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Abstract 

While the existence of protein was first described by Berzelius and Mulder back 

in 1838 and a single empirical formula noted (C400H620N100O120P1S1) (Vickery, 

1950, Brand, 1946), early protein-based research was limited to the analysis of 

proteins which could be easily purified in large quantities, such as those 

obtained from blood, egg whites and those obtainable from slaughterhouses, 

such as digestive and metabolic enzymes (Chapman, 2005). Indeed, despite the 

development of recombinant deoxyribonucleic acid technologies in the 1970s 

(enabling protein expression) and the increasing sensitivity of techniques which 

enable the identification and sequencing of proteins separated by gel 

electrophoresis (Patterson and Aebersold, 2003), it was not until the late 1980s, 

with the description of soft biomolecule ionisation that large scale proteomic 

analyses were undertaken, based upon the use of mass spectrometry (Guerrera 

and Kleiner, 2005). 

 

While early mass spectrometry-based proteomic analyses focussed on the 

systematic identification of a great number of proteins within a single organism, 

the field of proteomics is now becoming increasingly quantitative (Baak et al., 

2005), enabling the relative comparison of protein expression patterns between 

phenotypes, but also the targeted absolute quantification of specific proteins. 

 

During this project, a stable isotopically labelled internal standard based 

absolute quantitative technique, first described by Gerber and co-workers in 

2003 (S. A. Gerber et al., 2003), was applied to the absolute quantification of 

three families of multiple protein isoforms. This area of research is of particular 

scientific interest as it is thought that up to 95% of human multi-exon genes may 

be subject to alternative splicing, making alternative splicing the rule, not the 

exception (Pan et al., 2008a). Indeed alternative splicing has also been 

implicated as both a cause and a consequence of disease. This technique should 

therefore enable both the confirmation of disease, based upon the identification 

of a set of phenotype specific protein biomarkers, but also the mapping of a 

disease’s progression (Venables, 2004). 
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During this study, stable isotopically labelled internal standard peptides were 

selected for the absolute quantification of 11 confirmed protein isoforms, and 

two predicted protein isoforms. In addition, a separate MRM based LC-MS 

acquisition method was developed for the absolute quantification of each of the 

three families of protein isoforms (A-Raf, PDE4B and SERCA2) within a single 

analysis, and finally, these acquisition methods were applied to the absolute 

quantification of a range of immunoprecipitated, exogenously expressed protein 

isoforms. This project was, however, hindered by the sensitivity of the mass 

spectrometers available for use, preventing these acquisition methods from 

being applied to the absolute quantification of the endogenous levels of protein 

expression. 

 

While beyond the scope of this project, the further development of this 

quantitative technique should enable future researchers to: (i) Quantify each 

endogenously expressed protein isoform within a family of multiple protein 

isoforms. (ii) Assess any changes in the expression of each isoform in a range of 

cellular states, and (iii) Assess how a targeted drug treatment may affect the 

expression ratio of these protein isoforms. 
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1 Introduction 

As was briefly described in the abstract, this project details the development of 

a stable isotopically labelled internal standard based quantitative technique for 

the absolute quantification of three families of protein isoforms, through the use 

of mass spectrometry (MS). This chapter thus details the literature surrounding 

the development of proteomics as a field of scientific research, the various 

methods through which a protein may be quantified, the various types of mass 

spectrometers which are utilised in proteomics, and the methods which have 

been developed for the absolute quantification of proteins. 

 

1.1 The Birth of Proteomics 

While genomic based studies, such as the Human Genome Project (Venter et al., 

2001), have yielded vast amounts of sequence data, the “blueprints” of life 

(Mundy, 2001), these data have provided only a basis for evaluating what is 

possible within the cell, yet has yielded no information as to the biological 

activity, or phenotype, of a cell in a specific environment at a given point in 

time (Montpetit, 2003, Wasinger et al., 1995). Indeed, it is now understood that 

the levels of messenger ribonucleic acid (RNA) (mRNA) expressed within a cell, 

can give only a rough indication as to the rate at which a protein is produced 

(Duggan et al., 1999, Anderson and Seilhamer, 1997), which yields no 

information as to the final concentration of the protein, due to the varying rates 

at which a protein may be degraded. Furthermore, mRNA stability within the 

cell can be variable and the rate at which mRNA is translated into protein may 

also vary. mRNA expression yields no information as to the presence of post-

translational modifications (PTMs), which can be suggestive of cellular function 

(Unwin and Whetton, 2006) and current bioinformatic techniques cannot 

differentiate between genes and pseudogenes (Montpetit, 2003), cannot detect 

alternatively spliced proteins, nor do they take into account for the fact that 

many amino acid chains can be incorporated into a single protein, in the form of 

subunits (Godovac-Zimmermann et al., 2005).  
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It is thus understandable that the field of proteomics has received increased 

interest over the last decade (Dunn, 2007), initially being envisioned as a 

technique capable of characterising each of the proteins within an organism 

simultaneously (Zhang et al., 2010). This assumption presented proteomics with 

its first major challenge, addressing the dynamic nature of the proteome 

through independently analysing each organism under a range of conditions 

(Zhang et al., 2010). 

 

Further to the environment from which the organism was sampled, which will 

determine the protein expression pattern, it has been predicted that up to 74 

percent (%) of the 20,000 to 30,000 genes in the human genome may be subject 

to alternative splicing (Johnson et al., 2003), yielding an average of two or three 

transcripts per gene (M. Nakao et al., 2005), thereby greatly increasing the 

complexity of the proteome. Furthermore, it is also common for proteins to be 

post-translationally modified with one or more of some 200 PTMs, resulting in 

the number of modified and unmodified proteins within an organism generally 

being much larger than the number of genes identified (Zhang et al., 2010, 

Anderson et al., 2004b). 

 

The highly variable concentrations at which proteins are expressed are also a 

problem for proteomic based analyses. For example, the dynamic range of 

protein expression in yeast can vary by up to four orders of magnitude (Anderson 

and Anderson, 2002), and by up to 12 orders of magnitude in extra-cellular 

fluids, such as blood (Corthals et al., 2000). By way of an example of the scale of 

the problem, just 12 housekeeping proteins (required for cell survival, integrity 

or duplication, and thus are thought to be expressed in every cell at 

approximately the same level (Thorrez et al., 2008)) in human plasma have been 

found to account for up to 95% of the total protein mass (Zhang et al., 2010), 

and a single extracellular protein, albumin, being recorded so as to account for 

up to 50% of the total protein mass (Corthals et al., 2000). Were such a sample 

to be proteolytically digested and analysed via MS, the proteolytic peptides 

generated from those 12 most abundant proteins would compete during 

ionisation with those peptides generated from lower abundance proteins, 
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possibly masking their detection. Furthermore, during an information-dependent 

acquisition (IDA) based MS scan (a scan which monitors the MS spectrum until an 

ion which satisfies user specified MS/MS selection criteria is detected), an 

eluting peptide may be missed while another peptide undergoes tandem MS 

(MS/MS). This limitation can be reduced, however, through utilising an 

instrument with a shorter cycle time. It is thus clear that only after several 

stages of separation would it be possible to detect and analyse lower abundance 

proteins, or to assess the differences between cellular phenotypes (Klose, 1975, 

O’Farrell, 1975).  

 

1.2 Protein Separation 

It is indeed because of the vast range of concentrations at which proteins are 

expressed, the overwhelming number of modified, unmodified and alternatively 

spliced proteins within any given sample that the field of proteomics has 

required high sensitivity, high resolution, and high throughput techniques and 

technologies capable of delivering high-confidence protein identifications.  

 

Classically protein separations have been performed through two-dimensional 

sodium dodecyl sulphate (SDS) poly-acrylamide gel electrophoresis (SDS-PAGE) 

(2DGE) (Corthals et al., 2000, O’Farrell, 1975), coupled with spot picking, 

proteolytic digestion, and a matrix-assisted laser desorption/ionisation (MALDI) 

coupled with time-of-flight (ToF) based protein identification. In recent years, 

however, liquid chromatography (LC) based separations have offered scientists 

an automated, MS compatible, alternative (Link et al., 1999). 

 

1.2.1 2DGE 

While poly-acrylamide based gel electrophoresis was first employed to separate 

protein back in 1959 (Kwietny et al., 1959), it was not until 1974 that isoelectric 

focusing (IEF) was combined with SDS-PAGE to yield 2DGE, a development which 

heralded a new age for analytical protein separation (Corthals et al., 2000, 

O’Farrell, 1975).  
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Figure 1-1: A theoretical 2D gel based separation of five proteins. The image 
above depicts the steps required to separate a proteome based on 2DGE, the 
first step of which involves each protein migrating across an IPG strip, based on 
its isoelectric point (pI), until a neutral charge is achieved, at which point the 
proteins are further separated based on the number of bound SDS molecules, 
and thus their MW.  
 

The first dimension of 2DGE involves the proteome being separated based on the 

pI of each protein, where each protein will migrate across an immobilized pH 

gradient (IPG) until a neutral charge is achieved (Corthals et al., 2000, O’Farrell, 

1975). The second dimension separation step is then conducted, applying SDS to 

the sample, so as to impart a uniform negative charge to each protein. As 1.4 

grams of SDS binds to one gram of protein, each protein can be separated via 

electrophoresis at a rate approximate to its molecular weight (MW) (O’Farrell, 

1975), as is shown on Figure 1-1. At this stage, the separated proteins can be 

visualised through the application of a number of protein stains or dyes. Options 

include Coomassie brilliant blue, Sypro and silver stain. Which dye is selected 

will depend on the sensitivity required (0.05 – 500 nanograms (ng) per spot), the 
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requirement for reproducibility, and the optional requirement for compatibility 

with downstream protein characterization techniques (Klose, 1975, O’Farrell, 

1975), such as MS. 

 

While 2DGE has previously been seen as the “gold standard” in protein 

separation, this approach has many well-documented drawbacks. In terms of 

protein chemistry, proteins have an average pI range of between pH 3 and pH 

12. IPG strips can however only offer a pI range of between pH 3 and pH 10, with 

the majority of commercial IPG strips covering much smaller pI ranges. Should a 

protein fall outside the pI range it will migrate to the end of the IPG strip and 

precipitate. Likewise in the second dimension, SDS-PAGE gels are limited by 

their MW ranges, causing those proteins which are either too large or small to 

either fail to enter the gel or to proceed through and pass beyond the gel, 

respectively (Herbert et al., 2001). In terms of single analysis reproducibility, 

inter-gel variability has been well documented, preventing the direct 

comparison of varying proteomes on separate gels (Rabilloud, 1990). 

Furthermore, dissimilarities in protein migration, inefficiency during the loading 

of the IPG strip, limited sensitivity, limited dynamic range (Shen and Smith, 

2002) and problems with the transfer of protein between the first and second 

dimensions have limited the use of 2DGE, especially in comparative proteomic 

studies outside of difference gel electrophoresis (DIGE) (Rabilloud, 1990). By way 

of an example of the scale of the problem, it has recently been estimated that 

more than 50% of proteins in yeast are not suited to detection based upon the 

use of 2DGE (Gygi et al., 2000). 

 
Despite the shortcomings associated with 2DGE, this technique continues to 

provide analysts with a tool capable of separating protein isoforms. For example, 

in 1990 Kojima and co-workers utilised 2DGE and immunostaining to identify 

three C-protein isoforms, and to map their expression in both neonatal breast 

muscle and posterior latissimus dorsi muscle (Kojima et al., 1990). Furthermore, 

in 2006 Raikos and co-workers identified several ovalbumin and conalbumin 

isoforms in egg white, based upon the use of 2DGE and MALDI-ToF (Raikos et al., 
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2006). Finally, in 1994 Nakamura and co-workers detected seven α- and four β-

tubulin isoforms within the axoneme of Tetrahymena cilia, based upon the use 

of 2DGE and immunostaining (Nakamura et al., 1994).  

 

In addition to the separation of protein isoforms, 2DGE offers analysts a tool 

capable of separating hydrophobic membrane proteins, through solubilising the 

proteins in a range of non-MS compatible detergents, prior to separation, in-gel 

digestion and an MS based detection (Babu et al., 2004). 

 

1.2.2 Liquid Chromatography 

In seeking an alternative technique to separate the proteome, researchers have 

recently turned to LC (Shi et al., 2004). In addition to its compatibility with 

electrospray ionisation (ESI) based MS (Shen and Smith, 2002, Fenn et al., 1989), 

LC systems have been fitted with a wide array of stationary and mobile phases, 

so as to enable both high resolving power, and specificity, assuming a unique 

sub-set of the proteome is to be targeted (Shi et al., 2004). While currently most 

proteomic LC based separations are performed via reversed phase (RP), ion-

exchange, affinity and size-exclusion based chromatography may all be utilised 

(Zhang et al., 2010).  
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Figure 1-2: A theoretical LC based separation of five proteins. The image 
above depicts the steps required to separate a proteome based on RP-LC, the 
first step of which involves the sample being injected to the LC column in a 
highly polar solvent, causing the hydrophobic proteins to adsorb to the silica 
bound C18 chains. As the ratio of polar to organic solvent is gradually increased, 
the proteins or peptides are eluted based upon their hydrophobicity. 
 

In regards to the fundamentals of RP-LC, the stationary phase is generally 

composed of a silica bead packed column, derivatised with a layer of aliphatic 

carbon (most commonly C18, though C8 and C4 may be utilised for less 

hydrophobic samples). The sample is loaded onto the stationary phase in a polar 

solvent (water (H2O)), acidified with 0.1% (volume/volume (v/v)) formic acid 

(FA) (employed as both a source of protons and to prevent the carboxyl groups 

from dissociating, thereby preventing secondary interactions with the stationary 

phase), under which conditions the peptide or protein will adsorb to the 

stationary phase. The ratio of acidified organic solvent (most commonly 

Acetonitrile (MeCN) or Methanol (MeOH) acidified with 0.1% (v/v) formic acid) to 

polar solvent is then increased, and each peptide or protein eluted when the 

strength of organic solvent in the mobile phase is sufficient to compete with the 
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hydrophobic forces retaining the analyte (Shi et al., 2004), as is shown on Figure 

1-2. The term RP is applied to this technique as historically the sample was 

loaded to the silica stationary phase in an organic solvent based buffer, and the 

sample components eluted based upon a gradient of increasingly polar solvent.  

 

Where greater resolving power is required, two-dimensional liquid 

chromatography (2D-LC) may be utilised (Giddings, 1984). 2D-LC employs two 

orthogonal LC based separation steps, performed either on-line (with the eluant 

from the first column flowing directly into the second column, in series) or off-

line (utilising fraction collecting and subsequent re-injection), so as to offer the 

analyst unparalleled resolving power. To better explain, 2D-LC enables a 

complex proteome to be separated based upon the exploitation of two separate 

biochemical parameters, such as hydrophobicity, size, or the number of basic or 

acidic residues a protein may contain. 

 

1.3 MS Based Protein Identification 

While 2DGE based experiments have predominantly involved the spot or protein 

of interest being excised from the poly-acrylamide gel, proteolytically digested, 

and ionised/detected though the application of MALDI-ToF, LC based separation 

coupled with an ESI based MS detection can be conducted in one of two ways; 

top-down or bottom-up. 

 

1.3.1 Top-down Proteomics 

Top-down based proteomic analyses involve the separation of a complex mixture 

of proteins via LC and the detection of each intact protein molecule via MS (Wu 

et al., 2012, Loo et al., 1990, Kelleher et al., 1999). This technique offers 

several advantages over bottom-up based proteomic techniques, the first of 

which is the ability of top-down proteomics to detect which PTMs are present on 

a protein, or indeed if several PTMs are mutually exclusive (Jeffrey, 2012). 

Furthermore, top-down based proteomics offers the analyst reduced sample 
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preparation time and reduced sample complexity, thereby offering better 

separation. 

 

In terms of applications, top down based proteomics has been utilised in the 

verification of translational start and stop sites identified during genome based 

bioinformatic analyses (Ryan et al., 2010). In this application, however, accurate 

mass based detection alone can be complicated by the presence of PTMs and 

splice isoforms, significantly altering the mass of the protein from that predicted 

(Cui et al., 2011), indeed it has been noted that identifying a protein based upon 

intact mass alone is sufficient for only a limited number of proteins in an LC 

fraction (Wu et al., 2009), MS/MS is therefore a requirement of top-down based 

proteomics.  

 

Furthermore, top-down based proteomics offers researchers a tool for the 

detection and identification of protein isoforms. Through analysing the intact 

structure and fragmentation pattern of each protein, it is possible to obtain 

sequence data which may otherwise be lost (assuming the use of top-down based 

proteomics). One such top-down based proteomic analysis, recently performed 

by Tran and co-workers, identified 1,043 unique gene products from a cultured 

human cell lysate, which together yielded more than 3,000 unique protein 

species, including protein isoforms, unique proteins generated through the 

addition of PTMs and protein fragments generated via proteolysis, based upon 

the use of a novel four-dimensional separation system (Tran et al., 2011). 

 

Top-down based proteomics does suffer from several technological limitations 

though, for example, only proteins containing 500 or fewer amino acids (50 

kilodaltons (kDa) or less) can be detected, due to the limitations of current mass 

spectrometers (Cui et al., 2011). Furthermore, high resolution mass 

spectrometers are required to differentiate between multiple-charge states, 

instruments which are expensive to both purchase and operate. In addition, top-

down based proteomics has been shown to struggle with the detection of very 

hydrophobic or hydrophilic proteins, in addition to low copy number proteins 

within complex samples (Motoyama and Yates, 2008). Finally, the technique 
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through which MS/MS fragmentation is most commonly employed during top-

down based proteomics, electron capture dissociation (ECD) (Sleno and Volmer, 

2004), requires long ion accumulation, activation and detection times, limiting 

the applications of this technique to samples which are relatively pure. 

 

1.3.2 Bottom-up Proteomics 

In performing a bottom-up based proteomic analysis the complex mix of proteins 

is proteolytically digested prior to LC based separation and MS based detection 

(Wu et al., 2012, Fournier et al., 2007). In pre-digesting the target proteins, 

many of the problems associated with top-down based proteomic analyses are 

avoided, enabling the detection of a much larger range of protein species and 

PTMs. Bottom-up based proteomics has therefore become the technique of 

choice for large-scale protein studies (Zhang et al., 2010).  

 

In proteolytically digesting an already complex proteome however, hundreds of 

thousands of peptides are created, which to date, no single LC based separative 

technique has been capable of resolving (Zhang et al., 2010). This can result in 

multiple peptide ions eluting from the LC column simultaneously, overwhelming 

the detector and reducing the number of peptides potentially identified during 

an IDA based MS/MS scan. In addition to simply limiting the results obtained for a 

given sample, the limited resolution offered by single dimension LC in bottom-up 

based proteomics has also limited the reproducibility of this technique (Zhang et 

al., 2010). 2D-LC is therefore often employed in bottom-up based proteomics so 

as to increase the resolving power of the LC separation and therefore, through 

increasing the number of peptides detected, increasing the protein sequence 

coverages achieved. 

 

A fundamental flaw exists within bottom-up based proteomics, however, in that 

identical peptides can be generated through the digestion of several protein 

isoforms, or indeed multiple distinct proteins, leading to confusion over which 

protein is actually expressed, and indeed the accuracy of the protein sequence 

coverages or quantifications achieved (Cui et al., 2011). Because of this, top-
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down based proteomics has again begun to attract more attention in recent 

years (Collier et al., 2008, Ferguson et al., 2009, Liu et al., 2002, Tran et al., 

2011). 

 

1.4 Protein identification 

Prior to 1990 it was thought possible to sequence only the first 20 – 30 amino 

acids of a single, highly purified peptide or protein over a matter of hours or 

days. This was achieved based on the sequential cleavage and ultraviolet (UV) 

based identification of the peptide or proteins amino-terminal (N-terminal) 

amino acid through a technique known as Edman degradation (Steen and Mann, 

2004, Edman, 1949). So as to avoid the sequence length limitations of this 

technique, proteins were often proteolytically digested and purified via RP-LC 

prior to the sequencing of each peptide fraction. With the advent of soft 

ionisation techniques however, including ESI and MALDI, MS has become the 

method of choice for protein identification.  

 

Early MS based protein identifications were conducted following the completion 

of 2DGE; where each protein spot was picked, proteolytically digested, and the 

species identified based on MALDI-TOF MS coupled with peptide mass 

fingerprinting (PMF) (Pappin et al., 1993). In brief, PMF assumes that when a 

protein is digested it will yield a unique set of proteolytic peptides, thus when 

the masses of several such peptides are detected during an analysis, an identity 

for the target protein can be predicted. 

 

PMF does, however, suffer from several limitations, the first of which is the 

requirement for the digested protein to be relatively pure. Considering the 

complexity of the proteome this can be difficult to achieve, even when 2DGE has 

been utilised. Furthermore, for a proteins identity to be predicted, the target 

protein must already exist within the database being searched. As each database 

is species specific, however, and the data generated through the bioinformatic 

analysis of a sequenced genome, for a protein identification to be made, the 

target organism’s genome must thus first have been sequenced (Steen and Mann, 
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2004). Finally, many proteins will yield peptides with similar mass to charge 

ratios (m/z), which can lead to erroneous data, in addition to which, where a 

peptide contains a PTM the final mass of the peptide will be significantly altered 

(Mann and Wilm, 1994), possibly resulting in an incorrectly predicted identity 

being assigned to the protein. 

