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Abstract 

Mitophagy allows for the removal of damaged and dysfunctional mitochondria 

from the cell thereby attenuating any deleterious, potentially tumorigenic 

effects malfunctioning mitochondria may cause. Mitophagy is a specific from of 

macro-autophagy whereby mitochondria are selectively degraded. What controls 

this specificity is an area of active research. The translocation of various 

proteins such as PINK1 and PARKIN, to the mitochondria prior to mitophagy is 

thought to act as signals for recruitment of the autophagosome to the 

mitochondria. However what is the initiating signal for mitophagy that causes 

these proteins to act remains unclear. Damaged and dysfunctional mitochondria 

generate increased levels of reactive oxygen species and we hypothesized that 

these cause the oxidation of the mitochondrial membrane poly-unsaturated 

lipid, cardiolipin (CL), which acts as an indicator of mitochondrial health and as 

an initiating signal to the mitophagic machinery.  

Using human fibroblasts (derived from Barth’s syndrome patients) deficient in 

functional tafazzin (Taz), the enzyme responsible for CL maturation (poly-

unsaturation), and control fibroblasts created by re-introducing a fully functional 

Taz gene into the parental Barth’s syndrome cells. The frequency at which 

mitophagy occurs in these deficient and revertant cell lines was analysed under 

different oxidative stress conditions, in conjunction with other factors known to 

affect the occurrence of mitophagy; such as mitochondrial morphology, 

dynamics, mass, membrane potential and function.  

We observed that not only were mitochondrial morphology, dynamics and 

function affected by the levels of polyunsaturated CL, but that indeed 

mitophagy is abrogated in cells lacking expression of functional TAZ and 

therefore lacking mature polyunsaturated CL. Further to this initial experiments 

have confirmed reduced levels of oxidized CL in the Barth’s syndrome cells, 

which combined with the evidence of reduced mitophagy suggests this could 

indeed be the initiating signal for mitophagy. Thus the data presented within 

this thesis provides evidence of the role of polyunsaturated CL, in mitophagy and 

suggests that through its oxidation it provides the initiating signal for mitophagy. 
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Chapter 1 Introduction 

  



16 
 

 Laura Catherine Avril Galbraith 

  

1.1 Mitophagy 

Mitophagy is the quality control process by which mitochondria are removed 

from cells. In addition to quality control mitophagy can be a protective 

response, or a developmental response. In this first section we will present and 

discuss the process of mitophagy; what stimulates, regulates and controls 

mitophagy. First we must briefly discuss the more general process of autophagy 

of which mitophagy is a specific subset. 

1.1.1 Autophagy 

Autophagy means “self-eating” or “self-digesting”. It is, in the cellular context, 

a process by which the cell degrades organelles proteins and other 

macromolecules, such that they may then either be removed from the cell 

altogether or recycled and used to synthesise new cellular components. The 

intricacies of this process will only be described briefly here, for more detail see 

reviews (1-5). 

The role of autophagy in cells can be considered as three fold:  

1. A response to nutrient stress; a cell induces autophagy to break down cellular 

components to use as fuel until the nutrient stress is removed. 

 2. A quality control process; removing damaged, dysfunctional cellular 

components and re-cycling the building blocks from which they are made.  

3. Tissue specific roles; such as removal of all mitochondria from developing 

erythrocytes.  

Autophagy is continually on-going at background levels in the cell through its 

role in cellular quality control. However upon various stress stimuli the rate of 

autophagy is increased. Under nutrient stress any protein or organelle (other 

than mitochondria (6)) may be subject to autophagic degradation to provide fuel 

for the cell. Obviously, this is only a temporary solution and prolonged nutrient 

starvation will result in autophagic cell death (1). As a consequence it is highly 
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regulated and involves a dedicated set of proteins encoded for by the autophagy 

genes commonly known as the ATG or APG genes. These genes encode the 

autophagic machinery required for initiation, progression and conclusion of the 

autophagy process. Figure 1:1 shows how each of these ATG proteins interacts 

with the signalling machinery and each other to control the autophagy response. 

Whilst we will not dwell on each component of this pathway; four key 

components warrant further explanation due to their function in mitophagy.  

Firstly p62/SQSTM1 (p62 sequestosome, here after referred to as p62) and NBR1, 

two proteins with similar function have been identified as cargo receptor 

proteins, binding to and identifying cellular components for autophagosomal 

degradation. Autophagosomal cargo is usually ubiquitinated and both p62 and 

NBR1 have ubiquitin binding domains through which they recognise and bind 

target components. Once bound to the potential cargo NBR1 and p62 can form 

aggregates of cargo by forming p62/p62, NBR1/NBR1 and p62/NBR1 interactions 

via the PB1 domains present in both proteins. The LIR (LC3 interacting region) 

domain also present in each protein allows interaction with LC3, recruiting the 

autophagosome to the awaiting cargo (7). Neither p62 nor NBR1 require each 

other for their function and their mode of action is similar suggesting 

redundancy in the pairing. They may act in tandem to amplify the autophagic 

response binding different forms of ubiquitination, or as others suggest are 

tissue specific in their function (7).  

Prior to autophagy LC3 (microtubule associated protein light chain 3) or ATG8 as 

it is known in yeast, is cytosolic in a delipidated form known as LC3I. Upon 

formation of the autophagosome it becomes lipidated by conjugation with the 

phospholipid phosphatidylethanolamine (PE) on the autophagosomal membrane 

forming LC3II. LC3II can act as a receptor for autophagic cargo, interacting as 

mentioned above with p62 and NBR1, bringing the autophagosome into contact 

with its intended cargo. The conversion of LC3I to LC3II can be used as a 

measure of autophagy (and mitophagy) induction. The observance of LC3II 

punctae by microscopy allows for the identification of autophagosomes (as LC3 

decorates the autophagosomal membrane) within cells.  

Finally LAMP2 (lysosomal associated membrane protein -2) is found on the 

lysosomal membrane, it mediates the lysosomal uptake of the chaperone HSC73 
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bound to cargo proteins and is required for the lysosomal destruction of 

autophagic vacuoles, it can be used to identify the lysosome and therefore in-

conjunction with LC3 labelling the whole autophagy process can be tracked.     

The function of all the ATG proteins is to modulate the formation and 

interactions of the two vesicles that are essential for autophagy; the 

autophagosome and the lysosome. The autophagosome is a double membrane 

enclosed structure that engulfs the organelles or proteins to be degraded. It 

then fuses with the lysosome, forming the autolysosome (an acidic single 

membrane bound structure), at which point LC3II disassociates. The Cargo now 

enclosed in the acidic autolysosome is broken down and degraded by the 

lysosomal enzymes. 

 
Figure 1:1- The Autophagy pathway and machinery 
Illustration reproduced courtesy of Cell Signalling Technology, Inc. (www.cellsignal.com). 
Illustration details the pathway and components involved in autophagy. 

http://www.cellsignal.com/
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Whilst starvation induced autophagy appears indiscriminate regarding the 

organelles and proteins it degrades, not all forms of autophagy are as random in 

their choice. Specific forms of autophagy exist whereby a particular organelle or 

protein is targeted for autophagy above all others. It is proposed that in these 

cases the organelle or protein has a particular mechanism to signal to the 

autophagic machinery that it is “ready” for degradation. One such case is that of 

mitophagy, first defined by J.J. Lemasters in his 2005 paper “Selective 

mitochondrial autophagy, or mitophagy, as a targeted defence against oxidative 

stress, mitochondrial dysfunction and aging.”  where the selective and specific 

degradation of mitochondria was observed above all other cellular components 

in the form of a quality control process (8).  

1.1.2 Specific degradation of mitochondria by mitophagy 

Mitophagy can be stimulated by a variety of different factors: Loss of 

mitochondrial function and with it decreased ATP production (9); generation of 

reactive oxygen species (ROS), ROS levels are known to increase when cells are 

placed under many stress conditions (10); cellular differentiation signals (11-13) 

and changes in oxygen availability e.g. hypoxia versus normoxia (14-20). The 

stages of mitophagy are illustrated in Figure 1:2, with reference made to the 

various proteins both mitophagic and autophagic that are involved at each stage. 

Following mitophagic stimuli, mitochondria become depolarised and undergo 

fission from the remaining mitochondrial network (21). Daughter mitochondria 

generated following a fission event that are not depolarised may re-join the 

network through fusion Figure 1:2. Where a daughter mitochondrion is 

depolarised a specific set of proteins called the “mitophagy proteins” or 

machinery is activated and recruited to the target mitochondria which in turn 

allow the recruitment of the autophagic machinery Figure 1:2. Initially this may 

begin with stabilisation of PINK1 upon the mitochondria and PARKIN recruitment. 

PARKIN ubiquitinates targets upon the mitochondria which in turn recruit the 

cargo receptors p62 and NBR1 and they recruit the autophagosome to the target 

mitochondria. The PINK1/PARKIN system represents only one of several potential 

routes for mitochondrial degradation via mitophagy, other proteins are also 

observed to act on mitochondria instigating a mitophagy response and these will 

be discussed in more detail later.   
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As a relatively new field of research, much of these specifics remain unclear, 

and the role of Mitophagy in cell survival or death is hotly debated. Through its 

importance in many disease areas such as cancer, ageing, metabolic disorders 

and neurodegenerative disease it has become the subject of much interest and 

research, the majority of which has focused on the proteins involved (22-31).  

Another area for consideration which appears to have been overlooked is the 

role of the biological membranes in mitophagy, more specifically the lipids these 

membranes are composed of. 

 
Figure 1:2- The process of mitophagy 
The Above schematic details all the various steps in the process of mitophagy as discussed in this 
chapter. It has been split into two sections: In the top section the processes and components that 
are specific to mitophagy are indicated; whilst the lower section details the processes and 
components that are shared between mitophagy and autophagy. It should be noted that whilst not 
shown here there is nothing to prevent mitochondria that have fused following fission being subject 
once again to further damage and fission events leading to mitophagy. In addition whilst PINK1 and 
PARKIN are shown as representatives of the mitophagy machinery, NIX, BNIP3 etc. are also 
involved. 

Further discussion about the specificity of the mitophagy machinery is detailed 

in later sections. However, before we delve more deeply into mitophagy, the 

association of mitophagy with mitochondrial dynamics and the role of mitophagy 
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in disease, the origins and functional role of the mitochondria  will be reviewed 

as this will have a bearing on our understanding of mitophagy.  

1.1.3 Mitochondrial Ancestry, its role within the cell and 
mitophagy 

About two billion years ago pre-eukaryotic cells did not contain mitochondria. 

Far back in the evolution of the first eukaryotic cell an aerobic eubacteria was 

engulfed by or infected an early eukaryotic cell. Rather than employing 

defensive strategies to remove the foreign pathogen a symbiotic relationship 

developed between the two cell types allowing each to effectively utilize the 

rising oxygen concentrations in the earth’s atmosphere, at the time, to generate 

energy. This gave these cells a selective advantage over other cell types lacking 

such a relationship, resulting in the evolution of the eukaryotic cell complete 

with mitochondria as we observe today (32). Mitochondria are efficient energy 

converters; they convert metabolic substrates into adenosine triphosphate 

(ATP), the energy molecule of the cell, through oxidation. This process is known 

as oxidative phosphorylation (OXPHOS) the basis for which, chemiosmotic 

theory, was described in 1961 earning its founder Peter Mitchel his Nobel Prize 

(33). However, much of the dogma that lead to development of this theory had 

been well established for some time due to the work of a large number of 

individuals including such as  Belitzer, Tsybakova, Ochoa, Harden, Lipmann, 

Friedkin and Lehninger (34-38) among others. Altogether these individuals, 

including Peter Mitchel, described how metabolites such as sugars, fats and 

amino acids could be broken down initially through glycolysis (a process localised 

in the cytosol) and then subsequently through TCA cycle (taking place within the 

mitochondria), with both process generating the required co-factor NADH which 

is essential for the final stage of metabolism OXPHOS where the transfer of 

electrons through four protein complexes, positioned in the inner mitochondrial 

membrane, could generate a proton gradient across that membrane which could 

be utilized by the fifth and final complex in the electron transport chain (ETC) 

to generate ATP.    

ATP is generated at only two stages of the metabolic pathway described above; 

firstly in glycolysis, and secondly and far more efficiently during OXPHOS. 

OXPHOS is the highest oxygen consuming process in a cell relying completely on 

http://en.wikipedia.org/wiki/Albert_L._Lehninger
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mitochondrial function and integrity and takes place entirely within the 

mitochondria. Five dedicated enzymes found on the inner mitochondrial 

membrane work together, Complex I (NADH dehydrogenase), Complex II 

(succinate dehydrogenase), Complex III (cytochrome C reductase) and Complex 

IV (Cytochrome C oxidase). NADH (produced during the TCA cycle) binds complex 

I where it donates two electrons which reduce the co-enzyme ubiquinone to 

ubiquinol. NAD+ is then released in conjunction with the export of four protons 

through complex I into the intermembrane space. Ubiquinone is a lipid soluble 

compound found within the inner mitochondrial membrane, it acts as an 

electron and proton acceptor working with complexes I, II and III to allow the 

flow of electrons between complexes as well as the movement of protons. In 

addition to its role in OXPHOS Complex II also functions within the TCA cycle. It 

catalyses the conversion of succinate to fumarate (during the TCA cycle) 

producing FADH. FADH is then the oxidized by complex II releasing electrons 

which are used to reduce another ubiquinone molecule, to ubiquinol, no protons 

are pumped to the intermembrane space by this complex. Complex III has the 

important role of transferring the electrons carried by ubiquionol molecules, 

generated by complexes I and II, to cytochrome C. Cytochrome C is a water 

soluble electron carrier protein; a heme group within the protein makes it an 

ideal for this task. It works with complex III and VI moving electrons between the 

two complexes allowing the energy transfer that will ultimately lead to protons 

being pumped out of the mitochondrial matrix. Cytochrome C can only take up 

one electron and ubiquinol carries two electrons thus, two molecules of 

cytochrome C are required for oxidation of one molecule of ubiqunol. As such 

complex III catalyses a two stage process which culminates in the transfer of two 

electrons from ubiquinol to two separate molecules of cytochrome C with the 

concomitant release of four protons to the intermembrane space. The reduced 

molecules of cytochrome C now move to complex IV of the chain for the final 

transfer of electrons to occur. Complex IV catalyses the transfer of electrons 

from cytochrome C to oxygen, this produces water and simultaneously allows the 

pumping of a further four protons to the intermembrane space. Oxygen is the 

final acceptor of electrons in OXPHOS and in addition to facilitating the pumping 

of protons to the intermembrane space by complex IV the reduction of oxygen at 

this stage further contributes to the proton gradient by the removal of protons 

from the matrix to form the water generated upon electron transfer to oxygen. 
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It is known that cardiolipin (CL, a mitochondrial membrane lipid discussed in 

section 1.3.1) is required for stability of the complexes and formation of 

supercomplexes (where the complexes of the ETC oligomerize increasing the 

efficiency of the OXPHOS), as well as the efficient function of cytochrome C (39-

43). It has also been suggested that CL acts as a proton trap during OXPHOS, 

shuttling protons between the ETC complexes (for review see(33)). 

The electrical energy is utilized to pump hydrogen ions out of the mitochondrial 

matrix and into the intermembrane space, converting the electrical energy to 

potential energy in the form of a proton gradient. This energy is utilized by the 

fifth and final complex in OXPHOS Complex V, ATP synthase. ATP synthase allows 

protons to flow through its Fo subunit back into the mitochondrial matrix. In 

doing so the Fo subunits rotates converting the potential energy of the proton 

gradient into kinetic energy. This rotation forces conformational changes upon 

the F1 subunit resulting in the conversion of ADP and Pi into ATP.  

Although mitochondria are very efficient at producing ATP they are not 100% 

effective and as with other energy converting process they generate by-

products, namely reactive oxygen species (ROS). ROS is the term given to a 

group of chemicals including super oxide, hydrogen peroxide and hydroxide. 

Mitochondria are the major source of ROS within a cell. They are generated as a 

result of premature termination of the ETC, i.e. in a small number of cases the 

transfer of electrons through the ETC to Complex IV is not completed and the 

electron is prematurely transferred to the awaiting oxygen molecule by a 

complex other than complex IV. This results in the production of superoxide. 

Under stable conditions this type of premature termination occurs for 0.1-2% of 

all electrons passing through the ETC. However, when mitochondria become 

damaged or the individual complexes fail to form supercomplexes with one 

another this percentage increases resulting in increased ROS levels. Under 

normal conditions the cell and indeed the mitochondria themselves have 

mechanisms for dealing with ROS and the damage they cause for example, ROS 

scavenging enzymes like SOD1/2 and cellular antioxidants such as glutathione 

(GSH). These mechanisms may be able to keep background levels of ROS at bay 

but when mitochondria become damaged and dysfunctional the levels of ROS can 

increase dramatically. These increased levels then exacerbate an already poor 
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situation causing further damage and potentially deleterious effects if allowed 

to remain which is when a mitophagic response may be necessary. 

Despite its now excessively long-standing association with eukaryotic cells the 

mitochondria still represents at the most innocuous levels a separate entity 

within the cell independent in its own genome; replication, transcription and 

translational machinery, allowing for the generation of the specialized proteins 

it requires for its function. At a more sinister level mitochondria are still 

invading pathogens, foreign bodies, and perhaps the cell recognises this at 

times, such as during mitophagy, and employs its innate immune defence system 

to deal with the invader. It is possible that what we observe as a quality control 

mechanism in general terms actually has its roots in a primordial immune 

response (autophagy) to an invading pathogen, albeit that this pathogen has 

remained hidden for some two billion years. With this in mind we should look at 

what remains of the mitochondria’s pathogenic past that may be under certain 

conditions still be recognised by the cell as an antigen of an invading pathogen 

facilitating its removal from the cell by autophagy, this may be the key to the 

specific nature of mitophagy.  

1.1.4 Mitochondrial Dynamics 

As previously mentioned all forms of mitophagy initially require fission along 

with mitochondrial depolarisation. Mitochondria most often exist in cells in long 

filamentous networks. Under certain conditions these filaments can either 

fragment, producing shorter rods or spheres, or they can elongate and branch, 

becoming more filamentous and interconnected in a mitochondria web. These 

changes in mitochondrial morphology are governed by two distinct groups of 

proteins; those involved in fragmentation, the fission proteins, and those 

involved in elongation and branching, the fusion proteins. The interplay between 

the processes of fission and fusion allows for the maintenance of mitochondrial 

morphology and the segregation of damaged and dysfunctional mitochondria 

through fission from the healthy mitochondrial filaments, allowing for removal 

by mitophagy (17, 30). 
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1.1.4.1 Fission 

Mitochondrial fission is mediated by dynamin related protein 1(DRP1) 

mitochondria fission protein 1 (FIS1), mitochondria fission factor (Mff) and 

contacts with the endoplasmic reticulum (ER) (44-50). All are found to interact 

with the mitochondria bringing about constriction of both inner and outer 

membranes allowing for the eventual division of the mitochondrial tubule. 

Activation of DRP1 is dependent upon its phosphorylation. DRP1 is cytosolic 

when phosphorylated, by protein kinase A (PKA), which prevents its 

translocation to the mitochondria and therefore prevents fission (51, 52). 

Activation of DRP1 requires its dephosphorylation by calcineurin, upon which 

DRP1 will translocate to the mitochondria where it is stabilised by SUMOyaltion 

(53, 54). Once there it is believed it works in conjunction with FIS1 and Mff to 

induce fragmentation of the mitochondrial network while concurrently 

accumulation of autophagosomes occurs (45). For fission to occur DRP1 must 

form a proteins helix around the mitochondrial tubule at the point at which 

fission will occur. However the average diameter of a mitochondrial filament is 

larger than the internal diameter of the DRP1 helix, i.e. mitochondrial tubules 

are too large for DRP1 to enclose, which left the question of how DRP1 was able 

to bind mitochondria. Recently it was discovered that mitochondrial contact 

with the ER induced mitochondrial tubule constriction, giving the mitochondria a 

smaller diameter around which the DRP1 helix could form (44).  

Mitochondrial/ER interactions are well documented, with extensive contact 

points dependent upon ER movement along acetylated microtubules,(47). These 

contact sites mark out areas of potential mitochondrial fission. In the majority 

of mitochondrial fission events ER contact with the mitochondria is observed, 

and the mitochondrial diameter was noted to be reduced. The ER network 

actually encircles or crosses the tubule were mitochondrial diameter is reduced, 

bringing about constriction by physically pinching or squeezing the mitochondrial 

tubule. DRP1 punctae were observed to co-localise to these sites of ER-driven 

mitochondrial constriction, suggesting that the ER causes the constriction of 

mitochondrial tubules allowing the formation of the DRP1 helix required for 

fission to occur (44).  
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1.1.4.2 Fusion 

Fusion is the process by which mitochondria join together and branch forming 

long interconnected filamentous networks. As with fission, fusion has its own 

dedicated protein machinery: Optic atrophy protein 1 (OPA1 or Mgm1 in yeast) 

on the inner membrane and mitofusin 1 and 2 (MFN1 and MFN2, Fzo1 in yeast) on 

the outer mitochondrial membrane (55-60). OPA1/Mgm1 also has a role in 

mitochondrial cristae remodelling and inner membrane tethering (61, 62). The 

function of these fusion proteins appears in some cases to require mitochondrial 

specific lipids, CL and mitochondrial phosphatidylethanolamine (mPE).  

OPA1/Mgm1 requires interaction with CL and mPE for its function in 

mitochondrial fusion and cristae maintenance and re-modelling (39, 63, 64). Loss 

of mPE and CL results in increased mitochondrial fragmentation and reduced 

levels of the fusion protein Mgm1p/OPA1 (39). In yeast there are two isoforms of 

Mgm1, l-Mgm1p and s-Mgm1p, which both require CL to assemble into the fully 

functional Mgm1 protein (64). The S-Mgm1p isoform associates with CL in the 

inner membrane activating its GTPase domain. The l-Mgm1p also preferentially 

binds CL, but in contrast does not possess any GTPase activity and it is therefore 

likely the membrane anchor of the Mgm1p complex (64). The two isoforms can 

interact with one another within the same inner mitochondrial membrane, 

mediating cristae structure or bridging the gap between two adjacent inner 

membranes and thus facilitating the inner membrane fusion between two 

mitochondria (62). The same is also true for the mammalian form of Mgm1, 

OPA1, which requires binding to CL in the inner mitochondrial membrane to 

allow activation of its GTPase domain and the formation of OPA1 oligomers (63). 

mPE can compensate for loss of CL although not with the same degree of 

efficacy and loss of both CL and mPE prevents mitochondrial fusion in yeast 

(39).Both CL and mPE are predominantly synthesised and localised in the inner 

membrane. Loss of both lipids (as observed in Barth’s syndrome (65)) affects the 

assembly and function of the Mgm1 protein.  

Fusion followed by fission segregates dysfunctional mitochondria for degradation 

by mitophagy (21). Fission generates two daughter mitochondria, usually one of 

is depolarised whilst the other will be hyperpolarised, due to the segregation of 

dysfunctional components into one daughter and functional components into the 
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other respectively, this results in the formation of two mitochondria one healthy 

and hyperpolarised and one dysfunctional and depolarised. The hyperpolarized 

daughter mitochondria will inevitably re-fuse with other mitochondria within the 

mitochondrial network, whilst the depolarised mitochondria will not (Figure 

1:2). Following fission and depolarisation OPA1 and MFN levels are reduced 

which prevents re-fusion of the damaged mitochondria with the remaining 

healthy network and allows degradation of the isolated damaged mitochondria 

through mitophagy (21, 66). High levels of fusion proteins reduced mitophagy by 

64%, suggesting fusion prevents mitophagy while fission promotes it (21). 

Mitochondrial fission and depolarisation are the first steps in the mitophagy 

process, following which mitophagy specific proteins are recruited or stabilised 

on the mitochondria to ensure mitochondrial recruitment of the autophagosome. 

Which mitophagy proteins are involved seems to depend on the mitophagic 

stimulus.   

1.1.5 The Mitophagic Machinery 

Mitophagy like autophagy has several different roles: tissue specific removal of 

mitochondria, for functional reasons in the tissue concerned; Quality control, 

removal of old worn out dysfunctional organelles; or finally extensive damage 

control or response to stress; where stressors cause extensive damage to the 

mitochondrial network or invoke an environmental change whereby maintenance 

of mitochondrial presence is toxic to the cell. Each ‘type’ of mitophagy involves 

specific “mitophagy proteins” that regulate mitochondrial sequestration to the 

autophagosome. In the following section we will discuss the various forms of 

mitophagy and the key regulatory proteins than control the process.  

1.1.5.1 PINK1 and PARKIN; the principal characters of mitophagy 

PINK1 and PARKIN are two proteins whose role in targeting depolarised 

mitochondria for mitophagy appears key in almost all cases. They were first 

brought to the attention of researchers due to their role in neurodegenerative 

disease (section 1.4.2). PINK1 (PTEN-Induced Kinase 1) encodes a mitochondrial 

located Ser/Thr kinase and PARKIN encodes an E3 ubiquitin ligase. The evidence 

suggests that PINK1 acts upstream of PARKIN, since loss of PINK1 results in 

failure of PARKIN to translocate to the mitochondria following depolarisation 
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(22-24, 27-29). PINK1 is continually cleaved to its inactive form in healthy 

polarized mitochondria. Upon mitochondrial depolarisation this is prevented and 

PINK1 remains active linking its activity to mitophagy post depolarisation (24, 

28). Once PINK1 is stabilised on the mitochondrial surface it recruits and 

activates PARKIN by phosphorylation of ser65 of PARKIN (27, 67, 68).   

It has been noted that whilst PARKIN is initially cytosolic PINK1 resides on the 

mitochondria. How PINK1 brings about PARKIN phosphorylation and indeed its 

translocation to the mitochondria is a subject of much debate. It has been 

suggested that PINK1 may indirectly activate PARKIN by activation of an as yet 

unidentified cytosolic kinase which in turn activates PARKIN. Alternatively, 

PARKIN could be directly activated by PINK1 at the mitochondrial surface. 

However recent evidence suggests that PINK1 mediated phosphorylation of Mfn2 

prior to mitophagy may act as the recruitment signal and in addition inhibit 

fusion which is important in preventing re-fusion of damaged mitochondria into 

the healthy network (66).  

Earlier work demonstrated how overexpression of fission proteins were able to 

rescue mitochondrial morphology defects observed in PINK1/PARKIN mutants 

implicating PINK1 and PARKIN in mitochondrial fission directly (69, 70). 

However, it was recognised that this could also result from failure to supress 

fusion (69, 70). In Drosophila PINK1 and PARKIN were shown to act in synergy to 

promote mitochondrial fission by inhibition of mitochondrial fusion through 

selective proteasomal degradation of fusion machinery, thus tipping the balance 

in favour of fission and thereby enforcing segregation of damaged/dysfunctional 

mitochondria (66, 69-71). 

Following recruitment to the mitochondria PARKIN is in range to be acted upon 

directly by PINK1; phosphorylating and activating PARKIN as suggested previously 

(68). Mfn2 is not the only possible method for PARKIN recruitment to the 

mitochondria other mechanisms have also been suggested; PINK1 

phosphorylation of MIRO (a component of the motor/adaptor complex that links 

mitochondria to kinesin), VDAC1 and Mfn1 have all been observed to recruit 

PARKIN to the mitochondrial surface (27, 71, 72).  
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Once activated PARKIN adds poly-ubiquitin chains to various substrates upon the 

mitochondrial surface, priming the mitochondria for degradation through the 

autophagic pathway. The poly-ubiquitin chains are associated with lysosomal and 

autophagic degradation through the proteins p62 and NBR1. p62 connects the 

ubiquitin system to autophagic machinery (27). It acts as an adaptor protein in 

PARKIN mediated mitophagy, binding the PARKIN added ubiquitin chains through 

its UBA domain and recruits the autophagosome through its LIR domain by 

binding LC3 (7). In addition to p62 a second adaptor protein NBR1 has a similar 

role. NBR1 has been seen to associate and co-localise with p62 and together 

both are observed to interact with GABARAP (a protein found to be associated 

with the autophagosome) and LC3 (7, 73, 74). p62 and NBR1 may bind one 

another by virtue of their respective PB1 domains, however neither one alone is 

essential for mitophagy suggesting a degree of redundancy or tissue specificity 

between the pairing (7, 75).  

The PB1 domain of p62 and NBR1 not only allow these proteins to bind each 

other but also for p62 to bind other p62 proteins and the same for NBR1. This 

ability to from oligomers causes the formation of mitochondrial aggregates. The 

formation of aggregates appears to strengthen the segregation effect of 

damaged mitochondria from the remaining network which is in the first instance 

initialised by fission from the network. It is also of interest that this clustering is 

reminiscent of the aggregates of cellular components observed in 

neurodegenerative diseases like Parkinson’s disease (PD). These aggregates are 

not thought to be the cause of such diseases but merely the cells protective 

response, and the role of p62/NBR1 appears to be the generation of aggregates 

in order that they are effectively quarantined and removed from the cell,(76). 

Along with aggregate formation p62 also causes perinuclear localisation of 

mitochondria prior to mitophagy further quarantining damaged mitochondria 

from the rest of the healthy network (76). p62 depletion fails to bring about 

perinuclear localisation but does not inhibit mitophagy; in-fact depletion 

accelerates mitophagy indicating perinuclear localisation is not essential for 

degradation of mitochondria by mitophagy. Perhaps the maintenance of 

mitophagy and its accelerated rate in p62 depleted conditions results from 

NBR1, or the recently discovered role of HDAC6 in mediating the interaction of 

the autophagic machinery with the damaged mitochondria (76-78). However, 
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although p62 is required for mitochondrial movement to the perinuclear region it 

is believed that PARKIN, and not p62 is responsible mediating that movement, 

using dynein motors to bring about movement along microtubules (76). This 

movement is retrograde, moving the mitochondria to the perinuclear region, 

mitochondria are also capable of anterograde movement using kinesin motors on 

the microtubules however this is prevented through proteasomal degradation of 

the mitochondrial component of the motor adaptor complex MIRO as already 

mentioned (72). This Suggests PARKIN induces retrograde movement of 

mitochondrial aggregates to the perinuclear region by preventing anterograde 

movement, tipping the balance in favour of retrograde movement. The function 

of p62, HDAC6 and NBR1 is simply to form the aggregates and possibly facilitate 

interaction with dynein motors allowing for movement and accumulation of 

damaged mitochondria in one region of the cell. HDAC6 has a further mitophagy 

relevant function, it is able to activate the cortactin actin remodelling 

machinery which promotes the formation of autophagosomes and lysosomes (77, 

78). Therefore HDAC6 may also instigate the formation of the autophagosome 

around the damaged mitochondrial aggregates to which it is bound. 

As mentioned initially PINK1 and PARKIN appear to play roles in almost all forms 

of mitophagy, i.e. they are the key components of the mitophagic machinery. 

However others appear to be more specific in terms of the type of mitophagy 

they help regulate. Below we will discuss some more specific mitophagic stimuli 

and how other mitophagic proteins regulate mitophagy, often in conjunction 

with PINK1 and PARKIN. 

1.1.5.2 Mitochondrial clearance in reticulocytes; a tissue specific form of 
mitophagy 

Mature erythrocytes do not contain mitochondria. As mitochondria are oxygen 

consumers if not removed mitochondria would consume the oxygen carried by 

the erythrocyte before it could be distributed through the body. In addition as 

erythrocytes are continually taking up and releasing oxygen, the cellular 

environment is highly oxidative. In such highly oxidative conditions mitochondria 

(and other organelles) would be continually damaged and this may induce an 

apoptotic response. Therefore in order that erythrocytes may function correctly 
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and avoid pre-mature cell death removal of mitochondria, (and other cellular 

components) is a vital stage in erythrocyte maturation.  

Reticulocytes are the developmental precursors to erythrocytes. During 

reticulocyte maturation into erythrocytes mitochondria are completely removed 

from the cell via a tissue specific form of mitophagy. NIX has been identified by 

several groups as the key protein responsible for reticulocyte specific mitophagy 

(11-13).  Although other organelles are also removed during maturation NIX was 

only seen to affect mitochondrial removal. Loss of NIX results in shorter lifespan 

of red blood cells (RBCs), increased apoptosis and increased levels of ROS (12). 

Mitochondrial membrane potential is maintained when NIX is absent, although 

the accumulation of autophagosomes is increased (12). This suggests that NIX has 

a role in induction of mitochondrial depolarisation and facilitating mitochondrial 

engulfment by the autophagosome. Indeed direct interaction of NIX with LC3 and 

the GABARAP proteins of the autophagosomal membrane suggest an adaptor 

protein like role for NIX in autophagosome recruitment to the intended 

mitochondrial cargo (11). NIX may also regulate induction of the autophagic 

machinery through its role in increasing ROS levels in cells dramatically prior to 

mitophagy. This increase inhibits the suppressive action of mTOR upon the 

autophagy pathway allowing for the activation of the autophagic machinery (16). 

The function of NIX in reticulocyte maturation is a highly specific form of 

mitophagy unique to the developing red blood cell. However this does not 

preclude NIX from roles in other less specific forms of mitophagy, indeed it has 

been observed to work in tandem with PINK1/ PARKIN (16). NIX expression is also 

induced under hypoxic conditions and therefore may have a role in hypoxia 

driven mitophagy, in conjunction with or instead of BNIP3 (see below) (79). 

1.1.5.3 BNIP3 and Hypoxia; a mitophagic response to toxicity 

Hypoxia describes an environmental state where there is a deficiency in the 

amount of oxygen reaching a tissue below normal physiological levels. Such an 

environment is often observed in cancer where the centre of a solid tumour is 

hypoxic due to lack of access to a reliable blood supply. This causes low oxygen 

and nutrient delivery to the centre of the mass. The role of mitophagy in such an 
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environment will be discussed in greater detail in section 1.4.1. Here we will 

focus upon the regulation of mitophagy in such an environment. 

When oxygen is limited the removal of mitochondria is critical to prevent ROS 

formation and DNA damage. Removal of mitochondria under hypoxia relies on 

the action of BNIP3. BNIP3 (Bcl2/adenovirus E1B 19kDa-interacting protein 3), is 

known to be involved in mitochondrial mediated cell death and autophagy. Its 

expression is induced by hypoxia inducible factor 1α (HIF1α) and repressed by 

retinoblastoma protein (Rb) (13-15, 79, 80).  

Overexpression of BNIP3 leads to loss of mitochondrial membrane potential, as 

well as inducing the formation of the autophagosome. BNIP3 targets the 

complexes of the ETC for degradation by mitochondrial proteasomes impairing 

mitochondrial function and reducing membrane potential which, as a result 

triggers mitophagy (81). It also, like NIX, shows co-localisation with LC3 

indicating it may act as a receptor on the mitochondria for the autophagosome 

(13, 14, 79). As a consequence of this it reduces ROS levels mitigating some of 

the damaging effects of hypoxia, preventing mitochondrial mediated apoptosis 

thereby promoting cell survival in a hypoxic environment. However prolonged 

BNIP3 expression can result in necrotic cell death and as such is only a 

temporary measure for dealing with a hypoxic environment (14, 19). 

1.1.5.4 Energetic stress as an inducer of mitophagy 

Hypoxia and the developmental signals observed in reticulocyte maturation are 

highly specific events relevant to only a few tissue types. However energetic 

stress can occur in all tissue types and cells. Energetic stress can be separated 

into two types: stress resulting from low nutrient levels in the cell, meaning 

fewer nutrients are available for conversion to ATP; or stress resulting from 

mitochondrial dysfunction; where despite plentiful nutrients the mitochondria is 

incapable of generating enough ATP for cellular function. 

In the case of nutrient starvation, mitophagy appears to be abrogated. Under 

starvation induced autophagy mitochondria avoid degradation by elongation 

which prevents engulfment by the autophagosome (6, 82). As cAMP levels are 

increased during nutrient starvation Protein kinase A is activated which in turn 
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phosphorylates DRP1, thereby preventing its translocation to the mitochondria 

and effectively preventing mitochondrial fission. This is essentially the reverse 

of what is observed upon PINK1 and PARKIN activation (66). This ensures that 

mitochondria remain large and tubular, and elongate due to the unbalanced and 

unchecked function of the fusion proteins. The large size of the mitochondria 

renders them too big to be engulfed by the autophagosome.  

This response to starvation ensures that the mitochondria remain and are thus 

capable of utilizing the fruits of autophagy for energy production. Failure to 

prevent mitochondrial fission upon starvation results in increased ATP 

consumption by the mitochondria as the ATPase works in reverse, resulting in 

apoptotic cell death and mitochondrial removal by mitophagy (6). If this 

occurred the autophagic breakdown of cellular components to provide fuel to 

cells in times of nutrient starvation would be pointless as there would be little 

or no mitochondria present to convert the autophagy derived nutrients into ATP. 

Therefore mitophagy is abrogated in times of nutrient starvation induced 

energetic stress. However the reverse is true when mitochondrial dysfunction is 

the cause of energetic stress.  

The energetic status of a cell is directly related to the health and efficiency of 

mitochondria. Therefore it is no surprise that the energetic status of a cell can 

regulate mitophagy. The role of mitochondria in the cell is to make ATP 

(energy), if they fail to do this effectively, or start to generate too high a level 

of ROS then it is likely that they are malfunctioning and as such removal by 

mitophagy is desirable. The rate of OXPHOS is often increased under energetic 

stress to compensate for reduced ATP levels; this inevitably exacerbates an 

already bad situation increasing mitochondrial damage and dysfunction through 

increased ROS levels. Evidence suggests that PINK1 and PARKIN have a role in the 

response to energetic stress by promoting the turnover of respiratory chain 

complexes, (83). This turnover of respiratory complexes will in the first instance 

reduces OXPHOS activity as complex number is reduced which marks the 

mitochondria as dysfunctional due to the reduced level of ATP they generate. 

This will up-regulate the mitophagic response to remove the now inefficient 

mitochondria, and in the second instance will stimulate the biosynthesis of 

replacement complexes which will be much more efficient and relieve the 

energetic stress (83). Whilst the PINK1 and PARKIN pathway is known to promote 



34 
 

 Laura Catherine Avril Galbraith 

mitophagy, it is not through mitophagy that it mediates the turnover of the 

respiratory complex proteins. Perhaps turn over occurs through PINK1/PARKIN 

mediated proteasome degradation of the affected complexes, or (to be 

discussed in more detail later) through formation of mitochondrial derived 

vesicles which transport affected complexes directly to the lysosome for 

degradation (84). Neither has been ruled out currently, and both degradative 

pathways have been observed in other settings to degrade components of 

mitochondria either prior to or as an alternative to all out mitophagy. However 

for PINK1 and PARKIN to function in this manner firstly requires mitochondrial 

depolarisation to allow stabilisation of PINK1 upon the mitochondria (67). This 

appears in this context to be instigated by the action of NIX and a small 

farnysalated GTPase Rheb.  

Both NIX and Rheb expression are increased under energetic stress and Rheb is 

observed to be recruited to the outer mitochondrial membrane where it recruits 

and forms a complex with NIX (85).  NIX has the ability to induce mitochondrial 

depolarisation and this may lead to the stabilisation of PINK1 mentioned above. 

In addition this complex interacts with LC3 recruiting the autophagosome to the 

mitochondria allowing mitophagy to proceed. Mitophagy of this sort is also 

observed to induce biogenesis and as such Rheb mediated mitophagy not only 

removes the offending damaged and dysfunctional mitochondria but also 

stimulates biogenesis supplying the cell with new healthy mitochondria thereby 

alleviating the energetic stress (85).  

However whilst Rheb and Nix appear to regulate the mitophagic machinery, no 

role for Rheb was observed in activating the autophagic machinery as observed 

by its inability to inhibit mTOR. To understand this phase of the mitophagic 

response to energetic stress we must look back to the master regulators of 

autophagy (Figure 1:1). Under energetic stress, ATP levels are reduced as 

mentioned above, but also AMP levels are increased. This activates AMP- 

activated protein kinase (AMPK) a known suppressor of mTOR. AMPK also 

activates two initiating members of the autophagic machinery ULK1 and ULK2. 

ULK1 and ULK 2 have four AMPK phosphorylation sites, serving to activate these 

proteins upon phosphorylation (9). Once activated, and unsuppressed, ULK1 and 

2 can stimulate the autophagic machinery and the development of the 
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autophagosome, which is required for the mitophagic response initiated by Rheb 

and NIX.  

All of the different mitophagic responses, stimuli and machinery described in the 

section above, (1.3.5) describe how the mitochondria is primed for recognition 

by the autophagosome allowing for its degradation. It has focussed on the 

mitochondrial end of mitophagy and the proteins involved. However mitophagy 

also involves the autophagic machinery and it has been suggested that the site of 

formation for the autophagic membrane may relate to the type of cargo it will 

eventually degrade. For this reason it is also important to consider the formation 

of the autophagosomal membrane as a potential marker of the specificity of 

mitophagy. 

1.1.6 The role of lipids and membranes in mitophagy and 
autophagy 

The role of biological membranes and the lipids they are composed of has 

warranted little research in the field of mitophagy, with most of the limited 

investigations focusing on the source of the autophagosomal membrane rather 

than roles of the mitochondrial membrane and mitochondrial lipids in 

mitophagy. However it has been suggested that the origin of the autophagosomal 

membrane may have a bearing on the specificity of the autophagosome for a 

particular cargo,(86). The role of mitochondrial lipids in mitochondrial dynamics; 

for example, Phosphatidyllinositol (4, 5) bisphosphate (PI (4, 5) P2) and CL in 

mitochondrial fusion, may also have an effect on mitophagy initiation. The 

effect of lipids in the formation of the autophagosomal membrane and in 

mitochondrial membrane dynamics may be crucial to the initiation and 

progression of mitophagy. 

The mitochondrial lipid PI (4, 5) P2 has been observed to play a role in 

mitochondrial fragmentation (87). Reducing the levels of PI (4, 5) P2 on the OMM 

increased mitochondrial fragmentation. The entire mitochondria network was 

found to be fragmented after 24 hours and following 48 hours only a few 

mitochondria remain in the cell. Confocal microscopy identified co-localisation 

of lysosomes with the fragmented mitochondria suggesting mitochondrial 

removal by autophagy/mitophagy (87). The downstream effector of PI (4, 5) P2 
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was identified as protein kinase Cα (PKCα, a mitochondrial isoform of PKC). 

