
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Davies, Carolyn A. (2005) Spatial multilevel modelling of cancer 
mortality in Europe. PhD thesis. 
 
 
 
http://theses.gla.ac.uk/4782/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4782/


Spatial Multilevel Modelling of 

Cancer Mortality in Europe 

Carolyn A Davies 

A Dissertation submitted to the 

University of Glasgow 

for the degree of 

Doctor of Philosophy 

Department of Statistics 

January 2005 



Abstract 

Abstract 

The high number of cancer deaths in the western world is of growing concern. 

There were an estimated 2.6 million new cases of cancer in Europe in 1995, 

representing over one-quarter of the world burden of cancer despite Europe's 

inhabitants comprising only one-eighth of the world's population. The 

corresponding number of deaths from cancer was around 1.6 million. These 

figures demonstrate the very substantial burden of cancer in Europe, and since a 

lot of cancer mortality is, at least in theory, highly preventable, more research is 

needed into where cancer mortality poses the strongest threat and what 

preventative interventions are needed. 

This thesis attempts to provide accurate estimates of cancer mortality rates 

throughout Europe by using appropriate modelling methods to produce smoothed 

disease maps of the true distribution of the disease. Since this study is on a large 

scale geographically, mortality data and risk factor exposure data are not available 

at an individual level. However, different forms of aggregated data are available 

allowing this ecological study to be carried out. Incorporating differing levels of 

exposure to various risk and protective factors reduces the variation in the disease 

risk estimates and allows the effects such factors have on European cancer 

mortality patterns to be quantified. 

Poisson spatial multilevel modelling techniques are used to explore the 

distribution of all cancer mortality. The models are fitted using both empirical 

Bayes and fully Bayesian approaches and the effects of incorporating a spatial 

factor and of adding a higher geographical level are explored. The Poisson spatial 

multilevel model with correlated covariance structure was compared to other 

models which are commonly used for disease mapping purposes; the conditional 

autoregressive (CAR) model and the multiple-membership multiple-classification 

(MMMC) model. The most suitable method for modelling aggregated mortality 



Abstract 

data proved to be the spatial multilevel model which allows for correlated random 

effects and is fitted using Monte Carlo Markov Chain (MCMC) methods. 

This model is then used to explore the spatial mortality patterns of specific 

cancers, namely, lung, colorectal and oesophageal cancer, in the EU. Variability 

within and between countries was evident for each of the cancer groups examined. 

Much of this variation could be accounted for by risk factors such as smoking and 

diet, which had strong yet differing effects on each of the cancers. Accounting for 

spatial patterning of the disease was also shown to reduce variation in cancer 

mortality substantially across the EU. Cancer 'hotspots' were identified providing 

evidence that urgent preventative public health intervention on tobacco and diet 

modification is required in many European regions. 
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Chapter 1 Introduction 

Chapter 1 

1 Introduction 

1.1 Motivation 

The World Health Organisation recently published an atlas of mortality in Europe 

(1). Population and mortality information was collected for the periods 1980/1981 

and 1990/1991, co-ordinating with two recent censuses. The atlas was attempting 

to identify differences in trends in mortality from various causes at the sub­

national level in Europe and also to indicate areas in which more study is needed 

to determine both reasons for these differences and the most appropriate action to 

reduce them. The data collected by WHO have been made available and provided 

the initial motivation and main source of information for this study. 

Using subsets of this data set and developing existing spatial modelling 

methods, the aim of this thesis is to provide an accurate account of the spatial 

patterning of cancer mortality across Europe. 

1.1.1 Cancer Mortality 

The high number of cancer deaths in the western world is of growing concern. 

There were an estimated 2.6 million new cases of cancer in Europe in 1995, 

representing over one-quarter of the world burden of cancer despite Europe's 

inhabitants comprising only approximately one-eighth of the world's population. 

The corresponding number of deaths from cancer was around 1.6 million (2). It 

has been predicted that in 2020, 3.4 million new cases of cancer will occur in 

Europe (3). These figures demonstrate the very substantial burden of cancer in 

1 



.... dJU}!Jt::-f .I. Introduction 

Europe, and the scope for prevention and has motivated the research for this 

thesis. 

Studies of continuity of mortality rates across national borders and an 

evaluation of the distribution between national and regional variations in health 

status have revealed large spatial mortality variation both within and between 

countries in Europe (1). This thesis aims to show such patterns but specifically in 

relation to cancer mortality. More accurate estimates of mortality rates are 

obtained by incorporating additional information that has been gathered with 

regards to potential risk and protective factors for cancer mortality. Variation in 

cancer mortality often reflects differences in demographic structure, socio­

economic conditions or lifestyle factors. It is of particular interest to quantify the 

effect of such factors on cancer mortality patterns and also to examine any 

relationships that exist after taking these factors into account. 

1.1.2 Disease Mapping 

A common method used to investigate the spatial variability of a disease such as 

cancer is to map mortality rates. Producing accurate disease maps of cancer 

mortality is of key importance in the field of public health as it draws experts in 

the area closer to understanding the true geographical distribution of a potentially 

fatal disease which is becoming ever more common. 

Disease mapping has been a growing area over recent years (4) with the 

main aim being to produce a map 'clean' of random noise and any natural 

variation in the human population, allowing the identification of areas with high 

or low rates. This research aims to develop existing disease mapping methods to 

produce accurate maps of cancer mortality allowing the assessment of the true 

underl ying distribution of the disease. 

2 
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1.1.3 Spatial Multilevel Modelling 

To produce accurate disease maps of cancer mortality, accurate estimates of 

disease rates have to be calculated. The method proposed in this thesis is to 

provide estimates by Poisson spatial multilevel modelling techniques. 

Geographically distributed data such as counts of cancer deaths within 

regions within countries take on a natural hierarchical structure and exemplifies 

the type of data appropriate for a multilevel analysis. The observations within 

these clustered units are likely to be more similar than observations from different 

clusters, due to shared social and geographical environments. It is therefore 

important to take account of this underlying structure and the correlation that 

exists between observations from the same cluster. Along with taking into account 

the multilevel structure of the data this method gives a convenient and efficient 

way to overcome problems which arise from traditional methods of modelling and 

mapping disease rates. It allows the extra-Poisson variation, that often exists in 

observed counts of cancer deaths, to be modelled. Also, areas geographically 

close to one another share similar disease rates and common factors which 

influence the incidence and outcome of a disease, and this spatial patterning of 

disease can be taken into account through multilevel modelling. Using this type of 

modelling to estimate risks of disease mortality allows potential ecological 

covariates to be incorporated into the models, hopefully giving a more accurate 

picture of disease patterns across the map. Modelling these ecological covariates 

also gives the opportunity to quantify the associations they have with cancer 

mortality across Europe. 

The research that exists in Poisson spatial multilevel modelling concentrates 

mainly on fitting models with two levels. This research extends existing models 

(5, 6) to incorporate further levels such as country at a higher level. 

Earlier disease mapping applications tended to focus on fitting models using 

empirical Bayes approaches. However, more recently, with the growmg 

availability of Markov Chain Monte Carlo methods in packages such as 

WinBUGs (7), there has been much development in fully Bayes approaches. Both 

.3 



Introduction 

methods are explored in this thesis in terms of fitting Poisson spatial multilevel 

models with a correlated variance structure. These methods are compared, along 

with two other MCMC methods that have been proposed as reliable approaches to 

modelling such multilevel data; the multiple membership model and the 

conditional autoregressive model. 

1.2 Objectives 

The main objectives of this thesis are to explore the patterns of cancer mortality in 

Europe and to develop Poisson spatial multilevel models to provide accurate 

estimates of mortality risks. Since this study is on such a large scale 

geographically, mortality data and risk factor exposure data are not available at an 

individual level. However, different forms of aggregated data are available 

allowing this 'ecological study' to be carried out. 

Despite this type of analysis being fairly crude it can play an important role 

in epidemiology. For example, detecting areas or clusters with extreme disease 

rates could influence geographical assessment of health resource allocation; or 

significant relationships that are shown to exist between rates of a disease and the 

prevalence of a risk factor in given populations while analytically controlling for 

the prevalence of other confounding factors and for spatial autocorrelation may 

lead to the formulation of aetiological hypothesis which can then be examined 

further on an individual level. 

1.3 Summary of Thesis 

In the following Chapter, a summary is gIven of existing literature that has 

explored cancer mortality risk and protective factors. This review identifies the 

relationships that are known to exist between four specific cancers and lifestyle 

factors such a diet, smoking and socio-economic status. 

4 
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In Chapter 3 a description and summary of the European population and 

cancer mortality data is given. The problems associated with data that has been 

collected on such a wide scale, such as data quality and missingness, are 

discussed. Data was also obtained that represents exposure to the various risk 

factors discussed in Chapter 2. Descriptions of these data sets, along with their 

summaries and problems are also given. 

Chapter 4 reviews existing methods of disease mapping. The main focus is 

on modelling Poisson distributed counts of deaths and the development of the 

methods used to model relative risks of disease are explored. This involves 

looking at more recent spatial methods from both empirical Bayes and fully 

Bayesian approaches. 

In Chapter 5, the European cancer mortality data are modelled usmg 

multilevel models. Variance components models are fitted and estimated using 

iterative generalised least squares procedures and quasi-likelihood methods. This 

model is extended to incorporate a spatial component and the resulting estimates 

are discussed. Disease maps of the relative risks from the models are examined. 

Chapter 6 explores fitting the spatial multilevel model to the European 

cancer mortality data using Markov chain Monte Carlo. Aspects of using this fully 

Bayes method are discussed including fitting the model using WinBUGS, choice 

of priors, different sampling methods and convergence properties. Again, results 

are discussed and estimates explored through disease maps. The model is then 

extended to incorporate a further country level and differences in the results are 

discussed. 

In Chapter 7 two other approaches to fitting spatial multilevel models are 

explored. Using MCMC, a multiple membership model and a correlated 

autoregression model are fitted to the cancer mortality data. Results from these 

methods are compared to the empirical Bayes' variance components and spatial 

multilevel models fitted in Chapter 5 and to the MCMC spatial multilevel model 

fitted in Chapter 6. Point estimates, confidence intervals and the diagnostic 

information criterion are used to compare the models. One model is then chosen 
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to explore specific cancer mortality rates further. In Chapter 8 lung, colorectal and 

oesophageal cancer mortality rates are examined separately using the MCMC 

three-level spatial multilevel model. The focus in this Chapter is mainly on 

identifying any 'hot spots' of cancer mortality from the disease maps and to 

quantify the causal relationships that exist between the specific cancer mortality 

rates and risk factors. 

Finally, Chapter 9 discusses the limitations of the research carried out, both 

from a statistical modelling perspective and from a public health point of view. 

General conclusions about the thesis as a whole are drawn. 
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Chapter 2 

2 Cancer Mortality Risk Factors 

2.1 Introduction 

Prevention of cancer is an increasingly important and integral part of public 

health. The first steps in preventing this disease are to understand its causes and 

attempt to quantify the proportion of cases due to each cause. Previous studies of 

geographic variation in cancer rates have provided important clues to the role of 

lifestyle factors and cancer risk. 

2.2 Diet 

The relationship between dietary components and cancer is not fully established; 

however, the overall impact of diet on cancer mortality appears to be significant. 

Evidence that diet is a determinant of cancer risk comes from several sources, 

including the following: correlation between national and regional food 

consumption data and the incidence of cancer in the population; studies on the 

changing rates of cancer as they migrate from a region or country of one dietary 

culture to another; case-control studies of dietary habits of individuals with and 

without cancer; prospective studies; intervention studies. While it is not yet 

possible to provide quantitative estimates of the overall risks, it has been 

estimated that 35 percent of cancer deaths may be related to dietary factors (8). 

The association between dietary components and cancers differs among different 

cancers or groups of cancers. 
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A recent study into the estimates of cancer incidence and mortality in 

Europe (2) showed that the most common cause of death in Europe in 1995 

among cancers was lung cancer with 330,000 deaths, representing about one fifth 

of the total number of cancer deaths. Deaths from cancer of the colon and rectum 

(189,000) ranked second. Breast cancer was the most common cause of cancer in 

females, representing 17% of all female cancer deaths and lung cancer the most 

common in males (29%). Most countries in Europe have shown a rising trend in 

oesophageal cancer over the last thirty years, especially in males (9). In 1990, 

oesophageal cancer accounted for 3% of male cancer deaths (10). The rising trend 

and poor prognosis (five-year survival in Europe is less than 10 percent (11», 

makes this disease of growing concern in cancer research. Further details of the 

specific relationships in these cancer groups (breast, colorectal, oesophageal and 

lung) are summarised in Table 2.1. Note that the blank areas in the table indicate 

that there is insufficient evidence of a relationship. 

Table 2.1 Association between dietary components and selected cancers 

Dietary 
Site of Cancer 

Component Breast Colorectal Oesophageal Lung 

Animal Fats + + + 

Vegetables 

Fruit 

Fish/Fish Oil 

Alcohol + + + + 

Coffee 

Cheese + 

+ = positive association; increased intake with increased cancer mortality 

negative association; increased intake with decreased cancer mortality 
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2.2.1 Breast Cancer and Diet 

Breast cancer is a common cause of death in woman throughout Europe. The 

EUROCARE IT study recently estimated survival rates of incident cases between 

1985 and 1989 in 17 countries in Europe (11) in which breast cancer was shown 

to have a five-year survival rate of 75%. One of the most often studied cancer 

associations is breast cancer risk and dietary fat. Earlier studies have supported 

the causal association between dietary fat and breast cancer; however, many 

recent studies have been uncertain. Research suggests that these conflicting results 

are due to concentration on dietary fat as opposed to a more specific focus on 

content of saturated fat in the diet along with fruit and vegetable consumption 

(12). Saturated fat, found mainly in animal fats, has been found to be positively 

related to risk of breast cancer. A recent ecologic study conducted using breast 

cancer mortality rates and dietary supplement data confirmed results from other 

studies showing that animal products are associated with risk for breast cancer and 

that fish intake and vegetable consumption are associated with risk reduction (13). 

There is strong and consistent evidence that increased consumption of fruit and 

vegetables is associated with reduced risks of many common forms of cancer 

including breast cancer (14, 15). A meta-analysis of studies on breast cancer risk 

and diet confirmed the association between intake of vegetables and, to a lesser 

extent, fruits and breast cancer risk (16). There has been much research focusing 

on dairy foods specifically. However, the only conclusive results regarding breast 

cancer risk appears to be a positive association with cheese intake (17). Many 

case-control and cohort studies (18, 19) and meta-analyses (20) have found a 

positive association between alcohol use and breast cancer. A study found risk of 

breast cancer was increased by 40-45 % for woman ever drinking versus never 

drinking (21). The ecologic study, mentioned above, that examines breast cancer 

mortality rates (13) found alcohol to be an associated risk factor. It has been 

suggested that fibre intake decreases the risk of breast cancer. However, 

epidemiological studies have not consistently supported such a relationship. A 

meta-analysis of ten case-control studies (22) showed dietary fibre was inversely 

associated with the role of breast cancer, but, Willet at al (23) discussed that, in a 
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large number of prospective studies, inverse associations have generally not been 

shown to exist. 

2.2.2 Colorectal Cancer and Diet 

Colon cancer is the third most common form of cancer in Europe with particularly 

high incidence rates in Western Europe. Colorectal cancer is a leading cause of 

cancer mortality in the industrialised world. More literature is available examining 

relationships between diet and colon cancer incidence rather than mortality, but 

incidence should be a resonable measure of colorectal cancer mortality rates as 

survival of cancer of the colon is fairly poor because most cases are diagnosed at 

an advanced stage (24). The EUROCARE II project (11) showed colorectal 

cancer to have a five-year survival rate of 50%. Almost all the specific risk factors 

of colorectal cancer are of dietary origin. International comparisons indicate diets 

low in dietary fibre (low in vegetable and fruit consumption) and high in animal 

fat increase the risk of colon cancer (25). The large majority of studies in humans 

has found a protective effect of fibre from vegetables and possibly fruits (26, 27). 

Willett et al showed that animal fat from red meat intake was positively associated 

with colon cancer but dairy foods which contributed to total animal fat intake 

were not significantly related to the risk of colon cancer (28). High fat intake has 

been shown to be positively associated with the risk of colorectal cancer (26, 29). 

Fernandez et al suggested that fish consumption has a protective effect against 

colon cancer (30). Tavani et al confirmed coffee to be a risk factor showing an 

inverse association between coffee intake and risk of cancer of the colon (31). A 

prospective study of cancers of the colon and rectum confirmed a positive 

association between alcohol use and cancer of the colon (32). 

2.2.3 Oesophageal Cancer and Diet 

Cancer of the oesophagus is generally characterised by relatively low mortality 

rates in Europe with incidence in most Western European countries also being low 

(33). Several studies have demonstrated a positive association between 
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oesophageal cancer and several dietary factors including low intakes of vitamin A, 

C, riboflavin, nicotinic acid, calcium and zinc (34). In dietary terms the 

associations are with low intakes of lentils, green vegetables, fresh fruits and 

animal protein. Fernandez et al found a significant negative relationship with fish 

consumption and oesophageal cancer (30). Alcohol appears to playa major risk in 

many of the epidemiological studies examining risk factors for oesophageal 

cancer with intake of alcohol appearing to be an independent risk factor (34). A 

fairly recent study looking at oesophageal cancer mortality in Spain found similar 

results to other studies, supporting a role of alcohol in causation of oesophageal 

cancer (35). 

2.2.4 Lung Cancer and Diet 

Lung cancer is the most common cause of cancer mortality among men in Europe, 

and is becoming an increasingly important cause of cancer mortality among­

women (2). During the last 25 years it has become apparent that diet is the other 

major cause of cancer, but theories have moved steadily from a search for causal 

agents (eg, too much fat) to protective agents (eg, too little fruit and vegetables) 

(36, 37). Mortality studies have shown excess risk to be associated with 

consumption of saturated fats (red meat) (38, 39) and protective effects associated 

with the intake of vegetables (40) and fruit (41). Lung cancer incidence has also 

been shown to have an inverse association with high intakes of plant foods (42). A 

comprehensive search of the literature available on relationships between diet and 

lung cancer showed that a diet rich in fruit and vegetable reduces the incidence of 

lung cancer by approximately 25% (43). Evidence of dairy fats having a particular 

effect on lung cancer is inconclusive (17). Many of the suggested relationships 

between alcohol and lung cancer are actually confounded, or at least can be 

explained, by smoking. However, overall, the existing evidence suggests a small 

increase in the risk of lung cancer from alcohol drinking that does not appear to be 

fully explained by tobacco smoke (44). 
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2.3 Lifestyle Factors 

Other lifestyle factors such as smoking and socio-economic status are commonly 

associated with the risk of cancers. It has been shown that people with high socio­

economic status are at a greater risk from some cancers; however, evidence of an 

association with cancer mortality is sometimes inconclusive. Smoking is well 

known to be a major risk factor for many common cancers. The relationship 

between such lifestyle factors and the four cancers previously discussed are 

shown in Table 2.2. 

Table 2.2 Association between other lifestyle factors and cancer mortality 

Lifestyle Factor 

Smoking 

High socio­
economic status 

Breast 

Site of Cancer 

Colon Oesophageal 

+ 

2.3.1 Breast Cancer and Lifestyle Factors 

Lung 

+ 

Earlier evidence that breast cancer risk is unlikely to be affected by cigarette 

smoking continues to be challenged by recent findings. Although no defmite 

conclusions can be made, several recent studies have reported findings that 

strongly hinted at such a relationship. A recent survival study found smoking to be 

a significant risk factor for breast cancer mortality (45). However, a recent 

collaborative reanalysis of individual data from 53 epidemiological studies (46) 

showed smoking has little or no independent effect on the risk of developing 

breast cancer. Some recent studies have established passive exposure to 

environmental tobacco smoke (ETS) as a risk factor for breast cancer (47), yet 

another study looking at breast cancer mortality found no relationship with ETS 
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(48). It appears that results from studies into the effect cigarette smoking has on 

breast cancer mortality are equivocal and need further examination. 

Socio-economic status is thought to influence the risk of breast cancer (49). 

A study of breast cancer in young women showed that, compared with controls, 

cases were significantly more educated (50), with breast cancer incidence being 

most frequently reported in those with greater than thirteen years education. Few 

studies have shown such a relationship with breast cancer mortality, and many 

conflicting results have appeared. However, a recent study showed a clear 

gradient in survival, with better survival for women with higher socio-economic 

status (51). There is also an increasing amount evidence to suggest a positive 

association between risk of breast cancer and obesity (52-54). 

2.3.2 Colorectal Cancer and Lifestyle Factors 

Colorectal cancer also appears to be clearly affected by socio-economic status. 

Tavani et al showed that the number of years of education was strongly associated 

with colorectal cancer incidence with a significant trend in risk when comparing 

those with the highest level of education to those with less than seven years' 

education (50). There is little evidence to suggest that this association is also 

apparent with colorectal cancer mortality but incidence, again, may be viewed as 

an indicator of mortality due to the poor survival rates. There also appears to be 

little evidence of an association between cigarette smoking and colorectal cancer 

mortality. However, an increased risk of colorectal cancer with early onset and a 

long history of cigarette smoking has been suggested (55), but no association was 

seen in a large case-control study (56) or in a study of male construction workers 

in Sweden (57). 

2.3.3 Oesophageal Cancer and Lifestyle Factors 

Many studies have consistently identified smoking as a risk factor for oesophageal 

cancer. A recent mortality study confirmed this by showing the role of cigarette 

consumption on causation of oesophageal cancer (35). Nyren and Adami (58) give 
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a comprehensive review of the evidence suggesting a positive association between 

tobacco smoking and oesophageal cancer. There is little evidence of an 

association between socio-economic status and deaths from oesophageal cancer. 

In recent years obesity has emerged as a major risk factor for this disease with a 

positive association being shown to exist between BMI or relative weight and 

oesophageal cancer (59-63). 

2.3.4 Lung Cancer and Lifestyle Factors 

It is well known and accepted that tobacco smoking is the main risk factor for 

lung cancer. The risk among smokers relative to the risk among never-smokers 

lies between 8 to 15 in men and 2 to 10 in woman (44). These risks reflect the 

contribution of the different aspects of tobacco smoking, namely, average 

consumption, duration of smoking, time since quitting, age at start, type of 

tobacco product, and inhalation pattern. Evidence of a causal relationship between 

cigarette smoking and lung cancer mortality has been accumulating since the 

1950s. In recent years more attention has been focused on the potential health 

effects of ETS. Numerous studies have now led to the expectation that exposure to 

ETS also entails some increase in lung cancer risk (64). There is little evidence of 

a relationship between socio-economic status and lung cancer mortality. The 

prognosis of lung cancer is generally poor due to the carcinomas being diagnosed 

at an advanced stage. In Europe, the 5-year survival from 1985-1989 is reported to 

be 10% for woman and 9% for men (65), and therefore there is less scope, in 

terms of time, for inequalities in survival by socio-economic group to occur. 

However, due to the poor prognosis, relationships with lung cancer incidence and 

socio-economic status are likely to reflect mortality rates as well. In most 

countries, lung cancer incidence in men and woman shows a social class gradient, 

with those from higher social classes having lower incidence than lower social 

classes (66). 
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Chapter 3 

3 Data 

3.1 Mortality and Population Data 

One of the main goals of cancer control is to reduce mortality from the disease. 

Hence, examining mortality as an outcome is an important method to use when 

attempting to quantify the burden of cancer in a given population. 

There are various measures of disease burden, namely incidence, cumulative 

incidence, prevalence, survival, life-years lost and disability-adjusted life years. 

However mortality is widely considered the most important indicator of the 

burden of cancer. Cancer mortality rates measure, at a given population level, the 

risk of dying from specific cancers or from all cancers. 

3.1.1 Source of Data 

The World Health Organisation recently published an atlas of mortality in Europe 

(1). Along with providing national averages for all the main causes of death 

within the WHO European Region, it aims to provide a geographical presentation 

of variations in gender and cause specific mortality across the WHO European 

Region. Information has been collected for the periods 1980/1981 and 1990/1991 

to attempt to identify differences in trends in mortality at the sub-national level in 

Europe. The atlas also indicates areas in which more study is needed to determine 

both the reasons for these differences in mortality rates and the most appropriate 

action to reduce them. The information provided by WHO attempts to serve as a 

background against which to generate hypotheses and to formulate programmes 
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for epidemiological studies to explain the differences found within and between 

countries. The data collected by WHO have therefore been made available and 

will provide the main source of information for this project. 

Data were only available from official national sources in European Member 

States. Collection of data was finalised in 1995 and up until this date there were 

49 countries who were member states of the WHO European region. Data for the 

Federal Republic of Yugoslavia are included but this country is not a WHO 

Member State. A list of these countries and the years they became member states 

is given in Table 3.1. A map of the areas covered by the WHO European region is 

given in Figure 3.1 

3.1.2 Population Data 

Population data were requested from time points that co-ordinated with two recent 

censuses, providing information on the number of residents, according to midyear 

estimates, per region of residence for the years 1980, 1981, 1990 and 1991. The 

data have been broken down into 5-year age bands (up to the 80-84 age band and 

then all aged 85 and over) for both sexes. Region of residence was defined 

according to the EUROSTAT nomenclature of administrative units in the 

countries of the European Union (EU) or corresponding administrative 

equivalents in other countries. Where available, the units of analysis were level II 

NUTS (standard nomenclature of territorial units for statistics) or an equivalent 

level (sub-national) just below the country level (such as county in the UK, 

department in France, voivodship in Poland and oblast in the Russian Federation). 

Population data are available for 36 countries in the WHO European Region 

for the period 1980/81 and for 44 countries in 1990/91. The total population for 

these 36 countries in 1980/81 (averaged over the 2 timepoints) is 677,057,315 

with a mean of 18,807,148 and a range from 229,482 (Iceland) to 139,221,495 

(Russian Federation). In 1990/91 the total population for the same 36 countries is 

722,727,899 with a mean of 20,075,775 and a range from 256,377 (Iceland) to 
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Table 3.1 Countries in the WHO European Region 

Country Date of becoming party to WHO Constitution 

Albania 
Armenia 
Austria 
Azerbaijan 
Belarus 
Belgium 
Bosnia & Herzegovina 
Bulgaria 
Croatia 
Czech Republic 
Denmark 
Estonia 
Finland 
France 
Georgia 
Germany 
Greece 
Hungary 
Iceland 
Ireland 
Israel 
Italy 
Kazakhstan 
Kyrgyzstan 
Latvia 
Lithuania 
Luxembourg 
Malta 
Monaco 
Netherlands 
Norway 
Poland 
Portugal 
Republic of Moldova 
Romania 
Russian Federation 
San Marino 
Slovakia 
Slovenia 
Spain 
Sweden 
Switzerland 
Tajikistan 
The Former Yugoslav Republic of 
Macedonia 
Turkey 
Turkmenistan 
Ukraine 
United Kingdom 
Uzbekistan 
Yugoslavia, Federal Republic of 

26 May 1947 
4 May 1992 
30 June 1947 
2 October 1992 
7 April 1948 
25 June 1948 
10 September 1992 
9 June 1948 
11 June 1992 
22 January 1993 
19 April 1948 
31 March 1993 
7 October 1947 
16 June 1948 
26 May 1992 
29 May 1951 
12 March 1948 
17 June 1948 
17 June 1948 
20 October 1947 
21 June 1949 
11 April 1947 
19 August 1992 
29 April 1992 
4 December 1991 
25 November 1991 
3 June 1949 
1 Feb 1965 
8 July 1948 
25 April 1947 
18 August 1947 
6 May 1948 
13 February 1948 
4 May 1992 
8 June 1948 
24 March 1948 
12 May 1980 
4 February 1993 
7 May 1992 
28 May 1951 
28 August 1947 
26 March 1947 
4 May 1992 
22 April 1993 

2 January 1948 
2 July 1992 
3 April 1948 
22 July 1946 
22 May 1992 
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Figure 3.1 Map of the WHO European Region 

(Israel , Kyrgyzstan and Tajikistan are not shown on this map) 
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149,749,900 (Russian Federation). The total population in these countries has had, 

on average, a 7% increase during this ten year time period. Data were available at 

a sub-national level for 24 countries in 1980/81 and 31 countries in 1990/91. The 

mean population for a region (using only the 24 countries available over both time 

periods) is 1,545,474 with a range from 12,807 (Appenzell-Inner Rhoden in 

Switzerland) to 1,7044,864 (North Rhine-Westphalia in Germany) in 1980/81. In 

1990/91, the mean is 1,558,570, ranging from 13,593 to 17,328,180 (same regions 

as 1980/81). Table 3.2 summarises the population data for each country. 

3.1.3 Mortality Data 

Cause-specific death data by gender and region of residence were provided for all 

ages and for the groups aged 0,1-14,15-34,35-64,65-74,75-79,80-84 and 85 

and over. Again the data were provided for the time periods 1980/1981 and 

1990/1991. The causes of deaths were based on the Ninth Revision of the 

International Classification of Diseases (ICD-9). There are 19 specific diagnostic 

categories within 8 main groups of causes of deaths (see Table 3.3). These causes 

of death categories account for around 80% of all deaths and constitute the most 

important causes of death in the European population. 

Mortality data are available for 36 countries in 1980/81 and 43 in 1990/91. 

In the 35 countries with data available over both time periods, there were a total of 

6,988,156 deaths recorded in 1980/81 and 7,576,797 in 1990/91. Total deaths 

have, on average, increased by 8% over the ten year period. Taking into account 

population size at a regional level, crude death rates were calculated for each 

country and region. A summary of these is given in Table 3.4. Thirty-four 

countries have the crude death rates available for both time periods. For these 

countries, the mean crude death rate for 1980/81 is 1012 (per 100,000), ranging 

from 540 (Armenia) to 1354 (Hungary). For 1990/91 the mean crude death rate is 

1017, with a range from 633 (Armenia) to 1404 (Hungary). Regional crude death 

rates are available within 21 countries in 1980/81, ranging from 620 (Madrid, 

Spain) to 1850 (Copenhagen and Frederiksberg (city), Denmark). In 1990/91 
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Table 3.2 Summarised population data 

If regional data available: 
Country Year Total Mean regions with extreme values No. of 

for all Min (region) Max (region) regions 
regions 

Albania 
Armenia 1980/81 3126741 

1990/91 3578200 
Austria 1980/81 7557031 839670 269958 (AT01) 1535279 (AT09) 9 1990/91 7771755 863529 270571 (AT01) 1522251 (AT09) 
Azerbaijan 1980/81 3 1990/91 7097008 2365669 334753 (AZ03) 5028272 (AZ01) 
Belarus 1980/81 9663343 1380478 1134454 (BY02) 1619560 (BY03) 7 

1990/91 10217277 1459611 1182179 (BY02) 1650042 (BY0401) 
Belgium 1980/81 9859111 3286371 1000983 (BID) 5632209 (BEl) 3 

1990/91 9967450 3322484 962350 (BID) 5753850 (BEl) 
Bosnia & 1980/81 
Herzegovina 1990 4480790 
Bulgaria 1980/81 8876326 986259 697860 (BG04) 1241679 (BG05) 9 

1990/91 8688071 965341 642515 (BG04} 1238950 (BG05} 
Croatia 1980/81 4599213 

1990/91 4779427 
Czech 1980/81 10447972 1289375 690496 (CZ02) 2042959 (CZ03) 8 
ReQublic 1990/91 10335711 1291964 699487 (CZ02) 2054631 (CZ03) 

Denmark 1980/81 5122300 341487 47534 (DK023) 624780 (DK012) 15 
1990/91 5147618 343175 45705 (DK023} 601853 (DK012} 

Estonia 1980/81 
1990/91 1570665 

Finland 1980/81 4789756 399147 22789 (FlO 1) 1128844 (FIll) 12 
1990/91 5000199 416683 24580 (FI01} 1248909 (FIll} 

France 1981 54284652 2467484 240038 (FR83) 10053563 (FR01) 22 
1990/91 56895248 2586148 250156 (!<'B83} 10737070 (FR01} 

Georgia 1980/81 5067173 
1990 5417600 

Germany 1980/81 61616978 5601543 693543 (DE4) 17044864 (DPS) 11 
1990/91 79723463 4982717 680175 (DE4} 17328180 (DPS} 16 

Greece 1980/81 9686279 745099 182325 (GR22) 3343654 (GR3) 13 
1990/91 10144347 780335 193305 (GR22} 3451335 (GR3)} 

Hungary 1980/81 10711481 535574 239724 (HUB) 2061095 (HU05) 20 
1990/91 10355441 517772 225732 (HUB} 2017200 (HU05) 

Iceland 1980/81 229482 
1990/91 256377 

Ireland 1980/81 3424609 
1990/91 3521754 

Israel 
Italy 1980/81 56433883 2821694 112329 (IT12) 8872566 (IT2) 20 

1990 57576429 2878821 115270 (!f12} 8911995 (IT2} 

Kazakstan 1980/81 20 
1990/91 8334889 416745 153028 (KZ16} 927897 (KZ03} 

Kyrgystan 1980/81 7 
1990/91 4391366 627338 197739 (KG07} 1315872 (KG06} 

Latvia 1980/81 2515561 
1990/91 2666542 

-----~ 

Lithuania 1980/81 3423077 
1990/91 3726225 

Luxembourg 1980/81 364688 
1990/91 384475 

Macedonia 
------~--

Malta 1980/81 319000 
1990/91 355900 

------
Monaco 

~---
--~-----

1183325 351383 (NL74) 3105220 (NL73) 12 Netherlands 1980/81 14199897 
___ 1990/91 15013980 1154922 221893 (Nl25} 32~364 (NL7:3l 

-(Continued over page) 
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Norway 1980/81 4092657 227370 78331 (NOO3) 821676 (NOlO) 18 
1990/91 4251601 236200 74629 (NOO3) 880318 (NOlO) 

Poland 1980/81 35739989 729388 230989 (PL05) 3741807 (pL13) 49 
1990/91 38181654 779218 247169 (PL05) 3988987 (!,L13) 

Portugal 1980/81 9858400 7 
1990/91 9982037 1426005 240596 (PT2) 3510567 (Pf11) 

Republic of 1980/81 4033407 

Moldova 1990/91 4361105 

Romania 1980/81 22277011 543342 215365 (R016) 2060237 (ROlO) 41 
1990/91 23195902 565754 236249 (R016) 2328932 @OlO) 

Russian 1980/81 139221495 1907144 272972 (RUl005) 8298614 (RU0314) 79 
Federation 1990/91 149749900 1874418 158592 (RU1109) 8899639 (RU0314) 
San Marino 

Slovakia 1980/81 5000682 1250171 381957 (SK01) 1687363 (SK04) 4 
1990/91 5290589 1322648 443240 (SK01) 1722077 (SK04) 

Slovenia 1980/81 1889871 
1990/91 1999929 

Spain 1980/81 37750844 2097269 118893 (ES63) 6464996 (ES61) 18 
1990 38924600 2162478 124800 (ES63) 6903000 (ES61) 

Sweden 1980/81 8320485 346687 55485 (SE05) 1531870 (SE19) 24 
1990/91 8641322 360055 57343 (SEO~ 1655755 (SE19) 

Switzerland 1980/81 6372691 245104 12807 (CH03) 1124037 (CH26) 26 
1990/91 6752248 259702 13593 (CH03) 1151264 (CH2§) 

Tajikistan 1980/81 6 
1990/91 5367875 894647 168000 (fJ02) 1637532 (fJ05) 

Turkey 
Turkmenistan 1980/81 5 

1990/91 3703631 740726 413334 (fM01) 923170 (fM05) 

Ukraine 1980/81 49960794 1921569 904387 (UA0103) 5180225 (UA0302) 26 
1990/91 51663235 1987048 941343 (UA0103) 5324226 (UA0302) 

United 1980/81 56340950 1006089 110330 (UK914) 6828083 (UK55) 56 
Kingdom 1990/91 57680993 1030018 117698 (UK914) 6871241 (UK55) 

Uzbekistan 1980/81 13 
1990/91 10210082 785393 286827 (UZ11) 1176162 (UZ09) 

Yugoslavia 1980/81 9879486 4939743 582706 (YU01) 9296781 (YU03) 2 
1990 10529295 5264648 644302 (yu01) 9884993 (YU03) 

Table 3.2 gives the WHO codes for the regions with extreme rates within each 

country. Appendix A1.2 gives the corresponding region names (and also gives 

region names for Tables 3.4 and 3.5) 
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regional crude death rates are available for 30 countries, ranging from 302 

(Dahalal-Abad, Kyrgystan) to 1775 (Mikhaylovgrad, Bulgaria). 

For the purpose of this thesis, we are interested in examining a subset of 

these data. Since the main focus is on European spatial patterns of cancer 

mortality, all malignant neoplasms (ICD-9, 140- 208) are summarised in Table 

3.5. Cancer mortality data are available for 41 countries in 1980/81 and 40 in 

1990/91. Taking account of population size at a regional level, crude death rates 

were calculated for each country and region. Thirty-one countries have the crude 

death rates available for both time periods. For these countries, the mean crude 

death rate for 1980/81 is 191 (per 100,000), ranging from 75 (Armenia) to 309 

(Denmark). For 1990/91 the mean crude death rate is 214, with a range from 99 

(Armenia) to 348 (Denmark). Regional crude death rates are available for 19 

countries in 1980/81, ranging from 73 (Montenegro, Federal Republic of 

Yugoslavia) to 541 (Copenhagen and Frederiksberg (city), Denmark). In 1990/91 

regional crude death rates are available for 31 countries, ranging from 21 

(Dahalal-Abad, Kyrgystan) to 487 (Copenhagen and Frederiksberg (city), 

Denmark). 

3.2 Data Issues 

When collecting data on such a wide scale globally, inevitably certain problems 

will occur resulting in limitations to the final dataset. 

3.2.1 Missing Data 

The full data set should ideally contain information on the sub-national level from 

all Member States of the WHO European Region. This was not possible for many 

reasons resulting in deviations in the availability of data, including not only lack 

of data of a certain type or from a certain year but also cases in which data were 

supplied for different years or with different age aggregations from those 

requested. 
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Table 3.3 Specific cause mortality data 

Causes of death according to ICD-9 

Infectious and parasitic diseases 

Malignant Neoplasms 

Malignant Neoplasm of oesophagus 
Malignant Neoplasm of colon, rectum rectosigmoid junction and anus 
Malignant Neoplasm of liver, specified as primary 
Malignant Neoplasm of trachea, bronchus and lung 
Malignant Neoplasm of female breast 
Malignant Neoplasm of bladder 
Leukaemia 

Diseases of the circulatory system 

Ischaemic heart disease 
Diseases of the pulmonary circulation and other forms of heart disease 

Cerebrovascular disease 
Atherosclerosis 

Diseases of the respiratory system 

Pneumonia 
Chronic obstructive pulmonary disease and allied conditions 

Diseases of the digestive system 

Chronic liver disease and cirrhosis 

Disease of the urinary system 

Congenital anomalies 

Accidents, injury and poisoning 

Motor vehicle traffic accidents 
Other transport and self-inflicted injury 

Suicide and self-inflicted injury 

code 

001- 138 

140 - 20S 

150 
153 - 154 
155 
162 
174 
188 
204 - 208 

390 - 459 

410 - 414 
415 - 429 
430 - 438 
440 

460 - 519 

480 - 486 
490 - 496 

520 - 579 

571 

5S0 - 599 

740 -759 

ESOO-E999 

E810-E819 
E800-E807, 
E826-E845 
E950-E959 
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Data collection involved making individual requests from national statistical 

offices. This process coincided with major political, economic and social changes 

in the region. For example, during the period of data collection, 16 new Member 

States were acquired, most of them newly independent states of the former USSR, 

together with the unification of Germany. This sometimes led to a difficulty in 

access to information and also could have complicated communication with the 

national statistical offices. To reduce complications, data for the same 

administrative areas have been used over the decade, but sometimes under new 

names and within the borders of new countries. 

Also, due to the wide range of countries, data collection was constrained by 

the availability of databases as well as their quality and completeness. The 

requested resolution of the region of residence was not always obtained. 

Sometimes data were only available on a national level or a level lower than 

NUTS II. For such countries the higher level of data has been used. 

Often data for certain years were missing, with some countries only being 

able to provide data for one decade rather than two. For example, in countries 

where population data are collected only by census, data may be available only for 

the years when the census was made. Trends can still be examined as long as one 

year is available out of each of the two consecutive years. In these instances the 

data summaries use one year instead of the mean over the two years. 

The number of residents (midyear estimates) and data for all-cause mortality 

by gender and region of residence were collected for all ages and for specific age 

groups. Not all countries, however, could supply the data in the requested format. 

For example in some countries such age divisions could not be achieved for 

elderl y people or sometimes groups aged under 1 year were aggregated with those 

for the group ages 1-4 years. When population and mortality data were obtained in 

age categories that were slightly different from those requested, account was taken 

of these exceptions in the standardisation of rates by grouping the age categories 

of the standard population similarly to the categories of the index population. 
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Table 3.4 Summarised mortality data 

Country Year Total 
Crude Death If reg!0nal data available 

Rate reg!0ns with extreme values No. of 
Deaths (per 100000) Min (region) Max (region) regions 

Albania 

Armenia 1980/81 16892 540 
1990/91 227(J7 633 

Austria 1980/81 92568 1225 781 (AT08) 1648 (AT09) 9 
1990/91 83190 1070 753 (AT08) 1369 (AT09) 

Azerbaijan 1980/81 3 
1990/91 43735 616 508 (AZ03) 670 (AZ04) 

Belarus 1980/81 94325 976 7 
1990/91 112083 1098 686 (BY0401) 1415 (BYO~ 

Belgium 1980/81 113012 1146 1038 (BEl) 1325 (BID) 3 
1990/91 

Bosnia & Herzegovina 1980 13048 
1990 15174 678 

Bulgaria 1980/81 96696 1090 9 
1990/91 109516 1262 1050 (BGOZ) 1775 (BG04) 

Croatia 1980/81 50760 1104 
1990/91 53512 1120 

-~---~ 

Czech Republic 1980/81 132972 1274 8 
1990/91 126728 1226 1105 (CZ05) 1385 (CZO~ 

-

Denmark 1980/81 56149 1096 741 (DK014) 1850 (DKOll) 15 
1990/91 60254 1171 864 (DK014) 1751 (DK011) 

Estonia 1980/81 
1990/91 19585 1247 

Finland 1980/81 44521 929 804 (FIll6) 1105 (FIll7) 12 
1990/91 49697 994 857 (FL08) 1198 (FL07) 

France 1981 554823 1022 833 (FR1) 1430 (FR63) 22 
1990/91 525443 924 731 {E!!1) 1324 (FR63) 

Georgia 1980/81 43654 861 
1990 46473 858 

Germany 1980/81 718155 1166 1008 (DEB) 1826 (DEBW) 11 

1990/91 916345 1149 992 (DEB) 1399 (DEE) 16 

Greece 1980/81 86752 896 799 (GR3) 1435 (GR41) 13 
1990/91 94825 935 834 (GRI2) 1356 (GR41) 

Hungary 1980/81 145056 1354 1175 (HU12) 1526 (HU15) 

1990/91 145237 1404 1230 (HUOZ) 1513 (HU15) 

Iceland 1980/81 1597 696 
1990/91 1750 684 

Ireland 1980/81 33201 869 
1990 31457 893 

Israel 

Italy 1980/81 549901 974 780 (IT91) 1296 (IT13) 20 
1990 543708 944 733 (IT91) 1324 (IT13) 

Kazakstan 1980/81 20 
1990/91 64309 772 672 (KZ03) 1177 (KZO~ 

Kyrgystan 1980/81 7 
1990/91 30684 699 302 (KG03) 960 (KG04) 

Latvia 1980/81 32095 1276 

1990/91 34781 1034 

Lithuania 1980/81 
1990 39713 1070 

Luxembourg 1980/81 4109 1128 

1990/91 3759 978 

Macedonia 

Malta 1980/81 3219 1009 

1990/91 2791 784 

Monaco 

Netherlands 1980/81 114897 809 676 (NL51) 939 (NL74) 12 
1990/91 129391 862 495 (NU~ __ 968 (NL111~ 

Norway 1980/81 41618 1017 847 (NOO3) 1161 (N004) 18 
1990/91 45432 1069 _~7 (N012) 1269 ~(04) 

-----_ .. ----

(Continued over page) 
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Poland 1980/81 339563 950 714 (pL19) 1178 (p136) 49 
1990/91 396196 1038 817 (PL19) 1361 (PU1) 

Portugal 1980/81 --

95432 968 7 
1990/91 103738 1039 913 (PT11) 1376 (PT14) 

Republic of 1980/81 40974 1016 

Moldova 1990/91 44138 1012 

Romania 1980/81 228256 1025 799 (R025) 1484 (ROO2) 41 
1990/91 249423 1075 830 (ROO8) 1455 (ROO2) 

San Marino 

Russian Federation 1980/81 1525021 1095 79 
1990/91 1670959 1128 387 1522 

(RU1109) (RU0203) 
Slovakia 1980/81 50106 1002 904 (SK01) 1104 (SK04) 4 

1990/91 54619 1032 882 (SK01) 1128 (SK04) 
Slovenia 1980/81 18777 994 

1990/91 18940 947 
Spain 1980/81 291365 772 620 (ES3) 931 (ES43) 18 

1990 333142 856 680 (ESl) 1012 (ES12) 
Sweden 1980/81 91917 1105 967 (SE20) 1372 (SE07) 24 

1990/91 95182 1101 899 (SE20) 1337 (SEOl) 
Switzerland 1980/81 59484 933 684 (CH04) 1278 (CH05) 26 

1990/91 63187 936 693 (CH25) 1420 (CH05) 
Tajikistan 1980/81 6 

1990/91 33001 615 541 (fJOl) 684 (fJ01) 
Turkey 

-----

Turkmenistan 1980/81 5 
1990/91 26536 716 683 (fM05) 759 (fM04) 

Ukraine 1980/81 568516 1138 834 (UA0114) 1370 (UA0304) 26 
1990/91 649413 1258 898 (UA0114) 1533 (UA0102) 

United Kingdom 1980/81 661619 1174 866 (UK522) 1658 (UK531) 56 
1990/91 645942 1120 832 (UK522) 1505 (UK562) 

Uzbekistan 1980/81 13 
1990/91 61713 604 506 (UZ03) 792 (UZ13) 

Yugoslavia 1980/81 90118 912 634 (YU01) 930 (YU03) 2 
1990 97665 928 611 (YU01) 948 (YU03) 

Table 3.5 Summarised cancer mortality data 

Crude Death IT re~onal data available 
Country Year Total Rate reg!ons with extreme values No. of 

Deaths 
~~rl00000) 

Min (region) Max (region) regions 

Albania 

Armenia 1980/81 2330 75 
1990/91 3526 99 

Austria 1980/81 19224 254 170 (AT08) 352 (AT09) 9 
1990/91 19324 249 190 (AT08) 309 (AT09) 

Azerbaijan 1980/81 3 
1990/91 4804 68 55 (AZ03) 88 (AZ04) 

Belarus 1980/81 12155 126 7 
1990/91 17771 174 147 (BY0401) 231 (BY06) 

Belgium 1980/81 26537 269 263 (BEl) 310 (BE3) 3 
1990/91 

Bosnia & Herzegovina 

Bulgaria 1980/81 12839 145 120 (BG02) 192 (BG04) 9 
1990/91 30551 175 142 (BG06) 222 (BG04) 

Croatia 1980/81 8538 186 
1990/91 10611 222 

Czech Republic 1980/81 26415 256 8 
1991 28102 273 249 (CZ05) 310 (CZ01) 

---- -----

Denmark 1980/81 15811 309 226 (DK013) 541 (DK011) 15 
1990/91 17899 348 288 (DK013) 487 (DK011) 

_.-----

1980/81 Estonia 
1990/91 3331 212 

- --------.. ------ .. 

