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Abstract 

The aim of this work was to explore an alternative to existing methods of 

detection for Human African Trypanosomiasis (also known as sleeping sickness). 

A new approach to diagnostics for sleeping sickness is needed, since the existing 

methods of detection employed in the field have significant shortcomings in 

terms of sensitivity, cost or ease of operation. 

In this work, the enrichment of trypanosomes from blood using travelling electric 

fields and the selective lysis of cells using optoelectronic tweezers will be 

presented. Both techniques allow for the enrichment of trypanosomes from 

blood samples but the first is more suited for an application as a point-of-care 

device, while the latter is also applicable to other cell types and offers greater 

flexibility.  

Besides demonstrating and quantifying the experimental results the work 

includes simulations to further explain the phenomena and investigate the 

underlying mechanisms.  

The results presented here offer a new method to enrich trypanosomes, a 

central step in any potential diagnostic tool. They open up the possibility to 

develop a new solution to the challenges posed by sleeping sickness diagnostics 

and allow for miniaturisation and automation of the process.  
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Chapter 1: Theory and Background 

1.0 Abstract 

In this Chapter the theoretical framework for dielectrophoresis and electrically 

induced lysis will be discussed and a short literature review on these subjects 

presented.   

 

1.1 Dielectrophoresis review of theory 

Dielectrophoresis (DEP) describes the movement of particles in non-uniform 

electric fields. In this work, only the key equations will be presented and 

discussed, without the mathematical derivation. Several authors have provided 

an excellent literature on the subject [1-3] and the theory behind DEP and the 

reader is advised to seek them out for further understanding of the subject. 

The central idea behind DEP is that an electric field induces a dipole in a 

particle which in turn interacts with the electric field. Because of spatial 

inhomogeneity of the electric field, a net force arises, which then moves that 

particle. This movement is directed along the gradient of the field and not along 

the field itself (see Figure 1-1). The movement will be either towards regions of 

high field (positive DEP) or away from regions of high field (negative DEP).  

In this work the author will make use of an idea that is commonly employed to 

determine the governing equations for the dielectrophoretic forces, that of the 

effective dipole moment. It means in essence that a complex particle such as a 

cell, when interacting with an electric field, can be treated mathematically like 

a single dipole of a certain strength at a certain location. This idea is similar by 

analogy to using the centre of mass for calculation of the gravitational force 

acting on a particle. While determining the effective dipole moment has its 

limitations (when the inhomogeneity of the field is of similar order of magnitude 

as the particle, especially for particle-particle interactions), it is a valuable tool 

in determining valid, predictable results in many important cases.  
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Figure 1-1: A) Spherical particle (blue) in an electric field (red lines). The field is created by 
parallel electrodes and is distorted locally by the presence of the cell (in this case the cell 
has a higher polarisability than the surrounding medium). The particle undergoes Maxwell 
Wagner polarisation. B) Spherical particle (with higher polarisability than the surrounding 
medium) in a non-uniform electric field. In this case the force acting on one end of the 
dipole is unequal to the force acting on the other end. Thus a net force arises, called the 
dielectrophoretic force (image modified from ref [1]). C,D) Examples of positive and negative 
DEP. Particles are represented as coloured circles (the direction of force is stated by the 
arrow) and electrodes as black lines (image recreated from ref [1]).  C) Positive (red) and 
negative (blue) DEP forces on particles with the field lines being perpendicular to the 
gradient of the field. D) Positive (red) and negative (blue) DEP forces on particles with field 
lines being parallel to the field gradient. 

 

The force acting on an infinitesimal dipole is given by [1]: 

                    [Eq. 1.1-1] 

Here F is the force, p the dipole moment and  E is the gradient of the electric 

field. This equation was derived (see e.g. [1]) by adding the forces acting on 

each charge of the dipole and performing a Taylor series expansion (which 

introduces the gradient), while ignoring second or higher order terms. Equation 

1.1-1 already shows that the force is zero if the field is uniform. It should be 

noted that this equation only accounts for cases where the higher order terms 

can be ignored.  
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An important stepping stone in further determining the equations necessary to 

describe DEP is the effective dipole moment of a dielectric sphere in a dielectric 

medium (at a DC voltage). This is a common approach taken in the literature [1, 

2]. Using the solutions for the potential inside and outside of the cell and the 

two boundary conditions (continuous electrostatic potential and continuous 

normal component of the displacement flux vector at the fluid-particle 

boundary) an expression for the effective dipole moment, peff, can be found as 

[1]: 

                
    [Eq.1.1-2] 

Where εm is the permittivity of the medium, r is the radius of the particle and 

CM is the Clausius-Mossotti factor with εp being the permittivity of the particle.  

          
     

      
 [Eq. 1.1-3] 

 

Permittivity is the intrinsic property of a particle or substance to polarise in the 

presence of an electric field. It is determined by the tendency of the atomic 

charges in the material to be distorted by said electric field and is a function of 

frequency.  

It can be seen from Equation 1.1-2 and Equation 1.1-3 that the CM factor 

governs the direction of the effective dipole moment and limits the magnitude. 

The value of CM is thus limited by -0.5 ≤ CM ≤ 1.0 regardless of the values of the 

permittivity. A positive CM factor (εp > εm) means that Peff is parallel to the 

electric field while a negative CM factor (εp < εp) indicates that the effective 

moment is antiparallel to the field.  

In the case of a purely conducting sphere, in a conducting medium, a similar 

formula for the CM factor can be found: 

          
     

      
 [Eq. 1.1-4] 

where σp and σm are the conductivity of the particle and the medium 

respectively.  
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In reality, a particle will usually be neither a pure dielectric nor a perfect 

conductor but will experience some form of loss instead. This loss (caused by 

energy dissipation mechanisms) will cause the dipole moment to experience a 

phase lag in a sinusoidal (AC) electrical field.  

After assuming a sinusoidal electric field a simple phasor expression for the CM 

factor can be found as: 

          
     

      
 [Eq. 1.1-5] 

where the underlined quantities are complex. Complex permittivity is given by: 

     
 

  
 [Eq. 1.1-6] 

The complex permittivity has two components which can be thought of as 

representing the two responses of the particle to the applied electric field. The 

first part is the instantaneous, permittive component that represents the 

forming and orientation of the dipoles of the atoms and or molecules in the 

medium. Meanwhile the second part represents the polarisation caused by the 

movement of atoms or molecules in the medium. This conductive part is not 

instantaneous and responds with a phase lag compared to the electric field.  

When the permittive part dominates (that is,              ) Equation 1.1-5 

naturally reverts to Equation 1.1-3. This is the case when σ is zero (which was 

our assumption for Equation 1.1-3, a pure dielectric) or when the frequency is 

very high. This is due to the fact that the ions can no longer respond to the field 

and are unable to move a significant distance before the polarity switches 

directions. 

Equation 1.1-5 will consequently revert to Equation 1.1-4 in case the conductive 

part dominates (            ), since the frequency dependency is cancelled out 

of the equation. This limit corresponds to very low frequencies acting on the 

particle in question (the movement of ions becomes the dominating factor), 

agreeing with our assumption for Equation 1.1-4 of a DC field acting on a 

particle with finite conductivity.  

It should be noted that the CM factor in these two cases (domination of the 

permittive or conductive part) is purely real. However for all circumstances in 
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between, the CM factor is a complex number. This complex number has both a 

magnitude and a phase, the latter of which describes the phase lag of the dipole 

with respect to the electric field.  

In Equation 1.1-1 the only the part of the dipole moment that is in phase with 

the electric field will be contributing to the force. Consequently only the real 

part of the CM factor needs to be taken into account when calculating the DEP 

force. On the other hand, the imaginary part of the CM is responsible for the 

torque acting on the particle.  

Combining Equations 1.1-1, 1.1-2 and 1.1-5 and taking the time average yields 

the Equation commonly used to describe traditional DEP: 

                 
                

  [Eq.1.1-7] 

 

where Erms is the root mean square, εm is real (it is part of Peff and not the CM 

factor) and r is the radius of the spherical particle.  

As outlined above, the CM factor is a complex number, with the real part 

contributing to the DEP force. The CM factor is a function of frequency and can 

be plotted against frequency in order to gain a better understanding of the force 

response and the frequency regime required for separation of two different 

particles.  

Figure 1-2 , taken from ref [2], shows both the real and imaginary part of the CM 

factor as a function of frequency. Figure 1-2 describes the case of a particle 

with lower conductivity and higher permittivity than the surrounding medium. 

The imaginary part is zero at the extreme high and low values of the frequency 

(the CM factor is completely real) and has a maximum value in between the two 

responses.  
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Figure 1-2: Real (solid line) and imaginary (dashed line) parts of the CM factor for a particle 
with σp < σm and εp > εm (image modified from ref [2]). 

 

The Frequency where the real part of the CM factor is zero is called the 

crossover frequency and marks the point where no net force is acting on the 

particle. The sigmoid shape of the real part of the CM factor is only applicable 

for a spherical particle made up of a homogenous substance.  

A homogenous sphere is, however, a poor model for a biological cell. The cell is 

formed by a lipid bilayer that acts as a near perfect insulator. As a consequence, 

a cell is often modelled as a sphere surrounded by a single shell with properties 

of the intracellular medium and the cell membrane respectively (e.g. [4]). In 

reality, cells have organelles and compartments and more complex (multi-shell) 

models have been developed (e.g. [5]). For a single shell, the additional 

interface causes the CM factor to take on an additional state (with the imaginary 

part now showing two peaks).  

Further modifications to the CM factor need to be made if the particle in 

question shows a non-spherical geometry. An example of a model of the CM 

factor of an ellipsoidal cell is given in Figure 1-3. The exact details of the 

equation used for the CM factor for this model are detailed in Chapter Four.  
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Figure 1-3: Example of the Clausius-Mossotti factor of an ellipsoidal cell model using a 
single shell to model the cell membrane. Solid line shows the real part and the dotted line 
shows the imaginary part of the CM factor. For details on this model (a red blood cell) see 
Chapter Four. 

 

1.1.1 Travelling wave dielectrophoresis 

Traditional DEP causes short displacements of particles toward or away from 

regions of high electric field. These high fields usually occur at the electrode 

edges and once a particle is at the edge of the electrode, or at a sufficient 

distance away from it, the movement caused by DEP will cease. However, an 

alternative mechanism for translational movement of particles over large 

distances can be achieved through the application of a travelling electric field 

[6]. This field is applied over a set of electrodes with a phase shift other than 

180° between them. The most common such configuration is that of four 

electrodes and a phase shift of 90° from one to the next. The configuration 

bears similarities to that of four electrodes used for electrorotation.  

Gascoyne and colleagues provided a unified theory that combines traditional DEP 

and TW-DEP into one set of formulae [7]. This approach will be used in this work 

to describe the forces acting on particles in TW-DEP devices. The applied AC 
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electric field exhibits a spatial phase and magnitude dependency, which can be 

described by:  

                                

                
[Eq. 1.1.1-1] 

The dielectrophoresis (DEP) force comprises the sum of two components: FDEP = 

FcDEP + FtwDEP, the first component, is a result of the interaction of the in-phase 

component of the dipole moment with the field magnitude non-uniformity 

(FcDEP); the second component is a result of the interaction of the out-of-phase 

dipole moment with the field phase non-uniformity. The dipole approximation of 

the DEP force can then be written as: 

 
      

 

 
              

 

 
             

    

    
        

      

[Eq. 1.1.1-2] 

where the first and second terms correspond to FcDEP and FtwDEP respectively and  

  
 

 
     is the volume of the ellipsoidal particle. The magnitude and direction 

of the DEP force is given by the CM factor and the electric field non-

uniformities. (Exo, Eyo, Ezo) and (φx, φx, φx) are the spatially dependant vector 

components of the field magnitude and phases respectively. 

An important application of TW-DEP (especially in the context of this work) is 

the separation of two different species of cells or particles. This is usually (e.g. 

[8]) achieved by choosing a frequency regime where one particle is levitated 

above the electrode array (negative value of the real part of the CM factor) and 

experiences a non-zero force due to the phase gradient of the field (non-zero 

imaginary part of the CM factor), whilst at the same time the other cell 

experiences positive DEP. This causes one cell type to be moved up and out of 

the area where the travelling electric field is applied while the other cell type is 

trapped.  

 



Chapter 1 Page 9 

 

Figure 1-4: Cartoons illustrating travelling wave dielectrophoresis (TW-DEP). A) 
Electrorotation of a particle placed in the centre of four electrodes energised with a 
travelling electric field. As the field rotates around the particle, the particle will rotate as well 
according to the torque generated dipole moment. This torque is related to the imaginary 
part of the Clausius-Mossotti factor. B) TW-DEP caused by the travelling electric field of 
electrodes that are placed at the bottom of a chamber, while the particle is suspended 
above them. A) and B) represent a top-down view of the electrodes and particle. C) A side 
view of a particle suspended above a set of electrodes, energised to create a travelling 
electric field. The particle is levitated off the electrodes by conventional (negative) DEP. The 
TW-DEP component of the force moves the particle along the phase gradient of the field (its 
direction is given by the imaginary part of the CM factor).  

 

Of special interest for this work is the special case of bidirectional TW-DEP, 

which refers to the simultaneous movement of two types of particles in opposing 

directions. This can usually not be achieved by a single travelling electric field 

on a single set of electrodes. Frequency regimes where both cells experience 

negative DEP will have        pointing in the same direction for both species.  

Bidirectional TW-DEP is useful, since it allows the simultaneous concentration of 

the agent of interest while removing unwanted cells. While such a feat is 

obviously possible through other means, bidirectional TW-DEP allows for a 

convenient way to achieve this on small devices. 



Chapter 1 Page 10 

1.1.2 Optoelectronic tweezers 

In order to utilize DEP it is necessary to generate non-uniform electric fields in a 

chamber or channel where they can interact with the suspended cells. This is 

traditionally achieved using metal electrodes patterned on glass. These 

electrodes can be arranged in many different ways to generate non-uniformities 

of the applied field (e.g. interdigitated electrodes [9]).   

A second way to generate a non-uniform electric field is to use a 

photoconductive layer on top of a conducting layer. The photoconductor 

increases in conductivity (by several orders of magnitude) when exposed to light. 

Consequently, the area that is exposed will act as a „virtual electrode‟ and cause 

the formation of a field with a spatial gradient (see Figure 1-5). A common 

material to use as a photoconductor is amorphous silicon (a:Si).  

 

Figure 1-5: Cartoon depicting the working principle of optoelectronic tweezers (OET). A) 
„Dark state‟ with no light being applied to the setup. The two electrodes (composed of 
indium tin oxide (ITO) patterned on glass) are connected to a function generator and the 
bottom electrode is also covered by a layer of amorphous silicon. B) „Light state‟ with the 
layer of a:Si being illuminated. The photoconductor reduces in resistance by several orders 
of magnitude and creates a virtual electrode. This creates a non uniform electric field in the 
medium between the two electrodes (green lines).  

 

This technique (commonly referred to as optoelectronic tweezers or OET) offers 

great flexibility for particle manipulations as the electrodes themselves can be 

rearranged on the fly [10]. The important difference to traditional electrodes is 

the additional layer of dielectric material. Depending on the configuration, this 

layer of a:Si is usually between 300 nm and 1 µm. Even in the „light state‟ the 

amorphous silicon has a much higher resistance than metal electrodes and a 

significant portion of the applied potential is dropped across the a:Si layer. This 
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effect becomes even more pronounced with high conductivity media, preventing 

the generation of dielectrophoretic forces of meaningful magnitude.  

 

1.2 Dielectrophoresis review of literature 

The term dielectrophoresis was first used by Pohl [11] in 1951 and the technique 

has since found many applications for diagnostics, biophysics and biomedical 

sciences. As pointed out above, cells will either undergo negative or positive 

DEP. The individual response of a particle or biological cell will depend on its 

dielectric properties. These properties are a function of its shape, size and the 

effective permittivity. In the case of cells the morphology and composition of 

the lipid bilayer can affect this permittivity and for fields of high frequency the 

internal make up of the cell is of importance as well. This then allows for the 

separation of different cells based on their dielectric properties. Since 

differential forces can be generated on different cell species without the need 

to apply markers or to alter the cells in some other way, this a valuable tool for 

diagnostics. Biological cells can be concentrated, patterned or their biophysical 

properties can be investigated.  

As R. Pethig pointed out in his review article [12], in the time span between the 

years 2000 and 2010 around 2000 publications have been published addressing 

the theory, technology or application of dielectrophoresis. Only a few examples 

of different applications of DEP are mentioned here: Kim et al. (2007) used DEP 

for fractionation of human breast carcinoma cells based on the cell cycle phase 

[13]; Ho et al. (2006) achieved the patterning of liver cells and endothelial cells 

using DEP traps in a microfluidic chip [14]; Vykoukal et al. (2008) demonstrated 

the enrichment of putative stem cells from adipose tissue using DEP field-flow-

fractionation [15]; Labeed et al. (2003) used DEP for the evaluation of multi-

drug resistance in leukemic cells [16].  

Of greater interest for this work is the literature regarding travelling wave 

dielectrophoresis. In 1992 Hagedorn and colleagues [6] were the first to describe 

translational movement of particles (pollen) over large distances due to the 

application of a travelling electric field. The electrode array used in their 

experiment to create the field was a linear design, which requires complex 

fabrication techniques as electrodes need to be layered on top of each other. A 
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simpler two dimensional solution is presented by the introduction of a spiral 

array for TW-DEP. Wang et al. (1997) were the first to describe the use of a 

spiral for TW-DEP (in their case to enrich breast cancer cells) and analyse the 

force generated in such a setup [17]. Later that same year Goater et al. used a 

spiral array to concentrate parasites (Cryptosporidium parvum oocyst) and 

determine their viability through electrorotation [18]. Another important 

demonstration of the applicability of spiral based TW-DEP for the diagnosis of 

infection was the isolation of erythrocytes infected with malaria from normal 

red blood cells by Gascoyne et al. (2002) [8]. 

However none of these approaches implemented bidirectional movement of 

particles. Pethig and colleagues (2003) were the first to report bidirectional TW-

DEP through the superposition of two electric signals over the same set of 

electrodes [19]. The electrode array used here however was a linear track rather 

than a spiral design. Other approaches include the use of two sets of electrodes 

(one on the bottom and one at the top of the chamber) by Huang et al. (2008) to 

generate bidirectional movement [20]. 

The optoelectronic tweezers (OET) technique was first demonstrated by Chiou et 

al. (2005) [10]. In this pioneering work Chiou and colleagues demonstrated the 

impressive flexibility of the technique for both single cellular and massive 

parallel (15,000 particle traps were created on a 1.3 mm X 1.0 mm area) 

manipulation of cells. The limitation of low conductivity media was addressed by 

Hsu et al. (2009) through the use of phototransistor based OET, to increase the 

photo conductivity [21]. 

Of special interest for this work is the use of OET as a tool for electroporation 

and electrically induced lysis. The relevant literature will be discussed below 

(see 1.4). 

 

1.3 Electrically induced lysis review of theory 

Healthy mammalian cells are surrounded by a membrane consisting of a lipid 

bilayer with embedded proteins [22]. There has been a longstanding interest in 

manipulating the cell membrane in order to introduce molecules into the 

intracellular medium or to lyse the cell. Poration of the membrane causes holes 
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to form through which materials can be inserted into the cell (e.g. transfection). 

Lysis describes the irreversible disruption of the cell membrane which causes the 

cell to die as intracellular medium diffuses out of the cell.  

Electrically induced lysis is thought to be triggered because the transmembrane 

potential (TMP) reaches a potential threshold value and pores form that then 

merge or increase in size and cause the irreversible breakdown of the lipid 

bilayer [23-25], although the exact process is still not fully understood. Any cell 

has an electric potential across its cell membrane due to the unbalanced ion 

concentrations in the intra- and extracellular medium. In an average healthy cell 

this value will be some tens of mV [22]. When the cell is exposed to an external 

electric field however, this TMP will increase because negative and positive 

charges accumulate at the inner and outer interface of the membrane [26].  The 

induced TMP is not evenly distributed over the cell surface because this 

accumulation mainly takes place at areas of the membrane closest to the 

electrodes. 

For an AC bias acting on a spherical cell in a homogeneous electric field the TMP 

is given by the Schwan equation [27]: 

         
    

          
 [Eq. 1.3-1] 

where ΔV is the induced transmembrane potential, r is the radius of the cell, E is 

the electric field strength, θ is the angle between the normal vector protruding 

from the cell membrane at the point of interest and the electric field and ω is 

the angular frequency of the applied bias (      . The relaxation time of the 

membrane τ can be written as:  

         
         

 
  [Eq. 1.3-2] 

Where Cmem is the capacitance of the membrane and ρint and ρext are the 

resistivities of the internal and external medium respectively. Equation 1.3-1 is 

only valid given the restrictions outlined in [27], specifically a conductivity of 

the surrounding medium that is significantly less than the intracellular medium. 

Once the TMP reaches a certain value, pores begin to form in the bi-layer and at 

lower voltages this process is still reversible [25]. This is commonly referred to 



Chapter 1 Page 14 

as electroporation and has many uses, such as transfection, drug delivery and 

gene therapy [28]. If however the voltage is too high (~1 V) [29], the damage to 

the membrane is irreversible and the cells lyse. The intracellular medium 

diffuses out of the cell and it is no longer viable.  