Reduced levels of PI (4, 5) P2 reduced the activity of PKCα resulting in 

mitochondrial fragmentation (due to disrupted fusion) and mitophagy. The role 

of PKCα has yet to be identified although it is thought that the presence of PKC 

phosphorylated proteins on the mitochondria may be crucial for mitochondrial 

integrity, perhaps in a similar way to PINK1 function. This gives lipids a 

functional role in mitophagy.  

CL is also implicated in mitochondrial dynamics (39, 63, 64). Found almost 

exclusively on the mitochondrial membrane, it affects the structure of the outer 

mitochondrial membrane (OMM) and inner mitochondrial membrane (IMM) during 

various processes. Upon mitochondrial fusion, CL synthesis is severely down 

regulated for 12 hours as a result of reduced phosphatidylglycerophosphate 

synthase (PGPS) activity, after which synthesis is significantly up-regulated along 

with PGPS and TAZ activity (discussed later) (88). There is no indication of the 

functional relevance of these changes in CL synthesis, yet since CL is a specific 

mitochondrial lipid such marked changes in its abundance may have functional 

implications for mitochondrial dynamics and mitophagy. 

In addition to the effects lipids have on mitochondrial dynamics and mitophagy, 

they also have an important role in forming the autophagosomal membrane 

required for degradation of mitochondria through mitophagy. Much controversy 

surrounds the question of where the autophagosomal membrane originates. The 

absence of any organelle specific proteins on the autophagosomal membrane 

suggests the membrane could originate from any single or a combination of all 

organelles within the cell (89). Three potential candidates for membrane 

donation exist, the mitochondria, the Golgi apparatus and the ER, which have 

membranes of the same thickness, 6-7nm thick, as an autophagosome. In 

contrast the plasma membrane is 9-10nm  thick, making an unlikely; though not 

impossible, source for the autophagosomal membrane (90). 

Mitochondria are sites of phosphatidylethanolamine (PE) synthesis (reviewed, 

(91)); PE is essential in autophagosomal membranes for the binding of LC3 (92), 

making mitochondria a potential source of this lipid for the autophagosome. 

Under starvation conditions, transfer of lipids between the mitochondrial 
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membrane and autophagosome have been observed (93). The transfer of 

fluorescently tagged phosphatidlyserine (PS) was traced from the ER to the 

mitochondria and then on to form the autophagosomal membrane. Blocking the 

transfer of PS from the ER resulted in failure to form autophagosomes. Further 

to this, and in contrast to the findings of other, Hailey et al 2010 showed co-

localisation of OMM markers with autophagosomes were observed whilst other 

organelle markers failed to co-localise. It is noted that this process could be 

confused with mitophagy, however no IMM or mitochondrial matrix markers were 

found to co-localise with the emerging membrane suggesting engulfment by the 

emerging membrane is not occurring. Electron microscopy (EM) and 

photobleaching studies support the theory of membrane biogenesis from the 

mitochondria demonstrating evidence of membrane sharing. However this 

sharing was limited which was suggested to indicate that this was a transient 

phase in the process, perhaps early on in autophagosomal development. In this 

case it may be that other organelles are involved in the later stages of the 

membrane maturation. 

Two elegant studies show evidence that the Golgi and trans-golgi network are 

involved in provision of lipids for the autophagosomal membrane, both 

implicating secretory proteins localised to the golgi (94, 95). Loss of function of 

secretory protein Sec2, under starvation conditions results in decreased 

autophagy and reduced numbers of autophagic punctae and reduced recruitment 

of atg9 to the phagophore assembly site (PAS) (94). Furthermore protein 

secretion from the golgi is reduced under nutrient starvation; perhaps due to the 

hijacking of the golgi network to derive autophagic membranes. A second 

secretory protein Sec7 has also been implicated along with its downstream 

effector Arf. It is localised to the trans-golgi compartments and remains there 

upon autophagic induction (95). Its role is in membrane sorting and thus it is 

logical that it could play a similar function in autophagic membrane production. 

Blockage of Sec7 activity results in reduced Arf activity and reduced prevalence 

of autophagic punctae. The PAS still forms as normal but immunoelectron 

microscopy shows it fails to expand and mature, suggesting a later stage role of 

sec7 in autophagosome development. In conjunction with this the Ypt31/32 

proteins (required for vesicle exit from the golgi) have been seen to play a role 

(94). Disruption of Ypt31/32 activity once again reduces the numbers of 
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autophagic punctae observed, suggesting the exiting vesicles may provide or 

carry lipids required for membrane development.  

As mentioned above it may be that the stimulus or type of autophagy determines 

the origin of the autophagic membrane. Recently the autophagic response to 

unfolded protein was investigated (86). Following the ER response to unfolded 

proteins the abundance of autophagosomes increased. These autophagosomes 

were often observed to be directly connected with the ER. The outer 

membranes were densely covered in ribosomes and usually contained ER 

contents. This was not observed as during autophagic response to starvation only 

in the context of unfolded proteins. These observation could be considered ER-

phagy (specific degradation of the ER by the autophagosome), and indeed the 

authors do state that the role of these autophagic punctae to sequester excess 

ER and unfolded protein and eventually degrade them. Direct connections 

between the ER and autophagosomes, as well as the presence of ribosomes 

suggest perhaps this is not straightforward ER-phagy. In support of this 3D EM 

tomography under starvation conditions showed the ER and emerging autophagic 

punctae side by side with connections between the two membranes visible (96, 

97). Contacts at multiple sites, not just at the open edges of the emerging 

autophagic punctae (where it might be supposed ER-phagy would progress from), 

indicate that the ER is contributing to the lipid membrane of the autophagic 

punctae rather than being engulfed by it(96). These contacts were observed not 

only with the outer leaflet of the autophagic punctae membrane but also the 

inner leaflet (96, 97). The ER forms a cradle like structure surrounding the 

emerging autophagic punctae, with a membrane extension visible emerging from 

the autophagic punctae into the ER (97) perhaps acting like a supply chain to 

transfer lipids for the developing membrane from the ER.  

Whilst the evidence for any of these organelles being the site of autophagosomal 

membrane generation is compelling the following should be considered.  In all 

but a few cases described here the inducing signal for autophagosome 

development is starvation. Whilst this is a well-recognised inducer it is not the 

only stimulus for autophagy, hypoxia, oxidative stress and mechanical stress 

among others also induce autophagy. The source of the autophagic membrane 

may differ depending on the initiating stimulus. It should also be noted that the 

intended cargo may influence the origin of the autophagic membrane. Bernales 
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et al 2006 hinted in their study at this, observing ER-derived autophagic 

membrane development, which then proceeded into ER-phagy which failed to 

occur under starvation induced macroautophagy (86). However, Hailey et al 

show that although the mitochondrion donates membrane under starvation that 

the donating mitochondria is not then degraded (93).  

The most obvious source of membrane however is the golgi network. Its role in 

the cell is to secrete protein and lipid for use elsewhere inside and outside the 

cell. As discussed above the golgi network has been implicated in lipid supply, 

via the secretory proteins, but there is no evidence of direct membrane sharing, 

no contact sites have been observed as seen for the ER and mitochondria. 

Perhaps the golgi does not require direct contact donating lipids via vesicles that 

bud off from the golgi and fuse at the PAS to form the autophagosome. 

 One point that is hinted at in various articles is that in actuality the membrane 

may be derived from multiple organelles. The data regarding each organelle is 

compelling, so perhaps each organelle under different stress conditions or at 

different stages of autophagosome development donates membrane. Hailey et al 

showed the transfer of the lipid PS from the ER to the mitochondria and then 

onto the autophagosome (93). Evidence of the mitochondria’s involvement in 

autophagosome development it is compelling, however it also indicates 

involvement of the ER, as blocking PS transport from the ER blocked 

autophagosome development implicating both organelles in autophagosome 

formation whilst suggesting lipid sharing between the ER and mitochondria is 

necessary also. Indeed recent evidence highlights the role of mitochondria 

associated ER membrane (MAM’s), ER mitochondria contact sites that occur 

within cells (98). Under starvation Atg14 and ATG5 two proteins required for 

autophagosome formation are observed to be recruited to MAM sites followed by 

autophagosome formation, with the ER snare protein syntaxin 17 being 

instrumental in the recruitment of ATG14. Upon disruption of MAM sites by 

knockdown of both Mfn2 and PACS-2 (genes required for maintenance of MAM’s) 

autophagosome formation was observed to be significantly reduced (98). Perhaps 

further investigation of lipid trafficking and organelle membrane sharing or 

contact sites may reveal further co-operative relationships between the 

organelles which enable the formation of the autophagosome under various 

different autophagic stimuli. It has been suggested  that the golgi in its role as 
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protein and lipid distributor for the cell may affect how membranes are donated 

from other organelles as they are dependent on the lipids they receive from the 

golgi (95).  

Overall it seems apparent that there is still much to be resolved in relation to 

the role of lipids in mitophagy and the development of the autophagosomal 

membrane. Further information on the origins of the autophagosome may prove 

invaluable if we can isolate one form of autophagy form another (i.e. mitophagy 

from ER-phagy) based on membrane donation sites and perhaps inhibit or 

promote one form of autophagy over another. 

1.1.7 The Lysosome and Digestion 

The formation of the autophagosome and its engulfment of mitochondria does 

not represent the end of the mitophagy process. Breakdown of the mitochondria 

into its constituent parts requires fusion of the autophagosome with the 

lysosome, thereby forming the autolysosome, which contains various lysosomal 

enzymes capable of degrading the mitochondrial content Figure 1:1. 

The Lysosome is an acidic vesicle that is crucial to the final stage of mitophagy it 

contains a variety of degradative enzymes; glycosidases, lysosomal proteases and 

sulfatases. Which are all involved in the degradation of autolysome content. It 

has recently been shown that direct lysosomal digestion of mitochondrial 

components can occur without the requirement of the intermediary 

autophagosome (84).  

Mitochondrial derived vesicles (MDV’s) represent a mitophagy and autophagy 

independent method of mitochondrial quality control. MDV’s form upon 

oxidative stress when damaged elements (protein and lipid) of the mitochondria 

bud off from the main mitochondrial body and are transported directly to the 

lysosome for degradation. This process requires neither mitochondrial 

depolarisation or the involvement of LC3 and the autophagosome, (84). The 

budding of damaged components precedes any greater mitophagy response and 

is not brought on by mitochondrial fission and fragmentation, suggesting perhaps 

a first line of defences against oxidative stress. It may also be a useful ‘back-up’ 
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strategy for removal of damaged mitochondria and mitochondrial components 

under conditions where mitophagy and autophagy are dysfunctional.  

The fusion of the mitochondria containing autophagosome with the lysosome 

marks the final stage in the degradative process, with the lysosomal enzymes 

breaking down the contained mitochondria and re-cycling its basic constituents. 

With an understanding of the process, signals, proteins and lipids that govern 

mitophagy, and an insight into its function at the rudimentary level (as detailed 

in the above sections), we can explore some of the roles mitophagy has in 

various diseases, including its role in cancer and how it may represent a 

potential target for cancer therapeutics and treatment in other forms of disease. 

1.1.8  The use of dyes and probes to monitoring mitophagy 

Three organelles are involved in the mitophagic process: the mitochondria, the 

autophagosome and the lysosome. Fluorescently labelling these organelles 

allows the monitoring of various aspects of mitophagy. Currently there are a 

variety of commercially available dyes and probes available for live cell imaging, 

and these can prove very useful when undertaking studies into mitophagy. 

However, caution should always be used when interpreting the results they 

generate due to uncertainties regarding the specificity, mechanism of action and 

mis-localization of the dyes upon treatment with mitophagy inducing agents like 

CCCP.  

To label mitochondria the mitotracker dyes are routinely used. These dyes are 

marketed by Invitrogen life technologies and include: Mitotracker FM, 

Mitotracker CMTMRos and Mitotracker CM-H2-TMRos probes in various colours. 

The ‘FM’ dyes are for use in live cells only whilst the ‘CMTMRos’ and ‘CM-H2-

TMRos’ are also marketed for use in fixed cell imaging (99, 100).  

The ‘CMTMRos’ probes are cationic and continually fluorescent whilst ‘CM-H2-

TMRos’probes are only fluorescent upon oxidation. Both dyes depend on an 

intact mitochondrial membrane potential for their specificity. They are 

supposedly retained within the mitochondria through interaction of their 

chloromethyl group with thiol groups within the mitochondria. Despite this upon 
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mitochondrial depolarisation specific mitochondrial localized fluorescence from 

these dyes is lost (99). 

The ‘FM’ dyes are specifically for live cell imaging only. As with the ‘CMTMRos’ 

and ‘CM-H2-TMRos’ dyes the ‘FM’ dyes segregate to the mitochondria based upon 

the membrane potential of the mitochondria and their cationic nature, despite 

initial claims by the manufacture that these dyes segregated independently of 

mitochondrial membrane potential (100). The fluorescence intensity of the 

mitotracker green FM probe was observed to increase upon loss of mitochondrial 

membrane potential, however upon investigation of the localization of the probe 

following mitochondrial depolarization it was seen to be non-specific and 

certainly not retained within the mitochondria again contradicting the 

manufactures claims and that of one other group (50, 100). It appears likely that 

all the mitotracker probes are dependent (perhaps to varying degrees) upon 

mitochondrial membrane potential.  

Thus, whilst the mitotrackers make excellent tools for the study of functional 

(polarized) mitochondria, they are rendered uninformative upon mitochondrial 

depolarization. As one of the key steps in mitophagy prior to engulfment by the 

autophagosome is the loss of mitochondrial membrane potential, these dyes and 

probes do not represent a reliable tool for labeling mitochondria to enable 

tracking them through the mitophagy process. An alternative to use of dyes or 

probes could be to fix and permeabilize cells and stain with mitochondria 

specific antibodies. This will not perhaps give indication of functional status of 

the mitochondria or allow monitoring of dynamic mitochondrial processes like 

mitochondrial movement, mitochondrial fission and fusion, but it will allow for 

identification of mitochondria regardless of the polarity of the mitochondria. 

Alternatively for live cell imaging perhaps introduction and stable expression of 

a fluorescently labelled protein specific for the mitochondria e.g. the 

mitochondrial targeting sequence of cytochrome C, which is not dependent upon 

membrane potential could allow for monitoring mitochondria in live cells 

regardless of their membrane potential.  

The dependency of the mitotrackers on mitochondrial membrane potential 

makes them of little use when labelling depolarized mitochondria; it does make 

them useful for monitoring mitochondrial depolarization. The mitotrackers along 
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with the classically used tetramethylrhodamine ethyl ester (TMRE) can be used 

to monitor mitochondrial membrane potential (56). These dyes are rapidly and 

selectively taken up by live cells and sequestered to polarised mitochondria 

where they fluoresce. Upon the mitochondrial depolarisation both dyes lose 

their mitochondrial localisation, and TMRE ceases to fluoresce. Therefore 

mitochondrial membrane potential can be assessed either through localisation of 

the mitotracker dye and, in the case of TMRE, can be quantified by measuring 

the fluorescence intensity. As mentioned above mitochondrial depolarisation is a 

recognised stage in mitophagy initiation, as such when attempting to induce 

mitophagy it can be useful to ascertain the exposure time and concentration 

required for a mitophagic stimuli to cause mitochondrial depolarisation as this 

will be the conditions under which mitophagy is most likely to occur, and for this 

purpose TMRE would be an ideal candidate. 

The second organelle that is essential for mitophagy is the autophagosome. One 

dye that has been touted as an autophagosome specific marker is 

monodansylcadaverine (MDC). This probe has been continuously described as 

specific to the autophagosome; however on closer inspection this appears not to 

be the case (101). Despite being labelled as a marker of the autophagosome MDC 

in fact appears to be more specific than this labelling not autophagosomes but 

autolysosomes, the late stage vacuole of the autophagy pathway formed upon 

fusion of the lysosome with the autophagosome (Figure 1:1) (101). This is 

suggested to result from the supply, by the lysosome, of transporters required 

for MDC import to the autophagosome upon fusion. However, it could also result 

from specific sequestration of MDC to the lysosome which upon fusion with the 

autophagosome is also observed inside the autolysosome. Due to uncertainty 

over the mechanism of MDC accumulation and its association with autolysosomes 

not autophagosomes it should not be used as a marker for specific labelling of 

autophagosomes. Currently the most reliable methods for labelling the 

autophagosome are either to fix and stain cells with antibodies specific for 

proteins found on the autophagosome or introduce and stably express a 

fluorescently tagged version of an autophagosomal protein e.g. LC3. 

The third and final organelle involved in mitophagy is the lysosome. As with the 

mitochondria and autophagosomes these organelles can be easily labelled 

through fixation and the use of appropriate antibodies or introduction and 
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expression of a fluorescently tagged version of a lysosomal specific protein e.g. 

LAMP2. However there also exists, as for the mitochondria, a set of 

commercially available probes (Invitrogen Life Technologies) called the 

lysotrackers and lysosensors which can be used to label and monitor the 

lysosomes in live cells. The lysotrackers are weak bases which are permeable to 

cells and segregate to the acidic compartments of the cell. Their mechanism of 

action is not clearly established but it is suggested by the manufactures to 

involve protonation of the probe upon sequestration into acidic vacuoles i.e. 

lysosomes, which results in the retention in the lysosome. The lysosensor probes 

appear to have the same mechanism of action with reference to their 

accumulation in the lysosome; however their fluorescence is dependent upon the 

pH of the lysosome. As such they may be useful for monitoring the acidity of the 

lysosome, and perhaps investigations into lysosome biogenesis maturation and 

acidification.  

The use of any of these probes when studying mitophagy should be carefully 

considered in conjunction with the method of mitophagy induction. CCCP is 

commonly used as an inducer of mitophagy due to its ability to depolarize 

mitochondria. It is a protonophore which is negatively charged and as such is 

drawn into the mitochondria due to the positive charge of the mitochondrial 

intermembrane space as well as other positively charged organelles such as the 

lysosome. Once inside the mitochondria combines with protons found in the 

intermembrane space and is neutralized. This allows it to move across the inner 

mitochondrial membrane (taking the proton with it) into the mitochondrial 

matrix. Once inside the matrix the proton dissociates from the CCCP molecule 

making it negatively charged and therefore it moves back through the inner 

membrane to the positively charged intermembrane space where it then re-

combines with another proton and the process is repeated. This effectively 

destroys the proton gradient across the inner mitochondrial membrane by 

moving protons from the intermembrane space back to the mitochondrial 

matrix, effectively depolarizing the mitochondria. In the lysosome CCCP appears 

to act in a similar fashion as observed in the mitochondria, inside the lysosome it 

combines with the protons present again becoming neutral and then moves out 

of the lysosome taking the proton with it. Following which the proton dissociates 

from the CCCP again making it negatively charged and therefore it can move 
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back into the lysosome where it then re-combines with another proton and the 

process is repeated. This effectively destroys the acidic nature of the lysosome 

which inhibits its degradative function thus affecting the progression of 

mitophagy (102). 

In addition to the effect that CCCP has on these organelles it also affects the 

specificity of the probes mentioned above, specifically the localization of the 

mitotracker dyes. It has been shown that upon treatment with CCCP mitotracker 

dyes lose association with the mitochondria and instead segregate to the 

lysosome (102).  This is believed to result from CCCP driven dissipation of the 

mitochondrial membrane potential, and concurrent establishment of a 

membrane potential across the lysosomal membrane. This lysosomal membrane 

potential results from the abolition of the proton gradient across the membrane 

leaving the ionic counter gradients the lysosome imposes to compensate for the 

high internal proton concentration unbalanced. In summary CCCP abolishes the 

membrane potential of the mitochondria whilst imposing a membrane potential 

on the lysosome. As mitotracker probes rely on membrane potential for their 

specific localization upon CCCP addition they leave the mitochondria and enter 

the lysosome. This localization of mitotracker to the lysosome could be 

interpreted as the end stage of mitophagy (degradation of the mitochondria in 

the autolysosome). However it was noted that the mitochondria themselves 

were not always found to be localized to the mitochondria, indicating 

mitotracker localization to the lysosome can be independent of mitophagy (102). 

In summary the use of dyes to study mitophagy must be performed with caution 

due to uncertainties regarding specify and mode of action. Furthermore great 

consideration should be given when choosing the method to induce mitophagy 

due to off target effects on other organelles and/or the probes being used to 

study mitophagy.  

1.2 Disease associated with autophagy and mitophagy  

1.2.1 Cancer and Autophagy 

The role of autophagy in tumourgenesis is highly dependent upon the stage of 

cancer cell development; tumour initiation, tumour maintenance or progression 
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to malignancy. During the early stages of tumour development autophagy can 

offer a protective role, removing damaged and dysfunctional organelles and 

excess cellular components which could release or have potentially tumorigenic 

effects if allowed to persist within a normal cell, such as dysfunctional 

mitochondria releasing damaging ROS. Autophagic removal of p62 is highly 

important to prevent tumorgenesis.  p62 as mentioned previously is a known 

cargo receptor in autophagy, it binds and forms aggregates with the autophagic 

cargo prior to engulfment by the autophagosome and degradation. Failure of 

autophagy results in the accumulation of p62 aggregates which have been 

observed to cause liver damage and tumourgenesis (103, 104). Accumulation of 

p62 resulting from reduced autophagy has been linked to regulation of NF-κB 

activity in liver and lung cancer (104, 105). In this context it would appear 

beneficial to up-regulate autophagy and thereby reduce cancer initiation and 

progression; indeed anti-cancer drugs such as rapamycin specifically target the 

master inhibitor of autophagy mTOR leading to activation of autophagy with the 

goal of preventing these effects. 

However in an established cancer cell increased autophagy can actually be 

beneficial for tumour progression. Cancer cells tend to have much higher levels 

of metabolic stress compared to normal cells due to increased nutrient stress 

and hypoxia resulting from inadequate blood supply and increased metabolic 

demands to support increased growth and proliferation. One avenue of action 

cancer cells take to deal with these stresses is to activate autophagy to provide 

nutrients by breakdown of cellular components and using their basic constituents 

to generate ATP, which allows cell survival under these unfavourable conditions. 

However this must be coupled with defects in apoptosis as in apoptotic 

competent cells sustained nutrient deprivation and autophagy would result in 

cell death (106, 107). RAS driven cancers are observed to be reliant upon 

autophagy for survival (108, 109), their growth and proliferation rates are such 

that autophagy is essential to provide the nutrients required. However this 

makes them highly sensitive to autophagy inhibition; inhibition of autophagy in 

RAS driven tumours either results in growth arrest or more dramatically cell 

death. This would suggest that inhibition of autophagy in these tumour types 

could be exploited as therapeutic target. Hypoxia, has been shown to induce 

autophagy, through HIF1α activation, autophagy then reduces p62 levels 
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reducing its suppressive effect on RAS and ERK1/2 promoting cell survival under 

hypoxia (110). In such an environment it seems that inhibition of autophagy 

would also be an effective cancer treatment; reducing the nutrient supply to the 

hypoxic cells even further, forcing them into cell death. 

Based on this supporting role of autophagy in cancer progression therapeutic 

agents such as chloroquine are in clinical trials as a potential treatment for 

cancer. Chloroquine was originally developed as an anti-malarial drug, but was 

observed to affect the degradative power of the autolysosome making it relevant 

in the disruption of the autophagy pathway (111, 112). It enters the lysosome 

and becomes protonated and as a consequence reduces the acidity within the 

lysosome which reduces the function of the lysosomal enzymes. This prevents 

the completion of autophagy resulting in abolition of the nutrient supply through 

autophagy, which effectively starves a cancer cell that is dependent on 

autophagy for nutrients.  

However in many cancers autophagy is actually supressed, in breast, ovarian, 

hepatocellular carcinoma, lung adenocarcinoma, lymphoma and prostate cancers 

the function beclin1 a key pro-autophagy protein is frequently found to be lost 

(113-115). In addition it is also common to observe constitutive activation of PI-3 

kinase in cancer cells leading to activation of mTOR and thus inhibition of 

autophagy. It is understood that in this context PI-3 kinase mutations uncouple it 

from nutrient and growth factor availability allowing unchecked cell growth and 

proliferation (106). As a consequence the cell is unable to induce autophagy; this 

may in fact highlight a selective “Achilles heel” for cancer cells with PI-3 kinase 

mutations of this sort. These types of cells are balanced on a knife edge: any 

further increase of nutrient stress in cells unable to activate autophagy will 

result in cell death through nutrient starvation; yet normal cells able to activate 

autophagy should survive. However loss of autophagy in established cancer cells 

can increase the malignancy of the tumour. If autophagy is abrogated damaged 

and dysfunctional organelles will be allowed to persist within cancer cells. This 

would result in the release of damaging agents which can cause further 

tumorigenic mutations increasing the malignancy or perhaps metastatic ability of 

a cancer cell. Thus up-regulation of autophagy may again be an attractive 

therapeutic approach to prevent tumour progression or metastasis.  
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Autophagy represents a dichotomy in cancer treatment: on one hand in the 

initial stages of cancer, up-regulation of autophagy would allow for removal of 

damaged and dysfunctional organelles which would otherwise cause further 

tumorigenic mutations through release of damaging agents. However in later 

stages up-regulation of autophagy can provide the cancer cell with the nutrients 

it requires for further growth and proliferation, which would suggest inhibition 

of autophagy as a therapeutic approach in this case. However, autophagy is 

already down regulated in some types of cancer, and whilst this may represent 

an “Achilles heel” of sorts it also allows retention of mutagenic agents which 

could increase the aggressiveness of a tumour cell; in which case it is unclear if 

up-regulation or down-regulation of autophagy would be the most beneficial. 

The role of autophagy in cancer is clearly dependent on the type and stage of 

cancer. This highlights the complexity that must be addressed to target 

autophagy therapeutically.  

1.2.2 Mitophagy and Disease 

Mitophagy has been implicated in several disease pathologies; indeed much of 

the initial work in elucidating the regulatory stages and components behind 

mitophagy has its origins in disease models. Most notable is the discovery of the 

role of PINK1 and PARKIN in mitophagy; two proteins first identified through 

their tendency to be dysfunctional in neurodegenerative disorders such as PD. 

Mutations in both PINK1 and PARKIN have been implicated in PD, in addition 

mutations in PARKIN have also been observed to affect the susceptibility to 

leprosy, cancer and Alzheimer’s disease (AD) (OMIN 602544 & 608309 (116)). PD 

is a movement disorder characterized by bradykinesa, resting tremor, rigidity 

and postural instability. Pathological presentation includes degeneration of 

dopaminergic neurons and formation of Lewy bodies. It is generally a sporadic 

genetic disorder although rare familial cases have allowed for insight into the 

molecular events that give rise to this disease. Identifying mutations in several 

genes that appear to be involved in the disease presentation, PINK1 (PARK6) and 

PARK2 (encoding PARKIN) among them. Mutations in PINK1 and PARK2 that are 

associated with PD have been observed to reduce the incidence of mitophagy 

(117). One class of mutations observed to affect the RING1 domain of PARKIN, 

effects its ability to translocate to the mitochondria and its function (118). 
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Several chaperone proteins, such as HSJ1a, appear to be able to correct, to 

some level, the defects in mitophagy caused by mutations in the RING1 domain 

of PARKIN observed in PD, and as such represent interesting targets for the 

treatment of PD (118). The RING domains of PARKIN are important for protein 

structure and stability, therefore it is unsurprising that chaperone proteins with 

roles in protein folding, translocation and cellular response to mis-folded 

proteins effect the stability, location and activity of PARKIN, particularly for 

mutant forms of PARKIN that fail to fold correctly (118). 

PINK1 and PARKIN have been studied in mitophagy following a catastrophic 

failure of mitochondria (brought on by CCCP treatment for example). However in 

age related diseases such as PD and AD, mitochondrial damage will be slow and 

progressive (116). In this physiological setting PINK1 and PARKIN were observed 

to perform the same function as observed under the dramatic induced conditions 

of CCCP damage. Whilst this supports a role for PINK1/PARKIN in mitophagy 

under a more physiologically relevant setting, recent evidence suggests 

otherwise (119). Utilizing a mouse model which, due to loss of the mitochondrial 

transcription factor TFAM gives, depletion and abolition of expression of 

mitochondrial DNA (medina) and disrupting the ETC. This causes a progressive 

neuro-degeneration over time, reminiscent of that observed in PD patients. Both 

mitochondrial fragmentation and formation of mitochondrial aggregates were 

observed in dopaminergic neurones of the substantia nigra (those primarily 

affected in PD); however no mitochondrial localisation of PARKIN was detected. 

Indeed upon knockdown of PARKIN the expected worsening of the phenotype of 

the TFAM knockdown was not observed. This suggests that whilst PARKIN may be 

required for mitophagy in cultured cells it is not required in vivo (119). However, 

whilst this is an improved system in comparison to the use of cell lines it is not 

without its pitfalls and these may account for the differences observed. Knock 

out of TFAM not only affects transcription of the genes encoding proteins of the 

respiratory chain but as it is an essential protein to the mitochondrial basal 

transcription machinery it will affect transcription of all genes encoded upon the 

mitochondrial DNA. Although several mitochondrial proteins have already been 

identified as potential ‘receptors’ for PARKIN recruitment to the mitochondria 

(27, 66, 72) there may be others that are yet unidentified and encoded by the 

mitochondria DNA. Which may be if not essential, at least required in 
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combination with those already identified, and as such this global inhibition of 

mitochondrial derived protein synthesis may be preventing expression of such a 

crucial receptor. In relation to this it has been observed ex-vivo that PARKIN 

binds to and ubiquitinates complexes of the ETC targeting them for degradation 

by the proteasome (83). Perhaps the binding of PARKIN to defective ETC 

complexes as observed here not only serves to target them to the proteasome 

but also enables PARKIN recruitment to the dysfunctional mitochondria. The 

abolition of transcription of the mtDNA in this model prevents transcription of 

the ETC complexes and thereby may prevent such a recruitment occurring. In 

essence the complete abolition of mtDNA transcription does not in my opinion 

represent a physiologically representative scenario in which to study PARKIN 

recruitment to the mitochondria.  Furthermore, the availability of stabilised 

PINK1 upon the mitochondrial membrane was not investigated, and therefore it 

may be that the lack of mitochondrial recruitment in this model was due to lack 

of PINK1, which prevented PARKIN recruitment.   

In addition to reduced mitophagy in PD, ATP synthesis and mitochondrial 

network branching are significantly reduced when PARK2 is mutated, whilst 

levels of oxidative stress and mitochondrial mass are increased (120). It has been 

suggested that this is due to the secondary function of PARKIN in regulating 

mitochondrial function and morphology, (120). However these other effects 

could be the result of reduced mitophagy and consequential maintenance of 

damaged and dysfunctional mitochondria due to failure in PARKIN mediated 

mitophagy preventing them being degraded. As such mitophagy represents a 

potential target for therapy in PD patients.  

PARKIN has also been implicated in other disease pathologies. It has recently 

been identified as a key regulator of mitophagy in cardiac tissue. The heart is 

one of the highest energy consuming organs in the body, and as a consequence 

its cells are packed full of mitochondria. Due to this constant high energy 

demand the mitochondria deteriorate quickly through excessive use. As such 

cardiac tissue requires continuous mitophagy and mitochondrial biogenesis to 

remove and replace worn out damaged and dysfunctional mitochondria. 

Reduction in the incidence of mitophagy with time has been linked to cardiac 

aging and dysfunction (121). In cardiac dysfunction p53 is observed to bind 

cytosolic PARKIN at its RING0 domain and prevents translocation to mitochondria 
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and mitochondrial clearance by mitophagy (121). p53 inhibition of PARKIN has 

been observed in heart disease and cardiac aging indicating that inhibition of 

p53 could aid in the treatment of these conditions, and may affect the incidence 

of heart failure. However such a treatment obviously comes with risks; p53 is a 

powerful and crucial tumour suppressor, its indiscriminate inhibition would lift 

this suppressive effect allowing cancer initiation. However it does not preclude 

suppression of p53 interaction with PARKIN as a treatment. One possibility would 

be a therapy specifically targeting the p53 interaction with PARKIN whilst 

leaving its tumour suppressive capabilities untouched. Alternatively, perhaps 

through focusing on PARKIN enhancing its activities or expression to counteract 

the p53 effect would be more viable. 

Mitophagy in PD and cardiac aging, occur in organs of high energy demand, the 

brain and heart respectively, where it is logical that issues with the energy 

producing centres, mitochondria, would be influential in disease presentation 

and progression. The same is also true in diabetes mellitus type II, where 

increased glucose levels result in excessive mitophagy and cell death (122). Here 

insulin insensitivity results in high glucose levels pushing the mitochondrial 

respiration rate higher. This results in increased levels of mitochondrial 

damage/dysfunction and ROS etc. leading to mitophagy induction, the level of 

which will determine if the cell in question survives or is targeted for mitophagic 

cell death. However mitophagy also has roles in diseases where energy demand 

or production is not at the heart of the disease.  

Systemic lupus erythematosus SLE is an autoimmune condition resulting from 

abnormal T-cell activation. Accumulation of dysfunctional mitochondria has 

been identified as a cause for abnormal T-cell activity in SLE, which suggests a 

defect in mitochondrial quality control (123). HRES1/Rab4 is found to be over-

expressed in SLE patients and it promotes the lysosomal degradation of DRP1, 

preventing mitochondrial fission which is required for mitophagy to progress; as 

such over-expression (as observed in SLE) of HRES1/Rab4 results in abrogation of 

mitophagy and accumulation of damaged and dysfunctional mitochondria (123). 

Inhibition of HRES1/Rab4 in mice prevents DRP1 degradation, allowing fission to 

occur and damaged mitochondria to be removed by mitophagy resulting in 

reduced disease presentation (123). In this case it is the effect of the damaged 
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mitochondria upon the T-cell that results in disease (not energy demand) due to 

insufficient mitophagy.  

By contrast in Crohn’s disease high levels of mitophagy are responsible for 

disease manifestation. Crohn’s disease is a form of inflammatory bowel disease. 

It arises from a variety of mutations which appear to affect the immune 

response to bacterial attack. Crohn’s is an episodic disorder meaning that an 

individual can be unaffected one day and severely affected the next, it is not 

solely dependent upon genetics but also environment, with episodes of Crohn’s 

often linked to increased bacterial presence in the gut. Immunity related GTPase 

M (IRGM), is responsible for initiating an autophagy response to invading 

intracellular pathogens. Mutations within the IRGM gene which affect function 

have been identified as a risk factor in the development of Crohn’s disease (43). 

Recently affinity of IRGM for CL has been identified. IRGM translocates to the 

mitochondria binding CL, following which it is internalised and is found on the 

inner membrane or matrix (124). It can affect mitochondrial dynamics, 

mitochondrial polarity, mitophagy and ultimately cell death by apoptosis or 

necrosis. IRGM1 is the only IRG found in humans and its expression is very low 

and tightly regulated. It represents an archaic immune defence system of the 

cell, highlighted by its affinity for mitochondria specifically CL. This suggests, 

given the origins of mitochondria (section 1.3.3), that IRGM drives a primordial 

immune response against any invading microbe. Mutations in IRGM linked to 

Crohn’s appear to cause an over-reaction to bacterial attack by IRGM, triggering 

high levels of mitophagy, inflammation and necrotic cell death. All of which are 

ordinarily tightly controlled in unaffected individuals. Inhibition of mitophagy in 

this case, or indeed binding of IRGM to the mitochondria, may reduce disease 

severity.  

1.2.2.1 Cancer and Mitophagy 

The role of mitophagy in cancer is unclear with few therapeutic approaches 

aimed at targeting mitophagy. Given that mitophagy is a subtype of autophagy it 

is probable that a similar dichotomy would arise where the timing of mitophagy 

could have either cancer promoting or inhibiting effects. To date little research 

has focused on mitophagy in cancer however some tentative investigations have 

been undertaken. 
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One key area in which mitophagy is implicated in a potentially tumour promoting 

role is in cell survival under hypoxia, as mentioned above (section 1.3.5.3). 

Hypoxic environments are frequently encountered by cancer cells in solid 

tumours as they outgrow the surrounding blood supply, resulting in a solid 

tumour mass with a hypoxic centre. This not only deprives the tumour cells of 

oxygen but the limited blood supply is also restrictive in terms of nutrients. In 

such environments cancer cells employ a multifaceted response, allowing cells 

to be maintained whilst simultaneously attempting to rectify this deadly issue by 

inducing the development of a more extensive blood supply. Mitophagy under 

hypoxia is found to be induced by activation of BNIP3. This causes the removal of 

the mitochondria preventing their cytotoxic affects resulting from increased ROS 

generation. ROS levels are increased due to the effect of the low oxygen 

concentration limiting the efficiency of mitochondrial respiration. This increase 

in ROS would also induce mitochondrial mediated apoptosis, see section 1.3.5.3 

and (14, 19, 110). Thus removal of mitochondria in cancer cells by mitophagy 

not only mitigates the damaging effects of ROS but also promotes cell survival by 

preventing induction of the mitochondrial cell death pathway. From this it would 

appear that inhibition of mitophagy would serve as an effective tool in cancer 

treatment, allowing persistence of mitochondria under hypoxia would elevate 

ROS to toxic levels which would lead to cell death. However, we should not 

forget that prolonged BNIP3 expression can cause necrotic cell death (14, 19). 

Thus up-regulation of BNIP3 mediated mitophagy may serve as a better 

treatment pushing cancer cells into necrotic cell death, however necrotic cell 

death itself can be tumourgeneic due to the release of potentially damaging 

agents to the extracellular environment and the inflammatory response it 

induces. 

The mitophagy protein PINK1 has been implicated in regulating the autophagy 

and apoptotic machinery in addition to its role in mitophagy (125, 126). It has 

been observed to bind beclin 1 and thus promote autophagy whilst also 

phosphorylating Bcl-xL preventing its pro-apoptotic cleavage, which together 

gives PINK1 a pro-survival role in cancer by inhibiting cell death and up-

regulating autophagy to provide nutrients.  Although in neither case was there 

observed an effect on mitophagy, it does not preclude a mitophagy response as 

part of PINK1’s pro-survival role. 
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As with autophagy mitophagy represents a double edged sword in terms of a 

target for cancer treatment, and further investigation and understanding of the 

role of mitophagy in cancer is required before it can be considered as a 

therapeutic target.  

1.3 Barth syndrome, Tafazzin and Cardiolipin 

1.3.1 Cardiolipin 

Cardiolipin (CL) is a phospholipid consisting of four acyl chains linked by a 

backbone of three glycerol groups. It was given the name cardiolipin as it was 

first isolated from cardiomyocytes taken from a bulls heart (127). CL is also 

known as bis-(1, 2-diacyl-sn-glycero-3-phospho)-1’, 3’-sn-glycerol and is 

exclusively within the mitochondrial membrane within mammalian cells (128, 

129). CL is a unique type of phospholipid in that it is composed of phosphatidic 

acid (black in Figure 1:3) and phosphatidylglycerol (red in Figure 1:3) joined by a 

three glycerol groups to give cardiolipin Figure 1:3. 
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Figure 1:3- Structure of Cardiolipin 
Above is the structure of a mature cardiolipin, composed of four unsaturated acyl chains (linoleoyl) 
and a polar head group. 

The biosynthesis of CL occurs through the pathway detailed in Figure 1:4 (130, 

131). Synthesis begins with the conversion of phosphatidic acid (PA) to CDP-

diacylglycerol (CDP-DAG), by CDP-diacylglycerol synthase (CDP-DAG synthase).  

Phosphatidylglycerophosphate Synthase (PGP synthase) then adds one molecule 

of glycerol-3-phosphate to CDP-DAG generating phosphatidyl-glycerol-3-

phosphate (PGP) which is immediately dephosphorylated by PGP phosphatase to 

phosphatidyl-glycerol (PG). Cardiolipin synthase (CL synthase) an enzyme unique 

to cardiolipin synthesis (132), joins one molecule of PG to a molecule of CDP-

DAG forming cardiolipin (CL). This form of CL is described as immature and the 

enzymes that have aided in its synthesis to this point have no specificity for acyl 

chain length or degree of saturation. As such, remodelling of the immature CL 

moiety is required and this process is governed by phospholipase A and the 

specific CL remodelling enzyme Tafazzin (TAZ) (129). Phospholipase A removes 

one acyl chain from the immature CL moiety transforming it into 

monolysocardiolipin (MLCL); TAZ then preforms the re-acylation reaction using 
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its acyltransferase activity to transfer an unsaturated acyl chain from 

phosphatidylcholine (PC) to MLCL. This cycle of deacylation and re-acylation is 

repeated four times until all the acyl chains of the immature CL are replaced by 

polyunsaturated acyl chains by TAZ (129). 

CL has many functional roles within the membrane of the mitochondria, as 

mentioned in section 1.3.4 and 1.3.6. It is also instrumental to the pathology of 

the disease Barth syndrome which will be discussed in more detail in section 

1.5.3. Many of the symptoms of Barth syndrome result from reduced function of 

the ETC within the mitochondria, resulting in low production of ATP. The reason 

for this is that CL also has a functional role within the ETC, stabilising and 

increasing the efficiency of the respiratory complexes.  

The complexes of the ETC in mammals are often found to be organised into 

super complexes, (133, 134). It is believed that these super complexes confer 

greater efficiency on the ETC and reduce the production of ROS, compared to 

cases where super complexes are absent (18, 135-137). CL binding has been 

observed for each complex of the ETC, with identification of binding sites in 

critical locations on Complex III and IV, (42, 138-142). CL is believed to provide 

the critical interface between adjacent complexes within a supercomplex, and 

were CL is lacking the presence of supercomplexes are diminished. Complex II is 

the only component of the ETC which to date has not been shown to form CL 

dependant supercomplexes with the other enzymes in the ETC. 
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Figure 1:4- Biosynthesis of cardiolipin 
Above is a depiction of the pathway and enzymes involved in biosynthesis and maturation of 
cardiolipin, enzymes are highlighted in purple, products highlighted in green and chemical 
structures adjacent to each product. 

However CL is still critical to the function and formation of complex II. CL 

stabilises the subunits of Complex II allowing the complete Complex to form, 
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specifically the membrane bound heterodimer and the catalytic heterodimer. Its 

interaction with the catalytic subunit was also shown to be essential for the 

complex to operate at its full capacity (41). Its presence in the lipid bi-layer 

around this complex also has a role in the lowering ROS production from this 

enzyme, (41).  