(Continued over page) 
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Finland 1980/81 8998 188 155 (Fl06) 235 (Fl01) 12 1990/91 9718 194 161 (FI08) 221 (FI102 ____ 
France 1981 126632 233 210 (FRS1) 318 (FR63) 22 1990/91 138629 244 203 (FR1) 323 (FR63~ ____ 
Georgia 1980/81 

1990 5645 104 79 (GE02) 126 (GE05) 
Germany 1980/81 157662 256 218 (DEB) 360 (DEBW) 11 

1990/91 207843 261 201 (DEC) 314 (DE2) 16 

Greece 1980/81 16418 169 136 (GE43) 232 (GE41) 13 1990/91 19689 194 162 (GE42 230 (GE22) 
Hungary 1980/81 27720 259 193 (HU16) 334 (HU05) 20 1990/91 31139 301 253 (HU01) 364 (HU05) 
Iceland 1980/81 349 152 

1990/91 450 176 
Ireland 1980/81 6254 183 

1990 7217 205 
Israel 

Italy 1980/81 122776 218 125 (IT93) 323 (IT33) 20 1990 145036 252 152 (IT93) 365 (IT33) 
Kazakstan 1980/81 20 

1990 22595 136 93 (KZ03) 214 (KZ06) 
Kyrgystan 1980/81 7 

1990/91 3361 77 21 (KG03) 146 (KG01) 
Latvia 1980/81 

1990/91 5535 208 
Lithuania 1980/81 

1990 6956 187 

Luxembourg 1980/81 955 262 
1990/91 963 250 

Macedonia -
Malta 

~--

Monaco -
~~ ~--

Netherlands 1980/81 31134 219 159 (Nl.51) 258 (NL74) 12 
1990/91 35409 236 163 (NI25) 268 (NUl) 

Norway 1980/81 8809 215 147 (N003) 247 (NOlO) 18 
1990/91 9819 231 185 (NOO3) 256 (NOll) 

Poland 1980/81 60269 169 130 (PU6) 218 (PU1) 49 
1990/91 73436 192 152 (PU4) 255 (PU1) 

Portugal 1980/81 14266 145 7 
1990/91 18204 182 154 (Pf11) 234 (Pf14) 

Republic of Moldova 1980/81 3989 99 
1990/91 5751 132 

Romania 1980/81 28782 129 88 (ROO4) 194 (R01O) 41 
1990/91 32853 142 87 (R039) 207 (ROO2) 

San Marino 

Russian Federation 1980/81 225689 162 79 
1990/91 287362 194 68 (RUll09) 270 (RU0204) 

Slovakia 1980/81 8600 172 
1990/91 10377 196 

Slovenia 1980/81 3506 186 
1990/91 4206 210 

--~~- . - ------ -

Spain 1980/81 58862 156 120 (ES3) 192 (ES12) 18 
1990 76823 197 157 (ES63) 244 (ES12) 

Sweden 1980/81 19659 236 184 (SE14) 270 (SE07) 24 
1990/91 20369 236 194 (SE14) 284 (SE04) 

Switzerland 1980/81 14887 234 116 (CH22) 348 (CH05) 26 
1990/91 16473 244 159 (CH25) 392 (CH05) 

Tajikistan 1980/81 6 
1990/91 2637 49 28 (TJ04) 97 (TJ01) 

Turkey 

Turkmenistan 1980/81 5 
1990/91 2325 63 49 (fM04) 96 (fMOll_n_ 

-------

Ukraine 1980/81 76210 153 26 
1990 101352 196 125 (UA01l2) 225 (UA0308)_ 

- -

United Kingdom 1980/81 146712 260 200 (UKS11) 357 (UKS31) 56 
1990/91 162026 281 217 (OKS21 L __ 371 (lJKS62l 

---~- ~ -
Uzbekistan -
--~-- -- --

12385 125 73 (YU01) 129 (YU03) 2 Yugoslavia 1980/81 
1990 15568 148 94 (YU01} 151 (YU01} 
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The data sometimes had missing mortality counts for specified ICD groups 

or the data were aggregated otherwise than defined. This had minimal effect on 

total mortality counts. If countries had specific mortality groups with different 

definitions in terms of ICD codes they were classified as missing. 

3.2.2 Data Quality 

Data reliability is obviously of concern when collecting mortality statistics on 

such a large scale. This depends somewhat on how accurately causes of death 

have been classified. For instance, often a patient has a known cancer diagnosis, 

however, it is not always simple to classify whether the disease was irrelevant, an 

underlying cause or a contributing cause of death. In less developed countries, 

where there is less public awareness of early cancer signs, poor access to health 

care and/or low autopsy rates, there will be many more opportunities for 

misclassification of cause of death (67). 

Despite the rather large amount of data requested by WHO, 90% of the 

approached Member States returned data. When a considerable amount of data are 

collected from several sources and almost 50 countries, inevitably some errors and 

misunderstandings will occur. In order to ensure a high standard of data quality, 

numerous checks on quality and plausibility were carried out. Most data sets were 

forwarded to NCBS (Netherlands Central Bureau of Statistics) for checks. Some 

data were sent directly to the ECEH (European Centre for Environment and 

Health). They were checked by the ECEH and RIVM (International 

Environmental Data Service). If the analysis of final data sets revealed 

inconsistencies, these were corrected after consulting with NCBS . 

. The procedures for data quality and plausibility included verification of the 

completeness of the data received, arithmetic checks and comparison of crude 

mortality rates (comparing regional level data with a specified reference line). If 

data appeared incomplete or contained errors, additional or revised data were 

requested from Member States. If further requests to countries did not yield 

improvement, the section of the data was classified as missing. Also, population 
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and mortality data at a national level were verified with statistics published in the 

editions of the World Health Statistics Annual for the years 1980, 1981, 1990 and 

1991. The final verification of all national level data did not reveal major 

differences and the final survey of the contents of the regional level data gave a 

good overall impression of the plausibility of the data. 

3.2.3 Sources of Bias 

Mortality data are widely considered to have the highest degree of international 

comparability in developed countries because deaths are mostly reported in 

accordance with international reporting standards and therefore counts are fairly 

accurate. However, as with most data collection and processing, the risks of bias 

and random error are still highly probable. Reasons for the bias occurring in this 

type of data are that countries, and sometimes regions within countries, differ in 

their training of medical staff and their use of diagnostic technologies and 

autopsies to confirm causes of deaths. Also, the accuracy of death certificates 

differs between countries in Europe. This could be due to the level of health care 

services, numbers of specialists or use of screening tests for detection of diseases. 

International differences in mortality data also depend on methods of data 

collection and procedures of coding (eg the procedure used for nationals or 

residents dying abroad). 

Migration in and out of regions can also affect mortality rates as this often 

changes the size and composition of the population dwelling in particular areas. 

However, most member states should have avoided this affecting the accuracy of 

their rates due to population censuses being carried out every ten years and with 

birth and death counts being carried out in between censuses. 

Certain cancers are not meaningfully represented by mortality rates. It 

should be noted that the burden of cancers with favourable prognosis, such as the 

common non-melanoma skin cancer and endometrial cancer or the more rare 

thyroid and testis cancer, are not reflected by mortality rates. For those cancers 
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that remain almost inevitably fatal such as lung, oesophagus, liver and pancreas, 

mortality rates are actually good approximations of incidence rates. 

The high standards of the World Health Organisation should reflect the 

quality of the data. All data collection and processing procedures have been 

carried out thoroughly so the reliability and plausibility of the data should be rated 

highly. In view of factors outwith the control of WHO that may have affected the 

data, some caution should be made when making international comparisons of 

cause-specific mortality rates. To minimise the influence of random fluctuations 

and give clear pictures of patterns of mortality, modelling techniques are 

necessary to analyse these data. 

3.2.4 Mortality Data Advantages 

Despite the use of population-level mortality data having drawbacks, they do have 

overriding advantages. As previously mentioned and as can be seen from the vast 

amount of cancer mortality literature, cancer mortality rates are widely accepted 

as important measures of the burden of cancer. 

One of the main advantages of examining mortality data, and the probable 

reason for its common usage is that it is the most widely available measure of 

cancer burden. This is because the compilation of cancer mortality statistics is a 

simpler task than that of cancer incidence, prevalence or survival. In economically 

developed countries, such as many of those within the WHO European region, the 

coverage of mortality statistics collection was close to 100% in 1990 (68). 

3.3 Cancer Mortality Data in the ED 

In subsequent Chapters a subset of the main mortality dataset will be explored. 

Malignant neoplasms (ICD-9, 140- 208) are examined for the EU countries in the 

time-period 1991. These data are summarised in Table 3.6. 
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Taking account of population size at the regional level, crude death rates 

have been calculated for each country and region. These are given for each 

country in Table 3.6 and corresponding extreme rates are given for regions within 

these countries. The mean crude cancer death rate in 1991 is 257 (per 100,000) 

ranging from 157 (Norte, Portugal) to 487 (Copenhagen and Frederiksberg (city), 

Denmark). Data are missing for 4 of the 15 EU countries in 1991 and regional 

crude death rates are available for 10 of the remaining 11 countries. 

Table 3.6 Summarised cancer mortality data in the EU in 1991 

Total Crude If regional data available 
Country Deaths Death Rate regions with extreme values No. of 

Min Max regions 
{2er 100000) {region~ {region~ 

Austria 19317 247 193 304 9 
(V orarlberg) (Vienna) 

Belgium missing 

Denmark 17764 345 290 487 15 
(S~nderjylland) (Copenbaen and 

Frederiksberg (city» 

Finland 9626 192 165 234 12 
(Gulu) (Fahvenanmaa) 

France 138778 243 203 322 22 
(lIe de France) (Limousin) 

Germany 210537 263 207 320 11 
(Brandenburg) (Hamburg) 

Greece 19945 196 168 236 13 
(Aegean North) (Ionian Islands) 

Ireland mzsszng 
Italy missing 

Luxembourg 957 247 

Netherlands 35640 237 169 273 12 
(Flevoland) (Groningen) 

Portugal 18203 185 157 2323 7 
(Norte) (Alentejo) 

Spain missing 

Sweden 20406 235 201 305 24 

(Norrbotten) (Gavleborg) 

UK 161555 280 219 377 56 
(Northern Ireland) {!sle of Wight) 
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3.4 Risk Factor Data 

Ecological studies aim to ascertain associations between a disease and exposure to 

risk or protective factors for groups or populations. It is therefore necessary to 

analyse data that reflect levels of exposure to such factors along with population 

and mortality data. 

In Chapter 2 we discussed existing literature on cancer mortality risk and 

protective factors. Evidence suggests that the main factors affecting some of the 

most common cancer groups are diet, specifically fruit, vegetable and animal fat 

consumption, alcohol intake, smoking level and socio-economic status. 

3.4.1 Source of Data 

Data were obtained from various sources to reflect exposure levels to these risk 

and protective factors. 

3.4.1.1 Diet 

Data reflecting levels of consumption of fruit, vegetables and animal fat were 

obtained from the Food and Agriculture Organisation of the United Nations. 

F AOSTAT is their online statistical database (69) and they compile information 

and data on various aspects of food and agriculture from all countries. In this 

instance, country level information was used from food balance sheets. This 

comprises the average amounts of fruit, vegetables and animal fat available for 

human consumption during the period 1991, and are measured in kilograms. 

Alcohol consumption for each European country was also available from 

FAOSTAT in kilograms for the year 1991. 

3.4.1.2 Smoking 

Data to reflect levels of smoking within European countries were obtained from a 

World Health Organisation global status report. The Tobacco or Health report 

(70) was carried out in 1997 and the details are provided on the internet as a 
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service by the Office on Smoking and Health of the National Centre for Chronic 

Disease Prevention and Health Promotion (71). The annual adult (age over 

fifteen) consumption of manufactured cigarettes per capita was obtained for each 

country for the time period 1990-1992. 

3.4.1.3 Socio-Economic Status 

Socio-economic status (SES) is some description of a person's position in society 

such as income, educational level attained, occupation or value of dwelling place. 

A good indicator of SES on a population level is Gross Domestic Product (GDP) 

which is a relative measure of wealth of individual regions or countries. GDP data 

were obtained from the World Health Organisation (72) and are available for each 

country in Europe. It is measured in US dollars per inhabitant in 1995. GDP was 

available at a sub-national level for EU countries only from Eurostat (73); these 

data will be summarised, along with the other EU risk factors data in Chapter 5. 

3.4.2 Data Summaries 

Risk factor data are summarised in Table 3.7; for each risk or protective factor the 

median, minimum and maximum and the countries with extreme levels of these 

factors are given. 

3.4.3 Data Issues 

Various risk factor data have been collected on a large global scale, which again 

may cause occasional discrepancies. 
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Table 3.7 Summarised risk factor data 

Risk/protective 
Median Minimum factor Maximum 

Fruit 74.5 24.6 142.6 
kg/year/capita (UK) (Estonia) (Greece) 

Vegetables 88.2 34.5 300.4 
kg/year/capita (UK) (Israel) (Greece) 

Animal Fat 14 1.3 29 
kg/year/capita (Russian Federation) (Armenia) (Hungary) 

Alcohol 76.2 9.3 173.9 
kg/year/capita (Sweden) (Armenia) (Germany) 

Smoke 1920 910 3620 
cigarettes/year/adult (Italy) (Azerbaijan) (Poland) 

GDP (region level) 12670 2180 21780 
US$/inhabitant (Spain) (Tajikistan) (Switzerland) 

3.4.3.1 Time Periods 

The time periods used for each of the risk/protective factors might not be ideal. It 

is difficult to determine at which time period each exposure should be measured, 

for example at which period in a person's life their diet most affects their risk of 

cancer. For a population it is clearly impossible to consider accumulated lifetime 

exposure to such factors. Also, there is sometimes a lack of availability of 

risk/protective factor data at specific time periods. For these reasons, data that 

exist for approximately the same period as our mortality data have been obtained 

and are used in subsequent Chapters for the modelling in an attempt to reflect the 

cultures of the different countries or regions. However, it is important to remain 

aware that, if the change over time in patterns of exposure to risk or protective 

factors has differed substantially between these regions or countries, then this will 

have an impact upon both the estimated relationship with such risk factors and the 

estimated adjusted risk of mortality in these countries. 
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3.4.3.2 Country Level 

All the data collected to reflect the levels of risk or protective factors are at the 

country level except for GDP in the EU. It would obviously be more informative 

for all the data to be at the less aggregated level. However, since it was necessary 

to obtain different types of data from different countries this was not possible. 

These data are still very useful as they should represent the country's dietary and 

lifestyle habits. When we are interpreting the results of analysing such data it 

should be clear that differing levels of exposure to risk factors within countries 

have not been taken into account. 

3.4.3.3 Data Quality 

Similar issues of data quality and reliability arise with the risk factor data as did 

with the mortality and population data. For example, the country-level 

consumption data were collected by various methods: tailored questionnaires sent 

to member countries, magnetic tapes, diskettes, FfP transfers and accessing 

websites of the countries, national and international publications, country visits 

made by the Food and Agriculture organisation (FAO) statisticians and reports of 

F AO representatives in member countries. Therefore maximum effort was made 

to gather accurate statistics on factors such as food consumption, but F AOSTAT 

comment that data reliability, especially in developing countries, may in some 

cases be questionable. These problems cannot be overcome and one should just 

remain aware when drawing any conclusions that the type of data under 

examination means that any form of analysis is fairly crude. 
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Chapter 4 

4 Disease Mapping Review 

4.1 Introduction to Disease Mapping 

Understanding the geographical distribution of disease mortality or incidence is of 

key importance in the field of public health. Mapping incidence or mortality rates 

from diseases such as cancer is one of the primary tools used to investigate the 

spatial variability of risk from specific diseases. The main aim in doing so is to 

produce a map 'clean' of random noise and any natural variation in the human· 

population, and which allows identification of areas with high or low rates. These 

maps play an important role in epidemiology allowing, for example, the 

geographical assessment of health resource allocation and the formulation of 

aetiological hypotheses. 

4.1.1 Standardised Mortality Ratio 

Disease mapping initially involves the choice of an epidemiological measure 

which shall be displayed on the map. Traditionally the measure used is a 

standardised mortality/morbidity ratio (SMR). This gives a geographical picture 

of the disease rates expected in a given area compared to the observed rate. For 

example, if we consider a population of regions, i, i = 1, ... ,I, with observed (Oi) 

and expected (Ei) counts of deaths. The Ei are often calculated through 

standardisation based on the number of deaths in the population N i • This 

standardisation is conducted for age and sex strata k, and if stratum k has Oile out 

of a population Nile, the expected number of events is given by 
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The standardised mortality ratio for the disease of interest is therefore 

o· SMR i = _I xiOO. 
E· l 

To produce maps of the SMRs, the chloropleth method (74) is often used 

which involves specifying the SMRs into class intervals and assigning to each 

interval a specific colour, shade or pattern. The choice of interval categorisation 

can be of importance as it can fundamentally change the geographical picture of 

the disease. A common approach is that of equal-interval classification in which 

the range of data values is divided into a fixed number of classes whereby each 

class represents an equal range of SMRs. A problem with this method is that, if 

we have a highly skewed data distribution, the majority of areas will probably fall 

into 1 or a small number of classes. The map will therefore show little spatial 

variation with the majority of SMRs being classified as similar when in fact they 

are not. Another traditional approach is based on the percentiles of the SMR 

distribution, such as quartiles, quintiles or sixtiles. This method ensures that each 

class is equally represented on the map. However, this method can also be 

misleading because areas with similar SMRs may be assigned to different classes. 

Some areas will appear to be very heterogeneous on the map when in fact they are 

not. Another method used to determine class intervals is to search for natural 

divisions in the distribution of SMRs. These classes would represent clusters of 

SMRs and the approach differs from the two previous methods, as it does not 

arbitrarily assign observations that have similar values into different classes. To 
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use this method some form of cluster analysis would probably be performed so 

clusters are determined statistically that minimise within-class variation. Since the 

map is often used to determine groups of areas with similar disease, this method 

may over-emphasise any clusters that exist. The choice of classification method is 

important but does depend on specific data distributions. Muehrcke et al (75) 

gives a fuller discussion of ways of defining disease mapping class intervals. 

Once the SMRs are displayed on a map the intention is to allow 

interpretation of the geographical variation in the disease. However, this method 

has limitations and has been criticised by various authors, particularly Clayton and 

Kaldor (76). When examining SMRs, the ratios for small or sparsely populated 

areas have large variability, and therefore often dominate the map, as there are 

few or no observations. An alternative method that has been commonly used, but 

is also open to criticism, is to display the statistical significance levels for a test of 

the difference between the risk in a specific area and that from the overall rate on 

the map. This type of map ignores the size of the effect in that two areas with 

identical SMRs may appear to be quite different if they are of unequal population 

sizes, and the most prominent areas may simply be those with the largest 

populations. Also, risk factors often play an important role when studying a 

disease's geographical variation, and traditional methods do not allow potential 

risk factors to be taken into account. 

4.1.2 Poisson Model 

To overcome such problems modem approaches use interpolation methods to 

improve on the raw rates. A multiplicative model originally proposed by Breslow 

and Day (77) allows the standardised rates to be mapped based on Poisson 

inference. Estimating the parameters using maximum likelihood and mapping the 

modelled standardised rates has the advantage of providing estimates of the 

parameters, namely the disease rates (78). This assumes that the observed cases Oi 

follow a Poisson distribution (79) with 
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(4.1) 

where Oi are the unknown area-specific relative risks of mortality from the 

disease. The likelihood of the relative risk Oi is 

e -«()iEi) (B E )Oi 

g(O.IB.) = i i 
I I O.!' 

I 

(4.2) 

where again Ei denotes the expected number of cases in region i. The maximum 

likelihood estimate (MLE) of Oi is the SMR for the ith area: 

B. =O/E. I I I , 

with estimated standard error 

s. = re./E .. I '\j tli I 

However, this again leads to the most extreme SMRs tending to be based on 

counts from small or sparsely populated areas. On the other hand, p-values can be 

calculated under the null hypothesis 0 = 1 or the adjusted null hypothesis which is 

based on 

where n is the number of areas (80), which compares the SMR to other areas on 

the map. In the event of no deaths in a region, which commonly occurs in small 

populations and for rare diseases, the probability is estimated as 0 (81). On the 

contrary, areas with extreme p-values are often only identifying areas with large 

populations. Although modelling methods have been used, the maps of estimates 

of SMRs and p-values can still be difficult and often misleading. 

For sparsely populated areas and rare diseases, the observed counts fluctuate 

about the mean within each area more than would be expected from a Poisson 
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distribution. If this extra-Poisson heterogeneity (82) is ignored, the overdispersion 

can create the impression of artificial geographic variation in the disease rates. 

Another problem in using conventional Poisson based methods is that they do not 

take account of any spatial pattern of disease, i.e. they ignore the fact that areas 

geographically close to one another share similar disease rates and common 

factors which influence the incidence and outcome of disease. A further 

disadvantage of methods discussed so far is that they do not allow the inclusion of 

ecological covariates. Inclusion of such variables would allow the construction of 

disease maps that take into account risk factors that are known to affect a specific 

disease. Methods that overcome these problems produce more accurate maps of 

disease mortality ( and incidence) and allow a closer assessment of the true 

underlying distribution of a disease. 

4.2 Bayesian Methods for Disease Mapping 

Bayesian methods are now widely used to overcome such problems and there 

have been vast developments in the area recently. Lawson et al (4) discusses in 

detail many of the recent methodologies for the statistical evaluation of disease 

mapping. Such methods allow the production of smoothed estimates of relative 

risks and maps 'clean' of random noise, influential spatial factors and any natural 

variation in the human population. 

4.2.1 Bayesian Approaches to Relative Risks 

The various Bayesian statistical smoothing techniques assume that the relative 

risks (}i are random effects that arise from a probability distribution of risks (76, 

83). A random effects model can be fitted in which the relative risks have prior 

distributions and these prior distributions have hyper-parameters, which can have 

hyper-distributions also. The fully Bayesian approach bases inference on sampled 

parameters from the joint posterior distribution. The empirical Bayes approach 
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involves estimating the parameters of the prior distribution and inference can then 

be made conditional on these estimated parameters (78). 

Mollie (79) outlines the approaches to Bayesian inference for relative risks. 

Disease mapping data combine two types of information, namely the information 

provided in each area by the observed deaths described by the Poisson likelihood 

g(910), and prior information on the relative risks specifying their variability in 

the overall map, summarised by their prior distribution (9). 

Bayesian inference about the unknown relative risks 9 is based on the 

marginal posterior distribution 

g(0IO,1) oc g(OIO) f (011), (4.3) 

where 0 is the observed data and 1 are the hyper-parameters. The prior 

probability density function of the relative risks is given by f (Bi). 

The likelihood function of the relative risks 9 for the data (observed number 

of deaths) 0 is the product of n independent Poisson distributions and can be 

written as 

g(OI 9) = TI g(Oil ()i), (4.4) 
l 

(4.5) 

The prior distribution (9) reflects prior belief about variation in relative risks over 

the map and should be parameterised by hyperparameters y and denoted f (91 "(). 

Equation (4.3) can be used as an approximation of the marginal posterior 

distribution of the relative risks given the observed data g(910). Empirical Bayes 

methods use estimates of the hyper-parameters and typically these are maximum 

likelihood estimates derived from the marginal likelihood of 1, 

41 



Chapter 4 Disease Mapping Review 

g(OI y) = f g(O 10)/(0 I y)dO. (4.6) 

If areas are independent then the marginal posterior distribution IS also 

independent and can be written as 

(4.7) 

A point estimate of the relative risks is given by a measure of location of this 

distribution, typically the posterior mean E(OIO) or the posterior median. 

However, direct evaluation of these parameters through analytical or numerical 

integration is not generally possible. 

Another measure of location of this posterior is the posterior mode or 

maximum a posteriori (MAP) estimate that maximises g(OIO;y). MAP estimation 

can be performed using penalised likelihood maximisation (84) and has been 

applied to disease mapping (81, 85). 

Standard Bayesian analysis, considering a completely specified pnor 

distribution f (01 y) with known hyper-parameters y, is seldom used in practice. 

The empirical Bayes (EB) approach assumes that hyper-parameters are unknown 

and are drawn from an unspecified distribution. The fully Bayesian formulation 

comprises a three-stage hierarchical model in which the hyper-prior distribution 

(y) is specified. 

4.2.2 Empirical Bayes 

The empirical Bayes method was the first approach to disease mapping that 

attempted to overcome some of the problems encountered when examining SMRs 

and simple SMR models. Marshall (86) provides a good thorough review of 

various methods for statistical analysis of patterns of disease, induding a review 

of spatial empirical Bayes methods. The early approaches that have been used to 

map geographical distributions of specific diseases have been shown to be 
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unsatisfactory at clearly identifying extreme rates, especially for rare events or for 

small populations. To overcome such problems, empirical Bayes estimation was 

developed in the area. Efron and Morris (87) appear to be the first to have used 

such methods to pool information across areas, reducing the total mean-square 

error. These methods were further developed by Tsutakawa (88) and Clayton and 

Kaldor (76) by taking into account the variation in the estimation precision across 

the map. The stability of rare estimates is increased by combining the Poisson 

variation in each area with a global model of the rates. Tsutakawa (88) initially 

derived improved estimates of mortality rates using an EB approach that treats 

true rates as samples from an unknown prior distribution that needs estimation. A 

normal distribution for the logit of the probability of disease in each geographical 

area was used in this early exploratory analysis. This approach is similar to 

Leonard's method for estimating binomial proportions (89). 

As previously shown, our likelihood function derives from the Poisson 

distributed number of observed cases occurring within the geographical areas, and 

classical statistical analyses of relative risks are representative of the data. Also, 

we stated that we know the distribution of relative risks conditional on the 

distribution within each area. Therefore, the prior beliefs to be incorporated into 

Bayes theorem is the information we have on the relative risks eg that small 

populations are more likely to have extreme relative risks and the probability that 

relative risks obtained from larger populations are more reliable (76). The 

posterior distribution of risks can then be calculated using prior beliefs. Empirical 

Bayes methods always seek to approximate the posterior distribution. Any other 

method used to calculate the posterior distribution would be classified as full 

Bayes (90). 

4.2.2.1 Poisson-Gamma Model 

Along with incorporating an estimate of reliability through prior beliefs, a prior 

distribution of the overall relative risks can be specified, reflecting the distribution 

of relative risks between areas. The Gamma distribution was originally suggested 

by Clayton and Kaldor (76) for this purpose and has been further used and 
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developed by others (91-96). They considered a Gamma distribution for the 

relative risks described by the hyper-parameters, a and v, where a is a scale 

parameter and v is a shape parameter. 

V()V-l -aBo () I a. e I 

I( i r) = ~(V) 
(4.8) 

This choice of model involves describing the probability of disease mortality or 

incidence occurring within given areas by the Poisson distribution, and the 

Gamma distribution describes the denominator populations required for the 

observed cases to occur (94). Therefore, as shown by Clayton and Kaldor (76), 

conditioning on the true relative risk (Bi), the number of deaths (or incidence 

counts) (Oi) in the ith geographical unit follows a Poisson model where Ei is the 

expected number of deaths. 

The relative risks are assumed to follow a Gamma distribution with the 

marginal distribution of the Oi being negative binomial. The shape and scale 

parameter of the negative binomial model are estimated by maximum likelihood. 

It follows that the empirical Bayes estimate of the posterior expectation takes the 

form: 

where the distribution of ~ conditional on the observed count is also Gamma. 

This is a compromise between the observed SMR (O;/Ei) and the general mean 

(v / a). Since Oi have a negative binomial distribution, the unconditional 

expectation of the Oi is given by 
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In the model suggested by Clayton and Kalder (76) the adjustment for age has 

been achieved internally from overall age-specific rates over all the areas. Manton 

et al (97) suggested that age adjustment can be accomplished from a set of 

external age-specific standard rates. 

Manton also suggested that this modelling can account for covariates by 

making the prior mean a function of the covariates. Clayton and Kaldor (76) 

suggest extending the distribution of ()i to allow for covariates, Zi. They give an 

example suggesting that the estimate for an area with relatively few observed or 

expected cases should not be drawn towards the overall mean relative mortality, 

but towards an estimated value consistent with the area's level of the given 

covariate. Clayton and Bernardinelli (84) differentiate between covariates at an 

area-level and those measured on individuals. Area-level or ecological covariates, 

Zi, can be included by modelling the logarithm of the relative risks as a linear 

function of these covariates. This is effectively a separate scale parameter for the 

prior f (~ ICXi,Vi): 

E[log(B,)] = IO~ :, ) = z,' jJ, 

then the prior in equation (4.8) can be written as 

V()V-l -a.(). a . . e II 

f(Bilai'v)= I I • rev) 

Marshall (98) extended the Gamma-Poisson model and proposed a non­

iterative-distribution free approach using weighted moments to estimate a prior 

mean and variance. Marshall points out the difficulties arising in iterative methods 

of estimation and non-iterative ANOVA style estimators for the prior mean and 

variance. Tsutakawa (91) used the Poisson likelihood and Gamma framework to 

estimate relative risks for geographic regions with an additional random effects 

component. 
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4.2.2.2 Log-Normal Model 

Various other forms of prior distribution have been considered. Clayton and 

Kaldor (76) also proposed that the rates follow a multivariate log-normal 

distribution. Here the normal prior hyper-parameters J1 and a; were specified for 

the logarithm of the relative risks: 

The posterior distribution for the relative risks is no longer tractable under such a 

model and parameters can be estimated using the EM algorithm. 

Tsutakawa (91) proposed a log-normal model which is an alternative to 

standardising the data: 

where the observed data in stratum k and area i are assumed to follow a Poisson 

distribution. Then the area and stratum specific relative risks Jr ik were modelled 

in terms of area-specific relative risks fh and stratum-specific risks (A such that 

Here, the residuals uik are distributed with mean 0 and variance a;. This has the 

structure of a classic mixed effects model with fixed effects (A and random 

effects (}i. The (}i are assumed to come from a one parameter inverted Gamma-1 

distribution with hyper-parameter a: 

a -a/B. a e I 

!«(}i I a) = r(a) (}t . 
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Maiti (99) develops this log-normal EB method into a hierarchical Bayes 

estimation procedure for estimating mortality rates for disease maps. Bemardinelli 

and Montomoli (85) compared parametric (normal prior) EB estimates with Bayes 

estimates. Penalised log-likelihood maximisation was used for the EB estimation 

of the relative risks. 

4.2.2.3 Non-Parametric Model 

Clayton and Kaldor (76) suggested estimating a pnor distribution non­

parametrically using a method suggested by Laird (100). This assumes that 8i are 

iid random variables with density, f (8), of unspecified parametric form. f (8) can 

be estimated nonparametrically using an EM algorithm. This method has the 

advantage of imposing few constraints. Heisterkamp et al (93) developed the non­

parametric approach further. The prior distribution is replaced by a number of 

support points a h such that 

and the probability of each value can be written as 

The actual number of support points, H, gives an indication of the number of 

different values for the true SMR in the data, whereby H = 1 would suggest that 

all areas have the same true SMR up to a maximum of H = n unique SMRs. The 

conditional likelihood for a mixture of Poisson distributions (80) can be written as 

The posterior empirical Bayes estimates are a weighted average of the estimated 

support points a h : 
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H 

~ ahithe-ahE; (ahEJo; 

E(Bi IOi'EJ=~H----­
~ ithe-ahE; (ahEJo; 

Schlattman (101) suggests using mixture models to identify population 

heterogeneity and map construction within an empirical Bayes framework. This 

assumes that Oi comes from a nonparametric mixture density. Estimation is done 

using a maximum likelihood approach. 

4.2.2.4 Multilevel Models 

Multilevel models can also be used to provide empirical Bayes estimates for 

disease mapping (6, 102-104). The simplest Poisson multilevel model fits one 

"level" to model the Poisson variation and the extra Poisson variation is fitted at 

the higher level. Referring to any covariates as Zi, the logarithm of the relative 

risks can be written as 

log( ~) = z/ P + Ui , (4.10) 

with an assumed normal distribution for the residuals Ui: 

(4.11) 

Changing the prior for log(Bi) in (4.9) to one dependent on an area specific mean 

Ui gives 

(4.12) 

where 

(4.13) 
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This model can be extended to include higher levels of geographical aggregation 

(105). To fit a model with two levels, region i nested within country j, say, 

equation (4.1) becomes 

(4.14) 

then equation (4.9) can be written as 

(4.15) 

Here the logarithm of the relative risks for region i is modelled in terms of 

residuals at the levels of region and country. Each of these random effects are 

normall y distributed: 

(4.16) 

There is now non-independence in the relative risks since relative risks for two 

regions within the same country share the same country level random effect Vj. 

The prior in equation (4.12) can now be written as a joint prior for nj regions in 

country j: 

(4.17) 

The dispersion matrix for country j, ~j, has dimensions nj x nj with elements 

(J"; + (J"; on the diagonal and (J"; off-diagonal. 

Further levels can be added and is straightforward. Langford et al (106) 

showed that the model described in equation (4.14) and (4.15) can be extended to 

include random covariates. Langford et al (6) described how to include spatial 

correlation between the relative risks in the multilevel model. This will be 

discussed further in Chapters 5 and 6. 
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4.2.2.5 Spatial Models 

Ignoring spatial configuration of areas is often unjustifiable as areas close to one 

another in geographical space often share similar environmental, social or 

demographic factors which influence disease rates. An EB estimate which 

incorporates a spatial component can be thought of as a weighted average between 

the SMR, a local mean rate, and the global mean rate. 

Models of exchangeability (76) have been discussed so far, where area­

specific estimates are more or less displaced depending on the mean value. This 

displacement depends on the intrinsic stability of the estimates and not the areas' 

locations on the map (85). However, often the relative risk estimates are strongly 

influenced by the estimates of geographical areas, and only indirectly by the 

estimates from the rest of the map. Incorporating the geographical structure of the 

map results in a more complex prior model. This sets a conditional independence 

structure on the relative risks whereby each relative risk is conditionally 

independent of all other relative risks, given a small set of geographically adjacent 

areas. Most of the attention in the literature in this area has focused on this type of 

method, modelling spatial dependence of the prior ()i eg by modelling the mean of 

()i conditional on the ()/s of its neighbours. 

Another, less popular, approach for accounting for spatial location space is 

to make the prior on () position dependent whereby a trend is placed on the prior 

mean E«()). Marshall (98) proposed a method for empirical estimation of E«()i) for 

each i. It is assumed that the E«()i) do not vary greatly within neighbourhoods. An 

estimator shrunk towards a weighted neighbourhood average is obtained via a 

non-iterative distribution-free approach by a method of moments. The resulting 

degree of shrinkage depends on the local variability of the neighbourhood rates. 

Any of the EB methods results in estimates of relative risks being more displaced 

towards a local mean rather than a global value. 

Various different prior distributions have been developed for the alternative, 

more commonly used approach. A prior distribution that naturally allows for the 

possibility of spatial dependence between rates is the multivariate log-normal 
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prior. This was developed by Clayton and Kaldor (76) and has been a popular 

technique for mapping disease (96, 99, 107). The log-normal model was described 

previously and a spatial extension to this is to suppose that the log relative risks 

are correlated, where the correlation is dependent on geographical proximity. The 

dispersion matrix, L, may be expressed as a function of a small number of 

parameters. Clayton and Kaldor (76) used the conditional autoregression (CAR) 

procedure to model the mean conditional on its neighbours. This model has been 

further developed (84, 108-110) such that the logarithm of the relative risks is 

modelled as 

(4.18) 

where the Vi are unstructured heterogeneous effects such that 

(4.19) 

and the Ui are spatially structured effects through an intrinsic Gaussian 

autoregression 

(4.20) 

where u. is the mean of areas bordering area i: 
I 

(4.21) 

i' 

(4.22) 

i' 

51 



Chapter 4 Disease Mapping Review 

and W is the adjacency matrix of the map, defined by 

1 if i and i' are contiguous 

o otherwise. 

The Vi and Ui are assumed to be independent and if the Ui dominate then the 

relative risks show spatial structure. 

Yasui (96) develops this model slightly usmg a Gaussian spatial 

autoregression process which assumes that loge 0]), ... ,loge Oi) follows a 

multivariate Gaussian distribution with conditional moments. Yasui then goes on 

to evaluate empirically the various priors used in the EB estimation of small area 

disease risk by comparing mean squared errors and weighted mean squared errors. 

Mollie and Richardson (109) consider both the CAR and a simultaneous 

autoregression (SAR) prior model to attempt to smooth cancer mortality rates and 

discuss the differences between the models. The covariance structure of a SAR 

model implies that autocorrelations at a larger distance than for a CAR model are 

taken into consideration, without estimation of extra parameters. Besag (111) 

showed that a SAR model can be written as a CAR model of higher order. 

Bemardinelli and Montomoli' s (85) basic model is similar to that proposed 

by Clayton and Kaldor (76), but they go on to use a penalised log-likelihood 

maximisation for the EB estimation of relative risks. Bi is modelled as the sum of 

the global mean, denoted by Ji, that expresses the overall level of the log-relative 

risks throughout the map, and an area specific effect, denoted by ¢, representing 

the area risk effects, that is the difference between the log-relative risk for an area 

i and the global mean. For the ith area 10g(Oi) = 'Ii = Ji + ¢i and Oi follows the 

Poisson distribution given by 
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The aim is to combine the 'prior' belief about the risks, which is embodied in the 

prior [¢IA], [A] and [,u], with the 'new' information contained in the data {Y, E}. 

Here [¢I A] denotes the area effects and is viewed as a spatial process as it 

expresses the prior beliefs concerning the collection of unknown area effects; [A] 

denotes the prior for an unknown parameter which represents the geographical 

variability and which controls the amount of variation in risk distribution 

throughout the map; and [,u] denotes the prior for the global mean. The EB 

estimates of ¢ and ,u are obtained by maximising the posterior distribution 

[¢,,ul 0,E,1], which is equivalent to 

1* (¢,,u) = 10g[Y IE, ¢,,u] + log[ ¢ I i] 

" whereby A is a suitable estimate of the parameter A.. The first term on the right 

hand side for fixed Yand E is the log-likelihood of the data while the second term 

can be interpreted as a penalty function that penalises departure of ¢ from the 

prior model. Therefore, the above function can be interpreted as the penalised log­

likelihood. If we adopt the CAR prior model this becomes 

" N 
1 * (¢, 11) = I(¢, 11) - ~i ~ ¢;(¢i - ¢;). 

i=l 

The log-area effects that differ greatly from their respective neighbours receive 

high penalties. The penalties cause these estimates to shrink towards a local mean. 

The quantity 1 acts as a smoothing parameter and when it is large the penalty 

function receives more weight leading to smoother estimates of the effects {¢}. 

When this parameter is equal to 0, the penalty is given no weight, which leads to 

the ML estimates of the effects. 
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4.2.3 Fully Bayesian 

The fully Bayesian approach incorporates the distribution of the hyper-parameters 

fr ("() into the modelling. The joint posterior distribution of the relative risks e 

and the hyper-parameters "( given the data 0 is 

g(O,y I 0) oc g(OIO) f () (Oly) fly). (4.23) 

The marginal distribution for e given the data is then obtained by integrating out 

the hyper-parameters: 

g(OI 0) = f g(O,y I O)dy. (4.24) 

Fully Bayesian procedures, as with empirical Bayes, provide methods of variance 

reduction through the borrowing of information. The hierarchical structure leads 

to Bayes point estimates that are shrunk towards a value that is related to the 

distribution of all the parameters in the hierarchical structure. It is assumed that 

the prior structure is close to the 'true model', and consequently a different choice 

of priors will lead to different shrinkage. 

Various fully Bayesian disease mapping models are compared using 

goodness of fit criteria, by Lawson et al (112) and a comprehensive review of the 

main classes of spatial priors that have been proposed for fitting fully Bayesian 

disease mapping models is given by Best at al (113). A fully Bayesian approach 

that is commonly used (114, 115) as a model for disease mapping aggregated 

count data is a three-level hierarchical model. Again, Ei are the expected number 

of deaths, Pi represents the log relative risks (lOg(Bi» and Oi represents the 

observed number of deaths in area i. The Oi follow a Poisson distribution: 

0i ,.... Poisson (BiEJ ,i = 1, ... ,n 

(4.25) 
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(4.26) 

where pC· I A ) is an appropriate second-stage prior distribution for Pi and A are the 

hyper-parameters of this second stage model with hyper-distributions 7Z'(). 

4.2.3.1 Multivariate Normal Priors 

Correlated random variables are often represented by the multivariate normal 

distribution. The dependence structure can be structured in terms of an n x n 

covariance matrix 1:, and the second-stage prior can be written as 

(4.27) 

where P = {Pl, ... , Pnl = (log(fh), ... , 10g(Bn)} and represents the vector of area 

specific random effects from equation (4.24). 1: = t?n and Qij is the correlation 

between Pi and Pi (116). The elements of the correlation matrix are chosen to be a 

function of the relationship between the areas. This should be chosen so that the 

covariance matrix 1: remains positive definite. 

An alternative approach that follows on from this was proposed by Kesall 

and Wakefield (117) and is based on specifying a Gaussian random field for the 

underlying distribution of the log relative risk at the second stage of the 

hierarchical model. Integrating this model over i areas gives a multivariate normal 

model for 10g(Bi). 

Mollie (79) uses Gaussian Markov random fields (similar to CAR model) 

for mapping SMRs, which is a second stage model that was originally proposed 

by Besag et al (110), and discusses a compromise between a spatially structured 

prior and an unstructured prior (108). A convolution Gaussian pnor IS an 

intermediate distribution in the log-relative risks that ranges from prior 

independence to prior local dependence. The log relative risks in the prior are the 

sum of v, a normal variable with zero mean and variance A?, and u, an intrinsic 

Gaussian autoregression with conditional variances proportion to Tl. Again, v 
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describes the unstructured heterogeneity of the relative risks and u represents local 

spatially structured variation, so log( ~)= u + v. The conditional variance is 

2 

var[Pi I P j , j ¢ i, r] = var[Pi I P j , j E a i' K, A] = ~ + A? , 
Wi+ 

where ai denotes the set of areas adjacent to area i, the hyper-parameter A = 0; 

and Tl' corresponds to a total independence of the risks whereas ..1,2 = 0 leads to 

purely local dependence modelled by the intrinsic Gaussian autoregression. A 

small Tl'/A? reflects unstructured heterogeneity whereas a large Tl'/A2 indicates that 

a spatially structured variation dominates. 

For the multivariate normal priors for the log relative risks, a more general 

class of hyper-priors for the inverse variance is the conjugate Gamma distribution 

with specified parameters (79). Vague Gamma hyper-priors are often assumed for 

u and v when there is a lack of information about the importance of each 

component. It has been suggested (85) that it is reasonable to choose vague 

gamma priors with means 

2 
for ..1-2 

var(log( ()i ) 

and 

2 .s: -2 .Lor K 
w var( (log( ()i » 

where w is the mean of Wi+ , Wi+ = L wij and wij is the ijth element of a 
j 

symmetric n x n weight matrix W similar to that described for equations (4.21) 

and (4.22). 

The Gaussian Markov random fields are the most commonly used second 

stage model. This model, which was further developed by Besag et al (110), can 

be written in general terms to coordinate with equations (4.25) and (4.26): 
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(4.28) 

[ ~ W .. U. 0 2 ) Vlu ~N L...Jj IJ J _u 
I ( -i) ,. 

Wi+ Wi+ 

(4.29) 

By setting the autocorrelation parameter, which reflects the overall strength of 

spatial dependence between locations, to its upper limiting value of 1 means the 

{Ui} follow an intrinsic autoregression. As previously discussed, this can be 

described as the spatial component of between-area variation of disease risk and 

the {Vi} represent the geographically unstructured heterogeneity effect. Posterior 

inference about the amount of spatial dependence that exists is based on the 

marginal variance of the U/s; this can be estimated using MCMC methods. 

Maiti (99) develops the CAR model for log-relative risks and assumes a 

hierarchical model. Non-informative priors for hyperparameters are used. This 

method was developed because unlike the EB method, the hierarchical Bayes 

method accounts for the uncertainty involved in the estimation of mean and 

variance of prior parameters by assigning the distributions of prior parameters. In 

the case of these models, the approximation to the variance of the MLE of 

parameters of the prior distribution is intractable. Mollie and Richardson suggest 

that an indication of the precision of these estimates can be based on the 

conditional expected information for the prior of the log rates. This is calculated 

from the expectation of the log of the prior density conditional on the observations 

and the current values of the parameter estimates, given in the EM algorithm. The 

CAR model appears to be a popular choice of model for examining spatially 

distributed disease data (79, 95). The Gaussian Markov random fields model is 

equivalent to specifying a multivariate normal model for the joint distribution of 

the area specific random effects but with the dependence structure parameterised 

in terms of the precision matrix, P, rather than the covariance matrix I = p-l. 
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Another multivariate normal model was proposed by McNab (118) which 

also parameterises in terms of the precision matrix. This model assumes 

where 

D = pP + (1- p)I . 

As discussed, P represents the precision matrix and I is the n x n identity matrix. 

p E [0 , 1] and can be interpreted as the measure of spatial dependence whereby if 

p = 0, the model reduces to the Gaussian independence prior (4.28) or if p = 1 it 

reduces to the intrinsic autoregression (4.29). 

4.2.3.2 Mixture Models 

Lawson and Clarke (119) propose an extension to the Gaussian Markov random 

fields model that includes a mixture of Gaussian and non-Gaussian conditional 

autoregressive components. The non-Gaussian is median based and aims to pick 

up discrete jumps in the relative risk structure which should hopefully avoid over­

smoothing the distribution of relative risks. 

Some of the models described in· this section run the risk of oversmoothing 

the distribution of relative risks. Mixture models have been proposed in an 

attempt to prevent this happening and are becoming more popular for disease 

mapping. They take a different approach, in that, instead of assuming that the 

structure of the map can be described with a global structure, they assume that the 

map consists of a number of components and the aim is to identify these 

components. Schlattmann and Bohning (101) classify each area of the map as 

belonging to one component but other models, which are not so specific, are 

available. 

Green and Richardson (120) proposed a mixture model where the allocation 

of p;'s for each area to a risk category follows a correlated process. They extend 

hidden Markov models to the spatial domain. It makes use of Potts model, which 

is frequently used in image processing, and involves fitting an interaction 
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parameter that controls the degree of spatial dependence and the number of 

'states' of the mixture is estimated as part of the model. This model can be written 

as 

exp(fii) = Ta. , 
• 

where a i is the allocation variable and a i E{l, ... ,c}; c,... Unif(l, cmax) and 

represents the number of components in the mixture. Then, 

T j ,.., Gamma(a,fi) , j = 1, ... ,c. 

The interaction parameter If.! is to be estimated and U(z) is the number of pairs of 

neighbouring areas. An area i is allocated to component j based on If.!; larger 

values of If.! suggests area i has more neighbours in component j and will therefore 

be favoured. This model uses a reversible jump algorithm because the number of 

components in the mixture, c, is uncertain. Fernandez et al (121) also suggested 

mixture models for spatially distributed data. Transformations of autoregressive 

Gaussian processes are proposed for the spatially dependent weights and 

reversible jump Markov Chain Monte Carlo algorithms for posterior inference are 

developed. 

4.3 Use of Disease Mapping Models 

In this chapter, the techniques available for fitting empirical Bayes and fully 

Bayesian models have been discussed. In the following chapters, iterative 

generalised least squares procedures and the linearising approximation, penalised 

quasilikelihood, will be described as a means of obtaining empirical Bayes 

estimates of the spatial multilevel model. Other methods, such as the EM 

algorithm and Fisher scoring can also be used to fit the models described in 

section 4.2.2. Estimation procedures for fitting the fully Bayesian models will also 
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be discussed. Markov Chain Monte Carlo (MCMC) procedures will be described 

in terms of fitting spatial multilevel models. However, this technique can be 

applied to all of the fully Bayesian models described in this chapter. 
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Chapter 5 

5 Spatial Multilevel Modelling 

5.1 Introduction to Multilevel Modelling 

Multilevel or hierarchically structured data are found in many areas of application 

and it is important that these structures are taken into account. An example which 

provides a clear case of such a structure is in education whereby we have a 

response from pupils who are assigned to levell, these pupils are clustered within 

classes at level 2, which are clustered within schools at level 3, and these can be 

grouped within authorities or boards at level 4. Multilevel models take into 

account how this structure affects the measurements of interest and ignoring a 

hierarchical structure, if present, has consequences. For example, if analysing a 

school dataset similar to that described above, the relationship between two pupil 

level variables could be modelled using a simple linear regression. The variation 

between schools could be taken into account by incorporating separate terms for 

each school but this is very inefficient as it involves estimating many more 

coefficients than the multilevel procedure. It also does not treat schools as a 

random sample and therefore provides no information on the proportion of the 

variation that is attributable to differences between schools in the population. A 

further disadvantage of ignoring clustering is that it will generally cause standard 

errors of regression coefficients to be underestimated. Multilevel modelling also 

provides a useful tool to develop more complex models and this will be discussed 

in this thesis, mainly by looking at how to model geographically distributed data 

and explore the effects of incorporating the spatial structure of the data as a level. 
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For the purpose of this thesis, the background to multilevel modelling will 

be described from the view of modelling Poisson distributed data. Goldstein et al 

(122) give details of how to model normally distributed multilevel data. 

5.2 Multilevel Modelling of Geographically Distributed Data 

As previously discussed, problems associated with using conventional Poisson 

based methods to model geographically distributed data can be overcome by using 

multilevel modelling techniques based on iterative generalised least squares 

procedures (6). The data that will be used for our preliminary analysis and model 

exploration are geographically distributed in that we have counts of cancer deaths 

within regions within countries and they exemplify the type of data appropriate 

for a multilevel analysis. 