 

Alternative approaches have therefore been developed to enable the accurate 

identification of a protein based upon IDA scanning and MS/MS. The first of these 

techniques, termed de novo sequencing, involves the collection and 

interpretation of MS/MS spectra (Steen and Mann, 2004), assessing the distance 

between MS/MS fragmentation peaks, so as to predict the loss of a specific 

amino acid. Through assessing the m/z ratio of the MS/MS fragments, it is 

possible to piece together this sequence information, so as to determine the 

structure of the target peptide. While it is possible to determine the sequence 

of a peptide via de novo sequencing, this technique is often complicated by 

incomplete fragmentation and the presence of interfering peaks, originating 

both from the target peptide and external sources (Steen and Mann, 2004).  

 

At the beginning of the 1990s, however, it was realised that only an 

infinitesimally small fraction of all possible amino acid sequences actually occur 

in nature, and therefore, if even a limited MS/MS spectrum was obtained, in 

conjunction with the peptides’ m/z and the specificity of the protease utilised, 

that the sequence of the peptide/protein could accurately be predicted (Mann 

and Wilm, 1994, Rappsilber and Mann, 2002).  

 

As such, the most common mass spectrometry based technique for identifying a 

protein now involves: (i) proteolytically digesting the protein of interest and 

injecting the resulting peptide mix onto an LC-MS/MS system, (ii) ionising the 

target peptides, so as to obtain a m/z, or parent ion, for each peptide, (iii) 

having each parent ion selected for MS/MS, and (iv) deriving an MS/MS spectrum 

for each peptide. Finally, (v) each MS/MS spectra is compared to a genomically 

derived sequence database, so as to predict the identity of the target protein. 
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1.5 Mass Spectrometry 

The origins of mass spectrometry can be traced back to the late 1800s when J. J. 

Thomson (Thomas, 1910), in researching the transmission of electricity through 

gas, built a device capable of measuring the mass of charged particles (Griffiths, 

2008). This device utilised gas discharge tubes to generate ions, which were 

passed though parallel electric and magnetic fields, deflecting the ions into 

parabolic trajectories which were then detected on a photographic plate 

(Griffiths, 2008). 

 

1.5.1 Biomolecule Ionisation 

For a long time, however, many of the ion sources used in MS, for the chemical 

analysis of small molecules, employed energy rich chemical and electrical 

ionisation techniques which were not suited to the ionisation of large intact 

biomolecules, as they were found to decompose in an unpredictable manner 

(Sauer and Kliem, 2010). The application of MS was thus limited to the analysis 

of volatile compounds, or those which could be easily derivatised to become 

volatile (a property necessary for their conversion into the gas phase) (Kicman et 

al., 2006). While many “sudden energy” techniques were proposed for the 

ionisation of small biomolecules (Fenn, 2002), including fast ion bombardment 

(Benninghoven et al., 1976), fast atom bombardment (Devienne and Roustan, 

1982), plasma desorption (Torgerson et al., 1974), pyrolysis mass spectrometry 

(Meuzelaar et al., 1973), and laser desorption (Posthumus et al., 1978), it was 

not until the realisation that if non-volatile solutes were dissolved in volatile 

solvents, and highly charged droplets of these solutions produced, that the 

evaporation of the solvent would leave intact gaseous ions, that the ionisation of 

labile molecules was thought possible (Griffiths, 2008, Hillenkamp and Karas, 

2000, Fenn et al., 1989). Indeed, it was not until 1988 with the description of 

two soft ionization techniques, ESI and MALDI, that MS was seen to enter the 

biological arena (Falk et al., 2006).  
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1.5.1.1 Matrix Assisted Laser Desorption/Ionisation 

The development of MALDI can be traced back to an experiment conducted by 

Hillenkamp and Karas into the spatial distribution of Calcium ions (Ca2+) in heart 

muscle cells based on laser microprobe mass analysis (Griffiths, 2008, Karas et 

al., 1985). Hillenkamp noted that background signals made the spectrum hard to 

decipher, and that this background noise appeared to form a general pattern. It 

was later suggested that these signals may be fragment ions originating from the 

organic matrix, leading Karas and Hillenkamp to study the desorption of small 

organic molecules, and eventually proteins (Griffiths, 2008, Karas et al., 1985).  

 

The breakthrough which enabled the ionisation of large biomolecules, however, 

which involved the analyte, dissolved in glycerol, being combined with cobalt 

particles, was first described by Koichi Tanaka in 1987 (Tanaka et al., 1988), for 

which he shared the Nobel Prize in Chemistry in 2002. 

 

In terms of an Ultraflex II MALDI based analysis, the target protein mix is 

dissolved in a suitable solvent and mixed with an excess amount of matrix 

(generally α-cyano-4-hydroxycinaminic acid (HCCA) for peptides of less than 5 

kilodaltons (kDa) and 3,5-dimethoxy-4-hydroxy-cinnamic acid for larger peptides 

and proteins). The sample is spotted to an instrument specific steel MALDI plate, 

air dried, and bombarded by a photon beam from a smartbeam laser at a 

wavelength of 355 nanometers (nm) (Chait and Kent, 1992, Kicman et al., 2006). 

Upon entering the gas phase a voltage is applied between a grid or ring 

electrode and the inlet orifice of the MS, accelerating the ions into the mass 

analyser, as is shown on Figure 1-3.  
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Figure 1-3: The route through which analyte molecules are ionised during 
MALDI. Shown above is a diagrammatic representation of how an analyte 
molecule is ionised during MALDI. A laser shot is fired at the spotted analyte 
sample, ionising any matrix molecules in its path. Subsequently an ionised matrix 
molecule can transfer a proton to the analyte molecule, enabling its 
acceleration into the ToF tube. 
 

The advantages of MALDI include its large working mass range (capable of 

ionising molecules of between 100 Da and 300 kDa), enabling the rapid ionisation 

of both peptides and intact proteins. Furthermore, in terms of data 

interpretation, the predominance of singly charged ions lends itself to a 

relatively straightforward data interpretation (Hillenkamp and Karas, 2000). 

 

MALDI based ionisation is generally coupled with ToF based MS, due to the large 

working mass range of the ToF detector, and the fact that the pulsed nature of 

MALDI ionisation yields spatially distinct packets of ions suited for ToF based 

detection (Brown and Lennon, 1995a). 
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1.5.1.2 Electrospray Ionisation 

The development of ESI can be traced back to Dole and his co-workers, who in 

the late 1960s, successfully introduced a polystyrene polymer into the gas phase 

as a charged species (Dole et al., 1968). Unlike MALDI based ionisation where the 

exact mechanism of proton transfer has yet to be described, ESI based ionisation 

is seen as being simplistic in nature. The protein species to be analysed, 

dissolved in a polar solvent, are sprayed from the tip of a highly charged needle 

(3–4 kilovolts (kV)) towards the inlet of the MS (Fenn et al., 1989, Kicman et al., 

2006, Falk et al., 2006). These highly charged droplets are subjected to a warm 

flow of nitrogen, vaporising the solvent, and in doing so increasing the repulsive 

forces encountered between the ions on the surface of the shrinking droplet. 

Eventually these repulsive forces exceed the surface tension of the solvent (the 

Rayleigh limit), ripping the droplet apart (Coulombic explosion), a process which 

is repeated until the intact ions are desorbed into the gas phase (Fenn et al., 

1989, Jonsson, 2001), as shown on Figure 1-4. 
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Figure 1-4: The route through which an analyte molecule is ionised during ESI.  
Upon the analyte molecules being eluted from the LC they are carried to the ESI 
needle before being sprayed towards the orifice of the MS through applying a 
voltage between the needle and the orifice. As the solvent droplets move 
towards the orifice they are dried due to the warm flow of a sheath gas 
(generally nitrogen). As the droplets shrink the surface charge grows, leading to 
a coulombic explosion, splitting the solvent droplet into several smaller 
droplets, a process which repeats until only the intact analyte ions remain. 
 

Despite the presence of multiply charged ion species adding to the complexity of 

the data to be analysed (first requiring the charge state of each ion to be 

determined), these multiply charged species are one of the big advantage of ESI. 

In carrying multiple ions, the m/z of the target biomolecule is lowered, enabling 

its detection, and thus analysis, on a greater range of mass spectrometers 

(Bakhtiar and Tse, 2000). Furthermore, as the target biomolecule leaves the ESI 

needle in the liquid phase, RP-LC can be coupled directly to a mass 

spectrometer, without the need for manual sample manipulation and plate 

loading, as would be the case with LC-MALDI. 
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Due to the constant beam of ions created during ESI, this ion source can be 

coupled with the vast majority of modern mass spectrometers, including 

quadrupoles, orbitraps and fourier transform-ion cyclotron resonance (FT-ICR) 

based mass spectrometers. Indeed ESI can even be coupled with a ToF based 

mass analyser, though this particular setup will require the installation of an ion 

pusher electrode, pulsing well defined ion packets into the ToF tube (Kicman et 

al., 2006, Loboda and Chernushevich, 2009). 

 

1.5.2 Mass spectrometers 

Single stage mass spectrometers can be seen to perform two distinct tasks; to 

filter or separate the ions which enter the instrument, and to determine the m/z 

of those ions which are permitted to the detector. Indeed, while the 

development of ESI and MALDI in the late 1980s enabled the ionisation of large 

biomolecules, the data which could be obtained based upon the existing range of 

single stage mass spectrometers was limited (El-Aneed et al., 2009). It was thus 

the demand for peptide and protein sequence data, and the ability to identify 

PTM sites which led to the development of a new range of mass analyzers and 

complex multistage instruments, designed to tackle the challenges of the 

proteome (Domon and Aebersold, 2006). 

 

Described over the following few pages are some of the most common types of 

mass analysers and modern instrument setups.  

 

1.5.2.1 Time-of-Flight Mass Spectrometry 

Upon the target biomolecule being ionised in ToF based MS (most commonly 

through the application of MALDI); a high voltage is applied between either a 

grid or ring electrode and the inlet of the ToF tube, accelerating the ion plume 

towards the detector. As each ion is accelerated with the same force, the same 

kinetic energy will be imparted. Each ion should therefore move towards the 

detector at a different velocity based on its m/z (Merchant and Weinberger, 

2000, Khalsa-Moyers and McDonald, 2006). In practice, however, the ionisation 
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and immediate acceleration of the ion packet into the ToF tube can lead to each 

ion possessing one of a range of kinetic energies, broadening the final peak 

detected and reducing the resolution achieved (El-Aneed et al., 2009). In an 

attempt to correct for this inconsistency, two improvements have been 

introduced to modern ToF based mass spectrometers. The first, termed delayed 

extraction, causes the sample to be ionised under only a weak electrical field 

(Vestal et al., 1995). Under the influence of this weak field, each ion moves 

slowly towards the ToF tube, based on its initial velocity, later being subjected 

to high voltage based acceleration. In delaying the high energy acceleration step 

by approximately 100 nanoseconds (ns), the lower velocity ions are affected 

more by the acceleration than those ions present at a higher velocity, enabling 

the lower velocity ions to “catch up” (Vestal et al., 1995). The second 

improvement introduced to ToF based mass spectrometers has been the 

application of an electrostatic ion mirror, or reflectron, which acts to change 

the flight path of the ions towards an offset detector (El-Aneed et al., 2009, 

Mamyrin et al., 1973). In addition to increasing the flight path of the ions, 

yielding an increase in resolution (Clauser et al., 1999), the reflectron is also 

penetrated further by higher kinetic energy ions than low, helping to better 

focus the ions based on their m/z. 

 

ToF based mass analysers have several advantages over quadrupole based mass 

analysers. Firstly, as a result of the ToF based mass spectrometer separating the 

ions rather than filtering, each ion introduced into the MS will reach the 

detector. Furthermore, ToF based mass analysers have a higher resolution, 

accuracy and mass range than quadrupoles. By way of an example, when a ToF 

based mass detector is coupled with a MALDI source, the upper mass range will 

be limited to approximately 300 kDa (Hillenkamp and Karas, 1990). When the 

same ToF based mass spectrometer is coupled with an ESI source however, the 

upper mass limit can extend into the MDa (mega Daltons) (El-Aneed et al., 

2009). 

 

In addition to simply determining the accurate mass of an ion, MALDI-ToF based 

instrumentation can also be used to probe the structure of a biomolecule based 
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on one of several techniques. One such technique, termed post-source decay 

(Purcell and Gorman, 2001), fragments the target ions in one of two ways after 

the ions have been subjected to high voltage acceleration (Suckau et al., 2003). 

Fragmentation is achieved, firstly, through colliding the analyte ions with the 

ionised matrix while the ions are being “ripped” from the ion plume into the ToF 

tube, in addition to which, while transversing the ToF tube, vibrationally excited 

metastable ions can decay, yielding a-, b- and y- ions (Kaufmann et al., 1994). 

 

The names of these various fragment ions denotes the position at which the 

peptide backbone is fragmented, based upon Roepstorff–Fohlmann–Biemann 

nomenclature (Roepstorff and Fohlman, 1984). In brief, the terms an, bn and yn 

indicate both the distance at which the fragmentation occurred from the N-

terminal (a/b/y), and the number of incorporated amino acids (n). While the 

terms zn, yn and xn are used to indicate both the distance the fragmentation 

occurred from the C-terminal, and the number of incorporated amino acid 

residues (Steen and Mann, 2004). 

 

An alternative MALDI-ToF based fragmentation method can also be sought in in-

source decay (Brown and Lennon, 1995b), which differs from post-source decay 

in that the fragmentation occurs prior to the application of the high voltage 

acceleration. In in-source decay, a combination of laser induced fragmentation 

and rapid metastable decay result in the production of both c- and z-ions 

(Köcher et al., 2004). 

 

Finally, tandem ToF based instruments (ToF/ToF) are also capable of performing 

collision induced dissociation (CID) (Medzihradszky et al., 1999), fragmenting the 

analyte across the peptide bond so as to yield both b- and y-ions, immonium 

fragment ions and internal d- and w-fragment ions (Domon and Aebersold, 2006). 

Unlike both post-source decay and in-source decay, CID involves accelerating the 

isolated ions and colliding them with inert gas molecules (generally nitrogen) 

(Shukla and Futrell, 2000). 
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In terms of modern hybrid ToF based instrument setups, both ToF/ToF and Q-q-

ToF instruments exist (El-Aneed et al., 2009, Domon and Aebersold, 2006). 

Through combining two ToF based instruments, the first ToF tube can be applied 

solely to the separation of the ion plume, while a Bradbury–Nielsen velocity 

filter is placed between the two ToF stages, so as to permit only a single ion of 

interest into the second ToF tube. The second ToF tube can then be utilised to 

perform both CID, and to separate the product ions generated, thereby providing 

true MS/MS capability. In terms of applications, ToF/ToF based instruments are 

used regularly in quantitative proteomics, based upon the application of LC-

MALDI, in addition to being utilised in 2DGE based proteomics. As has previously 

been discussed (Section 1.4), the possession of MS/MS fragmentation data can 

offer a vast improvement in the precision in the identity assigned to a protein, 

compared to a PMF (Khalsa-Moyers and McDonald, 2006, Mann and Wilm, 1994). 

 

ToF based MS/MS may also be achieved through the use of ESI. In a typical Q-ToF 

based instrument, the first quadrupole will be tasked with filtering the ion 

beam, permitting only a target m/z to the second quadrupole. At this stage the 

second quadrupole can be operated as a collision cell, fragmenting the target 

ions and directing the product ions into the ToF based mass analyser (El-Aneed 

et al., 2009). In addition to utilising ESI based ionisation, and thus having an 

increased mass range when compared to a standard MALDI-ToF, Q-ToF based 

instruments also benefit from the high resolving power of the ToF mass analyser, 

making them ideal for the study of PTMs (Domon and Aebersold, 2006). 

 

1.5.2.2 Quadrupole Mass Spectrometry 

The quadrupole based mass analyzer was first described by Wolfgang in 1953 (El-

Aneed et al., 2009, Paul, 1990) and consists of two sets of linked parallel 

circular metal rods, through which a cycled direct-current (DC) voltage is 

applied. Further to the imparted DC voltage, an oscillating radio-frequency (RF) 

is also applied to each rod; the combination of which enables the manipulation 

of the ion beam in such a way as to either stabilise or destabilise certain m/z’s 

passing through the quadrupole, as is shown on Figure 1-5. Indeed, by increasing 
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the DC voltage applied to the quadrupole, the transmission window can be 

shrunk so as to permit only a specific m/z range to reach the detector 

(operationally termed Q) (Domon and Aebersold, 2006). It is therefore possible 

to utilise a quadrupole to either scan through a specified mass range, or to 

permit only a specific m/z to constantly reach the detector (Khalsa-Moyers and 

McDonald, 2006). The opposite can also be achieved, however, decreasing the 

DC voltage applied to the quadrupole (operationally termed RF only) results in a 

much wider beam of ions being permitted to reach the detector (Henchman and 

Steel, 1998). By introduction of a stream of inert gas to a RF only quadrupole, 

the instrument can be operated as a CID based collision cell (operationally 

termed q). Finally, the quadrupole may also function as a linear ion trap (LIT) 

(Khalsa-Moyers and McDonald, 2006). Through applying a static DC current to 

each end of the four rods, the stream of ions can be trapped in the quadrupole’s 

oscillating RF field. Slowly increasing the DC voltage of the quadrupole gradually 

releases the ions based on their m/z (Hager, 2002).  
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Figure 1-5: A diagram depicting the workings of a quadrupole based MS.  The 
above diagram depicts the workings of a quadrupole based MS, where the ion 
beam travels through a skimmer and between four metal rods imparted with 
both an RF frequency and an oscillating DC voltage. Through modifying both the 
DC and RF parameters it is possible to permit only a single m/z range to the 
detector, to scan through a range of m/z’s or to stabilise all ions entering the 
MS. Those ions which do not resonate at a frequency similar to that of the 
quadrupole will be destabilised, striking one of the rods, and in doing so 
becoming neutralised.  
 

While single stage quadrupole based MS are relatively cheap, small, robust and 

easy to use, they have limited applications in the field of proteomics (El-Aneed 

et al., 2009). Quadrupole based mass spectrometers are therefore often found in 

tandem, with the most common instrument setups being the triple quadrupole 

based MS (Q-q-LIT), and the Q-q-ToF based MS (Domon and Aebersold, 2006).  

 

In performing a general MS/MS based analysis on a triple quadrupole MS, the first 

two quadrupole mass filters operate in much the same way as they would in a Q-

ToF based instrument, where the first quadrupole is used to filter the ion beam, 

while the second acts as a collision cell. While the final MS stage of the Q-ToF 
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based MS involves each Q2 fragment ion being separated within the ToF tube 

based on its m/z, enabling a high resolution analysis, the final mass filter in a 

triple quadrupole based instrument can be set to either trap and detect each 

fragment ion at a low resolution, or to permit only a single ion of interest to the 

detector. Indeed, it is this versatility, and the variety of scan modes offered by 

triple quadrupole mass spectrometers which has resulted in them being one of 

the most abundant MS in the world (Wang and Stout, 2007). 

 

One such scan mode, termed selected reaction monitoring, or multiple reaction 

monitoring (MRM) when analysing more than one transition, utilises both 

quadrupoles one and three as mass filters, permitting only a pre-defined parent 

ion (Q1) and pre-defined product ion (Q3) to react the detector, while 

quadrupole two is utilised as a collision cell. Through utilising this configuration 

it is possible to perform a highly selective analysis on a target analyte, or 

analytes, mapping both retention time (assuming LC is utilised) and the signal 

intensity detected over the duration of a run (Lange et al., 2008). As this MS 

acquisition method filters all but those ions which share both a similar parent 

and product ion m/z, the MRM spectrum contains very little noise, this type of 

analysis is therefore ideal for the detection of low concentration biomarkers, 

present within complex samples, as is commonly required in proteomics. 

 

1.5.2.3 Fourier Transform-ion Cyclotron Resonance Mass 

Spectrometry 

FT-ICR was first conducted by Comisarow and Marshall in 1974 (Comisarow and 

Marshall, 1974), who in taking inspiration from the recent description of fourier 

transform-nuclear magnetic resonance, applied the same fast fourier transform 

calculation to ion cyclotron resonance spectrometry, and in doing so reducing 

the time taken to complete an analysis by several orders of magnitude. 

 

An FT-ICR functions by trapping an ion packet in a Penning trap, formed by six 

metal plates in a box configuration, placed within a super-conducting magnet 

under a high vacuum, as is shown on Figure 1-6. In addition to the strong 
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magnetic field acting to stabilise the ion packet in two of three dimensions, two 

opposing metal plates running perpendicular to the IRC cell (termed trapping 

plates) are activated upon the ion packet entering the cell, forming an 

electrostatic field which traps the ions in the remaining dimension (Steen and 

Mann, 2004).  

 

 
Figure 1-6: The components contained within an FT-ICR MS.  Depicted above 
are the basic components contained within an FT-IRC based MS, including two 
trapping plates (marked in blue), preventing the ion packet from escaping the 
IRC cell, two excitation plates (marked in orange), capable of amplifying the 
ions oscillation path, and two detector plates (marked in green), capable of 
detecting the ions m/z based on a change in the alternating current.  
 