In addition to its role in mitochondrial ATP production CL has also been 

implicated in mitochondrial driven apoptosis (143-145). During apoptosis CL acts 

as a binding platform for caspase-8 which translocates and embeds itself in the 

mitochondrial membrane upon the CL platform, allowing for its further 

activation enabling it to cleave Bid to form pro-apoptotic tBid. CL is also 

required for the release of cytochrome c, tBid binding to the mitochondria and 

BAX oligomerisation during apoptosis.  

1.3.2 Tafazzin 

As mentioned briefly above the synthesis of mature CL relies completely on the 

function of the acyltransferase tafazzin (TAZ) (129). It uses acyl groups 

(linoleoyl) from phosphatidylcholine (PC) and transfers them to 

monolysocardiolipin (MLCL). It can utilize acyl groups from 

phosphatidylethanolamine (PE) and phosphatidic acid (PA), although the use of 

these two lipids is much lower than the use of PC. It is also noted that the 

transfer can occur in reverse, from CL to PC but again the occurrence of this 

reaction is much reduced compared to the PC to CL reaction mediated by TAZ 

(129).  

The gene identified as encoding tafazzin was known as G4.5 and resides upon 

the distal region of the X-chromosome, Xq28 (146). This gene encodes a 

transcript which can be differentially spliced giving rise to twelve spliceforms, 

as seen in Figure 1:5, and these are translated into a variety of different 

isoforms of the TAZ protein (146). The functional significance of each isoform is 

still under investigation, they may have tissue specific functions or some 

isoforms have a preference for specific acyl groups over others and or catalyse 

the reverse reaction of CL to MLCL rather than MLCL to CL (147).  
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Figure 1:5- Twelve isoforms of TAZ. 
Above is a schematic showing initially the entire layout of the gene encoding for TAZ below which 
are given the representations of the various isoforms of TAZ generated by differential splicing of 
the transcript generated from the TAZ gene. The first six represent isoforms generated from the 
first open reading frame of the transcript, whilst the final six represent isoforms generated from the 
second open reading frame of the transcript. 

Six of the transcripts produced have been assessed in various different tissue 

types; full length, Δexon5, Δexon7, Δexon 5&7,Δexon 6&7 and Δexon 5,6 &7 

(148). All were observed to be present at similar levels to each other in each 

tissue type, with the exception of the Δexon 6&7 spliceform which was 

exceptionally low in all tissue types whilst the pancreas and spleen showed the 

highest levels of any TAZ transcript of all the tissue types tested (148). However 

this pattern of mRNA expression does not correlate with levels of puCL detected 

in each of the tissues. This indicates that there may be a difference between 

mRNA expression and protein expression or activity, and that further 
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investigations into tissue specific protein expression is required. All spliceforms 

of human TAZ localise to the mitochondria in drosophila, suggesting the 

targeting sequence for TAZ must be in the N-terminal section of tafazzin, (149). 

Only full- lengthTAZ and TAZΔexon5 have acyltransferase activity, with 

TAZΔexon5 having the greatest activity of the two, suggesting that exon7 is 

essential for function, and these two isoforms are the only functional isoforms in 

terms of mature CL synthesis (149, 150). Full- lengthTAZ can restore muscle 

activity in mutant TAZ Drosophila melanogaster fully, whilst this recovery was 

only partial upon TAZΔexon5 expression. Both isoforms restored male fertility, as 

well as defects observed in respiration, and rescued the CL profile from an 

abnormal profile of high MLCL and low mature CL to the wild-type profile with 

high mature CL levels and low MLCL. The TAZΔexon5 and full- lengthTAZ protein 

isoforms are found within large protein complexes within the mitochondria, with 

the full- length TAZ dissociating more readily than the TAZΔexon5 isoform 

suggesting that full- lengthTAZ is less integrated into the mitochondrial 

membrane than TAZΔexon5 (149). Interestingly only TAZΔexon5 can fully rescue 

the growth defect in yeast caused by loss of yeast TAZ expression (150), but 

both TAZΔexon5 and full- length TAZ could rescue the CL profile back to wild-

type; however the rescue by full- lengthTAZ was only partial in this case. Full- 

lengthTAZ is only present in higher organisms and as it is non- functional in 

yeast, (150) there is a suggestion that the exon5, absent in lower organisms, has 

an as yet unknown function in higher organisms. A polymorphism found in exon 5 

in 4% of African Americans has been linked to idiopathic cardiomyopathy and as 

such may indicate a role for exon5 in TAZ in the development and function of 

the human heart (149).  

Mutations in TAZ cause disruption to the CL profile prior to terminal 

differentiation of cells, however structural abnormalities such as distortion of 

mitochondrial morphology and structure only become apparent following 

differentiation (151). The cristae within TAZ mutant cells are found to be 

distorted and mitochondria are observed to be swollen (151). Such structural and 

functional defects associated with mutations in TAZ made it the prime candidate 

for the gene involved in Barth’s syndrome. 
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1.3.3 Barth Syndrome 

Barth’s syndrome is a human X-linked recessive genetic disease first 

characterized in 1983 by P.G. Barth, with patients presenting with clinical 

symptoms of dilated cardiomyopathy, ventricular hypertrophy, neutropenia and 

skeletal myopathy (152). All patients described were male, in line with an X-

linked recessive disorder, and all died in infancy or early childhood whilst female 

carriers appeared unaffected. Electron microscopy of cardiac tissue revealed 

enlarged sarcoplasmic space filled with swollen spherical mitochondria. The 

mitochondria showed intact outer membrane, whilst the cristae were severely 

disrupted and matrix observed to be of lower electron density than was usual. 

Lipid droplet number was found to be slightly increased, and the activity of the 

ETC was diminished in isolated skeletal mitochondria from Barth’s patients. The 

diminished activity of the ETC was found to result from a block in the respiratory 

chain following ubiquinone most probably due to the significantly reduced levels 

of cytochrome C (152). Further investigation indicated that the activity of 

Complexes III and IV were diminished in Barth syndrome patients and that this 

was the result of reduced stability and formation of both of these complexes 

which must be dependent upon the gene product that is mutated in Barth 

syndrome (153).  

Later it was discovered that the levels of CL in Barth’s syndrome patients were 

reduced, more specifically the levels of polyunsaturated CL (puCL) were 

significantly lower than that normally observed (55). This loss of mature puCL 

coincided with a reciprocal increase in MLCL, (59, 98). These discoveries quite 

clearly implicated TAZ as the gene involved in Barth’s syndrome, due to its 

function in conversion of MLCL to mature CL. TAZ was later identified as the 

gene involved in Barth’s syndrome, its X-chromosome location and reduced 

levels of mature CL all aligned with the presentation of the disease, whilst 

genetic linkage analysis confirmed this to be the case (146). Barth’s associated 

mutations in the TAZ gene did not always preclude transcription from the gene, 

indeed increased levels of transcripts have been observed in Barth’s patients 

perhaps as an attempt to compensate for reduced function of the enzyme 

however, this could not be correlated to protein levels at the time due to lack of 

reliable antibodies specific for TAZ (148). 
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Since the discovery of mutations in TAZ and reduced CL as the causal agents in 

Barth syndrome, much work has focused on how the loss of TAZ function and 

mature CL causes the phenotypic presentation of Barth syndrome.  

Many mutations within the TAZ gene have been observed to cause Barth’s 

syndrome, with varying degrees of severity, suggesting that how the TAZ protein 

is affected by mutation could have a bearing on disease severity. Three non-

catalytic defects can effect TAZ activity and hence puCL production: 1) 

Mutations in the localisation signal preventing TAZ localising to the 

mitochondria; 2) Mutations effecting expression levels such that reduced levels 

of TAZ are present in the cell; 3) Mutations affecting TAZ stability such that the 

protein is unstable and/or degraded at an accelerated rate by the proteasome 

(147). These three classes of mutation do not affect the activity of the TAZ 

protein directly, but affect its ability to reach the mitochondria, or be present in 

high enough concentrations to be effective. Catalytic defects in TAZ obviously 

affect its function; in this case localisation, expression levels and stability of TAZ 

are normal. However their lack of transacylase activity will clearly prevent TAZ 

function. This abolition can be 1) complete, with no residual TAZ activity, 2) or 

result in attenuated function where the MLCL to CL reaction does occur but to a 

significantly reduced level, or 3) where the activity of TAZ is biased to the 

lysoPC to PC reaction rather than the MLCL to CL reaction, i.e. the reverse 

reaction from that which generates mature CL (147).  

Whatever the mutation the effects, although varying in severity are the same. 

Recent research has investigated how mutations in TAZ and reduction of mature 

CL affect cellular function, with the aim of better understanding the disease 

pathology and deriving new treatments. Quite unsurprisingly, given the role of 

CL in the stability and function of the complexes and supercomplex in the ETC, 

Barth’s syndrome derived cells and models showed decreased complex and super 

complex number and OXPHOS activity, (40) with the exception of patient 

derived lymphoblasts which did not show decreased OXPHOS activity despite 

reduced levels of supercomplexes and individual complexes being observed 

(154). With reduced OXPHOS activity was observed reduced membrane 

potential, most probably resulting from inability to generate the proton gradient 

and electron leakage due to reduced supercomplex formation. Glycolysis is 

unable to compensate for reduced respiration in Barth’s like induced pluripotent 
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stem cells, although increased levels of lactate observed in these cells suggests 

the glycolysis rate is increased perhaps in an unsuccessful attempt to 

compensate (40).  

In addition to direct effects on energy production, defects in mitochondrial 

morphology, biogenesis and cell death have also been observed in Barth’s 

syndrome. Barth’s derived cells have more and larger mitochondria with 

disordered cristae and reduced surface area (154). Given the role of CL in OPA1 

cristae remodelling it is reasonable to think that this morphology results from 

lack of CL interaction with OPA1. However, no effect on OPA1 was seen in Barth 

syndrome cells, suggesting that for this interaction it is the head group of CL not 

the acyl chains that govern the interaction, since CL is still present in Barth’s 

syndrome only at its immature stage with invariably highly saturated acyl chains 

(154). Therefore some other function of CL causes this abnormal cristae 

presentation. Apoptosis is blocked, despite increased MLCL levels which would 

increase the ability of tBid to bind to mitochondria, suggesting the blockage is 

prior to Bid cleavage (119). Caspase 8 fails to bind mitochondria that lack 

mature cardiolipin (143). Therefore Barth cells cannot undergo mitochondrial 

driven apoptosis as they lack the Bid/Caspase8 activation platform due to 

reduced levels of mature CL which renders Bid cleavage by caspase 8 impossible.  

1.3.4 Cardiolipin and Mitophagy 

Barth’s syndrome causes a variety of mitochondrial malfunctions resulting in 

dysfunctional and damaged mitochondria, which should result in their 

degradation by mitophagy. However, as we can still observe these 

damaged/dysfunctional mitochondria within the cells of Barth’s syndrome 

patients it would suggest mitophagy is not occurring, or at least not to the level 

required to remove these dysfunctional mitochondria. How each mitochondrion 

is targeted for mitophagy is a continually evolving area of research. Most of the 

focus is upon the proteins that associate with the mitochondria prior to and 

during mitophagy, acting as signals to the autophagic machinery that the 

mitochondria is ready to be degraded. However, the signal that recruits and or 

activates these proteins is poorly understood. Most of the proteins associated 

with mitophagy interact with the mitochondrial membrane; therefore perhaps 

the primary signal for mitophagy is generated within the mitochondrial 
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membrane itself. The mitochondria have two membranes, the inner and outer 

membranes, which are made up of various different lipids. Yet Cardiolipin is the 

only lipid which is found exclusively within the mitochondrial membrane in 

mammalian cells, i.e. it is specific for the mitochondria.  

The remodelling of CL by TAZ produces a mature polyunsaturated form of CL. As 

an unsaturated lipid CL is a prime site for oxidation, attack by ROS will result in 

oxidised CL. Elevated ROS levels are a hallmark of a malfunctioning 

mitochondria, and would result in the oxidation of CL, i.e. oxidized CL (oxi-CL) 

levels would be greatly increased in dysfunctional mitochondria. Therefore the 

presence and level of oxi-CL would be an excellent indicator of mitochondrial 

health. The change in structure of CL brought about by oxidation may be 

recognised by as yet unknown binding motifs in some of the mitophagic proteins. 

oxi-CL may provide a binding platform for mitophagic proteins similar to that 

described for caspase-8 and tBid (143). Alternatively due to its functional role in 

mitochondrial processes such as OXPHOS CL may alter the activity of the ETC 

and given that reduced ETC activity is a known stimulator of the mitophagy 

response initiate mitophagy in this way. In addition the exclusive location of CL 

within the mitochondrial membranes makes it highly specific to mitochondria 

and thus mitophagy. As such it is possible that the oxidation of CL could be the 

initiating signal for mitophagy.  

The likelihood of CL as the mitophagy inducing signal has not gone unnoticed by 

others. As discussed above it has been shown to act as a binding partner for 

IRGM stimulated mitophagy in the innate immune response to bacterial infection 

in Crohn’s disease (124). More recently the activity of an enzyme called ALCAT1 

under oxidative stress upon CL has highlighted a potential role for CL in 

mitophagy (155).  

ALCAT1 is a lysocardiolipin transferase that remodels CL in response to oxidative 

stress and abrogates mitochondrial fusion through depletion of Mfn1 and 2 (156). 

It causes increased oxidative stress, lipid peroxidation and mitochondrial DNA 

depletion (155). ALCAT1 remodels CL to give it fatty acid chains that are highly 

polyunsaturated, with increased levels of DHA, (Docosahexanoic acid), instead of 

conventional tetralinoleoyl CL (TLCL), which makes it excessively prone to 

oxidative attack. Loss of conventional TLCL in many age related diseases has 
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been indicated as a cause of disease. ALCAT1 expression is found to be highly 

up-regulated in age related diseases; diabetes, obesity and cardiomyopathy. The 

remodelling of CL in this fashion increases ROS levels and mitochondrial 

dysfunction and damage, which in turn leads to CL peroxidation. The increase in 

oxi-CL present under elevated ALCAT1 expression and action induces a 

mitophagy response removing the damaged and dysfunctional mitochondria 

(155).  

Loss of TLCL is also noted in Barth syndrome, though in this case it results from 

loss of TAZ activity and decreased levels of unsaturated fatty acid components in 

CL, however strikingly the pathological presentations are similar to those 

observed in ALCAT1 over-expression. It appears that we observe here the two 

polar opposites in terms of saturation status of CL. In Barth’s syndrome where 

TAZ is non-functional we see low or non-existent levels of puCL, whilst diseases 

associated with ALCAT1 expression we see highly elevated levels of puCL above 

those expected in healthy cells and this causes many deleterious effects, but for 

us most notably are the highly elevated levels of mitophagy. In this scenario 

(ALCAT1 expression) high levels of mitophagy appears to be deleterious, as 

observed in many other cases of diseases where mitophagy levels are elevated 

(section 1.4). More importantly though it highlights that oxidation of CL is 

required for mitophagy to proceed; in Barth syndrome cells this is near 

impossible due to the lack of puCL to be oxidized. Therefore between these two 

situations we observe the need for puCL in cells in order that it may be oxidized 

upon mitochondrial damage and dysfunction and act as a signal to induce 

mitophagy; however we also observed that the level of puCL or unsaturation of 

CL is critical to the health of the mitochondria and cell. To little results in Barth 

syndrome with all its symptoms, which may also be related to reduced 

mitophagy levels, and too high and the results can be equally as devastating as 

observed on ALCAT1 expression.   

The effects of ALCAT1, clearly highlight the role of oxi-CL in mitophagy, 

however recent work suggests that the reverse may be true (157). In a mouse 

model of Barth’s syndrome strange ‘onion’ like mitochondria with densely 

packed layers of cristae were observed and believed to represent mitochondria 

undergoing mitophagy. However they also observed an increase in abundance of 

mitochondria and mitochondrial DNA, which does not align with increased levels 
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of mitophagy. They also observed increased levels of vacuoles in the cell from 

the mouse model, whilst these could be viewed as evidence of increased 

mitophagy levels, it could be that these vacuoles are increased in number due 

ever increasing attempts to induce mitophagy but, due to lack of the oxidized 

puCL signal discussed above they fail to engulf the mitochondria, giving 

accumulation of empty autophagic vacuoles. This could account for the large 

numbers of empty vacuoles observed and the increased mitochondrial and 

mitochondrial DNA, whilst the ‘onion’ like mitochondria could be the result of 

severe morphological abnormalities due to lack of puCL . However all other 

observations they make upon mitochondrial size, morphology and the gross 

pathology of tissues and the entire mouse are concurrent with a Barth’s 

syndrome phenotype as outlined above, (152, 157). The evidence from the 

mouse model regarding mitophagy appears self-contradicting, the maintenance 

of mitochondrial mass and mitochondrial DNA along with increased incidence of 

vacuoles within the cells seems to suggest a blocked mitophagy process yet the 

authors specifically state that mitophagy is indeed increased based on an 

observed onion like phenotype of mitochondria. Furthermore it directly 

contradicts the findings of others (discussed above) which suggests an absolute 

requirement of puCL for the formation of oxi-CL and initiation of mitophagy 

(155, 156). In either case it appears that puCL is important in mitophagy, 

although why it is important is currently unclear. Further investigation is 

required to clarify what role puCL has to play in mitophagy.    

1.4 Aims and Hypothesis 

The process of mitophagy is a new and developing area of research where the 

scientific community is identifying the key steps and components of the 

pathway, some of which are discussed above. However although a multitude of 

proteins have been identified as translocating to and acting upon damaged 

mitochondria prior to autophagosomal engulfment it is still unclear how a 

mitochondrion signals to each of these proteins of its damaged status. As 

mentioned above cardiolipin is involved in numerous mitochondrial processes. 

The nature of cardiolipin with multiple unsaturated acyl chains makes it a prime 

target for oxidative attack and oxidation, indeed it has be shown in vitro that CL 

is readily oxidized by hydrogen peroxide in the presence of the mitochondrial 

protein cytochrome C (105, 109). Damaged and dysfunctional mitochondria have 
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increased levels of ROS, which effectively create the same conditions described 

for oxidation of CL by cytochrome C in vitro; CL cytochrome C and ROS all 

together in the confined space of the mitochondria. It is possible therefore that 

this would result in CL oxidation making it a key indicator of mitochondrial 

health and function and thus a potential signalling molecule in mitophagy.  

The central hypothesis of this thesis is that the oxidation of Cardiolipin, resulting 

from oxidative attack by reactive oxygen species derived from damaged and or 

dysfunctional mitochondrial, acts as the initiating signal for mitophagy.  

To test this hypothesis comparisons were made of cells devoid of mature 

cardiolipin (derived from Barth syndrome patients) and therefore unable to form 

oxidized cardiolipin against cells containing a healthy complement of cardiolipin 

species and thus able to form oxidized cardiolipin, in an attempt to test the 

hypothesis five key aims were questions were addressed: 

1. Determine if mitophagy is affected by the lack of mature puCL 

2. Show an increase in oxidation of cardiolipin upon mitophagic stimuli in 

cells with a healthy complement of CL species and observe that this does 

not occur where cells lack mature puCL. 

3. Investigate if mitochondrial dynamics were affected by lack of mature CL 

which could affect mitophagy. 

4. Determine if mitochondrial morphology and function are affected by lack 

of mature CL and any associated lack of mitophagy.  

5. Develop methods by which imaging data may be quantitated to allow 

accurate measurement of mitophagy from microscopy data.  
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 Chapter 2 Materials and Methods 
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2.1 Materials 

2.1.1 Reagents 

 



70 
 

 Laura Catherine Avril Galbraith 

 
Table 1- Chemicals and Kits 
 



71 
 

 Laura Catherine Avril Galbraith 

2.1.2 Equipment 

 
Table 2- List of Equipment 
 

2.1.3 Antiserum 

2.1.3.1 Primary Antibodies 

 
Table 3- List of Primary Antibodies 
 

2.1.3.2 Secondary Antibodies 

 
Table 4- List of Secondary Antibodies 
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2.1.4 General buffers and solutions 

 
Table 5- List of General Buffers and Solutions 
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2.1.5 Vectors and Plasmid constructs 

 
Table 6- List of Vectors and Plasmids 

2.2 Experimental procedures 

2.2.1 Fibroblast Cell culture  

Four human fibroblast cell lines were provided by Frédéric M. Vaz from The 

Laboratory of Genetic and metabolic diseases at the University of Amsterdam: 

C106 and C109 (CONTROL_1 and CONTROL_2 respectively) as control cells and 

Taz001 and Taz003 (TAZMUT_1 and TAZMUT_3 respectively) fibroblasts isolated 

from Barth’s syndrome patients. These were immortalised by Zach Schug prior to 

my work through stable htert expression. From the TAZMUT cells two further cell 

lines were generated TAZREV_1 and TAZREV_3; giving in total six cell lines. 

The cells were routinely cultured in DMEM supplemented with 10% FCS and 1% L-

glutamine at 37°C under 5% CO2. The serum was heat inactivated at 56°C for 30 

minutes prior to use. Cells were grown to confluence in 15cm plates at which 

time they were split 1:2. To split cells, media was removed and cells washed 

once with pre-warmed PBS (10ml per 15cm plate), then cells were detached 
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with 1X trypsin (5ml per 15cm plate) and the plate returned to 37°C until the 

cells have completely detached. 

2.2.2 RetroPackTM PT67 cells 

The PT67 cell line is commercially available from Clonetech, and is designed to 

package retrovirus with an amphotropic envelope as described in section 

2.2.8.2. The cells were cultured in DMEM supplemented with 10% FCS and 1% 

glutamine and grown at 37°C at 5% CO2. Cells were always split at 80-90% 

confluence 1:10 in 10cm plates, using 1X trypsin to detach cells. Prior to 

transfection cells were seeded at 4x106 cells per 10cm plate. 

2.2.3 HEK293T 

HEK293T cells are packaging cells used for lentiviral production as described in 

section 2.2.8.4. The cells were cultured in DMEM supplemented with 10% FCS 

and 1% glutamine and grown at 37°C at 5% CO2. Cells were always split at 80-90% 

confluence 1:10 in T175 flasks, using 1X trypsin to detach cells. Prior to 

transfection cells were seeded at 4x106 per 10cm plate.  

2.2.4 Freezing and thawing cells 

Frozen cell stocks were created for all cell lines in the same fashion. Cells were 

detached using 1X trypsin and counted. For the fibroblasts counting was 

performed using a haemocytometer, other cell lines may be counted using an 

automatic cell counter. The cells are then pelleted by centrifugation at 500xg 

for 5 minutes. The pellet is then re-suspended in the correct volume of freezing 

media (Table 5)  to give 1x106cells/ml. 1ml of the resultant solution is aliquoted 

into cryovials and transferred into a cryo freezing container which is placed over 

night at -80°C before transferring the cryovials into a liquid nitrogen tank for 

long term storage. 

For reviving stocks, cells were thawed rapidly in a water bath at 37°C and then 

added to pre-warmed media before being centrifuged at 500xg for 5 minutes to 

pellet the cells allowing removal of the DMSO in the freezing media. The pellet 

was then re-suspended in fresh media and cells transferred to a 10cm plate for 

initial culturing.  
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2.2.5 Bacterial transformation 

Following site-directed mutagenesis a specialised bacterial transformation 

protocol is required for amplification of mutated plasmid and this is detailed in 

section 2.2.6.2. This method is the general method used to amplify all plasmid 

and vector DNA indicated in Table 6 for use in mammalian cell transfection. 

50µl of DH5α competent E.coli were incubated on ice until thawed, at which 

point 3µl of plasmid DNA was added. The E.coli was then incubated for a further 

30 minutes on ice, before heat-shocked at 42°C for 45 seconds, and returned to 

ice for 2 minutes. Then 950µl of L-Broth was added and E.coli cultured at 37°C 

for 1 hour in a shacking incubator at 180rpm. Following an hours growth two LB-

agar plates were inoculated with the transformed E.coli. One plate was 

inoculated with 100µl undiluted culture whilst the second plate was inoculated 

with 100µl of culture diluted 1:20. Plates were inverted and cultured overnight 

at 37°C. The following day colonies were picked from the agar plates and used 

to inoculate 4ml L-Broth starter cultures. These were grown for 4 hours at 37°C 

in a shacking incubator at 180rpm. These complete cultures were then either 

used directly to extract plasmid DNA using the Qiagen mini-prep plasmid 

purification kit or used to inoculate a larger 250ml L-broth culture which was 

grown over night at 37°C in a shacking incubator at 180rpm from which plasmid 

DNA was extracted the following day. Plasmid extraction was usually undertaken 

using the Beatson in-house plasmid purification service, although on occasion 

plasmids were extracted by me using the Qiagen Maxi-prep plasmid purification 

kit. 

2.2.6 Site-directed mutagenesis of pmCherry-LC3 

LC3-cherry was cloned into the lentivirus vector pLenti6 in order that LC3-Cherry 

expressing stable cell lines could be generated through lentiviral infection. The 

pLenti6 vector had very few restriction sites within its multiple cloning site, 

which limited those that could be used to excise the mcherry-LC3 fragment from 

the pmCherry-LC3 plasmid Figure 2:1 B. One site that matched in both plasmids 

was a BAMHI site found in the MCS of both plasmids, Figure 2:1A and B. However 

in order to excise LC3-Cherry (from pmcherry_LC3) and insert it into the pLenti6 

vector a second BAMHI restriction site needed to be added to the pmCherry_LC3 
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upstream of the mCherry sequence. This was undertaken using site directed 

mutagenesis to change the three base pairs upstream of the mcherry gene as 

described below (Figure 2:1).  

2.2.6.1 Mutagenesis of pmCherry-LC3 

The mutagenesis primers for pmCherry-LC3 were designed using the Agilent 

online primer design software and then ordered from Invitrogen, the sequences 

are given below Figure 2:1 C, with the 3bp difference between vector and 

primer highlighted in Figure 2:1 D. Mutagenesis was essentially performed using 

the QuikChange site directed mutagenesis kit as directed by the manufacturer; 

Agilent (Stratagene).  
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Figure 2:1- Cloning strategy for pLenti6_LC3-Cherry 
(A) and (B) give diagrams of each of the original plasmids used in this cloning approach. The 
BAMHI restriction site is highlighted in each plasmid at the MCS. (C) Gives the sequences for both 
the forward and reverse primers used in the site directed mutagenesis. The bases highlighted in 
purple indicate the three base pairs that differ from the sequence in the plasmid, and represent the 
change that was made. (D) Shows a magnified view of the section of pmCherry-LC3 that was 
changed during the mutagenesis. The top section shows the original sequence with the primer 
binding sites indicated in pink and the region to be changed to a second BAMHI site indicated in 
yellow. The bottom section shows the same sequence post mutagenesis with the change in 3bp 
and BAMHI site highlighted. 
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Four Mutagenesis reactions were set up with different amounts of DNA in each: 

5ng, 10ng, 20ng and 50ng. Each reaction mix was composed of the following: 5µl 

of 10X reaction buffer, 5µl of the forward primer (125ng), 5µl of the reverse 

primer (125ng), 1µl of dNTP mix and 1µl of PfuTurbo DNA polymerase (2.5U/µl). 

Varying volumes of DNA were added in each reaction to ensure the correct 

number of nanograms of DNA was present in each reaction. Based on the final 

volume after DNA addition, deionized water was added to make the final volume 

equal to 50µl.  

The PCR tubes containing each reaction where then transferred into the DNA 

Engine DYAD thermo cycler (Peltier) and the following PCR protocol set:  

1. 30 seconds at 95°C 

2. 30 seconds at 95°C 

3. 1 minute at 55°C 

4. 6 minutes at 68°C 

5. 4°C until programed ended by user. 

Steps 2-4 were repeated for sixteen cycles. 

Each reaction was the subject to Dpn1 digest to remove the unmodified 

template plasmid. Dpn1 selectively digests the template plasmid as it is 

methylated by virtue of its replication in bacteria. However, the newly modified 

plasmid has been synthetically generated by PCR and as such is not methylated 

and therefore not recognised by Dpn1 or digested. For Dpn1 digestion 1µl of the 

enzyme (10U/µl) is added to each reaction and incubated for 1 hour at 37°C. 

Each reaction was then used to transform XL-10 gold bacteria in order to amplify 

the altered plasmid. 

2.2.6.2 XL-10 gold bacterial transformation  

The transformation was performed in XL-10 gold bacteria as follows: 50µl (per 

reaction) of XL-10 gold competent E.coli were thawed on ice. 2µl of β-

mercaptoethanol was added to each 50µl and swilled to mix followed by a 2 

minute incubation on ice. Then 2µl of the Dpn1 treated reactions were added to 

each 50µl of E.coli and swirled to mix before incubation on ice for 30 minutes. 

The cells were then heat-shocked for 30 seconds at 42°C then cooled on ice for 
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2 minutes. 450µl of L-Broth was then added to the E.coli and incubated at 37°C 

for 1 hour. After 1 hour 100µl of this mini-culture was used to inoculate 

kanamycin selective LB-agar plates (kanamycin is the selective marker in the 

pmCherry-LC3 plasmid). Plates were incubated overnight at 37°C to allow 

colonies to grow. 

The following day twenty four colonies were picked from across the six plates 

(corresponding to the six original DNA concentrations used for mutagenesis). 4ml 

kanamycin selective L-broth starter cultures were inoculated with these 

colonies, i.e. twenty four starter cultures, and were cultured during the day on 

a shaking incubator at 37°C at 180rpm. The E.coli from each culture was then 

pelleted and plasmid DNA extracted using the Qiagen plasmid mini kit, as per 

manufacturer’s instructions. 

2.2.6.3 Restriction digest and Agrose gel electrophoresis 

To determine which of the colonies had yielded plasmid which had successfully 

undergone mutagenesis to include a second BAMHI site, a restriction digest using 

BAMHI restriction enzyme was performed for each plasmid prep as follows: 1µl of 

plasmid prep, 2.5µl of 5x enzyme buffer (Invitrogen), 1µl of BAMHI restriction 

enzyme (1U/µl, Invitrogen) and 20.5µl of deionized water. Each digest was 

incubated at 37°C for 1 hour. Plasmids which have successfully been changed to 

include the extra BAMHI site will yield two fragments from this digest; those that 

were not successful would produce one fragment representing the linearized 

original plasmid. The results of each restriction digest were subject to gel 

electrophoresis to resolve the fragments generated by the digest.  

A 0.8% agrose gel (in 1% TAE) was poured and set in a BioRad agrose gel caster. 

Once set it was placed in a BioRad agrose gel tank and the tank filled with 1% 

TAE buffer (Table 5). 10µl of each restriction digest was loaded into the gel with 

one well set aside for the DNA molecular weight marker (1kbp Quick Load DNA 

ladder Table 1). The results can be seen in Figure 4:18, Chapter 4. Two of the 

plasmids that returned positive results for mutagenesis were chosen and 

amplified further to give greater quantities of plasmid using the Beatson in-

house plasmid purification service and were used in the cloning described below.  
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2.2.7 Cloning of LC3-Cherry into pLenti6 

To clone mCherry-LC3 into pLenti6 the mCherry-LC3 fragment first had to be 

excised from the pmCherry-LC3 plasmid. The modified pmCherry-LC3 generated 

above was subject to further BAMHI restriction digest. The components of the 

restriction digest reaction are double those described for the BAMHI restriction 

digest in section 2.2.6.3. The digest was performed as described above and 

fragments resolved by agrose gel electrophoresis also described above. The band 

corresponding to the mCherry-LC3 fragment was cut from the gel and extracted 

from the agrose using the QIAEXII gel extraction kit (Table 1) as described in the 

manufacturer’s instructions. In parallel the pLenti6 vector was also subject to 

BAMHI restriction digest, again double the size of the digest described in section 

2.2.6.3. This opens the pLenti6 vector at the MCS in preparation for insertion of 

the mCherry-LC3 fragment. Since the vector was cut with only one restriction 

enzyme it could spontaneously re-ligate prior to the insertion of the mCherry-

LC3 fragment. To prevent re-ligation the digest was treated with Calf Intestinal 

Alkaline phosphatase (CIP, New England Bioscience) as per manufacturer’s 

protocol. This dephosphorylates the 5’ overhangs created by BAMHI digestion 

and prevents spontaneous re-ligation. 

With both vector and fragment prepared, the ligation reaction was performed as 

follows: 2µl 10x T4 DNA ligase buffer, 3µl of mCherry-LC3 (0.15mg/ml) 

fragment, 1µl cut pLenti6 vector (5.5mg/ml), 1µl T4 DNA ligase, and 13µl 

deionized water. This was incubated for 10 minutes at room temperature. The 

ligation mixture was then used to transform bacteria as described in section 

2.2.5, where ampicillin selective LB-agar plates (ampicillin is the selective 

marker for pLenti6) were used to select bacterial colonies that had successfully 

been transformed. The colonies generated were then amplified and plasmid 

extracted to give mini prep samples of plasmid DNA (plasmid extraction 

performed by the Beatson in-house plasmid prep service) and each was 

sequenced by the Beatson in-house sequencing service to check for the presence 

and orientation of the insert.      
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2.2.8 Transfection and generation of stable cell lines 

Various methods of transfection and infection were used throughout this thesis 

to generate stable cell lines and induce transient expression of desired 

constructs. Given below is a brief outline of the protocols used for each method.  

2.2.8.1 Lipofectamine 

Lipofectamine is a commercially available transfection reagent (Invitrogen); 

whilst it is generally very useful for most cell types, it proved ineffective in the 

transfection of the fibroblasts used in this thesis. However it was used to 

transfect PT67 packaging cells with retroviral constructs enabling them to 

generate retrovirus. Below is the method used to transfect these cell. 

PT67 cells were plated at 7x105 cell/plate in 10cm plates, and allowed to attach 

overnight before transfection. The following day the transfection mix was 

prepared as follows: 1ml RPMI media (unsupplemented) and 25µl Lipofectamine 

2000 (Invitrogen) is mixed separate to a 1ml RPMI (unsupplemented) and 15µg of 

DNA construct solution, for 5 minutes. The two solutions are then combined and 

left to mix for 20 minutes. The cell culture media was then removed from the 

pre-plated PT67 cells and replaced with the full transfection mix: 25µl 

Lipofectamine 2000 (Invitrogen), 2ml RPMI media (unsupplemented) and 15µg of 

DNA construct (per plate). Cells are incubated in this mix for four hours at 37°C 

5% CO2, following which transfection mix is removed and media replaced with 

DMEM culture media supplemented as detailed in section 2.2.2. The following 

day the media was again removed and replaced with 6ml fresh media in 

preparation for use in viral infection of fibroblasts.  

2.2.8.2 Retroviral infection 

Retroviral infection was used to generate the TAZREV cells, derived from the 

TAZMUT cells by re-introduction of full–length TAZ cDNA (Table 6). Attempts 

were made to re-introduce two further spliceforms TAZΔexon5, and TAZΔexon7 

(Table 6). Of these two only infections of the TAZΔexon7 construct were 

successful, TAZΔexon5 failed to generate any colonies. Whilst retroviral 

infection did succeed in introducing full –length TAZ cDNA generating the 

TAZREV cells, it is not the preferred method for generating stable cell lines in 
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the human fibroblasts. The fibroblasts are slow growing and divide infrequently, 

and as retroviral infection only occurs when a cell is undergoing division, this 

meant that the rate of infection for the fibroblasts was very low accounting for 

the low number of colonies produced or in the case of TAZΔexon5 the complete 

absence of colonies. The method applied to generate the TAZREV cells is as 

follows:  

Viral packaging cells (PT67’s) were seeded into eight 10cm plates at 

7x105cell/plate and allowed to attach overnight. The cells were transfected 

(using lipofectamine as detailed in section 2.2.8.1) with one of the following; 

pLHCX (empty vector control), pLHCX-TAZ_full length TAZ, pLHCX-TAZ_Δexon5 

or pLHCX-TAZ_Δexon7, two plates per construct (Table 6). 

The following day eight 6cm plates were seeded with TAZMUT fibroblasts at 

2x105 cells/plate, i.e. four plates for TAZMUT_1 and four plates for TAZMUT_3. 

Two days following transfection of the packaging cells the virus containing media 

from the packaging cells (6ml from each plate, all treated individually) was 

removed with a syringe and filtered using a syringe filter (0.45µm pore size), 6ml 

of fresh media was added to the PT67’s in order to generate more viral 

supernatant for the following day. To this filtered viral supernatant was added 

6µl of 5mg/ml hexadimethrine bromide (polybrene, Table 1), which increases 

the efficiency of viral infection. The culture media was removed from the 

fibroblast plates, and the 6ml supplemented viral supernatant added (one 

fibroblast plate for each viral supernatant). The plates were then placed at 32°C 

5% CO2 overnight. This process was repeated the following day to give the 

fibroblasts a second dose of virus. 

On the third day the viral supernatant was removed from the fibroblasts and 

replaced with fresh supplemented DMEM as described in section 2.2.1 The cells 

were then left to recover from viral stress for one day. The following day 

antibiotic selection was applied in the form of 200µg/ml hygromycin, to select 

cells with stable expression of the TAZ constructs. 

All clones generated from this protocol were assayed for construct expression by 

western blot for the FLAG tag present in all constructs. Those that returned 

positive results where then assayed for TAZ activity by mass spectrometry for CL 
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and those that gave recovery of the Barth’s syndrome CL profile were used for 

all future experiments as control cells for the TAZMUT cells.     

2.2.8.3 Nucleofection 

Nucleofection was initially used as a method to generate stable cell lines but 

this proved unsuccessful. However, this method was highly successful for 

inducing transient expression of constructs, and was used as the standard 

method for inducing transient expression throughout the thesis. 

35mm dishes (glass bottomed dishes for confocal microscopy, Mattek) were 

prepared for seeding cells post nucleofection by adding 2ml of DMEM 

+10%FBS+1%Glutamine, to each dish. The dishes were placed at 37°C and 5% CO2 

to equilibrate in order that when the cells are added conditions will be optimal.  

Cells were harvested from a 15cm plate, media was aspirated and cells washed 

once in PBS before being detached using 1X Trypsin (Table 5). Once detached 

cells were removed from the plate and a cell count obtained using a 

haemocytometer. From this cell count the volume of cell suspension required to 

obtain 0.3x106 cells is determined. This is the number of cells required for one 

nucleofection reaction. The volume calculated is transferred into a centrifuge 

tube, ensuring enough aliquots for the number of reactions being undertaken. 

These aliquots are pelleted by centrifugation at 600xg for 10mins. 

Following centrifugation the supernatant is removed and the cells re-suspended 

in 100μl Nucleofector solution (100μl per reaction). The nucleofector solution is 

provided in Lonza kit, but supplement (also provided) must be added prior to 

use.  

The DNA construct to be expressed is added to the re-suspended cells; the 

amount of DNA added depends on the construct used and requires to be 

optimized for each construct. For most constructs used in this thesis 3µg was 

sufficient. However for Mito-dsRED 0.5μg of DNA was used, any greater amount 

caused artefacts in the cells upon fluorescence microscopy. The 

DNA/cell/nucleofector solution was well mixed by pipetting up and down but it 
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is important to avoid creating bubbles in the mixture. Once sufficiently mixed 

the solution was transferred to the sterile cuvettes supplied in the kit. 

Various programs on the Amaxa nucleofector device are recommended by Lonza 

(T-016, U-012, U-023 & V-013); all were tried with the most efficient protocols 

for the fibroblasts used in this thesis being the U-023 & V-013 programs giving 

~60-70% of cells taking up the DNA. As the V-013 protocol caused more cell 

death in our cells the U-023 protocol was always used. The cuvette was placed in 

the Nucleofector machine, the programme set and initiated.  

As quickly as possible following completion of the programme 500μl of media 

was removed from the plate(s) set up at the beginning of the protocol and added 

to the cuvette. Then, using the sterile pipettes (supplied in the kit), the 

contents of the cuvette was transferred to the pre-equilibrated plate(s). The 

plates were gently shaken to evenly distribute the cells and then returned to the 

incubator overnight. The following day the media was changed to remove dead 

cells and left to recover for at least one day before they are used. 

2.2.8.4 Lentiviral infection 

As Lipofectamine and nucleofection had proved unsuccessful as methods for 

generating stable cell lines and retroviral infection, although having some 

limited success when generating the TAZREV cells, was not reliable due to its 

reliance of dividing cells for infection a further method of stable cell line 

generation was sought to generate LC3-Cherry stable expression in all fibroblast 

line. Lentivirus does not require a cell to be undergoing cell division for 

infection, thus it represented an attractive alternative and following the 

generation of a suitable construct (section 2.2.6) was the method used and is 

described here. 

As with retroviral infection virus is generated by packaging cells which are in this 

case HEK293T cells. These cells were transfected with three plasmids, two 

helper plasmids pLpVSVG-1 and psPAX-2 (as mentioned in Chapter 4 section 

4.4.2) and the lentiviral construct carrying the LC3-cherry construct 

pLenti6_LC3-Cherry (generation of which is described in section 2.2.6). 

Transfection of these constructs was carried out using the calcium phosphate 
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method as detailed here. The day prior to transfection the HEK293T cells were 

seeded in a 10cm plate at 4x106 cells/plate and incubated overnight in 10ml of 

media (detailed in section 2.2.3) at 37°C and 5% CO2 to allow cells to attach. 

Late afternoon the following day the transfection mix was prepared as follows: 

10µg pLenti6_LC3-cherry, 4µg pLpVSVG-1, 7.5µg psPAX-2 were added to 440µl of 

sterile H2O and thoroughly mixed. To this was added 500µl 2X HBS (Table 5) and 

60µl 2M CaCl (sigma) solution. The solution was then mixed and left to incubate 

at 37°C for 30 minutes. The solution was then mixed one final time and the 

entire 1ml applied to the HEK293T packaging cells (the media on these cells was 

not removed; transfection mix was added to the media already on the plate). 

The cells were then returned to incubate for ~18 hours (overnight) at 37°C and 

5% CO2.On the same day that the HEK293T cells were transfected, the target 

fibroblast cells were plated on 10cm plates 2x106 cells/plate.  

The following morning the transfection mix and cell media, on the HEK293T 

cells, was removed and replaced with 6ml fresh media and cells incubated in 

this media for one day. 