In general, the cells to be lysed are placed in a uniform electric field or at least 

the electric field is produced by conductors (electrodes) that are in direct 

contact with the medium that contains the cells. In this case, the total voltage 

drop across the cell (and thus the TMP) is directly correlated to the total size of 

the cell or rather its size with respect to the direction of the field (see Figure 1-

6). If no cell is present, the voltage drop across the liquid is linear while 

placement of a cell causes a deformation of the electric field (and consequently 

a difference in the voltage distribution). Since the membrane has a very low 

conductivity (high impedance at low frequencies) when compared to the interior 

or exterior of the cell, most of the voltage variation occurs across this thin coat 

[30]. The membrane acts as a shielding layer and the voltage across the inside of 

the cell remains constant. This means that a large voltage drop will occur across 

the membrane. The larger the applied total voltage and the larger the size of 

the cell, the larger the voltage drop will be. Since larger cells experience a 

higher TMP, they are lysed at lower voltages than smaller cells. 

 

Figure 1-6: Diagram of a spherical cell between two parallel electrodes (left) and the voltage 
plotted against distance (right). The voltage is plotted along the dotted line on the left, 
through the middle of the cell. The voltage drop would be linear if no cell were present 
(dotted line on the right). The induced transmembrane potential is given as ΔV and it can be 
seen that a greater total voltage drop or a larger cell would lead to increased potentials 
across the membrane. 
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An important property of the cell membrane is its capacitance in applied 

electric fields. As already stated, it presents a high resistance (near perfect 

insulator) for fields of low frequency while for fields of higher frequency the 

resistance decreases. Figure 1-7 shows a COMSOL simulation of electric fields 

“going around” a cell at low frequencies and through the cell membrane at 

higher frequencies (as the internal conductivity is higher than the surrounding 

medium). In this case the cell is placed at an equal distance from each electrode 

and the applied electric field is uniform (for details see figure legend). 

 

Figure 1-7: COMSOL simulation depicting the ability of the cell membrane to act as an 
insulator at low frequency (10 KHz) (left) and how it loses this ability at higher frequency 
(100 KHz) (right). Conditions used for the model included 10 nm thick membrane, 10 µm 
diameter of the cell, total chamber height 100 µm and medium conductivity of 100 mS/m. 

 

1.4 Electrically induced lysis review of literature 

As one would imagine a subject as widespread and well studied as cellular lysis 

has a very large and diverse body of literature to offer. Since this work is only 

concerned with electrically induced lysis only a few recent examples are given 

of the other physical ways that are used to break down cell membranes.  

Mahalanabis et al. (2009) demonstrated the chemical lysis of bacteria from blood 

to extract their DNA [31]. Vandeventer et al. (2011) achieved the same goal but 

used mechanical disruption to lyse thick walled cells (Bacillus spores and 

Mycobacterium cells), that are otherwise resistant to disruption [32]. Another 

approach (of which an example is given below) is to utilise osmotic pressure to 

lyse cells.  

Selective lysis describes the lysis of certain cell species while retaining the 

integrity of other cells. This may be used to enrich cells (remove unwanted cells 
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from a sample), improving the outcome of polymerase chain reactions by 

washing away unwanted DNA from lysed cells and to enable detection of rare 

cells.  

Selective lysis can be achieved for bulk solutions with agents (e.g. antibodies 

[33]) that target certain cell types. Recently, promising results have been 

published by Nederberg et al. (2011) presenting selective lysis of microbes using 

nanoparticles [34]. An interesting publication about selective lysis is the 2007 

paper by Parekkadan et al. in which the authors used osmotic pressure to 

selectively lyse red blood cells and thus enrich stem cells from umbilical cord 

blood [35]. 

Another approach is to lyse cells individually. This has been achieved recently 

though electrical lysis induced by micropipette electrodes [36], using lasers [37] 

or by using optoelectronic tweezers. OET was first used by Valley et al. (2009) 

for electroporation and lysis [38]. Since then other authors have demonstrated 

electrical lysis using the technique [39].  

In 1965 Hans Coster discovered the reversible electrical breakdown of cell 

membranes (which he termed „punch-through‟) at a certain well defined 

electrical potential [40]. A good summary of the phenomenon and its discovery 

can be found in the 2009 tribute written by Coster himself [41]. The exact 

explanation of what is happening at a molecular level during electroporation  is 

still subject to debate (e.g. see [24]).  

One of the first to develop a mathematical framework for the electrically 

induced lysis process was H. P. Schwan [27, 42, 43] who established equations to 

calculate the transmembrane potential for both DC pulses and AC bias. This set 

of equations has been expended upon by later authors, for example by J. Gimsa 

to include ellipsoidal particles [44]. These approaches however rely on a uniform 

electric field for their calculations.  

When dealing with irregularly shaped cells or non-uniform electric fields, 

numerical modelling is usually applied to gain a better understanding of the 

problem. For example Pucihar et at. (2009) used a finite element model to 

calculate time-dependent changes in the induced TMP of an irregularly shaped 

cell [26]. 
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Chapter 2: The Problem 

2.0 Abstract 

This Chapter contains an overview of sleeping sickness and the burden it 

presents as well as a review of the current methods of detection used in the 

field. The Chapter closes with a summary of the motivation for this work. 

 

2.1 Sleeping sickness 

Human African trypanosomiasis (HAT) is a deadly disease found in sub-Saharan 

Africa. It is caused by the single cellular parasite, Trypanosoma brucei, which 

infects a human blood stream through the bite of the Tsetse fly [45-48]. Once 

infected the parasite proliferates asexually in the bloodstream of the host and 

remains extracellular. This first stage of the disease has only mild symptoms and 

the infection is often not recognized. After a long incubation period (months or 

years) the parasite enters the central nervous system (CNS) of the host and 

causes a number of serious symptoms through inflammations in the CNS. This 

second stage of the disease is always fatal if not treated. 

There have been three major epidemics of sleeping sickness in the last century 

[49]. The first one (around the turn of the century) was mainly restricted to 

central Africa and killed nearly 800,000 people. The second one emerged during 

the 1930s and caused the colonial powers at the time to initiate large scale 

screening and treatment programmes. These two epidemics also prompted the 

colonial powers to seek medication for sleeping sickness. Most of the drugs used 

today were invented during the first half of the last century [49, 50]. Suramin 

(the drug commonly used to treat stage 1 infection) was developed in 1916 and 

Melarsoprol (still used for stage 2 infection, despite causing fatal reactions in up 

to 10% of the patients) in 1949. These continued control measures caused the 

disease to be nearly extinct during the 1960s but decolonization of most African 

nations and the following unrest caused monitoring programs to slip [51]. As a 

consequence HAT re-emerged and peaked again during the 1990s with ~37,000 

new reported cases in 1997 (25,000 of which were from the Republic of Congo) 

[52]. Through political cooperation and help from non-governmental 

organisations (NGOs) the control and treatment of HAT was intensified again, 

and the number of cases reduced drastically. In 2010 the total number of new 
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reported cases was 6631 of which 5595 were from the Republic of Congo [52]. 

These encouraging numbers have led the WHO to announce a target for 

elimination of the disease in 2020 [53].  

 

Figure 2-1: New reported cases per year and number of screened people for HAT (image 
modified from ref [46]). The disease was nearly eradicated during the 1960s but a break in 
the screening program resulted in the resurgence of the disease in the following years. In 
2009 the number of reported cases dropped below 10,000 for the first time in 50 years due to 
the reinstatement of successful control measures. 

 

It should be noted however that this target can only be achieved if control of the 

disease is kept up and not relaxed, least the disease return again. The actual 

number of cases is much higher than the reported new cases per year. In 1998 

the WHO estimated [53] that while the number of reported cases was ~40,000 

the actual number of cases was about 300,000. For 2010 the WHO estimated [53] 

the number of actual cases at about 30,000.  

 

2.2 Trypanosomes 

The trypanosome is a single cellular protozoan parasite. It has a typical length of 

15 to 30 µm and is usually motile through the use of a flagellum. Of the species 

Trypanosoma brucei (T. b.), there are three subspecies [54], T. b. brucei, T. b. 

rhodiense and T. b. gambiense, the latter two being infectious to humans. 

Human blood contains a trypanosome lytic factor (TLF) which is able to destroy 

Trypanosoma brucei in the blood stream [55]. The two types of trypanosomes 

that are infectious to humans are able to resist this TLF. T. b. gambiense is 

responsible for over 95% of the reported cases of sleeping sickness [53]. This is 

due to the fact that the parasite is much better adapted to the human immune 
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system. While infection with T. b. gambiense is chronic and can last for years 

[56], giving the parasite ample time to spread to new hosts, infection with T. b. 

rhodiense is acute and only last weeks or months. The two subspecies are 

separated geographically [57], with T. b. gambiense only being present in 

western and southern parts of Africa. Another difference between the two is 

that T. b. gambiense is chiefly transmitted from person to person (via a tsetse 

fly). While it is possible for wild animals to act as reservoirs, this is rare [58]. On 

the contrary, T. b. rhodiense has large reservoirs in cattle and infections from 

animal to humans are frequent [59]. In this work the terms trypanosome and 

parasite will only refer to T. b. gambiense and West African sleeping sickness, 

although experiments were carried out with T. b. brucei (T. cyclops in some 

cases) which is considered non infectious to humans.   

Trypanosomes are transmitted to humans through the bite of the blood-feeding 

tsetse fly (genus Glossina). The fly takes up trypanosomes when acquiring a 

blood meal from an infected host [60]. The parasite then travels from the mid-

gut of the fly to the salivary glands from where it can infect a healthy human 

when the fly feeds again. This process takes three to five weeks, which is close 

to the life span of the fly. Only a very old tsetse fly that was infected at a young 

age can transmit the disease. This is rare and only 0.1% of a tsetse population 

are actually infectious [46, 60]. During its life cycle, the parasite undergoes 

several transformations [45]. The bloodstream form of trypanosomes is able to 

proliferate through binary fission and is well adapted to the human blood 

stream. It is however unable to survive in the gut of a tsetse fly. Therefore some 

of the parasites (a small part of the total population) change into a smaller 

„stumpy‟ form which is unable to reproduce, but is pre-adapted to the 

environment inside the fly. Only these parasites will survive after being taken up 

in a blood meal. A similar process takes place in the fly where the parasite has 

to change forms to adapt to the environment in the salivary glands and some of 

the parasites change into a form that is pre-adapted to the human blood stream 

(but unable to proliferate in the fly) [61]. While in the human blood stream the 

parasite will eventually enter the central nervous system [62] and cause the 

severe neurological symptoms that gave the disease its name, and ultimately 

lead to the demise of the patient. 
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Figure 2-2: Life cycle of T. brucei, Tsetse fly as vector. A) Life cycle of the T. brucei parasite 
(image modified from ref [46]). The parasite features different forms in the human host and 
insect vector. Stages marked with a black arrow (a,d,e) are capable of reproduction through 
division. Sexual reproduction is thought to happen solely in the insect vector. In the human 
host a portion of the trypanosomes in the reproductive stage (a) change (though an 
intermediate stage (b)) into a form that is pre-adapted to the tsetse fly (c). After take up, 
during a blood meal, the parasites have to migrate from the midgut to the saliva glands (d-
e). There a reproductive form (e) and a form partly adapted to the human bloodstream (f) 
coexist. Only the latter is able to survive injection into the human bloodstream after a 
bloodmeal. B) Tsetse fly (Glossina morsitans) during bloodmeal, a proboscis penetrates the 
skin and initiates feeding (image modified from ref [63] ). C) Well fed Tsetse fly, weight can 
double due to the amount of blood taken during a meal (image modified from ref [64] ).  
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2.3 Variant surface glycoprotein 

T. brucei exists in the human bloodstream as an extracellular parasite. As such, 

it is constantly exposed to the body‟s immune response. The fact that the 

parasite can persist in the human body for years is a testament to its extreme 

level of adaptation. The key to ensuring the parasites survival in the human body 

is the so-called variant surface glycoprotein (VSG) [65, 66].  

Glycoproteins are proteins with one or several covalently bound sugar groups. 

While they fulfil many functions in mammalian bodies, glycoproteins are often 

integrated into the cell membrane where they are involved in cell to cell 

interaction.  

T. brucei (and in fact all trypanosomes) has developed a special defence 

mechanism using these glycoproteins. The surface of the parasite is covered in 

~107 identical glycoproteins that enclose the trypanosome like a suit of armour. 

This dense, forest like network protects the membrane from contact with the 

immune system. What is more, only the part of the glycoprotein that is 

embedded in the membrane is conserved, the N-terminal part of the protein is 

variable, hence the name variable surface glycoprotein. The VSG, while 

homogenous for any given parasite, can vary greatly from one trypanosome to 

the next. Every 100 cell divisions one or both of the daughter cells will carry a 

completely new surface coating. The stochastic process by which this variance 

occurs (a combination of 200 active genes and about 1000 inactive ones) allows 

for near infinite variability.  
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Figure 2-3: Variant surface glycoprotein coating of trypanosomes (image modified from ref 
[67]). The variable N-terminal end of the protein protrudes into the extracellular medium, 
attached to an anchor that is embedded in the membrane. The coating covers the entire 
surface of the trypanosome and antibodies can only bind to the variable part of the 
glycoprotein. 

 

In the time it takes the immune system to produce specific antibodies for the 

currently prevalent VSG in a trypanosome population, one or several new sub-

populations with a different VSG will have emerged. While the immune response 

is killing the trypanosomes with the old surface coating the numbers of the new 

population increase, until the process repeats itself again.  This continued 

evasion of the immune system has several implications for the disease and the 

diagnostics needed to detect it [65].  

Firstly the number of trypanosomes will change periodically. For T. b. gambiense 

the number of trypanosomes in a millilitre of blood varies from 102 to 104 

parasites. This number is very low compared to the number of blood cells in the 

same volume (approximately 109).  The low numbers allow the human body to 

cope well with infection and there are only few, unspecific symptoms [47]. This 

means that the host is often unaware of the infection during the chronic first 

stage of disease. Meanwhile it is at this first stage that treatment should ideally 

be administered.  

The excellent evasive qualities of the VSG also result in the high rate of 

mortality of the disease. Sleeping sickness is always fatal when not treated 

because the parasite has unlimited time to eventually cross over the blood brain 

barrier. The exact mechanism of how this occurs is not fully understood, but it 
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takes a long time (months to years) for the parasite to achieve [62]. The VSG 

ensures the trypanosome has all the time it needs in the hosts bloodstream.  

A more direct consequence of the presence of the VSG is the inability to use 

antibody based testing for diagnostic purposes [68] (although it can be used for 

screening). Antibodies are a powerful tool in diagnostics but can only ever be 

specific to one glycoprotein. Since the VSG shields all other parts of the 

membrane from contact it is necessary to detect the parasite by other means, 

and currently optical detection is the only reliable option.  

 

2.4 Current methods of detection 

Diagnostics of human African trypanosomiasis (HAT) involves three necessary 

steps: screening, confirmation and staging. Cheap and sensitive screening tools 

are important to ensure successful control programs for HAT, especially 

considering the continued suppression of outbreaks and eventual eradication of 

the disease [69]. Screening has to be followed by diagnostic confirmation of the 

parasite in the human blood stream, lymph nodes or cerebrospinal fluid. It is 

estimated that the standard diagnostic tests used at the moment miss about 20% 

to 30% of infected patients [51]. Staging is a vital final step to choose correct 

treatment and medication for the infected individual. Diagnostics are further 

hindered by non-attendance to screening or necessary recurring treatment. Lack 

of knowledge of infected individuals contributes to these issues. A 2008 study in 

the Republic of Congo showed for example, that 40% of patients attributed their 

HAT infection to supernatural sources like sorcery or transgression of rules [70].  

 

2.4.1 Screening – clinical features 

Clinical features are only a poor indicator for infection. The site of the insect 

bite sometimes presents an ulcer (called a chacre), but even if this symptom is 

present it disappears after a few weeks without the need for treatment. During 

the first stage of infection signs are non-specific such as fever, headaches or 

fatigue. The so-called Winterbottom‟s sign describes a painless swelling of a 

lymph node in the neck of the patient. It was described by Sir Thomas 

Masterman Winterbottom in 1803, when he noticed that slave traders used neck 
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swelling to identify slaves that showed sleepiness or abnormal behaviour (making 

them undesirable). However, Winterbottom‟s sign is absent in up to 50% of 

patients and is not specific for sleeping sickness.  

 

Figure 2-4: Possible clinical features of sleeping sickness infection (images modified from 
ref [45]). A) Parasitical chacre at site of insect bite. B) Winterbottom‟s sign.   

 

Once the disease moves to the second stage and the parasite enters the central 

nervous system (CNS) the clinical signs become more pronounced but are very 

variable from patient to patient. Below is a summary taken from Chappuis et al. 

[51] : 

“The clinical features can be grouped into categories such as 
psychiatric, motor, sensory, and sleep abnormalities. The mental 
disturbance may include irritability, lassitude, headache, personality 
change, and overt psychiatric presentations such as psychosis. 
Pyramidal (e.g., focal paralysis), extrapyramidal (e.g., rigidity and 
tremor), and cerebellar (e.g., dysarthria and ataxia) disorders are 
common. Delayed and increased sensation to pain (Kerandel‟s sign) 
can also be noted. Reversal of the normal sleep-wake cycle, with 
daytime somnolence alternating with nocturnal insomnia, is typical. 
Weight loss and endocrine abnormalities such as amenorrhea and 
impotence are also frequent complaints. If left untreated, patients 
ultimately die from the consequences of severe wasting, dysfunction 
of the immune system, deep coma, and seizures, often due to 
bacterial infections such as pneumonia or meningitis.” 

 

Of these clinical features, psychiatric symptoms such as apathy, aggressive or 

psychotic behaviour often dominate and can be confused with psychosis [71]. 
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2.4.2 Screening - CATT 

Card Agglutination Test for Trypanosomiasis (CATT) is a powerful, fast and easy-

to-use screening tool. Developed in the late 70‟s, it is a simple agglutination test 

detecting antibodies against T. b. Gambiense [72]. As such it is a serological test 

that can be used with blood, serum or plasma. Freeze dried, stained 

trypanosomes act as the antigen [73]. Reagent and sample are usually mixed 

1:1, but in order to increase specificity different dilutions can be used. The 

trypanosomes are usually bloodstream forms with variable antigen type LiTat 

1.3, although other antigen types or combinations of variable antigen types have 

also been used (e.g. LiTat 1.6 for a latex based assay). Antigen production 

involves extraction and purification of trypanosomes from infected rats. 

The reported sensitivity of whole blood CATT (undiluted) is up to 98% and the 

negative predictive value is very good [74]. Nonetheless false negatives can 

occur, as some strains of trypanosomes lack the LiTat 1.3 antigen. Although the 

specificity is high (about 95%), the positive predictive value is limited for a 

number of reasons. The number of infected individuals is usually less than 5% in 

populations that are screened. False positives can occur due to infections with 

malaria or other parasitic diseases. While the number of potentially infected 

individuals can be further reduced by diluting the sample (increasing the 

specificity) this is not sufficient to confirm infection.  

The test result is checked with the naked eye and due to its nature hundreds of 

people can be scanned in a single day using CATT. This makes it a valuable tool 

for diagnostics but actual detection of the parasite in a blood or lymph node 

sample is still necessary.   
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Figure 2-5: Example of a CATT (10 serum samples diluted 1:4). Results 1-4 are positive and 
5-10 are negative results (image modified from ref [51]). 

 

2.4.3 Detection 

Microscopic examination and consequent confirmation of parasites being present 

is a necessary step in diagnosis of Human African Trypanosomiasis. Unfortunately 

the number of trypanosomes in a given blood sample can be very low. It varies 

from approximately 10,000 to 100 parasites / ml of whole blood. This variation is 

due to the immune response of the host (see Section 2.3). The methods of 

detection presented below have different limits of detection and only the mAEC 

method (see Section 2.4.8) can diagnose the disease at the lowest levels of 

parasitemia. However, the diagnostic work is usually carried out by mobile 

teams in the field and sensitivity is not the only deciding factor. The tools have 

to able to operate under the adverse conditions found in the field. Not all teams 

have access to electricity and the necessary reagents or tools. In addition, a cold 

chain cannot always be established or maintained. In general, the methods of 

detection can be labour intensive and might require special skills or training 

from the field workers.  It is necessary to keep the time between sampling and 

examination as short as possible as the trypanosomes are killed easily (e.g. by 

prolonged exposure to direct sunlight). 

The descriptions of current methods of detection in this chapter include detailed 

sketches. They help to illustrate the needed steps and equipment of each 

technique and how it compares to the diagnostic test that will be presented in 

this work.  
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2.4.4 Wet blood film 

Preparation of a wet blood film is a simple method for detection of 

trypanosomes that is still being used in the field, despite its shortcomings, due 

to its cost and simplicity. Blood from a finger prick is applied to a glass slide 

(under a coverslip to create a thin film) and the sample is directly observed with 

a microscope. The trypanosomes themselves are hard to see and it is mainly 

their movement and displacement of RBCs that is observed. The technique has a 

poor detection limit of about 10,000 parasites / ml, corresponding to one 

trypanosome per 200 fields of view [51]. It is also time consuming as it takes 

about 20 minutes to search a slide.   

