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Abstract

Increasing global population sizes and industrialisation mean that the need for
efficient, reliable and cheap wastewater treatment strategies grows ever
greater. The majority of current strategies rely on naturally occurring
microbial communities to metabolise pollutants. These have developed slowly
through many years of empirical research. Despite our reliance on microbial
communities, our understanding of how they assemble and change through
time remains relatively poorly understood. The reason for this is that the
communities have until recently been very difficult to observe in situ. There
are, however, a number of new techniques in the field of molecular microbial

ecology which are affording engineers new insight into the composition of

these communities.

The central premise of this thesis is that combining models in theoretical
ecology with our newfound ability to observe and measure microbial systems
will allow for a suite of laws to be developed which can describe and predict
the assembly and structure of microbial communities. This would allow

environmental engineers to modify and improve the design and efficiency of

wastewater treatment systems.

It is demonstrated here that there is significant evidence that microbial
community assembly is at least partly a random process. A simple Neutral
Community Model (NCM) is shown to replicate much of the variability
observed in real systems as diverse as the waste water treatment plants,

estuaries and the human lung. This is in contrast to the prevailing view in




microbial ecology that community composition is shaped by deterministic
processes. Molecular methods in microbial ecology yield very small, sometimes
biased, samples from what are ostensibly very large communities. It is
demonstrated, using published literature on taxa-area relationships for
microorganisms that sampling effects have the capacity to significantly distort
the true, underlying ecological patterns. In doing so, a potential reconciliation
is offered between some seemingly contradictory published reports on the

nature of taxa-area relationships for microorganisms.

The effects of sampling are built directly into the NCM, which allows the
model to be tested using the data which are typically collected by microbial
ecologists. The model is calibrated using the taxa-abundance distribution
observed in a small waterborne bacterial community housed in a bark lined
tree hole in a beech tree. Using these parameters, unchanged, it is shown that
the model can predict the taxa-abundance distributions and taxa-volume
relationship observed in 26 other beech tree communities whose sizes span
three orders of magnitude. This represents the strongest test, so far, for any

biological community, microbial or otherwise, that NCMs provide a useful tool

in predicting community composition.
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Chapter 1 Introduction

1 Introduction

With the global increase of population sizes and expansion of the
manufacturing sector, the need for treatment of waste, both industrial and
domestic has never been greater. In highly industrialised and in developing
nations alike, mankind’s basic needs are the same. Our vital requirements of
sanitary water and soils which are fertile and free from any dangerous
contaminants are universal. Yet, at the present time, we are unable to provide
such necessities to almost half of the world’s population. The challenge of
devising waste treatment strategies which are efficient, in terms of both time

and cost, is one of the greatest facing environmental engineers today (Newman

& Mouritz 1996).

Since early in the last century, the basic concept behind most waste treatment
systems has changed very little (Rittmann & McCarty 2001). Employment of
biodegradation strategies, which rely on naturally forming microbial
communities to remove pollutants, is still very much standard practice. If
microorganisms which metabolise chemicals within the waste can be
encouraged to flourish, then the mass of pollutants will diminish. For example,

communities of ammonia oxidising bacteria (AOB) are encouraged in the

treatment of domestic waste rich in ammonia.

Despite being a very well established technology, certainly in terms of the

number of years it has been employed, many aspects of it are still relatively
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poorly understood. Our knowledge of the underlying ecology of the microbes,
and thus the very foundation of the strategy, remains somewhat limited. This
means that our efforts to design bioreactors based on chemical thermodynamic
principles (Sorochenko 2001) without reference to the ecology of the microbial
catalysts are only partially successful. It is only due to the wealth of empirical
data gathered from years of research and application that we are able to
engineer systems such as those which treat our drinking water every day.
However, this reliance solely upon experience is less than ideal, and even the

most successful waste treatment plants suffer occasional loss of function

(Curtis et al. 2003).

In the mindset of empiricism, these failures are baffling. Why should the same
strategy work on certain occasions or in certain locations, and yet be
unsuccessful in others? Also, stepping beyond the bounds of established
systems is risky. It is a brave engineer who radically alters the design of a
system to something unprecedented, for fear of upsetting the tried and tested
procedures. This necessary conservatism in design severely restricts the spread
of the technologies to some of the geographical areas with socio-economic and

health problems, where they are most desperately needed.

Many developing nations currently lack the infrastructure to support large
scale wastewater treatment plants, which experience tells us tend to be more
reliable. In addition to this, re-establishing function in a failing system is not a

cheap or simple procedure; often huge quantities of waste must be drained

away, or have highly expensive agents added. As with all empirically derived

strategies, these techniques tend to work, but their success in any given
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instance is certainly not assured. For regions which lack the finances to
maintain such a costly operation, plants built to current design are
fundamentally not a feasible option (Saldinger 1992). The development of a
new generation of highly efficient waste treatment systems may not only bring
economic benefits for the developed world, but also save the lives of those who

presently lack a dependable source of sanitary drinking water.

Other engineering disciplines have long since been liberated from such reliance
on empiricism. Ever since Newtonian mechanics were first applied, structural
engineers have had the tools to calculate whether or not radically new

structures will be functional. Environmental engineers working with waste

treatment have yet to be afforded such peace of mind.

Until relatively recently, it was almost impossible to observe microbial
communities in situ. However, the last twenty years have seen the emergence
of a number of new technologies, which afford engineers glimpses like never

before into the microbial world. The composition of communities can now be

characterised using molecular methods by, for example, examining

distinguishing features of the 165 rRNA sequences of microbes’ functional
genes (Lane 1991). Via such laboratory tools, we can gain unprecedented
levels of information about the structure and diversity of microbial
communities. One can only speculate with excitement as to what further tools
will be developed during the next twenty years. However, despite the wealth
of new information being gathered in laboratories, there has as yet been little

impact upon engineered biological systems and waste treatment strategies.
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All these new developments in the laboratory may well stand us on the brink
of a complete revolution in the design of engineered biological systems. It is
now centuries since simple observations were used to formulate universal laws
in classical physics, which were later applied by engineers. The challenge
currently facing environmental engineers is to derive a similar suite of ‘laws’
dictating the assembly and composition of communities of microorganisms

from our newfound abilities to observe such systems.

That said, entire wastewater treatment plants are hugely complex systems,
typically consisting of the order of 10" individual microbes of many different
taxa (Whitman et al. 1998). Even the most wildly optimistic engineer cannot
expect that we will ever be able to classify each and every organism within
such a community. Instead, we must always work from samples which contain
a tiny fraction of the total population. To extrapolate information from such
subsections of a system is not always a trivial task, and we must be aware as
to which observed phenomena are likely indicative of the community as a
whole, and which are merely artefacts of the sampling procedures employed.
These limitations and problems have, as yet, meant that despite the

revolution of molecular methods, there is little evidence of major impact in

engineering practice.

To determine rules of community assembly for microorganisms necessarily
takes the majority of the research presented in this thesis into realms not
traditionally considered by environmental engineers. The focus here is very
much upon developing fundamental theories in microbial ecology rather than

answering any one practical problem or enhancing a given reactor design.
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The central premise of this thesis is that, even only working from sample data,
environmental engineers should still aim to determine a set of rules governing
community assembly and structure, just as structural engineers did many
decades ago. The establishment of such theorems in this field, combined with
our sample data, should permit the derivation of simple parameterisable
models of microbial communities. These models could then be applied to
inform a new generation of waste treatment systems, ones more reliable and
more easily manipulated than the legacy of empiricism currently allows. The
benefits to some are purely financial, in the form of lower utility bills. To

others, our ability to develop such waste treatment strategies is, quite

literally, a matter of life and death.

The research presented in this thesis forms the basis of five papers published
in peer-reviewed journals; Environmental Microbiology (Sloan et al. 2006),
Ecology Letters (Woodcock et al. 2006), Philosophical Transactions of the

Royal Society of London: B (Curtis et al. 2006), Microbial Ecology (Sloan et

al. 2007) and FEMS Microbiology (Woodcock et al. 2007 In Press).
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2 Literature Review

The major goal of this thesis is to develop models in microbial ecology which can
be used to inform environmental engineers for the design and function of waste
treatment systems. This will only be achieved through collaborative, multi-

disciplinary research involving environmental engineers, mathematicians and

microbial ecologists.

Accordingly, this literature review consists of three main sections. The first of
these, section 2.1, provides a brief overview of the prevailing theory employed in
bioreactor design for wastewater treatment. The aim is not to give an in-depth
analysis of any particular process or design but rather to set the context for the
research in mathematical microbial ecology. The first half of this section is
devoted to the designs of systems and the second half to much of the underlying
theory behind these practices. The majority of the techniques exploited take a
systems perspective where, by necessity, many of the biological processes are
perceived as a ‘black box’ and are described by empirical rules. Although these

have been employed with success for many years, there is still great desire to

move away from these empirical strategies and to open the biological ‘black box’

and describe quantitative rules for the underlying biological processes (Curtis et
al. 2003). Without making this leap, changes in the efficiency, sizes or ability to

treat recalcitrant pollutants of waste treatment systems are only ever gradual.
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The current theoretical basis for bioreactor design is grounded in environmental
chemistry, where the microbial communities are perceived as omnipresent
catalysts. However, in all bioreactors, the self assembly of these microbial
communities are replied upon, as well as their continued stability and ability to
react to change. There are, however, no established quantifiable theories for these
critical processes. This is despite the fact that all the system designs outlined

here are utterly reliant upon microbial communities forming and metabolising

waste,

Section 2.2 discusses the microbial tools which have been developed in recent
years to analyse and quantify microbial systems. There are a number of exciting
new technologies which are employed in microbial diversity analysis, and
additional tools are being developed all the time. Each of these possible methods
for laboratory work has its own relative strengths and weaknesses. Each of these
must be understood and accounted for during the development of theories to

ensure that the correct tools are utilised, and that the data available are useful

for informing and parameterising any such models.

Finally, section 2.3 reviews a number of concepts and theories from the ecological
literature. This section is given the most space in the literature review because it
forms the basis of all the subsequent research. Historically, these tend to have

been formulated for datasets of macroscale organisms, such as trees, birds or

plants. One of the major reasons for this was that numeration of anything much

smaller was, until relatively recently, not a simple task. As outlined in the
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previous section, current microbial tools are allowing us ever greater glimpses

into the microbial world and thus are making the modelling of microbial systems

an ever more manageable prospect.

Research activity at the interface between microbial ecology and environmental
engineering is growing rapidly. Rittman et al. (Rittmann et al. 2006) recently
presented the consensus opinions of a group of highly respected U.S. scientists
working at this interface on how to create the greatest scientific breakthroughs
and benefits to society. They offered what they called a ‘three-peak vista’ for the
future of partnerships between microbial ecologists and environmental engineers.
Two of these peaks pertained to improved techniques for observing and
characterising microbial communities. The third peak, which was by far the least

populated, was research that was orientated towards mathematical models of

microbial communities. They identified the paucity of attempts to develop theory
and highlighted the potential of models in both guiding the exploration of
microbial communities and ultimately in the design of new treatment processes.

This is & view which has been echoed by other researchers (Curtis et al. 2003).

Accordingly, a whole suite of new models for predicting the assembly and

dynamics of communities of microorganisms are being developed. Many of these

are directly analogous to established theories in classical ecology, although this

newer, emerging field of microbial ecology brings with it a whole different set of

challenges. For example, sampling issues for microbial systems are a problem on a

vastly greater scale than those faced in macroscale studies. Understanding and
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overcoming such questions are key to the adaptation of current theories to

microbial communities, as well as the development of completely novel models.

2.1 Wastewater Engineering

Wastewater engineering, like almost all environmental biotechnologies, is a long
established field of the applied sciences, but one which may well be on the brink
of a new era of understanding. Most of the microbiological processes employed
today by wastewater engineers have their roots in the early part of the last
century, when a series of empirical observations laid the groundwork for many of
the systems still employed today (Ardern & Lockett 1914; Metcalf & Eddy 1914).
Such techniques are most generally founded upon utilising established rules-of-

thumb and replicating systems which have already been seen to be suitably

functional.

This is not to suggest that the field has evolved devoid of any real theoretical
work. However, the theoretical basis for biological systems that has been

developed is anchored in the field of chemistry, rather than population biology.

This approach neglects examination or the assembly and structure of the actual

microbial communities which metabolise the pollutants in the wastewater, and
instead examined the question of what chemical conditions within the system
encourage the wastewater plants to function. Typically, these established theories

relate to the energy, nutrient and environmental requirements which are observed




Chapter 2 Literature Review

to encourage microbial systems to flourish (Lawrence & McCarty 1971). While
these philosophies have allowed for the construction of countless wastewater
treatment systems, they often cannot provide any explanations of why occasional
plant failure occurs. Even if chemically conditions are kept ideal for microbial
communities to flourish, they cannot always predict which groups of

microorganisms will establish themselves in the system.

However, the ongoing evolution and development of laboratory tools for
observing and characterising microbial communities are opening up the
opportunities to develop applicable theories which incorporate the microbial
structures themselves. This is not to denigrate the achievements of conventional
theory which have provided us with clean drinking water for decades, simply to

add that a greater understanding of the microbes and their function can only

improve the design and function of any future systems.

This section provides an overview and brief summary of many of the prevailing

ideas and designs employed in wastewater treatment and environmental

engineering.

2.1.1 Mass-Balance Equations

Traditionally, the central concept employed in the engineering design of

biological wastewater treatment systems is that of mass balance. For a known

quantity of waste, the nutrient and oxygen requirements of microbial

10
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communities can be estimated in order for them to successfully metabolise the
pollutants (Porges et al. 1956). Years of empirical evidence has provided
engineers with a bank of knowledge of the masses required of certain chemicals to

fuel the microbiological removal of the waste.

Fundamental to the mass balance equations is the fact that during the
metabolism, the total mass within the system must remain constant. That is, the
sum of the masses of microbes, of nutrients and oxygen, and of pollutants during
the reaction does not change. Accordingly, the net rate at which a particular
reactant accumulates within any wastewater treatment system must be equal to
the rate at which it is introduced to the system, plus the rate at which it is

generated within the community minus the rate at which any flows out from the

system (Speece & McCarty 1964).

In words, this is generally stated as the simple formula:

(2.1)

Accumulation = inflow — outflow + generation

It is notable that the mass balance equations, like almost all of the commonly

applied theories for biological wastewater do not explicitly consider the make-up

of the microbial communities relied upon. By considering all the biomass that

performs a particular function as a single catalyst, without modelling the range of

diversity within the microorganisms, a great deal of possibly vital information is

lacking from such approaches. It goes without saying that if a particular

11
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functional group is completely absent from a system, no amount of additional

nutrients will increase its growth rate within that environment.

2.1.2 Monod Kinetics

For the majority of applied microbial processes, the mass-balance equation is
crucial to system design. To maximise the quantity of active biomass within the
system, its growth rate should be optimised as far as possible. In practice, it is

seen that for the vast majority of cases, this growth rate is limited by the

substrate which acts as electron donor to the biomass.

The most commonly applied model of bacterial growth kinetics was introduced in
the 1940s by the French microbiologist Jacques Monod. He noted that the growth
was initially linear as a function of the limiting substrate concentration, but

eventually levelled off at a constant value. Accordingly, a smooth mathematical

function was proposed

S (22)

where u,, is the growth rate due to synthesis, /i is the maximal growth rate, S

is the substrate concentration and K, is a constant which gives the

concentration at which the growth rate is one half of its optimal value. Implicit

12
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in this theory is the assumption that the biomass does not die or become inactive

at any time when there are available nutrients.

A great wealth of empirical evidence regarding the nutrient requirements, growth
rates, and rates of metabolism of microorganisms has been gathered which has
allowed technologies to emerge which are generally reliable. For example, the i

and K, parameters in equation can be empirically observed from monocultures in

the laboratory (Robinson & Tiedje 1983).

Monod kinetics have been combined with the simple mass-balance principle
(Downing et al. 1964; Lawrence & McCarty 1971) for a theory to determine the
biomass of functional groups of organisms on the basis of the available mass of
chemical electron donors and acceptors. This theory forms the basis of the design
of almost all environmental biotechnologies. It should be noted that, although
microbial systems are implicitly relied upon for these technologies, there is no
explicit description of the biodiversity within the systems. It is simply assumed
that all required functional groups will be present whenever suitable resources are
in the system. Understandably, this approach can prove problematic when system

function declines because of biodiversity collapse, as it is completely unable to

explain such behaviour.

The simplest and most commonly applied form of this theory is for a completely

mixed reactor system with continuous influent and effluent (Zhou et al. 2002).

13
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Applying the Monod equation (2.2) with constant outflow C' per unit time gives

the following equation for the rate of change of biomass, X, within the system.

dx s
X _ X - CX. .
@ 'K, +8 23)

This is coupled with an equation for the nutrient, S , concentration within the

system where AS is the difference between the nutrient concentration in the

influent and the effluent.

ds

S
= =C(b8)- X (2.4)

K, +8

~< |"2>

How Lawrence & McCarty’s theory is applied depends upon the physical and
operational design of reactors. Bioreactors are built according to many different
designs from plug-flow, where pollutants flow continuously through the system
(Schmidt 1998), to membrane reactors, which rely upon a membrane (usually
now a plastic medium) which allows for the passage of treated liquids through,
but which retains the vital communities of microorganisms for metabolising
pollutants (Hai et al. 2006). The most common design however is the activated
sludge process. It is not the intention here to review reactor and process designs.
However, to set the theoretical research that forms the majority of this thesis

into context, there is benefit in reviewing the development of the most ubiquitous

technology, the activated sludge process.

14



Chapter 2 Literature Review

2.1.3 The Activated Sludge Process

The most commonly employed biological process for wastewater treatment is the
activated sludge process. Plants utilising this technique can be found in almost all

climates from the tropics to the arctic regions and at a huge range of altitudes.

Its origins lie almost a century ago, when Ardern and Lockett (Ardern & Lockett
1914) noted that flocculent suspended particles formed when sewage was aerated.
Such particles were referred to as being “activated” as, when retained in the
system, the time for contaminants to be removed from the water was noted to be

drastically reduced. Accordingly, many treatment systems were then constructed

to exploit this observation (Sawyer 1965).

What is remarkable is that it was almost two decades later before it was
definitively determined that the suspended flocs were indeed microorganisms and
that the whole process was a biological, and not chemical one. Nonetheless, by
this stage, the technique was still widely employed thanks to a wealth of

empirical knowledge and parameters derived from trial and error (Sawyer 1965).

Nowadays, there are a few variant designs for wastewater treatment systems
which employ the activated sludge process, but all possess the same few basic
features. The first of these is the aeration tank, in which the activated sludge is

mixed and kept in suspension while conditions are maintained suitably aerated so
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as to encourage the growth of the microbial communities within. This sludge is
then passed onto the second stage of the system, the settling tank (Spellman
1997). Here, the treated water is separated from the flocs and may be returned to
the environment. The flocs which are captured in the settling tank may either be
wasted from the system or recycled back to the aeration tank. By this cycle of
allowing the flocs to settle and then be reintroduced into the aerator, the sludge
can become extremely concentrated. The wasting of some of this is done to

ensure that the average sludge age, or retention time, is kept controlled.

Treated Water
Aeration Tank Settling Tank
RAS
2
>
[~ ]
To Sludge Treatment

Figure 2.1

lilustration of the basic design for activated sludge plants showing the two tank
system, along with the process of returning some sludge - Returned Activated
Sludge (R.A.S.) and wasting part of it - Waste Activated Sludge (W.AS.)

http://en.wikipedia.org/wiki/Activated_sludge
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2.2 Molecular Microbial Ecology

Microbiology is the study of organisms too small to be visible to the naked
human eye. There are two main groups of these microbes, prokaryotes and
eukaryotes. Prokaryotes are characterised by the absence of a cell nucleus, and
include bacteria and some types of algae. Eukaryotes possess a nucleus, and

examples of microbial eukaryotes include fungi and animal-like protozoa.

Both these types of microbes are relied upon for countless everyday functions.
With applications in medicine and agriculture as well as in every day food
technologies, such as brewing and dairy pasteurisation, the field of microbiology
is one of the most important to mankind’s existence. On an even more basic

level, microbial communities within the human body form the foundations of

both the digestive and the immune systems.

Despite the field of microbiology being over three centuries old, it is in many
ways in its relative infancy. Over the past two or three decades, the abilities of
microbiologists and microbial ecologists to observe and characterise communities
have been dramatically increased. Before this time, studies of microorganisms

were reliant upon laboratory cultures. For such studies, microbial samples were

spread across the surface of a Petri dish of nutrients and left in a laboratory to

grow to higher concentrations. However, owing to the fact that some microbes
grow better under such artificial laboratory circumstances than others, such

culture based techniques were widely accepted as being highly likely to give
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biased pictures of the sample analysed. Even the most optimistic studies
conceded that only a very small fraction of the microbial world could ever be
cultured (von Wintzingerode et al. 1997); estimates of just how little vary from
0.1% to 10% of global diversity (Head et al. 1998). Because of this, techniques

were required which did not involve the cultivation of microorganisms (Torsvik et

al. 2002).

The other major problem faced by microbial ecologists is the lack of any
consensus of a species concept for microbes (Spratt et al 2006). The most
commonly applied definition is based on similarity in the 16s RNA sequences,
typically grouping organisms with 95%, 97% or 99% similarity as being of the
same species. Clearly, two sequences which share 96% similarity could easily be
classed as being of two distinct species or of being the same, depending on the
similarity level chosen. Alternative definitions exist, such as defining taxonomy
based on similarity in functional behaviour, such as nutrient metabolism. How
employment of these differing definitions of a species concept affects the fit of

certain models or theories is still being debated (Thompson et al. 2005).