The technique by which the m/z of the ions is measured in FT-ICR differs from 

that of both ToF based mass spectrometers and quadrupole based instruments, 

in that, the mass is determined indirectly as a measure of the frequency at 

which the ions oscillate in proximity to the two opposing detection plates within 

a magnetic field (Khalsa-Moyers and McDonald, 2006). In order for a detection to 

be made, the ions must thus be cycled within the IRC cell. This is achieved 
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through two distinct actions; firstly, when the ion packet is being impelled into 

the ICR cell, through the application of a weak DC voltage, the ions are 

subjected to a rapid DC pulse, imparting an initial gyrating motion. Secondly, 

the radius at which the ions are oscillating is amplified through the application 

of an RF voltage, applied to the two remaining opposing metal plates (termed RF 

plates). As the ions move both towards and away from the pair of detection 

plates, the m/z is measured in the form of an alternating current. When plotted, 

this current constitutes a sine wave, with the amplitude being proportional to 

the number of ions detected and the wavelength equal to the frequency at 

which ions are oscillating. Finally the data is deconvoluted through the 

application of the fast fourier transform, so as to yield a mass spectrum. 

 

FT-ICR has been coupled with both MALDI (Cornett et al., 2008) and ESI (Irungu 

et al., 2008), and can be found in tandem with both a single LIT, or indeed with 

triple quadrupole mass filters, enabling both ultra-high resolution and high mass 

accuracy MS/MS and MSn scanning (Domon and Aebersold, 2006). Both top-down 

and bottom-up based proteomics have been conducted through the FT-ICR 

(Dodds et al., 2007). It should be noted, however, that as the ions are trapped 

within the ICR cell at a low voltage, the kinetic energy of the ions must be kept 

to a minimum. This has led to the description of several new fragmentation 

techniques; including ECD (Sleno and Volmer, 2004), infrared multiphoton 

dissociation (IRMPD) (Little et al., 1994), sustained off-resonance irradiation 

collision-induced dissociation (SORI-CID) (Herrmann et al., 2005), and a 

combination of the latter, combination of infrared and collisional activation 

(Dodds et al., 2007). 

 

Of these new fragmentation techniques both IRMPD and SORI-CID are considered 

“gentle” ion activation techniques, yielding fragment ions from the application 

of low-energy processes (Dodds et al., 2007). In regard to SORI-CID, the ions 

oscillating within the IRC cell are excited by the application of an “off-

resonance” RF pulse, decelerating the ions prior to re-acceleration in the 

presence of a low-mass collision gas (Herrmann et al., 2005). IRMPD, meanwhile, 

involves the firing an infrared laser pulse into the IRC cell, slowly increasing the 
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energy of the ions until a bond is broken (Little et al., 1994). Both SORI-CID and 

IRMPD, however, have been found to fragment the biomolecules only at the 

sites, which require the lowest amount of energy. This has not therefore proven 

particularly useful for the fragmentation of singly protonated tryptic peptides, 

such as those obtained during MALDI. Both SORI-CID and IRMPD have therefore 

been combined to yield more informative fragmentation spectra than could be 

achieved using either IRMPD or SORI-CID alone (Dodds et al., 2007). 

 

Standing as an alternative to both IRMPD and SORI-CID, each of which involve the 

excitation of an ion up until the point of fragmentation, ECD involves colliding 

an ionised biomolecule (which must possess multiple positive charges) with an 

electron, neutralising a single positive charge, and in doing so extensively 

cleaving the backbone of the biomolecule (Sleno and Volmer, 2004). In practice 

ECD is achieved by heating a metallic filament within the IRC cell so as to 

produce free electrons, which prior to collision, will oscillate in a direction 

opposite to those ions possessing a positive charge (Khalsa-Moyers and McDonald, 

2006). As the target ion is stripped of a positive charge through ECD, it is 

applicable only to multiply charged ESI based ions. 

 

Due to the fact that FT-ICR instruments acquire each spectrum as a frequency, 

and that a frequency may be measured with extreme accuracy, FT-ICR 

instruments offer a resolution of greater than 100,000 (the m/z value divided by 

the peak width at the half the peak height) (Steen and Mann, 2004). FT-ICR 

instruments are, however, expensive and bulky (requiring a large 

superconducting magnet and liquid helium and nitrogen storage), and thus have 

so far been limited to expert-only laboratories (Khalsa-Moyers and McDonald, 

2006). 

 

1.5.2.4 Orbitrap Mass Spectrometry 

The orbitrap has been hailed as the first truly novel mass spectrometer to be 

introduced in over 25 years (Domon and Aebersold, 2006), with the term orbitrap 

describing how an ion rotates around an electrode with a harmonic oscillation 
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pattern indicative of its m/z (Makarov, 2000). The way in which a mass spectrum 

is generated on the orbitrap is similar to that of the FT-ICR MS, in that, upon a 

change in current being detected, the recorded data is subjected to a FFT so as 

to produce the final mass spectrum. As a result of this broadband method of ion 

detection, and the application of a fast fourier transform, the orbitrap boasts a 

resolution and mass accuracy similar to that of the FT-ICR (Makarov, 2000), 

without the burden of an expensive superconducting magnet. 

 

The orbitrap itself consists of a split barrel-like outer electrode and a spindle-

like centre axial electrode, each of which are held at constant DC voltage so as 

to form an electrostatic ion trap, as is shown on Figure 1-7. As the DC voltage 

within the trap is constant and no ion excitation applied, the ions are instead 

introduced to the trap at a position offset from the equator of the barrel, with 

each ion eventually falling into a radial oscillation with a frequency proportional 

to its m/z (Makarov and Scigelova, 2004). 
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Figure 1-7: The components contained within a hybrid quadrupole / Orbitrap 
MS. Depicted above are the main components utilised within a hybrid 
quadrupole orbitrap instrument, including two quadrupoles, enabling the 
scanning, trapping or fragmentation of the ion beam, a C-trap, acting as an LIT 
and an orbitrap based detector, measuring the m/z of each ion based on its 
oscillation path. 
 

Both MALDI (Luo et al., 2010), and ESI ion sources (Hu et al., 2005) have been 

applied to orbitrap based mass spectrometry, and the orbitrap is generally 

utilised in tandem with several quadrupole based mass filters. In addition to 

each quadrupole enabling a specific m/z to be scanned, trapped or stabilised, 

each distinct instrument stage also enables the atmospheric pressure to be 

further reduced (Makarov and Scigelova, 2004).  

 

The final component of many orbitrap instrument setups, prior to the orbitrap 

itself, is a unique curved LIT, termed a “C-trap”. By trapping the ion beam 

before it enters the detector, the ions can be introduced into the orbitrap in a 

pulsed fashion, similar to that required for both ToF and FT-ICR based mass 

spectrometry. In addition to trapping the ion stream, the C-trap can also be 
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utilised as a collision cell, where-upon raising the RF voltage of the quadrupole, 

can be seen to result in the “triple quadrupole-like” fragmentation of the 

trapped ions (Olsen et al., 2007). 

 

1.6 Protein Quantitation 

Up until the last decade, the field of proteomics was largely seen as a 

qualitative discipline, with a typical proteomic experiment consisting of a tissue 

or culture of interest being digested, assessed, and a list of proteins generated, 

without any interest having being paid to their abundance or cellular distribution 

(Baak et al., 2005). Indeed, this was in stark contrast to the field of genomics, 

which at the time had widely adopted quantitative strategies for the analysis of 

gene expression through the use of both microarrays and quantitative 

polymerase chain reaction (PCR) (qPCR) (Schulze and Usadel, 2010, Regnier and 

Julka, 2006). As has previously been discussed, however, the level of mRNA 

detected during such an analysis does not necessarily reflect the number of 

proteins within a cell, which, ultimately are the workhorses, driving the 

enzymatic reactions required to sustain life. 

 

Based upon the success of both qualitative proteomics and quantitative 

genomics, the proteomics community soon began to realise that similar 

comparative protein based analyses could be achieved (Regnier and Julka, 

2006), enabling the comparison of disturbed and undisturbed proteomes, cells 

grown in different media, diseased cells compared with healthy, and indeed the 

tracking of a disease’s progression.  

 

Having the capacity to visualise over 10,000 distinct protein spots, equating to 

over 1000 unique proteins, 2DGE was applied quite early on in the field of 

comparative proteomics (Schulze and Usadel, 2010, O’Farrell, 1975). Problems, 

however, were encountered due to both inter-gel variability, and the chemistry 

through which a variety of protein stains and dyes bind each biomolecule, 

preventing both inter- and intra-gel spot quantitation (Marouga et al., 2005). 

High-confidence 2DGE based comparative proteomics was thus delayed until 
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1997, when DIGE was first described. This features two differentially labelled 

samples being combined and co-analysed via 2DGE (M. Unlu et al., 1997). 

  

While comparative proteomics was also eventually conducted via LC-MS, its 

application was delayed due to the variable ionisation efficiency detected for a 

range of biomolecules, in addition to which varying sample components and 

hardware performance at the time of use can limit the reproducibility of this 

technique (Schulze and Usadel, 2010). So as to better explain, when a protein is 

proteolytically digested, an equal number of each proteolytic peptide should be 

liberated, the signal intensity achieved for each peptide during an MS scan can, 

however, still vary by several orders of magnitude, assuming each peptide is 

detected (Steen and Mann, 2004). This variation results from several 

independent factors, including the accessibility of the digest site to the 

protease, the solubility of the peptide (having been dried post-extraction) and 

the efficiency with which each peptide ionises within the MS source. It was thus 

realised that the only way in which a quantitative proteomic comparison could 

be made via MS would be if one of the samples were to be labelled with a stable 

isotope (13C, 15N, 2H or 18O), and both samples co-analysed via LC-MS (Vaudel et 

al., 2010). Under such conditions each biomolecule should elute from the LC at 

the same time, both molecules should ionise under the same conditions, and 

each peptide should thus be directly comparable based on a slightly differing 

m/z (Schulze and Usadel, 2010). 

 

Discussed over the following few pages are some of the most commonly used 

quantitative proteomic techniques, based on both 2DGE and LC-MS. 

 

1.6.1 Difference gel Electrophoresis 

Due to the varying conditions under which a poly-acrylamide gel is cast, the 

slightly varying components within each sample, and the way in which each 

sample traverses the 2D gel, 2DGE has been documented to contain a great deal 

of variation, making it unsuitable for use in comparative proteomics. In an effort 

to overcome these problems, Minden and co-workers in 1997 devised a technique 
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termed DIGE, which features the use of two molecular weight and pI-matched 

fluorescent cyanine dyes (Cy3, and Cy5), each covalently labelling approximately 

3% of the Lys residues within a given sample (minimal labelling). Upon 

completion of labelling, each sample is combined and co-separated on a single 

2D SDS-PAGE gel, with the samples being compared through the application of 

fluorescent imaging, with a sensitivity equal to that of silver staining (~1 ng) (M. 

Unlu et al., 1997), as depicted on Figure 1-8. A third cyanine dye (Cy2) can also 

be employed to label an additional pooled sample, so as to act as an internal 

standard, accounting for any variation in labelling efficiency (Lilley and 

Friedman, 2004).  

 

 
Figure 1-8: The workflow through which two proteomes can be compared 
based on DIGE.  Depicted above is the workflow used in a DIGE based proteomic 
analysis, including the growth, preparation and labelling of the two samples 
(with Cy3 and Cy5), their mixing, and separation based on 2DGE. Upon the 
samples being separated each is then compared based on a differing excitation 
and emission wavelength, enabling the protein expression patterns to be 
assessed. 
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Despite minimal labelling being applied to this technique with the best of 

intentions, those being to label only one Lys residue per protein (preventing 

multiple gel spots per protein), both to reduce the volume of dye required per 

analysis and to prevent sample solubility being compromised, the minimal 

labelling strategy actually became the greatest failing of this technique (Wu et 

al., 2006, M. Unlu et al., 1997). While a slight alteration in protein mobility 

within the second dimension has indeed been detected in labelled samples, the 

minimal labelling strategy labels only a small percentage of the total protein 

content. This becomes a particular problem when a protein identification is 

required for a specific protein spot as the location of the majority of the protein 

and the visualised protein spot do not match up (termed dual spot migration) 

(Tonge et al., 2001). 

 

In an attempt to improve upon the minimal labelling strategy, a variation of 

DIGE was described by Shaw and co-workers in 2003 which aimed to completely 

label a less prevalent amino acid, Cys, which accounts for just 2.47% of amino 

acids across eight random proteins (in comparison to the 10.1% accounted for by 

Lys) (Shaw et al., 2003). In addition to preventing dual spot migration, the 

improved fluorophores used in this reaction have been documented so as to offer 

the technique a 100- to 200-fold increase in sensitivity.  

 

Several disadvantages have been noted, however, in the application of 

saturation DIGE. Firstly, the electrophoretic mobility of the labelled proteins 

does appear to be significantly reduced. This was one of the main reasons the 

minimal labelling strategy was initially employed (Kondo and Hirohashi, 2007). It 

should also be noted that any given spot on a 2D gel can contain more than one 

protein, making quantification difficult (Zhu et al., 2010). Finally, it has been 

noted that approximately 5% of the proteins within the human proteome do not 

contain a Cys residue, further restricting the number of proteins to which 2DGE 

can be applied. 
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1.6.2 Stable Isotope Labelling by Amino Acids in Cell Culture 

As was discussed in Section 1.6., co-eluting sample components and instrument 

performance at the time of use can affect the reproducibility of the ion intensity 

achieved for any given biomolecule accessed via MS. Indeed the only way in 

which a biomolecule can be accurately compared between samples or 

instruments based upon the use of MS is through the introduction of one of a 

number of stable isotopes, including 13C, 15N, 2H or 18O. Several technical 

limitations do exist with the utilisation of these isotopes within comparative 

proteomics, including the difficulty in substituting atoms within a protein (13C 

and 15N). While hydrogen can be readily substituted by deuterium, this reaction 

has been noted to cause a small, but significant shift in retention time during 

RP-LC based separation (Bantscheff et al., 2007).  

 

In an attempt to overcome these problems both Lahm and Langen (Lahm and 

Langen, 2000), and Chait and co-workers (Oda et al., 1999), utilised 15N-

substituted media in the growth of a range of autotrophic microorganisms so as 

to assess any proteomic changes occurring during different states of growth. 

While the application of this technique appears to have been successful, the 

degree of 15N incorporated was not necessarily complete. Additionally, as each 

peptide contained a varying number of nitrogen atoms, the subsequent mass 

shift was often hard to predict (Ong et al., 2002). Lastly, while the production of 

the 15N media for autotrophic organisms proved costly, its application in higher 

organisms would certainly prove even more expensive, restricting the use of this 

technique (Ong et al., 2002). 

 

In an attempt to avoid the pitfalls of 15N labelling, Ong and co-workers in 2002 

described a comparative proteomic technique termed stable isotope labelling by 

amino acids in cell culture (SILAC), which utilised a growth media containing two 
13C labelled essential amino acids (Arg and Lys) so as to introduce a small mass 

shift between each protein suitable for detection on a MS (Ong et al., 2002), as 

is depicted on Figure 1-9. By selecting to label both Lys and Arg, and assuming 

the use of trypsin, each proteolytic peptide should in theory be labelled only 

once, ensuring a constant mass shift and enabling a rapid analysis (Vaudel et al., 
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2010). Indeed, one of the big advantages of SILAC is that each sample is 

combined at the cellular level, prior to the application of any biochemical 

processing or the variability of MS. In theory this should help to ensure that any 

sample losses encountered should affect both samples equally (Unwin and 

Whetton, 2007).  

 

 
Figure 1-9: The stages involved in a SILAC based proteomic analysis.  Depicted 
above are the stages involved in a SILAC based proteomic comparison of two 
samples. While one sample is grown on a control (light) media, the second 
sample is grown on a media containing both 13C labelled Arg and Lys (heavy). 
Upon cell lysis the samples are combined, digested, separated via LC and 
analysed via MS. Due to the small MW difference between the two samples, 
introduced by the labelled amino acids, the two peptides can be differentiated 
based on their parent ion m/z, and a quantitative comparison made. 
 

In practice, however, SILAC has been shown to require some 6-8 passages in 

modified media to achieve a labelling efficiency of just 90% (Ong et al., 2002). 

Furthermore, it has been noted that an excess of Arg within the labelled media 

can lead to the production of labelled Pro, a process which further complicates 

the data analysis (Schulze and Usadel, 2010). Finally, only a limited number of 



55 

 

cell lines are suited to growth on dialyzed serum, limiting the application of 

SILAC (Fenselau, 2007). 

 

1.6.3 18O Incorporation 

Chemical-based labelling techniques can also be applied to quantitative 

proteomics, achieving the same mass shifts associated with cells grown on heavy 

media but in a much shorter time frame and at a fraction of the cost. One such 

technique was described by Yao and co-workers in 2001 and involves the tryptic 

digestion of a protein sample in the presence of either H2O or H2
18O. As the 

cleavage of a protein is a form of hydrolysis, then peptides/proteins digested in 

the H2
18O will gain a 4 Da increase in mass (a 2 Da increase per 18O, two of which 

are incorporated), while those digested in the presence of H2O will not, enabling 

their differentiation and relative quantification via MS (Yao et al., 2001), as is 

shown on Figure 1-10. 
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Figure 1-10: The principle behind 18O labelling and comparative protein 
quantitation.  Depicted above is the workflow utilised during an 18O/16O 
comparative protein quantitative analysis, including the growth of both 
organisms on a normal media, their digestion in the presence of either H2

16O or 
H2

18O, their mixing and their analysis via LC-MS. Because of the 4 Da mass shifts 
introduced to each peptide, the molecules can be differentiated on the mass 
spectrum and quantified. 
 

There are many advantages conferred by the use of 18O labelling in comparison 

to a media based quantitative method, including the fast reaction time, the 

simplicity of the technique and its low cost. Perhaps one of the biggest 

advantages is that, in theory, the technique works equally as well in a complex 

pre-fractionated protein sample as it would with a single purified protein, giving 

it a much greater appeal in the field of proteomics (Vaudel et al., 2010). 

  

Many disadvantages have however been reported in the application of 18O 

labelling; the most worrying of which are the description of both incomplete 

labelling, and the occurrence of back exchange (reintroducing 16O back into a 

previously labelled sample). Furthermore, as 18O labelling yields only a 4 Da 
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mass increase, peak separation can be incomplete (Makarov and Scigelova, 

2004).  

 

While the 18O labelling reaction is relatively efficient, when a protein is 

digested, one 16O atom is released into the digestion buffer for every two 18O 

atoms incorporated, which over time can build up in the digestion buffer 

reducing the efficiency of the reaction. Upon the completion of labelling, the 

presence of either residual enzyme activity in water, or acid/base-catalysis can 

cause the bound 18O to be replaced by an 16O molecule, thereby complicating 

data analysis through the introduction of overlapping (+2 Da) peaks (Schnölzer et 

al., 1996). 

 

1.6.4 Isotope-Coded Affinity Tags 

A second chemical-based labelling technique designed for the relative 

quantification of peptides, which yields an increase in mass (between samples) 

greater than that obtained through the use of 18O labelling, was first described 

by Gygi and co-workers in 1999, termed isotope-coded affinity tags (ICAT) (Gygi 

et al., 1999). In brief, this technique features the differential labelling of two 

protein samples (with either a heavy or light ICAT tag), their co-digestion, avidin 

based affinity purification, separation and analysis based upon LC-MS/MS (Patton 

et al., 2002).  

 

The ICAT tags employed during this technique can be seen to be composed of 

three specific regions; a thiol specific (Cys binding) reactive group, a polyether 

linker region (containing either eight deuterium (heavy) or hydrogen (light) 

atoms), and a biotin affinity tag (enabling avidin based affinity chromatography) 

(Gygi et al., 1999).  

 

This technique offers several advantages over the use of 18O labelling, the first 

of which is the 8 Da mass difference imparted between the two labelled 

samples, double that obtained through the use of 18O labelling (Gygi et al., 1999, 

Yao et al., 2001). This is particularly important during proteomics as it better 
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enables the differentiation and quantification of multiply charged peptide 

species, the peaks from which may otherwise become overlapped. Furthermore, 

as affinity chromatography is utilised during the implementation of ICAT, the 

final sample should contain approximately 10-fold fewer peptides than it may 

otherwise have (Ong et al., 2002, Patton et al., 2002), increasing the precision 

of the quantification through increasing the protein sequence coverages 

achieved (by ensuring that only those peptides which are labelled will be 

selected for MS/MS). 

 

There are however several disadvantages to the utilisation of ICAT over 18O 

labelling, for example, not every protein contains a Cys residue. Indeed it has 

been documented that more than 5% of human proteins do not contain a Cys 

residue, a figure which increases when peptides are considered (Karlin et al., 

1991). In addition, as the heavy ICAT tag contains deuterium, the RPLC based 

retention time differs slightly between the heavy and light labelled peptides, 

introducing a potential source of error as a result of non-uniform peptide 

ionisation (varying retention times may result in different co-eluting sample 

components, each competing for ionisation) (Zhang et al., 2001, Patton et al., 

2002). Finally, the ICAT tags have been reported to interfere with the 

fragmentation spectra, complicating data interpretation (Haynes and Yates III, 

2000, Patton et al., 2002).  

 

Recently an attempt has been made to improve upon the first generation of ICAT 

tags, firstly through making the biotin moiety acid-labile, thereby reducing the 

size of the ICAT tag post-purification (with the aim of reducing MS/MS 

interference). Furthermore, 13C may be utilised instead of deuterium, which 

should enable peptide co-elute, enabling a more accurate relative quantitation 

(Yi et al., 2005).  