Infection of fibroblasts takes place the following day: the 6ml virus containing 

media from the HEK293T cells was removed using a syringe and filtered using a 

syringe filter (0.45µm pore size). Fresh media was added to the HEK293T’s in 

order to generate more viral supernatant for the following day. 6µl of 5mg/ml 

hexadimethrine bromide (polybrene, Table 1) was added to the filtered viral 

supernatant to increase the efficiency of viral infection. The culture media is 

then removed from the fibroblast plates, and the 6ml supplemented viral 

supernatant is added to each one (one fibroblast plate for each viral 

supernatant). The plates were then placed at 32°C 5% CO2 overnight. This 

process was repeated the following day to give the fibroblasts a second dose of 

virus. Following the second dose, the virus containing media was removed and 

replaced with fresh supplemented DMEM as described in section 2.2.1. 

2.2.8.5 Reverse transcriptase assay for viral presence post infection 

Prior to selection of pools of LC3-cherry expressing cells by FACS as described 

below, cells had to be tested for residual lentivirus presence or production. The 

lentivirus generated by this method is replication incompetent but can infect 
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any human cell i.e. it can infect your own cells. Therefore before using these 

cells in any other experiments where perhaps infection of self would be more 

likely it was important to confirm that there was no virus present in the cells. 

Once applied to the fibroblasts the virus will be able to infect the cells but once 

inside is incapable of replicating itself and as such overtime and with successive 

media changes any remaining virus will disappear from the media. However an 

assay can be performed that will give confidence that this is the case, this assay 

is the commercially available ENZchek reverse transcriptase assay (Invitrogen). 

The protocol for its use is given below. 

Samples to be tested are taken fresh on the day of assay straight from cells in 

culture. Frozen samples seem to give lower readings, and thus may not be a true 

representation of actual viral count in culture. A positive control sample is also 

taken fresh on the day and is in the form of media taken from virus producing 

cells, i.e. packaging cells. A negative control is also required and is taken fresh 

on the day of assay from the parental cells of those infected, i.e. cells that have 

not encountered  the virus, but in all other aspects the same as those that have 

been infected. 

The method used is for the most part the same as that supplied by the 

manufacture. The template and primer were annealed; 2.5ul of component D is 

mixed with 2.5ul component E (this is half of what is given in manufacturer’s 

protocol and should allow for 50 reactions- further reductions would result in 

inaccuracies due to the difficulties in correctly measuring volumes smaller than 

2.5µl ). It was then incubated for 1 hour at room temperature to allow the 

primer and template to anneal. 

Standard curve and samples were prepared while incubating the primer and 

template. The manufacturer’s protocol shows that different components of cell 

culture media affect the fluorescence signal generated: to normalise for this we 

ensured that the standard curve and samples contained the same concentrations 

of any components as far as possible to give the most comparative readings.  

The standard curve was generated using the M-MLV reverse transcriptase 

available from Invitrogen. This comes with its own 5X enzyme buffer and DTT 

which was added to both the standard curve and samples to ensure all 
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components were equal. Five eppendorfs were labelled 15U, 1.5U, 0.5U, 0.15U 

and 0U and a Master Mix made using the water, DTT and 5X Enzyme buffer as 

detailed below. 

Master Mix 
5µl DTT 
20µl 5X Enzyme Buffer 
75µl water 
 
88µl of Master Mix is enough to cover the standard curve, and 12 samples where 

1µl of master mix is required for each replicate of each sample. The following 

volumes of Master Mix were then added to the previously labelled eppendorfs: 

15U -18.5µl, 0.15U- 18µl, 0.5 -13.4µl, 0.15U -18µl and 0U- 20µl. After which the 

enzyme was added as follows to produce the enzyme standards which were used 

to generate the standard curve: to the 15U eppendorf 1.5µl of enzyme was 

added (stock of enzyme is 33U/µl, so will dilute to 15U/µl in this way). This was 

mixed well and then 2µl of the 15U/ul stock was added to the 1.5U tube, to give 

1.5U/µl stock. Again this was mixed and 6.67µl added to the 0.5U tube, to give 

0.5U/µl stock. To make the 0.15U/µl stock 2µl of the 1.5U/µl stock was added to 

the 0.15U tube. Nothing is added to the 0U tube. 

Each enzyme standard was then diluted 1:5 in cell culture media (section 2.2.1). 

The 0U stock was also diluted in media in the same way to provide the 

background control for the assay in the media. This step ensures that the 

standard curve and samples all have the same levels of any assay 

quenching/enhancing constituents. 

Samples were prepared by removing 20µl (5ul is required for the assay, so 

triplicate+1 for each sample = 20µl) of media from the cells to be tested as well 

as the controls (as described above) and transferred into appropriately labelled 

eppendorfs. To each sample 4ul of Master Mix was added, again to ensure 

samples and standard curve are representative of each other.  

To prepare the reaction mixture the template primer mix, prepared earlier, was 

diluted by adding 1ml of component F (Again this is half that described in 

original protocol, as the template primer mix was halved originally). 20ul of this 

newly made template primer mix was added to the required number of wells of 
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a microtitre plate. The standards including the 0U background control are then 

added to the plate. Each standard was represented in triplicate and 5µl of each 

standard was applied to the designated wells of the microtitre plate containing 

the template primer mix. Next, the samples and positive and negative controls 

were added to the plate, each was represented in triplicate and 5µl of sample 

was added to the designated well.  

The plate was sealed in a reversible manner and incubated at room temperature 

for 1 hour. The reaction was the stopped by adding 2µl of component G to each 

well and stored at 4°C. Next 1X TE was prepared from the 20X stock provided 

(Component B) by dilution of 0.5ml 20XTE in 9.5ml nuclease free water (again 

half that of the manufacturer’s protocol). A working stock of PicoGreen was also 

prepared, diluting the stock provided (Component A) in the freshly made 1XTE 

again at half the volumes given in the manufacturer’s protocol; 25µl PicoGreen 

in 8.6ul 1XTE. This was prepared in a tube protected from light since PicoGreen 

will degrade upon exposure to light. 

173ul of working stock of PicoGreen was added to each well of the assay plate 

which was then incubated at room temperature protected from light for 5 

minutes. PicoGreen fluorescence was then measured using the Tecan Sapphire 

with excitation set at 480nm and emission detected at 520nm. A single end point 

reading is all that is required. These fluorescent readings were converted to viral 

presence in the sample by using the standard curve generated from the 

fluorescence detected from the room temperature standards, also measured 

during the assay. 

The limit of the Assay is 0.01U any detection above that is deemed to be unsafe 

and assay must either be repeated at later date to determine if detection was 

due to residual virus in the media or actual production of virus by cells. If a 

positive read persists then cells may be producing replication competent virus 

and should be destroyed. Readings below 0.01U are undetectable and samples 

are deemed free from virus. 
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2.2.8.6 Cell selection by FACS 

Once the infected cells are observed to be free of virus, as determined by the 

above assay, cells were selected for stable LC3-cherry expression using 

Fluorescence Activated Cell Sorting (FACS) to separate cells into pools based on 

fluorescence intensity. 

 
Figure 2:2- Fluorescence assisted cell sorting (FACS) 
Schematic taken and adapted from abcam website, explaining the principles of FACS. 

Cells to be sorted are supplied in suspension to the sorter from which they are 

aspirated and hydrodynamically focused in sheath fluid into a single cell stream. 

This allows for one cell only to pass the laser interrogation and analysis at any 

given time. This is very important as it means that each cell is analysed 
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individually, where more than one cell enters the point of analysis at the same 

time all those cells will be discarded as the sorter cannot accurately analyse the 

cells present. Depending on the result of this analysis the cell is given a charge: 

negative, positive or no charge at all. This charge (if given) is applied to the cell 

just prior to breaking from the sheath stream of cells into a single cell droplet. 

This droplet forms as the sheath stream containing the analysed and charged 

cells enters and air filled space, and as is the nature of any fluid injected into an 

air filled space it forms droplets. These droplets then pass through an electrical 

field created by two charged deflector plates. Dependent upon the charge given 

to the cell in the droplet, the cell is deflected to one of several collection tubes, 

or if uncharged continues past the deflection plates and into the waste channel 

for unwanted cells.  

To sort cells based on LC3-Cherry fluorescence cells were treated with 200nM 

Bafilomycin A the night prior to sorting to amplify the fluorescent signal for 

detection during FACS. Cells were sorted based on fluorescent intensity; with 

cells with no expression being discarded, whilst the remaining cells were split 

into three pools of low, medium and high fluorescence intensity (as described in 

Chapter 4 section 4.4.2.2). All cell lines were subject to the same selection 

process, using the same sorting parameters in each case. Following further 

interrogation of each pool it was determined that the ‘low intensity’ pool 

represented the most suitable for the imaging of mitophagy.   

2.2.9 Preparation of Cell lysates 

For generation of cell lysates for SDS-PAGE/western blot, cells were grown until 

confluent in 10cm plates and then lysed using 200µl RIPA buffer, Table 5. Plates 

were scraped using a cell scraper to ensure as high a concentration of protein in 

lysate as possible. Protein concentration was quantified using Thermo Scientifics 

BCA protein assay kit, Table 1. 

2.2.10 Mitochondrial Isolation 

Mitochondria were isolated from fibroblasts for SDS-PAGE/western blot 

detection of TAZ. For each sample of mitochondria generated, four confluent 

15cm plates of fibroblasts were required. PBS, Homogenizer tubes and 
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mitochondrial isolation buffer ((MIB) Table 5) were chilled on ice whilst protease 

inhibitor cocktail was thawed prior to extraction. 

Cell media was aspirated from plates and each plate washed once with PBS. To 

the first of the four 15cm plates 20ml of ice cold PBS was added and cells 

detached using a cell lifter. The cell/PBS suspension was then transferred to the 

second plate and the process repeated to detach the cells in this plate. This was 

repeated until all cells in each of the four plates have been detached and the 

combined cell/PBS suspension from all plates is in the fourth plate. The 20ml 

cell/PBS suspension was then transferred to a 50ml falcon tube and cells 

pelleted by centrifugation at 600xg for 10 minutes at 4°C. 

During this time the re-suspension buffer was made consisting of 1ml/plate of 

MIB, 1:100 dilution of Protease Inhibitor cocktail (Table 1) and 1:1000 dilution of 

1mM dithiothreitol (DTT) and the homogenizer tube is washed out with MIB.  

After cells have been pelleted the supernatant was aspirated and cells re-

suspended in 2ml of the re-suspension buffer, and transferred into the chilled 

homogenizer tube and incubated on ice for 15 minutes, to allow the hypotonic 

solution to cause the cells to swell. The Homogenizer (RZR 2051 control 

homogenizer, Table 2) was set to 1600rpm and cell suspension was homogenized 

with 100 strokes. The homogenate was transferred to eppendorf tubes and 

centrifuged at 600xg for 10 minutes in a pre-chilled centrifuge at 4°C to pellet 

any remaining cells. The supernatant was taken off and kept on ice, and the 

pellet again re-suspended in another 2ml of re-suspension buffer and transferred 

back into the homogenizer tube. This cell suspension was again homogenized as 

previously described. The second homogenate was again transferred to fresh 

eppendorfs and centrifuged at 600xg for 10 minutes in a pre-chilled centrifuge at 

4°C to pellet any remaining cells and cell debris. Again the supernatant was 

extracted and kept whilst this time the cell pellet was discarded. To separate 

the mitochondria from other cellular components, the retained supernatants, 

were further centrifuged at 12000xg for 10 minutes in a pre-chilled centrifuge at 

4°C. The pellet generated from this centrifugation step represents the 

mitochondrial fraction, whilst the supernatant represents the cytosolic fraction 

of the cells. The supernatant was extracted and kept in separate eppendorfs 

whilst the mitochondrial pellets from all eppendorfs are combined and re-
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suspended in 10µl of MIB. Protein concentration was quantified for each fraction 

using Thermo Scientifics BCA protein Assay kit, Table 1.  

2.2.11 BCA protein assay 

BCA protein assay was utilized to determine protein concentration in cell lysates 

and mitochondrial extracts. The assay was performed as per manufacturer’s 

instructions, with standard curve generated for use with BSA standards. 

Absorbance at 562nm was measured for all samples and standards using the 

Molecular Devices SpectraMax Plus 384 spectrophotometer and SoftmaxPro 

software. 

2.2.12 Preparation of isolated mitochondria and cell lysates 
for SDS-PAGE/Western blot 

In preparation for SDS-PAGE/Western blot analysis both cell lysates and isolated 

mitochondrial preparations were prepared to a final volume of 50µl with final 

concentration of 20µg/50 µl of protein for isolated mitochondria and 40µg/50 µl 

of protein for cell lysates as follows: 

Cell lysates; for each sample 12.5 µl of NuPAGE LDS sample buffer (4x) and 5 µl 

β- mercaptoethanol were mixed and then the sample added, diluted to the 

correct concentration in deionized water (ddH2O), to a total volume of 50µl. 

Isolated mitochondria; for each sample 12.5 µl of NuPAGE LDS sample buffer (4x) 

and 5 µl β- mercaptoethanol were mixed and then the sample added, diluted to 

the correct concentration in MIB, to a total volume of 50µl. 

2.2.13 SDS-PAGE 

Cell lysates and isolated mitochondrial extracts were resolved using SDS-PAGE. 

Denaturing polyacrylamide gels were poured at either 10% or 15% acrylamide 

(dependent upon the protein to be detected), and allowed to set with a covering 

of butanol saturated water to prevent the desiccation of the gel. Once set the 

water was removed and stacking gel poured on top (13% of 30% acrylamide, 12% 

of 1M Tris pH6.8, 1% of 10% SDS, 72% H2O, 0.6% of 10% APS and 0.6% TEMED) and 

gel comb (10 well) was inserted. Once the stacking gel had set the entire gel was 
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transferred into the gel tank, Table 2, and the tank filled with 1xSDS-PAGE 

running buffer (Table 5). The comb was then removed and 10µl of protein 

molecular weight marker (Full range rainbow molecular weight marker GE 

healthcare Life sciences) was added to the first well of the gel. The protein 

samples were added to the other wells. Each gel was run at 100 Volts 

continuously until the required degree of separation was achieved.  

2.2.14 Western blot 

Following protein resolution by SDS-PAGE proteins were transferred from the gel 

to a PVDF membrane (Table 1) using the Invitrogen Xcell II blot module, as per 

manufacturer’s instructions. Once the gel, membrane and sponges have been 

composed inside the Xcell II Blot module as per manufacturer’s instructions, it is 

then placed inside the Xcell Surelock Mini-cell and locked in place. The chamber 

of the Xcell II blot module was then filled with 1x blotting buffer (Table 5) whilst 

the chamber of the Xcell Surelock Mini-cell was filled with water to keep the 

apparatus cool during blotting. Transfer was performed at 400mA for 1.5 hours. 

The membrane was incubated briefly in ponceau to determine if the transfer 

was a success, followed by incubation in 5% Milk (Table 5) for 1 hour to block the 

membrane. The membrane was then incubated in primary antibody (Table 3) 

overnight in 5% milk (and 0.1% NaN3) at 4°C. The following day the membrane 

was washed four times in PBST (Table 5), and then the appropriate HRP linked-

secondary antibody applied in 5% milk solution and incubated for 1 hour at room 

temperature. The membrane was then washed again four times in PBST and 

proteins visualised using either ECL western blotting detection reagent from GE 

healthcare Life Science or Supersignal West Femto Chemiluminescent substrate 

from Thermo Scientific (Table 1) if a more sensitive detection system was 

require (as for LC3 detection) and Fuji X-ray film. On rare occasions the 

membrane required to be stripped to allow for re-probing of the membrane with 

different antibodies. This was undertaken using the Western Strip Buffer from 

Thermo scientific (Table 1). The membrane was incubated in this buffer for 10 

minutes and then re-blocked in 5% Milk, after which the process described above 

for antibody application and visualisation is repeated. 
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2.2.15 Cardiolipin mass spectrometry 

Cardiolipin mass spectrometry was performed to determine the levels of puCL in 

the various fibroblast cell lines used. For each fibroblast cell line cells were 

grown to 100% confluence in T175 flasks. Cells were then detached using 6ml 1X 

trypsin solution and centrifuged at 500xg for 5 minutes to pellet the cells. The 

pellets were then washed twice with PBS and finally centrifuged again to allow 

removal of all PBS. The cell pellets were then frozen -80°C at least overnight. 

Then pellets were shipped to Frédéric M. Vaz and Riekelt Houtkooper at The 

Laboratory of Genetic and metabolic diseases at the University of Amsterdam 

where cardiolipin mass spectrometry analysis was performed using the following 

protocol for lipid extraction and analysis (158).  

2.2.15.1 Phospholipid extraction 

Fibroblasts were re-suspended in PBS and sonicated for 20 seconds using a tip 

sonicator. The protein concentration was determined according to the Bradford 

protocol (158). Phospholipids were extracted from fibroblast homogenates using 

a single-phase extraction. In the single-phase extraction 3ml of chloroform-

methanol 1:1 (v/v) was added to a maximum of 300µL of homogenized cells to 

prevent phase separation. After addition of the CL internal standard (0.4nmol of 

CL(14:0)4 (Avanti Polar Lipids) dissolved in 50µL chloroform), the mixture was 

shaken vigorously for 2 minutes and placed on ice for 15 minutes, followed by 

centrifugation at 1000×g. The supernatant was transferred to another tube, and 

the protein pellet was extracted once again with 3ml of chloroform-methanol 

2:1 (v/v). The organic layers were combined and evaporated under a stream of 

nitrogen at 45°C. The residue was dissolved in 150µL of 

chloroform/methanol/water (50:45:5 v/v/v) containing 0.01% NH4OH, and 10µL 

of this solution was injected into the HPLC-MS system. 

2.2.15.2 HPLC mass spectrometry 

The HPLC system consisted of a Surveyor quaternary gradient pump, a vacuum 

degasser, a column temperature controller and an autosampler (Thermo Electron 

Corporation, Waltham, MA). The column temperature was maintained at 25°C. 

The lipid extract was injected onto a LiChrospher 2×250mm silica-60 column, 

5µm particle diameter (Merck, Darmstadt, Germany). The phospholipids were 
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separated from interfering compounds by a linear gradient between solution B 

(chloroform-methanol, 97:3, v/v) and solution A (methanol-water, 85:15, v/v). 

Solution A and B contained 1ml and 0.1ml of 25% (v/v) aqueous ammonia per 

litre of eluent, respectively. The gradient (0.3ml/min) was as follows: 0–10 

minutes: 20% A to 100% A; 10-12 minutes, 100% A; 12-12.1 minutes: 100% A to 0% 

A; and 12.1–17 minutes, equilibration with 0% A. All gradient steps were linear, 

and the total analysis time, including the equilibration, was 17 minutes. A 

splitter between the HPLC column and the mass spectrometer was used, and 

75µl/minutes eluent was introduced into the mass spectrometer. A TSQ 

Quantum AM (Thermo Electron Corporation) was used in the negative 

electrospray ionization mode. Nitrogen was used as nebulizing gas. The source 

collision-induced dissociation collision energy was set at 10V. The spray voltage 

used was 3600V, and the capillary temperature was 300°C. Mass spectra of CL 

and MLCL molecular species were obtained by continuous scanning from m/z 380 

to m/z 1100 with a scan time of 2s. 

2.2.16 Mitochondrial function assays: Seahorse 

The Seahorse measures Extracellular acidification rate (ECAR) as a surrogate 

measure of lactate production and oxygen consumption rate (OCR) as a surrogate 

for OXPHOS activity. It uses two probes located in the cartridge plate, one 

measures oxygen concentration and one detects acidity using fluorescence 

(Figure 2:3). Using these probes the seahorse monitors fluctuations in oxygen 

levels and acidity over time and then calculates the consumption and production 

rates that are OCR and ECAR. There are also drug delivery ports which can be 

used to examine the activity of various complexes in the ETC by addition of 

specific inhibitors of one or more of the complexes, followed by monitoring of 

OCR and ECAR to determine if and how mitochondrial function is affected. There 

are four drug ports on the Seahorse plate and these can be filled with four 

different mitochondrial disruptors typically, oligomycin, CCCP, antimycin and 

rotenone. 

Oligomycin inhibits ATP synthase by blocking its ability to transport protons back 

into the mitochondrial matrix. Addition of this will typically reduce OCR and 

increase ECAR as cells resort to glycolysis for ATP generation. However there is a 

slight proton leak whereby other protein uncouplers allow movement of protons 
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back into the matrix without the need for ATP synthase. This does not generate 

ATP but for the other ETC complexes to pump protons back out does require 

oxygen; hence oligomycin treatment reduces oxygen consumption dramatically 

but not fully. Oligomycin is usually the first drug to be added in a Seahorse 

assay, followed by CCCP addition. 

As previously mentioned CCCP is a mitochondrial uncoupler, abolishing the 

proton gradient established by complexes I-IV allowing un-restricted flow of 

protons across the inner mitochondrial membrane, uncoupling the whole OXPHOS 

system. This causes a dramatic increase oxygen consumption to be detected by 

the Seahorse due to complexes I-IV running at maximal speed trying to re-

establish the proton gradient. The next drug to be added is either rotenone or 

antimycin. 

Rotenone inhibits the transfer of electrons from complex I thereby blocking 

OXPHOS. Antimycin inhibits complex III, again blocking OXPHOS. Both prevent 

the transfer of electrons through the electron transport chain, preventing the 

proton gradient forming, essentially halting OXPHOS completely. This results in 

complete loss of mitochondrial oxygen consumption, any residual oxygen 

consumption detected is non-mitochondrial. 

 

Figure 2:3- The Seahorse assay explained 

The above scheme is taken from Seahorse Bioscience promotional material. It shows the setup of 

plates required to run a Seahorse assay with the cells in a confluent monolayer at the bottom of the 

cell plate, which in specific Seahorse media. The green cartridge plate above contains the 

Fluorescent sensors and probes for detection of oxygen consumption and acidification rate. It also 

contains drug injection ports so that compounds can be added during the assay and their effect on 

respiration recorded. 
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These measurements require a confluent monolayer of cells to be present in the 

cell plate with no gaps to ensure an accurate reading from the probe plate. To 

take a reading the probe plate is pushed down into the cell plate to create a 

sealed chamber between the cells and the probes. On forming the chamber the 

Seahorse then monitors oxygen and acidity levels over time and calculates OCR 

and ECAR. The probes are then lifted to allow influx of oxygen and nutrients and 

the process repeated again. 

All six cell lines were assayed for mitochondrial function using the Seahorse Flux 

Analyser. The method below was applied for all cell lines. 

Cells were seeded at 40,000 cells/well in a XF24 cell culture micro plate 

(Seahorse bioscience) in 150µl of DMEM, supplemented with 10%FCS and 1% L-

glutamine and left to attach overnight at 37°C under 5% CO2. Four wells were 

left with no cells to serve as background wells for the assay. 

The following day 1ml of XF calibrant was applied to every well of the cartridge 

plate of an XF24 Assay Kit (Seahorse Bioscience). The plate was then placed at 

37°C in a non-gassed incubator for a minimum of 1 hour. This allows the probes 

to hydrate and equilibrate. During this time the Seahorse assay media (Seahorse 

DMEM, Table 1) was warmed to 37°C supplemented with; 25mM glucose, 2% FBS 

and 1% L-glutamine and pH adjusted to 7.4.  The stress test drugs, oligomycin, 

CCCP, antimycin and rotenone (Table 1) were then diluted in the seahorse media 

to concentrations of 1µM. Each drug was then applied to the appropriate ports in 

the probe plate of the XF Assay kit; oligomycin port A, CCCP port B, antimycin 

port C and rotenone port D. The plate was then returned to the incubator until 

required. 

The DMEM on the cells in the cell culture plate was removed and replaced with 

675µl of pre-prepared seahorse media. This was done row by row, as media has 

to be added slowly and carefully to prevent cells detaching, this prevents cells 

drying out between aspiration of DMEM and application of seahorse media. 

Following the media change the cell plate was transferred to the non-gassed 

37°C incubator to equilibrate. This step is crucial as it allows the cells and 

media to equilibrate to the change in CO2 concentration from 5% to atmospheric 

levels, which is important as the Seahorse Flux analyser operates at atmospheric 
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CO2 levels. This is the reason for the change in media as DMEM contains 

bicarbonate which is appropriate for buffering at 5% CO2 concentrations however 

at atmospheric CO2 concentrations this buffering will skew the pH and affect the 

assay. Seahorse media does not contain bicarbonate so this is not an issue when 

using this media. 

The cells have to equilibrate to this new CO2 level and as such need to be 

incubated for at least 30 minutes at 37°C in atmospheric CO2 levels. Whilst this 

is on-going the calibration of the XF Assay kit plate can begin. It is loaded into 

the Seahorse Flux analyser to begin calibration of the probes, which takes 

approximately 30 minutes thus on completion the cell plate will have finished 

equilibrating and can be loaded.  

The measurement protocol was the same for all assays; 3x mix/wait/measure 

steps to give three basal readings for oxygen consumption rate (OCR) and 

extracellular acidification rate (ECAR). The first port was then injected and the 

3x mix/wait/measure protocol repeated to get OCR and ECAR readings based on 

the effect of the drug. This was repeated for all ports and measurements for all 

drugs in succession. 

Following assay completion the cells were fixed within cell culture plate by 

adding 100µl 10% Trichloroacetic acid to the 675µl seahorse media already in the 

each well (TCA, Table 1). The plate was then incubated at 4°C for 1 hour, 

following which the TCA/media solution was removed and the plate washed with 

water. The plate was then air dried, until completely dry, usually overnight. The 

following day 100µl of 0.04% sulforhodamine B (SRB, Table 1) was added to each 

well and incubated for 30 minutes at room temperature. SRB staining is a well-

established colorimetric protein assay, and based on standard curve of cell 

number versus SRB absorbance at 510nm the data from the seahorse can be 

normalised on a well by well basis to cell number (159). 

Following incubation the excess SRB was aspirated off and the wells washed with 

1% acetic acid (Table 1). Again the plate was left to air dry overnight. Once dry 

the bound SRB is eluted by adding 100µl 10mM Tris pH10.5 to each well. Of this 

100µl, 50µl from each well was transferred to a well of a clear bottomed 96 well 

plate which already contained 200µl 10mM Tris pH10.5 in each well, including 
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the background wells devoid of cells in order to get background SRB readings. 

The plate was then assayed for absorbance at 510nm using Molecular Devices 

SpectraMax 384 spectrophotometer. These readings were converted to cell 

number based on standard curves and used to normalise the Seahorse OCR and 

ECAR readings  

2.2.17 Flow cytometry 

2.2.17.1 Mitochondrial mass 

Mitochondrial mass was measured using flow cytometry by measuring 

mitotracker green fluorescence as a surrogate for mitochondrial mass. 

Mitotracker green is a mitochondrial specific dye that can be used on live cells, 

where green fluorescence intensity can be directly correlated with 

mitochondrial mass. 

To perform this assay each cell type was measured three times in three different 

experiments. For each experiment each cell type was seeded in two wells of a 

six well tissue culture plate and grown to confluent. Mitotracker green was then 

applied to one of the two wells for each cell type at a final concentration of 

100nM and cells incubated for 1 hour in the dark at 37°C in 5% CO2. The cells 

were then washed twice in PBS to remove all media and excess mitotracker 

green and then detached from the well using 1ml of 1X trypsin (Table 1). They 

were then transferred to FACS tubes, one tube per well per cell line and these 

were then centrifuged at 600xg for 5 minutes to pellet the cells. The 

supernatant was then carefully removed and cells re-suspended in 500µl of PBS. 

The cell suspension was then analysed using the BD FACS Calibur, with 

fluorescence detected between 515-545nm allowing detection of the green 

fluorescence from mitotracker green. 10,000 cells were counted from each 

sample and data corrected for background using the unstained samples for each 

cell line. This was repeated till three replicates were obtained for each cell line.  

2.2.17.2 Mitochondrial membrane potential 

Two measures of mitochondrial membrane potential were performed in this 

thesis. One giving data of basal and CCCP treated membrane potential for all 
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cell lines and the second showing the effect of H2O2 on membrane potential over 

time. Although Flow cytometry was the same in both cases the treatment of 

cells prior to analysis by the FACS Calibur was different in each case.  

For basal and CCCP based measurements the cells were treated as follows. Each 

cell type was seeded in two wells of a six well plate were grown until confluent. 

Once confluent 100nM (final) Mitotracker Green and 20nM (final) 

tetramethyrhodamine ethyl ester (TMRE is a potentiometric mitochondrial 

specific dye that fluoresces when mitochondrial membrane polarity is intact and 

loses fluorescence upon loss of mitochondrial membrane potential, Table 1) was 

added to one well of the two for each cell line. The untreated well served as a 

background control for fluorescence. The cells were incubated for 1 hour in the 

dark at 37°C in 5% CO2.  and then washed twice in PBS to remove all media and 

excess dye before detaching cells from the well using 1ml of 1X trypsin (Table 1) 

and transferring  to FACS tubes, one tube per well per cell line. These were then 

centrifuged at 600xg for 5 minutes to pellet the cells. The supernatant was then 

carefully removed and cells re-suspended in 500µl of PBS. 

The cell suspension was then analysed using the BD FACS Calibur, with 

fluorescence detected at 515-545nm for mitotracker green and 564-601nm for 

TMRE. 10,000 cells were counted from each sample and data corrected for 

background using the unstained samples for each cell line and for mitochondrial 

mass using the mitotracker green data. Each sample was analysed for basal 

mitochondrial membrane potential and the same sample is treated with 10µM 

CCCP and re-analysed by the FACS Calibur to measure loss of mitochondrial 

membrane potential. This was repeated till three replicates were obtained for 

each cell line. 

For determination of the effect of H2O2 on mitochondrial membrane potential 

over time, eight wells across two six well plates were seeded with the same cell 

line and grown till confluence. Then each well was treated every 30 minutes 

with 500µM (final) H2O2. Each well represents a different exposure time for H2O2 

with three wells remaining untreated as controls whilst every other well was 

treated for either 1 hour (two 500µM treatments), 1.5 hours (three 500µM 

treatments), 2 hours (four 500µM treatments), 3 hours (six 500µM treatments) or 

4 hours (eight 500µM treatments). An hour before all H2O2 treatments are 
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completed 100nM (final) Mitotracker Green and 20nM (final) TMRE (Table 1) was 

added to all wells except one of the H2O2 untreated wells, as this served as a 

control for background fluoresce. The cells were incubated for 1 hour in the dark 

at 37°C in 5% CO2 and H2O2 treatments completed.  The cells were then washed 

twice in PBS to remove all media and excess dye and detached from the well 

using 1ml of 1X trypsin (Table 1) then transferred to FACS tubes, one tube per 

well per cell line. These were then centrifuged at 600xg for 5 minutes to pellet 

the cells. The supernatant was then carefully removed and cells re-suspended in 

500µl of PBS. 

The cell suspension was then analysed using the BD FACS Calibur, with 

fluorescence detected at 515-545nm for mitotracker green and 564-601nm for 

TMRE. 10,000 cells were counted from each sample and data corrected for 

background using the unstained samples for each cell line and for mitochondrial 

mass using the mitotracker green data. In addition the two remaining H2O2 

untreated samples that were stained with TMRE and mitotracker green are used 

as positive and negative controls for mitochondrial membrane potential. One of 

these two samples was treated with 10µM CCCP to depolarise the mitochondria 

and serve as the negative control whilst the other remained untreated and 

represented the positive control. This was repeated till three replicates for each 

exposure time were obtained for each cell line.    

2.2.18 Microscopy: Imaging 

With the exception of the electron microscopy all other imaging was undertaken 

using the NIKON A1R confocal microscope (Table 2). 

2.2.18.1 Mitochondrial length 

Fibroblast mitochondrial length was measured based on fluorescent images 

obtained of the fibroblast mitochondria. Three of the final six cell lines were 

measured and imaged in this way. All aspect of this technique were kept 

constant for every cell line imaged, image acquisition parameters were set 

based on CONTROL_2 cells and then applied to both TAZMUT_1 and TAZMUT_3. 

The acquisition parameters and method of analysis of are described below. 
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Two days prior to imaging fibroblasts were transfected with Mito-dsRed using 

nucleofection as described in section 2.2.8.3. After a day of recovery from 

nucleofection the mitochondria were imaged as follows:  

Excitation and Emission; The 561.3nm laser was used to excite the dsRED 

fluorophore, laser power was set at 7.84%, emission was detected at 595nm with 

PMT voltage set at 101V and offset at -34V.  

Optics; A 60x Oil lens with a 1.4 numerical aperture was used and pinhole 

diameter was set at 34.5µm.  

Scanning system and acquisition; The piezo stage was used in order to acquire 

detailed Z-sections through the cells. As cells were live and no heater could be 

used due to use of the piezo stage images had to be taken as quickly as possible. 

Therefore the less accurate but faster resonant scanner was used, with a scan 

size of 512x512 pixels at a speed of 1 frame/second and line averaging of 4. All 

images were three dimensional in nature, composed of a 77 Z-sections. The Z-

sections were taken at a 0.2µm step size using the Nikon A1 Piezo Z Drive stage.   

All images we analysed using metamorph software as detailed below.  

2.2.18.2 Electron Microscopy 

Electron microscopy was performed as described in the following papers, with an 

overview given here (160, 161). 

Samples for electron microscopy (EM) were prepared as follows: Cells were 

grown until confluent on glass-bottom culture dishes (MatTek Corporation, 

Ashland, MA). Where-upon they were fixed for 10 minutes using a mixture of 

paraformaldehyde 4% and glutaraldehyde 2% (v/v), both EM grade, in HEPES (pH 

7.2). After the fixation, cells were incubated in a mixture of 4% 

paraformaldehyde in HEPES (pH 7.2) for 30 min. Each dish was then filled with 

HEPES and sealed using parafilm to limit leakage. All samples were shipped to 

Australia for processing by Massimo Micaroni at The University of Queensland as 

follows: 
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Cells were washed in 20mM glycine in PBS for 10 minutes followed by 3 x 10 

minutes washes with distilled water. Samples were then incubated in 1% OsO4 in 

Cacodilate buffer 0.2M, for 1 hour, in the dark. Then removed and samples were 

washed with distilled water 3x for10 minutes each. Then six ethanol washes 10 

minutes each increasing in percentage ethanol for each of the first four washes, 

50%, 70% 90% to 100%, the final two washes were at 100% ethanol. Then samples 

were incubated in a 1:1 Et-OH:Epon 812 (Electron Microscopy Science) mix for 1-

2 hours at room temperature, followed by a further 1-2 hour incubation in Epon 

812 alone at room temperature. Then the Epon 812 was removed and replaced 

with fresh Epon 812 and samples incubated in an oven for 18 hours at 70ºC. 

The cells included in the resin were detached from the dish and mounted on a 

bullet of resin and left to polymerize for a further 24 hours in the oven at 

70ºC.Thin sections were cut at 70 nm thickness with a Leica UltraCut 7 

microtome and examined at an accelerating voltage of 80KeV with a Tecnai F20 

intermediata voltage electron microscope (FEI Co., Nehterlands) or with a Jeol 

1011 (JEol, Japan). Images were collected with a 4K FEI Eagle CCD camera. Once 

cut, the sections were loaded on copper/nickel slot grids and then stained with 

Reybold's solution for 1 minute before image acquisition using the electron 

microscopy. 

2.2.18.3 Mitochondrial dynamics 

Mitochondrial dynamics was monitored using confocal microscopy in conjunction 

with a photoactivable mitochondrial construct Mito-PAGFP which was generated 

in our lab by a pervious lab member. This construct along with the Mito-dsRED 

construct described previously were transiently transfected into the fibroblasts 

using nucleofection as described in section 2.2.8.3. Three of the final six cell 

lines were imaged in this way. All aspects of this technique were kept constant 

for every cell line imaged; image acquisition parameters were set based on 

CONTROL_2 cells and then applied to both TAZMUT_1 and TAZMUT_3. 

The day following nucleofection media was removed and 2- ml fresh media 

added to the dishes. The cells were then given one further day to recover from 

nucleofection. Following recovery mitochondria were imaged; activation of the 

PAGFP construct in selected mitochondria was directed by the drawing and 
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positioning of a stimulation region of interest (ROI) over the mitochondria to be 

activated. The ROI dimensions were saved and re-loaded for every image taken. 

Settings for imaging and activation are given below.  

Excitation and Emission; Activation of the PAGFP-mito construct was induced by 

the 405nm laser set at 53% power, scan speed for activation was 1 

frame/second. The activated fluorophore was then excited using the 488nm 

laser at 3.4% power; emission was detected at 525nm with PMT voltage set at 

81V and offset at -9V. Finally, the 561.3nm laser was used to excite the dsRED 

fluorophore; laser power was set at 0.5% to prevent bleaching. Emission was 

detected at 595nm with PMT voltage set at 92V and offset at -4V.  

Optics; A 60x Oil lens with a 1.4 numerical aperture was used and pinhole 

diameter was set at 73.9µm.  

Scanning system and acquisition; each image was taken using the galvano 

scanner, with a scan size of 512x512 pixels at a speed of 1 frame/second and no 

line averaging. Each time-lapse initially lasted 3 minutes with images taken 

continuously over this time. However, to observe any dynamic activity of the 

mitochondria in the TAZMUT cells the later time-lapses lasted 10 minutes. The 

resonant scanner was used during this imaging for its speed and as images were 

only being taken in one plane the piezo stage was not required and as such the 

temperature and CO2 levels could be controlled to ensure cells were kept in 

optimal conditions throughout acquisition. 

2.2.18.4 Mitophagy 

2.2.18.4.1 Lysotracker red Mitotracker green live cell imaging 
Initial mitophagy data was gathered using a live cell system staining 

mitochondria with mitotracker green and lysosomes with lysotracker red. 

Measurement of co-localisation of mitotracker green and lysotracker red was 

used as a surrogate for the measurement of mitophagy.  

Two days prior to imaging fibroblasts were seeded in four 35mm glass bottomed 

plates (Mattek). Six hours prior to imaging two of the four plates were treated 

with the Cathepsin inhibitors (CI), pepstatin A (Calbiochem) and E64d (Enzo life 
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sciences) at 5µg/ml and 10µM respectively. After three hours one of these CI 

treated plates and one of the otherwise untreated plates were treated with 

10µM CCCP (Table 1). Of the four original plates, one was now untreated, one 

treated only with CI, one only treated with CCCP and finally one with both CI 

and CCCP. One hour before imaging all four plates were treated with 100nM 

(final) Mitotracker green, and 60nM (final) Lysotracker Red (Table 1). All plates 

were then incubated for one hour at 37°C at 5% CO2. Just prior to imaging all 

cells were washed twice with PBS (pre-warmed to 37°C) and media replaced. 

Images were then acquired from each plate as described below. Plates not being 

imaged were incubated at 37°C at 5% CO2 until required. For each cell line 

imaging was performed on two separate occasions with at least seventy cells 

imaged for each cell line.     

Excitation and Emission; Mitotracker green was excited using the 488nm laser at 

3.3% power, emission was detected at 525nm with PMT voltage set at 104V and 

offset at -8V. The 561.3nm laser was used to excite the lysotracker red, laser 

power was set at 26.6% and emission was detected at 595nm with PMT voltage 

set at 115V and offset at -9V.  

Optics; A 60x Oil lens with a 1.4 numerical aperture was used and pinhole 

diameter was set at 34.5µm.  

Scanning system and acquisition; the piezo stage was used in order to acquire 

detailed Z-sections through the cells the heater cannot be used with the piezo 

stage. Therefore, images had to be taken as quickly as possible using the less 

accurate but faster resonant scanner, with a scan size of 512x512 pixels at a 

speed of 1 frame/second and line averaging of 4. All images were three 

dimensional in nature, composed of a 77 Z-sections through the cell. The Z-

sections were taken at a 0.2µm step size using the Nikon A1 Piezo Z Drive stage. 

2.2.18.4.2 LC3-Cherry, TOM20/Alexa488 and LAMP2/Alexa 405 Fixed cell 
imaging 

The LC3-cherry expressing stable cell lines (generated as described in section 

2.2.8.4) were fixed and stained with antibodies for the mitochondria (TOM20) 

and the lysosome (LAMP2) and using confocal microscopy, as described below, 

cells were imaged in order to identify mitophagy events by co-localisation of the 
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three components of mitophagy, the autophagosome (LC3-Cherry), the 

mitochondria (TOM20/Alexa488) and the lysosome (LAMP2/Alexa 405). Five cell 

lines were imaged in this way CONTROL_2, TAZMUT_1, TAZMUT_3, TAZREV_1 

and TAZREV_3. The method was designed using the CONTROL_2 cells and was 

then applied to all other cells. 

Cells were prepared for fixation as follows: 19mm coverslips (Table 2) were 

sterilized by immersion in ethanol and then left to air dry in a tissue culture 

laminar flow cabinet. Once dry the cover slips were transferred in the wells of a 

six well plate, one coverslip per well (four wells per cell line). Cells were then 

seeded in each well at a density of 0.3x106 cells per well with 2ml of 

supplemented DMEM as described in section 2.2.1 and grown till 90% confluent.  

Upon reaching 90% confluence, one well was treated with Cathepsin inhibitors 

(CI), pepstatin A (Calbiochem) and E64d (Enzo life sciences) at 5µg/ml and 10µM 

respectively six hours prior to fixation (only for CONTROL_2 cells). Three hours 

prior to fixation a second well was treated CCCP at 10µM (only for CONTROL_2 

cells). Finally 1.5 hours prior to fixation one of the remaining untreated wells 

and the previously CI treated well (CONTROL_2 only) are treated with H2O2 at 

500µM (final) every 30 minutes for the entire 1.5 hour period. Following 

completion of this treatment all cells will be ready for fixation. 

Cells are fixed as follows: media was aspirated from all wells and each washed 

twice in 1ml PBS which was then aspirated and 2ml of ice cold acetone (Table 1) 

added to each well and the entire plate incubated at -20°C for 7 minutes. The 

acetone was removed and cells washed again twice with PBS to remove any 

remaining acetone. It is important that prior to and following fixation the cells 

are not allowed to dry out. Next the coverslips were blocked by adding 2ml 5% 

BSA (Table 5) and incubated in the dark on a rocker at room temperature for 1 

hour. 

Once blocked the coverslips were stained with the primary antibodies TOM20 

(for the mitochondria) and LAMP2 (for the lysosome). The two antibodies were 

diluted 1:50 in 5% BSA. Both antibodies were applied to the coverslips 

simultaneously; 200µl of the 5% BSA/dual antibody mix applied to each coverslip 

as detailed in Figure 2:4.  