2.2.1 Diversity Analysis Techniques

In recent years, new non-culture based tools have been developed, and they are

allowing ever greater insights into the microbial world (Moffett et al. 2000; Daims
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et al. 2005; Kowalchuk et al. 2005). Thus, they are able to offer the sort of
microscale data to environmental engineers that had not previously been
available. This section provides a brief summary of some of the most commonly
applied tools for microbial diversity analysis. There are in fact a vast number of
alternative tools also in common usage, so an exhaustive review of these would
prove too great an undertaking for the scope of this thesis. Those discussed here
are not only some of the more common procedures, but also ones relevant to the
later research presented here. A central tenet of this thesis is that in order to
interpret microbial ecology surveys and translate them successfully into theory

requires an appreciation of the procedures and limitations of the new molecular

methods for observing microbial communities.

2.2.1.1 Polymerase Chain Reaction (PCR)

Almost all of the modern tools for analysing microbial diversity require some
minimum quantity of DNA to be present in a sample in order for the techniques
to function (von Wintzingerode et al. 1997). For microbial samples, this threshold
is seldlom met by the sampling procedure alone. Polymerase Chain reaction
(PCR) is the most widely used method for amplifying small quantities of DNA to

produce, at least in theory, many copies with exactly the same sequence

(Devereux & Willis 1995).

19



Chapter 2 Literature Review

In all PCR reactions, a few reagents are required and added before the
amplification process is initiated. These include primers, which are strands of
nucleic acid which anneal to the DNA, and enzymes to act as catalysts for the
whole process. Once the required reagents have been added to the microbial
sample, there are three stages to the procedure. The first step, known as
denaturation, involves the breaking of the hydrogen bonds between the two
complimentary sequence strands of the DNA in double-helix form. After this, the
sample is cooled before the second stage. This is when the primers anneal to their
target sequences (Sambrook et al. 1989; Giovannoni 1991). Finally, for the
extension phase of the reaction, the sample is heated to optimise the efficiency of

the polymerase, which extends those DNA fragments to which the primers have

annealed.

Each time this three step cycle is followed, the DNA concentration should double.
Typically samples are subjected to twenty or thirty cycles of PCR until the
amplification factor has reached around 10° (Sambrook et al. 1989; Giovannoni
1991). If any higher amplification is required, the product can simply be diluted

down and used as the basis for the same procedure to be repeated upon.
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POLYMERRSE CHAIN RERCTION
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to each strand. A new DNA strand
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Continued rounds of ampiification swiftly produce
large numbers of identical fragments. Each
fragment contains the DNA region of interest.

Figure 2.2
Diagram illustrating the procedures employed in the amplification of DNA by

Polymerase Chain Reaction.
http://www.accessexcellence.org/AB/GG/polymerase.html
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2.2.1.2 Denaturing Gradient Gel Electrophoresis (DGGE)

Denaturing gradient gel electrophoresis (DGGE) is a technique applied to PCR
amplified DNA. After amplification, a sample of DNA is applied to an
electrophoresis gel containing a denaturing agent with a gradient of
concentrations, which causes the dissociation or partial melting of the double-
stranded DNA fragments (von Wintzingerode et al. 1997; Head et al. 1998). The

melted DNA then moves across the gel, but much slower than they would if in

double helix form, and eventually come to a halt at some point.

This technique relies on the fact that different DNA fragments melt at different
denaturing concentrations, so at different points across the gel. Consequently, the
gel is left with many bands, each corresponding to where melted DNA fragments
settle. In principle, if the DNA of each taxon melts at a different point, then each

band should correspond to the presence of a different taxon in the sample

(Muyzer & Smalla 1998; Muyzer 1999).

Not only does DGGE provide a measure of the number of taxa present in the
original sample (by simply counting the number of distinct bands), it also can be
used to quantify the abundances of each taxon. More abundant taxa in the initial
sample will, perhaps somewhat unsurprisingly, result in greater concentrations of
their associated DNA fragments running across the denaturing gel. Consequently,
the point location at which those fragments melt will see a large build up on the

gel. These show up as brightly coloured bands. A less abundant taxon will have
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far fewer fragments stopping at the part of the gel associated with it, and so will

appear much lighter. As a result, band intensity can be measured to record the

relative abundances of all detected taxa (Muyzer 1999).

Because of its simple and direct visualisation of genetic diversity, DGGE is a very
common and popular tool. It is regarded as one of the most sensitive and reliable
methods for community analysis (Sambrook et al. 1989) and one gel can analyse
the structure of samples of up to around a million microorganisms, many times
greater than other techniques allow. Fig 2.3 shows a typical DGGE gel arising

from the analysis of 17 samples of microbes from wastewater treatment plants.
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Figure 2.3
DGGE analysis of 17 samples from wastewater treatment systems. The bright

bands near the centre of all the lanes clearly indicate two bacterial taxa present

in high abundances in all systems. (F. Read, unpublished)

That said, DGGE is not without its drawbacks. Like any technique which has

previously relied on PCR amplification, there is always the risk that biases have

already been introduced (Muyzer 1999). If some sequences are better amplified

than others, then the DGGE analysis will reflect this bias as much as it does the

actual taxa abundances in the sample.

Additionally, there have been studies suggesting that, even aside from

amplification issues, DGGE may in some cases underestimate the number of taxa

present in a sample, and in others overestimate it. Infrequently, two or more
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DNA fragments of differing sequences can co-migrate across the gel and stop at
the same location, or indistinguishably close to each other. In rare cases, one

sequence can also produce two distinct bands and hence falsely give the

impression of being from the DNA of two different taxa.

The major downside of DGGE analysis, however, is its detection of rare taxa.
Although it may be used to measure samples of up to around 10°, it is very poor
at detection lower ranked taxa. As identification is dependent upon a sufficient
amount of DNA fragments accumulated at a point on the gel for the formed band
to be seen, rare taxa may well not be able to form a band which is visible (Curtis
& Craine 1998; Muyzer 1999). It is currently accepted that each taxon must

make up somewhere between 0.1% and 1% of the total sample in order to be

detectable on the gel (Cocolin et al. 2000).

2.2.1.3 Clone Libraries

An alternative to running DGGE analyses on PCR-amplified environmental

samples is to construct clone libraries (Sambrook et al. 1989). Like other

molecular methods, cloning is a multi-stage procedure.

The first stage is ligation. During this step, the DNA fragments which are to be

cloned are mixed with a specially constructed plasmid, which acts as a cloning

vector (Davenport et al. 2000). After a brief period of incubation, the PCR

amplified fragments are then inserted into the cloning vector. This is known as
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transfection or transformation. There are various different substances which can
be used as cloning vectors, but increasingly plasmids are selected which contain a

so-called ‘death gene’ (Muneta et al. 1999), which ensure that unless the vector is

disrupted, it will soon die.

The process of transfection is not highly efficient, and so the end result of this
second stage is a mixture of the desired tranfected cells (cloning vector with
inserted DNA fragment) as well as some of both the cloning vector with no
inserts and DNA fragments which have not inserted into the vector. Finally the
resulting cells are cultured, typically in Petri dishes. Each of the three possible
substances that are cultured produce three different outcomes. The easiest to
distinguish is PCR product which has not inserted into the vector. This simply
will not grow and thus will not be detected in the end. The remaining cloning
vector cells which have not been interrupted by the insertion of PCR products
will also be killed off by their ‘death gene’ (Muneta et al. 1999), so will also be

absent from the final product. Finally, where the DNA fragments have

successfully inserted into the cloning vector, the ‘death gene’ is disrupted and the
resulting product replicates in the Petri dish culture. Finally, the resulting clones
can be screened and identified, usually by comparison to large publicly available

database, such as GenBank. These steps are illustrated in Fig 2.4 below.
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PCR product is
ligated into plasmid
cloning vector

Ligation
l Incubate
Transformation Transformation into
competent cells
Spread onto
agar plate
Plating
Figure 2.4

Schematic diagram of the steps taken in constructing clone libraries.

The major advantage of using clone libraries, rather than DGGE analysis is that

there are no detection limitations. Whereas the rarer taxa in a sample analysed

via DGGE may well appear absent, even a singleton in a sample will be detected

in a clone library. The downsides of constructing clone libraries are the relatively

high cost and low throughput. With DGGE, samples of sizes of the order of 10°

can be examined, yet few libraries exist of even 10° clones. Indeed, it is not

unusual to see analyses of scarcely more than 10' individuals with cloning.
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2.2.1.4 Fluorescence in situ Hybridisation (FISH)

Despite the wealth of new molecular methods that have been developed, correct
enumeration of microbial populations remains a challenge (Chandler et al. 1997).
Because of the biases inherent to PCR amplification, all techniques which are
reliant upon this procedure inherently cannot be accurately relied upon for
quantitative studies of communities of microorganisms. There are however several
PCR-independent methods for population counts, the most popular of which

being fluorescence in situ hybridisation (FISH) (Boggs & Chinault 1997).

FISH uses fluorescently labelled probes to detect specific organisms in biological
samples (Amann et al. 1990b). It is an especially valuable tool when interested in

the dynamics of a population through both space and time.

FISH is carried out in four main steps, commonly known as fixation,
hybridisation, washing and fluorescent microscopy. The first of these steps is
carried out to ensure that the cells within the biological sample retain the
morphology and basic structure during the subsequent procedures. Typically, this
is achieved with the addition of some fixative, most usually an alcohol or
aldehyde. Once fixed, the cells are exposed to fluorescently labelled probes, which
then bind to the RNA of metabolically active cells (Amann et al. 1990a). These

probes have to be carefully selected to be specific to the groups of microorganisms
of interest, so that they do not bind to other non-target cells. After hybridisation,

the sample is then washed to remove any excess probe which had not bound to
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The main advantage of FISH is that it is possibly the best available tool for

enumeration of microbial samples (Waar et al. 2005). It is, however an extremely

slow and therefore expensive method which somewhat limits its spread of

application.

2.3  Ecology

The study of the distributions and abundances of living organisms is one of the
oldest fields of the biological sciences (de Candolle 1855; Jaccard 1901). It is
borne out of a natural curiosity to enquire how many different species will be

found in a given habitat and at what abundances, and more generally how and
why biological communities assemble. Accordingly, over the years, there have

been many surveys undertaken on the distributions of birds, plants and animals.

Until relatively recently, these studies have been confined to such large multi-

cellular organisms (mammals, birds fish etc), which in this thesis will be termed

macro-organisms. The major reason for this was simple; observing microbial

communities in their natural environment was extremely difficult and taxonomic

classification even harder. Consequently, the majority of published ecological
models have been developed for explaining and predicting biodiversity patterns
for these larger organisms. However, as previously mentioned, a wealth of new

techniques are being developed which are affording researchers the chance to

study the ecology of microbial communities in situ. As these new tools improve

and allow for the gathering of ever more extensive datasets from microbial
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communities, the potential for the development of a similar suite of models for

microorganisms grows ever greater.

This section provides an overview of some of the main concepts and theories
currently employed in classical ecology, as well as discussions of how some of
these may be adapted to form the basis of predictive microbial models. The aim
of this review is certainly not to provide an exhaustive summary of ecological

theories, rather to cover those which may be useful in laying the groundwork for

similar models for communities of microbes.

2.3.1 Key Concepts in Classical Ecology

2.3.1.1 Species-Area Curves

One of the oldest and most studied concepts in ecological literature is the

relationship between the area of a habitat and the number of distinct species

housed within (Arrhenius 1921; Preston 1957).The most commonly cited form for

this is that of a positive power-law § o A'relating the number of

species § observed in a given area 4. Studies for a wide range of organisms, from

the scale of ants to trees, have found that the positive exponent, z, tends to be

between 0.16 and 0.35. In other words, the number of species encountered is

typically proportional to somewhere between the third and the sixth root of the

area examined.
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This seemingly universally applicable, simple formula has had a huge impact on
ecological practice and theory. In practice, it has been touted (Diamond and
May, 1981), perhaps controversially (Saunders et al. 1991)as a framework for
assessing the long term effects of the fragmentation of ecosystems, or other
reductions in habitat area on species diversity. From a theoretical perspective it
spawned many developments (Sugihara 1980) including MacArthur and Wilson’s
Theory of island biogeography, (Macarthur 1960) (section 2.2) widely perceived

as one of the cornerstones of modern ecological theory.

Species area relationships are generally illustrated by plotting the patterns on a

plot using a log-log scale. This simple transformation of variables gives, for the

S o A*power law, a straight line fit

InS =z2lnA+InS,

so that the gradient on the log-log scale gives the value of the zexponent.

Figure 2.6 below shows a typical species area curve for a study of plant species in

California.
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Figure 2.6

Species area relationship for endemic vascular plant species found in California.

The value of the zexponent is 0.22.
Redrawn from Johnson et al. (1968)

In practice, there are several different types of species area relationship (Scheiner

2003) which are studied. The three most commonly investigated types involve

nested sampling, grid based sampling, and island-like sampling schemes. These

are illustrated in fig 2.7. Somewhat predictably, all types of species area

relationship give, almost without exception, a positive correlation between the

area examined and the number of species detected.
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Species-area relationships can be built from four main sampling schemes (a)
Nested sampling, (b and c) Grid based sampling, either contiguous or non-

contiguous and (d) Island-like. From (Scheiner 2003).

However, there are two very different mechanisms which drive this observed

phenomenon. The first is a purely statistical reason. For nested sampling and

island-like sampling schemes, where ever larger areas are considered, it is clear

that sampling a greater number of individuals will give an increased chance of

encountering new additional species to the study. This is especially true in cases

when the dispersal of species is somewhat limited.

The second major influence driving the observation of such relationships is a

biological reason; larger regions of habitat tend to be more environmentally

heterogeneous, thus different species are likely to be encountered at different
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locations within the region of interest. This mechanism is the underlying process
behind grid based species-area relationships, where samples are taken of equal
size and behind some techniques for both island-like and nested sampling

schemes, which rely on point measurements and the distance-decay of similarity

between samples (Harte et al. 1999; Green et al. 2004b).

Since the study of microorganisms is in its relative infancy, it is perhaps
unsurprising that microbial ecologists have alighted on the species-area
relationship in their search for general patterns. There have been a number of
studies recently that identify taxa-area relationships for microbes in both
contiguous (Green et al. 2004b; Hughes Martiny et al. 2006) and island-like
communities (Bell et al 2005a). From an engineering perspective these

relationships, if found to be sufficiently consistent, could assist in designing for

diversity based on the area and volume of bioreactors.

2.3.1.2 Species Abundance Distributions

Although studies of the species-area relationship provide information on the

number of different species found at a given site, they do not address the

structure of the community. Knowledge of species richness does not shed any

light on the relative abundances of those species present. It is common to find

ies which house the same number of species, but whose

Pielou 1966).

two communit

communities are vastly different in structure (Simpson 1949;
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For example, some systems are seen to consist of a number of almost equally
abundant species, for example bacteria in soils (Borneman & Triplett 1997). On
the other hand, communities exist which can have similar total numbers of
species, but which are dominated by a few highly abundance species, with all
others observed only rarely (Corbet 1941; Spratt et al. 2006). Systems for which
all species abundances are similar are regarded as being evenly distributed, and
ones dominated by a few top ranked species are uneven. A number of different
indices are applied to quantify this concept, but no one measure is regarded as

‘standard’ (Shannon & Weaver 1949; Pielou 1966).

This concept of evenness is of paramount importance to certain fields of ecology,
as well as to environmental engineers working with biological systems. It is often
observed that evenness within a functional group promoted stability of that
function (Rowan et al. 2003) or productivity (Bell et al. 2005b). Biotechnologies
which rely upon the presence of certain bacterial taxa (or functional groups of
them) require not just the maintenance of these within the engineered system,
but also the preservation of them at suitably high abundances to metabolise the
required waste. In the context of wastewater treatment plants, for example, an

extremely uneven community structure is more likely to suffer loss of function.

The relative abundances of taxa in a biological community are generally
expressed in the form of the species abundance distribution which is often

illustrated in a number of different ways, most notably as a species-abundance

distribution and a ranked species-abundance distribution.
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A species-abundance distribution is a histogram that counts of how many species
have only a single organism in the community, how many have two organisms
there, and so on. In practice, many species abundance distributions seem to have
strong positive skew; that is, the communities consist of a small number of very
abundant species and have a large number of rarer ones (Corbet 1941), (Preston
1948). Consequently, the histograms are unclear as much of the data is closely
packed at the left hand of the plot, with a huge narrow tail extending out to the
right (Spratt et al. 2006). For such datasets, it is advantageous to employ
logarithmic binning of the abundances, a technique first introduced by Preston.
Preston argued that since studies are often concerned with how populations

double in numbers, a natural base for logarithms would be base 2. This

convention remains to this day in the ecological literature.

Once the simple histogram count has first produced based on the abundance of
each species within the community, these data are then sorted into bins with
edges 0,1,2,4,8,... When any particular species abundance falls exactly on the bin
edge, it is divided equally between the two bins either side of the boundary. For
example, the bin labelled 8 contains the number of species with 5, 6 or 7

organisms along with half the number with 4 and half the number with 8.

A ranked species abundance distribution essentially plots the same information in

a different manner. It is conventionally used when comparing communities where

the distribution of taxa are quite different (May 1975). The species are ranked 1
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to n according to their relative abundance, where n is the total number of species
observed, rank 1 is the most common species and rank n is the rarest. The
relative abundances are then plotted against their given rank, producing a

monotonically decreasing ranked abundance distribution.

For extremely large communities, the species abundance distribution is often
approximated to a continuous function. Strictly speaking, the distribution must
be discrete, as the number of species at a given abundance level must be a non-
negative integer. However, when community sizes and species richness are high,
small rounding errors can be ignored and it is possible to regard the species
abundance distribution as being continuous. Just as for continuous random
variables in probability theory (Grimmett & Welsh 1986) , where it is only
possible to state a probability density function (pdf) for a distribution rather
than individual discrete probabilities of each possible state, a species density
function is required for the abundance distributions using a continuous
approximation. The number of species at a particular abundance level is given by
an integral across the species density function rather than a sum of the counts in

appropriate bins, in the same way as expectations of continuous random variables

are found by integrals across the required domain rather than summations over

all possible outcomes.

Displaying the data as histograms or as ranked abundance distributions gives a

visual picture of the distribution. F rank Preston and other eminent biologists of

the time including RA Fisher (who went on to become one of the pre-eminent
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statisticians of the twentieth century) were immediately drawn to the idea that it
might be possible to fit a parametric distribution to these data with a view to
classifying communities and ecosystems (Preston 1948; Spratt et al. 2006). These
models could be perceived as being phenomenological in that they were originally
proposed without any attempt to reconcile them with any underlying biological
community assembly process. Ultimately, it was thought that these might lead to

an understanding of how the communities formed and functioned and biological

explanations have proffered post-hoc.

Many people, however, frowned upon such a “statistical” approach to finding the
distribution of individuals per species within a community. One of the most
prominent of these critics was Robert MacArthur, who argued that is the same
mathematical functions were so ubiquitous in describing real ecological systems,
there must be some underlying mechanisms of community assembly and
dynamics upon which they could shed light (Macarthur 1960). In the wake of
such publications, a second class of models followed that were based on
conceptual models of how communities formed. To this day, there is still a great

deal of debate over the relative merits and applicability of these two classes of

models (Harte 2003; McGill 2003).

2.3.2 Phenomenological models of Community Composition

Through the history of ecology there have been many different mathematical

functions proposed as models for observed taxa abundance distributions and it is

39



Chapter 2 Literature Review

not feasible to review them all. However, there does appear to be a consensus,
although not one uniformly held, that most data can be described by one of three

common distributions; the lognormal, the logseries and the geometric.

The majority of the theory developed for explaining ecological communities is
centred upon explaining the species abundance distributions which are observed
in real datasets. As a consequence, there are two very different classes of models
which have arisen to explain ecological systems. The first of these has its origins
in developing a distribution which explains the species abundances directly. Such
models rely on finding mathematical functions which can replicate the observed
shapes of species abundance distributions. For many of these models, subsequent
ecological explanations have been proffered as to why such patterns should arise,

but such justifications are often dismissed as being contrived or having only weak

biological foundations (Boswell & Patil 1971; Pielou 1975).

2.3.2.1 The Logseries Distibution

One of the earliest suggested mathematical functions fitted to observed species
abundance data was that of a logseries distribution. It was observed (Spratt et al.
2006) that the distribution of abundances for a dataset of 620 species of butterfly
seemed to form a smooth hyperbolic progression. Accordingly, a negative

binomial distribution was fitted to the dataset. However, owing to the fact that

the zero abundance class was unobservable, the distribution was truncated to
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remove this category. Under the additional assumption that the number of
species present could be effectively infinite, a one parameter distribution was

suggested; a truncated negative binomial distribution as the shape parameter

tended to zero.

The result was the logseries distribution which states that the number of species

expected with n individuals in the community is

. (2.5)
n

The original notation used by Fisher uses the scaling parameter « rather than
6. However, as discussed later in this chapter, the logseries is of interest to more

recently developed neutral community models and in that context, the

alternative 8 notation is the convention.

Although this may seem at first glance to be a two parameter model (both

fandz) one of the parameters is constrained by the other and by the total

number of individuals, N;, in the system.

Equating the total number of individuals

Nz ;n f n 1-z
thus
g (2.7)
N, +6
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When plotted without using Preston’s logarithmic binning, the logseries
distribution resembles a familiar hyperbolic shape, as shown in figure 2.8 below.
When plotted on a logarithmic scale, the shape is much flatter, often almost

constant across the first few bins before tailing off rapidly when the bins for the

small number of highly abundant organisms are reached (figure 2.9).
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Figure 2.9
Species abundance distribution for a logseries distribution using Preston’s

logarithmic binning. Here, 8 = 50 and the size of the population is N, = 17000 .

