

Glasgow Theses Service

http://theses.gla.ac.uk/

theses@gla.ac.uk

Gill, Andrew John (1996) Cheap deforestation for non-strict functional

languages. PhD thesis.

http://theses.gla.ac.uk/4817/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the

author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/4812/

Department of
Computing Science

UNIVERSITY
of

GLASGOW

Cheap Deforestation for
Non-strict Functional Languages

Andrew John Gill

A thesis submitted in partial fulfilment of
the requirements for the degree of Doctor of Philosophy

in Computing Science at the University of Glasgow

January 1996

© Andrew J. Gill 1996

PAGINATED
BLANK PAGES

ARE SCANNED AS
FOUND IN
ORIGINAL
THESIS

NO
INFORMATION

MISSING

Cheap Deforestation for Non-strict Functional Languages
by

Andrew John Gill

A thesis submitted in partial fulfilment of
the requirements for the degree of Doctor of Philosophy

in Computing Science at the University of Glasgow

January 1996

Abstract

In functional languages intermediate data structures are often used as glue to
connect separate parts of a program together. Deforestation is the process
of automatically removing intermediate data structures. In this thesis we
present and analyse a new approach to deforestation. This new approach is
both practical and general.

We analyse in detail the problem of list removal rather than the more general
problem of arbitrary data structure removal. This more limited scope allows
a complete evaluation of the pragmatic aspects of using our deforestation
technology.

We have implemented our list deforestation algorithm in the Glasgow Haskell
compiler. Our implementation has allowed practical feedback. One impor-
tant conclusion is that a new analysis is required to infer function arities
and the linearity of lambda abstractions. This analysis renders the basic
deforestation algorithm far more effective.

We give a detailed assessment of our implementation of deforestation. We
measure the effectiveness of our deforestation on a suite of real application
programs. We also observe the costs of our deforestation algorithm.

Contents

1 INTRODUCTION 1

1.1 Functional languages

1.2 The listful style of programming.

1.2.1 Example 1: Sum of squares

1.2.2 Example 2: Digits of a natural.

1.2.3 Advantages of removing intermediate lists

1.3 Contributions and synopsis.

2 THE foldr/build TRANSFORMATION

1

4

4

5

6

7

9

2.1 On removing intermediate data structures .

2.1.1 Removing non-recursive intermediate data structures

2.1.2 Removing recursive intermediate data structures.

2.2 Consumption and production of lists

2.2.1 foldr: A super-case

2.2.2 build: A super-constructor

2.2.3 Using foldr and build inside list filters

2.3 The foldr /build rule

2.3.1 Example 1: sum of constant list

2.3.2 Example 2: sum of from

2.3.3 Example 3: unlines . .

2.3.4 Example 4: sum of squares

10

11

12

14
15
17
18

19
21

22

23

25

11 Contents

2.4 Using a free theorem to guarantee correctness 26
282.5 Summary .

3 EXPRESSING LIST-MANIPULATING FUNCTIONS
IN foldr /build FORM 29
3.1 A new prelude 29

30

31

32

33

33

34

35

39
40

42

3.1.1 Correctness of our inlined functions

3.1.2 Efficiency of our inlined functions

3.1.3 Increase in code size .

3.2 Writing list-manipulating functions in foldr/build form

3.2.1 Expressing list production using build

3.2.2 Expressing list consumption using foldr

3.2.3 foldl: Another super-case

3.2.4 Other regular consumptions

3.2.5 Handling zip

3.3 List comprehensions

3.3.1 Traditional techniques for desugaring list comprehensions. 42

3.3.2 A new desugaring scheme for list comprehensions 43

3.3.3 Example of the modified list comprehension desugaring
scheme. 44

3.3.4 Proof of correctness for the new list comprehension
desugaring scheme 45

3.4 augment: A new super-constructor

3.4.1 Using extra rules

3.4.2 Expanding our foldr/build rule

3.4.3 Example of deforestation using augment

3.5 Summary of cheap deforestation .

3.5.1 Transformations used in cheap deforestation

3.5.2 The transparency of cheap deforestation ..

49

50
52

53

54
54
55

Contents iii

3.5.3 Good producers.

3.5.4 Good consumers

57

57

58

59

60

3.5.5 Common examples

3.5.6 Caveat with using reverse

3.5.7 What our transparency algebra does not handle

4 IMPLEMENTING CHEAP DEFORESTATION 61

4.1 The Glasgow Haskell compiler .

4.1.1 Organisation of the Glasgow Haskell compiler

61

62

4.1.2 The Core language in the Glasgow Haskell compiler 63

4.1.3 Desugaring Haskell to Core 65

4.2 Adding the foldr/build rule to the Glasgow Haskell compiler. 66

4.2.1 Adding build and augment to Haskell programs. 67

4.2.2 Modifying the simplifier 68

4.2.3 When to use the foldr/build rule inside the Glasgow
Haskell compiler 69

4.2.4 Handling strings .

4.3 The enhanced occurrence analyser ..

4.3.1 The original occurrence analyser.

4.3.2 Why map of map fails

4.3.3 The enhanced occurrence analyser .

4.4 Arity analysis .

4.5 Handing build within Core transformations

4.5.1 Let floating build

4.5.2 Duplicating build

71

72

72

73

75

76

78
78
79

5 MEASURING CHEAP DEFORESTATION 81
5.1 Deforestation on hand-picked benchmarks

5.1.1 Queens .

82
82

IV Contents

5.1.2 A ray-tracer 83
5.2 Compiling array comprehensions. 84

5.2.1 Deforesting a simple array comprehension 84
5.2.2 Compiling a simple array comprehension 86

5.3 Measuring cheap deforestation . . 88
5.3.1 What we want to measure 89
5.3.2 The nofib benchmark suite 90
5.3.3 Our control: GHC without cheap deforestation. 90

5.4 Results from using cheap deforestation 95
5.4.1 C vs C, : Gains from inlining .. 96
5.4.2 C vs C, : Gains from enabling technologies 99
5.4.3 C, vs Cic : Gains from raw deforestation opportunities 102
5.4.4 C, vs Cice : Gains from complete cheap deforestation . 109

5.5 Summary 117

6 THE STATE OF THE ART IN DATA STRUCTURE REMOVAL 119
6.1 Supercompilation and deforestation 120
6.2 Catamorphisms for data structure consumption 124

6.2.1 Fold promotion 124
6.2.2 Warm fusion. . 126
6.2.3 foldr Ibuild deforestation in calculational form 127

6.3 Schema based deforestation systems . 128
6.3.1 Wadler's schema deforestation 128
6.3.2 Maessen's schema deforestation 130

6.4 Parameterisation over data structure construction 132
6.4.1 Parameterisation of [J 132
6.4.2 Parameterisation of (:) and [J 134

6,;:-'Optimised representations of lists ... 135

Contents v

7 CONCLUSIONS AND FURTHER WORK 137
7.1 A new list removal algorithm 137
7.2 An implement able list removal algorithm 138
7.3 Further work 139

7.3.1 Automatically deriving foldr and build 139
7.3.2 Other data structures. 140
7.3.3 Selective inlining of prelude functions 140
7.3.4 Dynamic deforestation 140
7.3.5 The bigger picture .. 141

7.4 Crossing the function boundary 142

REFERENCES 145

List of Figures

3.1
3.2

3.3

3.4

Traditional translation for Haskell list comprehensions.

New list comprehension compilation rules.

Summary of cheap deforestation rules . . .

4

15
16

18

19
20

42

43

44
56

1.1 The pipeline structure of sum of squares

2.1 An opportunity for list removal

2.2 How foldr transforms a list

2.3 How build expresses a list .

2.4 Selective foldr/build versions of function definitions

2.5 How the foldr/build rule works .

Semantics of Haskell list comprehensions

4.1 Components in the Glasgow Haskell compiler 62

4.2 Syntax of the Core language in the Glasgow Haskell compiler. 64

4.3 Type rule extensions for build and augment 68

5.1 Different versions of the Glasgow Haskell compiler 89

6.1 map f . reverse . map g

6.2 Wadler's algebraic deforestation transformations

123
129

vu

List of Tables

2.1 Analogy between case reduction and the foldr/build rule 15

5.1 The real suite in nofib . . . 91

5.2 The spectral suite in nofib

5.3 Control run of compiler - C

5.4 Control run of compiler - C (continued) .

5.5 The effect inlining has on compile time and code size

92

93

94
97

5.6 The effect inlining has on execution count 98

5.7 The effect our enabling technology has on execution count 100

5.8 The effect our enabling technology has on compile time and code
size , 101

5.9 The effect raw deforestation has on compile time and code size 104

5.10 The effect raw deforestation has on execution count 105

5.11 The effect raw deforestation has on heap allocation 106

5.12 The effect raw deforestation has on heap residency. 107

5.13 The effect raw deforestation has on maximum stack sizes 107

5.14 How often raw deforestation transformations are used . . 108

5.15 The effect cheap deforestation has on compile time and code size. 111

5.16 The effect cheap deforestation has on execution count 112

5.17 The effect cheap deforestation has on heap allocation 113

5.18 The effect cheap deforestation has on heap residency 114

5.19 The effect cheap deforestation has on maximum stack sizes 115

IX

x List of Tables

5.20 How often cheap deforestation transformations are used. . .. 116

6.1 How both deforestation schemes act on map f. reverse .map g 123

Acknowledgements

I would like to thank my supervisor, Simon Peyton Jones for his constant sup-
port, encouragement and guidance. John Launchbury also provided outstanding
support in his role as second supervisor.

The Glasgow Functional Programming group is a very exciting team to work
with. The annual workshops were especially enjoyable, and allowed the opportu-
nity to meet the wider FP community. Working with the AQUA project brought
great joy, and thanks especially to Will Partain and Jim Mattson, who answered
many questions about the Glasgow Haskell compiler.

I would like to thank the members of the examination committee, Mark Jones,
John O'Donnell and David Watt for providing many interesting suggestions to
improve this thesis. Thanks also to Simon Marlow, Dave King and Andre Santos,
my long-suffering officemates made my time in Glasgow as a Ph.D. student so
enjoyable.

I would also like to thank John Butler from Edinburgh University, who encour-
aged me to consider doing research into the efficient implementation of functional
languages, and Russell Green, formerly of Edinburgh University, who recom-
mended that I consider Glasgow as a venue.

I thank my parents, who never fail to love, support or believe in me. Finally, my
gratitude and love to my wife, Lindsay, for everything. Thank you.

This work was supported for three years by a grant from the EPSRC.

Andrew J. Gill
Glasgow,

January 1996

Xl

Chapter 1

Introduction

Despite widespread interest in functional languages, there are still some objec-
tions to their overall performance. This is because functional languages have
a higher execution cost than imperative languages, requiring more processing
power and memory.

There is a particular programming style that functional languages encourage, in
which programs are expressed as a sequence of transformations on data struc-
tures. In this paradigm the programmer deliberately introduces extra interme-
diate data structures. Doing so allows clearer and more modular programs, but
directly contributes towards the higher runtime overhead of functional program-
ming. These data structures are often lists, and this style of programming is
called listfulness. This dissertation is about automatically removing many of
the intermediate lists produced when programming in the listful style, thereby
redueing the cost of listful programs.

In this chapter we introduce the listful programming style and outline the contri-
butions made by this dissertation toward the more efficient compilation of listful
programs. § 1.1 discusses functional languages, focusing on non-strict functional
languages. § 1.2 presents the listful style of programming, showing why it is ele-
gant, modular, but inherently inefficient. Finally, § 1.3 explains the contributions
made by this dissertation.

1.1 Functional languages

Functional languages put emphasis on the value of a particular computation,
rather than the computation's external effects. Writing a program in a functional
language involves writing function definitions, rather than specifying a sequence

1

2 Chapter 1. Introduction

of actions. For example, a function that computes the sum of the squares of the
numbers 1 to n, written in the functional language Haskell (Hudak, Peyton Jones,
Wadler et al. 1992) could be expressed as:

sumSq n = sum (map square [l..n])
square x = x * x

In the imperative language C (Kernighan & Ritchie 1978), a function to perform
the same computation might be written as:

int sumSq(n)
int n;
{

int i,sum;
sum = 0;
for (i=l;i<=n;i++)

sum += i * i;
return(sum);

}

In a C program the evaluation is specified as a sequence of actions. In a functional
language the same task can be performed as a composition of functions.

Some functional languages strongly encourage the functional programming style
while still allowing the vices of imperative languages, such as side effects, explicit
sequencing, and assignment. Examples of such languages include Lisp (Steele Jr.
1984), ML (Harper, McQueen & Milner 1986) and Id (Nikhil 1988). Other
functional languages actively forbid (by means of the language's semantics) any
functions from having side effects, and because of this are called pure functional
languages. Examples of pure functional languages include LML (Augustsson
& Johnsson 1989), Miranda (Turner 1985) and Haskell. Most languages that
disallow side effects have non-strict (or normal order) semantics, and use a lazy
evaluation strategy. In this dissertation we are concerned with the optimisation
of non-strict functional languages. Because of this we will refer to such languages
as simply "functional languages" , and be explicit about references to other styles
of functional language.

Functional languages such as Haskell have many things to offer the programmer,
including:

• Modularity provided by Lazy Evaluation - Functional languages use
data structures as glue to combine modular, reusable components of code.
It is not necessary to completely evaluate intermediate data structures;
instead the production and consumption of data structures can be done in
lock-step. The modular components can act like co-routines (Henderson
1980).

1.1. Functional languages 3

• Reasoning - Functional languages are easier to reason about than impera-
tive languages. Techniques like equational reasoning (Bird & Wadler 1988)
can be used, due to the absence of side effects. Absence from side ef-
fects also makes functional languages particularlv amicable for manip-
ulation and optimisation via automatic transformations (Santos & Pey-
ton Jones 1992, Santos 1995).

• Parallel Execution - Another attractive feature of functional languages
is that they are especially suitable for evaluation on parallel hardware
(Peyton Jones 1989, Roe 1991). As a direct consequence of lack of side
effects there is no need to compute dependencies between parallel sections
of a program.

There are also other important characteristics that are not actually specific to
non-strict purely functional languages, such as dynamic allocation, higher order
functions and strong type systems. Although all these characteristics do appear
in other programming paradigms, they actively contribute, along with the above
advantages, to provide a productive programming environment.

The advantages of lazy functional languages do not come for free. There are two
princi pal costs:

• Efficiency - Functional languages are less efficient than languages like C.
This is especially true when heavy use is made of expressive programming
techniques such as infinite data structures and using lists as a glue. Signifi-
cant progress has been made toward cutting the cost of using such features
automatically during compilation (Peyton Jones 1992). However there is
still scope for improvement. This dissertation makes a further contribution
towards this quest for efficiency.

• Expressing side effects - The fundamental feature of pure functional
languages can also be its drawback. Occasionally it appears that the only
clean way of doing something is via an imperative feature. Examples in-
clude generating unique labels, performing input/output, interacting with
imperative languages, and destructively updating a data structure. Many
solutions have been proposed to this apparent deficiency in purely func-
tionallanguages (Hudak & Sundaresh 1989, Hudak 1987, Wadler 1987c).
They all provide some technique for emulating side effects, but without
compromising purity. One proposal that has gained widespread favour
with the lazy functional programming community is using monads (Wadler
1992a, Wadler 1992b).

The availability of good compilers for lazy functional languages that both gener-
ate reasonably efficient code and provide mechanisms for side effects make lazy

4 Chapter 1. Introduction

sum 10([1,4,9, ... ,n*nl ~I;[1,2,3, ... ,n]
__ map square _ liliiii:;:

Figure 1.1: The pipeline structure of sum of squares

functional programming a viable option for the applications programmer. We
extend the viability of using functional languages further, by allowing a partic-
ular class of programs to be compiled more efficiently. Haskell has become the
de-facto standard non-strict, purely functional language in the lazy functional
programming community. We use Haskell as our source language throughout,
and put theory into practice inside the Glasgow Haskell compiler.

1.2 The listful style of programming

In functional languages the listful style is strongly encouraged (Hughes 1989).
Listful algorithms are expressed in terms of pipelines of list transformers, glued
together with intermediate lists. The listful style tends to be pervasive in the fine
grain level of lazy functional programming. There are many list manipulating
functions provided in the Haskell standard library (called the standard prelude).
Furthermore, in Haskell (and many other functional languages) a special syntax,
called list comprehensions, provides concise ways of expressing list-based manip-
ulations. The presence of such conveniences provides further testimony of the
importance of lists in functional languages.

\Ve now look at two concrete examples of small programs, presenting implemen-
tations with and without intermediate lists.

1.2.1 Example 1: Sum of squares

Consider computing the sum of the squares of the numbers 1 to n. We compute
two intermediate lists, one of which is the list 1 to n, and the second is the
squares of 1 to n. Figure 1.1 gives an illustration of the pipeline structure of this
example.

1.2. The listful style of programming 5

In Haskell we could write:

sumSq :: Int -> Int
sumSq n a sum (map square [l ..n])
square :: Int -> Int
square x = x * x

It is also possible to write a function that computes the sum of the squares of
the numbers 1 to n without using any intermediate lists. For example:

sumSq :: Int -> Int
sumSq n '"'sumSq' 1
where
sumSq' x = if x > n

then 0
else square x + sumSq' (x+l)

Although more efficient, the program is arguably less modular and harder to
understand, specifically because the program no longer expresses the natural
pipeline structure of this computation.

1.2.2 Example 2: Digits of a natural

As another example of listful programming, consider a function that takes a
natural number and returns a list of the number's digits.

natural :: Int -> [Int]
natural = reverse

map ('mod' 10)
takeWhile (/= 0)
iterate ('div' 10)

This example was taken from Bird & Wadler (1988, pp 172). This time there are
four components to the pipeline, with three intermediate lists connecting them.
Again it is possible to re-write this problem without using intermediate lists:

natural :: Int -> [Int]
natural n = natural' n []

where
natural' :: Int -> [Int] -> [Int]
natural' n m '"'

if n /= 0
then natural' (n 'dive 10) (n 'mod' 10:m)
else m

We also observe that again the listless implementation has lost its pipeline struc-
ture and its modularity.

6 Chapter 1. Introduction

1.2.3 Advantages of removing intermediate lists

Programs written using intermediate lists can express solutions concisely and
clearly. However such solutions can be inefficient by virtue of their key compo-
nent, their intermediate lists. Using the Haskell Users Gofer System (HUGS),
and taking reduction counts as an approximation of execution cost, a simple
quantitative measurement can be taken for our two examples, giving an estimate
of the cost of using listfulness as a programming style.

Example Test listful listless
Sum of Squares
Digits of a Natural

sumSq 10
natural 1234

123 reductions
82 reductions

73 reductions
44 reductions

Though these are small examples, quite clearly a significant part of the cost of
their computation was a direct consequence of using intermediate lists. The best
of both worlds would be to write the clear listful program, and have the compiler
automatically produce the efficient listless equivalent.

Removing an intermediate list produces two tangible benefits:

• The cost of constructing and deconstructing an intermediate list is avoided.
As well as saving the cost of the memory accesses, not using intermediate
structures puts less strain on the memory allocation and garbage collection
mechanisms.

• Two components of a program that were previously separated by the opaque
interface of the intermediate list are now exposed to each other. Removing
the intermediate list may allow other optimising transformations. that pre-
viously could not penetrate the barrier of the intermediate list, to optimise
the listless program.

This dissertation presents a technique that gives compilers for functional lan-
guages the power to automatically detect and remove many intermediate lists.
and thus providing the functional language programmer with the opportunity
to use listfulness without paying the performance cost normally associated with
this style of programming.

Removal of intermediate data structures (including intermediate lists) is tra-
ditionally called deforestation (Wadler 1990). Our deforestation algorithm is
considerably simpler than the Wadler style of deforestation. Because of this we
call our deforestation system cheap deforestation.

1.3. Contributions and synopsis 7

We concentrate on the problem of list removal rather than the more general
problem of arbitrary data structure removal. Though many of the ideas presented
in this dissertation have a natural extension to other data structures, our concern
was to complete an evaluation of the pragmatic aspects of list removal.

1.3 Contributions and synopsis

This dissertation explores in detail a small set of optimising transformations that
allows programmers to use the listful style of programming in lazy functional lan-
guages without paying a substantial performance penalty. We make the following
distinct contributions:

• This dissertation as a whole presents and analyses the first non-trivial de-
forestation system to be included as an active part of a production quality
functional language compiler.

• In Chapter 2 we describe anew, simple and pragmatic technique for
removing intermediate lists. Previous list removal schemes were either
complicated (and computationally expensive) or lacked generality. Our
intermediate list removal is both automatic and practical.

• 'Ve make an interesting use of parametricity to prove our core list removal
rules correct (§ 2.4).

• In Chapter 3 we discuss some of the general pragmatics behind imple-
menting our style of deforestation.

• \Ve provide a new translation for list comprehensions in § 3.3, superseding
the current state of art, as given in Wadler (1987a) and Augustsson (1987).
The previous schemes had some specific optimisations concerning append-
ing together list comprehensions. We use our general purpose list removal
capabilities to accomplish the benefits of the previous schemes, and add a
number of new ones.

• Furthermore, several previously ad-hoc optimisations specifically aimed at
improving the performance of list based computations can now be unified
under a single framework. One important example is the expression:

(xs ++ ys) ++ Zti

This is automatically transformed into a form equivalent to:

xs ++ (ys ++ zs)

8 Chapter 1. Introduction

• "Veseek algorithms that are simple enough to implement, and cheap enough
to execute; we study the issues raised by implementing our list removal
technique in a state-of-the-art compiler (Chapter 4).

• We have identified a number of critical additions needed to the list re-
moval system, by way of "enabling technologies". Specifically, we need
to provide a stronger compile-time inlining mechanism (§ 4.3), and pro-
vide a function arity expansion scheme that allows efficient accumulating
parameters (§ 4.4).

• In Chapter 5 we provide detailed quantitative measurements of gains
provided by the list removal technique. We measure its effectiveness on a
suite of real application programs, not hand crafted benchmarks designed
to demonstrate our ideas in a favourable light.

• As the listful style of programming can be compiled efficiently, so can
Haskell monolithic arrays (§ 5.2). In particular, the array creation frag-
ment

array (l,n) [(i,<exp» I i (- [l..n]]

can now be compiled as well as the equivalent program in an imperative
language using constructs like for loops, modulo the cost of suspending
the expression <exp>. Actually building the array is no longer a significant
overhead compared to imperative languages.

• Our deforestation algorithm has been recognised by others as practical, and
some work has already been done by others to extend the ideas presented in
this dissertation. In Chapter 6 we put our work in context of other data
structure removal techniques, and explain proposed extensions to cheap
deforestation.

In Chapter 7 we draw conclusions, and suggest further work. Finally, each entry
in the reference list is annotated with the page number of the original citation
inside the body of this dissertation.

Parts of this work have been previously presented in Gill, Launchbury & Pey-
ton Jones (1993) and Gill & Peyton Jones (1994). The proof on page 27, taken
from Gill et al. (1993), was performed by John Launchbury.

Chapter 2

The foldr/build Transformation

In this chapter we present a new, simple, automatic transformation - the
foldr/build transformation - which can be used to remove intermediate lists.
As an aid to understanding the rationale behind our new rule, we first present a
simple and well known transformation that removes explicitly intermediate con-
structors (§ 2.1). We then present canonical ways of expressing list consumption
and production (§ 2.2), and introduce our new transformation (§ 2.3). Finally,
we show how types can be used to guarantee correctness of our rule (§ 2.4).

First we define some terminology .

• To Inline - To replace an instance of a binder v with its definition. If no
instances of the binder v remain the original binding can also be removed.
i.e. to inline v in let v = 2 in 1 + v gives 1 + 2.

Performing inlining can introduce name clashes, so in our examples we
sometimes perform trivial renamings to avoid name clashes, as well as for
clarity .

• To j3-reduce - To replace an expression of the form

with the expression

and then to perform the inlining of v.

9

10 Chapter 2. The foldr/build Transformation

• To Unfold - This is the same as inlining, but after the inlining is complete
we then take advantage of any new opportunities for ,a-reduction. For
example, consider:

let
fn = \ a -) a + 1

in
fn 2

To unfold fn, we would first inline fn, giving:

(\ a -) a + 1) 2

Then perform the newly avaliable ,a-reduction, giving:

2 + 1

In Haskell sometimes the).S are not explicit, because of Haskell's syntactical
sugar. In particular:

foo x y = <exp>

is shorthand for
foo = \ x Y -> <exp>

and
foo (x,y) = <exp>

is shorthand for
foo = \ v -> case v of (x,y) -> <exp>

2.1 On removing intermediate data structures

Sometimes removing intermediate data structures can be easy! In functional
languages we use constructors (like tuples, (:), etc) to build data structures, and
we use case (or pattern matching) to deconstruct these structures. Occasionally
a simple combination of construction followed by immediate deconstruction can
occur, and we can use a simple and well known rule to totally eliminate this
explicitly intermediate data structure.

2.1. On removing intermediate data structures 11

2.1.1 Removing non-recursive intermediate
data structures

Consider this Haskell program:

data Pair a b = Pair a b
first ab = case ab of

Pair a b -> a
funny_const a b = first (Pair a b)

funny_const uses Pair to create an intermediate data structure (of type Pair)
with two identical elements, then selects the first component of this Pair, us-
ing first. If the function first is unfolded inside funny_const, we get the
definition:

funny_const a b = case Pair a b of
Pair a' b' -> a'

We now have an explicit construction and deconstruction of the intermediate
Pair. We can use a simple, local automatic transformation to remove this inter-
mediate Pair. This transformation, called case reduction (Santos 1995), takes
expressions of the form

case Cons el e2 ... en of

Cons VI V2 ... Vn _ > e

and, for any "Cons", transforms this into:

in
e

totally removing the (explicitly intermediate) Cons. After using this transforma-
tion, we get:

12 Chapter 2. The foldr/build Transformation

funny_canst a b =
let
a' = a
b' = b

in
a'

Now we can inline a' and b ' , giving:

funny_canst a b = a

This version of funny _canst does not use any intermediate structures.

2.1.2 Removing recursive intermediate data structures

This thesis concerns itself with the removal of intermediate lists. Since the above
transformation is true for any arbitrary constructor, not just the Pair construc-
tor, could we not simply extend this transformation to deal with the constructors
that are used to create the lists? Unfortunately this is not straightforward, be-
cause the list datatype is recursive. We could use this transformation to eliminate
individual constructors. For example, consider:

foo g = case f 1 : b of
x : y -> g x
[] -> z

Csing case reduction gives:

foo g = g (f 1)

However this transformation alone is not a complete solution to removing recur-
sive intermediate data structures, like lists. The transformation can eliminate
individual constructors, but if the list is recursively produced case reduction can
no longer be straightforwardly applied. Consider, for example, the expression
sum (from n m):

sum_from n m = sum (from n m)
sum xs = case xs of

[] -> 0
(x:xs') -> X + sum xs'

from x y =
if x > y
then []
else x : from (x+l) y

2.1. On removing intermediate data structures 13

We can unfold sum to expose the case, and unfold from to expose the (:) and
[J , obtaining:

sum_from n m = if n > m
then case [] of

[] -> 0
(x:xs') -> x + sum xs'

else case n : from (n+l) m of
[] -> 0
(x:xs') -> x + sum xs'

There are two instances of the case reduction transformation, one with an ex-
plicit [J and one with an explicit (:): We can now use the case reduction
transformation, to remove these intermediate constructors, and can obtain:

sum_from n m =
if n > m
then 0
else n + sum (from (n+l) m)

\Ve have removed the first constructor in the intermediate list between sum and
from, but a new instance of sum (from ...) has appeared. Repeated applica-
tions of this constructor removal technique would remove more and more inter-
mediate (:) cells, but only a finite number of them. Furthermore, the program
size would increase at each step.