 

1.6.5 Tandem Mass Tags 

While SILAC, ICAT and 18O labelling, among countless other techniques, rely upon 

a peak area comparison being made between the parent ions of both a labelled 



59 

 

and an unlabelled peptide, it is worth considering that this form of analysis can 

in some cases become a hindrance. As was discussed in Section 1.3.2, the 

proteome of an organism at any given point in time will contain a vast number of 

proteins, which when subjected to a bottom-up based proteomic analysis, such 

as SILAC or 18O labelling, will yield an overwhelming number of proteolytic 

peptides. It is then worth considering that during a comparative proteomic 

analysis that at least two proteomes will be assessed, and therefore two parent 

ions will be present for each peptide, not to mention those which may result 

from the presence of PTMs and indeed the presence of isotopic peaks. It is 

therefore understandable that when it comes to analysing the data gathered 

during a so-called MS1 experiment, that peaks can become merged, preventing 

an accurate peak area from being obtained (Vaudel et al., 2010). 

 

In an attempt to overcome these problems, while further reducing the number 

of peptides present in a comparative proteomic analysis, a technique was 

described by Thompson and co-workers in 2003, termed tandem mass tags (TMT) 

(Thompson et al., 2003), which, in brief, features the harvesting, purification 

and digestion of two individual samples, at which point, each is differentially 

labelled with one of two isobaric tags. Each sample can then be pooled and 

analysed via LC-MS/MS, utilising an IDA scan, so as to fragment only those MS 

peaks which match a list of pre-defined selection criteria (Thompson et al., 

2003). As the TMT technique features the use of isobaric tags, only a single MS 

peak should be present for each peptide. A relative quantification is performed 

based upon the MS/MS spectra obtained, comparing the peak areas detected for 

each reporter ion (Ross et al., 2004). 

 

The duplex TMT tags utilised in this reaction can be seen to be composed of 

three distinct regions; a reporter group (with a mass of either 126.1 or 127.1 

Da), a reactive group (so as to enable the tag to be bound to a primary amine 

(both on the N-terminal of each peptide in addition to the side-chain of each Lys 

residue)), and a balancer group (increasing the mass of each tag to a total of 225 

Da) (Thompson et al., 2003, Byers et al., 2009), as is shown on Figure 1-11. More 
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recently TMT has been extended to enable the relative quantification of up to 

six biological samples (Dayon et al., 2008). 

 

 
Figure 1-11: The theory behind a duplex TMT based quantitative proteomic 
analysis.  Depicted above are the steps involved in a duplex TMT based 
quantitative proteomic analysis, including the growth of multiple samples, their 
labelling, and their detection via LC-MS. The duplex TMT tags feature a reporter 
group (with a mass of either 126.1 or 127.1 Da) and a balance group (with a mass 
of either 97.9 or 98.9 Da), which when bound to the amine group of a Lys or N-
terminal of a peptide, results in an overall mass increase of 225 Da for each tag. 
 

Following the description of duplex TMT in 2003, a second isobaric tag based 

quantitative technique was described by Ross and co-workers in 2004, termed 

isobaric tags for relative and absolute quantitation (iTRAQ), capable of 

comparing up to four biological samples. More recently this technique has also 

been extended to enable the labelling and comparison of up to eight unique 

biological samples; however it has been suggested that the peptide 

identification rate may be lower when using the eight-plex technique over the 

four-plex (Pichler et al., 2010). 
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Like TMT, each of the four iTRAQ tags are composed of three distinct regions; a 

reporter group (with a varying mass of between 114.1 and 117.1 Da), a reactive 

group (so as to enable the tag to be bound to a primary amine (both on the N-

terminal of each peptide in addition to the side-chain of each Lys residue)), and 

a varying balancer group (increasing the mass of each tag to a total of 144.1 Da) 

(Ross et al., 2004), as is shown on Figure 1-12. 

 

 
Figure 1-12: The theory behind an iTRAQ based quantitative proteomic 
analysis.  Depicted above are the steps involved in an iTRAQ based quantitative 
proteomic analysis, including the growth of multiple samples, their labelling, 
and their detection via LC-MS. The iTRAQ tags feature a reporter group (with a 
mass ranging from 114-117 Da) and a balance group (with a mass ranging from 
28-31 Da), which when bound to the amine group of a Lys or N-terminal of a 
peptide results in an overall mass increase of 144.1 Da for each tag. 
 

Both TMT and iTRAQ have many advantages over the use of other quantitative 

proteomic techniques, including their ability to reduce the complexity of 

multiplexed MS spectra, even those resulting from up to eight unique biological 

samples (iTRAQ).  
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While the utilisation of MS/MS enables the co-identification of each peptide 

(based upon the peptide fragmentation spectrum (discussed in Section 1.4)), the 

application of these isobaric techniques has several drawbacks. Firstly, a 

requirement of TMT/iTRAQ is that an MS/MS scan must be performed on each 

peptide if a quantitation is to be achieved. This can be particularly problematic 

depending on both the resolution of the HPLC based separation and the cycle 

time of the MS utilised. As an example, if a short, single dimension LC gradient is 

utilised in combination with a long cycle time mass spectrometer (which will 

depend on the age of the instrument and mass range being scanned), then many 

peptides may be rapidly eluted from the column and only a limited number of 

MS/MS scans performed. Furthermore, as both iTRAQ and TMT tags are applied 

to peptides, then it is possible for inconsistencies during cell lysis, fractionation 

and sample labelling to effect the precision of this technique (Unwin et al., 

2006). Finally, in the instance in which multiple peptides with similar m/z ratios 

co-elute, and thus are all subjected to MS/MS, chimeric spectra (overlapping 

MS/MS spectra which can complicate peptide identification) can present, 

summing reporter ion signals from multiple peptides, and thus yeilding incorrect 

quantitation data (Houel et al., 2010). 

 

1.6.6 Label-Free Quantification 

Serving as an alternative to both cell-culture based labelling and chemical 

labelling techniques, several label-free quantitative strategies have also recently 

been developed with the goal of achieving a faster (requiring no additional 

sample processing), cleaner and simpler quantification (Zhu et al., 2010).  

 

While an accurate MS-based comparative quantification between samples, 

instruments, and indeed laboratories is reliant on the use of stable isotopic 

labelling and the co-separation and analysis of each biomolecule (as was 

discussed in Section 1.6) (Schulze and Usadel, 2010), it is also true that these 

techniques can increase both the time and the complexity of sample 

preparation. They also require the use of high cost reagents and can risk reduced 

quantitative accuracy through incomplete labelling. Furthermore, aside from 
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iTRAQ, few quantitative techniques enable the direct comparison of more than 

two samples, something which is not a limiting factor during label-free analyses 

(Zhu et al., 2010). 

 

Label-free quantitation can be conducted in one of two ways, the first of which 

is based on the premise that the observed MS signal intensity correlates well 

with the quantity of ion injected (S. Pan et al., 2009). This technique is 

therefore based on the comparison of a peptide’s peak area between samples. 

This technique does however have several drawbacks, including the fact that the 

ion intensity of a peptide can vary between samples due both to the gradual 

deterioration of the nano-spray ESI needle and the reduced binding capacity of 

the LC column. Likewise, where a shift in the LC retention time has occurred, 

varying co-eluting peaks, and thus competition during ionisation, can lead to a 

change in the intensity of the ion (Zhu et al., 2010). These variations were 

foreseen and can be corrected for through the use of one of several suitable 

software packages (Shaw et al., 2003). 

 

In comparison to the quantitative accuracies of both 15N and SILAC, each of 

which regularly achieve coefficient of variation (CoV) values of less than 10%; 

and iTRAQ, which is described as being of a “medium” quantitative accuracy, 

with CoV values regularly between 10 and 30%, label-free quantification, based 

on the comparison of peptide ion intensities between samples is also described 

as being of a “medium” accuracy with CoV values regularly between 10 and 30% 

(Shaw et al., 2003). In brief, the CoV can be calculated by dividing the standard 

deviation by the mean. This is particularly useful in quantitation as it is a 

dimensionless measure of variation, comparable between techniques, 

laboratories and indeed data sets. 

 

The second label-free approach, termed spectral counting, is based on the 

premise that when the amount of a protein entering the MS increases, so too 

should the sequence coverage, and therefore the number of proteolytic peptides 

identified. The amount of protein within a sample is thus quantified through 

comparing the number of MS/MS spectra identified for each protein, offering an 
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advantage over the measurement of peak area alone, which is suited only to the 

comparison of a single peptide between samples (Zhu et al., 2010). Indeed, this 

form of label-free quantitation has also been applied to absolute quantitation 

using a technique termed protein abundance index, which can be calculated by 

dividing the total number of peptides identified from a protein by the number of 

peptides which can theoretically be identified (Schulze and Usadel, 2010, 

Ishihama et al., 2005).  

 

In applying spectral counting to the quantification of two ideal samples (samples 

which possess less than twofold variation in abundance and which contain at 

least four peptide peaks per protein), this label-free technique has been shown 

to display an accuracy greater than 95% (Schulze and Usadel, 2010). In contrast, 

when the same technique is applied to the quantification of lower abundance 

proteins, spectral counting has been found to provide only a “poor” level of 

quantitative accuracy, as a result of the reduced number of spectra available 

(Old et al., 2005), and will generally yield CoVs greater than 30% (Kondo and 

Hirohashi, 2007). 

 

1.6.7 Labelled Internal Standard Based Quantification 

While each of the previously discussed quantitative techniques has advantages 

and disadvantages when applied to a specific biological system, each can provide 

only a relative level of quantitation for peptides, between two or more samples. 

While useful for assessing the varying concentration at which a protein is 

expressed between a range of cellular states (generally expressed as a ratio), 

further interpretation of this data is difficult (Brownridge et al., 2011). There is 

growing demand for the absolute quantification of proteins within biological 

systems, where the exact number of protein molecules per cell is quantified, 

enabling both the quantification of samples where no reference material exists 

and the tracking of a disease’s progression (Drews, 2000, Brownridge et al., 

2011). 

 



65 

 

The idea of absolutely quantifying a molecule is not a new concept, indeed the 

absolute quantification of drug molecules has been performed since 1932, based 

upon isotope dilution analysis; with a more recent adaption utilising stable 

isotopes, in a technique termed stable-isotope dilution (Fassett, 1995). In brief, 

as the stable isotope has an identical structure to the analyte, it should behave 

in an identical manner when subjected to LC-MS/MS. The stable isotope should 

therefore co-elute with the analyte, and as such, be subjected to same matrix 

based ion suppression or enhancement, thereby enabling the peak areas of the 

two molecules to be directly compared. 

 

1.6.7.1 Protein Standard Absolute Quantification 

The production of isotopically labelled full-length proteins to act as standards 

for absolute quantification was first described by Brun and co-workers in 2007 

and termed protein standard absolute quantification (PSAQ) (Brun et al., 2007). 

PSAQ consists of a protein analogue being synthesised in the presence of 

uniformly labelled Lys and Arg residues (13C and 15N), which when cleaved with 

trypsin, will yield proteolytic peptides each containing one labelled amino acid 

residue. These peptides can then be compared with their non-labelled 

counterparts, and assuming the amount of the PSAQ-labelled protein added is 

known, an absolute concentration can be determined for each target protein 

(Brun et al., 2007), as is shown on Figure 1-13. 

 

The main advantage of PSAQ, over AQUA (described in Section 1.6.7.2) and 

quantitative concatamer (QconCAT) (described in Section 1.6.7.3), is the fact 

that an intact protein standard is utilised as an internal standard, and thus both 

the protein target and the internal standard should separate and digest under 

identical conditions, accounting for any potential sample loss. 



66 

 

 
Figure 1-13: The techniques through which PSAQ, AQUA and QconCAT enable 
an absolute quantitative proteomic analysis.  While PSAQ enables an absolute 
quantification to be performed based on the digestion of the target protein with 
a labelled intact protein standard, AQUA enables a quantification to be 
performed based upon the quantification of a single proteotypic target peptide. 
While QconCAT is performed in much the same way as AQUA, it enables the 
quantification of multiple proteins per sample through the construction, and 
subsequent co-digestion, of an artificial protein. 
 

While very little data has been published detailing the application of PSAQ in a 

biological system, sensitivity levels down to 44 femtomoles (fmol) (1.2 ng of 

protein in 100 microlitres (µL) of sample) have been described in human urine 

(Brun et al., 2007), while a more recent publication from the same group has 

detailed the technique to yield CoV values of between 0.6 and 30.7%, with non-

proteotypic peptides (the term proteotypic is discussed further in Section 

1.6.7.1.1) containing greater levels of variation (Jaquinod et al., 2012).  

 

PSAQ is, however, a time consuming and complicated technique, requiring the 

continued synthesis of a standard isotope-labelled protein via cell culture in 

labelled media, its purification, and finally its quantification by amino acid 
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analysis (AAA) (this point also applies to QconCAT however, while AQUA peptides 

are pre-quantified, enabling immediate use), prior to the protein being mixed 

with the target cell lysate and processed (Brun et al., 2007). Furthermore, this 

technique assumes that both the synthetic and target proteins will yield the 

same PTMs, as is required for the biomolecules to be separated and analysed 

under identical conditions (Brownridge et al., 2011). 

 

1.6.7.1.1 Proteotypic and Quantotypic Peptides 

In the field of quantitative proteomics, the terms proteotypic and quantotypic 

are used to indicate that the sequence of a peptide is ideal, and therefore the 

quantitation achieved for that cleaved peptide should be representative of the 

quantity of the parent protein present before digestion.  

 

On the topic of proteotypic peptides, Craig et al. state that proteotypic peptides 

should be compatible with all common proteomic sample handling steps, 

including enzymatic digestion, gel extraction, RP-LC and ionisation (Craig et al., 

2005). Bislev et al. further define the term proteotypic, stating that proteotypic 

peptides should have a length of between 7-20 amino acids and should be unique 

within their target proteome (with a sequence which can be mapped to single 

genomic location). Furthermore, Bislev et al. state that proteotypic peptides 

should not contain amino acid residues which are prone to modification 

(including Cys, Met, Try, Ser and N-terminal Gln residues), should not contain N-

terminal acidic residues (assuming the peptide is cleaved at a basic residue) and 

should not be cleaved from a sequence susceptible to missed cleavages (sites 

which are flanked by additional cleavage sites) (Bislev et al., 2012). 

 

1.6.7.2 AQUA Based Peptide Quantification 

During a bottom-up PSAQ based quantitative analysis of a protein, only a few 

proteotypic peptides will ultimately be quantified, so as to avoid any erroneous 

data which may be obtained from the quantitation of peptides not suited to 

spiked digest based analyses, such as those peptides which are susceptible to 
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missed cleavages (PSAQ should, however, still correct for these sequence flaws 

during quantitation). A quicker and cheaper approach may therefore be to 

produce synthetic labelled copies of those peptides which are eventually 

quantified, and to spike those into the sample during the proteolytic digest. This 

technique, termed AQUA, was first described by Gerber and co-workers in 2003 

(Gerber et al., 2003b) and is based upon the premise that for every protein 

molecule digested, a single copy of each proteolytic peptide will be generated, 

thus, through quantifying even a single peptide it should be possible to 

determine the amount of parent molecule present. AQUA peptides are now 

commercially available from both Sigma and Thermo, increasing their 

availability and application in the wider scientific community. 

 

During a typical AQUA experiment, a known amount of AQUA peptide (a 

synthetic internal standard peptide containing a uniformly 13C and 15N labelled 

amino acid residue) will be combined with the targeted protein, generally after 

1DGE based separation, but before the protease has been added to the gel 

pieces (Kirkpatrick et al., 2005a). In adding the AQUA peptide solution to the 

dehydrated gel pieces, the AQUA peptide is absorbed into the gel, ensuring an 

equal extraction efficiency for both the target and synthetic peptides post-

digestion (Gerber et al., 2003b). Following the completion of the proteolytic 

digest, the peptide extracts are pooled and dried, re-suspended in a polar 

solution, separated based upon RP-LC and quantified through the application of 

MRM based MS (first performing a relative quantification between the synthetic 

and target peptides, then through knowing the exact amount of internal 

standard added to the sample, calculating the absolute amount of target peptide 

within the sample analysed) (Kirkpatrick et al., 2005b).   

 

This technique has several advantages over the use of PSAQ, the most 

compelling of which is the fact that AQUA uses a labelled peptide instead of a 

full-length labelled protein. As peptides can be rapidly synthesised based upon 

solid-phase peptide synthesis (SPPS), this technique is both more rapid, and 

cheaper than PSAQ, therefore it is perhaps more applicable to large scale 

sample analysis (Brownridge et al., 2011). Furthermore, as AQUA peptides can 
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be synthesised so as to containing a range of PTMs, it thus enables the 

quantification of both modified and unmodified protein species (V. Mayya et al., 

2006).  

 

There are, however, several disadvantages to selecting AQUA over PSAQ, the 

most prominent of which is the assumption that during an AQUA based 

quantitation, the digest efficiency of the targeted protein will be complete 

(discussed further in Section 2.1), while PSAQ is capable of correcting for any 

inefficiency. In addition, another advantage of PSAQ is the fact that the intact 

labelled protein is added to the sample at an early stage, and thus can correct 

for any sample loss encountered during separation (Brun et al., 2007). During the 

storage of the AQUA peptide, and indeed during sample preparation, peptide 

loss through binding can also pose a problem, where it has been documented 

that up to 90% of the peptide may be lost over a period of 24 hours through the 

adsorption of the peptide to the sample vial (Zhang et al., 2010).  

 

1.6.7.3 QconCAT based Peptide Quantification 

A third stable isotope based quantitative technique also exists, offering an 

alternative to both AQUA and PSAQ, designed for the quantification of multiple 

(up to 100) peptides within a proteome. This technique, termed QconCAT was 

first described by Beynon and co-workers in 2005 (Beynon et al., 2005) and 

involves the synthesis of a stable isotopically labelled, artificial protein, 

composed of multiple peptide sequences for the absolute quantification of 

multiple proteins within a biological system. To produce this artificial protein, a 

de novo gene is designed in silico and synthesised commercially, the amplified 

vector is transfected into Escherichia coli and the protein expressed. Upon the 

protein having been purified, and quantified via AAA, a quantity of the artificial 

protein is added to the target proteome and co-digested, separated based on 

RP-LC and quantified through the application of MRM based mass spectrometry 

(first performing a relative quantification between the synthetic and target 

peptide peak areas, then, through knowing the amount of internal standard 



70 

 

added to the sample, calculating the absolute amount of target peptide, and 

thus parent protein, within the sample) (Beynon et al., 2005). 

 

QconCAT has several advantages over the application of AQUA. Firstly, the 

QconCAT derived peptides (Qpeptides) are the product of a proteolytic digest, 

removing much of the bias associated with incomplete digestion. Furthermore if 

more than ten proteins are to be quantified (Beynon et al., 2005), then it is 

more economical to utilise QconCAT rather than synthesise and purify multiple 

AQUA peptides. QconCAT also has an advantage over PSAQ in terms of the time 

required to prepare multiple standards, where upon designing the QconCAT 

gene, only one protein is to be expressed. 

 

QconCAT does however have several disadvantages over the application of PSAQ. 

Firstly, while QconCAT does involve a co-digestion step, accounting for much of 

the variation associated with incomplete digestion, the protease employed will 

bind to several amino acids both up and downstream of the cleavage site, and 

thus the digestion of both the target and artificial proteins may proceed with 

different digest efficiencies (Brownridge and Beynon, 2011, Beynon et al., 2005). 

Furthermore, for each protease utilised, a separate QconCAT may be required, 

increasing the cost and complexity of the method. Finally, as the Qpeptides are 

expressed through the use of cell culture, rather than chemical synthesised, 

they cannot be imparted with the same range of PTMs as an AQUA based 

analysis. 

 

1.7 Protein Isoforms 

When analysing the human genome it was noted that only 1.1% of the 

deoxyribonucleic acid (DNA) sequenced accounted for protein coding exons, 

while 24% was found to consist of intronic sequence and some 75% consisted of 

intergenic DNA, with no known function in the coding of either RNA or protein. 

This was particularly surprising as it indicated humans to have only two to three 

times as many genes as lower organisms such as the mustard plant or fruit fly, 
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indicating that functional complexity, rather than absolute gene number, was 

key in the complexity of the human proteome (Baak et al., 2005). 

 

RNA splicing has been documented to be ubiquitous in eukaryotes, enabling the 

production of a variety of related but distinct protein isoforms through the 

differential incorporation of a range of exons in the mature mRNA (Andreadis et 

al., 1987). It has been predicted that up to 75% of the 20,000 to 30,000 genes 

within the human genome may be subject to some form of alternative splicing 

(Johnson et al., 2003), yielding an average of two or three transcripts per gene 

(M. Nakao et al., 2005). Furthermore, it has since been estimated that up to 95% 

of human multi-exon genes may be subject to alternative splicing, making 

alternative splicing the rule, not the exception (Pan et al., 2008a). It should, 

however, be noted that while some of these sequences yield novel protein 

isoforms, many mRNAs, even if detectable at the transcriptional level, do not 

encode a functional protein (Leoni et al., 2011, Tress et al., 2007).  

 

In brief, transcribed RNA consists of both exons and introns, with the exons 

containing the translated protein coding sequence and the introns containing 

both regions of regulatory importance and intergenic sequence. Upon the 

removal of the introns, the exons can be ligated in different combinations, 

giving rise to various protein isoforms.  

 

These introns can be identified through locating the conserved 3’ and 5’ intronic 

splice sites, where the 5’ splice site is marked by conserved sequence 

MAG|GTRAGT (where M represents either an A or a C and R represents either an 

A or a G), and the 3’ splice site is marked by conserved sequence CAG|G. In 

addition, each intron should contain a splicing branch point, usually marked by a 

single adenosine residue, some 18-40 bases downstream of the 5’ intronic splice 

site (Reed, 1989).  