A recent comprehensive analysis of the applicability of various mathematical

models for microbial communities in soil (Gans et al. 2005)found little evidence to

support the logseries distribution for micro-organisms living in soils. Interest in

the logseries distribution was short lived and few, even heuristic, justifications for

the logseries distribution were ever advocated (May 1975). However, it is

included here because there has been a renewed interest brought about by neutral

theories of community assembly which are discussed in detail later in the

literature review.

In Hubbell’s version of the neutral theory (Hubbell 2001) he advocates a

conceptual model of speciation and extinction that leads to a logseries

distribution of taxa abundances for large biological communities. He further
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suggests that while this distribution exists it will rarely be seen at any local site

because the effects of dispersal serve to modify local taxa-abundance

distributions.

2.3.2.2 The Lognormal Distribution

During the 1930s and 1940, a wealth of empirical evidence emerged to suggest
that, unlike the patterns predicted by a logseries, most species abundance

distributions had an internal mode (Williams 1964). This led to the logseries

falling out of favour with many theoretical ecologists.

Furthermore, it was initially noted by Preston (Preston 1948) that when datasets

were plotted using logarithmic binning the histogram resembled the classic

normal bell-shaped curve. He therefore proposed that species-abundances were

distributed lognormally. Since then it has become the most commonly cited

distribution for species abundances. Lognormal distributions have been fitted to

species-abundance data in plants (Pielou 1975), mammals (Preston 1962), fish

(Magurran 1996) and birds (Price et al. 1995; McGill 2003).

Some authors (McGill 2003) have suggested that it is so ubiquitous it should be

used as a null hypothesis on the distribution of species abundances against which

any other proposed model is compared .
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Mathematically, the lognormal is a continuous distribution with probability
density function (pdf) such that if X ~ LogN(u,0?), where p and o are the

mean and standard deviation of In(X)then

flo) = —= exp 5 1) - ') (28)

The distribution is so named because ifZ = In(X)and X ~ LogN(u, a?)

exp[Qi2 (z— ,u)2]. (2.9)

1
\/57'(0'2
That is, Z has a normal distribution Z ~ N (p,0).

Because of the convention in ecological literature introduced by Preston, who was

the first to advocate lognormal distributions, of organising data into logarithmic

bins using base 2, the lognormal species abundance distribution is normally

stated in a slightly different form. Let S,be the number of species in the modal

bin, S,the number in the bin to the right of the mode, §_,the number in that

one to the left of the modal bin and so on. It is then observed that these

histogram counts are distributed according to

S, = S, exp(-a’R?) (2.10)

where ais an inverse measure of the variance of the distribution.

While it may not be instantly apparent that this distribution is of the form of

(2.8), setting the simple change of variables
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R = log, N —log, N,

and

: i i AP S,a
gives a relationship of the form (2.8), up to a multiplication factor of S, = 7__;

and thus is indeed lognormal. The multiplier is there so that the complete

integral indeed gives the total number of species, S, rather than simply unity.
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Figure 2.10
Species abundance distribution for a lognormal distribution where 5, = 225,

N, =20.82 and o =2.98. These parameters are the best fit calibrated for a

community of trees on Barro Colorado Island, Panama (Volkov et al. 2003).
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The ubiquity of the lognormal distribution led some eminent ecologists to believe
that there must be some underlying process that led to the distribution(May
1975; Caswell 1976). As a consequence they sought to derive a set of rules for

community assembly that would yield a lognormal distribution in taxa

abundances for a community.

The proposed explanation for the lognormal which has been most commonly cited

is that the distribution arises from a number of random processes affecting the

growth of populations. It is argued (May 1975) that if these growth rates are

normally distributed, then the abundances of the species (proportional to the

exponential of the rates) should themselves give rise to a lognormal species

abundance distribution. Although this may well justify the prevalence of the

lognormal, it is founded upon the assumption of normally distributed growth

rates, a postulation which has never been definitively proven. Other arguments

ed, including purely statistical explanations suggesting they

). Again, this

have also been propos
could arise from combining unrelated samples (Routledge 1980

proposed mechanism remains unsubstantiated. Despite these apparent failures to

justify the lognormal distribution, which was so commonly fitted to empirical

data, such efforts to find a theoretical basis for it did signal a gradual shift in

ecology. Rather than simply considering which mathematical function best

described existing datasets, the underlying processes that led to species

abundance distributions were being considered. From the point of view of those

seeking to predict or manipulate and engineer biological systems, this was a

highly important and substantial change in philosophy.
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There has, however, as yet been little conclusive evidence to support any
particular distribution for microbes; although many studies (Gans et al. 2005)
(Dunbar et al. 2002) are slowly whittling away at the set of feasible distributions.
Furthermore, some authors have reasoned that there will be a characteristic
species-abundance distribution for a particular environment and then proceeded
to speculate on the consequences for the diversity of ecosystems under particular

assumptions on the form of the distribution. One of the most highly cited of these

is the N, /N, ratio method developed by Curtis et al. (Curtis et al. 2002).

They derived a method for crudely parameterising the distribution based on data

that microbial ecologists could easily measure. Given only values of the number

of individuals in a community, N,, and the abundances of the most and least

common taxa (N_, and N, respectively) they developed a quick and simple

rule of thumb for estimating diversity. Under the additional conservative

assumption that N __ =1, the technique can provide diversity estimates based

solely on the total population size and the ratioN, /N, . Based on, this they

were able to estimate the total diversity in samples from many environments and

concluded that some environments such as soil could be astronomically diverse

(10° per mg). The underlying assumptions of the Curtis et al. approach have not

been confirmed. However, the study did serve to highlight the utility of taxa-

abundance distributions in extrapolating from small samples of micro-organisms

to estimate community richness.
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2.3.3 Common Models of the Assembly of Ecological Systems.

In addition to some of the phenomenological models of community structure,
there is also a category of theories which seek to explain the underlying biological
mechanisms behind community structure. From the point of view of those
seeking to engineer biological systems, this second category is almost certainly of

greater use. If explanations can be offered concerning the way in which such

communities assemble and change through time, then perhaps these models can

also help suggest how systems may be engineered to produce communities with

certain desired properties. The species abundance distributions themselves are

often implicit in such models, along with information on other attributes of the

communities, such as the dynamics or the stability of any patterns.

2.3.3.1 Theory of Island Biogeography

Whilst many ecologists were following MacArthurs’s lead and pursuing

theoretical explanations for taxa-abundance distributions (Kilburn 1966),

MacArthur and Wilson took a step back and decided to explore theoretical

explanations for the taxa-area relationships. They took what at the time was a

radical perspective in that they considered dynamic processes of colonisation and

extinction on Island communities rather than attributing all of community

composition to the availability of resources or local growth alone. What emerged

was the Theory of Island Biogeography, first published in 1967 (Macarthur 1967).

This remains probably the most enduring and commonly cited explanation of the
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factors which govern the assembly of multi-species communities on islands. In the
context of their theory, ‘islands’ need not simply be areas of land surrounded by

sea, rather any such habitat with clearly defined boundaries. Accordingly, the
theory could be applied to plant species in an enclosed woodland area (Lavin et

al. 2001) or to fish species within a given pond (Browne 1981; Tonn & Magnuson

1082).

The conceptual picture which underlies the theory is one of biodiversity within an
island being determined by a series of randomly occurring events; the chance
extinction of species currently on the island and the possibility of new species

migrating in from the mainland or from a neighbouring island. In its most basic

form, the theory posits that, in the equilibrium state, the number of different

species housed on an island is governed by the balance between two opposing

factors; isolation and island/habitat size.

The isolation of an island, or how distant it is from others, determines the rate of

immigration from other similar communities onto the island. For islands that are

very isolated, with few similar islands in their surrounding area or that are

distant from the mainland, the immigration of new species into the habitat is

assumed to be low. When there are many such neighbouring islands, individuals

can more readily pass between close-by habitats, and thus the rate of

immigration into each island is much higher. With higher immigration of

individuals comes the increased probability that new species will be introduced
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into a community by migration to the island, and thus that the diversity within

will be increased.
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Figure 2.11

The immigration rate of new species onto an island according to the Theory of
Island biogeography for islands of three different degrees of isolation. The more
isolated the island, the lower the rate of new species immigrating.

The second key component in determining the biodiversity which can be

maintained on a given island is the island’s size. Just as an ‘island’ may be

defined to be a pond or a woodland area rather than a landmass surrounded by

water, the ‘size’ of an island need not be solely a measurement of physical space,

such as volume or area. In most contexts, larger islands are seen to house more

individuals because of both increased physical space and a larger pool of
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resources. However, in some cases this may not hold. For example, a habitat rich
in nutrients would be considered a ‘larger’ site than one of equal physical
proportions but far more scarce in resources. In other words, the ‘size’ of an
island is really a measure of how many organisms it can sustain. This factor then
has a knock-on effect on the rate at which species become locally extinct. Larger
islands, which house more individuals, are less likely to see species disappearing

completely from the habitat. The extinction rate is therefore lower for islands of

greater size.

Rate (species/time)

Number of species

Figure 2.12

The extinction rate of current species
Island biogeography for islands of three di
lower the rate of local species loss.

on an island according to the Theory of
fferent sizes The larger the island, the
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According to the Theory of Island Biogeography, the steady-state biodiversity on
a given island is determined by the balance between these two opposing
influences; extinction and immigration. By definition, an island is in its
equilibrium state of biodiversity when the net change in species richness is zero.
This occurs when the extinction rate of species from the island is equal to the
rate of immigration of new species into the area. Graphically, if both the
extinction rate (species loss per unit time) and the immigration rate (new species
arriving via immigration per unit time) are functions of the population size, then

the steady-state biodiversity will be determined by the point at which these two

curves intersect.

53



Chapter 2 Literature Review
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Figure 2.13
Equilibrium model for species richness as predicted by the Theory of Island

Biogeography. The predicted number of species, 5, is given by the intersection

of the immigration and extinction curves.

At a first glance, the Theory of Island Biogeography seems appealing to microbial

ecologists. Communities of micro-organisms are most usually open and subject to

immigration from air- or water- borne individuals which may establish themselves

within the system. It, therefore, might seem that the theory would be ideally

suited to microbes. However, MacArthur and Wilson’s theory produces

predictions of the total global diversity. When microbiologists cannot even agree

on the order of magnitude of the diversity within even a single gram of soil

(Volkov et al. 2003; Gans et al. 2005; Bunge et al. 2006) predictions on such a
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scale will prove to be utterly unverifiable. A slightly different theory would be
required for microbial systems, one which is capable of predicting diversity at a
variety of scales. Bell et al. (Bell et al. 2005a) recently observed more diversity
with increasing community size in insular treehole communities. However, their
diversity estimates were determined using DGGE, with which only a small
fraction of the total richness can be seen (section 2.1). They did not attempt to

explain their observations in terms of Island Biogeography, rather they

speculated on the distribution of niches in the various ‘islands’.

Although the applicability of such theories to microbial systems is widely

accepted (Hughes Martiny et al. 2006) there are still some who believe that there

is no real biogeography in the microbial world (Finlay & Clarke 1999). They

argue that dispersal of microbes is so widespread and community sizes sufficiently

large as to preclude any local stochastic extinctions. This “everything is

everywhere” hypothesis is certainly controversial and the majority of published

studies do indeed detect some microbial biogeography (Green et al. 2004a; Bell et
al. 2005b; Hughes Martiny et al. 2006). The work presented later in this thesis
(chapter 5) also finds evidence to support the idea that the dispersal of microbes

is not unlimited and that migration events may well be key to shaping microbial

community structure.
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2.3.3.2 Hubbell’s Neutral Community Model

One of the most recent and most hotly debated topics in ecology has been the
development of Neutral Community Models (Bell 2000; Hubbell 2001). The most
cited of these is the Unified Neutral theory developed by Stephen Hubbell.
Through this theory he, perhaps controversially, claims to have reconciled the
biogeographic inter-island predictions of MacArthur and Wilson with predictions
of the relative abundances of species within each smaller local community. This
is important for microbial ecology because it opens up the prospect of testing
some of the concepts in the Theory of Island Biogeography, in particular the idea
that local diversity is shaped as much by external ecological forces such as
immigration as by local forces. Unlike MacArthur and Wilson’s original theory,
testing of such concepts using a neutral model becomes a feasible task, as there is
no reliance upon knowledge of the total diversity, which remains immeasurable.
Data can be observed only from small samples (section 2.1) which give a picture
of only the right hand tail of the complete taxa-abundance distribution. As
demonstrated later in this chapter and in chapter 4 of this thesis, this inability to

see anything but the most common taxa is less problematic under the assumption

of neutral community assembly.

The Neutral Community Model (NCM) proposed by Hubbell is built on a set of

biological assumptions which are extremely basic. Certainly, any open microbial

system is a birth-immigration-death process. However, in a neutral model a

controversial additional assumption is made; all species at a given trophic level

56



Chapter 2 Literature Review

are assumed to be absolutely equivalent in terms of their birth and death rates.
No one species is ever assumed to reproduce more rapidly, live longer or compete

better for available resources than any other.

Hubbell also assumes for his model that each community is always saturated with
individuals and that the total population size remains constant, fixed at this level
of complete saturation. The value N,is defined to be this fixed number of total
individuals in the local population. Thus, for the structure of an assemblage to
change, an individual must first die or leave the system and then its space can be

occupied by either a new birth from within the system or else an immigrant from

outside in order to maintain a population of size Ny.

The mechanisms governing community assembly and dynamics for a NCM are
two conceptually very simple procedures (figure 2.14). Firstly, at uniform
intervals in time, one individual is selected uniformly at random from theN;,
within the system and is then removed from the community (‘death’). To replace
this organism, one of two possibilities for the second step is then chosen. With
probability m , the available space and resources vacated by the dead individual

are then occupied by an immigrant to the system. Immigrants are assumed to be

drawn from some large outside metacommunity, which represents the set of all

possible organisms which could migrate into the system. The alternative, which
occurs with probability (1 —m), is that a remaining member of the community is

selected uniformly at random and one additional member of its species is then

added to the system (‘birth’).
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metacommunity is driven by randomly occurring speciation events. This 1is
analogous to one of the standard models employed in population genetics (Karlin
& McGregor 1959). By taking the speciation rate to be small, and considering
the limit as both the population size and age grow extremely large, he goes on to

show that, for large metacommunities, the species abundance curve tends

asymptotically to equal a logseries distribution.

That is, for a randomly selected species i in a metacommunity of S, species, the

relative abundance of the species in the metacommunity, p, is a random variable

with probability density function

0 ._9?"1 o-E’L-l
f(px'):‘s'_pi“ 1-p) ™ . (2.11)
M

Note that since —-o—is small, this is indeed a well-defined pdf. Hubbell’s notation
M

in describing his proposed metacommunity uses the classical notation for a

lognormal, however it is demonstrated below that this is equivalent to the pdf

given above.

Let S(u) be the expected number of taxa in the metacommunity with absolute

abundance g then according to Hubbell’s model of metacommunity dynamics S

is described by Fisher’s logseries distribution,

L 2.12)
S(u)=6 /1 (

where
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te) (2.13)

and S, is the total number of taxa in the source community. It is not
immediately obvious how to sample at random from this distribution to generate
realizations of the taxa abundance distribution in the metacommunity. However,
a straightforward sampling algorithm becomes apparent if an approximation

suggested by Volkov et al (2003) is employed They noted that as %M — 0 then

the logseries distribution can be approximated by,

S ] [-l_f—z}u%u—l (214)

A

-B

S(u) =

T

Sy —1lande (‘_'_’]——»e
=

The advantage of this formulation is that the species abundance distribution can

—plin(z)

be obtained by generating S, independent realisations of Gamma variables

uNGamma[/g [ ]]forz—l v Sy forﬁmteé’as/g — 0.

As the variables are independent, their joint density function is simply the

product of their individual density functions
M _1‘7
=z - = o -
1 - e Al-x]'u’l%u ! le [l—z]'uSM/gM ! (215)
(/9 ) (1 —:v)

f(/‘l'l""’/‘s,,) =
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However, rather than using absolute abundances which requires explicit

knowledge of the number of individuals in the metacommunity, the relative

abundance, p,, of each species can be considered. Setting p, = /yu and
Zﬂ'i

Sy
Ny = E,u, note that only S,, —1 of these p,variables are now independent.
1

Therefore, set

u, =N,p fori=1..,85, -1
and

ts, = Ny(l=p, — ... = Ps, )

The joint density function of p,,...,ps, 18 therefore

—Nup,
9Py, -rPs, 1y Ny) = Si — ﬁ e %1—::](NMZ),)%M"1 -|det J}(2.16)
F(%M) (1 - z) |
where J is the Jacobian, given by,
Ny 0 0 by
o N, . 3
. R 0 : (2.17)
0 e 0 Ny P
-Ny =Ny = =Ny Ps,

It can be seen that |detJ|=N .~ .and therefore,

Ny
/—E— _ gSM_l %”—1
T Y R

S T | A
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The first term of this implies thatN,, NGamma[O,[l——-m—]], which gives that
T

as expected for the logseries distribution. The second bracket

B(N,)=0—"—

states that DyyeeesPs, have a Dirichlet distribution

Ppyeees Pg, ~ Dz‘r(%M ,...,%.M). Additionally, p,,...,ps, are independent of N,,.
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Figure 2.15

Species abundance distribution within the metacommunity for Hubbell's NCM.

The diversity parameter of 8 = 47.226 has been found for a tree community on

Barro Colorado Island, Panama (Volkov et al. 2003).

Mathematically, Hubbell’s formulation describes a simple Markovian Urn

(Grimmett & Stirzaker 2001)model. There are two different urns, one
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representing the individuals in the local community and one for the

metacommunity. Deaths in the local system are simply selections without
replacement from the local community. The species of the new member of the
community is then decided by selection with replacement from one of the two
urns. If the event is to be a birth, then selection is from the local community. In
the case of immigration, selection is made from the metacommunity urn. An
additional member of the selected species is then added to the local community.

Figure 2.14 illustrates these mechanisms in a simplified system.

For any given timestep (random death followed immediately by birth or

immigration from the metacommunity), the transition probabilities for N,, the

abundance of species i are

(2.19)

PN, +1|N,»}=[NTN‘ ”*][mp,- HL-m)

T

PN, ~1]N,} = [NNLJ[mu _p)+li- m)ﬂwf—_—li”—l] (220)

P{Na‘ lNi}=

) 3 (2.21)
e e (G

Each of these is easily apparent from the urn model definition. Take, for example

equation(2.19). This gives the probability of the abundance of the species in

question, species i, increasing during any given timestep. For this to happen, a

member of any species other than species i must die. This occurs with
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e |[Np =N, . o .
probablhty(%] , since that is the proportion of individuals in the systems
T

which are not of the species in question. Then, in order for the species abundance
to increase, one of two events may occur. Either an immigrant of species il s
chosen from the metacommunity, which occurs with probability mp,, or else one

of the remaining individuals is chosen to give birth to an identical individual,

which occurs with probability (1 —m) NNi Multiplying the death probability

T 1 '
by the sum of the birth and immigration probabilities gives equation (2.19).
Equations (2.20) and(2.21) can be similarly justified by considering what must

happen during the timestep for a given species abundance to decrease or remain

stationary.

Finding the steady state distribution from these transition probabilities is not a
trivial task. Until recently, the distribution tended to have been obtained from
simulations, although there have been recently published exact analytic forms
(Vallade & Houchmandzadeh 2003; Volkov et al. 2003; McKane et al. 2004).

Both of these approaches reveal that for high immigration systems, the local

community tends to resemble the metacommunity, and appear logseries-like. As

local migration drops, the total diversity in the system decreases and the left

hand tail of the species abundance curve declines, making the curve appear more

lognormal-like. As this migration rate continues to decline, the biodiversity drops

ever further and the curve becomes increasingly left skewed with the rarer species

the first to be lost. In the extreme limit of migration tending towards zero,

immigration collapses completely, and one single species becomes monodominant.
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Figures 2.16 and 2.17 below respectively illustrate the species abundance

predicted by Hubbell’s NCM for high immigration and low immigration systems.
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Figure 2.16

Species abundance distribution for a NCM where Ny = 10",
ed over 100 repetitions. Note that the distribution

etacommunity, which has a logseries distribution.

m=1 and 6 = 50.
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Figure 2.17

-4
Species abundance distribution for a NCM where N; =10", m=10" and

6 =50. The figure plotted is averaged over 100 repetitions. Note that the

distribution more closely resembles a lognormal distribution than that of the

metacommunity.

2.3.3.3 The Neutrality Contoversy

Neutral models are always, by their very nature, controversial. Undeniably,

examination of microbial systems at the individual level will reveal that the birth

and death rates of all taxa are most certainly not equivalent. This has led many

critics to question the worth of Hubbell’s neutral model (McGill 2003; Wootton
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2005); if the most basic assumptions underlying it are demonstrably incorrect,

why should any predictions derived from such a model be relied upon?

Proponents of the theory (Hubbell 2001) argue, however, that the aim of such a
model is not to describe communities at the individual scale. In its defence, many
studies have been conducted which show that, in spite of its falsifiable
hypotheses, Hubbell’'s NCM can indeed explain diversity patterns for whole
communities (Volkov et al. 2003). By calibrating a NCM to observed species
abundance distributions, the neutral model has often been seen to be a better fit
to experimental datasets than some of the other commonly cited distributions

(Volkov et al. 2003), despite having fewer degrees of freedom than some of the

alternative theories. For example, the lognormal species abundance distribution

requires three parameters (typically Ny, Sr and @) whereas the NCM is

dependent only upon 6§ and the combined N,m parameter.