5.2.1 European Cancer Mortality Data 

To begin modelling, cancer mortality in 540 regions in 38 countries in the period 

1991 will be used. The total population for the 38 countries was 690,308,858, 

ranging from 257,965 (Iceland) to 148,244,835 (Russian Federation). Population 

data are available at a sub-national level for 27 of the European countries. The 

mean population for a region was 1,295,139 with a range from 13,645 

(Appenzzell-Inner Rhoden, Switzerland) to 17,429,759 (North Rhine-Westphalia, 

Germany). The causes of deaths were based on the Ninth Revision of the 

International Classification of Diseases (ICD-9) (123) and the causes of death 

considered here are malignant neoplasms (ICD-9 140-208). The total number of 

recorded deaths from cancer in these countries was 1,614,293, ranging from 446 

(Iceland) to 290385 (Russian Federation). The mean number of deaths for a 

region was 2989, ranging from 29 (Appenzell-Inner Rhoden, Switzerland) to 

49137 (North Rhine-Westphalia, Germany). If population or mortality data were 

not available for the timepoint 1991, data were used from the closest available 

timepoint. Further summaries of the data were presented in Chapter 3. 

62 



Chapter 5 Spatial Multilevel Modelling 

5.2.2 European Risk Factor Data 

Since there is strong evidence of relationships between diet and other lifestyle 

factors and cancer mortality, it is important that we should adjust for these factors 

as necessary when examining spatial patterns of cancer mortality. We are also 

interested in quantifying what effect these factors have on mortality rates, and so 

need measures that reflect the population's diet and lifestyle. 

The risk factor data were summarised in Table 3.7. Average consumption 

data for animal fats, alcoholic beverages, fruit and vegetables were obtained for 

the period 1991. These cover the dietary components that appear to be related to 

the most common cancer mortalities. The data are measured in kilograms per year 

per head of population for each of the European countries being examined. 

Annual average consumption of manufactured cigarettes per adult (+ 15) is 

provided at a country level for the time period 1990-1992 and should reflect the 

average level of smoking in each of the European countries. To take into 

consideration the differences in socio-economic status between countries, gross 

domestic product (GDP) is available and is measured in US dollars per inhabitant 

in 1995. 

5.2.3 Variance Components Model 

Firstly, we consider a population of regions, i, i = 1, ... , 540, with observed (Oi) 

and expected (Ei) counts of deaths. The expected number of deaths in the ith 

region, Ei, has been calculated based on the 1990 European age and sex specific 

cancer mortality rates and on the number of deaths in the population N i • This 

standardisation is conducted for age and sex bands k and calculated as 

(5.1) 
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(5.2) 

The relative risk of the mortality from the disease of interest is then 

e. = °1 
I E. 

I 

(5.3) 

A single level Poisson model including all SIX explanatory variables can be 

written as (105): 

log(Jli) = log(Ei) + a 

+ fJ1Xli + fJ2 x 2i + fJ3 x 3i + fJ4X 4i + fJsxSi + fJ6x 6i (5.4) 

where log (Ei) is treated as an offset and is included to account for the different 

populations at risk of death from cancer in each area. a is a constant and XI& ••• ,X6i 

are the explanatory variables with coefficient PI, ... ,P6, representing the mean 

(fixed) effects of the factors fruit consumption, vegetable consumption, animal fat 

consumption, alcohol consumption, cigarette consumption and gross domestic 

product respectively. We assume that the number of counts within each region 

follows a Poisson distribution. The Ui represent heterogeneity effects between 

areas (94) which can be viewed as having extra Poisson variation caused by the 

variation among underlying populations at risk in the regions considered. 

A variance components model describes the random variation in the data by 

a set of variances. Looking at this model it can be seen that all of the variance is at 

a single level, i, which is region. There is only one random parameter, (J/. 
Potentially, and more appropriately, this model can be expanded by partitioning 

the variance into that which is attributable to random variation between countries 

and that which arises due to differences between regions within countries, i.e. 
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adding a further level. Equation (5.4) can be extended to include a second level, 

country, indexed by j, and can be written as follows: 

Dij .... Poisson (Ilij ) , 

10g(llij ) = 10g(Eij) + a 

+ fJI X lij + fJ2X2ij + fJ3 X 3ij + fJ4X4ij + fJ5 X 5ij + fJ6 X 6ij (5.5) 

+u·. +v· IJ J 

lvjJ .... N(O,Qv), Q v = [a-;], 

lUij J .... N(O, Qu), Q u = [a-;]. 

The mam difference between the models is that the variance has now been 

partitioned into a-;, that which is attributable to differences between countries, 

and a-;, that which is attributable to differences between regions. 

5.2.4 European Cancer Mortality Results 

The results of the variance components models are shown in Table 5.1. Model A 

represents the null model with no explanatory variables included, model B is the 

full single level model (5.4) and model C incorporates country as a level (5.5). 

Firstly, looking at model B, the overall intercept, a; represents the 

logarithm of the average number of cancer deaths in all regions included in the 

study in addition to the (centred) logarithm of the expected cases, when all other 

fIxed coefficients are zero. The estimates of the intercept are not particularly 

informative in these models as they reflect an unlikely situation whereby an area 

has zero exposure to any of the risk or protective factors. Before examining the 

other fIxed parameter estimates it should be noted that for the purpose of 

interpretability the explanatory variables were re-based. The consumption 

variables were modelled in terms of 1000 kgs consumed per person per year, 

smoking was scaled to how many 1000 cigarettes were smoked per person per 

65 



Chapter 5 Spatial Multilevel Modelling 

Table 5.1 Results from variance components models: WHO European region 

Model A Model B Model C 
Estimate Estimate Estimate 
(95% CI) 

Fixed Part 
(95% CI) (95% CI) 

a 7.38 6.99 7.03 
(7.36 , 7.39) (6.92 , 7.06) (6.85 , 7.21) 

/31 (FRU) -3.63 -2.90 

/h (VEG) 
(-4.42, -2.83) (-5.33, -0.47) 

0.99 0.36 

/33 (ANF) 
(0.46 , 1.53) (-0.99, 1.71) 

9.39 6.59 
(6.18 , 12.60) (-3.55 , 16.73) 

/34 (ALC) 1.39 1.99 
(0.90 , 1.88) (0.51 , 3.48) 

/35 (SMO) 0.05 0.09 
(0.02 , 0.08) (-0.01 ,0.18) 

/36 (GDP) 16.85 5.91 
(12.85, 21.85) (-1.86, 13.68) 

Random Part 
d u 0.049 0.027 0.013 

d v 

(0.043 , 0.055) (0.023 , 0.030) (0.011 ,0.015) 
0.014 

(0.006 , 0.022) 

year, and GDP was examined as millions of dollars per inhabitant per year. The 

estimate of /31 is the mean, or fIxed slope for the explanatory variable fruit and it 

can be seen the estimate is negative and, judging signifIcance by approximate 95 

per cent confidence intervals, signifIcant. This implies that when taking the other 

variables into account, an increase in fruit consumption decreases cancer mortality 

on average in the EU. The parameter estimate of -3.63 is a log relative risk of 

cancer mortality for each 1000 kg increase in fruit consumption per person per 

head. This suggests that every 10 kg increase in fruit consumption per person per 

year is associated with a decrease in the risk of cancer mortality of about 4% 

(RR=exp{ -0.0363} = 0.964). It can be seen that all of the other variables appear to 

significantly affect cancer mortality; vegetable consumption surprisingly has a 

positive association with cancer mortality in Europe, animal fat consumption and 
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alcohol are also shown to be significant risk factors, smoking is shown to 

significantly heighten the risk of cancer mortality, and a higher GDP appears to 

increase the risk of cancer mortality. 

The actual effect size of these variables will be discussed further on. There 

has been no partitioning of variance yet so all the variation here is due to 

differences between regions (CT; = 0.027). If we compare this value to the 

variance under model A (CT; = 0.049) it can be seen there has been a 45% 

reduction in variation after adding the explanatory variables. Due to the 

significant explanatory variables being at both region and country level, this 

shows that these factors are helping to explain the differences in cancer mortality 

between regions and countries. To show these differences visually, the estimated 

relative risks from models A and B have been mapped and are shown in figure 5.1 

and 5.2. 

There is definite clustering evident in Figure 5.1 and clusters of high cancer 

mortality rates can be identified in areas such as France, Denmark, parts of 

Russia, Hungary, UK and the Czech Republic. Cancer mortality rates in these 

regions are between 20% and 62% higher than expected if the European age and 

sex specific mortality rates had been applied to that area. Clusters of low mortality 

rates are most evident in regions Southern Europe, in particular Greece, Romania, 

Bulgaria and Ukraine. Overall, there is very high variability within and between 

many European countries. Figure 5.2, the map of the relative risks associated with 

living in these regions over and above the given risk factors, shows less 

variability; the relative risks now range from 0.59 to 1.51 (they ranged from 0.41 

to 1.62 in Figure 5.1). As was evident from the random parameter estimates, the 

risk factors have, therefore, explained some of the variation in cancer mortality 

rates in the Europe, suggesting that even these initial models have been effective 

at smoothing geographic variation. However, the clustering within countries 

suggests it may be useful to take account of the higher geographical level. 

Taking account of the fact that regions within a country are more alike than 

those from different countries, changes the parameter estimates somewhat (Table 
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5.1: Model C). The parameter estimates now appear more sensible with an 

increase in vegetable consumption and GDP not being associated with a 

significant increase in the risk of cancer mortality anymore. The variance has now 

been partitioned and it can be seen that a similar proportion can be attributed to 

2 d·" b . 2 
() u' luerences etween regIOns, as to () v , differences between countries. From 

examining the map of relative risks from this model (Figure 5.3), it can be seen 

that there is much more clustering evident. There is a high amount of country 

level clustering as estimates for each region are drawn closer to the relative risks 

of the overall country. There are much more areas with very high (and very low) 

estimates which means the map is less useful for identifying regions as disease 

'hotspots' (or areas of very low risk) but is useful in identifying countries at high 

risk as compared to other European countries. 

Since the actual values of the fixed parameter estimates are not very 

informative, relative risks have been calculated which compare regions with high 

and low levels of exposure to each of the risk factors. The relative risks have been 

calculated for each of the variables from models Band C and are given in Table 

5.2. Firstly, for the consumption of fruit as estimated by model C, the table shows 

that Greece has the highest level of consumption in Europe and Estonia has the 

lowest. The relative risk of 0.71 shows that a population consuming, on average, 

the same amount of fruit as Greece has a risk of cancer mortality that is 29% 

lower than if consumption was on the same level as Estonia. The other significant 

covariate from model C is alcohol consumption; consuming the same level of 

alcohol as Germany leads to a risk of cancer mortality that is 1.4 times as high as 

if consumption was on the same level as Armenia. For model B, it can be seen 

that all the variables are having significant effects on cancer mortality in Europe 

and vegetable consumption and GDP are having an opposite effect than would be 

expected. Populations across Europe lead very varied lifestyles and the relative 

risks, before accounting for the non-independence of regions within countries, are 

likely to be inaccurate. It makes more sense to concentrate on the estimates from 

the model taking account of some of the geographical structure in the data. 
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Table 5.2 Variable effect size of risk factors from model B and C: WHO 
European Region 

Area with Relative Risk 

Variables Highest Lowest Model 
Consumption Consumption B C 

Fruit Greece Estonia 0.65 0.71 
(1.13 , 1.50) (0.53 , 0.95) 

Vegetables Greece Israel 1.30 1.10 
(1.13 , 1.50) (0.77 , 1.58) 

Animal Fat Hungary Armenia 1.30 1.20 
(1.19 , 1.42) (0.91 , 1.59) 

Alcohol Germany Armenia 1.26 1.39 
(1.16 , 1.36) (1.09 , 1.77) 

Cigarettes Poland Azerbaijan 1.15 1.28 
(1.06 , 1.24) (0.97 , 1.63) 

GDP Switzerland Kyrgyzstan 1.73 1.21 
(1.52 , 2.04) (0.94 , 1.56) 

To give a graphical alternative to the maps, a plot of the predicted relative risks 

from model C is given in Figure 5.4. A measure of longitude (east to west 

positioning) has been plotted against the predicted relative risks for each region in 

Europe. This is an alternative to mapping the results and prevents the loss of 

information that occurs when grouping mortality rates in ranges. A relative risk of 

1 on the plot indicates a region where the number of cancer deaths is as expected. 

There is an indication of a negative slope in this plot, suggesting the farther west a 

region is, the higher the risk of cancer mortality. There is also the possibility of 

two separate slopes in the data (see lines imposed on plot), suggesting that 

analysing Europe as a whole is perhaps not the correct method. The lifestyles of 

populations across Europe are also very different as many eastern European 

countries are a lot less developed than Western Europe. It may make more sense 

to split the European data somehow before carrying out any further analysis. 
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Figure 5.1 Estimated Relative Risks from model A: all cancer mortality in the 
WHO European region 
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Figure 5.2 Estimated Relative Risks from model B: all cancer mortality in the 
WHO European region 
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Figure 5.3 Estimated Relative Risks from model C: all cancer mortality in the 
WHO European region 
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Figure 5.4 
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5.2.5 ED Cancer Mortality Data 

For subsequent modelling, a subset of the full dataset will be used. Only the EU 

will be examined as all its countries are in Western Europe and thought to be 

fairly comparable in terms of development and lifestyle habits. All of the 

countries in the EU contain regional data, with the exception of Luxembourg, 

which makes the dataset more suitable for exploring spatial multilevel models. 

The dataset only contains areas which have both population and mortality data 

available for the time period 1991. Therefore, we have all cancer mortality in 187 

regions in 11 EU countries. It should be noted that this dataset is based on the EU 

before the 10 new member states joined in 2004 (see Appendix Al.l ) and that 4 

of these 15 EU countries have missing data due to either the mortality or 

population data not being available for the time point being examined here . The 

total population for the 11 EU countries (Austria, Denmark. Finland. France. 
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Germany, Greece, Luxembourg, Netherlands, Portugal, Sweden and UK) was 

257,075,105 with a mean of 23,370,464, ranging from 387,100 (Luxembourg) to 

80,013,896 (Germany). The mean population for a region was 2,734,842 with a 

range from 24,734 (Ahvenanmaa in Finland) to 17,429,759 (North Rbine­

Westphalia in Germany). Again malignant neoplasms (ICD9 140-208) are 

consdiered. In 1991 the total number of recorded deaths from cancer in these 11 

countries was 654,126. The directly standardised mortality rates were calculated 

based on the standard European age and sex specific population. A summary of 

these is given in Table 5.3. The average standardised death rate for all countries is 

297 per 100,000, ranging from 163 (Finland and Sweden) to 267 (Denmark). At 

the regional level standardised death rates range from 125 (Epirus in Greece) to 

320 (Copenhagen and Frederiksberg city in Denmark). 

Table 5.3 Standardised death rates in the EU 

Country 

Austria 

Denmark 

Finland 

France 

Germany 

Greece 

Total 
deaths 

19317 

17764 

9626 

139310 

210537 

19945 

Luxembourg 957 

Netherlands 35645 

Portugal 18230 

Sweden 20406 

UK 162389 

Standardised 
Death Rate 
(per 100000) 

196 

267 

163 

212 

206 

164 

208 

209 

165 

163 

218 

If regional data available: 
Min Max No. of 

(region) 

181 
(firol) 
228 

(Sonderjylland) 

151 
(Kuopio) 

182 
(Midi-Pyrenees) 

187 
(Brandenburg) 

125 
(Epirus) 

197 
(Friesland) 

150 
(Centro) 

148 
(Kristianstad ) 

186 

(region) 

224 
(Burgenland) 

320 
(Copenhagen and 

Frederiksberg city) 

172 
(Ahvenanmaa) 

251 
(Nord-Pas-de-Calais) 

221 
(Bremen) 

192 
(Macedonia East and 

Thrace) 

223 
(Groningen) 

189 
(Azores) 

196 
(Gavleborg) 

264 

regions 

9 

15 

12 

22 

16 

13 

12 

7 

24 

56 
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5.2.6 EU Risk Factor Data 

We are using subsets of the risk factor datasets obtained for the whole of Europe 

and these are summarised in Table 5.4. The risk factors are the same as those 

examined for the whole of Europe except GDP, which is available at the regional 

level (NUTS II) within each country in the ED. 

Table 5.4 Summarised ED risk factor data 

Risk/protective Median Minimum Maximum 
factor 

Fruit 100.8 74.5 142.6 
kg/year/capita (Sweden) (UK) (Greece) 

Vegetables 80.6 58.8 300.4 
kg/year/capita (Austria) (Finland) (Greece) 

Animal Fat 16.4 2.3 26.8 
kg/year/capita (France) (Greece) (Luxembourg) 

Alcohol 123.2 60.0 173.9 
kg/year/capita (UK) (Greece) (Germany) 

Smoke 2120 1550 3590 

cigarettes/year/adu (France) (Sweden) (Greece) 

lt 

GDP (region level) 17136 5611 44711 

ECD /inhabitant (Lorraine - France) (Ipeiros - Greece) (Copenhagen and 
Frederikberg city -

Denmark) 

5.2.7 EU Cancer Mortality Results 

The results of the variance components models are shown in Table 5.5. Model A 

shows the null model with no explanatory variables induded, model B is the 

results from the full model and model C is the full model with country added as a 

higher level. 
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Table 5.5 Results from variance components models: ED data 

Model A ModelB Modele 
Estimate Estimate Estimate 
(95% cn (95% cn (95% cn 

Fixed Part 

Po 7.53 6.83 6.87 
(7.50, 7.56) (6.68,6.99) (6.14, 7.46) 

Pi (FRU) -7.58 -6.43 

Ih (VEG) 
(-8.65 , -6.50) (-11.08, -1.78) 

-1.12 -1.06 

P3 (ANF) 
(-1.69, -0.55) (-3.09, 0.97) 

26.36 22.58 

P4 (ALC) 
(19.28 , 33.42) (0.94 , 44.22) 

0.64 1.25 

P5 (SMO) 
(-0.17 , 1.45) (-1.93 , 4.42) 

0.49 0.44 
(0.39 , 0.59) (0.09 , 0.78) 

P6 (GDP) 0.20 0.90 

Random Part 
(-4.61 ,5.01) (-2.231 ,4.02) 

d u 0.040 0.014 0.006 

d v 

(0.032 , 0.048) (0.011 ,0.017) (0.004 , 0.007) 
0.019 

(0.002 , 0.035) 

The parameter estimates can be interpreted as before, therefore using model 

B, the covariates significantly affecting cancer mortality in the ED are fruit and 

vegetable consumption which both have an inverse association with the risk of 

mortality, when taking the other variables into account, and animal fat 

consumption and smoking which are shown to have a positive association. Again, 

the actual effect size of these variables will be discussed further on. There has 

been no partitioning of variance yet so all the variation here is due to differences 

between regions (a; = 0.014). If we compare this value to the variance under 

model A ( a; = 0.040) it can be seen there has been a 66% reduction in variation 

after adding the explanatory variables. Due to the significant explanatory variables 

being at country level, this shows that these factors are helping to explain the 

differences in cancer mortality between regions and countries. The total variance 
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has been partitioned in model C and it can be seen that 76% of this is attributable 

to differences between countries. 

To examine the distribution of disease risk across the EU, the estimates of 

relative risks from models A, Band C have been mapped and are shown in 

Figures 5.5 to 5.7. The main features of Figure 5.5 indicate that France and 

Denmark have particularly high cancer mortality rates. Cancer mortality rates in 

these regions are between 20% and 54% higher than expected if the European age 

and sex specific mortality rates had been applied to that area. Greece, Portugal, 

Finland and Sweden appear to have the lowest rates. The pattern suggests that 

there is lower cancer mortality in the east and higher in the west with the 

exception of Portugal. However, data are missing for 4 EU countries, illustrated in 

white here, so it is difficult on the basis of these data to tell if this pattern is 

consistent across the whole EU. Figure 5.6 then shows the relative risks after 

taking into consideration the effects of the risk and protective factors that have 

previously been shown to have a significant effect on cancer mortality. This map 

shows less variability with the relative risks now only ranging from 0.77 to 1.36 

(they ranged from 0.59 to 1.54 in Figure 5.5). The risk factors have, therefore, 

explained some of the variation in the cancers mortality rates in the EU, 

suggesting that even these initial models have been effective at smoothing 

geographic variation. The map for model B is a lot smoother, hence allows easy 

identification of regions that could be labelled disease 'hotspots'. The disease map 

from model C is very similar to model B's. However, France noticeably has more 

high risk areas due to the country level relative risks for France being high and 

influencing the estimates for its regions. 
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Figure 5.5 Estimated Relative Risks from model A: all cancer mortality in the EU 
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Figure 5.6 Estimated Relative Risks from model B: all cancer mortality in the EU 
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Figure 5.7 Estimated Relative Risks from model C: all cancer mortality in EU 
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5.3 Estimating the Models 

The variance components models and subsequent models in this Chapter were 

fitted using a quasi-likelihood (frequentist) approach. This method involves 

finding pseudo maximum likelihood estimates for the unknown parameters in the 

model. The algorithm used here to find such estimates is known as iterative 

generalised least squares (IGLS) estimation or a restricted version (RIGLS). 

5.3.1 Iterative Generalised Least Squares 

The iterative generalised least squares method was introduced by Goldstein (124) 

to estimate normal response multilevel model. This procedure is based on a 

generalised least squares estimation that produces maximum likelihood (ML) 

estimates. Full details of how the algorithm fits multilevel models can be found in 

Goldstein (122). 

This two-stage process involves estimating fixed and random parameters 

(variances and covariances of the random coefficients) in successive iterations 

using IGLS. Goldstein (122) described the basic model of fixed and random 

effects. Considering this in vector notation, 

Y = Xj3 + ze, 

where Y is a vector of observations being modelled by explanatory variables X 

and associated fixed parameters fJ , and explanatory variables Z with random 

coefficients e. The fixed and random part design matrices X and Z need not be the 

same. e is assumed to contain a set of random error terms along with other 

random effects. 

Firstly, the fixed parameters are estimated using ordinary least squares 

regression, assuming higher level variance in the model to be zero. The vector of 

residuals produced from this model can then be used to construct initial values for 

the dispersion matrix V. The estimation procedure is iterative and it is firstly 
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applied usmg a generalised least squares estimation procedure to obtain the 

estimator for the fIxed coefficients 

(5.6) 

The residuals are calculated again, 

and by forming the matrix product of these residuals, y* = ITT and then stacking 

them into a vector produces Y * * = vec(ITT). The variance of the random 

coeffIents B, r = cov( B) , can then be estimated as, 

(5.7) 

Z* is the appropriate design matrix for the random parameters and V* is the 

Kronecker product of V, namely V* = V ® V, where 

v = E(YYT ) = E(Y*). (5.8) 

Now, assuming multivariate normality, the estimated covariance matrix for the 

fixed parameters can be written as 

Goldstein and Rasbash (125) showed that covariance for the associated random 

parameters can be written as 
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These random parameters and the associated variances can then be estimated from 

the model in a similar manner as the fIXed parameters and their variances. In 

comparison to ordinary least squares regression, the random part is modelled 

taking into account the structure of the data allowing us to estimate a set of 

parameters rather than having a single residual error term (6). 

5.3.1.1 Penalised Quasilikelihood Estimation 

As previously discussed, a Poisson distribution is being modelled, therefore the 

non-linear (logarithmic) relationship between the outcome variable and the 

predictor part of the model has to be taken into account. This has been done by 

making a linearising approximation to estimate the random parameters. Looking 

at a simple case of heterogeneity effects only (as in VC model equation (5.4», the 

residuals ui can be estimated from the model using penalised quasi-likelihood 

(POL) estimation with a second order Taylor series approximation (122, 125). 

Mter each iteration t, predictions H t are made from the model where 

Then these are used to calculate new predictions for iteration t + 1, so that 

f(Ht+l) = f(Ht) + Xi (Pt+l - PJf'(Ht) 

+ uif'(HJ + 11; f"(Ht)/2' 
(5.9) 

where f(e) is a link function. An updating function is provided for the flxed part of 

the model by the first two terms on the right hand side of equation (5.9). The third 

83 



cnapter :> 
Spatial Multilevel Modelling 

term is made up of a linear random component that is created by multiplying the 

first differential of the predictions by the random part of the model while the next 

term in the Taylor expansion about Ht makes up the fourth term in (5.9). 

Following on from this, the Poisson distribution takes the form 

f(H) = f '(H) = f "(H) = exp(Xtpt + uJ, 

and at each iteration, estimates are made about the fixed part of the model plus the 

residuals. 

5.3.1.2 Marginal QuasilikeIihood 

This POL method described above generally gives better estimates than the MOL 

method but is more prone to convergence problems or with the estimates 'blowing 

up' if the residuals are too large. In such cases, a MOL model can be estimated by 

choosing H t to be the current value of the fixed part parameter only, that is 

omitting the estimated residuals from the linear component of the nonlinear 

function 

The MOL procedure does, however, tend to underestimate the values of both the 

fixed and random parameters, especially when the sample size is small (122). 

Also, to help overcome convergence problems the term involving the second 

derivative in (5.9) can be omitted giving a first order approximation. However, it 

is expected that its inclusion, in general, improves estimates, so a typical 

procedure, when facing convergence problems, is to estimate using MOL first 

order initially and if this succeeds attempt estimating using second order and POL 

procedures. The differences between the estimation procedures have been 

illustrated (126). 
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5.3.2 Restricted Iterative Generalised Least Squares 

As previously discussed, the IGLS procedure uses the current estimates of the 

fIxed and random parameters to iterate between equations (5.6) and (5.7). This 

procedure often produces biased estimates so Goldstein (127) shows how a simple 

modifIcation can lead to restricted iterative generalised least squares (RIGLS) 

which produces estimates that are unbiased. 

Using estimates of /J to rewrite (5.8) gives 

where 

given that, in the two-level model, the residual matrices, B1 and B2, have 

expectation as follows: 

(5.10) 

Equation (5.10) has taken account of the sampling variation of jJ and 

subsequently allows an unbiased estimate of V2 by adding the 'hat' matrix to y* at 

each iteration until convergence. This technique is similar to restricted maximum 

likelihood (REML) in normal response models. 

5.4 Spatial Multilevel Modelling 

The modelling so far does not take into account the geographical structure. Fitting 

the spatial model to the data takes into account the fact that areas close to each 

other in geographical space may share common factors that influence cancer 

mortality. 
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5.4.1 Spatial Model 

A spatial multilevel model can be formed by extending the variance components 

models. This involves adding further random effects and the full spatial model for 

the EU cancer morality data can be written as follows: 

log(JlJ = log(EJ + a i 

+ /31x1i + /32x2i + /33x3i + /34x4i + /3sxSi + /36x6i 

Vi = LZijv;, 
j*i 

(5.11) 

(5.12) 

(5.13) 

The model is as before but now there is the added parameter Vi. The Vi are spatially 

dependent random effects, and may have anyone of a number of structures 

describing adjacency or nearness in space (128). The spatial effects Vi are 

considered to be the weighted sum of a set of independent random effects Vi*. The 

v/ can be considered to be the effect of area upon other areas, moderated by a 

measure of proximity of each pair of areas Zij. There are many ways in which Zij 

can be formulated, in general it is written (129) 

(5.14) 

In this case the Wij are either 1 's or Os representing an adjacency matrix and 

The binary adjacency matrix is the most common spatial weight matrix; however, 

others can be used to define the spatial structure in the model. The adjacency 
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matrix cannot differentiate the strength of spatial effects between contiguous 

locations, therefore more complex spatial weight matrices are often proposed for 

more precise spatial control. 

The Vi* can then be estimated directly from the model and these are the 

residuals due to their independence. Therefore this multilevel model has within­

area effects which are modelled with a Poisson distribution and relative risks 

between regions which are considered as having a lognormal distribution. 

There is a more complex covariance structure present now. The variance has 

been partitioned with (Ju
2 referring to the variance that arises due to heterogeneity 

between regions and (J/ referring to that which arises due to the spatial structure. 

The random effect has now been written as the sum of the heterogeneity effect, Ui, 

and a correlated spatially structured component, Vi. The model takes on similar 

structure to a simple autocorrelation model. The weights, Zij can be thought of as 

spatial explanatory variable, and represent a measure of the relevance of area j to 

area l. 

When fitting the model parameters, the spatial effects are more complex 

than the heterogeneity effects where there was simply a variance-covariance 

matrix with a variance term on the diagonal. Adding spatial effects requires off­

diagonal terms in the variance-covariance matrix. 

To consider the structure of the spatial part equations (5.11) to (5.13) can be 

rewritten in matrix notation 

1 

Y = {log(Ei) 1 Xli ••• X6i} ;, + [ZuZ; 1 [:;] , 

/36 

(5.15) 

where Zu is the identity matrix and Zv* = {zij}. The variance structure can be 

written as 
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(5.16) 

where () = {u.} and ()* = {v } 
u Z vi' 

which is equivalent to 

The overall variance, conditional on the fixed parameters, can be written as 

var(Y I XP) = n:eZT , 

where La is the variance of the random terms in B. Using the partitions from the 

spatial model (5.15) defined in () and Z and the variance structure of (5.16), it 

follows that: 

As mentioned above, the Zij can be formulated in different ways. In this example, 

as shown in (5.14), the variance of an area decreases as the number of neighbours 

Increases. 

Finally, using RIGLS estimation, the random effects for heterogeneity and 

the spatial effects are specified within a generalised linear modelling framework. 

Weights matrices associated with the random effects are constructed and fitted 

into the model. The model can now be expressed in terms of 3 design matrices 

and is generalisable to the non-linear model. 
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5.5 Results from Spatial Model 

The Spatial model was fitted to the ED cancer mortality data following the 

estimation procedure above. In this case model D is the model incorporating the 

spatial structure of the data and is fitted using second order POL and RIGLS; this 

is shown alongside the results from models A and B in Table 5.6. 

Table 5.6 Results from variance components and spatial models: EU data 

Model A ModelB ModelD 
Estimate Estimate Estimate 

(95% C.I.) (95% C.I.) (95% C.I.) 
Fixed Part 

Po 7.53 6.83 6.83 
(7.50 , 7.56) (6.68 , 6.99) (6.53 , 7.13) 

Pl (FRU) -7.58 -7.51 
(-8.65 , -6.50) (-9.67 , -5.36) 

P2 (VEG) -1.12 -1.11 
(-1.69 , -0.55) (-2.25 , 0.04) 

P3 (ANF) 26.36 25.98 
(19.28 , 33.42) (11.72,40.23) 

P4 (ALe) 0.64 0.71 
(-0.17 , 1.45) (-0.91 , 2.33) 

P5 (SMO) 0.49 0.49 
(0.39 , 0.59) (0.29 ,0.69) 

P6 (GDP) 0.20 0.33 
(-4.61 ,5.01) (-9.40 , 10.06) 

Random Part 
d u 0.040 0.014 0.002 

(0.032 , 0.048) (0.011 , 0.017) (-0.014,0.017) 

O"uv 
0.011 

(-0.001 , 0.023) 

d v 
0.044 

(0.011 , 0.077) 

Firstly, comparing the fixed parts results from the variance components 

model and this model, the estimates change very little after including the spatial 

component. However, looking at the standard errors, they almost double for each 

term in the spatial model. The probable reason behind this is that areas 
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geographically close tend to display positive dependence or positive 

autocorrelation, but when this is ignored as in the variance components model, 

incorrect inference will result, in particular standard errors of explanatory 

variables will be too small. Fitting the spatial model here has improved the 

accuracy of the model. U sing the variance terms, the total variance can be 

calculated. As can be seen from equation (5.12), a; is based on the residual, v ~. 
J 

To obtain the weighted residual, Vi, v; must be divided by the number of 

neighbours region i has, n .. Therefore, to obtain a weighted estimate of (J'2 it 
I v , 

must be divided by the average number of neighbours a region has, n. Hence, the 

total variance is a: + (J'; / n = 0.002 + 0.044/4.128 = 0.0127.85% of this variance 

now arises from spatial effects, confirming the importance of the spatial part in 

the model. 

We are also interested in quantifying the effect size of the risk or protective 

factors when examining cancer mortality. The relative risks have been calculated 

for each of the significant variables from model D and are given in Table 5.7. 

Firstly, for the consumption of fruit, the table shows that Greece has the highest 

level of consumption in these 11 countries and the UK has the lowest. The relative 

risk of 0.58 shows that a population consuming, on average, the same amount of 

fruit as Greece has a risk of cancer mortality that is 42% lower than if 

consumption was on the same level as the UK. Also, consuming the same level of 

vegetables as Greece leads to a risk of cancer mortality that is 28% less than if 

consumption was at the same level as Finland or Sweden. Luxembourg consumes 

the most animal fat in the EU countries being examined and this level of 

consumption leads to a RR over 2 times as high as if consumption was on the 

same level as Greece. Finally, the inhabitants of Greece, on average, smoke the 

most cigarettes. This level of smoking leads to a RR of cancer mortality 3 times as 

high as if cigarette consumption was at the same level as Sweden (where cigarette 

consumption is the lowest). 
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Table 5.7 Variable effect sizes: EU data 

Area with 

Variables Highest Lowest 
Relative Risk Consumption Consumption 

Fruit Greece UK 0.58 
Vegetables Greece Finland & Sweden 0.72 
Animal Fat Luxembourg Greece 2.03 
Cigarettes Greece Sweden 2.99 

To examine visually the apparent effect of risk factors and also to compare 

the different models fitted, plots of the predicted relative risks from all four 

models are given in Figure 5.8. Looking at the plot for model A, the variance 

components model with no explanatory variables included, it is obvious that there 

is definite clustering, with mortality rates for regions within each country being 

very similar. There also appears to be evidence of a negative slope, with the 

exception of Greece and Portugal, suggesting that rates tend to be highest in 

Western Europe and lowest in Eastern Europe. Examining the plot of model B, 

the variance component model including the explanatory variables, it can be seen 

that the spread decreases. The relative risks for countries with low relative risks 

are higher than in model A and those that previously had high relative risks are 

lower. This is because the risk or protective factors included are measured at the 

level of country and are therefore explaining differences between countries. The 

key features from fitting this model are that regions in Portugal, which were 

previously shown to have low cancer mortality rates, now appear to have a risk of 

cancer mortality that is higher that expected given the lifestyle factors. Portugal 

has fairly high consumption of fruit and vegetables and very low animal fat 

consumption, so after taking these into consideration they have above average 

mortality. Also, looking at Denmark, the cancer mortality risks are high under 

model A but under model B for most regions they are below average. So, taking 

into account the fact that Denmark has high animal fat consumption and low fruit 

and vegetable consumption, the rates are actually lower than expected. Moving 
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onto the estimates obtained from model D, there is less variability overall. In plot 

B they were clustered but showed more variation within each country and more 

overlap between countries. With the spatial model the relative risks are more 

tightly clustered within countries. This is due to the mean for each area being 

centred on the mean of its neighbours. Effectively this model is providing greater 

smoothing to a map. Finally, comparing the plot from model D to that of model C, 

which takes account of country as a level, it can be seen that model D provides the 

greatest amount of smoothing and reduces the variability the most. 

It should be noted here that there are some islands present in the data which, 

due to the level of data aggregation, have no regions bordering them. These 

regions have no neighbours so it may be assumed that they do not share common 

environmental and social factors with nearby areas, therefore island estimates 

would not be spatially smoothed. It is perhaps false to assume this, so each island 

was allocated two or three 'neighbours' based on the regions that were closest (ie 

smallest centroid to centroid distance). These regions were not necessarily all 

from the same country as the island but hopefully they provided some sort of 

smoothing based on the regions sharing similar spatial factors which may be 

influencing the rates. Also, as discussed in Chapter 3, missing data are inevitable 

in this type of study and when examining the EU, three countries have missing 

data for the time point of interest. This resulted in the regions which bordered 

areas with missing data being subject to a lower level of smoothing than regions 

which had information available for each of their neighbours. One should remain 

aware that the estimates for these areas are shrunk much less towards estimates 

from regions that share similar environmental and social factors. Also, areas at the 

boundary of the map have been smoothed to a lower degree. 

Further, a slightly different form of disease map can be used to identify the 

risk of mortality after including actual variable effects. This is done by mapping 

each region's relative risks plus the fixed effects from the model. Figure 5.9 does 

so for Model D's (spatial model) estimates. As can be seen, this map differs from 

those previously examined. The relative risks of cancer mortality are all very high 
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( > 1.4). This is because the risk factors have stronger effects that the protective 

factors, hence, they are having more overall influence on the relative risks and 

pulling them higher. There is a high amount of country level clustering evident 

due to the covariates being at the country level and drawing the risks within 

countries towards similar values. For this reason, this type of disease map is most 

useful for identifying differences in country level relative risks. However, it is 

noticeable that two regions in France have risk of mortality higher than the rest of 

the country (and most of the EU) after the addition of the effect size of the risk 

factors. Country level differences indicate that Denmark, overall, has the highest 

risk of cancer mortality and Portugal, Greece and Finland have the lowest after 

adding the fixed effects. 

Maps from four types of models have been explored in this chapter. In 

theory, further maps could be investigated that examine the risks that can be 

attributed to different parts of the model, eg regional, spatial, country level risks. 

Figure 5.3 combines the region and country effects to obtain overall estimates of 

relative risks; however these could have been mapped separately. For the purpose 

of producing smoothed disease maps and 'hotspot' identification, the overall 

relative risks are more appropriate and further disease mapping will focus on 

using this method. 

5.6 Further Spatial Modelling 

Empirical Bayes methods provide useful tools to fit spatial multilevel models. So 

far we have looked at two examples that incorporate the geographical structure of 

the data in to the model; one takes account of the non-independence of regions 

within countries by including a further hierarchical level and the other takes into 

account the fact that regions geographically close are more likely to share similar 

mortality rates and exposure to risk factors than regions far away from one 

another. The model with the spatial random effects appears to be more useful as it 

provides more smoothing and produces a disease map from which disease 

'hotspots' can be easily identified. However, it would useful to explore the effects 
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of adding country as a higher level to the spatial multilevel model. This will be 

carried out in the next chapter by fitting the models using fully Bayesian methods. 
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Figure 5.8 Plots of Relative Risks against Longitude from models A, B, C and D for EU cancer mortali ty 
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Figure 5.9 Estimated Relative Risks from model D plus fixed effects 
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Chapter 6 

6 Fully Bayesian Modelling 

6.1 Bayesian Estimation for Relative Risks 

There has been much development recently of Bayesian methods in relation to 

disease mapping applications. In simple terms, Bayesian approaches to disease 

mapping of mortality rates combine two types of information. The first for each 

region is the number of observed deaths, described by the Poisson likelihood 

g(O I iJ), and the second is the prior information on the relative risks specifying 

their variability in the overall map, summarised by their prior distribution (fJ) (78). 

As discussed in Chapter 4, a common assumption made when examining counts 

of deaths within an area is that Oi .... Poisson( elli) , and that Oi .... Gamma( a, fJ). The 

joint distribution can then be given by the product of the Poisson likelihood and 

the gamma distribution. This joint density is proportional to the posterior 

distribution for the parameters of interest. 

6.1.1 Posterior Distribution 

Prior beliefs about parameters of interest are combined with sample information to 

create updated, or posterior beliefs about the parameters. In the fully Bayesian 

approach, inference is based on the posterior distribution of fJ given the data and 

with the empirical Bayes approach the posterior distribution is approximated in 

some way. This chapter will focus mainly on the fully Bayesian approach, which 

has recently become widely available mainly because of the increased use of 

Markov chain Monte Carlo methods of posterior sampling. 
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Bayesian approaches to relative risks were discussed in section 4.2.1; the 

likelihood function of 0, the relative risks, were described in equations (4.4) and 

(4.5) and how to obtain the marginal posterior distribution was explained in (4.6) 

and (4.7), using empirical Bayes estimation, and in (4.23) and (4.24) using fully 

Bayesian methods. It was explained that, in general, the marginal posterior 

distribution cannot be solved analytically. 

6.1.2 Empirical Bayes 

The empirical Bayes approach was used to fit the spatial multilevel models in 

Chapter 5. This method assumed that the hyper-parameters are unknown and are 

drawn from an unspecified distribution. The parameters were then estimated using 

a technique such as iterative generalised least squares. As discussed, this is a two­

stage process which involves estimating fixed and random parameters in 

successive iterations. 

The spatial multilevel model (see equations (5.11) to (5.13)) can be written 

as 

Oi ,... Poisson ( ()iEi) (6.1) 

loge 0i) = zt P + Ui + Vi , (6.2) 

where the random effects have a joint normal distribution 

(6.3) 

The dispersion matrix L is a linear function of hyper-parameters "'( such that 

L = f(y)· 
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Therefore the algorithm alternates between an estimate of the fIxed parameters 

conditional on the estimates of the hyper-parameters [P I r = r] and an estimate 

of the hyper-parameters conditional on the fIxed parameters and estimates of the 

hyper-parameters after x iterations[r IP = P]. 

6.2 Fully Bayesian 

As previously discussed the empirical Bayes approach involves assuming the 

hyper-parameters are unknown and are drawn from an unspecifIed distribution, 

and estimates of the hyper-parameters are plugged in. Another method that was 

used to fit spatial multilevel models to the European cancer mortality data set was 

a fully Bayesian approach. This involves fItting a hierarchical model where the 

distribution of the hyper-prior [y] is specified. 

6.2.1 Prior Distributions 

The prior distribution for the relative risks (J is a probability distribution that 

explains all the information that is known about (J before the data have been 

collected. An informative prior distribution is used when information that is 

available before data collection is included in the analysis. A non-informative 

prior distribution is commonly used and expresses no knowledge about (J before 

data collection. They are also referred to as diffuse or flat priors and a common 

example is the uniform distribution over the range of sample space for (J. 

6.2.1.1 Spatially Structured Priors 

Prior knowledge of mortality rates indicates that areas geographically close to 

each other tend to have similar relative risks. To express the prior knowledge that 

there exists a local spatially structured variation in relative risks of cancer 

mortality in Europe, a spatially structured prior was used. Here the relative risks 

99 



Chapter 6 Fully Bayesian Modelling 

have a locally dependent prior probability structure, whereby the conditional 

distribution of the relative risk in area i, given the values of the relative risks in all 

other areas j¢i, depends only on the relative risks of area i's neighbouring areas. 

Here we used a log-normal model which has a normal prior with hyper­

parameters Jl and ~ specified for the logarithm of the relative risks: 

where 

and ~ is the dispersion matrix given in equation (6.2). 

The prior model fitted results in the log relative risks being the sum of two 

independent components: 

log(~) = Ui + vt . (6.4) 

The random terms, Ui and Vi, have a joint prior distribution as described in 

equation (6.3) and the variance of loge Bi) is then dependent on the number ni of 

neighbours of that area, 
2 

e (J"v 2 
Var[log( J] = --=- + (J" u , 

ni 

and the covariance between areas l and i' depends on the number njj , of 

neighbours they have in common, 

n .. , 2 (1 1 ) 
Cov[10g(8

i 
),10g(8i ,)] = _ II 0v + -=- + ~ 0uv 

nini , ni ni 

n .. , 2 
-II-a 

v 

if i and i' are contiguous 

otherwise 

so that there is no covariance between areas with no common neighbours. 

100 



Chapter 6 
Fully Bayesian Modelling 

6.2.2 Hyperpriors 

The fully Bayesian approach was used to model the data and involved specifying 

the hyperprior distribution [y] and basing inference about the relative risks on the 

marginal posterior distribution (see equations (4.23) and (4.24». Specifying the 

hyperprior distribution and basing inference on the marginal posterior distribution 

allows the variability in the hyperparameters y to be incorporated. 

6.2.2.1 Hyperpriors for Fixed Effects 

A prior distribution for fixed parameters has to be defined over the whole real line 

allowing there to be no constraints and to take on any real value. Here, a flat prior 

has been used which is basically a uniform prior across the whole real line 

(- 00,(0) for each fixed effect coefficient. 

6.2.2.2 Hyperpriors for Random Effects 

Variance parameters must be constrained to have positive values. Here, a variance 

matrix is considered, as opposed to a single variance, and the prior used is a 

multivariate Wishart prior. The inverse variance matrix, ~-1, is given a Wishart 

distribution with 2 degrees of freedom and precision 2i: where i: is an estimate 

of the dispersion L: 

The Wishart distribution is used as prior for the inverse covariance matrix by 

giving it degrees of freedom equal to the order of the matrix, 2. Reasonable values 

for the precisions matrix were then chosen based on previous estimates from 

similar models. 

In this example, the marginal posterior distribution (4.24) is not tractable. To 

overcome this problem Monte Carlo methods are used which involve drawing 
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samples from the joint posterior distribution g(e,yIO) and hence from the marginal 

posteriors gee I 0) and g(y I 0). 

6.3 Markov Chain Monte Carlo 

Markov Chain Monte Carlo is a common method used for posterior sampling and 

consists of a range of algorithms designed for the iterative simulation of joint 

posterior distributions found in Bayesian modelling (130). Since the posterior 

distribution of the spatial multilevel model is complex and therefore intractable, 

MCMC simulation provides a useful method of posterior sampling. 

In simple terms, using current values of parameters, MCMC involves 

proposing new values, then a comparison of the posterior probability of the new 

and current values is made. These proposed values are generated from given 

distributions and subsequently new values are accepted based on a certain 

probability criterion. If these new values are accepted they replace the current 

values. Since these are simulation-based procedures, instead of simply producing 

point estimates, these methods are run for many iterations and at each iteration an 

estimate for each unknown parameter is produced. The aim is then to generate a 

sample of values from the posterior distribution of the unknown parameters. 

6.3.1 Sampling Methods 

Two algorithms are widely used to aid MCMC simulation; these are Gibbs 

sampling and the Metropolis Hastings algorithm. The aim is to generate a sample 

of points from the joint posterior distribution of the unknown parameters of 

interest. The spatial multilevel model would involve generating samples from the 

distribution [x, 11 0], where x is the log of the relative risks 0: 

[x, 1 I 0] ex: [0 I x][x I 1][1] = 0 [y, I x,l[x 17 ][7] 
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Although it is difficult to simulate from the joint posterior distribution, the 

conditional posterior distributions for the unknown parameters often have forms 

from which simulation is easy. Iterative sampling from these conditional posterior 

distributions is then equivalent to sampling from the joint posterior distribution, in 

the limit. 

6.3.1.1 Gibbs Sampling 

A common approach to this type of posterior sampling is Gibbs Sampling. 

Basically, this involves taking each parameter in turn and simulating a new value 

from its conditional distribution assuming the other parameters are true values. 

Starting values are then needed for each parameter and these are then updated in 

turn. 

For instance, since 

new values of Xi can be drawn, given the current values 

I d I 
X j,j .. i an 'Y , 

from the full conditional distribution 

[Xi I X'j' j ¢ i,'Y',O] ex: [Yi I X;] [Xi I Xj I, jEai,y']. 

Here the conditional distribution of the relative risk in area i, given values for 

relative risks in all other areas j i- i, depends only on the relative risk values in the 

neighbouring areas oi of area i. A new value of 'Y is drawn given the current 

values of x' from the full conditional distribution 

[l'lx ']oc[x'II']['Y] . 

The joint distribution of the sample values of (x, 'Y) should then converge to the 

joint posterior distribution [x, 'YI 0]. Therefore the distribution of the sample 
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values of x, respectively of ,,(, converges to the marginal posterior distribution 

[xIO], respectively of ["(10] (79). 

The Gibbs sample works well if the conditional posterior distributions have 

simple forms and are easy to simulate from but with the Poisson hierarchical 

model this is not the case. 

6.3.1.2 Metropolis Hastings Algorithm 

When the conditional posterior distributions do not have simple forms another 

MeMe method, Metropolis Hastings sampling, can be used. As previously 

discussed MeMe involves proposing new values and accepts or rejects this value 

as the new estimate for the next iteration. The conditional distribution is used as 

the proposal value for the Gibbs sampler. This is in fact a special case of the 

Metropolis Hastings sampler whereby every proposed value is accepted. This MH 

algorithm was used to fit the spatial hierarchical model, as easily-simulated full 

conditional distributions were not available. 

To explain the procedure in simple terms, a draw is made from a full 

conditional distribution of the kth component, say [(Xk 1 X-k, 0), which is not easy 

to draw from. Then, a Metropolis step can be used to carry out the update. 

Firstly select a proposal distribution, say q(. I 8), where 8 is its parameters 

fixed by the user. Theoretically this can be any compatible distribution eg it 

makes sense to choose a Normal distribution if your parameter can be any real 

number. 

Then, to sample a candidate point from [(Xk 1 X-h 0), draw Y - q(. 1 J) and 

compute 
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The new value of Xk is then set to be Y with probability minimum (1" , 1); 

otherwise we retain the current value of Xk. Many iterations are then run until the 

chain converges to a stationary distribution, which should be the required joint 

posterior distribution. 

6.3.1.3 Other Sampling Methods 

Often the distribution of interest, f(x) say, cannot be easily sampled from. 

However, if there exists a distribution g(x) such that 

J(x) < Mg(x) \j x, 

where M is a positive number, Ripley (131) described a technique where g(x) can 

be sampled from without problems. This method is called rejection sampling and 

involves thinking of g(x) as an envelope function that completely bounds the 

required distribution. An extension to this is used when there is a non-standard but 

log concave distribution of interest. The technique that can be used here is called 

adaptive rejection sampling (132). 

