 1). 



These steps lie between implantation of a stem cell population and useful organ 
function unless – as in the case of a bone marrow or peripheral blood stem cell 
transplant – the desired function is one or more singly existing blood cell type.  There 
is no better example of the difficulty of forming clinically useful tissue from stem cell 
sources than the inability of the entire scientific world to develop something as 
conceptually simple as quality-controlled erythrocyte populations for transfusion let 
alone a kidney.   

 

Natural blueprints for stem cell to organ development: using foetal cells to grow 
an organ 

Figure 1. shows that the foetal pre-organ may be considered  the natural blueprint for 
stem cell assembly into the mature organ.  Implantation of the foetal kidney rudiment 
has been described(Hammerman et al 2000) but cannot replicate the magnitude of 
glomerular filtration nor tubular function to sustain life(Marshall et al 2007; Clancy et 
al 2009).  Transplantation of the less well defined pancreas rudiment has also shown 
promise but remains some way from clinical practice(Hammerman et al 2011). 

Utilising these foetal preorgans as a template to allow stem cells, microinjected into 
the preorgan before implantation, to form functioning organ has been attempted.  In 
the case of the kidney, functioning human glomeruli and tubules have been 
demonstrated in preinjected rat foetal kidney grafts but once again, this technology is 
some way short of being an alternative to kidney transplantation.(Yoko et al 2009) 

 

Creating tolerant adult organs 

The foetal organ may only represent a blueprint as far as a small, immature organ and 
may lack developmental cues relating to late pre-natal and post-natal growth and 
development.  The adult organ contains a fully formed connective tissue architecture 
and vasculature and represents an alternative blueprint. Injection of autologous stem 
cells onto a decellularised human trachea has been successfully performed in a human 
patient(Baiguera et al 2010) however this only requires a single epithelial layer to 
form on the inside of the decellularised platform.  This is no more complex than the 
cells’  behavior in culture.  Nevertheless this transplant is a landmark for stem-cell 
transplantation. 

Repopulation of a heart with stem cells is also described experimentally(Taylor et al 
2009) but the complexity of abdominal organs like kidney, liver and pancreas still 
remains a barrier to regrowing clinically useful and transplantable organs from stem 
cell sources. 

 



The future 

Despite many remaining obstacles, the use of cellular therapies to augment the 
transplant team’s armamentarium and to treat previously intractable conditions is 
exciting.  Translation of these strategies is rapidly advancing, though a legion of 
unanswered questions remain with respect to both the basic biology and long term 
success of treatments. Will these therapies replace damaged tissue without addressing 
any underlying pathology?  Will stem cells be differentiated in vitro to form solid 
organs for transplant as they have with the relatively more simple trachea?  What 
immune issues need to be dealt with? With the exception of bone marrow 
transplantation, obtaining enough of a given cell type, and ensuring the risk of cancer 
is minimized post transplant also remains an barrier. 

Despite these hurdles, cell therapies offer significant potential for treating previously 
intractable conditions and understanding basic biological processes involved in 
development and in tissue homeostasis.  Progress since the hyperbolic promise of the 
first embryonic stem cell lines seems slow however the next decade is likely to see 
cell based treatments cement their clinical role. 
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Fig.1 The developmental pathway from stem cells to mature organs

 

Schematic representation of the progress of organ development from 
undifferentiated stem cell populations to mature organs 

 

 

 

 

 

 



Fig. 2  Experimental foetal organ rudiment transplant
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Rat foetal kidney preorgan, the metanephros (shown to scale) transplanted to 
adult rat abdomen develop gross renal morphology (M) (next to native kidney 
(N) for scale after 17 days. 
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