The trick to making this approach to list removal work is to "tie the knot";
that is spot the relationship between the different iterations of this list removal
technique, and fold the original definition back into the unrolled version. This
can give an efficient, recursive definition that has eliminated the intermediate
list.

In the above example, we know from the definition of sum_from that:

V n . V m . sum_from n m = sum (from n m)

So we can "tie the knot" by using this equation, and replace

sum (from (n+l) m)

with
sum_from (n+l) m

Performing this replacement gives a definition of sum_from that does not use any
intermediate lists.

14 Chapter 2. The foldr/build Transformation

sum_from n m =
if n > m
then 0
else n + sum_from (n+l) m

This is the essence of the data structure removal algorithm used in Burstall &
Darlington (1977), and is also the approach taken by Wadler (1990), in tradi-
tional deforestation. For our present purposes, we simply observe that this style
of deforestation is, in general, quite hard both to implement and to prove ter-
mination for, even with first order languages. The extension to higher order
polymorphic languages (like our target language, Haskell) is even harder. We
postpone a more detailed discussion of this style of data structure removal until
Chapter 6.

2.2 Consumption and production of lists

We take a totally different approach to data structure removal from traditional
deforestation. Rather than trying to use a rule that works over one level of a
data structure, and make it work over recursive structures, we invent a new rule
that works over the whole length of the data structure.

• Instead of using case to express how we take a list apart, consuming one
constructor at a time, we use a function, foldr, which consumes a list as
a complete unit.

• Instead of using individual constructors to construct a list, a constructor
at a time, we use a new function, build, which constructs the whole list.

• Because of the uniform treatment of lists as complete objects, rather than
being considered as composed of many individual constructor cells, we can
have a single rule, the foldr /build rule, which is analogous to the case
reduction rule, but instead of removing a single constructor, it removes the
entire data structure.

We represent this analogy in Table 2.1. foldr and build are introduced into
our programs either explicitly by the programmer, or by unfolding pre-defined
versions of prelude functions (like map, filter, concat, etc.) that use foldr
and build for list consumption and construction. Using our cancellation rule we
can fuse suitable consumers and producers together. resulting in programs that
use fewer intermediate lists.

2.2. Consumption and production of lists 15

Non-Recursive Recursive (lists)
Construction Constructors build

Deconstruction case foldr
Cancellation Rule case reduction foldr/build rule

Table 2.1: Analogy between case reduction and the foldr/build rule

Opportunities suitable for our form of deforestation are illustrated in Figure 2.1,
where a good consumer is foldr, and a good producer is build. When a list
is produced without using build or consumed without using foldr our defor-
estation scheme does not remove the list. However, the scheme is not hampered
by the presence of other methods of list construction and consumption, rather
it simply uses the foldr/build rule where applicable, and leaves the other lists
intact.

We now introduce our list consumption technique (§ 2.2.1) and our list produc-
tion technique (§ 2.2.2). In the next section we present the foldr/build rule
itself (§ 2.3).

2.2.1 foldr: A super-case

Many functions that consume lists do so in a "regular" way, that is functions that
treat each element in the same way. An example of such a regular consumption
is the function and:

and :: [Baal] -) Baal
and [] = True
and (x:xs) = x tt and xs

Intermediate

..._'_'G_O_O_d__C_o_n_su_m__er_"... 't~<~=============L__"G__o_o_d_P__ro_d_u_c_e_r'_'_.1
List.. -

Figure 2.1: An opportunity for list removal

16 Chapter 2. The foldr/build Transformation

k
/ -, / -,

el el kfoldr k z / -. / -,
e2 e2 k

/ -, / -,
e3 [] e3 z

Figure 2.2: How foldr transforms a list

and consumes a list, checking to see if all the elements in this list are True, and
if so returning True. Many list-consuming functions can be written recursively,
in a similar way. However, in line with the spirit of functional programming
in general, instead of using a separate recursive definition for each and every
time a list is consumed, functional programmers are encouraged to use a general
function, foldr, that encapsulates "regular", recursive consumption (Hughes
1989, Bird 1989). The Haskell definition of foldr, from the standard prelude, is:

foldr :: (a -) b -) b) -) b -) [a] -) b
foldr k z [] = z
foldr k z (x:xs) = k x (foldr k z xs)

foldr expresses recursive list consumption, and foldr's arguments express how
the consumption is performed. When foldr k z is applied to a list, each (:)
cell is replaced with k, and the terminating [] is replaced with n. This behaviour
is illustrated in Figure 2.2. Conceptually we consider foldr like a "super-case" ,
because foldr deconstructs not just a single cons cell, but the whole list, applying
provided functions to each element of the list.

If we return to our and example, and rewrite it using foldr, we get:

and xs = foldr (&&) True xs

This is our canonical form for the function and. The foldr is a super-case over
the list xs. If we look at the original (recursive) definition of and, we see that
the function and indeed replaces [] with True, and (:) with (t&:), just as the
foldr definition suggests.

Many list consuming functions can be expressed using the general pattern of
recursion that foldr provides. Common examples include:

2.2. Consumption and production of lists 17

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

sum replaces all (:) with (+) and [J with 0, returning the sum of the elements
of the Int list.

map f xs = foldr (\ a b -> fa: b) [] xs

map applies a provided function f to all the elements of its list argument.

xs ++ ys = foldr (:) ys xs

(++) consumes its first argument, copying this list onto the front of its second
argument.

All these examples are instances of foldr being used as a super-case. We now
consider foldr's dual, our super-constructor build.

2.2.2 build: A super-constructor

foldr consumes a list by dynamically descending the spine of its list argument,
and treating each element of this list in a uniform manner. If we could do this
descent statically, at compile time, we could avoid ever actually building the list
consumed by foldr. Our "super-constructor", build, allows this by providing a
mechanism for gaining access to the places in an expression where the (:) and
[J of an output list are used.

Consider a simple constant list

1:2:3:[]

We can lift out the (:) and [] by abstracting the list over (:) and [] 1:

(\ c n -> 1 "c ((2 "c ((3 "c (n») (:) []

To allow our transformation to spot when lists are abstracted over their (:) and
[J we use a function build to express such lists. build's definition is2:

build :: «a -> b -> b) -) b -> b) -> [a]
build g = g (:) []

build is a function that, if given a function that builds a list using the (:) and
[J provided by build, returns that list. It is a "super-constructor", building a

I<expl> 'c' <exp2> is Haskell syntactic sugar for c <expl> <exp2>.
2Actually build's type is not a "standard" Hindley-Milner type, a point we return to in § 2.4.

18 Chapter 2. The foldr/build Transformation

c
/ -, / -,

el et c
/ -, = build ,\ c n ~ / -,

e2
/ -, e2 /c"

e3 [] e3 n

Figure 2.3: How build expresses a list

whole list. So how do we use build to express lists? Our constant list example
would become:

build (\ c n -> 1 cc' (2 'cc (3 'cc n)))

Figure 2.3 illustrates how build expresses the constant listel: e2 : e3 : [].

build can also be used to express lists generated recursively. For example:

from x y =
if x > y
then []
else x : from (x+l) y

\-Vecan bind a local version of this function, and abstract over the (:) and []
of the output list:

from x y =
build (\ c n ->
let

from' x y = if x > y
then n
else x 'cc from' (x+l) y

in from' x y)

2.2.3 Using foldr and build inside list filters

Functions that both produce and consume lists can be expressed simultaneously
as both good producers and good consumers by using both foldr and build in
the same definition. For example, map can be re-written as

2.3. The foldr/build rule 19

-- List consumer
sum = foldr (+) 0 xs

-- List producer
from x y =

build (\ c n ->
let

from' x y = if x > y
then n
else x cc' from' (x+l) y

in from' x y)

Functions that both produce and consume lists.
map f xs = build (\ c n -> foldr (\ a b -> f a cc' b) n xs)
concat xs = build (\ c n -> foldr (\ x y -> foldr c y x) n xs)
xs ++ ys = build (\ c n -> foldr c (foldr c n ys) xs)

Figure 2.4: Selective foldr/build versions of function definitions

map f xs = build (\ c n -) foldr (\ a b -> f a 'cc b) n xs)

"Ve can use both foldr and build in this manner in many of our definitions,
and where possible use function definitions that use both foldr and build. A
list of the definitions used in this chapter is given in Figure 2.43.

2.3 The foldr/build rule

If a list is expressed using build, and is consumed using foldr, our key trans-
formation - the foldr/build rule - can be used to eliminate an intermediate
list.

Ifoldr k z (build g) = g k z I
Assuming that 9 constructs its result using the "cons" and "nil" values passed
to it as arguments by build, and because foldr k z substitutes k for (:) and
z for [], the same effect as producing and consuming the list can be achieved by
passing k and z directly to g. (We can actually assert that 9 uses the "cons" and
"nil" values passed to it by giving build a special type, which we do in § 2.4.)
Figure 2.5 illustrates how the rule works on a small constant list.

Our initial blueprint for using the foldr/build rule, and performing foldr/build

3We actually redefine the definitions of both (++) and sum later, in Chapter 3.

20 Chapter 2. The foldr/build Transformation

foldr k z build

C
/ -,

AC n--+
C
/ -,

AC n--+

C
/ -,

k zC
/ -,

Figure 2.5: How the foldr/build rule works

2.3. The foldr/build rule 21

deforestation is, where possible:

• Express list consumers in terms of foldr, including prelude functions that
consume lists.

• Express list producers in terms of build, including prelude functions that
produce lists.

• Express functions that both consume and produce lists in terms of both
foldr and build, and including suitable prelude functions.

• Unfold these list processing functions, exposing foldr and build to the
foldr/build rule. Even if the user has not explicitly used foldr and
build, they still get some benefit, via the unfolded prelude functions that
use foldr and build.

• Use the foldr/build rule, along with other simple transformations.

\Ve now proceed to look at four examples of our deforestation in action. It should
first be pointed out, however, that there is a large caveat with the foldr/build
rule: it only works for instances of build's argument that are truly abstracted
over the intermediate lists cons's and nifs. This is an important restriction to
which we return to in § 2.4.

2.3.1 Example 1: sumof constant list

Consider as our first example:

sum (1 : 2 : 3 : [])

If we express the producer (1 : 2 : 3
canonical form, we get the expression:

[]) and the consumer (sum) in our

foldr (+) 0 (build (\ c n -> 1 'c' (2 'Cl (3 'c' n»»

Now we can use our foldr/build rule, and obtain:

(\ e n -) 1 'e' (2 'c' (3 'e' n») (+) 0

f3-reduction gives:

1 + (2 + (3 + 0»

This transformed expression succeeds in summing the constant list, but without
ever building the list at all.

22 Chapter 2. The foldr/build Transformation

2.3.2 Example 2: sumof from

As our second example, reconsider the example in § 2.1.2. However, this time we
use function definitions that are expressed in our canonical form, allowing good
production and consumption of intermediate lists:

sum xs = foldr (+) 0 xs
from x y =

build (\ c n ->
let

from' x y =
if x > y
then n
else x cc' from' (x+l) y

in
from' x y)

sum_from n m = sum (from n m)

:'\ow we can unfold sum and from into the right hand side of sum_from.

sum_from n m = foldr (+) 0 (build (\ c n ->
let

from' x y =
if x > y
then n
else x cc' from' (x+l) y

in
from' n m»

~o\\' we can use our foldr/build rule and ,B-reduction to get:

sum_from n m =
let

from' x y =
if x > y
then 0
else x + from' (x+l) y

in
from' n m

This definition of sum_from sums the list 1 to n, without ever actually building
the list. Furthermore, no knot-tying was required.

2.3. The foldr/build rule 23

2.3.3 Example 3: unlines

For our next example, consider the function unlines, which has the definition

unlines [String] -> String
unlines Is = concat (map (\1 -> 1 ++ [l\n']) Is)

This function takes a list of strings, and joins them together, inserting a newline
character after each one. An intermediate version of the list of strings is created,
together with an intermediate version of each string (when the newline character
is appended).

To deforest this definition, we first provide our 'good' definitions of the functions,
taken from Figure 2.4. Unfolding these definitions into unlines gives:

unlines Is =
build
(\ c n ->
foldr
(\ xs b -> foldr c b xs)
n
(build
(\ cl nl ->
foldr
(\ 1 t ->
cl
(build
(\ c2 n2 ->
foldr c2

(foldr c2
n2
(build (\ c3 n3 -> c3 '\n' n3))

) 1))
t

) nl Is)))

Now we apply the foldr/build transformation, to get:

24 Chapter 2. The foldr/build Transformation

unlines Is =
build
(\ c n -) (\ cl nl -)

foldr (\ 1 t -)
cl
(build
(\ c2 n2 -)
foldr c2

(C\ c3 n3 -) c3 '\n' n3)
c2
n2)1»

t)
nl Is)

(\ xs b -) foldr c b xs)
n)

Performing three ,B-reductions gives:

unlines Is =
build
(\ c n -)
foldr (\ 1 t -) foldr c t

(build
(\ c2 n2 -)

foldr c2 (c2 '\n' n2) 1»
) n Is)

This in turn exposes a new opportunity to use the foldr/build rule. After using
it, and performing some more ,B-reductions we get:

unlines Is =
build
(\ c n -) foldr (\ 1 b -) foldr c (c '\n' b) 1) n Is)

Now no more applications of the transformation are possible. \Ve may choose
to leave the definition in this form, so that any calls of unlines may also be
deforested. After exploiting any possible deforestation opportunities we may
now unfold build, revealing the (:) 's and []. After simplification we get:

unlines Is
= foldr (\ 1 b -) foldr (:) ('\n' : b) 1) [] Is

If we also unfold foldr, using the definition

foldr f z xs =
let h [] = z

(x:xs) = f x (h x~)
in h xs

2.3. The foldr/build rule 25

we get

unlines Is = h Is
where h [] = []

h (1:1s) = g 1
where g [] = '\n' : h Is

g (x:xs) - x : g xs

This is as efficient a coding of unlines as we may reasonably hope for. Further-
more, we have derived this efficient version automatically, modulo the use of our
"deforestation friendly" prelude functions.

2.3.4 Example 4: sumof squares

As our final example we take a listful program from the introduction".

square x = x * x
sumSq n = sum (map square (from 1 n»

Now we express list consumption in terms of foldr, and list production in terms
of build, by again providing suitable unfoldings for from, map and sum:

square x = x * x
sumSq n= foldr (+) 0

(build (\ c n ->
foldr (\ a b -> square a 'c' b)

n
(build (\ cl nl ->

let
from' x y =

if x > y
then nl
else x 'cl' from' (x+l) y)

in
from' 1 n»)

Now we can use our foldr/build transformation, twice, along with ,B-reductions,
to get:

4 [1.. nl in syntactical sugar for from 1 n

26 Chapter 2. The foldr/build Transformation

square x = x * x
sumSq n

= let
from' x y =

if x > y
then 0
else square x + from' (x+l) y

in
from' 1 n

Again the foldr /build transformation has provided us with a route to auto-
matically eliminate the intermediate lists in the original, listful definition.

2.4 Using a free theorem to guarantee
correctness

There appears to be a serious problem with the approach we have described: the
foldr /build rule can be wrong! For example,

foldr k z (build (\ c n -> [True]» t (\c n -> [True]) k z

Using the definitions of foldr and build we can see that the left-hand side is
k True z, while the right hand side is just [True]. These two values do not
even necessarily have the same type!

The trouble with the counter-example is that the function passed to build con-
structs its result list without using c and n. The time we can guarantee that the
foldr/build rule does hold is when build's argument truly is a list which has
been "uniform lv'' abstracted over all its conses and nil, which was an informal
requirement of using build. Fortunately, it turns out that we can use the type
of build to guarantee this property. Consider again the definition of build

build g = g (:) []

Now suppose that 9 has the type

9 : V,8.(A --+ ,8 --+ (8) --+ {3 --+ (3

for some fixed type A. \Ve can argue informally that 9 must construct its result
only using the supplied cons and nil, as follows: because 9 is polymorphic in a. it
can only manufacture its result (which has type (8) by using its two arguments. k
and z. Furthermore, the types of k and z mean that they can only be composed

2.4. Using a free theorem to guarantee correctness 27

into an expression of the form

which is exactly the form we require.

"Ve can render this argument formally, by using the "free theorem" for g's
type (Reynolds 1983, Wadler 1989).

Theorem
(The foldr/build rule)

If for some fixed A we have

9 : 'V{3.(A -+ (3 -+ (3) -+ {3 -+ {3

then
foldr k z (build g) = 9 k z

Proof
The "free theorem" associated with g's type is that, for all types Band B', and
functions I :A -+ B -+ B, l' :A -+ B' -+ B', and (a strict) h : B -+ B' the
following implication holds:

('Va: A. 'Vb: B. h (J a b) = I' a (h b))
=> ('Vb: B. h (gB I b) = gB' l' (h b))

where ne and gB' are the instances of gat Band B' respectively. (From now on
we will drop the subscripts from 9 since languages like Haskell have silent type
instantiation).

'Ve now instantiate this result. Let h = foldr kz, I = (:), and l' = k. Now
the theorem says,

('Va: A. 'Vb : B. foldr k z (a: b) = k a (foldr k z b))
=> ('Vb: B. foldr k z (g (:) b) = 9 k (foldr k z b))

The left hand side is a consequence of the definition of foldr, so the right hand
side follows. That is,

'Vb : B. foldr k z (g (:) b) = 9 k (foldr k z b)

Now let b = []. By definition, foldr k z [] = z, so finally we obtain,

foldr k z (g (:) [J) = 9 k z

28 Chapter 2. The foldr/build Transformation

which, given the definition of build, is exactly what we require. o

The impact of this result is significant: as long as build is only applied to
functions of the appropriate type, our deforestation transformations may proceed
via the foldr/build rule with complete security.

build's full type is therefore:

build :: Va. (Vj3 . (a -+ j3 -+ j3) -+ j3 -+ j3) -+ [a]

Unfortunately build's type does not conform to the Hindley-Milner type sys-
tem (Milner 1978), of which variants are used by many lazy functional languages,
including our target language Haskell. A more general type system, such as that
of Ponder (Fairbairn 1985) or Quest (Cardelli & Longo 1991) would allow this
type for build, but they lack the type-inference property. However, a simple ex-
tension to the Hindley-Milner type checker can check that applications of build
are well typed. We explain the details of the required extension to the Haskell
type system in § 4.2.1, where we use 2nd-rank polymorphism (McCracken 1984).

2.5 Summary

In this chapter we have presented a new approach to removing intermediate lists.
This technique is based on a simple rule that allows a transformation system
to treat lists as complete objects. The technique requires a highly stylistic list
production and consumption. This can be achieved by using predefined (prelude)
functions that have been defined in this restrictive style.

Several questions remain open, and must be addressed before we can build a
successful implementation of cheap deforestation. Most importantly, we need to
understand the issues behind writing good list producers and consumers. This
is the subject of the next chapter.

Chapter 3

Expressing List-manipulating
Functions in foldr/build Form

In this chapter we take foldr /build deforestation, as presented in the previ-
ous chapter, and turn it into a practical deforestation scheme. We examine the
issues behind good list consumption and good list production, making the nec-
essary changes to the basic foldr/build deforestation model. This enhanced
deforestation system we call cheap deforestation.

First we examine how we can provide new definitions of prelude functions, and
the issues behind using these "alternative" definitions (§ 3.1). We then examine
the problems with writing effective list-manipulating functions in foldr /build
form (§ 3.2). In § 3.3 we give new translation rules for list comprehension rules
that produce code that is amicable to our deforestation scheme. In § 3.4 we
introduce a new list producer, augment. Finally, in § 3.5 we summarise our
augmented set of deforestation rules, and classify when our technique is expected
to remove intermediate lists.

3.1 A new prelude

The simplest method of exposing foldr and build to the foldr/build rule, and
providing deforestation opportunities, is via pre-defined, inlineable definitions
of prelude functions such as map and filter. We now consider some of the
pragmatics of using this method for providing deforestation opportunities.

Any compiler that included an implementation of cheap deforestation would
need, at the very least, some method for transferring literal code from the prelude

29

30 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

to user modules. This could be of the form proposed for Haskell 1.3. For example,
the prelude definition of map might be written:

{-# INLINE map #-}
map f xs = build (\ c n -> foldr (\ a b -) f a cc' b) n xs)

(In the context of an implementation the distinction between inlining and un-
folding is not significant, since inlining would usually be followed by further
optimisations that have been enabled by the newly inlined definition.)

There are two important criteria when re-writing functions in terms of foldr
and build, correctness (§ 3.1.1), and efficiency (§ 3.1.2). We also briefly consider
the problem of increased code size caused by inlining many list producers and
consumers (§ 3.1.3).

3.1.1 Correctness of our inlined functions

It is important that our "deforestation-friendly" function definitions are correct.
The new definition must exactly match the semantics of the original, including
strictness semantics.

The old and new definitions can be proved equivalent using straightforward equa-
tional reasoning and induction. For example, here is a proof that the new version
of map is equal to the original definition:

Theorem

v f . V xs . map f xs mapnew f xs
where

map f [] = []
map f (x:xs) = f x map f xs
and

mapnew f xs = build (\ c n -> foldr (\ a b -> f a cc' b) n xs)

Proof
By induction over the lifted list datatype, xs.

Base case 1. []

Both sides reduce to [].

3.1. .A new prelude 31

Base case 2. 1.
Both sides reduce to 1..

Inductive Case. Assume

map f xs - maPnewf xs

The goal is to show that

map f (x: xs) maPnewf (x : xs)

Starting from the left hand side:
map f (x:xs)= f x : map f xs
Now we use the inductive hypothesis

= f x : mapnew f xs
= f x : build (\ c n -> foldr (\ a b -> f a cc' b) n xs)
= build (\ c n -> f x 'cc foldr (\ a b -> f a cc' b) n xs)= build (\ c n -> foldr (\ a b -> f a 'cc b) n (x:xs))
= mapnew f (x: xa)

o

3.1.2 Efficiencyof our inlined functions

Sometimes a foldr/build version of a prelude function might not fuse with a
good producer or good consumer. When writing prelude functions in terms of
foldr and build we have to take this into consideration. We need to make sure
that any list processing function written in terms of foldr and/or build can be
compiled as efficiently as the definitions it is replacing.

Consider this foldr /build definition of map, as defined inside our new prelude:

map f xs = build (\ c n -> foldr (\ a b -> f a 'cc b) n xs)

If we unfold foldr and build, we get:

map f xs =
let

h xs = case xs of
[] -> []
(a:as)-> fah as

in
h xs

32 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

Compare this with the original, recursive definition of map:

map f xs = case xs of
[] -) []
(a:as) -> fa: map f xs

A trade-off has occurred between these two definitions. The first definition has
a local recursion, but allocates a closure every time map is called (cf. § 4.1.2).
The second definition has an extra, static argument, but does not perform extra
allocations. These extra allocations were found to be significant in practice.
Somewhat fortunately, the compiler performs lambda lifting (Peyton Jones 1987,
Santos 1995), transforming the unfolded foldr/build version of map into the
version with the top-level recursion.

This example highlights a difficulty with implementing cheap deforestation. Us-
ing cheap deforestation can result in the production of code that can be substan-
tially different in structure to that written by human programmers. This code
is then optimised by other passes, including the lambda lifter. Other optimisa-
tions sometimes perform heuristics that, over a wide range of examples written
by humans, are observed to improve programs. It is possible however, that the
foldr /build transformation may create examples that these heuristics perform
poorly on. We examine this problem again in Chapter 5. It turns out that for
only one benchmark (out of over 50) the execution time got worse, and by only
1%.

3.1.3 Increase in code size

Using inlining technology to inline many list processing functions has influence
on the target code size (cf. Chapter 5). Evidence suggests this is not as great
a problem as might be suspected. In our measurements, the binaries produced
by our compiler grew by only about 8%, and about 6% of this was recovered
by enhanced code optimsation and simplification opportunities. Ultimately a
selective inlining scheme would be useful, where functions are only inlined if
there are deforestation opportunities to exploit. We do not discuss this further
here, but return to this point in Chapter 7.

3.2. Writing list-manipulating functions in foldr/build form 33

3.2 Writing list-manipulating functions in
foldr/build form

In this section we examine the difficulties of writing list-manipulating functions
in terms of foldr and build. We first introduce some issues behind using
build (§ 3.2.1), and foldr (§ 3.2.2). We then argue that foldl should also be
classed as a good producer, and given a first class status (§ 3.2.3). We then look
at other "regular" consumers (§ 3.2.4), before finally considering zip (§ 3.2.5).

3.2.1 Expressing list production using build

Expressing the production of a result list using build is straightforward, provided
that all the (:) and [] cells are produced internally by the function in question.
For example, consider the function ini t, which is defined:

init [] ,..error "init{PreludeList}: init []\n"
init Ixl []
init (x:xs) x : init xs

vVecan bind a local instance of init, and scope our build produced cons and
nil, giving:

init xs ".build (\ c n ->
let

init' [] ...error
init' (x] ...n
init' (x:xs) ...x 'c'

in
init' xs)

"init{PreludeList}: init []\n"

init' xs

In general, it is straightforward to re-express list production in this way, provided
that the list producing function produces that whole list. Difficulties arise when
a list producing function constructs only part of its result, and obtains the tail
of its result from an external source. For example, consider the (++) function:

(] ++ ys ys
(x:xs) ++ ys x : (xs ++ ys)

Part of the result list is passed in as an argument (in this case, y5). We present
a solution to this problem that allows such list producers to be written using a
generalisation of build in § 3.4.

There are also difficulties when a list producer internally consumes its own result.
For example, consider:

34 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

transpose :: [[a]] -> [[a]]
transpose xs = foldr

(\xs xss -> zipWith (:) xs (xss ++ repeat []»
[] xs

We cannot easily abstract over (:) and [], and accept this list producer as a
"bad" list producer.

Constant lists, however, are straightforward to represent using build. We have
already seen an example of this in § 2.2.2. Haskell represents String's as a list of
characters, and has a special form of constant list especially for this. For example

"Hello, World"

is syntactic sugar for:

['H', 'e', '1'. '1'. '0',',',' ','W', '0', 'r', '1', 'd']

We could treat constant strings in the same way as traditional constant lists,
though in our implementation we actually perform an optimsation that allows
IlS to keep the strings in a more compact form.