 

 

Figure 2-6: Preparation of a wet blood film (image modified from ref [75]). A) The patient‟s 
finger (or other extremity like toe or earlobe) is pricked and squeezed until a drop of blood 
accumulates. B) The drop is carefully placed on the glass slide without touching the finger 
with the slide. C) Coverslip is placed on sample to create a thin blood smear. D) Sample is 
immediately scanned with a microscope. This step is time consuming as many fields of 
view need to be checked.  

 

2.4.5 Thick blood film  

A thick blood film is similar to a wet blood film but involves extra steps and 

equipment with the benefit of increased sensitivity. Instead of creating a thin 
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blood smear, a larger sample (about 20 µl) of blood is spread on the microscope 

slide to create a thick film. The sample is then dried and stained using Gimsa or 

Field staining. The stain causes the trypanosomes (and white blood cells) to 

become blue and stand out more with respect to the red blood cells. However 

the parasites are killed in the procedure and are often deformed (making them 

harder to spot). The staining is a time-intensive process which takes an 

additional 30 minutes (although several slides can be stained at once). Because 

of the larger volume of blood and the stain, the limit of detection is improved to 

about 5000 parasites / ml of blood [51].  

 

Figure 2-7: Thick blood film preparation (image modified from ref [75]). A) Sample is 
collected through finger pricking similar to the thin blood film technique. B) The blood is 
spread out using another slide creating a thick blood film. C) The sample is then dried in a 
dark space where it is protected from dust and insects. D) The sample then has to be 
stained before examination. Staining is a lengthy procedure that requires at least 30 
minutes per batch of slides and additional chemicals [75]. It is therefore sometimes 
performed in medical facilities rather than in the field. After staining the slides need to be 
observed under a microscope.  

 

2.4.6 Lymph node aspirate 

It is suggested that all patients with a positive CATT undergo palpation of the 

cervical lymph node (CLN) [75]. If a swollen CLN is detected, it can be punctured 

to test for trypanosomes. Testing is similar to wet blood film preparation. The 

lymph node aspirate contains a much lower number of RBCs making detection of 
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trypanosomes easier. The technique has a sensitivity of 40% to 80% depending on 

a number of factors like the parasite strain or the stage of the disease (detection 

in lymph fluid is more difficult at later stages of the disease) [51]. Swollen 

lymph nodes may also result from other diseases. Before the establishment of 

more sophisticated methods lymph node aspiration and blood film examination 

were the only methods available to field workers. Palpation and puncture of 

CLNs were used as a screening tool for large populations before the CATT came 

into widespread use. It can be possible to find trypanosomes in the lymph fluid 

and not the blood of a patient or vice versa. As such the technique is still being 

used today as a complementary method to more sensitive techniques focusing on 

blood samples. The medical worker has to have a higher level of training than is 

necessary for simple finger pricking. The needle has to be inserted into the 

centre of the CLN but not too far in order to prevent penetration of the jugular 

veins and arteries.  

 

 

Figure 2-8: Preparation of lymph node aspirate (image modified from ref [75]). A) The 
cervical lymph node has to be held firmly with one hand to make it stand out. Then a 
syringe needle is inserted into the swollen lymph node. The needle is revolved in both 
directions for about one minute while glandular fluid oozes into the needle. B) The needle is 
withdrawn in one rapid movement and a swap with disinfectant is applied to the puncture 
immediately. C,D) The aspirated fluid is dispensed on a microscope slide and a thin film is 
prepared. This thin film is observed under a microscope.   
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2.4.7 Techniques aided by centrifugation 

There are two principal techniques that rely on centrifugation to greatly 

increase sensitivity above the methods presented above. The first one is the 

microhematocrit centrifugation technique (mHCT), also known as the Woo test, 

and the second one is the quantitative buffy coat (QBC) [51]. In order to perform 

the mHCT a number of capillaries are filled with donor blood and then (after one 

end has been sealed) centrifuged for several minutes at high speeds in special 

hematocrit centrifuges. Through the centrifugation process the trypanosomes 

are concentrated at the same layer as the white blood cells. The capillaries are 

then placed in a holder and examined under a microscope. Because of this pre-

concentration step the limit of detection is much improved. The actual limit 

depends on the sample volume (and thus the number of capillaries) but for six to 

eight capillaries it is about 500 trypanosomes / ml [51]. While the technique is 

time consuming and microfilia in the blood might impede detection it is widely 

used for field diagnostics. The mobile teams employing mHCT need to have 

access to a high speed centrifuge and, consequently, electricity.   

 

Figure 2-9: Microhematocrit centrifugation technique (image modified from ref [75]). A) Six 
to eight samples are collected per patient, the blood is drawn into capillaries (the capillary 
should be about three quarters full). B) The capillaries are sealed at the dry end. C) Using a 
special hematocrit centrifuge the samples are spun at high speeds for six to eight minutes. 
D) Samples are placed on a holder and examined under a microscope. Through 
centrifugation, the trypanosomes are concentrated at the same level as the white blood 
cells.  
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Another method utilizing concentration through centrifugation is the 

quantitative buffy coat (QBC). This technique has the added benefit of staining 

the trypanosome using acridine orange, a fluorescent dye. For an example of 

trypanosomes stained with acridine orange please see Section 3.2.2. The 

capillary tubes used for centrifugation already contain 

ethylenediaminetetraacetic acid (EDTA) and acridine orange when the blood is 

drawn into them. After centrifugation the samples are viewed under a 

microscope but a UV light source and filters appropriate for the dye are needed 

as well as a darkroom. While the QBC offers comparative sensitivity to the mini-

anion-exchange centrifugation technique (mAECT) described below, the 

complexity and fragility of the needed equipment prohibit rapid transport to 

different sites during field work.  

 

2.4.8 Mini-anion-exchange centrifugation technique 

The mAECT utilizes an important property of the trypanosome, its surface 

charge. While red blood cells have a negative surface charge, the trypanosomes 

surface carries no significant charge [76]. This can be used to separate out 

trypanosomes from RBCs, by passing a mixture though a positively charged 

matrix. While the RBCs are bound in the matrix, the trypanosomes are carried 

through and collected at the end of a column for observation. This technique 

was established [77, 78] in the late 70s and has excellent sensitivity while being 

mobile enough to carry around for field operations [79].  

Just prior to testing, the columns need to be prepared with a mixture of 

phosphate buffered saline (PBS) and glucose, also prepared at that time. Then 

the blood sample is loaded into the column and centrifuged. Large volumes of 

intravenous blood can be loaded into the column (about 300 µl), which increases 

diagnostic efficiency. The centrifugation does not need to be high speed and a 

hand operated centrifuge is sufficient. After the centrifugation the column is 

fixed under a microscope with a special holder to allow examination of the 

sample. The reported limit of detection for mAECT is 100 trypanosomes / ml of 

whole blood. Although the preparation is time consuming, the mAECT is 

currently the gold standard for trypanosome detection [51]. 
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Figure 2-10: Preparation of a mini-anion-exchange column (images A-G modified from ref 
[75], Image H modified from ref [80]). A) A pre-weighed amount of glucose is mixed with a 
predetermined amount of PBS. B) The column is loaded with this mixture to prepare it for 
the sample. C) Patients blood is loaded into the column. Up to 300 µl of intravenous blood 
can be loaded to improve sensitivity. D,E) The rest of the buffer is gradually loaded into the 
column and the outflow is collected at the bottom. This process may be aided by gentle 
centrifugation to speed it up. F) The collected outflow is centrifuged to concentrate the 
trypanosomes. This can be done manually at 1500 RPM for 5 minutes. G,H) The sample is 
fixed under a sample holder to allow inspection with a microscope.  
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2.4.9 Other methods of detection 

There are a number of other proposed methods of detection that are not widely 

used in the field for various reasons. In vitro cell culture and animal inoculation 

are possible, but the technique takes weeks before results are observed [51]. 

Antigen detection (as opposed to antibody detection) is an interesting approach 

as it would allow the user to differentiate between active and cued infections. 

Field studies however have shown strong doubts about its specificity [81]. 

Separation of trypanosomes from blood was also demonstrated using a lateral 

displacement flow chip [82]. This approach remains to be verified with T. brucei 

though. PCR is another technique being considered for diagnostic application 

[68]. While traditional PCR requires complicated machinery and is not suited 

well for field work, isothermal PCR has been recently proposed as a potentially 

viable option for trypanosome detection [83].  

 

2.5 Summary of aims and objectives 

The motivation for this work is laid out in detail in Section 2.4. The current 

methods of detection available for sleeping sickness are old and all have flaws 

one way or another. The fundamental question of this work was:”Can we do any 

better?”  

An improved method of detection for sleeping sickness would be of great benefit 

in controlling and eventually eradicating the disease. While the ongoing control 

programs have shown great success in reducing the number of new cases 

reported each year, Figure 2-1 confirms that even after a decade of dedicated 

control the disease can re-emerge quickly, when left unattended. The actual 

diagnostic techniques used the field today have changed little from what was 

being employed in the mid and late 70‟s.  

The goal of this work was to explore the possibility of using dielectrophoresis to 

enrich trypanosomes from a sample of infected blood. A proof of principle 

electrode array was to be created that could remove the unwanted red blood 

cells and ideally concentrate the trypanosomes into a single central spot where 

they would be easy to identify.   
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During the work an interesting phenomenon regarding electrically induced lysis 

of red blood cells was observed. The aim of the thesis was then extended to 

include the assessment of the novel technique and if it can be used to enrich 

rare cells from mixed populations and to study the origin of the unusual 

observations made in the experiments. 
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Chapter 3: Materials and Methods 

3.0 Abstract  

In this Chapter the methodology used in this work will be discussed and 

described. This includes the biological samples and their preparation, the 

instrumentation and the experimental procedures. 

 

3.1 Materials 

Whole mouse blood was collected via cardiac puncture for experimental 

purposes (see below). Screened human blood was also acquired from the blood 

transfusion service. Blood samples were stored at 4° C with anticoagulant and 

used within 2 days of acquisition. 

T. cyclops and T. brucei were cultured (see below) and spiked into human or 

mouse blood for experimentation. In vivo samples of mouse blood infected with 

T. brucei (see below) were also used for experimentation. 

Dielectrophoresis buffer medium was prepared with 3 mM HEPES, pH adjusted to 

7.4, 9 % sucrose and 0.3 % glucose for an osmolality of 290 mOsm/kg , measured 

with an osmometer (The Advanced Micro Osmometer, model 3300, Vitech 

Scientific Ltd). After adjusting the pH value the base conductivity of the medium 

was approximately 15 mS/m, measured with a conductivity meter (4071 

Yenway). This value was then adjusted to the desired values by adding 

phosphate buffered saline (PBS).  

Different sets of electrodes patterned on glass (see below) and special chambers 

for optoelectronic tweezers (see below) were used during the experiments. 

These chips were connected to either a standard function generator (TTi, 

TG5011 LX1) or, in the case of travelling wave dielectrophoresis, a four channel 

function generator (TTi, Arbitrary Waveform Generator, TGA12104). 
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3.2 Methods 

3.2.1 Cell culture 

Trypanosomes of the subtype T. cyclops and T. brucei were cultured in-vitro for 

experimentation.  

T. cyclops were cultured in Cunningham‟s medium (See appendix) supplemented 

with 20% foetal bovine serum (FBS, Gibco) and maintained at 27ºC. The parasites 

were passaged once a week and were grown to a density of 2 x 106 /ml. Human 

blood spiked with T. Cyclops was used for experimentation. 

Bloodstream forms of T. brucei (Strain 427) were cultured in Hirumi‟s Modified 

Iscove‟s medium (HMI-9, see appendix) supplemented with 10% FBS. The cells 

were maintained at 37 ºC, 5% CO2 and passaged three times a week. The 

trypanosomes were grown to a density of 2x106 /ml. Mouse blood from non 

infected animals or human blood spiked with cultured T. brucei was used for 

experimentation.  

 

3.2.2 Sample preparation 

To prevent lysis of the parasite through the trypanosoma lytic factor (TLF) and in 

order to control the conductivity of the medium, the trypanosomes were washed 

in the DEP buffer solution. Cells were washed three times through centrifugation 

(2500 rpm for 5 minutes) and, after the supernatant was removed, re-suspended 

each time in the medium of desired conductivity. Samples were then loaded 

quickly onto the corresponding chips for experimentation.   

After initial experiments with T. cyclops it was necessary to work with T. brucei 

as it is clinically more relevant. While T. cyclops is used in limited amount in 

research and for demonstration purposes, nearly all published data regarding 

research of trypanosomes connected with sleeping sickness is performed using T. 

brucei.  

While performing this washing step with T. brucei, an interesting phenomenon 

was observed. The trypanosomes and the red blood cells seemed to „stick‟ 

together. This agglutination caused the trypanosomes to be completely covered 

in red blood cells (see Fig 3-1). The parasites were still motile and the red blood 

cells appeared to be tightly packed on the surface of the trypanosomes. In 
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samples of pure trypanosomes the parasites agglutinated to each other, forming 

large conglomerates of cells.   

This agglutination was highly undesirable for experimentation, as the larger cell-

conglomerates showed differing, unpredictable dielectric behaviour depending 

on size. Therefore a washing procedure was developed that would ensure the 

correct conductivity medium but would prevent cell-agglutination.  

Washing the trypanosomes in PBS or cell culture medium did not result in 

agglutination. Since the main constituent of our buffer was sucrose, attempts 

were made to replace it with a different sugar. However the agglutination 

process was still observed in buffer made up with mannitol, lactose, maltose or 

fructose. Another attempt was made by decreasing the pH value from 7.4 to 7.0 

and 6.0. This did not prevent agglutination either and at lower pH values the 

cells were being destroyed.  

Finally the sample of trypanosomes was treated with trypsin and this process 

prevented the phenomenon from occurring. When incubating the infected (or 

spiked) blood with trypsin for 5 minutes at room temperature prior to adding the 

sugar solution, no agglutination was observed. The trypsin was inhibited after 

the incubation using cell culture solution. Obviously the sample has to be 

washed thoroughly, in order to restore the desired conductivity, after adding 

cell culture medium (which has a conductivity in excess of 1000 mS/m). 

It was possible to reverse cell agglutination after the fact by incubating in 

trypsin, although the process was slow (~45 min). Most experiments were carried 

out with T. brucei and mouse blood. Hence, there was no danger of the 

parasites being lysed through the TLF. Both blood from infected mice and blood 

from healthy animals, spiked with trypanosomes from in vitro culture, were used 

for experimentation. For later experiments T. brucei were mixed with human 

blood and thus care had to be taken to apply the same washing procedure as for 

T. cyclops. All experiments to quantify TW-DEP were done with cells that were 

washed 3 times by centrifugation. 
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Figure 3-1: Agglutination of red blood cells and trypanosomes. A, B) Differential 
interference contrast (DIC) image of agglutinated RBCs and trypanosomes. Parasites were 
still motile but their movement was restricted because of the attached blood cells. C, D) 
Fluorescent image of the same field of view. Trypanosomes were stained with acridine 
orange and are clearly visible. E, F) Overlay of the DIC and fluorescent images. The 
parasites were located at the centre of the larger clumps of blood cells. Scale bar is 50 µm. 

 

In the field, however, centrifugation can be difficult to perform and thus 

experiments were also conducted to demonstrate that enrichment can be 

achieved with a diluted (to reduce the conductivity) sample of blood (see 

Section 5.2.2). Since trypsin normally comes suspended in a solution with a high 

salt content, salt free trypsin powder (Promega) was therefore used and added 

to the prepared buffer medium. Experiments with this buffer medium showed 

that it was unnecessary to inhibit the trypsin and that the cells were still motile 

after extended periods of time (1 hour). In order to rule out any effect the 

trypsin might have on motility or viability of the cells however, it was inhibited 



Chapter 3 Page 39 

for experiments performed on the TW-DEP device with a diluted sample. To do 

this, powdered salt free trypsin inhibitor (Sigma-Aldrich) was added to DEP 

buffer and the sample was first diluted 1 in 20 with trypsin buffer for 5 minutes 

and then diluted 2 fold again with trypsin inhibitor buffer for a total dilution of 1 

in 40. With a conductivity of about 15 mS/m for the buffer the end conductivity 

of the diluted sample was between 40 and 50 mS/m. 

 

3.2.3 Animal work 

Female adult „imprint control region‟ (ICR) mice were inoculated with T. brucei 

(wild type 427 strain) from a bloodstraw, ~ 20 µl of 1x108 cells/ml, using 

intraperitoneal injection. Parasitaemia was monitored daily via tail 

venepuncture and microscopic observation of blood smears. Mice were culled via 

a schedule 1 protocol at the desired parasitaemia level (~1x108 cells/ml or 

~1x105 cells/ml). All animal work was carried out by Dr. Pui E. Wong and 

samples were kindly provided for experimentation. 

 

3.2.4 Fabrication 

The experiments to determine the crossover frequencies and to perform 

travelling wave Dielectrophoresis were carried out with metal electrodes 

patterned on glass slides. These electrodes were fabricated using standard metal 

evaporation procedures which will be briefly presented here. Since the 

electrodes could be reused many times (after cleaning them thoroughly with 70% 

ethanol) only a relatively small number of devices needed to be made for this 

work.  

Glass substrates were cleaned in acetone, methanol and water each for 5 

minutes then the water was removed by blow drying and a dehydration bake at 

180°C for 15-30 minutes. Positive photo-resist S1818 (Shipley) was spun on the 

glass slide at 4000 rpm for 30 seconds, creating a 10 µm thick layer of resist. 

This was followed by a soft bake (95°C for 5 minutes on a hotplate) and 

exposure to UV light (4.2 seconds, Suss Microtec MA6 mask aligner). The 

exposure was patterned through a chrome mask. Since S1818 is a positive resist, 

the areas that were exposed to the UV light will be removed during 
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development. The sample was then developed in a 1 in 1 mixture of Micro DEV 

(Shipley) and water for 95 seconds (the sample is then washed under running 

water and blown dry). No post exposure bake or hard bake were necessary. At 

this point the glass surface was exposed in the areas where the metal electrodes 

are going to be placed. This was achieved through evaporation of a 10 nm 

chromium seed layer and then a 200 nm layer of gold (Plassys Electron Beam 

Evaporator). The metal on top of the resist (not in direct contact to the glass) 

was removed in a lift-off procedure, by submerging the sample in acetone at 

50°C (in a hot water bath).  

The chromium masks were created by technicians of the James Watt 

Nanofabrication Centre through etching. The author merely provided files, 

created with the AutoCAD software (Autodesk), with the designs to the 

technicians and collected the finished mask. These files were kindly provided by 

Dr. Anoop Menachery. The spiral design was created using the MATLAB software 

and then imported and finalised in AutoCAD.  

 

Figure 3-2: Cartoon (not to scale) of the fabrication process (details see text). A) Clean glass 
substrate. B) Application of photo-resist and soft bake. C) Exposure through a chrome mask 
and development to remove resist. D) Evaporation of a 10 nm layer of chromium and a 200 
nm layer of gold. E) Removal of resist (and unwanted metal) through exposure to acetone. 
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3.2.5 Instrumentation for DEP 

In order to create a non-uniform field and determine the crossover frequency, a 

set of quadrupole electrodes was employed (see Figure 3-3). The electrodes 

were patterned on glass (200 nm of gold evaporated onto a 10 nm seeding layer 

of chromium) using standard photolithography techniques (see above). The inter-

electrode distance (tip to tip in the central area) was 400 µm. The design has 

been used previously for studies on dielectrophoretic forces [84], or 

electrorotation [85].  

The chamber to hold the sample is created by cutting a well into a strip of 

insulating tape. The chamber is closed off at the top with a small cover slip. 

Wires are attached to the electrodes and attached to a standard function 

generator (Thurlby Thandar Instruents, TG5011 LX1).  

 

Figure 3-3: Quadrupole electrodes used for characterisation of cross-over frequencies.  A) 
Schematic of the quadrupole electrode array, with an interelectrode separation of 400 μm 
(from tip to tip). The electrodes are energised with an opposing two phase electric field. B) 
Photograph of the chip used for characterization of the crossover frequency. 

 

TW-DEP experiments were carried out on two different sets of electrodes. Both 

were 4 arm spiral electrode arrays. The first design was only used initially, in 

experiments concerning the particle density (see Chapter 5). This chip had a 

spiral with arms that do not extend all the way into the centre. The electrodes 

were patterned platinum on glass (electrode width and spacing of 30 µm each) 

and the chip itself was not made by the author of this work. It was instead kindly 

provided by Dr. Anoop Menachery for the initial experiments.  
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All other experiments involving TW-DEP were performed on a different spiral 

electrode array with spiral arms that extend into the centre of the array (see 

Figure 3-4). The electrodes were patterned on glass using the same standard 

photolithography techniques employed to make the quadrupole electrodes for 

crossover measurements (200 nm of gold on a 10 nm layer of chromium). The 

electrodes themselves had a width of 30 microns and an inter-electrode spacing 

of 30 microns as well. The total width of the array was approximately 2.9 mm. A 

square chamber of approximately 6 mm length and 150 µm height was created 

around the array from insulating tape. Wires were soldered to contact pads 

connected with each arm and connected to a four channel function generator 

(TTi, Arbitrary Waveform Generator, TGA12104) that was able to provide the 

necessary quadrature-phase electric signal. The sample was loaded (and the 

chamber cleaned) the same way as for the quadropole electrodes. 