The inaccuracies at the individual scale, it is argued, should not lead to NCMs

being dismissed completely, given their abilities to offer explanations and

predictions at the entire community scale (Bell 2000; Enquist et al. 2002). Many

fields of the natural sciences employ theories derived from assumptions which are,

on some scale, palpably incorrect. Certain factors can often be ignored which,

although sizeable at the point scale, soon cancel out and appear negligible if the

entire system is the topic of interest.
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requires three parameters (typically N, Sr and o) whereas the NCM is

dependent only upon 8 and the combined N;m parameter.

The inaccuracies at the individual scale, it is argued, should not lead to NCMs

being dismissed completely, given their abilities to offer explanations and

predictions at the entire community scale (Bell 2000; Enquist et al. 2002). Many

fields of the natural sciences employ theories derived from assumptions which are,

on some scale, palpably incorrect. Certain factors can often be ignored which,

although sizeable at the point scale, soon cancel out and appear negligible if the

entire system is the topic of interest.
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One of the most celebrated of these theories to arise from falsifiable hypotheses is
the Ideal Gas Law in physics. It remains the most commonly utilised equation
relating the pressure, temperature and volume of gases. However, its formulation
is built upon assumptions which, at least at the scale of the individual molecules
of the gas, are easily shown to be extremely inaccurate. The assumptions are
made that all collisions between molecules are completely elastic, and any other
interactions between the molecules can be considered to be negligible. If
employed to studies of miniscule volume of gas, these errors in the formulation
can prove sizeable. However, for systems of greater size all these small errors at

the point scale are seen to cancel out and the result of this set of overly simplistic

assumptions is the celebrated equation
pV =nRT

which proves to be extremely accurate for almost all practical studies. Despite

the incorrect assumptions relied upon in its derivation, this remains one of the

most commonly employed equations in the natural sciences, and one which has

proven extremely accurate when applied at anything larger than the point scale.

That said, neutrality is a concept with a great number of critics (McGill 2003).

For example, many commonly cited models assume that the major factor in

shaping microbial systems is niche construction (Laland et al. 1999; Torsvik et al.

2002; Condit et al. 2006). These alternative models are based on the premise that

the most predominant mechanism in shaping community assembly is the ability

of species to alter their habitat to their own benefit. Many studies have

demonstrated that, within small localised regions, organisms are often able to
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affect the physical and chemical conditions within their habitat to make them

advantageous to their own survival and to maximise the growth rate of their own

species.

Clearly, such a theory opposes the most fundamental premise of NCMs. The
central assumption of any neutral model holds that on the scale of large
communities, for which NCMs can be applied, the net effects of any such small
local competitive advantages or disadvantages are negligible when the whole
system is considered. While the assumption of neutrality does not directly
contradict the niche assembly findings at the individuals level, it does maintain
that any such increases or decreases in species fitness within niches soon cancel

out. That is, even if, a species has an advantage in terms of a higher growth rate

than others within one niche, there will exist other niches at which it is at a

competitive disadvantage.

2.3.4 Other Ecological Models

Although this literature review has considered many of the ecological models

which are relevant to the research presented later in this thesis, it by no means

provides an exhaustive overview of ecological theory. Indeed there are huge areas

of the field which have not been reviewed, for example resource-ratio theory

(Tilman 1976), predator-prey models (Volterra 1931)and food webs (Sugihara et

al. 2003). In fact, resource competition models have already played a central role

in waste treatment technologies. The pair of differential equations (section 2.1.2)
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used in design essentially describe a resource competition model but with

functional groups as the taxonomic resolution rather than the individual species.

Ultimately, environmental engineers should aspire to understand how all of these
ecological processes affect the community composition and functioning of
microbial communities. However, most theories in their current form require a
degree of specificity in growth kinetics, niche affiliations and life histories that is

beyond the reach of microbial ecologists employing current environmental

technologies.

There are two significant attractions in investigating how neutral theories might
be applied to microbial systems. Firstly, they describe the community assembly
process. Several reviews and perspectives on theory in biotechnologies (Rittmann
et al. 2006) hold up a quantitative description of microbial community assembly

as a major goal. Secondly, neutral theories are parsimonious description of reality

and as such have few parameters. Thus it is conceivable that, if they hold, they

can be parameterised and tested. Both the parameterisation and testing of

neutral theories are considered later on in this thesis.
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3 Neutral Community Models for Microbial Systems

In the previous chapter of this thesis, Neutral Community Models (NCMs)
were introduced, particularly the NCM developed by Stephen Hubbell in his
attempt to unify two theories on biogeography and biodiversity. For studies in
classical ecology NCMs have been shown to replicate many of the fundamental

patterns observed in many biological communities, from insects to trees

(Hubbell 2001), such as taxa-abundance distributions and taxa-area

relationships observed in many systems. These relationships are seen as some
of the central tenets of community ecology (Levin 2000; Green et al. 2004),

and ecologists have been seeking theoretical explanations for their formation

for over a century.

The success of NCMs is remarkable, given that they assume nothing beyond a

simple birth-death-immigration process but, as discussed in section 2.3, these

models have been met with scepticism by many ecologists (McGill 2003;

Wootton 2005). Whilst the proponents of NCMs point to their success in

explaining observed patterns, the sceptics suggest that the underlying

(McGill 2003). Later in this thesis,

ecological mechanisms remain unproven

some of these criticisms are addressed.

In this thesis, a NCM will be used as the basis for modelling wastewater

treatment systems. As discussed in the previous chapter, the goal of this thesis

is not to directly approach any single engineering problem, rather to lay the
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groundwork for a fuller understanding of the mechanisms by which microbial
systems assemble and then alter through time. Indisputably, wastewater
treatment systems are open systems, constantly subject to invasion events
from other microbes, whether air-borne or within the influent. By conceiving
the metacommunity as the distribution of individuals within these two sources

which could survive and reproduce within the treatment plant, the basic

mechanisms of the NCM can be applied to these systems.

Additionally, such a model allows for the examination of the effects of
immigration in isolation of other factors. There is significant evidence
(Hubbell 2001) that even rare immigration events can be the driving force
behind shaping community structure in large communities. Given the current

design of such plants (section 2.1) immigration, either by increased mixing or

quicker throughput, is something which could be relatively simply

manipulated.

At the moment, the spatial scales at which the neutral model may apply
remain unknown. Should the whole treatment plant be considered the local

community? Should the plant be conceived as many interacting local

communities? At the moment, any internal spatial structure of these

communities has been neglected and the whole system pictured as the local

community. This may well need to be amended and improved in the near

future (chapter 9). It is also accepted that, at some time in the future, more

complexities may be required to fully model such systems (such as inter-

species competition), a neutral model will at very least serve as a good null

model against which to test other hypotheses.
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Previously published Neutral Community models are discrete; each birth,
death or immigration is explicitly represented. This makes them prohibitively
computationally inefficient for microbial communities (McGill 2003) where in
for example a millilitre of wastewater there can be as many as 10° organisms
(Whitman et al. 1998) and in full scale activated sludge plant up to 10"®. Not
only this but in such large populations it is unlikely that one would ever be
interested in whether the population of a particular species increases or
decreases by one individual. From the environmental engineer’s viewpoint,
system failure occurs when the microbial communities fluctuate by an order or
magnitude or more. For example, if the system is inefficient with a million
ammonia oxidising bacteria, knowing that a birth has just increased that
population to a million and one will scarcely improve plant function.

Accordingly, some accuracy can be sacrificed so that communities of the sizes

equivalent to those of microbial systems can be modelled.

Furthermore, it may only be the long-term steady-state distribution of taxa-

abundances or species richness that is of interest. In which case simulating

each discrete demographic event as the community evolves towards a steady-
state, as Hubbell (2001) and Bell (2000) do, is highly inefficient and an
alternative formulation of the model from which a steady states can be found

directly is highly desirable. Despite such models being reliant upon a very

simple set of assumptions and quite straightforward mathematical

formulation, they are nonetheless inapplicable to microbial communities.

Furthermore, explicitly representing each birth, death or immigration in any

system proves to be a redundant exercise if the main interest 1s In overall
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diversity. Thus the discrete form of Hubbell’'s NCM cannot be applied to very

large biological communities and the model must be reformulated for

application to microorganisms.

In this chapter, Hubbell’s NCM is modified and further developed to produce
a new model that can predict the assembly and composition of arbitrarily
large communities. This allows for the application of a NCM to large
microbial systems such as those encountered in typical wastewater treatment
systems. The new NCM developed in this chapter is utilised extensively in the

remainder of the thesis to explore a variety of features of microbial community

assembly.

The main research achievements in this chapter include:

¢ Derivation of a multidimensional diffusion equation for the probability
density function of all species abundances within a microbial
population, via approximation of the transition probabilities in
Hubbell’s Markovian matrix.

o Solution of the diffusion equation for when the local community is in

steady-state. This provides a simple tool for simulating such

communities which is vastly quicker and computationally simpler than

any other method currently employed.

Formulation of a simple approach for estimating immigration rates into

similar microbial systems from simple presence-absence datasets.

These achievements form the basis of a publication in Environmental

Microbiology (Sloan et. al 2006)
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3.1 Derivation of a Diffusion Equation for the Probability
Density Function of All Species

The derivation of a new formulation for the Neutral Community Model stems
from the simple assumption that, given the microbial populations of interest

to engineers tend to be very large, the abundances of each taxon can be

assumed to be continuous variable.

However, to start with, consider Hubbell’s discrete model written in a slightly

different way. Rather than formulating it as a discrete Markov chain it can be
written as a simple birth-immigration death process with a fixed population

size of N,. The probabilities of the abundance of taxon i growing, decreasing

or staying stationary during the Rth timestep are just the transition

probabilities in Hubbell’s model. Accordingly, when its abundance N; =k the

probability of taxoni’s population growing by one individual is

R ] 61)

T

the probability of it decreasing by one is

D,(R) = [l_\’;-][ma- p)+(-m) T - u ;Ll] (32)

T

and the probability of it staying the same is

S,(R) = [‘15"] [mp.- +(1- m);v’ii_l—l]

T

(3.3)

- 1
+[N;V"°][m<1—p..>+<1—m>%§j——]

T
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Now, for a taxon to have kindividuals present at a given time, one of three
events must have occurred since the previous timestep: the taxon had &k —1
individuals and one additional one was added, it had k + lindividuals and one
was removed, or it had kindividuals and there was no net change in its
abundance. So let P,(R)be the probability that a particular taxon of interest

has abundance N, =k in the local community after R timesteps. P.(R) can

then be expressed conditionally as a function of all its possible states one

timestep previously, giving the following one-dimensional difference equation

P(R+1) = Goy (AP, (R) + Dy (RPin(B) + (L= Gy(R) ~ D(R)R(R)

which gives

P(R+1)= 64
PA(R) + [ Dy (R)Prs(R) ~ Di(RIB(R)] + [Gia (R)P(R) — G(R)(R)]

However, in order to extend the scope of the NCMs to cover the very large

population sizes observed for microbial systems, then an analogous result to

equation(3.4) is required, one which allows for the number of individuals in

the system N, to be made arbitrarily large.

First, a change of variable is required. Instead of looking simply at the

absolute abundance of the i taxon, its relative abundance is examined:

where N, is the total number of individual organisms in the community and

hence N, = EN,.. In Hubbell’s model and this extension of it, the
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environment is assumed to be saturated with individuals and, therefore, N, is
constant through time. Here, unlike in Hubbell’s formulation, it can be
arbitrarily large. In the limit for large values of N, z;, is taken to be a

continuous variable with domain [0,1].

Additionally, rather than considering the number of timesteps taken, N, a
continuous time variable, ¢, is required. As formulated in the discrete case
and the difference equation, changes in the population occur at timesteps
which occur at uniform time intervals. However, assuming a fixed specific
death rate as Hubbell does, the length between each timestep must be

proportional to l/NT since, for example, doubling the population size will

double the total death rate in the population and thus halve the time between

each transition event in the system. Thus, for extremely large values of Np,

the time between successive death-replacement events will be greatly reduced.

This change to continuous relative abundance and time variables means that
instead of looking for individual probabilities that the population is in each

possible state, a probability density function (pdf) #(z;,t) is sought for the

chance that the abundance of the species at time tis ;.

Now, define D(z;) and G(z;) in the same way as for the discrete case to be

the respective probabilities of the abundance of taxon i decreasing or growing

during any unit interval of time. Note that both these quantities are

dependent only upon the abundance variable r,and are independent of t.

The continuous equivalent for the difference equation (3.4) is then
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¢ (z,,t + 6t) = ¢(z,t)
+[D($i + 6z)p (z‘- + 63:,.,t) — D(z,)¢ (z,.,t)] (3.5)
+[G(a:,. — bz)p (z; — bz,,t) — G(z,)¢ (J;“t)]

Taylor expansions can then be applied to get

Bt + 88) m 9(z,0) + 8 2 (0,0) . (3.6)
D(z, + §z,)¢(z; + bz,,t) = D (z,)¢(z;,t)
+(62) ) [D(zé):(z,., )] -
1 20" [D (z, )d’(znt)]
+§(6$:) axi? +...

and
G(z, — bz, )o(z; — 0z, t) ~ G(:v,.)cb(a:,.,t)
0 (65 )0z, ) 5s)
oz,

2 0° [G(mi)¢($i? t)] _
B

(52

3

+';'(6$.‘)

Ignoring higher order terms, substituting these three expansions into equation

(3.5) and letting the timestep 6t — 0 gives the following one-dimensional

Fokker-Planck equation for the pdf ¢(z;,t)of the abundance z; at timet:

8d(z,t) _ _OMud(@:t) | 1 02(%,,¢§w.»,t)) (39)
ot Oz, 2 oz;

where the quantities M,, andV,, are, defined as

bz; [G(xi) -D (xz)]

M61, = limdt—oo 5t
. 637.'2 G(z;)+ D (z:)
‘/61, = hm&t—oo [ 6t ]
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Now, with the change to continuous variables, the changes in the relative

abundances per unit time are always of magnitude l/NT . To obtain estimates

of M,, andV,, , it is assumed that the difference equation (3.4) is a suitable

2
approximation to the diffusion equation. In the discrete case 51"/& and 6:1:,.47:

are, respectively, %V and %V , since the timesteps are of unit length, thus
T T

6t=1.

Accordingly, the quantities M,, andV, are, respectively takes as,

G.-D
M_= k k
61, NT

G, +D
‘/,51‘= kNT2 k

Working with the continuous variables, and Ny be sufficiently large such that

N, —1= N,, the three transition functions for when z, =k/N; ((3.1)(3.2)

and (3.3)) tend to the following quantities

G, = (1 - xi)[mpi +(1- m)zi]
D, = xi[m(l—pi)-"(l—m)(]‘—xi)]

S, =1, [’m«p,- +(1- m)-”’g] + (1 - wi)[m(l -p)+(1- m)(l - z-)]

which in turn give
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However, in practice, it is seen that mis typically very small, allowing for the

second term in the expression for V;, to be considered negligible.

Even in the theoretical case where m is unusually large, z,would rapidly
converge towardsp, thus vanishing the second term. Consequently, equation
(3.14) is taken as

2z (1-1,)
v, ~22lto) (3.15)

The procedure described above can be generalised to give a higher dimensional

equivalent to this diffusion equation that describes the joint probability
density function for the abundance of all taxa in the community, rather than

just one taxon. Once more, the starting point is a difference equation.

Let P (n)be the probability that the abundances of all n taxa are

K = (kyky..0k,) -

Then, define P. (n)to be the probability that abundance vector is
(ky..k, +1,...,k,) and P; (n)to be the probability that the abundances are
(k,..k —1,.,k), and set Gy G: Di Dj similarly for the transition

probabilities. Considering the current state of the system as a function of all

possible states it may have been in one timestep previous (as with

equation(3.4)) results in the following difference equation

BN +1) = S[GE P ()] + 32 [DF (V)RS (V)]
" B o L (3.16)
30— Cx(N) = DRVNBL)]+ L5 [ X P (V)
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where Xi 7" is the probability that the abundance vector changes

from= (k,..k —1,...k, +1,....k,)to(k,...,k,) in a given timestep.

Again, Taylor expansions are required to simplify this expression in the

continuum limit, and the result is again a Fokker-Planck equation, only this

time in (n — 1) dimensions.

| M, ¢) 1 62(V6z ¢) 1 62(061:61: )
Z Oz, 2 oz} ;;2 Oz,0z, (317)

1=l

lz]

where M,, , V,, andC,,, are
bz [G(zi) _ D(z,.)]

M, = limg, 5t
. 6z [G(z,) + D(a:,.)]
‘/61:, = hm&t—~0 [ 5t
. bz,0z, [X'_”'+ + X’_’#}
C&z,&z, = hm&zao 6t 7'

For the NCMs being considered, these equate to

m(p, — %)
v, -2l

2$.(1-$5)+m(pi—zi)(1—2$i) 2z (1_ i)
‘/61 = : 2 2
s N2

Zza:

N;
2z,z; + m[zi(pj - xj) + zj(xi - pz)]
C&z,z, =- NTz

where again, smaller order terms are considered negligible because of the

typically small magnitude of m or rapid convergence of z;to p;.
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The diffusion equations (3.9) and (3.17), allow the investigation of both the
steady-state probability density function, upon which the distribution of taxa
abundances converges after a suitably long timespan (Section 3.2), and the
transient dynamics of populations through time. This latter topic of study is

briefly discussed in this thesis as an interesting line of possible future research.

3.2 Equilibrium Species Abundances Predicted by the
Adapted NCM

The original application of Hubbell’s neutral community model was to explain
the diversity patterns observed in communities of larger organisms, such as

tree and bird populations. The vast majority of extensive ecological surveys

consist of census data at one or more sites of interest at one given time.

Particularly for slowly changing systems, such as those of tree communities or

other organisms with long lifespans, tracking the communities composition

through time can take many years or even decades to gather. Whilst such

datasets do exist, for example the extensive survey of red deer on the Isle of

Rum (Clutton-Brock et al. 1997), financial and time constraints make time

series data of whole communities extremely rare. The problems faced in

producing such datasets for microbial systems are somewhat different. At least

in theory, it is feasible to collect ecologically relevant time series data over

realistic time periods because the growth rates in the populations are so much

higher. However, time series of community composition in natural microbial

communities are scarce because generating quantitative data using current

molecular methods has been laborious. This may change when high
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throughput molecular methods, such as those being pioneered by Sogin et al.

(2006) are optimised and become routinely available.

Thus, in all previous studies where ecologists have attempted to test NCMs
they have done so by assuming that the community composition is in a steady

state and thus they compare observed distribution of taxa with predicted

steady-state, equilibrium distributions.

Accordingly, steady-state solutions of the NCMs that give the equilibrium
taxa-abundance distribution have been sought. There are a few highly cited
papers on NCMs that have focused on deriving analytical solutions to
Hubbell’s NCM, such as Vallade & Houchmandzadeh (2003) and Volkov et al.
(2003). These are, however, extremely difficult and slow to apply to real
systems, particularly those containing vast population sizes. For example, the

solution derived by Vallade & Houchmandzadeh (2003) is dependent upon the

calculation of factorials of the order of Ny and Volkov et al. (2003) requires a

complex numerical optimisation routine for a somewhat convoluted integral.

For microbial systems of the order of 10®individuals, it soon becomes

apparent that neither of these approaches offers solutions which prove to be

computable.

The approach here is to derive the steady-state distribution directly from the

Fokker-Planck equations (equations (3.9) and(3.17)). These were themselves

formulated to simulate the action of a large number of molecules on a similar

scale to that of microbial systems, and thus the resulting distribution can

predict the composition of communities of any size. Rather than relying upon
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the calculation of massive factorials, an equilibrium distribution can be found
which is reliant solely upon simple and computationally quick mathematical

functions which can be generated with any basic mathematical software

package.

3.2.1 One-Dimensional Steady-State Distribution

Initially, a solution to the simple one-dimensional F okker-Planck equation is
developed. This provides the marginal distribution for the abundance attained
by just one taxon embedded within a community that is undergoing neutral
dynamics, irrespective of the abundances of the others. Knowledge of this
distribution is particularly useful in elucidating some of the properties of a
neutral community. In addition, the marginal distributions for taxa are used

in developing a novel way of calibrating neutral models (Section 3.3) which is

necessary for microbial communities where partial taxa-abundance data has

been obtained using molecular methods.

Before any solutions for the Fokker-Planck equations, whether the single- or

multi-dimensional case, can be sought, the boundary conditions must be

established.

First consider the simpler one-dimensional case. The solution for ¢ must be a

pdf with domain[0,1] . Therefore,
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j(bdx,. =0 (3.18)
f ¢dz; =1 (3.19)

0

Taking equation (3.18)first and differentiating

30 03¢
= | ==dz; =0 .
6tf¢dx' J oot

Substituting equation (3.9) then gives
1 ( 61:‘¢)
0= f f 5"{ “Mie?+3 %

thus

16( 5 9)
Z; = Qat T, = 0 (320)
' M51¢ 2 6$
Similarly, equation (3.19)implies that
100e®) _ 0ot o =1 (3.21)

l—MM(ﬁ + '2'

Equations (3.20) and (3.21) define the boundary conditions. They imply that

z, =0and z, = 1can be considered to be constant flux boundaries. With these

conditions, an analytic solution can be obtained directly from the one-

dimensional Fokker-Planck equation.

Firstly, the time differential in the F okker-Planck equation (3.9) is set to zero

and both sides are integrated with respect to ;.