107 
 

 Laura Catherine Avril Galbraith 

 
Figure 2:4- Antibody application for coverslips 
This schematic shows the set up for antibody staining of coverslips. In black is a shallow plastic 
tray inside which other components are composed. At the bottom, in blue, are three sheets of 
Whatman Filter paper cut to fit the tray. These sheets are soaked in water, such that each sheet is 
fully saturated but not so a layer of water is lying on top of the sheet, this prevents the coverslips 
drying out during antibody incubation. Over the top of the Whatman paper is a sheet of parafilm, in 
purple, covering completely all the water saturated whatman paper. To this parafilm 200µl droplets 
of 5%BSA/antibody mix (in yellow) are added, one droplet per coverslip to be stained. Finally the 
coverslips (blue disks) are placed cell side down on top of the BSA/antibody mix. The whole tray is 
covered/sealed with aluminium foil (in grey) as a lid which limits evaporation and protects the 
contents from the light. Care must be taken not to allow the foil to touch or dislodge the coverslips. 
The entire tray and contents are then placed at 4°C to incubate.  

Following overnight incubation at 4°C each coverslip was carefully retrieved and 

placed cell side up in a well of a new 6 well plate (one well per coverslip), with 

2ml PBST in each well. The coverslips were washed for 5 minutes four times in 

PBST, at room temperature protected from light whenever possible. After 

washing the secondary antibodies were applied; Anti-Rabbit Alexa 488 (Table 4) 

for TOM20 and Anti-Mouse Alexa 405 (Table 4) for LAMP2. The secondary 

antibodies were again diluted 1:250 in 5% BSA and as before both secondary 

antibodies were applied simultaneously using the method described in Figure 2:4 

although on this occasion incubation lasts only 1 hour. 

Again coverslips were washed for 5 minutes four times in PBST at room 

temperature in the dark. Whilst this was on-going the microscope slides are 

prepared for coverslip mounting by labelling, and an aliquot the mountant, 

Prolong Gold (Table 1) was defrosted. After washing was complete two drops of 

Prolong Gold are applied to each slide using a p200 Gilson pipette. The 

coverslips were then applied as follows: using forceps the coverslip is removed 

from the PBST and immersed briefly in deionized water to wash off traces of 

PBST. It is then dabbed gently on absorbent tissue paper to remove excess water 

before placing cell side down in the Prolong Gold on each slide. The slide is then 

carefully transferred to a dark place at room temperature to allow the Prolong 

Gold to harden; this can take 24-48 hours. Once hardened coverslips were finally 

sealed by applying a thin layer of nail varnish around the join between the 

coverslip and slide, this can be undertaken before the Prolong gold hardens if 
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the slides are required sooner. Once the nail varnish sets the slides are then 

ready for imaging as described below using the NIKON A1R confocal microscope.  

Excitation and Emission; Alexa 405 (LAMP2) was excited using the 405nm laser at 

13.3% power; emission was detected at 450nm with PMT voltage set at 106V and 

offset at -5V. Alexa 488 (TOM20) was excited using the 488nm laser at 3.5% 

power; emission was detected at 525nm with PMT voltage set at 86V and offset 

at -8V. The 561.5nm laser was used to excite the mCherry fluorophore, laser 

power was set at 3.4%, and emission was detected at 595nm with PMT voltage 

set at 144V and offset at -9V.  

Optics; A 60x Oil lens with a 1.4 numerical aperture was used and pinhole 

diameter was set at 39.72µm.  

Scanning system and acquisition: As cells were fixed speed of acquisition was not 

critical and as such the more accurate but slower galvano scanner was used, 

with a scan size of 1024x1024 pixels at a speed of 1 frame/second and no line 

averaging. All images were three dimensional in nature, composed of a 33 Z-

sections. The Z-sections were taken at a 0.2µm step size using the Nikon A1 

Piezo Z Drive stage. 

2.2.19 Image analysis 

2.2.19.1 IMAGEJ 

The initial mitophagy image analysis was performed using an IMAGEJ macro that 

was written by David Strachan of the BAIR and myself by modifying the 

established “colocalisation colour map macro” which is freely available online 

and details documented in the paper by Jaskolski et al (162), details of the way 

the macro was modified and used are given in Chapter 4 section 4.3.2. Below is 

the Java script for the macro which could be used in any version of IMAGEJ. It 

can only be used on two channel images i.e. images in which two fluorophores 

are to be analysed for co-localisation. It can be used to interrogate images saved 

in ND2, OIF or OBI format, i.e. acquired using the NIKON A1R or OLYMPUS 

FV1000.  
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// 20/10/2010 Macro written by David Strachan to load oib files from 
a given directory 
// Run the Colocalisation Colour map macro, as well as the modified 
grey scale colour map macro 
//  
//  
requires("1.43n"); 
// setBatchMode(true); 
print("\\Clear"); 
run("Clear Results"); 
run("Close All Without Saving"); 
 
dir = newArray(3); 
image=newArray(5); 
dir[1] = getDirectory("Select the directory that contains the image 
files"); 
//dir[2]=dir[1]+"Results/"; 
dir[2] = getDirectory("Select the output directory"); 
f=File.open(dir[2]+"Results.xls"); 
var f=f; 
 
print("The following files have been processed"); 
//print titles for data format into results.txt 
print(f,"Image Name \t Slice \t Value \t Count"); 
print("Image Name \t Slice \t Value \t Count"); 
filename = getFileList(dir[1]); 
// Open each file that exists in the selected directory and if it is 
the correct type perform the analysis on it. 
for (a=0;a<filename.length;a++){ 
 // if filename is a valid file then analyse 
 run("Close All Without Saving"); 
 validExtention=endsWith(filename[a],".oib") || 
endsWith(filename[a],".nd2") || endsWith(filename[a],".oif"); 
 // validExtention=endsWith(filename[a],".oib") || 
endsWith(filename[a],".tif"); 
 if(validExtention == 1){ 
  open(dir[1]+filename[a]); 
  print("Analysing ....."+filename[a]); 
 
 
  for (i=1;i<=2;i++){ 
   selectImage(i); 
   //********** Change the Values here to chop a 
different amount from each stack ********** 
   //  chop end slices from 65 inclusive 
   setSlice(nSlices); 
   for (k=nSlices;k>=65;k--){ 
    run("Delete Slice"); 
   } 
   // Chop the begining to slice 27 inclusive 
   setSlice(1); 
   for (k=1;k<=27;k++){ 
    run("Delete Slice"); 
   } 
  } 
 
 
  // Jump to function to do the actual analyses, supply 
output directory for results to be saved to. 
  run("Tile"); 
  for (j=1;j<=2;j++){ 
   selectImage(j); 
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   image[j]=getTitle(); 
   run("8-bit"); 
  } 
  run("ColocalisationColormap ", "  channel1=["+image[1]+"] 
channel2=["+image[2]+"]"); 
  image[3]=getTitle(); 
  saveAs("Tiff",dir[2]+replace(filename[a],".oib",".TIF")); 
  run("ColocalizationColormap2 ", "  channel1=["+image[1]+"] 
channel2=["+image[2]+"]"); 
  run("8-bit"); 
  image[4]=getTitle(); 
 
 saveAs("Tiff",dir[2]+replace(filename[a],".oib",".grey.TIF")); 
  run("Tile"); 
  // loop to select each slice in turn 
  for (j=1; j<= nSlices;j++){ 
   //Select Image 3 and slice just to visually watch 
what is happening. 
   selectImage(3); 
   setSlice(j); 
   //Select image 4 and slice to pull the numbers. 
   selectImage(4); 
   setSlice(j); 
   // use 
getStatistics(area,mean,min,max,std,histogram) to get the data from 
each slice 
   getStatistics(area, mean, min, max, std, histogram); 
         if (bitDepth==8 || bitDepth==24) { 
    for (i=0; i<histogram.length; i++) { 
     setResult("Slice", i, j); 
     setResult("Value", i, i); 
     setResult("Count", i, histogram[i]); 
     updateResults(); 
     // append data to results.xls file 
     print(f,filename[a]+"  \t"+j+" \t"+i+" 
\t"+histogram[i]); 
     print(filename[a]+"  \t"+j+" \t"+i+" 
\t"+histogram[i]); 
    } 
   } else { 
    value = min; 
    binWidth = (max-min)/256; 
    for (i=0; i<histogram.length; i++) { 
     setResult("Slice", i, j); 
     setResult("Value", i, value); 
     setResult("Count", i, histogram[i]); 
     value += binWidth; 
     updateResults(); 
     // append data to results.xls file 
     print(f,filename[a]+"  \t"+j+" \t"+i+" 
\t"+histogram[i]); 
     print(filename[a]+"  \t"+j+" \t"+i+" 
\t"+histogram[i]); 
    } 
   } 
   updateResults(); 
   
  } 
   
 } 
} 
File.close(f); 
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print("Finished"); 
   

2.2.19.2 Metamorph 

Metamorph software was utilized to measure mitochondrial length. Essentially 

this was performed as described by Song et al in their Methods paper in 2008 

(163). However certain parameters are variable dependent upon the cells being 

imaged; as such brief details of the parameters, thresholds and processes 

performed at each stage are given in the below. 

1. Import Z-stack image into Metamorph software 

2. Using Basic filters tab apply a median filter to every section of Z-stack: 

Filter width 3 pixels, filter height 3 pixels and subsample 1. 

3. Using Arithmetic tab subtract the median filtered image from every slice 

of the original Z-stack – resultant image is called subtract. 

4. Using Stack Arithmetic tab take “subtract” image and generate a 

maximum projection by selecting ‘Maximum’ – resultant image is called 

Maximum. 

5. Using the Scale Image tab take “Maximum” image and scale with low set 

at 202 and high at 888 and copy to 8bit. 

6. With the scaled “Maximum” image select adjust digital contrast tab set 

the brightness to 50, contrast to 50 and gamma to 1.4. 

7. With the adjusted image select the binary operations Tab, select binarize 

with the range set to low 246 and high 2511. The resultant image is called 

“Binary” 

8. Again using the binary operations tab select the “Binary” image and select 

erode, with neighbourhood set at 6 pixels and repeat count at 1 – the 

resultant image is called “Erode”. 

9. Again with the binary operations tab selecting the “Erode” image select 

skeletonize – the resultant image is called “Skeleton”. 

10. The final binary operations function is to select the “Skeleton” image and 

select the remove single pixel option – resultant image is called “Remove 

Pixels”. 

11. Using the “remove pixel” image regions are manually drawn round each 

cell in the image taking care to exclude the perinuclear region. The 
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mitochondrial network is highly complex in all cells in that region which 

makes it difficult to get accurate measurements. Then using the ‘Regions’ 

tab select create regions round objects. This traces round the perimeter 

of every mitochondria contained within the manually drawn cell regions.  

This perimeter is then measured as described in the paper (163), and the 

length of each mitochondria calculated by dividing the perimeter 

measurement for each mitochondria by two. 

 
2.2.19.3 IMARIS 

The BitPlane IMARIS software represents an effective 3D rendering of three 

dimensional Z-stack images as described in chapter 5 section 5.3.1. However it is 

also possible to use this software to obtain quantitative data from images, 

unfortunately currently there is no option to ‘batch process’ images under the 

same protocol to obtain this quantitative data (as is possible using Volocity) as 

such IMARIS was not used in this thesis in this manner. 

It was used however to generate several 3D renderings of images, taken as 

described in section 2.2.18.4, for presentation. A few of these have been 

presented in chapter 5 section 5.3.1. The method for this is also described in 

chapter 5 section 5.3.1 and so will not be revisited here. 

2.2.19.4 Volocity 

The Perkin Elmer Volocity software was used to analyse the images taken of the 

fixed cells as described in section 2.2.18.4.2. The design of this analysis protocol 

was a significant element of this thesis and as such it is described in chapter 5 

section 5.3.2 however details of specific parameters set will be given here. 

Although all the images were taken under the best possible imaging settings 

there was still an element of background noise, as such removal of noise and 

contrast enhancement was applied to all images in Alexa Fluor 405 and mCherry 

channels. A fine filter was used in each case for noise reduction and for contrast 

enhancement the black threshold was set to 500 and the white threshold left at 

4095 with a gamma of 1.  
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Having altered our images to give, in our opinion, the clearest images for 

analysis we set about developing the protocol that would measure mitophagy. 

Once all components have been identified Volocity can then quantify the 

occurrence of each component interacting with others. This simply requires the 

addition of an “INTERSECT” function to the Volocity protocol. To quantify 

mitophagy we simply direct Volocity to measure the number of intersections of 

mitochondria and autophagosomes; for late stage mitophagy we ask Volocity to 

measure the number of mitophagy events, as defined previously, that intersect 

with lysosomes. There are no thresholds to be set during this part of the 

protocol, Volocity makes these measurements based on the parameters set 

previously to define mitochondria, autophagosomes and lysosomes and simply 

looks for interaction between these defined components. 

Mitochondria are identified by setting parameters for the Alexa 488 channel (300 

as a minimum fluorescence intensity threshold, no upper limit and to separate 

touching components from one another the object size guide was set at 40µm3 

with minimum size limited at 1µm3), the autophagosomes are identified by 

setting parameters for the mCherry channel(1764 as a minimum fluorescence 

intensity threshold, no upper limit and to separate touching components from 

one another the object size guide was set at 0.22µm3 with minimum size limited 

at 0.22µm3) and the lysosomes through parameters within the Alexa 405 channel 

(1370 as a minimum fluorescence intensity threshold, no upper limit and to 

separate touching components from one another the object size guide was set at 

0.22µm3 minimum size limited at 0.22µm3). This approach allowed us not only to 

identify the different components in each image and consequently measure 

mitophagy events as described above, but also count the numbers of 

mitochondria, lysosomes and autophagosomes in each image.  

The data returned by Volocity was normalised to cell number and statistical 

tests applied as described below to determine the significance of the differences 

detected between cell lines analysed in this way. 

2.3 Statistical analysis 

The statistical tests performed throughout this thesis are indicated in the 

legends of each figure. However the statistical testing performed on the data 
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generated from Volocity analysis of the imaging data requires further 

explanation. Gabriela Kalna undertook the statistical analysis of the Volocity 

data using a generalized linear model as described below. 

To investigate the significance of the differences between the means of groups 

of continuous response variables t-test or analysis of variance are usually 

applied. The groups of data should be independent, normally distributed and 

have the same variance. However, our data violates assumptions of normality 

and/or same variance. Therefore, a generalized linear model with gamma 

probability distribution was fitted to the data. This is a sensible model for 

biological data that are restricted to positive continuous values and their 

variance is a function of their mean that is the variance of the response 

variables tends to zero as their mean tends to zero. 

Statistical analysis was performed in R package. Normality of data subsets were 

tested by shapiro.test. Generalized linear models were implemented using 

function glm and corresponding summary output tables contained the two-tailed 

p-values of interests.  
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Chapter 3 Characterisation of experimental system 
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3.1 Introduction 

Cardiolipin (CL) is a unique phospholipid in that it is composed of four acyl 

chains and found exclusively in the mitochondrial membranes. As mentioned in 

Chapter 1 it plays important roles in mitochondrial respiration, apoptosis and 

mitochondrial dynamics (39-42, 64, 143, 154, 161, 164, 165). Its role in each of 

these processes relies heavily on its structure. The four acyl chains of CL vary in 

length and degree of saturation. Specifically the polyunsaturated forms of CL, 

puCL, play major roles in these processes due firstly to the fluidity that they 

confer on the mitochondrial membrane and secondly due to the ease by which 

these unsaturated bonds can be oxidized. 

It is my hypothesis that these two properties of CL also have roles to play in 

mitophagy. First oxidation of the unsaturated double bonds in puCL species act 

as a signal of damaged mitochondria which is recognised and acted upon by the 

mitophagic machinery. In addition the role of CL in mitochondrial dynamics is 

also important to mitophagy: fission and or fusion of damaged mitochondria are 

a key determinants in mitochondrial fate. Loss of puCL affects these dynamic 

processes by reducing the fluidity of the mitochondrial membranes, causing 

them to be less flexible. As a result it is more difficult to induce the membrane 

bending, pinching and flexion require for fission and fusion. 

The synthesis of CL is described previously (Chapter 1, section 1.3.1), two 

dedicated enzymes stand out as key targets to affect CL synthesis; Cardiolipin 

synthase and Tafazzin (TAZ). CL synthase allows the conversion of PG and 

CDP_DAG to CL (Figure 1:4). This form of CL, although present to some level in 

mitochondria, appears not to be as functionally significant as puCL. However the 

next stage in the synthesis pathway allows for the conversion of immature CL 

generated by CL synthase to MLCL by phospholipase A. TAZ then takes this MLCL 

and adds a polyunsaturated acyl chain, phospholipase A then acts on this form of 

CL again to remove another saturated acyl chain which again replaced by an 

unsaturated one by TAZ. This cycle is repeated four times until all the original 

acyl chains are replaced by polyunsaturated ones, creating puCL. puCL is not 

only functionally important to the cells but our hypothesis relies on the 
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oxidation of puCL to form oxidised cardiolipin (oxi-CL). Oxi-CL cannot be formed 

from saturated CL due to the lack of doubled bonds present in the saturated acyl 

chains. 

This makes TAZ a very important enzyme, so important that loss of function of 

this enzyme in humans results in a severe genetic disease known as Barth’s 

syndrome, described in more detail in chapter 1(129, 146, 152).This condition 

results from the ablation of TAZ activity. It is already known that loss of TAZ 

effects cell death, mitochondrial dynamics and respiration (39-42, 64, 143, 154, 

161, 164, 165). However we believe that it also affects mitophagy. Based on this 

hypothesis patients with Barth syndrome would show reduced levels of 

mitophagy, due to low or non-existent puCL levels consequently resulting in low 

or non-existent oxi-CL levels and thus failure of damaged mitochondria to signal 

to the mitophagic machinery . In this chapter, using cell lines derived from Barth 

syndrome patients, we begin to investigate this hypothesis.  

3.2 The Model system 

Human skin Fibroblasts donated by two healthy individuals and two Barth 

syndrome suffers: C106, C109, Taz001, Taz003 respectively, were isolated by 

Riekelt Houtkooper(148). Details of the mutations affecting Taz001 and Taz003 

can be found in Houtkooper et al 2009 (148), and have been reproduced here in 

Table 7.  

 

Table 7- Mutations in Tafazzin gene for Barth syndrome cells. 
 

Here after these cell lines shall be referred to as Control_1, Control_2, 

TAZMUT_1 and TAZMUT_3 respectively. The cell lines were immortalised by 

over-expression of the catalytic subunit of human telomerase htert, this was 

introduced to the cells by retroviral infection performed by Zach Schug from our 

lab. 
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3.2.1 Mass Spectrometry analysis for Cardiolipin 

 As described in Chapter 1, Barth syndrome results from mutations in the gene 

encoding TAZ which in turn results in failure to produce mature puCL. The 

classic diagnostic test for individuals suspected of having Barth syndrome is mass 

spectrometry analysis of the CL profile of the patient. Those with Barth 

syndrome have decreased levels of puCL and increased levels of MLCL. To 

confirm the Barth’s nature of TAZMUT_1 and TAZMUT_3 mass spectrometry was 

performed. Cell pellets of all four cell lines were sent to The Laboratory of 

Genetic and metabolic diseases at the University of Amsterdam, where the lipids 

were extracted and analysed by Riekelt Houtkooper and Fred Vaz, separating 

lipids by High performance chromatography (HPLC) and analysing by mass 

spectrometry. Figure 3:1 gives the spectra for MLCL and CL for all four cell lines. 

All data are normalised to an internal standard of CL (m/z 619.5) which is added 

to each sample and set to 100%. 

 

Figure 3:1- Cardiolipin profiles for Control_1, Control_2, TAZMUT_1 and TAZMUT_3. 
(A) Mass Spectra for Control_1 and Control_2 cell lines. (B) Mass spectra for TAZMUT_1 and 

TAZMUT_3.  Spectra show MLCL and CL molecular species. Red boxed area highlights the MLCL 

species. IS corresponds to the CL internal standard added to each sample. Red arrows indicated 

increased MLCL levels; blue arrows show reduced MLCL levels and increased levels of puCL. 

Green arrows indicate loss of puCL species and increased saturated CL. 
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On the right of the spectra several clusters of peaks are observed, each cluster 

relates to different lengths of acyl-chains. CL can be synthesised from a variety 

acyl chains of different lengths. Each cluster is composed of several peaks; each 

cluster represents the same length of acyl chain but at different degree of 

saturation, with high m/z peaks representing highest degree of saturation. To 

the left of the spectra, highlighted with red boxes, are the MLCL species, the 

precursor molecule to puCL. CONTROL cells show low levels of MLCL and wide 

clusters of CL indicating the presence of both saturated CL and puCL. Comparing 

TAZMUT cells with CONTROL, the MLCL levels are highly increased (red arrows) 

in the TAZMUT cells and almost negligible in the Control cells (blue arrows). To 

the right of the spectra in TAZMUT cells we see a shift of the clusters toward the 

right, indicating longer acyl chains are being used to synthesize CL. In addition 

to this the clusters are much narrower, as highlighted by the green arrows, 

which indicates increased saturation of the CL species as compared to control 

cells. These three differences are key indicators of Barth syndrome, and confirm 

reduced levels of puCL as a result of the reduction in TAZ activity.  

3.2.2 Mitochondrial Length 

Upon initial imaging striking morphological differences between the 

mitochondria of TAZMUT and CONTROL cells was observed. It appeared that 

mitochondria of the TAZMUT cells were longer than that of CONTROL cells, 

Figure 3:2.  
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Figure 3:2- Initial imaging of Mitochondria 

Confocal images of live cells dyed with Mitotracker green. White boxes indicate region magnified in 

the images on the left. 

Electron microscopy of these cells also gave supporting results, showing once 

again the increased length of mitochondria in TAZMUT cells versus CONTROL, 

Figure 3:3. 
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Figure 3:3- Electron Microscopy to visualise mitochondria 

Representative images taken by Massimo Micaroni, shows the relatively short mitochondria of 

CONTROL_2 cells versus the elongated Mitochondria in TAZMUT_1 and exceptionally long 

mitochondria in TAZMUT_3.  Red arrows indicate mitochondria, whilst blue boxes give 

representation of length; only two mitochondria in each image have been identified in this way. 

Three dimensional imaging is of great importance when measuring mitochondrial 

length for two reasons. Firstly mitochondria exist on all planes of the cell and in 

all areas (other than the nucleus), their localisation is not fixed. Secondly 

mitochondria are not static and are free to move within the 3D volume of the 

cell, and are present in any orientation in that volume from horizontal to 

vertical. Therefore by imaging only in a single plane it is not possible to capture 

all the mitochondria present in the cell and also those that are captured may be 

mis-represented; a mitochondria may appear as a sphere if imaged in a single 
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plane but in fact be represents only a small portions of a mitochondrial filament 

that extends vertically through the cell. This kind of mistake would have a 

dramatic effect on any data regarding mitochondrial length. Therefore any 

method used to measure mitochondrial length must take into account the three 

dimensional movement and positioning of mitochondria, as is the case with the 

method described below. 

Song et al, developed a method by which mitochondrial length could be 

measured using three dimensional imaging and the software analysis package 

Metamorph (163). To apply this method required further imaging to obtain Z-

stack images for each cell line, numerous images taken through the 3D volume of 

the cell. Therefore we transiently expressed Mito-dsRED (red fluorescent protein 

targeted to the mitochondria by fusion with the mitochondrial targeting 

sequence of cytochrome C) as our mitochondrial marker, in three of the four cell 

lines; CONTROL_2, TAZMUT_3 and TAZMUT_1, and imaged each. Figure 3:4 

shows representative images for each cell line, the images are 3D projections of 

the original Z-Stacks from which increased length of the TAZMUT cells is 

apparent. 

 



123 
 

 Laura Catherine Avril Galbraith 

 

Figure 3:4- Mitochondrial length Z-stack images  

Three representative images from the three cell lines CONTROL_2, TAZMUT_3 and TAZMUT_1. 

Images are derived from 3D projections of the original Z-stack image; all cells were transiently 

transfected with Mito-dsRED. 

All images for each cell line were then analysed using the aforementioned 

method (163). All of the Z-stack images were interrogated using this method, 

which results in a measurement labelled “Distance” (N.B. in some versions of 

Metamorph this measurement is labelled “Perimeter”) this refers to 

measurement made around each object, which in the case of these images are 

mitochondria as seen in Figure 3:5. 
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Figure 3:5- How mitochondrial length is measured 

This schematic shows how mitochondrial perimeter is measured by Metamorph and how this 

relates to mitochondrial length. Step one show how the perimeter (pink) of mitochondria (green) is 

determined. This is then measured by Metamorph giving the distances shown below at stage 2. 

The following stages 3 and 4 are performed by the user and the above is just a pictorial 

representation. When the perimeter measurement is halved we are measuring the length along one 

side of the mitochondria as seen at stage 4, which is essentially the length of the mitochondria in 

question. 

The “Distance” values are actually measures of the perimeter of each 

mitochondrion, to obtain the actual length these need to be halved to give the 

length as described in Figure 3:5. It should be noted that one inherent flaw of 

this method is the possibility of underestimating mitochondrial length. The 

method measures mitochondrial length from a maximum intensity projection 

(compressed image) of each Z-stack image. Whilst this will give a good 

representation of mitochondrial length in most cases, were mitochondria pass 

diagonally through several planes the length may be underestimated. In this case 

the length is represented in the compressed image as the distance the 

mitochondria covers in the X or Y plane, it does not take into account the 

distance the mitochondria also covers in the Z plane which in fact may be 

greater than the distance covered in either X or Y planes. It is important 

therefore to consider this when interpreting the data generated form this 

method, however such an inherent error would be applicable to all data sets.   

The final data can be seen in Figure 3:6, Which shows that both TAZMUT cells 

have increased mitochondrial length as compared to CONTROL_2, with 

TAZMUT_3 having the longest mitochondria of all three cell lines tested. 
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Figure 3:6- Mitochondrial length 
Graph shows mean mitochondrial length for each cell line, with error bars of +/- SEM. * indicate 

data is statistical significant (* indicate p<0.5) from CONTROL_2. Thirteen images were taken and 

analysed for each cell line and statistical significance determined by ANOVA. 

Mitochondrial Length is of great importance in terms of mitophagy. Upon 

starvation mitochondria have been observed to elongate and as such avoid 

degradation by the autophagosome (6, 82). This is essential in this case as it 

ensures mitochondria are available to utilize the fuel sources derived by 

autophagy of other cellular components. However following mitochondrial 

damage it is observed that fission and thus reduced mitochondrial length is 

essential for mitophagy to proceed (106, 159, 163). 

Both scenarios highlight a common theme; if mitochondria remain or become 

elongated they simply cannot fit into an autophagosome and therefore cannot be 

degraded by mitophagy. As cell with mutant TAZ and therefore low puCL levels 

have increased mitochondrial length, it would suggest difficulty of mitochondrial 

engulfment by the autophagosome in these cells as well as a role for puCL in 

mitochondrial length determination. It would be expected that the loss of TAZ 

activity and the consequential decrease in puCL and increase in saturated CL 

affects the mitochondrial membrane fluidity.  
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The fluidity of any biological membrane is governed by the ratio of saturated to 

unsaturated lipids found in the membrane. Increases in the levels saturated 

lipids in a biological membrane result in increased membrane rigidity. This 

increase in rigidity means the capacity of the membrane to curve bend and flex 

is diminished. In the case of mitochondria, the ability of the mitochondria to 

bend and flex allows it to maintain a dynamic fluid network with the ability to 

undertake fission and fusion processes. Reduced fluidity makes the membrane 

recalcitrant to bend and flex movements resulting in fewer fission events. In 

mitophagy, mitochondrial fission is a key step in the isolation of damaged 

mitochondria from the rest of the mitochondrial network. If this cannot occur 

due to reduced membrane fluidity, it may be possible that mitophagy is reduced 

and damaged/dysfunctional mitochondria are maintained within the cell. As 

such perhaps the increased length of mitochondria we observe in our TAZMUT 

cells results from failed fission. This could lead to maintenance of damaged 

mitochondria due to their inability to detach from the rest of the healthy 

network. Further to this if biogenesis of mitochondria continues new healthy 

mitochondria may fuse with the damaged mitochondria in attempts to “rescue” 

them creating long filaments of mitochondria, perhaps explaining the increase in 

mitochondrial length observed in TAZMUT cells as compared to CONTROL.  

3.2.3  Mitochondrial Dynamics 

As mentioned above increased mitochondrial length may result from altered 

fission/fusion dynamics brought about by reduced membrane fluidity. It is also 

known that CL plays a more direct role in mitochondrial dynamics as discussed in 

Chapter 1, (39, 107, 161). Therefore we investigated the dynamics of the 

mitochondrial networks in our cells comparing CONTROL cells to TAZMUT. 

By transiently transfecting cells with Mito-dsRed and also with photo-

activateable GFP targeted to the mitochondria (both fluorophores targeted to 

the mitochondrial matrix by the mitochondrial targeting sequence of cytochrome 

C) we were able to monitor steady state mitochondrial dynamics of our cells. As 

the cells were doubly labelled (firstly with the stable mito-dsred and secondly 

with the activatable Mito-PAGFP) we were able to be quite precise with our 

laser activation of the PAGFP fluorophore. This allowed for specific activation of 
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only a small portion of the mitochondrial network and the dynamic nature of the 

network over time using time-lapse confocal microscopy. 
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Figure 3:7- Mitochondrial dynamics, CONTROL_2 
(A + B) Show selected frames from a time lapse taken following activation of Mito-PAGFP. The 

time following activation is given in seconds above each frame. The white circle in the first frame, 

0s, of each panel shows the point of initial activation. White arrows indicate fission and fusion 

events and emphasise the interconnected nature of the mitochondrial network as evidenced by 

diffusion of the activated fluorophore into adjacent areas of the mitochondrial network. The second 

frame in each panel is the one captured directly after activation.  
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Looking first at CONTROL_2 (Figure 3:7) we observed a highly dynamic and 

interconnected mitochondrial network. In the 1.9s  image of panel A of Figure 

3:7 shows the field of view directly after activation of the PAGFP fluorophore, 

showing already some degree diffusion of the activated fluorophore away from 

the small area of activation identified in the 0s image. Furthermore over a short 

period of time (18s) this area of GFP fluorescence spreads quickly as indicated 

by the white arrows in the third frame. This continues throughout all the frames 

in panel A, indicating a highly connected dynamic mitochondrial web in these 

cells. Indeed the diffusion of the fluorophore observed could result not only from 

high interconnectedness of the mitochondrial network but also as the result of 

fusion events and possibly mitochondrial biogenesis, examples of these potential 

events can be observed in the images at 57.19s,125.4s and 133s (again indicated 

by white arrows).  

Panel B shows a similarly dynamic interconnected mitochondrial web as observed 

in panel A. In addition we also see a number of both fission and fusion events 

taking place. Frame three, (27.6s) shows two possible fusion events that have 

occurred since initial activation, followed by another possible fusion event at 

57.19s. This last event appears to quickly lead to a fission event as observed at 

125.4s and again highlighted at 133s along with another fission event indicated 

by the second arrow. Taking the two panels together we observe a highly 

interconnected dynamic mitochondrial network, which is capable of both fission 

and fusion. 

Imaging of TAZMUT cells revealed a different situation, Figure 3:8 and Figure 

3:9. 
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Figure 3:8- Mitochondrial Dynamics, TAZMUT_1 

(A + B) Show selected frames from a time lapse taken following activation of Mito-PAGFP. The 

time following activation is given in seconds above each frame. The white circle in the first frame, 

0s, of each panel shows the point of initial activation. White arrows indicate fission and fusion 

events and emphasise the interconnected nature of the mitochondrial network as evidenced by 

diffusion of the activated fluorophore into adjacent areas of the mitochondrial network. The second 

frame in each panel is the one captured directly after activation. 
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Figure 3:9- Mitochondrial dynamics, TAZMUT_3 

(A + B) Show selected frames from a time lapse taken following activation of Mito-PAGFP. The 

time following activation is given in seconds above each frame. The white circle in the first frame, 

0s, of each panel shows the point of initial activation. White arrows indicate fission and fusion 

events and emphasise the interconnected nature of the mitochondrial network as evidenced by 

diffusion of the activated fluorophore into adjacent areas of the mitochondrial network. The second 

frame in each panel is the one captured directly after activation.  
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TazMUT_1 cells are shown in Figure 3:8 and the mitochondrial dynamics 

observed seemed very different compared to CONTROL. Despite the same size of 

region of activation for both TAZMUT_1 and CONTROL cells the degree of 

diffusion of the activated PAGFP directly following activation (Figure 3:8 panels 

A and B 1.9s) appears less in the TAZMUT_1 cells as compared to CONTROL_2. 

This may indicate that the mitochondrial network in TAZMUT_1 is less 

interconnected and thus preventing a similar level of fusion as was observed in 

CONTROL_2 cells. The time-lapse for this cell line was continued much longer 

than CONTROL_2, up to ten minutes, and yet in comparison very few potential 

fission or fusion events were observed. In panel A it takes the whole ten minutes 

before any potentially dynamic activity is observed within the activated region 

of the mitochondrial network.  

The activation and dynamics of mito-PAGFP in TAZMUT_3 cells was qualitatively 

similar to TAZMUT_1 (Figure 3:9). Panel A shows a slightly larger activated area 

as compared to TAZMUT_1, which may suggest this network is slightly more 

connected as compared to TAZMUT_1. However, in comparison to CONTROL_2 

TAZMUT_3 shows a lower degree of activated PAGFP diffusion, suggesting that 

TAZMUT_3 cells have reduced mitochondrial network interconnectivity. Over a 

similar timeframe and to CONTROL_2, panel A shows no further fluorophore 

diffusion over time following activation again in contrast to CONTROL_2 which 

does show further diffusion along with possible fusion and fission events over 

time. In panel B again a similar a lack of diffusion of GFP fluorescence following 

the initial activation as observed in panel A and data from TAZMUT_1. Panel B 

also highlights another between the cells lines which is observed at 11.5s. The 

activated mitochondrion appears ‘pinched’ along its length. Recent work by Gia 

Volts highlights a role for the endoplasmic reticulum in mitochondrial fission, 

and by using three dimensional imaging she has shown how the ER encircles and 

pinches mitochondrial filaments to induce fission (44, 47, 166). It may be that 

the pinching effect observed in our TAZMUT_3 cells results from attempted ER-

driven fission, but failure on the part of DRP1 and MFF to complete the process. 

Perhaps these two fission proteins require a puCL platform in the mitochondria 

from which to work. The oxidative effect of the 405nm laser used to excite the 

PAGFP could be damaging the targeted mitochondria and what is observed is the 

effect of the ER on this damaged mitochondrion, in an attempt to excise, by 
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fission, the laser damaged mitochondria prior to mitophagic degradation. 

However as we see from the following frame no complete fission results. 

Instead at the centre of the activated mitochondrion a ring structure appears. It 

has been shown that upon CCCP induced mitochondrial depolarisation 

mitochondria fragment and form donut like structures (104). Therefore in this 

frame we may be witnessing the formation of one a donut like structures 

without the preceding fission event. However the following frame again displays 

the pinched morphology of the mitochondrion- suggesting the cell is once again 

attempting to induce fission of this mitochondrial filament. In this attempt it 

appears it may have been successful as the final frame shows a possible fission 

event at the top left of the activated mitochondrion – perhaps suggesting that 

low puCL levels of the TAZMUT_3 cells does not completely block fission but 

does cause the process to become less efficient.  

In similar events have been observed in images (not presented herein) where the 

mitochondria become pinched and then as observed here undergo what appears 

to be extensive fission of one filament into many mitochondrial spheres. 

Remarkably these spheres remain in line with one another, like beads on a 

string, and then later appear to re-fuse to form the original filament. Perhaps 

these mitochondria are not undergoing full fission but only fission of one 

membrane. Others have shown how during fusion the inner and outer 

membranes fuse separately, (167). Perhaps the same is also true of fission, were 

each membrane inner and outer undergo fission separately. Thus what we 

observe here could be successful fission of the inner membrane only whilst the 

outer remains as one continuous membrane. As previously mentioned the two 

mitochondrial fluorescent markers used for this imaging approach are targeted 

to the mitochondrial matrix- therefore  the ‘mitochondria’ observed here is in 

fact only the mitochondrial matrix and inner membrane, the outer membrane is 

not identified. Consequently the ‘fission’ we observe is inner membrane fission 

and perhaps the outer membrane remains intact holding the now separated 

inner membrane compartments together appearing in our images like beads on a 

string and as though full fission has occurred. Yet later due to the failure of the 

outer membrane to 'fis' we see the inner membrane re-fuse once again forming 

the complete mitochondria. 
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It is unclear based on the images taken thus far how fission and fusion are 

affected in the TAZMUT cells. However there may be a problem with fission (and 

possibly fusion) in the TAZMUT cells and this may account for the difference 

observed in mitochondrial length, but further investigation is required to 

understand this fully. In addition we have observed that the CONTROL_2 cells 

have a far more interconnected mitochondrial network as compared to either of 

the TAZMUT cells and this too may be contributing to the differences observed in 

mitochondrial length of these cells as well as the health of the mitochondria and 

consequently the cells. These kinds of differences in morphology and 

mitochondrial dynamics almost certainly affect the health of the cell and 

mitochondrial network and potentially account for some of the symptoms 

attributed to Barth syndrome. Furthermore these differences could affect 

mitophagy and as such our next investigation was into the effect of reduced 

puCL levels on mitophagy. 

3.3 Initial Mitophagy Measurements 

We decided on an imaging approach to investigate mitophagy, using confocal 

microscopy to observe and hopefully quantify mitophagic events.  

3.3.1 Image acquisition 

As previously mentioned (section 3.2.2) live imaging of mitochondria should be 

three dimensional and fast. Therefore it is essential to pick the correct system 

with which to image. We chose the NIKON A1R confocal microscope. This 

microscope is equipped for both live and fixed cell imaging; it has three Lasers 

405nm, 488nm and 564nm. However the two most important features for our 

work were the piezo stage and the ability to switch between two types of 

scanners: the galvano (for slow high resolution image acquisition) and the 

resonant (for faster lower resolution image acquisition).  

The NIKON-A1R is equipped with a standard motorized staged giving X, Y and Z 

movement. However the Piezo stage allows for much finer and quicker Z 

movement, resulting in a more detailed image. This increased detail is of great 

importance when looking at small rare events like mitophagy. Less detail can 
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result in false positives, were for example an autophagosome may look like it is 

engulfing a mitochondria but in fact it is just sitting above it. Less fine Z-

sectioning can result in events being missed due to an event occurring in the 

plane of transition- i.e. the distance not imaged when using a standard 

motorised stage when moving from one section to another. The piezo stage 

reduces these kinds of occurrences dramatically by decreasing the distance of 

transition between z-sections. 

The Resonant scanner has a very fast speed (thirty frames per second at 

512x512) compared to the standard galvano scanning confocal (with scan speed 

of ten frames per second). The resonant scanner has a pitfall however in that 

this increased speed results in very poor quality images, but a “work around” is 

possible with very little effect on the image acquisition speed but dramatic 

improvement on image quality, and that is to add in line averaging, in our case 

we averaged over four lines, i.e. line of an image is scanned four times and an 

image produced based on the average of those scans images. This reduces the 

noise significantly for every image, increasing the image quality, as the signal to 

noise ratio is improved by the square root of the number of frames averaged. 

Yet this hardly affects the scan speed advantage given by using the resonant 

scanner in the first place.  

3.3.2 Mitophagy after depolarisation 

Loss of mitochondrial membrane potential has been identified as one of the 

preliminary stages and potentially a signalling mechanism in mitophagy 

induction. Depolarization of mitochondria occurs when the proton gradient 

maintained by the activity of the ETC is abolished. This gradient occurs over the 

inner mitochondrial membrane with the protein complexes of the ETC pumping 

hydrogen ions (H+) out of the mitochondrial matrix into the intermembrane 

space. The inner mitochondrial membrane acts as an impermeable barrier to H+ 

preventing free movement into the matrix. This barrier can be circumvented by 

proteins that transport H+ back across this membrane; mainly this occurs through 

ATP synthase to facilitate the generation of ATP. However other pore forming 

proteins can also carry protons back across and this is known as the ‘proton 

leak’. In addition some chemicals added to cells can also have similar effect by 
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carrying H+ across the membrane and these chemicals are known as 

protonophores. One well known protonophore is carbonyl cyanide m-

chlorophenyl hydrazone (CCCP). The actions of protonophores like CCCP abolish 

the proton gradient established by the ETC complexes, resulting in mitochondrial 

depolarization. This is known as uncoupling of the mitochondria as the actions of 

the ETC complexes are ‘uncoupled’ from ATP synthase by destruction of the 

proton gradient. The effect of CCCP is damaging to the mitochondria, disrupting 

their function and has been shown by many to induce mitophagy. It is now used 

regularly to trigger mitophagy to study the downstream events such as PARKIN 

recruitment. For this reason we have used CCCP as a mitophagy inducer in our 

cells.  

A variety of mitophagy inducing exposure times and concentrations are used by 

others. As such we decided to test our own cells to find the best inducing 

conditions. We found 10µM CCCP instantly depolarised mitochondria (Figure 4:6) 

however how long after depolarisation mitophagy occurs was unclear.  

To monitor mitophagy we stained the mitochondria with mitotracker green and 

lysosomes with lysotracker red. As Lysosomes fuse with autophagosomes in the 

final stage of mitophagy/autophagy, forming the autolysosome which breaks 

down the contents of the autophagosome using the lysosomal localised 

cathepsins, then used co-localisation of mitotracker green (mitochondria) and 

lysotracker red (lysosomes) as a surrogate for the measure of mitophagy. Using 

these two dyes we found a timeframe of 3 hours from the addition of CCCP to 

mitophagy (Figure 3:10). There has been some controversy over the specificity of 

the mitotracker probes following addition of CCCP, however no such issues were 

observed here (100).    
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Figure 3:10- Establishing the conditions for Mitophagy induction with CCCP 

CONTROL_2 cells were stained with Mitotracker green and Lysotracker red and then either treated 

for one or three hours with CCCP or left untreated before imaging using the NIKON A1R confocal 

microscope. 