 

Figure 3-4: Schematic diagram and photograph of the electrode array used for 
experimentation. A) Electrodes of the 4 arm spiral electrode array had a width and spacing 
of 30 µm each. The array was energised with a 90° phase shift from one arm to the next, 
creating a travelling electric field. B) Photograph of the gold electrodes on a glass slide. The 
total width of the array was approximately 2.9 mm. The sample was enclosed in a square 
chamber and sealed with a glass cover slip during experimentation.  

 

Initial experiments for DEP and some of the control experiments regarding 

selective lysis were performed using interdigitated electrodes. The electrodes 

were simple parallel rectangular strips of 100 µm or 30 µm width and 

interelectrode spacing. 
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3.2.6 Measurement for DEP 

Each experiment involving DEP followed the same basic procedure. After 

washing the cells in the buffer medium of the desired conductivity, the sample 

was pipette into the chamber until it was fully filled (~5 µl). The electrode array 

was then placed on an inverted microscope and a video was captured during the 

experiment. After each experiment the chamber was thoroughly cleaned using 

70% ethanol and after four to five experiments a new chamber was created, to 

prevent the build up of residue in the corners of the well. 

Blood is a heterogeneous mixture of cells with a high density of erythrocytes. In 

a healthy human, the red blood cells (hematocrit) make up approximately 50 % 

volume, with about 109 erythrocytes / ml. Other blood cells (leukocytes and 

thrombocytes) make up a comparatively negligible part of whole blood. During 

experiments with non uniform electric fields complex particle interactions can 

arise, for example chaining of cells [1, 2]. In order to assess the effect the 

particle density would have on TW-DEP experiments several dilutions of mouse 

blood were prepared.  

The experiments were conducted in 30 mS/m buffer solution at 90 kHz with a 4 

Vpk-pk voltage. It should be noted that these initial experiments were not 

intended for enrichment of trypanosomes. The conditions best suited for 

enrichment (also used for the simulations) were established at a later date. The 

blood was re-suspended in the buffer at the original (whole blood) concentration 

of cells as well as 1 in 5, 1 in 10 and 1 in 20 dilutions. For whole blood 

concentrations it was observed that the red blood cells cleared from the spiral, 

albeit slowly. The sample also showed complex patterns that emerged during the 

process (see Figure 3-5). These varied from experiment to experiment but 

resembled eddies and other streaming phenomena (bright areas in Figure 3-5 

indicate the absence of cells).  
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Figure 3-5: High density blood sample being moved with TW-DEP. Electrode width and inter-
electrode spacing are 30 µm each. Mouse RBCs were washed with 30 mS/m buffer and re-
suspended at whole blood concentration. A 90 kHz quadrature-phase signal with 4 Vpk-pk 
was applied to the array. A) Initial distribution at the onset of the experiment. B-I) show the 
translational movement of the RBCs due to the TW-DEP force acting on them. D-F) show 
complex particle-particle interaction according during the anti-field motion of the cells. Even 
after 12 minutes (I) the outer spiral was not cleared of erythrocytes. Scale bar is 300 µm. 

 

As the particle density was reduced by diluting the blood, the removal of the red 

blood cells from the spiral, due to TW-DEP, was more and more uniform. The 

speed by which the spiral array was cleared of RBCs also increased. By 

comparison the whole blood concentration took more than 12 minutes to clear 

(see Figure 3-5) while for the 1 in 20 dilution the spiral was cleared in about 5 

minutes (see Figure 3-6). For all experiments that were performed to 

demonstrate or quantify the enrichment process, the dilution was set at 1 in 20. 

For experiments demonstrating preparation through dilution (see Section 5.2.2) 

the samples were diluted even further.  
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Figure 3-6: Low density blood sample (1 in 20 dilution) undergoing anti-field motion due to 
TW-DEP. A) Initial distribution of cells at the onset of the experiment. B-D) show the removal 
of RBCs from the electrode array. The movement is uniform and after approximately 5 
minutes the array has been cleared of red blood cells. Scale bar is 300 µm. 

 

To quantify the concentration process, the velocity and enrichment numbers 

were determined for varying frequencies and voltages. The velocity was the 

average velocity of a trypanosome travelling inward towards the centre of the 

spiral, and was determined from the videos, by comparing the total distance the 

trypanosome covers with the amount of time it took to travel from the edge of 

the field of view into the central area of the array. In experiments with low 

parasitemia, the velocities of all parasites were determined and in cases of high 

parasitemia up to 40 parasites per experiment were evaluated. At least 7 

experiments for each value of voltage and frequency were averaged to generate 

the data presented here. 

The enrichment number is simply the number of trypanosomes that are counted 

in the central field of view during the experiment (coming in from the outer 

areas of the spiral). The duration of the experiment was set as ten minutes and 

parasites that entered the field of view after this time were not taken into 

account. This number is directly related to the concentration of parasites in the 

sample (e.g. high number of parasite above the spiral at the start of the 

experiment will give a high enrichment number). Since the concentration of 
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parasites varies every time a sample is drawn from a mouse (from 105 to 108 

parasites / ml), the enrichment number was normalized in order to compare 

results from different experiments. Obviously all parasites that came into the 

field of view were taken into account (unlike the evaluation of the velocity). The 

averaged data was also composed of at least 7 experiments per point (the same 

experiments as for the velocity).  

Further experiments were conducted to demonstrate enrichment of 

trypanosomes from mouse blood, using the dilution procedure outlined in 

Section 3.2.2, as well as experiments to demonstrate enrichment of 

trypanosomes from human blood using standard washing procedures described 

above.  

Finally the sensitivity of the device was determined. The sensitivity of the 

system as defined here is the number of parasites detected in the centre of the 

spiral after the experiment, compared to the number of parasites that were 

contained in the sampling volume (see below) at the onset of the experiment. In 

contrast, the limit of detection is the minimum number of parasites that have to 

be present in a sample for the test to give a positive result.  

The sampling volume is the volume of liquid above the electrode array. Given a 

total diameter of 2.9 mm of the spiral array and a height of 150 μm, the 

sampling volume is approximately 1 μl of liquid (a cylinder with a radius of 1.45 

mm and a height of 0.15 mm). Assuming a sensitivity of 100 % (that is every 

single parasite on top of the spiral is concentrated into the centre) this already 

gives a limit of detection of 1x103 parasites / ml of whole blood. However in 

order to reduce the conductivity of the medium to the required value, the 

sample is diluted further. 

The initial concentration of parasites was determined with a Neubauer counting 

chamber from whole (infected) mouse blood. 
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3.2.7 Instrumentation for optoelectronic tweezers 

Since the light used to form the virtual electrodes during an OET experiment 

does not need to be provided by a laser, a regular data-projector is sufficient to 

generate the light patterns. This has the added advantage of allowing easy and 

flexible creation of complex patterns through regularly available PC software 

(e.g. PowerPoint). The light from the projector has to be projected onto the 

sample while simultaneously allowing for inspection of the sample with a 

microscope. The two setups that were used in this work are shown in Figures 3-7 

and 3-8.  

In the both setups two filters were used (see Figure 3-7 B) to create a pattern 

with strong illumination over the target and still be able to view the sample. A 

long pass filter in front of the projector caused the projected light to be red. It 

was then combined with the background illumination from a lamp and projected 

onto the sample through an objective. After being reflected off the sample the 

light hit the camera, but a second filter (short pass) removed the strong 

illumination of the projector. In this way, the intensity of the projector can be 

high without impeding the observation of the sample.  

 

Figure 3-7: Optoelectronic tweezers setup. A) Photograph of the setup using an upright 
microscope (Olympus). B) Cartoon of the light-paths inside the setup. The patterned image 
from the projector is combined with background illumination from a lamp and projected 
onto the sample. The reflected image from the sample is then recorded with a camera. In 
order to be able to view the sample, including the shaped light from the projector, two filters 
were used. The two filters were a long pass filter in front of the projector and a short pass 
filter in front of the camera. This causes most of the light form the projector to be filtered 
out before it reaches the camera, as it would otherwise be too bright to observe the cells 
inside the illuminated region.   
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Initially a self made setup was used with a simple optical path (see Figure 3-8 

A). While this was upgraded to an upright brightfield microscope (Olympus Bx51 

TRT-5) with a better camera (Olympus U-TV0.5XC-3), there were limitations 

regarding the possible magnification that could be used in this second setup 

however. Since the sample sat at the bottom of a 100 µm high chamber and the 

top of the chamber was a thick microscope slide (rather than a thin coverslip), 

the working distance of the objective has to be high enough to accommodate 

this fact. While objectives that meet this requirement can be integrated into a 

microscope easily for lower magnification (10x and below), higher magnification 

lenses were too large to fit the Olympus setup (see Figure 3-8 B). 

 

Figure 3-8: Alternative OET setup. A) Photograph of the alternative setup used for higher 
magnification work. This setup allowed for the use of a higher magnification lens that still 
offers the needed working distance to use the optoelectronic chip. B) Photograph of the 
long-working distance objective (Mitutoyo M Plan Apo 20X) compared to a traditional 10X 
objective (also M plan). The objective has a 20mm working distance and a numerical 
aperture of 0.42. 

 

The chamber used to hold the sample during the experiments is pictured in 

Figure 3-9. The bottom of the chamber, on which the cells will come to rest 

during the experiment, consisted of a glass slide covered with a 10 nm layer of 

indium tin oxide (ITO) and on top of that a 1 µm thick layer of amorphous silicon 

(a:Si). The glass slides were bought pre-coated with ITO (Diamond coatings, UK) 

and the layer of amorphous silicon was deposited using Plasma Enhanced 

Chemical Vapour Deposition from a silane gas. The coated slides themselves 

were provided by Dr. Steven Neale and Prof. Mervyn Rose (University of 

Dundee). The a:Si was scratched off in order to reveal the ITO beneath and wires 

were attached to the conductive layer using silver paint (Electrodag, Agar 
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Scientific Ltd) and a film of epoxy glue was applied to protect the contact. Care 

has to be taken in removing the silicon film and the resistance of the contact has 

to be tested (in some cases the contact presented a large resistance).  

In order to create a chamber to hold the liquid sample, two spacers were placed 

on the bottom chip. These simply consisted of double sided adhesive tape 

(Scotch) and that was cut into strips and placed directly on the silicon. The 

height of the chamber was approximately 100 µm (determined using a Veeco 

Dektak 6M height profiler). The top of the chamber is formed by another glass 

slide coated solely with ITO. The two pieces of glass are positioned to leave an 

opening for the sample to enter the chamber (see Figure 3-9 C).   

 

Figure 3-9: Chamber used for experimentation. A) Photograph of the chamber being used 
for experiments with the optoelectronic tweezers. The wire is attached to the top and bottom 
slide with silver paint and the contact is protected with epoxy glue. Strips of double sided 
tape are used to create a chamber of 100 µm height. Additional tape is applied to provide 
stability for the chamber during handling and experimentation. B) Cartoon of the cross 
sectional view of the chamber. C) Cartoon of the top down view of the chamber. The sample 
is loaded into the chamber by placing it on the narrow strip where the bottom substrate is 
exposed. The sample is then drawn into the chamber through capillary forces.   

  

3.2.8 Measurement for OET 

For experiments with the optoelectronic tweezers configuration the sample is 

placed at the opening of the chamber and drawn in by capillary forces. The OET 

chip was then placed on an inverted microscope and the experiment was 

recorded with a video camera. During experimentation both the light pattern 

and the AC bias were applied. The video footage was evaluated by either 

counting out the lysed cells manually or using the LabView Vision Assistant 

software (National Instruments). A macro was written for Vision Assistant to 

automate the counting process.  
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The software first converts a frame of the video into a binary image and 

calculates the total area of the visible cells. This area was then divided by the 

average area of a red blood cell and this then gave the number of red blood cells 

currently visible in the frame. The number of RBCs before and after the lysis 

experiments was then used to determine the percentage of lysed cells. This 

process was verified by comparing hand counts and automatic counts of the 

same frame and there was found to be only a small difference (less than 5%) in 

the number of cells. This small discrepancy could easily be due to human error 

rather than inconsistency in the algorithm.  

An important step in ensuring that the algorithm was accurate is to set the 

correct initial threshold filter when converting the video frame to a binary 

image. Figure 3-10 demonstrates how an inaccurately set filter will cause red 

blood cells to be removed accidentally from the image (or artefacts might be 

created from dark spots that are not cells). This setting of the threshold has to 

be done for every video individually to ensure accurate counting.  

For very low numbers of cells, the software showed difficulty in identifying cells. 

Often, darker areas of background were mistaken as cells. In order to avoid this, 

frames with low numbers of cells were counted manually instead.  

Another limitation of this algorithm is that it can only identify a single cell type 

at a time. A mixture of cells cannot be processed automatically but has to be 

counted manually instead.  
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Figure 3-10: Example of the automated cell counting algorithm used to determine the 
number of red blood cells. A) Frame from the experiment with the region of interest (ROI) 
highlighted. This ROI has to be set by hand prior to the application of the counting macro. 
B) The software converts the full colour image to a binary image using a certain threshold. 
C) In order to allow automated counting of cells, the software needs to remove all small 
objects from the image. In order to determine if the software will not create errors by 
removing valid cells from the frame, the objects that are to be removed can be displayed. In 
this example, the threshold was set incorrectly as two RBCs would be removed from the 
image (marked with white arrows in C and A). In D) and E), the threshold was then corrected 
until only background is removed from the image. F) Final image after the correct threshold 
has been applied. The software then calculates the total area taken up by the cells and this 
was then divided by the area of an average RBC.   
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Chapter 4: Dielectrophoresis modelling 

4.0 Abstract 

In this Chapter, two different models will be applied to gauge the 

dielectrophoretic response of red blood cells and trypanosomes. The first is a 

model, developed by J. Gimsa [86], for ellipsoidal cells to estimate the Clausius-

Mossotti factor (CM factor) of the two cell types. Then a COMSOL simulation is 

employed to give a visual representation of the total forces acting on the cells 

during a travelling wave experiment. 

 

4.1 Summary of Methods  

In order to better understand the frequency dependent polarisability response of 

trypanosomes and RBCs, a single shelled RC model of an ellipsoidal dielectric is 

implemented using a MATLAB (The Mathworks Inc.) environment. Similar 

dielectric models have been used to estimate the polarization forces acting on 

biological cells (e.g. [87]). Since the shape of a red blood cell or a trypanosome 

is not approximated well by a sphere (see Figure 4-2), a more complex model 

has to be applied than the one presented in Chapter 1. The method used here to 

compute the effective polarisability of ellipsoids has been described by J. Gimsa 

[86].  

To obtain a better understanding of the influence of the travelling electric field, 

simulations were performed using COMSOL Multiphysics, a finite element 

analysis simulation software.  A 2D geometry model of the spiral electrode 

array, later used for experimentation, was created where each electrode was 

defined as a thin strip of metal with 30 μm spacing between adjacent electrodes 

(the model represents a cross section through the array and the space above it). 

For Travelling Wave Dielectrophoresis (TW-DEP), four signals with phase shifts of 

90° are applied to the electrode array in sequence, to generate a traveling 

electric field with a spatially dependent phase (See Figure 3-3). The magnitude 

and phase of the applied electric potential can be represented as a complex 

quantity. It can be written as V=Vr+jVi, where Vr is the real part of the electric 

potential and Vi is the imaginary part of the electric potential.  The values for 

the real and imaginary part of the electric potential at each electrode is 

assigned a peak amplitude of 1 V, to correspond to the experimental conditions 
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employed. After imposing certain boundary condition restrictions [88], as shown 

in Figure 4-1, the potential distribution was determined by solving Laplace‟s 

equation for the real and imaginary parts of the potential phasor. The electric 

field E is calculated using E= - V, and this is used to estimate the DEP force 

components. 

                     

Figure 4-1: A schematic drawing of the 4-phase travelling wave electrode array showing the 
boundary conditions for solving Laplace‟s equation. The schematic represents a side view, 
2D, cross section of the electrode array. The red box indicates the position of Figures 4-5 
and 4-6. (image modified from [89]) 

 

4.2 Relevant Theory for Model 

The model employed to determine the CM factor comprises of finite RC 

elements, represented by a complex conductivity σ*, possessing equal cross-

sectional area A and the length of each element, l, was given by the dimensions 

of the cytoplasm, membrane and the external medium. 
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Figure 4-2: A, B) Micrograph showing the shape of T. brucei and a human red blood cell 
(scale bar is 8 µm). C) Cartoon showing the parameters used for the model, described by J. 
Gimsa (image modified from [86]). Here d is the thickness of the cellular membrane, a the 
outer diameter of the cell along the major axis of the ellipsoid and ainfl is the influential 
radius of the cell along the a-axis.  

 

The length of the external medium element was set to a value which includes 

the effect of the dipole field on the suspended medium. The model consisted of 

three impedance elements      
 ,      

  and      
 , describing the interior of the 

cell, the cell membrane and the external medium respectively.  An oblate 

ellipsoid model (a=b>c) is used for the RBCs and a prolate ellipsoidal model 

(a>b=c) is used for trypanosomes. The Clausius-Mossotti factor CMa of a cell 

oriented along its major axis is given by  
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                [Eq. 4.2-3] 
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where ainfl is the influential radius (along the major axis). In our model it was 

calculated using depolarising factors (see [86] for further details). The outer 

diameter of the cell along the major axis is given by a and εo and εr are the 

absolute and relative permittivity respectively.  

 

4.3 Results 

Using values for mouse red blood cells from the literature [90] and applying the 

same values, except for the particle dimensions, for trypanosomes shows the 

difference in the CM factor solely due to the geometry of the cells. An example 

of a calculation using a medium conductivity of 30 mS/m is presented below. 

 

Figure 4-3: Calculated CM factor for red blood cells (red) and trypanosomes (green) using 
values for the dielectric properties from the literature[90]. The only differences between the 
two calculations are the dimensions of the cells applied in the ellipsoidal model. The solid 
lines show the real and the dotted lines show the imaginary part of the CM factor. 

 

As can be seen from Figure 4-3, the crossover frequency (zero-point of the real 

part of the CM factor) of the trypanosomes is lower than that of the red blood 

cells. This is in accordance to the experimental data (see Chapter Five). The 
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actual values for the crossover frequencies (~250 kHz for trypanosomes and ~380 

kHz for RBCs) however are much higher than in the experiments (for a medium 

conductivity of 30 mS/m). In order to better reflect our experimental results in 

the modelling, the permittivity of both the RBC and trypanosome cell membrane 

and their intracellular conductivity was changed in an iterative procedure until 

the crossover frequencies matched the experiment. The dielectric parameters 

used in the model are detailed in Table 4-1. The value for the CM factor derived 

from this model was used later to estimate the force acting on the particles (see 

3.4). 

 

Parameter RBC value Trypanosome value 

Semi-major axis length (m) 3.3e-6 9e-6 

Semi-minor axis length (m) 1.25e-6 1.2e-6 

Membrane thickness (m) 8e-9 8e-9 

Relative permittivities   

- Internal permittivity 60 60 

-Membrane permittivity 12.64 19.87 

-Medium permittivity 79 79 

Conductivities (S/m)   

-Internal conductivity 0.8 0.8 

-Membrane conductivity 1e-6 1e-6 

-Medium conductivity 30e-6 30e-6 

 

Table 4-1: Dielectric parameter values used for RBCs and trypanosomes in the single 
shelled ellipsoidal RC model employed in this work.  

 

Figure 4-4 shows the simulated frequency dependant polarisability response of 

trypanosomes and RBCs obtained from the model, using these parameters. At 

low frequencies, as a result of capacitive membrane insulation, the effective 

polarisability of both cell types is less than that of the surrounding medium. 

Above the critical cross over frequency, the effective polarisability of the cell 

exceeds that of the medium, and the CM factor is positive. For viable 
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trypanosomes and RBCs with intact insulating membranes, the main 

contributions to the difference in frequency at which each cell type transitions 

from negative to positive are due to differences in cell size and shape. For 

trypanosomes, the value of the positive peaks for the real and imaginary part of 

the CM factor is much higher than that of RBCs. This is due to the difference in 

the shape of the two cells. The CM factor is also larger than what would be 

expected using Equation 1.1-5 (which limits the minimum and maximum values 

to -0.5 and 1.0 respectively) because it was defined differently in this model 

(see Equation 4.2-1).  

 

Figure 4-4: MATLAB simulation of the real and imaginary parts of the CM Factor for 
trypanosomes (green) and mouse RBCs (red) when the semi-major axis is oriented parallel 
to the electric field. The solid lines show the real and the dotted lines show the imaginary 
part of the CM factor. 

 

 

The obtained values for the Cm factor were used to generate COMSOL models to 

represent the individual components of the force acting on the cell as well as 

the combined total DEP force during TW-DEP. 
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In Figure 4-5 A, the  E2 vector direction for positive DEP conditions (Re(CM)>0) is 

vertically downwards onto the electrode edges. For negative DEP conditions 

(Re(CM)<0), not shown here, the vector arrows will be directed upwards 

resulting in the levitation of cells above the electrode plane. The factor  E2 is 

minimal in the middle of the gap between the electrodes and reaches a 

maximum at the edge of the electrodes. The DEP force extends above the 

electrode, but with decreasing strength, i.e. at 20 μm above the electrode 

surface, the factor  E2, has decreased by two orders of magnitude. 