6.4 Fitting the Spatial Multilevel Model 

A similar model can be fitted to that described in the previous chapter (see 

equations (5.11) to (5.13» and is written as follows: 

log(,ui) = 10g(E i) + a + IPmXmi + Ua[i] + I Wi,j V j , (6.5) 
m jEa[i] 

where m is 1, ... ,6 and Pm represents each of the fixed effects covariates. a[i] is the 

area from which the observed count was taken from, and 8[i] is the set of 

neighbouring areas to the area from which the count is taken from. The weights in 

this model are such that L Wi,j = 1 V i and all neighbours are given equal weights 
JEa[i] 

so that wi,j = lIni, where ni is the number of neighbours to a[i]. Since there is a 
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one-to-one correspondence between the sets of area and neighbour residuals (Ui 

and Vj), a joint multivariate Normal distribution is fitted to these two sets of 

residuals. 

(6.6) 

The fully Bayesian spatial multilevel model was fitted in WinBUGS vI.3 

and the code is shown on the next page. Line 5 of the model specifies the 

response, namely the counts of cancer deaths, as Poisson distributed, and has a 

mean and variance Jli. The constant N used has a value that is input with the data 

and is the number of regions in the data. Lines 6-12 specify 10g(,Iii) as a linear 

additive function of the offset, which is the logarithm of the expected deaths, the 

intercept, PI, and 6 covariates, P2, ... ,/h. Line 13 adds the random effects that 

account for difference between regions. Region i is the region identifier (1 ... 187) 

for count of deaths i and is multiplied by u2[,1 ] (or u), which is a random variable. 

Lines 14-25 add the set of random effects to take account of spatial variability, 

u2[,2] (or v). The nearest neighbours are available and a region has at most 12 

nearest neighbours. A set of random terms is given for each neighbouring region 

identifier (neigh 1 [i], ... ,neighI2[i]). Each of these random terms is multiplied by a 

spatial weight (weightl[i], ... ,weight12[i]). Lines 28-29 specify the prior for our 

random terms which, as previously discussed, follow a multivariate normal 

distribution. Line 32 specifies the priors for the fixed effects to be flat. Lines 34 

and 35 define the hyper-prior for the variance matrix 't to be Wishart distributed 

with 2 degrees of freedom and precision matrix R2. The values for the precision 

matrix are declared with the data input and in this case, the values used were close 

to 2 i: where i: is an estimate of the dispersion matrix L obtained from the , 

variance matrix when the model is run using IGLS. 
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R2= . 
[
0.006 0.002] 

0.002 0.055 

The last part of the WinBUGS code (lines 36-40) generates the inverse of't. This 

was required to obtain 1:: since the precision matrix is the inverse of the variance. 

An example of the WinBUGS data file is given in Appendix A2.3. 

#----M 0 D EL Defin ition----------------

model 
{ 
# Level 1 definition 
for(i in 1 :N) { 
deaths[i] - dpois(mu[i]) 
log(mu[i]) <- offs[i] + beta[1] 
+ beta[2] * smoke[i] 
+ beta[3] * fruit[i] 
+ beta[4] * veg[i] 
+ beta[S] * animal[i] 
+ beta[6] * alcohol[i] 
+ beta[7J * gdp[i] 
+ u2[region[i],1] 
+ weight1 [i] * u2[neigh1 [i],2] 
+ weight2[i] * u2[neigh2[i],2] 
+ weight3[i] * u2[neigh3[i],2] 
+ weight4[i] * u2[neigh4[i],2] 
+ weightS[i] * u2[neighS[i],2] 
+ weight6[i] * u2[neigh6[i],2] 
+ weight7[i] * u2[neigh7[i],2] 
+ weight8[i] * u2[neigh8[i],2] 
+ weight9[i] * u2[neigh9[i],2] 
+ weight10[i] * u2[neigh1 0[i],2] 
+ weight11 [i] * u2[neigh11 [i],2] 
+ weight12[i] * u2[neigh12[i],2] 
} 
# Higher level definitions 
for G in 1 :N) { 
u2D,1 :2] - dmnorm(zero[1 :2],tau.u2[1 :2,1 :2]) 
} 
# Priors for fixed effects 
for (k in 1 :7) { beta[k] - dflatO } 
# Priors for random terms 
for (i in 1 :2) {zero[i] <- 0 } 
tau.u2[1 :2,1 :2] - dwish(R2[1 :2,1 :2],2) 
det <- tau.u2[1, 1]*tau.u2[2,2] - tau.u2[1 ,2]*tau.u2[2, 1] 
sigma2.u2[1,1] <- tau.u2[2,2]/det 
sigma2.u2[1,2] <- -tau.u2[1 ,2]/det 
sigma2.u2[2,1] <- -tau.u2[2, 1]/det 
sigma2.u2[2,2] <- tau.u2[1, 1]/det 

1 

(1 ) 
(2) 
(3) 
(4) 
(S) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11 ) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 
(36) 
(37) 
(38) 
(39) 
(40) 
(411 
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6.5 Convergence 

The aim of using the sampling methods described is to simulate a Markov chain 

whose equilibrium distribution is the desired distribution (130). The desired 

outcome is for the joint distribution of the sample values to converge to the joint 

posterior distribution. It is therefore common practice to run a sufficiently long 

bum-in of samples, which can then be discarded, and further dependent samples 

that are obtained can be assumed to come from the joint posterior distribution. 

Being interested in the log relative risks x, the marginal posterior distribution 

[xID] was approximated (ignoring the 'Y values). Then, for each region, point 

estimates can be obtained from the simulated values, for example the posterior 

mean from the sample mean, and interval estimation can be made by calculating 

Bayesian credible intervals. Therefore, it is important to be able to check when the 

Markov chain has reached a stationary distribution and so convergence to the 

posterior distribution has been obtained. 

6.5.1 Multiple Chain Monitoring 

The method used to assess convergence was to replicate the algorithm with 

different starting points and check that they show similar convergence behaviour. 

The reason for monitoring convergence in this way is that often a single sequence 

of Markov chain simulation appears to have converged, but when replicating the 

sequence independently it showed that within-sequence changes took too long to 

detect. Gelman and Rubin (133) give examples of applying Markov chain 

simulations of Bayesian posterior distributions where a single simulated sequence 

appears to have reached convergence, but when examining multiple independent 

simulations, poor convergence was evident. It has been suggested that with 

Bayesian posterior simulation, the added information obtained from replicating 

chains outweighs any additional costs required in multiple simulations (134). 
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6.5.1.1 Chain Trace Plots 

It makes sense to use a combination of convergence diagnostics and visual 

inspection of trace plots to help determine when the simulation appears to have 

stabilised. For models with many parameters it is often impractical to check 

convergence for every parameter. In this case the relevant parameters must be 

chosen to be monitored, and convergence can then be examined with reasonable 

confidence. One method is to examine trace plots or time-series plots and compare 

the parallel sequences. When the patterns from parallel chains start to overlap and 

stabalise, it can be assumed convergence has been reached. Figure 6.1 gives an 

example of sample traces of chains from the spatial multilevel model. It shows 

plots of the random terms, (Ju 2, (Juv and (Jv 
2

, where two parallel chains have been 

run from different initial values for 10,000 iterations. Looking at the plot for (Jv
2

, 

that is sigma2.u2[2,2], it can be seen that by 2500 iterations the chains 

(represented by separate blue and red lines) are not yet overlapping. This suggests 

that the sample traces of the Markov chains of the random terms have not yet 

reached convergence at this point. Assessing the chains for further iterations, it 

can be seen that by around 5000 iterations, the sample chains are overlapping 

somewhat and by 7500 they have almost completely merged together. The other 2 

plots, for (Ju 
2 and (Juv, have also converged by this stage and, in fact, both converge 

much more quickly. This suggests that convergence has been reached for all of the 

random terms, and hence 7500 simulations would be a suitable burn-in period. 

However, it doesn't make sense to only examine the random terms. Assessing 

convergence of the fixed terms is also of importance. 
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Figure 6.1 Trace plots of random terms 
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6.5.1.2 Gelman-Rubin Test 

The Gelman and Rubin diagnostic test (135) is another method used to check the 

convergence of the MCMC algorithm. This method was initially inspired by the 

analysis of variance and the basic idea is to form an overestimate and an 

underestimate of the variance of the target distribution. When both these estimates 

are roughly equal, it can then be assumed convergence has been reached. 

The Gelman-Rubin test is again based on running parallel chains from 

different starting values. Its convergence condition is that the empirical 

distribution of simulations that are obtained from each sequence separate ly is 

approximately equal to the distribution that is obtained by combining all the 

sequences together. Before convergence the samples collected \vithin each si ngl e 

10000 
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sequence will be less variable than the samples collected from the combined 

sequences. 

Consider any parameters of interest and predictive quantities as separate 

scalar summaries. At a time point, consider a single summary 0), and assume m 

parallel simulations, each of length n. For each of these a numerical equivalent of 

simply visually comparing sample traces of chains (figure 6.1) is wanted. For each 

scalar summary 0), label the m parallel sequences of length n as O)ij, where j = 
1, ... ,n and i = 1, ... ,m. Then two quantities are computed; the between-sequence 

variance B 

m 

B - n I(- _ -)2 - OJ. OJ , 
-1 I. .. m i=l 

1 n 

where OJ i . = - IOJij and 
n j=l 

1 m 
OJ=-~OJ 

.. ~ I. 

and the within-sequence variance W 

1 m 2 

W=-ISi' 
m i=l 

m i=l 

2 1 In ( - )2 
where S = -- OJ -OJ • 

I -1 Ij I. 

n j=l 

The between-sequence variance B contains a factor of n because it is based on the 

variance of the within-sequence means, mi .. Each mi. is an average of n values of 

Using these two variance components, two estimates of the variance of OJ in 

the posterior distribution are constructed. Firstly 
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A n-l 1 
var(m)=--W+- B 

n n 

is an estimate of the vanance that is unbiased under stationarity, but is an 

overestimate under the more likely situation that the starting points are 

overdispersed. Therefore var( OJ) is a conservative estimate of the variance of OJ 

under overdispersion. 

On the other hand, the variance of OJ is likely to be underestimated by the 

within-sequence variance W, for any finite n. This is because the individual 

sequences do not have time to range over all of the target distribution resulting in 

them having less variability. As n increases, var(m) and W approach the true value 

of OJ, but from opposite directions. 

The scale reduction factor, or Gelman-Rubin statistic, can then be calculated 

to monitor the convergence of the Markov chain. This involves calculating the 

ratio between the estimated upper and lower bounds for the standard deviation of 

OJ, denoted by R: 

As the scale reduction factor reduces to 1, this indicates that the parallel Markov 

chains are overlapping therefore a sufficient bum-in period has been reached. If 

the Gelman-Rubin statistic is greater than 1 then convergence hasn't been reached 

and further simulations need to be run. 

In practice, the simulations are generally run until the values of R are less 

than 1.1 or 1.2 (134) for all the parameters. The R values can be examined 

numerically or a time series plot of them can be examined. The plots shown in 

Figure 6.2 are for the parameters PI to fh, and show the Gelman-Rubin scale 

reduction factor (in red) up to 20,000 iterations. Also shown is the estimate of the 

variance of OJ in blue and the average of the within-sequence variances, W, in 
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green. When the red line converges to around 1 and the green and blue lines are 

consistently overlapping, this indicates that the parameter has converged to 

stability. By 20,000 iterations it appears that convergence has not yet been reached 

as some of the fIxed parameters' R values are still greater than 1, eg P4 and P6. 
However, by 150,000 iterations (Figure 6.3) all the parameters appear to have 

converged to stability. Definite convergence was evident by 200,000 iterations so 

this was chosen to be the bum-in period when running these models. 

6.6 Further Iterations 

Once a suitable bum-in period has been determined, it is then necessary to run 

further iterations that will then allow accurate posterior estimates to be obtained 

from the resulting samples. The method that was used here to determine how 

many iterations were needed after convergence was to assess the Monte Carlo 

error for each parameter. The Monte Carlo error is an estimate of the difference 

between the mean of the sampled values and the true posterior mean. To enable 

accurate posterior inference, the Monte Carlo error should be small in relation to 

the posterior standard deviation. A rule of thumb that has been suggested (136) is 

that iterations should be run until the Monte Carlo error for each parameter of 

interest is less than 5% of the sample standard deviation. 

Table 6.1 reports the Monte Carlo error, sample standard deviation and the 

Monte Carlo error as a percentage of the standard deviation at 50,000 and 100,000 

iterations after a bum in of 200,000. As can be seen, at 50,000 iterations all of the 

fIxed and random terms have a percentage less than 5%. This indicates that 

running 50,000 iterations after convergence gives a suitable set of samples from 

which accurate posterior inference can be made. 
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Table 6.1 Monte Carlo error as percentage of posterior standard deviation 

Param- 50,000 iterations 100,000 iterations 

eters Me SD MCerroras Me SD MCerroras 
error %o/SD error %o/SD 

Po 0.00522 0.110S 4.7% 0.0042 0.1067 4.0% 

PI 2.4ge-06 0.0001 4.7% 2.47e-06 0.0001 4.0% 

P2 0.00003 0.0006 4.7% 0.0000 0.0007 3.9% 

P3 0.00002 0.0004 4.6% 0.0000 0.0004 3.9% 

P4 0.00014 0.0030 4.6% 0.0001 0.0036 3.9% 

P5 0.00002 0.0005 4.7% 2.13e-05 0.0005 3.9% 

P6 S.0ge-OS 0.0000 4.5% 6.64e-08 1.77e-06 3.8% 

cru
2 0.00003 0.0009 3.3% 2.46e-05 0.0009 2.8% 

cruv 0.00005 0.0016 3.0% 3.91e-05 0.0016 2.5% 

cr/ O.OOOlS 0.0055 3.3% 0.0001 0.0054 2.5% 

6.7 Model Results 

As previously discussed, numerical summaries of the posterior samples are used 

to examine the model results. The posterior samples can be assumed to be from 

the desired joint posterior distribution, and each parameter has a set of samples 

that can be thought to have arisen from the individual marginal distributions. 

6.7.1 Fixed and Random Effects Estimates 

Some results from running the spatial multilevel model defmed by equations (6.5) 

and (6.6) using MCMC are given in Table 6.2. The point estimates for each 

parameter from the null model and the full model are given. These are calculated 

by assuming the chain values are a sample from the posterior distributions and 

calculating the mean of these in the usual way. Credible intervals are also given 

for each of these point estimates, again for the null model and the full model. A 

credible interval is the Bayesian equivalent to the frequentist confidence interval. 
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Figure 6.2 Gelman-Rubin plots for fixed effects (at 20,000 iterations) 
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Figure 6.3 Gelman-Rubin plots for fixed effects (at 150,000 iterations) 

beta[1] chains 1:2 
3.0 

2.0 ~ 1.0 
~ 0.0 

100000 120000 140000 
iteration 

beta[3] chains 1:2 
2.0 
1.5 

>~~ 1.0 """"" 
0.5 
0.0 

100000 120000 140000 
iteration 

beta[5] chains 1:2 
4.0 
3.0 

~ 2.0 
1.0 ::: 
0.0 

100000 120000 140000 

iteration 

beta[7] chains 1:2 
2.0 

1.0 

0.0 L....-----r-----r------' 
100000 120000 

iteration 

140000 

beta[2] chains 1:2 
6.0 

4.0 

2.0 

0.0 ~ 

100000 120000 140000 
iteration 

beta[4] cha ins 1:2 
1.5 

1.0 

0.5 

0.0 

100000 120000 140000 
iteration 

beta[6] cha ins 1:2 
1.5 

~ 1.0 ~ 

0.5 

0.0 

100000 120000 140000 
iteration 

116 



Chapter 6 Fully Bayesian Modelling 

The quantiles of the samples can be used to produce credible intervals. The 

intervals given in Table 6.2 are 95% central Bayesian credible intervals, that is, if 

Oi is the ith quantile, the given intervals for each parameter are (00.025 , 00.975). 

The estimates are similar to those produced from the empirical Bayes 

method. A comparison of the estimates obtained from different modelling 

methods is given in Chapter 7. Interpretation of the fixed and random estimates is 

the same as in Chapter 5. Therefore, looking at the results from the fully Bayesian 

model (Table 6.2) we can see that significant covariates affecting risk of cancer 

mortality in Europe are fruit, vegetable, animal fat and alcohol consumption and 

cigarette smoking, while taking the others into account. Fruit, vegetable and 

alcohol consumption have an inverse association with cancer mortality rates while 

cigarette smoking and animal fat consumption show a positive relationship. 

Adding these explanatory variables has explained 50% of the variation in cancer 

mortality in Europe. It can be seen that 66% of the remaining variation is due to 

spatial patterning of disease. 

Table 6.2 Results from fully Bayesian spatial multilevel models 

Parameters Null Model Full Model 

Estimate Credible Interval Estimate Credible Interval 

Po 7.53 (7.49, 7.56) 7.09 (6.92, 7.26) 

PI (smoke) , 0.0005 (0.0005, 0.0006) 

P2 (fruit) , -0.0083 (-0.0089, -0.0080) 

P3 (veg) , -0.0013 (-0.0016, -0.0010) 

P4 (animal) 0.0293 (0.0225, 0.0355) 

Ps (alcohol) -0.0013 (-0.0020, -0.0006) 

P6 (Gdp) -1.97E-6 (-4.33E-6, 8.73E-7) 

au
2 0.0058 (0.0033, 0.0092) 0.0035 (0.0022, 0.0051) 

auv 0.0131 (0.0080, 0.0194) 0.0050 (0.0023, 0.0077) 

av
2 0.0593 (0.0422, 0.0804) 0.0275 (0.0175, 0.0378) 
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6.7.2 SMR Disease Map 

To gain a visual picture of the results of modelling cancer mortality using full 

Bayes estimation, relative risks have been mapped and are given in Figures 6.5 

and 6.6 (null and full model respectively). For comparison purposes, the 

standardised mortality ratios are mapped for each region in Figure 6.4. 

Recall that there were 652,728 deaths (254 per 100,000) in total from cancer 

in the 187 regions under investigation in 1991. The SMRs (Figure 6.4) vary 

around their mean of 1.02 (sd = 0.20) from 0.58 in Ipeiros, Greece to 1.54 in 

Copenhagen and Frederiksberg city, Denmark. Both these regions have fairly 

small population sizes and numbers of deaths. The ten highest SMRs and the ten 

lowest SMRs are presented in Table 6.3. The standard errors are also given in this 

table. Note here that the maximum likelihood estimate of the area-specific relative 

risks, Bi , is the standardised mortality ratio (SMR) for the ith area: 

OJ = SMR = OJ IEj with estimated standard error Si = -JO: I Ei • Due to the high 

variation in population sizes, these standard errors also have high variation. They 

range from 0.005 in North Rhine-Westphalia in Germany which has the largest 

population in the study to 0.111 in Ahvenanmaa, Finland which has the smallest 

population. Table 6.4 is similar but presents estimates for selected regions in order 

of increasing population size (ten smallest and ten largest given). 95% confidence 

intervals based on Poisson distribution have been computed for each SMR and are 

also presented in Table 6.3. Those that exclude unity have been presented in bold. 

Also included in the table are the posterior mean relative risks, as modelled 

in equation (6.4), and 95% credible interval estimates from the fully Bayes spatial 

multilevel model firstly with no covariates then with all the covariates included. 

Tables 6.3 and 6.4 include i, the number of the region; Oi, the observed 

number of deaths in the ith region; Ei, the expected number of deaths in the ith 

region' SMR the standardised mortality ratio in the ith region; Si, the standard , , 
error of SMR in the ith region; CI95%(SMR), confidence interval of the SMR in 

the ith region based on Poisson distribution; Mean, the posterior mean relative 
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risks from the fully Bayesian estimates of the spatial multilevel model; and PI
95

%, 

95% posterior ( credible) interval estimated from the spatial multilevel model. 

Figure 6.4 is a map of the SMRs, with regions displayed in red indicating 

areas with high SMRs and those in blue having low SMRs. Despite the majority 

of regions' population sizes being fairly high, there are still some regions with 

high or low SMRs displayed on the map which are based on the least reliable data. 

Since these regions have lower population sizes their SMRs do not differ 

significantly from 1, but this is not apparent from the map. For example, regions 

119 and 91 are numbered on the map of SMRs and, as can be seen from the size 

of these regions and from Table 6.4, they have small populations. The blue shade 

indicates they have relatively low SMRs, lying somewhere between 0.80 and 

0.89. However, Table 6.4 shows that despite having low SMRs these regions do 

not differ significantly from unity, demonstrating that using SMRs alone to map 

mortality can be somewhat misleading. It can also be seen that region 452 has a 

fairly high SMR but, since it also has a low population size, the confidence 

interval again includes 1. The lower half of this table contains estimates for the 

regions with the highest populations and it can be seen some SMRs are a lot 

closer to 1 but are actually significantly different from 100 (ie regions 75 and 76). 

It is clear these estimates are more reliable but this is not evident when examining 

SMRs alone or maps of SMRs. Therefore, to produce more reliable estimates 

models are fitted that take into account extra Poisson variation, spatial patterning 

of the data and covariates that may be affecting the risk of mortality. 

6.7.3 Relative Risk Disease Maps 

The fully Bayesian estimates of relative risks are given on the maps shown in 

Figure 6.5 and 6.6. Figures 6.5 shows the relative risks from the null model and it 

is evident that they show less variability than the SMRs (Figure 6.4). They vary 

from 0.63 in region 321, Norte in Portugal to 1.48 in region 85, Copenhagen and 

Frederiksberg city in Denmark with a mean of 1.01 (sd = 0.11). It can be seen that 

the extreme estimates (Table 6.3) are all closer to unity after modelling the data 
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with the effect of smoothing the map overall. The 95% credible intervals that 

contain unity are in bold in Table 6.3 and it can be seen that only five of the 

twenty regions with extreme SMRs have RRs that are significant. These are 

regions 133, Picardie in France and 161, 163, 167 and 168 which are all in Greece 

and are numbered on the map (Figure 6.5). It can be seen that these areas with 

significantl y high and low risks of cancer mortality also stand out on the map with 

many other regions taking on the purple colour (estimates close to 1). This type of 

modelling has smoothed the map because the mean for each region is centred on 

the mean of its neighbours. Therefore areas with extreme relative risks will tend to 

be shrunk towards a local mean, which is evident from Table 6.3. 

Looking at the estimates of the relative risks from the fully Bayesian spatial 

model including covariates (Figure 6.6), again it can be seen that there is less 

variability than in the previous two maps. The relative risks now vary from 0.85 in 

region 168 Aegean North in Greece to 1.29 in region 327 in Madeira in Portugal 

with a mean of 1.00 (sd = 0.07). The map is therefore a lot more smooth with the 

majority of the regions being purple (ie RR range from 0.90-1.09). Since the risk 

and protective factors included in the model have been measured at a country 

level (except GDP) the reduction in variability is due to the explanatory variables 

explaining some of the differences between countries. Only two of the twenty 

regions that had the most extreme SMRs are now significantly different from 

unity, regions 133, Picardie in France, and 168, Aegean South in Greece. These 

are again pointed out in the map (Figure 6.6) and it can clead y be seen that these 

regions stand out as having extreme areas of risk from cancer mortality. 

6.7.4 Disease Map Alternative 

There is an obvious disadvantage to disease mapping in that a loss of information 

occurs when grouping mortality rates in ranges. An alternative that overcomes this 

is to plot the relative risks against a measure of latitude, south to north 

positioning, or a measure of longitude, east to west positioning. In doing so, exact 
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values of relative risks can be examined and regions and or countries can be 

identified by their geographical positioning. 

The standardised mortality ratios and relative risks that were mapped in 

Figures 6.4-6.6 are plotted in Figure 6.7-6.10. Comparing Figures 6.7 and 6.8, 

again it is evident that the variability reduced somewhat. RRs in general move 

closer to unity as many extreme rates are shrunk toward a local mean based on 

their nearest neighbours' estimates. Figure 6.9 displays the full model estimates 

and it can be seen that the variability in the estimates is reduced even more, 

mainly between countries. This shows visually that the covariates are explaining a 

large amount of the variability, about 50% (see Table 6.2), at a country level. This 

plot is equivalent to a smoothed map and from this the extreme rates are more 

easily and reliably identified. Finally, Figure 6.10 is the same as Figure 6.9 but on 

a more natural scale. There appears to be evidence of a negative slope which in 

this case suggests that rates tend to be highest in the south and lowest in northern 

EU. Note here that, after taking into account the levels of exposure to the various 

risk factors, the region with the most extreme risk from cancer mortality is 

Maderia in Portugal (1.29). This island is very small and is not identifiable on the 

map (Figure 6.6). Other regions with particularly high relative risks after taking 

into account spatial patterning of cancer mortality and potential risk and protective 

factors are Copenhagen and Frederiksberg city and Nord-Pas-de-Calais. At the 

other end of the scale, regions that stand out with particularly low relative risks 

after adjusting for covariates and spatial autocorrelation are again various regions 

in Greece. Interestingly Norte in Portugal has a very low relative risk of cancer 

mortality showing that despite Portugal being a fairly small country it displays a 

very high amount of variability in cancer mortality rates. 
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Table 6.3 Estimates of SMRs/relative risks of mortality from cancer (selected regions shown, ordered by decreasing SMR) 

i Region Country OJ Ej SMR Sj CI95 % (SMR) MeanN PI95%(N) MeanF PI95%(F) 

85 Copenhagen * Denmark 2683 1743.1 1.54 0.030 (1.48, 1.60) 1.48 (0.98, 2.27) 1.20 (0.88, 1.72) 
138 Nord-Pas-de-Calais France 9992 6509.8 1.53 0.015 (1.50, 1.57) 1.36 (0.82, 2.32) 1.20 (0.89, 1.76) 

140 Alsace France 3975 2762.0 1.44 0.023 (1.39, 1.48) 1.17 (0.97, 1.45) 1.08 (0.92, 1.23) 

139 Lorraine France 5730 4008.5 1.43 0.019 (1.39, 1.47) 1.22 (1.06, 1.44) 1.12 (1.00, 1.25) 

134 Haute-Normandie France 4253 2988.1 1.42 0.022 (1.38, 1.47) 1.11 (0.94, 1.32) 1.06 (0.92, 1.22) 
143 Bretagne France 7689 5456.6 1.41 0.016 (1.38, 1.44) 1.06 (0.79, 1.43) 1.07 (0.85, 1.30) 
133 Picardie France 4389 3122.0 1.41 0.021 (1.36, 1.45) 1.23 (1.07, 1.41) 1.15 (1.02, 1.27) 
137 Bourgogne France 4570 3310.3 1.38 0.020 (1.34, 1.42) 1.03 (0.87, 1.22) 1.05 (0.91, 1.18) 
89 Vestsj aelland Denmark 1049 771.5 1.36 0.042 (1.28, 1.44) 1.21 (0.91, 1.62) 1.04 (0.81, 1.35) 
88 Roskilde Denmark 638 472.2 1.35 0.053 (1.25, 1.46) 1.09 (0.93, 1.29) 0.95 (0.83, 1.08) 

458 Kristianstad Sweden 669 928.4 0.72 0.028 (0.67, 0.78) 0.89 (0.73, 1.06) 0.92 (0.80, 1.06) 
449 Blekinge Sweden 344 478.6 0.72 0.039 (0.64, 0.80) 0.87 (0.68, 1.10) 0.94 (0.76, 1.15) 

322 Centro Portugal 3298 4602.2 0.72 0.013 (0.69, 0.74) 0.88 (0.76, 1.03) 1.03 (0.90, 1.19) 

163 Greece West Greece 1286 1845.5 0.70 0.020 (0.66, 0.74) 0.82 (0.69, 0.97) 0.88 (0.77, 1.01) 

167 Aegean South Greece 434 658.0 0.66 0.032 (0.60, 0.72) 0.79 (0.64, 0.98) 0.90 (0.77, 1.04) 

164 Greece Central Greece 1104 1722.5 0.64 0.019 (0.60, 0.68) 0.89 (0.77, 1.01) 0.92 (0.82, 1.03) 

168 Aegean North Greece 431 678.1 0.64 0.031 (0.58, 0.70) 0.80 (0.66, 0.97) 0.85 (0.74, 0.98) 

165 Peloponese Greece 1282 2097.2 0.61 0.017 (0.58, 0.65) 1.09 (0.82, 1.44) 1.10 (0.88, 1.36) 

169 Crete Greece 933 1585.0 0.59 0.019 (0.55, 0.63) 1.01 (0.72, 1.39) 1.05 (0.80, 1.38) 

161 Epirus Greece 588 1014.9 0.58 0.024 (0.53, 0.63) 0.82 (0.69, 0.97) 1.05 (0.80, 1.38) 
-----

N ~ t:stimates from null model, F - estimates from full model *Copenhagen and Frederiksberg (city) 
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Table 6.4 Estimates of SMRs/relative risks of mortality from cancer (selected regions shown, ordered by increasing population) 

i Region Country ~o~ OJ Ej SMR Sj CI95% (SMR) MeanN PI95%CNl MeanF PI95%(F) 

119 Ahvenanmaa Finland 24734 58 68.6 0.85 0.111 (0.64, 1.09) 0.93 (0.76, 1.14) 0.96 (0.80 , 1.15) 

452 Bornholm Denmark 45616 154 138.3 1.11 0.090 (0.94, 1.30) 0.89 (0.66, 1.21) 0.99 (0.78 , 1.29) 

91 Gotland Sweden 57578 150 172.3 0.87 0.071 (0.74, 1.02) 0.95 (0.74, 1.23) 1.01 (0.83 , 1.24) 

454 Powys UK 118590 344 361.0 0.95 0.051 (0.86, 1.06) 0.98 (0.85, 1.13) 0.93 (0.83 , 1.04) 

127 Isle of Wight UK 126338 476 448.6 1.06 0.049 (0.97, 1.16) 1.07 (0.84, 1.35) 1.01 (0.85 , 1.24) 

124 lamtland Sweden 135910 328 446.3 0.74 0.041 (0.66, 0.82) 0.89 (0.72, 1.10) 0.95 (0.80 , 1.12) 

559 Blekinge Sweden 151266 344 478.6 0.72 0.039 (0.65, 0.80) 0.87 (0.68, 1.10) 0.94 (0.76 , 1.15) 

449 Pohjois-Karjala Finland 177152 330 432.1 0.76 0.042 (0.68, 0.85) 0.93 (0.76, 1.13) 0.94 (0.80 , 1.09) 

246 Kronoberg Sweden 178961 441 554.4 0.80 0.038 (0.72, 0.87) 0.86 (0.71, 1.05) 0.95 (0.82 , 1.09) 

327 Ionian Islands Greece 194754 460 638.0 0.72 0.034 (0.66, 0.79) 0.77 (0.56, 1.08) 0.86 (0.68 , 1.10) 

82 Saxony Denmark 4721588 12630 12427.0 1.02 0.009 (1.00, 1.03) 1.03 (0.85, 1.28) 0.98 (0.87, 1.12) 

564 Scotland UK 5107000 14876 12636.0 1.18 0.010 (1.16, 1.20) 1.02 (0.88, 1.18) 1.01 (0.89, 1.13) 

148 Rhone-Alpes France 5418045 12075 9638.1 1.25 0.010 (1.23, 1.28) 1.06 (0.91, 1.24) 0.99 (0.87, 1.09) 

73 Hessen Denmark 5800320 16132 15289.0 1.06 0.008 (1.04, 1.07) 0.98 (0.83, 1.15) 0.97 (0.87, 1.08) 

536 Greater London UK 6889948 17648 16391.0 1.08 0.008 (1.06, 1.09) 1.07 (0.93, 1.24) 1.05 (0.94, 1.19) 

70 Lower Saxony Denmark 7431517 20009 19743.0 1.01 0.007 (1.00, 1.03) 1.02 (0.94, 1.12) 1.01 (0.96, 1.10) 

75 Baden-Wurttemberg Denmark 9911934 23636 24463.0 0.97 0.006 (0.95, 0.98) 1.01 (0.81, 1.26) 1.00 (0.89, 1.14) 

131 De de France France 10781499 21915 17399.0 1.26 0.009 (1.12, 1.28) 1.05 (0.90, 1.22) 1.01 (0.91, 1.11) 

76 Bavaria Denmark 11522397 28859 29274.0 0.99 0.006 (0.97, 1.00) 0.94 (0.82, 1.07) 0.93 (0.88, 0.99) 
72 North Rhine-Westphalia Denmark 17429759 49137 44408.0 1.11 0.005 (1.10, 1.12) 1.06 (0.92, 1.24) 1.02 (0.94, 1.12) 
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Figure 6.4 Map of SMRs 
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Figure 6.5 Map ofRRs from fully Bayesian model (no covariates) 
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Figure 6.6 Map of RRs from fully Bayesian model (all covariates ) 

• 1.20 to 1.29 
• 1. 1 0 to l. 1 9 
• 0.90 to 1.09 
• 0.85 to 0.89 

, 

, 

I~ 

' f 

• , 
./ -' 

~ 
.. _ .. ( 168 

126 



Chapter 6 
Fully Bayesiml _\fodelling 

Figure 6.7 
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Figure 6.8 Plot of Latitude against Relative Risks from full y Bayesian null model 
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Figure 6.9 Plot of Latitude against Relative Risks from fully Bayesian full model 
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Figure 6.10 Plot of Latitude against Relative Risks from full y Bayesian full model 
(different scale) 
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6.8 Adding a Further Level 

Spatial clustering effects can be incorporated into a multilevel model indirectly 

through the use of higher levels of geography as additional levels in the model. The 

European cancer mortality data set has a higher level, country, available and can be 

added as a third level to account for the fact that regions within a country are more 

likely to be homogeneous than regions from different countries. 

Equations (6.5) and (6.6) can be extended to include a further level by adding 

another variance parameter, Yk say, into the random part of the model, where k = 1, .. , 

11 are the country identifiers: 

0i .... Poisson(J.1J 

log(lli) = log(Ei) + a + Iflmxmi + Ua[iJ + L Wi,jV j + Yk' 
m jE8[i] 

The random effect Yk IS assigned a normal distribution with mean zero and 

. 2 
vananceO'y 

The hyper-prior for the inverse variance term, ~;1 , is defined to be Gamma 

distributed: 

~;1 .... Gamma (0.001,0.001) . 

The bum-in period was determined by examining trace plots from parallel chains 

and the Gelman-Rubin diagnostic test. Figure 6.11 shows the Gelman-Rubin test 

results for the full 3 level model from iterations 450,000 to 500,000. It can be seen 

that the R (red line) value is stabilising close to 1 and the estimates of the variance 

of OJ (blue line) and the average of the within-sequence variances, W (green line) are 

consistently overlapping. Before this, some of the parameters had not yet stabilised. 

This indicates that all of the parameters have converged to stability and 500,000 

iterations is therefore a suitable bum-in period for this model. 

129 



Fully Bayesian Modelling 

After a bum-in period of 500,000, the number of further iterations to run was 

decided by examining when the Monte Carlo error was small enough in relation to 

the posterior standard deviation. Table 6.5 shows that by a further 100,000 iterations 

the Monte Carlo error as a percentage of the sample standard deviation is less than 

5% for all the parameters. Therefore running 100,000 iterations after convergence 

gives a suitable set of samples from which accurate posterior inference can be made. 

The posterior estimates from the full model are given in Table 6.6. The results 

from the null model are also given. Smoking and fruit consumption are the onI y 

factors affecting the risk of cancer mortality after taking account of the non­

independence between regions within the same country. This is due to the width of 

the posterior credible intervals being wider than they are when fitting the two-level 

model (see Table 6.2). The introduction of the country level random effects has 

resulted in the covariate being measured with more uncertainty. Comparing the null 

model with the full model shows that adding the covariates reduces the total 

variance by around 40%, which is less of a reduction that we saw in the two-level 

model. In the two-level model, the covariates were effectively explaining the 

differences between countries, which has now been taken into account, hence, 

reducing their usefulness slightly. 

As can be seen from examining the random terms, there has been further 

partitioning of the variance; with a~ representing the amount of variation that is due 

to differences between countries. A high amount of the total variance (81%) is 

attributable to country level difference. This is due to the high amount of country 

level clustering and differences between countries that were evident from the initial 

disease maps. Comparing the total variance (= 0.03) to that of the two-level model 

(= 0.01 (see Table 6.2» it can be seen that there has been an increase in overall 

variation. This is somewhat surprising as, in practice, adding a further level to 

multilevel models does not tend to affect the total variance very much. The effect of 

adding a further geographical level, whilst already accounting for the non­

independence of region level risks through the spatial factor, will be discussed 

further in Chapter 8, after looking at further examples. It becomes evident that it is 

130 



-----c--- -

likely that the three-level model is mainly describing the differences between 

countries, hence the increase in total variance, and that the two-level model is more 

useful for describing the differences between regions and the affects covariates have 

on these. 

Table 6.7 gives selected region's relative risk of cancer mortality. Comparing 

the two-level null model with the three-level null model shows some changes in the 

estimates; adding a higher country level has pulled the relative risks towards the 

country's overall relative risk. Some of the estimated relative risks change again 

after adjusting for the covariates; this is expected as the risk of cancer mortality is 

likely to change in some manner if the risk factors are having a significant effect. 

The width of the posterior credible intervals increases somewhat after the addition of 

covariates. The introduction of country-level random effects has resulted in the 

covariates being measured with more error which in tum has resulted in introducing 

uncertainty into the residuals and hence, the relative risks. This will be explored 

further in Chapter 8. 

Figure 6.12, the map of relative risks from the three-level model with no 

covariates, and Figure 6.14, the corresponding plot against latitude, shows a very 

high amount country level clustering. It is likely to reflect the true distribution of the 

country level risk of cancer mortality (before adjusting for risk factors). Figure 6.13 

shows the map of relative risks after adjusting for risk factors, and the corresponding 

plot is given in Figure 6.15, and it can be seen that country level clustering is still 

evident but to a lesser degree. Finland clead y have the lowest relative risk of cancer 

mortality after adjusting for all covariates and the spatial patterning of the disease. 

Some within country variation is evident across the map and regions in France and 

Austria are standing out as disease 'hotspots'. Other factors, which have not been 

taken into account in these models, are likely to be affecting these areas; such as 

health care provision (cancer treatments or availability of screening) or differing 

levels of the modelled risk factors within the countries. 
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Table 6.5 Monte Carlo error as percentage of posterior standard deviation 

Parameters 100,000 iterations 

Me error Posterior SD Me error as % of SD 

Po 0.3099 0.01395 4.5% 

PI 0.00016 0.00001 4.5% 

P2 0.00213 0.0001 4.5% 

P3 0.00109 0.00005 4.4% 

P4 0.01361 0.00061 4.5% 

P5 0.00209 0.00009 4.5% 

P6 1.60E-06 4.50E-08 2.9% 
(Ju 

2 0.00059 0.00001 1.2% 

(Juv 0.00087 0.00001 1.0% 

(Jv
2 0.00281 0.00004 1.4% 

0
2 

y 0.02018 0.00056 2.8% 

Table 6.6 Results from fully Bayesian spatial multilevel models (three levels) 

Parameters Null Model Full Model 

Estimate Credible Interval Estimate Credible Interval 

Po 7.54 (7.42, 7.63) 6.93 (6.41, 7.51) 

PI (smoke) 0.0004 (0.0002, 0.0007) 

P2 (fruit) -0.0065 (-0.0108, -0.0020) 

P3 (veg) -0.0011 (-0.0029, 0.0014) 

P4 (animal) 0.0216 (-0.0136, 0.0462) 

P5 (alcohol) 0.0008 (-0.0041, 0.0058) 

P6 (gdp) 3.1E-7 (-2.7E-6, 3.4E-6) 

0/ 0.0028 (0.0018, 0.0042) 0.0029 (0.0019, 0.0042) 

Ouv 0.0009 (-0.0007, 0.0027) 0.0011 (-0.0005, 0.0029) 

0
2 

v 0.0110 (0.0067, 0.0173) 0.0108 (0.0061, 0.0172) 

0
2 

y 0.0446 (0.0174, 0.1094) 0.0246 (0.0061, 0.0775) 
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Figure 6.11 Gelman-Rubin plots at 500,000 iterations (note that only every tenth 
iteration is stored) 
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Table 6.7 Estimates of relative risks of mortality from cancer (selected regions shown, ordered by decreasing RR from three-level full model) 

Two-level null model Three-level null model Three-level full model 
i Region Country RRmean PI95% RRmean PI95% RRmean PI95 % 

2 Burgenland Austria 1.03 (0.76, 1.40) 1.02 (0.75, 1.40) 1.22 (0.90, 1.73) 

138 Nord-Pas-de-Calais France 1.36 (0.82, 2.32) 1.44 (0.98, 2.17) 1.21 (0.80, 1.74) 

133 Picardie France 1.23 (1.07, 1.41) 1.40 (1.14, 1.76) 1.21 (0.96, 1.45) 

3 Carinthia Austria 0.99 (0.81, 1.21) 1.01 (0.79, 1.30) 1.21 (0.95, 1.59) 

4 Lower Austria Austria 1.02 (0.88, 1.18) 1.00 (0.79, 1.26) 1.19 (0.95, 1.54) 

139 Lorraine France 1.22 (1.06, 1.44) 1.39 (1.13, 1.72) 1.19 (0.93, 1.43) 

158 Macedonia Central Greece 1.12 (0.90, 1.39) 0.88 (0.68, 1.17) 1.18 (0.92, 1.52) 

244 Overijssel Netherlands 1.03 (0.90, 1.19) 1.04 (0.85, 1.31) 1.18 (0.99, 1.38) 

241 Groningen Netherlands 1.00 (0.79, 1.25) 1.04 (0.81, 1.38) 1.18 (0.95, 1.45) 

327 Madeira Portugal 0.94 (0.72, 1.22) 0.88 (0.61, 1.29) 1.17 (0.82, 1.70) 

123 Kymi Finland 0.95 (0.75, 1.20) 0.83 (0.64, 1.10) 0.82 (0.61, 1.07) 

119 Ahvenanmaa Finland 0.93 (0.76, 1.14) 0.83 (0.63, 1.09) 0.81 (0.61, 1.06) 

129 Uusimaa Finland 0.96 (0.80, 1.14) 0.83 (0.66, 1.06) 0.81 (0.62, 1.02) 

120 Harne Finland 0.92 (0.77, 1.10) 0.81 (0.65, 1.04) 0.79 (0.61, 1.00) 

126 Ouiu Finland 0.91 (0.76, 1.09) 0.81 (0.64, 1.06) 0.79 (0.60, 1.02) 

124 Lappi Finland 0.91 (0.70, 1.20) 0.81 (0.60, 1.11) 0.79 (0.57, 1.07) 

125 Mikkeli Finland 0.90 (0.76, 1.06) 0.81 (0.64, 1.04) 0.79 (0.61, 1.01) 

127 Pohjois-Karjala Finland 0.93 (0.76, 1.13) 0.81 (0.63, 1.06) 0.79 (0.59, 1.02) 

121 Keski-Suomi Finland 0.90 (0.76, 1.07) 0.79 (0.63, 1.02) 0.78 (0.59, 0.99) 

122 Kuopio Finland 0.89 (0.73, 1.09) 0.79 (0.61, 1.03) 0.77 (0.59, 0.99) 
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Figure 6.12 Map ofRRs from fully Bayesian model (three-level , no covariates) 
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Figure 6.13 Map ofRRs from fully Bayesian model (three-level , all covariates) 
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Figure 6.14 Plot of Latitude against Relative Risks from fully Bayesian 
model (three-level, no covariates) 

Plot of latitude against Relative Risks (3 level null model) 
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Figure 6.15 Plot of Latitude against Relative Risks from fully Bayesian model 
(three-level, all covariates) 

Plot of latitude against Relative Risks (3 level full model) 
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Chapter 7 

7 Spatial Model Comparisons 

7.1 Spatial Models 

It has been shown that modelling the underlying spatial structure to produce 

smoothed disease maps has its advantages. An effective way to do so is through 

the use of random effects modelling and so far a spatial multilevel model allowing 

for correlation between regional and spatial random effects has been explored. To 

fit these models it is necessary to use either iterative procedures, such as iterative 

generalised least squares (IGLS (124», or simulation based methods, such as 

Gibbs sampling (137). MCMC simulation based methods have been becoming 

more common in recent years due to the increasing ability and speed of 

computers. These methods are popular for fitting complex models and have been 

used to develop multilevel models with a complex underlying structure. 

A set of multilevel models whose complex structure does not fit into the 

standard multilevel framework are multiple membership models. These models do 

not strictly follow the nested structure of the data in multilevel models but can be 

fitted using IGLS methods with constraints (138). However, Browne at al (139) 

discuss the problems associated with fitting such models and how using MCMC 

methods proves very useful. Fitting such models in a spatial disease context will 

be compared with the models fitted in Chapters 5 and 6. 

Also, a spatial model commonly used for disease outcomes IS the 

conditional autoregressive (CAR) model. This will also be fitted to the EU cancer 

mortality dataset and will be compared with the various spatial multilevel model 

structures. 
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7.2 Multiple Membership Model 

A multiple membership model is an extension to the standard multilevel 

framework and considers the case when the lowest level unit is a member of more 

than one higher classification unit. This family of models was first used by Hill 

and Goldstein (140) and further developed by Browne et al (139). They are 

actually part of the larger family of generalised linear mixed models (GLMM); 

these are a combination of the linear mixed model (141) and the generalised linear 

model framework (142). An extension to these models (139) is to use them in a 

spatial context (5) by considering the areas as one classification and the 

neighbours as another multiple-membership classification; this is known as a 

multiple-membership multiple-classification (MMMC) model. This is very similar 

to the spatial multilevel model described previously but does not allow correlation 

between the area and neighbour residuals. Using the notation developed by 

Browne et al (139), modelling the observed counts of cancer deaths in 1991 for 

187 regions with known neighbourhood structure can be written as 

Yi ,.., Poisson(Ai ), 

log(AJ = log(EJ + Po + X iPl + ... + XiPk 

+ u (2! + ~ W~3!U ~3) 
a[/] I,J J ' 

jEiJ i] (7.1) 

In (7.1), Yi is the count of cancer deaths for the ith region in the dataset; a[i] is the 

area from which the observed count was taken, and 8[i] is the set of neighbouring 

areas to the area from which the count was taken. fJ is a vector of fixed effect 

parameters, and uP), uP) are the vectors of residuals for random effects for 

classifications 2 (area) and 3 (neighbours) respectively. 

Similar to the spatial multilevel model described in Chapters 5 and 6, the 

observed counts of cancer deaths are affected by k covariates, the area where the 
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counts came from and the neighbouring areas. The weights used in this model are 

such that 

and all neighbours are given equal weights so that 

(3) _ 1 
Wi)' --, 

, n· 
l 

where ni is the number of neighbours to a[i]. 

The multiple-membership multiple-classification model was fitted using 

MCMC methods; the prior distributions for the fixed effect parameters are flat, 

for the inverse of the classification 3 variance term (~:~3»)' a Gamma prior was 

allocated: 

~:~3) ,.., Gamma (0.001,0.001), 

and similarly for the classification 2 variance matrix: 

~:~2) ,.., Gamma (0.001,0.001) . 

The MCMC algorithm that is used to fit the model is based on a combination of 

univariate Metropolis Hastings (MH) steps and Gibbs steps and has been 

implemented in MLwiN (143). The model can also be run in WinBUGS (7) and 

the code to do so is given in Appendix A2.1. 

7.3 Conditional Autoregressive Model 

A set of Bayesian spatial models that have been frequently used to model disease 

counts are based on the conditional autoregressive (CAR) prior (110); these were 
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described in more detail in Chapter 4 (see equations (4.18) to (4.22». The version 

of this model appropriate for the ED cancer dataset can be written as follows: 

Y i ...... Poisson (Ai)' 

10g(Ai) = 10g(E;) + XJ31 + ... + XJJk + U
i 

+ Vi' 

U i ...... N(O,a;), Vi ...... N(vi' a: In;) 

where Vi = I Vj Ini • 
jEo(i) 

(7.2) 

Again, ni is the number of neighbouring regions for region i. The same priors are 

used to fit the CAR model using MCMC methods as were used in the MMMC 

model. As can be seen the model is similar to the MMMC model as it has two sets 

of random effects; the difference is that spatial correlation is achieved through the 

variance structure instead of through the multiple membership relationship 

resulting in the neighbourhood random effects not being independent. Whilst the 

MMMC model has ra[t1 random effects for each observation, where ra[t1 is the 

number of neighbours for region i, the CAR model has one random effect for each 

observation. These random effects have the average of the surrounding random 

effects as their expected value. The CAR distribution is improper, and in order to 

produce a model that has a unique solution, a constraint has to be made on the 

model. This model was fitted in MLwiN and the common procedure when fitting 

the model in the package is to remove the intercept term to make the model 

identifiable (5). The code for running this model in WinBDGS is given in 

Appendix A2.2. 