The images show that there is little difference in co-localisation of mitochondria 

and lysosomes between the untreated and one hour treatment with CCCP cells, 

although it appears that the mitochondria are becoming fragmented. After three 

hours the mitochondria are completely fragmented. Fragmentation of 

mitochondria is a known effect of CCCP. The damaged caused by CCCP instigates 

the mitophagic response to remove the damaged organelles and as previously 

mentioned fission is required prior to engulfment of the damaged organelle by 

the autophagosome. Co-localisation between the mitochondrial spheres and the 
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lysosomes can be identified by the appearance of yellow dots at the three hour 

time-point which are not present before. These co-localisation events are what 

we used as our surrogate measure of mitophagy. After ascertaining the correct 

mitophagy inducing conditions with CCCP in our cells, we then began treating 

and imaging three of the four cell lines, CONTROL_1, TAZMUT_3 and TAZMUT_1, 

for comparison of levels of mitophagy.  

As mitophagic events are transient they are difficult to capture, to maximise our 

chances of observing these events we blocked the final stage in the pathway 

using the inhibitors (pepstatin A and E64d) of the lysosomal enzymes 

(cathepsins). These cathepsin inhibitors (CI’s) prevent the digestion of the 

mitochondria once they have been enclosed inside the autolysosome 

compartment. Essentially this inhibition results in an accumulation in 

autolysosomes and their contents, (in this case mitochondria) making a transient 

event more long lived and therefore easier to capture by microscopy. As such 

cells were imaged untreated, CI treated, CCCP treated and CCCP with CI’s 

treated. Firstly we imaged CONTROL_1 cells under these conditions, Figure 3:11. 
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Figure 3:11- Control_1 CCCP induced Mitophagy 

Representative images of CONTROL_1 cells under various treatments. All CCCP treatments are 

three hours at 10µM, whilst all CI treatments are for six hours prior to imaging, with Pepstatin A at a 

concentration of 5µg/ml and E64d at a concentration of 10µM. 

Untreated cells show a basal level of mitophagy which corresponds to the 

shortest, spherical, mitochondria in the field. For the most part the 

mitochondria remain in long filaments indicative of healthy undamaged 

mitochondria. 
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With addition of CI’s there is an accumulation of lysosomes, as to be expected. 

The lysosomes not only have roles in mitophagy but also general macro-

autophagy as well as direct lysosomal degradation of cellular components. Hence 

in adding the CI’s to the cells we block all of these degradative pathways the 

lysosomes are involved in resulting in the increase in their numbers as observed 

here. There may also be a slight increase in mitophagy levels as the background 

levels of mitophagy are blocked and mitochondria get stuck in the lysosomes and 

not degraded resulting in the increase seen. It appears that CI’s do not have an 

effect on mitochondrial morphology. 

With the addition of CCCP we see three distinct changes in the cells. Firstly the 

mitochondrial morphology is dramatically affected. Compared to untreated and 

CI treated we can see almost all mitochondria have become fragmented. 

Lysosome number and localisation appears similar to untreated as flux through 

the pathway is not blocked. Although it does appear that more mitophagic 

(yellow) punctae are present indicating CCCP treatment is inducing mitophagy. 

Finally the combined treatment of CCCP and CI’s gives yet further changes in the 

cells. As with CCCP alone the mitochondria are highly fragmented, but they also 

show perinuclear localisation. Perinuclear clustering of mitochondria has been 

identified as an indicator of imminent mitophagy (75). Furthermore the number 

of lysosomes has increased as seen in CI alone treatment and they to appear to 

become perinuclear in localisation. In terms of mitophagy the occurrence of 

mitophagic (yellow) punctae is dramatically increased in comparison to 

untreated and CI treated and CCCP treated cells. Together this data shows 

effective mitophagy induction by CCCP in these cells and how CI’s can be used to 

amplify the likelihood of capturing these events. This provides us with a control 

for mitophagy induction in cells with normal levels of puCL which can now be 

compared with our TAZMUT cells with their reduced levels of puCL (Figure 3:12 

and Figure 3:13). 
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Figure 3:12- TAZMUT_1 CCCP induced Mitophagy 
Representative images of TAZMUT_1 cells under various treatments. All CCCP treatments are 

three hours at 10µM, whilst all CI treatments are for six hours prior to imaging, with pepstatin A at a 

concentration of 5µg/ml and E64d at a concentration of 10µM. 
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Figure 3:13- TAZMUT_3 CCCP induced Mitophagy 

Representative images of TAZMUT_3 cells under various treatments. All CCCP treatments are 

three hours at 10µM, whilst all CI treatments are for six hours prior to imaging, with pepstatin A at a 

concentration of 5µg/ml and E64d at a concentration of 10µM. 

Both TAZMUT_1 and TAZMUT_3 appear to have low back ground levels of 

mitophagy, and low levels of mitophagy in CI only treated cells in each case.  
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Upon CCCP treatment fragmentation does occur but to a lesser degree than 

observed in CONTROL_1. This may be due to the fact that TAZMUT_1 and 

TAZMUT_3 have longer mitochondrial filaments to start with or represent the 

effects of reduced levels of fission resulting from low oxi-CL levels failing to 

signal adequately that a mitochondria is damaged and requires segregation by 

fission to allow mitophagy. The fragmentation effect is still present however to 

some degree. In TAZMUT_3 cells it does appear there is a slight mitophagy 

induction as compared to untreated, but this is not seen in the TAZMUT_1 and in 

either case is not to the same levels as in CONTROL_1 cells under this 

treatment. 

Looking at the dual treatment of CCCP and CI’s there may be a slight increase in 

the number of fragmented mitochondria, more evident in TAZMUT_3 cells, but in 

either TAZMUT line this is not as severe as observed for CONTROL_1. What is 

very evident however is a distinct lack of perinuclear localisation of the 

mitochondria. This localisation relies upon the function of PARKIN (75). The lack 

of this localisation here suggests a possible problem in PARKIN directed 

movement of mitochondria to the perinuclear region in the TAZMUT cells. Finally 

looking at mitophagy under this treatment, a slight induction may occur in the 

TAZMUT_3 cells but this does not appear in the TAZMUT_1 cells. This may result 

from potential residual activity of TAZ in the TAZMUT_3 cells which is absent in 

the TAZMUT_1 cells. As the TAZMUT_1 cells have a mutation resulting in the 

insertion of a premature stop codon it is most probable that these cells do not 

express any TAZ protein as it is likely that any transcript generated from this 

mutant gene would be degraded before translation. However the TAZMUT_3 

cells have appoint mutation in the TAZ gene resulting in an amino acid change, 

and whilst this appears to effect the activity of TAZ as observed by mass 

spectrometry (Figure 3:1) it does not preclude that protein may be expressed 

from this gene and that this protein may have some residual activity. Indeed the 

mass spectrometry data does indicate that the effect of this mutation in 

TAZMUT_3 although affecting the puCL levels dramatically as compared to 

CONTROL cells it is slightly less severe than that observed for TAZMUT_1 cells. 

This disparity between puCL levels in TAZMUT_3 and TAZMUT_1 cells, resulting 

perhaps form differing severity of the mutation effecting the TAZ gene, may 

account for the apparent difference in mitophagy as observed by mitochondrial 
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and lysosome co-localisation in Figure 3:12 and Figure 3:13. In either case the 

levels of both TAZMUT_1 and TAZMUT_3 appear much reduced as compared to 

CONTROL_1 cells. This suggests that the TAZMUT cells have a defect in 

mitophagy, and this may result from the reduced puCL levels in these TAZMUT 

cells.  

3.4 Discussion 

Here we present and characterize a model system for establishing if puCL levels 

effect mitophagy. Human skin fibroblasts have been donated by healthy 

individuals and patients suffering from Barth’s syndrome. These cells have been 

immortalized in all cases by the transfection of stable expression of htert, 

following which the cardiolipin profiles of each have been determined by mass 

spectrometry. This confirmed the Barth’s phenotype in the two TAZMUT lines as 

evidenced by the low levels of puCL, increased MLCL levels and a shift to longer 

chain saturated forms of CL. Whilst the healthy CL profile was represented in 

the two control cell lines. This gave us the confidence to move forward using 

these cell lines to investigate the two opposing scenarios. 

When we began imaging and characterizing our cells further it became evident 

that striking differences in mitochondrial length and dynamics were present 

when comparing CONTROL and TAZMUT cells. TAZMUT cells have longer 

mitochondria and the mitochondrial network was less dynamic than CONTROL 

cells, and that there is possibly an issue in mitochondrial membrane continuity in 

TAZMUT cells as compared to CONTROL. TAZMUT cells appear to have reduced 

matrix connectivity as compared to CONTROL, whilst it may be possible that the 

outer mitochondrial membrane is unaffected, however we were unable at this 

time for conclusively confirm this.  In addition in the TAZMUT cells we also 

observed what may be failed attempts at fission. In Figure 3:9 panel B 11.5s- 

243.5s we observed a swelling and pinching effect upon the activated section of 

the mitochondrial network. This could be resulting from failure of these 

mitochondria to undergo complete fission, whilst it is possible that the outer 

membrane is undergoing fission effectively, this pinching/swelling effect 

suggests that the inner mitochondrial membrane is refractory to this process. 

However this is only suggestive of such an issue, and further investigation of this 
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phenomenon would be required to make any conclusions. Since the fission/fusion 

dynamic and mitochondrial interconnectivity are crucial to cellular and 

mitochondrial health as well as progression of mitophagy, it seemed we had 

discovered the first indication that mitophagy in the TAZMUT cells could be 

affected. 

With this in mind a preliminary study of mitophagy in our cells was undertaken 

using the established inducer of mitophagy CCCP. Again striking differences in 

the effect of CCCP were noted. Firstly in mitochondrial morphology and 

dynamics, TAZMUT cells showed lower levels of mitochondrial fragmentation, 

which is usually caused by CCCP (and observed in CONTROL_1 cells). However 

this is consistent with the reduced level of fission observed in these cells during 

the study of mitochondrial dynamics. Also a lower degree of perinuclear 

mitochondrial localisation was noted following CCCP treatment. Perinuclear 

localisation of mitochondria has been identified as PARKIN driven process, which 

although not essential to mitophagy progression may indicate disruption to the 

function of PARKIN in the TAZMUT cells, which could affect mitophagy in other 

ways. In terms of mitophagy itself TAZMUT cells showed lower mitotracker green 

and lysotracker red co-localisation, indicating reduced mitophagy as compared 

to CONTROL_1 cells, although it appeared that TAZMUT_3 has slightly 

occurrence of mitophagy as compared to TAZMUT_1 which may result for the 

differing severity of mutation in the TAZ gene in each. 

Taken together this data supports our hypothesis that oxi-CL acts as a signal to 

initiate mitophagy. TAZMUT cells have lower levels of puCL and oxi-CL is derived 

by the oxidation of puCL. Therefore lower levels of puCL will result in lower 

levels of oxi-CL, potentially resulting in reduced signalling to the mitophagic 

machinery. 

However further analysis was required and our model system needed 

development in order that we could make these statements confidently. Our 

system relies on four cell lines derived from four genetically different 

individuals. In the work above we assume that only the known difference that 

exists between the cell lines is in TAZ activity and therefore puCL levels. 

However it is certain that other genetic differences exist between our cell lines 

since they are derived from four different individuals, and so it is possible that 
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the differences observed above are the result of these other genetic differences. 

To understand if the differences observed are TAZ activity related or not we 

needed to generate isogenic controls for the TAZMUT cells, where the only 

difference between the cells is in TAZ activity and puCL levels.  

In addition we have only begun to characterize our cell lines; further 

investigations into mitochondrial mass, mitochondrial membrane potential and 

mitochondrial function are also important for our investigation into mitophagy. 

Any one of these characteristics could affect mitophagy and so need to be 

considered. 
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Chapter 4 Generation of Revertants and first 
identification of Mitophagy. 
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4.1 Introduction 

The previous chapter began by characterizing our model system in terms of CL 

species present in each cell type, mitochondrial morphology and mitochondrial 

dynamics differences which could be related to differences in mitophagy as 

suggested from the initial imaging of lysosome and mitochondrial co-localisation. 

However it was noted that whilst our four cell lines represented a unique model 

to study the effects of loss of TAZ activity and reduced puCL levels, they harbour 

an inherent flaw. Each cell line was derived from genetically different 

individuals, meaning other genetic differences between the cell lines not 

involving TAZ could be causing the differences in mitophagy previously observed. 

Therefore it was essential to develop isogenic controls for our TAZMUT cells such 

that we could confirm that the observations made in the previous chapter were 

resulting only from differences in TAZ activity and puCL levels. Therefore this 

chapter firstly details the development of isogenic control cells and their 

characterization along with further characterization of the original four cell lines 

used. 

In addition we also felt that the differences in mitophagy observed in Chapter 3 

required quantifying. Mitophagic events are small and difficult to identify and 

quantitate accurately by eye without bias. Therefore in this chapter we also 

describe a method we developed to quantify our imaging data.  We also 

identified here a need for a direct oxidative stress as an inducer of mitophagy to 

help support our hypothesis that the oxidation of puCL acts as the initiator signal 

for mitophagy, and began to develop a system through which we could apply 

sufficient levels of oxidative stress using hydrogen peroxide to induce mitophagy 

and monitor its effects on mitophagy. 

4.2 Isogenic controls for TAZMUT_1 and TAZMUT_3 

4.2.1 Generation of the stable revertant cell lines 

To generate the isogenic controls required a functional copy of TAZ to be 

introduced into both the TAZMUT_1 and TAZMUT_3 cell lines. Along with the 
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original four cell lines Riekelt Houtkooper also provided four plasmids; three 

containing the most common spliceforms of TAZ: Full length-TAZ, TAZΔexon7 

and TAZΔexon5, as well as an empty vector control Figure 4:1B. Details of 

functional significance of each isoform was discussed in detail in Chapter 1 

section 1.3.2, to re-cap only the full length and Δexon5 isoforms have been 

observed to have the acyltransferase activity required for CL remodelling. These 

three variants were in a pLHCX vector backbone (clontech), which when used 

along with the amphotropic packaging cells PT67’s will generate retrovirus 

capable of infecting human cells as described Figure 4:1A. 
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Figure 4:1- Retroviral infection scheme and Plasmids 

(A) Schematic of viral generation taken and adapted from Clontech user manual (B) plasmid maps 

(i)pLHCX vector backbone, (ii) pLHCX_TAZ-Flag. 
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Each of the TAZMUT lines were infected with the three different TAZ variants, 

and following three days of infection and a day of recovery from viral pressure, 

cells were placed under selection to generate clones stably expressing TAZ-flag.  

Retroviral infection relies on a high rate of cell division; retrovirus can only 

infect cells that are undergoing cell division. Whilst standard cell lines like 

HEK293’s divide regularly and would be amenable to retroviral infection, our 

human fibroblasts cells grow and divide very slowly, consequently the chances of 

infection are much reduced. Combining this slow division rate with the labile 

nature of the virus generated by the packaging cells makes retroviral infection of 

these human fibroblasts challenging.  

Despite this three TAZ isogenic control clones were generated; a TazΔexon7 

variant clone and two clones of the Taz-full length variant. The TazΔexon7 

developed in a TAZMUT_3 background and one TAZ-full length clone in each 

TAZMUT background, TAZMUT_1 and TAZMUT_3.  

Disappointingly, the TazΔexon5 construct failed to produce any clones. The full 

length and Δexon5 variants have been shown to have the ability to restore the 

CL mass spectrometry profile of yeast, however only the Δexon5 variant was also 

able to rescue the growth defect observed in yeast in which the endogenous 

yeast homologue for human TAZ was disrupted(150). The Δexon7 variant failed 

to rescue either effect of loss of TAZ, giving no change in the CL species 

detected by mass spectrometry, no the growth defect observed in yeast (149, 

150). Similar results have also been shown in Drosophila, with full length and 

Δexon5 variants able to rescue the CL profile, in this case they show that the full 

length variant was able to rescue to the same degree as the Δexon5 variant. This 

differs from the findings in yeast, however they suggest that this may be due to 

the full length variant being only fully functional in higher organisms (149). So 

whilst it was disappointing not to obtain a Δexon5 variant clone in order to 

compare the two variants in our model, we felt confident that the full length 

clones would serve our purpose as isogenic controls for TAZMUT_1 and 

TAZMUT_3. 

Initial western blot of these newly derived clones, hereafter named TAZREV_1 

and TAZREV_3, corresponding to their parental lines TAZMUT_1 and TAZMUT_3, 
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for the full length variants and TAZ_EX7 for the Δexon7 variant (derived from 

TAZMUT_3),were positive for TAZ-FLAG (Figure 4:2).TAZ is typically difficult to 

detect, thus to increase the chance of detection fractionating cell extracts into 

a mitochondrial and cytoplasmic fractions effectively concentrates the 

mitochondrial fraction resulting in increased concentration of TAZ thus 

enhancing the likelihood of detection. The first Blot (Figure 4:2A) shows both 

cytoplasmic and mitochondrial fractions with VDAC 1 as a loading control. Its 

absence in the cytoplasmic fractions indicates a high efficiency of the 

fractionation process. The levels of VDAC1 are comparable across mitochondrial 

fractions indicating the equal loading. Only TAZEX7 (2) (hereafter called 

TAZ_EX7) clone was positive for TAZ-FLAG whilst the other clone was negative. 

The second panel of blots (Figure 4:2B) show only mitochondrial fractions for 

each clone. TAZEX7 is used as a positive control in each case and the vector 

control (TAZMUT_3 Vect CONT) as a negative control. GRP75, a mitochondrial 

heatshock protein was used as a loading control. Both the TAZREV_3 and 

TAZREV_1 tested positive for TAZ-FLAG, with the levels of TAZ expressed in 

TAZREV_1 being significantly higher than in either TAZREV_3 or TAZEX7. 
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Figure 4:2- Western Blot for TAZ-FLAG 
(A) Western blots to confirm expression of Δexon7 TAZ-FLAG. Two clones tested, TAZMUT_3 

TAZEX7 (1) and TAZMUT_3 TAZEX7 (2), with TAZMUT_3 Vect CONT as a negative control 

derived from infection with empty vector. Cells were fractionated into mitochondrial (M) and 

cytoplasmic(C) fractions. VDAC1 is used as a measure of the quality of fractionation as well as a 

loading control for the mitochondrial fractions. (B) Western blot to confirm full length TAZ-FLAG 

expression. Two clones tested TAZREV_3 and TAZREV_1, with TAZMUT_3 TAZEX7 as a positive 

control and TAZMUT_3 Vect CONT as a negative control. Only mitochondrial fractions were used 

and GRP75 was used as a loading control. 

Interestingly in both the blots TAZ-FLAG appeared as two bands. To try and 

tease out what the second band was we ran a second western and this time 

blotted for TAZ using a newly derived TAZ antibody, (kindly donated by Stephen 

Claypool) detecting endogenous TAZ rather than the FLAG tag. One suspicion 

was that the extra band was a non-specific band detected due to the nature of 

the FLAG antibody (Figure 4:3). Only the TAZREV_1 and TAZREV_3 were tested 

again and in both cases a second band was still detected. In this case whole cell 

lysate was used and all six cell lines were tested. In all cases two bands were 

detected at the correct size for TAZ, except in TAZMUT_1. It may initially be 

surprising to realise that TAZMUT_3 expresses TAZ, however unlike TAZMUT_1 
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TAZMUT_3 only has a point mutation within the TAZ gene, switching one amino 

acid for another rendering it inactive yet not precluding that protein may still be 

translated, transcripts from the TAZ gene are still generated in Barth syndrome 

patients in fact to elevated levels(148). However, TAZMUT_1 has a mutation that 

introduces a premature stop codon so it would be more likely that no protein 

would be generated in the case of this mutant, perhaps due to nonsense 

mediated decay of the transcript from the gene or some other post-

transcriptional process as this cell line like TAZMUT_3 still generates TAZ mRNA 

if not protein (Table 7(148)). In any case, where a positive result for TAZ 

expression is observed two bands are seen, this suggests that those seen in the 

FLAG blot are not due to non-specific nature of the antibody, perhaps they 

represent post-translational modifications of the TAZ protein, perhaps 

phosphorylation, acetylation or protein cleavage. Commercially available 

antibodies for TAZ are for the most part unreliable and non-specific. Therefore 

literature pertaining to these double bands is unclear, and as such we cannot 

draw on any information there to try and formulate and explanation. 

 

 

Figure 4:3- TAZ antibody Western blots all cell lines 

Western blots of all whole cell lysate from all six cell lines. Actin used as the loading control. 

Treatment with H2O2 is indicated by the +/- above each lane of the blot, + for treatment and – for no 

treatment. 
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4.2.2 Cardiolipin profile for revertant cell lines 

Expression of protein is not proof of rescue of the Barth’s phenotype. As seen by 

the blots above (Figure 4:3), TAZ is expressed even in TAZMUT_3 cells, where it 

does not function. So for the revertant cells it was important to establish that 

the re-introduced TAZ was indeed active and restoring the CL profile in the 

TAZREV_1 and TAZREV_3 to something akin to that observed in the original 

control cells (CONTROL_1 and CONTROL_2). Once again cell pellets, of the newly 

generated revertant cell lines were sent to The Laboratory of Genetic and 

metabolic diseases at the University of Amsterdam, where the lipids were 

extracted and analysed by Riekelt Houtkooper and Fred Vaz, separating lipids by 

High performance chromatography (HPLC) and analysing by mass spectrometry 

(Figure 4:4). 
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Figure 4:4- Cardiolipin profiles for TAZ Revertant cell lines 

(A) CL mass spectra for TAZMUT_1 and TAZMUT_3, same data as presented in figure 3.1. (B) CL 

spectra for isogenic revertant clones derived from TAZMUT_1 and TAZMUT_3 respectively by re-

introduction of the full length isoform of TAZ. (C) CL spectra for isogenic revertant clone derived 

from TAZMUT_3 by re-introduction of the Δexon 7 isoform of TAZ. The red box highlights the area 

corresponding to MLCL species. Red arrows indicate increased levels of MLCL, green arrows 

indicate decreased levels of puCL and increased levels of saturated CL. Blue arrows indicate 

decreased levels of MLCL and increased levels of puCL. IS indicates the exogenous CL standard. 

Comparing initially TAZMUT_1 with TAZREV_1, a dramatic decrease in the MLCL 

species is most obvious in the TAZREV_1 compared to the TAZMUT_1, whilst on 

the right hand side of the spectra the clusters have shifted to the left and have 

widened with a greater number of peaks at each cluster indicating increased 

levels of puCL. This is indicative of a functional TAZ protein and as such suggests 

that the re-introduction of full length TAZ into TAZMUT_1 has resulted in the 
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rescue of the CL profile. The same can also be said when comparing TAZMUT_3 

with TAZREV_3, although the loss of MLCL is perhaps not as dramatic, being as 

there was less MLCL in the TAZMUT_3 cells to begin with, there is still a 

significant loss of MLCL upon re-introduction of full length TAZ. In addition it is 

also observed that as with TAZREV_1, TAZREV_3 shows a shift in the position of 

the peak clusters on the right toward the left and a widening of the peaks 

indicating once more the increase in puCL species present. Suggesting, that in 

the case TAZREV_3, the introduction of full length TAZ has also resulted in the 

rescue of the CL profile. 

Of secondary interest is the result for the TAZ_EX7 revertant. This clone showed 

expression of the Δexon 7 isoform of TAZ through western blot. As mentioned 

previously this isoform has been shown in Yeast and Drosophila to be ineffective 

in mitigating the defects observed in TAZ mutant Yeast and Drosophila (149, 

150). It would seem that the same is also true of human fibroblasts. Indeed when 

examining the spectra (Figure 4:4C), there is in fact increase in the number 

MLCL species present when comparing to the parental line TAZMUT_3 (red 

arrows). Green arrows on the right of the spectra indicate further loss of the 

puCL by the narrowing of the peaks as well as a shift to the right of the spectra 

indicating the increase in molecular weight which is attributed to increased 

saturation of the CL species present. It is notable that this TAZ_EX7 spectra 

appears to show a worsening of the Barth’s phenotype as compared to the 

original TAZMUT_3 cells. This suggests that this isoform not only fails to rescue 

the mutant TAZ phenotype but may in fact cause further deterioration.   

Why this may be the case is unknown, perhaps one possible explanation is that 

the Δexon 7 isoform has a regulatory effect under normal conditions. Perhaps in 

healthy individuals expression of the Δexon 7 isoform may only occurs at times 

when TAZ activity is not required. At which time it could interfere with the 

functional isoforms Δexon 5 and full length by forming a heterodimer with the 

active isoforms there by preventing their function. Instead of directly acting on 

the functional isoforms the Δexon 7 isoform may act in reverse converting puCL 

to MLCL and saturated CL, such a reverse reaction of TAZ has been observed 

previously although not designated to any specific isoform (129, 147). In cells 

expressing a healthy complement of TAZ isoforms these potential functions of 

the Δexon 7 isoform could be balanced by the Δexon 5 and full-length isoforms 
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of TAZ, where TAZ is already mutated, as in TAZMUT_3 overexpression of 

negative regulator, Δexon 7, only serves to worsen and already altered situation. 

In any case the spectra here confirmed that the expression of the full length TAZ 

variant in two clones derived from the two original TAZMUT cell lines had 

successfully rescued the Barth syndrome phenotype, as defined by the CL 

spectra. Thus two isogenic controls had been created, one for each of the two 

TAZMUT cell lines. Which in combination with the original two controls, 

CONTROL_1 and CONTROL_2, can be used going forward as the controls for all 

experiments. 

4.2.3 Further Characterisation of the cell lines 

Having improved the model system by the generation of isogenic control cells 

investigation began into the various aspects of the cells relating to mitochondrial 

health, function and ultimately mitophagy. 

4.2.3.1 Mitochondrial Mass 

Whilst quantity is not a measure of quality it can give us some insight into the 

health of the cell. For instance increased mitochondrial mass may indicate 

reduced mitophagy with damaged mitochondria accumulating in the cell, or it 

could indicate increased biogenesis to compensate for poorly functioning 

mitochondria. Fewer mitochondria by contrast could indicate increased 

mitophagy rate, or more efficient mitochondria meaning less are required to 

carry out the necessary functions. If differences do exist in mitochondrial mass 

between the cell lines this may affect the frequency at which mitophagy is 

observed. Measuring mitochondrial mass at this stage will allow us to adjust all 

future measurements of mitophagy to account for this. Mitochondrial mass was 

measured in all cell lines using mitotracker green to stain the mitochondria of 

the cells and then flow cytometry to measure fluorescent intensity of 

mitotracker green; with high intensity equating to high mitochondrial mass 

(Figure 4:5A).  
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Figure 4:5- Mitochondrial Mass 

Mitochondrial mass was measured in all cells by dying cells with mitotracker green and measuring 

fluorescence intensity of mitotracker green on the flow cytometer. Each cell line was analysed three 

times with ten thousand cells counted each time, error bars represent standard error of the mean 

fluorescence intensity. There was no statistical difference in mass between matched pairs, i.e. 

TAZMUT_1 and TAZREV_1 etc.  

Analysis of the flow cytometry data indicated that whilst slight variation existed 

between cell lines this variation was not significant; in short all cell lines had 

relatively similar mitochondrial mass.  

4.2.3.2 Mitochondrial membrane potential 

Following on from mitochondrial mass we also utilized the flow cytometer to 

investigate the mitochondrial membrane potential in each of our cell lines. As 

previously mentioned loss of mitochondrial membrane potential is believed to be 

one of the early steps in mitophagy. In addition to this it is also a marker of 

mitochondrial health. Utilizing the mitochondrial membrane potential sensitivity 

of tetramethyrhodamine ethyl ester (TMRE, discussed in Chapter 1 section 

1.1.8), a fluorescent dye which localises to and fluoresces in the mitochondria 

when the membrane potential is intact but disassociates from the mitochondria 

and ceases to fluoresce when membrane potential is lost, we measured 

mitochondrial membrane potential of the cells. Cells were stained with both 
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mitotracker green, which maintains its fluorescence even after depolarisation, 

and TMRE. This enabled us to ensure it was loss of potential we observed and not 

loss of mitochondria, as well as enabling us to normalise the TMRE fluorescence 

to mitochondrial mass. As well as measuring basal mitochondrial membrane 

potential CCCP was added to each cell line to ascertain if the mitochondria in 

any cell line were already uncoupled as well as check the response of each cell 

line to CCCP.(Figure 4:6). 

 

Figure 4:6- Mitochondrial membrane potential 

Cells we stained with Mitotracker green and TMRE to measure mitochondrial membrane potential. 

The TMRE fluorescence was normalised to Mitotracker green to account for any variation in 

mitochondrial mass. Base line membrane potential was measured in untreated cells, and then the 

same sample was treated with CCCP and measured again immediately. Each cell line was tested 

three times and ten thousand cells analysed in each test. Error bars represent standard error of 

mean fluorescence intensity. Loss of membrane potential upon CCCP addition was found to be 

significantly different compared to untreated for each cell line based on ANOVA p<0.05. There was 

no significant difference between cell lines at either the untreated of CCCP treated levels. 

It appears from the graph that the TAZMUT cells have slightly higher membrane 

potential than TAZREV and CONTROL cells, however this differences was not 

statistically significant. All cell lines gave untreated TMRE readings which were 

not statistically significant from one another, indicating no difference in basal 

mitochondrial membrane potential. They also all lost membrane potential upon 

CCCP addition and this loss was observed as significant as compared to their 
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untreated level, indicating that no cell line was uncoupled prior to CCCP 

addition. There was no difference in the uncoupled TMRE reading across cell 

lines indicating that ability to become uncoupled or remain polarised was not 

affected by loss of TAZ activity of puCL levels. 

4.2.3.3 Mitochondrial function 

As a final measure of mitochondrial health we looked at cellular respiration. 

How efficiently cells respire is dependent on the health of their mitochondria. 

Malfunctioning mitochondria are less efficient requiring more nutrients and 

oxygen to produce the same quantities of ATP. It is known that cardiolipin is 

required for efficient function of cytochrome C and stability of the complexes 

and supercomplexes they form (39-43). It has also been suggested that CL acts as 

a proton trap during OXPHOS, shuttling protons between the ETC complexes (for 

review see(33)).  

Any disruption to the normal CL profile would be expected to have consequences 

on the efficiency of OXPHOS. To measure this we can monitor oxygen 

consumption of the cells, with oxygen consumption being used as a surrogate for 

the OXPHOS efficiency and mitochondrial function. We use a cell metabolism 

analyser manufactured by Seahorse Bioscience, so named the Seahorse. The 

Seahorse measures the oxygen consumption rate (OCR) and the extra cellular 

acidification rate (ECAR). The oxygen consumption rate relates to mitochondrial 

consumption of oxygen and extracellular acidification rate relates to lactate 

production.  Lactate is produced by glycolysis during the non-mitochondrial 

phase of respiration. Glycolysis usually shuttles its final product, pyruvate, into 

the mitochondria for further processing in the TCA cycle. However, when 

mitochondria malfunction the cell attempts to make ATP through glycolysis 

alone which then results in production of lactate from pyruvate. Lactate is 

acidic in nature and is excreted from cells into the media increasing the acidity 

of the media. This increase is measured by the Seahorse and used to calculate 

ECAR for the cells.  

Due to the function of CL in OXPHOS we anticipated our TAZMUT cells would 

behave differently to the TAZREV or CONTROL cells in terms of OCR and ECAR. 

However this was not observed (Figure 4:7A). 
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Figure 4:7- Seahorse metabolic data for CONTOL, TAZMUT and TAZREV cells 

(A) Oxygen consumption rate per million cells for each cell type either untreated (BASAL) or 

treated with the various drugs identified. (B) Extracellular acidification rate per million cells. Data is 

based on three biological replicates with five technical replicates. Error bars represent standard 

error of the mean. All data is normalised to antimycin levels. 
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Taking oxygen consumption rate first and comparing the basal reading to that of 

all the readings following the various drug treatments, each cell lines responds 

to the drug treatments Figure 4:7A. However the degree to which they respond 

is slight and often not significant. In addition taking these OCR readings along 

with the ECAR readings, it seems that these cells on the whole are not 

responding metabolically to stress as dramatically as other cell types have been 

observed to do. As previously mentioned these cells grow and divide slowly, 

perhaps this slow growth rate is indicative of, or resulting from, low metabolic 

activity in these cells. Such low metabolic activity makes obtaining reliable data 

from the Seahorse an issue. In the Seahorse assay the cells are provided with all 

the nutrients they require; glucose glutamine etc. Perhaps if we placed these 

cells under more physiological conditions where nutrients are limiting they 

would respond more dramatically to other exogenous stressors. 

Differences in OCR and ECAR between the cell lines are observed, but whilst the 

TAZMUT_3 shows consistently higher levels of OCR and ECAR compared to its 

isogenic control TAZREV_3 and CONTROL_2; TAZMUT_1 only shows increased 

OCR and ECAR when compared to CONTROL_2 and not its isogenic control 

TAZREV_1. 

TAZRREV_1cells appear to behave differently to all cell lines in most of the 

cellular and mitochondrial characteristics investigated. In terms of mitochondrial 

mass the flow cytometry data showed TAZREV_1 cells to have the lowest 

mitochondrial mass of all cells (although this was not statistically significant, 

Figure 4:5) and when looking at the mitochondrial morphology in our first images 

of these cells we see the mitochondria are extremely interconnected and form 

large ‘globule’ type mitochondria rather than filaments and spheres as in the 

other cell types, (Figure 4:8). It should be noted that in terms of TAZ protein 

expression TAZREV_1 cells showed the highest levels of all cell types, (Figure 

4:3). This also corresponded to much higher puCL levels observed as compared 

to the other cell lines, including controls CONTROL_1 and CONTROL_2 (Figure 

3:1 and Figure 4:4). Taking all these striking differences together along with the 

OCR and ECAR data it seems TAZREV_1 represents the result of TAZ over 

expression, with highly elevated puCL above those that naturally occur as in 

CONTROL_1 and CONTROL_2. With mitochondrial mass reduced either due to 

increased mitophagy resulting from increased levels of oxi-CL borne out of 
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elevated levels of puCL available for oxidation. Or perhaps less mitochondria are 

required since those present are highly efficient due to increased OXPHOS 

efficiency (evidenced by the Seahorse data above) resulting from increased puCL 

and its role in OXPHOS efficiency (Chapter 1section 1.3.1). If so this explains the 

observations made regarding this cell line and can help us explain the Seahorse 

data for the other cell types if we focus on the TAZMUT_3 and TAZREV_3 pairing. 

Barth syndrome cells have been shown to have reduced metabolic power, with 

reduced oxygen consumption (153, 168, 169). However, previous work in our lab 

by Francois Gonzalvez has shown Barth’s lymphocytes/lymphoblasts to actually 

have increased oxygen consumption as compared to normal cells. This may 

suggest a cell type effect, in that those cells in which metabolic demand is high 

e.g. cardiomyocytes are affected to a greater extent due to lack of puCL than 

those cells in which metabolic demand is low e.g. skin fibroblasts as used here. 

Essentially skin fibroblasts don’t require as much energy as other cell types like 

cardiomyocytes. Therefore the effect of lower puCL levels on OXPHOS is not as 

detrimental and can be compensated for by increasing the rate of OXPHOS which 

requires higher levels of oxygen and thus increased OCR results. This appears to 

be the case when comparing TAZMUT_3 to TAZREV_3 and CONTROL_1 and 

CONTROL_2, as well as when comparing TAZMUT_1 with CONTROL_1 and 

CONTROL_2. In addition the excess of nutrients in the cell culture media allows 

for this inefficient mode of OXPHOS to be maintained. Cardiomyocytes in 

contrast will be running OXPHOS at maximal capacity due to the high energy 

demand in this cell type with no room to compensate for reduced efficiency 

resulting from lower levels of puCL. As such the oxygen consumption of Barth’s 

cardiomyocytes appears reduced compared to normal cardiomyocytes as OXPHOS 

is impaired. 

4.3 Mitophagy in the revertants 

After completing an initial biochemical characterisation of the mutants and 

various control cells we then returned to mitophagy measurements. Using the 

technique established in Chapter 3; using Mitotracker green, Lysotracker red, 

CCCP and CI’s, we performed imaging of the TAZREV_1 and TAZREV_3. 
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4.3.1 Mitophagy imaging 

As before the images were taken using the NIKON A1R in the same fashion. Both 

Z-stacks were acquired in conjunction with a representative single slice image. 

 

Figure 4:8- TAZREV_1 CCCP induced Mitophagy 
Representative images of TAZREV_1 cells under various treatments. All CCCP treatments were 

three hours at 10µM, whilst all CI treatments were for six hours prior to imaging, with Pepstatin A at 

a concentration of 5µg/ml and E64d at a concentration of 10µM. White arrows highlight highly 

interconnected nature of the mitochondria in this cell line and large mitochondrial “globules”. 
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Figure 4:9- TAZREV_3 CCCP induced mitophagy 

Representative images of TAZREV_3 cells under various treatments. All CCCP treatments were 

three hours at 10µM, whilst all CI treatments were for six hours prior to imaging, with Pepstatin A at 

a concentration of 5µg/ml and E64d at a concentration of 10µM. 
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As discussed in section 4.2.3.3 the mitochondrial morphology observed in the 

TAZREV_1 is particularly striking (Figure 4:8). This is the first visualisation of the 

mitochondria in these revertant cells and it seems comparing them to any of the 

other cell lines CONTROL_1, CONTROL_2, TAZMUT_1 TAZMUT_3 and TAZREV_3 

they have a much altered morphology. The mitochondria of TAZREV_1 appear 

highly interconnected and also oddly shaped- instead of forming spheres, rods 

and filaments as seen in the other cell lines these mitochondria appear in larger 

“globules” which are interconnected in a vast web (Figure 4:8, indicated by 

white arrows). The morphology we are observing here may the result from the 

over expression of TAZ and highly elevated levels of puCL.  

In terms of mitophagy it appears that the CCCP does have the same fragmenting 

effect as observed in the CONTROL_2 cells (Figure 3:11) for both TAZREV cell 

lines. Perinuclear localisation of mitochondria is also evident although perhaps 

more so in TAZREV_3 (Figure 4:8 and Figure 4:9). It seems that both TAZREV cell 

lines have increased levels of mitophagic events, upon CCCP addition, as 

observed by appearance of yellow punctae. However, trying to identify and 

quantify such small events by eye, over several images and through three 

dimensional space is challenging. Indeed it is unlikely that such an analysis 

would not be affected but bias, particularly when trying to compare cell lines; 

TAZREV_3 to TAZMUT_3 (Figure 4:9 and Figure 3:13), and TAZREV_1 and 

TAZMUT_1 (Figure 4:8 and Figure 3:12). Thus an accurate unbiased method of 

quantification was required 

4.3.2 Identification of mitophagy – Macro development 

Identification and quantitation of mitophagic events, as highlighted above, is 

difficult by eye alone. When examining images as the ones above, identifying 

tiny dots of yellow co-localisation is difficult, quantifying them even more so and 

applying this over a Z-stack impossible for the human eye alone to judge. As 

such our next step was to develop a computerized method for quantifying the 

mitophagic events observed in the Z-stack.  

Working closely with David Strachan of the Beatson Advanced Imaging Facility 

(BAIR), we developed an ImageJ macro (based on a previously described macro 
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(162)) that could analyse each image stack and quantify the mitophagic events 

observed. 

 

Figure 4:10- ImageJ Macro explained 

The above figure shows how the ImageJ macro processes the images and identifies areas of 

mitophagy. The white and red boxes in the bottom two images highlight the same mitophagic 

event, showing how this is detected by the macro. This image shows CONTROL_2 cells treated for 

3 Hours with CCCP. 
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The macro has two phases, it begins by analysing each image using the “Co-

localisation colour map macro” described by Jaskolski et al 2005 (162). 

Following this it then runs a modified version of the “grey scale colour map 

macro” (detailed in Chapter 2 section 2.2.19.1). By combining the two macros 

an 8 bit grey scale image is generated in place of the heat map of correlation 

produced from the first macro alone (Figure 4:10). Thus the degree of 

correlation between the two original pixels (green =mitochondria and red = 

lysosome) is represented in the pixel intensity of the generated 8 bit grey scale 

image on a scale of 0-225. Every pixel in every slice in each Z-stack is assigned a 

value between 0-225. Black (‘0’ pixel intensity) equates to no correlation and 

white (‘225’ pixel intensity) equates to a high level of correlation or co-

localisation as highlighted by the white box in the combined image and the red 

box in the grey scale image (Figure 4:10). This pixel intensity scale corresponds 

to the normalized mean deviation product (nMDP) scale defined by the “Co-

localisation colour map macro” of -1 to 1 (162). Within this scale there is a 

defined threshold of ‘0’ above which is considered positive correlation. Similarly 

the pixel intensity of 128 for the grey scale image is considered the threshold 

above which is classed as correlation. However, to confirm this positive and 

negative control images were generated to test the modified macro’s output 

(Figure 4:11). 
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Figure 4:11- Positive and negative controls for ImageJ Macro 

(A) Shows representative images for positive and negative of co-localisation. Positive images have 

co-localisation of two mitochondrial markers Mito-YFP and Mitotracker deep red, effectively two 

markers for the same organelle so should give the highest degree of co-localisation. Negative 

images have Hoechst staining of the nuclei and Farnesylated-GFP for the plasma membrane to 

represent the lowest level of co-localisation possible in a cell. (B) Shows a graph showing pixel 

intensity versus number of pixels, it represents the mean values for four images, with 37 Z-slices 

per image. The 0 pixel intensity has been omitted as it was so large as to make the rest of the 

graph un-readable, and error bars are not shown as this also makes the graph un-readable. (C) 

Shows the percentage co-localisation of each control based on the threshold set. The percentage 

is based on percentage of populated pixels, i.e. percentage of non-black or >‘0’ value pixels in 

each image, not total pixel number. 
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As a positive control, cells were transiently transfected with Mito-YFP (Figure 

4:17) and then dyed with Mitotracker deep red. As a negative control we chose 

to stain the nuclei with Hoechst and transiently transfect cells with 

Farnesylated-GFP to mark the plasma membrane. Whilst it is possible that there 

may be some contact with the nucleus and the plasma membrane it was felt this 

represented the best and most physiological negative control as was possible. 

The images show the co-localisation of the two mitochondrial markers in the 

merged panel by showing the entire mitochondrial network highlighted in 

yellow. Yet the merged panel for the negative image does not show any signs of 

visible co-localisation between the plasma membrane and the nucleus.  