Figure 4-5 B shows the direction and magnitude of      
   

 
    

   
 
    

   
 
 

vectors above a four-phase electrode array. It can be observed that for heights 

greater than 10 μm, the vectors are oriented in the opposite direction of the 

travelling electric field, but for heights < 10 μm, the vectors are largely oriented 

in the same direction as the travelling field. 

 

Figure 4-5: COMSOL simulation of the spatial variation of the DEP force components. Both 
plots show a vertical section along the electrode plane (electrodes represented by black 
rectangles at the bottom). The arrows represent the vector direction of the force 
components and the surface plot represents the magnitude of the force components (V2/m3, 
log10 scale). The x and y scale are in metres. A) shows the spatial variation of  E for positive 

DEP, whilst B) shows the spatial variation of E
2
 φ  (image modified from [89]) 

 

A spatial profile of the magnitude and direction of the DEP force was necessary 

to understand the differences in manipulation of trypanosomes and RBCs. This 

was obtained by solving Equation 1.1.1-2 with CM factor values corresponding to 

a frequency of a 140 kHz (taken from Figure 4-4). While Figure 4-5 shows the 

direction of the individual force components (FcDEP and FtwDEP respectively), the 
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simulated total translational forces (FDEP = FcDEP + FtwDEP ) acting on the two cell 

types are shown in Figure 4-6. The vector direction indicates that the 

trypanosomes experience a combination of positive DEP trapping forces and a 

co-field translational movement at the electrode plane. The magnitude of the 

force was maximum at the edge of the electrodes and was found to decrease 

rapidly with increase in height. For RBCs, a combination of Re(CM)<0 and 

Im(CM)>0, results in levitation to a height >20 μm followed by anti-field TW-DEP 

translational motion.  

 

Figure 4-6: A vertical section along the electrode plane showing the spatial variation of the 
total DEP force. The arrows represent the vector direction of the force and the surface plot 
represents the magnitude of the force (log10 scale). X and Y axis are in meter. A) Spatial 
variation of the DEP force acting on mouse RBCs at 140 kHz. B) Spatial variation of the DEP 
force acting on the trypanosomes at 140 kHz. (image modified from [89]) 

 

In summary, results from the COMSOL model indicate that DEP was capable of 

separating out red blood cells and trypanosomes due to different crossover 

frequencies (zero point of the real part of the CM factor). A frequency regime 

exists where the parasites undergo positive DEP while the RBCs undergo negative 

DEP.  

Furthermore TW-DEP allowed for the enrichment of trypanosomes. The profile of 

the total force acting on the cells describes how the erythrocytes are moved up 

and out of the region containing the electrodes, while the trypanosomes are 

attracted to the edges of electrodes (at the bottom of the chamber containing 

the sample).   
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4.4 Discussion 

It is important to put the presented modelling in this work into perspective. In 

general, a good model requires sufficient knowledge of the involved parameters. 

In this case the model of the Clausius-Mossoti factor relies on the knowledge of 

the relevant values of the cells, such as conductivity and permittivity of the 

cellular membrane and the intracellular medium. While literature exists about 

values for erythrocytes [90-92], no such sources could be found for 

trypanosomes. Several factors combine that make the determination of these 

values for a trypanosome a challenging proposition.  Firstly, the intrinsic motility 

of the parasite interferes with determination of the crossover frequency as well 

as electro-rotation experiments. Secondly, the shape of the cell changes 

constantly as the trypanosome is stretching and twisting. The geometry itself is 

far-removed from the spherical shape, as used in most models, and in a given 

population the shape will differ from trypanosome to trypanosome. Even the 

ellipsoidal model by J. Gimsa [86] used here to estimate the CM factor is a 

relatively poor approximation of the slender dagger/corkscrew-like shape of the 

trypanosome. It is however a better approach than a spherical model.  

Since the values for the trypanosome are not known, they were estimated on the 

basis of red blood cells (and within what seemed physiologically reasonable). 

This estimation was done to best reflect the experimental values that were 

determined for the crossover frequency of mouse erythrocytes and the capture 

frequency of trypanosomes. This capture frequency was used as a substitute 

crossover frequency in the model. Although the values used for the RBCs differ 

from the ones found by Asami et al., the author feels their use is justified here. 

Asami and colleagues determined their values for erythrocytes that were swelled 

into a spherical shape using osmotic pressure (in order to fit their data to models 

using this spherical shape). It is possible that this process had an impact on the 

values, and in this work the cells were used in their original (biconcave) state. 

The most important observation, that the crossover frequency of the 

trypanosomes was lower than that of the red blood cells, could be confirmed 

even for identical values of conductivity and permittivity (see Figure 4-3).  

The COMSOL simulation on the other hand seeks to explain the bidirectional 

character of the observed enrichment. The most important part is the reversal 

of the total force at very low altitudes above the electrode plane. This reversal 
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was already reported in earlier work [17] and, combined with the ability of the 

trypanosomes to detach themselves from the electrode edges, explains the 

observed movement of the parasites. The model, despite necessary shortcomings 

in addressing the values of the trypanosome, describes the observations well.  
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Chapter 5: Dielectrophoresis experimental 

5.0 Abstract 

In this chapter the experimental results of dielectrophoresis experiments will be 

presented and discussed. First a number of preparative experiments are shown 

to determine dielectric properties and overcome problems in sample 

preparation. Then travelling wave dielectrophoresis on a spiral electrode array is 

used as a tool to enrich trypanosomes from a sample of blood and various 

parameters are examined to determine optimal enrichment conditions. 

 

5.1 Summary of Methods 

In order to determine the feasibility of using dielectrophoresis as a tool to 

manipulate trypanosomes, a set of initial experiments was carried out. For these 

experiments T. cyclops, a different genus of trypanosomes, was used. These 

parasites are non-infectious to mammals found in the UK and can be used in 

biosafety level 1 facilities. While the two parasites are not closely related, they 

are very similar in shape and would be a good tool to infer the dielectric 

response of T. brucei.  

The experimental values for the crossover frequencies were determined using 

the set of quadropole electrodes described in Section 3.2.5. Rather than 

observing individual cells, the majority (~90 %) of a sample was taken as an 

indicator of the sign of the DEP force. This means that the frequency values that 

correspond to a clear positive or negative response (see Figure 5-1) set the 

upper and lower error bars for the values found in Figure 5-3. This allowed for 

more repeatable results and greatly increased the number of cells being taken 

into account. Since the cells tended to settle after a short time, a new sample 

was loaded into the chamber for each frequency (and the chamber thoroughly 

cleaned, using 70 % ethanol, between each experiment). 
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Figure 5-1: Quadrupole electrodes used for characterisation of cross-over frequencies. A) 
Mouse red blood cells undergoing negative DEP. At a frequency of 100 kHz the cells are 
predominantly experiencing a force repelling them from the edge of the electrode (edges are 
mostly clear). B) RBCs experiencing positive DEP at 120 kHz. The cells are predominantly 
attracted to the edges of the electrodes. Experiments were done at a medium conductivity 
of 16 mS/m (scale bar is 50 µm). 

 

The two different trypes of spiral electrode arrays were used in this work. The 

first one was used only to asses experiments regarding particle density and all 

further experiments were done on the spiral electrode array shown in Figure 3-3. 

Here the electrode arms continue all the way into the centre of the array in 

order to allow complete removal of RBCs from the area as well as concentration 

of parasites into a small area at the centre of the array. The sample was washed 

three times in buffer solution (of desired conductivity) prior to applying it onto 

the chip. 

The samples were viewed during experimentation with an upright microscope 

and the experiments recorded with a video camera for further evaluation.  

 

5.2 Results 

Initially cultured parasites (T. cyclops) were washed in DEP buffer medium (30 

mS/m conductivity) and placed on a two dimensional array of interdigitated 

electrodes. The cells were exposed to a 20 kHz AC bias and it was observed that 

the erythrocytes underwent negative DEP while the trypanosomes underwent 

positive DEP (see Figure 5-2). The parasites were attracted to the edges of the 
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electrodes and remained trapped there. The RBCs are concentrated in regions of 

low electric field, between the electrodes. 

 

Figure 5-2: Initial Experiments with trypanosomes and red blood cells. A) Top down view of 
an experiment with T. cyclops. The trypanosomes experience positive DEP (marked with 
yellow circles) while the RBCs experience negative DEP and are aligned between the 
electrodes along the field lines. B) Side view schematic of the experiment. Interdigitated 100 
µm electrodes (with 100 µm spacing) are patterned on silicon. 

 

Next, the crossover frequency was determined. As was discussed in Chapter 1, 

the crossover frequency marks the frequency where the Clausius-Mossotti factor 

transits from one sign (positive or negative) to another. It is an intrinsic trait of 

cells and particles directly related to their dielectric behaviour.  This value is of 

paramount importance for the experimental separation of different cells. The 

cells DEP response is observed after suspending them in a medium of known 

conductivity and exposing them to a non-uniform electric field of a certain 

frequency.  



Chapter 5 Page 65 

Results of the experimental characterisation of the three cells (human 

erythrocytes, mouse erythrocytes and trypanosomes) in working solutions of 

different conductivities varying from 16 mS/m to 60 mS/m are shown below 

(Figure 5-3). For trypanosomes, the frequencies ranged from 20 kHz to 150 kHz. 

For mouse RBCs crossover frequencies ranged from 100 kHz to 380 kHz, whereas 

for human RBCs, values were found to vary from 60 kHz to 260 kHz. For a 

solution conductivity of 30 mS/m, the optimal enrichment frequency was 

determined to be ~140 kHz for trypanosomes among mouse RBCs. The larger 

crossover frequencies for mouse RBCs can be attributed to a smaller mean 

diameter of 6 μm compared to 8 μm for human RBCs. 

 

Figure 5-3: Correlation between solution conductivity (16, 30, 45 and 60 mS/m) and capture 
frequency of mouse RBCs, human RBCs and trypanosomes. The values mark the frequency 
at which the DEP force changes sign. For frequencies below the indicated value cells 
experience negative DEP and for frequencies above, the cells experience positive DEP.  

 

Overall, the error of the observed crossover frequency increased with higher 

medium conductivity as the cells showed a more varied response. Although this 

was mitigated by prompt use of blood, the amount of time suspended in the 

buffer medium had a visible effect on the crossover frequency.  

It should be noted that the frequency for trypanosomes is not the actual 

crossover frequency but rather a „trapping frequency‟ where the DEP force is 

strong enough to hold the parasites at the edges of the electrodes. The actual 
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crossover frequency is impossible (or very difficult) to observe for motile cells as 

their own movement covers up any weakly positive or negative DEP force acting 

on the cells. More importantly, for the purpose of the further experimentation 

only the trapping frequency is of interest since the cells need to be trapped at 

the electrodes (positive DEP) in order to separate them from the RBCs. The real 

crossover frequencies for trypanosomes will be less than the values presented 

here.  

 

5.2.1 Enrichment of trypanosomes using travelling wave 
dielectrophoresis 

In order to confirm the complete expulsion of red blood cells from the spiral 

area, both human and mouse red blood cells were tested for conductivities of 30 

mS/m for a number of frequencies (80 kHz to 180 kHz). As is to be expected 

from Figure 5-3, the red blood cells experience negative DEP for frequencies 

below 160 kHz and are levitated above the electrode surface. The RBCs then 

move outward from the spiral and collect at the outer edge, beyond the last 

electrode ring (see Figure 5-4, A-D). As the frequency increases more and more 

RBCs settle on the bottom of the electrodes instead of being moved out of the 

spiral (see Figure 5-4 E-G).  

Removal of red blood cells took about 5 minutes at a 1 in 20 dilution for a 

voltage of 2 Vpk-pk. The trypanosomes underwent positive DEP and were trapped 

at the edges of the electrodes. However the inward movement and consequently 

the enrichment of trypanosomes, was observed without the need to superimpose 

a second signal or the use of a time course experiment. The trypanosomes began 

travelling into the centre of the electrode array while the red blood cells 

simultaneously travelled to the outside of the spiral, thus achieving bidirectional 

TW-DEP (see Figures 5-5 and 5-6).  

 



Chapter 5 Page 67 

 

Figure 5-4: Removal of red blood cells from the spiral electrode array. Experiment was 
performed with a medium conductivity of 30 mS/m, a voltage of 2 Vpk-pk and a frequency of 
100 kHz. A-D) RGB colour micrographs of red blood cells after their removal from the array. 
A) and B) scale bar is 300 µm and C) and D) scale bar is 100 µm. A) and C) show fields of 
view with illumination from the bottom. Electrodes appear black and the red blood cells 
were clearly visible (being repelled by the electrodes). B) and D) show the same fields of 
view, but with illumination from the top. The electrodes (appearing in gold due to the 
reflected light) themselves were also cleared of red blood cells. E-G) show the effect of 
increased frequency as the crossover frequency of the red blood cells was approached. 
More and more erythrocytes undergo positive DEP and are attracted to the electrode edges. 
E-G) Scale bar is 50 µm.   
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Figure 5-5: Enrichment of trypanosomes using bidirectional TW-DEP. A) and B) show the 
removal of red blood cells from the electrode array (scale bar is 100 µm). C) Close up of the 
centre of the spiral where a number of trypanosomes have been concentrated after about 10 
minutes. Trypanosomes undergo circular motion in the centre of the array. D) The 
trypanosomes are trapped between the electrodes once the field is switched to two-phase. 
C) and D) scale bar is 50 µm. 

 

Once inside the central area of the electrodes, the trypanosomes began to 

undergo circular translational motion. Once the field was changed from 

quadrature-phase to opposing two-phase, the cells exhibited normal positive DEP 

and were trapped between the electrodes (see Figure 5-5, D). 

This inward movement of the parasites was only observed at the height (focal 

plane) of the electrodes. The trypanosomes were retained at the edges of the 

electrodes until detaching themselves and moving rapidly to the next electrode 

edge. While removal of the RBCs took approximately ~5 min another ~5 min 

were necessary to collect most trypanosomes. For a field with 140 kHz and 2 Vpk-

pk the trypanosomes were trapped for an average of 6 to 13 seconds at the 



Chapter 5 Page 69 

electrode edges while it took them only 3.5 seconds to cross the gap between 

adjacent electrodes (average values from 10 parasites, see Figure 5-6).  

The time spent at the edge of an electrode varied greatly and seemed to be 

dependent on the orientation of the trypanosome. The trypanosome is highly 

asymmetrical in shape and has one „blunt‟ end and one „pointy‟ end. The 

flagellum wraps around the cell and extends outward from the „pointy‟ end (also 

see Figure 4-2). The parasite moves in the direction of the flagellum (it is pulled 

by the corkscrew like motion of the cell) in a complex pattern [93].  

In the experiments the trypanosomes were observed to be either facing with 

their flagellum toward the electrode edges or away from it, but always at a near 

perpendicular angle with regard to the edge. Parasites that were facing away 

from the electrode edge spent less time trapped, while those that were facing 

the trapping region took longer to escape. Often the trypanosome would reverse 

its facing before escaping the entrapment region. The time spent moving 

between electrodes was much shorter and the trypanosome usually moved 

straight toward the next electrode edge.  
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Figure 5-6: Inward movement of a trypanosome due to TW-DEP. The trypanosome (marked 
with the white arrow) was momentarily trapped at the edges of the electrodes and then 
detached itself and quickly transversed the space to the next electrode. A) Trypanosome 
trapped at the inner edge of an electrode. B) Trypanosome between electrodes. C) 
Trypanosome trapped at outer edge of an electrode. Scale bar is 50 µm. D-F) show an 
overview of a trypanosome travelling into the centre of the spiral. Scale is 50 µm. G) 
Average time of a trypanosome trapped at the corresponding positions (A, B, C) for 140 kHz, 
2Vpk-pk. Averaged from 10 parasites, error is standard deviation. 
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White blood cells also underwent positive DEP (due to their large size) but, 

unlike trypanosomes, were not observed to move into the central region of the 

spiral. The WBCs differ in shape and size from the trypanosomes but more 

importantly show no intrinsic motility. While the trypanosomes are seen using 

their flagellum to detach themselves from the edges of the electrodes, the 

leukocytes remain stationary during the experiment (see Figure 5-7). 

 

Figure 5-7: A white blood cell (white arrow) undergoing positive DEP. The cell is trapped at 
the edges of the electrode and does not move into the centre of the electrode. The red blood 
cells initially in the centre of the array (A) are expelled over time and trypanosomes enter 
the central area (B). Scale bar is 50 µ. 

 

In order to quantify the enrichment process a number of videos were recorded 

and evaluated for different voltages and frequencies. Both the velocity of the 

trypanosomes and the enrichment number were recorded for voltages of 2, 3 

and 4 Vpk-pk, as well as for frequencies between 100 kHz and 160 kHz.  

Increasing the voltage from 2 to 4 Vpk-pk increased the average velocity from 3 

µm/sec to 11 µm/sec, with the observed increase seeming to be linear with 

regards to voltage (see Figure 5-8).  

Increased voltages lead to increased enrichment numbers. The enrichment 

numbers at 4 Vpk-pk were approximately twice as high as those for 2 Vpk-pk. It was 

observed however that for voltages above 2 Vpk-pk the trypanosomes were lysed 

as they entered the central area of the spiral between the tips of the electrode 

arms. No adverse effect of the voltage on the parasites was observed as they 

travelled from one electrode arm to the next, however the total voltage drop 

across the central region (with the electrodes at opposite corners having 

opposed phases) is much increased. Since lysis made detection of the parasites 
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impossible, a potential of 2 volts was used for further experiments to study the 

effect of frequency. 

 

Figure 5-8: Voltage dependency of the velocity and the enrichment numbers during TW-DEP 
enrichment. Experiments were carried out with a fixed frequency of 140 kHz and a medium 
conductivity of 30 mS/m. Each data point is averaged from >7 experiments, error is standard 
deviation.  

 

For frequencies of 80 kHz, or below, the positive DEP force on the trypanosomes 

was not strong enough to trap them at the electrode edges and no trypanosomes 

were observed at the electrodes of the array. An increase in enrichment 

numbers is observed for frequencies ranging from 100 kHz to 140 KHz, but at a 

frequency of 160 KHz, the enrichment numbers begin to fall (see Figure 5-9). 

This is due to the fact that for frequencies above 160 kHz the number of red 

blood cells that remain trapped at the electrode edges increases drastically, 

impeding the inward movement of the trypanosomes (see Figure 5-4, E-G).  

Furthermore a gradual increase in velocity with increase in frequency was 

observed. Considering these results the optimal enrichment conditions are given 

for an electric field of 140 kHz and 2 Vpk-pk. 
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Figure 5-9: Frequency dependence of enrichment number and velocity for a set voltage at 2 
Vpk-pk and a medium conductivity of 30 mS/m. >7 experiments were evaluated for each data 
point, error is standard deviation.  

 

5.2.2 Enrichment after dilution  

While washing the sample in DEP buffer gives very good control over the 

conductivity, it requires the use of centrifuges. These can be difficult to operate 

in the field however. Since the technique is supposed to present an improvement 

over the current methods of detection it was highly desirable to demonstrate 

that the enrichment process would also work without the need for 

centrifugation. This was done using a two step dilution process of 20 fold 

dilution in trypsin-buffer and a further 2 fold dilution in inhibitor-buffer. Under 

these conditions enrichment was easy to demonstrate (at 140 kHz and 2 Vpk-pk) 

and experiments were carried out to determine the sensitivity of the device (see 

below).   

 

5.2.3 Enrichment from human blood 

While mouse blood is a good model, since the samples come directly from 

infected animals „in vivo‟, the applicability of human blood needs to be verified. 
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Human blood contains the trypanosome lytic factor (TLF) as part of the plasma. 

This prevents the direct mixture of whole blood and cultured T. brucei, as the 

TLF would lyse the parasites. The human erythrocytes need to be washed and 

re-suspended in suitable DEP buffer medium to be used. The enrichment was 

demonstrated for a medium conductivity of 30 mS/m and frequencies of 100 and 

120 kHz.  

 

5.2.4 Sensitivity 

The sensitivity was determined using the sampling volume as defined in Section 

3.2.6. Under real experimental conditions the sensitivity is never 100 % as some 

parasites are pushed out of the spiral by RBCs undergoing TW-DEP, or simply fail 

to reach the centre of the spiral.  

Experimental values were determined for different dilutions of parasites (see 

Section 3.2.6). An initial concentration of 5*105 trypanosomes / ml was 

determined, which after a 1 in 20 dilution equates to approximately 25 parasites 

/ µl. After washing the sample in 30 mS/m buffer and using optimal enrichment 

conditions (140 kHz and 2 Vpk-pk) an average of 5.75 (± 1.9) parasites were 

detected (n=7), giving a sensitivity of about 23 %. Experiments at 4 Vpk-pk gave 

increased numbers of parasites which improved this value to approximately 56 %. 