3.2.2 Expressing list consumption using foldr

As we have already suggested, many functions can be written so that a list
argument can be consumed using foldr. Some Haskell prelude functions are
already defined in term of foldr, and just need inlining. For example:

and xs = foldr (tt) True xs
or xs = foldr (I I) False xs

With some functions, we just needed to add the list construction aspect (using
build) to the suitable list producers.

concat xs = build (\ c n -> foldr (\ x y -> foldr c y x) n xs)

Some other prelude functions can easily be re-written in foldr form:

3.2. \Vriting list-manipulating functions in foldr/build form 35

head xs= foldr (\ x _ -> x) (error "head{PreludeList}: head []\n") xs
null XS= foldr (\ __ -> False) True xs
map f xs

_ build (\ e n -> foldr (\ a b -> f a 'e' b) n xs)
filter f xs

= build (\ e n -> foldr (\ a b -> if f a
then cab
else b) n xs)

Finally, some functions consume their list argument using a "good" consumer
anyway, for example:

unlines xs = eoneat (map (++ "\n") xs)

There are however, a significant class of functions that cannot be re-written quite
so straightforwardly. We now look at some examples.

3.2.3 foldl: Another super-case

Sometimes list consumption can be neatly expressed using a recursive function
with an accumulating parameter. For example, to find the length of a list, you
can carry an accumulating argument (the length so far) down a list, incrementing
the accumulator at each cons cell:

length xs = len 0 xs
vhere

len a [] = a
len a (x:xs) = len (a+1) xs

This accumulating consumption can be expressed using the function foldl:

length xs = foldl (\ a x -> a + 1) 0 xs

foldl, like foldr, is a common template for list consumption. It has the defini-
tion (from the Haskell prelude):

foldl :: Ca -> b -> a) -> a -> Cb] -> a
foldl f z [] = z
foldl f z (x:xs) • foldl f Cf z x) xs

Other functions that can be expressed in terms of foldl include reverse and
sum.

36 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

reverse xs = build (\ c n -> foldl (flip c) n xs)
sum xs = foldl (+) 0 xs

It would be useful to be able to remove lists that are consumed with foldl as
well as removing lists consumed by foldr. It turns out that we can express any
foldl consumption in terms of a foldr consumption! We do this by exploiting
the relationship:

foldl f z xs = (foldr (\ b g a -> g (f a b» id xs) z

An extra pair of brackets has been inserted into this equation for clarity. foldr is
taking an extra argument, and foldr's arguments also have an extra argument,
the accumulator.

Because of this relationship between foldl and foldr, we can achieve deforesta-
tion for lists consumed in terms of foldl. We prove this relationship between
foldl and foldr at the end of this section.

So how does this new definition of foldl work? The first argument acts as a
rebracketing tool, changing the direction of the fold. Consider the example:

foldl f z (e1:e2:e3)
= «(z 'f' e1) 'f' e2) 'f' e3)

We can see that f is acting left associative. However, if we express foldl III

terms of foldr, we can get

foldl f z (el:e2:e3)
= (foldr (\ b g a -> g (f a b» id (el:e2:e3» z= (el IfnI (e2 IfnI (e3 IfnI z») z

where fn = \ b g a -> g (f a b)

fn, the first argument to foldr is now bracketing to the right.

Now if we unfold fn, we "reverse" the associativity of this sequence, getting the
correct associativity for foldl:

= «(z 'f' el) 'f' e2) 'f' e3)

It is imperative that if we are going to generate efficient code, we unfold fn to
allow a simplification system to explicitly turn round the associative ordering.
This was found to be an issue in practice. In order to allow us to better control
the inlining of fn, we include foldl as a new good consumer, and perform the
unfolding of fn on the fly. When we do this, we tag fn with a "must be inlined
if possible" flag.

3.2. Writing list-manipulating functions in foldr/build form 37

Example of foldl as a good consumer

As a concrete example of using foldl as a good consumer, consider this example:

length (filter p xs)

V'le can express length in terms of foldl as well as giving our unfolding for
filter, exposing list production.

foldl (\ a _ -> a + 1) 0
(build (\ c n ->

foldr (\ x r ->
if P x then x cc' r else r) n xs»

Now we can represent foldl in terms of foldr:

foldr (\ b g a -> g (a + 1» id
(build (\ c n ->

foldr (\ x r ->
if P x then c x r else r) n xs» 0

Notice how we have unfolded (\ a _ -) a + 1) into the first argument of
foldr. Now we can use our foldr/build rule to remove the intermediate list.
After using the foldr/build rule we get:

foldr (\ x r -> if P x then (\ a -> r Ca + 1» else r) id xs 0

After inlining foldr, we get:

let
h ys = case ys of

[] -> \ x -> x
(x:xs) -> if P x then (\ a -> h Ca + 1» else h xs

in
xs 0

Now we can expand the arity of h, by adding an extra argument, giving the
efficient:

let
h [] a = a
h (x:xs) a = if P x

then h xs (a + 1)
else h xs a

in
h xs 0

38 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

In general this final step might duplicate work. For example if the body of the
let had been map (h xs) ys then we would re-evaluate (p x) for each element
of the list instead of sharing a single call of (p x) as the previous version would
do. In this specific case the transformation is safe, because we can prove that
every time h is called, it will be called with at least two arguments, and therefore
there are no partial applications of h. We introduce a new analysis that allows
this transformation in § 4.4.

Proof of relationship between foldl and foldr

Theorem
V 1.V z . V xs .

foldl] z xs = foldr (\ b g a -) g (] a b) id xs z

where b, g and a are new names.

Proof
By induction over the lifted list datatype, XS:

Base case 1.

foldl 1 z [J = foldr (\ b g a -) g (1 a b)) id [J z

foldr (\ b g a -) g (f a b» id [J z
= id z
= z
= foldl f z [J

Base case 2.

foldl] z .1 = foldr (\ b g a -) g (] a b) id .1 z

foldr (\ b g a -) g (f a b» id .1 z
= j_

= foldl f z .1

Inductive Case.

Assume

foldl 1Z .TS = foldr (\ b g a -) g (] a b)) id xs z

3.2. lVriting list-manipulating functions in foldr/build form 39

The goal is to show that

foldl f z (x: XS) = foldr (\ b g a -> g (f a b)) id (x : XS) z

foldl f z (x:xs)
= foldl f (f z x) xs

Now we perform the inductive step.
= foldr (\ b g a -> g (f a b» id xs (f z x)
= (\ b g a -> g (f a b))

x (foldr (\ b g a -> g (f a b)) id xs) z
= foldr (\ b g a -> g (f a b)) id (x:xs) z

Giving the right hand side.

o

3.2.4 Other regular consumptions

There are other classes of list consumption that, like the foldl consumption,
can be coerced into a foldr consumption. Consider the function take, defined
as:

take 0 _ = []
take n [] = []
take n (x:xs) = x : take (n-l) xs

We can write this function in terms of foldr (parameterisation over cons and nil
using build is not important for illustrating this example, so we omit this step):

take n xs =
case n of

o -> []
-> let

fn x g 0 = []
fn x g a = x : g (a - 1)

in
foldr fn (const []) xs n

Notice that we have a bi-directional flow of data; the cons-cells being produced
from the right, and the accumulating argument counting the number of cells taken
so far. The same concept that let foldl be expressed as foldr (the inlining of
the "higher-order" arguments) can also be used here. fn and const [] could be
unfolded, to produce efficient code.

40 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

However, as we have already discussed (§ 3.1.2), when we replace a function
with a foldr/build version, we must be convinced that we don't lose efficiency,
compared to the original function definition. In some cases, though we can
express consumption, directly or indirectly via foldr, the extra runtime overhead
makes such consumptions in terms of foldr undesirable. For example, consider
the prelude function foldrl:

foldrl
foldrl f [x]
foldrl f (x:xs)
foldrl []

(a -> a -> a) -> [a] -> a
= x
= f x (foldrl f xs)= error IIfoldr1{PreludeList}: empty list\n"

We can write foldrl in terms of foldr:

data Maybe a = Just a I Nothing
foldrl f xs =

case foldr (\ a b ->
case b of
Nothing -> a
Just x -) fax) Nothing xs of

Nothing -) error "foldr1{PreludeList}: empty list\n"
Just ans -) ans

Here we have lifted the result over the Maybe type. If we were to use this style
of foldrl, we would need to be convinced that the extra data structures (in this
example, Just and Nothing) were eliminated in the final code produced by our
compiler.

3.2.5 Handling zip

The foldr/build rule cannot be used to split deforestation down two branches
of a zip. Consider the example:

zip (map f xs) (map g ys)

\Ve would like to have a definition of zip that consumes both its arguments in
terms of f oldr, so that both the list map f xs and the list produced by map g ys
may be removed. Unfortunately this is, in general, not possible. We can consume
the first list using foldr:

zip xs ys = foldr f (\ x -> []) xs ys
where

fxg [] =[]
f x g (y:ys) = (x,y) g ys

3.2. Writing list-manipulating functions in foldr/build form 41

However, it is not possible to use foldr to consume the second list at the same
time as consuming the first argument using foldr. Furthermore, we cannot even
choose what argument to consume using foldr. It looks like we can just use
the above technique for zip's second argument, but the definition of zip has an
asymmetric semantics.

zip xs ys

does not equal
map (\ (x,y) -> (y,x)) (zip ys xs)

This is because
zip 1- [] = 1-

but
zip [] 1- = []

If zip did have symmetrical semantics we could lift zi p into our transformations
as a primitive, and choose when optimising which list to deforest down. This,
however, would not solve the problem that we cannot deforest down both lists.

Lack of deforestation through zip is a significant shortcoming of cheap deforesta-
tion. There is one optimisation that can be done to help minimise the damage
caused by zip. zip is commonly used in conjunction with an enumerator, for
example zip In ..] <exp> or zip <exp> [no .al . The compiler could provide
special versions of zip that have the same behaviour as these small expressions,
but ('An deforest down the single remaining branch.

For example

zip [n..J <exp>

can be aspL~ialised" to

foldr (\ y g n -> (n.y) : g (n+l» (\ n -> []) <exp> n

now if this specialised instance of zip appears in the middle of a pipeline of
intermediate lists, deforestation could occur.

42 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

[e I b]
[e I ql , q2]
[elp+-l]

if b then [e] else []
eoneat [[e I q2] I ql]
let ok p = True

ok _ = False
in map (;\ p --+ e) (filter ok I)

Figure 3.1: Semantics of Haskell list comprehensions

3.3 List comprehensions

List comprehensions are a particularly powerful form of syntactic sugar, and have
become quite widespread in functional languages. For example, given two lists of
pairs r i and r2, each of which is intended to represent a relation, the relational
join of the second field of r i with the first field of r2 can be expressed like this:

[(x,yi,z) I (x .yf) <- r l , (y2,z) <- r2, yl==y2J

This can be read as "the list of all triples (x ,yi ,z) , where (x ,yi) is drawn from
r l , (y2, z) is drawn from r2, and yl is equal to y2".

The semantics of list comprehensions are given by a straightforward transla-
tion (Hudak et a1. 1992). Figure 3.1 gives this translation, in the form of identities
that can be used to remove the syntactic sugar from list comprehensions.

3.3.1 Traditional techniques for desugaring
list comprehensions

There are well established techniques for desugaring list comprehensions into a
form which guarantees to construct only one cons cell for each element of the
result (Wadler 1987a, Augustsson 1987). In addition, they include extensions
that have:

• provision for optimising a chain of appended list comprehensions, upholding
the "one cons cell for each element in the result" criterion .

• extra rules for optimising the consumption of enumerated lists.

Figure 3.2 gives the traditional rules for desugaring list comprehensions (Wadler
1987a, Augustsson 1987). The T£ scheme translates expressions in a rich syntax,
including list comprehensions, into a much simpler functional language.

3.3. List comprehensions

T& :: Expr -+ Expr

T&[[E I QS] I
T&[[E I] +t- R I -

T£[[E I B , QS] +t- R I

T£[[E I QS] ++[]]
T£[E] : T£[R]
if Tt'[B I
then T£[[E I QS] ++ R]
else R

43

List comprehensions can be used to produce intermediate lists, for example, it
may be appended to some other list or it may be summed. List comprehensions
can also consume intermediate lists produced by their generators. For example:

[f x I x (- map g xs, odd x]

T£[[E I r « L, QS] ++R]
let
h xs = case xs of

[] -) T&[R]
(x:xs') -)

T&[case x of
P -) [E I QS] ++ h xs J

_ -) h xs ' I
in h L

and other T'E rules

Clearly we would like to ensure that list comprehensions are translated in a
way which allows the intermediate lists between them and their producers or
consumers to be eliminated. It turns out not only can we do this, but it actually
makes the translation rules simpler than before, because some of the work usually
done in the translation of list comprehensions is now done by the later, more
general, cheap deforestation transformations.

Figure 3.3 gives the revised translation rules for list comprehensions. Again, the
T£ scheme translates expressions in a rich syntax, including list comprehensions,
into a much simpler functional language. The rule deals with list comprehensions,
by invoking the TF scheme. Notice that in each case a build is used to create

Figure 3.2: Traditional translation for Haskell list comprehensions

3.3.2 A new desugaring scheme for
list comprehensions

44 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

T£[[E 1 QS] ~
TE ::Expr ~ Expr
build (\ c n -> TF[[E 1 QS] ~ c n)

: and other TE rules

TF:: Expr ~ Expr ~ Expr ~ Expr
TF[[E I] ~ en c (TE[E]) n

TF[[E 1 B , QS]] en = if TE[B I
then TF[[E IQS l l en

TF[[E I P ~ L, QS]] c n
else n
foldr f n TE[L]
where f P b = TF[[E I QS]] c b

f - b = b

Figure 3.3: New list comprehension compilation rules

the final list, ready to cancel with the foldr from any list consumer.

The TF scheme is used only for list comprehensions, and has the following
defining property:

TF[E] en = foldr en E

The TF scheme has three cases: either the qualifiers after the "I" are empty, or
they begin with a guard B, or they begin with a generator P ~ L (in general P
can be a pattern, not just a simple variable). Notice, crucially, that in this third
case, the list L is consumed by a foldr, so any build at the top of L will cancel
with the foldr.

3.3.3 Example of the modified list comprehension
desugaring scheme

As an example of the rules translating a list comprehension, consider again the
example given above:

[f x I x (- map g xs, odd x]

The standard technology would construct an intermediate list for the result of
the map. Using the rules in Figure 3.3 instead, desugaring the list comprehension
will give:

3.3. List comprehensions 45

build (\ c n ->
foldr h n (map g xs)

where
h x b = if odd x then c (f x) b else b)

Unfolding map gives:

build (\ c n ->
foldr h n (

build (\ cl nl -> foldr (cl.g) nl xs))
where

h x b - if odd x then c (f x) b else b)

Now we can apply the foldr/build rule, giving:

build (\ c n ->
(\ cl nl -> foldr (cl.g) nl xs) h n

where
h x b = if odd x then c (f x) b else b)

Now some ,a-reductions can be done:

build (\ c n -> foldr (h.g) n xs
where

h x b = if odd x then c (f x) b else b)

Lastly, foldr and build can be unfolded, and after further simplification, we
get the efficient expression:

h' xs
where
h' [] = []
h' (x:xs) =

if odd x'
then f x' : h' xs
else h' xs

where x' - g x

This is an efficient translation of the original expression that has succeeded in
eliminating the intermediate list created by the map and consumed by the list
comprehension.

3.3.4 Proof of correctness for the new
list comprehension desugaring scheme

\Ve need to show that the new rules in Figure 3.3 are consistent with the semantics
of list comprehensions, as given in Figure 3.1.

46 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

Theorem

V E .V QS . TE[[E I QS]] TO[[E I QS] J

where TE is from Figure 3.3, and TO is:

TO[[E I B)]
TO[[E I QSl , QS2]]

TO[[E I P +- L]]

if B then [E) else [1
concat (TO[[TO[[E I QS2]] I QSl]])
let ok P = True

ok = False
in map (\ P -> E) (filter ok L)

and ok is a new name.

Proof
By induction over QS:

Base Case. TE[[E IQ]] = TO[[E IQ]]
The base case has two cases:

Base Case 1. TE[[E I B]] = TO[[E I B]]
By straightforward unfoldings, show both sides are equal to:
if B then [E] else []

Base Case 2. TE[[E I P +- L]] = TO[[E I P +- L]]
Starting from the right hand side:
TO[[E I P +- L 1]

= let ok P = True
ok _ = False

in map (\ P -> E) (filter ok L)
Now we can fuse map and filter:

= let ok P = True
ok _ = False
f a b = if ok a then (\ P -> E b) a else b

in foldr f [J L
Next we unfold ok, and perform simplifications:

= let f a b = case a of
P -> E : b
_ -> b

in foldr f [J L
= let f P b = E : b

f _ b = b
in foldr f [J L

3.3. List comprehensions 47

Now considering the left hand side, we have:
T£[[E I P ~ L] 1

= T F[[E I P ~ L 11 (:) []
= foldr f [] L

where
f P b = TF[[E 111 (:) b
f _ b = b

= let f P b = E : b
f _ b = b

in foldr f [] L

Inductive Case.

Assume

T£[[E I QS 11 = TO[[E I QS 1]
The goal is to show that

T£[[E I Q, QS]] = TO[[E IQ, QS]]

Again there are two cases:

Inductive Case 1.

T£[[E I B , QS] 1 = Ta[[E I B , QS]]

Starting from the left hand side:
T£[[E I B , QS] D

= T F[[E I B , QS]] (:) []
= if B then TF[[E I QS]] (:) [] else []
= if B then T£[[E I QS]] else []

And by the inductive hypothesis:
= if B then TO[[E I QS] D else []

Vvenow use the fact that concat [XS] equals xs:
= if B then concat [Ta[[E I QS]]] else concat [[]]
= concat (if B then [TO[[E I QS]]] else [])
= concat (TO[[TO[[E I QS]] I B]])

which equals the definition of TO.
Inductive Case 2.

T£[[E I P ~ L, QS]] = Ta[[E I P ~ L, QS]]

48 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

Starting from the right hand side:
TO[[E 1 p ~ L, QS]]
Using TO gives:

= concat (TO[[TO[[E 1 QS]] 1 p ~ L]])
By using base case 1.

= concat (TE[[TO[[E 1 QS]] 1 p ~ L]])
We can now use TE and TF, giving:

= concat (build (\ c n ->
let f P b = TF[[TO[[E 1QS]] I]] c b

f _ b = b
in foldr f n L)

= concat (build (\ c n ->
let f P b = c (TO[[E 1 QS]]) b

f _ b = b
in foldr f n L)

Unfolding concat and using the foldr/build rule gives:
= build (\ c n ->

let f P b = foldr c b (YO[[E I QS]])
f _ b = b

in foldr f n L)

Now we can used the inductive hypothesis.
= build (\ c n ->

let f P b = foldr c b (T£[[E 1 QS]])
f _ b = b

in foldr f n L)

which, by the definition of TE and the foldr/build rule gives:
= build (\ c n ->

let f P b = TF[[E 1 QS]] c b
f _ b = b

in foldr f n L)

o

3.4. augment: A new super-constructor 49

3.4 augment: A new super-constructor

Consider this definition of append:

ys ++ xs = foldr (:) ys xs

How do we express the list production of (++) in terms of build? We cannot
just abstract over the cons and nil:

ys ++ xs = build (\ c n -> foldr c ys xs) -- WRONG

This example is ill-typed, and correctly so. It violates our rule of constructing
our lists, that we must use c to construct all the cons cells, not just the visible
cons cells. The problem is that y8 is of type list, and we want it to be of type
(3, as scoped by the build combinator (c.f. § 2.4).

The same problem occurs when trying to represent a lone cons cell using build.
x : xs = build (\ c n -> x 'c' xs) -- WRONG

There are three possible solutions to this problem .

• We could use an extra foldr. For our examples (++) and (:»), we could
write:

xs ++ ys = build (\ c n -> foldr c (foldr c n ys) xs)
x : xs = build (\ c n -> x 'c' foldr c n xs)

However, we have introduced an extra list consumption (using foldr en).
Experience has shown that even if we are conscientious about our attempts
to remove this extra consumption, we cannot guarantee that this. When us-
ing cheap deforestation we observed some programs that ran substantially
slower, specifically because of this extra foldr. Clearly this is unaccept-
able, and we therefore must look for alternative schemes.

• 'vVecan have extra rules to handle problematic list creators, like (++) and
(:), in a special way. We consider this in § 3.4.1.

• We can generalise the build function in such a way that we can handle
this type of problematic list creation, which we do in § 3.4.2. This is the
solution that we finally adopt.

50 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

3.4.1 Using extra rules

In order to handle (++) and (:), we could lift them into our "alphabet" of com-
binators, and derive new rules to handle them. Currently our alphabet consists
of one list producer (build), one consumer (foldr), with one rule fusins them
together § 2.3. (For clarity, we ignore foldl, re-introducing it in § 3.5.) We could
add two new producers (:) and (++). Furthermore, because we are no longer
expressing the consumption of ++'s first argument with foldr, we also need to
add (++) as an extra producer.

So we have the three list producers:

build (\ c n -> ...)
x : xs
xs ++ ys

and the two list consumers:

foldr f z (...)
(...) ++ zs

Matching each list producer with each consumer gives six rules:

(1) foldr f z (build g) = g f z
(2) foldr f z (x:xs) = f x (foldr f z xs)
(3) foldr f z (xs ++ ys) = foldr f (foldr f z ys) xs

(4) build g ++ zs = g (:) zs
(5) (x:xs) ++ zs = x : (xs ++ zs)
(6) (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Six rules are still a manageable list removal schema. Notice that two of the rules
(2) and (5) are simply instances of the original function definitions.

However, in this set of rules, the result we obtain can depend on the order in
which we apply the rules. Consider:

3.4. augment: A new super-constructor 51

foldr f z (map g xs ++ ys)

V..le can express map in terms of foldr and build giving:

foldr f z (build (\ e n ->
foldr (\ a b -> g a 'e' b) n xs) ++ ys)

Now we have a choice of what rule to apply. If we use rule (3) (and perform
,B-reductions) we get:

foldr f (foldr f z ys) (build (\ e n ->
foldr (\ a b -> g a 'e' b) n xs))

Now we can perform the foldr/build rule, giving:

foldr (\ a b -> g a 'f' b) (foldr f z ys) xs

In this ordering, our extended deforestation has been successful. But reconsid-
ering the example, before using rule (3):

foldr f z (build (\ e n ->
foldr (\ a b -> g a 'e' b) n xs) ++ ys)

If we had chosen the other possible rule, rule (4), we would have obtained:

foldr f z (foldr (\ a b -> g a (:) b) ys xs)

There is now no further rule to apply, and we have missed a deforestation op-
portunity.

The problem is rule (4). After using it we do not have build or (++) at the
outermost level to give a handle into the creation of the result list. We could
rewrite rule (4) thus:

(4) build g ++ zs = build (\ c n -) g c (foldr c n zs))

but this brings us back to the problem of introducing extra foldr's. It would
be nice if we could capture the essence of these extended rules in a set of rules
that did not have the ordering constraint, and at the same time generalise our
list production capacity. This is what we do in the next section.

52 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

3.4.2 Expanding our foldr/build rule

In this section we introduce a new function augment, which can be given the
definition:

augment g h = build g ++ h

where augment has the type

Va. (V 13 . (a -+ 13 -+ 13) -+ 13 -+ 13) -+ [0] -+ [0]

augment hides the bad properties of (++), allowing a new foldr/augment rule
to achieve the nice properties of the above system, but without the ordering
problem. (We give augment a new definition later that uses neither build nor
(++).)

augment can he used instead of build, (:) and (++), when expressing list pro-
duction.

• build can he expressed by giving augment an empty list as its second
argument.

build g = augment g []

• (:) can be expressed by passing on its second argument as the second
argument to augment.

x : xs = augment (\ c n -> c x n) xs

• (++) can be expressed by passing on its second argument as the second
argument to augment.

xs ++ ys = augment (\ c n -> foldr c n xs) ys

Furthermore, this definition of (++) is a good list consumer of X8. The
troublesome extra traversal y8 no longer happens.

Because of these properties we call augment our new super-constructor.

If we express our productions using our new augment function, we can use the
foldr/augment rule to eliminate intermediate lists: The foldr/augment rule is:

\foldr k z (augment 9 h) == 9 k (foldr k z h) I
Tho foldr/build rule is simply a special case of our new foldr/augment rule.
The proof for the foldr/augment rule is straightforward.

3.4. augment: A new super-constructor 53

Theorem
(The foldr/augment Rule)

foldr k z (augment 9 h) = 9 k (foldr k z h)

Proof
foldr k z (augment 9 h)

= foldr k z (build 9 ++ h)
= foldr k (foldr k z h) (build g)
= 9 k (foldr k z h)

o

The definition of augment given above is not very efficient:

augment g h = build g ++ h

We can give augment a very efficient implementation. If we unfold ++, to give:

augment g h = foldr (:) h (build g)

We can now use our foldr/build rule, giving:

augment g h = g (:) h

which is an efficient definition that does not rely on either (++) or build.

This definition of augment leads to an interesting observation, namely we have
already proved the foldr/augment rule correct in Chapter 2. When proving the
foldr/build rule (page 27) we actually prove the equation

foldr k z (g (:) b) = 9 k (foldr k z b)

and then instantiate b to []. This equation is the foldr/augment rule.

3.4.3 Example of deforestation using augment

We have seen how augment can be used to capture the essence of build, (:) and
(++). Consider again the definition:

foldr f z (map g xs ++ ys)

This time we can deforest without worrying about orderings. Unfolding (++)
and map in terms of foldr and our new list producer, augment, gives:

54 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

foldr f z (
augment (\ c n ->

foldr c n (augment (\ c n ->
foldr (\ a b -> f a Cc' b) n xs) [J»)

ys)

Ifwe perform the outermost instance of the foldr/augment rule (with i3-reductions),
we get:

foldr f (foldr f z ys) (augment (\ c n ->
foldr (\ a b -> g a Cc' b) n xs) [J)

Now perform the remaining instance of the foldr/augment rule (again with
IJ-reductions, etc.), gives the efficient, deforested code:

foldr (\ a b -> g a 'f' b) (foldr f z ys) xs

3.5 Summary of cheap deforestation

In the previous sections we discussed the pragmatics of consuming and producing
lists. In this section we summarise cheap deforestation, giving a complete list
of transformations, as well as a simple "transparency" guide for when cheap
deforestation will succeed in removing an intermediate list.

3.5.1 Transformations used in cheap deforestation

In this chapter we have added a new producer (augment) and a new consumer
(foldl).

• augment could totally supersede build. However, most examples would
then be of the form augment g [], the definition of build. For this prag-
matic reason, we allow build to remain in our alphabet of list producers.

• We have already argued that it is convenient to have foldl as well as
foldr.

• We do not want to have to re-write (:) in terms of augment to handle
expressions like

foldr f z (a:b:map f xs)

Instead we add (:) as a "good" list producer.