 

Where an alternative protein product is produced, the modified sequence of the 

polypeptide chain can affect the intra- and extracellular location of the protein, 

its regulation, and its efficiency in binding a specific substrate (Gunning, 2001). 
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Indeed alternative splicing can also result in the truncation of a protein, 

synthesising a protein isoform which may contain a binding domain but not a 

catalytic domain, resulting in a protein isoform with a function differing to that 

of the wild-type (Rauch et al., 2011).  

 

In addition to the application of alternative splicing in increasing the complexity 

of the proteome, alternative splicing has also been linked to defective mRNA 

splicing in diseased cells. When the synthesis of a protein isoform is linked to a 

disease such as cancer, the most common cause of alternative splicing is a 

mutation of the intronic splice site, usually leading to the exclusion of the 

adjacent exon, and in more than half of all cases a truncation (Venables, 2004). 

 

1.7.1 Quantifying Protein Isoforms 

A major challenge facing the field of proteomics is the highly variable 

concentration at which a range of proteins can be expressed, where often it is 

those proteins which are present at a low copy number which are the most 

biologically interesting, yet can be masked by higher abundance proteins  

(Anderson and Anderson, 2002, Klose, 1975, O’Farrell, 1975).  

 

The analysis of protein isoforms is therefore particularly challenging due both to 

the high degree of sequence homology shared by many of these isoforms, and 

their low copy numbers. While these proteins differ structurally, this variation 

may have only a limited effect on the pI and MW of the final protein product, 

making their differentiation based upon the use of 2DGE next to impossible (S. 

P. Gygi et al., 2000, Galeva and Altermann, 2002).  

 

In regards to the application of top-down based proteomics for the detection of 

protein isoforms, long acquisition times are required to generate the MS/MS 

spectra necessary to determine the structure of a protein, based upon the use of 

ECD. Off-line HPLC based separative techniques are therefore frequently 

employed in top-down based proteomics, so as to provide the levels of protein 

separation required. Furthermore, due to the range of ion species (charge 
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states) which may be generated from an intact protein, sensitivity has also 

proven to be an issue during the application of top-down based proteomics. This 

technique, therefore, is not best suited for the analysis of protein isoforms 

within complex cell lysates. 

 

Furthermore, when a bottom-up based proteomic technique is applied to the 

analysis of a protein isoform, the protein inference problem may be 

encountered. In brief, when a protein is proteolytically digested, the resulting 

peptides may have sequences identical to those of peptides cleaved from 

multiple proteins, leading to ambiguities in the determination of the proteins 

identity (Nesvizhskii and Aebersold, 2005). If a protein isoform is to be identified 

based upon the application of bottom-up based proteomics, therefore, only 

those peptides which have a sequence unique within the target proteome should 

be targeted. If the resolution of the HPLC based separation is not adequate, 

however, the isoform specific peptides of interest may co-elute with other 

proteolytic peptides. When this occurs, and assuming each of the peptides meets 

the IDA selection criteria, the most intense ions will be selected for MS/MS. As 

such, the isoform specific peptide may become masked from detection based. 

 

Based upon the targeting of only those proteolytic peptides which are unique to 

an isoform within the host proteome, an absolute quantification may also be 

performed. As AQUA, QconCAT and PSAQ are all capable of yielding labelled 

proteolytic peptides, the peak areas of both the labelled and un-labelled 

peptides may be compared, prior to the absolute amount of target protein being 

determined. Furthermore, as only two peptides from the complex digested cell 

lysate are of interest to the analyst, MRM based scanning may be utilised to 

reduce the complexity of the MS data obtained, while increasing the sensitivity 

of the MS towards those analytes which are targeted.  

 

Several labelled peptide based quantitative analyses of protein isoforms have 

previously been described, including the quantification of three of five known 

sucrose synthase isoforms in the root nodules of Medicago truncatula, a 

technique designed to improve upon an existing western-blot based semi-
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quantitative technique (Wienkoop et al., 2008). Likewise, a technique was 

designed to quantify several members of the Cytochrome P450 superfamily in 

human liver microsomes, enabling the specific quantification of isoforms CYP3A4 

and CYP3A5, and the quantification of the entire CYP3A family, but not isoform 

CYP3A43 (Wang et al., 2008b). 

 

1.8 Conclusion 

While gel electrophoresis was first utilised for the separation of proteins back in 

1959 (Kwietny et al., 1959), its use in comparative proteomics was delayed until 

the description of DIGE in 1997 (M. Unlu et al., 1997). Likewise, while mass 

spectrometry was first described in the late 1800s (Griffiths, 2008), it was not 

possible to ionise large intact biomolecules until the late 1980s (Falk et al., 

2006), at which point a whole range of new hybrid instruments had to be 

developed to enable the analysis of the proteome (El-Aneed et al., 2009). The 

field of proteomics can thus been seen as a relatively new area of scientific 

research, which having been applied to the qualitative analysis of many proteins 

in a range of biological systems, is now becoming increasingly quantitative (Baak 

et al., 2005). 

 

While new quantitative proteomic techniques are still regularly being described, 

the field of comparative proteomics has recently been likened to a minefield 

(Vaudel et al., 2010), with every advantage offered by one technique being 

offset by several disadvantages over another. Some of the most desirable traits 

in quantitative proteomics are thus the ability to multiplex (iTRAQ/TMT), which 

is offset by reagent costs and the inaccuracy of processing each sample 

separately. Additionally, the desire to combine samples early in sample 

preparation (15N or SILAC), is offset by the cost of the labelled media, and the 

fact that only a limited number of cell lines are suitable for growth on dialyzed 

serum. 

 

When an absolute quantification is to be performed, as appose to a relative 

quantitation (such as that performed by each of those techniques previously 
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mentioned), very few techniques exist. While AQUA offers a relatively cheap and 

sensitive technique for the analysis of a single peptide, the precision of the data 

achieved may be compromised by the efficiency of the proteolytic digest. In 

comparison, while both QconCAT and PSAQ can correct for any inefficiency 

encountered during proteolytic digestion, each requires the synthesis of a 

labelled protein, and subsequently its quantification prior to use, which may be 

both expensive and time consuming, perhaps not applicable to large scale 

sample analysis. 

 

Finally, when a protein isoform is to be quantified, the high sequence homology 

means that a proteolytic peptide must be selected which is unique within the 

host proteome. As relatively few sample components are targeted during such an 

analysis, MRM based scanning may be utilised, reducing the complexity of the MS 

data obtained, while increasing the sensitivity of the MS towards the targeted 

analyte.  

 

1.9 Aims 

While several stable isotopic labelling based techniques have been reported 

which are capable of quantifying multiple protein isoforms, to the author’s 

knowledge no technique has yet been described which enables the absolute 

quantification of every individual isoform within a particular family of protein 

isoforms. Indeed, this may be of particular interest in assessing how the ratio of 

a group of protein isoforms varies between a range of tissues or in a diseased 

state. 

 

Furthermore, while many publications detail the sequential and physicochemical 

properties desirable in a proteotypic peptide, none have explored the strategies 

which may be employed to enable the selection of a suitable AQUA peptide for 

the quantification of multiple protein isoforms, where the high sequence 

homology of these isoforms can drastically limit the number of peptides 

available for selection. The use of several proteases per analysis and different 

enzyme based proteolytic double digests may be required, in addition to the 
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selection of peptides which contain reactive amino acids, so as to enable the 

selection of a single peptide.  

 

In the light of this, the author aims to develop a range of techniques, which may 

be utilised for the selection of proteolytic peptides suitable for the absolute 

quantification of multiple protein isoforms. Indeed, in doing so, the author aims 

to explore the suitability of a range of proteases and peptides containing 

reactive amino acids so as to determine what measurable effects these non-ideal 

components have on the quantitative accuracy of the technique. 

 

Ultimately, when fully established and optimised, this type of analysis should 

enable the wider scientific community to: (i) Identify which isoforms of a 

particular protein family are expressed within a given tissue (through detecting 

isoform specific target peptides). (ii) Accurately quantify each isoform detected 

(through detecting both the isoform specific target and synthetic AQUA peptide), 

and (iii) Detect changes in the expression ratio of these isoforms under different 

physiological conditions. 

 

In order to achieve these ultimate technical aims, which are beyond the scope of 

a PhD project, the author intends to: (i) Identify several families which consist 

of multiple protein isoforms and screen each with the aim of identifying suitable 

AQUA peptides for the absolute quantification of each protein isoform. (ii) 

Characterise each AQUA peptide and intrinsic target peptide so as to develop a 

suitable triple-quadrupole based MRM acquisition method for the identification 

of each peptide within a single LC-MS run. (iii) Express suitable amounts of each 

protein isoform, enabling the proteolytic digests to be optimised using a range of 

commercially available proteases. (iv) Assess the accuracy and reproducibility of 

the AQUA technique using both a suitable number of replicates, and (v) Test 

these optimised AQUA based quantitative techniques on both non-

immunoprecipitated transfected protein species and endogenously expressed 

samples. 
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2 AQUA Peptide Selection 

2.1 General AQUA Peptide Selection Criteria 

When selecting an AQUA peptide for the quantification of a target protein, there 

are several physical, chemical and sequence specific factors which must be 

considered. For example, based upon both manufacturing constraints, and the 

requirement for a peptide which is suited to an analysis based upon LC-MS/MS, 

the peptide must; (i) Be between 6 and 15 amino acids in length; (ii) Contain a 

residue suitable for stable isotopic labelling (either Ala, Arg, Ile, Leu, Lys, Phe, 

Pro or Val), and; (iii) Be water soluble, being neither too hydrophilic (ideally 

being composed of at least 10% hydrophobic residues (including Ile, Leu, Val, 

Phe, Trp and Met) nor hydrophobic (ideally being composed of less than 50% 

hydrophobic residues) (Brun et al., 2009, Brun et al., 2007, Kettenbach et al., 

2011, Kirkpatrick et al., 2005a, Pratt et al., 2006, Pan et al., 2008b).  

 

In addition to the above list of requirements, Kirkpatrick et al. make several 

further recommendations, stating that a candidate peptide should be selected 

which; (i) Resolves well via high pressure LC (HPLC); (ii) Ionises well via ESI, and; 

(iii) Is devoid of any chemically reactive residues, with the term chemically 

reactive covering Trp, Met and Cys (each of which oxidises easily), in addition to 

the more sequence specific examples of having an Asp residue flanking a Gly or 

where a peptide possesses an N-terminal Gln or Asn residue (due to the 

Fluorenylmethyloxycarbonyl (Fmoc) based chemistry used during peptide 

synthesis (Gerber et al., 2007)) (Kaufmann et al., 1994, Pan et al., 2008b). 

 

In addition, Kettenbach et al. suggested that two or three peptides should be 

selected per protein, and that peptides generated through the cleavage of the 

target protein at sites susceptible to missed cleavages should be avoided 

(Kettenbach et al., 2011). This can be further broken down into two groups of 

digest site: (i) Those where the cleavage site is flanked by “ragged ends” (a 

cleavage site which is pre- or proceeded to either the C- or N-terminal by a 

similar cleavage site), and; (ii) Those where the digest site is flanked by an 
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amino acid carrying an opposite charge (such as a tryptic digest site (Arg or Lys) 

being flanked to either the C- or N-terminal by an Asp or Glu residue).  

 

To better explain the problem with flanking oppositely charged residues, when 

an acidic residue is located next to a basic residue, a salt bridge can form 

between the β-carboxyl group on the acidic residue and the ε-amino group on 

the basic residue. This is particularly problematic when trypsin is utilised, as 

trypsin binds to either Arg or Lys, cleaving via the formation of a salt bridge with 

Asp 189 (Siepen et al., 2006). Further to the above, flanking basic residues are 

even more problematic when trypsin is utilised. Proteases have been shown to 

recognise not only a single amino acid, but to bind to approximately three 

residues both up and downstream of the digest site (Zabłotna et al., 2004, 

Brownridge and Beynon, 2011). Indeed, where two basic residues are located 

within close proximity, only one will be cleaved, while the other cleavage is 

missed, which when performing an AQUA based quantification would be 

disastrous (Brownridge and Beynon, 2011).  

 

In addition to the advice offered by Kirkpatrick et al., Gerber et al. suggests 

that AQUA peptides should be selected based upon the results obtained from 

previous LC-MS experiments, reasoning that any data obtained from a previous 

analysis will show which peptides present with a high signal intensity, and as 

such, which peptides separate well via HPLC and ionise well via ESI (Gerber et 

al., 2007).  

 

2.2 AQUA Peptide Selection for the Quantification of a Protein 

Isoform  

When screening the proteolytic digest products of a protein with the aim of 

identifying a proteotypic peptide suitable for an AQUA based quantitative 

analysis, the number of candidate peptides is often limited (Brownridge et al., 

2011). Furthermore, if a PTM on a specific amino acid is to be quantified, just a 

single peptide per protease may be selected (Gerber et al., 2003b). Indeed this 

can also be the case when highly homologous protein isoforms are considered, 
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which may differ by as little as a single amino acid, or have identical sequences, 

but contain a truncation, making the selection of C-terminal peptides the only 

viable solution.  

 

A technique to increase the range of peptides available for selection, and thus 

increasing the chances of a suitable AQUA peptide being identified, may 

therefore be to review the proteolytic digest products of several proteases. In 

some cases, however, even when multiple proteases are utilised, it may not be 

possible to identify a peptide which fully conforms to the AQUA peptide 

selection criteria. In these situations it may be necessary to select a peptide 

which is not considered proteotypic, including those which contain chemically 

reactive amino acid residues, or those which are flanked by non-ideal residues 

(oppositely charged).  

 

2.2.1 Protease Selection 

In bottom-up based proteomics, trypsin is by far the most widely used and 

documented proteolytic enzyme (Olsen et al., 2004). This is a result of both the 

wide availability of this high quality sequencing grade enzyme, and its digest 

specificity, cleaving after Arg and Lys residues, except when proceeded by Pro. 

Furthermore, the sites at which trypsin cleaves account for approximately 10% of 

the residues identified within an average mix of proteins (Tsuji et al., 2010), 

yielding tryptic peptides which are rarely larger than 10 to 15 amino acids in 

length, with masses of between 1 and 3 kDa. Additionally these peptides 

generally exist in a doubly or triply charged state during LC-MS, and thus are 

suitable for detection on a range of mass spectrometers (Brownridge and 

Beynon, 2011).  

 

There may be cases, however, where trypsin will not yield a suitable proteotypic 

peptide. In these cases, an alternative protease must be utilised. While many 

exist, which is utilised will depend on which enzyme yields a suitable 

proteotypic peptide, and which is the most applicable to a quantitative LC-MS 

based analysis.  
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On the topic of protease selection, Kettenbach et al. suggests that 

chymotrypsin, Glu-C or Lys-C may be utilised (Kettenbach et al., 2011). While in 

theory chymotrypsin cleaves at Tyr, Trp, and Phe, general amide bond cleavage 

has also been documented at a slower rate. If indeed this is the case, then these 

non-specific cleavages may lead to missed cleavages at the intended digest site, 

making chymotrypsin unsuitable for AQUA based absolute quantification.  

 

In comparison, both Lys-C and Arg-C have been documented to cleave 

specifically at the C-terminal of either Lys or Arg, respectively. Due to the lower 

frequency at which both of these enzymes cleave, however, (with both Arg and 

Lys each accounting for only 5% of the residues identified within a random 

protein mix (Tsuji et al., 2010)), larger proteolytic peptides have been reported. 

These sometimes with m/z ratios unsuitable for detection on modern triple 

quadrupole based mass spectrometers (Kelleher et al., 1999).  

 

Another protease suggested by Kettenbach et al. is Glu-C, which, like trypsin, 

cleaves at two amino acid residues, Asp and Glu, both of which are present at a 

high frequency within an average mix of proteins (Tsuji et al., 2010). It should 

be noted, however, that the digest specificity of Glu-C is dependent on the 

buffer in which the digest is conducted, with Asp based cleavages occurring at a 

3,000 fold lower rate than Glu based cleavages, when conducted in a phosphate 

based buffer, while Glu-C is thought to cleave exclusively at Glu in an 

ammonium bicarbonate (AMBIC) based buffer (Houmard and Drapeau, 1972). 

When applying Glu-C to the absolute quantitation of a target protein, it is thus 

best to avoid Asp cleaved proteolytic peptides entirely, due to the low digest 

efficiency of Glu-C at Asp. Furthermore, as Glu-C cleaves specifically after acidic 

residues, the C-terminal of Glu-C cleaved proteolytic peptides is generally 

devoid of a C-terminal charge. This is of particular importance during ESI based 

mass spectrometry as it may limit the detectable fragmentation spectra 

exclusively to B-ions (as the only charge will be present on the peptides N-

terminal), reducing the charge state of the peptide. Where a peptide’s charge 

state is reduced, the m/z ratio will increase, affecting the ability of some mass 

spectrometers to detect the peptide.  
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In conclusion, while several proteases may serve as an alternative to trypsin, in 

cases where a suitable tryptic peptide cannot be identified, each has several 

disadvantages over the use of trypsin. Indeed the specificity, digest frequency 

and C-terminal charge imparted by trypsin makes it ideal for proteomics, 

justifying its widespread usage. 

 

2.2.2 Proteolytic Digest Optimisation  

Despite how important the process of complete proteolytic digestion is to the 

field of quantitative proteomics, no standardised in-solution or in-gel based 

digest techniques have as yet been described. Indeed most modern in-gel based 

proteolytic digests still follow the same basic workflows first documented by 

Shevchenko et al. back in 1996, over a decade before the description of absolute 

quantification based proteomics (Shevchenko et al., 1996).  

 

One of the factors most commonly optimised to achieve a complete proteolytic 

digestion is the enzyme:substrate ratio at which a proteolytic digest is 

performed. This generally ranges from 1:10 to 1:100 (enzyme:substrate, 

weight:weight (w/w)), as per the manufacturer’s instructions (Havliš and 

Shevchenko, 2004, Porter et al., Norrgran et al., 2009). Proteolytic double 

digests have also been documented, adding an equal volume of the protease 

after eight hours and digesting for a further ten hours (Mayya et al., 2006).  

 

In-solution proteolytic digests have also been performed in buffers containing a 

high levels of organic solvent, where the organic solvent is thought to expose the 

hydrophobic core of the protein, aiding in complete digestion (Hervey et al., 

2007). Digests containing levels of organic solvent as high as 80% (v/v) have been 

reported, apparently yielding faster digestions and higher sequence coverages 

(Wall et al., 2011). Conflicting reports, however, have suggested that proteolytic 

activity is reduced above 50% (v/v) organic solvent (Khmelnitsky et al., 1991), 

and that protein precipitation can occur in solutions containing 80% organic 

solvent (v/v) (Polson et al., 2003). A recent publication aiming to address the 

phenomenon, concluded that while an increase in sequence coverage may 
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present, the overall efficiency of the digest is greatly reduced (Wall et al., 

2011).  

 

An alternative strategy, based upon the same premise, employs the use of 

chaotropic agents to denature the hydrophobic core of the protein, and as such 

to increase the efficiency of the proteolytic digest. These agents surpass organic 

solvents in that they are suitable for use with mass spectrometry and have no 

effect on the activity of the protease (GORDON and JENCKS, 1963). Of these 

chaotropic agents, the most commonly documented is urea, capable of 

denaturing the hydrogen bonds within a protein. However, when urea is heated 

it has been reported to yield isocyanic acid, carbamylating free amines within 

the target protein, and thus blocking Lys based cleavages (Rajagopalan et al., 

1961).  

 

A more recent technique utilised to increase the digest efficiency of a protein 

has been in the application of acid labile surfactants (ALS) (Norrgran et al., 

2009). While ALS were originally employed as a replacement for SDS during in-

solution digests, it was noted that they considerably increased the efficiency of 

the digest (Siepen et al., 2006). While ALS are not directly compatible with mass 

spectrometry, they are easily degraded through acidification, a process which is 

already performed during in-gel digestion as a method to increase the extraction 

efficiency of the proteolytic peptides from the gel pieces. A recent investigation 

into the use of various digest additives found ALS to yield the highest average 

increase in digest efficiency, with other experimental parameters yielding little 

further benefit (Yu et al., 2003, Brownridge and Beynon, 2011).  

 

An interesting technique through which the digest efficiency of a protein can be 

assessed was recently described by Norrgran et al. who utilised several 

proteotypic (optimal peptides for use in quantification) AQUA peptides (as 

discussed in Section 1.6.7.2) to monitor the increasing quantities of multiple 

proteolytic peptides cleaved from ricin over the course of a digest. This 

technique was applied to digests performed in the presence of ALS, in the 

presence or 20% MeCN in AMBIC (v/v), in AMBIC alone, and in AMBIC with the 
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ricin having previously been reduced and alkylated. The results from this study 

suggested that the ALS based technique yielded peptide levels between 36 and 

73% higher than each of the other techniques (Norrgran et al., 2009). 

 

2.2.3 Reactive Amino Acid-Containing AQUA Peptides 

As this project involves the quantification of protein isoforms, which may be 

highly homologus, it may be necessary to develop methods to cope with the use 

of those peptides which contain reactive amino acids, so as to enable the 

selection of an AQUA peptide suitable for an absolute quantification. 

 

Within the field of proteomics, Cys residues are commonly alkylated through the 

use of iodoacetamide (IAA), so as to prevent protein folding though disulfide 

bond formation or oxidation during sample preparation. Both Kirkpatrick et al. 

and Kettenback et al. recommend that Cys residues within AQUA peptides are 

reduced with dithiothreitol (DTT) and alkylated with IAA, so as to block the 

sulfhydryl groups (Kettenbach et al., 2011, Kirkpatrick et al., 2005a). Through 

the use of IAA, it should therefore be possible to utilise Cys containing AQUA 

peptides and enable a greater range of proteolytic peptides to be selected. 