Given the current design of the electrode however, this value is of little use 

since the parasites were lysed upon entering the centre of the array (making 

detection impossible). Determining the initial concentration was difficult for 

such high concentrations of parasites from whole blood and more importantly it 

is unknown how many parasites are lost during the washing procedure (3 washing 

steps). In order to exclude these sources of error and to verify the sensitivity, a 

second set of experiments was conducted. The conductivity of a sample was 

adjusted through dilution and the concentration of parasites was then 

determined (again with a Neubauer chamber) to be approximately 7.5 parasites 

/ µl (from an unknown starting concentration before dilution). For these 

experiments an average of 3.3 (± 1.2) parasites were detected (n=7), equating to 

a sensitivity of approximately 44 %. It should be noted however that with such a 

low average number of parasites being present in the sampling volume, even 

small variations in the number of parasites initially present have a large impact 

on the exact percentage of the determined sensitivity. 
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Applying these values to the limit of detection, one can assume that 3 parasites 

need to be present in the sampling volume to concentrate at least one into the 

centre of the array. This gives a value for the limit of detection of 1.2 x 105 

parasites / ml. It should be noted here that while the limit of detection 

presented here is worse than the gold standard of ~102 parasites / ml (see 2.3.8) 

it can be improved through up-scaling (see discussion). 

 

5.3 Discussion 

TW-DEP proved to be a potent tool in manipulating samples of blood infected 

with T. brucei. It was possible to enrich trypanosomes into a small area at the 

centre of a spiral electrode array and simultaneously expel the red blood cells 

(bidirectional TW-DEP).  

 

5.3.1  Bidirectional movement of cells 

Interestingly, the bidirectional movement of cells could be created using only a 

single set of electrodes energised with only a single electrical signal. The inward 

motion of the parasites can be explained by the force profile in the TW-DEP 

setup (Figure 5-10). After the electrodes were energised the trypanosomes 

travel downward towards the bottom of the chamber (due to positive DEP) at an 

angle. Once at the bottom of the chip, the force switches direction and the 

parasites switch from anti- to co-field movement. This movement was directed 

toward the edges of the electrodes where the trypanosomes become trapped. 

Unlike other cells (like WBCs) however, the trypanosome is a motile organism 

and can detach itself from the electrode edges. The forces generated by the 

flagellum can be significant. Rodriguez et al. estimated that the forces the 

flagellum can generate are in the range of 300 pN (the average velocity of the 

flagellar tip is 500 µm/sec) [93]. After detaching itself from the electrode the 

trypanosome experiences the co-field force from the field again and travels 

towards the next electrode edge.  

This also explains why white blood cells (or any non-motile cells for that matter) 

are not observed to travel into the centre of the array. They are unable to 

detach themselves from the electrode edges and remain trapped in their initial 
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position. The bidirectional movement is a direct consequence of the intrinsic 

mobility of one of the cells of interest.   

 

 

Figure 5-10: Profile of the total force acting on the trypanosomes during a TW-DEP 
experiment. This is the same simulation as in Figure 3-10, B. The movement of the 
trypanosomes follows two steps. First, the trypanosomes descend to the bottom of the 
chamber at an angle due to the positive DEP force. Then they travel from one electrode 
edge to the next since they can detach themselves due to their intrinsic motility (Stop and 
Go). The arrows represent the vector direction of the force and the surface plot represents 
the magnitude of the force (log10 scale). X and Y axis are in metres.  

 

5.3.2  Characterisation of the TW-DEP experiments 

As can be seen from Figure 5-8, the increase in trypanosome velocity with 

increased voltage seems linear. Based on Equation 1.1.1-2 one might expect that 

the velocity with which the trypanosomes travel inward exhibits square voltage 

dependency (FtwDEP is proportional to E2). The linear increase might be due to 

the increase of all components (in z direction as well as x and y) of the force. 

The enrichment number increased with increased voltage, which was to be 

expected with an increase in velocity as more parasites enter the central region 

in the same amount of time. The downward (positive) DEP force also increased 
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with voltage leading to a more efficient trapping (and in turn, enrichment) of 

parasites. 

A comparison of Figure 4-3 and Figure 4-4 (in Chapter 4) indicates that, in the 

frequency regime used for experimentation, the real and imaginary parts of the 

CM factor increase for the trypanosomes with increased frequency. Consequently 

an increase in enrichment numbers was observed for frequencies ranging from 

100 kHz to 140 KHz. As pointed out in the Section above, at a frequency of 160 

KHz the enrichment numbers begin to fall (due to the RBCs becoming trapped at 

the electrodes). Furthermore, a gradual increase in velocity with increase in 

frequency was observed. This can also be attributed to the increased CM factor, 

which helps to keep the trypanosomes closer to the electrode plane and provides 

stronger translational forces into the centre of the spiral.  

 

5.3.3 Sensitivity and limit of detection  

From the calculations in Section 5.2.5 it is obvious that the main limiting factor 

for the limit of detection is not the sensitivity of the device, but rather the 

dilution of the sample and the small sampling volume. Both can be addressed by 

increasing the sampling volume through up-scaling of the presented technique. 

Increasing the diameter of the spiral to about 1 cm (without changing the height 

of the chamber) will increase the sampling volume to approximately 12 μl. Care 

has to be taken to ensure that the electrodes are of sufficient thickness, 

otherwise the amount of voltage lost along the arms of the spiral is too great 

and the device no longer functions properly in the central region of the array. 

Provided the sensitivity of the device is not decreased (and the author sees no 

reason why this would be the case), this will lower the limit of detection to ~1 x 

104 trypanosomes/ml. Further up-scaling (e.g. multiple spirals in parallel) can be 

imagined to reduce the limit of detection to the desired value (with 102 to 104 

parasites / ml in the human host, see Chapter Two).  

It should be noted, however, that these low levels of parasitemia have not been 

confirmed experimentally for detection using the technique. In general, the 

main limiting factor is the fact that the conductivity of the solution has to be 

low enough to generate the required forces for the technique. If the current 

technique can be optimized to include some pre-concentration step or be 
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combined with fluid flow to increase the sampling volume without increasing the 

size of the electrode array, the limit of detection could be improved.  
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Chapter 6: Electrically induced lysis modelling  

6.0 Abstract 

In this Chapter the electric field acting on a cell during an optoelectronic 

tweezers experiment will be modelled using COMSOL. The model will be used to 

draw conclusions about the induced transmembrane potential and the special 

influence the layer of amorphous silicon has on the cell.  

 

6.1 Summary of methods  

The analytical model used in this work was created using the COMSOL multi-

physics, finite element analysis, software. Below is a schematic (not to scale) 

displaying the boundary conditions used in the model (Figure 6-1).  

 

Figure 6-1: Cartoon (not to scale) of the boundary conditions and general layout used for 
the simulations. The cellular membranes are modelled as individual sub-domains. Boundary 
conditions are set to „continuity‟ on all but the outer boundaries of the model (values 
indicated above). 

 

The parameters for the geometry and the electric properties of the subdomains 

were chosen to represent the experimental conditions. The chamber height was 

100 µm and the model used a 2D geometry representing a cross-section through 
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the electrodes, chamber and cells, including the cell membrane as a distinct 

subdomain with a thickness of 7 nm. All values used can be found in the Table 

below (Table 6-1), where ρ and σ are electric conductivity and relative 

permittivity respectively (-Mem. donates values for the membrane layer).  

Values for the cellular membrane and the intracellular medium were taken from 

Chapter 4. Values for the amorphous silicon layer were (unless noted otherwise) 

taken from the literature[94]. 

 

 Shape Height Width ρ* ρ*–Mem. σ σ –Mem. 

Chamber Rectangular 100 µm 200 µm 
25,100, 

1400 
- 79 - 

a:Si 

layer 
Rectangular 1 µm 200 µm 

5.7e-3, 

0.44† 
- 14 - 

RBC Biconcave‡ 3 µm 8 µm 800 1e-3 60 12.5 

WBC Spherical 10 µm 10 µm 800 1e-3 60 12.5 

 

Table 6-1: Table for the parameters used for the COMSOL simulation. *All values in mS/m. † 
Dark state and Light state conductivity respectively, see text. ‡ Flattened biconcave for high 
conductivity, see text.  

 

The conductivity of the amorphous silicon has two values, one for the 

illuminated state, another for the dark state – these values were generated by 

measuring the intensity of the light at the focal point (1.97 W/cm2 and 1.99*10-2 

W/cm2 respectively) on the optoelectronic chip using an optical power meter 

(Thorlabs, PM100A) and comparing it to the literature[94]. In the simulation, the 

conductivity inside the a:Si layer changes from dark to light and back again, 

following a saturated Gaussian, in order to simulate the change in conductivity 

due to a light spot – thus causing the electric field inside the chamber to be non-

uniform. The biconcave geometry of the red blood cell was created as a 

composite object of circles, ellipses and a rectangle. Figure 6-2 shows a 

simulation and the corresponding mesh for a medium conductivity of 25 mS/m 

and a frequency of 10 kHz (15 Vpk-pk).  
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Figure 6-2: Overview of the model and the corresponding mesh. The total width of the 
chamber was 200 µm and the height 100 µm. The cell membrane was modelled as a 7 nm 
thick layer of high resistance. Colour scale in V, x and y axis in metres.  

 

The above model depicts the chamber and cells while the voltage inside the 

amorphous silicon is not shown (for clarity). Due to this the minimum voltage is 

~5.2 V as the rest is dropped across the silicon layer. For an example of the 

simulation without any suppressed sub-domains, see Figure 6-5 A.  
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6.2 Results 

The 1 µm thick layer of amorphous silicon will act as a resistance of variable 

ohmic strength, based on illumination. Even in the „light state‟ the conductivity 

of the a:Si is still in the order of 104 mS/m however [10]. This caused a 

considerable amount of voltage to be dropped across the silicon layer rather 

than the voltage being dropped across the liquid. This had a direct effect on the 

generation of dielectric forces as well as electrically induced lysis. A cell 

suspended in the liquid between the top and bottom electrodes only experiences 

the electric potential dropped across the suspension layer. Thus a reduced 

amount of voltage dropped across the liquid will cause a decrease in the induced 

TMP. 

Figure 6-3 shows values for the amount of voltage dropped across the amorphous 

silicon layer extracted from the simulation. The value was taken from the point 

of the silicon layer that is at the centre of the simulated light spot. As can be 

seen, the voltage drop does not show a significant frequency dependency in the 

regime considered here. The voltage does, however, depend greatly on the 

medium conductivity. The total potential applied across the chamber was 15 V in 

all three cases. The voltage dropped across the liquid is the amount shown in 

Figure 6-3 subtracted from 15 V. So for a conductivity of 25 mS/m about 8 V are 

dropped across the medium, while for a conductivity of 1400 mS/m that number 

is reduced to less than 0.5 V. 

 

Figure 6-3: Comparison of the voltage drop across the amorphous silicon layer (1 µm 
thickness) for different frequencies and medium conductivities in an optoelectronic 
tweezers setup. Values measured at the centre of the modelled light spot.  
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6.2.1 ‘Electrical shadow’ 

The most important observation from the COMSOL modelling was that of non-

uniformities in the distribution of the electric potential inside the layer of a:Si 

directly beneath the resting cells. Since the conductivity of the a:Si layer has an 

intrinsic non-uniformity (due to the saturated Gaussian to model the light spot, 

see above) in the model, this will cause a non-uniformity in the voltage 

distribution. This non-uniformity, however, is of a large scale and covers the 

entirety of the silicon layer. A much smaller non-uniformity can be observed 

directly beneath cells resting on the a:Si.  

 

Figure 6-4: Model of the voltage inside the amorphous silicon, both with (top) and without 
(bottom) a RBC being present (25 mS/m 10 kHz 15 Vpk-pk). A) No inhomogeneity in the 
voltage distribution can be observed without a cell being present. B) Presence of a cell 
causes the non-uniform distribution underneath the RBC, causing a local decrease in the 
voltage dropped across the a:Si layer. This non-uniformity changes with the distance of the 
cell from the surface and the shape of the cell (see below) and is reminiscent of an 
“electrical shadow”. X and Y axis in metres, colour scale in V. 
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While Figure 6-4 gave a good visual presentation of the non-uniformity, the 

effect was better understood when all areas of the simulation are included in 

the colorimetric presentation (all sub domains except the a:Si layer are 

suppressed in Figure 6-4).  

As can be seen from Figure 6-5 and 6-6, the area directly underneath the RBC 

has a reduced potential with regard to the liquid above and beside the cell. 

Effectively the cell creates a pocket of reduced potential. This result was only 

observed for low frequencies (see Figure 6-5) while it seems to disappear for 

higher frequencies (100 kHz), owing to the loss of the cell membrane‟s ability to 

act as an insulator at these frequencies.  

This observed effect will be tentatively referred to as an „electrical shadow‟ in 

this work. This term does not refer to an actual shadow (this is worth 

emphasising, since light is a central part of the experimental setup), but rather 

the electric shielding of the dielectric silicon layer through the cellular 

membrane (and consequently the cell itself).   

The biconcave shape of the erythrocyte, although the cell is resting on the 

surface, might seem questionable but the author feels it is a justified geometry 

for the presented simulations. The RBC naturally assumes the biconcave shape 

(given physiological osmolarity) because it represents its state of lowest 

potential energy [95]. Red blood cells will return to this shape when deformed 

and this process is well documented (e.g. [96]). Gingell and colleagues used 

interference reflection microscopy to study the adhesion of erythrocytes to glass 

and other substrates [97, 98], and clearly showed that for suspending media of 

low conductivities, the resting RBCs keep their biconcave shape and form 

„pockets‟ of liquid under the cell. Their work is also of importance, as will be 

discussed later on, when estimating the distance of the cell from the surface 

whilst resting. The same publications show that for media of high conductivity 

(like phosphate buffered saline with a conductivity of ~1400 mS/m) the cells 

seem to be in contact with the substrate and the pocket, formed by the 

biconcave shape, disappears. When modelling the cells under these high 

conductivities, this change was taken into account through a changed geometry 

of the RBCs (see Figure 6-10).  
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Figure 6-5: COMSOL model of the voltage distribution in an OET experiment (100 mS/m, 15 
Vpk-pk). A) Overview of the whole model. White lines represent equipotential lines (1.2 V 
difference from one line to the next). B) Close up of a RBC at a frequency of 3 kHz. The 
equipotential lines can be seen going into membrane and the overall electrical shadow is 
visible. C) shows the same cell, but at frequency of 100 kHz instead. No electrical shadow 
was visible in this case. Colour scale in V, x and y axis in metres 
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Figure 6-6: Image of a close up of the RBC shown in Figure 6-5. The pictured section is the 
bottom left corner of the RBC. A) shows the cell at 100 kHz with the equipotential lines 
being in parallel to the surface of the amorphous silicon. B) shows the cell at 3 kHz, with the 
electrical shadow being visible under the cell. The equipotential lines are not in parallel and 
protrude out of the surface and into the cell membrane. This caused a higher voltage to be 
dropped across the membrane than in A. Colour scale in V, x and y axis in metres. 

 

Figures 6-6 and 6-7 compare in detail how the potential was distributed at the 

areas where the cell was closest to the a:Si surface for a RBC and a WBC. It can 

be seen from both examples that for 100 kHz the potential was dropped evenly 

across the silicon layer and no electric shadow was developing. For a frequency 

of 3 kHz however, the equipotential lines (in white) can be seen to deform due 

to the presence of the cell. In each example the difference between two white 

lines is about 1.2 V. In the case of the RBC the potential lines can be seen 

„bending‟ out of the a:Si layer and into the cellular membrane. The membrane, 

in effect, becomes part of the silicon layer with regards to the electric 
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potential. For the white blood cell, however, this effect was much reduced (due 

to its shape). 

 

 

Figure 6-7: Image of a close up of the WBC shown in Figure 6-5 (the pictured section is the 
bottom of the cell). Similar to Figure 6-6 the distribution of the voltage for 100 kHz (A) and 3 
kHz (B) are pictured. The WBC however distorts the potential inside the amorphous silicon 
to much lesser extent than the red blood cell. Colour scale in V, x and y axis in metres. 

 

To further visualise the shape of the electric shadow and the effect of the shape 

of the cell causing it, another measurement was plotted in Figure 6-8. Here the 

voltage distribution along a horizontal line, in parallel to the surface but 100 nm 

below the surface, was plotted. This represents the voltage distribution inside 

the silicon layer underneath the cell. As can be seen from Figure 6-8, the 

voltage under the cell drops and this drop was more pronounced for lower 
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frequencies. In case of RBCs, the voltage drop inside the silicon for frequencies 

between 3 and 10 kHz is about 1.3 to 1.4 V (compared to the „baseline‟ at 100 

kHz where the potential was hardly changed by the cell). This value 

corresponded well with the induced transmembrane potential determined from 

the model for these frequencies (see Figure 6-11).  

Another observation that can be made here was that not only do RBCs cause a 

larger drop than WBCs, the voltage was also dropped across a much broader 

area. The electrical shadow „cast‟ by the WBC was much narrower due to the 

spherical shape of the cell. Another point to note was that the voltage drop 

underneath WBCs was only approximately 0.5 V while according to the 

simulation the overall induced TMP is approximately 1 V. This would suggest that 

the electrical shadow only accounts for about half the TMP for WBCs (the rest is 

due to its large size) while it accounts for nearly all of the TMP in case of RBCs.  
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Figure 6-8: Simulation of the shape of the electrical shadow. A) and B) show where the 
voltage inside the amorphous silicon was measured (white dotted line) 100 nm below the 
surface. C) The distribution of the voltage under the cell for different frequencies and cells 
(100 mS/m conductivity). As discussed above, the voltage under the cell was reduced as the 
potential was dropped across the cell membrane instead. The potential non-uniformity 
under the red blood cell is much wider due to the shape of the cell. In addition the drop 
under the RBC is much larger than for the WBC. These two factors combine to cause the 
induced transmembrane potential of the WBC to be less than for the RBC.  

 

6.2.2 Distance from surface 

Attention has to be given to the height of the cell above the silicon layer. For 

red blood cells resting on a glass surface the height of the cell will change with 

medium conductivity [97, 98]. This is caused by repulsion of surface charges of 

RBCs and the glass. The values from the literature for different conductivities 

(according to Table 6-2) were used in this work for modelling. 
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Conductivity Distance 

25 mS/m 140 nm 

100 mS/m 100 nm 

1400 mS/m 10 nm 

 

Table 6-2: Distance of cells from the surface for given conductivities. Values were taken 
from literature [97, 98]. 

 

The height of the cell has a pronounced effect on the induced TMP according to 

the simulation. Figure 6-9 shows a comparison of different heights of the cell 

above the surface while keeping conductivity and frequency constant (25 mS/m 

and 10 kHz respectively). 

It can be seen that the induced TMP and the shape of the field differ 

significantly with height of the cell above the surface. The voltage drop across 

the silicon layer increased as the distance between the surface and the cell 

increases. In this case it was increased by 1 volt if the distance of the cell was 

increased from 10 nm to 2 µm. At the same time, the induced TMP is decreased 

in this case from 1.4 V to 0.8 V. For a spherical cell that is placed symmetrically 

between the electrodes, the two TMPs at the top and the bottom of the cell will 

be equal. This is not the case here as the cell was much closer to the bottom 

electrode and the field inside the chamber was not uniform. The bottom TMP is 

higher than the top one and is used for all further evaluations. It should be 

noted that this discrepancy is becoming less pronounced as the cell is lifted off 

the surface.  

 



Chapter 6 Page 91 

 

Figure 6-9: Comparison of different heights of the cell above the silicon surface. All 
simulations were for the same medium conductivity (25ms) and frequency (10kHz). The 
distance was measured from the two points of the cell that are closest to the silicon. A-C) 
show COMSOL simulations for three different heights (10, 300 and 2000 nm). Colour scale in 
V, x and y axis in metres. D-F) show the corresponding voltage drop (in V, y-axis), plotted 
vs. the distance (mayor tick is 1 µm, x-axis). The voltage drop is measured through the 
middle of the cell (indicated as the red line in A). The values for the top and bottom TMP as 
well as the drop across the a:Si layer (indicated by the arrows in the right hand graphs) are 
given in V. 

 

As discussed above, RBCs have a biconcave shape even when resting on a surface 

if the conductivity of the medium is low enough that the electrostatic repulsion 

is not fully shielded [97, 98]. If the conductivity is large, however, the cell 

appears to be lying flat on the surface and the “pocket” created by the 

biconcave shape disappears. To account for this change a second morphology for 

the RBCs at medium conductivities of 1400 mS/m (pure PBS) was used in the 

model (see Figure 6-10).  
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Figure 6-10: Comparison of the biconcave (right, CO2) and flattened biconcave shape (left, 
CO6) used for the RBCs in the COMSOL simulations. The flattened biconcave shape was 
used for simulations at a medium conductivity of 1400 mS/m and the cell was placed 10 nm 
above the surface (in this example the cell is elevated above the surface for clarity). X and y 
axis in metres.  

 

6.2.3 Induced transmembrane potential 

After choosing the distance from the surface, the TMP was modelled for three 

different conductivities and a range of frequencies. Below is a comparison of 

induced TMP for RBCs under different conditions (see Figure 6-11). 

In order to determine the transmembrane potential, the voltage directly 

beneath the cellular membrane (on the outside of the cell) was subtracted from 

the potential inside the cell at the point in the middle of the cell. The point of 

the membrane where the TMP was measured was the centre of the cell (also see 

the red line in Figure 6-9 A). The TMP at the top and the bottom of the cell were 

determined but only the bottom value is plotted in Figure 6-11, since it was the 

larger of the two values. The smaller TMP at the top of the cell is not of interest 

for this work since lysis of a cell occurs once a certain threshold is reached.  
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Figure 6-11: Induced TMP from COMSOL simulations as a function of frequency for different 
values of medium conductivity, black squares 25 mS/m, red circles 100 mS/m, blue triangles 
1400 mS/m. 