3.5. Summary of cheap deforestation 55

This does not mean that build and augment are redundant! The transfor-
mation system can only handle explicit consumption of (:) (c.f. § 2.1.2),
not if (:) is produced recursively, etc .

• We also add 0 to our list of "good" producers.

Ifwe cross our four list producers with our two list consumers, we get the transfor-
mation rules that are at the heart of cheap deforestation. They are summarised
in Figure 3.4.

3.5.2 The transparency of cheap deforestation

VVehave already seen how cheap deforestation allows programmers to write
clearer programs (that use intermediate lists) relying on the compiler transform-
ing many such programs into efficient, listless programs. If the programmer is to
rely on the compiler to remove intermediate lists, it is important to give a clear
specification of the conditions under which the optimisation performs deforesta-

tion.
An intermediate list is removed by cheap deforestation if:

• The list is produced by a good producer.

• The list is consumed by a good consumer.

• There is exactly one consumer.

• The producer is inlineable into the consumer.

We now define in some detail what good producers and consumers are. There is,
however, a caveat that should be mentioned first. Cheap deforestation does not
occur in a vacuum, but interacts with other transformations. In particular, in
our implementation we decide to run a transformation called full laziness before
our deforestation. Unfortunately sometimes full laziness can stop deforestation.
\Ve say more about this in § 4.2.3.

56 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

List Production augment (\ c n ->) h
build (\ c n ->)

x : xs
[J

List Consumption foldr f z (...)

foldl f z (...)

List Removal foldr f z (augment g h) = g f (foldr f z h)
foldr f z (build g) = g f z
foldr f z (x : xs) = f x (foldr f z xs)
foldr f z [J = z

foldl f z (augment g h) =
g (\ b k a -> k (f a b))

(\ z -> foldl f z h)
z

foldl f z (build g) =
g (\ b k a -> k (f a b))

(\ z -> z)
z

foldl f z (x xs)
foldl f z [J

= foldl f (f z x) xs
= z

Figure 3.4: Summary of cheap deforestation rules

3.5. Summary of cheap deforestation 57

3.5.3 Good producers

Good producers are:

• Any list explicitly expressed by the programmer using build or augment.
For example:

build C\ c n -> c el Cc e2 Cc e3 n)))

augment (\ c n -> c el (c e2 (c e3 n))) xs

• Any constant list, for example:

[el, e2, e3, e4J or [J

• Any enumerated lists, for example:

[e1..J or [e1,e2 ..] or [e1..e2] or [e1,e2 .. e3]

• Any list comprehension, for example:

[f x I x <- y, g X]

• Full application of the following prelude functions:
++, assocs, concat, cycle, elems, filter, ini t, indices,
iterate, map, nub, repeat, reverse, take, takeWhile,
unlines, unzip, words, zip, zipWith

• el : e2 is a good producer. This includes examples like:

3.5.4 Good consumers

A good consumer is a context in which a list is ultimately consumed using foldr.
The following are all good consumers, where <P marks the placement of the con-
sumed list:

• The following prelude functions:
all f <P, and <P, any f <P, array (x ,y) <P, concat <1>,
filter f <P, foldl f z <P, foldr f z <P, head <P, length <P,
map f <P, null <P, or <P, partition <P, product <1>,
sum <P, takeWhile <P, unlines <P, unzip <P.

58 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

• The first argument to (++) is a good consumer:

~++ys

Furthermore, the second argument to (++) is a good consumer, if (++)
itself is consumed by a good consumer.

• (:) 's second argument is a good consumer, if the fully applied (:) is itself
consumed by a good consumer.

• A generator inside a list comprehension:

[... I .. , , PI <- <I>, ...]

• reverse is a good consumer. However there is a caveat with its use (§ 3.5.6).

3.5.5 Common examples

Here are some common examples of Haskell expressions that have their interme-
diate lists removed by cheap deforestation.

• A chain of list comprehensions:

[f x x <- el] ++
[f x X <- e2] ++
[f x x <- e.3]

The traditional scheme for translating list comprehensions (Wadler 1987 a)
has CL special case for handling chains of appends. Cheap deforestation
automatically includes such examples as part of its regular optimisation
pattern. (§ 3.3) Also in our scheme any good producer can be substituted
for any list comprehension in the chain of appends.

• Array Comprehensions

array (1,n) [(i,i * i) I i <- [1. .n]]

After deforestation this builds an array without using any intermediate
lists. vVe return to this example in § 5.2.

3.5. Summary of cheap deforestation 59

• General List Processing

Functional programmers often express their problems using a pipeline. For
example":

map f . takeWhile g . iterate h

Functional programmers often express their problems using a pipeline like
this example.

3.5.6 Caveat with using reverse

There is a caveat with using reverse. It is a good consumer of its list argument,
but it can replace the list with a sequence of thunks (unevaluated suspensions).
Sometimes a tangle of thunks can be created. As an example of this, consider:

reverse xs = build (\ c n -> foldl (flip c) n xs)
list_id xs = reverse (reverse xs)

First we unfold reverse twice in the right hand side of list_id:

list_id xs = build (\ c n ->
foldl (flip c) n

(build (\ c' n' -> foldl (flip c') n' xs)) n)

Now we use the foldl/build rule.

list_id xs = build (\ c n ->
foldr (\ b g a -> g (\ b' g' a' -> g' (c b' a') b a)) id xs id

n)

Now we can unfold build and foldr, and apply some other straightforward
transformations to give:

list_id xs =
let

h [] a = a
h (x:xs) a = h xs (\ a' -> a (x a'))

in
h xs id []

The strange looking function works by accumulating a list abstracted over its tail.
The intermediate list has simply been replaced with a sequence of suspensions.

1 (.) has the definition f . g = \ X -> f (g x), and can always be unfolded, possibly
revealing pairs of good producer/good consumer, allowing deforestation.

60 Chapter 3. Expressing List-manipulating Functions in foldr/build Form

We might have hoped that our transformation system could have found the
apparent equality:

reverse (reverse xs) =xs

However this is not true for lazy languages, where reverse is spine-strict, i.e.:

reverse (reverse (x: .1.)) =1= x : .1.

So the transformed code needed to descend the lists, finding its tail before re-
turning the list.

There is an important advantage, however, of being able to handle both list
production and consumption with reverse. Consider the function:

foo f g = map f . reverse . map g

Here, after applying deforestation, we achieve:

foo f g xs =
let

h [] xs = xs
h (x:xs) xs = h xs (f (g x) xs)

in
h xs [J

Now the functions f and g have been brought together, and further optimisa-
tions could act on this exposed application that was previously separated by the
medium of an intermediate list.

3.5.7 What our transparency algebra does not handle

This transparency models accurately when deforestation will occur, modulo other
transformations. What it does not manage to capture is what we call second level
deforestation. Consider the Haskell program:

map (map (+ 1)) [[1. .]]

The model does predict the fusion of the outer map with the singleton list. How-
ever it does not predict that the inner map will then fuse with the enumeration
[1..]

It is hard to see how the transparency model could be expanded to cope with
this sort of "second level" deforestation, without including every optimisation
tho cornpiler does in the model, which is obviously impractical.

Chapter 4

Implementing Cheap
Deforestation

In this chapter we explain how to implement cheap deforestation inside a real
compiler. To allow us to explore a concrete implementation we add our list
removal technique to the Glasgow Haskell compiler (GHC). Adding our opti-
misation to a real compiler allows us to examine the real problems and let us
perform cheap deforestation on real examples. We start by describing GHC,
concentrating on the internal intermediate language, which is the grammar we
will be handling (§ 4.1). We then discuss adding the cheap deforestation trans-
formations to GHC (§ 4.2).

We then go on to give some more details about some aspects of our implemen-
tation that we added because of feedback we received for examining the output
code. We need to enhance how we inline through lambdas to achieve successful
deforestation, which we explain in § 4.3. Then we explain how to perform ar-
ity expansion on recursive functions, in § 4.4. Finally, we make some changes to
allow the successful handling of build inside our transformation system, in § 4.5.

4.1 The Glasgow Haskell compiler

The Glasgow Haskell compiler is an industrial strength compiler. It is a result
of the GRASP and AQUA projects at Glasgow University. The compiler has
intentionally been written to be a "motherboard", so it is straightforward to
"plug in" a new optimisation.

The Glasgow Haskell compiler expresses its various compilation stages as cor-
rectness preserving transformations. This paradigm of compilation via transfor-
mation is common in the functional language compiler community (Appel 1992,

61

62 Chapter 4. Implementing Cheap Deforestation

Fradet & Metayer 1991, Kelsey 1989). These transformations can either translate
from one syntax to a simpler syntax, or perform an optimising transformation
that transforms a single syntax, making the program more efficient.

Stg to Stg

Figure 4.1: Components in the Glasgow Haskell compiler

4.1.1 Organisation of the Glasgow Haskell compiler

Figure 4.1 illustrates the principal components of the compiler. Apart from
the parser and C compiler, all the components are written in Haskell. These
components have the following functions:

1. A Yacc parser (Johnsson 1983) reads the Haskell program, and passes the
abstract syntax tree to the compiler proper.

2. A renamer resolves naming issues, such as name scoping and information
propagation across module boundaries.

3. A type inference pass annotates the program with type information, using
an extended variation of the Hindley-Milner type inference algorithm (Wadler
& Blott 1989).

4. A desuqoritu; pass converts the full Haskell syntax to a straightforward
functional language, called the Core language.

4.1. The Glasgow Haskell compiler 63

5. Several different Core-to-Core optimising transformations are performed.
This component (which is shaded in Figure 4.1) is the natural place to add
the foldr/build rule.

6. Core is converted into an even simpler language, called the Shared Term
Graph (STG) language.

7. Further transformations are done to this simple language.

8. Finally a code generator turns the STG language into C. This target lan-
guage, C, can then be compiled to an executable via any C compiler.

4.1.2 The Core language in the Glasgow Haskell
compiler

The part of the compiler we are concerned with contains a series of optimisation
passes expressed as Core to Core transformations. The Core language is an
augmented second order lambda calculus, whose syntax appears in Figure 4.2.

Core was designed to be used by optimising transformations. Because of this the
Core language was intentionally kept to a minimal set of constructs. This allows
optimisers to work in a world free from the syntax clutter of larger languages,
such as Haskell itself. Using the second order A-calculus as a starting point, let,
case for single-level patterns, explicit constructors and primitives were added to
handle modern functional languages efficiently (Peyton Jones 1987).

• In Core, let is used to represent allocations:

let
h = <exp>

in

This code means that a suspension for <exp> is allocated in the heap.

• case is used to trigger evaluations:

case f x of
True -> <expl>
False -> <exp2>

This mean the f x is evaluated, and then <exp1> or <exp2> is evaluated,
depending on the result of f x.

64 Chapter 4. Implementing Cheap Deforestation

Program Prog -+ Bindinq, ; ... ; Bindingn n~l

Bindings Binding -+ nonree Bind
ree Binds

Binds -+ Bindl; ... ; Bindn n~l

Bind -+ v = Expr

Expressions Expr -+ Expr Atom Application
Expr ty Type application
). Vi ... vn -> Expr Lambda abstraction,

n>O
A ty -> Expr Type abstraction
case Expr of Alts Case expression
let Binding in Expr Local definition
Gon Atomi ... Atomn Constructor, n ~ 0
prim Atoml ... Atomn Primitive, n ~ 0
Atom

Atoms Atom -+ V Variable
Literal Unboxed Object

Literal values Literal -+ integer I float I

Alternatives Alts -+ Calti ; ... ; Galtn; Default n~O
Laltl; ... ; Laltn; Default n~O

Constr. alt Galt -+ Gon VI ... Vn -> Expr n~O

Literal alt Lalt -+ Literal ~> Expr

Default alt Default -+ V -> Expr
E

Figure 4.2: Syntax of the Core language in the Glasgow Haskell compiler

4.1. The Glasgow Haskell compiler 65

• A global objective inside GHC is to maintain type information right through
to the code generator. In order to allow arbitrary transformations within
the typed Core language, the language is based on the second order A-
calculus. Because of this, it is possible to straightforwardly derive the
complete type of any object. The foldr/build rule can easily be expanded
into the second order A-calculus.

• The arguments of applications are atomic. This allows optimsation systems
to have a smaller set of transformations, because there is a canonical way
to express Haskell expressions like f (g 2), specifically:

let t = g 2 in f t

If arbitrary expressions were allowed on the right hand side of an appli-
cation, then there would be two ways of expressing the above expression,
and there would need to be two cases inside any optimiser to deal with the
differences.

4.1.3 Desugaring Haskell to Core

The desugaring pass transforms the syntactic baggage from the large Haskell lan-
guage, translating it into the more restricted Core language. The implementation
inside GHC adheres closely to Peyton Jones (1987). Specifically, the desugaring
pass performs the following transformations:

• Pattern matching is converted into single level case operations.

• Haskell let and where declarations are converted into the equivalent, single
level let.

• Constructors and primitives are saturated, if necessary by adding extra
lambdas.

• The arguments of applications, constructors, and primitives are made atomic,
by let-binding any non-atomic arguments.

• Information from the type-checker is used to add type lambdas and type
applications.

• List comprehensions are translated into recursive list producers and con-
sumers. The compiler previously employed a traditional scheme to perform
this operation (Wadler 1987a, Augustsson 1987). We replace this scheme
with the "deforestation-friendly" scheme, as presented in (§ 3.3).

66 Chapter 4. Implementing Cheap Deforestation

As an example of Core, consider the Haskell function:

reverse xs = rev xs []
where
rev (x:xs) ys = rev xs (x:ys)
rev [] ys = ys

After desugaring, this function would be expressed as:

reverse :: \/ a . [a] -> [a]
reverse = /\ ty ->

\ t ->
let

rev = \ t ys ->
case t of

x : xs -> let tl = (:) ty x ys
in rev xs tl

[] ->.ys
in

rev t []

Here we use /\ to represent A, \ to represent A, and \/ to represent V.

The Core program is more verbose than the original Haskell program! For reasons
of clarity we transliterate as many as possible future examples back into a more
Haskell-like syntax wherever possible. We do this by omitting the explicit type
applications/abstractions, and take liberties with the atomic argument rule of
Core. So, the reverse example, in our "concise" Core would be written:

reverse :: [a] -> [a]
reverse = \ t ->

let
rev = \ t ys ->

case t of
x : xs -> rev ex ys) xs
[] -> ys

in
rev xs []

4.2 Adding the foldr/build rule to the
Glasgow Haskell compiler

We now can add cheap deforestation into the Glasgow Haskell compiler. As we
have seen for our earlier examples, there are three key steps to our deforestation
technique:

4.2. Adding the foldr/build rule to the Glasgow Haskell compiler 67

1. Providing foldr and build (and foldl, and augment) versions of prelude
functions, and unfolding these definitions.

2. Performing any instances of the rules given in Figure 3.4, as well as per-
forming general purpose simplifications.
We have already observed that performing simplifications after using the
foldr/build rule can reveal new instances of the foldr/build rule (§ 2.3.3).
Because of this, we want to add cheap deforestation into the simplification
framework provided by the general purpose simplifier, as extra transforma-
tions.

3. Cleaning up after deforestation. This also involves general purpose simpli-
fications, as well as possibly unfolding foldr, foldl, build and augment.
Again we want to use the current simplifier to do this.

So, in summary, we want to run a modified version of the simplifier twice, once
to performing cheap deforestation reductions, and once to unfold foldr, build,
etc.

In this section we first explain how we extended the Haskell typechecker to han-
dle build and augment (§ 4.2.1). Then, in § 4.2.2, we explain how the current
simplifier works, and how to add the cheap deforestation rules to it. Then we
consider the best time to use cheap deforestation in relation to the other com-
ponents of GHC's optimisation system in § 4.2.3. Finally, in § 4.2.4 we consider
how to handle Strings, which have a compact representation in GHC.

4.2.1 Adding build and augment to Haskell programs

Haskell has a type system based on the Hindley-Milner type system. In the
Hindley-}.,1ilnersystem all type variables are quantified at the outer level". So,
for example, the Haskell type

foldr :: Ca -> b -> b) -> b -> [a] -> b

really means:

foldr :: V 0 . V {3 . (0 ~ (3 ~ (3) ~ {3 ~ [a] ~ {3

build, however, does not have a type that obeys this restriction.

build :: Va. (V {3 . (a ~ (3 ~ (3) ~ (3 ~ (3) ~ [a]
1 In Haskell things are actually much more complicated, because of overloading. However,

this is irrelevant to the concepts behind our new type rules.

68 Chapter 4. Implementing Cheap Deforestation

build
r f- g : \;ft. (T ~ t ~ t) ~ t ~ t

r f- (build g) : [T]
t rt. FV(T)

var r,x : Sf-x: S x rt. {build, augment}

augment
r f- g : \;ft. (T ~ t ~ t) ~ t ~ t

r f- (augment g) : [T] ~ [T]
t rt. FV(T)

Figure 4.3: Type rule extensions for build and augment

Fortunately, there is a simple extension to the Haskell type system that can be
made to allow build to have a correct type. Figure 4.3 gives two extra rules, one
for build and one for augment. We also need to check that we do not attempt
to assign a type to any occurrences of build and augment that are not fully
applied.

4.2.2 Modifying the simplifier

A general purpose simplifier (Santos 1995) performs many small, local optimisa-
tions, like ,B-reductions and let-inlining. There are two stages to the simplifier .

• A pre-processor performs occurrence analysis on the program, computing
when something can be inlined. For example, consider:

let
v = <exp>

in
v x

In this example v could be inlined. We say more about the occurrence
analyser in § 4.3 .

• Guided by this occurrence information, a second pass, the simplifier proper,
performs many straightforward transformations in a single pass over the
program, like j3-reductions and case-reduction.

These two passes are repeatedly performed on the Core syntax, until either no
more simplifications are possible, or a fixed maximum number of iterations has
been reached.

4.2. Adding the foldr/build rule to the Glasgow Haskell compiler 69

One important function of the simplifier is to "clean up" programs, by removing
dead code or inlining trivial let bindings. This also frees other Core-to-Core
passes from concerning themselves with the cleanliness of the code they produce.
For example, other optimsation passes can rely on the dead code elimination
in the simplifier. Furthermore many optimisations expose new opportunities for
local optimisations to be used. Because of these roles, the simplifier, as well as
being an optimiser in its own right, is also used as "mortar" separating several
different optimisations.

Adding the cheap deforestation rules extra transformations is straightforward
within the framework of the simplifier. foldr, foldl, build and augment are
"tagged", so that the compiler can spot them as special identifiers. Inside the
simplifier any application to foldr (and foldl) has its atomic argument tested,
to see if it is bound to a build (or augment). For example:

let
v = build g

in
foldr f z v

In this case foldr's third argument is bound to build g, and the occurrence
analyser would marked build g as suitable for inlining, so the foldr/build
transformation can be used, to give:

g f z

We discuss what makes a binding suitable for inlining in § 4.3.

4.2.3 When to use the foldr/build rule inside the
Glasgow Haskell compiler

'Ne have already decided to run a modified version of the simplifier twice, once
to perform cheap deforestation reductions, and once to unfold foldr, build,
etc. Vveneed to answer the question, however, of when we should use these two
distinct versions of the simplifier. The principal factors in this decision are:

• We should run full-laziness before deforestation. For example, consider:

faa f = map f (map g xs)

where g and xs are free variables inside the function foo. If we use full
laziness, we could transform this to:

70 Chapter 4. Implementing Cheap Deforestation

v = map g xs
foo f = map f v

If we instead performed deforestation before full laziness, we would get the
definition:

foo f =
let

h [] = n
h (a:as) = f (g a) as

in
h xs

Now the two maps have fused. We cannot pull out an expression that com-
putes the intermediate list only once, because there now is no intermediate
list.

So which should have precedence, full laziness or deforestation? There is
evidence to suggest that full laziness should be run first. Consider if the
free variables xs and g were bound to:

xs = [1. .n]
g x = if x > 2 then g (x-i) + g (x-2) else i

Running full laziness first results in the program building the list

gl:g2:g3:···

once, while if deforestation was performed first, the list would be re-created
each time.

This behaviour is intuitive. Deforestation merges producers and consumers
together. If the consumer or the producer could have its evaluation shared,
this might produce larger savings than just removing the intermediate list
between them. Informally we argue that typically it is the elements of a
list that are expensive to compute, compared to actually building the list.

• We would like to run strictness analysis after cheap deforestation. This is
because unfolding foldr, which is done after performing cheap deforesta-
tion, produces functions that are more 'strictness friendly'. One concrete
example is:

foo n = sum [i ..n]

Ultimately, after cheap deforestation, (and other optimisations we discuss
later) this reduces down to:

4.2. Adding the foldr/build rule to the Glasgow Haskell compiler 71

foo n =
let
h x a =
if x < n
then h (x+l) (a + x)
else a

in
h 1 0

The strictness analyser can exploit the strictness of both of h's arguments,
giving very efficient code. Doing cheap deforestation after strictness anal-
ysis would deny us this important optimisation opportunity.

Based on these two criteria, we have modified two specific runs of the simplifier,
one to perform, as well as its normal duties, cheap deforestation after full laziness,
and another after the first, but before strictness analysis, to inline foldr and
build, etc.

4.2.4 Handling strings

In Core, literal strings are represented by a Literal that contains the string. We
notate this with:

"hello, world"L

During translation from Core to the STG language literal strings are transformed
into vectors of bytes. They are wrapped in a function that unpacks the vector
at runtime into a list of Chars. We notate a vector of bytes with

"hello, world"#

We can handle strings as good producers by wrapping the unpacking of the string
up in a function written with build. We transform:

"hello, world"L

into
build (\ c n -) unpackWith c n "hello, world"#)

allowing the deforestation of literal strings.

72 Chapter 4. Implementing Cheap Deforestation

4.3 The enhanced occurrence analyser

In this section we give some extensions to GHC's occurrence analyser. In § 4.3.1
we explain the current occurrence analyser. In § 4.3.2 we explain why the occur-
rence analyser needs to be enhanced. In § 4.3.3 we introduce our enhancement.

4.3.1 The original occurrence analyser

The occurrence analyser counts statically the number of occurrences of each
bound variable in such a way that the simplifier can decide on suitability for
inlining. As an example, consider:

let
f = \ v -> <expr>

in
f 3

The occurrence analyser annotates the binding of f, stating that it is only used
once, and suitable for inlining. The simplifier will then transform this example
to:

(\ v -> <expr» 3

Further iterations of the simplifier allow further simplification, in this case a
fJ-reduction.

However, a simple "head count" is not sufficient for determining suitability for
inlining. Consider:

let
f = g 2
h \ x -> . . . f ...

in
h 1 + h 2

Now, although f only occurs once, it could be used many times. If f was naively
in lined into h's right hand side the result of the computation g 2 would occur
twice!

let
h = \ x -> ... g 2 ...

in
h 1 + h 2

4.3. The enhanced occurrence analyser 73

The bottom line is that it is unsafe to inline a redex through arbitrary A's, (From
now on, we use the terms "safe" and "unsafe" in the context of the possible
duplication of work caused by inlining through A's.)

The occurrence analyser annotated all binders with information about how that
definition is used, taking into account recursive bindings. This annotation can
be one of three things.

• DeadCode. This requests that this binding be discarded, because it is
never used.

• Inlineable. This is where a binding is only used once, and in such a way
that it could be safely inlined.

• Many Occurrences. Everything else falls into this category.

Using this information the simplifier can remove dead code, and optionally inline
the right hand side of a binding. A binding would typically be inlined if it was
very small (and not a redex), or occurred only once in its scope in a safe location,
as determined by the occurrence analyser.

4.3.2 Why map of map fails

Unfortunately, there are cases where we want to inlining through A's to maximise
deforestation opportunities. Consider the expression:

map f (map g xs)

When we examine the transformations taking place inside our compiler when
compiling this expression, we find that extra transformations, that allow selective
inlining through A's, are need. The map of map example transforms into:

let
v = map g xs

in
map f v

We first inline our good producer and consumer version of map, which has the
definition:

map = \ f xs -) build (\ c n -) foldr (\ a b -) f a cc' b) n xs)

Inlining this into map f (map g xs) gives

74 Chapter 4. Implementing Cheap Deforestation

let
v = (\ f xs -) build (\ e n -)

foldr (\ a b -) f a 'e' b) n xs)) g xs
in

(\ f xs -) build (\ e n -)
foldr (\ a b -) f a 'e' b) n xs)) f v

We now turn the saturated AS into lets, using the safe transformation:

let v = e2 in el

This gives the expression:

let
v = build (\ e n -) foldr (\ a b -) g a 'e' b) n xs)

in
build (\ e n -) foldr (\ a b -) f a 'e' b) n v)

To allow deforestation of map f (map g XS), we need to inline the right hand
side of v, through the A c n. Unfortunately, this inlining is, as we discussed
in § 4.3.1, in general unsafe. The problem is that inlining a redex through a
lambda can lose laziness. In this specific case, however, it is perfectly safe to
inline the right hand side of xs: This can be illustrated by considering what
would happen if we inlined the lower bui Id:

let
v = build (\ e n -) foldr (\ a b -) g a cc' b) n xs)

in
(\ c n -) foldr (\ a b -) f a cc' b) n v) (:) [J

Now we can perform ,B-reductions, eliminating the troublesome AS.

let
v = build (\ e n -) foldr (\ a b -) g a cc' b) n xs)

in
foldr (\ a b -) fa: b) [J v

Now it is easy to determine the v's can be inlined, because there are no AS to
cross. After this inlining, an instance of the foldr /build rule will occur, and
the intermediate list between the two maps will be deforested.

4.3. The enhanced occurrence analyser 75

4.3.3 The enhanced occurrence analyser

Volenow introduce a simple extension to GHC's occurrence analyser, that exploits
properties of build, but without needing to inline build to get the benefits.

Specifically, we observe that for build:

• build only uses (enters) its argument once.

• When build uses its argument, it always applies it to two arguments.

In other words, if build's argument has two AS around it, they will be saturated
and removed when build is unfolded. So it is possible to inline through these
two specific AS without losing laziness.

Our extensions to the occurrence analysis exploit these properties. We give every
expression a "type" that represents the dynamic properties it has. Types are of
the form T, where T is defined as:

T 011]-7T

1] =j_11121

o means unknown. 3 -7 0 means that the expression with this "type" will take
(at least) one argument, it will enter that argument only once, and there will be
(at least) three arguments to this argument. j_ -7 0 means that you will take
an argument, but you can assert nothing about it. When analysing applications,
if the left hand side has "type"

1] -7 0

then it is safe to inline through the first 1] AS. build has the "type"

and augment has the "type"

The implementation of the enhanced occurrence analyser simply carries a counter
for the number of AS that can be inlined through. Our algorithm does not handle
the automatic derivation of "types" , rather we explicitly wire in the type of build
and augment.