1 a(Vaz d’) (3 22)
const. = —M, ¢+~ 5 89: .
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However, the boundary conditions imply this constant is necessarily zero,

since it is zero at both z, = 0Oandz, =1. Hence

1 0Ved) _ M

b

‘/6z,¢ azi 1/61,
and therefore,
1 M
2| =4z,
o w2
— 1 f Nymp, __Nymz, F"E .
B z,(1-1,) z(1-z,) z,(1—z;) '

Nymp, (1 _ x_)”r"‘(l—l’,)

_ T
B :1:,-(1-—1',-)

subject to the constraint that j; 1qﬁd:::,. =1 (from equations (3.18) and (3.19)),

then

[ (Nym) g Mt (1 -

. g, )i (3.23)
T (N;mp,)T(N;m(1- p.))

o=

which means that the relative population size z; ~ Beta[N,mp,, Nym(l — p)]-

From this, the expected abundances of each taxon and their variances can

readily be obtained.
E[ ] F(Nrm) F(NTmpi+1)F(NTm(1—pi))
I|= .
S ey | G T R I
— NTmpi —
- NTm pl
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T(Nymp, +2)T(Nym(1-p))|

I‘(NTm)
T(N,m +2) P

I'(Nymp,)T'(Nym(1 - p, )

Var{z,] =

[(NTmpi +1) Nymp,
(Nym +1)Nym

2 (3.25)

i

pl(l — px)
N.m+1

The Beta distribution represents a family of curves which, depending upon its
parameters could take a variety of different shapes. Mathematically, Beta
distributions can have a mode of 1, be bi-modal with modes at both 0 and 1
or even have a uniform distribution on the domainl0, 1]. However, the

biological conditions required to produce such pdfs are extremely unlikely to

1
arise. For example, the uniform distribution can only occur when p, = 2 and

NTm=1.

For the parameter ranges one might anticipate for real microbial systems, one

of two very different types of curve is likely to represent the pdf of a taxon’s

abundance within a community, with the Nym parameter as the determining

factor as to which of these is the case. For lower immigration systems, the

distribution appears hyperbolic-like, with a modal value of 0. As immigration

increases, an internal mode arises with the distribution forming a skewed bell

N,mp. —1 ) .
curve centred around the modal value of 1\; ’: 1 5" Given that the variance
M —

of z,is inversely proportional to Nym (equation(3.25)), it is easy to see that

for large values of Nym , the pdf forms a tight bell curve around the value

of p,.
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Figure 3.1

A comparison of stationary distributions for a variety of immigration rates,

using both Hubbell's Markov model and the continuous variant developed

here. Here p, =0.2.

Figure 3.1 illustrates two notable phenomena. Firstly, even for very small

populations (in this case 125 individuals) the approximation via the diffusion

equation yields very similar results to Hubbell’s original Markov Chain model.

The second significant feature is that for a fixed population size, it is seen that

the variance of the pdf increases as the immigration rate drops. For high

immigration systems, there is an interior mode for the pdf. For a fixed

community size, there is a threshold for immigration below which the mode of

the distribution goes to zero.

It is desirable to know the exact point of the threshold at which the mode of

the pdf ¢ becomes zero. Beyond this threshold, the species is most likely to
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be completely absent from any community. This criterion for judging whether
or not a stationary distribution is desirable from the environmental engineer’s
viewpoint may seem a bit arbitrary. In practice, measurement techniques can
only detect species abundances above a certain threshold (section 2.2).
However, the relationship between the threshold at which a particular taxon is

most likely unobservable and the immigration rate into the system is valuable

when designing treatment plants.

A straightforward analytic approach is presented here. Assuming

Nym(l1-p,)>1 (which one might reasonably assume for real microbial
systems), the combination of parameters is then sought for which there is no

internal mode; in other words, when ¢ has no turning points in the

range(0,1].
Setting the time differential of¢in equation (3.23) to zero, we find the

threshold is when
I (Nrm(l - pi)— 1) = (1 - z'.)(NTmp,- - 1)

has no solutions in [0,1]. A little simple algebra reduces this condition to there

being no solutions when Nymp, <1. Substituting this threshold value back

into the calculation of the variance (equation (3.25)), it is seen that this

threshold crudely corresponds to the variance of z, rising above p’. A similar

calculation yields that the distribution is & skewed bell-curve

whenN,m(1 - p,) >1,N;mp; > 1.
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3.2.2 Multidimensional Steady-State Distribution.

To find the equilibrium solution of the joint species distribution is a rather
more complex task. The time differential in the multi-dimensional Fokker-
Planck equation(3.17) is set to zero. Since the solution ¢ is a pdf,

f ¢dz,..dr, , =1 and by a similar argument to that employed in deriving

equations (3.20)and (3.21), reflecting barriers are present at all the boundaries
of the space [0, 1]‘"‘1). Note that when there are ntaxa in the community, this

gives (n — 1) independent variables, as the sum of all n must necessarily be 1.
Therefore, Vi € [1,2,...,(n — 1)]

100ad)| | 1930Ces?)  _gandz, =1 (326)
2 3 2]—1 6x.7

1]

{ M6z¢

Once more, ¢ is continuous and all boundaries of the domain|0, 1/ can be

regarded as being constant flux boundaries. This implies that, as with

equation (3.22), the boundary conditions give that the integration constants

are necessarily zero.

In other words, it suffices to find such that, for each i =1,...,(n — 1)
m(p, — :1:,-)¢ _1 g 2xi(1: ] Z_[ 2., ] (3.27)
NT 2 61‘,- NT i=]
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Here it is shown that a Dirichlet distribution Dir(N,mp,,...N,mp,_;N.mp,)

satisfies these conditions. It should be noted, however, that the uniqueness of

this solution has yet to be established.

Letting X = (z,,...,x,), then if X ~ Dir(Nymp,,...Nymp,_;Nymp,)

NTmp

#(X) = T(Nm)] [ = TS

=1

(3.28)

Substituting the Dirichlet distribution (equation(3.28)) into equation (3.27)

gives the following terms on the right hand side:

19 [2zi(l—:vi)¢ [ e ]
28z, N, A (3.29)

[Nrmpi — z,(Nymp; +1) = f'—(l—z_‘-‘aﬁ(N Py — 1)]

n

and

[ ’¢] Z N,mp, ——(N mp, — 1)

- -8 N,m(l—zo.-—pn)—1 o (Nrmp,,—l)] (3.30)

NT Tn

z(1—z;
__¢.._ N,ymz; — z,(Npmp, + 1) - "L(___)(NTmpn - 1)]
NT2 T,

Adding these two quantities ((3.29)and (3.30)) gives
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—
m(p, — ,) 4
Ny
which is equal to the left hand side of (3.27), hence a
Dir(N,mp,,...N,mp,_;N,mp,) joint pdf indeed solves the (n—1)dimensional

Fokker-Planck equation as required.

This result, which is that the joint probability density function for the
abundance of all taxa in a neutrally assembled community is Dirichlet, is
important for the practical implementation of neutral models. In the original
formulation of the NCMs (Hubbell 2001), multiple realisations of the
dynamics are required to generate the predicted community structure. This
has been criticised by a number of authors, and analytic approaches offered
(Vallade & Houchmandzadeh 2003; Volkov et al. 2003). Although sometimes
mathematically very elegant, many of these are also idiosyncratic. For

example, the solution offered by Volkov et al. (2003) is reliant upon the

numerical integration across large factorial functions, which proved impossible

for very large population sizes.

Knowledge that the abundance of all taxa can be generated from a single

realisation of an appropriate Dirichlet distribution greatly simplifies the task

of simulating communities, and sidesteps the need to employ some of the often

cumbersome methods previously employed. What is more, the fact that we

have a well known distribution opens up & great number of different

established results.
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3.2.3 Generating Realisations of Community Composition

Most standard mathematical and statistical packages (eg MATLAB) do not
have a capacity to directly generate realisations of Dirichlet distributed
random variables. However, an algorithm can be derived which allows for the
realisation of Dirichlet distributed variables by normalising a series of Gamma

distributed variables, which are more readily generated by such packages.

Let y,,...,y, be a set of n independent Gamma distributed random variables
such that y, ~ Gamma(N;mp,,1),....,¥, ~ Gamma(Nymp,,1). Realisations of

these variables can easily be generated by most standard mathematical and

spreadsheet packages. It is shown here that if

7, = —2 i=12...,(n—1) (3.31)
yl + A + yﬂ

then the joint pdf for all z;s is given by the Dirichlet distribution in equation

(3.28). Therefore to generate realisations of the abundance of each taxon in

the community a realisation of each y; is generated and then normalised as in

equation (3.31).

To show that this is the case consider the pdf of each y;

~Yi 0,V -1
e Vi yl TMP:

1=1..,n.
F(NTmpi)

h(y;) =

Since the variables are independent, the joint density function for these n

variables is simply the product of each of their pdfs, which is
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FW Yoo r Y ¥,) =

For i =1,2,...,(n —1), let

and

Rearranging these gives

and

Neutral Community Models for Microbial Systems

-4, Nrmp -1 ~VYn ,, Nymp, -1
¢ % O e (3.32)
I(Nymp)| | D(Nymp,)
z, = Y
yl + e + yn
2=y +-t+ Y,
y, =, (3.33)
W RPN} (334

Substituting (3.33) and (3.34)into the joint density function(3.32) gives

9Ty .y Tyn2) =€

where J is the Jacobian, given by

Jeem)t ] (@) e )
F(N TMmp, ) F(N rMp, )
z 0 0 =
0 =z S
P 0
o - 0 2z =z,
—y =z e —Z T,

It can be seen that |detJ|= 2", therefore
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e—zzNTm—l

[(Nym)

9(z,,...,z,,2) =

K F(NTm) . [z,NTmp. -1, CL'NTmp" —1]
1 n '
D(Nymp,)---T(Nymp,)

The first term of this implies thatz ~ Gamma(N;m,1), and the second two
brackets state that z,...,z,do indeed have a Dirichlet distribution with the
required parameters. Additionally,z,,...,Z, are independent ofz. Since Gamma
variables are quickly and simply generated by standard mathematical

packages such as MATLAB, such a technique is extremely easy to apply.

3.3 Frequency-p; plots

The continuous neutral community model developed in the previous section is

defined by the combined parameter pair Nymand the relative abundances of

the taxa in the source community, py...;P,- As discussed in the literature

review (section 2.3) there are two major assumptions made in Hubbell’s

original formulation; that the birth and death rates of all species are

equivalent, and that the metacommunity from which immigrants are drawn

has a logseries taxa abundance distribution (i.e. the ps are distributed

according to a logseries).

This assumption on the logseries nature of the source community dictates that

it can be characterised by a single parameter, 6, the fundamental biodiversity

number. In all previously published applications of NCMs, irrespective of the

precise mathematical formulation of the model, N, has been estimated

directly from survey data. mand ¢ have then been estimated by minimising

the differences between estimates and observed taxa-abundance distributions
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for the whole community (Hubbell 2001; Dunbar et al. 2002; Volkov et al.

2003).

For microbial communities, the number of individuals in a sample can be
estimated by a direct count and, by assuming a constant density of
microorganisms, the community size, Ny, can be calculated. Whatever the
method employed, whether clone libraries, DGGE or some other molecular
method, the laboratory procedures are somewhat laborious and, as previously

discussed (section 2.2), cannot begin to offer a complete picture of the entire

community. Accordingly, the m and@ parameters cannot be estimated for

microbes in the same way as for larger organisms. Without the luxury of full

taxa-abundance distributions upon which classical ecologists can rely, a novel

approach is required for microbial datasets. Owing to both detection

limitations of some techniques such as DGGE, and the unavoidable sampling

issues previously discussed, a calibration procedure is required which is reliant

solely upon the data which can be gathered from the observable tail of the

true taxa-abundance distribution.

This task of calibrating parameters from scarce sample data can be made

simpler and more attainable for microbial datasets by uncoupling the two

central assumptions in Hubbell’s formulation of his Neutral Community

defined which assumes the same neutral

s NCMs,

Model. In other words, a NCM can be

community assembly and dynamics in a local community as Hubbell’

but without the additional assumption of a logseries distributed source

community for immigration. In this section, a method is proposed for

calibrating a neutral model that requires no additional assumption about the
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nature of the metacommunity. That is, the p,,...,p, values do not have to be
realisations of a logseries distribution, although they may be. Where suitable
data are available from a number of similar but distinct communities, the
distribution of the abundances of the common taxa in the metacommunity can
be estimated from the information gathered, rather than by assuming some

underlying evolutionary process, which we would be uncertain of for microbes.

Given survey data, the task facing mathematical modellers is to extrapolate
information about these. A simple count or a reliable estimate of Nris a simple
enough procedure, but the rate of immigration is not something which can be

straightforwardly measured. However, for datasets consisting of taxa

abundance information at a number of similar sites, a simple technique is

presented here for estimating the combined Nym parameter as well as the

metacommunity abundances, p,,...,p, under the assumption that all such sites

can be described by realisations of the same abundance distribution.

Since the NCM predicts that the taxa abundances will have a joint

distribution which is Dirichlet distributed Dir(NTmp,,...NTmp,,_l;NTmpn),

estimators of the relative abundances in the source community can be derived

empirically. The expected abundance of species i at each measured site is

E(x)=p, for i=],..,n. Therefore, if data are available from a sufficient

number of similar sites, the mean relative abundance of each taxon over all

local sites is equal to the relative abundance of that taxon in the

metacommunity. Accordingly, each p; value is estimated by the mean

abundance of taxon iacross all communities in the dataset. The advantage of

this method of characterising the source community is that it sidesteps the

97



Chapter 3 Neutral Community Models for Microbial Systems

need for a conceptual picture of the evolution and dynamics of

metacommunities, as in Hubbell’s original work, and also eliminates one of the

parameters, 6.

Thus p, and N, can be measured; p from enumerating specific species at

many similar sites and N,from counting microorganisms. Therefore, the only

model parameter that remains to be estimated is the immigration probability

m.

The frequency- p, method centres on plotting a curve of the estimated

p,values for each taxon detected against the number of sites at which it is

found. In general, and perhaps unsurprisingly, the more abundant taxa in

datasets tend to be far more ubiquitous than the rarest ones, which tend to

appear in samples from only a small proportion of the locations (see figure

3.2). This trend seems to support the idea of there being some stochastic

element to community assembly.

The relationship between p, and frequency can be formalised for the neutral

model. The knowledge that all the marginal densities of species

x, ~ Beta(N,mp,, Nym(1—p, )) allows for calculation of the probabilities that a

given taxon appears present at a given site in the dataset. In order for each

taxon to be deemed present at a location, there must be at least one member

of that species at the site. That is, for a community of size Np, the abundance

of taxon i must satisfy x, 2 /N, for it not be appear absent at that location.
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Then, under the assumptions of the NCM, it is the case that the probability

of a given species being observed at each site is

P(x, >1/N;)= f @(x;; p;» Nym)dx, (3.35)

YNy

where ¢(x;; p,, N;,m) is the marginal probability density function of the local
abundance of a given taxon, which has previously been shown to have a Beta

distribution Beta[N,mp,, N;m(1 — p;)]. This procedure is applied for all taxa

present at any site in the whole dataset. Strictly speaking, the

presence/absence of each taxon is not independent of all others (as is
implicitly assumed here by integrating each marginal density separately rather

than a multi-dimensional integral of the joint density function). However,

given the immense population sizes of real microbial systems, these conditional

probabilities prove close enough to the individual probabilities of considering

each taxon individually for the differences to be considered negligible.

Additionally, at this stage of the thesis, the detection limitations and biases

inherent to molecular methods (section 2.2) are neglected. These issues are

more fully examined in the following chapter.

Just as the abundances of all taxa were averaged to estimate the

metacommunity abundances, it is taken that proportion of sites at which each

taxon is present closely approximates the probability of it being detected at a

randomly selected location.

99



Chapter 3 Neutral Community Models for Microbial Systems

A plot of the metacommunity abundance of each taxon against the number of
sites at which it is detected is then produced. Then, for a given value of
the N,m parameter, a curve can be fitted through these points, which
represents the frequency- p,curve as predicted by the NCM. By varying the
N,m parameter, the errors between the prediction and the data points can be
minimised. For the curves presented here (figure 3.2), the error minimisation

techniques was a simple least squares fit. More such parameterisations of the

model are presented in Sloan et al. (2006)
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Figure 3.2

Comparing the theoretical and observed relationship between the mean

relative abundance of a taxon, p;, and the frequency with which it appears in
a fixed population size. Each of the points represents a different taxon. (a)
16S RNA sequences for 16 different bacterial taxa that are considered to be
particular to freshwater environments sampled from 96 different lakes(Zwart et
al. 2002). (b) Clones from the lungs of 24 people with and without asthma.

Sloan et al. (2006)

These frequency- p,plots provide a preliminary test as to whether a dataset

could have been collected from a neutrally assembled community. If there
were no limitation on the dispersal of microbes, then each local community

could be regarded merely as being a sample from some larger community. If
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this were the case, then the calibrated immigration rate would always be 1
and the stochastic effects of random sampling would mean that taxa were
absent from some communities and present in others purely by chance. For
example, if the relative abundance of an organism in the source community is
0.5 then it is very likely to be seen in samples from all locations, but an
organism with relative abundance 0.001 will rarely appear in small

communities. This then begs the question, how much of an effect does

immigration have on the community structure over-and-above that which is

due to random sampling from identical communities? If the local communities
were unbiased random samples from some identical source community thenp,,

the mean relative abundance, is the probability that an organism picked at

random from the local communities belongs to the i taxon. Thus if K is the

number of individuals in a community of size Ny that belong to the # taxon,

it will be distributed binomially,

NT Np—k
P(k=K)=[ k ]P,-k(l— )

Fig 3.3 below illustrates this. In the first frequency- p; plot, the observed data

fit the expected shape for a neutrally assembled community, but are clearly

not binomially distributed, thus providing evidence of the role dispersal

limitation plays in shaping community structure. In the second plot, the shape

of the frequency- p, curve does not differ significantly from that of a binomial

distribution. It therefore cannot be ruled out that these organisms represent

samples from the same common source community, and thus this dataset does

not offer any evidence to support NCMs. There is no evidence of dispersal

102



Chapter 3 Neutral Community Models for Microbial Systems

limitation being the driving force behind community structure; immigration

alone suffices as an explanation.

Frequency

T 1

0 1 L 1
0 0.1 0.2 0.3 0.4 0.5

Mean Relatlve Abundance (p))

0.5 0.6

0 0.1 0.2 0.3 0.4
Mean Relative Abundance (p))

Figure 3.3
Comparing the theoretica

relative abundance of a taxon, p;,
a fixed population size. The solid lines represent the best fitto a NCM and the
dashed lines are assuming that the taxa abundances are binomially

distributed. a) AMO genes at 13 different domestic sewage works (Wagner &
(Linacre

| and observed relationship between the mean
and the frequency with which it appears in

Loy 2002). b) AOB genes at six sites from the Humber Estuary
2004).
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Furthermore, it is not simply the case that almost any community can appear
to be either neutrally or else purely randomly assembled from some
metacommunity. Fig 3.4 below shows a dataset for bacterial communities
collected from samples of human faeces. This is seen to provide a much less
convincing fit to a NCM. In this case, it appears that subtle genetic
differences between the bowels of the various test cases are a far stronger

factor in shaping the communities than are the simple mechanisms inherent to

the neutral models.
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Figure 3.4

Comparing the theor
relative abundance of a tax
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detected in faecal samples from 9 peopl
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community assembly.

etical and observed relationship between the mean
on, p;, and the frequency with which it appears in
re is for clone libraries of microbes
e taken from Mangin et al. (2004).
o support the idea of neutral
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3.4 Conclusions

Neutral Community Models have been shown to be successful in many
different communities. It was argued in this chapter that previous published
versions of NCMs were inappropriate for application to microbial communities
for two reasons; the models were discrete and parameterisation required vastly
more data than current molecular methods could hope to provide. These two
limitations of previous versions of NCMs have been overcome in this chapter.
The NCM as presented here is a continuous model capable of predicting
communities of arbitrarily large size. Additionally, a new calibration procedure
was developed which can be used with currently obtainable data. It has been

demonstrated that this continuous NCM can be calibrated to fit existing

datasets. Calibration, however, is not validation of a model. Whilst this

chapter provides evidence in support of NCMs, many other models could exist

which produce similar patterns. For example, McGill et al. (2006) argue that

niche differentiation models better explain the biological complexity which is

known to exist.

At this stage of the thesis, these criticisms have not been addressed, and it is

accepted that other models could explain the data. However, the comparison

with the binomial model does lend further evidence to support the hypothesis

that exactly the same structuring forces do not act on all environments and

that the effects of dispersal limitation can be seen in multiple samples from

similar environments. Later in the thesis, a remarkable dataset is presented

that provides much stronger evidence in support of neutral community

assembly.
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The research in this chapter demonstrates that a stochastic NCM can be used
to describe the patterns of community structure in the microbial world at the
scale at which they are typically observed and using measurement methods
that are routinely employed. Indeed it is possible that NCMs will find their
widest application in microbiology since a number of the assumptions inherent

in neutral models may typify much of the microbial world.
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4 Sampling Effects in Microbial Modelling

In the previous chapter of this thesis, the Neutral Community Model
developed by Hubbell for macroorganisms was refined and a similar model

developed for describing the assembly and structure of microbial systems.

NCMs in classical ecology have been shown to reproduce the fundamental

patterns in nature which ecologists have been trying to explain for decades

(Hubbell 2001a; Volkov et al. 2003; Sloan et al. 2006). The central premise of

this thesis is that similar models in microbial ecology will prove to be equally

fruitful forms the central premise of this research.

There is, however, a generic problem in applying any model to microbial

communities, whether a Neutral Model or one of the alternatives outlined in

the literature review in Chapter 2 (for example the Lognormal), the problem

faced is the same. Even using the most up to date laboratory techniques, it is

only possibly to observe the structure of a tiny subsample of what are

ostensibly large communities. Therefore, it is necessary to infer patterns that

might occur in the larger system.