 

The induced TMP is dependent on frequency. For lower conductivities the 

induced TMP was higher, although the value drops with increasing frequency. For 

higher medium conductivities, the initial value was not as high and the drop off 

is more gradual. While the simulation obviously has several simplifications, it 

should be noted that for frequencies <10 kHz the induced TMP is in the range of 

1 volt in all cases. According to the literature, this value is usually the threshold 

for irreversible breakdown of the cellular membrane [29].  

Since the observed lysis was selective to RBCs over WBCs, the voltage drop 

across the membrane of a WBC was also determined and is presented in Figure 

6-12. The potential was determined in the same way as above for the RBC and 

also at the centre of the cell (the lowest point of the spherical WBC). For low 

frequencies, the TMP of the RBC can exceed that of the WBC although it is a 

much smaller cell (the model used the same height above the surface for both 

cell types for a given conductivity (see Table 6-2)). Both cells present the same 

behaviour with regards to frequency but for the WBC the increase with reduced 

frequency is not as steep. While the transmembrane potential for both cell 

typesis in the range of 1 V at low frequencies, the TMP of WBCs is only about 70% 

that of RBCs. 
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Figure 6-12: Induced transmembrane potential (as a function of frequency) of an erythrocyte 
(RBC) and leukocyte (WBC) according to the COMSOL model. Values are for cells 
suspended in a 100 mS/m buffer at 15 Vpk-pk. 

 

An important comparison is that of the virtual electrode in an OET setup and a 

conventional metal electrode. In the COMSOL model the virtual electrode was 

created by adding a layer of a:Si (a sub-domain with the electric properties of 

amorphous silicon, including the conductivity change to simulate a light spot) on 

top of a boundary under a certain potential (also see Figure 6-1). To simulate a 

metal electrode, the a:Si layer was removed and the cells were placed at the 

appropriate distance (see Table 6-2) from the „naked‟ boundary. This 

configuration corresponded to two parallel electrodes of equal size and created 

a uniform electric field.  

In order to account for the effect of the field non-uniformity due to the 

simulated light spot, another simulation was created. In this case, the boundary 

conditions at the bottom of the chamber were modified to mirror the case of a 

metal electrode with a width equal to the width of the saturated region of the 

simulated light spot (80 µm). In this case the highest transmembrane potential 

was induced at the top of the red blood cell rather than the bottom of the cell. 
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The most obvious difference between the two cases is that the boundary 

conditions at the interface of a conductor are radically different from those of a 

dielectric. The surface of the conductor is an equipotential line. The electric 

field lines have to terminate perpendicular to the surface, while they can run 

more or less in parallel to a dielectric and enter the material at very low angles. 

Figure 6-13 shows the electric field lines (as red stream lines) going around a red 

blood cell sitting on top of a layer of amorphous silicon (top) and a metal 

electrode (bottom). The two simulations were both run at 100 mS/m with a 3 

kHz, 15 Vpk-pk AC bias.  It can be seen that in both cases the field lines are 

distorted by the presence of the cell. In the case of the metal electrode, 

however, the field lines are not constricted as efficiently between the cell 

membrane and the substrate.   

 

Figure 6-13: Comparison of the electric field lines (in red) going around a RBC for an OET 
device and a metal conductor. A) Erythrocyte sitting on layer of amorphous silicon. B) 
Erythrocyte sitting directly on a conductive surface (like a metal electrode). The field lines 
cannot „bend‟ around the cell as well as in A due to the boundary conditions of the 
conductor. Both simulations were run for a medium conductivity of 100ms/m with an AC 
bias of 3 kHz at 15 Vpk-pk. Scale is in metres. 
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In order to verify the effect this difference would have, the values for the 

induced transmembrane potential (as a function of frequency) of a red blood cell 

in a 100 mS/m medium, on a conductive surface, were determined. The values 

for a cell in a uniform electric field and a non-uniform electric field, which 

mirrors the one from the OET simulations, were generated and compared to the 

OET values (see Figure 6-14). The TMP was determined in the same way as for 

Figures 6-11 and 6-12.  

 

Figure 6-14: Comparison of the induced transmembrane potential of an RBC resting on 
either a conductor or a layer of a:Si. The TMP of the cell resting on the metal electrode does 
not exhibit a strong change with frequency. Greater values are observed in the case of a 
non-uniform electric field, but the values of the TMP are still below those predicted for the 
OET setup at frequencies below 20 kHz. 

 

Figure 6-14 shows the difference between a conductive surface and a dielectric 

for a resting cell. As was to be expected the induced TMP shows no significant 

frequency dependency in the considered regime in the case of metal electrodes. 

At higher frequencies when the electrical shadow was no longer apparent the 

value of the TMP in the metal setup far exceeds that of the a:Si case. This was 

also in good agreement with the fact that the overall voltage drop across the 

liquid was much higher in this case. In the case of low frequencies however the 
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increase of the TMP due to the electric shadow effect quickly increases the TMP 

of the RBC beyond the value of that in the metal electrode setup.  

In summary, the results of these simulations show that the induced TMP was 

increased when the cell was sitting on a layer of amorphous silicon due to the 

effect referred to herein as the „electrical shadow‟. A number of predictions can 

be made from these models. An important prediction is that the TMP in small 

red blood cells might be higher than in the larger WBCs due to their shape. This 

would enable the selective lysis of smaller cells from larger cells based on 

shape. According to the simulations, the effect weakens as the frequency 

increases and disappears completely at frequencies of 100 kHz or more. 

Furthermore, the effect will also diminish once the cell is elevated off the 

surface of the a:Si layer. Lastly, the induced TMP in the case of an OET setup is 

greater than that observed for metal electrodes.   

 

6.2.4 Influence of dielectric parameters 

Since the values for the internal conductivity and the membrane permittivity 

used in this work (0.8 S/m and 12.64 respectively) differ from those found in the 

literature, it is worth comparing what the simulations would look like with 

values from the literature. Asami et al. [90] reported a internal medium 

conductivity of 0.62 S/m and a relative permittivity of the membrane of 5.9 for 

mouse erythrocytes. Gimsa et al. [99] reported values of 0.4 S/m and 7.8 

respectively for human red blood cells (at frequencies below 15 MHz). 

Comparisons for the TMP induced on cells in our model using these values can be 

found in Figure 6-15. 
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Figure 6-15: Comparison of the induced TMP in the model using different values from the 
literature (see text). A) Induced TMP for a RBC sitting on a layer of a:Si at an external 
medium conductivity of 100 mS/m using different values for the conductivity of the 
intracellular medium (400, 620 and 800 mS/m). No significant change in the induced TMP is 
observed. B) Induced TMP of a RBC using an internal conductivity of 800 mS/m (and an 
external conductivity of 100 mS/m) and two different values (12.64 and 6) for the permittivity 
of the cellular membrane (εm). At a lower permittivity the induced TMP drops off more 
gradually but the overall increase at lower frequencies is still observed. For low frequency 
values the induced potential is near identical. C) Induced TMP for a red blood cell resting on 
a conductor (instead of an a:Si surface) with a non-uniform electric field distribution 
(compare to Figure 6-14). Due to the lower ε value, the TMP displays no change with 
frequency whatsoever. At low frequencies the induced TMP is identical to the values 
generated with a higher membrane permittivity. D) Transmembrane potential induced in a 
white blood cell resting on a layer of amorphous silicon at 100 mS/m conductivity (compare 
to Figure 6-12) for the two permittivity values. Again, at low frequencies the values for the 
TMP are unchanged but at higher frequencies the TMP decreases more gradually.  

 

As can be seen from Figure 6-15 a change in conductivity of the intracellular 

medium has little effect on the induced transmembrane potential under the 

conditions employed in this model. The difference in membrane permittivity 

does affect the TMP at higher frequencies. At low frequencies however the 

values for the potential are changed very little. The major change brought about 

by the change in permittivity is that the potential drops of more gradual with 

increased frequency. The values employed in this Chapter, derived from the 

experimentally determined crossover frequency, however show a better 

correlation with the experimental values (see Figure 7-15). 
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6.3 Discussion 

To better understand the conditions during an optoelectronic tweezers 

experiment, a COMSOL model was employed. The model used the same values 

for the sake of consistency that were employed for the red blood cells when 

modelling the CM factor (see Chapter 4). The dimensions of the cells were 

changed to match human erythrocytes. While the models presented here are by 

necessity simplifications of the actual process found in the experiment, they do 

present results that allow for interesting comparisons to the experimental 

observations. 

The first interesting observation from the model is that the induced 

transmembrane potential increases at low frequencies.  

The increase of the TMP at lower frequency ranges observed in these simulations 

is due to the restriction of the electric field by the cell itself. While restriction 

of an electric field has been described before in order to lyse cells [100, 101] 

and to promote electrofusion [102], in both of these cases the field is restricted 

by a non conducting material.  

The author now proposes that it is the cell itself that constricts the field at the 

point of contact with the dielectric material. This constriction is a function of 

height since a smaller gap between the cell and the semiconducting surface has 

a larger effect as well as the frequency since the capacitive quality of the cell 

causes the cell to act as a near perfect insulator only at low frequencies. Hence 

the field lines are no longer restricted efficiently at high frequencies and the 

induced TMP drops off rapidly. 

As outlined in this Chapter, the presence of a cell creates an electric shadow 

onto and inside the a:Si layer. The more pronounced this shadow is the more 

voltage is dropped across the cell instead of the silicon layer. Since the 

membrane is insulating and in such close proximity to the high resistance layer 

of silicon (relative to the liquid), the electric field is restricted at the two points 

where the RBC is closest to the surface (also see Figure 6-13). This restriction 

causes the cell and the volume of liquid directly underneath it to act as a 

resistive element. Thus more voltage is dropped across the cell and less voltage 
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in turn across the silicon layer. This voltage is mostly dropped across the bottom 

membrane of the cell, with the maximum potential being applied across the 

section that is directly in the centre of the cell.   

The RBC has a large area exposed to the substrate, whilst a WBC has a smaller 

area of contact. Thus the shape of the cell influences the induced TMP (see 

Figure 6-8). In this way the shape can offset the effect of the size on the TMP 

and electrical lysis can be shape selective (rather than size selective).   

The voltage drop, implied by the simulations to occur inside the silicon layer, 

cannot be observed for metals since the material is a conductor. The electrical 

shadow, however, competes with the fact that the overall voltage drop across 

the liquid is much reduced in the OET experiments. In a way, the voltage drop 

across the liquid being reduced is the same as the voltage drop being 

concentrated into a much smaller layer of a:Si. The cells, courtesy of the 

constriction of the electric field near the bottom of the chamber, can then 

effectively become part of this concentrated layer. While the complete voltage 

is dropped across the liquid in the case of metal electrodes, the distribution of 

the potential is uniform.  

Another point to consider is that the boundary conditions at the interface of a 

conductor are radically different from those of a dielectric. The surface of the 

conductor can be represented by an equipotential line. The electric field lines 

have to terminate perpendicular to the surface, and can therefore not be 

constricted as effectively between the cell membrane and the metal as they 

could be between the membrane and another dielectric material (which allow 

the electric field lines to run in an almost parallel direction to its surface). 

This limited ability to restrict the electric field close to the surface combined 

with the more even distribution of the potential cause the induced TMP to be 

less for cells on metal electrodes, even though the overall voltage drop across 

the liquid is higher.  

This is however only the case if the cell is resting in close proximity to the 

surface. In the case of very high conductivity media (pure PBS, 1400 mS/m) the 

overall voltage drop is so small (less than 0.5 V) across the liquid that the 

simulations can only account for comparable TMP values (compared to lower 

conductivity media) if the cell is at a distance of about 10 nm from the surface.
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Chapter 7: Electrically induced lysis experimental 

7.0 Abstract 

In this chapter the experimental results of the work with optoelectronic 

tweezers (OET) is presented. The work was initially aimed at using traditional 

DEP for single cellular manipulation, but revealed an interesting phenomenon of 

shape selective electrically induced lysis. This phenomenon is described in detail 

and the conditions leading to lysis are quantified and discussed.  

 

7.1 Summary of methods 

While initially studying the use of dielectrophoresis as a tool to manipulate blood 

cells and trypanosomes, OET were also employed. As described in Chapter 1, the 

use of a photoconductive material, in our case a:Si, allows for the creation of 

„virtual‟ electrodes that can be easily manipulated.  

Once the sample is illuminated, the conductivity of the amorphous silicon 

changes by several orders of magnitude (from approximately 104 to 106 mS/m 

[10]). This causes the creation of a non-uniform electric field similar to the work 

presented in Chapter Four, with the illuminated regions forming the electrodes. 

This non-uniformity can be used to generate dielectrophoretic forces in the 

same way as is possible using metal electrodes.   

The chip holding the sample was placed on an inverted microscope during 

experimentation that features a special light path to project the image of a data 

projector onto the sample (see Chapter 3). During the experiments the sample 

was recorded with a video camera.  

After each experiment the sample was thoroughly cleaned with 70% ethanol and 

placed in an ultrasonic bath every 4 or 5 of experiments. Since the chamber that 

holds the sample was made with double sided tape it could be easily 

disassembled and reassembled for cleaning.  
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7.2 Results 

Initial experiments were conducted with human red blood cells and 

trypanosomes (T. cyclops) and unsurprisingly (see Chapter 5) it was possible to 

separate out the two cell species (see Figure 7-1). However while performing the 

experiments, an unusual phenomenon was observed. For certain frequency 

regimes the red blood cells began to disappear, which under closer observation 

was revealed as electrically induced lysis. 

 

Figure 7-1: Example dielectrophoretic separation of red blood cells and trypanosomes (T. 
cyclops) using OET. The parasites experience positive DEP and can be moved together with 
the illuminated region, while the RBCs experience negative DEP and are repelled by the 
virtual electrode. Scale bar is 20 µm. 

 

When trying to manipulate red blood cells at low frequencies with a high 

medium conductivity, the cells were observed to „vanish‟ instead of being moved 

through DEP. This process was clearly not levitation, as no shadows could be 

seen, and changing the focal plane did not reveal cells being levitated above the 

surface. Figure 7-2 shows the difference between DEP and the observed 

phenomenon. While in the first experiment the cells were repelled by the area 

of illumination (high electric field), in the second experiment the effect is only 

observed within the illuminated area. Cells outside the area were not affected.  
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Figure 7-2: Example of lysis of human red blood cells and comparison to dielectrophoretic 
movement. A-D) show micrographs of RBCs in a OET experiment. A) and B) show negative 
DEP causing the cells to be repelled from the virtual electrode. Medium conductivity is 16 
mS/m and an applied AC bias of 10 kHz at 15 Vpk-pk. C) and D) show RBCs exposed to the 
same conditions but at a medium conductivity of 100 mS/m. Due to the increased 
conductivity, the cells do not undergo negative DEP. Cells not in the illuminated region were 
not moved and no cells are observed to levitate above the surface during the experiment. 
Interestingly, the RBCs seem to „disappear‟ during the experiment which under closer 
observation turns out to be electrically induced lysis (see Figure 7-3). Scale bar is 100 µm. 

 

Performing the experiment under larger magnification revealed that the cells 

were lysed by the electric field (see Figure 7-3). The erythrocytes first undergo 

swelling and change from a biconcave shape to a spherical shape. This forming 

of spheroids is well documented in the literature for electrically induced lysis of 

red blood cells (e.g. [103]). After the cells become spherical, they slowly lose 

contrast as the intracellular medium diffuses out of the cell. After the process is 

complete, „ghost‟ cells can be seen, the empty remnants of the cells membrane. 

It took about 20 to 30 seconds until the RBCs seemed to be fully lysed. 
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Figure 7-3: Higher magnification micrographs of electrically induced hemolysis in an OET 
setup. A) Human red blood cells prior to the AC bias being applied. B) 3 seconds after the 
AC bias has been applied. The erythrocytes become spherical in shape and gradually lose 
contrast as intracellular medium diffuses out of the cell. C) 20 seconds after the AC bias has 
been applied. The cells have lost all contrast and are completely lysed. Medium conductivity 
100 mS/m, applied bias of 10 kHz with 15 Vpk-pk. Scale bar is 10 µm. 

 

Lysis was observed for large areas of illumination. The lysis was not restricted to 

the edges of the light spot, but was observed across the entire area. An example 

of large scale lysis of red blood cells is given in Figure 7-4. Here, light patterns 

in the mm range were created (using a 4x objective lens) where many thousand 

RBCs were lysed simultaneously.  

Furthermore, the phenomenon was only observed for cells lying flat on the 

surface of the chamber. RBCs that were lifted off the substrate due to DEP or 

that were observed to stand upright with the field lines (like those in Figure 7-1) 

did not undergo any lysis, given the setup and conditions used here. In order to 

confirm this, the cells were also passed over the device using hydrodynamic flow 

(under conditions where cells lying flat on the surface would lyse). Again, cells 

that moved over the surface of the silicon instead of lying flat on it were not 

lysed (see Figure 7-5). In experiments where only some of the erythrocytes 

underwent DEP, only those that remained on the surface were lysed. 
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Figure 7-4: Example of massive parallel, large scale lysis of red blood cells using 
optoelectronic tweezers. A) Photograph of the word GLASGOW lysed into a film of human 
erythrocytes using a 4x objective. The total length of the word is over one cm and easily 
readable with the naked eye. B) Picture of the coat of arms of the University of Glasgow. C) 
Mircograph of the coat of arms being lysed into a film of RBCs. Top right corner shows the 
sample before the field has been applied, with just the illumination. The bottom of the 
picture shows the sample after the experiment without the illumination. Scale bar is 200 µm, 
total height of the lysed pattern is approximately 1 mm. Medium conductivity in both 
experiments was 100 ms/m with an AC bias of 10 kHz and 15 Vpk-pk. 
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Figure 7-5: Experiment demonstrating the inability to lyse red blood cells that are not 
resting on the amorphous silicon surface. A) and B) show the lysis of erythrocytes that are 
resting on the bottom of the OET chamber (top down view). Scale bar is 100 µm. C) and D) 
show cartoons of a side view of the experiment. E) and F) show the same area after the 
RBCs have been lysed. Now additional blood cells were passed through the chamber using 
hydrodynamic flow. These cells were not lysed by the electric field. G) and H) show 
cartoons of the experiment. Medium conductivity was 100 mS/m with 10 kHz and 15 Vpk-pk. 

 

Another important observation was the fact that the cells would not lyse when 

resting on a conductor, given the same conditions used to induce lysis in an OET 

device. Both metal electrodes, in the form of strips on a glass slide, and indium 

tin oxide electrodes, as a uniform layer on a glass slide, were used to 

demonstrate this (Figures 7-6 and 7-7). This observation can be attributed in 
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part to the fact that, for metal electrodes, the DEP forces were much higher. 

The reason for these higher forces is mostly due to the fact that the a:Si layer 

causes the amount of voltage dropped across the liquid to be reduced (when 

compared to metal electrodes). Thus, for metal electrodes, the cells undergo 

movement and are levitated away from the electrodes rather than being lysed.  

This, however, does not account for all cells as some cells that remain resting on 

the electrodes were not lysed. No lysis was observed for cells on metal 

electrodes under certain conditions. It is possible to induce electrical lysis of 

cells using metal electrodes, but this requires different conditions (higher 

voltage) than those used to induce lysis with optoelectronic tweezers. 

Another interesting observation was that the lysis of cells could be observed over 

a large range of medium conductivities. While for relatively low conductivities 

(100 mS/m and below) the voltage drop across the a:Si layer was relatively low 

(see Figure 6-3), as the conductivity of the medium increases however, so does 

the potential dropped across the a:Si layer. Lysis was even observed for cells 

suspended in pure PBS which has a conductivity of 1400 mS/m and was therefore 

about twice as conductive as the intracellular medium. As can be seen from 

Figure 6-3, the voltage drop across the medium in which the cells were 

suspended at these conditions was less than 0.5 volt, according to the 

simulations. 

Lastly, for medium conductivities that are very low (less than 25 mS/m) no lysis 

was observed, since the cells experienced movement due to dielectrophoretic 

forces (see Figure 7-2 A and B). These forces were too weak to overcome the 

adhesion of the RBCs to the silicon surface at higher conductivities.    
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Figure 7-6: Comparison of metal electrodes and OET. A) Schematic of a cross section of the 
chamber. The two virtual electrodes (30 µm width) were created due to illumination from 
above, with the electric field going vertically through the chamber. B) Schematic of the 
metal electrodes used to mimic the conditions in A. While a set of interdigitated electrodes 
was used (same width as in A) only one set was energised (every other electrode). Instead 
of applying the potential across the different sets of electrodes at the bottom of the 
chamber, it was applied vertically across the chamber onto a glass cover coated in ITO. C) 
and E) show the lysis of human erythrocytes in the OET experiment.  D) and F) show an 
experiment using the same conditions on metal electrodes. Instead of being lysed, some of 
the RBCs were moved due to DEP forces. The forces were stronger in this case as more 
voltage was dropped across the liquid. However, even the cells that stayed on the metal 
surface were not lysed (groups of cells are marked with arrows). Both experiments were 
performed with the same medium conductivity (100 mS/m) and AC bias (10 kHz, 15 Vpk-pk). 
Scale bar is 50 µm. 
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Figure 7-7: Control experiment with bare ITO electrodes. A) and B) show a sample of human 
blood, suspended in 100 mS/m medium, before and after being exposed to a 10 kHz, 15 Vpk-

pk AC bias for 30 minutes. No cell lysis was observed. Additional exposure of the cells to 
illumination patterns from the projector during the experiment did not change the results. 
Scale bar is 100 µm. 