 

Unlike the relatively simple process of alkylating a Cys residue, no single solution 

exists for the complete modification of Met. Should complete oxidation be 

attempted then it is important other oxidation-prone residues are considered, 

including Cys, Trp, Tyr and His (Kim et al., 2001). If a complete reduction were 

attempted then it is conceivable that re-oxidation may occur during downstream 

processing. Finally, while it is possible to alkylate Met through the use of 

Iodoacetic acid, the reaction is reversible under reduction conditions (Goverman 

and Pierce, 1981, Kleanthous and Coggins, 1990). 

 

While several reagents have been reported as being capable of oxidising Met, 

including dimethyl sulfoxide (DMSO), tert-Butyl hydroperoxide, sodium 

periodate, sodium perborate, hydrogen peroxide, chloramine T, tribromocresol 

and N-chlorosuccinimide, few are suitable for the complete oxidation of Met 
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alone. For example, the final three chemicals listed were all found to oxidise 

small amounts of Cys, His and Tyr, in addition to Met (Keck, 1995), while Try 

based cleavage has been reported with the latter (Fujii et al., 1978). Of the 

remaining mild oxidative agents, hydrogen peroxide has been identified as being 

non-Met specific (Keck, 1995), yielded small amounts of stable Met sulphone 

(Fujii et al., 1978), while tert-Butyl hydroperoxide has been found to modify 

only a limited number of exposed Met residues within an intact protein (Keck, 

1995).  

 

DMSO has also been reported as being capable of oxidising Met, yielding 

complete modification of free Met in less than three hours. Furthermore, the 

author also explains how though the use of dimethyl sulfide (DMS) it is possible 

to completely reduce the oxidised Met in under four minutes with no observable 

side reactions (Shechter, 1984). 

 

Despite the promising results documented for DMSO, the oxidative chemical of 

choice is sodium periodate. In addition to both Kettenbach et al. and Kirkpatrick 

et al. recommending its use for oxidising Met containing AQUA peptides 

(Kettenbach et al., 2011, Kirkpatrick et al., 2005a), Fujii et al. found sodium 

periodate to completely oxidise Met in under seven hours, with negligible levels 

of sulphone (Fujii et al., 1978), while Yamasaki et al. reported nearly 

quantitative formation of Met sulfoxide when treating free Met with equimolar 

amounts of sodium periodate (Yamasaki et al., 1982). An alternative to sodium 

periodate may also exist in sodium perborate, which it is detailed can achieve 

the same results as sodium periodate but over much longer periods of time (Fujii 

et al., 1978). 

 

While both Cys and Met containing AQUA peptides may therefore be utilised, the 

majority of the AQUA peptide selection criteria (detailed in Section 2.1) must be 

strictly adhered to (Brun et al., 2009, Kettenbach et al., 2011, Kirkpatrick et al., 

2005a, Pratt et al., 2006). By way of an example, if a peptide is selected which 

is above the 15 amino acid limit, difficulties can occur during SPPS. Likewise, if 

a peptide is selected which is below six amino acids in length, problems may be 
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encountered in the retention of the peptide on the C18 column. Indeed, while 

Trp, like Cys and Met, can be easily oxidised during sample preparation, no 

single solution as yet exists so as to enable the use of Trp containing peptides.  

 

2.3 The AQUA Peptide Selection Process  

The AQUA peptide selection process employed during this study can broken down 

into three specific stages: (i) The generation and initial screening of the 

candidate peptides (during which a theoretical digestion of the target protein is 

performed with a range of proteases and each candidate peptide screened); (ii) 

The alignment of each candidate peptide against the host proteome (through the 

use of a protein basic local alignment search tool (BLASTP)), and; (iii) Screening 

each remaining candidate peptide for sequence flaws, through comparing it to 

the AQUA peptide selection criteria (Figure 2-1). 

 

 
Figure 2-1: The three stages of selection employed when choosing an AQUA 
peptide. Described are the three specific stages of peptide selection employed 
during the selection of an AQUA peptide, including the theoretical digestion of 
the target protein sequence and the screening of each candidate peptide against 
the AQUA peptide selection criteria, the BLASTP based alignment of each 
remaining candidate peptide against the host proteome, and the comparison of 
each remaining candidate peptide, so as to determine which is the most 
applicable for an LC-MS based quantitative analysis. 
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2.3.1 Initial Candidate Peptide Screening 

Following the theoretical digestion of the sequence unique to the target protein 

with a range of proteases, each candidate peptide was screened, so as to 

determine its length (with a length of between 6–15 amino acids being 

mandatory), to ensure it contained an amino acid residue suitable for stable 

isotopic labelling (either Ala, Arg, Ile, Leu, Lys, Phe, Pro or Val), and so as to 

determine the percentage of the candidate peptides sequence which was 

composed of hydrophobic amino acid residues (with a value of greater than 10%, 

but less than 50% being optimal). Those candidate peptides which fell outside 

these selection criteria were eliminated, while those peptides which conformed 

where subjected to a BLASTP based alignment. 

 

2.3.2 BLASTP Based Alignment 

So as to determine if the sequence of each candidate peptide was unique within 

its host proteome, each peptide was subjected to a BLASTP based alignment. 

Those peptides which were found to originate from several protein species were 

eliminated, while those candidate peptides which were found to have a unique 

sequence were screened for sequence flaws, through comparing each to the 

AQUA peptide selection criteria. 

 

In setting up the BLASTP based search the “Non-redundant protein sequences 

(nr)” database was selected and the specific organism search restricted to 

“Homo sapiens (taxid:9606)”, finally the search algorithm was retained at its 

default setting “blastp (protein-protein BLAST)”, as shown on Figure 2-2. 
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Figure 2-2: The NCBI BLASTP search settings utilised when aligning candidate 
proteolytic peptides against the Homo sapiens proteome.  So as to test if a 
candidate AQUA peptide was unique to the Homo sapiens proteome, the NCBI 
BLASTP based search tool was utilised, screening the non-redundant database, 
with the search restricted to Homo sapiens (taxid:9606) and the BLASTP search 
algorithm selected. 
 
By way of an example, Figures 2-3 and 2-4 show the Blast output data resulting 

from a unique peptide and a non-unique peptide respectively. 
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Figure 2-3: An example of an NCBI BLASTP based alignment; a technique 
performed so as to identify which peptides are unique within their target 
proteome.  An NCBI BLASTP based alignment of A-Raf WT tryptic peptide 
IGTGSFGTVFR. Circled in green are the search results obtained from the BLASTP 
based alignment. From the alignment, five positive matches were identified; 
these were quickly screened by identifying which proteins displayed a 100% 
“query coverage”. Those proteins which are circled in blue achieved a 100% 
query coverage, while those proteins which are marked in red had a sequence 
coverage of less than 100%. Those candidate peptides which achieved a 100% 
sequence coverage from only their parent protein were marked as unique within 
the Homo sapiens proteome. 
 

 
Figure 2-4: An example of an NCBI BLASTP based alignment where the peptide 
is not unique to a single protein.  An NCBI BLASTP based alignment of A-Raf WT 
tryptic peptide WHGDVAVK. The brief search results shown on this image detail 
the top 15 hits for this peptide, when aligned against the Homo sapiens 
proteome. Due to the large number of proteins identified with a 100% query 
coverage, this peptide was seen as not being unique, and thus was eliminated 
from the search.   
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2.3.3 Screening Each Remaining Candidate Peptide for Sequence 

Flaws 

Having eliminated any peptides which did not possess a sequence unique within 

the host proteome, each remaining candidate peptide was compared to the 

AQUA peptide selection criteria, as was detailed in Section 2.1, so as to 

determine which candidate peptide was most applicable to a quantitative LC-MS 

based analysis. 

 

2.4 Residue Selection for Stable Isotopic Labelling 

Upon a suitable AQUA peptide having been selected, one final factor must be 

considered prior to ordering, the position of the stable isotopically labelled 

amino acid residue, assuming that more than one suitable residue exists. 

 

Due to the varying ion fragmentation techniques utilised in each mass 

spectrometer, the fragmentation spectrum achieved for a peptide will differ 

between instruments. By way of an example, on a QToF based instrument, such 

as a QSTAR Pulsar, a range of Y-ions would be expected, with relatively few low 

series B-ions. In comparison, triple quadrupole based instruments, such as the 

API 2000, yield a range of both Y- and B-ions, with further internal 

fragmentations possible, thus presenting with a more complex MS/MS spectrum 

(Sherwood et al., 2009, Paizs and Suhai, 2005).  

 

So as to enable the stable isotopically labelled fragment ions to be detected 

during MS/MS scans conducted on both QToF and triple quadrupole based 

instruments, labelled residues in close proximity to the N-terminal were 

preferentially selected, so as to enable the labelled residue to be detected in 

both low B- and high Y-ions. 
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3 Methods 

3.1 Cell Culture and Protein Production 

Each of the A-Raf plasmids used during this study were donated by Dr. Jens 

Rauch, a post doctorate researcher based at Systems Biology Ireland, University 

College Dublin (previously of the Beatson Institute of Cancer Research, 

University of Glasgow). Each of the A-Raf plasmids features a human 

complementary DNA (cDNA) A-Raf insert, pcDNA3.1(+) vector and an N-terminal 

start codon/FLAG tag “ATGGATTACAAGGATGACGACGATAAG” which results in 

the additional N-terminal peptide sequence “MDYKDDDDK”. 

 

Each of the PDE4B plasmids (PDE4B1, 2 and 3) used during this study were 

donated by Dr. George Baillie, a reader based at the Institute of Cardiovascular 

and Medical Sciences, University of Glasgow. Each plasmid contains a human 

PDE4B cDNA insert within a pEE7 vector (Celltech, UK). 

 

3.1.1 Plasmid Amplification 

A vial of Subcloning Efficiency DH5α cells (Invitrogen, USA) was transformed with 

1 ng of plasmid, as per the manufacturer’s instructions. A single colony was 

picked from the agar plate, cultured and the amplified plasmid extracted via 

Midiprep (Promega, USA), as per the manufacturer’s instructions. The amplified 

plasmid was eluted from the Midiprep cartridge in 600 µL of nuclease-free water 

and further purified via ethanol precipitation, reconstituting in 400 µL of 

nuclease-free water.  

 

3.1.2 Genejuice Based Transfection of HEK293 

The HEK293 cells used during this study were donated by Dr. Sarah Cumming, a 

research assistant based at the Institute of Molecular, Cell and Systems Biology, 

University of Glasgow. 
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A total of 1.7 x 107 HEK293 cells were plated to a 150 mm tissue culture dish and 

incubated for 24 hours at 37 degrees Celsius (oC), 5% (v/v) carbon dioxide (CO2). 

The plated cells were transfected with Genejuice, as per the manufacturer’s 

instructions, and incubated for a further 72 hours at 37 oC, 5% (v/v) CO2. Cell 

lysis was performed on ice, replacing the spent media with 1 mL of lysis buffer. 

Following a 45 minute period of cell lysis, the solution was centrifuged at 12,000 

rpm for 10 minutes, so as to pellet any cellular debris, while retaining the 

soluble proteome.  

 

3.1.3 Anti-FLAG Based Immunoprecipitation 

Anti-FLAG M2 agarose beads (Sigma-Aldrich, Germany) were added to the lysed 

cell solution and the FLAG-tagged transfected protein enriched, as per the 

manufacturer’s instructions. The agarose beads were washed in cell lysis buffer 

three times and the enriched transfected protein eluted in protein loading 

buffer, vortexing for 30 seconds and incubating at 99 oC for 15 minutes. 

 

3.1.4 Gel Electrophoresis 

The enriched protein was loaded to a 4-12% Bis-Tris Gel (Invitrogen, USA) and 

electrophoresed in an X-cell mini electrophoresis system (Invitrogen, USA) at 50 

volts (V) for 15 minutes, increasing to 150 V for 50 minutes. 

 

3.1.5 Coomassie Blue Staining 

The electrophoresed 4-12% Bis-Tris Gel was washed three times in water for five 

minutes before being stained in Coomassie Blue staining solution for 30 minutes. 

Furthermore, the gel was washed in water twice, each for a period of 60 

minutes. An image of the stained gel was captured on a G:Box (Syngene, India), 

running GeneSnap version 7.08. 
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3.1.6 Western Blotting  

The electrophoresed 4-12% Bis-Tris Gel was incubated in NuPAGE Transfer Buffer 

(Invitrogen, USA), containing 20% (v/v) MeOH, for 15 minutes before being 

transferred to an XCell II blotting module (Invitrogen, USA) and electrophoresed 

at 30 V for a period of 60 minutes, so as to transfer the protein to an Immobilon-

P Membrane (Millipore, USA). Post-electrophoresis, the PVDF membrane was 

washed for five minutes in Tris-buffered saline with 0.05% Tween (v/v) (TBST), 

three times, before being incubated in Western Blocking Reagent (Roche, 

Switzerland), as per the manufacturer’s instructions. The blocked membrane 

was again washed for five minutes in TBST, three times, and incubated for a 

further 60 minutes in primary antibody solution, containing 1:1000 anti-FLAG 

HRP conjugate antibody (Sigma-Aldrich, Germany) and 0.5% (v/v) Western 

Blocking Reagent in TBST. The blocked PVDF membrane was washed for five 

minutes in TBST, three times, and the gel imaged on a G:Box, running GeneSnap 

version 7.08, with BM Chemiluminescence solution (Roche, Switzerland).  

 

3.2 Recombinant DNA Techniques 

3.2.1 Agarose Gel Electrophoresis Based DNA Purification 

DNA purification was performed on a 1.5% (w/v) agarose gel, containing SYBR 

Green (Sigma-Aldrich, Germany), in a Mini Horizontal gel electrophoresis unit 

(Sigma-Aldrich, Germany) and submerged in TBE Buffer. The gel was 

electrophoresed at 90 V for 35 minutes and imaged on a G:Box, running 

GeneSnap version 7.08. 

 

3.2.2 Agarose Gel Based DNA Extraction 

The DNA gel band of interest was excised and the DNA was extracted via a 

QIAquick gel extraction kit (Qiagen, Netherlands), as per the manufacturer’s 

instructions. The concentration of DNA was determined through the use of a 

Nanodrop 1000 Spectrophotometer (Thermo Fisher, USA), as per the 

manufacturer’s instructions. 
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3.2.3 T4 DNA Ligation 

DNA ligation was performed with T4 DNA Ligase, as per the manufacturer’s 

instructions. 

 

3.2.4 Miniprep Plasmid Screening 

Upon a new plasmid having been developed and Subcloning Efficiency DH5α cells 

transformed, as detailed previously, 20 colonies per agar plate were picked, 

cultured and the amplified plasmid extracted via Miniprep (Promega, USA), as 

per the manufacturer’s instructions. The purified plasmid was restriction 

digested with an appropriate enzyme, purified via agarose gel based 

electrophoresis and imaged on a G:Box, so as to screen the colonies for the 

presence of a plasmid containing an insert of the correct size and in the 

intended orientation. 

 

3.2.5 Plasmid Sequencing and Alignment 

Plasmids to be sequenced were sent to DNA Sequencing & Services (Dundee, 

U.K.) and the resulting data files exported from Applied Biosystems Sequence 

Scanner Software, version 1.0, to Microsoft Notepad. Each sequence was stored 

in a FASTA file format and saved as a text file. The FASTA files were opened 

with Clustal X, version 2.1, and the sequence data aligned. 

 

3.3 AQUA Peptide Characterisation 

3.3.1 AQUA Peptide Re-Suspension 

AQUA peptides TV*VTVR and GL*NQDCCVVYR (*denoting the uniform stable 

isotopic amino acid residues (13C, 15N)) were ordered from Thermo Fisher and 

arrived suspended in 2% (v/v) MeCN at 5 picomole (pmol)/µL. Each remaining 

AQUA peptide was ordered from Sigma and arrived lyophilised in 1 nanomole 

(nmol) vials. Each vial was reconstituted in 200 µL of 2% (v/v) MeCN and re-

suspended via sonicating for 30 seconds and vortexing for a further 30 seconds. 
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3.3.2 AQUA Peptide Alkylation 

Immediately prior to use, each AQUA peptide was dried and re-suspended in 500 

mM AMBIC, reducing in 45 mM DTT at 60 oC for 30 minutes and alkylating in 100 

mM IAA added, incubating in darkness at room temperature for 30 minutes. 

 

3.3.3 Zip Tip Based Sample Cleanup 

The alkylated AQUA peptides were purified via Zip Tip, as per the 

manufacturer’s instructions, and eluted in 50% (v/v) MeCN, 0.1% (v/v) 

Trifluoroacetic acid (TFA). The purified peptides were subsequently dried, re-

suspended in 2% (v/v) MeCN and characterised on a range of mass 

spectrometers. 

 

3.3.4 Determining the Limit of Detection 

Three solutions (100 fmol, 10 fmol and 100 attomole (amol)) were prepared for 

each AQUA peptide, through diluting the 5 pmol/µL stocks in 2% (v/v) MeCN. 

These solutions were used to prepare eight AQUA peptide sample dilutions (5 

pmol, 1 pmol, 200 fmol, 50 fmol, 10 fmol, 2 fmol, 500 amol and 100 amol), each 

of which was diluted to 20 µL in 2% (v/v) MeCN, dried, re-suspended in AMBIC, 

reduced and alkylated.  

 

The alkylated peptides were Zip Tip purified and re-suspended in 20 µL of 2% 

(v/v) MeCN, 0.1% (v/v) FA. The limit of detection (LoD) for each peptide was 

determined through LC-MS/MS. 

 

3.4 Single Shot Based Peptide Analysis 

3.4.1 Peptide Preparation for MALDI-ToF 

The purified alkylated AQUA peptides were spotted onto either a 192 well 4700 

MALDI plate or a 384 well Ultraflex II MALDI plate and supplemented with HCCA 

matrix. 
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3.4.2 Data Capture on a 4700 MALDI-ToF Based MS 

The 192 well MALDI plate containing the peptide samples was loaded to an 

Applied Biosystems 4700 Proteomics Analyzer MALDI-TOF-TOF-MS (AB SCIEX, 

USA), equipped with an Nd:YAG laser (355 nm) running in linear mode. The 4700 

was run in positive ion mode with an acceleration voltage of +15 kV. The MS was 

set to detect ions of between 400 m/z and 2,000 m/z and final MS spectra was 

generated through summing 500 shots, each with an acquisition time of 0.5 ns. 

To better assess the samples distribution on the MALDI plate, MS data were 

gathered while manually moving the MALDI plate. Data analysis was performed 

on DataExplorer version 4.0. 

 

3.4.3 Data Capture on an Ultraflex II MALDI ToF Based MS 

The 384 well MALDI plate containing the peptide samples was loaded to a 

Bruker-Daltonics Ultraflex II TOF/TOF mass spectrometer (Bruker, USA) equipped 

with a nitrogen laser (337 nm). The Ultraflex II was calibrated before each batch 

against the monoisotopic [M+H]+ peaks of the PepMix II calibration standard 

(Bruker, USA). The Ultraflex II MS was run in positive ion reflector mode, with an 

acceleration voltage of +25 kV and a delayed extraction time of 150 ns. The MS 

was set to detect ions of between 400 m/z and 2,000 m/z and a final MS spectra 

generated through summing 500 laser shots, each fired with a repetition rate of 

50 Hertz (Hz). The laser power of the Ultraflex II was manually adjusted for each 

sample spot, setting it to a point just above the minimum power required for the 

detection of a recognisable spectrum. To better assess the samples distribution 

on the MALDI plate, MS data were gathered while manually moving the MALDI 

plate. Data analysis was performed on FlexImaging, version 2.0. 

 

3.4.4 Direct Injection on an API 2000 MS 

A borosilicate emitter was loaded with the alkylated peptide, re-suspended in 

50% MeCN (v/v), 0.1 % TFA (v/v), and the emitter fitted to an API 2000 ESI triple 

quadrupole mass spectrometer (AB SCIEX, USA). MS scanning was performed in 

positive ion enhanced MS (EMS) mode with a voltage potential of 900 V applied 
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between the emitter and the inlet orifice. The MS was set to detect ions of 

between 400 and 2,000 m/z, in profile mode, with a scan time of one second 

and the final MS spectrum obtained through summing the MS data collected over 

a five minute period. The source temperature was set to 150 °C. 

 

Upon the parent ion peak of interest having been identified in enhanced MS 

(EMS) mode, the API 2000 was switched to enhanced product ion (EPI) mode and 

the MS set to fragment the parent ion. The MS was set to detect product ions of 

between 50 and 1,000 m/z, with a scan time of one second. The collision energy 

was initially set to 5 electron volts (eV) and increased in steps of 5 until no 

fragment peaks could be detected above 400 m/z or until the maximum collision 

energy of 60 eV was reached. An EPI spectrum was obtained at each collision 

energy setting for a period of two minutes and data analysis was performed on 

Analyst, version 4.2. 

 

3.4.5 Direct Injection on a QSTAR Pulsar MS 

Direct sample injection performed on the QSTAR Pulsar MS (AB SCIEX, USA) 

utilised the same settings as those detailed for the API 2000 MS. MS scanning was 

performed, however, in “Q1 MS” mode, while product ion analysis was 

performed in product ion mode.  