Any mathematical model of microbial community structure, if it is to be

applied to make predictions on real-world systems, requires calibration using

data gathered from other similar communities. It is therefore imperative that

any theoretical models applied to microbial systems are developed with a keen

eye on the laboratory techniques and the sorts of sample data that they can
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provide; an elaborate mathematical model that requires unobtainable

information for parameterisation is of little to no practical use.

For studies in classical ecology, consideration of sampling effects is an

established and much discussed problem, one for which a number of

techniques have been developed to quantify and correct any biases which arise

(Colwell & Coddington 1994; Chao et al. 2005). The scale of the sampling

issues faced by microbial ecologists, however, is much greater than those in

classical ecology and these techniques are not always applicable. Given

sufficient time and resources, a complete census of all the trees in a forest is

certainly possible. An exhaustive count of any microbial system larger than

that on the head of a pin is a rather less attainable goal. It is argued here that

the magnitude of the unavoidable undersampling of microbial communities is

almost always immense. The discrepancy between the sizes of microbial

communities and the number of individuals whose DNA can be characterised

in samples from the communities typically spans many orders of magnitude.

Take for example a study of soil based microbes. In each gram of soil, there

are of the order of 10" prokaryotes (Whitman et al. 1998). Current laboratory

tools cannot hope to take an exhaustive sample from such a population. As

discussed in chapter 2, if 168 rRNA clone libraries are employed, sample sizes

are of the order of tens to hundreds. With DGGE analysis, sample sizes may

be of the order of around a million individuals, but even this represents

significant undersampling. By analogy, when there are currently around

6x10° humans in the world, a single sample of a few hundred individuals is

unlikely to be sufficient to characterise the global distribution of any human

trait unless it is extremely homogeneous.
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In this chapter, the biases that current laboratory tools and techniques

introduce to classical measures of community composition are investigated and

a method for compensating for them when characterising a neutrally

assembled community is developed.

The main achievements in this chapter are:

e Demonstration of the need to account for sampling effects in

characterising microbial communities. Although a number of correction

techniques exist for sampling biases for studies in classical ecology,

where representative samples can be collected, none have been

developed specifically for the problem of undersampling on the scale of

that faced by microbial ecologists. Here, a similar technique is

presented for extrapolating information from samples as small as those

currently analysed by modern molecular methods.

e Further development of the Neutral Community Model such that in

addition to predicting the community structure within a given system,

it also predicts the distribution of taxa-abundances in small samples

taken from it. This helps to provide quantifiable estimates of what will

be observed using current microbial tools.

e Refinement of the frequency-p;plot technique to consider the effects of

sampling upon presence/absence datasets. For many of the cases where

he immigration

the sampling procedures employed distort the view of t

rate, a simple extrapolation rule is developed to give an estimate of the

true immigration into the whole system.
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These achievements form the basis of publications in Microbial Ecology (Sloan

et al. 2007) and Philosophical Transactions of the Royal Society of London

(Curtis et al. 2006).

4.1 Modelling The Sampling Effects Typically Encountered
When Employing Current Microbial Tools

The premise of this thesis is that the wealth of new laboratory tools being
developed for observing and characterising microbial systems has the

potential, when combined with theory, to revolutionise the design of

engineered biological systems. That said, the enthusiasm for such emerging

technologies should not be unrestrained. These exciting new tools currently

offer only partial and fleeting glimpses into the microbial world and cannot

begin to provide the complete surveys that are often achieved for communities

of macroorganisms. For example, taking a census of trees in a forest simply

requires the correct identification and numeration of each tree species, a

lengthy but certainly possible task. Even the most advanced tools for

microbial community analysis are complex, multi-stage operations which can

only ever examine a tiny fraction of the sorts of populations observed in real

life engineered systems.

. . 10
Take for example a ten gram sample of soil; this can comprise as many as 10

individual microorganisms. Clone libraries generated from soil samples

typically represent a random sample of tens to a couple of hundred

individuals. Intuitively such small samples have the potential to distort the
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view of the large population. Whilst microbial ecologists are well aware of this
disparity of scale, it does not routinely affect the way laboratory data are

interpreted. Taxa abundance distributions, for example, are used to

characterise microbial community structure but what they actually

characterise is the distribution of taxa abundances in a very small sample.
The disparity of scale between samples and the communities they aim to

represent, mean that the sample and community distributions can be very

different indeed.

This point is graphically demonstrated in figure 4.1. The taxa abundance

distributions for four large populations (each of size 10" individuals) with

different taxa abundance distributions are plotted alongside the typical

distributions observed in samples. In each case, the sample distribution is

generated for 200 selected at random from the large populations. This is

equivalent to the number of clones in a typical 16S rRNA gene clone library,

assuming no additional biases are introduced during the PCR amplification

stage (section 2.2). This is done for four communities in which the taxa

abundances are distributed in four very different ways (Figure 4.1); two of

which have been previously been proposed as plausible theoretical

distributions (Finlay & Clarke 1999; Curtis et al. 2002a) (Figure 4.1a, Figure

4.1b) and two of which have no biological basis and could be considered

ridiculous (Figure 4.1c, Figure 4.1d). All the sample distributions have a very

similar shape which is redolent of the distribution of taxa-abundances in real

16S rRNA gene clone libraries (Wagner 2000). Thus, for example, the fact

that clone abundance distributions look like the tail-end of a lognormal

distribution does not mean that the taxa in the larger community are
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distributed lognormally (although they might be). Descriptors such as

diversity indices, taxa-abundance distributions and similarity indices have

their roots in ecology of macroorganisms, which are easier to observe, and rely

on a fairly complete census of the organisms at a particular site. Figure 4.1

demonstrates that for microbial communities these descriptors may differ

significantly between sample and community. Molecular methods are rapidly

evolving and will offer partial solutions. Thus when very high throughput

sequencing becomes routinely available to microbial ecologist a complete

census of a sample may become possible. However, improved molecular

methods will offer only part of the solution; the number of individuals in

samples, even when they can all be identified, will still be very small in

comparison to those in the microbial communities as a whole. It will always be

necessary to infer larger-scale descriptors of community structure from very

small samples, which requires consideration of sampling effects. Nonetheless,

the fact that patterns exist in the common taxa suggests generic patterns that

might extend deeper into the community.
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4.2 Sampling from a Neutral Community Model

It has already been shown in section 3.2 that for the continuous variant of the
Neutral Community Model (NCM), the steady state joint probability density
function for all species is Dirichlet Dz'r(NTmpl,...NTmp") where p,,...,p, are
the relative abundances of the taxa in the metacommunity. However, as

previously demonstrated, this distribution can be somewhat different to that

observed in small samples.

Here, an analytic form of the approximate joint density function for all species

within a sample of Ny individuals from a larger neutrally assembled

community is derived. A similar argument is employed as was in Chapter 3

for finding the local community abundance distribution.

Strictly speaking, selecting a subsample of size N, from a local community is

achieved by sampling N individuals without replacement from the

community of size N,. Here, the problem is approximated to one of sampling
with replacement, since for almost all microbial samples Ny < Ny, so that the

chance of any given organism being sampled twice from the local population is

negligible.

The sampling exercise can then be considered as a continuous process through

time. Individuals are selected from the source community one by one until a

sample of size Ngis obtained. Once this sample size has been reached, the

process of selecting individuals is continued at regular intervals in time

(generations) but now the selected individual replaces one randomly chosen
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individual currently in the sample population. This is analogous to the

argument used for deriving the joint distribution for the local abundances,

except that it is a pure immigration-death process, with immigrants into the

sample from the local community. Setting m =1 and regarding the local
neutrally assembled community as the source from which immigrants are

drawn then, by the results in Chapter 3, conditional on knowledge of local

community abundances  z,...,T, the joint  distribution  of relative

within a sample is Dirichlet Dir(Ngz;,... N ., ). That is,

NSII

5010 =W It

i=1

abundancesy,,...,¥,

(4.1)

where X = (z,,...,z,)and ¥ = (4y5-++1Y,) for notational convenience.

Now, both the unconditional joint density function of the taxa abundances

within the local community (X ~ DiT(NTmpl,"')NTmpn—l;NTmpn) and the

conditional  joint® density function of the sample abundances

(Y | X ~ Dir(Nyty,..., Ns, 13 Ns3,)) are known. By conditional probability

theory, the unconditional joint distribution of the sample abundances can be

obtained directly by integrating across all the values the values the (n-1)

dimensional variable X could take.
In other words, the joint distribution for the relative abundances within a

sample from a NCM is known to be

5 " ]dX (4.2)
I‘(N a:) F(N mp;)

f(¥)=T(N5)- TV

[1]"!1
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Unfortunately, evaluation of this integral seems to be a non-trivial task and. it

was not possible to find an analytic solution to this equation. Accordingly, an

alternative approach to the problem was pursued.

In the absence of a neat analytic solution of equation(4.2), multiple
realisations of sampling from NCMs were generated and the probability

density functions for the abundance of each taxon then approximated. Visual

examinations of these approximate sample distributions for each individual

taxon seemed to suggest that each of the sample abundances, ¥y,-..-,¥, is also

Beta distributed with the same expectations as in the local community, but

with different variances.

Accordingly, the approach adopted was to seek to fit a Dirichlet distribution

(which has Beta marginal densities) with parameters chosen to ensure that the

first and second moments match those known for the sample distributions.

These are, respectively

E(y, | T,) =T, (4.3)
and
2 _ z,(Nsz; + 1) (4.4)
E(y, |:17‘) (N, 1)
Now, since z; ~ Beta(N,mp,, Nym(1 = p,)) we have that
(4.5)

E(z,) = p;

and

116



Chapter 4

p;(Nymp; + 1)
(Nym + 1)

E(xiz) =

Then, by the elementary laws of conditional expectations,

Ey, (%)= Ey [EY.|X, (yi | z; )] _

By substituting in from equation (4.3)
Ey‘ (y.') = EX, [27,] .

Then, equation (4.5) gives
Ey (v:)=n:-
Applying the same technique to the second moment gives

E,(y) = Ex, [me. (yf E? )]

Applying equation (4.4) gives
z,(Ngz; +1)
(Ns +1)

EY,. (1‘/;2) = Ex,

and substituting in the results (4.5) and (4.6) gives

p,(Nymp; + 1)
S Nym+1

1

Ey'(y'.z)le 3 + p;
]

. +1
= 1 “Ns puNymp: £ ) + Pi]
Ny +1 Nm+1

_ N Nymp + (Nym + Ny +1p,
- NSNTm+NT77l+NS +1

It is now observed that, defining
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= ——a 4.13
N,m+Ng+1 (4.13)
gives
E(y:) =D
and
N.m + l)p.
E ~2 — (p: S i 4.14
(v) N +1 (4.14)

implying that, correct to the first two moments, the distribution of ¥, the

sample abundance, can be taken to be approximately Beta

distributed y, ~ Beta(Ngmp;, N, (1l — p,)) wherem is as defined in(4.13).

The main consequence of this result is that, when working with sample data,

direct measurement of the community immigration rate,m, is not possible.

Instead, what is observed is an ‘effective immigration rate’, m, into samples.

This phenomenon is easily overlooked, and it is imperative that estimates of

the immigration rate derived from sample data acknowledge the relationship

between the actual immigration rate,m , and the observed sample rate

Ny (4.15)
Nym+Ng+1

m=

The significance of this is that, once the immigration rate using samples has

been calibrated (for example by the frequency-p; method), the immigration

rate for the entire community must then be extrapolated from this
above relationship. The following section discusses the

information by the

implication of this result upon the frequency-p; method of data fitting.
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4.3 Sampling Effects upon the Frequency-pi calibration
method for NCMs

In section 3.3, a simple method was proposed for calibrating the key

immigration parameter,m, in Neutral Community Models. Using a multi-

location dataset, the abundance of each taxon in the metacommunity, p; can

be estimated simply by taking its mean relative abundance across all observed

communities. The frequency of each taxon’s detection is then taken as the

proportion of sites in the dataset at which it was observed. Finally, a plot is

produced of the p,values against the frequencies of detection. A NCM can

then be fitted with Nym (and implicitly therefore,m ) chosen such that the

squared errors between the model’s predicted frequencies and those observed

in the dataset are minimised.

If sampling effects are to be fully considered, there are two additional issues

which arise, one concerning the estimation of the detection frequencies, the

other the fitted immigration parameter.

In order to address the first of these problems, one major question must be

answered; how do presence/absence datasets for samples relate to

presence/absence datasets for complete communities? Surely, if a particular

taxon is detected present in any sample, it is also present in the system

sampled. The converse, however, is not the case. Even if detection of species

within a sample is assumed to be complete, there is still a sizeable chance that

a particular taxon present in the system is simply not selected during the
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sampling procedure and so appears absent when it is indeed in the larger

community. With the massive undersampling inherent in microbial analysis,

this cannot be overlooked. There is also the additional issue of laboratory

biases and detection limitations.

In section 2.2, the most commonly employed microbial tools employed in

laboratory work are discussed, along with some of their limitations. Here, the

relative merits of Denaturing Gradient Gel Electrophoresis (DGGE) and of

Clone Libraries are considered. The most obvious difference between these two

different tools is in terms of throughput of DNA; with DGGE, samples of the

order of a million or so microbes can be analysed whereas Clone Libraries

typically consist of only hundreds or even tens of microorganisms. The major

advantage of the later technique over DGGE, however, is that there are no

detection limitations and so there is a finite probability of observing every

individual in the community. A single member of a taxon in a Clone Library

will appear present, whereas a singleton will not produce a band on a DGGE

gel sufficiently bright for detection. Typically, abundances must be of the

order of somewhere between 0.1% and 1% of the total biomass for a taxon to

be detected on a gel (Cocolin et al. 2000; Woodcock et al. 2006).

These detection limits have a knock-on effect on the calculation of the

predicted detection frequencies with NCMs. When working from sample data,

presence/absence information does not reflect the presence or absence of each
tion threshold, as

taxon in the larger community. Indeed, when there is a detec

with DGGE analysis, presence/absence datasets do not even provide this

itself. All that can be ascertained is that each

information for the sample
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taxon will only appear if its abundance within the sample is greater than the

detection limit.

Such complications do not, however, prevent the application of the frequency-

p;calibration method to sample data. The knowledge of each laboratory tool is

sufficient, however, to allow estimates ofd, the detection limit such that

if p, > d then a taxon is observed, else it appears absent. For Clone Libraries, a

singleton in a sample of size Nwill be detected, so d =1/N;. If DGGE

analysis is employed then typically 0.001< d <0.01 (Cocolin et al. 2000).

Then, under the assumptions of the NCM, it is the case that the probability

of a given species being observed at each site is

P(x,>d)= [ ¢(x: p,, Nrm)dx (4.16)
d

where ¢(x,; p,, N;,m) is the marginal probability density function of the local

abundance of a given taxon, which has previously been shown to have a Beta

distribution Beta[N,mp,, N. rm(l— p)]

There is the additional issue of biases which may well creep in during the

PCR amplification stage associated with both techniques. A study of such

effects is beyond the scope of this thesis. However, there are promising, but as

yet not fully explored, theoretical routines to quantifying and correcting these

biases(Jagers & Klebaner 2003).
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The second issue is that of extrapolating information about immigration into

the whole system from sample data. As shown in the previous section of this

chapter, the immigration rate observed into samples is not the same as that

into the whole community itself. The frequency- p, plot method can then be

applied using the correct detection limit and the observed immigration rate

calibrated. However, equation (4.15) shows that the observed effective

immigration (as defined in section 4.2) into samples, 1 ,is related to the

sample size, N, ,and the N,m parameter by
Nym
Nm+Ng+1

m=

This can, however, create a problem in certain cases. Initially, for small values
of N,m (relative toNy) the changes in the effective immigration rate, m are

first order in powers of Nym . However, as this combined N,m parameter

increases relative to a constant sample size, the rate at which changes in m

are observed decreases, with ri finally tending towards unity.

Obviously, this issue is pa.rticularly troubling when attempting to fit the

model to datasets of samples from high immigration communities. For more

stagnant systems, small errors in calibrating the effective immigration into the

sample will result in similarly small errors in the extrapolated parameter Nym .

However, when the immigration rate is much higher (N;m> Ng) m

approaches unity and it becomes extremely difficult to determine the

N,m parameter with any degree of accuracy at all. This problem is especially

pronounced when handling clone library datasets, for which N is typically

very small.
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For example, consider the examination of a library of around 100 clones. If the
effective immigration rate is determined within 10% error margins to be
around 0.90, then N,m is extrapolated using equation (4.15) and a value of 910
is calculated. However, if the calibrated s value should correctly have been
either 0.81 or 0.99 (both within the hypothetical error limits) then the true

N,mvalue could be sas little as 430 or as great as 10000. The difference

between these two very dissimilar communities is virtually undetectable in

small clone libraries.

No such problems arise, however, for systems which are subject to much lower

immigration rates. As before, consider a library of 100 clones and assume the

effective immigration rate is calculated within 10% error margins to be around

0.02. Extrapolation of the true N,m value for this case suggests that it lies

between 1.85 and 2.27.

Effective immigration rate

o ©Oo o o
o (V) 2 o o -
..I i 1 1 1 3

NtnVNs

Figure 4.2

Effective immigration rate into samples plotted as a function of the ratio

N,m/N,. Itis assumed thatN,m + Ny > 1.
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This is perhaps best explained by considering two of the example data sets
displayed in Figure 4.3: clone libraries of ammonia monooxygenase AMO

genes(Purkhold et al. 2000; Wagner & Loy 2002a) from 13 different sewage

works in Germany; and the ammonia oxidising bacteria 16S rRNA gene data

from 6 samples at three different sites in the Humber estuary in England

(Linacre 2004b). On average 13 clones were sampled from each of the sewage

work samples and exactly 20 were sampled for the estuary samples. As

argued previously this is a small sample from which to draw conclusions on

the community structure at any one site. However, using the frequency-

p,fitting method, it is possible to calibrate the neutral community model

based on the distribution of taxa-abundance across the 13 sewage works or 6

estuary samples for the common taxa.
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tical and observed relationship between the mean

Comparing the theore
p,, and the frequency with which it appears in

relative abundance of a taxon,

a fixed population size. a) AMO genes at 13 different domestic sewage

works(Wagner & Loy 2002b). b) AOB genes at six sites from the Humber
Estuary(Linacre 2004a). The best fit parameters aré a) m =01 and b)

m=0.77.

In both studies, the immigration rate can be simply calibrated by adjusting it
to minimise the difference between this theoretical probability of detection

and the observed relative frequency with which the common taxa are
observed. For the sewage works samples the calibrated rate of immigration is

0.1 and for the estuary samples it is 0.77; this is the probability that when an
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ammonia oxidising bacterium is lost from the system it is replaced from

outside.

At first glance, this may seem to suggest that immigration of AOB into

German sewage works and into samples from the Humber estuary is high and

perhaps dispersal limitation is not a major driver in shaping community

structure in these communities. However, once the sampling procedures are

taken into account and the extrapolation factor from sample scale to

community scale is employed (equation (4.15)) a very different result is found.

The calibrated value of immigration from the samples taken is in fact 7, the

effective immigration rate into the small sample that encapsulates both the
dispersal limitation imposed on the community as a whole and random

sampling effects. Equation (4.15) allows for the extrapolation from small

random samples to the immigration in the larger neutral community. In the

case of the sewage works, where the effective immigration probability is 0.1,

the immigration probability for a neutral community of 10° organisms would

be 1.55x10~°. For the estuary, where the effective immigration is 0.77, the
immigration probability for a neutral community of 10° organisms is an order

of magnitude higher, but still low at 7X 10~®. This would indicate that

immigration for both environments is low if a representative element of the

. . . 9 .
microbial landscape comprises 10° organisms.

As previously discussed (fig 4.2), it is apparent that for the effective
product Nym

immigration into a sample to vary significantly from 1 then the

must be at most of the order N This means that when the sample size, Ng,
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is small and N, is large, the immigration probability has to be very small
indeed for the effects of dispersal limitation to be apparent in the sample.
Conversely, for large microbial communities it will be impossible to distinguish
between high immigration rates and the immigration probability being one.

This does not mean that immigration will have no affect on the taxa

abundance distribution of the community. It just means that the effects are

difficult to see in small samples unless they are pronounced.

4.4 Conclusions

The research presented in this chapter demonstrates how mathematical

modelling is an indispensable guide to the rational exploration of the microbial

world. The huge discrepancy between sample size and the size of microbial

communities leave us no option. This is amply demonstrated by the simple,
sampling exercise outlined in section 4.1 which clearly demonstrates the
dangers of naively extrapolating from small samples. This is important, a

proper understanding of the nature of taxon abundance curves is central to

the longstanding conundrum of the extent of prokaryote diversity (Curtis &

Sloan 2005) and the curves may be (rightly or wrongly) interpreted as

reflecting underlying ecological processes (May 1975).

The neutral model deployed in this thesis is simple and can be calibrated. The
importance of these two attributes should be emphasised. A model that

cannot be calibrated cannot be used to predict and prediction is highly
desirable in theoretical microbial ecology- This is because many of the basic

patterns in the communities examined remain unknown. Thus, extrapolation
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from the data and patterns which can be observed is essential in order to

make predictions about community structure. These can then be tested using

appropriately targeted experimental programmes. The low numbers of

parameters deployed in the NCM arises from its conceptual simplicity. It

might be argued that the model is too simple to offer any guidance.

However, as demonstrated in the previous chapter, the model does appear to

be consistent with patterns observed in microbial communities and the theory

has been successfully applied to higher organisms (Hubbell 2001b). This does

not preclude the possibility of further refinements, or the necessity of rigorous

testing. However, it does suggest that it constitutes a sound foundation for the

rational exploration of the microbial world.