The four images taken for each control type were then processed by the macro; 

the output can be seen in panel B of Figure 4:11. In this graph we see the 

number of pixels at any given intensity value in the grey scale image generated. 

The graph represents the average number of pixels of each intensity over the 

four images. Black pixels or ‘0’ value pixels have been discounted as their 

number is so large that the rest graph is unreadable and we are only interested 

in pixels with values greater than ‘0’. 

The distribution of pixel intensity is relatively similar until we reach values 

above 125, and then there is a sharp incline in the negative control before it 

begins falling away again. Whilst the there is also an incline in the positive 

control above pixel intensity 125 it is not as sharp and does not fall away so 

rapidly. We were interested at the point on the graph at which the number of 

pixels at a given intensity in the positive control is above that of the negative 

control. The black arrow on the graph marks the point at which this change 

occurs. Although the negative control still has pixels of this intensity present we 

believe these represent background levels of co-localisation which would occur 

by random chance. As anticipated the pixel intensity value above which can be 

considered as correlation/co-localisation is 128 confirming that the modified 

macros is functioning as intended and that the 8-bit grey scale of correlation is 

in line with the nMDP scale previously defined (162).  

Based on this threshold we then calculated for our positive and negative controls 

the percentage co-localisation, and this is shown in panel C of Figure 4:11. It 

should be noted that this percent co-localisation refers to a percentage based on 
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the total number of populated pixels, i.e. non ‘0’ value or black pixels, and for 

all future data generated in this way the percentage co-localisation will refer to 

this. The positive control images have on average 31.42% co-localisation whilst 

the negative control images have 7.84% co-localisation.  

To re-cap, the macro combines the two channel Z-stacks to form one merged Z-

stack. It then converts this Z-stack to an 8 bit grey scale image in which the 

correlation of mitochondria and lysosome is defined for every pixel and the 

degree of correlation is represented by the pixel intensity value, with low values 

equating to little or no correlation whilst high pixel intensity values equate to 

high correlation or co-localisation. We can then interpret this data firstly by 

removing the ‘0’ value or black pixels and secondly based on the threshold set 

using positive and negative control images we can calculate the percentage co-

localisation for every three dimensional image. We have also fully automated 

this macro, it will analyse all images automatically provided they are all in the 

same folder, creating large spreadsheets of data which the user then processes 

to calculate the percentage intensity.  

4.3.3 Reduced mitophagy levels under CCCP induction 

Having now developed a method for quantifying the imaging data amassed, all of 

the previously acquired images represented in Figure 3:11, Figure 3:12, Figure 

3:13, Figure 4:8 and Figure 4:9  were processed using the macro. 
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Figure 4:12- Macro derived quantification of CCCP induced mitophagy 

The above graph shows the quantification of all the images taken of CCCP induced mitophagy in 

all cell lines. The positive and negative controls are also shown in green as a reference. Black * 

indicate a significant difference between CONTROL_1 and the cell line it is above. Red * indicate a 

significant difference between TAZREV_3 and TAZMUT_3. Blue * indicate a significant difference 

between TAZREV_1 and TAZMUT_1. Error bars are based on standard error of mean and 

statistics were generated by two-way ANOVA. 

The first point to note is that there is an overall trend in the data of increased 

co-localisation as moving left to right across the graph- indicating the 

treatments are inducing mitophagy or increasing the likelihood of observing 

mitophagic events. Taking first untreated cells we can see that the two TAZMUT 

cell lines have the lowest incidence of co-localisation whilst the TAZREV cells 

have the highest, at this baseline only the difference between TAZREV_1 and 

TAZMUT_1 is significantly different. This is the base line of co-localisation for 

each of the cell lines suggesting that background levels of mitophagy are 

relatively similar across all cell types.  

With the addition of CI’s TAZREV cells show a slight increase in co-localisation. 

This results in a significant difference in co-localisation between TAZMUT and 

TAZREV cells. The increase of co-localisation in TAZREV cells can be explained 

by the fact these CI’s will block the action of the lysosomal cathepsins and so 

the basal mitophagy observed in untreated cells will be on-going but blocked by 
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inhibition of cathepsins resulting in an accumulation of autolysosomes increasing 

the co-localisation observed.  

The most significant change comes with the addition of CCCP. As a known 

mitophagy inducer and from the images, we expected to see an increase in 

mitophagy occurrence. This is certainly the case in CONTROL_1 and TAZREV_1 

cells with both cell lines showing significantly higher levels of mitophagy than 

either of the TAZMUT cell lines. Although TAZREV_3 does not show an increase in 

mitophagy levels it still maintains a higher level of mitophagy than TAZMUT_3. 

There was no significant increase in mitophagy after CCCP treatment in either 

TAZMUT cell line, as compared to untreated or CI treated TAZMUT cells. This 

suggests that even upon highly potent mitophagic stimuli the TAZMUT cells fail 

to induce mitophagy. 

To confirm this and rule out the possibility that the TAZMUT cells are perhaps 

just super-efficient and clearing all damaged mitochondria much faster than the 

CONTROL_1 and TAZREV cells, we added the cathepsins CI’s.  These are added 6 

hours prior to imaging and 3 hours prior to CCCP addition, thus ensuring that any 

mitophagic event taking place as a result of CCCP addition should be blocked at 

the autolysosome stage and therefore captured in the images taken. As such it is 

interesting to see that CONTROL_1, and both TAZREV cell lines show yet further 

increases in mitophagic events compared to CCCP treatment alone. TAZMUT 

cells do not show the same increases. In fact the levels of mitophagy detected in 

the TAZMUT cells remain comparable to the untreated levels. Consequently the 

difference in mitophagy levels between each TAZMUT cell line and its related 

TAZREV cell line along with the CONTROL_1 cell line are statistically significant. 

This confirms that there is a problem with mitophagy in the TAZMUT cells, and 

since the only difference between the TAZMUT and respective TAZREV control 

cells is the activity of TAZ and levels of puCL it suggests that this mitophagic 

failure is most probably related to TAZ function and puCL levels. 

As an aside and adding weight to our previous observation (section 4.2.3.3) it is 

interesting to note that the TAZREV_1 cell line shows the highest levels of 

mitophagy of all cell lines irrespective of treatment. This elevated level of 

mitophagy in TAZREV_1 as compared to all other cell lines may result from the 

previously mentioned characteristics of TAZREV_1 -high TAZ expression and high 
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levels of puCL etc. leading to higher oxi-CL levels amplifying the mitophagic 

signal resulting in and accounting for reduced mitochondrial mass observed 

(Figure 4:5).  

4.3.4 Use of hydrogen peroxide 

Our hypothesis specifically cites oxidation of cardiolipin as the signal for 

mitophagy. CCCP is a known inducer of mitophagy and causes increased levels of 

ROS due to uncoupling of the ETC. These elevated levels of ROS will induce 

oxidation of puCL, however puCL is not directly oxidized by CCCP. For our study 

we required a direct link between oxidation of puCL and mitophagy. Therefore 

we needed an inducer of mitophagy which relied on oxidative stress for its mode 

of action. Hydrogen peroxide (H2O2) is one type of ROS produced by 

damaged/malfunctioning mitochondria, and it in turn causes further oxidative 

damage to the mitochondria (as well as other cellular components). In addition 

to this there is rising concern over the effects of CCCP upon the specificity of 

the mitotracker and lysotracker probes (100, 102). Therefore we decided adding 

H2O2 exogenously could act as a physiological relevant oxidative inducer of 

mitophagy, whilst also allaying any concerns over the use of CCCP. As with CCCP 

we had to identify the conditions under which H2O2 could induce mitophagy. As 

previously mentioned (Chapter 1) loss of mitochondrial membrane potential is a 

known preliminary step in mitophagy so we decided to establish under what 

conditions H2O2 caused mitochondrial depolarisation, as this would lead to 

mitophagy induction.  
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Figure 4:13- Effect of Hydrogen peroxide treatment on mitochondrial membrane potential 
and cell number 

All cells were dual stained with TMRE and Mitotracker green. TMRE data was then normalised to 

Mitotracker green to account for any variation in mitochondrial mass. All cells were treated every 

thirty minutes with 500µM (final) H2O2 for the time frames shown. Each cell line was tested three 

times and where possible ten thousand cells analysed for each time point. At some time points not 

enough cells were available to count ten thousand. (A) Shows the effect of hydrogen peroxide on 

mitochondrial membrane potential over time. Error bars represent standard error of mean 

fluorescence intensity. (B) Shows the effect of hydrogen peroxide on cell number over time. Error 

bars represent the standard error of mean number of cells counted.  
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Following addition of H2O2 for various timeframes all cell types were analysed 

for mitochondrial membrane potential using TMRE and flow cytometry. Figure 

4:13 shows the effect of H2O2 both mitochondrial membrane potential (based on 

TMRE fluorescence) and cell number. From panel A we can see that 

mitochondrial membrane potential gradually decreases with time with full 

depolarisation occurring between 1.5 and 2 hours, with all cells types 

completely depolarised at 2 hours. Panel B obtained from the same experiments 

shows the decrease in cell number counted by flow cytometry with the 

treatments. This decrease results from H2O2 induced cell death as all 

experiments began with the same cell number. Therefore what the panel 

actually shows is cell death with H2O2 treatment. As such we can see that cells 

begin to die after 2 hours of treatment. Taking these two panels together it 

suggests that whilst 2 hours of treatment give complete mitochondrial 

depolarisation in all cell types it also results in cell death. Cell death is not the 

goal of this treatment; we require a treatment that induces mitophagy without 

causing cell death. As such although a 1.5 hour treatment does not cause full 

depolarisation in all cell types it does cause a degree of depolarisation without 

the cell death observed at 2 hours of treatment.  

We also investigated the effect of H2O2 on LC3; LC3 is a protein that becomes 

lipidated and binds the autophagosomal membrane upon autophagy/mitophagy 

induction. We wanted to ascertain whether the conditions we have identified 

above as causing mitochondrial depolarisation also induced formation of 

autophagosomes and thereby induction of autophagy/mitophagy. Therefore we 

treated cells three times at 30 minute intervals over 1.5 hours with 500µM H2O2 

and then lysed the cells and through western blot examined the levels of 

LC3,Figure 4:14.  
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Figure 4:14- LC3 western blot 

Western blot of all cell lines plus/minus treatment with hydrogen peroxide every 30 minutes for 1.5 

hours with 500µM H2O2. Whole cell lysate was loaded and ACTIN used as the loading control. The 

top band of the LC3 bands represents the un-lipidated LC3I and second lower band represents the 

lipidated form LC3II. 

From the western blot we can clearly see an increase in lipidated LC3 upon H2O2 

treatment indicating the induction of autophagosome formation and hence 

autophagy/mitophagy. In conjunction with the flow cytometry data this data 

indicates that this treatment regime is not only depolarizing mitochondria but 

also inducing autophagosome formation. Therefore we decided on a treatment 

schedule of three treatments of 500µM H2O2 over a 1.5 hour period to induce 

mitophagy. 

Using the same method employed to acquire images of the cells following CCCP 

treatment i.e. staining with Mitotracker green and Lysotracker red, imaging was 

performed upon H2O2 treated cells. However we were unable to analyse these 

images using the ImageJ macro, due to the poor quality of the images obtained 

following H2O2 treatment (Figure 4:15). 
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Figure 4:15- Effect of H2O2 on Mitotracker green 

The above figure shows CONTROL_1 cells dyed with Mitotracker green and Lysotracker red. The 

column on the right shows untreated cells and those on the left cells treated with H2O2.  

As seen above the H2O2 treatment has a dramatic effect on the specificity of 

Mitotracker green. Mitotracker green is the only version of the mitotrackers 

which its manufactures state is not subject to mitochondrial membrane potential 

and certainly it retained its specificity under CCCP treatment, however here it 

appears that specificity is lost. This appears similar to the evidence of others 

who saw upon CCCP induced loss of mitochondrial membrane potential increased 

mitotracker green fluorescence, accompanied by loss mitochondrial specific 

localisation (100, 102).  Whilst this was not observed here upon addition of CCCP 

it seems that H2O2 induced mitochondrial depolarisation is having an effect on 

mitotracker fluorescence and specificity. Perhaps the oxidizing effect of H2O2 on 

the mitochondria results in loss of mitotracker specificity which is not due to 
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effects on mitochondrial membrane potential. In any case it is not possible to 

use any mitotracker in conjunction with H2O2 for imaging. Although the 

mitochondria are still definable in the treated images they are in no-way as 

clear as in the untreated images. There is a greatly increased level of 

background staining of the cell. This level of background is not compatible with 

the ImageJ macro and would result in a high occurrence of false positives as 

green fluorescence can be observed practically everywhere in the cell. As such 

an alternative to the Mitotracker/lysotracker combination is required. 

4.4 Expression of Fluorescent proteins for mitophagy 
measurement 

Although the use of mitotracker green and lysotracker red proved useful tools in 

to study CCCP induced mitophagy it proved to be of little use in studying H2O2 

induced mitophagy. For this a more stable marker for mitochondria was 

required. In addition whilst mitochondrial/lysosomal co-localisation had been 

used as a surrogate to measure mitophagy it in fact only measures lysosomal 

degradation of mitochondria, whilst all mitophagy finishes with fusion of 

lysosomes with the mitochondria containing autophagosome and its degradation, 

it is not the only process by which mitochondria can be observed as co-localising 

with the lysosome. Recent work shows that mitochondria can be shuttled to and 

directly degraded by lysosomes without the need for the autophagosome (84). As 

such when measuring purely lysosomal co-localisation with the mitochondria we 

are not only measuring the end stage in mitophagy but also this other form of 

mitochondrial degradation. Therefore as well as establishing a H2O2 stable 

mitochondrial marker it was also important to establish a way of measuring pure 

mitophagy, as defined by the engulfment of mitochondria by the 

autophagosome, which required a marker for the autophagosome. The most 

well-known and well used marker of the autophagosomes is LC3. LC3, as 

mentioned in Chapter 1 and briefly in section 4.3.4, is the protein present in the 

cytosol (LC3 I) whose expression upon autophagic/mitophagic stimuli is up 

regulated. LC3I then becomes lipidated by binding PE at glycine 116, becoming 

LC3II. LC3II then becomes attached to the developing autophagosomal 

membrane by virtue of this conjugation to PE moiety which is incorporated into 

the emerging membrane. It remains on the autophagosomal membrane until 
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fusion with the lysosome where upon the change in pH causes the disassociation 

of the protein from the outer membrane, whilst that inside the vesicle is 

degraded by the lysosomal enzymes along with contents of the autophagosome. 

Upon attaching a fluorescent tag to the LC3 protein it can be detected by 

fluorescent microscopy as either a dull cytosolic haze relating to its unlipidated 

state LC3I or as distinct punctae representing its lipidated state LC3II on the 

surface of the autophagosomal membrane and as such represents a viable 

marker for the autophagosome.  

We attempted to develop a stable fluorescent marker for the mitochondria and 

also to use LC3 as a marker for the autophagosome. However, as mentioned 

previously (section 4.2), infection of the fibroblast cell lines with retrovirus is 

difficult due to the slow cell division rate. Lipofectamine had also been used in 

the past by others in the lab, but with no success. Thus we explored three other 

methods.  

4.4.1 Nucleofection 

Working on the principal of electroporation, Lonza manufacture a range of 

devices and kits which enable electroporation or nucleofection as they call it, to 

be tailored to a specific cell type. The contents of each kit is optimized for the 

cell type specified and the nucleofector device, the machine used to carry out 

the electroporation, has a number of pre-defined programs which can be used 

depending on the cell type in question. 

Given that these cells are derived from primary fibroblasts we used a kit 

specifically tailored for this cell type. With this kit five protocols are 

recommended, to determine the best protocol to use we tested each program by 

using the same GFP containing plasmid (provided with the kit) and measuring the 

efficiency of electroporation by flow cytometry for GFP expression. Using flow 

cytometry we first identified the whole population of cells in any given sample, 

based on forward and side scattering of the light, then from that measured the 

GFP Fluorescence of this population and calculated the percentage of GFP 

expressing cell in the whole cell population. The program which gave the highest 

percentage was the best suited to these fibroblasts (Figure 4:16- Optimizing 

protocols for nucleofection). 
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Figure 4:16- Optimizing protocols for nucleofection 
TAZMUT_3 cells were used for this optimization. The same cell numbers were used for every 

program as was the concentration of DNA.  The first graph shows the negative control, 

untransfected. The Marker imposed upon each graph is based on the negative control and 

indicates the region in which GFP positive cells will be present if the transfection has been a 

success. The percentage given indicates the percentage of cells from the whole population that lie 

within this defined region and as such are positive for GFP.   
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As we can see the first program A024 shows little increase in GFP expression 

above that of the negative control. The T016 and U012 programs show slight 

increases but are still very low. However U023 and V013 showed a very large 

increase in GFP expressing cells as compare to control, indicating that these two 

programs are best suited to our fibroblasts. Unfortunately despite V013 giving 

the best efficiency of electroporation many of the cells died, perhaps indicating 

this program was too harsh for these particular cells to handle. Therefore U023 

represented the best overall program to use. 

Having established the best protocol to use we then set about transfecting the 

cells with the markers we required: LC3-cherry, using plasmid derived from the 

pmCherry vector commercially available from Clontech, into which was cloned 

cDNA for Rat LC3 (Figure 4:17B); Mito-YFP, derived from the Clontech vector 

pEYFP-N1, into which was cloned the mitochondrial targeting sequence of 

cytochrome C to give mitochondrial localisation to YFP protein (Figure 4:17A). 

Despite choosing the best protocol for our cell type a few problems arose- firstly 

the high level of cell death associated with nucleofection meant large numbers 

of cells were required for each reaction to ensure enough survived to be useful. 
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Figure 4:17- Mito-YFP and LC3-Cherry, with images showing varying expression levels 

(A) Shows the plasmid pEYFP-Mito_N1 (B) Shows the plasmid pmCherry_LC3_C1 (C) Results of 

pmCherry-LC3-C1 nucelofection. Two images show same field of view, Setting 1 with gain set high 

so as to detect the low expressing cells, and setting 2 with gain set low so as to show LC3 punctae 

in high expressing cells. 

Again due to the slow rate of cell division in these cells, getting enough cells to 

begin with each time was challenging. However more importantly was the fact 

that nucelofection unlike viral infection allowed for more than one copy of the 

construct to enter any given cell such that the number of constructs entering 

cells can vary cell to cell. The number of constructs entering the cells will affect 

the level of expression observed, i.e. more constructs higher expression level. 

This created a heterogeneous population in terms of fluorescent protein 

expression levels, as seen for LC3-Cherry in Figure 4:17C (the same is also true 

of Mito-YFP). This figure shows the same field of view taken under different 

settings on the microscope. The first field shows the image taken with a high 

level of PMT (photomultiplier tube) voltage, this allows for the punctate in the 

lower expressing cells to be observed (at the top and bottom of the field). 

However, having to adjust the of PMT voltage to enable the visualisation of the 

lower expressing cells results in the LC3 punctae of the higher expressing cells 
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appearing as one large mass instead of distinct punctae. By lowering the PMT 

voltage, as seen in the second image, the punctae in the high expressing cells 

become distinct but we lose almost completely the fluorescence from the lower 

expressing cells. When trying to compare cell lines to one another it is 

imperative that all conditions, including the settings on the microscope, are kept 

constant so that any differences observed can be solely attributed to differences 

between cell lines rather than differences in image acquisition. So switching 

between microscope settings to obtain images is not acceptable. In an attempt 

to generate a more homogenous population from nucleofection we applied 

selection to the cells in the hopes of generating clones from each cell line which 

expressed the construct at comparable levels. However it would appear that 

nucleofection of these cell lines did not result in incorporation of the 

transfected DNA into the cell genome. After selection was applied most of the 

cells died resulting from lack of antibiotic resistance. Those that did survive 

appeared to have lost expression of the Fluorescent protein. So whilst 

nucleofection represents a useful transient transfection method, in this context 

where homogenous expression of the transfected construct is required it is not.  

4.4.2 Lentivirus 

Lentiviral infection represents one of the most reliable ways of generating stable 

cell lines. As with retroviral infection it works by using the virus as the delivery 

system to get the desired DNA into the target cells. As with all viruses, lentivirus 

has a highly efficient delivery system and in contrast to retrovirus it does not 

require that a cell is dividing to infect. This key difference between lentivirus 

and retrovirus makes lentivirus the preferred system to use in our cells, which do 

not divide regularly. Lentivirus is also not species specific and can infect a 

variety of cell types including human cells. However we do not want or require 

the lentivirus to replicate in our target cell (or indeed our own cells should we 

be inadvertently infected), as such the construct used to produce the lentivirus 

is a modified version of the naturally occurring lentiviral genome. It does not 

contain the genes for the packaging and envelope proteins required for viral 

particle production. This means that upon infection the Lentivirus will 

incorporate into the host genome  and will be transcribed and replicated along 

with the host genome, but due to lack of packaging and envelope protein genes 
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it will be unable to form and release new viral particles. Unfortunately no 

lentiviral construct containing the gene of interest, LC3-Cherry, existed so a 

cloning strategy was derived to generate one. 

4.4.2.1 Cloning strategy for pLenti6_LC3-cherry.13 

The strategy began with the excision of the LC3-Cherry sequence from the 

previously mentioned pmCherry-LC3 plasmid (Figure 4:17) and insert it into a 

lentiviral vector backbone pLenti6_puro (Figure 2:1 Chapter 2). This Lentiviral 

vector has limited restriction enzyme recognition sequences present at its 

multiple cloning site (MCS) and as such we had a limited choice for cloning. In 

addition to excise LC3-cherry from the pmCherry backbone meant identifying a 

site out with the MCS of pmCherry to use in order to remove not just the 

inserted gene LC3 but also the gene for the fused fluorescent protein mCherry. 

Two sites were identified in pLenti MCS that were also present in the pmCherry-

LC3 MCS. However, we still needed a second restriction site to excise the whole 

LC3-Cherry fragment. With the limited sites available in the pLenti6 vector for 

insertion of this excised fragment we decided to use the same restriction 

enzyme to cut both ends of the LC3-cherry fragment, from pmcherry-LC3, which 

meant only one restriction site was required in the pLenti_6 vector for insertion. 

A BAMHI restriction site was present in both the MCS of plenti_6 and pmCherry-

LC3; in addition a site just upstream of the mcherry gene in pmCherry-LC 

differed in only three base pairs from a BAMHI restriction site. We therefore 

modified this site using site directed mutagenesis (details of mutagenesis etc. 

can be found in Chapter 2 section 2.2.6 Figure 2:1)to change these three base 

pairs, thereby creating a second BAMHI site just upstream of the mCherry gene. 

Twenty three colonies were generated from the transformation pmCherry-LC3 

following mutagenesis. The plasmid DNA was extracted from each and tested to 

determine if the mutagenesis had been successful by restriction digest with 

BAMHI. Those that represented a modified pmCherry-LC3 with two BAMHI sites 

gave two bands on the agrose gel those that had not been changed by the site 

directed mutagenesis gave only one band (Figure 4:18A). We could now use 

BAMHI restriction enzyme to excise the LC3-Cherry fragment from the pmCherry-

LC3 plasmid and separate this from the vector backbone by agrose gel 

electrophoresis. We then preformed the same restriction digest on the pLenti-6 
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vector to enable insertion of the fragment, followed by bacterial transformation 

to amplify the production of the ligation.  

 

Figure 4:18-pLenti_LC3-Cherry cloning confirmation 
(A) Shows restriction digest with BAMHI of pmCherry_LC3 following mutagenesis. Blue arrows 

indicate the empty vector control digest. White arrows indicate the clones in which the mutagenesis 

has been successful, evidenced by the two bands highlighted by the two yellow arrows. (B) Shows 

the plasmid generated from the cloning approach. 
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Due to the fact the same enzyme was used to excise both ends of the LC3-Cherry 

fragment from the original pmCherry vector, it is possible that upon insertion 

the fragment may have ligated into the pLenti6 vector in the wrong orientation 

(Chapter 2 section 2.2.6 Figure 2:1). As such a restriction digest would not be 

sufficient to confirm a success. Plasmid DNA generated following ligation 

(Chapter 2 section 2.2.6) underwent sequencing to confirm the success of 

ligation and the orientation of the insert. Of all the original plasmids tested only 

two returned results of correct orientation. Both were tested for expression by 

transient transfection into HEK293 cells and both plasmids produced red 

fluorescence as observed by fluorescence microscopy. Both plasmids were 

amplified up and stocks made, but only one pLenti6_LC3-Cherry.13 was used 

further. 

4.4.2.2 LC3-Cherry Lentiviral infection and selection 

Using the plasmid above we then went on to generate Lentiviral particles with 

which to infect our fibroblast cells. As mentioned above the lentiviral construct 

used has been modified to make it replication incompetent, therefore to 

generate viral particles from it we had to supply it with the envelope and 

packaging genes required and cells in which to replicate. The standard 

procedure for lentiviral infection was applied; HEK293T cells were co-

transfected with our lentiviral construct pLenti6_LC3-Cherry.13 and two 

packaging plasmids pPAX2 and pLPVSVG supplying the packaging and envelope 

genes respectively (Figure 4:20). The HEK293T cells are packaging cells allowing 

the viral construct to replicate and with the help of the packaging and envelope 

plasmids produce viral particles which can then leave their host cell to infect 

other cells- however these particles are still replication incompetent as their 

viral genome only contains the pLenti6_LC3-Cherry.13 DNA with no packaging or 

envelope genes.  

To infect the fibroblasts we removed the media from the HEK293T cells and 

applied it to the fibroblasts. The viral particles in the media infected the 

fibroblasts and the viral genome integrates into the cellular genome. After two 

days of infection and one day of recover in full non-viral containing media the 

fibroblasts were imaged to determine the success of the infection (Figure 4:19). 
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Figure 4:19- LC3-Cherry expressing fibroblasts pre and post FACS sorting 

The above images show firstly the fibroblast cells newly infected with pLenti6_LC3-cherry.13 prior 

to FACS. The second set of images show the fibroblasts of the lowest expression fraction shortly 

after FACS sorting. 

 As with other techniques the expression level from cell to cell was variable. As 

previously mentioned this would prove an issue when imaging. Therefore it was 

determined that some form of selection was required to separate high 

expressing cells from low expressing cells. Instead of using the conventional 

method of antibiotic selection, to generate clones we opted to use Fluorescence 

assisted cell sorting (FACS) to separate cells based purely on fluorescence.  This 

method had a twofold advantage for us over traditional antibiotic selection: 

firstly we were selecting our cells based on their fluorescent read out which, 

meant we could chose the cells which expressed the fluorescent protein at 

levels we felt would be best for imaging; secondly we were not picking clones 

derived from one cell, which could result in clonal variation affecting the 

resulting data, selecting cells this way means that a pool is generated and so any 

clonal variation will be balanced out. We were able to split our total population 
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of infected cells into four sub populations based on fluorescence intensity of 

mCherry as seen below, Figure 4:20. 

 

Figure 4:20- Lentiviral infection Schematic 
Above shows the approach used to generate LC3-cherry stable cell lines from the fibroblast cells. 

Cells not exhibiting mCherry fluorescence were discarded, the other three 

expression levels; low, medium and high were maintained and stocks kept of all. 

The expression levels in each fraction were observed to be more homogenous 

than that observed in the pre-sorted population (Figure 4:19), although in the 
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end it was decided that only the lowest expressing fraction of each cell type 

would be used for further imaging as it gave the most distinct LC3 punctae.   

4.5 Discussion 

In this chapter functional TAZ was successfully re-introduced into the TAZMUT 

cells thereby creating the isogenic control cells TAZREV_1 and TAZREV_3 

required for further work. We fully characterized these cells showing the 

expression of TAZ protein and restoration of the CL profile as compared to 

TAZMUT cells, and as such confirmed not only the expression of TAZ but also its 

activity. 

Further Characterization of all six cell lines was then undertaken identified 

similar in mitochondrial mass and membrane potential across all cell lines. In 

terms of mitochondrial function as measured by oxygen consumption and 

extracellular acidification using the Seahorse, TAZMUT cells had higher oxygen 

consumption in all cases compared to TAZREV_3 and CONTROL cells. This was in 

direct contrast to results from other groups working with cells from Barth’s 

syndrome patients. A possible explanation for this is that fibroblasts have low 

energy demand and so are not running OXPHOS at its maximal rate, therefore in 

our fibroblasts where low puCL levels decrease the efficiency of OXPHOS the 

cells are able to increase the rate of OXPHOS to compensate, giving the 

increased OCR observed. Cells that ordinarily have higher energy demands 

compared to fibroblasts, e.g. cardiomyocytes are already running OXPHOS at its 

maximal rate, and as such in cardiomyocytes with low puCL levels, as in Barth 

syndrome, these cells can not compensate for the decrease in efficiency and as 

such appear to have a reduced OCR as compared to control cells of the same 

type. 

A second observation from the Seahorse data pertaining to TAZREV_1 highlighted 

the significant differences between this cell line and all other cell lines. 

TAZREV_1 had elevated levels of oxygen consumption more reduced 

mitochondrial mass and aberrant mitochondrial morphology. All these 

differences are the result of clonal variation with the TAZREV_1 cells having 

significantly higher levels of TAZ expression and puCL levels as compared to any 
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other cell type studied here giving the resulting functional and morphological 

differences observed.  

We also sought to characterize mitophagy levels in all cell lines using the same 

mitotracker green lysotracker red system as in Chapter 3, with CCCP being used 

to induce mitophagy. Images were previously analysed by eye, however it was 

felt that this was not accurate enough and did not account for the three 

dimensional nature of the images. As such a computerized method was 

developed to quantify mitophagy by interrogating and analysing the images. The 

method was based on an IMAGEJ macro and was used to analyse images of five 

of the six cell lines (162). From this analysis it appeared there was indeed a 

defect in mitophagy in the TAZMUT cells. The level of mitophagy in these cells 

was consistently lower than the TAZREV and CONTROL_1 cells and did not 

increase with CCCP or CCCP and CI treatment. In addition measurements relating 

to TAZREV_1 cells showed these cells to have the highest level of mitophagy of 

all the cell types adding credence to our previous observations and conclusions 

regarding this cell line. 

Despite this positive result for mitophagy measurement it was felt a more direct 

oxidative inducer of mitophagy was required to strengthen the link between oxi-

CL and mitophagy. We developed a treatment regime using H2O2, (a reactive 

oxygen species produced by mitochondria) that we felt induced mitophagy based 

on mitochondrial depolarisation and LC3II induction. However the use of H2O2 

prevented us using mitotracker green and lysotracker red due to the effect H2O2 

had on mitotracker green. We therefore began developing stable markers for the 

mitochondria; in addition it was felt that whilst mitochondrial/lysosomal co-

localisation represented a good grounding for measuring mitophagy it was not 

specific for mitophagy. Mitophagy is defined as the engulfment of the 

mitochondria by the autophagosome, and although co-localisation with the 

lysosome represented the end stage of mitophagy, autophagosomal engulfment 

of mitochondria is not the only mechanism by which mitochondria can be found 

inside lysosomes. Therefore it was important that what we measured as 

mitophagy was actually mitophagy as defined by the engulfment of the 

mitochondria by the autophagosome. Therefore we developed a stable 

fluorescent marker of the autophagosome in the form of the stable expression of 

LC3-cherry in five of our six cell lines; TAZMUT_ 1, TAZMUT_3, TAZREV_1, 
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TAZREV_3 and CONTROL_2. We successfully generated a LC3-cherry lentivirus 

which we used to infect our fibroblasts and select cells using FACS sorting for 

fluorescence intensity, such that each cell line expressed LC3-cherry to the same 

level, making future imaging easier. 

We were unsuccessful in generation of a stable mitochondrial marker but 

decided that by fixing our cells we could use mitochondria specific antibodies to 

stain mitochondria and this would also enable us to stain lysosomes using 

lysosome specific antibodies. This would enable us to monitor the interaction of 

all three components of mitophagy in each of our cell lines. However the IMAGEJ 

macro developed in this chapter can only analyse images which represent two 

Fluorescent signals. Future images will be based on three Fluorescent images 

and therefore a new method of analysis was required.  
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Chapter 5 Oxidation of Cardiolipin is the initiating 
signal for mitophagy 
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5.1 Introduction 

Having generated LC3-cherry expressing cells in previous chapter we now 

required a method of fluorescently labelling the mitochondria that is not 

affected by H2O2 treatment. Mitotracker green as seen in Chapter 4 is affected 

by H2O2. We attempted to make Mito-YFP stable cell lines but this was 

unsuccessful. Therefore we decided to fix the cells and use antibodies to stain 

the mitochondria. We also stained the lysosomes with antibodies allowing us to 

monitor all three components involved in mitophagy. This chapter details the 

imaging technique applied and the software used to analyse the images taken, 

and the results it generated.   

5.2 Imaging of LC3-Cherry 

With the generation of the isogenic control cells (TAZREV_1 and TAZREV_3) and 

then the subsequent expression of LC3-cherry in all cell lines we could now move 

forward and look at the direct effect of oxidation of puCL on mitophagy. As 

previously, we used confocal imaging and then subsequent analysis of those 

images to examine the levels of mitophagy. 

However we did not yet have a suitable mitochondrial marker, and we also 

wanted to continue to image the lysosomes in our cells. Since none of the 

mitotracker probes were suitable for the task and generating stable cell lines 

expressing the mitochondrial marker mito-YFP had been unsuccessful. We moved 

away from live cell imaging and used fixed cells instead. This allowed us to use 

antibodies for the mitochondria (TOM20) and the lysosomes (LAMP2); instead of 

fluorescent proteins we used fluorescent secondary antibodies, Alexa 488 for the 

mitochondria and Alexa 405 for the lysosomes. We next set about optimizing our 

fixation technique to give the best possible image, initially we only used the 

mitochondrial antibody as it was only later that we decided to include the 

lysosomes in our imaging and analysis, Figure 5:1. 
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Figure 5:1- Optimization of fixation technique 
Images above show TAZREV_3 cells fixed using paraformaldehyde and glutaraldehyde, methanol 
or acetone. The cells were stained in each case with TOM20/Alexa 488 to detect mitochondria, and 
LAMP2/Alexa405 to detect lysosomes (with the exception of the paraformaldehyde/glutaraldehyde 
fixation where lysosomes were not imaged). 

Whilst the mitochondrial staining and lysosomal staining were not affected by 

the type of fixation used the LC3-cherry appeared disrupted in both the 

paraformaldehyde/glutaraldehyde and methanol fixed cells, when comparing the 
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same cells prior to fixation. However the acetone fixed cells did not suffer from 

this same disruption and this method preserved the LC3-Cherry signal observed 

in the live cells. Therefore this method of fixation along with the combination of 

antibodies for the mitochondria and lysosomes were used in the following images 

and analysis.  

5.3 A new image analysis approach 

Although we had already established a very useful method of image analysis, as 

detailed in Chapter 4 section 4.3.2, it was not sufficient for the imaging data we 

were about to produce. Each new image would be as before a three dimensional 

Z-stacks taken with the NIKON A1R confocal using the Piezo stage, however since 

the cells were fixed there was no need to use the fast resonant scanner as with 

the previous live cell imaging. Therefore we could use the slower and more 

precise galvano scanner consequently higher quality images were generated.  

Previous image data sets were obtained using mitotracker green, lysotracker red 

and thus were only two channel images. The ImageJ macro, described in the 

previous chapter (section 4.3.2) could only analyse two channel images, the new 

images are composed of three channels, green for mitochondria, red for LC3 and 

blue for lysosomes. Therefore these new images could not be analysed using the 

ImageJ macro, and a new image analysis approach was sought. Two software 

packages stood out as possible solutions to this problem; IMARIS and VOLOCITY. 

5.3.1 IMARIS 

IMARIS is a commercially available software package licenced by Bitplane. It 

takes microscope generated Z-stacks and allows the user to build a three 

dimensional representation of that image by creating a volume based view of 

each component in the image. The software can be applied to structures as large 

as whole tissues and organs or as small as the internal structures of individual 

cells. It is possible to aesthetically alter the volumes created thereby improving 

the visualisation of the image. It is also possible to slice through the three 

dimensional space of an image to interrogate the spatial interactions of various 

three dimensional structures. Also of great importance, and relevance when 
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measuring mitophagy, it is possible to measure the co-localisation of objects in 

the image.  

This is achieved by first creating 3D surfaces for each object of interest. Objects 

are defined based on the fluorescent channel, i.e. all mitochondria are one type 

of objects because they are imaged in the green channel. There are various user 

defined parameters than can be changed during this process: allowing for 

example background fluorescence to be discounted; minimum and maximum 

sizes of objects can be defined; where objects are touching and may otherwise 

be identified as one object they can be split by maximum size constraints to be 

correctly identified as two objects. All of these parameters are set during a 

wizard directed process for each channel/object, and are user defined to give 

the best possible 3D representation (Figure 5:2).These wizard led parameter 

settings can be saved and therefore applied to every image in a data set. Once 

the 3D representation is generated it can be tilted rotated flipped magnified and 

examined from every angle, as seen in Figure 5:2. This allows for easier 

identification and examination of structures of interest. In Figure 5:2 we see the 

engulfment of a mitochondrion by the autophagosome along with the fusion of 

lysosomes with this autophagosome. We can cut through the Z-plane of this 

section to reveal in more detail the exact interactions between these three 

organelles, and highlight effectively the type of event which we are seeking to 

measure. Whilst it is important to be able to readily observe these events 

clearly, as in this case, it is also of great importance to be able to quantify them 

and IMARIS is also capable of this. 
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Figure 5:2- IMARIS generated 3D reconstruction from Z-stack image 
These images are of a TAZREV_3 cell treated with CCCP, green is TOM20/Alexa 488 indicating 
mitochondria, blue is LAMP2/Alexa 405 indicating lysosomes and red is LC3-Cherry indicating the 
autophagosome. The first image shows the original fluorescent image obtained from the 
microscope. The second image shows the three dimensional reconstruction of the first image using 
the original Z-stack to generate a volume view representation with IMARIS. On this image a small 
area has been highlighted by a white box, this area is then magnified in the image below. It shows 
a mitophagic event, highlighted by the engulfment of the mitochondrial sphere (green) by the 
autophagosome (red) with lysosomes (blue) fusing with the autophagosome to allow the 
completion of the process by digestion. The final two images show sectioning of this magnified 
area, through the Z-plane, clearly showing the interactions between mitochondria, autophagosome 
and lysosome. 
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IMARIS can identify the mitochondrial surfaces that are being engulfed by 

autophagosomes. This is done by asking IMARIS to highlight all autophagosomal 

surfaces containing mitochondria, (based on green fluorescence intensity). We 

can then measure the mitochondrial volume contained within these 

autophagosomes and by also measuring the total mitochondrial volume in the 

image we can determine the percentage of mitochondria in the image being 

engulfed by autophagosomes; effectively measuring percentage mitophagy. We 

can then proceed further by looking at how lysosomes are involved. Using the 

surfaces already built for the lysosomes we can ask IMARIS to identify where 

these surfaces are in contact with the previously defined “mitophagy surfaces”. 

This again will give us a volume measure for mitochondria that are not only 

engulfed by autophagosomes but also interacting with lysosomes, i.e. just prior 

to the final stage of mitophagy, which can be converted to a percentage as 

IMARIS also provides us with the measure of the total volume of mitochondria.  

IMARIS not only gives very clear 3D reconstructions of Z-stack confocal images, 

but the method described above is clearly traceable at every step and very 

accurate. However it has one major downfall, other than the protocol 

parameters to build the surfaces for fluorescent signal, (mitochondria, 

lysosomes, autophagosomes) no other part of this protocol can be saved or 

automated, every image must be analysed manually individually - there is no 

option to batch process a number of images all under the same setting at the 

same time; as previously achieved by our IMAGEJ macro. As we have a large data 

set of images, processing each image individually in this way would have been 

extremely time-consuming. Therefore we decided against using IMARIS for image 

analysis, but its superior 3D rendering of our images meant its continued use for 

presentation purposes.  

5.3.2 Volocity 

For our image analysis we turned instead to Volocity. Volocity like IMARIS is 

capable of taking a Z-stack and generating a 3D volume rendering of the image. 

However there is less user input to the rendering of the 3D surfaces and so the 

visual presentation of the rendering I feel is less impressive. However in terms of 

image analysis Volocity has one distinct advantage over IMARIS, it can batch 

process images, protocols for analysis can be saved and applied to other data 
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sets later. Meaning that once a protocol is designed and all thresholds and 

parameters are set these can then be applied to any and all images in all data 

sets, without the user having to apply the each step in the protocol to each 

image manually- as in IMARIS. All images and all data sets are analysed in the 

same manner and therefore the data returned is comparable. As stated above 

due to the large number of the images we obtained for each cell line under each 

condition (26 images per condition per cell line), batch processing was a 

necessity, and as such made Volocity the software of choice over IMARIS for this 

analysis. 

5.3.3 Final protocol 

After testing both versions of software and identifying Volocity as the method by 

which we would analyse our imaging data we next set up the protocol for 

analysis based on images from untreated CONTROL_2 cells. A description of this 

protocol is provided in Chapter 2 section 2.2.19.4. 

The first key stage of the protocol is to identify and measure the number of the 

three types of organelle in each image (mitochondria, autophagosomes and 

lysosomes). Each is defined based on fluorescence intensity and size thresholds 

which are set by the user (details in Chapter 2 section 2.2.19.4). Once each type 

of organelle is identified by Volocity it can then count the number of occasions 

when the different types of organelles interact with one another in three 

dimensional spaces, i.e. when autophagosomes and mitochondria are interacting 

during mitophagy. Using these two key functions we designed a Volocity protocol 

that enabled us to not only count the number of mitochondria, autophagosomes 

and lysosomes in every image but also the number of mitophagic events in every 

image. This protocol can be applied to many images within an image library 

simultaneously, therefore allowing for the batch processing function that was 

lacking in IMARIS.   