 

3.4.6 Direct Injection on a QTrap 5500 MS 

Direct infusion was performed on a 5500 QTrap LC/MS/MS System (AB SCIEX, 

USA) equipped with a DuoSpray source, featuring both turboionspray and 

Atmospheric-pressure chemical ionization (APCI) apertures. The syringe pump 

flow rate was set at 20 µL/minute (min) through the turboionspray source and an 

ESI voltage of 6 kV applied between the source and MS orifice. All other settings 

were retained as detailed for the API 2000 MS. Data analysis was performed on 

Analyst, version 1.5.1. 
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3.4.7 Direct Injection on a TripleToF 5600 MS 

Direct infusion was performed on a TripleTOF 5600 MS (AB SCIEX, USA) under the 

same conditions as those detailed for the 5500 QTrap, utilising the QToF scan 

types detailed for the QSTAR Pulsar. Data analysis was performed on Analyst TF, 

version 1.5.1. 

 

3.5 LC-MS Based Peptide Analysis 

3.5.1 In-Gel Digest Preparation 

The Coomassie staining gel band of interest was excised, retaining 2 millimetre 

(mm) to each side of the gel lane and cutting at a fixed length of 10 mm, prior 

to dicing the excised gel band into 1 mm cubes. The gel pieces were washed in 

100 mM AMBIC for 30 minutes, partial dehydrated the gel pieces through diluting 

to a ratio of 1:1 (v/v) in MeCN, and completely dehydrating in MeCN. The gel 

pieces were re-hydrated in 100 mM AMBIC, prior to reducing in 45 mM DTT, 

incubating at 60 oC for 30 minutes, and alkylating via the addition of 100 mM 

IAA, incubating in darkness for 30 minutes. Excess IAA was removed through 

partially dehydrating the gel pieces by diluting to a ratio of 1:1 (v/v) in MeCN, 

and the complete dehydrating the gel pieces in MeCN. 

 

3.5.2 In-Gel Digestion 

The protein within the gel pieces was digested with one of several proteases, as 

per the manufacturer’s instructions. Upon completion of the digest, the digest 

buffer was diluted to a ratio of 1:1 (v/v) with MeCN. The gel pieces were 

incubated twice in 1% (v/v) FA for a period of 20 minutes before dehydrating the 

gel pieces, three times, in MeCN. All supernatants were pooled and dried. 

 

3.5.3 Spiked Digestion 

The reduced and alkylated gel pieces were re-suspended in 0.1% RapiGest SF 

(w/v) and incubated at 37 oC for ten minutes, prior to drying. Five picomoles of 

each AQUA peptide were transferred to one of two microcentrifuge tubes, those 
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which contained Cys, and those without. The Cys containing peptides were 

dried, re-suspended in 500 mM AMBIC, reduced with DTT and alkylated with IAA, 

before being transferred to the dried gel pieces, while those devoid of Cys were 

transferred directly. The in-gel digestion and extraction steps proceeded as 

described previously. Upon completion of the final in-gel extraction step, the 

pooled extract was diluted in 0.5% (v/v) TFA and the solution incubated at 37 oC 

for 45 minutes. The solution was centrifuged at 13,000 rpm for ten minutes and 

the supernatant decanted to a sterile microcentrifuge tube and dried to 

completion.  

 

3.5.4 HPLC on an Ultimate 3000 

The in-gel digest was re-suspended in 2% MeCN (v/v), 0.1% FA (v/v) and loaded 

onto an Ultimate 3000 HPLC autosampler (Dionex, The Netherlands), maintained 

at 4 oC. The HPLC was equipped with a µ-Precolumn Cartridge (300 µm × 5 mm, 

5 µm particle size) and a C18 capillary column (75 µm × 15 cm, 3 µm particle 

size), both packed with PepMAP 100 C18 stationary phase (Dionex, The 

Netherlands), maintained at 30 oC via an Ultimate 3000 column oven (Dionex, 

The Netherlands). A 20 µL sample loop was fitted to the autosampler and the 

sample injected via the user defined injection mode, controlled through the 

Chromeleon HPLC software package.  

 

The HPLC micropump flow rate was maintained at 0.3 µL/min, 2% (v/v) Buffer B 

(90% MeCN (v/v), 0.1% FA (v/v), and the loading pump maintained at 20 µL/min, 

100% (v/v) Buffer A (2% MeCN (v/v), 0.1% FA (v/v). A 60 minute gradient was 

programmed on the HPLC, increasing the ratio of Buffer B from 2-40% (v/v) 

Buffer B over 30 minutes, the column was washed for 10 minutes at 90% (v/v) 

Buffer B, and returned to 2% Buffer B for 20 minutes. The MS trigger was set to 

activate after 0.1 minutes.   
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3.5.5 LC-MS on an API 2000 MS 

The API 2000 was equipped with a NanoSpray II ESI ion source, fitted with a 

PicoTip emitter. A voltage of 2.2 kV was applied between the ESI needle and the 

inlet orifice. The MS was set to detect ions of between 400 and 1,500 m/z with 

both the Q1 and Q3 transmission windows set to low resolution. The source 

temperature was set to 150 °C and a rolling collision energy was utilised. A 60 

minute IDA scan was performed in positive ion mode, scanning in the MS 

spectrum and selecting the four most abundant peaks for MS/MS, assuming the 

IDA selection criteria were met (the ions were between 400 – 1,500 m/z, with a 

charge state of between +1 and +4). Ions were excluded from IDA selection after 

two MS/MS spectra had been acquired for the parent ion. 

 

Protein identification was performed though submitting the MS/MS data to an 

internal Mascot server, version 1.9 (Matrix Science, UK), aligning the scan data 

against the NCBInr (latest version at the time of processing) protein sequence 

database. Peptide tolerance was set to ±1.2 Da and the MS/MS tolerance was set 

to ±0.6 Da. The search was set to allow for one missed cleavage and for the 

variable modification of Met (oxidation), while the modification of Cys was set 

to fixed (carbamidomethylation).  
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4 The Absolute Quantification of Four A-Raf Isoforms 

4.1 Introduction 

Oncogene rapidly accelerated fibrosarcoma (Raf) was first cloned and 

characterised from a mouse with lymphoma and lung adenocarcinoma by Ulf 

Rapp back in 1983. Rapp identified the cause of the carcinoma to be an acutely 

transforming murine sarcoma virus (3611-MSV), which was later re-named viral 

Raf (v-Raf) (Baccarini, 2005, Rapp et al., 1983). Following on from this Sutrave 

and co-workers later isolated a second gene (v-mill), this time within an avian 

retrovirus (Mill Hill no. 2 (MH2)) from a spontaneous ovarian tumour within a 

chicken, which shared an 80% sequence homology with the nucleotide sequence 

of v-Raf, and a 94% sequence homology with the predicted amino acid sequence 

of v-Raf (Jansen et al., 1984, Moelling et al., 1984, Sutrave et al., 1984). Jansen 

later went on to confirm that both these strains of retrovirus (3611-MSV and 

MH2) contained orthologous protein sequence, while Moelling and Rapp showed 

v-Raf/v-Mill to be the first identified oncoproteins with both Ser and Thr kinase 

activity (Jansen et al., 1984, Moelling et al., 1984).  

 

A total of three human Raf kinase genes have since been identified (A-Raf, B-Raf 

and Raf-1), each displaying a unique cellular expression pattern, regulatory 

mechanisms, and potency when functioning within the context of the mitogen 

activated protein kinase (MAPK) pathway (Wojnowski et al., 2000). Despite these 

differences, each member of the Raf family shares the same general structure 

(Figure 4-1), with several highly conserved domains, including conserved region 

one ((CR1), which contains the Rat sarcoma (Ras)-binding domain (RBD), 

required for Raf to bind with Ras and for membrane recruitment, and the Cys-

rich domain (CRD), which functions as a secondary Ras-binding site, yet is 

important for Raf auto-inhibition), conserved region two ((CR2) which is rich in 

Ser and Thr residues, important for the inhibitory phosphorylation of Raf) and 

conserved region three ((CR3) which consists of the kinase domain, but which 

contains an activation segment whose phosphorylation is crucial for kinase 
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activity), each of which is separated by a region of more variable sequence 

(Wellbrock et al., 2004a, Matallanas et al., 2011).  

 

 
Figure 4-1: The structural organisation of Raf, showing the regions of 
conserved sequence.  Depicted above is the structure of a typical full-length 
Raf protein, including CR1, which contains both the RBD and the CRD, CR2, 
which is rich in Ser and Thr residues, and CR3, which consists of the kinase 
domain, but which also contains the kinase activation segment, important for 
the activation of Raf. 
 

The MAPK cascade, in which each of the Raf family members are involved, is a 

complex signal transduction network, controlling a range of cellular processes 

including cell growth, differentiation, proliferation and apoptosis (Kolch, 2000). 

These signalling events are triggered when extracellular growth factors, such as 

epidermal growth factor (EGF) (Grandis and Sok, 2004), or platelet-derived 

growth factor (PDGF) (Morrison et al., 1989), bind their corresponding membrane 

bound Tyr kinase receptors (EGFR and PDGFR, respectively). Cytoplasmic 

signalling proteins such as Src (sarcoma) are then recruited to the cellular 

membrane and bound to the receptor via the phosphotyrosine binding domain. 

This binding results in the phosphorylation of Src which in turn creates a binding 

site for the Src homology 2 domain of protein Grb2 (Cohen et al., 1995, Pawson 

and Nash, 2000, Schlessinger, 2000). Src binding the mitogen receptor also 

results in the recruitment of protein SOS to the plasma membrane, causing 

protein G (Ras) to release its bound guanosine-5'-triphosphate (GDP) and uptake 

a more abundant guanosine-5'-triphosphate (GTP) molecule, thereby taking its 

activated configuration (Schlessinger and Bar-Sagi, 1994, Kolch, 2000).  
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Figure 4-2: The activation and subsequent signalling cascade of the MAPK 
pathway.  A depiction of a mitogen, in this case EGF, activating the MAPK 
pathway through the stimulation of EGFR. This cascade results in the activation 
of a variety of transcription factors depending on the initial extracellular 
stimulus and which MAPKKK is activated. 
 

The activation of Ras thus begins the main kinase cascade of the MAPK pathway, 

with the binding of Raf (MAPKKK) (Hallberg et al., 1994, Leevers et al., 1994, 

Stokoe et al., 1994), phosphorylation of MEK1/2 (MAPKK) and subsequent 

phosphorylation of extracellular signal-regulated kinase (ERK) (MAPK) (Gardner 

et al., 1994, Marais and Marshall, 1996, Yan and Templeton, 1994). Finally the 

phosphorylated ERK can be translocated throughout the cell, where it can 

activate various transcription factors, resulting in a unique gene expression 

pattern depending on the specific stimulus the cascade was activated in 

response to (Kolch, 2000, Schlessinger and Bar-Sagi, 1994) (Figure 4-2). 

 

While each of the Raf kinase species has its own specific regulatory mechanisms, 

which will be discussed later, it has been noted that each species is capable of 

binding 14–3–3 proteins (Kolch, 2000), which are believed to be responsible for 
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stabilising Raf in each of its conformational states; including the inactive, 

partially active and fully active. All three Raf family members are also reported 

as being capable of binding lipids, which is thought to play a role in the 

translocation (membrane recruitment) and/or regulation of Raf kinase activity 

(Daub et al., 1998, Ghosh et al., 1996, Kuroda et al., 1996).  

 

While each of the Raf kinases are expressed within human tissue, the expression 

of A-Raf and B-Raf was initially thought to vary between tissues, while Raf-1 was 

thought to be expressed ubiquitously, providing a basal level of Raf activity in all 

human cells (Wojnowski et al., 2000, Storm et al., 1990). More recently however 

A-Raf has also been shown to be expressed ubiquitously (Storm et al., 1990), and 

while the tissue specific expression pattern of B-Raf still appears restricted, it 

has been shown to be the most powerful activator of the MAPK pathway (Araujo 

et al., 2012), suggesting each isoform may fulfil a specific function in cellular 

signalling. 

 

4.1.1 Raf-1 

Raf-1 was initially thought to be the only member of the Raf family to be 

ubiquitously expressed, with similar levels of transcripts identified in most 

human tissue types. This initially led scientists to believe that the function of 

Raf-1 may be to provide a basal level of Raf kinase activity within all cells 

(Storm et al., 1990). Further to this, Raf-1 was found to be regulated by a 

housekeeping type promoter, further supporting the view that A-Raf and B-Raf 

may have played more specific roles in specialised tissues (Hagemann and Rapp, 

1999). More recently Huser et al. (Huser et al., 2001) and Mikula et al. (Mikula 

et al., 2001) explored the function of Raf-1 in fibroblast cells isolated from Raf-1 

−/− knockout mice, identifying Raf-1 deficient mice to suffer widespread 

apoptosis and to die in utero. While no alteration in ERK activation were 

detected (as B-Raf can fully compensate for the loss of Raf-1 in MAPK signalling), 

the loss of Raf-1 did increase the susceptibility of the cells toward apoptosis, as 

Raf-1 is required for the suppression of both proapoptotic mammalian sterile 20-

like kinase (MST2) and apoptosis signal-regulating kinase 1 (ASK-1) (Hurst et al., 
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1996, Mikula et al., 2001). In brief, MST kinases are cleaved by caspases during 

cell apoptosis, releasing a constitutively active MST kinase domain which 

translocates to the nucleus and phosphorylates histone 2B, eventually inducing 

DNA fragmentation (Romano et al., 2010). ASK-1 meanwhile is activated in 

response to various types of stress, and in its constitutively active form can 

phosphorylate both c-Jun N-terminus kinase (JNK) and p38. RAF2 and TRAF6 are 

subsequently recruited to the ASK1 signalosome where they promote ASK1-

dependent cell death and inflammatory cytokine production (Soga et al., 2012). 

 

An alternatively spliced Raf-1 isoform has recently been reported. This isoform 

differs from the wild type in that it lacks exon three, located within the Raf-like 

Ras-binding domain. Any functional consequences which result from this 

variation remain as yet unknown (He et al., 2009). 

 

4.1.2 B-Raf 

B-Raf was first identified by Marx et al. due to its transduction into the genome 

of an acute mitogenic retrovirus species (IC10), capable of transforming chicken 

embryonic neuroretina cells in primary culture (Marx et al., 1988). 

Simultaneously its human ortholog was also identified in NIH 3T3 cells, 

transfected with DNA from Ewing sarcoma (Ikawa et al., 1988). 

 

Until recently B-Raf was thought to play a niche roll in cellular signalling (Storm 

et al., 1990, Wojnowski et al., 2000), due in part to its somewhat restricted 

expression pattern (mainly localised to within the central nervous system 

(Barnier et al., 1995, Storm et al., 1990)), at least in comparison to Raf-1. In the 

last decade however it has been reported that immunoprecipitated (IP) B-Raf 

has a much stronger affinity for MEK than that of Raf-1, suggesting that it may 

yet play a major role in MAPK signalling (Huser et al., 2001). This increase in 

kinase activity is thought to result from the activation of B-Raf requiring fewer 

phosphorylation events than either Raf-1 or A-Raf (Wellbrock et al., 2004b). An 

in vivo experiment exploring this variation in Raf-MEK binding affinity led to the 

preparation of several knockout mice, including B-Raf -/-, A-Raf -/- and A-Raf -
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/Y (where A-Raf is located on the X chromosome). The fibroblast cells isolated 

from the B-Raf -/- knockout mice were found to yield approximately a 30% 

decreased in ERK phosphorylation when compared to wild-type cell lines 

(Pritchard et al., 2004, Wojnowski et al., 2000). This is in contrast to A-Raf -/- 

and -/Y fibroblast experiments, where no significant changes in phosphorylation 

were recorded (Huser et al., 2001, Mercer et al., 2002, Mikula et al., 2001). Due 

to this high kinase activity, B-Raf is highly regulated within its inactive state. 

Inactivated B-Raf is maintained in an auto inhibitory conformation with the 

carboxy-terminus (C-terminus) kinase domain and the N-terminus regulatory 

region being involved in an intramolecular interaction (Terai and Matsuda, 

2005). In addition, B-Raf is phosphorylated at both Ser 365 (located within the 

CR2 domain) and Ser 429 residues, further down regulating the kinase activity of 

the B-Raf. 

 

In the case of B-Raf activation, the auto inhibitory conformation is released upon 

B-Raf binding a GTPase (Ras in the case of the MAPK pathway), ultimately 

resulting in the phosphorylation of residues Thr 599 and Ser 602 within the 

active site (Mason et al., 1999, Peyssonnaux and Eychène, 2001, Wan et al., 

2004, Zhang and Guan, 2000). Despite this regulation, B-Raf is still seen as being 

the least regulated of the Raf kinases. Perhaps this is why B-Raf is so commonly 

mutated to a constitutively active state in human carcinoma (Abraham et al., 

2000).  

 

The most common mutation leading to the activation of B-Raf in human cancer 

results from a point mutation within the highly conserved Glycine-rich loop, a 

component of the activation segment located within the kinase domain. This 

substitution is detectable in approximately 70% of primary melanomas (Davies et 

al., 2002), in 10% of colorectal cancers (Di Nicolantonio et al., 2008), and in 30–

70% of papillary thyroid carcinoma (Kimura et al., 2003), and involves Val 600 

being replaced with a Glu; a change which is thought to contribute to 

tumorigenesis by markedly increasing the basal kinase activity of B-Raf and 

stimulating constitutive ERK phosphorylation (Prahallad et al., 2012). 
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An additional route of B-Raf tumorigenesis was recently identified in a human 

thyroid papillary carcinoma (Ciampi and Nikiforov, 2005). This route of 

activation involved the proteins N-terminus (responsible for the regulation of the 

kinase domain) being truncated and the kinase domain fused to staphylococcal 

nuclease and tudor domain containing 1 (SND1) (Dillon et al., 2011), leading to 

the constitutive activation of B-Raf (Ikawa et al., 1988, Marx et al., 1988). 

 

In the case of B-Raf isoforms, several reports suggest that complex alternative 

splicing is indeed undertaken, adding an additional level of regulation to the 

kinase. These isoforms have been shown to arise from the alternative splicing of 

exons 8b and 9b, which are unique to B-Raf and located between conserved 

regions two (cysteine rich domain) and three (kinase active site). This 

alternative splicing has been shown to yield at least ten tissue specific B-Raf 

isoforms (Barnier et al., 1995, Hingorani et al., 2003). While the mechanism 

regulating the alternative splicing of B-Raf remains unclear, a function has been 

proposed for these structural abnormalities; modifications resulting from the 

alternative splicing of exon 9b have been shown to increase both MEK kinase 

activity and the transformation efficiency of B-Raf. However, isoforms which 

result from the alternative splicing of exon 8b have been shown to have the 

opposite effect (Hmitou et al., 2007). A proposal has also been made as to the 

route through which the kinase activity of B-Raf is altered by these splice 

isoforms. It is believed that the presence of these exons modulate the ability of 

the protein’s N-terminus to interact with the C-terminus kinase domain, a 

mechanism otherwise used to inactivate B-Raf (Hmitou et al., 2007). 

 

4.1.3 A-Raf 

The function of A-Raf has been misinterpreted since its accidental discovery 

back in 1987 (Ishikawa et al., 1987). A-Raf was firstly thought to be tissue 

specific, a result of both the ubiquitous expression of Raf-1 and the variable 

levels of A-Raf expression within different tissue types (Storm et al., 1990, 

Wojnowski et al., 2000). Furthermore, being a member of the Raf family it was 
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assumed that A-Raf would exhibit some form of MEK kinase activity, while in fact 

any kinase activity exhibited by A-Raf is hard to detect (Huser et al., 2001). 

 

While A-Raf expression is ubiquitous, the concentrations expressed within a 

range of cells are indeed highly variable. The highest concentrations of A-Raf 

have been identified in urogenital tissues (kidney, testis, epididymus and ovary) 

while the lowest concentrations have been identified in neuronal tissue (Storm 

et al., 1990). The protein expression pattern exhibited by A-Raf suggests that it 

may be in-part regulated by steroid hormone receptors, which are also 

expressed at high levels in steroid hormone-responsive urogenital tissues (Lee et 

al., 1996). 

 

In comparison to the sequences of both Raf-1 and B-Raf, several single residue 

N-terminus substitutions have been identified in A-Raf. It is thought that these 

substitutions may be partially responsible for the limited kinase activity of the 

isoform, with Tyr 296 in particular playing a central role (Baljuls et al., 2007). 

This low kinase activity suggests that A-Raf may fulfil an alternative function 

within the cell (Huser et al., 2001), a hypothesis which is supported by A-Raf -/- 

knockout experiments, where the removal of A-Raf was found to have no 

significant effect on the levels of phosphorylated MEK (Pritchard et al., 2004, 

Wojnowski et al., 2000). Furthermore, the ERK based feedback phosphorylation 

of A-Raf (Thr-253/Ser-257/Ser-259) appears to positively regulate A-RAF activity 

(Baljuls et al., 2008), suggesting a possible role in post signalling protein 

recovery (Nekhoroshkova et al., 2009). 

 

Recent publications regarding A-Raf suggest the existence of several isoform 

species (Rauch et al., 2011). This research suggests that high levels of 

heterogeneous nuclear ribonucleoprotein H (hnRNP H) (known to alternatively 

splice c-src, bcl-x, plp/dm20, Drosophila nanos, HIV-1 splicing substrates and 

rodent tropomyosin) are required for the expression of full length A-Raf (hereby 

referred to as A-Raf wild type. (A-Raf WT)), whereas no effects have been 

documented on the expression of either full-length Raf-1 or B-Raf (Rauch et al., 

2010). When hnRNP H is expressed at a low level, or indeed in the absence of 
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hnRNP H, an alternatively spliced 171 amino acid isoform can be detected 

(Rauch et al., 2011), this new isoform, termed A-Raf Short, is discussed further 

in Section 4.1.3.2. 