7.4 Model Comparisons 

It is of interest to compare the spatial multilevel model with correlation between 

random effects with the MMMC model and the CAR model. The results from 

fitting these models using MCMC methods will be presented along with results of 

fitting a variance components and spatial multilevel model using quasi-likelihood 

methods in a frequentist setting, as described in Chapter 5. 
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7.4.1 Parameter estimates 

For an initial comparison, the parameter estimates for each model are given in 

Table 7.1. The estimates along with the respective confidence or posterior credible 

intervals are presented for the five different models: 

Model A: the variance components model fitted usmg empirical Bayes 
methods 

Model B: the spatial multilevel model with correlated residuals fitted using 
empirical Bayes 

Model C: the spatial multilevel model with correlated residuals fitted using 
fully Bayesian techniques 

Model D: the multiple-membership multiple-classification model fitted using 
fully Bayesian methods 

Model E: the conditional autoregressive model fitted by full y Bayesian 
methods. 

The significant variables in each model are presented in bold and it can be seen 

that the significant fixed parameter estimates are similar in models A to D, with 

the only discrepancy being that /33 is just non-significant in model B. Model E, 

however, shows differences in the magnitudes and signs of some of the fixed 

parameter estimates; /32 has a lesser effect on cancer mortality than in the other 

models and /33 has the opposite effect. As expected, the confidence intervals for 

the fixed parameters in model E cover different values than in the case of the other 

models. They are also generally wider, covering a larger range of values than all 

the other models. The confidence intervals for models A to D cover much of the 

same values. When comparing the intervals for models A and B, the intervals are 

about double the width in model B; since model A has ignored the positive 

autocorrelation that has been shown to exist, it is likely that incorrect inference 

has occurred; in particular standard errors will have been underestimated. Models 

C and D have attached similar errors for the fixed parameters; one would expect 

these models to produce the most similar results since these models are very 

similar in principle. The errors or ranges in the confidence intervals in these two 

models are also smaller than in the empirical Bayes estimated model B. Since 

models B and C are exactly the same except for the method of model fitting, it 
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suggests that the fully Bayesian method IS more preCIse ill estimating the 

parameters. 

If we look at the random parameters, models C and D again are in close 

agreement both in estimates and confidence intervals. However, the random 

parameter estimates of models Band C are very different. Model B has a larger 

total variance and also attributes a higher percentage of this to the spatial effects, 

(J/. Overall there appears to be more variability when fitting model B, as, along 

with a higher total variance, the confidence intervals attached to these estimates 

are also wider. In addition to this, a negative estimate is suggested as a plausible 

value for (Ju
2

• This is obviously not plausible and possibly shows a fault in this 

model-fitting procedure which allows such estimates to be produced. Finally, it 

would appear that model E has less total variation and has less variation 

attributable to spatial heterogeneity; however, it should be noted that the variance 

terms are not directly comparable due to the different use of weights. The variance 

terms are not actually very different from those in models C and D, after taking 

account of the average number of neighbours possessed by a region. 

It should be noted that, for models A and B, the confidence intervals are 

obtained from the estimate ± 1.96 x standard error. The model estimation that is 

being used for these models is based on an iterative generalised least squares 

(IGLS) framework which uses penalised quasilikelihood (PQL) estimation to 

approximate the Poisson distribution (6). This may lead to inaccuracy in the 

estimation of standard errors resulting in the confidence intervals not being 

estimated well which may account for some of the discrepancies between the 

width of the model intervals. 

7.4.2 Residuals 

The set of models that have been fitted can also be compared by examining 

residuals. This method is used in disease mapping as local goodness of fit 
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measures to help assess how well the model fits the data (5). The composite 

residuals can be written as 

for models B, C and D and 

r i = U i + I wiju j 
j 

r. = u. + V. 
I I I 

(7.3) 

(7.4) 

for model E. To make these residuals comparable to the other models, ~ can be 

subtracted from (7.4): 

r. = u. + (v. - v. ) • 
I I I I (7.5) 

Model A, the variance components model, has one set of residuals representing 

heterogeneity effects. Composite residuals are calculated for model B 

incorporating the heterogeneity residuals and the spatial residuals taking account 

of the number of neighbours each region has. In the Bayesian settings the 

residuals were simply formed at each iteration of a posterior sampler and averaged 

over the converged sample (144). Composite residuals, similar to those calculated 

for model B, were examined for models C and D and for E, the composite 

residuals that were examined are shown in equation (7.5). 

Table 7.2 presents the residuals for each of the five models; these are given 

in decreasing order of the residuals from model C, the fully Bayesian spatial 

multilevel model. It can be seen that the residuals vary somewhat across the 

models; however, the trends in the estimates for models A to D are fairly similar 

with no particular pattern emerging, such as one model having obviously higher 

or lower residuals. Model E appears to show more differences in the residuals 

values and this can be seen more clearly from the matrix plot in Figure 7.1. This 

plots all of the residuals from models A to E. In each of the plots, except for the 

bottom row, the points tend to lie along the diagonal indicating agreement in the 

residuals for the models A to D. However, there is evidently variability between 

the models and the best agreement is between models C and D, the two multilevel 

models fitted using fully Bayesian methods, with most points lying close to the 
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line of equality. The plots comparing the residuals from models A to D with 

model E show much different pictures. The points do not appear to follow a 

similar pattern as the other models despite the initial adjustment of the residuals. 

It is more informative to compare the confidence or posterior credible 

intervals for residuals from the models. These are presented for the four spatial 

models in Table 7.3. Looking across models B to D, it can now be seen that the 

intervals for each of the regions do overlap somewhat, covering the same range of 

values. Model B, the empirical Bayes spatial multilevel model, appears to have 

the widest intervals in most cases. The intervals for Model C (fully Bayes 

equivalent of C) and D (fully Bayes MMMC), as well as covering similar values, 

have similar ranges of the residuals. As expected, more discrepancies occur when 

comparing the intervals with those from model E. There is some overlap but also 

many of the intervals are very different in the values covered and in the width of 

the intervals. More of the intervals from model E, than from the other models, do 

not include zero. 

Figures 7.2 to 7.6 display maps of the residuals from models A to E 

respectively. If the spatial model fits well and all relevant covariates are included, 

the result should be a spatially smooth map. Examining these "smooth" maps as a 

diagnostic technique should display unusual features that are inevitably not 

accounted for by the model; these will be highlighted by clusters of high positive 

or negative residuals. Figure 7.2 shows a map with a lot of variability and little 

smoothing, which is expected because model A does not incorporate the spatial 

structuring of the data into the modelling. Looking at Figure 7.3 it is clear that the 

map of residuals is much more smooth and an area with a particularly high 

residual can be clearly identified from this map. The range of the residuals has 

also reduced by 28% (model A: -0.253 to 0.253, model B: -0.150 to 0.215) and 

definite clustering of the residuals is evident within countries. Overall this map 

suggests model B to be more useful at modelling the disease than model A. 
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Table 7.1 Parameter estimates and confidence intervals: models A-E 

Empirical Bayes (RIGLS) Full Bayes (MCMC) 

Parameters Variance Spatial Spatial Multiple Conditional 
Com onents (A) Multilevel (B) Multilevel (C) Membershi (D) Autore ressive (E) 

Po 6.83 6.83 6.88 6.92 
(6.69 , 6.98) (6.53 , 7.13) (6.67 , 7.08) (6.71, 7.13) 

PI 0.0005 0.0005 0.0006 0.0005 0.0007 
Smoking (0.0004 , 0.0006) (0.0003 , 0.0007) (0.0004 , 0.007) (0.0004,0.0006) (-0.0002,0.0016) 

P2 -0.0076 -0.0075 -0.0086 -0.0079 -0.0030 
Fruit (-0.0086 , -0.0065) (-0.0096 , -0.0054) (-0.0098 , -0.0071) (-0.0095 , -0.0064) (-0.0057 , -0.0003) 

P3 -0.0011 -0.0011 -0.0014 -0.0011 0.0082 
Vegetable (-0.0017 , -0.0006) (-0.0022, 0.00002) (-0.0022 , -0.0005) (-0.0018, -0.0004) (0.0022,0.0142) 

P4 0.0264 0.0260 0.0305 0.0280 0.0258 
Animal Fat (0.0194,0.0333) (0.0120 , 0.0400) (0.0227 , 0.0369) (0.0199 , 0.0360) (-0.0184 , 0.0699) 

P5 0.0006 0.0007 -0.0009 -0.0003 -0.0007 
Alcohol (-0.0002,0.0014) (-0.0009 , 0.0023) (-0.0019 , 0.0002) (-0.0013 , 0.0007) (-0.0033 , 0.0018) 

P6 2.00e-7 3.27e-7 1.47e-7 -8.86e-7 -6.30e-8 
GDP (-4.51e-6 ,4.91e-6) (-9.2e-6 ,9.ge-6) (-3.76e-6 ,3.13e-6) (-4.13e-6 ,2.35e-6) (-3.41e-6 , 3.2ge-6) 

cru
2 0.0135 0.0018 0.0038 0.0027 0.0028 

(0.0106 , 0.0164) (-0.0136 , 0.0173) (0.0026 , 0.0057) (0.0015 , 0.0039) (0.0013 , 0.0044) 

cr/ 0.0436 0.0270 0.0283 0.0060 
(0.0113 , 0.0759) (0.0178 , 0.0390) (0.0185 , 0.0381) (-0.0012 , 0.0130) 

cruv 0.0114 0.0052 
(-0.0003,0.0231) (0.0023 , 0.0086) 

146 



Chapter 7 Spatial Model Comparisons 

Table 7.2 Model residuals (ordered by decreasing residuals from model C) 

Country Region RA RB Rc Ito RE 

Portugal Madeira 0.1468 0.1689 0.2513 0.1293 -0.0475 
France Nord-Pas-de-Calais 0.2528 0.3984 0.1860 0.1611 0.0547 
Denmark Copenhagen * 0.1596 0.0562 0.1792 0.1170 0.2889 
France Corsica 0.1840 0.2010 0.1642 0.0599 -0.0049 

Greece Macedonia Central 0.0750 0.0081 0.1472 0.0941 0.0958 

France Picardie 0.1924 0.2467 0.1386 0.1254 -0.2879 

Portugal Azores 0.2243 0.2032 0.1338 0.1039 0.0532 

UK West Midlands 0.0272 -0.0130 0.1243 0.0460 0.0768 

UK Northern Ireland -0.0535 0.0115 0.1240 0.1324 -0.0957 

Austria Lower Austria 0.0735 0.1015 0.1180 0.0659 0.0098 

UK Bedfordshire -0.0233 -0.0758 0.0015 -0.0279 0.0038 

France Poitou-Charentes 0.0766 0.1884 0.0015 0.0554 -0.0430 

UK Humberside 0:0662 0.0277 0.00004 0.0150 0.0587 

France Midi-Pyrenees -0.0171 0.1420 -0.0004 0.0468 -0.1235 

Germany Saarland -0.0433 0.0642 -0.0032 -0.0481 0.0330 

Germany Baden-Wurttemberg -0.2105 -0.0259 -0.0040 -0.0860 -0.0643 

UK Dyfed -0.0495 -0.0136 -0.0056 -0.0062 -0.0676 

Denmark Ringkobing -0.0792 -0.1451 -0.0070 -0.0149 -0.1904 

UK Hampshire -0.0628 -0.0782 -0.0098 -0.0195 0.0156 

Greece Thessaly 0.0400 -0.0893 -0.0110 -0.0179 0.0965 

Finland Mikkeli -0.1093 -0.2191 -0.1042 -0.0554 0.2209 

Greece Aegean South -0.1100 -0.1164 -0.1100 -0.1021 -0.0697 

Finland Kuopio -0.1849 -0.2466 -0.1159 -0.0700 0.3683 

Germany Bremen 0.0096 -0.0563 -0.1210 -0.0224 0.0522 

Finland Oulu -0.1512 -0.2148 -0.1236 -0.0733 -0.0184 

Greece Greece West -0.1072 -0.1355 -0.1310 -0.1103 -0.0052 

Portugal Norte 0.0220 0.1026 -0.1315 -0.0334 0.0382 

Greece Epirus -0.2461 -0.1194 -0.1399 -0.1463 -0.1678 

Greece Ionian Islands -0.0346 -0.1786 -0.1492 -0.1635 0.0247 

Greece Aegean North -0.1393 -0.1693 -0.1599 -0.1263 -0.0586 

*Copenhagen and Frederiksberg (city) 
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Looking at the residuals from model C (Figure 7.4), it can again be seen that 

a smoothed map is displayed with two regions of high positive residuals and one 

with high negative residuals; thus this model is also useful for highlighting 

extreme residuals. Despite the majority of regions having residuals close to zero ie 

orange, yellow or green, there is slightly more variability within countries perhaps 

reflecting a more similar picture of the true distribution of the residuals. The 

overall range in the residuals from model C (-0.160 to 0.251) is actually slightly 

wider than those from model B. 

Examining Figure 7.5, the residuals from model D, it can be seen that the 

range of residuals (-0.160 to 0.161) is slightly narrower than any of the other 

models. However, comparing the map with Figure 7.4, a very similar picture can 

be seen; a spatially smoothed map is evident with two areas standing out as 

having extreme residuals. Both maps display a picture whereby the models have 

clead y smoothed the data well, reduced the variability and hopefully provided a 

picture that is close to the true residual surface. 

Finally, looking at the map from model E (Figure 7.6) we can see that the 

overall range in residuals is much wider than from the other models. For the 

purpose of comparison, the residuals have been split into similar categories as for 

Figures 7.2 to 7.5, but this is perhaps not the most ideal choice of ranges due to 

the wider spread of the residuals. However, as can be seen from the map, the 

majority of regions do have residuals which still lie close to zero. There are much 

more 'extreme' residuals (blue and red areas) than were evident on the other map, 

but this could be explained by the residuals not being directly comparable and 

being grouped wrongly. 

As previously mentioned, few regions have residual confidence intervals 

that do not include zero (see Table 7.3). This indicates that few regions actually 

have relative risks significantly different from unity and from examining the maps 

for models B, C and D (Figures 7.3, 7.4 and 7.5) it can be seen that they also only 

suggest one or two areas with particularly high residuals. This suggests these 

disease maps are useful for detecting disease 'hotspots' where the populations are 

at significant risk of mortality. 
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Table 7.3 Residual confidence intervals (ordered as in Table 7.2) 

Region CI95% (B) PI95% (C) CI95% (D) CI95% (E) 

Madeira (-0.046,0.476) (-0.008 ,0.497) (-0.082,0.341) (-0.144,0.049) 
Nord-Pas-de-Calais (-0.304,0.564) (-0.112,0.567) (-0.158,0.480) (-0.031 .0.140) 
Copenhagen * (-0.409 ,0.453) (-0.133 ,0.545) (-0.248 ,0.482) (0.115 .0.463) 
Corsica (-0.349 ,0.502) (-0.114,0.453) (-0.264,0.384) (-0.106.0.096) 
Macedonia Central (-0.132,0.232) (-0.035 ,0.317) (-0.062,0.251) (0.017 ,0.175) 

Picardie (0.135 ,0.243) (0.022 ,0.243) (0.035 ,0.216) (-0.363 ,-0.213) 

Azores (-0.106,0.416) (-0.117 ,0.408) (-0.114,0.321) (-0.052,0.158) 

West Midlands (-0.198,0.208) (-0.064,0.329) (-0.177 ,0.269) (-0.011 ,0.165) 

Northern Ireland (-0.401 ,0.448) (-0.206 ,0.507) (-0.255 ,0.520) (-0.190,-0.002) 

Lower Austria (-0.059,0.191) (-0.021 ,0.248) (-0.041 ,0.172) (-0.061 ,0.080) 

Bedfordshire (-0.191 ,0.151) (-0.165 ,0.163) (-0.163,0.107) (-0.079 .0.086) 

Poitou-Charentes (-0.103,0.221) (-0.112,0.122) (-0.084,0.195) (-0.088 ,0.002) 

Humberside (-0.163,0.175) (-0.132,0.149) (-0.126,0.156) (-0.015 ,0.132) 

Midi-Pyrenees (-0.107 ,0.215) (-0.118,0.153) (-0.058,0.152) (-0.142,-0.105) 

Saarland (-0.181 ,0.211) (-0.146,0.157) (-0.193,0.097) (-0.064,0.130) 

Baden-Wurttemberg (-0.173 ,0.166) (-0.117 ,0.132) (-0.220 ,0.048) (-0.129,0.001) 

Dyfed (-0.192,0.184) (-0.183,0.182) (-0.158,0.146) (-0.154,0.018) 

Ringkobing (-0.218 ,0.098) (-0.152 ,0.135) (-0.172,0.142) (-0.320,-0.061) 

Hampshire (-0.160,0.104) (-0.130,0.111) (-0.124 ,0.085) (-0.061 ,0.092) 

Thessaly (-0.168,0.128) (-0.136,0.123) (-0.162,0.126) (0.012,0.181) 

Mikkeli (-0.225 ,0.030) (-0.230 ,0.021) (-0.178,0.067) (0.192,0.250) 

Aegean South (-0.211 ,0.160) (-0.264 ,0.042) (-0.268,0.064) (-0.152,0.012) 

Kuopio (-0.251 ,0.079) (-0.274,0.044) (-0.220 ,0.080) (0.419 ,0.318) 

Bremen (-0.459 ,0.428) (-0.565 ,0.272) (-0.376,0.331) (-0.025 ,0.129) 

Oulu (-0.257 ,0.040) (-0.275 ,0.019) (-0.212 ,0.065) (-0.089 ,0.053) 

Greece West (-0.227 ,0.040) (-0.263 ,0.013) (-0.241 ,0.021) (-0.083 ,0.072) 

Norte (-0.426 ,0.435) (-0.467 ,0.211) (-0.358,0.291) (-0.072,0.148) 

Epirus (-0.192,0.091) (-0.283,-0.011) (-0.279,-0.014) (-0.260,-0.075) 

Ionian Islands (-0.318,0.205) (-0.391 ,0.097) (-0.400,0.073) (-0.079,0.128) 

Aegean North (-0.249 ,0.062) (-0.306 ,-0.024) (-0.263.0.011) (-0.133,0.016) 
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Figure 7.1 

Matrix plot of residuals from models A, B, C, D and E 
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Figure 7.2 Map of residuals from model A eve fitted using EB) 
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Figure 7.3 Map of residuals from model B (Spatial fitted using EB) 
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Figure 7.4 Map of residuals from model C (Spatial fitted using FB) 
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Figure 7.5 Map of residuals from model D (MMMC fitted using FB) 
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Figure 7.6 Map of residuals from model E (CAR fitted using FB) 
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7.4.3 Deviance Information Criterion (DIC) 

The complexity and fit of the fully Bayesian models were compared using the 

deviance information criterion (DIC) (145). This is based on the posterior 

distribution of D( C) and consists of two components, a term that measures 

goodness-of-fit and a penalty term for increasing model complexity; it is written 

as 

DIC =D + PD. (7.6) 

The first term is a Bayesian measure of model fit and is defined as the posterior 

expectation of the deviance 

(7.7) 

where f (yIO) is the likelihood function ie the joint conditional probability 

function of the observations given the unknown parameters. The better the model 

fits the data, the larger the values for the likelihood. Since D is defined using 

minus twice the log-likelihood, smaller values represent 'better' models. 

The second term, PD' is an estimate of the 'effective' number of parameters 

and can be thought of as a penalty term reflecting the model complexity or 

degrees of freedom. P D is defined as the difference between the posterior mean 
-

of the deviance and the deviance evaluated at the posterior mean e of the 

parameters 

PD = D - D(e) = Ee1y [D(e)]- D{Eely [e]) (7.8) 

= Ee1y [- 21n f(Yle )]+ 21n f~le y 
PD should capture the amount of shrinkage obtained by the hierarchical prior. A 

PD value that is small relative to the number of data points indicates that the prior 

provides a lot of information, and therefore there has been little borrowing of 

strength across the regions. It makes sense to compare the estimated P D for each 

model to gain some knowledge of the amount of important structural information 
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provided by the second stage prior. On the other hand, models with negligible 

prior information will have a PD approximately equal to the number of 

parameters. In this case the DIC will be close to Akaike's Information Criterion 

(AlC); later in this section the AlC will be used to compare the empirical Bayes 

models. 

The DIC will be used to compare the performance of the given disease 

mapping models; it is effectively a method of selecting the model that leads to the 

best prediction of the risk surface in the areas of interest. For each of the models 

fitted using fully Bayesian methods, the DIC is presented in Table 7.4. The table 

also presents the separate contributions of fit (D), complexity (PD) and deviance 
-

(D(B) ). 

Table 7.4 DIC for models fitted using fully Bayesian 

Models 
-

D D(B) PD DIe 

Spatial (C) 1939.0 1770.0 
Multilevel 

168.4 2107.4 

Multiple (D) 1938.6 1771.0 
Membership 

167.6 2106.2 

Conditional (E) 1945.2 1779.3 
Autoregressive 

166.0 2111.2 

Firstly it should be seen that all three models are highly complex leading to a 

considerable borrowing of strength, with between 166 and 168 'effective' 

parameters being needed to fit the 187 data points. The DIC values indicate that 

model D (MMMC model) is the 'best' model out of the three considered here as it 

has the lowest DIC value. However, Spiegelhalter et al (145) suggested that 

models with DIC values within 1 or 2 of the 'best' model should be strongly 

supported, those within 3 and 7 should be weakly supported and those with a DIC 

more than 7 higher than the 'best' are very much inferior. This suggests model E 

is weaker than models C and D which are effectively equal in terms of their fit 
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and performance and have priors providing appropriate information about the 

spatial structure. 

To compare the empirical Bayes models, where the prior is completely 

specificied with no hyperparameters, the Akaike Information Criterion can be 

used. The Ale can be written as 

AIC=D(e) + 2p, (7.9) 

where p is the number of parameters and B denotes the maximum likelihood 

estimate, or in this case the quasi-likelihood equivalent. In fact, equation (7.8) can 

be rearranged and written as D = D( B) + P D, then the DIC defined in equation 

(7.6) can then be re-written as 

DIC = D(8) + 2PD. (7.10) 

which is the same as equation (7.9) but with the posterior mean 8 substituted by 

the ML, or QL, estimate ofe. Thus, the DIe can be seen as a generalisation of the 

Ale and, in the special case where the prior is flat, such as with the empirical 

Bayes analysis, Ale equals DIC since the ML estimate coincides with the 

posterior mean. This is also approximately true for QL estimates since the 

estimates may not maximise the likelihood but should approximate it. It follows 

that a model with a smaller Ale is favoured and comparing the empirical Bayes 

estimates would suggest that the variance components model, with a lower AlC, is 

the 'best' model. However, in this case, model B is favoured since A ignores 

important information about the spatial structure. Also, if the QL estimates are a 

good approximation of ML estimates, the -2In( f (YIB) ) value for model B should 

be lower than that of model A. This is not true, as can be seen from Table 7.5, and 

is a disadvantage of using model fitting using quasilikelihood methods. Looking 

at the two sets of models using the DIe and Ale values gives a crude comparison 

of all the models and it is clear the fully Bayesian model should be supported. 
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Table 7.5 AlC for models fitted using empirical Bayes 

Models -2ln( f (yIO) ) 2p AlC 

Variance 
Components (A) 2547.5 16 2563.5 

Spatial 
Multilevel (B) 2669.2 20 2689.2 

7.4.4 Iterations 

A final factor that should be considered when making model choices, especially 

when MCMC methods are being used to fit complex models, is the time it takes to 

run the required number of iterations. Actual times have not been given here but 

Table 7.6 displays the number of iterations required for each of the models to 

reach convergence (see Appendix A3.1-A3.2 for convergence diagnostics). For 

models C to E, that were fitted using MCMC techniques, a bum-in period plus 

further iterations, as described in Chapter 6, was required. As can be seen, model 

E required the most iterations in total, with a bum-in period of 2,000,000 being 

needed followed by 100,000 further iterations. As a result this model took the 

longest time to run. Model D required fewer iterations in total followed by model 

C which required the least overall; which took much less time to run. However, it 

should be noted that all models required many hours of simulation time before 

suitable posterior distributions were obtained. 

Finally, due to the computational intensity of the MCMC simulations, 

iterative quasi-likelihood procedures have an advantage. From Table 7.6 it can be 

seen that both models A and B required very few iterations before convergence of 

parameters. These took minutes to run and therefore have the advantage of much 

less time being needed to fit the models. 
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Table 7.6 Number of iterations required for convergence 

Models Bum-in Further Iterations 
Variance 

Components * (A) 6 
Spatial 

Multilevel * (B) 8 

Spatial (C) 
Multilevel 

200,000 50,000 

Multiple (D) 
Membership 

1,000,000 100,000 

Conditional (E) 
Autoregressive 

2,000,000 100,000 

* models fitted using empirical Bayes methods so only the number of iterations 

required until convergence presented 

7.5 Model Choice 

The main goal of disease mapping is to remove random noise and any natural 

variation in the human population allowing identification of areas with high or 

low rates. To accurately produce such a map a model can be used that allows the 

borrowing of strength across the whole of the study region and reduces the 

variance through the use of shrinkage estimators. In this chapter five such models 

were examined in an attempt to find the ''best'' model for mapping regional level 

cancer mortality. 

Examining the parameter estimates initially showed the importance of 

taking account of spatial autocorrelation. Comparing the fixed parameters from 

the spatial models suggested that, with the exception of the CAR model, the fully 

Bayesian methods gave more precise estimates. The random parameter estimates 

for the fully Bayesian spatial multilevel model (C) and MMMC model (D) were 

very similar but discrepancies were evident when comparing them to the 

empirical Bayes spatial multilevel model (B); different estimates, wider intervals 

160 



Chapter I Spatial Model Comparisons 

and a negative variance being included in the confidence interval all suggested C 

and D were superior. The differences in the fIxed parameter estimates in the CAR 

model (E) lead to concerns about its uses for modelling this type of data. 

The best agreement in the residuals was between models C and D. With the 

exception of the CAR model, which again was not directly comparable, the 

variance components model (A) produced the most extreme residuals. Comparing 

the residuals' confidence intervals for models B, C and D again showed model B 

to cover the widest range of values; models C and D were narrower and very 

similar. The maps of the residuals for models C and D appeared to produce the 

most smoothed maps and were the most useful diagnostic tools. The map of 

model D showed that the residuals covered the narrowest range overall. 

Examining the Deviance Information Criterions suggests models C and D 

were equally superior to model E and both provided appropriate information 

about the spatial structure in the data through the use of adequate priors. 

Comparing the Akaike Information Criterion for the models fItted using Empirical 

Bayes methods suggested that the variance components model should be 

favoured, but, this ignores the spatial structure and therefore has its disadvantages. 

Using the AlC and the DIC values to give a crude comparison of model fIt across 

the empirical and fully Bayesian methods showed that models C and D had much 

lower information criterion values, again suggesting 'better' models. 

Finally, time taken to fIt the various models was considered when choosing 

a model. As discussed, the empirical Bayes models required much less time than 

the fully Bayes models. Among the MCMC models, that all required numerous 

iterations, model C required the least and could be fItted in less time than models 

D and E. In fact, this was one of the main deciding factors in model choice 

between the two favoured disease mapping models. As described in this section, 

models C and D, the fully Bayesian spatial multilevel model and the multiple­

membership model, are superior in different manners to the others. Both provide 

similar estimates and are very useful for disease mapping, but, model C could be 
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fitted in about a fifth of the time of that for model D making it a more favourable 

choice. 

It should also be noted that model C provides an additional pIece of 

information, namely a correlation between the two sets of random effects, u and v. 

From the parameter estimates (Table 7.1) it can be seen that this term is 

significant showing a positive correlation between the two terms and suggesting it 

is useful to incorporate it in the modelling. Also, because they were fitted using 

MCMC methods, model C, and effectively model D, have another advantage of 

allowing more complex multilevel modelling structures to be fitted, such as the 

addition of higher geographical levels; these modelling extensions proved difficult 

using empirical Bayes methods. 

For the above reasons the natural decision was to model and disease map 

further similar data using model C, the fully Bayesian spatial multilevel model. 

This model will be used to explore the spatial distributions of various specific 

cancers in Chapter 8. 
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Chapter 8 

8 Specific Cancers 

8.1 Examining Specific Cancer Rates 

Examining all cancers grouped together has proved informative and is commonly 

used to measure variation in health across regions and countries. However, it is a 

fairly crude measure of analysis and so far has ignored the fact that specific 

cancers may follow different spatial patterns in the EU. Also, literature suggests 

that relationships with various risk factors vary for different cancers, and therefore 

it makes sense to consider different cancers individually. 

The mortality data used in previous Chapters are all malignant neoplasms 

(ICD-9 140-208) for 187 regions in 11 EU countries (Table 3.3). This dataset can 

be broken down further into specific cancers by regions. The malignant neoplasms 

that will be examined further in this chapter are i) malignant neoplasm of trachea, 

bronchus and lung (which will be referred to as lung cancer from now on), ICD-9 

162; ii) malignant neoplasm of oesophagus (oesophageal cancer), ICD-9 150; and 

iii) malignant neoplasm of the colon, rectum rectosigmoid junction and anus 

(colorectal cancer) ICD-9 153,154. 

8.2 Lung Cancer Mortality 

In 1998, 32% of the world's lung cancer deaths occurred in Europe (146) despite 

Europe comprising approximately an eighth of the world's population (147). Lung 

cancer is the most common cause of death from cancer in European men; in 1995 

29% of the total male cancer burden was due to lung cancer (2). Recent studies 
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have shown an increase in both incidence of and mortality from lung cancer 

among woman in Europe (148-151). There has been a "rapid increase" in female 

lung cancer mortality in some countries in Europe (150) and rates in EU countries 

appear to have doubled in the period 1955-1994 (148). 

8.2.1 Modelling Lung Cancer Mortality 

Previous studies such as these have examined lung cancer mortality patterns and 

trends in Europe at a country level (2, 152, 153). It is of interest to evaluate 

whether these patterns remain after taking regional variations into account. Also, 

using modelling methods that allow adjustment for spatial patterning and potential 

risk factors may produce a different picture of European lung cancer mortality 

rates and more accurately quantify the burden of the disease. 

Again, 187 regions in 11 EU countries in 1991 are examined. The data are 

modelled using the fully Bayesian spatial multilevel model (equations (6.5) and 

(6.6)). The full model fitted the same explanatory variables as were used when 

examining all cancers together. Convergence was monitored using time series 

plots and Gelman-Rubin plots for each parameter from simultaneous runs of the 

model resulting in a bum-in period of 50,000 being needed for the two-level null 

model. The number of further iterations required was determined by examining the 

Monte Carlo error in relation to the posterior standard deviation for each 

parameter, and the two-level null model required 10,000 further iterations until a 

suitable posterior distribution was available from which to sample. The two-level 

full model required a bum-in of 200,000 iterations and 300,000 further iterations. 

The full three-level model took 500,000 iterations until convergence and a further 

300,000 iterations were then required. 

8.2.2 Model Results: Lung Cancer 

Tables 8.1 and 8.2 give estimates of relative risks of lung cancer mortality for 

selected regions; extreme (two maximum and two minimum) rates are given for 
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each country (except Luxembourg where onI y country level data are available), 

ordered by declining posterior relative risk estimates within each country. Table 

8.1 gives the standardised mortality ratios and 95% confidence intervals based on 

the Poisson distribution, and the relative risks (posterior means) obtained from the 

two-level model with no covariates and corresponding 95% credible intervals 

(posterior 0.025 and 0.975 quantiles). Table 8.2 gives the relative risks and 95% 

posterior credible intervals from the two-level and three-level models with all six 

covariates included. Table 8.3 gives the country level SMRs and relative risks 

from the three-level full model. Table 8.4 gives the parameter estimates (posterior 

means and 95% posterior credible intervals) from the three previously mentioned 

models. Relative risks were calculated from the fIxed effect parameter estimates to 

compare regions with high and low levels of exposure to the given risk factors and 

these are given in Table 8.5. Figures 8.1-8.4 are maps of the SMRs and the 

predicted relative risks from the three models. 

8.2.2.1 Two-Level Null Model: Lung Cancer 

Table 8.1 gives the two highest and the two lowest relative risks within each 

country, predicted from the two-level spatial model with no covariates. The SMR 

for each of these regions is also given. The predicted relative risks are taking into 

account the spatial patterning of lung cancer mortality and any extra-Poisson 

variation and the estimates show that the area with the highest relative risk of lung 

cancer mortality is Northern Ireland in the United Kingdom with a RR of 1.59, 

followed by Copenhagen and Frederiksberg (city) (RR=1.53) and Northumberland 

in the UK (RR=1.46). Therefore, lung cancer mortality in Northern Ireland is 59% 

higher than expected. Before taking account of risk factors, areas with the lowest 

relative risk of lung cancer mortality in the EU countries under investigation are 

Norte in Portugal (RR=0.60) and Vasterbotten in Sweden (RR=0.67); this means 

that lung cancer mortality is 40% lower than expected in Norte and 33% lower 

than expected in Vasterbotten. Regions in Portugal display the widest range in 

relative risks (0.60 - 1.33) closely followed by the UK (0.88 - 1.59). The 
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Netherlands have the smallest range in relative risks (0.97 - 1.16) followed by 

Austria (0.84 - 1.08). 

8.2.2.2 Lung Cancer SMRs 

Also, for each region given in Table 8.1, the corresponding SMRs are presented. 

The disadvantages of examining these have already been discussed but they are 

shown here for comparison purposes. Examining SMRs alone ignores population 

sizes at risk, spatial patterning etc and gives a different picture of the risk of lung 

cancer mortality in the EU. For example, Northern Ireland has the highest 

predicted relative risk from the two-level null spatial model. However, looking at 

the SMR alone suggests that the risk of lung cancer mortality is only 21 % higher 

than expected (compared to 59%). Looking at Norte, the region with the lowest 

predicted relative risk, it can be seen the SMR has again dropped. Also, the 

confidence interval for the SMR (based on the Poisson distribution) suggests that 

Norte has a significantly lower than expected risk of lung cancer mortality; 42% -

49% lower, whereas the model predicts that this region's relative risk does not 

differ significantly from unity. This pattern emerges for many regions. 

8.2.2.3 Lung Cancer Disease Maps I (SMRs and Two-Level Null Model RRs) 

The map of SMRs (Figure 8.1) shows that there is a very high amount of variation 

within the EU, ranging from 0.33 to 2.16. It can also be seen that within some 

countries there is a high amount of clustering, with the UK and the Netherlands 

general 1 y having high SMRs and Sweden and Portugal having low SMRs. 

Estimating the relative risks from the two-level null spatial model reduces 

the number of regions with extreme rates (see Figure 8.2). Here, the within-area 

effects are modelled with a Poisson distribution, and relative risks between areas 

are considered as having a log-normal distribution with the mean for each area 

being centred on the mean of its neighbours. This, in effect, is providing a 

smoother map and is getting closer to the true picture of lung cancer mortality in 
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the EU. Areas that stood out as having extreme rates on the disease map of 

mortality previous to modelling may have high variability in their estimates due to 

having smaller population sizes. In such a case, one cannot confidently identify a 

region as, for example, a disease 'hotspot'. Modelling the data to remove this 

variability produces estimates of the 'true' risk of the disease, therefore extreme 

rates that dominate this map can be more accurately interpreted as lung cancer 

mortality 'hotspots'. From the map it can be seen that areas with a particularly 

high risk of lung cancer mortality are some UK regions, Lorraine in France and 

two regions in east Greece. Those areas now standing out as having particularly 

low risk of lung cancer mortality are regions in Portugal, Bavaria in Germany and 

some parts of Sweden. 

8.2.2.4 Two-Level Full Model: Lung Cancer 

As discussed in Chapter 2, there are other factors affecting the risk of lung cancer 

mortality that so far have not been taken into account. It is of interest to examine 

the risk of mortality from this disease after taking into account measures of risk 

and protective factors and also after taking into account the within-country 

clustering that was evident from the map of SMRs (Figure 8.1). Table 8.2 gives the 

estimated relative risks of lung cancer mortality from the two-level spatial model 

including the six covariates used in previous model fitting: fruit, vegetable, animal 

fat and alcohol consumption, cigarette smoking and gross domestic product. The 

two highest and the two lowest relative risks within each country are given. The 

estimates are also given for the three-level model, incorporating country as a 

higher level to account for the fact that regions within a country are more likely to 

be homogeneous than regions from different countries. 
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Table 8.1 Relative risks (SMR and RR from two-level null model) of mortality from lung cancer 
for each count extreme rates . ven, ordered b decreasin RR 

i Country Region OJ Ej SMR CI9s%(SMR) RRmean PI9S % 
3 Carinthia 284 253.6 1.12 (0.99 ,1.26) 1.08 (0.78 , 1.51) 
7 Styria 497 560.9 0.89 (0.81 ,0.97) 1.06 (0.83 , 1.35) ... Austria 
2 Burgenland 136 129.6 1.05 (0.88 ,1.24) 0.91 (0.59 , 1.40) 
5 UQQer Austria 476 579.8 0.82 (0.75,0.90) 0.84 (0.64 , 1.11) 

85 Copenhagen * 549 312.9 1.75 (1.61 ,1.91) 1.53 (0.82 , 2.91) 
86 Copenhagen 400 298.0 1.34 (1.21 ,1.48) 1.28 (1.01 , 1.65) 
... Denmark 
94 Ribe 136 107.9 1.26 (1.06 , 1.49) 0.96 (0.68 , 1.37) 
98 Viborg 133 127.7 1.04 {0.87 ,1.23} 0.94 {0.66 , 1.32} 

126 Oulu 166 174.8 0.95 (0.81 ,1.11) 1.17 (0.87 , 1.57) 
124 Lappi 81 82.4 0.98 (0.78,1.22) 1.03 (0.69 , 1.55) 
... Finland 

120 Harne 230 312.2 0.74 (0.64 ,0.84) 0.90 (0.67 , 1.21) 
130 Vassa 166 214.9 0.77 {0.66 ,0.90} 0.87 {0.61 , 1.24} 
139 Lorraine 1156 843.1 1.37 (1.29 , 1.45) 1.22 (0.96 , 1.56) 
134 Haute-Normandie 714 629.7 1.13 (1.05 ,1.22) 1.13 (0.86 , 1.48) 
... France 

142 Pays de la Loire 851 1207.0 0.71 (0.66 ,0.75) 0.84 (0.62 , 1.11) 
143 Bretagne 964 1159.8 0.83 {0.78,0.89} 0.84 {0.54 , 1.31} 
77 Saarland 639 520.5 1.23 (1.13 ,1.33) 1.14 (0.78 , 1.68) 
74 Rheinland-Palatinate 1905 1869.1 1.02 (0.97 ,1.07) 1.08 (0.85 , 1.37) 
... Germany 
76 Bavaria 3900 5466.4 0.71 (0.69,0.74) 0.79 (0.65 , 0.96) 
71 Bremen 367 361.0 1.02 {0.92 ,1.13} 0.76 {0.36 , 1.53} 
157 Macedonia East+ 323 271.6 1.19 (1.06 , 1.33) 1.24 (0.85 , 1.83) 
158 Macedonia Central 874 765.4 1.14 (1.07 ,1.22) 1.20 (0.88 , 1.67) 
... Greece 

163 Greece West 335 359.7 0.93 (0.83 ,1.04) 0.88 (0.69 , 1.13) 
166 Attica 1619 1545.0 1.05 {1.00 ,1.10} 0.83 {0.62 , 1.10} 
238 Luxembourg 184 175.7 1.05 {0.90 , 1.21} 1.10 {0.75 , 1.61} 
242 Friesland 326 280.8 1.16 (1.04 , 1.29) 1.16 (0.86 , 1.59) 
248 Limburg 651 489.4 1.33 (1.23 ,1.44) 1.15 (0.83 , 1.60) 
... Netherlands 

246 Flevoland 108 76.9 1.40 (1.15 ,1.70) 0.98 (0.69 , 1.39) 
241 Groningen 337 262.4 1.28 {1.15 ,1.43} 0.97 {0.68 , 1.38} 
327 Madeira 74 93.8 0.79 (0.62 ,0.99) 1.33 (0.82 , 2.14) 
326 Azores 78 95.9 0.81 (0.64,1.01) 1.28 (0.80 , 2.06) 
... Portugal 

323 Lisboa e Vale do Tejo 787 1490.6 0.53 (0.49 ,0.57) 0.72 (0.50 , 1.01) 
321 Norte 733 1347.4 0.54 {0.51 ,0.58} 0.60 {0.32 , 1.1O} 

462 Orebro 112 169.1 0.66 (0.55 ,0.80) 1.01 (0.77 , 1.34) 
467 Uppsala 85 138.4 0.61 (0.49,0.76) 0.99 (0.74 , 1.34) 
... Sweden 

454 lamtland 32 88.5 0.36 (0.25 ,0.51) 0.71 (0.51 , 0.99) 

469 Vasterbotten 50 141.7 0.35 {0.26,0.47} 0.67 {0.47 , 0.94} 

565 Northern Ireland 788 650.9 1.21 (1.13 ,1.30) 1.59 (0.83 , 3.13) 

513 Northumberland 252 164.2 1.53 (1.35,1.74) 1.46 (1.10 , 1.98) 
... UK 

532 East Sussex 515 464.7 1.11 (1.01 ,1.21) 0.90 (0.64 , 1.27) 

521 Leicestershire 428 428.4 1.00 {0.91 ,1.I0} 0.88 (0.69 , 1.10) 

*Copenhagen and Frederiksberg (city), +Macedonia East and Thrace 
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Figure 8.1 Map of lung cancer SMRs 
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Figure 8.2 Map of lung cancer RRs from null two-level model 
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The estimates from the two-level model, taking into account potential risk 

factors, show that the region with the highest relative risk of cancer mortality in 

the EU countries under investigation is Madeira in Portugal (RR=1.48) closely 

followed by Copenhagen and Frederiksberg (city) (RR=1.45) and Northern Ireland 

in the UK (RR=1.44). The lowest relative risks were found in Norte in Portugal 

(RR=O.70), Bavaria in Germany (RR=O.72) and Vasterbotten in Sweden 

(RR=O.78). The regions with extreme risks are similar to those identified from the 

model with no covariates, but the actual estimates have changed somewhat. They 

are now closer to unity, which is due to the risk and protective factors being 

measured at the level of country and are therefore helping explain some of the 

differences between countries. 

When comparing the 95% Bayesian credible intervals from the null and full 

model, it can be seen that after adding covariates many more of the intervals are 

significantly different from unity. Therefore, these regions have a significantly 

greater or lesser risk of lung cancer mortality after adjusting for known risk 

factors. This suggests that there are other factors, not taken account of here, which 

are affecting lung cancer mortality in areas of the EU or perhaps the distribution of 

the risk factors within these counties is not constant and it reflects particularly high 

(or low) regional levels of exposure to the covariates. 

8.2.2.5 Lung Cancer Disease Maps II (Two and Three-Level Full Model RRs) 

Looking at the maps of relative risks from the null model (Figure 8.2), most of the 

regions that stand out as 'hotspots' are not actually significant using this modelling 

method, and since they dominate the map visually they may be misinterpreted as 

being significant. However, looking at Figure 8.3, in which the significant regions 

have been named, it can be seen that these tend to be the areas that stand out 

visually on this smoother map, showing the usefulness of modelling and mapping 

the lung cancer mortality data in this manner. 
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Figure 8.4 maps the relative risks from the three-level model. The estimates 

in the regions within countries that had high overall risks are now closer to country 

level risk. This creates a different picture of the distribution of lung cancer, with 

relative risks within some countries now appearing more similar. For example, all 

of the regions in the UK have risks close to or greater than unity, whereas using 

the two-level model there was more variation with some regions having relative 

risks less than 0.9. Similarly, all relative risks in Germany are lower than 1 (Figure 

8.4) but before accounting for the higher level they varied much more around 

unity. 

8.2.2.6 Three-level Full Model: Lung Cancer 

Looking at the final columns of Table 8.2, the results from adding a further 

geographical level to the model, as expected it can be seen here that the estimates 

change. The same picture that emerged on the map is evident, but what is also 

noticeable is that the 95% credible intervals get much wider. Here we are 

incorporating spatial clustering effects into the model indirectly by adding a third 

level that accounts for the fact that regions within a country are more likely to be 

homogeneous than regions from different countries. The introduction of country­

level random effects appears to result in the covariates being measured with more 

error; this causes uncertainty in the estimation of the parameters associated with 

the covariates which in tum introduces uncertainty into the residual estimation. 
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Table 8.2 Relative risks (two and three.level full models) of mortality from lung cancer (for 
each country extreme rates S:!ven, ordered by decreasing RR from three-level model} 

i Country Region OJ Ej RRmean(2) PI95 % (2) RR.nean(3) PI95 %(3) 
3 Carinthia 284 253.6 1.23 (1.03 , 1.65) 1.30 (0.75 , 2.27) 7 Styria 497 560.9 1.14 (0.98 , 1.43) 1.21 (0.75 , 1.98) ... Austria 
2 Burgenland 136 129.6 0.99 (0.83 1.51) 1.12 (0.57 , 2.19) 5 UQQer Austria 476 579.8 0.94 (0.81 , 1.22) 1.01 ~60 -,-~J.71} 85 Copenhagen * 549 312.9 1.45 (1.20 , 2.75) 1.38 (0.57 , 3.59) 

86 Copenhagen 400 298.0 1.25 (1.06 , 1.61) 1.19 (0.71 , 2.09) 
Denmark 

87 Frederiksborg 174 156.3 0.96 (0.81 , lAO) 0.91 (0047 , 1.82) 
98 Viborg 133 127.7 0.94 (0.79 , 1.30) 0.90 (0.50 , 1.70) 

126 Oulu 166 174.8 1.14 (0.96 , 1.49) 1.19 (0.74 , 2.01) 
124 Lappi 81 8204 1.08 (0.90 , 1.60) 1.13 (0.63 , 2.14) 

Finland 
120 Harne 230 312.2 0.92 (0.78 , 1.19) 0.97 (0.62 , 1.60) 
130 Vassa 166 214.9 0.92 (0.77 , 1.28) 0.97 (0.57 , 1. 71) 
139 Lorraine 1156 843.1 1.23 (1.06 , 1.52) 1.25 (0.82 , 2.08) 
134 Haute-Normandie 714 629.7 1.14 (0.98 , 1.46) 1.18 (0.75 , 2.02) 

France 
143 Bretagne 964 1159.8 0.85 (0.71 , 1.28) 0.89 (0.48 , 1.77) 
142 Pays de la Loire 851 1207.0 0.80 (0.68 , 1.04) 0.84 (0.52 , 1.45) 
72 Nth Rhine_Westphalia 9518 8234.9 1.10 (0.97 , 1.33) 0.94 (0.62 , 1.40) 
77 Saarland 639 520.5 1.10 (0.92 , 1.53) 0.95 (0.55 , 1.61) 

Germany 
75 Baden-Wurttemberg 3181 4548.3 0.78 (0.66 , 1.02) 0.67 (0.41 , 1.07) 
76 Bavaria 3900 5466.4 0.72 (0.62 , 0.86) 0.64 (0.43 , 0.94) 

157 Macedonia East + 323 271.6 1.23 (1.02 , 1.81) 1.19 (0.57 , 2.42) 
158 Macedonia Central 874 76504 1.18 (0.99 , 1.60) 1.14 (0.58 , 2.14) 

Greece 
166 Attica 1619 1545.0 0.90 (0.76 , 1.18) 0.88 (0046 , 1.59) 
163 Greece West 335 359.7 0.90 (0.76 , 1.13) 0.88 (0.48 , 1.52) 
238 Luxembourg 184 175.7 1.25 (1.03 , 1.77) 1.22 (0.64 , 2.26) 
248 Limburg 651 489.4 1.10 (0.94 , 1.49) 1.00 (0.47 , 1.81) 
252 Zeeland 209 187.0 1.06 (0.87 , 2.01) 0.98 (0.33 , 2.47) 

Netherlands 
241 Groningen 337 262.4 0.96 (0.81 , 1.32) 0.88 (0040 , 1.60) 
249 Utrecht 531 423.1 0.95 (0.80 , 1.29) 0.88 (0.41 , 1.59) 
327 Madeira 74 93.8 1048 (1.23 , 2.43) 1.57 (0.73 , 3.59) 
326 Azores 78 95.9 1.42 (1.18 , 2.35) 1.51 (0.70 , 3047) 

Portugal 
323 Lisboa e Vale do Tejo 787 1490.6 0.82 (0.71 , 1.15) 0.87 (0.47 , 1.70) 
321 Norte 733 1347.4 0.70 (0.58 , 1.28) 0.74 (0.31 , 1.88) 

462 Orebro 112 169.1 1.10 (0.93 , 1.42) 1.09 (0.66 , 1.77) 

467 Uppsala 85 13804 1.09 (0.91 , 1.43) 1.09 (0.65 , 1.80) 
Sweden 

1.31 455 Jonkoping 73 187.1 0.80 (0.67 1.03) 0.82 (0.49 

469 Vasterbotten 50 141.7 0.78 (0.64 , 1.07) 0.79 (0.44 , 1.36} 

565 Northern Ireland 788 650.9 1.44 (1.17 , 2.75) 1.59 (0.68 , 4.13) 

513 Northumberland 252 164.2 1.32 (1.12 , 1.71) 1.45 (0.90 , 2.57) 

UK 
534 West Sussex 432 437.5 0.86 (0.73 , 1.11) 0.95 (0.59 , 1.67) 

521 Leicestershire 428 428.4 0.83 (0.72 , 1.02) 0.93 (0.61 . 1.56} 

*Copenhagen and Frederiksberg (city), +Macedonia East and Thrace 
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Figure 8.3 Map of lung cancer RRs from full two-level model 
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Figure 8.4 Map of lung cancer RRs from full three-level model 
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8.2.2.7 Lung Cancer Country Level Results 

Table 8.3 gives the SMRs and corresponding confidence intervals for each country 

along with the relative risks and posterior intervals from fitting the 3-level full 

spatial model. From the modelling results it can be seen that Germany has the 

lowest lung cancer mortality relative risk (RR=0.83) and Austria has the highest 

(RR=1.14), closely followed by the UK (RR=1.12). None of the posterior credible 

intervals exclude unity indicating no country has a risk of lung cancer mortality 

significantly higher or lower than expected. This is because the within country 

variation is large for most countries and looking at regional level relative risks 

within these countries does prove more informative. 