76 Chapter 4. Implementing Cheap Deforestation

4.4 Arity analysis

Sometimes after using cheap deforestation programs have further scope for opti-
misation. Consider this code fragment:

sum [1..n]

Cheap deforestation can straightforwardly remove the intermediate list, but the
resulting code has an implicit accumulating parameter:

let
h :: Int -> Int -> Int
h = \ x ->

if x < n
then let v = h (x+l)

in \ y -> v Cx+y)
else \ y -> Y

in
h 1 0

Now we would like to change the arity of h, lifting the \ y -> through to beside
the \ x ->, making this accumulating parameter explicit. However, this is not
straightforward. Consider the sub-expression:

let v = h (x+I)
in \ y -> v Cx+y)

If we could inline v through \ y ->, we could apply the translation

if x < n
then \ y -> h (x+l) (x+y) ==>
else \ y -> Y

\ Y -> if x < n
then h (x+l) (x+y)
else y

However h (x+l) is a redex, and we cannot inline redexes though AS. But we
are trying to increase the arity of h, and it would no longer be a redex if we
succeeded! The fact that h currently has an arity of 1 is stopping us increasing
its arity to 2.

Our algorithm for getting round this problem works like this:

For each let binding

• First we look at the body of the let, to see the "optimal" number of
arguments a binding has.

• If the binding's right hand side does not have at least this number of AS,
we then try to prove that extra AS can be added.

4.4. Arityanalysis 77

• If the proof is successful we add more AS to the binding's right hand side,
and thus increase the arity of the binding.

We are using a simple fixpointing technique. In our example we presume that h
has the arity we want it to have, in this case 2, because h's initial application with
two arguments. Then we analyse h's right hand side, carrying this assumption.
Most of the time (as in this case) the assumption is demonstrated to be correct.
Sometimes, however, the assumption is wrong, and we have to re-analyse the
right hand side of the let-binding with a weaker assumption.

Consider our example:

let
h :: Int -> Int -> Int
h = \ x ->

if x < n
then let v = h (x+l)

in \ y -> v (x+y)
else \ y -> Y

in
h 1 0

We want to prove that h can have an arity of two without losing laziness. So we
carry this information into the right hand side of h. Now h is found in the form:

let v = h (x+l)
in \ y -> v (x+y)

It appear that h is only applied to one argument here. But if we presume that
h has an arity of two, it is safe to inline v through the A, and get:

\ y -> h (x+l) (x+y)

and we have our desired recursive call of h, but now with two arguments. We do
not actually perform this inlining during arity analysis, but maintain sufficient
information to infer what variables can be inlined through what AS, given the
pre-conditions like presuming h has an arity of two. Now we can apply further,
traditional optimisations, giving:

let
h :: Int -> Int -> Int
h = \ x Y ->

if x < n
then h (x+l) (x+y)
else y

in
h 1 0

78 Chapter 4. Implementing Cheap Deforestation

4.5 Handing build within Core transformations

In this section we explain a small number of changes we-had to make to our
transformation system to allow it to interact amicably with build and augment.
Everything below applies equally for build and augment, but we just talk about
build for clarity.

Firstly, we need to make build "float" in a special way (§ 4.5.1). Secondly,
we need to be careful about inlining definitions that are of the form "build g"
(§ 4.5.2).

4.5.1 Let floating build

Consider the Haskell expression

let
v = build (\ c n -> <exp»

in

There are two alternative ways to represent this in Core.

let
v = let g = \ c n -> <exp>

in build g
in

or

let
g = \ c n -> <exp>

in
let

v = build g
in

The first alternative can save a heap allocation (for g's closure) when v is not
entered. The second always allocates g's closure, but because there are two con-
secutive allocations, the compiler can optimise both allocations, and only perform
one heap check. Santos (1995) found that first alternative was "better", except
when v was a Weak Head Normal Form (WHNF), when the second alternative
gave hetter code, partly because it enhances optimisation opportunities.

4.5. Handing build within Core transformations 79

As we explained in § 4.2.2, the foldr/build rule works by examining the right
hand side of the binding of the third argument of foldr. We would rather the
second alternative representation above, because it makes spotting build much
easier. We modified the simplifier to treat build g as a special case, allowing us
to use the second of the two alternatives.

4.5.2 Duplicating build

There is a caveat with inlining expressions of the form

build g

Though this is a "small" expression, performing inlinings that duplicate this is
undesirable, even if the duplication is safe. For example, consider

let
g = \ c n -> < big expression >
v = build g

in
case f x of

True -> v
False -> v

Because v's right hand side is small, and v only occurs once down each branch,
v could be inlined. But if v is inlined, we get:

let
g = \ c n -> < big expression >

in
case f x of

True -> build g
False -> build g

Now when we inline build we get:

let
g = \ c n -> < big expression >

in
c~se f x of

True -> g (:) []
False -> g (:) []

There is now no (straightforward) way of replacing c and n with (:) and [],
because the inlining mechanism is reluctant to duplicate the large right hand
side of g. This is inferior to the alternative if we did not inline v:

80 Chapter 4. Implementing Cheap Deforestation

let
_ g = \ c n -) < big expression)

v = g (:) []
in

case f x of
True -) v
False -) v

Now we can safely inline 9 and perform ,B-reductions on the result.

We fix this problem by encouraging the simplifier not to inline build g down
different branches of a case.

Chapter 5

Measuring Cheap Deforestation

In this chapter we quantify performance gains from using our implementation
of cheap deforestation. What are the important characteristics of a good opti-
misation? We use the explanation from Aho, Sethi & Ullman (1986), which we
abridge here:

• Firstly, an optimisation must preserve the semantics of the pro-
gram. This issue has already been addressed in § 2.4 and § 3.4.2.

• Secondly, an optimisation must, on average, reduce the resource
requirements of an optimised program. Resources include run-time,
heap usage and heap residency. This chapter addresses this with quantita-
tive measurements.

• Finally, an optimisation must be worth the effort!' This applies in
two ways. It must be worth the compiler implementers' time to add a
particular optimisation, and the optimisation must be sufficiently efficient
to not unduly affect the average compilation time.

This chapter is concerned with the measurable aspects of the second and third
points. We examine the usefulness of cheap deforestation in three parts. We
measure a couple of small, hand-picked examples that cheap deforestation works
well on § 5.1. We then see how cheap deforestation allows very efficient array
creation § 5.2. Finally, we measure the effect of cheap deforestation over a wide
range of benchmarks.

The benchmarks in this chapter were performed on various' SparcStations, as
resources allowed. A typical SparcStation was a Spare 5 with 64 Megabytes of

1Individual benchmarks were measured on the same machine, to allow fair comparisons.

81

82 Chapter 5. Measuring Cheap Deforestation

memory. For the crude, order of improvement measurements (§ 5.1) we simply
used the Unix time command. For our more detailed benchmarking (in § 5.4) we
used the actual number of native code instructions executed, to filter out noise
from other processes, network traffic, etc.

5.1 Deforestation on hand-picked benchmarks

In this section we look at how cheap deforestation improved a couple of example
benchmarks.

5.1.1 Queens

Queens was the one and only benchmark used in Gill et al. (1993). The bench-
mark was:

main = (print.sum.concat.queens) 10
where

queens :: Int -> [[Int]]
queens 0 = [[]]
queens m = [p ++ [nJ I p <- queens (m-l),

n <- [1. .10J ,
safe p nJ

safe :: [Int] -> Int -> Bool
safe p n = and [(j /= n) && (i + j /= m + n)

&& (i - j /= m - n)
I (i,j) (- zip [1..] p]

where m = length p + 1

This program compiled without cheap deforestation turned on this benchmark
took 9.4 seconds to run, and allocated a total of 61.3 megabytes of heap. Com-
piled with cheap deforestation turned on the benchmark took 5.4 seconds, and
allocated a total of 15.6 megabytes of heap. It is interesting to compare these
with the results reported in Gill et al. (1993).

"The original program run without our optimisation, and aver-
aged over several runs, took 24.4 seconds and consumed 179 megabytes
of heap. The transformed program under the same conditions ran
about three times faster (8.8 seconds) and allocated only 20% as
much heap (36 megabytes)."

5.1. Deforestation on hand-picked benchmarks 83

Though direct time comparisons are not valid (because the benchmarking ma-
chines are different) the differences in heap figures are interesting. Other opti-
misations inside the compiler are now much more aggressive. In particular, full
laziness will be contributing towards this improvement.

5.1.2 A ray-tracer

The current release of the Glasgow compiler (0.26) contains a slightly earlier
incarnation of cheap deforestation, which is turned on by default. One Glasgow
Haskell compiler user is performing a systematic study of a ray-tracer written
in Haskell, in particular, measuring the benefits of deforestation (Kort 1996).
His goal is to "create an elegant, but practical program with many higher order
functions and list comprehensions". Kort argues that deforestation should have
a great effect on such programs.

We obtained Kort's ray-tracer, and verified his claims. The ray-tracer was about
1000 lines of commented code. Kort identified that a critical function (the func-
tion that was at the innermost "loop") was part of matrix multiplication, and
called vecDot:

vecDot :: [Double] -) [Double] -) Double
vecDot v1 v2 = sum (zipWith (*) v1 v2)

Putting this function though the Glasgow Haskell compiler with cheap deforesta-
tion turned on gives:

vecDot [Double] -) [Double] -) Double
vecDot v1 v2 =

let
h as bs k =

case as of
[] -) k
(a:as') -)

case bs of
[] -) k
(b:bs') -) has' bs' (a*b+k)

in
h v1 v2 0

This efficient, deforested rendition of the key function results in substantial per-
formance improvement. We measured the ray-tracer over one example; Kort
(1996) states that the improvement is relatively constant over different exam-
ples. Without cheap deforestation the ray-tracer took 57.6 seconds to run, and
allocated a total of 494 megabytes of heap. With cheap deforestation the ray
tracer took 36.0 seconds, and allocated a total of 212 megabytes of heap.

84 Chapter 5. Measuring Cheap Deforestation

Both these examples are encouraging, and highlight the potential of deforestation
if it can optimise the critical components of a program.

5.2 Compiling array comprehensions

In this section we explore how to optimise Haskell array comprehensions. We
take our deforestation technique, and show how, combined with a system for ex-
pressing "update" in a functional language, deforestation can contribute towards
efficient Haskell arrays. The consequence of deforestation on the overall useful-
ness of functional languages for certain specialised applications (like numerical
computations) is important and far reaching.

5.2.1 Deforesting a simple array comprehension

Haskell arrays are monolithic. This means that the encouraged style of pro-
gramming is to declare the contents of an array in one go, rather than the more
traditional style of incrementally filling in the contents of an array. We are
concerned with the efficient construction of these monolithic arrays.

Arrays in Haskell are constructed using the prelude function array. This function
takes as its arguments the size of the array and a list of index-value pairs. A useful
technique for building these index-value pairs is to use a list comprehension. For
example, this Haskell function constructs an array, where for each index location
the array holds the square of its index:

fun :: Int -) Array Int Int
fun n = array (l.n) [(i.i * i) I i <- [l..n]]

(Technically, in Haskell 1.2 we use the infix paring constructor := rather than
the 2-tuple.) It was claimed in Anderson & Hudak (1990) that a deforestation
scheme would be an integral part of an efficient implementation of Haskell arrays.
In this example, deforestation has two tasks:

• Deforestation has the job of removing the intermediate list produced by the
[1 .. n] and consumed by the list comprehension. This is a straightforward
application of cheap deforestation .

• Deforestation has the job of removing the intermediate list produced by the
list comprehension, and consumed by array. Expressing a list comprehen-
sion in terms of build is again a straightforward application of cheap de-
forestation. Therefore using deforestation on this example can be achieved
by writing array as a good consumer.

5.2. Compiling array comprehensions 85

The Glasgow Haskell implementation of the array function performs the follow-
ing steps:

• First, a new mutable array is allocated, with every location in this array
pointing to a suspension of the value .L.

• The index-value pair list is consumed, with every pair generating a modi-
fication to the mutable array.

• Finally, the array is frozen (made immutable) before returning it.

The technical aspects of handling mutable arrays in a pure functional language
are explained in detail in Launchbury & Peyton Jones (1996). Of course, this is
only one possible implementation of array.

Writing array as a good producer is reasonably straightforward. At the heart of
array, we use foldl to consume the index-value pairs,

foldl fill_one_in s ivs

where s is the state token, and i vs is the index-value pair list. fill_one_in has
the specification:

fill_one_in s (i,v) = writeArray arr (index ixs i) v s

One interesting aspect to this implementation is the reuse of the expanded occur-
rence analysis in § 4.3. The stateful computation (i.e. the building and updating
of the mutable array) is "fired up" using a built in function called runST. Inter-
nally, uses of runST produce expressions of the form:

runST (\ s -> ...)

A problem is that the consumption of our index-value pairs is inside this internal
,x, but the production of the index-value pairs is outside the ,x.

let xs = < creation of index-value pairs >
in

runST (\ s -> .,. foldl f z xs ...)

We reuse exactly the technology from § 4.3, giving runST the type

1 -t 8

86 Chapter 5. Measuring Cheap Deforestation

5.2.2 Compiling a simple array comprehension

When we 'apply all our optimisations to the original example,

fun :: Int -> Array Int Int
fun n = array (1,n) [(i,i * i) I i <- [1 .. n]]

the compiler produces the following code for the inner loop that updates the
values in the array.

loop :: Int# -> State# s -> _State s
loop = \ x# world#-)
case (lelnt# x# top#) of
True ->
case (timeslnt# x# xl) of
y# ->
case (plusInt# x# 1#) of
z# -)
case (leInt# 1# xl) of
True -)
case (lelnt# x# top#) of
True -)
case (minusInt# x# 1#) of
i# -)
let v = I# y#
in case (writeArray# arr# i# v world#) of

world'# -> loop z# world'#
False -> _rangeComplaint_Ix_Int x# 1# top#

False -> _rangeComplaint_Ix_Int x# 1# top#
False -> S# world#

Int#'s are un boxed Int's (Peyton Jones & Launchbury 1991), that is integers
that are already evaluated and can be given a direct and efficient representation,
Operations like timesInt# act on these efficient representation of integers, and
can be directly implemented using C arithmetic operations.

Although there is scope for improvement (for example, leInt# x# top# is per-
formed twice), this code is much more efficient than the original listful Haskell
definition might have suggested.

Deforestation allowed further (conventional) optimisations to work, because the
medium of the intermediate list was removed. For example, after deforestation
the place where the index-values pairs were built could be matched with the
place where array deconstructs such pairs. Because of deforestation an instance
of the case reduction transformation is exposed:

5.2. Compiling array comprehensions 87

let v = (i , i * i)
in case v of

(a , b) _>

let a = i
==> b = i * i

in

Furthermore, exactly the same technology can be used to optimise other Haskell
array operators, like \ \ and accum.
If we compile the above Core program to C, then we get the following output:

loop:
HEAP_CHK(l);
if (x <= top) {

y = x * x;
z = x + 1;
if (1 <= x) {

if (x <= top) {
i = x + 1;
ALLOC_CON(Int) ;
*Hp=y;
arr[i] = Hp;
x = z;
goto loop;

} else {

It is within the ability of current imperative optimising compilers to compile this
efficiently (Aho et al. 1986). Indeed, GHC could be straightforwardly augmented
to produce while loops. Such a compiler, for our array example, could output
C looking something like:

if (1 <= x) {
while (x <= top) {

HEAP_CHK (1) ;
ALLOC_CON(Int);
*Hp=(x * x);
arr[x + 1] = Hp;
x++;

}
} else

Further optimisations could be performed to lift the heap check out of the loop,
allocating the space for all the Int's in one go.

88 Chapter 5. Measuring Cheap Deforestation

5.3 Measuring cheap deforestation

Our implementation of cheap deforestation is actually a suite of optimisations:

• We perform optimising transformations, like the foldr/build rule.

• We aggressively inline many prelude functions.

• We perform other analysis and transformations, like arity analysis.

To allow us to identify the causes of any performance gains, we have constructed
several distinct versions of GHC.

• As our control we have taken a slightly modified GHC version 0.26, with
cheap deforestation totally disabled. This control version also has a few
minor improvements and bug fixes which will be incorporated into version
0.27. In our control we also revert to the original prelude, not giving
definitions in terms of foldr and build.

We call this version of GHC "C".

• In order to factor out inlining, we have a compiler with inlining turned
OIl, that uses a version of prelude that use foldr and build, but does not
perform any cheap deforestation or extra transformations.
We call this version of GHC "C/' (C-inline).

• We then have a version of the compiler that has our cheap deforestation
transformations, but without our extra enhancing transformations, namely
arity analysis and enhanced occurrence analysis.

We call this version of GHC "Cic" (C-inline-and-cheap deforestation).

• We have a version of the compiler that has all of cheap deforestation turned
OIl.

We call this version of GHC "Cice" (C-inline-and-cheap deforestation-and-
extras).

• Finally, we also have a version that has only the extra enhancing transfor-
mations.
\Ve call this version of GHC "Ce" (C-extras).

The relationship between the different versions of GHC is illustrated in Figure 5.1.
Note this shows the sum of transformations used, and does not imply the order
which enhancements are actually applied to GHC.

5.3. Measuring cheap deforestation 89

c
and Cheap

Deforestation

Figure 5.1: Different versions of the Glasgow Haskell compiler

5.3.1 What we want to measure

Having decided that we need five different versions of the compiler, we also need
to decide what to measure. There are many interesting aspects of these different
versions of the compiler to be examined.

• Execution Speed. The whole point of cheap deforestation is to improve
performance! We measure instruction count rather than wall clock or Unix
user time to get a more robust result. To do this we use the Sun Spix-
Tools (Sun Microsystems 1993).

• Heap Size, Heap Residency and Stack Usage. Because deforesta-
tion removes intermediate data structures, we expect it to reduce heap
consumption. We want to observe the demands that our transformed pro-
grams make on the storage management system.

• We are interested, where applicable, how many times the different cheap
deforestation transformations were used.

• We want to measure how long our different compilers take to compile our
benchmarks.

• We are also interested in the size of the object files that the compiler
produces.

90 Chapter 5. Measuring Cheap Deforestation

5.3.2 The nofib benchmark suite

To allow a more realistic idea of what effect cheap deforestation has on real
programs, we use programs from the nofib suite (Partain 1992), as distributed
with GHC, version 0.26. The nofib suite is divided into 3 subsets:

• The real subset - Programs that are written to get a job done.

• The spectral subset - other, smaller programs. The benchmark suite used
by Pieter Hartel (Hartel & Langendoen 1993, Hartel 1994) is included as
part of this suite.

• The toy subset - trivial benchmarks, like fib and queens. Following the
advice given by Partain (1992), we ignore this set.

For pragmatic reasons, we omit some benchmarks. Firstly, we omitted any bench-
mark that ran in less that lOOKbytes of heap. Secondly, a few of the benchmarks
included in the 0.26 release did not compile in "reasonable" time and/or space.
These included the largest test, anna and also symalg, which refused to compile
(with or without cheap deforestation) in a 40 megabyte heap. We believe missing
out these benchmarks does not effect our results or conclusions. Tables 5.1 and
5.2 gives short descriptions of all the programs we used from the real and spectral
components of the nof ib suite.

5.3.3 Our control: GHC without cheap deforestation

Tables 5.3 and 5.4 gives details about all our benchmarks compiled with our
control compile, C. Table 5.3 gives some static details about each benchmark, as
well as the total time (in seconds) of how long it took to compile all the individual
modules of each benchmark, and the total size (in bytes) of the produced object
files. Table 5.4 gives runtime details for each benchmark. We include:

• Total allocations (with number of garbage collections in brackets).

• The maximum heap (with number of samples in brackets). We performed
a sample every 100,000 bytes, by forcing a major garbage collection.

• Total number of machine cycles required to execute the benchmark.

• Maximum stack size(s). Vvehave two stacks, one holds pointers to closures
(stack A), and the other holds basic values (stack B) (Peyton Jones 1992).

In order to obtain accurate figures, each benchmark was run three times, once
to measure heap and stack residency, and once to measure machine cycles (using
SpixToolss, and once to measure heap usage.

5.3. Measuring cheap deforestation 91

Program Description Origin
bspt BSP-tree modeller lain Checkland (York)
compress Text compression Paul Sanders (BT)
compress2 Text compression Paul Sanders (BT)
ebnf2ps Syntax diagram generator Peter Thiemann
fluid Fluid-dynamics program Xiaoming Zhang (Swansea)
fulsom Solid Modeling Duncan Sinclair (Glasgow)
gamteb Monte Carlo photon transport Pat Fasel (Los Alamos)
gg Graphs from GRIP statistics lain Checkland (York)
hidden Hidden line removal Mark Ramaer jStef Joosten
HMMS Speech analysis David Goblirsch

(MITRE Corporation)
hpg Haskell program generator Nick North (NPL)
infer Hindley-Milner type inference Phil Wadler (Glasgow)
lift Fully-lazy lambda lifter David Lester (Manchester) &

Simon Peyton Jones (Glasgow)
maillist Mailing-list generator Paul Hudak (Yale)
parser Partial Haskell parser Julian Seward (Manchester)
pic Particle in cell Pat Fasel (Los Alamos)
prolog "mini-Prolog" interpreter Mark Jones (Nottingham)
reptile Escher tiling program Sandra Foubister (York)
rsa RSA encryption John Launchbury (Glasgow)
veritas Theorem- prover Gareth Howells (Kent)

Table 5.1: The real suite in nofib

92 Chapter 5. Measuring Cheap Deforestation

Program. Description Origin
boyer Gabriel suite 'boyer' benchmark Denis Howe (Imperial)
boyer2 Gabriel suite 'boyer' benchmark Denis Howe (Imperial)
calendar Unix cal command Mark Jones (Nottingham)
cichelli Perfect hashing function lain Checkland (York)
clausify Propositions to clausal form Colin Runciman (York)
cse Common subexpression elimination Mark Jones (Nottingham)
fft2 Fourier transformation Rex Page (Amoco)
knights Knight's tour Jon Hill (QMW)
mandel Mandelbrot sets Jon Hill (QMW)
mande12 Mandelbrot sets David Hanley
minimax tic-tac-toe (Osand Xs) lain Checkland (York)
multiplier Binary-multiplier simulator John O'Donnell (Glasgow)
primetest Primality testing David Lester (Manchester)
rewrite Rewriting system Mike Spivey (Oxford)
simple Standard Id benchmark Andy Shaw (MIT)
sorting Sorting algorithms Will Partain (Glasgow)
treejoin Tree joining Kevin Hammond (Glasgow)

Program Description (all Hartel Benchmarks)
comp_lab_zift
event
fft
genfft
ida
listcompr
list copy

nucleic2
parstof
sched

solid

transform

typecheck
wang
wave4main

Image processing application
Event driven simulation of a set-reset flipflop
Two fast fourier transforms
Generation of synthetic FFT programs
Solution of a particular configuration of the n-puzzle
Compilation of list comprehensions
Compilation of list comprehensions
(with extra list copying function for output)
Pseudo knot
Lexing and parsing based on Wadler's parsing method
Calculation of an optimum schedule of parallel jobs
with a branch and bound algorithm
Point membership classification algorithm from a solid
modeling library for computational geometry
Transformation of a number of programs represented
as synchronous process networks into master/slave
style parallel programs
Polymorphic type checking of a set of function definitions
Wang's algorithm for solving system of linear equations
Calculation of the water heights in a square area of 8 x 8
grid points of the North Sea over a long time period

Table 5.2: The spectral suite in nofib

5.3. Measuring cheap deforestation 93

Source Object
Number of Compile Binary

Benchmark Modules Lines Time Size
HMMS 16 4,221 670.6 790,528
boyer 1 1,016 79.3 335,872
boyer2 5 723 UO.l 376,832
bspt 17 2,151 878.5 663,552
calendar 1 129 58.4 278,528
cichelli 5 249 95.3 344,064
clausify 1 177 33.5 254,600
compJab....zift 1 884 112.5 279,912
compress 5 821 146.2 262,144
compress2 3 337 97.1 311,296
cse 2 459 57.6 344,064
ebnf2ps 16 2,675 968.6 638,976
event 1 451 39.1 246,224
fft 1 824 52.9 475,136
fft2 3 215 59.7 483,328
fluid 18 2,391 812.1 688,128
fulsom 12 1,397 641.0 671,744
gamteb 13 709 362.8 542,040
genfft 1 502 63.5 254,904
gg 9 810 562.1 696,320
hidden 15 509 458.6 598,016
hpg 8 2,059 381.1 630,784
ida 1 490 54.7 254,480
infer 13 585 361.0 360,448
knights 5 879 111.3 335,872
lift 5 2,132 239.9 311,296
listcompr 1 522 53.1 262,144
listcopy 1 527 53.7 262,144
maillist 1 177 37.9 327,680
mandel 3 497 54.7 475,136
mandel2 1 222 31.5 507,904
minimax 6 257 118.2 327,680.
multiplier 1 490 85.5 279,952
nucleic2 6 3,389 621.8 819,200
parser 1 4,595 568.9 557,056
parstof 1 1,275 346.9 450,560
pic 9 526 284.1 507,904
primetest 4 276 76.8 344,064
prolog 7 637 219.0 344,064
reptile 13 1,553 532.4 450,560
rewrite 1 631 144.1 368,640
rsa 2 97 58.2 327,680
sched 1 555 47.7 246,632
simple 1 1,134 478.8 688,128
solid 1 2,488 158.6 574,632
sorting 2 160 49.3 254,576
transform 1 1,1;2 354.2 385,024
treejoin 1]21) 33.0 319,488
typecheck 1 6;;8 89.1 278,528
veritas 32 11,147 2161.7 983,040
wang 1 357 47.8 466,944
wave4main 1 1,196 68.5 466,944

Table 5.3: Control run of compiler - C

94 Chapter 5. Measuring Cheap Deforestation

Total Max Heap Max Stack Instruction
Benchmark Allocations Residency A B Count
HlvIMS 356,655,820 (39~! 1,882,772 (3,570) 8,052 14,010 27(79,259,509
boyer 21,635,660 (12) 101,912 (216) 93 337 103,534,897
boyer2 2,198,776 (1) 284,760 (22) 206 499 20,554,198
bspt 4,618,764 (2) 416,072 (46) 58 456 21,235,082
calendar 240,040 (0) 4,172 (2) 38 86 1,193,173
cichelli 30,730,952 (11) 1,395,024 (307) 362 1,830 330,482,780
clausify 19,979,216 (13) 48,384 (200) 28 64 118,776,175
comp.lab.zift 103,988,876 (15) 1,238,300 (1,043) 233 2,587 478,507,684
compress 144,170,528 (116) 167,060 (1,442) 1,547 1,294 792,701,502
compress2 70,692,404 (21) 10,381,044 (707) 723 100 195,101,045
cse 350,768 (0) 57,252 (3) 88 419 1,692,397
ebnf2ps 3,103,484 (1) 301,288 (31) 2,342 3,476 14,699,163
event 42,947,016 (3) 4,118,096 (445) 44,020 484,298 237,937,906
fft 11,249,504 (0) 1,769,608 (121) 112 349 49,903,850
fft2 47,647,004 (34) 944,516 (483) 138 420 185,192,456
fluid 3,691,372 (1) 71,708 (37) 2,099 3,191 19,204,087
fulsom 212,641,236 (66) 3,838,444 (2,148) 155 361 915,349,230
garnteb 85,565,904 (63) 540,424 (857) 3,003 15,010 494,159,401
genfft 17,452,128 (1) 5,956 (174) 16 96 75,352,238
gg 6,860,076 (3) 358,680 (69) 842 1,203 39,159,765
hidden 428,854,340 (250) 327,852 (4,291) 2,086 3,485 2,009,208,670
hpg 59,039,772 (46) 611,268 (591) 38 12,629 267,134,620
ida 51,701,896 (4) 437,100 (517) 211 7,910 228,109,941
infer 10,233,948 (8) 2,087,436 (102) 312 1,523 134,233,568
knights 790,980 (0) 23,016 (7) 49 347 15,911,527
lift 391,612 (0) 25,932 (3) 194 878 1,179,545
listcompr 71,280,392 (8) 7,506,988 (714) 19 91 344,368,543
listcopy 78,792,524 (10) 7,512,564 (790) 19 96 375,042,961
rnaillist 4,150,968 (1) 15,940 (41) 2,059 3,111 18,191,820
mandel 219,721,832 (169) 12,828 (2,199) 40 144 572,572,857
mandel2 10,037,152 (4) 600 (100) 27 49 38,658,307
minimax 1,966,848 (0) 3,244 (19) 44 148 9,401,134
multiplier 84,762,436 (89) 1,819,988 (929) 276 703 381,407,199
nucleic2 46,600,536 (22) 60,540 (466) 391 641 226,860,802
parser 12,202,072 (8) 947,256 (122) 738 483 80,783,219
parstof 47,348,996 (4) 563,012 (473) 768 397 312,770,038
pic 5,203,152 (2) 327,876 (52) 498 1,151 31,944,711
primetest 120,710,408 (89) 200,424 (1,209) 1,234 4,856 5,430,259,340
prolog 642,184 (0) 19,840 (6) 999 1,515 3,336,869
reptile 4,746,512 (1) 619,732 (47) 46 96 23,124,635
rewrite 22,935,328 (10) 19,528 (229) 92 168 115,103,552
rsa 32,137,272 (15) 12,188 (321) 1,545 2,340 1,101,964,625
sched 19,663,212 (1) 2,552 (196) 34 107 64,235,884
simple 118,048,208 (36) 9,030,920 (1,187) 1,976 5,782 1,086,483,698
solid 66,794,720 (6) 522,284 (669) 925 2,250 300,315,438
sorting 413,316 (0) 71,648 (4) 200 481 2,550,308
transform 194,699,284 (16) 146,632 (1,952) 686 2,758 1,053,307,565
treejoin 67,038,476 (6) 8,108,940 (670) 69,142 115,239 349,537,058
typecheck 117,666,440 (10) 9,932 (1,180) 54 130 738,414,743
veritas 362,188 (0) 13,884 (3) 107 352 1,580,923
wang 27,232,932 (2) 5,074,216 (272) 25 6,543 120,072,103
wave4main 128,944,808 (17) 1,952,356 (1,290) 16,062 40,005 1,121,639,955

Table 5.4: Control run of compiler - C (continued)

5.4. Results from using cheap deforestation 95

5.4 Results from using cheap deforestation

In this section we give performance results of comparisons between our different
versions of GHC. We expect the following results.