Volocity was key to obtaining the information required from the imaging data, 

and represented a more in depth way of analysing the data as compared to the 

original ImageJ macro used previously. As with the previous method it relies on a 

whole Z-stack image of the cell to build its 3D dimensional representation, from 

which it can quantify co-localisation of the organelles. This co-localisation data 
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can then be interpreted as a measure of mitophagy and additionally a number of 

other elements which add to the interpretation and understanding of the data it 

generates regarding mitophagy. Its one downfall is in the visual aspect, the way 

in which it generates its 3D representations are not as intuitive as IMARIS with 

less user input and room for artistic adaption (for presentation purposes) as in 

IMARIS. Therefore it was decided that both packages would be used. IMARIS to 

generate the artistic 3D representations for descriptive understanding of what 

was being identified and measured and Volocity to actually measure, analyse 

and produce numerical data from the images using the protocol detailed above. 

5.4 Mitophagy levels are reduced with reduced TAZ 
activity and polyunsaturated Cardiolipin levels 

5.4.1 Imaging data 

Five cell lines were imaged: CONTROL_2, TAZMUT1, TAZMUT_3, TAZREV_1 and 

TAZREV_3. For each condition tested in each cell line twenty six images were 

taken, each image was obtained in Z-stack form as well as a representative 

single plane image from each stack to be used for visual representation but not 

analysis. Statistical analysis of the data generated by Volocity was performed by 

Gabriela Kalna, using generalized linear method. The statistics that correspond 

to each data set can be found in the tables indicated. It was decided not to 

include any statistical data on the graphs themselves as this would result in a 

very crowded confusing presentation of the statistics. All data were normalised 

to cell number, the number of cells imaged in each frame varies from cell type 

to cell type and treatment to treatment, so to compensate for this all data were 

normalised to cell number.  

5.4.2 Mitophagy in CONTROL_2 cells 

CONTROL_2 cells were subject to five different treatment regimes: untreated, 

as a basal measure; H2O2 treated, the oxidative stress inducer of mitophagy; 

H2O2 and CI treated, to induce mitophagy and then block, with the lysosomal 

enzyme inhibitors E64d and pepstatin A, the digestion of the damaged 

mitochondria thereby amplifying any mitophagic signal; CI alone, as a control for 
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the effects of CI’s upon the cells and finally CCCP treated, to act as a control 

due to its known role in inducing mitophagy. The images for CONTROL_2 cells 

were then used to optimize the Volocity protocol (section 5.3.3) as well as give a 

general control for the measurements being made in other cell lines. Figure 5:3 

presents representative images for this cell line under all conditions; Figure 5:4 

and Figure 5:5 present the analysis. 



204 
 

 Laura Catherine Avril Galbraith 

 

Figure 5:3- CONTROL_2 representative images 

Above are representative images of the CONTROL_2 cells taken under the five different treatment 

regimes. LC3-Cherry represents the autophagosomes, LAMP2/Alexa405 the lysosomes, 

TOM20/Alexa488 the mitochondria. The first merged image is of mitochondria and 

autophagosomes only to focus mitophagy. The second merged image is of all three channels, 

mitochondria lysosomes and autophagosomes. 
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Figure 5:4- Count of Organelles for CONTROL_2 

(A) Graph of mean number of autophagosomes per cell under each treatment regime. (B) Graph of 

mean number of lysosomes per cell under each treatment regime. (C) Graph of the mean number 

of mitochondria per cell under each treatment regime. Error bars represent standard error of mean; 

(D) Gives the statistics for each graph comparing each treatment to all other treatments. Red p-

values indicate that the data is classed as significant, significant p-values are considered to be 

those equal to or less than 0.05. Statistical testing performed using generalized linear model. 
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Figure 5:5- Count of events for CONTROL_2 

(A) Graph of mean count of mitophagy events per 100 cells. (B) Graph of mean count of late stage 

mitophagy (co-localisation of mitochondria, autophagosomes and lysosomes) events per 100 cells. 

(D) Error bars represent standard error of mean. (D)  Gives the statistics for each graph comparing 

each treatment to all other treatments. Red p-values indicate that the data is classed as significant, 

significant p-values are considered to be those equal to or less than 0.05. Statistical testing 

performed using generalized linear model. 
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The first striking observation was the increasing number of autophagosomes with 

the treatments given, this was observed in the images and then confirmed by 

Volocity analysis (Figure 5:3 and Figure 5:4A). Compared to untreated cells each 

treatment induced a statistically significant increase in autophagosome number. 

It is not surprising however given the inducing effect of H2O2 on LC3 as seen in 

Figure 4:14.  

Lysosome number is most difficult to judge by eye since they are the most 

prolific organelle we are measuring. They appear most abundant in the 

untreated and H2O2 and CI treated cells Figure 5:3. However on analysis it seems 

that untreated and CCCP treated cells have similarly high numbers of lysosomes, 

while treatment with H2O2 alone shows a reduction number of lysosomes number 

compared to untreated, this is slightly increased when CI’s are also added, 

Figure 5:4 C. The difference between H2O2 treated and untreated cells is 

significant Figure 5:4D; perhaps indicating that H2O2 treatment induces a faster 

clearance of damaged mitochondria than CCCP treatment resulting in reduced 

lysosome levels following successful mitochondrial degradation. Under all 

conditions except untreated the lysosomes appear perinuclear, this localisation 

of lysosomes ties in with the perinuclear localisation of the mitochondria also 

seen here. Perinuclear localisation of mitochondria is an indicator of imminent 

mitophagy therefore observing this indicates that mitophagy has been initialised 

(75).  

The mitochondria appear fragmented upon H2O2 treatment and CCCP treatment 

as compared to untreated cells (Figure 5:3). Analysis of mitochondrial number 

shows slight fluctuations under H2O2 treatment and CCCP treatment consistent 

with induction of mitophagy (Figure 5:4 B). However the effect of CI upon 

mitochondrial number is dramatic, perhaps resulting from some unknown off 

target effect of the compounds. As such it was decided that for all other cell 

types analysed the use of CI’s would be omitted as we are unsure of the effect 

these compounds are actually having on our cells.   

The untreated cells show little or no co-localisation of mitochondria with 

autophagosomes, as identified by the appearance of yellow punctae suggesting 

low basal levels of mitophagy in these cells Figure 5:3 and Figure 5:5A . There is 

an increase in mitophagy observed upon H2O2 treatment and further increases 



208 
 

 Laura Catherine Avril Galbraith 

upon CI and H2O2 and CCCP treatment showing how each of the treatments 

clearly induces mitophagy and this is accurately reflected in the analysis, Figure 

5:5A. As CONTROL_2 represent healthy individuals with normal puCL profiles and 

TAZ activity, it was expected that this kind of result would be observed. These 

results therefore confirmed our treatments were inducing mitophagy as 

expected and our method for quantitation was accurate; the results it returned 

were as expected as well as matching for the most part the observations made 

by eye.  

To further investigate mitophagy in these cells we also investigated the late 

stage of mitophagy; co-localisation of lysosomes autophagosomes and 

mitochondria (observed in the images as white punctae in the three channel 

merged image Figure 5:5B). Untreated cells show little or no white punctae 

confirming the low basal levels of mitophagy under these conditions and as with 

mitophagy, we see increasing levels of late stage mitophagy events (co-

localisation of mitochondria, autophagosomes and lysosomes) with each of the 

treatments, in almost exactly the same pattern. As these two stages represent 

consecutive stages of mitochondrial degradation they should and do emulate 

each other in this way.  

The analysis of these images confirms to us that our treatment regime has the 

desired effect of inducing mitophagy in cells, with healthy levels of puCL 

allowing mitophagy to proceed as normal. These images and analysis represent 

the normal progression of mitophagy and tests the accuracy and robustness of 

our analysis method. The difference seen here between observations made from 

the images and software analysis of the images highlights the importance of 

software analysis in deriving quantitative data from images, as it is very difficult 

to judge by eye the levels of one organelle or event in each image let alone 

compare across images, cell lines and different treatments. Software analysis is 

simply more accurate as well as less biased. H2O2 treatment induces 

autophagosome formation, mitochondrial fragmentation, mitophagy and fusion 

of the lysosome with the autophagosome containing mitochondria as compared 

to untreated. We had hoped that with the addition of lysosomal CI’s this effect 

would be amplified, however although this seems to be the case we also 

observed an unexpected effect of the CI’s upon mitochondrial number. In every 

case where CI’s were added to cells the mitochondrial number was significantly 
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decreased as compared to untreated cells (Figure 5:4 A and D).With the role of 

the CI’s in inhibiting the lysosomal degradative enzymes we would have in fact 

expected mitochondrial number to remain constant or increase due to a block in 

their degradation. This unexpected result leads us to believe that in our cells the 

CI’s are having some off target effect on mitochondria, which lead to our 

decision to omit the use of CI’s in the imaging and analysis of the following data 

regarding the TAZMUT and TAZREV cells as we could not be sure what effect the 

CI’s were actually having on our cells.   

5.4.3 Effects of oxidative stress upon mitophagy in TAZMUT and 
TAZREV cells. 

Having developed and validated the analysis protocol in CONTROL_2 cells it was 

then applied it to our TAZMUT and TAZREV cells to determine what effect if any 

loss of TAZ activity and reduced puCL levels have on the cells response to 

mitophagy inducing treatments. 
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Figure 5:6- TAZMUT_1 and TAZREV_1  

Above are representative images of untreated and H2O2 treated TAZMUT_1 and TAZREV_1 cells. 

LC3-Cherry represents the autophagosomes, LAMP2/Alexa405 the lysosomes, TOM20/Alexa488 

the mitochondria. The first merged image is of mitochondria and autophagosomes only to focus on 

mitophagy. The second merged image is of all three channels, mitochondria lysosomes and 

autophagosomes. 
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Figure 5:7- TAZMUT_3 and TAZREV_3  

Above are representative images of untreated and H2O2 treated TAZMUT_3 and TAZREV_3 cells. 

LC3-Cherry represents the autophagosomes, LAMP2/Alexa405 the lysosomes, TOM20/Alexa488 

the mitochondria. The first merged image is of mitochondria and autophagosomes only to focus on 

mitophagy. The second merged image is of all three channels, mitochondria lysosomes and 

autophagosomes. 
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Figure 5:8- TAZMUT_1 and TAZREV_1 data analysis 
(A) Graph of number of autophagosomes, based on LC3-cherry punctae, per cell, with error bars 
representing standard error of mean, for both untreated and H2O2 treated cells. (B) Graph of 
number of mitophagy events per 100 cells with error bars representing standard error of mean, for 
both untreated and H2O2 treated cells. (C) Graph of number of late stage mitophagy (co-localisation 
of mitochondria, lysosome and autophagosome) events per 100 cells with error bars representing 
standard error of mean, for both untreated and H2O2 treated cells. (D) Tables giving statistical 
significance of the effect of each treatment on each cell type, details of statistical significance 
between cell lines can be found in Table 8. 
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Figure 5:9- TAZMUT_3 and TAZREV_3 data analysis 

(A) Graph of number of autophagosomes, based on LC3-cherry punctae, per cell, with error bars 
representing standard error of mean, for both untreated and H2O2 treated cells. (B) Graph of 
number of mitophagy events per 100 cells with error bars representing standard error of mean, for 
both untreated and H2O2 treated cells. (C) Graph of number of late stage mitophagy (co-localisation 
of mitochondria, lysosome and autophagosome) events per 100 cells with error bars representing 
standard error of mean, for both untreated and H2O2 treated cells. (D) Tables giving statistical 
significance of the effect of each treatment on each cell type, details of statistical significance 
between cell lines can be found in Table 8. 
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TAZREV_1 cells have high basal levels of autophagosomes and as such although 

there is an increase of autophagosome number upon H2O2 treatment this 

increase is not statistically significant. However the induction of mitophagy in 

H2O2 treated TAZREV_1 cell is obvious from the increase in yellow punctae (co-

localisation of mitochondria, green, and autophagosomes, red) in the images and 

which is quantified by Volocity and shown to be statistically significantly 

different from basal mitophagy levels in untreated cells (Figure 5:6 and Figure 

5:8). A similarly significant increase in the number of late stage mitophagy 

events is observed upon H2O2 treatment as compared to untreated, evidenced by 

the dramatic increase in white punctae (co-localisation of mitochondria, green, 

autophagosomes, red, and lysosomes, blue) in the images and this is reflected in 

the quantitation by Volocity (Figure 5:6 and Figure 5:8). As these cells express 

functional TAZ and have healthy levels of puCL we expected to see this 

induction of mitophagy upon H2O2 treatment. 

By contrast TAZMUT_1 lacks functional TAZ and has significantly decreased 

levels of puCL and indeed this affects the induction of mitophagy in these cells 

upon H2O2 treatment. In terms of Autophagosome number there is almost no 

induction of autophagosome formation upon H2O2 treatment, this is also true of 

the induction of mitophagy and number of mitochondria containing 

autophagosomes, as observed from the images and quantified by Volocity (Figure 

5:6 and Figure 5:8 A-C). For all measurements there is no significant change in 

the cells between detection in untreated cells and the levels detected in cells 

treated with H2O2 (Figure 5:8D). This suggests that the lack of functional TAZ and 

reduced puCL levels affects the induction of mitophagy upon H2O2 treatment. 

A similar effect is observed in the TAZREV_3 and TAZMUT_3 pairing. In this case 

TAZREV_3 has lower basal levels of autophagosomes in untreated cells as 

compared to TAZREV_1 (Figure 5:6 and Figure 5:7) which means that upon H2O2 

treatment a statistically significant induction of autophagosome formation is 

observed (Figure 5:7 and Figure 5:9). This induction is emulated in terms of 

mitophagy and number of late stage mitophagy events, which is observed in the 

images as an increase in the number of yellow and white punctae, respectively 

(Figure 5:7). Volocity analysis reveals this induction to be statistically 

significantly as compared to untreated levels in the TAZREV_3 cells (Figure 5:9). 
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Again as with TAZREV_1 this was to be expected in these cells which have active 

TAZ and healthy levels of puCL.  

Yet once again the TAZMUT_3, which lack functional TAZ and have decreased 

puCL levels, have abrogated induction of autophagosome number, mitophagy 

and number of late stage mitophagy events. There is a slight induction in these 

cells of autophagosome number, mitophagy and number of late stage mitophagy 

events upon H2O2 treatment as observed in the images by a slight increase in 

red, yellow and white punctae (Figure 5:7) however this increase is by no means 

statistically significant as identified by the Volocity analysis (Figure 5:9). This 

slight induction may relate to some residual activity of the mutant TAZ protein 

expressed in these cells. TAZMUT_1 cells harbour a mutation in the TAZ gene 

leading to an insertion of a pre-mature stop codon and as observed by western 

blot (Figure 4:3 Chapter four) this leads to no detectable expression of TAZ 

protein. By contrast TAZMUT_3 cells harbour a point mutation resulting in an 

amino acid change in the TAZ protein and as observed by western blot these 

cells do express TAZ protein (Figure 4:3 Chapter four). This expressed mutant 

protein may still have some residual activity, which is lacking in TAZMUT_1 

which does not express any protein. Indeed the CL mass spectrometry data 

(Figure 3:1 Chapter 3) shows that TAZMUT_3 have a less severe loss of puCL as 

compared to TAZMUT_1 cells which could be attributed to residual activity of 

mutant protein and account for the slight induction observed in autophagosome 

formation, mitophagy and late stage mitophagy.  

Despite this slight difference between the two TAZMUT cell lines induction of 

mitophagy upon H2O2 treatment was observed to be impaired in each case. 

These cells fail to induce autophagosome formation upon H2O2 treatment, which 

leads to reduced levels of mitophagy and late stage mitophagy; suggesting a 

failure in the initiation of this quality control system. To further understand this 

we also compared these measurements in the TAZMUT cells upon H2O2 treatment 

to the measurements derived from their isogenic matched control and 

CONTROL_2 cells (Table 8).  
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5.4.4 Mitophagy is reduced in TAZMUT cells 

 

Table 8- Statistics for lysosomal degradation of mitochondria 

(A) Three tables giving the statistical significance (p-values) of the differences between cell lines in 

autophagosome number, number of mitophagy events and late stage mitophagy events in 

untreated cells. (B) Three tables giving the statistical significance (p-values) of the differences 

between cell lines in autophagosome number, number of mitophagy events and late stage 

mitophagy events in H2O2 treated cells. Red p-values indicate that the data is classed as 

significant, significant p-values are considered to be those equal to or less than 0.05. Statistical 

testing performed using generalized linear model. 
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The above table gives the statistical data for comparisons in autophagosome 

number, mitophagy and late stage mitophagy events across all cell lines 

untreated and also upon H2O2 treatment. 

In comparing cell types under untreated conditions we can see that for the 

differences between TAZMUT_3 and TAZREV_3 are not statistically significant. 

This is probably because under basal conditions the need for mitophagy is low. In 

contrast, even at basal levels in untreated cells the TAZMUT_1 cells have 

significantly lower levels of autophagosomes, mitophagy and late stage 

mitophagy events than the TAZREV_1 cells. However the most striking effect is 

observed upon H2O2 treatment. In both of the mutant-revertant pairings the 

levels of autophagosomes, mitophagy and late stage mitophagy events are 

significantly lower in the mutant cells as compared to their isogenic revertant 

controls. This evidence suggests an effect of low puCL levels upon mitophagy. 

The TAZMUT cells have lower levels of puCL compared to their isogenic controls, 

an observation that supports the original hypothesis regarding a role for puCL in 

mitophagy; my data shows that cells with low levels of puCL have significantly 

abrogated levels of mitophagy and autophagosome induction. The observation of 

this effect upon oxidative stress induced by the addition of H2O2 indicates that 

the oxidation of puCL may be the initiating signal for mitophagy, and that lack of 

puCL in TAZMUT cells results in decreased levels of oxi-CL and lower levels of 

mitophagy.  

5.5 Cardiolipin oxidation 

To pursue the role of oxi-CL in mitophagy further, we decided to measure the 

levels of oxi-CL in both TAZMUT and TAZREV cells under the same mitophagy 

inducing conditions used for the imaging above. Firstly we investigated 4HNE 

levels in our cells. 4HNE is α,β-unsaturated hydroxyalkenal that is produced upon 

oxidation of lipids in cells and forms adducts with proteins. 4HNE is not specific 

for CL oxidation but has been shown to be produced upon CL oxidation (170); 

however we reasoned that in the TAZMUT cells the loss of oxidation of CL would 

cause a noticeable reduction in 4HNE levels compared to TAZREV cells. 4HNE 

forms protein adducts which are immunogenic, therefore we performed a 
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western blot of whole cell lysate from cells treated with H2O2, probing for 4HNE 

protein adducts (Figure 5:10). 

 

Figure 5:10- Western blot for 4HNE 

Western blot for 4HNE, whole cell lysates derived from cells treated with H2O2 at 500µM every 30 

minutes for 1.5 hours. ACTIN was used as a loading control.  

As expected 4HNE is detected in all cell types since 4HNE is not specific to 

oxidation of CL and we would expect other lipids to be oxidized under H2O2 

treatment. However, looking at the TAZMUT_1 and TAZREV_1 cell types we can 

see that TAZREV_1 does indeed have elevated levels of 4HNE compared to 

TAZMUT_1, with more bands and bands of higher intensity seen in TAZREV_1 as 

compared to TAZMUT_1. This suggests TAZREV_1 has higher levels of oxidized 

lipids compared to TAZMUT_1 and this is highly likely to result from the 

oxidation of puCL in TAZREV_1 which does not occur in TAZMUT_1. For 

TAZREV_3 we also see higher levels of 4HNE compared to TAZMUT_3 although it 

is not as obvious as observed in the TAZMUT_1, TAZREV_1 pairing. Together 

these the two pairings suggests higher levels of oxidized lipid in TAZREV cells 

than TAZMUT cells. This is most likely resulting from the oxidation of puCL in 

TAZREV cells which is lacking in TAZMUT cells since the only difference between 
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these isogenic pairs is the function of TAZ and consequently levels of puCL 

available for oxidation. 

Whilst monitoring 4HNE levels is a good indicator of oxidation of puCL, it is not 

as mentioned specific for oxidation of puCL. As such we attempted to measure 

oxidized CL by mass spectrometry. We produced lipid extracts from CONTROL_2, 

TAZMUT_1, TAZMUT_3, TAZREV_1 and TAZREV_3 and sent them for analysis at 

the Babraham Institute, Cambridge to be analysed by Mike Wakelam and Qifeng 

Zhang. Lipid extracts from untreated, H2O2, and H2O2 and CI treated cells were 

sent for analysis from each cell type, along with an oxi-CL standard generated by 

in-vitro oxidation of CL. Oxi-CL species of various types were detected from the 

oxi-CL standard, however we were unable to detect any oxi-CL in any of the lipid 

extracts from cells. This was very disappointing, however we feel that the 

reason for this may be that the concentration of the CL from whole cell extracts 

is significantly lower than the concentration of the CL used to generated the oxi-

CL standard, meaning the concentration of oxi-CL in the cell derived lipid 

extracts is so low that it cannot be detected. Moving forward we will be looking 

at repeating this experiment with isolated mitochondria from each cell type to 

enable us to concentrate the CL in each sample and then extract the lipids from 

the isolated mitochondria rather than whole cells. We hope this will increase the 

concentration of CL enough that we will be able to detect oxi-CL and compare 

the levels across cell lines. 

In the meantime the data derived from the 4HNE western blot strongly suggests 

that TAZMUT cells have lower levels of lipid oxidation than TAZREV cells. As the 

primary difference in lipid composition between these cells is that TAZMUT cells 

lack puCL, it stands to reason that this reduced level of lipid oxidation results 

from loss of puCL oxidation, which in turn causes the reduced mitophagy we see 

in our imaging data.  

5.6 Discussion 

In this chapter I have developed a microscopy based approach for the 

quantitative analysis of mitophagy events. I used this method to image and 

analyse five cell lines under various different to study the effects of loss of 
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Tafazzin activity and reduced puCL levels on mitophagy. The CONTROL_2 cells 

were used as a tool to test, evaluate and design the analysis protocol using 

Volocity. The parameters and thresholds set for this cell line were then applied 

to the isogenic paired cell lines of Tafazzin mutant and revertant cells.  

Interrogating the images obtained for these cell lines with the Volocity protocol I 

was able to show that mitophagy and other related events were affected 

differently across the different cell lines. I showed that the TAZREV cells 

responded to H2O2 treatment, as expected, by induction of autophagosome 

formation and up-regulation of mitophagy. In direct contrast to this the TAZMUT 

cells showed no significant induction of autophagosome formation or up-

regulation of mitophagy upon H2O2 treatment. Indeed even in untreated cells the 

basal levels of autophagosome formation and mitophagy in TAZMUT cells was 

lower than that of their respective TAZREV control.  

This indicates that mitophagy is negatively affected in the TAZMUT cells as 

compared to the TAZREV cells. The fundamental difference between these cell 

lines lies within the activity of TAZ which results in the different levels of puCL 

in each cell line. Thus the data presented in this chapter supports a role for 

puCL in induction of mitophagy.  

My hypothesis is that oxidation of CL acts as an initiating signal to the 

mitophagic machinery conveying that mitochondria are damaged and require 

removal. Formation of oxidized CL requires puCL which is oxidized via 

nucleophilic attack on the double bonds of the fatty acid chain. If, as in TAZMUT 

cells, puCL is levels are decreased then the abundance of oxi-CL will be lower as 

a consequence. This will result in reduced signalling to the mitophagic 

machinery, causing reduced levels of mitophagy as observed above.  

To try and determine if indeed oxi-CL is the initiating signal for mitophagy we 

attempted to quantify the oxidation of CL in each of our cell types, under the 

mitophagy inducing conditions used for imaging. We initially investigated the 

levels of 4HNE, a product of lipid oxidation, as a read out for CL oxidation. 4HNE 

is produced upon oxidation of lipids within a cell; it is not specific for oxidation 

of CL, but a product of peroxidation of any lipid. Protein adducts of 4HNE can be 

detected by western blot, with increased levels of adducts indicating increased 
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lipid oxidation. Although not specific to oxidation of puCL, oxidation of puCL 

contributes to the levels of 4HNE. Therefore where oxidation of puCL does not 

occur we would expect 4HNE levels to be reduced compared to incidences were 

it is oxidized. We observed the presence of 4HNE in all our cell lines; however 

the levels of 4HNE did appear lower in protein extracts taken from TAZMUT cells 

as compared to TAZREV cells. This reduction can most probably be attributed to 

loss of puCL oxidation, as in all aspects (except TAZ function and puCL levels) 

these cells are genetically identical to one another (within their matched pair). 

Given therefore that oxidation of CL is absent or decreased in the TAZMUT cells 

compared to TAZREV cells, and mitophagy fails to occur in the TAZMUT cells 

upon oxidative damage, it is likely that removal of damaged mitochondria upon 

oxidative stress requires the oxidation of puCL to act as the initiation signal for 

mitophagy. As this signal is lacking in the TAZMUT cells mitophagy fails to be 

induced yet in the TAZREV cells were puCL can be effectively oxidized upon 

oxidative stress (H2O2 treatment) mitophagy is initiated and the damaged 

mitochondria degraded.   
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Chapter 6 Conclusions, Discussion and Future 
work. 
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6.1 Final Conclusions 

The field of mitophagy is relatively young, given that the term mitophagy was 

only first back in 2005 (8). Since then a wealth of progress has been made 

mapping the different stages of mitophagy, the triggers of mitophagy, the 

regulatory proteins involved and diseases where mitophagy has a significant 

impact. Recently there have been tentative forays into the role of lipids in 

mitophagy (section 1.1.6) for autophagosomal membrane development and for 

the direct regulation of the mitophagic machinery (124, 155, 156). Although 

research focusing on the role of lipids in mitophagy is sparse, we considered that 

lipids within the mitochondrial membranes were likely to be instrumental in 

mitophagy; perhaps as initiating signals or binding platforms. More specifically I 

predicted that cardiolipin, the mitochondrial specific phospholipid, would be 

involved in this process. Having previously been implicated in mitochondrial 

processes such as cell death, mitochondrial dynamics and ATP production it 

made perfect sense to me that it could also be involved in mitophagy (Sections 

1.1.4 and 1.3.1).  Indeed the chemical structure of CL lends it to a role as a 

marker of mitochondrial health. By virtue of its polyunsaturated acyl chains, CL 

is a prime target for oxidative attack forming oxi-CL. As mitochondria become 

dysfunctional or damaged the levels of ROS they generate through the ETC is 

increased. The resulting generation of oxi-CL would therefore serve as an 

indicator of mitochondrial health and activate the mitophagy machinery to 

degrade the mitochondria in question (Figure 6:1).  
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Figure 6:1- Oxi-CL is the initiating signal for mitophagy 
The above scheme shows two mitochondria, one healthy and one damaged/dysfunctional. The 
lipid shown represents cardiolipin; those with yellow circle attached represent oxidized CL. The 
healthy mitochondria have low ROS levels inside and outside of the mitochondria because the 
mitochondria are functioning as required with low ROS generation. However this will still have 
some oxidizing effect on CL as indicated, but at a low level. Upon mitochondrial 
dysfunction/damage the ROS levels inside the mitochondria are increased, which will also serve to 
increase ROS levels outside the mitochondria, (exogenous sources of ROS will have similar 
effects). This increased ROS level will increase the level of oxidized CL as shown and this will 
identify the damaged/dysfunctional mitochondria to the mitophagic machinery stimulating them into 
action. 

  
This thesis focused on assessing if CL did indeed act in this way as a functional 

indicator of mitochondrial health resulting in the induction of mitophagy upon 

mitochondrial damage and dysfunction. 

We generated a model system utilizing primary cells derived from Barth’s 

syndrome patients. Barth’s syndrome patients lack the enzyme TAZ which 

enables remodelling of immature CL to mature puCL, the form which can be 

readily oxidized. I generated isogenic control cell lines from the Barth’s cells by 

re-introducing functional TAZ, enabling the cells to generate puCL. This enabled 

us to compare mitophagy under conditions were CL could not be oxidized 

(Barth’s syndrome cells referred to as TAZMUT) with conditions where it could 

(Revertant cells referred to as TAZREV and non-isogenic controls referred to as 



225 
 

 Laura Catherine Avril Galbraith 

CONTROL). To check success of re-introduction of TAZ we ran mass spectrometry 

analysis for CL. The classic loss of puCL and concurrent increase in MLCL 

observed in the TAZMUT cells was rescued effectively in our TAZREV cells giving 

near similar levels of puCL and MLCL as observed in the CONTROL cells. In 

addition we also created a revertant cell line expressing a different spliceform 

of TAZ, TAZΔexon 7. This isoform actually caused a worsening of the TAZMUT CL 

profile suggesting this isoform of TAZ may work in reverse catalysing conversion 

of puCL to MLCL or inhibit further any residual activity of endogenous TAZ in the 

TAZMUT cells. 

Having established our model system we began to investigate specific processes 

where CL is known to have a functional role or processes occur during 

mitophagy. It was quickly established that the mitochondria of TAZMUT cells 

were appeared significantly longer than CONTROL cells. The length of 

mitochondria has been shown to affect their ability to be engulfed by the 

autophagosome (6, 82). Increased length of mitochondria in TAZMUT cells could 

prevent the engulfment of the mitochondria during mitophagy due to size 

constraints. To understand why the mitochondria appeared longer mitochondria 

dynamics in the cells was briefly examined. The TAZMUT cells showed reduced 

network connectivity and dynamics as compared to CONTROL. Rare fission and 

possible fusion events were observed, and whilst the fusion events appeared to 

proceed unhindered, in some cases fission progressed strangely (Figure 3:8 and 

Figure 3:9 in Section 3.2.3). A mitochondrial filament would appear to undergo 

several fission events concurrently forming a string of mitochondrial spheres, 

only for these spheres to re-form into the original filament a short time later. 

This may be indicative of failure of the mitochondria to complete the fission 

process. The mitochondria were labelled with matrix targeted fluorescent tags, 

which would allow effective observation of the inner membrane fission. However 

if fission of the outer membrane are affected this would not be observed, we 

would still see the inner membrane fission but for lack of outer membrane 

marker we could not determine if the outer membrane had undergone fission. If 

the outer membrane fails to ‘Fis’ while the inner is successful, small spherical 

inner membrane compartments would be observed captured inside an ‘invisible’ 

singular outer membrane. This is reminiscent of the events we observed for 

TAZMUT cells and indicated that perhaps the increased mitochondrial length is 
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not due to an active up-regulation of fusion but in fact reduced capacity for 

mitochondrial fission, alongside reduced levels of interconnection, fusion and 

mitochondrial movement. Since fission of damaged/dysfunctional mitochondria 

from the mitochondrial network is a key stage in mitophagy, this suggested along 

with increased mitochondrial length that mitophagy may be abrogated in the 

TAZMUT cells. 

Two key stimuli for mitophagy are loss of mitochondrial membrane potential and 

reduced mitochondrial function. The mitochondrial membrane potential in all 

cell types was examined along with the ability of each to depolarise upon CCCP 

treatment. There was no difference in basal or CCCP treated mitochondrial 

membrane potential. Mitochondrial function was examined using the Seahorse 

flux analyser, this proved less than conclusive. For one isogenic pairing the 

expected reduction in mitochondrial function often observed in Barth’s 

syndrome derived cells resulting from the reduced CL levels affecting the 

activity, stability and formation of the complexes and supercomplexes of the 

ETC (TAZMUT_1 and TAZREV_1), was observed. However the second isogenic 

pairing gave the reverse result, with the TAZMUT_3 cells having increased 

mitochondrial function compared to the TAZREV_3. Such a result contradicts all 

previous findings regarding loss of TAZ function and reduced CL levels. One 

possible explanation could be that in the majority of research investigating the 

effects of loss of TAZ and CL reduction on mitochondrial function has been 

performed in cells and tissues with high energy demand, such as cardiomyocytes. 

The cells being used to generate this data are fibroblast cells derived for the 

skin of Barth’s patients. Skin fibroblasts are by far less energy demanding than 

cardiomyocytes. Therefore this inconclusive and inconsistent result could be due 

to these cells having enough reserve capacity within their mitochondria to 

compensate for the inefficiency, whilst in cardiomyocytes there is little or no 

reserve capacity. 

Mitochondrial mass was also examined as an indicator of occurrence of 

mitophagy. No significant difference in mitochondrial mass  was observed in any 

of the cell lines. This was surprising because defects in mitophagy are expected 

to cause increased mitochondrial mass in the TAZMUT cells. However these 

measurements were taken under basal conditions, (i.e. no stress stimuli) and 

given the low metabolic nature of these fibroblasts it is likely that basal levels of 
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mitophagy would be low in all cell lines.  However of note, although not 

statistically significant, was the much reduced mitochondrial mass in the 

TAZREV_1 cells. These cells had also given the highest results for mitochondrial 

function and the best recovery of the Barth’s CL profile, and later it was noticed 

that the mitochondrial morphology of these cells was odd; instead of forming 

long filaments, as the other cells did, they formed large globule like 

mitochondria. In every parameter measured this cell line differed from all 

others. When looking at the expression level of TAZ and the CL profile of these 

cells together an explanation comes to mind. The cells have the highest 

expression of TAZ of all the cell lines, and also have the highest levels of mature 

CL. Thus this cell line appears to be the polar opposite phenotype to that of a 

Barth’s syndrome cell. The exceedingly high levels of mature CL perhaps enable 

mitochondrial function to be drastically improved due to enhanced ETC complex 

and supercomplex formation, function and stability. The strange morphology 

observed later in imaging could result from the enhanced function of the 

mitochondrial fusion machinery due to increased CL levels. Finally, 

mitochondrial mass could be low simply because of the enhanced functionality 

of the mitochondria; hence less mitochondria are required to maintain their 

functions. Alternatively (or in addition), since we have shown here that 

oxidation of CL is the initiating signal for mitophagy, increased levels of CL 

would also result in increased levels of oxi-CL, which would amplify the 

mitophagy signal resulting in higher levels of mitophagy and the resultant lower 

mitochondrial mass observed. With this in mind it is hardly surprising that 

TAZREV_1 cells also had the highest levels of mitophagy in all the cell types             

To be able to measure mitophagy in the cells an imaging technique had to be 

developed along with a method of image analysis that would enable the 

quantification of mitophagic events. Initially we utilized the commercially 

available mitotracker green and lysotracker red dyes to identify the 

mitochondria and lysosome respectively. In conjunction with this we designed 

and built a macro to run in ImageJ based on an already published macro (162), 

which processed three dimensional (Z-stack) images of our cells, identifying and 

quantifying co-localisation between mitochondria and lysosomes i.e. mitophagy. 

This was an invaluable development in the early stages of this project allowing 

us to image live cells and quantify the occurrence of mitophagy at basal levels 
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and following addition of CCCP, a known inducer of mitophagy. We were able to 

reliably show that mitophagy was abrogated in TAZMUT cells as compared to 

TAZREV and CONTROL cells, suggesting that mature puCL has a role to play in 

mitophagy. To further elucidate the role of puCL in mitophagy we reasoned that 

we should instigate an oxidative stress on the cells and monitor mitophagy 

following this, as that would help us determine if our hypothesis about oxidized 

CL as the signal for mitophagy was correct. 

Unfortunately we could not extend our findings using the 

mitotracker/lysotracker approach as mitotracker green appeared to lose 

specificity for mitochondria upon oxidative stress. Although the lysotracker 

identification represents a good surrogate for measuring mitophagy, the most 

widely accepted definition of mitophagy is the specific engulfment of 

mitochondria by the autophagosome. Therefore, we developed a new imaging 

technique; using our TAZMUT, TAZREV and CONTROL cells which were stably 

transfected with LC3-cherry (as a fluorescent marker for the autophagosome). 

Cells were fixed and co-stained for TOM20 (identifying the mitochondria) and 

LAMP2 (identifying the lysosome) and as such we could now image the whole 

process of mitophagy in our cells under oxidative conditions. As we had now 

developed a different imaging technique our original ImageJ macro was of no 

use, instead we turned to commercially available image analysis packages, 

Volocity and IMARIS, in order to analyse our imaging data. Whilst IMARIS 

represented the most comprehensive package in terms of 3D image rendering for 

presentation quality and ability to analyse images, it was lacking in its ability to 

batch process numerous images using one analysis protocol all at the same time. 

Volocity in contrast was capable of undertaking the batch processing required 

for such a large data set; however its 3D rendering of images was sorely lacking. 

As such, a combined approach was employed; IMARIS utilized to generate 3D 

renderings for presentation and explanatory purposes whilst Volocity undertook 

the actual image analysis and number crunching. Finally statistical analysis was 

performed in house by Gabriela Kalna, due to the size of the data set and the 

complexity of comparing several measurements, across all cell lines under each 

treatment condition. The final conclusion confirmed our original result based on 

the ImageJ data analysis, that mitophagy was significantly reduced in the 

TAZMUT cells as compared to TAZREV and Control cells. From this we could 
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suggest that the lack of puCL in the TAZMUT cells appeared to adversely affect 

the ability of these cells to undertake mitophagy in response to oxidative stress. 

Indeed, the increased levels of mitophagy in TAZREV and CONTROL cells upon 

oxidative stress indicated that puCL had a definite effect in the up-regulation of 

the mitophagy response. However further work was required to determine if this 

was due to the oxidation state of puCL. Whilst writing this thesis an article has 

been published suggesting CL externalisation as the initiation signal for 

mitophagy. Persuasive evidence is presented implicating CL externalisation as 

the signal for mitophagy; although they do not specify puCL, it does support the 

findings of this thesis in relation to a role for CL in mitophagy (171). However, 

they also state they found no evidence to suggest oxi-CL was involved; this is in 

contrast to our preliminary findings regarding oxi-CL (section 5.5).     

Initially we sought to quantify oxi-CL levels through measurement of the 

surrogate 4HNE by immunoblot. 4HNE is α,β-unsaturated hydroxyalkenal that is 

produced upon oxidation of lipids in cells and forms proteins adducts that are 

detectable by western blot (170). Production 4HNE is not specific for CL 

oxidation but CL oxidation will contribute to the levels of 4HNE within the cells. 

As such where oxidation of CL is absent i.e. in the TAZMUT cells we would 

expect reduced levels of 4HNE. This indeed was the case when TAZMUT cells 

were compared to TAZREV. We then attempted to measure the levels of oxi-CL 

by mass spectrometry under basal and oxidative stress conditions. Unfortunately 

it proved impossible to detect any oxi-CL from lipid extracts from any cell type, 

most probably due to the low concentration of CL in terms of total cellular lipid 

in the extract. We hope to repeat this in the future using more cells and isolated 

mitochondria in order to concentrate the oxi-CL in each sample such that it is at 

detectable levels for the mass spectrometer.  

6.2 Future work 

The data herein firstly suggests a role for puCL in mitophagy. It is possible that it 

is the oxidation of puCL that acts as the initiating signal for mitophagy, as 

observed through measurement of 4HNE levels. Unfortunately we have not 

shown conclusively that under the mitophagy inducing conditions used here, oxi-

CL levels are high in TAZREV and CONTROL cells whilst non-existent in TAZMUT 

cells. As such it is our plan to repeat the mass spectrometry analysis described 
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above to measure oxi-CL. However the approach will be modified by isolating 

mitochondria and combining samples to increase the abundance of CL in our 

starting material. We will then directly treat the mitochondria from the 

different cell types with our oxidizing agent (H2O2) and promptly extract the 

lipids from the mitochondria and analyse by mass spectrometry. It is our hope 

that this method will increase the levels of oxi-CL in our samples to detectable 

levels and from that we will be able to ascertain if differences do exist between 

our cell types under mitophagy inducing conditions. 

We also hope to look at the recovery of cells following oxidative stress, to show 

mitophagy as a pro-survival mechanism under these conditions. We plan to apply 

oxidative stress to our cells instigating mitophagy as we have observed from our 

imaging data, and then remove the oxidative stress and allow cells to recover, 

monitoring their recovery using mitochondrial membrane potential and 

mitochondrial function on the Seahorse. We anticipate that whilst TAZREV and 

CONTROL cells will recover effectively as they are able to utilize mitophagy to 

remove damaged mitochondria, TAZMUT cells will not recover, or have reduced 

recovery, displaying reduced mitochondrial membrane potential and function 

indicative of their retention of damaged and dysfunctional mitochondria 

following oxidative stress.  We hope to then develop these investigations to 

determine if rapamycin, a known inducer of macroautophagy, could rescue the 

recovery effect lacking in TAZMUT cells by removing these damaged 

mitochondria through a non-specific autophagic response to rapamycin.  

We will also attempt to flood the TAZMUT cells with exogenous polyunsaturated 

fatty acids (PUFA’s), thus forcing them to synthesise immature CL using PUFA’s. 

Hopefully this will raise the level of puCL’s in the TAZMUT cells to levels 

comparable to TAZREV and CONTROL cells. We would determine if this was the 

case by mass spectrometry and measure mitophagy levels and recovery from 

oxidative stress to determine if the phenotype observed for each in the TAZMUT 

cells could be rescued by addition of PUFA’s. 

Finally we would like to explore to a greater level an effect upon mitochondrial 

dynamics and morphology observed early on in this project. I would like to 

determine if a quantifiable deficiency in fission and fusion is present in the 

TAZMUT cells, as well as ascertain if the defect in fission lies within the inability 
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of the outer mitochondrial membrane to Fis as suspected. To this end we would 

propose using two fluorescent markers for the mitochondria, one specifically 

matrix/inner membrane localised and the other exclusively outer membrane 

localised. With this approach we would be able to monitor the dynamics of each 

membrane separately and thus determine if, as we suspect, the outer membrane 

has difficulties in fission when puCL levels are reduced.    

6.3 Clinical relevance 

Mitophagy has been implicated in several diseases as highlighted in section 1.2 

and 1.3.3. Therefore the increased understanding of the role of CL in mitophagy 

as evidenced here may aid in the treatment for these conditions. With direct 

relevance to Barth’s syndrome, the disease upon which our model system was 

built, it seems that mitophagy is markedly reduced under Barth’s syndrome 

conditions of low levels of puCL. This may account for some of the disease 

pathology observed and the effects this condition has on patients. If we show, as 

we plan to, that forcing mitophagy in Barth’s syndrome cells can cause a 

reduction in the molecular presentation of the disease (in terms of 

mitochondrial function) then perhaps up-regulation of mitophagy in patients 

with Barth’s syndrome could be viewed as an effective treatment. Indeed our 

plans to test rapamycin, a clinically approved drug, to increase mitochondrial 

clearance by macroautophagy may represent a viable treatment plan. In addition 

the supplementation of Barth’s cells with PUFA to increase mitophagy may also 

represent a second approach for treatment through dietary supplementation, an 

approach that has already been investigated in Barth syndrome patients (108, 

111, 172, 173).      
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