 

7.2.1 Selective lysis 

An important observation that was made while mixing the RBCs with 

trypanosomes was that the lysis could also be selective. Only the red blood cells 

were lysed while the motile trypanosomes were not lysed (see Figure 7-8). The 

trypanosomes remained motile in some cases while in others they seemed to be 

killed by a short shock (the parasite was observed to undergo a rapid twitching 

motion and then remained non-motile). This shock seemed to occur only when 

the parasite was in or came into contact with the surface of the OET chip. 

 

Figure 7-8: Selective electrically induced lysis. A) A mixture of human erythrocytes and 
trypanosomes (T. cyclops), suspended in 100 mS/m medium, just prior to being exposed to 
a 3 kHz, 14 Vpk-pk AC bias.  B) While the RBCs underwent lysis, the parasites remained motile 
and unharmed. Scale bar is 50 µm. 
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While the parasites were moving and thus not directly in contact with the a:Si, 

selective lysis was also observed for cells resting on the surface. Red blood cells 

could be lysed selectively from white blood cells. In Figure 7-9 it can be seen 

that the RBC (left) underwent sphering (change from a biconcave disk to a 

sphere) and then lysis while the WBC (right) remained unchanged, even minutes 

after the lysis of the erythrocyte. The video for Figure 7-9 was taken at 50X 

magnification, but the same selective lysis was observed for much larger areas 

containing hundreds of cells.   

 

 

Figure 7-9: Example of selective electrically induced lysis of a red blood cell. A) Human 
erythrocyte and lymphocyte suspended in 100 mS/m buffer medium. B-E) show the cells 
after a 5 Vpkp-pk, 10 kHz AC bias has been applied. After 20 seconds the red blood cell has 
been lysed, while the white blood cell was unharmed. F) The WBC remained intact even 
after several minutes past the end of the experiment. Scale bar is 10 µm. 

 

While it was impossible, with the setup used, to determine whether the WBC 

was viable through fluorescence, lysis of a leukocyte is usually easy to identify. 

As seen in Figure 7-10, the cell bursts open and the internal organelles can be 

seen spilling out of the cell. The remaining cell is clearly visible and a clear 

difference between a lysed and non-lysed WBC can be observed.  
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Figure 7-10: Lysis of a white blood cell for comparison. A) shows a human RBC and WBC 
under the same conditions as in Figure 7-9. B-F) show how in this example the application 
of an AC bias leads to the lysis and consequent destruction of the WBC. The cell is ruptured 
by the field and the intracellular content can be seen spilling out of the cell. This violent 
destruction of the cell is easy to differentiate visually from the result observed in Figure 7-9. 
Scale bar is 10 µm. 

 

This selective lysis of smaller cells from a mixture with larger cells was not a 

result that would be expected from traditional electrically induced lysis (see 

Chapter 1).  

To gain a better understanding of the observed phenomena, the percentage of 

lysed cells for a number of conductivities and frequencies was determined. 

Initially, these experiments were carried out at a relatively high magnification, 

using the setup shown in Figure 3-5. The data is presented in Figure 7-11. All 

videos were evaluated by manually counting the number of lysed cells.  
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Figure 7-11: Early lysis experiments. A) and B) show a sample of human erythrocytes 
suspended at a medium conductivity of 100 mS/m before and after the application of a 9 kHz 
AC bias at 15 Vpk-pk. C) Early data of the percentage of lysed RBCs as a function of 
frequency for different voltages. Values are the average of 7 experiments, error is standard 
deviation. All experiments were performed at a medium conductivity of 100 mS/m using the 
experimental setup shown in Figure 2-5.  

 

These initial values were variable, likely due in part to the lower number of cells 

per experiment and to the setup being used. Furthermore, DEP movement was 

observed more often in this setup than the Olympus setup used for later 

experiments (Figure 3-4). In Figure 7-11, the percentage of lysed RBCs is 

observed to decrease at lower frequencies because, for this evaluation, cells 

that underwent levitation or movement due to DEP were counted as not lysed. In 

later experiments, DEP forces were much less common and experiments where 

DEP was predominant were discarded entirely. It should be noted that, due to 
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the fact that a different projector was used and the optical path was different 

as well, the values for the TMP determined from the modelling are most likely 

not applicable in this case (the intensity used to determine the conductivity of 

the a:Si was measured for the other setup). The data confirmed however that in 

order to achieve complete lysis of the red blood cells, a potential of 15 volts 

should be used.  

In order to gather reliable data about the percentage of lysed red blood cells, 

experiments were performed that involved large numbers of red blood cells 

(using the experimental setup shown in Figure 3-4).  

Lysis of red blood cells was observed for different medium conductivities. For 

each conductivity a number of experiments was conducted to determine the 

percentage of lysed cells. A large light spot was created containing hundreds of 

red blood cells and an AC bias of a certain frequency was applied. As outlined in 

Chapter 3, the videos were evaluated using the Vision Assistant software to 

count the number of RBCs in the illuminated area before and after the 

experiment. Experiments where the cells were moved due to DEP were not used 

for this evaluation. For a medium conductivity of 100 mS/m, DEP was only rarely 

observed. In this case, the cells were left to settle for a few minutes in order to 

avoid their movement (the cells become attached to the surface). DEP was much 

more common at a conductivity of 25 mS/m and any instances where the cells 

moved were not used for the evaluation. For a medium conductivity of 1400 

mS/m (pure PBS) no DEP forces were observed. Between experiments the 

chamber (Figure 3-6) was disassembled and thoroughly cleaned with 70% 

ethanol. This cleaning is essential as failure to do so creates areas with residue 

where no cells will lyse, regardless of frequency or conductivity. The data on the 

percentage of lysed red blood cells with regard to frequency and conductivity is 

presented in Figure 7-12. 
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Figure 7-12: Percentage of lysed red blood cells in an OET chip as a function of frequency 
for 3 different conductivities. Each experiment contained hundreds of cells and at least 8 
experiments were counted for each condition. Value is mean and error is standard 
deviation.  

 

It can be seen that lysis was almost complete at low frequencies (below 10 kHz) 

regardless of medium conductivity. With higher frequency lysis became less 

successful and for values above 40 kHz no lysis was observed any more. While 

the response of cells at 25 mS/m and 1400 mS/m was very similar, the 

percentage of lysed RBCs stayed above 75 % for a much broader frequency range 

at 100 mS/m.  

Another important factor to quantify was the selective lysis of WBCs and the 

observed enrichment of these rare cells from RBCs. In order to do this, a number 

of experiments were performed on a buffy coat sample that were washed and 

suspended in 100 mS/m buffer medium. In order to prepare a buffy coat, a blood 

sample is centrifuged at 2500 rpm for 10 minutes and the top layer containing 

the white blood cells is removed. In this way the concentration of WBCs in the 

sample is much increased. As outline above, the cells were counted out by hand 

before and after the experiment, since the software was unable to tell the 

difference between the two cell species.  
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Figure 7-13: Example of selective lysis of RBCs from a mixture of red and white blood cells 
(medium conductivity of 100 mS/m). A) shows the cells being slightly out of focus. This way 
the white blood cells are visible as larger bright discs due to their larger spherical shape. B) 
and C) show „in focus‟ images of the cells before and after the application of the AC bias (20 
kHz, 15 Vpk-pk). D-F) show the same pictures but with arrows marking the position of the 
WBCs for clarity. Scale bar is 50 µm. 

 

In order to identify the WBCs the sample was viewed slightly out of focus with 

the focal plane above the surface of the chamber (see Figure 7-13). This causes 

the WBCs to stand out from the RBCs as larger white spots and was used to 

identify them, since no fluorescence was available. The lysis of both RBCs and 

WBCs was recorded for different frequencies, but at 30 kHz and above, no lysis 

was observed. Comparison of this value to Figure 7-12 reveals a discrepancy 

since for 100 mS/m the reported percentage of lysed cells is not zero (albeit less 

than 10 percent). This can be attributed to two factors. While all other 

experiments were performed at a magnification of 10X, the experiments for 

selective lysis were done at a higher magnification of 20X. This magnification 

was chosen to make it easier to identify the leukocytes in the images. A change 

in magnification also changes the intensity of the light forming the electrodes 

and thus creates slightly different conditions during the experiment. Another 

factor is that, due to the lower magnification, the experiments for Figure 7-12 

involved a higher number of cells. It is possible that with a higher number of 

repeats, lysis of cells might also be observed for 20X magnification at 30 kHz.   
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Results of the selective lysis experiments are presented in Figure 7-14. At a 

frequency of 10 kHz, the vast majority of RBCs were lysed, but the number of 

lysed WBCs is also significant (nearly 50%). At a frequency of 20 kHz, the number 

of lysed white blood cells was reduced to less than 20% while still lysing over 90% 

of RBCs. The enrichment can then be determined from the ratio of the two cell 

types before and after the experiment. An enrichment of more than 15-fold 

could be achieved for both 10 kHz and 20 kHz (see Figure 7-14 B). 

 

Figure 7-14: Selective lysis of red blood cells from white blood cells and WBC enrichment. 
A) Percentage of lysed red and white blood cells as a function of frequency. For 30 kHz no 
lysis was observed. B) Enrichment of WBCs for the same experiments. Each value is the 
average of six experiments with the error being standard deviation.  

 

As was predicted by the model presented in Chapter 6, cells placed in a 

optoelectronic tweezers setup and exposed to a low frequency AC bias can 

undergo electrically induced cell lysis. The induced transmembrane potential 

exceeds a certain threshold value and the cell is irreversibly destroyed. The 

interesting predictions from the COMSOL simulations could be largely confirmed 

in the experiment. This includes selective lysis of cells based on shape rather 

than size as well as the inability to lyse cells resting on metal electrodes (under 

the same conditions that induce lysis in an OET setup). 

 

7.3 Discussion 

As was pointed out in Chapter 1, optoelectronic tweezers have been reported to 

induce lysis in cells [38]. However in previous work, this lysis was solely 
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attributed to the increased potential due to the electric field created by the 

virtual electrode. However, as has been described in this work, such a classic 

interpretation of the effect does not correspond with the observations presented 

here, especially the comparison to conventional electrodes made from 

conductive material, the frequency regime where the effect is observed and the 

fact that lysis was observed at very high medium conductivities. Most 

importantly, the classical model of induced TMP fails to explain the observed 

selective lysis of smaller from larger cells. 

When comparing the experimental results to the modelling done in Chapter 6 it 

can be observed that the frequency at which the TMP increases in the model 

corresponds well with the frequency regime in which the number of lysed blood 

cells increases (see Figure 7-15). 

 

 

Figure 7-15: Side by side comparison of the induced transmembrane potential according to 
the simulations (A, also see Figure 6-11) and the experimentally observed lysis (B, also see 
Figure 7-12) for red blood cells suspended in different conductivity media. No lysis was 
observed at frequencies of 40 kHz or above and the frequency is marked for convenience in 
both graphs.  

 

The observed selective lysis of smaller red blood cells from larger white blood 

cells is an interesting result. Traditionally larger cells experience a larger 

induced TMP. This would lead to larger cells being lysed under the conditions 

where smaller cells are lysed. Additionally, Bao et al. reported that the 

threshold voltage for irreversible electrical poration of WBCs was only 400 to 500 

V/cm while the threshold for RBCs was 1100 – 1200 V/cm  [100]. This makes it 

hard to explain the observed selective lysis using standard models. The results of 
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the modelling tie into these observations again, as the proposed electrical 

shadow effect explains the higher transmembrane potential on the red blood 

cells. 

A particularly puzzling experimental observation was the fact that the lysis was 

readily observed in the OET setup but, given the same conditions, was absent 

when working with metal electrodes. This can also be attributed to the 

electrical shadow causing a larger TMP.  

The modelling offers an explanation for the selective lysis in accordance with 

the observed phenomena. The cells do not lyse when lifted off the surface, as 

the effect of the shadow can only come to bear for cells resting closely on the 

substrate. Further, the absence of an electric shadow and the inability to 

effectively constrict the electric field in the case of a conductive surface can 

explain the observations made for metal electrodes. Another important 

observation is that the TMP is in the same order of magnitude, given low 

frequencies, for a range of medium conductivities (up to 1400 mS/m). 

Traditionally, electrical lysis would be hard to explain when the voltage drop 

across the liquid is only 0.5 volt.  

It should be noted, however, that the simulations do not match the 

experimental observations quite as well as in the case of very high medium 

conductivities. The simulated TMP would suggest a gradual drop off in the 

percentage of lysed cells. While this observation could be confirmed for a 

conductivity of 100 mS/m, the behaviour for 1400 mS/m did not follow this 

pattern (see Figure 7-15). This could be due to an inaccuracy in the shape that 

was used to model the RBC resting on the surface or in the distance the latter 

having an especially large effect on the simulated TMP.  
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Chapter 8: Future Work 

8.0 Abstract 

In this Chapter the results of this work will be briefly summarised and suggested 

future work will be presented. 

 

8.1 General Conclusions  

The work presented in this thesis focuses on two main points, the enrichment of 

trypanosomes using TW-DEP and the selective lysis of red blood cells using OET. 

In both cases a model was presented and discussed that provides a possible 

explanation of the observed phenomena. For TW-DEP optimal enrichment 

conditions for mouse RBCs were determined, although human RBCs would 

require different conditions due to the increased cell size.  

As pointed out in the discussion section of Chapter 5, TW-DEP proved to be a 

good tool to approach enrichment of trypanosomes from blood. The 

concentration into a small area at a single focal plane is highly advantageous for 

diagnostic purposes since it speeds up the confirmation of the parasites 

presence. The concentration technique can be combined with automated 

detection algorithms [89], which opens up the possibility of a fully automated 

system. 

It is important to compare the technique to the current methods of detection for 

sleeping sickness. The gold standard for trypanosome detection (mini anion 

exchange columns) offers a limit of detection at the lowest levels found in the 

human host (102 parasites per ml of whole blood). The presented technique in its 

current form does not reach this level of sensitivity, but can still be improved 

upon with further optimisation. In principle, nothing prevents TW-DEP based 

detection from reaching the same limit of detection. However, it remains to be 

seen if the necessary tweaking of the technique will increase cost or complexity 

beyond what is feasible for field use. The cost of the technique is difficult to 

appraise or compare at this stage. The electrodes can be reused many times, 

however, provided they are adequately cleaned between experiments. Even the 

gold electrodes (which are more fragile and prone to scratching than electrodes 

made from other metals) could be reused dozens of times with careful cleaning. 
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TW-DEP can provide a much needed new approach to improve diagnostics for 

sleeping sickness. Although the technique as it is presented in this work is only a 

proof of principle, the potential exists to develop it further into a practical 

diagnostic tool. 

In the case of selective lysis, the observed phenomenon is highly surprising. The 

model seems to suggest that an electric shadow is cast by the cell onto the a:Si 

layer and that this effect is the cause of the shape selective lysis of smaller cells 

form a population of larger cells.  

In conclusion, the lysis of cells observed in optoelectronic tweezers offers a 

novel way to selectively destroy cells based on their shape. It can be applied to 

a large number of cells in parallel and enables the selection of rare cells within 

a sample containing a more abundant population. Of special note is that, unlike 

the manipulation with TW-DEP, selective lysis can be achieved at very high 

medium conductivities (negating the need for washing procedures). This 

technique, has the potential to facilitate downstream analysis of rare cells out 

of a complex population which could have significant implications (e.g. for 

cancer diagnostics). The technique also has the potential to be integrated with 

dielectrophoretic manipulation of living cells, the traditional application of 

optoelectronic tweezers. 

 

8.2 Future work 

Both techniques presented in this work have plenty of areas where one could 

„drill deeper‟, both in terms of theoretical understanding and optimisation of 

experimental execution.  

If the dielectric parameters of the trypanosome could be determined (e.g. 

through impedance measurements), the modelling could be refined and 

improved. Besides addressing up-scaling of the device, the sensitivity could also 

be improved upon. One way would be to use the fact that higher voltages lead 

to increased enrichment numbers and improved speed of the inward motion, 

though one would need to modify the central region of the spiral array to avoid 

lysis of the cells.  



Chapter 8 Page 121 

Additionally, the procedure could be modified to include an additional 

dielectrophoretic step in which the cells are just separated in height (opposing 

two-phase configuration for traditional DEP), before the TW-DEP force is 

applied. This simple, two step time course procedure would reduce the number 

of trypanosomes that escape the spiral due to their initial position or due to 

being displaced by outward moving erythrocytes. Consequently the sensitivity of 

the operation would increase and the need for up-scaling the device would be 

lessened. This small step would be able to be implemented without any 

additional instrumentation or sample preparation.  

Furthermore the device could be improved with the aim of constructing a real 

functional prototype. A hole could be added in the central area of the array in 

order to remove the incoming trypanosomes and collect them at another part of 

the device. This way the lysis of the trypanosomes at the central spot could be 

prevented by placing the tips of the spiral arms further apart and consequently 

the TW-DEP enrichment could be run at higher voltages. This would in turn 

speed up the total enrichment (as the trypanosomes enter the central area 

faster) and increase the sensitivity further.  

The OET experiments show interesting experimental results. It would certainly 

be interesting to further refine the selective lysis process and to extend it to 

other cell species. Another very interesting approach would be to attempt 

selective reversible electroporation. Besides the multitude of experimental 

options, it would be of great interest to further investigate the theoretical 

background of the observed phenomenon. While the current set of simulations 

offers a potential explanation, it would greatly benefit from further exploration. 

One of the most important factors for the current modelling is the shape of the 

cell and the exact distance of the cell from the surface. While difficult to 

implement experimentally (due to the opaque layer of amorphous silicon), these 

factors could be determined to improve future models.   

Potential applications for the OET lysis technique might be the study of cells by 

opening up the intracellular medium for DNA testing. This could be combined 

with the study of adhesive vs. non adhesive cells in order to study intracellular 

processes that lead to adhesion. 
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Obviously the technique could also be applied to enrich rare cells possibly 

cancer cells from blood or other tissue. Changing the conditions during the 

experiment would allow for lysis of the cells of interest and combination with 

further downstream analysis (e.g. of DNA). Every time a new tool (like shape 

selective lysis) becomes available to researchers the possibilities of applying it in 

new constructive ways needs to be examined.  
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Appendix 

HM1 – 9 Medium, Recipe 

 

Components  g/L  

CaCl2  0.165  

KCl  0.33  

KNO3  0.000076  

MgSO4  0.098  

NaCl  4.5  

NaHCO3  3.020  

NaH2PO4.H2O  0.125  

Na2SeO3.5H2O  0.000017  

Glucose  4.5  

Phenol Red  0.015  

HEPES  5.960  

Mercaptoethanol  0.015  

Bathocuproine disulfonate.Na2  0.028  

DL-alanine  0.025  

L-arginine.HCl  0.084  

L-asparagine. H2O  0.025  

L-aspartic acid  0.030  

L-cysteine  0.182  

L-cystine  0.091  

L-glutamic acid  0.075  

L-glutamine  0.584  

glycine  0.030  

L-histidine.HCl.H2O  0.042  

DL-isoleucine  0.105  

L-leucine  0.105  

L-lysine.HCl  0.146  

DL-methionine  0.030  

L-phenylalanine  0.066  

L-proline  0.040  

DL-serine  0.042  

DL-threonine  0.095  

L-tryptophane  0.016  

L-tyrosine  0.104  

DL-valine  0.094  

B12  0.000013  

Biotin  0.000013  

D-Ca pantothenate  0.004  

Choline chloride  0.004  

Folic acid  0.004  

i-Inositol  0.0072  

Niacinamide  0.004  

Pyridoxal HCl  0.004  

Riboflavin  0.0004  
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Cunninghams Medium, Recipe 

 

Components  g/L  

CaCl2.2 H2O  0.15  

KCl  2.98  

NaH2PO4.H2O  0.53  

MgSO4.7 H2O  3.7  

MgCl2.6 H2O  3.04  

Glucose  0.7  

D-Fructose  0.4  

Sucrose  0.4  

Phenol Red  0.015  

β-alanine  2  

DL-alanine  1.09  

L-arginine.HCl  0.44  

L-asparagine. H2O  0.024  

L-aspartic acid  0.11  

L-cysteine  0.08  

L-cystine  0.03  

L-glutamic acid  0.25  

L-glutamine  1.64  

glycine  0.12  

L-histidine  0.16  

DL-isoleucine  0.09  

L-leucine  0.09  

L-lysine  0.15  

DL-methionine  0.20  

L-phenylalanine  0.20  

L-proline  6.90  

DL-serine  0.20  

DL-threonine  0.10  

L-tryptophane  0.10  

L-tyrosine  0.20  

DL-valine  0.21  

BME vitamins (100X)  2 mL  

Pyruvate Na  0.114  

L-malic  0.67  

α-ketoglutaric  0.37  

Fumaric  0.055  

Succinic  0.06  

Cis-aconitic acid  0.522  
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