• Some performance improvements will be due to aggressive inlining. We can
observe this by comparing C with Ci, which we do in § 5.4.1.

• The extra transformations are beneficial, irrespective of the presence of
cheap deforestation. We can observe this by comparing C with Ce, which
we do in § 5.4.2.

• We expect to see our deforestation without the extra enabling transforma-
tions having some (limited) effect. We can observe this by comparing C,
with c; in § 5.4.3.

• Finally, and most importantly, we expect the combination of cheap de-
forestation and extra enabling transformations to improve our benchmark
programs. We can observe this by comparing Ci with Cice, which we do
in § 5.4.4.

We also expect to see evidence that our enabling technology increases the number
of instances of our deforestation rules.

We give our results in the form:

Benchmark Option A
wave4main 0.78
calendar 0.91

n other programs 1.00
Minimum 0.78
Maximum 1.02
Geometric Mean 0.98

The figure "0.78" means that "Option A" uses 78% of the specified resources,
when compared with the base compiler. This means that, for example, if we were
to compare compiling with C, (this table's base compiler) against compiling with
Cice (this table's "enhanced" compiler), a program that takes 100,000 instructions
to execute when compiled with Ci compiler would be taking 78,000 instructions
to execute when compiled with Cice·

96 Chapter 5. Measuring Cheap Deforestation

Programs that showed a difference of less than 0.5% are omitted, and included
under the ."n other programs" line. The results from these omitted programs,
however, are included in the calculation of the mean. We use the geometric mean
because we are averaging normalised numbers (Fleming & Wallace 1986).

5.4.1 C vs C, : Gains from inlining

The first thing we want to observe is how performing aggressive inlinings effect
code side and compilation time. Table 5.5 gives both these factors. As we
anticipated, both of these aspects increased. The code size increased by, on
average, 8%, and the compile time increased by, on average, 15%. These figures
are the down-payment that we have to pay to achieve cheap deforestation.

We also want to observe how much performance gain we get because of per-
forming aggressive inlinings. Table 5.6 gives this. The average improvement was
2%.

5.4. Results from using cheap deforestation 97

Compile
Benchmark Time
nucleie2 1.02
mandel2 1.04 Binary
sched 1.05 Benchmark Size
treejoin 1.05 comp.Iab.zift 1.01
fulsom 1.06 fulsom 1.01
typecheck 1.06 listcompr 1.01
boyer2 1.07 listcopy 1.01
bspt 1.08 transform 1.01
event 1.08 typecheck 1.01
compress 1.09 boyer 1.02
compress2 1.09 bspt 1.02
veritas 1.09 genfft 1.02
ebnf2ps 1.10 parser 1.02
listcompr 1.10 ebnf2ps 1.03
listcopy 1.10 gg 1.03
mandel 1.10 primetest 1.03
primetest 1.10 veritas 1.03
cichelli 1.11 event 1.04
infer 1.11 maillist 1.04
sorting 1.11 clausify 1.05
boyer 1.12 sorting 1.05
clausify 1.12 compress2 1.06
comp.Iab.zift 1.13 compress 1.07
gg 1.13 hpg 1.08
lift 1.13 infer 1.08
minimax 1.13 mandel 1.08
parser 1.13 reptile 1.08
parstof 1.13 HMMS 1.09
hidden 1.14 ida 1.09
gamteb 1.15 lift 1.10
prolog 1.15 minimax 1.10
wave4main 1.15 cichelli 1.11
genfft 1.16 cse 1.12
hpg 1.16 knights 1.12
ida 1.16 prolog 1.12
HMMS 1.18 hidden 1.13
knights 1.18 gamteb 1.14
maillist 1.18 rewrite 1.14
reptile 1.18 wave4main 1.14
fluid 1.19 fluid 1.15
rsa 1.19 wang 1.15
cse 1.20 rsa 1.17
rewrite 1.21 calendar 1.20
wang 1.21 simple 1.22
fft 1.26 fft 1.26
transform 1.27 pie 1.33
solid 1.29 multiplier 1.35
pic 1.30 fft2 1.49
calendar 1.31 I 7 other programs I 1.00 I
multiplier 1.37 Minimum 1.00
fft2 1.45 Maximum 1.49
simple 1.53 Geometric Mean 1.08
Minimum 1.02
Maximum 1.53
Geometric Mean 1.15

Table 5.5: The effect inlining has on compile time and code size

98 Chapter 5. Measuring Cheap Deforestation

Instruction
Benchmark Count
wave4main 0.78
calendar 0.91
fft 0.91
fft2 0.91
simple 0.93
fluid 0.95
hidden 0.95
multiplier 0.95
HMMS 0.96
maillist 0.96
boyer 0.97
minimax 0.97
ebnf2ps 0.98
pic 0.98
rewrite 0.98
compress2 0.99
hpg 0.99
lift 0.99
mandel 0.99
compJab...zift 1.01
reptile 1.01
sched 1.01
transform 1.01
veritas 1.01
genfft 1.02
listcompr 1.02
list copy 1.02.I 20 other programs I 1.00 I
Minimum 0.78
Maximum 1.02
Geometric Mean 0.98

Table 5.6: The effect inlining has on execution count

5.4. Results from using cheap deforestation 99

5.4.2 C vs C; : Gains from enabling technologies

Table 5.7 summarises the instruction execution count improvement. Only 6
programs were noticeably improved of which 5 were only slight improvements.

Table 5.8 summarises the nominal change caused by our enabling technologies
(by comparing C with Ce)· Both the compilation time and binary size stayed
much the same, and both averaged no change. One reason an optimisation can
actually reduce the compilation time is because if an optimisation manages to
reduce code size later aspects of the compilation have less work to do!

100 Chapter 5. Measuring Cheap Deforestation

Instruction
Benchmark Count
maillist 0.81
parser 0.98
HMMS 0.99
cse 0.99
ebnf2ps 0.99
pic 0.99

I 46 other programs I 1.00 I
Minimum 0.81
Maximum 1.00
Geometric Mean 0.99

Table 5.7: The effect our enabling technology has on execution count

5.4. Results from using cheap deforestation 101

Compile
Benchmark Time
mande12 0.97
cse 0.98
minimax 0.98
treejoin 0.98
typecheck 0.98
calendar 0.99
comp.Iab.zift 0.99
ebnf2ps 0.99
hidden 0.99
ida 0.99
listcopy 0.99
multiplier 0.99
nucleic2 0.99
parstof 0.99 Binaryprimetest 0.99 Benchmarkboyer 1.01 Size
boyer2 1.01 compress 0.99
bspt 1.01 ebnf2ps 0.99
cichelli 1.01 event 0.99
compress2 1.01 fulsom 0.99
event 1.01 hidden 0.99

fft 1.01 infer 0.99

fluid 1.01 I 46 other programs I 1.00 I
gamteb 1.01 Minimum 0.99
infer 1.01 Maximum 1.00
mandel 1.01 Geometric Mean 1.00
reptile 1.01
solid 1.01
transform 1.01
wang 1.01
wave4main 1.01
clausify 1.02
fft2 1.02
maillist 1.02
rsa 1.02
simple 1.03
veritas 1.11

I 15 other programs I 1.00 I
Minimum 0.97
Maximum 1.11
\}eometric Mean 1.Q_0

Table 5.8: The effect our enabling technology has on compile time and code size

102 Chapter 5. Measuring Cheap Deforestation

5.4.3 Ci vs Cic : Gains from raw deforestation
opport unities

In this section we examine cheap deforestation without our enabling technology.
We call this "raw" deforestation. We compare C, with Cic, so as to factor out the
less interesting effect of inlining. Several aspects of the compilation and running
of our benchmarks have been measured.

• Table 5.9 gives the compile time and code size of our benchmarks. Using
raw deforestation cost, on average, an extra 5% in compilation time, but
the binary size was, again on average, slightly reduced.

• Table 5.10 gives the improvement in execution time. Several programs are
showing a slight improvement, and the average is only 1%.

Some examples are getting worse. We have already discussed possible rea-
sons for this (§ 3.1.2).

• Table 5.11 gives the improvements in total heap allocations. Somewhat
surprisingly there was an average of no improvement, with one benchmark
using 15% more heap.

The results can be explained by the lack of arity analysis, one of our en-
abling technologies, in this test. Arity analysis improves the passing of
accumulating arguments, and often "cleans up" after cheap deforestation,
giving efficient code.

• Tables 5.12 and 5.13 give the heap residency and maximum stack sizes.

There does not appear to be a relationship between the heap residency
improvement and the heap usage improvement.

• Finally, Table 5.14 gives a list of how often each of the principal transfor-
mations in cheap deforestation are performed. The labels are as follows

frlb ~ foldr/build rule

fr/a - fOldr/augment rule

fr/[] ~ foldr of empty list

fr/(x:xs) ~ foldr of a sequence of (:)

- fi/b - foldl/build rule

- fi/a- fOldl/augment rule

-- fi/[] ~ foldl of empty list

- fi/(x:xs) - foldl of a sequence of (:)

5.4. Results from using cheap deforestation 103

Many of the benchmarks did trigger one or more of the deforestation rules.
The table indicates, however, many instances of the fr/ (x:xs) and fr/ []were
occurring, but very few of the true deforestation rules (fr/b,fr / a,fi/ a,fi/b)
were actually triggered. We argue that this is because this test was per-
formed without the enabling technologies, which are designed specifically
to enhance deforestation opportunities.

104 Chapter 5. Measuring Cheap Deforestation

Compile
Benchmark Time
mandel2 0.97
solid 0.98 Binary
boyer2 1.01 Benchmark Size
hidden 1.01 solid 0.61
infer 1.01 parstof 0.77
primetest 1.01 transform 0.87
reptile 1.01 simple 0.91
rsa 1.01 reptile 0.92
sorting 1.01 hpg 0.93
fft2 1.02 listcompr 0.93
hpg 1.02 listcopy 0.93
minimax 1.02 parser 0.93
parstof 1.02 HMMS 0.95
transform 1.02 genfft 0.95
typecheck 1.02 hidden 0.95
clausify 1.03 infer 0.95
ebnf2ps 1.03 minimax 0.95
gg 1.03 pic 0.95
ida 1.03 cichelli 0.96
listcompr 1.03 compress2 0.96
list copy 1.03 ebnf2ps 0.96
maillist 1.03 fft 0.96
mandel 1.03 prolog 0.96
pic 1.03 rsa 0.96
prolog 1.03 treejoin 0.96
rewrite 1.03 cse 0.97
simple 1.03 gg 0.97
fulsom 1.04 ida 0.97
sched 1.04 maillist 0.97
treejoin 1.04 comp.Iab.zift 0.98
wang 1.04 knights 0.98
HMMS 1.05 mandel 0.98
cichelli 1.05 typecheck 0.98
compress2 1.05 veritas 0.98
fft 1.05 boyer 0.99
knights 1.05 boyer2 0.99
nucleic2 1.05 clausify 0.99
comp.lab.zift 1.06 fft2 0.99
event 1.06 fulsom 0.99
fluid 1.06 multiplier 0.99
boyer 1.07 rewrite 0.99
gamteb 1.07 sorting 0.99
genfft 1.08 wang 0.99
lift 1.08 bspt 1.01
multiplier 1.08 wave4main 1.01
bspt 1.09 lift 1.07
calendar 1.09 gamteb 1.16
cse 1.09 compress 1.17
parser 1.10 I 7 other programs I 1.00 I
wave4main 1.11 Minimum 0.61veritas 1.17 Maximum 1.17compress 1.21 Geometric Mean 0.96
Minimum 0.9,
Maximum 1.21
_Geometric Mean 1.05

Table 5.9: The effect raw deforestation has on compile time and code size

5.4. Results from using cheap deforestation 105

Instruction
Benchmark Count
multiplier 0.94
infer 0.95
lift 0.95
bspt 0.97
listcompr 0.97
reptile 0.97
listcopy 0.98
cse 0.99
ebnf2ps 0.99
fluid 0.99
hidden 0.99
knights 0.99
maillist 0.99
parser 0.99
pic 0.99
prolog 0.99
rewrite 0.99
transform 0.99
typecheck 0.99
wave4main 0.99
minimax 1.03
fft2 1.05

I 30 other programs I 100 I
Minimum 0.94
'Maximum 1.05
Geometric Mean 0.99

Table 5.10: The effect raw deforestation has on execution count

106 Chapter 5. Measuring Cheap Deforestation

Heap
Benchmark Allocations
multiplier 0.93

(~~~lift 0.94
wave4main 0.94 (12)
bspt 0.97 (2)
pic 0.97 (2)
maillist 0.98 (1)
reptile 0.98 (1)
rewrite 0.98 (10)
ebnf2ps 0.99 (1)
hidden 0.99 (228)
infer 0.99 (8)
prolog 0.99 (0)
typecheck 0.99 (10)
fulsom 1.01 (66)
hpg 1.01 (47)
parser 1.01 (8)
HMMS 1.02 (316)
fluid 1.02 (1)
knights 1.04 (0)
minimax 1.11 (1)
simple 1.12 (37)
fft2 1.15 (41)
30 other programs 1.00
Minimum 0.93
Maximum 1.15
Geometric Mean 1.00

Table 5.11: The effect raw deforestation has on heap allocation

5.4. Results from using cheap deforestation 107

Heap
Benchmark Residency
solid 0.56 ~667)
transform 0.75 (1964)
parstof 0.78 (472)
fluid 0.89 (35)
gamteb 0.89 (858)
minimax 0.90 (22)
maillist 0.91 (40)
mandel 0.92 (2192)
prolog 0.92 (6)
genfft 0.96 (174)
bspt 0.98 (45)
pic 0.98 (50)
fulsom 0.99 (2161)
gg 0.99 (69)
fft 1.01 (120)
infer 1.01 (100)
typecheck 1.02 (1157)
rewrite 1.03 (218)
simple 1.05 (1218)
knights 1.09 (8)
fft2 1.37 (518)

I 26 other programs I 1.00
Minimum 0.56
Maximum 1.37
Geometric Mean 0.97

Table 5.12: The effect raw deforestation has on heap residency

Benchmark Max B StackBenchmark Max A Stack solid 0.94reptile 0.96
0.98 minimax 0.97minimax rewrite 0.98

cse 0.99 HMMS 0.99
lift 0.99 multiplier 0.99
knights 1.02

1.06 bspt 1.07
HMMS veritas 1.33
fft2 4.95 fft2 6.63
simple 6.07 simple 9.65

1.00ro rams~I~44~o~th;;e;;r:fp~g~==::f======j~1fl1143 other programs I
Minimum 0.96 M"~~~~----!-------;6ir".7V077i Immum
Maximum Maximum

~:.:::e::.:om::::::et:::r.:.:ic:....:M=.:.ea=n::;__..J..._1_._07--, eometric Mean

1.00 I
0.94
9.65
1.09

Table 5.13: The effect raw deforestation has on maximum stack sizes

108 Chapter 5. Measuring Cheap Deforestation

Benchmark fr/b frja frjU frj(x:xs) tl.jb tl.ja tl.jU tl.j(x:xs)
HMMS 1 22 22 3
boyer 1
boyer2
bspt 2 1 34 35 1
calendar 1 1 1
cichelli 2
clausify
comp.Iab.zift 10 12
compress 4 4
compress2 1 2
cse 6 7
ebnf2ps 4 11 17 1
event
fft 3 3
fft2 2 2 2
fluid 2 2 6 14
fulsom 4 4
gamteb 10 10
genfft 3 3
gg 13 13
hidden 10 1
hpg 1 5 7 1
ida 4 5
infer 4 1 5 5
knights 5 5
lift 3 20 20 1
listcompr 6 7
listcopy 6 7
maillist
mandel 2
mandel2
minimax 3 3 5 1
multiplier 1 2 3 1
nucleic2
parser 2 4 5 5
parstof 43 44 2
pic 14 14
primetest
prolog 4 5
reptile 8 9
rewrite 3 3 3
rsa 2 1 1
sched
simple 1 74 74 13
solid
sorting
transform 19 20
treejoin
typecheck 2 5 5
veritas 12 27 30 3 4
wang 2 3
wave4main 2 2

Table 5.14: How often raw deforestation transformations are used

5.4. Results from using cheap deforestation 109

5.4.4 C, vs Cice : Gains from complete cheap
deforestation

We have already argued that we need enabling technologies to allow the successful
deforestation of many key examples, including map of map. We have also seen
that very few instances of our key rules occur in practice without any enabling
technology. We now "turn on" our enabling technology, allowing it to enhance
cheap deforestation. Again, to factor out the less interesting effects of inlinings,
we compare C, with Cice.

We measure exactly the same aspects as in the previous test.

• Table 5.15 gives the compile time and code size of our benchmarks. Again
we see a small increase in compile time, but we see a significant drop in
average binary size, of 6%. This almost offsets the average binary size
increase caused by inlining (8%).

• Table 5.16 gives the improvement in execution time. Around half of our
benchmarks showed an improvement. Around a dozen benchmarks im-
proved by more that 5%. The average was 3%. Only one example got
noticeably worse, and only by 1%.

• Table 5.17 gives the improvements in total heap allocations. As expected,
we reduce the heap allocations, by up to almost half in one case.

• Tables 5.18 and 5.19 give the heap residency and maximum stack sizes.

It is interesting that for one of our best benchmarks (simple) we improve
the execute count by 10%, improve the heap usage by 24%, but also increase
the maximum stack size by a factor of 50. This is undoubtedly due to
turning heap allocations into stack allocations.

Again there does not appear to be a relationship between the heap residency
improvement and the heap usage improvement.

• Finally, Table 5.20 gives a list of how often each of the principal transfor-
mations in cheap deforestation are performed.

Comparing this with Table 5.14, we observe that our enabling technology
has substantially enhanced the occurrences of our deforestation transfor-
mations. This gives justification to our argument for using our enabling
technology.

Sometimes we saw improvements in execution time caused by cheap deforesta-
tion, but did not see any deforestation reductions taking place in Table 5.14.

110 Chapter 5. Measuring Cheap Deforestation

For example, consider maillist, which shows a 21% improvement, but did not
perform any deforestation reductions. We attribute this to the fact that for each
version of the compiler a new version of the Haskell prelude was also compiled,
and the number of deforestation rules invoked during the compilation of the pre-
lude itself are not included in Tables 5.14 and 5.20, because this is constant across
all the benchmarks. Furthermore, the prelude included several opportunities for
deforestation, so we suspect that the discrepancy is caused by maillist calling
a deforested function in the prelude.

5.4. Results from using cheap deforestation 111

Complfe
Benchmark Time
fft2 0.97 Binary
simple 0.98 Benchmark Size
hidden 1.01 solid 0.61
infer 1.01 pie 0.76
minimax 1.01 parstof 0.77
pie 1.01 fft2 0.85
primetest 1.01 simple 0.85
reptile 1.01 transform 0.86
clausify 1.02 HMMS 0.89
event 1.02 reptile 0.89
hpg 1.02 fft 0.90
maillist 1.02 parser 0.90
mandel2 1.02 hpg 0.91
parstof 1.02 listcompr 0.91
prolog 1.02 listcopy 0.91
solid 1.02 minimax 0.91
sorting 1.02 genfft 0.92
veritas 1.02 hidden 0.92
boyer2 1.03 rsa 0.92
ebnf2ps 1.03 wang 0.92
mandel 1.03 fluid 0.93
rewrite 1.03 infer 0.93
sched 1.03 clausify 0.94
wang 1.03 ebnf2ps 0.94
compress2 1.04 event 0.94
fluid 1.04 prolog 0.94
fulsom 1.04 cichelli 0.95
listcompr 1.04 compress2 0.95
listcopy 1.04 cse 0.95
nucleie2 1.04 gg 0.95
gg 1.05 treejoin 0.95
transform 1.05 wave4main 0.95
typecheck 1.05 ida 0.!}6
HMMS 1.06 knights 0.97
fft 1.06 maillist 0.97
ida 1.06 multiplier 0.97
knights 1.06 rewrite 0.97
treejoin 1.06 veritas 0.97
boyer 1.07 boyer2 0.98
cichelli 1.07 calendar 0.98
gamteb 1.07 compJab..zift 0.98
lift 1.07 fulsom 0.98
multiplier 1.07 man del 0.98
calendar 1.08 sorting 0.98
compJab..zift 1.08 typecheck 0.98
parser 1.08 boyer 0.99
wave4main 1.08 lift 1.07
bspt 1.11 gamteb 1.13
cse 1.12 compress 1.15
genfft 1.17 I 5 other programs I 1.00 Icompress 1.20 Minimum 0.61I II 1 other program 1.00 Maximum 1.15
Minimum 0.97 Geometric Mean 0.94
Maximum 1.20
Geometric Mean 1.04

1 t»

112 Chapter 5. Measuring Cheap Deforestation

lnstruction
Benchmark Count
maillist 0.79
fft2 0.81
wave4main 0.82
minimax 0.89
simple 0.90
cse 0.93
fluid 0.94
multiplier 0.94
infer 0.95
lift 0.95
pic 0.95
HMMS 0.96
ebnf2ps 0.96
fft 0.96
hidden 0.96
reptile 0.96
calendar 0.97
listcompr 0.97
listcopy 0.97
bspt 0.98
gg 0.98
parser 0.98
rewrite 0.98
transform 0.98
hpg 0.99
knights 0.99
nucleic2 0.99
prolog 0.99
typecheck 0.99
event 1.01