Table 8.3 Relative risks of mortality from lung cancer at country level 

Country Oi Ei SMR CI95 % (SMR) RRmean PI95 % 

Austria 3278 3633.2 0.90 (0.87 , 0.93) 1.14 (0.87 , 1.49) 

Germany 35037 37653 0.93 (0.92 , 0.94) 0.83 (0.66 , 1.01) 

Denmark 3206 2649.6 1.21 (1.17 , 1.25) 0.96 (0.72 , 1.32) 

Finland 1820 2223.1 0.82 (0.78 , 0.86) 1.04 (0.85 , 1.34) 

France 22232 22458 0.99 (0.98 , 1.00) 1.04 (0.84 , 1.40) 

Greece 4877 5091.1 0.96 (0.93 , 0.99) 0.97 (0.66 , 1.35) 

Luxembourg 184 175.7 1.05 (0.90 , 1.21) 1.05 (0.77 , 1.39) 

Netherlands 8416 6632.7 1.27 (1.24 , 1.30) 0.92 (0.58 , 1.24) 

Portugal 2270 4459.4 0.51 (0.49 , 0.53) 1.04 (0.78 , 1.46) 

Sweden 2812 4944.9 0.57 (0.55 , 0.59) 0.98 (0.75 , 1.25) 

UK 39121 28663 1.36 (1.35 , 1.38) 1.12 (0.89 , 1.54) 
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8.2.2.8 Lung Cancer Parameter Estimates 

The parameter estimates from fitting the three models are given in Table 8.4. The 

estimates and 95% credible intervals are given for the two-level spatial model with 

no explanatory variables, then after including all six explanatory variables and 

finally including the higher country level. The overall intercept flo represents a 

logarithm of the average number of lung cancer deaths in all regions included in 

the study in addition to the centred logarithm of the expected deaths, when all 

other fixed coefficients are zero. The estimates of the intercept are not particularly 

informative as they reflect an unlikely situation where-by an area has zero 

exposure to any of the risk or protective factors. 

Looking at the full two-level model first, the estimate of fli is the mean, or 

fixed slope for the explanatory variable smoke and it can be seen the estimate is 

positive and, judging significance from the 95% posterior credible intervals, 

significant. This implies that when taking the other variables into account an 

increase in cigarette consumption increases lung cancer mortality on average in the 

EU. The parameter estimate of 0.001 is a log relative risk of lung cancer mortality 

for each one unit/cigarette smoked increase per person per year. This suggests that 

every 100 increase in cigarettes smoked per person per year is associated with an 

increase in the risk of lung cancer mortality of about 11% (RR=exp{O.l }=1.105). 

It can be seen that other variables which significantly affect cancer mortality are 

fruit and vegetable consumptions, both showing an inverse association with lung 

cancer mortality. The actual effect size of these variables will be discussed later 

on. 

Looking at the random parts of the models it can be seen that, for the null 

and full two-level models, the variance has been partitioned into that which is due 

to differences between regions, au 2, and that which arises due to the spatial 

structure in lung cancer mortality, a/. To interpret the spatial effects, the average 

number of neighbours a region has should be taken into account, and after doing so 

the adjusted variance from the spatial part of the model is 0.046 (CT; rii = 
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0.19114.128) and the total variance under the null model is then 0.065 ( = a; + 

a; / n = 0.019 + 0.046). Seventy-one percent (0.046/0.065 *100) of this variance 

arises from spatial effects. Looking at au
2 and a/ from the full two-level model , 

the total variance decreases to 0.033 (0.013 + 0.08114.128). Therefore, taking into 

account the measures of exposure to risk and protective factors has reduced the 

variation by around 50%. Of this remaining variance (0.033), 61 % is attributable 

to spatial patterning in the data. Finally looking at the results from the three-level 

model, it can be seen that the significant fixed parameter estimates do not change 

very much from the two-level model. However, the random part has now been 

partitioned further and a/ now represents the variance that is due to differences 

between countries. The total variance is now around 0.058, which has nearly 

doubled after adding a third higher level. Now, 18% of the total variance is due to 

heterogeneity between regions, 30% is attributable to spatial effects and 52% is 

due to differences between countries. 

8.2.2.9 Lung Cancer Risk Factor Effect Size 

It is also of interest to quantify the effect size of the risk or protective factors when 

examining lung cancer mortality rates. Using both the two-level and three-level 

models, relative risks were calculated for each variable comparing countries with 

high and low levels of exposure to risk factors and are given in Table 8.5. Firstly, 

looking at the two-level model and the smoking variable, the table is showing that 

Greece has the highest level of cigarette consumption in these eleven countries and 

Sweden has the lowest. The relative risk of 7.69 suggests that consuming, on 

average, the same amount of cigarettes as Greece leads to a relative risk of lung 

cancer mortality that is 7.7 times as high as if smoking was on the same level as 

Sweden. Also, looking at the fruit variable suggests that a population consuming, 

on average, the same amount of fruit as Greece has a risk of lung cancer mortality 

that is 51 % lower than if consumption was on the same level as the UK. The final 

significant variable is vegetable consumption and the parameter estimates from the 

two-level model suggest that consuming the same level of vegetables as Greece 
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leads to a risk of lung cancer mortality that is 57% less than if consumption was on 

the same level as Finland. 

The results are also given for the three-level model and as can be seen the 

estimates change slightly. Also, as noted for the parameter estimates, the 95% 

posterior credible intervals are wider. Adding a third higher level to the model 

results in increasing the variation, hence reducing the precision of the relative 

risks. 

There may be implications for ignoring (or even including) country in the 

multilevel structure when fitting such spatial models. The non-independence of 

regional mortality within countries has been taken into account, firstly through 

allowing for spatial autocorrelation between neighbouring areas and secondly by 

using country level covariates. It has been shown that both aspects of the 

modelling are important; we have seen that there is significant spatial variation 

existing in the data suggesting there is evidence that spatial patterning of the 

disease does exist and the importance of the country effects shows that there are 

discontinuities between countries. The results seen so far in this chapter, along 

with those from Chapter 6, suggest that different models may be useful for the 

estimation of different effects. Adding a third level appears to be a useful model 

for explaining differences between countries; and, at least for lung cancer 

mortality, there is a higher level of heterogeneity between countries than between 

regions within countries. The spatial model, without the additional level, appears 

more useful at detecting differences between regions, such as disease 'hotspots' 

before and after adjusting for covariates, and gives more precise estimates of the 

fixed effects. 
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Table 8.4 Parameter estimates from modelling lung cancer mortality rates 

Parameters Null two-level Model Full two-level Model Full three-level Model 

Estimate Credible Interval Estimate Credible Interval Estimate Credible Interval 

fJo 5.85 (5.76 , 5.93) 4.93 (4.43, 5.39) 4.49 (3.47 , 5.42) 

fJ1 (smoke) 0.0010 (0.0007, 0.0013) 0.0011 (0.0006 , 0.0014) 

fJ2 (fruit) -0.0104 (-0.0135, -0.0076) -0.0100 (-0.0156 , -0.0024) 

fJ3 (veg) -0.0035 (-0.0051, -0.0021) -0.0040 (-0.0069 , -0.0013) 

fJ4 (animal) 0.0085 (-0.0100, 0.0272) 0.0120 (-0.0090 , 0.0464) 

fJ5 (alcohol) -0.0003 (-0.0026, 0.0020) -0.0003 (-0.0046 , 0.0038) 

fJ6 (gdp) 3.44e-6 (-3.16e-6, 1.02e-5) 2.55e-6 (-3.42e-6 , 8.62e-6) 

(ju 
2 0.0185 (0.0102 , 0.0294) 0.0125 (0.0075, 0.0190) 0.0105 (0.0062 , 0.0162) 

(jUY 0.0496 (0.0328 , 0.0708) 0.0198 (0.0108, 0.0315) 0.0164 (0.0081 , 0.0268) 

(j} 0.1909 (0.1392 , 0.2585) 0.0814 (0.0484, 0.1236) 0.0728 (0.0432 , 0.1109) 

(jy 
2 0.0298 (0.0034 , 0.1134) 
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Table 8.5 Effect size of covariates from two- and three-level full lung cancer models 

Covariate Min (country/ Max (country/ Two-level model Three-level model 

region) region) RR 95% CI RR 95% CI 

Smoking 1550 (Sweden) 3590 (Greece) 7.69 (4.15 , 12.7) 9.43 (3.61 , 19.3) 

Fruit 74.5 (UK) 142.6 (Greece) 0.49 (0.40 , 0.60) 0.51 (0.34 , 0.85) 

Vegetable 58.8 (Finland) 300.4 (Greece) 0.43 (0.29 , 0.60) 0.38 (0.19 , 0.73) 

Animal fat 2.3 (Greece) 26.8 (Luxembourg) 1.23 (0.78 , 1.95) 1.61 (0.80 , 3.12) 

Alcohol 60.0 (Greece) 173.9 (Germany) 0.97 (0.75 , 1.25) 0.97 (0.60 , 1.55) 

GDP 5611 (Epims - 44711 (Copenhagen and 1.14 (0.88 , 1.49) 1.10 (0.87 , 1.40) 
Frederikberg (city) -

Greeece) Denmark) 
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8.2.3 Lung Cancer Discussion 

It has been shown that spatial variation in lung cancer mortality exists both within 

and between countries throughout the EU. Whilst a large part of the variation can 

be accounted for by adjusting for known risk and protective factors for lung 

cancer, variation still clearly exists throughout the European countries under 

examination. Some regions in Portugal, Germany and Sweden display particularly 

low lung cancer mortality rates, so it may be of interest to investigate why these 

areas avoid lung cancer mortality. Probably of more interest are the areas that 

stand out as lung cancer mortality 'hotspots' after taking account of factors that 

are known to affect the disease rates. There are twelve regions in the Austria, 

Denmark, France, Germany, Greece and the UK that show a particularly high risk 

of lung cancer mortality and it may be of a public health interest to investigate 

these areas further. 

It is of obvious public health advantage to promote smoking cessation in the 

EU countries for the prevention of many diseases, particularly lung cancer, and 

similarly with healthy eating promotions. However, it is of interest to determine 

any other factors that are affecting EU lung cancer mortality rates. A possible 

cause of the lung cancer 'hotspots' remaining after adjusting for country level 

smoking and dietary habits is that exposure to the factors may be particularly high 

or low within these countries. This could be determined by carrying out smaller 

scale studies within these countries and specific smoking cessation promotion 

focus may then have to be made in these 'hotspot' areas. 

Current information does not support screening for lung cancer (154). A 

recent lung cancer screening recommendation statement (155) suggested that 

some types of screening would be more likely to detect lung cancer at an early 

stage than would be detected in an unscreened population; however, they also 

found poor evidence that any screening strategy for lung cancer decreases 

mortality. Therefore, geographical differences in the provision of scree rung 

programmes is not a factor that is likely to be affecting the EU pattern of lung 

cancer mortality. Because of the very high fatality from the disease other health 
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care provisions, such as variations in treatment, are also unlikely to be affecting 

the mortality rates. 

The association between lung cancer and specific occupations is well 

established in reports dating back to the 1950s (44). The IARC Monographs 

Programme (156) has reviewed many of the associations between occupational 

agents and different types of cancers and it can be seen that risk is increased 

among workers employed in a number of industries and occupations. The types of 

occupations are too specific to be taken into account of in a population based 

study; however, this risk factor may explain some of the lung cancer 'hotpots'. 

There is abundant evidence in existing literature of the strong associations 

lung cancer has with smoking, fruit and vegetable consumption. These are also the 

factors that have been shown in this study to have a significant association with 

lung cancer mortality at the population level. It was seen that around half of the 

variation that exists between regions in the EU can be explained by taking into 

account faid y crude measures of exposure to the above significant risk and 

protective factors. 

Further modelling showed that around 60% of the remaining variance is 

spatially patterned and this suggests that there are other factors not included in this 

study which are spatially patterned that also influence lung cancer mortality. Such 

factors which may be affecting these spatial patterns of mortality could be factors 

previously discussed or genetic predisposition to lung cancer. It has been 

established that a gene that predisposes lung cancer does exist and recent research 

in the area identified the location on the chromosomes that carry this gene (157). 

The precise gene has yet to be pinpointed but this research complements other 

work that suggests that genetic predisposition is a risk factor for lung cancer. This 

risk factor is likely to be affecting mortality rates in the EU in some form. Many 

gene frequencies are spatially patterned (158) and this leads to the possibility that 

this is a risk factor that may be causing some of the unexplained spatially 

patterned variance. Further research is necessary in this area. 

183 



cnapter15 
Specific Cancers 

8.3 Colorectal Cancer Mortality 

Cancer of the colon and rectum is the second most common cancer in both men 

and woman in Europe (146). In men, colorectal cancer comprises 22% of all 

cancer cases and 14% in woman (2). There are major between-country differences 

in colorectal cancer survival rates in Europe (159). The countries with highest 

survival have a five-year survival rate which is less than 60% (160) and the 

overall European five-year survival is very similar in colon cancer (51%) and 

rectal cancer (48%). European deaths from colorectal cancer are ranked the 

second most common cause of cancer deaths, with around 11 % of all cancer 

mortality being due to neoplasms in these sites (2). Second to cancer of the lung, 

colorectal cancer demonstrates one of the most serious cancer burdens in Europe. 

8.3.1 Modelling Colorectal Cancer Mortality 

It is of interest to examine the true distribution of colorectal cancer both within 

and between countries in Europe. Again, we are able to do so by modelling 

colorectal cancer mortality relative risks after adjusting for spatial patterning and 

potential risk factors. 

As discussed in chapter 2, alcohol intake and different dietary components 

have been shown to be the main risk factors for the disease and data reflecting 

levels of these have been modelled. There is conflicting evidence on the effect 

smoking has on colorectal cancer mortality; this has been included as a covariate 

in the latter models to determine its effect on European colorectal cancer mortality 

rates. There is no evidence of socio-economic status affecting colorectal cancer, 

and GDP has not been included in the model results shown in this section as 

adding this covariate slowed convergence time substantially. The variables were 

fitted as covariates when fitting the fully Bayesian spatial multilevel models. The 

same sets of models are fitted as were examined for lung cancer mortality. 

Running simultaneous models and monitoring convergence resulted in a bum-in 

period of 200,000 being needed for the two-level null model. These samples were 
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discarded and 100,000 further iterations were run; at this stage the Monte Carlo 

error as a percentage of the posterior standard deviation was much less than 5% so 

fewer further iterations were actually required to obtain a suitable sample of 

reliable posterior estimates. The full two-level model required a bum-in of 

200,000 iterations and 100,000 further iterations. For the full three-level model 

900,000 iterations were discarded as a bum-in period and it took a further 300,000 

iterations until a suitable posterior distribution was available. 

8.3.2 Model Results: Colorectal Cancer 

Relative risks for colorectal cancer mortality are presented in Tables 8.6 and 8.8. 

As with the lung cancer results, estimates are given for selected regions within 

each country. Table 8.6 shows the standardised mortality ratios and respective 

95% confidence intervals and the posterior mean relative risks obtained from the 

null two-level model and corresponding 95% posterior credible intervals. 

Similarly Table 8.8 gives the relative risks and credible intervals from the two­

level and three-level models including the five covariates discussed previously. 

Table 8.7 gives the eleven country level SMRs and relative risks from the 

posterior estimates from the full three-level model. Table 8.9 presents the 

posterior means and 95% credible intervals for each of the parameters from these 

three models. Table 8.10 shows effect sizes of the parameter estimates by giving 

relative risks comparing areas with high and low levels of exposure to the risk 

factors. Figures 8.5-8.8 are maps of the SMRs and posterior relative risks from the 

three models. 

8.3.2.1 Two Level Null Model: Colorectal cancer Model 

Table 8.6 give the two highest and two lowest relative risks within each country 

and corresponding intervals in brackets from the two-level spatial model with no 

covariates. It can be seen that the area with the highest relative risk of colorectal 

cancer mortality is Nord-Pas-de-Calais in France, with a relative risk of 1.61, 
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followed by Burgenland in Austria (RR=1.43), Cornwall in the UK (RR=I.43) 

and Storstr~m in Denmark (RR=I.42). Before taking account of risk factors, the 

areas with the lowest risk of colorectal cancer mortality is Norte in Portugal 

(RR=0.28) followed by the Algarve in Portugal (RR=0.48) and Dytiki Ellada and 

Ionian Islands in Greece (RR=0.50). Regions in Portugal show the most 

variability in relative risks ranging from 0.28 to 1.17. Finland have the smallest 

range in relative risks (0.73 - 0.98) closely followed by Sweden (0.81-1.07). 

8.3.2.2 Colorectal Cancer SMRs 

Standardised mortality ratios are given for each region and presented in Table 8.6. 

As previously discussed, the relative risks can be much more reliably interpreted 

as close to the true risk of cancer mortality; however, they are presented here for 

comparison purposes. It is of interest to show the discrepancies between the 

'traditional' measure of disease risk and the modern spatial modelling approaches 

to estimate the risk. Most of the extreme predicted posterior risks differ 

substantially from the SMRs, often giving risk estimates on the opposite side of 

unity for the same region. This emphasises the importance of using accurate 

modelling methods to examine disease distribution. 

8.3.2.3 Colorectal Cancer Disease Maps I (SMRs and Two-Level Null Model RRs) 

Figure 8.5 presents the map of the SMRs and it appears to indicate that colorectal 

cancer mortality is generally low in the EU. The SMRs range from 0.13 to 1.27 

and it can be seen that the blue regions (SMR < 0.89) tend to dominate the map. 

The few regions with high rates are confined to France and Denmark. Again, 

clustering within countries is evident from this map. However, it is more 

informative to examine the modelled rates. 
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Table 8.6 Relative Risks (SMR and RR from two-level null model) of mortality from colorecta1 
cancer for each countr extreme rates iven, ordered b decreasin RR 

i Country Region Oi Ei SMR CI95 % (SMR) RR..-n PI95 % 
2 Burgenland 115 112.8 1.02 (0.84,1.22) 1.43 (0.91, 2.26) 4 Lower Austria 615 620.6 0.99 (0.91 ,1.07) 1.22 (0.96, 1.56) Austria 
7 Styria 389 486.1 0.80 (0.72,0.88) 0.98 (0.78, 1.23) 
3 Carinthia 164 216.6 0.76 (0.65 ,0.88) 0.85 {0.61 , 1.18} 
90 Storstr~m 112 125.5 0.89 (0.73,1.07) 1.42 (1.03, 1.97) 
85 Copenhagen 318 308.1 1.03 (0.92 ,1.15) 1.38 (0.73, 2.69) 

Denmark 
99 Nordjylland 229 212.0 1.08 (0.94 , 1.23) 0.91 (0.54, 1.52) 
96 Ringkobing 94 105.6 0.89 (0.72,1.09} 0.88 (0.66, 1.16} 
129 Uusimaa 225 409.1 0.55 (0.48,0.63) 0.98 (0.74, 1.32) 
121 Keski-Suomi 54 92.9 0.58 (0.44,0.76) 0.95 (0.71, 1.28) 

Finland 
126 QuIu 61 135.9 0.45 (0.34 ,0.58) 0.78 (0.57 , 1.08) 
122 Pohjois-Savo 35 96.3 0.36 (0.25 ,0.51} 0.73 (0.50, 1.04} 
138 Nord - Pas-de-Calais 1114 927.3 1.20 (1.13 ,1.27) 1.61 (0.73, 3.58) 
141 Franche-Comte 279 285.7 0.98 (0.87 ,1.10) 1.31 (0.99, 1.70) 

France 
134 Haute-Normandie 427 422.6 1.01 (0.92,1.11) 1.04 (0.80, 1.35) 
143 Bretagne 864 801.2 1.08 (1.01 ,1.15} 1.02 (0.65, 1.66} 
84 Thuringen 878 988.8 0.89 (0.83 ,0.95) 1.26 (0.98, 1.63) 
75 Baden-Wurttemberg 3429 3961.7 0.87 (0.84 ,0.89) 1.19 (0.88, 1.60) 

Germany 
69 Hamburg 745 813.7 0.92 (0.85 ,0.98) 0.91 (0.60, 1.38) 
78 Berlin 1211 1439.4 0.84 (0.79,0.89} 0.91 (0.42, 1.93} 
158 Macedonia Central 241 582.7 0.41 (0.36 ,0.47) 0.96 (0.68, 1.38) 
165 Peloponnese 77 360.7 0.21 (0.17 ,0.27) 0.93 (0.58, 1.48) 

Greece 
162 Ionian Islands 21 109.1 0.19 (0.12 ,0.29) 0.50 (0.28, 0.86) 
163 PeloQonnese 59 299.5 0.20 (0.15 ,0.25} 0.50 (0.37, 0.67) 
238 Luxembourg 110 146.0 0.75 (0.62 ,0.91} 1.01 (0.65, 1.52} 
252 Zeeland 104 157.3 0.66 (0.54 ,0.80) 1.23 (0.57, 2.69) 
248 Umburg 320 378.0 0.85 (0.76,0.94) 1.18 (0.85, 1.63) 

Netherlands 
242 Friesland 159 234.5 0.68 (0.58,0.79) 0.93 (0.67, 1.28) 
250 Noord-Holland 648 899.3 0.72 (0.67,0.78} 0.87 (0.54, 1.39} 
323 Lisboa e Vale do Tejo 894 1170.3 0.76 (0.71 ,0.82) 1.17 (0.86, 1.59) 
322 Centro 364 742.1 0.49 (0.44,0.54) 1.01 (0.85, 1.20) 

Portugal 
(0.37 ,0.60) 0.48 (0.26, 0.89) 325 Algarve 73 153.6 0.48 

321 Norte 594 1066.3 0.56 (0.51 ,0.60} 0.28 (0.16, 0.50} 

460 Malmohus 258 386.4 0.67 (0.59,0.75) 1.07 (0.62, 1.85) 

470 Vasternorrland 85 137.9 0.62 (0.49,0.76) 1.06 (0.70, 1.60) 

Sweden 
448 Alvsborg 130 218.1 0.60 (0.50 0.71) 0.82 (0.61 1.09) 

469 Vasterbotten 78 114.5 0.68 (0.54 ,0.85} 0.81 (0.57, 1.14} 

543 Cornwall 189 246.2 0.77 (0.66 ,0.89) 1.43 (0.69, 3.06) 

565 Northern Ireland 427 536.3 0.80 (0.72,0.88) 1.35 (0.67, 2.73) 

UK 
546 Somerset 163 236.4 0.69 (0.59 ,0.80) 0.95 (0.71 , 1.25) 

528 Hertfordshire 266 389.0 0.68 (0.60 ,0. 77} 0.90 (0.66, 1.19} 
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Figure 8.6 maps the relative risks estimated from the two-level null spatial 

model and a very different picture of the distribution of colorectal cancer is 

evident. The relative risks range from 0.28 to 1.61 and the pattern on the overall 

map is displaying a high amount of variation both within and between counties. 

The map is now showing fewer areas with extreme low risk of cancer mortality 

and more areas with high risks of this disease (RR > 1.1). Countries that appear to 

have areas with very high risk (RR > 1.2) of colorectal cancer mortality before 

taking into account potential risk factors for the disease are France, Germany, 

Austria, Denmark and the UK. These regions could now be viewed as colorectal 

cancer mortality 'hotspots'. Some regions in Finland, Greece and Portugal display 

very low risk of colorectal cancer mortality (RR < 0.8). Taking into account risk 

and protective factors of colorectal cancer will hopefully help explain some of the 

variation that is clearly evident on this map. 

8.3.2.4 Two-Level Full Model: Colorectal Cancer 

As previously discussed, there are risk factors that have been shown to affect the 

risk of colorectal cancer mortality but so far these have been ignored in the 

modelling. Table 8.8 gives the estimated relative risks of colorectal cancer from 

the two-level spatial model including five of the covariates used in previous 

model fitting; fruit, vegetable, animal fat and alcohol consumption and cigarette 

smoking. Again, the two highest and two lowest relative risks within each country 

are given. The table also shows the estimates from the full three-level model; 

these estimates take account of the within country clustering that was evident 

from the initial map of SMRs. 
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Figure 8.5 Map of colorectal cancer SMRs 
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Figure 8.6 Map of colorectal cancer RRs from null two-level model 

• 1.20 to l.61 
• l. 1 0 to l. 1 9 
• 0.90 to 1.09 
• 0.80 to 0.89 
• 0.28 to 0.79 

.. I •• 

IC)O 



Chapter 1'5 
Specific Cancers 

The estimates from the two-level model taking the covariates into account 

show that the region with the highest relative risk of mortality in the EU countries 

under investigation is Lisbon and Vale do Tejo in Portugal (RR=1.49), followed 

by Nord-Pas-de-Calais in France (RR=1.39) and Lower Austria (RR=1.33). The 

lowest relative risks were found in Norte in Portugal (RR=0.54) followed by 

Greece West (RR=0.69) and Ionian Islands (RR=0.72) in Greece. Many of the 

regions identified as extreme before adding the covariates to the model remain as 

extreme within their country. However, they now tend to be less extreme as the 

covariates are helping to explain some of the country level variation. 

Regions within Portugal still show the most variability, with the relative risk 

of cancer mortality ranging from 0.54 to 1.49. Regions within Finland display the 

least variability, with all relative risks ranging from 0.91 to 1.06. 

8.3.2.5 Three-level Full Model: Colorectal Cancer 

Looking at the final columns of Table 8.8, which are the relative risks from 

adding a third level to the model (country), it can be seen both the estimates and 

the credible intervals have changed somewhat when compared with the two-level 

full results. The relative risks now take into account the fact that regions within a 

country are more homogenous than regions from different countries. The 

estimates are shrunk towards the overall relative risk of the country. All regions in 

France, which displayed the most areas with very high risks (see Figure 8.6), now 

have predicted relative risks which are fairly high. On the other hand, Finland's 

relative risks have shrunk somewhat based on the fact that they had many regions 

with very low risk of colorectal cancer mortality; the variability between regions 

has reduced through the addition of country as a level resulting in there is now 

being less variability within countries. 

The 95% credible intervals for these relative risks again appear to have 

widened so there is now much more uncertainty attached to the risks, which is 

likely to be due to the covariance that exists between the country level random 
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effects and fIXed effects; this will be causing uncertainty in the estimation of the 

parameters associated with the covariates which leads to uncertainty in the relative 

risks. 

8.3.2.6 Colorectal Cancer Disease Maps II (Two and Three-Level Full Model RRs) 

Figure 8.7 maps the relative risks from the full two-level model. The relative risks 

that stand out on the map are the bright red regions (RR > 1.2) and these are areas 

that possibly need further investigation into why they remain as colorectal cancer 

mortality 'hotspots' after adjusting for the potential risk and protective factors. 

There are ten such regions in Portugal, France, Austria and Greece, and areas of 

low risk also stand out on the map; there are such regions in Finland, Portugal and 

Greece. 

The 'hotspot' areas can now be clearly identified on the map because the 

map that has been produced has been spatially smoothed and variation has been 

reduced through adjusting for colorectal cancer risk factors. The smooth map is 

dominated by purple regions in which the relative risks are close to unity; none of 

these risks are significantly different from unity based on 95% posterior credible 

intervals. In fact, the only relative risks significantly different from unity are the 

extreme risks, ie those greater than 1.2 or less than 0.80. 

Finally examining the map of relative risks from the three-level model 

(Figure 8.8) it can be seen that most countries now display a high amount of 

clustering within the country. So the regional relative risks have been drawn 

towards the overall country level risk. Countries that stand out as still having high 

variability within them are Portugal and Greece. Looking at the results from the 

two-level model (Table 8.8), the regions within these countries did have the 

highest amount of variability in relative risks, 0.54-1.49 and 0.69-1.27 

respectivel y. 
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Although this map is smooth in that it appears to be free of random noise 

and not dominated by natural variation it is of limited use for the purpose of 

identifying regional 'hotspots' of the disease. 

8.3.2.7 Colorectal Cancer Country Level Results 

The table below (Table 8.7) gives the SMRs and corresponding confidence 

intervals for each country and the relative risks and posterior intervals from fitting 

the three-level full model. The modelling results coincide with the map obtained 

from fitting the three-level model (Figure 8.8) in that France has the highest 

relative risk (RR=1.51) of colorectal cancer mortality by far. None of the other 

countries display RRs significantly different from unity based on the 95% 

posterior credible intervals. 

Table 8.7 Relative risks of mortality from colorectal cancer at country level 

Country Oi Ei SMR CI95 % (SMR) RR.nean PI95 % 

Austria 2785 3224.2 0.86 (0.83, 0.90) 1.09 (0.77, 1.67) 

Germany 29867 33190.8 0.90 (0.89, 0.91) 0.95 (0.71, 1.40) 

Denmark 2077 2207.8 0.94 (0.90, 0.98) 0.96 (0.65, 1.64) 

Finland 966 1843.6 0.52 (0.49, 0.56) 0.71 (0.50, 0.94) 

France 15778 15184.4 1.04 (1.02, 1.06) 1.51 (1.15, 2.08) 

Greece 1234 4087.3 0.30 (0.29, 0.32) 0.87 (0.4 7, 1.65) 

Luxembourg 110 146.0 0.75 (0.62, 0.91) 1.09 (0.71, 2.13) 

Netherlands 4090 5401.1 0.76 (0.73, 0.78) 1.01 (0.47, 1.59) 

Portugal 2151 3554.6 0.61 (0.58, 0.63) 1.03 (0.64, 1.64) 

Sweden 2499 4185.2 0.60 (0.57, 0.62) 1.01 (0.68, 1.46) 

UK 19220 24308.9 0.79 (0.78, 0.80) 0.98 (0.61, 1.41) 
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8.3.2.8 Colorectal Cancer Parameter Estimates 

The parameter estimates from fitting the three models are given in Table 8.9 along 

with their posterior credible intervals. Po represents the overall intercept, but 

however these values are not very informative as they reflect a situation where an 

area has zero exposure to all the risk factors. The other fIxed parameter estimates 

are of more interest. Looking at the full two-level model first it can be seen that 

the estimate of the fixed slope for the smoke variable is positive and, judging from 

the 95% posterior interval, signifIcant. Therefore, taking the other variables into 

account, an increase in cigarette smoking increases colorectal cancer on average 

in the EU. The parameter estimate of 0.0006 is a log relative risk of lung cancer 

mortality for each one cigarette smoked per person per year. This suggests that 

every increase of 100 cigarettes smoked per person per year is associated with an 

Increase In the risk of colorectal cancer mortality of about 6% 

(RR=exp{0.06}=1.06). It can be seen that other variables which significantly 

affect colorectal cancer mortality are fruit consumption (RR=0.91), vegetable 

consumption (RR=0.97) and animal fat consumption (RR=1.39); all are based on 

a 10kg increase in the food or drink per person per year. 

Looking at the random part of the null and two-level model, the variance has 

been partitioned into that which is due to regional differences, ou
2

, and that which 

is due to the spatial structure of colorectal cancer mortality, Ov 
2

• The spatial 

variance under the null model, after taking the regional average number of 

neighbours into account, is 0.040, resulting in the total variance being 0.056. 

Therefore, 71 % of the total variance in colorectal cancer mortality, before taking 

risk factors into account, arises from spatial effects. The total variance from the 

full two-level model is 0.028. Therefore, taking into account the measures of 

exposure to the various risk factors has reduced the overall variation in colorectal 

cancer mortality by 50%. Of this remaining variation 68% is attributable to spatial 

patterning in the data. 
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Table 8.8 Relative risks (RR from two- and three-level full models) of mortality from colorectal cancer 
for each count extreme rates . ven, ordered b decreasin RR from three-level model 

i Country Region OJ Ej RRmean(2) PI9S %(2) RR.ne.a(3) PI9S %(3) 
4 Lower Austria 615 620.6 1.33 (1.07 , 1.67) 1.25 (0.76 , 2.28) 2 Burgenland 115 112.8 1.30 (0.90 , 1.91) 1.22 (0.67 , 2.47) Austria 
6 Salzburg 119 172.3 1.06 (0.84, 1.34) 1.02 (0.61, 1.86) 3 Carinthea 164 216.6 1.01 (0.78 , 1.33) 1.01 (0.59 u'_u 1.811-90 Storstrom 112 125.5 1.09 (0.83 , 1.43) 1.04 (0.57 , 2.19) 85 Copenhagen * 318 308.1 1.00 (0.57 , 1.73) 1.03 (0.47 , 2.65) 

Denmark 
93 SonderjyUand 76 106.7 0.84 (0.66 , 1.07) 0.89 (0.50 , 1.82) 
96 Ringkobing 94 105.6 0.80 {0.62 , 1.02) 0.88 {0.49 , 1.81) 

129 Uusimaa 225 409.1 0.91 (0.72 , 1.14) 0.74 (0.44 , 1.16) 
120 Harne 154 264.6 0.88 (0.69 , 1.13) 0.74 (0.44 , 1.17) 

Finland 
124 Lappi 31 62.6 0.81 (0.56 , 1.16) 0.66 (0.35 , 1.13) 
122 Kuo~io 35 96.3 0.77 {0.57 , 1.01) 0.65 {0.37 , 1.04) 
138 Nord-Pas-de-Calais 1114 927.3 1.39 (0.77 , 2.54) 1.68 (0.86 , 3.50) 
140 Alsace 495 390.6 1.22 (0.97 , 1.57) 1.63 (1.04 , 2.67) 

France 
151 Provence-Alpes-Cote d'Azur 1179 1313.4 1.04 (0.85 , 1.27) 1.35 (0.86 , 2.21) 
152 Corsica 64 75.9 1.03 {0.60 , 1.78) 1.30 (0.67 , 2.64) 
72 Nth-Rhine Westphalia 6841 7209.2 1.09 (0.91 , 1.29) 1.00 (0.66 , 1.67) 
83 Saxony-Anhalt 1078 1114.9 1.07 (0.85 , 1.35) 1.00 (0.63 , 1.73) 

Germany 
76 Bavaria 4085 4757.4 0.94 (0.81 , 1.10) 0.92 (0.61 , 1.52) 
78 Berlin 1211 1439.4 0.85 {0.47 , 1.54) 0.85 {0.42 , 1.86) 
158 Central Macedonia 241 582.7 1.27 (0.94 , 1.72) 1.10 (0.48 , 2.66) 
157 Macedonia East+ 83 208.1 1.04 (0.71 , 1.53) 1.01 (0.42 , 2.53) 

Greece 
162 Ionian Islands 21 109.1 0.72 (0.46 , 1.10) 0.75 (0.30 , 1.89) 
163 Greece West 59 299.5 0.69 (0.53 , 0.87) 0.72 {0.32 , 1.62) 
238 Luxembourg 110 146.0 0.99 (0.72 , 1.35) 1.09 {0.57 , 2.68) 
248 Limburg 320 378.0 1.17 (0.90 , 1.55) 1.11 (0.43 , 2.13) 
244 Overijssel 311 362.3 1.08 (0.90 , 1.32) 1.06 (0.43 , 1.93) 

Netherlands 
249 Utrecht 238 350.2 0.99 (0.74 , 1.31) 0.94 (0.36 , 1.81) 
250 Noord-Holland 648 899.3 0.90 {0.62 , 1.31) 0.93 {0.34 , 1.88) 
323 Lisboa e Vale do Tejo 894 1170.3 1.49 (1.10 , 2.04) 1.32 (0.64 , 2.75) 
324 Alentejo 157 268.6 1.19 (0.95 , 1.49) 1.11 (0.57 , 2.15) 

Portugal 
326 Azores 40 75.6 0.86 (0.53 , 1.40) 0.87 (0.37 , 2.01) 
321 Norte 594 1066.3 0.54 {0.31 , 0.92) 0.73 {0.29 , 1.77) 

466 Stockholm 473 706.3 1.04 (0.75 , 1.43) 1.06 (0.58 , 1.90) 
470 Vastemorrland 85 137.9 1.06 (0.77 , 1.46) 1.05 (0.57 , 1.89) 

Sweden 
471 Vastmanland 63 122.1 0.92 (0.72 1.17) 0.97 (0.55 1.67) 

464 Skaraborg 69 140.7 0.94 (0.73 , 1.20) 0.97 (0.55 , 1.67) 

552 Cheshire 343 384.1 1.12 (0.92 , 1.37) 1.08 (0.58 . 1.79) 

511 Durham 222 251.2 1.10 (0.90 , 1.36) 1.07 (0.57 , 1.79) 

UK 
(0.49 . 1.54) 533 Surrey 322 463.5 0.94 (0.75 , 1.16) 0.93 

528 Hertfordshire 266 389.0 0.89 {0.71 , 1.12) 0.91 {0.48 , 1.52) 

*Copenbagen and Frederiksberg (city), +Macedonia East and Thrace 
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Figure 8.7 Map of colorectal RRs cancer from full two-level model 
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Figure 8.8 Map of colorectal cancer RRs from full three-level model 
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Finally, looking at the three-level model it can be seen that the parameter 

estimates are now all non-significant based on the 95% posterior intervals. More 

uncertainty appears to be attached to the estimates, which was also evident in the 

relative risks (Table 8.8). In contrast to lung cancer, the differences in colorectal 

cancer between countries cannot be explained, to a great extent, by the various 

risk factors, hence, the non-significant parameter estimates. In fact, the large 

differences between countries remain after taking account of the risk factors; see 

Figure 8.8. 

8.3.2.9 Colorectal Cancer Risk Factor Effect Size 

The parameter estimates for the fixed effects were explained in the previous 

section. However, to give a clearer picture of the actual effect size of these 

estimates, relative risks were calculated comparing countries with high and low 

levels of exposure to each of the risk factors. These are presented for the two-level 

and three-level models in Table 8.10. Concentrating on the two-level model 

results and looking at the smoking variable first it can be seen that smoking, on 

average, the same amount of cigarettes as in Greece leads to a relative risk of 

colorectal cancer mortality that is 3.4 times as high as if smoking was on the same 

level as in Sweden. Consideration of the dietary variables leads to the following 

conclusions: consuming, on average, the same amount of fruit as in Greece has a 

risk of colorectal cancer mortality that is 49% lower than if consumption was on 

the same level as in the UK; vegetable consumption on the same level as in 

Greece gives a risk of mortality 55% lower than if consuming as much as Finland; 

and animal fat consumption on the same level as Luxembourg results in a 

colorectal cancer mortality risk 2.3 times as high than if consumption was similar 

to Greece. 
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8.3.3 Colorectal Cancer Discussion 

As was evident from studying all cancers and lung cancer, spatial variation in 

colorectal cancer mortality exists both within and between countries in the EU. 

About half of this variation can be accounted for by taking into account the known 

risk and protective factors for the disease; however, variation still exists 

throughout the eleven countries. Portugal, Finland and Greece have regions in 

which very low risks of mortality exist; further investigations in these areas may 

help determine ways to prevent colorectal cancer mortality. However, areas of 

high risk tend to be of more interest from the viewpoint of public health 

interventions and those which exist for colorectal cancer mortality after 

accounting for the risk factors are ten regions across France, Austria, Portugal and 

Greece. 

It would be interest to investigate further why these 'hotspot' areas exist 

after accounting for the various risk and protective factors. As with lung cancer, 

differing within-country exposure to one or more of the risk factors could account 

for the high risks. For example, people in the 'hotspot' regions in France may 

smoke more than in the rest of the country but this has not been adjusted for so 

instead it shows as a very high risk area on the map. There is abundant evidence 

supporting the benefits of early screening on colorectal cancer survival (161-166) 

and it has been estimated that more than one third of deaths from colorectal cancer 

could be prevented if those over fifty were screened regularly for the disease 

(167). The availability of screening for colorectal cancer in these 'hotspot' areas 

may be affecting rates. Accurate diagnosis and effective surgery for early-stage 

cancer has also been shown to improve colorectal cancer mortality (168), and 

variations in the provisions of these within countries may also be affecting the 

rates. 
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Table 8.9 Parameter estimates from modelling colorectal cancer mortality rates 

Parameters Null two-level Model Full two-level Model Full three-level Model 

Estimate Credible Interval Estimate Credible Interval Estimate Credible Interval 

fJo 5.36 (5.28, 5.44) 4.92 (4.50, 5.39) 4.84 (3.68, 6.08) 

PI (smoke) 0.0006 (0.0003, 0.0009) 0.0004 (-0.0002, 0.0009) 

P2 (fruit) -0.0099 (-0.0131, -0.0069) -0.0061 (-0.0128, 0.0012) 

P3 (veg) -0.0033 (-0.0048, -0.0019) -0.0033 (-0.0089, 0.0005) 

P4 (animal) 0.0331 (0.0167, 0.0498) 0.0155 (-0.0312, 0.0561) 

fJ5 (alcohol) -0.0003 (-0.0027, 0.0019) 0.0031 (-0.0034, 0.0092) 

fJ6 (gdp) 3.ge-07 (-4.1e-06, 4.ge-06) 

O'u 
2 0.0163 (0.0090, 0.0255) 0.0090 (0.0049, 0.0145) 0.0047 (0.0023, 0.0080) 

O'uv 0.0479 (0.0326, 0.0673) 0.0226 (0.0138, 0.0339) 0.0065 (0.0023, 0.0121) 

O'v 
2 0.1630 (0.1187, 0.2178) 0.0795 (0.0521, 0.1146) 0.0260 (0.0122, 0.0454) 

0'2 
y 0.0867 (0.0204, 0.2968) 
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Table 8.10 Effect size of covariates from two-and three-level full colorectal cancer models 

Covariate Min (country) Max (country) 2 level model 3 level model 

RR 95% CI RR 95% CI 

Smoking 1550 (Sweden) 3590 (Greece) 3.40 (1.84, 6.27) 2.26 (0.66, 6.27) 

Fruit 74.5 (UK) 142.6 (Greece) 0.51 (0.41, 0.63) 0.66 (0.42, 1.09) 

Vegetable 58.8 (Finland) 300.4 (Greece) 0.45 (0.31, 0.63) 0.45 (0.12, 1.13) 

Animal fat 2.3 (Greece) 26.8 (Luxembourg) 2.25 (1.51, 3.39) 1.46 (0.47, 3.95) 

Alcohol 60.0 (Greece) 173.9 (Germany) 0.97 (0.74, 1.24) 1.42 (0.68, 2.85) 
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In this study, the factors that were shown to have a significant association 

with European colorectal cancer mortality rates complemented other research on 

the disease (as discussed in Chapter 2). Smoking and animal fat consumption 

were shown to be strong risk factors for the disease, and fruit and vegetable 

consumption exert a protective effect on colorectal cancer mortality. Around 50% 

of the variation that was seen to exist between regions in the EU can be explained 

by taking account of these fairly crude measures of exposure to the given risk and 

protective factors. 

There was still a fairly high amount of variance evident even after adjusting 

for covariates, and modelling showed that around 68% of this is spatially 

patterned. This suggests that there are other factors not included in the study that 

are also spatially patterned that also influence colorectal cancer mortality. About 

75% of patients with colorectal cancer have sporadic disease in that there is no 

apparent evidence of having inherited the disorder (169), and the remaining 

patients have a family history suggesting a genetic contribution, common 

exposures among family members, or a combination of both. It is well established 

that gene frequency varies considerably from place to place, but usually there is 

little difference between neighbouring populations (158). Therefore, genetic 

susceptibility to the disease may be one of the underlying spatial factors showing 

a strong relationship with colorectal cancer. Some genetic mutations have been 

identified as the cause of inherited cancer risk; these mutations are estimated to 

account for only 5% to 6% of colorectal cancer cases overall and therefore it is 

likely that other undiscovered major genes and background genetic factors 

contribute to the development of colorectal cancer, along with nongenetic risk 

factors such as those previously discussed (169). It was noted that different types 

of health care provision play an important role in colorectal cancer incidence and 

mortality; this also may be a factor that is spatially patterned and could account 

for some of the unexplained spatially patterned variation. Similarly, the 

importance of country may relate to countrywide differences in screening 

practices. 
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8.4 Oesophageal Cancer Mortality 

Oesophageal cancer is one of the most deadly malignancies (58). In Europe, five­

year relative survival rates are around 10% with significant between country 

survival differences existing (170). Worldwide, cancer of the oesophagus is the 

sixth highest malignancy amongst men and ninth highest amongst woman (171). 

Cases of the disease are much more common in economically less developed 

regions and, although around 80% occur in such areas, it should still be 

approached as a public health concern in Europe. Substantial variation in 

incidence, and therefore mortality due to poor prognosis, has been observed in 

Europe; in Sweden, a low-risk country, the age adjusted incidence rates are 3.1 

and 1.0, in England and Wales 7.6 and 3.2, in Scotland 9.4 and 5.0 and in 

Calvados in France 22.3 and 1.1 per 100,000 person-years for men and woman 

respectively (172). The high between country variation within Europe and the 

very high fatality of oesophageal cancer patients emphasises the need for further 

investigation into its true distribution and the reasons for such patterns existing. 

8.4.1 Modelling Oesophageal Cancer Mortality 

As with previous cancers examined, spatial multilevel modelling techniques are 

used to examine the oesophageal cancer mortality patterns throughout eleven EU 

countries. As previously discussed, cancer of the oesophagus has been strongly 

associated with smoking and alcohol intake, and dietary factors (mainly the 

protective effects of fruit and vegetable consumption) have been shown to 

influence the patterns of the disease. Again, data that reflects different levels of 

these within the EU countries has been included in the models. The same group of 

models have been fitted as in previous sections; bum-in periods of 20,000, 

300,000 and 800,000 were needed for the null, two-level and three-level spatial 

models respectively. Further iterations of 100,000, 100,000, and 400,000 were run 

for the three models, respectively, to gain a suitable posterior distribution from 

which to sample from. It should be noted that, as with modelling colorectal 

cancer, many fewer further iterations would have sufficed for the null model. 
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8.4.2 Model Results: Oesophageal Cancer 

Tables 8.11 and 8.12 present the standardised mortality ratios and relative risks 

from fitting the 3 models. As in the previous sections the most extreme rates 

within each country are given. Table 8.13 shows the country-level SMRs and 

relative risks from fitting the three-level model. Table 8.14 gives the fIxed and 

random parameter estimates from each of the models and Table 8.15 shows 

relative risks comparing high and low levels of exposure to each of the covariates. 

The SMRs and relative risks from each model have been mapped and are 

displayed in Figures 8.9-8.12. 

8.4.2.1 Two-Level Null Model: Oesophageal Cancer 

Looking at Table 8.11 it can be seen that, based on the relative risks from the null 

model, the region with the highest risk of oesophageal cancer in the EU countries 

being examined is Copenhagen in Denmark with a very high relative risk of 4.40. 

This is followed by Nord-Pas-de-Calasis in France (RR=2.94) and Northern 

Ireland in the UK (RR=2.79) who, despite having a risk of oesophageal cancer 

much lower than Copenhagen, before taking account of any risk factors, still have 

a very high relative risk of the disease. The region with the lowest relative risk 

emerges to be the Algarve in Portugal with a risk of oesophageal cancer mortality 

70% lower than what is expected for that area. This is closely followed by 

Bornholm in Denmark (RR=0.35) and Vienna in Austria (RR=0.37). These 

figures alone display the very high variability of the disease both within and 

between countries in the EU. It is clear that regions within Denmark show the 

most variability in risks of oesophageal cancer mortality, and the country 

displaying the least amount of variability is Greece with very low relative risks 

ranging from 0.46 to 0.74. 

204 



Chapter 8 
Specific Cancers 

8.4.2.2 Oesophageal Cancer SMRs 

Comparing the relative risks to the SMRs displayed in table 8.11 it can again be 

seen that there are many discrepancies between the two. Much research on 

variability of disease within countries and across numerous countries often looks 

solely at age and sex standardised rates. This table, along with the similar tables 

for other cancers, clearly shows that spatially modelled risks, which should be 

closer to the true distribution of the disease, often differ very much from the 'raw' 

rates emphasising that such rates should be taken with caution. 

8.4.2.3 Oesophageal Cancer Disease Maps I (SMRs and Two-Level Null Model RRs) 

Figure 8.9 clearly shows that there is much clustering of SMRs within countries in 

the EU and also displays much variation between countries. The SMRs range 

from 0 to 5.33; this is an example of another problem when using these ratios. 