Although quantifying the immigration events into a microbial system directly

is not a viable option there are a number of variables which can be

manipulated to give an idea of how the immigration rate, m, affects the

systems. For example, a simple suite of laboratory experiments could be

conducted with multiple wastewater treatment reactors being fed a common

influent, but with different sludge retention times. By examining the

community composition and functional stability within each bioreactor the

effects of migration may become clearer. A neutral community model would

predict that increased migration (and thus shorter sludge retention times)

would provide greater stability of diversity and function. That said, there

must also be a minimum time for which pollutants must remain in the reactor

to avoid them being flushed out before being properly metabolised. The

challenge for environmental engineers would be to find this balance and

optimum retention time.
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The ability to calibrate immigration in samples suggests that a neutral

community model at least partly explains community structure. However, to

extrapolate to an immigration probability for the community using equation

(4.13) requires a knowledge of the size, N , of the neutral community. In the

sewage works example, is Ny the population of the whole sewage works, in

which case immigration would be very low indeed, or are some smaller units,

such as flocs, assembling neutrally? Though we do not know the N, values

for the AOB in sewage works we can be confident that there are of the order

of 10° to 10° (Coskuner et al. 2005) in a millilitre. It follows, therefore, that

the true m values will be very small even in small samples. This may have

important implications for the debate on the biogeography of bacteria

(Fenchel & Finlay 2005). It is however undoubtedly true that this

controversial field would benefit from the rigor that appropriately

parameterised mathematical models can bring to a debate.
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5 Taxa-Area Relationships for Microbes

One of the most studied concepts in classical ecology is the relationship

between an area sampled and the number of distinct species it contains

(Arrhenius 1921). Such relationships are used extensively in conservation

ecology; it is natural to enquire how diversity is likely to increase or decrease

as resources and habitats are either expanded or destroyed.

The most generally cited form of the species area relationship is that of a

positive power law,S o< A*, relating the area in question(A) and the number

of species housed within (S ). This relationship has been observed for many

different groups of macroorganisms, from trees to birds and insects. The

values of the z exponent observed for all these disparate lifeforms tend to be

of the same order of magnitude, typically between about 0.16 and 0.35. In

other words, species are accumulated at a rate proportional to between the

third and the sixth root of the area examined.

More recently, this observation has been extended to microbial systems.

Published studies on bacteria in salt marshes (Horner-Devine et al. 2004a), in

the water in bark-lined treeholes (Bell et al. 2005a) and many other

environments have suggested that this power-law relationship extends to

communities of microorganisms as well.
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But how could this reported phenomenon be of interest to environmental

engineers? Knowledge of how the diversity within a community scales as a

function of the size of the system could be invaluable in the rational design of

improved wastewater treatment systems. There is growing empirical evidence

in support of the intuition of most environmental engineers that there is a link

between the composition of groups of microorganisms and the stability or

reliability of the functions they fulfil. Even simple indices of community

composition such as the overall diversity are being shown to correlate with

microbial community productivity and with the spatial heterogeneity of the

environment (Kassen et al. 2000, figure 5.1). Engineers are beginning to
speculate that the differing diversity within wastewater treatment plants of

varying design, but treating the same waste (Rowan et al. 2003), could well be

the cause of observed differences in their functional performances (Curtis &

Sloan 2005).
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Figure 5.1

Response of Pseudomonas fluroscens diversity t
and homogeneous (open circles) environments.

From (Kassen et al. 2000).

o nutrient concentration in

heterogeneous (solid circles)
The error bars represent + 1 S.E.

One of the most common explanations for this correlation between diversity

and performance is that it is a reflection of functional redundancy within the

system. That is, for the more functionally stable systems, many different taxa

are present with similar biochemical functions. Thus, the success or failure of

the plant is not dependent upon the ecological success of one single taxon.

This belief that function redundancy is vital to engineering functionally stable

waste treatment plants is a view is held by some of the most respected

theoreticians working in biological engineered systems (Rittmann & McCarty

2001; Curtis et al. 2003).

As biodiversity is seen to correlate with the function of such engineered

systems, it is critical to have some measure of how the function of plants may

be affected if the designs are downsized. The inability to develop smaller scale
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treatment systems which function reliably has hindered the spread of sanitary

(Saldinger 1992; Newman &

water supplies to some developing countries

Mouritz 1996). Such nations typically lack the infrastructure to support the

large plants which are seen to function more consistently. A reliable measure

of the relationship between diversity and plant size could well be key to the

design of reliable downsized treatment systems.

The recently published studies for microorganisms have, however, so far found

vastly differing values for the exponent zin the power-law relationship. These

have varied by as much as a whole order of magnitude. Some studies have

suggested that the rate of accumulation of microbial taxa with area is similar

ile others have suggested the rate is

0.019).

to that for larger organisms (z = 0.26) wh

much slower, proportional to the fiftieth root of the area sampled (z=

The work presented here, previously published in Woodcock et al. (2006)

offers the first quantitative explanation of this huge variance in the observed

exponents.

The main achievements outlined in this chapter include:

o Generating theoretical taxa-area relationships for bacterial communities

based on some of the commonly cited models for microbial community

structure.

o Modelling the effects of sampling upon the exponents observed for the

traditional power-law relationship. This may well explain the disparity

in the z-value between different published studies.
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o Assuming the detection limitations associated with current microbial

tools, establishment of conditions for taxa-area relationships to be

observable in samples.

5.1 Sampling And Detection Problems Associated with Taxa-

Area Relationships

Through the recent advances in the application of molecular methods to

microbial ecology, it has become possible to characterise (Torsvik et al. 1990)

and search for patterns (Green et al. 2004; Horner-Devine et al. 2004b; Bell et

al. 2005b) in microbial diversity. However, as previously discussed (section

2.2, chapter 3) most molecular methods analyse small samples from very large,

densely populated communities. This disparity between sample size and

community size far exceeds that for surveys of plants and animals. For

example, assuming no biases, clone libraries of PCR-amplified 165 rRNA

genes typically represent a random sample of tens to hundreds of

. . . . 9
micoorganisms from an environment which may contain as many as 10

individuals per gram (Whitman et al. 1998). If DGGE analysis is employed,

sample sizes are arguably larger. However, this method exhibits a method-

dependent threshold in absolute abundance below which organisms will not be

detected, which precludes rare species being observed and effectively truncates

the sample distribution. For example, Cocolin €t al.(Cocolin et al. 2000)

reported that the sensitivity of DGGE was 10° cells (typically about 1% of the

cells analysed in a sample containing 10° cells). Thus, either as a result of very

small samples or high detection limits, many taxa remain unseen in the

environment (Dykhuizen 1998). Indeed, it has been argued these sampling
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limitations are sufficiently restrictive that the majority of species are not

detected (Curtis et al. 2002) and Dunbar et ol (Dunbar et al. 2002) graphically

demonstrate the considerable effort in cloning and sequencing of rRNA genes

required to experimentally determine bacterial diversity in a small soil sample.

When very high throughput sequencing becomes routinely available to

microbial ecologists, complete census of a sample may become possible.

However, it is inconceivable that microbial ecologists will ever be able to

completely verify patterns at the landscape-scale by a complete census in the

way that has been done for tree communities (Condit et al. 2002).

In this section, several theoretical taxa-area relationships are considered. For

each, the effects of undersampling and of the detection issues encountered

with modern laboratory techniques are then modelled. For this study,

synthetic microbial communities from homogeneous environments are

assembled and samples taken from them. The analysis begins with open, well-

mixed, island-like communities of differing size each with similar homogeneous

environments; in accordance with the Theory of Island Biogeography larger

communities support higher diversity (MacArthur & Wilson 1967; May 1975).

In such “well-mixed” communities nothing can be assumed about the spatial
correlation in the abundance of taxa. In reslity this might arise through the

community being truly well mixed, for example, in continually stirred

bioreactors (Leclerc et al. 2004) or in mixed natural surface waters, or from

the spatial structure being obliterated by the sampling procedure (Bell et al.

2005b). The communities ranged in size from 10%° individuals, which one

might expect in a few litres of lake water or tens of millilitres of activated
hree

sludge, to 10' individuals; a large lake or wastewater treatment plant. T
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assumptions allow plausible synthetic microbial communities to be generated.
Firstly, the distribution of taxa abundances in each community is lognormal.
Secondly, there is a degree of similarity in the relative abundance distributions
for taxa in different sized communities (>10'° microorganisms) in the same

type of environment; this assumption underlies all theoretical explanations of

taxa-area relationships (May 1975; Leitner & Rosenzweig 1997). Thirdly, the

lognormal distributions for a particular environment can be crudely

characterised using the ratio of two measurable variables, as described in

section 2.3, (Curtis et al. 2002): the total number of individuals in the

ently measured in samples as the total

f the

community, Ny, which can be confid

microbial count, and the abundance of the most abundant members o

community, N,,, which can be approximated from clone libraries or more

reliably estimated using quantitative molecular methods such as fluorescent
in-situ hybridisation. This characteristic ratio derived from samples should

reflect the community ratio because it is based on the abundance of the most

abundant organism (Curtis et al. 2002).

The precise nature of species abundance distributions for micro-organisms and

each of these assumptions is open to debate (Hughes et al. 2001; Ward 2002;
y to be rare

Nee 2003). However, provided one accepts that there are likel

species in the microbial community, that the species sbundance distribution is

uneven and that particular environments, or groups of organisms, will have a

characteristic distribution, then the qualitative conclusion of the analysis

which follows will hold, irrespective of the precise distribution or parameters

(He and Legendre, 2002).
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Three different environments have been considered each with its own

characteristic N;/N,,, ratio: Ny/Nps = 5, which has been observed in, for

example, 165 rRNA gene clone libraries from marine environments (Mullins et

al. 1995) ; N,/N,.,., = 10, the minimum one might expect in soil (McCaig et al.
1999); and N,/N,... = 25 which would be more typical of soil (McCaig et al.

1999) and has also been observed in anaerobic digesters (Godon et al. 1997).

Figure 5.1 shows the relationship between community diversity, S, and

community size, N, within the range 10"-10"® individuals for the most diverse

environment (Ny/ N, = 25). Assuming a constant density of organisms in the

environment we see that the power law species area relationship, S oc A*, holds

as it does in the less diverse environments (Table 5.1). However, the values of

the exponent z (Table 5.1) vary from 0.19 to 0.27; much larger than two of

the previously reported values and more typical of large organisms

(Rosenzweig 1975). Clearly the precise value of 2 is reliant on the assumptions

about the characteristic taxa-abundance distributions in each environment,

but the emphasis here is on how the value of z changes when it is based on

small-samples analysed using methods typically used to characterise microbial

communities.

Consider the diversity expected in random samples of size 10° individuals,

which one might reasonably expect in a millilitre of seawater or & milligram of

soil (Whitman et al. 1998). It is impractical to explicitly generate synthetic

communities of 10"-10'® discrete individuals for which taxa abundances are

lognormally distributed and then repeatedly take very large samples.
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As outlined in the previous chapter, under the assumption that Ny < Ny, it

is the case that the joint probability density of taxa abundances with in a

sample (Y = (y,...,y,)) is Dirichlet distributed. For known local community

abundances X = (z,,...,2,), Y|X ~ Dir(Nsz,,...,Nst,)-
That is,

Nr.

£ 1 %) = TN [ =2 T(N.z) (5.1)

Using MATLAB, theoretical lognormal communities were generated of sizes

10°,10", ...,10® individuals for Ny /N, ratios of 5, 10 and 25. From each

community, the above procedure was employed to simulate samples of

size Ny = 200 and Ny = 10%individuals. It was then noted how many taxa were
satisfied Ny, > 1). To simulate a
f at

present in each sample (i.e. how manyy;

threshold in detection, how many taxa were present at an abundance o
least 10°individuals was recorded (counting only Ngy; 2 10°). These values
were used for calculating the sample zvalue and the observed zvalue
respectively. The procedure was run for 100 repetitions and least-squares
linear regression was used to find z where InS = 2ln A+ C . The appropriate
Fisher statistic was then calculated for the regression and the goodness of fit

tested at the P = 0.05 level. Additionally, 95% confidence intervals for the

exponents were noted. These results are noted in table 5.1.
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N;/Non.=5 Np/Npo=10 Ny/N,, =125

0.1985 + 0.0001 0.2415 * 0.0002 0.2766 + 0.0003

Whole community

Complete census of sample: 0.0575 * 0.0039 0.0740 * 0.0025 0.0747 £ 0.0017
10* microbes

Clone Library; random sample -0.0015 * 0.0070 * -0.0012 + 0.0041 * -0.0049 + 0.0053 *

of 200 microbes

Rapid community -0.0035 + 0.0073 *
fingerprinting: 10° microbes

with a 1% detection limit on

relative abundance
e Denotes that the relationship is not statistically significant, therefore,

-0.0063 + 0.0043 *  -0.0050 + 0.0020 *

there is no

evidence to assume a z value other than 0.

Table 5.1
The exponent and its 95% confidence limits for t
distribution derived from samples in different environments.

he power law taxa abundance

This analysis revealed that a significant power-law relationship holds for

analyses based on a complete community census and for samples of size 10°

(Figure 5.2). However, in each of the environments the 2z values are

significantly reduced when the data are obtained from a small sample (Table

5.1). However, even in a sample of 10° individuals it is currently impossible to

determine the identity of every individual in a sample. If the analysis is based
on samples typically obtained with conventional culture-independent analyses
the effective sample sizes relative to the size of the community become very

small indeed. Clone libraries prepared from PCR-amplified 16S rRNA genes or

] random sample from the environment;

functional genes represent a very smal
ganisms. The mean diversity in samples of 200

typically a few hundred or

individuals drawn at random from the environmental samples shows 1no
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significant relationship between number of individuals in the community and
diversity in the sample (Figure 5.2). The mean z values indicate that they do
not differ significantly from 0 and significant taxa-area relationship cannot be

discerned (Table 5.1). If more of the genes in the sample are analysed using a

community finger-printing (Leclerc et al. 2004) method then there will be a

threshold below which organisms cannot be detected. Here it has been

assumed that all the nucleic acid from a sample of 10 individuals is analysed

but that sequences with an absolute abundance less than 10° are not detected.

Again there was no significant relationship between community size and

sample diversity for any of the environments (Figure 5.2, Table 5.1).

10°%
le 106 ' o
g Env‘ro‘lmgpiall_s.a_me AR TR V- -
~ 10° =TT 1
S
@
o
E
= 10°} Rando_m_sgrrlpl_e of 200 _ _ ___.]
Sample 10° with 1% detection limit
Y .
10 ; '
10" 12 101.4 | 10" 10
Community Size
Figure 5.2

Taxa-area relationships for a homogeneous environment with a lognormal

taxa-abundance distribution defined by Ny /N, =25. The correlation is
=0.05 level for the whole community and in a

statistically significant at the P
gradient in the

complete census of environmental samples. The very low

small samples is not significant.
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Until now only random samples from well-mixed Island-like communities with

ho ) .
mogeneous environments have been considered. In these cases each

individual in the community is equally likely to form part of the sample. This

makes it conceptually and practically difficult to investigate how diversity

changes within successively smaller parts of the community (nested taxa-area

relationship)(Leitner & Rosenzweig 1997) on the basis of small samples.

However, in many environments, such as soils, the spatial distribution of

distinct microbe communities will remain relatively fixed in time which opens

up the possibility of determining the nested taxa-area relationship based on
the decay in similarity with distance between samples (Harte et al. 1999),

rather than solely the diversity in the sample. However, for this to be possible
the presence or absence of taxa must be spatially correlated, either as a result
of environmental gradients or by, for example, dispersal limitation (Hubbell

2001). Nested taxa-area relationships will exist in homogeneous spatially

uncorrelated environments, but are, perhaps unsurprisingly, impossible to
determine based on similarity decay methods. To reinforce this observation

the nested-taxa area relationship in 2 spatially fixed but uncorrelated

is examined; the number of microbes one might

community of 10" individuals
ple, 10 tonnes of soil. Again, the env.

n of taxa-abundances defined by

expect in, for exam ironment is assumed to

have a characteristic lognormal distributio

Ny/N,... = 25.

The 10" individuals are distributed uniformly in space on a disc with unit

y nested taxa-area relationship is determined

radius and the whole-communit

from a complete census of the organisms lying within concentric discs of
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increasing area; the smallest disc, in the centre, comprising only 10°
individuals. Subsequent samples of equal size are taken from the annuli that
lie between successive concentric circles. The Sorensen similarity index (Harte
et al. 1999) between the sample from the central disc and those in each

annulus is then determined. The distance of the samples from the centre of

the unit disc is assumed to be approximately the area weighted average radius

2 2
of the annulus; (n' +n )2 . where r, and r; are the radii of inner and outer

boundaries of the annulus from which the sample was taken. Figure 5.4 shows

the similarity of samples as a function of distance for a typical realisation of

the community. As expected, no decay in similarity with distance is apparent

even if a complete census of the samples were possible.

107 - - - - ]
Community
= 10°%} *
-
o
@
Ko
S 10°} ‘
< samples 10°
4 L
10 : ' '
o 1t 10° 10 10 10
Community Size
Figure 5.3

Nested species area relationship for the whole community in a homogeneous

spatially uncorrelated environment.
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Initially, the exponent of the nested taxa-area relationship is approximately
0.07 which is similar to that for large organisms (Rosenzweig 1975), it levels
off at around 10" organisms when most taxa have been encountered. There is
no reason to expect similarity in samples to decay with distance in a
homogeneous spatially uncorrelated environment, and this is borne out in
samples the samples of size 10° by simulation (Figure 5.3). Using a typical
distance-decay method for ascertaining species-area curves (Harte et al. 1999)

this translates into a completely flat taxa-area relationship (Figure 5.4).

o o o
~ © ©

Sorensen similarity index
o
D

05—, "3 2 - 0

Log 10(Distance from the centre of a unit circle)

Figure 5.4

Sorensen similarity indices fo
a unit disc. Note that similarity does not change with distance between

mmunity taxa-area relationship cannot be inferred.

r samples of varying distance from the centre of

samples, therefore the co
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5.2 Conclusions

The observation of taxa-area relationships (Green et al. 2004; Horner-Devine

et al. 2004a; Bell et al. 2005a) is an important break-through in microbial
ecology. These observations have been possible because of the advent of
molecular methods. However, the relatively narrow dynamic range of these

methods means that it is difficult to simultaneously detect common and rare

members in a microbial community. Thus, when conducting broad-scale

analyses of microbial communities the accumulation of rarer taxa that dictates

the value of z in taxa-area relationships is difficult to detect. If taxa-area

relationships are ubiquitous, their true nature will almost always be disguised,

or even hidden, as a result of inherent limitations of the measurement

methods.

The sampling issues highlighted by this analysis are of profound importance

for those seeking patterns in microbial ecology and potential applications in

environmental engineering. Taxa-area relationships may be difficult to

observe, even if they exist. What has been demonstrated here is that, under

the additional assumptions of there being no shift in community structure

with area and the top ranked abundance staying constant across sites, taxa-

area relationships are almost impossible to detect. For such studies as those of

Green et al. (2004) and Bell et al. (2005a), who noted high z-exponents, some

further mechanism must be at work, one which produces a correlation between

the abundances of the top few ranked species and the area studied. Without

this additional factor, they would likely have been unable to observe the

phenomena they did.
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6 Evidence of Neutral Community Assembly

The previous chapters of this thesis have been concerned with the

development of NCMs and their possible applications in engineered biological

systems. So far, most of the work presented has been largely theoretical and

the predictive power of such models has not been fully considered. In this

chapter, the research is expanded upon and compelling evidence presented of

neural community assembly in naturally occurring microbial communities.

Furthermore, it is demonstrated that NCMs may offer answers to various

problems facing environmental engineers.

One key question for the engineering community concerns the link between

system sizes and diversity. Knowing at which scales plants should be

functionally stable could be important in the design of wastewater treatment

systems. Thus, a good understanding of the taxa-area relationships for

microbes is of the utmost importance.

However, as the previous chapter demonstrates, the biases and sampling

effects inherent to current laboratory tools may well distort or even obscure

these scaling effects completely. Here, NCMs are invoked to offer a plausible

explanation as to why in some cases such taxa-area relationships should be

tudies and why in other cases, the

readily observed in experimental 8

phenomenon may remain undetected.

145



C .
hapter 6 Evidence of Neutral Community Assembly

Additionally, a comprehensive test of how well a NCM can describe taxa

abundance distributions across a wide range of scales. By re-analysing a

recently collected dataset (Bell et al. 2005) for water borne bacteria living in

trecholes in Beech trees in the same woodland, the predictive power of NCMs

is tested across physically and chemically similar communities whose sizes

span three orders of magnitude. The result is the strongest test yet of the

Neutral Theory, either in classical or microbial ecology and forms the basis of

a paper to be published in the near future (Woodcock et al. 2007, In Press).

The main achievements outlined in this chapter include:

e Demonstration that Neutral Community Models offer a solution to the

problem of detecting taxa-area relationships in small samples.

Specifically, it is noted that there are certain conditions and parameter

values for which detection of this scaling phenomenon is a simpler task

than for others.

e (alibration and validation of the NCM for the dataset first published

in Bell et al. (2005). By fitting one s¢

generated for the remaining 28 communities. Of

t of parameters for the smallest

site, predictions were

ficant fits at the 5% level.

these, 26 were found to be statistically signi

resented forms the basis of a paper published in Ecology Letters

thcoming paper in FEMS Microbiology

The work p
(Woodcock et al. 2006) as well as & for

(Woodcock et al. 2007 In Press).
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6.1 Taxa-Area Relationships Predicted by Neutral Community
Models

In the previous chapter, it was demonstrated that the sampling and
laboratory techniques employed in microbial community analysis have the
potential to severely distort the picture of the z-exponent in the power law
taxa-area relationship. Furthermore, for a number of lognormally distributed

communities each with the same N, /N, ratio, it was shown that the

exponent could appear to be more than an order of magnitude smaller in

samples than in the real system. This was the case for both nested and island-

like taxa-area relationships.