I 22 other programs I 1.00 I
Minimum 0.79
Maximum 1.01
Geometric Mean 0.97

Table 5.16: The effect cheap deforestation has on execution count

5.4. Results from using cheap deforestation 113

Heap
Benchmark Allocations
maillist 0.52

~~~wave4main 0.55
simple 0.76 (28)
fft2 0.83 (21) .
minimax 0.83 (0)
HMMS 0.88 (298)
fluid 0.91 (1)
cse 0.92 (0)
parser 0.92 (8)
pic 0.92 (2)
ebnf2ps 0.93 (1)
multiplier 0.93 (86)
hidden 0.94 (214)
lift 0.94 (0)
calendar 0.95 (0)
fft 0.96 (0)
gg 0.97 (3)
reptile 0.97 (1)
rewrite 0.97 (10)
bspt 0.98 (2)
infer 0.98 (8)
nucleic2 0.98 (22)
hpg 0.99 (43)
prolog 0.99 (0)
typecheck 0.99 (10)
event 1.02 (3)
knights 1.04 (0)
25 other programs 1.00
Minimum 0.52
Maximum 1.04
_Q_eometric Mean 0.95

Table 5.17: The effect cheap deforestation has on heap allocation



114 Chapter 5. Measuring Cheap Deforestation

Heap
Benchmark Residency
solid 0.56 (667)
transform 0.73 (1959)
parstof 0.78 (472)
minimax 0.82 (16)
ebnf2ps 0.85 (26)
fluid 0.89 (31)
fulsom 0.89 (2156)
gamteb 0.89 (854)
prolog 0.89 (6)
man del 0.92 (2192)
genfft 0.95 (174)
fft2 0.97 (376)
nucleic2 0.97 (457)
bspt 0.98 (45)
gg 0.99 (67)
maillist 0.99 (21)
parser 0.99 (112)
pic 0.99 (47)
infer 1.01 (100)
rsa 1.02 (321)
typecheck 1.02 (1157)
simple 1.05 (826)
knights 1.09 (8)

I 24 other programs I 1.00
Minimum 0.56
Maximum 1.09
Geometric Mean 0.96

Table 5.18: The effect cheap deforestation has on heap residency



5.4. Results from using cheap deforestation 115

Benchmark Max B Stack
HMMS 0.87
rewrite 0.88

Benchmark Max A Stack minimax 0.91
reptile 0.96 clausify 0.92
cse 0.99 ebnf2ps 0.94
lift 0.99 fft2 0.94
ebnf2ps 1.02 solid 0.94
knights 1.02 multiplier 0.98
minimax 1.05 fulsom 0.99
HMMS 1.12 infer 0.99
pic 3.27 bspt 1.07
hidden 23.63 veritas 1.33
simple 49.53 pic 1.98

I 42 other programs I LOO! fft 6.38

Minimum 0.96 simple 9.12

Maximum 49.53 hidden 10.08
I 36 other programs I 1.00 IGeometric Mean 1.18
Minimum 0.87
Maximum 10.08
Geometric Mean 1.14

Table 5.19: The effect cheap deforestation has on maximum stack sizes



116 Chapter 5. Meesuring Cheap Deforestation

Benchmark fr/b fr/a frlll Jrl(x:xs) H/b H/a _!!LU H/(x:xsl
HMMS 64 44 22 22 4
beyer 1
boyer2 3 1
bspt 10 4 34 35 1
calendar 1 1 1 1
cichelli 4
clausify 4
cornp.Iab.zift 10 12
compress 1 4 4
compress2 2 1 1 2
cse 3 4 6 7
ebnf2ps 16 3 11 17 1
event 3
fft 3 3 3 1
fft2 9 2 2 2
fluid 29 2 7 14
fulsom 15 10 4 4
gamteb 1 10 10 4
genfft 1 3 3 3
gg 11 10 15 15
hidden 17 3
hpg 6 5 7 1
ida 1 4 5
infer 8 1 5 5
knights 3 5 5
lift 5 20 20 1
listcompr 1 6 7
listeopy 1 6 7
maillist
mandel 2
mandel2
minimax 8 1 3 5 1
multiplier 5 2 3 1
nucleic2 1
parser 65 59 5 5
parstof 1 43 44 2
pie 39 8 14 14 3 2
primetest
prolog 5 4 5
reptile 18 8 9
rewrite 12 1 3 3
rsa 5 1 1
sched
simple 105 16 77 77 16 13
solid 1 1 1 1
sorting 3
transform 4 1 19 20
treejoin 2 1
t.ypecheck 2 5 5
veritas 35 1 27 30 3 4
wang 6 2 3
wave-lrnain 3 1 2 2 1

Table 5.20: How often cheap deforestation transformations are used



5.5. Summary 117

5.5 Summary

We have seen several examples of cheap deforestation in action. Sometimes the
effect of cheap deforestation can be substantial. Results over a large set of bench-
marks give a more modest but still tangible benefit. The improvements, however,
were spread over many examples, rather than just a few benchmarks showing very
good improvements. Approximately half the examples in our benchmark suite
showed some improvement because of our deforestation. There is quite a high
initial down-payment of performing inlinings, but we recover most of the code
expansion with enhanced simplification opportunities.

Is cheap deforestation worth it?

• For a Haskell user, yes. It provides the possibility of writing efficient listful
code, allows Haskell compilers to handle array creation more efficiently, and
sometimes catches instances of "accidental" deforestation, that is deforesta-
tion friendly code fragments that the user writes without even considering
deforestation .

• For a Haskell compiler implementer, cheap deforestation might not be the
most important optimisation to implement, but clearly there are measur-
able benefits.

Furthermore, the results are more pessimistic than might be the case for
programs written with the knowledge that a deforestation is being used to
enhance compilation.

With no other deforestation technology being sufficiently mature to be able run
non-trivial benchmarks, cheap deforestation currently has a prominent place as
the pragmatic list removal technique for lazy functional languages.





Chapter 6

The State of the Art in Data
Structure Removal

There is a long tradition of removing intermediate data structures, both automat-
ically and by user-assisted derivation. This chapter gives an overview of several
techniques used for removing data structures, and explains their relationship to
cheap deforestation.

Early work by Burstall and Darlington gave a system for performing program
transformations (Burstall & Darlington 1977). In their system they use (among
other things) the concepts of unfolding, to expose optimisation opportunities,
and folding back to give efficient programs. Their system is user driver. We
discuss work that attempts to automate their system in § 6.!.

A new line of attack to data structure removal has recently emerged. Cata-
morphisms (which we define later) can be considered as natural data structure
consumers, and using them provides a transformation system with a handle into
how a data structure is used. This approach to data structure consumption has
been used by two deforestation schemes.

• Gill et al. (1993) proposed the use of the list catamorphism and a list build-
ing combinator, allowing a straightforward list removal rule, the foldr/build
rule. This system of deforestation provides the basic list removal capability
that we use in this thesis .

• Independently Sheard & Fegaras (1993) also proposed the use of catarnor-
phisms to structure programs. Along with a cat amorphism fusion rule this
also leads to data structure removal opportunities. We discuss this system
in § 6.2.1.

119



120 Chapter 6. The State of the Art in Data Structure Removal

Some work has been done on combining these two new approaches to data struc-
ture removal. We explain these in § 6.2.2 and and § 6.2.3.

Another approach to deforestation is to spot common fixed patterns of known
combinators. and have a set of reduction rules that removes intermediate data
structures. The most common example of this is the map of map transformation.

VI· Vg. map 1 (map 9 xs ) = map (l.g) xs

We discuss the pragmatics of using such a style of deforestation, and some at-
tempts to use it, in § 6.3.

Parameterising the creation of data structures, a key concept behind our defor-
estation technique, has been considered by others as an aid to data structure
removal. We discuss previous systems in § 6.4. There has also been work on op-
timising the representation used for lists, rather than removing them wholesale.
We discuss this work in § 6.5.

There are two other list-removal schemes that do not fit into any of the above
categories, but deserve a mention. Waters (1991) introduces a datatype called
series into Pascal and Lisp, which are similar to lazy lists, except he guarantees
that this data structure will be removed at compile time. This is done by im-
posing a number of stringent conditions that must be met for any program using
the series datatype to compile.

The other scheme is Listlessness. This is an automatic transformation that re-
moved intermediate lists from a restrictive language (Wadler 1983). Wadler's
listless transformer took programs written in the restrictive language, and trans-
formed them into a graph-based language. Programs expressed in this graph-
based language were bounded in their space usage, so all required memory could
be preallocated. For example, the function to sort a list into two lists containing
the odd and even elements of the original list can be done in constant space, by
reusing the space statically allocated for the original list.

6.1 Supercompilation and deforestation

Building on the concepts presented in Burstall & Darlington (1977), Turchin
developed his supercompiler (Turchin 1986). Turchin drioes a program, per-
forming symbolic evaluation and constructing a graph of configuration states,
and then using this graph to rewrite his program more efficiently. He equates his
driving with unfolding, and his directed rewriting with folding. Like the under-
lying fold/unfold model, the configuration graphs produced by supercompilation



6.1. Supercompilation and deforestation 121

can be potentially infinite, and Turchin has an elaborate system for ensuring
termination by placing restrictions on function calls (Turchin 1988).

Wadler's deforestation (Wadler 1990) also uses the fold/unfold model. He attacks
the termination problem by limiting the form of the input program to compo-
sitions of functions in so-called treeless form. This is a particularly restrictive
form of function definition. These restrictions did however allow two theorems
to be proved: first that the result was also in treeless form (guaranteeing that no
intermediate structures were built), and secondly that the algorithm does always
terminate (Ferguson & Wadler 1988).

Many of the restrictions of Wadler's deforestation have been lifted. Specifically:

• Chin (1990) extends deforestation for first-order programs. He uses a P1'O-
ducer and consumer model, where a good producer and good consumer
over a single data structure will be guaranteed to fuse. Chin also did some
limited work on the deforestation of higher-order programs.

• Hamilton (1993) extends the treeless form permitted for successful defor-
estation.

• Marlow (1996) extends deforestation to higher order programs.

Both Hamilton and Marlow include a proof of termination for their extend sys-
tems. Though the specifics of how these restrictions have been lifted are not (for
our purposes) interesting, the question of the relationship between cheap defor-
estation and traditional deforestation is both interesting and not obvious. Even
if we consider only the list datatype, the relationship is still not clear (Marlow
& Gill 1995). We can, however, discuss the principal differences.

It is straightforward to construct examples where traditional deforestation re-
moves lists and cheap deforestation does not. The classical example involves
zip:

zip (map f xs) (map g ys)

Traditional deforestation removes both the list produced by map f xs and the
list produced by map g ys. Cheap deforestation has sufficient power for removing
the first list (though there are caveats, c.f. § 3.2.5), but has no way to remove
both.

Another example of the difference, which highlights the way traditional defor-
estation successfully handles "irregular" consumptions, is the removing of the
list inside the function fourth:



122 Chapter 6. The State of the Art in Data Structure Removal

second (x:_:xs)
second [x]
second []
fourth

= x : second xs
= [x]
= []
= second second

Traditional deforestation removes the list between the two seconds, giving an
efficient cascade of cases:

fourth xl =
case xl of

x:x2 _>
case x2 of

_:x3 _>
case x3 of

_:x4 _>
case x4 of

_:x5 -> x fourth x5
[] -> [x]

[] -> [x]
[] -> [x]

[] -> []

It would be possible to write second in terms of foldr and build, but this would
involve a bidirectional flow of information, carrying a token (in this case, a Baal):

second xs = build (\ c n ->
let
fn x g True = x 'c' g False
fn x g False = g True

in
foldr fn (\ z -> foldr c n z) xs True)

After cheap deforestation, fourth would have two Baal counters.

fourth xs =
let

h [] a b = [J
h (x:xs) a b =

if a
then if b

then x : h xs False False
else h xs True False

else h xs True b
in

h xs True True

This is dearly inferior to the cascade of cases, and highlights the issue that just
because it is possible to remove lists using cheap deforestation does not mean



6.1. Supercompilation and deforestation 123

I.,List B
reverse - .....

'-------
map g I'-_m_ap_f_ ....1 f(List A

Figure 6.1: map f . reverse . map g

that we want to remove it. It is not clear that performing such coercions of
"irregular" consumers into foldr form actually wins in the general case.

As a counter-case, consider the expression map f . reverse . map g, as illus-
trated in Figure 6.1. With cheap deforestation, list A and list B get removed,
though list B gets replaced with a sequence of suspensions inside an accumulat-
ing argument. In some cases the strictness analyser can be used to detect that
the accumulating argument is strict, and the space used by list B can be totally
removed. The final code, after cheap deforestation (including arity analysis) is:

let
h [] z = z
h (x:xs) z = h xs (f (g x) z)

in
h xs []

The constructors that formed list B have been transformed into suspensions
of the form (f (g x) : z). With traditional deforestation, the story is dif-
ferent. Traditional deforestation can successfully merge list B, without even
needing the arity analysis technology. However, list A is "residual" after defor-
estation (Marlow 1996). Table 6.1 summarises the differences between the way
the two deforestation systems act on this example.

So can we generalise our understanding of this relationship between the two
deforestation systems, and classify when one works and one fails? A formal

Deforestation Style Remove list A? Remove List B?
Traditional Deforestation No Yes
Cheap Deforestation Yes Yes, but

• needs arity analysis
• creates suspensions

Table 6.1: How both deforestation schemes act on map f. reverse. map g



124 Chapter 6. The State of the Art in Data Structure Removal

comparison might be possible (c.f. § 7.3.5), but we can make some simple obser-
vations .

• Traditional deforestation can cope with "regular" consumptions as well as
cheap deforestation, and can also cope with many "irregular" consump-
tions.

• There are cases where build can give a handle onto the list constructors
that construct an intermediate list, but traditional deforestation is unable
to locate them. These cases include when the constructors are part of an
accumulating argument.

6.2 Catamorphisms for data structure
consumption

Catamorphisms are used to consume (or "down-form") data structures. For an
"algebra" of type F A ~ .4., where F is a functor from CPO to CPO, there is
a catamorphism of type

(F A ~ A) ~ J.LF ~ A

Intuitively this reads "give me a way of rewriting a single level of F, and I'll
re-write the whole data structure for you". foldr has this property, though the
type is slightly different because of the use of currying. We have already seen
that the list cat amorphism is a useful tool for structuring list consumption. It
can be argued that catamorphisms are the natural way to consume other data
structures (Meijer & Jeuring 1995).

6.2.1 Fold promotion

There is another approach to removing intermediate lists that rather than using
rules like the foldr/build rule uses a fold-promote rule. To see how this works,
consider the example:

and (map fn xs)

We can represent both the maps in terms of foldr.

foldr (\ ai bi -> ai && bi) True (foldr «:).fn) xs)



6.2. Catamorphisms for data structure consumption 125

But now we are stuck because of the lack of a straightforward foldr of foldr
rule.

foldr k1 Z1 (foldr k2 Z2 e) = ???

It is certainly possible to invent a more specialised transformation, such as this
one:

foldr k1 Z1 (foldr ((:). k2) [] e) = foldr (kl. k2) Z1 e

This will successfully transform our example to:

foldr «&&).fn) True xs

It would be nice, however, if we had a more general transformation. The reason
that there is no straightforward foldr /foldr rule is because the outer foldr
has no "handle" on the way in which the inner foldr is producing its output
list. It is exactly for this reason the we use build (c.f. § 2.2.2).

Sheard & Fegaras (1993) encountered exactly the same problem, but developed
a different solution. They use a fold promotion system (Malcolm 1989), that is,
among other things, a way of generating foldr of foldr rules. For lists, their
promotion theorem is:

9 (foldr I z xs) = foldr If Zf xs
where

f' TI T2 = 9 (J Xl X2),
z' = g Z

The key step is spotting instances of g(X2) and replacing them with T2. (This
is analogous to the fold step in Burstall & Darlington (1977)). Considering our
example and (map f xs) again. First we define g, f and z:

g =foldr (\ ai bi -> ai && bi) True
f = \ a2 b2 -> fn at : a2
z = []

Now we can derive z':

z' = foldr (\ at bi -> ai && bl ) True z
= foldr (\ ai bi -> at && bl ) True []
= True



126 Chapter 6. The State of the Art in Data Structure Removal

And finally we can derive 1':

l' rl r2 ..= foldr (\ al bl -> al && b l ) True (J Xl X2)
where p = [xr/rI' foldr (\ al bl -> al && bl) True X2/r2]

= foldr (\ al bl -> al && b L) True (In Xl : X2)
= fn x_l && foldr (\ al bl -> al && bl) True X2
= fn rl && tz

Replacing these results into the foldr gives:

foldr (\ rl r2 -> fn rl && r2) True xs

This style of deforestation is actually quite close conceptually to traditional de-
forestation. Consumers are pushed in towards producers. The intuition behind
how this technique works is the transformation system is "taught" how foldr
treats its argument, allowing functions that consume a foldr to look inside
foldr's arguments in an intelligent way. Because the recursion in captive inside
the foldr, the fold step is easier than in deforestation.

6.2.2 Warm fusion

There has been some recent work combining the advantages of both cheap defer-
estation and the fold promotion technique given above. Launchbury & Sheard
(1995) generalise the fold promotion to explicit recursion, and then use this to
explicitly derive foldr and build.

This work is not list specific, and they use the foldr/build rule (and its general-
isation) as their fusion rule. Because this work was done independently from the
more recent work on cheap deforestation, no consideration is given to deriving
augment, and its generalisation. In particular, their algorithm can take:

append [] ys = ys
append (x:xs) ys = x : append xs y8

and automatically derive:

append xs ys = build (\ c n -> foldr c (foldr c n ys) xs)

As we have already discussed in § 3.4, this definition is not practical for a serious
implementation. It should be possible to add the automatic derivation of augment
to their algorithm, overcoming this problem.



6.2. Catamorphisms for data structure consumption 127

6.2.3 foldr/build deforestation in calculational form

foldr/build deforestation has been re-expressed and extended into a calcula-
tional form, in Takano & Meijer (1995). The paper uses the "bananas and lens"
notation to explain their ideas (Meijer, Fokkinga & Paterson 1991). Though
quite technical, the paper does contain some interesting extensions to the con-
cepts introduced by foldr/build deforestation.

First the calculational form allows the generalisation to arbitrary datatypes of
the foldr/build rule to be concisely expressed. Secondly they observe that
foldr/build rule has a dual. The foldr/build rule works with catamorphisms
while the dual rule works over anamorphisms. Anamorphisms are unfolds, so
the new rule, expressed in the same framework as cheap deforestation, could be
called the unbuild/unfold rule. The unbuild/unfold rule for lists is:

unbuild f (unfold 9 h) = f 9 h

where the one possible definition of unbuild and unfold is:

data Maybe a = Nothing I Just a

unfold :: (b -> Maybe (a,b)) -> b -> [a]
unfold fn b =

case fn b of
Nothing -> []
Just (a,b) -> a : unfold fn b

unbuild :: «b -> Maybe (a,b)) -> b -> c) -> [a] -> c
unbuild fn 1st = fn outL 1st

where
outL [] = Nothing
outL (x:xs) = Just (x,xs)

Like build, unbuild has a non Hindley-Milner type.

Takano & Meijer (1995) then go on to use hylomorphisms, a generalisation of
both catamorphisms and anamorphisms, as their canonical form. They give
reduction rules for hylomorphisms (including two fusion laws that correspond
to the foldr/build rule and the unbuild/unfold rule). They also give a non-
trivial reduction strategy to achieve the maximum deforestation opportunity.
Paterson (1995) has a single rule that is a generalisation of the two fusion laws on
hylomorphisms. This simplifies somewhat the requirement on reduction ordering.

Some work has been done to express the "bananas and lens" notation directly in
Haskell augmented with constructor classes (Jones 1995). This work could allow
a straightforward user driven implementation of these ideas inside an equational



128 Chapter 6. The State of the Art in Data Structure Removal

reasoning system. For any automated implementation to get past the prototype
stage, though, technology equivalent to the material introduced in Chapters 3
and 4 would have to be incorporated.

6.3 Schema based deforestation systems

Schema based transformations look for known fixed patterns of functions in pro-
grams, and using rules about these known patterns, optimise the programs. In
some cases these transformations can be used to remove intermediate data struc-
ture. For example, an algebraic transformation which eliminates an intermediate
list is the map of map rule.

map f (map g xs) = map (f .g) xs .

It is straightforward to show that a large set of algebraic rules would be impracti-
cal as for a general list removal scheme. For n different list processing functions,
71,2 rules would be required. Furthermore, each algebraic transformation may
potentially produce a totally new list processing function.

One possible way of combating this rule explosion is trying to factor out the
essence of list manipulations (like list production, list consumption, mapping over
a list, etc) and express list processors in terms of a small set of combinators. Then
a small set of rules can transform on these combinators, eliminating intermediate
lists. Cheap deforestation is one such system. We now discuss two other systems
that use a schema based approach.

6.3.1 Wadler's schema deforestation

Wadler (1981) attempts to capture list removal opportunities by using a small
set of combinators. We transliterate the ideas presented into the more convenient
Haskell notation. He uses as his key combinators the three functions map, foldl,
and generate. map and foldl we have already met:

map :: Ca -> b) -> [a] -> Cb]
map f [] = []
map f (x:xs) = f x : map f xs

foldl :: Ca -> b -> b) -> b -> [a] -> b
foldl f z [] = z
foldl f z (x:xs) = foldl f Cf z x) xs



6.3. Schema based deforestation systems 129

= map (f.g) xs
= foldl h a xs

where
h a' x = f a' (g x)

map f (generate p gl g2 x) = generate p h g2 x
where

h b' = f (gl b')

map f (map g xs)
foldl f a (map g xs)

foldl f a (generate p gl g2 x) = h a x
where

h a' b' =
if P b'
then a'
else h (f a' (gl b ") (g2 b ")

Figure 6.2: Wadler's algebraic deforestation transformations

generate is a list producer that uses a predicate and two functions to create the
elements of the list from a single value.

generate :: (a -> Bool) -> (a -> b) -> (a -> a) -> a -> Cb]
generate p f g n =

if P n
then []
else f n : generate p f g (g n)

Wadler's small set of algebraic transformations are given in Figure 6.2. He shows
that programs that express list processing functions in terms of this small set
of functions can have many of their intermediate lists removed. As an example,
consider:

foo n = sum (map square (from 1 n»

We can now express sum and from in terms of our key list combinators.

foo n = foldl (+) 0 (map square (generate (n <) id (+1) 1»

Now we can use the fOldl-of-map rule:

foo n = foldl h1 0 (generate (n <) id (+1) 1)
where

hi a x = a + square x

Finally, using the fOldl-of-generate rule gives:



130 Chapter 6. The State of the Art in Data Structure Removal

faa n = h2 0 1
where

h2 a b =
if b > n
then a
else h2 (a + square (id b)) (b + 1)

This version of the program has no intermediate lists.

foldr/build deforestation subsumes this deforestation algorithm. We can ex-
press the two list consumers foldl and map in terms of foldr, and can express
the two list producers generate and map in terms of build. We have seen foldl
and map in terms of foldr and build before. generate in terms of build has
the definition:

generate p f g x
= build (\ c n ->

let
h x = if P x

then n
else f x 'c' h (g x)

in
h x)

The four laws given in Figure 6.2 are directly replaceable with the single foldr /build
transformation.

The principal shortcoming of this method of list removal is that generate is not
a very general way of producing lists. There is no way of generating a constant
list, for example. build is a more general way of producing lists.

6.3.2 Maessen's schema deforestation

Maessen (1994) presents a desugaring system for the functional language pH
that uses schemas over list combinators to achieve list removal. To express list
consumers Maessen uses the combinators reduce and map. As many consumers
as possible are expressed in the form:

(reduce a id (map u xs)) t

where xs is the list being consumed. reduce is a fold that can be expressed as
either a foldr or foldl.



6.3. Schema based deforestation systems 131

reduce f z = foldr f z

or

reduce f z = foldl f z

Because of this, there is a requirement that a is associative. Maessen uses this
choice to enhance the handling of parallel lists.

To express foldr f z in this canonical form can be done by defining a, 'U and t
to suitable values:

a = \ 1 r -> 1 r
u = \ e t -> f t e
t = z

Maessen uses the function unfold to express list production. unfold has the
definition:

unfold p f v = h v
where
hvlpv =[]

I otherwise = a : h b
where

(a,b) = f v

and there is a reduce/unfold rule, analogous to the foldr/build rule.

(reduce a (\x -) x) u (unfold p f v)) t

h i x
where
h v r p v = r

otherwise = f (g a) (h b) r
where

(a,b) = j v

Maessen also used a large set of other list identities when desugaring.

l\1aessen's emphasis is somewhat different from traditional list removal tech-
niques, in that he specifically wanted to handle the parallel traversals of lists effi-
ciently. It is as yet unclear how effective h.s optimisations are, because Maessen
(1994) contained only two small benchmarks. Furthermore, it appears that
Maassen's will need the arity analysis technology that we introduced in § 4.4
to properly handle the inlining of foldr, reduce, etc.



132 Chapter 6. The State of the Art in Data Structure Removal

Directly comparing Maessens system with cheap deforestation, it appear that
cheap deforestation is more straightforward, but it is unclear if Maessen's system
is more powerful (c.f. § 7.3.5). build is also a more general producer than unfold,
being able to represent a larger class of producers.

6.4 Parameterisation over data structure
construction

Parameterising the creation of data structures has been considered by others.
'Ne discuss the parameterisation over [] in § 6.4.1 and the parameterisation over
both (:) and [] in § 6.4.2

6.4.1 Parameterisation of []

Parameterising over the nil of a list has been proposed as a possible optimisation
over traditional lists (Hughes 1984). Hughes, who expresses this in terms of a
user applied optimisation, provides two functions.

abs [a] -> AbsList a
rep :: AbsList a -> [a]

AbsList is an optimised representation of lists, especially optimised for efficient
appends. abs takes a conventional list, and returns an "optimised" version, while
rep takes an "optimised" list, and returns a conventional one. These functions
have the property:

\;f a. abs (rep a) = a

In Haskell, these functions can be given the definitions:

type AbsList a = [a] -> [a]
abs 1st = \ rest -> 1st ++ rest
rep abs1ist = abs1ist []

This technique works by postponing the actual construction of the list until given
a list continuation (a tail). The important consequence of using this alternative
representation of lists is that the append operation now can be performed in
constant-time, because appending is simply providing a list continuation. (++)
for AbsList has the definition:

appendR :: AbsList a -> AbsList a -> AbsList a
appendR f g = f . g



6.4. Parameterisation over data structure construction 133

As an example of AbsList in action, consider a datatype Tree.

data Tree = Leaf Int I Node Tree Tree

A function to construct a list of the contents of all the leaves might have the
definition:

printLeaf :: Tree -) [Int]
printLeaf (Leaf i) = [i]
printLeaf (Node t1 t2) = printLeaf t1 ++ printLeaf t2

This program has a runtime complexity of O(n2), where n is number of leaves.
Now, if we re-write the function to use AbsList to create the result, we have:

printLeaf :: Tree -) AbsList Int
printLeaf (Leaf i) = abs [i]
printLeaf (Node t1 t2) = printLeaf t1 'appendR' printLeaf t2

This new version has a runtime complexity of O(n), because of the constant-
time append. In Haskell, this efficient style of list is used inside the Text class,
specifically to give the improved complexity when printing large data structures.

This idea of optimising append using parameterisation over nil was taken one step
further in Wadler (1987b), where Wadler describes a local transformation that
removes many appends from a program by using this improved representation of
lists. For any function of the type

f :: al -) ... an -> Cb]

Wadler defines an auxiliary function

f' :: al -> ... an -> AbsList b

where

(f Xl ... Xn) ++ Y = f' Xl ... Xn Y

This can be done by taking the original definition:

f al ... an = <exp>

and giving:

f al an = f' al ... an []
f' al an Y = <exp> ++ Y

All instances of f are replaced with f's definition, like the worker/wrapper scheme