Since oesophageal cancer is not as common a form of malignancy as cancers such 

as lung cancer, sometimes an area, probably with a small population, will observe 

no deaths from the disease. In this case it is a fairly small region in Finland. The 

popUlation in this area is then presented as having zero risk of mortality from 

oesophageal cancer. This is however false and the modelling approaches 

subsequently used take this into account through modelling extra-Poisson 

variation. 

Figure 8.10 shows a much different picture of the distribution of 

oesophageal cancer mortality. The relative risks before taking account of risk and 

protective factors now show more variation within most of the countries. The 

relative risks range from 0.29 to 4.40. However, there are now fewer areas of 

extreme risk. Most of the high relative risks can be found in Denmark, France and 

the UK. Most of the regions with lower risk of oesophageal cancer than expected 

before taking account of risk factors are in Greece, West Germany, Sweden and 

Finland. 
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8.4.2.4 Two-Level Full Model: Oesophageal Cancer 

Mer adjusting for risk and protective factors (Table 8.12) shows that the relative 

risks for oesophageal cancer mortality predicted from the two-level model change 

somewhat. The most extreme risk of the disease can now be found in Azores , 

Portugal; taking into account Portugal's smoking and drinking habits and average 

fruit and vegetable consumption the risk of oesophageal cancer mortality is 3.9 

times higher than expected. Centro in Portugal has the second highest risk of 

oesophageal cancer mortality (RR=1.95), followed by Zeeland in the Netherlands 

(RR=1.70). Provence-AIpes-Cote d'Azur in France has the lowest risk of 

mortality after adjusting for covariates with a relative risk of 0.63, closely 

followed by Bremen in Germany (RR=0.66; not evident from table) and Uusimaa 

in Finland (RR=0.69). Regions within Finland display the least amount of 

variability in relative risks with a range of 0.69 to 0.98. 

Some extreme regions tend to be less extreme after adding the covariates; 

the relative risks in Copenhagen and Frederiksberg (city) and Stn?)rstrom reduce 

considerably after adjusting for the covariates. Therefore, after taking into account 

the fact that people living in Denmark have low fruit and vegetable consumption 

and high animal fat and alcohol intake, they actually have a much lower risk of 

oesophageal cancer mortality. Greece's relative risks, which were very low 

previously, grew closer to unity after adding the covariates. Greece have a 

"healthy" lifestyle in general, except for their smoking habits, in that they have 

very high fruit and vegetable consumption and very low animal fat and alcohol 

consumption; after taking this into account the relative risks of oesophageal 

cancer mortality are much higher. 

8.4.2.5 Three-level Full Model: Oesophageal Cancer 

Again it can be seen that the uncertainty attached to the relative risks is much 

greater after adding a third hierarchical level to the model. Many of the 

confidence intervals more than double in size. 
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As expected, the estimates of the relative risks in countries which generally 

had high risks previously increase somewhat; this can be seen for example in 

Denmark and the Netherlands. Similarly, those countries with clustering of low 

relative risks prior to adding the higher level such as Finland and Germany now 

have lower estimates. 

8.4.2.6 Oesophageal Cancer Disease Maps II (Two and Three-Level Full Model RRs) 

Again, adding the covariates gives a different picture of oesophageal cancer 

mortality (Figure 8.11). There is still a high amount of variation within and 

between countries. However, fewer regions now have very high (RR > 1.2) risk of 

mortality, due to the risk and protective factors explaining the reasons for some 

areas having such high risks. There are twenty nine regions that remain 

oesophageal cancer 'hotspots' and possibly need further investigation into why 

they are so. Apart from those in the UK and Sweden, these tend to be small 

clusters within France, the Netherlands, Austria, Denmark and Portugal. The areas 

of low risk that stand out on the map are regions in Finland, Portugal and Greece 

and clusters within France, Germany and Sweden. Again, it may be of interest to 

look at these areas on a smaller scale to try and determine why they have such low 

oesophageal cancer mortality after taking into account country level exposures to 

the significant risk factors. 

Finally, looking at the map of the relative risks, after adding country as a 

higher level to the model (Figure 8.12), there is more clustering evident within 

countries. All the regions within some countries are very homogeneous, eg 

Germany, Finland, Netherlands and Denmark, and some countries show two or 

three distinct clusters within the country, eg France, Austria and Greece. The last 

two maps give a smoother picture of the distribution of oesophageal cancer 

mortality in the EU. 
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i Region Oi SMR CI95%(SMR) RRme.n PI95 % 
8 Tirol 18 0.49 (0.29, 0.78) 0.98 (0.51, 1.86) 2 Burgenland 17 0.94 (0.54, 1.50) 0.98 (0.37, 2.65) Austria 
5 Upper Austria 38 81.1 0.47 (0.33, 0.64) 0.65 (0.36, 1.15) 10 Vienna 51 113.8 0.45 (0.33, 0.59) 0.37 _JQ.11 ,_!.08t 85 Copenhagen * 231 43.3 5.33 (4.67, 6.07) 4.40 (1.49, 13.8) 
90 Storstrom 77 20.7 3.73 (2.94, 4.66) 2.67 (1.58, 4.87) 

Denmark 
99 Nordjylland 159 35.2 4.51 (3.84, 5.27) 1.25 (0.52, 3.35) 
91 Bornholm 16 3.7 4.34 (2.48, 7.04) 0.35 (0.14, 1.01) 
123 Kymi 11 23.1 0.48 (0.24, 0.85) 1.14 (0.50, 2.50) 
130 Vassa 20 29.9 0.67 (0.41, 1.03) 0.97 (0.44, 2.08) 

Finland 
121 Keski -Suomi 6 16.1 0.37 (0.14, 0.81) 0.70 (0.37, 1.22) 
124 La,e,ei 10 11.7 0.85 (0.41, 1.57) 0.59 (0.22, 1.50) 
138 Nord-Pas-de-Calais 526 194.5 2.70 (2.48, 2.95) 2.94 (0.63, 13.8) 
141 Franche-Comte 83 61.2 1.36 (1.08, 1.68) 1.87 (0.99, 3.10) 

France 
151 Provence-Alpes-Cote d'Azur 271 271.5 1.00 (0.88, 1.12) 0.77 (0.49, 1.20) 
145 Aguitaine 215 178.9 1.20 (1.05, 1.37) 0.74 (0.37, 1.59) 
75 Baden-Wurttemberg 431 641.1 0.67 (0.61, 0.74) 1.15 (0.62, 2.03) 
78 Berlin 136 219.2 0.62 (0.52, 0.73) 1.12 (0.22, 5.36) 

Germany 
83 Saxony-Anhalt 106 179.8 0.59 (0.48, 0.71) 0.67 (0.37, 1.20) 
69 Hamburg 96 123.0 0.78 (0.63, 0.95) 0.51 (0.21, 1.232 
159 Macedonia West 8 18.2 0.44 (0.19, 0.87) 0.74 (0.33, 1.63) 
167 Aegean South 7 17.0 0.41 (0.16, 0.85) 0.72 (0.36, 1.43) 

Greece 
168 Segean North 3 18.7 0.16 (0.03, 0.47) 0.50 (0.25, 0.94) 
169 Crete 5 41.5 0.12 (0.04, 0.282 0.46 (0.14, 1.342 
238 Luxembourg 20 24.7 0.81 {0.49, 1.25} 0.90 {O.4l, 1.85} 
252 Zeeland 27 25.6 1.05 (0.69, 1.53) 1.46 (0.28, 8.02) 
243 Drenthe 22 29.5 0.75 (0.47, 1.13) 1.26 (0.64, 2.41) 

Netherlands 
241 Groningen 36 36.4 0.99 (0.69, 1.37) 0.75 (0.35, 1.68) 
246 Flevoland 5 10.9 0.46 (0.15, 1.07) 0.73 (0.35, 1.45) 
326 Azores 7 13.1 0.53 (0.21, 1.10) 1.83 (0.84, 4.03) 
322 Centro 81 121.8 0.67 (0.53, 0.83) 1.03 (0.75, 1.41) 

Portugal 
327 Madeira 19 12.8 1.49 (0.89, 2.32) 0.48 (0.17, 1.20) 
325 Algarve 9 26.0 0.35 (0.16, 0.66) 0.30 (0.07, 1.14) 

460 Malmohus 36 61.1 0.59 (0.41, 0.82) 2.63 (0.87, 7.50) 

458 Kristianstad 12 24.4 0.49 (0.25, 0.86) 1.14 (0.64, 1.92) 
Sweden 

469 Vasterbotten 9 19.1 0.47 (0.21, 0.89) 0.52 (0.24, 1.04) 

455 Jonko,eing 8 25.1 0.32 (0.14, 0.63} 0.51 (0.28, 0.87} 

565 Northern Ireland 126 90.3 1.40 (1.16, 1.66) 2.79 (0.63, 11.8) 

555 Merseyside 185 97.1 1.91 (1.64, 2.20) 1.64 (0.79, 3.32) 

UK 
529 Berkshire 48 45.0 1.07 (0.79, 1.41) 0.90 (0.55, 1.41) 

563 West Glamorgan 33 27.1 1.22 (0.84, 1.712 0.82 (0.41 , 1.57) 

*Copenbagen and Frederiksberg (city) 
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Figure 8.9 Map of oesophageal cancer SMRs 
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Figure 8.10 Map of oesophageal cancer RRs from null two-level model 
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Table 8.12 Relative risks (from two-and three-level full models) of mortality from oesophageal 
cancer for each countr extreme rates iven, ordered b decreasin RR from three-level model 
i Country Region 0; E; RRmean(2) PI95 %(2) RRmean(3) PI95 %(3) 
7 Styria 53 77.4 1.41 (0.98, 2.09) 1.06 (0.40, 3.07) 2 Burgenland 17 18.2 1.17 (0.60, 2.32) 1.00 (0.31, 3.54) Austria 
5 Upper Austria 38 81.1 0.90 (0.58, 1.38) 0.82 (0.30. 2.42) 10 UQQer Austria 51 113.8 0.76 (0.38, 1.51) 0.73 (0.~2,~A2) 85 Copenhagen * 231 43.3 1.63 (0.71, 3.82) 1.85 (0.38, 9.96) 90 Storstrom 77 20.7 1.59 (1.02, 2.50) 1.82 (0.51, 7.09) 

Denmark 
87 Frederiksborg 78 22.0 1.08 (0.61, 1.87) 1.36 (0.35, 5.64) 
93 Sondeg,Ylland 42 17.8 0.96 (0.65, 1.41) 1.30 (0.37, 4.81) 
119 Ahvenanmaa 0 1.8 0.98 (0.62, 1.53) 0.66 (0.22, 1.86) 
127 Pohjois-Karjala 14 11.7 0.89 (0.55, 1.42) 0.64 (0.21, 1.84) 

Finland 
129 Uusimaa 41 70.8 0.69 (0.45, 1.03) 0.57 (0.19, 1.53) 
121 Keski-Suomi 6 16.1 0.72 (0.45, 1.09) 0.56 (0.19, 1.52) 
138 Nord - Pas-de-Calais 526 194.5 1.51 (0.56, 4.17) 1.51 (0.39, 6.42) 
136 Basse-Normandie 180 78.3 1.41 (0.97, 2.11) 1.45 (0.57, 3.88) 

France 
152 Corsica 9 16.1 0.71 (0.29, 1.73) 0.74 (0.19, 2.90) 
151 Provence-Alpes-Cote d'Azur 271 271.5 0.63 (0.42, 0.92) 0.71 (0.27, 1.90) 
74 Rheinland-Palatinate 215 262.5 0.99 (0.71, 1.37) 0.75 (0.29, 2.18) 
70 Lower Saxony 378 514.7 0.97 (0.79, 1.19) 0.73 (0.31, 1.96) 

Germany 
84 Thuringen 76 160.5 0.76 (0.52, 1.08) 0.54 (0.20, 1.61) 
82 Saxon,Y 140 318.4 0.71 (0.46, 1.06) 0.53 (0.19, 1.65) 
157 Macedonia East and Thrace 16 37.3 1.06 (0.55, 2.07) 1.05 (0.18, 5.64) 
158 Macedonia Central 33 105.0 1.07 (0.63, 1.81) 1.04 (0.20, 5.02) 

Greece 
168 Aegean North 3 18.7 0.77 (0.47 , 1.24) 0.80 (0.15, 3.71) 
169 Crete 5 41.5 0.74 (0.36, 1.50) 0.77 (0.13, 4.10) 
238 Luxembourg 20 24.7 1.05 (0.61, 1.82) 1.20 (0.35, 4.26) 
252 Zeeland 27 25.6 1.70 (0.62, 4.87) 2.04 (0.42, 12.3) 
249 Utrecht 59 59.9 1.30 (0.80, 2.17) 1.76 (0.52, 7.10) 

Netherlands 
246 Flevoland 5 10.9 1.04 (0.60, 1.77) 1.44 (0.41, 5.97) 
248 Limburg 35 69.2 0.84 (0.52, 1.33) 1.30 (0.38, 5.18) 
326 Azores 7 13.1 3.90 (1.69, 9.33) 1.95 (0.34, 9.34) 
322 Centro 81 121.8 1.85 (1.29, 2.78) 1.39 (0.34, 4.52) 

Portugal 
324 Alentejo 21 44.2 1.14 (0.75, 1.73) 0.93 (0.22, 3.04) 
325 Algarve 9 26.0 0.76 (0.27, 2.03) 0.82 (0.13, 3.97) 

449 Blekinge 15 12.6 1.21 (0.69, 2.18) 1.12 (0.26, 4.29) 
466 Stockholm 80 115.8 1.13 (0.65, 1.98) 1.10 (0.26, 4.08) 

Sweden 
0.82 (0.21 , 2.73) 463 Ostergotland 8 31.8 0.78 (0.50, 1.17) 

455 Jonkoping 8 25.1 0.73 (0.47, 1.09) 0.81 (0.21, 2.70} 

565 Northern Ireland 126 90.3 1.51 (0.58, 3.95) 1.32 (0.29, 5.77) 

553 Greater Manchester 326 168.2 1.28 (0.87, 1.89) 1.25 (0.43, 3.43) 

UK 
529 Berkshire 48 45.0 0.81 (0.56, 1.14) 0.86 (0.30, 2.33) 

563 West Glamorgan 33 27.1 0.77 (0.46, 1.24) 0.85 (0.26, 2.56) 
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Figure 8.11 Map of oesophageal cancer RRs from full two-level model 
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Figure 8.12 Map of oesophageal cancer RRs from full three-level model 
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8.4.2.7 Country Level Oesophageal Cancer Results 

Comparing the country level relative risks obtained from fitting the full three-level 

multilevel model (Table 8.13) it can be seen that the Netherlands and Denmark 

have by far the highest risks of oesophageal cancer mortality (RR of 1.55 and 1.50 

respectively). The country with the overall lowest relative risk is, as expected, 

Finland (RR=0.62), followed by Germany (RR= 0.67). 

Table 8.13 Relative risks of mortality from oesophageal cancer at country level 

Country OJ Ej SMR CI95 % (SMR) RRmean PI95 % 

Austria 255 506.6 0.50 (0.44, 0.57) 0.88 (0.45, 1.84) 

Germany 3690 5316.7 0.69 (0.67, 0.72) 0.67 (0.34, 1.52) 

Denmark 1423 365.2 3.90 (3.70, 4.10) 1.50 (0.60, 4.05) 

Finland 192 314.7 0.61 (0.53, 0.70) 0.62 (0.29, 1.20) 

France 4835 3203.9 1.51 (1.47, 1.55) 1.01 (0.54, 1.96) 

Greece 181 690.3 0.26 (0.23, 0.30) 0.91 (0.26, 2.91) 

Luxembourg 20 24.7 0.81 (0.49, 1.25) 1.14 (0.51, 2.68) 

Netherlands 773 931.4 0.83 (0.77, 0.89) 1.55 (0.67, 4.27) 

Portugal 460 611.1 0.75 (0.69, 0.82) 1.16 (0.40, 2.67) 

Sweden 346 671.8 0.52 (0.46, 0.57) 0.96 (0.35, 2.35) 

UK 6071 3957.1 1.53 (1.50, 1.57) 1.02 (0.47, 2.12) 

8.4.2.8 Oesophageal Cancer Parameter Estimates 

The fixed parameter estimates from the full two-level model (Table 8.14) show 

that the country level covariates that are significantly affecting oesophageal 

cancer mortality whilst taking the other variables into account are smoking and 

fruit, vegetable and animal fat consumption. The estimate for smoking suggests 

214 



Chapter (j 
Specific Cancers 

that every increase of 100 cigarettes smoked per person per year is associated with 

an increase in the risk of oesophageal cancer mortality of about 17% 

(RR=exp{0.16}=1.17}. An increase in fruit consumption of 10 kg per person per 

year reduces the risk of oesophageal cancer by 28% (RR=0.72). A similar increase 

in vegetable consumption results in a relative risk of 0.63 and in animal fat 

consumption gives a relative risk of 2.16. 

The random part of the null model shows that the spatial variance, av 2, after 

taking the average number of nearest neighbours (n = 4.128) into account is 

0.180, resulting in a total variance of 0.228. Therefore, 79% of the total variance 

in oesophageal cancer mortality, before taking risk factors into account, arises 

from spatial effects. The total variance from the full two-level model is 0.078. 

Therefore, taking into account the measures of country level exposure to cigarette 

smoking and fruit, vegetable and animal fat consumption has reduced the overall 

variation in oesophageal cancer mortality by 66%. Sixty four percent of this 

remaining variation can then be attributed to spatial patterning in the data. 

Looking at the three-level model, it can be seen-that the parameter estimate 

for fruit consumption is the only variable that remains significant. After adding 

country as a level to the hierarchical model it can again be seen that there is more 

error attached to all the fixed parameter estimates with the posterior credible 

intervals being around three times wider in most cases. The intervals for the 

random parameters actually reduce in size; however, a large amount of the 

variation is now attributable to the third level, country. Partitioning the variance 

so that it includes a/ results in the total variance increasing to 0.353. The 

majority of the variance from this model is attributable to the differences between 

countries. 

8.4.2.8 Oesophageal Cancer Risk Factor Effect Size 

Concentrating on the significant parameter estimate relative risks from the two­

level model, Table 8.15, shows that smoking on average the same amount of 
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cigarettes as in Greece leads to a relative risk that is 26 times as high than if 

smoking was on the same level as in Sweden. Consuming an equivalent average 

amount of fruit as Greece reduces the risk of oesophageal cancer mortality by 

89% compared to the UK. Vegetable consumption on the same level as in Greece 

has a risk of mortality that is 67% lower than if consumption was on the same 

level as in Finland. Finally, animal fat consumption on the same level as in 

Luxembourg leads to a relative risk of oesophageal cancer 6.6 times what it would 

be if consumption was similar to Greece. 

8.4.3 Oesophageal Cancer Discussion 

Mortality patterns of oesophageal cancer are similar to other cancers in that it is 

clear from disease maps and estimates of relative risks that much variation exists 

both within and between countries in the EU. Some of this variation can be 

accounted for by taking into account country level risk and protective factors for 

the disease. This changes the pattern of mortality: it smoothes the distribution of 

the disease more and makes small clusters of extreme risks more evident. Mer 

such modelling, the most prominent areas with very low risk of the disease are 

South France, West Germany and some Scandinavian regions. Clusters of high 

risk that are clearly visible from this smoothed map are in North Portugal, North 

France, West Denmark, South Austria, the Netherlands and a few UK regions. 

It may be of public health interest to investigate why some regions in the EU 

remain as oesophageal 'hotspots' after accounting for exposure to known risk and 

protective factors. It could simply be that there are variations in levels of these 

factors within countries; this has not been taken into account, due to data 

availability, and may reflect the within country variations. Levels of exposure to 

the various factors would have to be examined at the regional level, at least, 

within these countries, and, if particularly high or low levels of exposure exist, 

specific countries may wish to aim public health promotions, specific to this 

disease, in these areas. 
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Table 8.14 Parameter estimates from modelling oesophageal cancer mortality rates 

Parameters Null 2 level Model Full 2 level Model Full 3 level Model 

Estimate Credible Interval Estimate Credible Interval Estimate Credible Interval 

Po 3.87 (3.71 , 4.03) 3.04 (2.31, 3.78) 3.34 (0.28 , 6.98) 

PI (smoke) 0.0016 (0.0011, 0.0021) 0.0010 (-0.0008 , 0.0020) 

P2 (fruit) -0.0326 (-0.0378, -0.0276) -0.0267 (-0.0444 , -0.0054) 

P3 (veg) -0.0046 (-0.0072, -0.0021) -0.0022 (-0.0095 , 0.0070) 

P4 (animal) 0.0768 (0.0495, 0.1058) 0.0481 (-0.0613 , 0.1342) 

Ps (alcohol) -0.0015 (-0.0052, 0.0022) 0.0045 (-0.0090 , 0.0154) 

P6 (gdp) 

(Ju
2 0.0475 (0.0171 , 0.1007) 0.0278 (0.0124, 0.0478) 0.0166 (0.0072 , 0.0290) 

(Juv 0.1659 (0.0970 , 0.2530) 0.0675 (0.0413, 0.1012) 0.0298 (0.0150 , 0.0491) 

(Jv 
2 0.7436 (0.5046 , 1.0130) 0.2052 (0.1292, 0.3065) 0.0890 (0.0465 , 0.1483) 

(J2 
y 0.3145 (0.0618 , 1.0790) 
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Table 8.15 Effect size of covariates from 2 and 3 level full oesophageal cancer models 

2 level model 3 level model 
Covariate Min (country) Max (country) 

RR 95% CI RR 95% CI 

Smoking 1550 (Sweden) 3590 (Greece) 26.10 (10.19, 69.49) 7.06 (0.20, 62.62) 

Fruit 74.5 (UK) 142.6 (Greece) 0.11 (0.08, 0.15) 0.16 (0.05, 0.69) 

Vegetable 58.8 (Finland) 300.4 (Greece) 0.33 (0.17, 0.61) 0.59 (0.10, 5.38) 

Animal fat 2.3 (Greece) 26.8 (Luxembourg) 6.57 (3.36, 13.36) 3.25 (0.22, 26.79) 

Alcohol 60.0 (Greece) 173.9 (Germany) 0.84 (0.55, 1.28) 1.66 (0.36, 5.80) 
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Some areas stood out visually on the disease map before adjusting for the 

various covariates, but after doing so the relative risks shrunk closer to unity. 

Therefore the risk of oesophageal cancer in these areas is affected by the 

significant risk factors in the modelling. These regions or clusters are also areas of 

public health concern; they may benefit further from health promotion in the areas 

of smoking and healthy eating. 

There is reasonable evidence that screening would result in no (or minimal) 

decrease in mortality from oesophageal cancer in the US population (173). After 

examining European survival rates, Faivre et al (170) concluded that stage of 

diagnosis and different types of surgery are likely to improve survival. However, 

there is no evidence of such health provisions affecting mortality rates, and 

therefore will not be affecting variations in European rates. This suggests that, if 

attempting to reduce oesophageal cancer mortality in 'hotspot' areas, prevention 

should be the focus. 

Obesity has emerged as a major risk factor for this disease with a positive 

association being shown to exist between BMI or relative weight and oesophageal 

cancer (59-63). Due to the unavailability of consistent obesity or BMI data across 

the various populations, this risk factor was not included in modelling. Hopefully 

the dietary factors will reflect levels of obesity in some manner. However, the 

unaccounted for BMI levels in the populations may explain some of the 

oesophageal cancer mortality 'hotspots'. 

It is somewhat surprising that alcohol intake is not a significant risk factor, 

at the population level, for oesophageal cancer mortality in the EU. As previously 

discussed (Chapter 2), the positive association between alcohol use and the risk of 

oesophageal cancer is well established, and many studies have shown it to be a 

strong risk factor. This suggests that alcohol levels within countries would be 

associated with the disease rates and this again may account for the clusters of 

very high (or low) rates. 

It was observed that the factors that have a significant positive association 

with European oesophageal cancer mortality rates were smoking and animal fat 
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consumption. The risk of dying from the disease was much higher in areas with 

high smoking level compared to low; the risk factor, 26.1, demonstrates the huge 

burden smoking has on this disease. Animal fat consumption also increases the 

risk of oesophageal cancer by a great amount and should be considered as an area 

on which to focus if aiming for prevention of the disease. As with all other 

cancers examined at the population level, fruit and vegetable consumption has a 

strong protective effect against this malignancy. Taking account of the country 

level measures of exposure to these diseases explained about 66% of the variation 

that existed between regions in the ED. 

The disease maps and model results showed that there was still a high 

amount of variation after adjusting for covariates and that around 64% of this is 

spatially patterned. The unexplained spatially-patterned variation again suggests 

there are other spatially-patterned risk factors for oesophageal cancer. The factors 

that may be causing the disease 'hotspots' could also be spatially patterned and 

account for some of this variation. Since gene frequency is often spatially 

patterned (158) it is not unreasonable to consider this flS an unaccounted for factor 

that is affecting the disease. It has been reported that there is apparent familial 

clustering of oesophageal cancer patients (174, 175) but it is unclear whether this 

represents a common exposure to environmental factors or a genetic 

predisposition. There is only one, rare, recognised genetic abnormality that 

predisposes patients to a type of cancer of the oesophagus (176). However, further 

research is needed in this area and it cannot be ruled out as a spatially patterned 

factor affecting the disease. 

8.5 Comparing Cancer Patterns 

To compare cancer mortality patterns across the ED, disease maps were examined 

and have proved a very useful tool for analysing the spatial patterns of cancer 

mortality throughout Europe. The maps provide a clear picture of the estimated 

risk of the specific cancers across the regions of interest. However, mapping 

estimates from different models can provide different pictures and interpretations 
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of the distribution of the disease. Maps were produced of the risk of the disease 

without adjusting for any covariates. These provide a true reflection of cancer 

rates across the EU and one can be fairly confident that areas which stand out as 

having extremely high rates are actually disease 'hotspots'. Such maps do not give 

explanations as to why areas have extremely high (or low) rates of the disease but 

do indicate where further public health intervention may be required. In an 

attempt to explain such patterning of the disease, relative risks were modelled 

after adjusting for various covariates that were thought to be influencing the rates 

of the disease. A comparison across both maps would show if the risk in areas that 

were previously standing out as 'hotspots' has reduced. If so, this would suggest 

the covariate( s) have explained these high rates, eg if smoking is a strong 

significant covariate in the model this would suggest the high rates of, say, lung 

cancer mortality can be explained by the country's smoking levels. This would 

then give scope to introduce public health policy on reducing smoking in that 

area. Areas that remain as hotspots after adjusting for risk factors gives an added 

piece of information in that some other factor, not accounted for in the modelling, 

is causing these areas of high risk. The region could perhaps have higher (or 

lower) levels of exposure to the covariates than the country on average or perhaps 

some other unaccounted for factor is causing the hotspot such as a social or 

lifestyle factor that has not been taken into account or an area of point-source 

pollution. Disease maps after adjusting for covariates may be useful to public 

health specialists who may be able to identify or recognise the patterns as those 

relating to other covariates. Overall, when modelling we wish to compare rates 

across regions allowing for varying age and sex structure of the populations as it 

is known these are affecting cancer mortality. However, there is obviously no 

wish to change the age and sex structure of a population to influence these rates. 

In contrast, it is often of public health interest to change the levels of other factors 

which vary across regions and influence the mortality rates. For this reason, it is 

appropriate to always standardise for age and sex but fit both unadjusted and 

adjusted models with regards to other factors such as diet and smoking. This 
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allows comparison and interpretation of various disease maps as discussed above 

and hopefully determines where and what public health interventions are needed. 

The three cancers examined in this chapter are different in many respects. 

The number of deaths within the eleven EU countries varies substantially between 

the malignancies; the total number of lung cancer deaths was 123,253 in 1991, 

colorectal cancer deaths totalled 80,777 and oesophageal cancer deaths totalled 

18,246. 

The risk/protective factors which were identified in this study as 

significantly affecting each of the cancers were smoking, fruit consumption and 

vegetable consumption, with smoking, as expected, being a risk factor and fruit 

and vegetable consumption exerting protective effects against the diseases. 

Animal fat consumption was shown to be a significant risk factor for colorectal 

and oesophageal cancer mortality. The effect sizes of these risk and protective 

factors differed between the three cancer types. Smoking, as expected, was a 

strong risk factor for each group of mortalities. However, the highest risk from 

smoking was observed with oesophageal cancer, which had a relative risk three 

times as high as the risk associated with lung cancer. The associations fruit 

consumption had with lung and colorectal cancer mortality rates were similar; this 

was also the case for vegetable consumption. Again, oesophageal cancer had the 

strongest relationship with both of these risk factors. Consumption of animal fats 

increased the risk of both colorectal and oesophageal cancer mortality, and again 

the association with the latter was the strongest. 

The covariates that were found to be associated with the specific cancers do, 

in general, tie in with existing literature on cancer mortality risk factors. However, 

as discussed in Chapter 2, several epidemiological studies have shown a link 

between oesophageal cancer and alcohol intake, but this was not found in this 

study. This could be due to the variable being used to account for alcohol intake 

not being the most appropriate, or the fact that the variable is at country level. A 

more specific type of alcohol, instead of all alcohols, or perhaps alcohol data 

which is of a lower form of aggregation would have to be examined to show 
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evidence of a significant effect. Other examples of strong associations that have 

been shown to exist in literature but are not apparent in this study are the link 

between socio-economic status and lung cancer and animal fat consumption and 

colorectal cancer. Again, more appropriate types of data may be needed to show 

such effects. On the other hand, we found an association between colorectal 

cancer mortality and smoking levels, but there is inconsistent evidence of an 

association in existing literature. It may also be useful to include other risk factors 

that were mentioned in Chapter 2 such as consumption levels of fish or fish oil 

which has been shown to have a protective effect on colorectal cancer. 

The variability across relative risks of cancer mortality also varied from site 

to site; the relative risks after taking into account the relevant risk and protective 

factors ranged from 0.70 to 1.48 for lung cancer, with an inter-quartile range of 

0.94 to 1.07, colorectal cancer was similar, ranging from 0.50 to 1.49 (inter­

quartile range 0.95 - 1.07), and oesophageal cancer ranged from 0.63 to 3.9 (inter­

quartile range 0.88 -1.14). Similar results were observed across cancer sites when 

examining the random part of the models, with the total variation in the specific 

cancer mortality relative risks being reduced by a half or more through adjusting 

for risk and protective factors. Of the remaining variation, around 60% is 

attributable to the spatial patterning of each of the diseases. 

Examining cancer mortality from all sites together (Chapter 5) gave relative 

risks, after adjusting for risk factors, which range from 0.85 to 1.29 (inter-quartile 

range 0.95 - 1.05). The risk factors shown to significantly affect all cancer 

mortality when comparing areas of high and low exposure were smoking 

(RR=2.99) and fruit (RR=0.58), vegetable (RR=0.72) and animal fat (RR=2.03) 

consumption. Modelling all cancer mortality together showed that there was a 

65% reduction in the total variation of relative risks after adjusting for the risk and 

protective factors. It also showed that 85% of the remaining variation was due to 

spatial effects. Despite the similarities these results have with those predicted 

from modelling the three specific cancers, grouping all cancers together is 
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concealing different patterns in mortality from individual cancer sites and 

different relationships these have with risk factors. 

Although similarities were observed, there is evidence of differences III 

European patterns of cancer mortality at the different cancer sites, suggesting that 

it makes sense to examine mortality patterns separately for specific malignancies. 

Examining the spatial mortality patterns for all cancers together is informative and 

is used as a way of determining cancer burden (177). However, most recent 

research in European cancer mortality also examines specific cancer mortality (2, 

10, 148, 149, 152, 160, 178-181). These studies complement the work carried out 

in this chapter by suggesting that examining specific cancer mortality allows the 

burden of cancer to be delineated in more detail. 

A final similarity that was observed across cancers was that Finland 

consistently had low risks of the disease. Effective measures were adopted on 

tobacco as well as on diet in Finland, and it has shown that total cancer mortality 

declined by over 40% in males aged 55 to 64 over a forty-year period up until 

1994 (182). This country is considered to have the most effective overall 

programmes to reduce cancer mortality (179) and indicates the importance and 

scope for intervention on cancer control on population level in the EU. Much of 

the European cancer mortality observed here is, at least in theory, highly 

preventable with some regions, previously mentioned, reqUlnng urgent 

preventative intervention on tobacco and diet modification. 

Although the main purpose of this chapter was to explore the spatial 

distribution of cancer mortality in the EU, examining the various datasets 

provided an opportunity to explore further the effects of introducing a third higher 

level to the spatial model. Adding country as a higher level (random effect) takes 

into account the fact that areas within a country are more likely to be 

homogeneous than regions from different countries. The fact that regions are not 

independent has been taken into account through the spatial part of the model but 

including a higher country level takes account of the fact that there may be added 

differences at the borders where neighbours may be more heterogeneous. This 
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would probably be due to political and cultural differences and differences 

between health care systems across the nations. However, the disease maps from 

such models tended to over-smooth within countries and over-emphasize 

differences between countries and therefore appear to be useful for examining 

country level differences but are of limited use for determining the effect risk 

factors have on cancer rates in these countries and for providing smooth disease 

maps that enable cancer 'hotspots' to be identified. 
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Chapter 9 

9 Discussion 

9.1 Conclusions 

The general aim of this thesis is to develop existing spatial modelling methods to 

provide an accurate account of the spatial patterning of cancer mortality across 

Europe. This task was effectively split into two parts; an ecological analysis on 

the burden of cancer mortality in Europe and the development of spatial 

multilevel models to analyse regional mortality data across various countries. 

The ecological analysis initially involved identifying risk and protective 

factors for specific cancers and obtaining data that reflect the different levels of 

these factors. Examining the fixed parameter estimates from modelling these data 

allowed the relationship between the geographical variation of cancer mortality 

and the various explanatory covariates to be described. The random parameter 

estimates allowed the assessment of the contribution spatial factors have upon the 

disease. Relative risks of mortality were predicted from the models and used to 

provide smoothed disease maps of the risk of all cancer mortality and three 

specific cancer mortalities. Various maps were examined for each group of 

cancers enabling an overall assessment of the true underlying distribution of the 

disease. Variability within and between countries was evident across Europe for 

each of the cancer groups examined. Much of this variation could be accounted 

for by risk factors such as smoking and diet, which had strong yet differing effects 

on each of the cancer groups. Accounting for spatial effects was also shown to 

reduce variation in cancer mortality substantially across the EU. Cancer 'hotspots' 
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were identified and we provided evidence that urgent preventative public health 

intervention is required in many European regions. 

Developing the spatial multilevel model involved extending work by 

Langford et al (6) in which they proposed a model with correlated random effects. 

This model had been fitted using Empirical Bayes procedures and was further 

explored in this thesis by fitting it to cancer mortality data across various 

countries. Using iterative generalised least squares procedures to fit this model 

had its disadvantages, one being the restrictions on adding further hierarchical 

levels. To overcome this problem the model was further developed using Markov 

Chain Monte Carlo (MCMC) procedures and overall resulted in a more flexible 

set of disease mapping models. Using this fully Bayesian approach gave the 

means to extend the model by adding a higher geographical level and the effects 

of doing so were explored; there was the suggestion that, depending on the 

specific reason for producing the disease map, adding a higher level to the 

multilevel model, such as country, often proved not useful. The models proposed 

in this thesis were compared to existing spatial models that can be implemented in 

the software MlwiN; the multiple-membership multiple-classification (MMMC) 

model and the conditional autoregressive (CAR) model. Overall the fully 

Bayesian spatial multilevel model proved to be more accurate and efficient at 

disease-risk estimation. 

9.2 Limitations and Further Work 

There are limitations to this study in the form of data available to carry out the 

ecological analysis, methods used to describe cancer mortality risk and further 

modelling issues that were beyond the scope of this PhD. These are discussed 

below with indications of areas where further work would be of interest. 
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9.2.1 Limitations with Data and Methods 

There are some disadvantages to this type of ecological study even before any 

analysis has been carried out. All of the data are in the form of aggregate 

information, but an ideal situation would be to have data available at the 

individual level where, obviously, much more information would be available. 

However, this study was carried out on such a large scale geographically that 

obtaining this type of information is virtually impossible. The conclusions that 

have been drawn throughout the thesis on the burden of cancer mortality come 

under the risk of being affected by ecological fallacy whereby observations based 

on aggregate data are improperly inferred to an individual level. For these reasons 

it is important to make it clear that conclusions referring to the risk and 

distribution of cancer are being made about populations, mainly at a regional 

level. 

Due to data availability, most of the risk factor data were only available at 

country level. This high level of aggregation is again not ideal due to the loss of 

information. However, it was shown that these fairly crude measures of exposure 

to the various risk factors are very useful, as they were shown to be significant 

predictors of the disease and they helped to explain a high amount of variation in 

all of the models explored. Once again care should be taken when interpreting the 

results from modelling the data; the risk factors tend to explain the differences 

between the countries and variation that remains between regions within countries 

could reflect the regional differences in these risk factors. 

Another limitation was choosing which time period most closely reflects 

population's accumulated lifetime exposures to the risk factors. The time period 

chosen, approximately the same period as for the mortality data, was perhaps not 

ideal and it would be of interest to explore the effects of using different time , 
periods or perhaps more than one time period. 

There are issues concerning the quality of the mortality, population and risk 

factor data. When collecting health data over such a large geographical area, 

recording and handling of the data varies between countries and inevitably this 
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results in variations in data availability and accuracy. Organisations like WHO 

carry out vigorous data checking procedures to minimise poor data quality but, 

since we are relying on many sources of data collection, these problems will exist. 

In this study one should remain aware that conclusions being drawn are fairly 

crude and tend to be used as an exploratory tool and for the generation of 

hypotheses about individual risks from the disease. 

As discussed above, missing data are also inevitable in this type of study. 

From the initial mortality and population data discussed in Chapter 3 it was seen 

that data availability is very poor for eastern European countries. This was the 

main motivation for concentrating on western European countries, where data are 

much more abundant and more countries have data available at the lowest level of 

aggregation. However, missing data were still a problem when examining cancer 

mortality in the EU as three countries have missing data for the time point of 

interest. For the EU, population and mortality data tends to be available for at 

least two of the four time points, and further work incorporating time in the 

modelling would help to overcome some problems. Extending the models to 

examine spatiotemporal effects would use more of the information that is 

available and provide disease maps of the whole of the EU. Perhaps more 

importantly, considering an analysis with an added temporal dimension would 

allow the examination of the change in disease distribution and covariate effects 

over time. In theory, this could be easily implemented: the spatial multilevel 

model could be extended by adding a further lower level and modelling the 

temporal trend as a random effect. A further time/year level would enable the 

inclusion of up to four years of data per area. 

Examining only the EU data means much of the European mortality data is 

being discarded. It would be of interest to explore cancer patterns for the countries 

farther east in Europe. An initial analysis looking at Europe as a whole was 

carried out and briefly discussed in Chapter 5, and it emerged that the countries in 

Eastern and Western Europe behaved very differently in terms of distribution of 

the disease risk. This along with the fact that eastern Europeans have vcrv 
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different lifestyle habits to those in the EU suggests that it does not make sense to 

model all of the countries together. It would make sense to carry out separate 

analyses and compare the results for the different groups of countries. To do so 

one would have to consider where to split Europe. Choosing to examine the EU 

was simply based on geopolitical borders. However, this does not necessarily 

mean that comparing the EU with eastern and central Europe would be the best 

statistical comparison. An initial analysis would need to be carried out to 

determine which countries are the most similar in terms of cancer risk and 

lifestyle habits and comparison groups could be drawn from these. 

To provide a good overview of the spatial distribution of cancer mortality, 

all cancers grouped together were modelled and also two of the most common 

cancers, lung and colorectal, were examined along with oesophageal cancer which 

is one of those most deadly malignancies. However, there are other cancers that 

add to the burden of cancer mortality in Europe. Four other groups of malignant 

neoplasms are available from the WHO dataset, and examining the spatial patterns 

of these would provide a more comprehensive overv.iew of the European cancer 

risk. There are also other causes of death available from the WHO mortality 

dataset which pose a burden on health in Europe. Applying the same models to 

different causes of mortality would describe the distribution of risk from these 

other diseases and their relationships with certain risk factors, and would provide 

information on where further public health interventions may be required. A 

further extension to the spatial multilevel model is to predict more than one 

outcome simultaneously (102) and potentially, with the availability of various 

mortality data, multiple causes of death could be examined. 

As discussed in Chapter 8 there is abundant research suggesting that certain 

genes or gene mutations predispose people to cancers and with deadly cancers, 

such as lung or oesophageal, genetic predisposition is therefore related to 

mortality rates of the disease. There is much ongoing research into pinpointing 

specific genes that are related to specific cancers, and there is some existing 

research that suggests that gene frequencies have spatial patterning. However, 
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more work is needed with regards to the geographical patterning of the gene 

frequencies related to cancers and their interactions with the environment and 

lifestyles of popUlations. 

9.2.2 Modelling Issues 

The addition of further hierarchical levels to the initial spatial multilevel model 

was explored using an MCMC framework. Adding a higher geographical level 

takes account of the fact that regions within the same country are more 

homogeneous than regions in different countries. Multilevel modelling aims to 

produce more accurate estimates by taking account of the non-independence at the 

lower levels. However, in this case regional non-independence has already been 

taken account of by fitting the spatial model, and when country level is added it 

appears to cause further uncertainty in the residuals and parameter estimates. This 

was evident in each model that was fitted, but further exploration into why this is 

happening would be useful to determine when adding the higher geographical 

level is appropriate. It appears from this analysis that it may only be useful for 

determining country effects and in fact not useful for mapping the distribution of 

the disease. 

The deviance information criterion (DIC) was used to aid model selection 

but gives little help in assessing how well the models fitted the data. Residuals 

were examined to informally assess overall goodness-of-fit but there is a lack of 

literature on measuring model fit for complex multilevel models. There is scope to 

carry out further work on this set of models to determine a method of assessing 

model fit. 

It would be of interest to extend this study and carry out work that examines 

the effect different prior distributions have on model fit. Several different prior 

distributions for the variance parameters would have to be identified and fitted to 

the spatial multilevel model that was chosen as the 'best' disease mapping model. 

Various sets of priors could be fitted to the datasets already examined and 

parameter estimates and coverage of confidence intervals could then be compared. 
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Alternatively, a method that may be more informative is a simulation study. This 

would involve simulating many datasets from the same distributions and using 

each set of chosen priors, fit the model to these datasets. For each set of priors, 

parameter estimates are obtained by finding the mean values over the numerous 

simulations; these can then be compared on the basis of how biased the methods 

are and how well the confidence intervals they produce cover the data. This 

method has the advantage of the true 'answers' being known. 