How then, can recently published studies of microbial communities observe

exponents similar in magnitude to those found in classical ecology? For

example, Bell et al. found a z-value of 0.26 for bacteria inhabiting small water-

filled treeholes in a UK forest. This is a remarkable dataset because it offers a

perfect analogue to the islands used in the Theory of Island Biogeography

(MacArthur & Wilson 1967).

The treehole dataset used throughout this chapter provides the perfect testing

ground for NCMs; insular communities of different sizes housed in similar

ecosystsm. Samples were taken from 29 rainwater filled, bark-lined holes, each

of which housed a small ecosystem. The range of volumes of these habitats

spanned three orders of magnitude; the smallest was a mere 50ml, the largest

18,000ml. Bell et al. (2005) reported that bacterial species richness increased

147



Chapter 6 Evidence of Neutral Community Assembly

with treehole volume in a manner that could be modelled using a single power
law relationship which hints at some consistent process of community
assembly. Physically and chemically, the bacterial communities shared a great
deal in common; they were all supported by similar nutrients (decaying leaf
litter), relatively stagnant, but subject to invasion events from either airborne
or rainwater borne microorganisms. The greatest geographic distance between

any two trees in the study was around two miles.

The analysis contained in chapter 5 suggests that there must be a significant

change in the community structure of the more abundant organisms between

tree-holes. But the holes are all in the same species of tree in the same forest

and the water in each tree hole was stirred before sampling, which lessens the
likelihood of the community structure differing as a result of environmental

factors that correlate with volume. Thus some other factor must be at play.

One possible explanation for this may be offered by applying the NCMs

presented earlier in this thesis. By considering the differing effects of

immigration on communities of different sizes, such models can offers a self

consistent argument as to why a taxa-area relationship may well be derived

for these small insular communities. Although N CMs perhaps do not provide a

literal description of community assembly, they do offer the opportunity to

investigate the role of immigration in isolation from all other factors.

As discussed in section 2.3, as the Nym parameter which defines the shape of

the species abundance distribution for a NCM decreases (figure 6.1), the

distribution becomes more negatively skewed. This implies that, independent
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of any environmental factors, in a set of different sized islands subject to the
same immigration rate the expected abundance of the relative abundance of
the top few ranked (by abundance) taxa increases as island size decreases.
Such models suggest that where immigration has an important role in
determining community structure, small samples analysed using culture-
independent methods can yield a much closer estimate of the true taxa-area
relationship, despite the lack of knowledge on how rare taxa are accrued. In
this section of the thesis the NCM is crudely applied to the treehole dataset
(Bell et al. 2005) to demonstrate the generic mechanisms by which the taxa-
area relationship can be revealed in dispersal limited systems. In the next

section a more rigorous application of the N CM to the same dataset is used to

calibrate and validate the model.

To apply a NCM model estimates of the number of individuals in each
community are required. Additionally, an estimate the probability, m, that
new individuals in the community result from immigration rather than from
reproduction in the local community is needed, along with an estimate of the

fundamental biodiversity number, 6, which determines the diversity of the

metacommunity that supplies immigrants to the tree-holes.

For microbial communities, these cannot always be easily estimated. However,

for the communities in the Bell et al. study, assuming that the density of

organisms in the tree holes is of the order 10° per ml (van der Gast 2005), the

population sizes ranged from approximately 10%%to 10°°. The ambient density

of organisms in the air outside the tree holes was of the order 10° per m’

(Harrison et al., 2005) as compared to 10" per m® in the tree hole fluid. This
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is an enormous difference in density which makes it is difficult for the per

capita atmospheric deposition to be very high in the absence of some very
turbulent mixing between the air within and outside the tree hole. Assuming
relatively stagnant air in the tree hole the flux of organisms across the water
surface boundary is likely to be very low indeed in comparison with
population turnover due to local reproduction and deaths through, for
example, predation. Thus the different densities of organisms in different
environments might mean that whilst microorganisms can disperse freely
(Fenchel and Finlay, 2005) the per capita immigration rates into some
environments are low. Immigration will be punctuated by events like stemflow
and animal foraging, however, averaged through time the immigration
probability will be low. Thus, a somewhat arbitrarily selected value of 107 is

used here. A biodiversity number of 8 yields an Ng/N.,.., value, for a very

large community, of 4 which has been observed in aquatic environments

(Mullins et al., 1995).

For these parameters in the model, figure 6.1 shows the ranked abundance

distributions for 10 communities within the tree-hole size range. Figure 6.2

shows the ranked abundance distribution of taxa in 5ml samples and figure 6.3

shows the taxa-area relationship for the entire community, for the samples

. . 3
and for molecular community finger printing with a detection threshold of 10

individuals, typical for DGGE analysis. It is apparent in figure 6.2 that the

increasing evenness of the species abundance distribution that occurs with

increasing volume is sufficient to be manifest as an increasing number of

bands detected on a DGGE gel.
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Ranked species abundance distribution from a Neutral Community Model for
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Figure 6.3
Taxa abundance distribution identified using random samples of differing

sizes.

This analysis does depend upon the estimates used for the parameters. In

particular, it should be noted that there is a lack of empirical evidence to

support the immigration rate of 10°. However, as a rough rule of thumb, the

evenness of the taxa abundance distribution in the local community is seen to

be sensitive to community size while Nym < 10000. This difficulty in

observing scaling effects for larger systems is consistent with the scaling

function displayed in figure 4.2. For systems with a higher N,m parameter, a

far smaller shift occurs in the top few ranked abundances. Also, as discussed

in chapter 4, the sample sizes themselves can make what small changes occur

extremely difficult or even impossible to detect. For such communities, the

effective immigration rate would always appear close to unity.
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This phenomenon of increasing evenness of the taxa abundance distribution
with increasing volume could well be key to Bell et al. (2005) observing a taxa
abundance distribution in small samples. There are alternative explanations
such as that of Green and Ostling (2003), who demonstrate that this could
occur if taxa-abundances are spatially correlated. However, by invoking the
simple neutral community model, a plausible ecological mechanism for the
phenomenon occurring in what are ostensibly homogeneous islands can be
found. Having demonstrated the generic mechanism which allows microbial

taxa-area relationships to be revealed in dispersal limited systems, it remains

to validate whether this is indeed occurring.

6.2 Calibration and Validation of Neutral Community Models

Much of the interest in NCMs stems from the fact that such beguilingly

simple models can theoretically reproduce some of the fundamental patterns in

nature which ecologists have been trying to explain for decades. However,
NCMs have only ever been fitted using taxa~abundance distributions from

single sites (Volkov et al. 2003) or at one scale (Sloan et al. 2006), (section

3.3) and parameter values have been calibrated on a case-by-case basis. Since

NCMs predict a malleable two parameter taxa-abundance distribution, this is

a weak test of neutral community assembly and, hence, of the predictive

power of NCMs.
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In this section, a NCM is applied with a single set of parameters to predict
the taxa-abundance distributions and taxa-volume relationship observed in the

waterborne bacterial communities studied in Bell et al. (2005), whose sizes

spanned three orders of magnitudes. This validates the simple quantitative
ecological mechanism of dispersal limitation proposed in the previous section

and also demonstrates the predictive power of NCMs.

In most previously published applications of neutral theory, the model
parameters have been selected to minimise the difference between observed
and predicted taxa-abundance distributions. The merit of NCMs over and
above other hypotheses on the formation of biological communities is then

argued on the basis of (often small differences in) a goodness of fit statistic for

calibrated taxa-abundance distributions (Chave et al. 2002; McGill 2003;

Volkov et al. 2003). These arguments can seem rather arcane when there has

been little attempt to validate the models (Harte 2003). In addition, microbial

ecologists are precluded from the debate because, for most environments, only

a small fraction of the diversity can be experimentally defined, as discussed in

the previous chapters. Despite the advances in molecular methods for

characterising naturally occurring microbial communities in situ the disparity

in scale between sample and community size and some inherent limitations of

the methods conspire to make a purely empirical definition of a taxa-

abundance distribution at a single site very difficult. The frequency- p; method

presented in chapters 3 and 4 is one attempt at circumventing this problem
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for sample data from similar microbial communities. Nonetheless, calibrating
an NCM at one site or one scale is not a convincing endorsement of the

model’s underlying assumptions and many alternative models could
potentially reproduce either the taxa-abundance distributions(McGill 2003) or
the abundance-frequency relationships observed. Part of the fascination with
NCMs is their potential to predict the biogeography of groups of organisms as
a function of key variables: the immigration rate, community size or the
distance between samples. Finding examples of where such predictions hold

true or fail will yield greater insight on the utility of such a parsimonious

description of community assembly as an NCM than curve fitting.

The distributions of the relative abundance of taxa in the samples was not

reported in Bell et al. but are used here (Figure 6.4). What is immediately

striking from these data is just how dramatically the shape of the taxa

abundance distributions change between trecholes, with large communities

exhibiting & much more even distribution than small ones, which is in broad

agreement with the effects of dispersal limitation discussed in the previous

section. Given the proximity of tree holes and the similarity of their

environments, these data provide ample opportunity to test the reasonable

null hypothesis that the tree holes house distinct homogenous island-like

communities that are neutrally assembled from a single metacommunity with

a consistent rate of random immigrations into each tree hole.
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Figure 6.4
Ranked taxa abundance distributions for a selection of 7 of the 29 treeholes

ranging in volume from 11000m! to 50ml. Lines represent taxa abundance

distributions predicted by neutral model with m=10" and 6=15 calibrated using

data from the 50ml treehole.

Because of detection limitations inherent to the DGGE analysis, in the initial

study, only the top few ranked taxa were observed at each site, so the

abundances in the dataset were normalised relative only to the total

abundances of these most common taxa. Accordingly, in the analysis all the

predicted abundances were normalised relative to the detected number of taxa

in the dataset.

Initially, the model was calibrated using only the observed taxa-abundance

distribution for the smallest (50ml) treehole. By selecting values for the

parameters & and m, realisations of the metacommunity were generated.
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Then, as outlined in sections 3.2 and 4.2, theoretical local populations and
sample populations were produced via appropriately normalised Gamma
variables. After running simulations with many different parameter pairs, it
was found that the least-squares best fit to be obtained with =15 and m =
1.0x107%. These parameters were then used to predict the taxa-abundance
distributions for all the remaining treeholes. Comparisons between observed

and simulated taxa abundance distributions for a selection of the tree holes

are shown in Figure 6.4.

Applying these parameters, the resulting prediction for each site was tested
individually to see if the neutral model fitted the data at the 5% significance
level. As no simple analytic method is available to find the expected
abundances of each ranked taxon in a NCM, simulations were employed to
find these. 1000 repetitions of the neutral model were run for sites of the
volumes of each of the 29 trecholes using the selected parameter pair and the

mean values of the ranked abundances were assumed to closely approximate

their expectations.

Using these expected abundances, 500 independent repetitions were calculated

and Pearson’s Statistic for goodness of fit was calculated for each

where E,is the expected abundance of the i*ranked taxon and is its

abundance in the simulation or observed dataset. A p-value was then
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estimated from the proportion of these 500 trials which produced a goodness

of fit statistic greater than that calculated for the observed data.

For those sites for which a p-value less than 0.05 was obtained, the null

hypothesis of a neutral model with the parameter pair(15,107°) was rejected.
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Chapter 6
Treehole Number Volume (ml) p-value
1 360 0.076
2 3250 0.324
3 1700 0.500
4 750 0.280
5 18000 0.020*
6 180 0.620
7 640 0.454
8 4450 0.612
9 3600 0.152
10 3150 0.146
11 2250 0.326
12 1800 0.650
13 1250 0.154
14 60 0.480
15 1950 0.122
16 2850 0.214
17 2225 0.956
18 900 0.228
19 11000 0.158
20 1460 0.588
21 50 0.956
22 3000 0.674
23 140 0.342
24 220 0.094
25 111 0.808
26 350 0.466
27 1200 0.068
28 3000 0.736
29 600 0.040*
* Not statistically significant
Table 6.1

Estimated p-values for the goodness of fit using a NCM calibrated against the

smallest site, treehole 21. The parameter pair used was (6,m

Accordingly, hypothesis testin

)=(15,107%).

g at the 5% significance level suggested that for

27 of the 29 treehole communities there was no evidence to reject the neutral

model. The predicted species richness in each treehole cl

observed and, consequently, the neutra

osely matched those

1 model reproduces the taxa-volume
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relationship reported in Bell et al (2005) (Bell et al. 2005) for samples from
the community (Figure 6.5). When the parameter pair was calibrated using all
the data from all the treeholes, it was found that the best fit (sum of root
mean square errors for each tree hole) for the entire dataset was given by

=20, m =1.5x10°. Testing at the 5% significance level again gave no reason
to reject the neutral model with these parameters in the same 27 treeholes.
The goodness of fit was insensitive to changes in the parameters within the

relatively small range: 15 < 8 < 25 and 5x107 <m < 5x10°.
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a) Observed bacterial richness for each treehole
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Figure 6.5

n all 29 tree holes. The solid line

a) The observed bacterial richness i
S = 2.11V°%, fitted using linear

represents the power-law relationship,

regression.
b) The bacterial richness predicted by the neutral model with 6 =

10°® calibrated using the taxa-abundance distribution of the smallest treehole.
law relationship, S = 2.19V%%, again fitted

i5and m =

The solid line represents the power-
using linear regression.

161



Chapter 6 Evidence of Neutral Community Assembly

6.3 Conclusions

In the previous chapter, it was demonstrated that, under the assumption that
the abundances of the top ranked taxa are not correlated with the area
sampled, the true nature of taxa-area relationships is virtually undetectable
using current molecular methods for community analysis, just as some studies
had found (Horner-Devine et al. 2004). There are, however, a number of
published reports (Bell et al. 2005) which have indeed found a strong taxa-
area relationship with exponents of the order of those observed for larger
organisms 2z = 0.25. There had been no previously published explanations
offered as to why these seemingly contradictory observations may have arisen
prior to the analyses in this and the previous chapter. By invoking a simple

neutral community model, a potential solution can be found to this apparent

contradiction between different studies.

Furthermore, it is shown that a neutral community model can be calibrated

on a single site and the same parameters used across similar communities of

vastly different sizes to predict community composition with great accuracy.

The success of the neutral model in explaining the different taxa abundance

distributions in tree holes, whose sizes vary over three orders of magnitude,

without the need to change any parameters constitutes the strongest evidence,

so far, that random reproduction, death and immigration play a significant
role in shaping bacterial community structure. It suggests that at least some

bacterial communities are dispersal limited and, therefore, challenges the

perspectives held by some commentators that global dispersal of

microorganisms prevents them having a biogeography (F enchel 2003) and that
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microbial population sizes are sufficiently large to preclude local stochastic

extinctions (Fenchel & Finlay 2005).

Naturally occurring communities of microorganisms are vital to life on Earth

and are of profound practical significance in agriculture, medicine and

engineering. Describing patterns in microbial communities is, therefore,

important but not as important as explaining why the patterns form.

Quantitative theories of microbial community assembly could allow the

of

composition and dynamics of naturally occurring communities

microorganisms to be predicted and manipulated to the benefit of engineering,

medical, veterinary and environmental science. There may be many

qualitative alternative explanations of the patterns in the bacterial data

presented here but, as Harte (2004) suggests, theories are of most interest

when the ratio of the number of predictions that they make to the number of

assumptions and adjustable parameters is low. It has been shown that a

simple two parameter neutral community model, calibrated at one site, can

predict patterns in bacterial biodiversity and biogeography over many

different sites and scales.
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7 Discussion

As the demand for cost-effective treatment strategies for both industrial and
domestic waste grows ever greater, the pressure is on environmental engineers

to find improved approaches to the problem. Many of the currently employed

reactor designs are already a century old (Ardern & Lockett 1914; Metcalf &

Eddy 1914), and are founded upon empirical rules which mean that changes in

design are slow and often risky and failure, when it occurs, 1Is often

inexplicable(Curtis et al. 2003).

It is now widely accepted (Rittmann et al. 2006) that strategies founded upon

a more complete understanding of the composition of the microbial

communities employed would lead to the improved function of bioreactors.

Consequently, environmental engineering  has been rebranded as

environmental biotechnology to reflect the increasing collaboration between

environmental engineers and microbial ecologists.

The vast wealth of microbial molecular methods developed in the past two

decades is offering ever greater and more detailed glimpses (Moffett et al.

2000; Daims et al. 2005) into the microbial communities relied upon for such

environmental biotechnologies. As more detailed datasets become available,

the belief is that rules governing microbial community assembly can be
formulated and theories similar to many of those in classical ecology can be

postulated. Just as the application of the laws of Newtonian physics to
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structural mechanics instigated a revolution in structural design, the

development of rules for microbial community assembly may well have a

similar impact on waste treatment strategies.

However in classical ecology, the communities, and the patterns therein, are
relatively easy to observe, although the ultimate causes of those patterns are
obscure. In this context, complex models can give invaluable insights into the
underlying mechanisms that drive community composition and structure
(Loreau, 2004; Tilman, 2004) even though such models are very difficult to

parameterise. By contrast, microbial communities remain relatively difficult

to observe. The very best molecular techniques yield only partial and fleeting

glimpses of the communities to which they are applied. In this context

complex and un-parameterised models have the potential to mislead, because

we have a poor grasp of the reality they seek to describe. Consequently, for

the time being at least, a simple model which can be parameterised, like the

neutral community model presented in this thesis, may be the better guide to

the microbial world. A model does not need to be mechanistically correct in

every detail to be useful (Harte, 2003).

The development of theories to describe microbial community assembly is still

at an early stage (Curtis et al., 2002; Green et al., 2004; Horner-Devine et al.,

2004). The work presented here has perhaps simply extended, formally and

quantitatively, the principles outlined in The Theory of Island Biogeography
(MacArthur & Wilson 1967) to microbial systems. Nevertheless, it is worth

remembering, that the Theory of Island Biogeography transformed the

understanding and application of ecology. An analogous transformation in
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microbial ecology is long overdue. Such a transformation would mean that the
composition and dynamics of naturally occurring communities of
microorganisms could be predicted and manipulated to the benefit of not only
environmental engineering problems, but also a number of those in medical,

veterinary and environmental science. The theory described here may, either

in its own right or as a foundation for more sophisticated approaches, make a

contribution to this goal.
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8 Future Research Questions

The ultimate goal for this area of research is the development of a suite of
laws and concepts which can be used to describe and predict the assembly and
structure of microbial communities. Such laws would then give environmental

engineers greater opportunities to modify and improve the design and

efficiency of waste treatment systems.

The majority of the research in this thesis takes neutral community models
(NCMs) as the starting point for this goal. As previously discussed, they
represent an attractive null model, although may well have limitations which
need to be overcome. The following sections of this chapter briefly discuss

some possible future lines of research which have not yet been fully pursued.

8.1 Examination of Neutral Community Dynamics

As discussed in section 3.1 as well as being a route towards the steady-state

distribution, equation 3.9 can be translated into an Ito stochastic differential

equation(Kloeden and Platen 1999).

dz, = M, dt + [V, dw (8.1)

where w is a standard Wiener process. Employing the Euler-Maruyama

method, this can be reduced to the sum of a number of small discrete steps.
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The time interval is first broken into steps of sizedt , and then realisations of a
normal distribution generated dw,,dw,,...such that all dw;s are independent,
identically distributed variables where each dw; ~ N(0,At). Setting

X, = z,(t = 0)and then defining

X, =X, + M, At + |V, dw, (At) (8.2)

a vector of points can be generated that forms an approximate solution to the

stochastic differential equation.

This equating of the expected speed of the dynamics could well provide a
route to understanding at what scale communities can be assumed to be
homogeneous. The neutral model described in this thesis assumes that the

whole community studied, whether a wastewater plant or an estuary, is

homogenous within those boundaries. However, some preliminary work has

been done on the dynamics and it has been found that with this assumption,

the communities change unfeasibly slowly, around 1000 or more times less

rapidly than is commonly observed. This had led some observers (Nee 2005)

to be highly critical of neutral theories. There is, however, one other

observation. By considering the communities as patches of smaller sub-

communities, each itself completely homogenous, the dynamics of the whole

community would be altered. It remains a currently unanswered question as to

whether studying the dynamics of a real system compared with the theoretical

dynamics for systems using different patch sizes would give a better

understanding at quite what scale communities can be assumed to be

homogeneous.
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8.2 Near-Neutral Community Models

One of the main strengths of NCMs is the ease of their analysis. The
assumption of homogeny between all individuals in a community circumvents
the need from detailed measurements of many kinetic parameters, and so
massively simplifies any calculations which may be needed. However, this may
be over simplification. Failure to accommodate any differences in the fitness of
a species to a given environment could render the model useless if applied to
very different environments. For example, in the extreme case of applying an

NCM to a warm saline water body and a cold fresh water body the same

community structure would be generated if a similar metacommunity is

assumed. This might be considered an abuse of the NCM because the

metacommunities for the two environments would be radically different.

However, even small variations in fitness in the local community may have an

effect on the biodiversity that overwhelms the stochastic demography involked

in a neutral model. There are many different approaches to building such

inter-species variations into the framework presented in this thesis. One of the

simplest formed preliminary work on this topic which was published as part of

a paper in Environmental Microbiology (Sloan et. al 2006). For that approach,

a simple parameter, @, was added to the model which could be set to define

the relative advantage or disadvantage of each species to compete within a

local community.
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Further work in this area would be to examine whether calibration of the

distribution of & s and hence calculation of the taxa-abundance distribution

for near-neutral communities would be feasible. Furthermore, just as resources

have been incorporated into some classical wastewater treatment models it

may well be desirable to build in the competitive abilities of each taxon as a

function of the concentration of one or more resources.
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