in Peyton Jones & Launchbury (1991). Wadler now uses several rules to exploit
properties of append to give an efficient program.



134 Chapter 6. The State of the Art in Data Structure Removal

We describe a system in § 7.4 that gets all the benefits of Wadler's automation of
using AbsList, but because it abstracts over both cons and nil, it gets additional
benefits.

6.4.2 Parameterisation of (:) and [J

After we had developed the foldr/build transformation we discovered that the
key concept of parameterisation over both (:) and [] had been applied to list
removal before. It was considered by the pioneer functional programmer, Burge
as long ago as 1977 (Burge 1977).

First Burge suggests expressing list consumption, where possible, using a "uni-
versal" list consumer. He proposed a function, called L (we will call it reduce),
which is a variant of fold!.

reduce :: a -> (b -> a -> a) -> [bJ -> a
reduce a g [J = a
reduce a g (x:xs) = reduce (g x a) g xs

He then gives examples offunctions like map and filter, in terms of this function.
For example

map f xs = reduce [] «:).f) xs

However, in what will seem foreign to modern functional programmers, his ver-
sion of map (and filter, append, etc) actually reverses the list they consume.
So for Burge's version of map:

map (+1) [1..4J = [5,4,3,2J

Secondly, Burge also suggests that functions that produced lists should be pa-
rameterised with respect to their (:) and []. Burge advocates having a second
version of map:

map' n c f xs = reduce n (c.f) xs

where c and n are used to construct the result list. He finally gives a set of loop
jamming rules, that jam loops together. The jamming rules have the form

reduce f z (faa Xl ... Xn) = foo' Xl ... Xn f z

where foo is a list producer, and foo' is its abstracted partner; So the rule for
map is:



6.5. Optimised representations of lists 135

reduce f z (map g xs) = map' g xs f z

Furthermore, this map' can be unfolded, revealing a new instance of reduce.

As far as we know, there has been no implementation of this work. Also, some
practical considerations have been overlooked. For example, map is both a list
producer and consumer. Because of this it wants to be both in reduce form,
so that one of the reduce of something rules will be possible, and also left as
a map, so that the reduce of map rule can operate. Our introduction of build
neatly sidesteps these problems, allowing the successful detection of parame-
terised function that can also be simultaneously expressed in terms of a general
list consumer.

6.5 Optimised representations of lists

Sometimes lists can not be removed outright. There are, however, a num-
ber of techniques that involve optimising the representation for lists to make
them cheaper to produce and consume (Hall 1994a, Hall 1994b, Shao, Reppy &
Appel 1994). For example, consider a list of type [Ca, b)]. One optimised data
structure for such a list is:

data TupleList a b
= Cons a b (TupleList a b)
I Nil

When using such an optimisation the producer and consumer need to be modified
to use the new datatype, either automatically or by hand. Furthermore, in lazv
languages there are strictness constraints on which optimisations are applicable.
The effect of using optimised representations for lists can be significant. Hall
(1994a) observed one list intensive program improve in execution time by around
45%.

\Vhen using such optimisations at the same time as cheap deforestation some
care needs to be taken, but both can be used inside the same framework. The
two main points to be considered are:

• If a list can be deforested outright this is the preferable choice.

• If a list can not be removed, an optimised representation is preferable to
the unoptimised representation.

These considerations can be uuplemented in one of two ways. Firstly the defor-
estation system can act before the list representation optimisation. Alternatively,



136 Chapter 6. The State of the Art in Data Structure Removal

the deforestation system could be generalised to cope with the new datatypes
that are being used to represent lists (c.f. § 7.3.2,§ 7.3.4).



Chapter 7

Conclusions and Further Work

In this thesis we have demonstrated that a cheap form of deforestation is feasible
inside the framework of a real functional language compiler. We have made two
principal contributions .

• We have presented a new practical approach to list-removal.

• This new approach has been demonstrated as practical by developing it
into a working (list) deforestation scheme inside a real functional language
compiler.

In this chapter we reflect on these two contributions, and present several avenues
for further work.

7.1 A new list removal algorithm

Cheap deforestation is a new deforestation algorithm, though as we have seen
in Chapter 6, many aspects of cheap deforestation have appeared in some form
before. There are three key concepts at the heart of cheap deforestation, namely:
using foldr, using build, and using the foldr/build rule .

• The use of foldr as a list consumer is in line with current thinking on
data structure removal. Other state-of-the-art data structure removal and
data structure transformation systems that use the same concept, using
a catamorphism as a generic consumer. The practical considerations in
Chapter 3 enhance our understanding of the pragmatics behind actually
using foldr to express consumption.

137



138 Chapter 7. Conclusions and Further Work

• The use of build (and augment) appear to be unique. Though from a theo-
retical point of view, finding constructors is simply a matter of observation,
the practical ramifications of being able to gain straightforward access to
the constructs are tangible. Indeed, build seems to be able to reach the
constructors that other deforestation systems fail to reach.

Using build also marks a departure for the traditional data structure re-
moval ordering. Traditional deforestation works by pushing the consumer
inside the producer, whereas build brings out the data structure to the
consumer.

• The simplicity of the foldr/build rule has a certain aesthetically pleasing
quality. It is always nice when a simple rule is also a powerful and useful
rule.

7.2 An implementable list removal algorithm

It was possible to implement cheap deforestation reasonably efficiently. The
implementation gave rise to some interesting developments.

• The foldr/augment rule was driven by the desire not to do extra foldr
consumptions. It is an interesting generalisation of the foldr/build rule.

• The enabling technologies presented in Chapter 4 are general, and add to
the growing army of possible transformations that can be performed on
functional languages.

• \Vhen arrays in Haskell were being designed, specification technique" like
array comprehensions presumed that a simple deforestation system would
emerge that could remove the intermediate lists that array comprehensions
produce. Cheap deforestation was found to fit exactly this criteria.

One very difficult aspect of deforestation that will become an increasing hin-
drance to more and more powerful transformations is the interaction between
transformations. In our case, cheap deforestation competes with full laziness.
The code fragment

\ f z -> foldr f z [1,2,3,4]

has intermediate list successfully removed, but the almost identical

\ f z -> foldr f z [1..4]



7.3. Further work 139

is not deforested. This is because [1 .. 4] would be lifted out, though the A'S.
H we did not use full laziness, then both would fuse. There are good reasons,
however, why we need to use full laziness before cheap deforestation.

With every new optimisation inserted into the compiler, all the optimisation
implementers had to carefully consider how their optimisation interacted with
other optimisations. It is simply not practical to insert an optimisation pass
without knowledge of how the current optimisations are interacting. Even with
careful documentation, handling the interaction between the optimisations is a
black art.

An automatic approach to these interactions might, at least in principle, be
possible. Optimisations could "vote", declaring how much benefit they guarantee
to give to some specific code, and a dynamic algorithm could be used to handle
iterations of this system. There would be, however, major technical problems
to overcome before this system could be practical, such as what form a "vote"
would actually take.

7.3 Further work

One especially exciting aspect of the work presented in this thesis is the number
of new avenues that have been exposed as suitable for exploration.

7.3.1 Automatically deriving foldr and build

Under the cheap deforestation system presented in this thesis, deforestation can
only occur in two ways:

• A program fragment is written that uses inlined prelude functions (and list
comprehensions), exposing foldr, build, etc .

• A programmer explicitly uses foldr, build, etc., and also requests explic-
itly that producers and consumers are inlined.

Though this scheme does allow opportunities for optimisation, it would be much
more pleasant for the programmer to be neither tied to using prelude functions
or explicitly using our deforestation combinators. As we have already seen there
has been some work on deriving foldr and build automatically (Launchbury &
Sheard 1995).



140 Chapter 7. Conclusions and Further Work

7.3.2 Other data structures

The fo1dr/build transformation, and its generalisation the fo1dr/augment
rule, both have a natural extension to many other data structures. There is
a lot of work to do considering the pragmatic aspects of data structures other
than lists.

fo1dr and build are both straightforward to rewrite for other data structures,
because their definition follows naturally from the datatype definition. augment
is slightly tricker, because of the asymmetric treatment of constructors. The
general rule for augment is that augment has an extra argument for each nullary
constructor. So augment for Boo1 would be:

augmentBo01 :: Ca -) a -) a) -) Bo01 -) Bo01 -) Bo01
augmentBo01 g t f = g t f

On the other hand, for types that do not have nullary constructors (like n-tuples,
where n > 0), augment would be the same as build.

7.3.3 Selective inlining of prelude functions

In might be possible to build an unfolding mechanism into the simplifier, so that
prel ude functions are only inlined if this will expose an instance of a deforestation
rule. Producers and consumers could have types that represent if they are good
or bad producers and/or consumers. The simplifier would then use these types
to decide when to inline list processors.

Though the code size increase that was caused by cheap deforestation was quite
small, one reason for the extra compilation time was the time spent reading the
definitions of many prelude functions and unfolding them. A selective inlining
scheme should cut the cost of using cheap deforestation.

In § 7.4 we present a sketch of a technique that allows deforestation opportunities
to cross function boundaries without needing wholesale inlinings.

7.3.4 Dynamic deforestation

In ~i6.5 we discussed new, optimised representations for lists that replace the
traditional "cons" and "nil" approach. There is interesting way to combine
cheap deforestation with this approach. Consider the data definition:

begin List a = Augment «a -) b -) b) -) b -) b) (List a)
I Nil



7.3. Further work 141

The type variable b here, just like with augment, is scoped over Augment's first
argument only. foldr now has the definition:

foldr :: (a -) b -) b) -) b -) List a -) b
foldr f z (Augment g h) = g f (foldr f z h)
foldr f z Nil = Nil

When this foldr pattern-matches on an Augment it uses at runtime the foldr /augment
rule, providing a dynamic deforestation.

There is however a caveat with this representation of lists. Consider the list

fib 1 : fib 2 : ... : fib 30 : 0
using our new representation we would use

Augment (\ c n -)
fib 1 cc' fib 2 cc' ... cc' fib 30 cc' n)

Nil

Unfortunately now the elements inside the list are recalculated each time the list
is demanded, not just once as would be the operational semantics for the original
list under lazy evaluation. To use this optimised list data structure requires a
more elaborate update mechanism, that updates Augment based lists into more
traditional representations, if required. In practice this would be a non-trivial
change to the runtime system.

This new representation for lists is significant, however, because a completely
new form of virtual machine might be possible. Currently inside our virtual
machines for symbolic languages we consider a data structure efficient if each
constructor in the source language is represented by a vector and a tag on the
target architecture. A new style of virtual machine could store all its data struc-
tures in an Augment like form, and perform dynamic deforestation as a reduction
step. A more elaborate update mechanism could be built into the virtual ma-
chine, including a mechanism for dynamically eliminating redundant updates,
like dashing (Peyton Jones & Salkild 1988).

7.3.5 The bigger picture

Cheap deforestation is yet another data structure removal technique, albeit a
successful and practical one. As we have explored in Chapter 6, there are many
other wavs of removing intermediate data structures. All the different defor-
estation systems have their strengths and weaknesses, and relationships between



142 Chapter 7. Conclusions and Further Work

them are still somewhat informal. A formal approach to classifying the relation-
ships of the different systems might lead to some interesting ways of combining
deforestation systems.

7.4 Crossing the function boundary

In this section we sketch a method for improving the scope of cheap deforesta-
tion by allowing the effects of deforestation to cross the function boundary. In
the same way as Peyton Jones & Launchbury (1991) transmitted strictness in-
formation over the function boundary using workers and wrappers, we can also
use workers and wrappers to transmit deforestation opportunities. When such a
deforestation opportunity is detected, we take a list producer function definition:

f Xl",Xn = build (\ c n -> <exp»

and split it into two mutually recursive functions, a worker (J#) and a wrapper
(f) :

f# Xl ... Xn C n = <exp>
f Xl ... Xn = build (\ c n -> f# Xl ... Xn C n)

vVenow inline the small wrapper f at all its call sites.

Consider the Haskell program:

faa xs = map (+ 1) xs
bar ys = filter p (faa ys)

We now inline map and filter, as we would in traditional cheap deforestation,
giving:

foo xs = build C\ c n -> foldr C\ a b -> Ca + 1) cc' b) n xs)
bar ys = build (\ c n -)

foldr (\ a b -)
if P a
then a 'cc b
else b) n (foo ys»

The list producer foo can be split into a worker and wrapper:

foo# xs C n = foldr (\ a b -) (a+1) 'cc b) n xs
foo xs = build (\ c n -) foo# xs c n)

foo, now a small wrapper, can be unfolded into bar, giving:



7.4. Crossing the function boundary 143

foot xs c n = foldr (\ a b -> (a+1) cc' b) n xs
bar p ys
= build (\ c n ->

foldr (\ a b ->
if P a
then a cc' b
else b) n (build (\ c n -> foot ys en)))

We have an instance of the foldr/build rule. Taking the optimisation oppor-
tunity gives:

foot xs c n = foldr (\ a b -> C (a+1) b) n xs
bar p ys
= build (\ c n ->

foot ys (\ a b ->
if P a
then a cc' b
else b) n)

We have achieved deforestation without a wholesale inlining of the list producer
into the consumer. This technique is especially useful for when foo is a large
function, and therefore too expensive, in terms of code size increase, to inline.
Furthermore, it is also possible to transmit good list consumption using workers
and wrappers.

We can also use the worker/wrapper technology to remove a list that exists
between recursive calls of a single function. Consider:

data Tree a = Tree a [Tree a]
preorder (Tree a ts) = a : concat (map pre order ts)

preorder can be automatically transformed, using a slightly modified version of
cheap deforestation, into:

preorder xs =
build (\ c n ->
case xs of

Tree a ts ->
a cc' foldr (\ x y -> foldr c y (preorder x))

n ts)

Even though pre order is recursive, we can still split it into a worker and wrapper:



144 Chapter 7. Conclusions and Further Work

preorder# xs c n =
case xs of

Tree a ts -)
a 'Cl foldr (\ x y -) foldr c y (preorder x))

n ts
preorder xs = build (\ c n -) preorder# xs c n)

Now we can once again unfold the wrapper (pre order ) into all its call sites,
because it is small.

preorder# xs c n =
case xs of

Tree a ts -)
a 'Cl foldr (\ x y -)

foldr c y
(build (\ c n -) preorder# x en)))

n ts
preorder xs = build (\ c n -) preorder# xs c n)

Finally, we can take advantage of the new instance of the foldr/build rule,
giving:

preorder# xs c n =
case xs of

Tree a ts -)
a 'Cl foldr (\ x y -) preorder# x c y)

n ts
pre order xs = build (\ c n -) preorder# xs c n)

This version of preorder does not have any intermediate lists between the re-
cursive calls. It also has an improved runtime complexity.

We have a prototype implementation of this worker/wrapper enhancement for
cheap deforestation. One factor that is delaying the reporting of results from our
prototype is the fact that there is a substantial performance difference between:

let foo x y zen = c x (c y (c z n))
in ... foo abc (:) [] ...

and

let foo x y z = x : y z []
in ... foo abc ...

Allocating a cons cell is cheaper than calling a function that simply ends up
allocating a cons cell! This problem could be solved by having specialised versions
of the workers. Further measurements are needed regarding any code increase
this might cause.



References

Aho, A., Sethi, R. & Ullman, J. (1986), Compilers - Principles, Techniques and
Tools, Addison-Wesley. (pp. 81, 87)

Anderson, S. & Hudak, P. (1990), Compilation of Haskell array comprehensions
for scientific computing, in Programming Language Design and Implemen-
tation, ACM, pp. 137-149. (p 84)

Appel, A. (1992), Compiling with Continuations, Cambridge University Press.
(p 61)

Augustsson, L. (1987), Compiling lazy functional languages, Part II, PhD the-
sis, Department of Computer Science, Chalmers University of Technology,
Goteborg, Sweden. (pp. 7, 42, 65)

Augustsson, L. & Johnsson, T. (1989), The Chalmers lazy ML compiler, Com-
puter Journal 32(2), 127-141. (p 2)

Bird, R. S. (1989), Algebraic identities for program calculation, Computer Jour-
nal 32(2), 122-126. (p 16)

Bird, R. S. & Wadler, P. (1988), Introduction to Functional Programming, Inter-
national Series in Computer Science, Prentice-Hall. (pp. 3, 5)

Burge, "V. H. (1977), Examples of program optimization. RC 6351, IBM Thomas
J Watson Research Centre. (p 134)

Burstall, R. M. & Darlington, J. (1977), A transformational system for developing
recursive programs, Journal of the ACM 24(1), 44-67. (pp. 14, 119, 120,
125)

Cardelli, L. & Longo, G. (1991), A semantic basis for Quest, Journal of Func-
tional Programming 1(4), 417-458. (p 28)

Chin, W. N. (1990), Automatic methods for program transformation, PhD thesis,
University of London. (p 121)

145



146 References

Fairbairn, J. (1985), Design and implementation of a simple typed language based
on the lambda calculus, PhD thesis, University of Cambridge Computer
Laboratory. (p 28)

Ferguson, A. B. & Wadler, P. (1988), When will deforestation stop, in K. Davis
& R. J. M. Hughes, eds, Glasgow Workshop on Functional Programming,
Internal Report. (p 121)

Fleming, P. .1. & Wallace, J. J. (1986), How not to lie with statistics - the correct
way to summarise benchmark results, CACM 29(3), 218-221. (p 96)

Fradet, M. & Metayer, D. L. (1991), Compilation of functional languages by
program transformation, TOPLAS 13(1). (p 61)

Gill, A. .T., Launchbury, J. & Peyton Jones, S. L. (1993), A short cut to deforesta-
tion, in Arvind, ed., Functional Programming and Computer Architecture,
Copenhagen, Denmark, ACM, pp. 223-232. (pp. 8, 82, 119)

Gill, A . .1. & Peyton .Jones, S. L. (1994), Cheap deforestation in practice: An
optimiser for Haskell, in IFIP, Hamburg, Germany, Vol. 1, pp. 581-586.
(p 8)

Hall, C. V. (1994a), An optimistic view on life: transforming lists representations.
Unpublished report, Department of Computing Science, Glasgow University.
(p 135)

Hall, C. V. (1994b), Using hindley-milner type inference to optimize list repre-
sentation., in Lisp and Functional Programming, New York. (p 135)

Hamilton, G. \\T. (1993), Compile-time optimisation of store usage in lazy func-
tional programs, PhD thesis, University of Stirling. (p 121)

Harper, R., McQueen, D. & Milner, R. (1986), Standard ML, Technical Report
ECS-LFCS-86-2, University of Edinburgh. (p 2)

Hartel. P. H. (1994), Benchmarking implementations of lazy functional languages
II: two years later, Technical report, Department of Computer Systems,
University of Amsterdam. (p 90)

Hartel, P. H. & Langendoen, K. G. (1993), Benchmarking implementations of
lazy functional languages, in Arvind, ed., Functional Programming and
Computer Architecture, Copenhagen, Denmark, ACM, pp. 341-349. (p 90)

Henderson, P. (1980), Functional Programming: Application and Implementa-
tion, Prentice-Hall. (p 2)



References 147

Hudak, P. (1987), Arrays, non-determinism side-effects and parallelism: A func-
tional perspective, in P. Hudak, ed., Graph Reduction Workshop, Santa Fe,
Vol. 279 of LNCS, Springer-Verlag, pp. 312-327. (p 3)

Hudak, P., Peyton Jones, S. L., Wadler, P. et al. (1992), Report on the func-
tional programming language Haskell, Version 1.2, SIGPLAN Notices 27(5).
(pp. 2, 42)

Hudak, P. & Sundaresh, R. S. (1989), On the expressiveness of purely-functional
I/O systems, Technical report, Department of Computer Science,Yale Uni-
versity. YALEU/DCS/RR-665. (p 3)

Hughes, R. J. M. (1984), A novel representation of lists and its application to the
function reverse, Technical report, Programming Methodology Group, De-
partment of Computer Science, Chalmers University of Technology, Sweden.
PMG-38. (p 132)

Hughes, R. J. M. (1989), Why functional programming matters, Computer Jour-
nal 32(2), 98-107. (pp. 4, 16)

.1ohnsson, T. (1983), The G-machine: An abstract machine for graph reduction,
in Declarative Programming Workshop, University College London, pp. 1-
19. (p 62)

Jones, M. P. (1995), Functional programming with overloading and higher-order
polymorphism, in J. Jeuring & E. Meijer, eds, Proceedings of the First Inter-
national Spring School on Advanced Functional Programming Techniques,
Bastad, Sweden, Vol. 925 of LNCS, Springer-Verlag. (p 127)

Kelsey, R. A. (1989), Compilation by program transformation, PhD thesis, De-
partment of Computer Science, Yale University. YALEU/DCS/RR-702.
(p 61)

Kernighan, B. W. & Ritchie, D. M. (1978), The C Programming Language,
Prentice-Hall. (p 2)

Kort, .1. (1996), Deforestation of a raytracer, Master's thesis, Department of
Computer Science, University of Amsterdam, The Netherlands. (to appear).
(p 83)

Launchbury, J. & Peyton Jones, S. L. (1996), State in Haskell, Lisp and Symbolic
Computation. (to appear). (p 85)

Launchbury, J. & Sheard, T. (1995), Warm fusion: deriving build-catas from re-
cursive definitions, in S. L. Peyton Jones, ed., Functional Programming
and Computer Architecture, San Diego, California, ACM, pp. 314--323.
(pp. 126, 139)



148 References

Maessen, J. (1994), Eliminating intermediate lists in pH using local transforma-
tions, Master's thesis, Department of Electrical Engineering and Computer
Science. (pp. 130, 131)

Malcolm, G. (1989), Homomorphisms and promotability, in Mathematics of Pro-
gram Construction, Springer- Verlag, pp. 335-347. (p 125)

Marlow, S. (1996), Deforestation for higher-order functional languages, PhD the-
sis, Department of Computing Science, Glasgow University. (To appear).
(pp. 121, 123)

Marlow, S. & Gill, A. (1995), Personal communication. Curlers, Byres Road,
Glasgow. (p 121)

McCracken, N. J. (1984), The typechecking of programs with implicit type struc-
ture, Semantics of data types pp. 301-315. (p 28)

Meijer, E., Fokkinga, M. M. & Paterson, R. A. (1991), Functional programming
with bananas, lenses, envelopes and barbed wire, in R. J. M. Hughes, ed.,
Functional Programming and Computer Architecture, Boston, Cambridge,
Mass., Vol. 523 of LNCS, Springer-Verlag, pp. 124-144. (p 127)

Meijer, E. & Jeuring, J. (1995), Merging monads and folds for functional pro-
gramming, in J. Jeuring & E. Meijer, eds, Proceedings of the First Inter-
national Spring School on Advanced Functional Programming Techniques,
Bastad, Sweden, Vol. 925 of LNCS, Springer- Verlag. (p 124)

Milner, R. (1978), A theory of type polymorphism in programming, Journal of
Computer and System Sciences 17(3), 348-375. (p 28)

Nikhil, R. (1988), Id Nouveau (version 88.0) reference manual, Technical report,
.MIT Laboratory for Computer Science, Cambridge, Mass. (p 2)

Partain, W. (1992), The nofib benchmarking suite, in J. Launchbury & P. M.
Sansom, eds, Glasgow Workshop on Functional Programming, Ayr, Scot-
land, Workshops in Computing, Springer- Verlag. (p 90)

Paterson, R. A. (1995), Personal communication: (p 127)

Peyton Jones, S. L. (1987), The Implementation of Functional Programming Len-
guages, International Series in Computer Science, Prentice-Hall, (pp. 32,
63, 65, 150)

Peyton Jones, S. L. (1989), Parallel implementations of functional programming
languages, Computer Journal 32(2), 175-186. (p 3)



References 149

Peyton Jones, S.L: (1992), Implementing lazy functionalIanguagss on stock
hardware: the spineless tagleSs .G~machine, Journal o/Functional Program-
ming 2(2), 127-202. (pp. 3, 90) "

Peyton Jones, S. L. & Launchbury, J. (1991), Unbcxed values as first class citizens
in a non-strict functional language, in R. J. M. Hughes, ed., FUnctional
Program:rhingalld Computer Architecture; BOston,'Cambridge,Mass., Vol.
523 of LNCS, Springer-Verlag, (pp. 86, 133, 142)

Peyton Jones, s. L., & Salkild,' J. (1988), The spineless tagless g-machine, in
K. Davis & R. J. M. Hughes, eds, Glasgow Workshop on FUnctional Pro-
gramming, Internal Report, pp. 146-160. (p 141) .

Reynolds, J. C. (1983), Types, abstraction and parametric polymorphism, in
R. E. A. Mason, ed., Information Processing 83, North-Holland, Amster-
dam, pp. 513-523. (p27)

Roe, P. (1991), Parallel programming with functional languages, PhD thesis,
Department of Computing Science, Glasgow University. (p 3)

Santos, A. (1995), Compilation by transformation in non-strict functional Ian-
guages, PhD thesis, Department of Computing Science, Glasgcw'Unlversity.
(pp. 3, 11, 32, 68, 78)

Santos, A. & Peyton Jones, S. L. (1992), On program transformation in the
Glasgow Haskell Compiler,in J. Launchbury & P..M. Sansom, eds, Glas-
gow Workshop on FUnctional Programming, Ayr, Scotland, Workshops in
Computing, Springer-Verlag. (p 3)

Shao, Z., Reppy, J. H. & Appel, A. W. (1994), Unrolling lists, in Lisp and
Functional Programming, New York. (p 135)

Sheard, T. & Fegaras, L. (1993), A fold for all seasons, in Arvind,ed., FUnctional
Programming and Computer Architecture, Copenhagen, Denmark, ACM,
pp. 233-242. (pp. 119, 125)

Steele Jr., G. L. (1984), Common Lisp - the Language, Digital Press. (p 2)

Sun Microsystems (1993), Introduction to SpixTools. (p 89)

Takano, A. & Meijer, E. (1995), Shortcut deforestation in calculational form, in
S. L. Peyton Jones, ed., FUnctional Programming and Computer Architec-
ture, San Diego, California, ACM. (p 127)

Turchin, V. (1986), The concept of a supercompiler, TOPLAS 8(3), 292-326.
(p 120)



150 References

Turchin, V. (1988), The algorithm of generalization in the supercompiler, in
Bjerner, Ershov & Jones, eds, Partial Evaluation and Mixed Computation,
North-Holland. (p 121)

Turner, D. A. (1985), Miranda: A non-strict functional language with poly-
morphic types, in P. Wadler, ed., Functional Programmingand Computer
Architecture, Nancy, France, Vol. 201 of LNCS, Springer-Verlag, pp. 1-16.
(p 2)

Wadler, P. (1981), Applicative style programming, program transformation and
list operators, in Symposium on Principles of Programming Languages,
pp. 25-32. (p 128)

Wadler, P. (1983), Listlessness is better than laziness, PhD thesis, Department
of Computer Science, Carnegie Mellon University. (p 120)

Wadler, P. (1987a), Compiling list comprehensions, in The Implementation of
Functional Programming Languages (Peyton Jones 1987). (pp. 7, 42, 58,
65)

Wadler, P. (19870), The concatenate vanishes. Unpublished report, Department
of Computing Science, Glasgow University. (p 1~3)

Wadler, P. (1987c), A new array operation, in P. Hudak, ed., Graph Reduction
Workshop, Santa Fe, Vol. 279 ofLNCS, Springer-Verlag, pp. 328-335. (p 3)

Wadler, P. (1989), Theorems for free!, in D. B. MacQueen, ed., Functional Pro-
gramming and Computer Architecture, London, Addison-Wesley. (p 27)

Wadler, P. (1990), Deforestation: transforming programs to eliminate trees, The-
oretical Computer Science 73, 231-248. (pp. 6, 14, 121)

Wadler, P. (1992a), Comprehending monads, in Lisp and Functional Program-
ming. Special issue of selected papers from 6'th Conference on Lisp and
Functional Programming, 1992. (p 3)

Wadler, P. (1992b), The essence of functional programming, in Symposium on
Principles of Programming Languages", Albuquerque, New Mexico, USA,
Vol. 19. (p 3)

Wadler, P. & Blott, S. (1989), How to make ad-hoc polymorphism less ad-hoc, in
Symposium on Principles of Programming Languages, Austin, Texas, USA,
Vol. 19. (p 62)

Waters, R. (1991), Automatic transformation of series expressions into loops,'
TOPLAS 13(1), 52-98. (p 120)

GLASGOW
UNrvF.PS~'O"IP
'~'-~:,\!~