A final limitation to the modelling methods is the length of time it takes to 

fit the spatial multilevel model with correlated random effects using MCMC 

methods. The number of iterations and time required to run a suitable number of 

simulations were very high. This situation is obviously not ideal, especially as 

there is scope to expand the data to include more countries and timepoints which 

would result in slowing the process down further. The model is complex and 

inevitably will take numerous MCMC runs to fit. However, it would be of interest 

to examine the effect different prior distributions have on modelling time 

required. This could be monitored whilst carrying out the simulation study 

discussed above. 
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Appendix 1: WHO European Region 

AI.I EU members 

EU Member States 

Previous to October 2004 After October 2004 

Austria 

Belguim 

Denmark 

Finland 

France 

Germany 

Greece 

Ireland 

Italy 

Luxembourg 

Netherlands 

Portugal 

Spain 

Sweden 

UK 

Cyprus 

Czech Republic 

Estonia 

Hungary 

Latvia 

Lithuania 

Malta 

Poland 

Slovakia 

Slovenia 

Appendix 1 

233 



Appendix 1 

A1.2 Region names for codes given in Tables 3.2 - 3.5 

Country Region name (WHO code) 
Austria Burgenland (ATOl) Vorarlberg (AT08) Vienna (AT09) 

Azerbaijan Other regions (AZOl) Nakhichevan (AZ03) Baku (AT04) 

Belarus Grodno (BY02) Minsk city (BY04OI) Vitebsk (BY06) 
Gomel (BY03) 

-

Belgium Flemish Region (BEl) Walloon Region (BE2) Brussels (BID) 

Bulgaria (BG02) Plovdiv (BGOS) Sofia city (BG07) 

Mikhaylovgrad (BG04) Razgrad (BG06) 

Czech Prague (CZOl) Jihomoravsky (CZ03) Severomora-vsky (eZ05) 

Re~ublic Jihoeesky (CZ02) Stredoeesky (CZ06) 

Denmark Copenhagen and (DKOll) Frederiksborg 
-------"- ---

(DK013) Bomholm (DK023) 

Frederiksberg (city) Roskilde (DK014) Sonderjylland (DK032) 

CoQenhagen (DKOl2) 

Finland Ahvenanmaa (FLOl) Mikkeli (FL07) Oulu (FLU) 

Lappi (FL06) Uusimaa (FL08) 

France TIe de France (FROl) limousin 
-- --

(FR63) 
----,----

Corsica (FR83) 

Pays de la Loire (FRSl) - ----~--
-

Germany Hamburg (DE2) Berden Wurttem-berg (DEB) Saxony (DEE) 

Bremen (DE4) Brandenburg (DEC) Berlin (West) (DEBW) 

North Rhine-WestJ>halia (DES) -- ------ ----- - ------

Greece Attica (GR3) Ionian Islands (GR22) Aegean North (GR42) 

Macedonia Central 
(GRI2) Aegean South (GR4l) 

Hungary Budapest (HU05) Komarom-Esztergom (HU12) Nograd (HU15) 

Fejer (HU07) Somogy ~l_~_ 
(HU16) 

Italy Lombary (IT2) Liguria (lT13) Puglia (IT9I) 

Valle d' Aosta (lTl2) (IT33) (IT93) 

Kazakstan South Kazakstan (KZ03) Atyrau (KZ06) _TurgC!}' (KZ16) 
--- ---

Kyrgystan Bishkek (KGOI) Issyk-Kul (KG04) Talas (KG07) 

Dzhalal-Abad 
(KG03) Osh (KG06) 

-

Netherlands Groningen (NUl) Noord-Brabant (NlSI) Zeeland (NL74) 

Flevoland (NU5) Zuid-Holland 
(NL73) 

-- --

Norway Finnmark (NOO3) Oslo og Akershus (NOlO) Rogalnd (NOI2) 

Hedmark (NOO4) 0stfold (NOll) 
---

Poland Chelm (PL05) Legnica (PL19) Nowy Sacz (PU4) 

Katowice 
(PU3) Lodz (PUI) Sieradz 

(pL36) 

(PU6) ------
(PT14) 

Portugal Azores (PT2) Norte (PT11) _A!entejo_ 
----

Romania Arad (ROO2) Bucharest (ROlO) Iasi (R025) 

(ROO4) Covasna 
(R0l6) Vaslui 

(R039) 

Bacau (ROO8) 
Brasov Moskow city (RU0314) 

Russian Tura (RUlOO5) Pskov (RU0203) 

Federation Chukotka 
(RUll09) St Petersb~ _ (RU0204) 

-

_ __ (SKO~ _ Za~doslove!1~ky (SK04) 

Slovakia Bratislava 

(Continued over page) 
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Spain Asturias (ES12) Extremadura 
- ----

(ES43) Ceutay Melilla (ES63) 
Madrid (ES3) Andalusia (ES6l) Canary Island 

(ES?) Sweden Gavleborg (SE04) Jamtland (SE07) Stockholm (SE19) 
Gotland (SE05) Norrbotten (SEl4) 

Switzerland Appenzell-Inner Rhoden (CH03) 
- - --

Basle city (CH05) Zug (eH25) 
Basle (CH04) Uri (CH22) Zurich (CH26) 

Tajikistan Dushanke (nOl) Kuliabsk (rJ04) Other regions (f107) 
Gomo-Budakhshan (rJ02) Khudzand (rJ05) 

----- -----
Turkmenistan Ashgabat (fMOl) Tahauz (fM04) __ Otherr:~onli ___ (fM05) 
Ukraine Chernihiv (UAOlO2) Kiev city (UA01l4) Kirovohrad (UA0304) 

Chermihiv (UAOlO3) Donetsk (UA0302) _ ?-aP()rizlrya (UA0308) 

United Bedfordshire (UK511) East Sussex (UK53l) Powys (UK914) 
Kingdom Berkshire (UK52l) Greater London (UK55) Northen Ireland (UKB) 

Buckinghamshire 
(UK522) 

Isle of Wight 
(UK562) 

------- -----

Uzbekistan Dzhizak (UZ03) Syr-Darya (UZll) Tashkent city (UZ13) 
Samarkand (UZ09) 

Yugoslavia Montenegro (YUOl) Serbia (YU03) 



Appendix 2 

Appendix 2: WinBugs code 

A2.1 Code for Multiple-Membership Multiple Classification (MMMC) model 

#----MO DEL Defin ition----------------

model 
{ 
# Level 1 definition 
for(i in 1 :N) { 
deaths[i] - dpois(mu[i]) 
log(mu[i]) <- offs[i] + beta[1] 
+ beta[2] * smoke[i] 
+ beta[3] * fruit[i] 
+ beta[4] * veg[i] 
+ beta[5] * animal[i] 
+ beta[6] * alcohol[i] 
+ beta[7] * GDP[i] 
+ u2[region[i]] 
+ weight1 [i] * u3[neigh1 [i]] 
+ weight2[i] * u3[neigh2[i]] 
+ weight3[i] * u3[neigh3[ij] 
+ weight4[i] * u3[neigh4[i]] 
+ weight5[~ * u3[neigh5[ij] 
+ weight6[i] * u3[neigh6[i]] 
+ weight7[i] * u3[neigh7[i]] 
+ weight8[i] * u3[neigh8[i]] 
+ weight9[i] * u3[neigh9[i]] 
+ weight10[i] * u3[neigh1 O[i]] 
+ weight11 [i] * u3[neigh11 [i]] 
+ weight12[i] * u3[neigh 12[i]] 
} 
# Higher level definitions 
for 0 in 1 :n2) { 
u2D] - dnorm(0,tau.u2) 
} 
for 0 in 1 :n3) { 
u3D] - dnorm(0,tau.u3) 
} 
# Priors for fixed effects 
for (k in 1 :7) { beta[k] - dflatO } 
# Priors for random terms 
tau.u2 - dgamma(0.001 000,0.001 000) 
sigma2.u2 <- 1/tau.u2 
tau.u3 - dgamma(0.001 000,0.001 000) 
sigma2.u3 <- 1/tau.u3 
} 

230 



A2.2 Code for Conditional Autoregressive (CAR) model 

#----MODEL Definition----------------

model 
{ 
# Level 1 definition 
for(i in 1 :N) { 
deaths[i] - dpois(mu[i]) 
log(mu[i]) <- offs[i] + beta[1] * smoke[i] 
+ beta[2] * fruit[i] 
+ beta[3] * veg [i] 
+ beta[4] * animal[i] 
+ beta[5] * alcohol[i] 
+ beta[6] * GDP[i] 
+ carmean + u2[region[i]] 
+ u3[region[i]] 
} 
# Higher level definitions 
for 0 in 1 :n2) { 
u2m - dnorm(0,tau.u2) 
} 
u3[1 :n3] - car.normal(adjD,weightsD,numD,tau.u3) 
# Priors for fixed effects 
for (k in 1 :6) { beta[k] - dflatO } 
carmean - dflatO 
# Priors for random terms 
tau.u2 - dgamma(0.001 000,0.001 000) 
sigma2.u2 <- 1/tau.u2 
tau.u3 - dgamma(0.001 000,0.001 000) 
sigma2.u3 <- 1/tau.u3 

Appendix 2 
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A2.3 Data file for spatial multilevel model fitted in equations (6.5) and (6.6) 

#----Data File------------------------------___ _ 

Iist(N= 187, 
R2 = structure( 
.Data = c(0.0055, 0.002, 

0.002, 0.055), 
.Dim = c(2,2)), 

region = c(1 ,2,3,4,5,6,7,8,9,10,11,12, ... ,187) 
neigh1 = c(6,8,9, 18, 18,8, 18, 18,8,61 ,12,92, .. .',186), 
neigh2 = c(3,7,8,6, 7,5,8,9,3,34,10,91, ... ,1), 
neigh3 = c(1 ,6,6,5,6,4,5,7,1 ,22,1 ,89, ... ,1), 
ne~gh4 = c(1 ,5,4,3,4,3,2,6,1 ,12,1 ,25, ... ,1), 
ne~gh5 = c(1 ,1 ,1 ,1,2,2,1 ,3,1 ,11,1 ,24, ... ,1), 
ne~gh6 = c(1,1,1,1,1,1,1 ,2,1,1,1,22, ... ,1), 
nelgh7 = c(1, 1,1,1,1,1,1,1,1,1,1,21, ... ,1), 
neigh8 = c(1 ,1,1,1,1,1,1,1,1,1,1,15, ... ,1), 
neigh9 = c(1,1,1,1,1,1,1,1,1,1,1 ,14, ... ,1), 
neigh10 = c(1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,13, ... ,1), 
neigh11 = c(1,1,1,1,1,1,1,1,1,1,1 ,11 , ... ,1), 
neigh12 = c(1,1,1,1,1,1,1,1,1,1,1,10, ... , 1), 
weight1 = c(0.500,0.250,0.200,0.250,0.200,0.167 ,0.250,0.167 ,0.500,0.200,0.500.0.083 •... ,1 .000). 
weight2 = c(0.500,0.250.0.200,0.250,0.200,0.167.0.250,0.167,0.500.0.200,0.500,0.083 •... ,0.000), 
weight3 = c(0.000,0.250,0.200,0.250,0.200.0.167,0.250,0.167 .0.000,0.200.0.000,0.083, ... ,0.000). 
weight4 = c(0.000,0.250,0.200,0.250,0.200,0.167,0.250,0.167 .0.000,0.200,0.000,0.083 •... ,0.000), 
weight5 = c(0.000,0.000,0.200,0.000,0.200,0.167.0.000.0.167 ,0.000.0.200,0.000,0.083, ...• 0.000), 
weight6 = c(0.000.0.000,0.000,0.000,0.000,0.167 ,0.000,0.167 ,0.000,0.000,0.000.0.083 •... ,0.000), 
weight7 = c(O.OOO,O.OOO,O.OOO,O.OOO,O.OOO,O.OOO,O.OOO.O.OOO.O.Ooo,0.000,0.000,0.083, ... ,0.000), 
weight8 = c(O.OOO.O.OOO,O.OOO.O.OOO,O.OOO,O.OOO,O.OOO,O.OOO,O.OO0,0.000.0.000.0.083 •...• 0.000). 
weight9 = c(O.OOO,O.OOO,O.OOO,O.OOO,O.OOO.O.OOO,O.OOO,O.OOO,O.OO0,0.000,0.000,0.083, ... ,0.000), 
weight10 = c(O.OOO,O.OOO,O.OOO,O.OOO,O.OOO,O.OOO,O.OOO,O.OOO.O.OO0.0.000.0.000.0.083, ... ,0.000). 
weight11 = c(O.OOO,O.OOO,O.OOO.O.OOO,O.OOO.O.OOO,O.OOO.O.OOO.O.OO0.0.000.0.000.0.083 •...• 0.000). 
weight12 = c(O.OOO.O.OOO,O.OOO,O.OOO.O.OOO.O.OOO.O.OOO.O.OOO,O.OO0,0.000.0.000.0.083 •...• 0.000). 
smoke = c(221 0.0,221 0.0,221 0.0,221 0.0.221 0.0,221 0.0,221 0.0.221 0.0.221 0.0.2360.0.2360.0. 
2360.0,2360.0 •... ,221 0.0), 
fruit = c(139.2, 139.2,139.2,139.2,139.2,139.2.139.2,139.2.139.2,118.8,118.8.118.8 •...• 74.5). 
veg = c(80.6,80.6,80.6,80.6,80.6,80.6,80.6,80.6,80.6.78.6,78.1 ,78.1, '" .88.2). 
animal = c(21.1 ,21.1 ,21.1,21.1,21.1,21.1.21.1,21.1.21.1,19.9,19.9, 19.9 •...• 9.7), 
alcohol = c(166.0, 166.0, 166.0, 166.0, 166.0, 166.0, 166.0.166.0.166.0, 173.9, 173.9, 173.9, ... ,123.2), 
gdp = c(13756.0, 18239.0, 17338.0,2071 0.0,25118.0,17903.0,22431.0.22519.0.33902.0,22100.0. 
38689.0,21355.0, ... ,11461.0), 
offs = c(-0.998,-0.339,0.700,0.498,-0.551 ,0.461 ,-0.296,-1.015,0.886.1.337.0.943,2.355, ... ,0.593), 
deaths = c(769.0, 1407.0,3779.0,2875.0, 1012.0,2890.0,1267.0.642.0,4676.0,7379.0,5310.0. 

20009.0, ... ,3486.0)) 

The data file is shown for regions 1-12 and 187. The weight structure is given through the 

variables neigh 1 , ... ,neighl2 and weightl, ... weightl2. For example region 1 has 2 

neighbours (regions 6 and 3) and those neighbours are given equal weights of lIni = 0.5. 

238 



.--1ppendix 3 

Appendix 3: Convergence Diagnostic Plots 

A3.1 Convergence plots for fixed parameters from MMMC model 
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Appendix 3 

A3.2 Convergence plots for fixed parameters from MMMC model 
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.i ppelldi.y 3 

Convergence plots for each of the fixed parameters are given above . The Monte 

Carlo error is given on the Y-axis and the number of iterations is given on the x­
axis. The blue line plots how many iterations are needed to achie\'e a posterior 

mean parameter estimate with a desired Monte Carlo error value . The red line 

plots the MC error value that is 5% of the posterior standard de\i ation: hence (1 

suitable bum-in with an adequate number of further iterations ha been (1chie\ cd . 

Only the fixed parameters are given as prev ious mode l! ing hO\\'ed that these 

require the most number of iterations. 



------------------_______ ~R~t±frJt'llct'\ 

References 

1. Atlas of Mortality in Europe: subnational patterns, 1980/81 and 1990/1991: 

WHO regional publications; 1997. 

2. Bray F, Sankila R, Feday J, Parkin DM. Estimates of cancer incidence and 

mortality in Europe in 1995. European Journal of Cancer 2002;38(1):99-

166. 

3. Parkin DM, Bray FI, Devesa SS. Cancer burden in the year 2000. The global 

picture. European Journal of Cancer 2001;37:S4-S66. 

4. Lawson A, Biggeri A, Bohning D, Lesaffre E, Viel J-F, Bertollini R, editors. 

Disease mapping and risk assesment for public health: John Wiley & Sons 

Ltd.; 1999. 

5. Lawson A, Browne W, Vidal Rodeiro CL. Disease Mapping with 

WinBUGS and MLwiN. West Sussex: John Wiley & Sons Ltd; 2003. 

6. Langford IH, Leyland AH, Rasbash J, Goldstein H. Multilevel modelling of 

the geographical distributions of diseases. Journal of the Royal Statistical 

Society Series C-Applied Statistics 1999;48:253-268. 

7. Imperial College and MRC, UK. WinBUGS. In; 1996-2004. 

8. Doll R, Peto R. The Causes of Cancer - Quantitative Estimates of Avoidable 

Risks of Cancer in the United-States Today. Journal of the National Cancer 

Institute 1981;66(6):1191-&. 

9. Survival of Cancer Patients in Northern Ireland 1993-1996. Belfast: N. 

Ireland Cancer Registry; 200l. 

10. Facts and Figures of Cancer in the European Community: Internaltional 

Agency for Research on Cancer, Commission of the European 

Communities, WHO "Europe Against Cancer"; 1993. 

11. Berrino F, Capocaccia R, Esteve J, Gatta G, Hakulinen T, Micheli A, et al. 

Survival of Cancer Patients in Europe: The EUROCARE-2 Study: lARC 

Scientific Publications; 1999. 

243 



References 

12. Lee MM, Lin SS. Dietary fat and breast cancer. Annual Review of Nutrition 

2000;20:221-248. 

13. Grant WB. An ecologic study of dietary and solar ultraviolet-B links to 

breast carcinoma mortality rates. Cancer 2002;94(1):272-28l. 

14. Boyle P, Maisonneuve P, Autier P. Update on cancer control in women. 

International Journal of Gynecology & Obstetrics 2000;70(2):263-303. 

15. Ahn J, Gammon MD, Santella RM, Gaudet MM, Britton JA, Teitelbaum SL, 

et al. Myeloperoxidase genotype, fruit and vegetable consumption, and 

breast cancer risk. Cancer Research 2004;64(20):7634-7639. 

16. Gandini. Meta-analysis of studies on breast cancer risk and diet: the role of 

fruit and vegetable consumption and the intake of associated micronutrients 

(vol 36, pg 636, 2000). European Journal of Cancer 2000;36(12):1588-1588. 

17. Jain M. Dairy foods, dairy fats, and cancer: A review of epidemiological 

evidence. Nutrition Research 1998;18(5):905-937. 

18. Mattisson I, Wirfalt E, Wall strom P, Gullberg B, Olsson H, Berglund G. 

High fat and alcohol intakes are risk factors of postmenopausal breast 

cancer: a prospective study from the Malmo diet and cancer cohort. 

International Journal of Cancer 2004;110(4):589-97. 

19. Tjonneland A, Thomsen BL, Stripp C, Christensen J, Overvad K, 

Mellemkaer L, et al. Alcohol intake, drinking patterns and risk of 

postmenopausal breast cancer in Denmark: a prospective cohort study. 

Cancer Causes & Control 2003;14(3):277-284. 

20. Rehm J, Room R, Graham K, Monteiro M, Gmel G, Sempos CT. The 

relationship of average volume of alcohol consumption and patterns of 

drinking to burden of disease: an overview. Addiction 2003;98(9): 1209-

1228. 

21. Bowlin SJ, Leske MC, Varma A, Nasca P, Weinstein A, Caplan L. Breast 

cancer risk and alcohol consumption: Results from a large case-control 

study. International Journal of Epidemiology 1997;26(5):915-923. 

22. Howe GR, Hirohata T, Hislop TG, Iscovich JM, Yuan JM, Katsouyanni K, 

et al. Dietary factors and risk of breast cancer: combined analysis of 12 case-



23. 

References 

control studies. Journal of the National Cancer Institute 1990;83(20):1501-

1507. 

Willett WC, Rickhill B, Hankinson SE, Hunter DJ, Colditz GA. Non-genetic 

factors in the causation of breast cancer. In: Harris J, Lippman ME, Morrow 

M, Osborne CK, editors. Diseases of the Breast. Philadelphia: Lippincott­

Raven Press; 2000. p. 175-220. 

24. Dove-Edwin I, Thomas HJW. Review article: The prevention of colorectal 

cancer. Alimentary Pharmacology & Therapeutics 2001;15(3):323-336. 

25. Detels R, Holland WW, McEwen J, Omenn GS, editors. Oxford Textbook 

of Public Health: Oxford Medical Publications; 1997. 

26. Slattery ML, Levin TR, Ma K, Goldgar D, Holubkov R, Edwards S. Family 

history and colorectal cancer: predictors of risk. Cancer Causes & Control 

2003; 14(9):879-887. 

27. Willett W. The Search for the Causes of Breast and Colon Cancer. Nature 

1989;338(6214):389-394. 

28. Willett WC, Stampfer MJ, Colditz GA, Rosner BA, Speizer FE. Relation of 

Meat, Fat, and Fiber Intake to the Risk of Colon Cancer in a Prospective­

Study among Women. New England Journal of Medicine 

1990;323(24):1664-1672. 

29. Neagoe A, Molnar AM, Acalovschi M, Seicean A, Serban A. Risk factors 

for colorectal cancer: an epidemiologic descriptive study of a series of 333 

patients. Rom J GastroenteroI2004;13(3):187-193. 

30. Fernandez E, Chatenoud L, La Vecchia C, Negri E, Franceschi S. Fish 

consumption and cancer risk. American Journal of Clinical Nutrition 

1999;70(1 ):85-90. 

31. Tavani A, Pregnolato A, LaVecchia C, Negri E, Talamini R, Franceschi S. 

Coffee and tea intake and risk of cancers of the colon and rectum: A study of 

3530 cases and 7,057 controls. International Journal of Cancer , 
1997;73(2): 193-197. 



References 

32. Klatsky AL, Armstrong MA, Friedman GD, Hiatt RA. The Relations of 

Alcoholic Beverage Use to Colon and Rectal- Cancer. American Journal of 

Epidemiology 1988;128(5):1007-1015. 

33. Schouten U. Oesophageal and stomach cancer. In: Damhuis RAM , 

Schouten U, Visser 0, editors. Gastrointestinal Cancer in the Netherlands 

1989-1992. Netherlands: Netherlands Cancer Registry; 2001. p. 1-8. 

34. Shetty PS, W.P.T J. Nutrition. In: Detels R, Holland WW, McEwen J, 

Omenn GS, editors. Oxford Textbook of Public Health. 3rd ed: Oxford 

University Press; 1997. p. 157-174. 

35. Cayuela A, Vioque J, Bolumar F. Esophageal Cancer Mortality -

Relationship with Alcohol Intake and Cigarette-Smoking in Spain. Journal 

of Epidemiology and Community Health 1991;45(4):273-276. 

36. World Cancer Researxh Fund. Lung. In: Food, Nutrition and the Prevention 

of Cancer: A Global Perspective (Part II, Cancers, Nutrition and Food). 

Washingoton DC: American Institute for Cancer Research; 1997. p. 130-

147. 

37. Hill MJ. Changes and developments in cancer prevention. Journal of the 

Royal Society for the Promotion of Health 2001;121(2):94-97. 

38. Mulder I, Jansen M, Smit HA, Jacobs DR, Menotti A, Nissinen A, et al. 

Role of smoking and diet in the cross-cultural variation in lung-cancer 

mortality: the Seven Countries Study (vol 88, pg 665, 2000). International 

Journal of Cancer 2001;91(6):901-901. 

39. Breslow RA, Graubard BI, Sinha R, Subar AF. Diet and lung cancer 

mortality: a 1987 National Health Interview Survey cohort study. Cancer 

Causes & Control 2000;11(5):419-431. 

40. Kubik AK, Zatloukal P, Tomasek L, Petruzelka L. Lung cancer risk among 

Czech women: A case-control study. Preventive Medicine 2002;34(4):436-

444. 
41. Chow WH, Schuman LM, McLaughlin JK, Bjelke E, Gridley G, Wacholder 

S, et al. A Cohort Study of Tobacco Use, Diet, Occupation, and Lung­

Cancer Mortality. Cancer Causes & Control 1992;3(3):247-254. 

246 



42. 

References 

Skuladottir H, Tjoenneland A, Overvad K, Stripp C, Christensen J, 

Raaschou-Nielsen 0, et al. Does insufficient adjustment for smoking explain 

the preventive effects of fruit and vegetables on lung cancer? Lung Cancer 

2004;45(1):1-10. 

43. Fabricius P, Lange P. Diet and lung cancer. Monaldi Arch Chest Dis 

2003;59(3):207-211. 

44. Boffetta P, Trichopoulos D. Cancer of the Lung, Larynx, and Pleura. In: 

Adami H, Hunter D, Trichopoulos D, editors. Textbook of cancer 

epidemiology. Oxford: Oxford University Press, Inc.; 2002. 

45. Manjer J, Andersson I, Berglund G, Bondesson L, Game JP, Janzon L, et al. 

Survival of women with breast cancer in relation to smoking. European 

Journal of Surgery 2000;166(11):852-858. 

46. Collaborative Group on Hormonal Factors lD Breast Cancer. Alcohol, 

tobacco and breast cancer - collaborative reanalysis of individual data from 

53 epidemiological studies, including 58 515 women with breast cancer and 

95 067 women without the disease. British Journal of Cancer 

2002;87(11):1234-1245. 

47. Rookus MA, Verloop J, de Vries F, van der Kooy K, van Leeuwen FE. 

Passive and active smoking and the risk of breast cancer. American Journal 

of Epidemiology 2000;151(11):109. 

48. Wartenberg D, Calle EE, Thun MJ, Heath CW, Lally C, Woodruff T. Does 

passive smoking exposure increase female breast cancer mortality? 

American Journal of Epidemiology 2000;151(11):110. 

49. Robert SA, Strombom I, Trentham-Dietz A, Hampton JM, McElroy JA, 

Newcomb P A, et al. Socioeconomic risk factors for breast cancer: 

distinguishing individual- and community-level effects. Epidemiology 

2004; 15(4):442-450. 

50. Tavani A, Gallus S, La Vecchia C, Negri E, Montella M, Dal Maso L, et al. 

Risk factors for breast cancer in women under 40 years. European Journal of 

Cancer 1999;35(9):1361-1367. 

247 



51. 

52. 

References 

Schrijvers CTM, Mackenbach JP, Lutz JM, Quinn MJ, Coleman MP. 

Deprivation and Survival from Breast-Cancer. British Journal of Cancer 

1995;72(3):738-743. 

Consedine NS, Magai C, Conway F, Neugut AI. Obesity and awareness of 

obesity as risk factors for breast cancer in six ethnic groups. Obes Res 

2004;12(10):1680-1689. 

53. Sweeney C, Blair CK, Anderson KE, Lazovich D, Folsom AR. Risk factors 

for breast cancer in elderly women. American Journal of Epidemiology 

2004;160(9):868-875. 

54. Enger SM, Greif JM, Polikoff J, Press M. Body weight correlates with 

mortality in early-stage breast cancer. Arch Surg. 2004;139(9):954-958. 

55. Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Ascherio A, Kearney 

J, et al. A prospective study of cigarette smoking and risk of colorectal 

adenoma and colorectal cancer in U.S. men. Journal of the National Cancer 

Institute 1994;86(3):162-164. 

56. Tavani A, Gallus S, Negri E, Franceschi S, Talamini R, La Vecchia C. 

Cigarette smoking and risk of cancers of the colon and rectum: a case­

control study from Italy. European Journal of Epidemiology 

1998; 14(7):675-691. 

57. Nyren 0, Bergstrom R, Nystrom L, Engholm G, Ekbom A, Adami HO, et 

al. Smoking and colorectal cancer: a 20-year follow-up study of Swedish 

construction workers. Journal of the National Cancer Institute 

1997;89(1):95-96. 

58. Nyren 0, Adami H. Esophageal Cancer. In: Adami H, Hunter D, 

Trichopoulos D, editors. Textbook of cancer epidemiology. Oxford: Oxford 

University Press, Inc.; 2002. 

59. Brown LM, Swanson CA, Gridley G, Swanson GM, Schoenberg JB, 

Greenberg RS, et al. Adenocarcinoma of the Esophagus - Role of Obesity 

and Diet. Journal of the National Cancer Institute 1995;87(2):104-109. 

60. Vaughan TL, Davis S, Kristal A, Thomas DB. Obesity, AlcohoL and 

Tobacco as Risk-Factors for Cancers of the Esophagus and Gastric Cardia -



61. 

62. 

References 

Adenocarcinoma Versus Squamous-Cell Carcinoma. Cancer Epidemiology 

Biomarkers & Prevention 1995;4(2):85-92. 

Chow WH, Blot WJ, Vaughn TL, Risch HA, Gammon MD, Stanford JL, et 

al. Body mass index and risk of adenocarcinomas of the esophagus and 

gastric cardia. Journal of the National Cancer Institute 1998;90(2):150-155. 

Devesa SS, Blot WJ, Fraumeni JF. Changing patterns in the incidence of 

esophageal and gastric carcinoma in the United States. Cancer 

1998;83(10):2049-2053. 

63. Lagergren J, Bergstrom R, Nyren O. Association between body mass and 

adenocarcinoma of the esophagus and gastric cardia. Annals of Internal 

Medicine 1999;130(11):883-+. 

64. Baynard SP, Jinot J, Leaderer BP, Brown GB, Matrtinex FD, Simonsen NR, 

et al. Respiratory Health Effects of Passive Smoking: Cancer and Other 

Disorders. Washington DC: Office of Health and Environmental 

Assessment; 1992. 

65. Janssen-Heijnen MLG, Gatta G, Forman D, Capocaccia R, Coebergh JWW. 

Variation in survival of patients with lung cancer in Europe, 1985-1989. 

European Journal of Cancer 1998;34(14):2191-2196. 

66. Schrijvers CTM, Coebergh JWW, Vanderheijden LH, Mackenbach JP. 

Socioeconomic Variation in Cancer Survival in the Southeastern 

Netherlands, 1980-1989. Cancer 1995;75(12):2946-2953. 

67. Adami H, Hunter D, Trichopoulos D, editors. Textbook of cancer 

epidemiology. Oxford: Oxford University Press, Inc.; 2002. 

68. Murray CJL, Lopez AD, editors. The global burden of disease : a 

comprehensive assessment of mortality and disability from diseases, 

injuries, and risk factors in 1990 and projected to 2020. Cambridge, MA: 

Harvard University Press; 1996. 

69. Food and Agriculture Organisation of the United Nations; Online Database. 

In: http://appsJao.orgL. 
70. World Health Organisation. Tobacco or Health: A Global Status Report. 

http://www.cdc.gov/tobaccoJWHO/~ 1997. 



71. 

72. 

References 

Office on Smoking and Health of the National Centre for Chronic Disease 

Prevention and Health Promotion. In: http://www.cdc.gov/tobacco/. 

WHO Statistical Information System (WHOSIS). In: 

http://www3.who.int/whosis/menu.cfm. 

73. EUROSTAT. In: http://europa.eu.int/comm/eurostat. 

74. Cromley EK, McLafferty SL. GIS and Public Health. 1st ed. New York: The 

Guilford Press; 2002. 

75. Muehrcke PC, Muehrcke JO. Map use: reading, analysis, and interpretation. 

3rd ed ed. Madison, Wis.: JP Publications,; 1992. 

76. Clayton D, Kaldor J. Empirical Bayes Estimates of Age-Standardized 

Relative Risks for Use in Disease Mapping. Biometrics 1987;43(3):671-681. 

77. Breslow NE, Day NE. Indirect standardisation and multiplicative models of 

rates with reference to the age adjustment of cancer incidence and relative 

frequency data. Journal of Chronic Diseases 1975;28:289-303. 

78. Lawson A, Bohning D, Biggeri A, Lesaffre E, Viel J-F. Disease Mapping 

and Its Uses. In: Disease Mapping and Risk Assessment for Public Health: 

John Wiley & Sons Ltd.; 1999. p. 3-13. 

79. Mollie A. Bayesian and Empirical Bayes Approaches to Disease Mapping. 

In: Lawson A, editor. Disease Mapping and Risk Assessment for Public 

Health: John Wiley & Sons Ltd; 1999. p. 15-29. 

80. Bohning D, Schlattmann P. Disease Mapping with Hidden Structures Using 

Mixture Models. In: Lawson A, editor. Disease Mapping and Risk 

Assessment for Public Health: John Wiley & Sons Ltd; 1999. p. 49-60. 

81. Tsutakawa RK. Estimation of Cancer Mortality-Rates - a Bayesian-Analysis 

of Small Frequencies. Biometrics 1985;41(1):69-79. 

82. McCullagh P, NeIder J. Generalized Linear Models. London: Chapman & 

Hall; 1989. 

83. Mollie A. Bayesian Mapping of Disease. In: Gilks W, Richardson S, 

Spiegelhalter DJ, editors. Markov Chain Monte Carlo in Practice. London: 

Chapman & Hall; 1996. p. 259-379. 

250 



84. 

85. 

References 

Clayton D, Bernardinelli L. Bayesian Methods for mapping disease risk. In: 

Elliott P, Cuzick J, English D, Stem R, editors. Geographical and 

environmental epidemiology : methods for small-area studies: Oxford 

University Press; 1992. p. 205-220. 

Bernardinelli L, Montomoli C. Empirical Bayes Versus Fully Bayesian­

Analysis of Geographical Variation in Disease Risk. Statistics in Medicine 

1992;11(8):983-1007. 

86. Marshall RJ. A Review of Methods for the Statistical-Analysis of Spatial 

Patterns of Disease. Journal of the Royal Statistical Society Series a­

Statistics in Society 1991;154:421-441. 

87. Efron B, Morris C. Data analysis using Stein's estimation and its 

generalisation. Journal of the American Statistical Association 1975;70:311-

319. 

88. Tsutakawa RK, Shoop GL, Marienfeld CJ. Empirical Bayes Estimation of 

Cancer Mortality-Rates. Statistics in Medicine 1985;4(2):201-212. 

89. Leonard T. Bayesian methods for binomial data. Biometrika 1972;59:581-

589. 

90. Lawson AB. Disease map reconstruction. Statistics III Medicine 

2001;20(14):2183-2204. 

91. Tsutakawa RK. Mixed Model for Analyzing Geographic Variability in 

Mortality- Rates. Journal of the American Statistical Association 

1988;83(401 ):37-42. 

92. Manton KG, Woodbury MA, Stallard E, Riggan WB, Creason JP, Pellom 

AC. Empirical Bayes Procedures for Stabilizing Maps of United- States 

Cancer Mortality-Rates. Journal of the American Statistical Association 

1989;84(407):637-650. 

93. Heisterkamp SH, Doornbos G, Gankema M. Disease Mapping Using 

Empirical Bayes and Bayes Methods on Mortality Statistics in the 

Netherlands. Statistics in Medicine 1993;12(19-20):1895-1913. 

94. Langford IH. Using Empirical Bayes Estimates in the Geographical 

Analysis of Disease Risk. Area 1994;26(2):142-149. 

251 



95. 

References 

Cislaghi C, Biggeri A, Braga M, Lagazio C, Marchi M. Exploratory Tools 

for Disease Mapping in Geographical Epidemiology. Statistics in Medicine 

1995;14(21-22):2363-2381. 

96. Yasui Y, Liu H, Benach J, Winget M. An empirical evaluation of various 

priors in the empirical Bayes estimation of small area disease risks. Statistics 

in Medicine 2000;19(17-18):2409-2420. 

97. Manton KG, Stallard E, Woodbury MA, Riggan WB, Creason JP, Mason 

TJ. Statistically Adjusted Estimates of Geographic Mortality Profiles. 

Journal of the National Cancer Institute 1987;78(5):805-815. 

98. Marshall RJ. Mapping Disease and Mortality-Rates Using Empirical Bayes 

Estimators. Applied Statistics-Journal of the Royal Statistical Society Series 

C 1991;40(2):283-294. 

99. Maiti T. Hierarchical Bayes estimation of mortality rates for disease 

mapping. Journal of Statistical Planning and Inference 1998;69(2):339-348. 

100. Laird N. Nonparametric maximum likelihood estimation of a mixing 

distribution. Journal of the American Statistical Association 1978;73:805-

811. 

101. Schlattmann P, Bohning D. Mixture-Models and Disease Mapping. Statistics 

in Medicine 1993;12(19-20):1943-1950. 

102. Leyland AH, Langford IH, Rasbash J, Goldstein H. Multivariate spatial 

models for event data. Statistics in Medicine 2000;19(17-18):2469-2478. 

103. Leyland AH. Spatial Analysis. In: Leyland AH, Goldstein H, editors. 

Multilevel Modelling of Health Statistics: John Wiley & Sons, Ltd; 200l. 

104. Goldstein H. Multilevel Statistical Models. 3rd ed. London: Arnold; 2003. 

105. Langford IH, Day RD. poisson Regression. In: Leyland AH, Goldstein H, 

editors. Multilevel Modelling of Health Statistics: John Wiley & Sons, Ltd; 

2001. p. 45-57. 

106. Langford IH, Bentham G, McDonald A-L. Multi-level modelling of 

geographically aggregated health data: a case study on malignant melanoma 

mortality and UV exposure in the European community. Statistics in 

Medicine 1998;17:41-57. 



References 

107. Meza JL. Empirical Bayes estimation smoothing of relative risks in disease 

mapping. Journal of Statistical Planning and Inference 2003;112(1-2):43-62. 

108. Besag J, Mollie A. Bayesian mapping of mortality rates. Bulletin of the 

International Statistical Institute, 47th session 1989; 1: 127 -128. 

109. Mollie A, Richardson S. Empirical Bayes Estimates of Cancer Mortality­

Rates Using Spatial Models. Statistics in Medicine 1991;10(1):95-112. 

110. Besag J, York J, Mollie A. Bayesian Image-Restoration, with 2 Applications 

in Spatial Statistics. Annals of the Institute of Statistical Mathematics 

1991;43(1):1-20. 

111. Besag J. Spatial interaction and the statistical analysis of lattice systems. 

Journal of the Royal Statistical Society, Series B 1974;36:192-236. 

112. Lawson AB, Biggeri AB, Boehning D, Lesaffre E, Viel JF, Clark A, et al. 

Disease mapping models: an empirical evaluation. Statistics in Medicine 

2000;19(17-18):2217-2241. 

113. Best N, Richardson S, Thomson A. A comparison of Bayesian spatial 

models for disease mapping. Statistical Methods in Medical Research 

2005;14(1):35-59. 

114. Pascutto C, Wakefield JC, Best NG, Richardson S, Bernardinelli L, Staines 

A, et al. Statistical issues in the analysis of disease mapping data. Statistics 

in Medicine 2000;19(17-18):2493-2519. 

115. Wakefield JC, Best NG, Waller LA. Bayesian approaches to disease 

mapping. In: Elliott P, Wakefield JC, Best NG, Briggs DJ, editors. Spatial 

Epidemiology: Methods and Applications. Oxford: Oxford University Press; 

2000. p. 104-127. 

116. Ripley BD. Spatial Statistics. New York: John Wiley & Sons; 1981. 

117. Kelsall J, Wakefield J. Modeling spatial variation in disease risk: A 

geostatistical approach. Journal of the American Statistical Association 

2002;97(459):692-701. 
118. MacNab YC. Hierarchical Bayesian modeling of spatially correlated health 

service outcome and utilization rates. Biometrics 2003;59(2):305-316. 

253 



References 

119. Lawson A, Clark A. Spatial mixture relative risk models applied to disease 

mapping - Authors' reply. Statistics in Medicine 2003;22(7):1203-1203. 

120. Green PJ, Richardson S. Hidden Markov models and disease mapping. 

Journal of the American Statistical Association 2002;97(460):1055-1070. 

121. Fernandez C, Green PJ. Modelling spatially correlated data via mixtures: a 

Bayesian approach. Journal of the Royal Statistical Society Series B­

Statistical Methodology 2002;64:805-826. 

122. Goldstein H. Multilevel Statistical Models. London: Edward Arnold; 1995. 

123. Manual of the International Statistical Classification of Diseases, Injuries 

and Causes of Death. Ninth revision: WHO: Geneva; 1997. 

124. Goldstein H. Multilevel Mixed Linear-Model Analysis Using Iterative 

Generalized Least-Squares. Biometrika 1986;73(1):43-56. 

125. Goldstein H, Rasbash J. Efficient computational procedures for the 

estimation of parameters in multilevel models based on iterative generalised 

least squares. Computational Statistics and Data Analysis 1992;13:63-7l. 

126. Browne WJ, Draper D. A comparison of Bayesian and likelihood-based 

methods for fitting multilevel models. Nottingham Statistics Research 

Reports; 2004 January. 

127. Goldstein H. Restricted Unbiased Iterative Generalised Least Squares 

Estimation. Biometrika 1989;76:622-623. 

128. Besag J, Newell J. The Detection of Clusters in Rare Diseases. Journal of 

the Royal Statistical Society Series a-Statistics in Society 1991;154:143-155. 

129. Langford IH, Leyland AH, Rasbash J, Goldstein H, Day RD, McDonald A­

L. Multilevel Modelling of Area-Based Health Data. In: Lawson A, Biggeri 

A, Bohning D, Lesaffre E, Viel J-F, Bertollini R, editors. Disease Mapping 

and Risk Assesment for Public Health: John Wiley & Sons Ltd; 1999. p. 

218-228. 
130. Gilks W, Richardson S, Spiegelhalter DJ. Markov Chain Monte Carlo in 

Practice. London: Chapman & Hall; 1996. 

131. Ripley BD. Stochastic simulation. New York, USA: Wiley; 1987. 

254 



References 

132. Gilks WR, Wild P. Adaptive Rejection Sampling for Gibbs Sampling. 

Applied Statistics-Journal of the Royal Statistical Society Series C 

1992;41(2):337-348. 

133. Gelman A, Rubin DB. A single sequence from the Gibb sampler gives a 

false sense of security. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM, 

editors. Bayesian Statistics. Oxford: Oxford University Press; 1992. 

134. Gelman A. Inference and monitoring convergence. In: Gilks W, Richardson 

S, Spiegelhalter DJ, editors. Markov Chain Monte Carlo in Practive. 

London: Chapman & Hall; 1996. p. 131-140. 

135. Gelman A, Rubin DB. Inference from iterative simulation using multiple 

sequences. Statistical Science 1992;7:457-511. 

136. Spiegelhalter DJ, Thomas A, Best N, Lunn D. WinBUGS User Manual. 

Cambridge; 2003. 

137. Gelfand AE, Smith AFM. Sampling-Based Approaches to Calculating 

Marginal Densities. Journal of the American Statistical Association 

1990;85(410):398-409. 

138. Rasbash J, Goldstein H. Efficient analysis of mixed hierarchical and crossed 

random structures using a multilevel model. Journal of Behavioural 

Statistics 1994;19:337-350. 

139. Browne W, Goldstein H, Rasbash J. Multiple membership multiple 

classification (MMMC) models. Statistical Modelling 2001;1(2). 

140. Hill PW, Goldstein H. Multilevel modeling of educational data with cross­

classification and missing identification for units. Journal of Educational and 

Behavioral Statistics 1998;23(2):117-128. 

141. Harville D. Maximum Likelihood appraoches to variance components 

estimation and to related problems. Journal of the American Statistical 

Association 1977;72:320-340. 

142. NeIder J, Wedderburn R. Generalized linear models. Journal of the Royal 

Statistical Society Series A 1972;135:370-384. 

255 



References 

143. Rasbash J, Browne WJ, Goldstein H, Yang M, Plewis I, Healy M, et al. A 

User's Guide to MLwiN, Version 2.1,. London: Institute of Education , 

University of London; 2000. 

144. Spiegelhalter DJ, Best N, Gilks W, Inskip H. Hepatitis B: a case study in 

MCMC methods. In: Gilks W, Richardson S, Spiegelhalter DJ, editors. 

Markov Chain Monte Carlo in Practice. London: Chapman & Hall; 1996. 

145. Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A. Bayesian measures 

of model complexity and fit. Journal of the Royal Statistical Society Series 

B-Statistical Methodology 2002;64:583-616. 

146. Ferlay J, Bray F, Pisani P, Parkin DM. GLOBOCAN 2000: Cancer 

Incidence, Mortality and Prevalence Worldwide, Version 1.0. In. Lyon: 

IARC CancerBase No.5; 2001. 

147. World Population Prospects. The 1998 Revision Volume I: Comprehensive 

Tables: UN DEPT OF ECON & SOCIAL AFF; 1999. 

148. Levi F, Lucchini F, La Vecchia C, Negri E. Trends in mortality from cancer 

in the European Union, 1955-94. Lancet 1999;354(9180):742-743. 

149. Levi F, Lucchini F, Negri E, Boyle P, La Vecchia C. Cancer mortality in 

Europe, 1995-1999, and an overview of trends since 1960. International 

Journal of Cancer 2004;110(2):155-169. 

150. Brennan P, Bray I. Recent trends and future directions for lung cancer 

mortality in Europe. British Journal of Cancer 2002;87(1):43-48. 

151. Bray I. Application of Markov chain Monte Carlo methods to projecting 

cancer incidence and mortality. Journal of the Royal Statistical Society 

Series C-Applied Statistics 2002;51:151-164. 

152. Levi F, Lucchini F, Negri E, Boyle P, La Vecchia C. Cancer mortality in 

Europe, 1990-1994, and an overview of trends from 1955 to 1994. European 

Journal of Cancer 1999;35(10):1477-1516. 

153. Levi F, Lavecchia C, Lucchini F, Negri E. Cancer Mortality in Europe, 

1990-92. European Journal of Cancer Prevention 1995;4(5):389-417. 

154. Humphrey LL, Teutsch S, Johnson M. Lung Cancer Screening with Sputum 

Cytologic Examination, Chest Radiography, and Computed Tomography: 

256 



References 

An Update for the U.S. Preventive Services Task Force. Ann Intern Med 

2004;140(9):740-753. 

155. U.S. Preventive Services Task Force * . Lung Cancer Screening: 

Recommendation Statement. Ann Intern Med 2004;140(9):738-739. 

156. IARC. IARC Monographs Programme; 1972-2001. 

157. Bailey-Wilson JE, Amos CI, Pinney SM, Petersen GM, de Andrade M, 

Wiest JS, et al. A major lung cancer susceptibility locus maps to 

chromosome 6q23-25. American Journal of Human Genetics 

2004;75(3):460-474. 

158. Cavalli-Sforza LL, Menozzi P, Piazza A. The History and Geography of 

Human Genes. Chichester: Princeton University Press; 1994. 

159. Berrino F, Capocaccia R, Coleman MP, Esteve J, Gatta G, Hakulinen T, et 

al. Survival of cancer patients in Europe: the EUROCARE-3 study. Annals 

of Oncology 2003; 14(Suppl 5). 

160. Coleman MP, Gatta G, Verdecchia A, Esteve J, Sant M, Storm H, et al. 

EUROCARE-3 summary: cancer survival in Europe at the end of the 20th 

century. Annals of Oncology 2003;14(Supp 5):vI28-v129. 

161. Coebergh JWW. Colorectal cancer screening in Europe: first things first. 

European Journal of Cancer 2004;40(5):638-642. 

162. Winawer SJ, Zauber AG. Colorectal cancer screening: Now is the time. 

Canadian Medical Association Journal 2000;163(5):543-544. 

163. Levin B. Colorectal Cancer Prevention and Early Detection. In: C G, 

Willett., editor. Cancer of the Lower Gastrointestinal Tract: American 

Cancer Society and BC Decker, Inc; 2001. p. 45-52. 

164. Inadomi JM, Sonnenberg A. The impact of colorectal cancer screening on 

life expectancy. Gastrointestinal Endoscopy 2000;51(5):517-523. 

165. Gazelle GS, McMahon PM, Scholz FJ. Screening for colorectal cancer. 

Radiology 2000;215(2):327-335. 

166. U of M study confirms importance of biennial colorectal cancer screening. 

Minnesota; 2000. 

257 



References 

167. Screening for Colorectal Cancer Saves Lives: Centers for Disease Control 

and Prevention; 2004. 

168. Centers for Disease Control. Screening for colorectal cancer - United States , 
1992-1003, and new guidelines. MMWR 1996;45:106-10. 

169. Genetics of Colorectal Cancer. In: National Cancer Institute, U.S. National 

Institutes of Health; 2004. 

170. Faivre J, Forman D, Esteve J, Gatta G. Survival of patients with oesophageal 

and gastric cancers ill Europe. European Journal of Cancer 

1998;34(14):2167-2175. 

171. Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of 25 

major cancers in 1990. International Journal of Cancer 1999;80(6):827-841. 

172. Parkin DM, Whelan SL, Ferlay J, Raymond L, Young J. Cancer Incidence in 

Five Continents. Lyon: International Agency for Research on Cancer; 1997. 

173. ACOR. Screening for Esophageal Cancer. In. New York: 

http://www.acor.org!cnet/62877.html; 2004. 

174. McGilchrist A, Park KGM. Risk Factors and Delays in Presentation in 

Scottish Audit of Gastric and Oesophageal Cancer: NHS; 2000. 

175. Enzinger PC, Mayer RJ. Medical progress - Esophageal cancer. New 

England Journal of Medicine 2003;349(23):2241-2252. 

176. Risk JM, Mills HS, Garde J, Dunn JR, Evans KE, Hollstein M, et al. The 

tylosis esophageal cancer (TOC) locus: more than just a familial cancer 

gene. Diseases of the Esophagus 1999;12(3):173-176. 

177. Antunes JLF, Toporcov TN, de Andrade FR. Trends and patterns of cancer 

mortality in European countries. European Journal of Cancer Prevention 

2003;12(5):367-372. 

178. Black RJ, Bray F, Ferlay J, Parkin DM. Cancer incidence and mortality in 

the European Union: Cancer registry data and estimates of national 

incidence for 1990. European Journal of Cancer 1997;33(7):1075-1107. 

179. Boyle P, d'Onofrio A, Maisonneuve P, Severi G, Robertson C, Tubiana M, 

et al. Measuring progress against cancer in Europe: has the 15% decline 

targeted for 2000 come about? Annals of Oncology 2003;14(8):1312-1325. 



References 

180. La Vecchia C, Franceschi S, Levi F. Epidemiological research on cancer 

with a focus on Europe. European Journal of Cancer Prevention 

2003;12(1):5-14. 

181. Rosenberg MS, Sokal RR, Oden NL, DiGiovanni D. Spatial autocorrelation 

of cancer in western Europe. European Journal of Epidemiology 

1999;15(1):15-22. 

182. Vartiainen E, Puska P, Jousilahti P, Korhonen Ill, Tuomilehto J, Nissinen A. 

20-Year Trends in Coronary Risk-Factors in North Karelia and in Other 

Areas of Finland. International Journal of Epidemiology 1994;23(3):495-

504. 

UNIVFH<':i: , i 

UBRA~I:(.-J 

259 


	419176_0001
	419176_0002
	419176_0003
	419176_0004
	419176_0005
	419176_0006
	419176_0007
	419176_0008
	419176_0009
	419176_0010
	419176_0011
	419176_0012
	419176_0013
	419176_0014
	419176_0015
	419176_0016
	419176_0017
	419176_0018
	419176_0019
	419176_0020
	419176_0021
	419176_0022
	419176_0023
	419176_0024
	419176_0025
	419176_0026
	419176_0027
	419176_0028
	419176_0029
	419176_0030
	419176_0031
	419176_0032
	419176_0033
	419176_0034
	419176_0035
	419176_0036
	419176_0037
	419176_0038
	419176_0039
	419176_0040
	419176_0041
	419176_0042
	419176_0043
	419176_0044
	419176_0045
	419176_0046
	419176_0047
	419176_0048
	419176_0049
	419176_0050
	419176_0051
	419176_0052
	419176_0053
	419176_0054
	419176_0055
	419176_0056
	419176_0057
	419176_0058
	419176_0059
	419176_0060
	419176_0061
	419176_0062
	419176_0063
	419176_0064
	419176_0065
	419176_0066
	419176_0067
	419176_0068
	419176_0069
	419176_0070
	419176_0071
	419176_0072
	419176_0073
	419176_0074
	419176_0075
	419176_0076
	419176_0077
	419176_0078
	419176_0079
	419176_0080
	419176_0081
	419176_0082
	419176_0083
	419176_0084
	419176_0085
	419176_0086
	419176_0087
	419176_0088
	419176_0089
	419176_0090
	419176_0091
	419176_0092
	419176_0093
	419176_0094
	419176_0095
	419176_0096
	419176_0097
	419176_0098
	419176_0099
	419176_0100
	419176_0101
	419176_0102
	419176_0103
	419176_0104
	419176_0105
	419176_0106
	419176_0107
	419176_0108
	419176_0109
	419176_0110
	419176_0111
	419176_0112
	419176_0113
	419176_0114
	419176_0115
	419176_0116
	419176_0117
	419176_0118
	419176_0119
	419176_0120
	419176_0121
	419176_0122
	419176_0123
	419176_0124
	419176_0125
	419176_0126
	419176_0127
	419176_0128
	419176_0129
	419176_0130
	419176_0131
	419176_0132
	419176_0133
	419176_0134
	419176_0135
	419176_0136
	419176_0137
	419176_0138
	419176_0139
	419176_0140
	419176_0141
	419176_0142
	419176_0143
	419176_0144
	419176_0145
	419176_0146
	419176_0147
	419176_0148
	419176_0149
	419176_0150
	419176_0151
	419176_0152
	419176_0153
	419176_0154
	419176_0155
	419176_0156
	419176_0157
	419176_0158
	419176_0159
	419176_0160
	419176_0161
	419176_0162
	419176_0163
	419176_0164
	419176_0165
	419176_0166
	419176_0167
	419176_0168
	419176_0169
	419176_0170
	419176_0171
	419176_0172
	419176_0173
	419176_0174
	419176_0175
	419176_0176
	419176_0177
	419176_0178
	419176_0179
	419176_0180
	419176_0181
	419176_0182
	419176_0183
	419176_0184
	419176_0185
	419176_0186
	419176_0187
	419176_0188
	419176_0189
	419176_0190
	419176_0191
	419176_0192
	419176_0193
	419176_0194
	419176_0195
	419176_0196
	419176_0197
	419176_0198
	419176_0199
	419176_0200
	419176_0201
	419176_0202
	419176_0203
	419176_0204
	419176_0205
	419176_0206
	419176_0207
	419176_0208
	419176_0209
	419176_0210
	419176_0211
	419176_0212
	419176_0213
	419176_0214
	419176_0215
	419176_0216
	419176_0217
	419176_0218
	419176_0219
	419176_0220
	419176_0221
	419176_0222
	419176_0223
	419176_0224
	419176_0225
	419176_0226
	419176_0227
	419176_0228
	419176_0229
	419176_0230
	419176_0231
	419176_0232
	419176_0233
	419176_0234
	419176_0235
	419176_0236
	419176_0237
	419176_0238
	419176_0239
	419176_0240
	419176_0241
	419176_0242
	419176_0243
	419176_0244
	419176_0245
	419176_0246
	419176_0247
	419176_0248
	419176_0249
	419176_0250
	419176_0251
	419176_0252
	419176_0253
	419176_0254
	419176_0255
	419176_0256
	419176_0257
	419176_0258
	419176_0259
	419176_0260
	419176_0261
	419176_0262
	419176_0263
	419176_0264
	419176_0265
	419176_0266
	419176_0267
	419176_0268
	419176_0269
	419176_0270
	419176_0271
	419176_0272
	419176_0273
	419176_0274
	419176_0275
	419176_0276