 

4.1.3.1 A-Raf WT 

Further to the mouse embryonic fibroblast knockout experiments described in 

Section 4.1.3, Pritchard et al. designed a second set of knockout experiments so 

as to determine the function of A-Raf WT (Pritchard et al., 1996). From this 

work both A-Raf -/- and A-Raf -/Y knockout mice appeared to die between 7 and 

21 days after birth. Further analysis revealed these mice to display colon 

organogenesis abnormalities and neurologic defects which resulted in abnormal 

movement and proprioception. In review Rauch et al. commented that the 

pathological phenotypes observed in these A-Raf deficient mice seemed to 

suggest an increase in apoptosis, which may be due to a lack of control over the 

MST2 pathway (Rauch et al., 2010). Rauch et al. subsequently performed a small 

interfering RNA (siRNA)–mediated knockdown of either hnRNP H or A-Raf WT, 

each of which lead to MST2-dependent cell apoptosis. Further to the conclusion 

drawn from the A-Raf knockout experiments, this siRNA experiment helped to 

cement the important role that hnRNP H plays in the splicing of A-Raf WT (Rauch 

et al., 2010). This research suggests that A-Raf WT is necessary for the 

inactivation of MST2, and thus the prevention of apoptosis (Figure 4-3).  
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Figure 4-3: The cellular function and interaction of hnRNP H, A-Raf WT and A-
Raf Short.  In the presence of high levels of hnRNP H A-Raf WT is generated, 
binding to both MST2, thereby preventing apoptosis, and G-protein Ras, 
potentially regulating the MAPK pathway. In the presence of low levels of hnRNP 
H, or indeed in the absence of hnRNP H, A-Raf Short is generated, binding to 
active Ras, and exerting a dominant negative effect on the MAPK pathway yet 
having no influence on MST2, which if activated will signal cell apoptosis. 
 

4.1.3.2 A-Raf Short 

It was recently discovered that high concentrations of hnRNP H are required for 

the expression of A-Raf WT. In cells where hnRNP H levels are low, or indeed 

depleted, as is the case in most cell types, a new short A-Raf isoform is 

expressed (Rauch et al., 2011). This new isoform, termed A-Raf Short, has a MW 

of approximately 16 kDa and consists of some 171 amino acid residues.  The 

structure of this new protein lacks approximately 2/3 of the A-Raf WT C-

terminus, including CR3 (the Raf kinase domain) and CR2 while retaining the 

majority of CR1, including the Ras-binding domain, located on the N-terminus of 

Raf (Rauch et al., 2011). The generation of this alternative A-Raf Short mRNA 

results from the inclusion of introns two and four while correctly splicing out 
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introns one and three. The termination of mRNA translation in A-Raf Short 

results from the inclusion of intron four, where nucleotide 716 begins the 

generation of a premature stop codon (Rauch et al., 2011). In a recent 

publication detailing the expression of A-Raf short (Rauch et al., 2011), Rauch et 

al. comment that “intron inclusion is a rare event in alternative splicing and, in 

combination with preterminal stop codons, these transcripts are commonly 

prone to nonsense-mediated decay”. However both Northern and Western 

blotting against A-Raf Short showed both the mRNA and truncated isoform were 

detectable in cultured cells, in addition to human tissues (Rauch et al., 2011). As 

was the case with the A-Raf WT, tissue specific expression patterns were 

identified for A-Raf Short, with the placenta, kidney, pancreas, lung, and spleen 

exhibiting high levels of expression, while skeletal muscles, heart, liver, and 

colon contained only low levels of expression (Rauch et al., 2011). 

 

Due to the structure of A-Raf Short, it has been suggested that this isoform may 

play an opposing role to that of A-Raf WT in cell signalling. Firstly, due to the 

presence of CR1, including the Ras binding domain, this isoform has the ability 

to compete with A-Raf WT, and Raf’s in general, for activated Ras, and indeed 

displays a similar binding affinity to that of the wild type. This functionality was 

confirmed by Rauch et al. who found that A-Raf Short behaved as a dominant 

negative mutant, suppressing both Ras signalling and ERK activation. Secondly, 

due to the truncated C-terminus, A-Raf Short lacks the ability to prevent MST2 

associated proapoptotic signalling (Rauch et al., 2011).  

 

Further research into the biological significance of A-Raf Short by Rauch et al. 

found that head and neck carcinomas and colon carcinomas which over 

expressed hnRNP H were also those which expressed lower levels of A-Raf Short. 

Indeed the expression of A-Raf WT could enable uninhibited MAPK signalling, a 

possible pathophysiologic mechanism used by tumours to evade apoptosis (Rauch 

et al., 2011). 
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4.1.3.3 DA-Raf-1 and DA-Raf-2 

During a recent study by Yokoyama et al. into the molecular mechanisms 

through which G-protein M-Ras functions within the cell, the existence of two 

additional A-Raf isoforms were uncovered. The first of these isoforms, termed 

Deleted A-Raf 1 (DA-Raf-1), constituted a 186 amino acid protein resulting from 

the alternative splicing of the A-Raf gene, where intron six had been retained, 

giving rise to a premature stop codon starting at the second nucleotide of the 

intron (Yokoyama et al., 2007). DA-Raf-1 was found to contain the entire 

sequence from CR1, including the Ras-binding domain and Cys-rich domain, but 

lacked conserved regions 2 and 3, containing the Ser and Thr rich domain and 

the Raf kinase domain respectively (Wellbrock et al., 2004b, Yokoyama et al., 

2007). 

 

The function of DA-Raf-1 was found to be similar to that of A-Raf Short, binding 

activated Ras and acting as a dominant negative antagonist to the 

phosphorylation of ERK through the MAPK pathway. As a result DA-Raf-1 is 

thought to positively regulate myogenic differentiation by inducing cell cycle 

arrest, muscle-specific protein expression, and myotube formation (Yokoyama et 

al., 2007). 

 

The second isoform identified during the study was Deleted A-Raf 2 (DA-Raf-2), 

constituting a 153 amino acid protein, also resulting from the alternative splicing 

of the A-Raf gene. In this case intron five was retained, giving rise to a 

premature stop codon starting at the second nucleotide of the intron (Yokoyama 

et al., 2007).  

 

Besides confirming the ubiquitous expression of the DA-Raf species in a variety 

of mouse tissues, including the brain and heart, very little additional information 

was published by Yokoyama et al. (Yokoyama et al., 2007). Instead a subsequent 

publication by Nekhoroshkova et al. further addressed the function of these DA-

Raf isoforms. In this study the authors suggest that A-Raf WT and DA-Raf-2 are 

specifically localised to the recycling endosome and that DA-Raf-2 did not 

necessarily function as an inhibitor of mitogenic signalling (Nekhoroshkova et al., 
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2009). Instead Nekhoroshkova et al. proposed a new model of functionality for 

the entire A-Raf family (Figure 4-4), where Ras activates both Raf-1 and B-Raf, 

which in turn are responsible for the activation of the MAPK pathway. It is only 

then; upon the phosphorylation of ERK, that A-Raf WT is activated, interacting 

with ADP ribosylation Factor six GTPase (ARF6), possibly through EFA6, 

ultimately resulting in the recycling of endosome bound receptors 

(Nekhoroshkova et al., 2009). 

 

 
Figure 4-4: The cellular functions and signalling events associated with A-Raf 
WT and DA-Raf-2, as described by Nekhoroshkova et al.  Following the 
activation of the MAPK pathway (not fully depicted), A-Raf WT is activated via 
ERK based feedback phosphorylation. Activated A-Raf binds G-protein Ras where 
it activates ARF-6 GTPase, possibly through interacting with EFA6. In the 
presence of a high concentration of DA-Raf-2, A-Raf WT is prevented from 
binding Ras and thus ARF-6 activation is blocked (Nekhoroshkova et al., 2009). 
 

Regarding the function of the additional A-Raf isoforms, Nekhoroshkova et al. 

further suggest that DA-Raf-2 may act as a dominant negative antagonist to A-

Raf WT, much as was previously suggested for both A-Raf Short and DA-Raf-1 in 

the MAPK pathway (Nekhoroshkova et al., 2009, Rauch et al., 2011, Yokoyama et 
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al., 2007). In support of the model proposed by Nekhoroshkova et al., A-Raf, 

ARF6 and EFA6 were all found to be expressed at high levels within the Purkinje 

cells of the mouse cerebellum, while DA-RAF-2 was found to be expressed at a 

high level throughout the brain. Nekhoroshkova et al. viewed this pattern of A-

Raf expression to be of critical importance for rapid endocytosis and synaptic 

vesicle recycling within the brain, as required for the physiological functioning 

of neurons (Nekhoroshkova et al., 2009). 

 

So as to confirm the expression of these new DA-Raf isoforms within human 

tissue, Rauch et al. recently probed a total of 89 specimens collected from head 

and neck and colon biopsies, identifying the transcripts in only one of the 

samples. In conclusion the author commented that this profile of A-Raf 

expression fitted our current understanding of alternative splicing; where in 

general, only two of a given number of potential isoforms will be expressed 

within a tissue at the same time (Rauch et al., 2011, Wang et al., 2008a).  

 

4.1.4 A-Raf Literature Overview 

While the existence of A-Raf WT was first documented some 25 years ago 

(Ishikawa et al., 1987), the true function of this kinase in molecular signalling is 

only beginning to be realised, differentiating it from the standard MAPKKK role 

filled by the other members of the Raf family (Wellbrock et al., 2004b). 

 

Further to that of A-Raf WT, it has only been within the last few years that three 

A-Raf isoforms have been reported. These isoforms, while differing in sequence, 

all retain CR1, containing the Ras-binding domain and Cys-rich domain, yet lack 

both conserved regions two and three, which enable phosphorylation based 

regulation and Raf kinase activity respectively. Due to the structural qualities of 

these isoforms many researchers have concluded that they may act as dominant 

negative regulator of the MAPK pathway through acting as an antagonist to Raf 

(Nekhoroshkova et al., 2009, Yokoyama et al., 2007). As yet there are very few 

publications exploring the expression and function of these A-Raf isoforms, and 

those which do at times appear contradictory. For example, Yokoyama et al. 
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was the first to publish the sequences of both DA-Raf-1 and 2, stating that these 

isoforms may be involved in the regulation of Ras within the MAPK pathway 

(Yokoyama et al., 2007). Nekhoroshkova et al. later published a paper on the 

same isoforms, suggesting that DA-Raf-2 may instead be involved in the 

regulation of receptor recycling within endosomes (Nekhoroshkova et al., 2009). 

Both of these studies were however conducted within different cell lines, and 

indeed in different species, which may account for much of the functional 

variation observed. 

 

Most recently, Rauch et al. published a paper on the existence of A-Raf Short, 

showing this isoform to be involved in the regulation of Ras and the MAPK 

pathway, while in addition tested 89 tissue samples for DA-Raf 1 and 2, finding 

only one sample which expressed the isoforms (Rauch et al., 2011). As way of an 

explanation Rauch et al. noted that intronic sequence retention within mRNA 

was rare and when considered in combination with the detected premature stop 

codons, it was likely that these transcripts would suffer nonsense-mediated 

decay (Rauch et al., 2011). 

 

Our understanding of A-Raf and its splice isoforms is, therefore, still in its 

infancy. It may yet be many years until the true function of these proteins are 

uncovered. 

 

4.2 Project Aims 

Despite there being very few peer reviewed publications confirming the 

structures and functions of each of these A-Raf isoforms, they make excellent 

candidates for this project, in which it is hoped the absolute amount of each A-

Raf isoform within a sample can be calculated, based on the use of unique AQUA 

peptides. 

 

Ultimately, when fully established and optimised, this type of analysis should 

enable researchers to: (i) Identify which A-Raf isoforms are expressed within a 

tissue (through detecting isoform specific target peptides). (ii) Accurately 
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quantify each A-Raf isoform detected (through detecting both the isoform 

specific target and synthetic AQUA peptide), and (iii) Detect changes in 

expression ratio of the A-Raf isoforms under different physiological conditions. 

 

In order to achieve these ultimate technical aims, which are beyond the scope of 

a PhD project, a more specific set of project aims were devised. As such, during 

this project I aim to: (i) Screen each of the previously detailed A-Raf isoform 

sequences, identifying and selecting suitable AQUA peptides for the absolute 

quantification of each protein. (ii) Characterise each AQUA peptide/intrinsic 

target peptide and develop a suitable triple-quadrupole based MRM acquisition 

method for the identification of each peptide within a single LC-MS run. (iii) 

Express suitable amounts of each A-Raf isoform, enabling the proteolytic 

digestions to be optimised using a range of commercially available proteases. 

(iv) Assess the accuracy and reproducibility of the AQUA technique through the 

use of a suitable number of digest replicates, and (v) Test the optimised 

analytical technique on both non-immunoprecipitated exogenously and 

endogenously expressed A-Raf WT. 

 

4.3 Methods Specific to A-Raf 

4.3.1 Proteolytic Digest Optimisation 

Lyophilised BSA was re-suspended in either 500 mM AMBIC, or 500 mM AMBIC 

with 0.1% (w/v) RapiGest SF surfactant. The BSA was reduced and alkylated with 

DTT and IAA, prior to the IAA being quenched through the addition of Cys. The 

alkylated BSA was digested with one of three proteases, trypsin, Glu-C or Lys-C, 

at an enzyme:substrate ratio of 1:10, 1:20, 1:50, 1:100 or 1:200 (w/w), as per 

the manufacturer’s instructions. Following digestion, the solutions were vacuum 

centrifuged to completion and re-suspended in 2% MeCN, 0.1% FA (v/v). Each 

digest was separated on an Ultimate 3000 HPLC and analysed on an API 2000 MS. 

The MS/MS data was submitted to MASCOT and the percentage sequence 

coverage recorded. 
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4.3.2 Met Oxidation and Reduction 

4.3.2.1 DMSO Based Met Oxidation  

Myoglobin, Lysozyme and Lactoglobulin were re-suspended in 500 mM AMBIC, 

reduced with DTT and alkylated with IAA, prior to quenching with 100 mM Cys. 

The alkylated proteins were digested via the addition of 1:20 (enzyme:sustrate 

(w/w)) trypsin, as per the manufacturer’s instructions. The digested peptide 

solution was dried, prior to re-suspension in 500 mM Hydrochloric acid (HCl), 100 

mM DMSO and oxidised as described by Shechter (Shechter, 1984). The oxidised 

peptides were spotted to a 192 well MALDI plate and analysed on an AB SCIEX 

4700 MALDI-ToF MS. 

 

4.3.2.2 DMS Based Met Sulfoxide Reduction  

The DMS based reduction proceeded as described for the DMSO based oxidation, 

however, the reduction was performed in 100 mM HCl, 300 mM of DMS, as 

described by Shechter (Shechter, 1984). 

 

4.3.2.3 Sodium Periodate Based Met Oxidation 

AQUA peptide VPTV*CVDMSTNRQQ was reduced with DTT and alkylated with IAA, 

prior to being combined with 125 pmol of sodium periodate in 10 mM 2-(N-

morpholino)ethanesulfonic acid (Mes), pH 6.0. The oxidation proceeded as 

described by Wolschner et al. (Wolschner et al., 2009). The oxidised peptides 

were Zip Tip purified, spotted to a 384 well MALDI plate and analysed via 

Ultraflex II MALDI-ToF MS. 

 

4.3.2.4 β-mercaptoethanol Based Met Sulfoxide Reduction  

Alkylated, oxidised AQUA peptide VPTV*CVDMSTNRQQ, prepared as described in 

Section 4.3.2.3, was dried and re-suspended in 1%, 10% or 20% (v/v) β-

mercaptoethanol, incubating at 99 oC for 60 minutes. The sample was vacuum 

centrifuged to completion, re-suspended in 0.1% (v/v) TFA and Zip Tip purified, 

spotting to a 384 well MALDI plate and analysing on an Ultraflex II MS. 
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4.3.3 MALDI Based Analysis of AQUA Peptide VPTV*CVDMSTNRQQ 

4.3.3.1 Characterisation of AQUA Peptide VPTV*CVDMSTNRQQ 

Lyophilised AQUA peptide VPTV*CVDMSTNRQQ was re-suspended in either 20 µL 

of DMSO or 20 µL of 10% FA (v/v), sonicated for 30 seconds and vortexed for a 

further 30 seconds, so as to ensure the complete re-suspension. Each was 

subsequently diluted to 200 µL in 0.1% FA (v/v). Peptide VPTV*CVDMSTNRQQ was 

vacuum centrifuged, re-suspended in 500 mM AMBIC, reduced with DTT and 

alkylated with IAA, prior to Zip Tip purification and analysis on an Ultraflex II 

MS. 

 

4.3.3.2 AnchorChip Based Sample Concentration 

AQUA peptide VPTV*CVDMSTNRQQ, reconstituted in either 20 µL of 10% DMSO 

(v/v), diluted to 200 µL in 0.1% FA (v/v), or 20 µL of 10% FA (v/v) diluted to 200 

µL in 0.1% FA (v/v), was spotted to a PAC II MALDI plate and washed in situ in 10 

mM ammonium phosphate, as per the manufacturer’s instructions, prior to 

analysis on an Ultraflex II MS. 

 

4.3.3.3 LC-MALDI Based AQUA Quantitation 

DA-Raf-2 transfected HEK293 IP was loaded to an SDS-PAGE gel and separated, 

stained, excised, reduced and alkylated. The protein bands were digested with 

either trypsin or Lys-C, as per the manufacturer’s instructions, in the presence 

of each DA-Raf-2 AQUA peptide. The digested peptide products were extracted 

and vacuum centrifuging to completion, re-suspended in 10% (v/v) β-

mercaptoethanol, in 100 mM AMBIC, and incubating at 99 oC for 60 minutes. 

 

The reduced DA-Raf-2 peptides were injected onto an Ultimate 3000 HPLC and 

spotted to a 384 well Ultraflex II MALDI plate via a Dionex Probot MALDI Spotter. 

The Probot spotter was controlled with the Dionex µCarrier software package, 

spotting to each MALDI well for a period of five minutes, so as to yield a total of 

12 MALDI spots per sample. The 0.3 µL/min HPLC flow rate was supplemented 

with a 0.3 µL/min flow of HCCA matrix solution from the Probot, giving a total 
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plated droplet size of 3 µL. The 384 well MALDI plate was analysed on an 

Ultraflex II MS, summing a total of 500 laser shots and comparing the peak 

heights for isotopic peaks M, M+1, M+2 and M+3. 

 

4.3.4 A-Raf TNT Based Protein Production 

A-Raf WT and A-Raf Short protein stocks were synthesised using a Quick Coupled 

Transcription/Translation kit, as per the manufacturer’s instructions. The spent 

TNT solution was immunoprecipitated, separated via SDS-PAGE and western 

blotted, so as to enable the yield of the TNT reaction to be assessed. 

 

4.3.5 A-Raf Short Plasmid Manipulation 

4.3.5.1 A-Raf Short Primer Design for SOE PCR 

The 3’ splice site, 5’ splice site and branch point (located 18-40 nucleotides 

upstream of the 3’ splice site (Rogozin et al., 2005)) were identified for intron 

two of the A-Raf Short cDNA plasmid insert, each of the three were then 

screened so as to identify a suitable site directed mutagenesis point, identifying 

a location where; (i) A single base pair could be changed and yet the triplet code 

of the exon would be maintained intact (retaining the exact protein sequence of 

A-Raf Short); (ii) A single base pair could be changed, and in doing so modifying 

the consensus sequence for the splice site (preventing it from being spliced); (iii) 

The base is located within 1 kb of a unique restriction digest site (enabling the 

final splice overlap extension (SOE) product to be accurately replicated, cleaved 

and purified) (Vallejo et al., 2008), and (iv) The creation of a site directed 

mutagenesis probe would adhere to the general rules of PCR primer selection. 

Further to the above rules for selecting a suitable site directed mutagenesis site, 

the final primer must also adhere to the general rules for PCR primer design, as 

detailed by Dieffenbach et al. (Dieffenbach et al., 1993), with the exception of 

primer length, which in the case of SOE PCR, must be long enough to allow for 

sufficient annealing to either side of the point mutation (between 18 and 24 

bases (Vallejo et al., 2008)). 
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4.3.5.2 SOE PCR Overlap Production 

The SOE PCR performed in this study, as is shown on Figure 4-5, was adapted 

from the protocol detailed by Heckman and Pease (Heckman and Pease, 2007). 

 

 
Figure 4-5: The steps involved in the SOE PCR based site directed mutagenesis 
of A-Raf Short.  As to conduct the first step of SOE PCR, two reactions are run, 
the first of which features the use of both T7 and ARAFMUTSAR primers, while 
the second features the use of both BGH reverse and ARAFMUTSAF primers, 
thereby creating two small PCR products which cross the mutagenic target site. 
The amplified PCR products are purified and combined, serving as templates for 
the second stage of SOE PCR, which when combined with T7 and BGH reverse 
primers, extended only the mutated sequences. 
 

Two 32 cycle PCR reactions were performed on an Eppendorf Mastercycler, the 

first of which contained both the T7 and ARAFMUTSAR (GCCATCCCGGACAGT 

CACTTGTGTGTATGTGCAGATGTAGG) primers, while the second contained both 

BGHrev and ARAFMUTSAF (CCTACATCTGCACATACACACAAGTGACTGTCCGGG 

ATGGC) primers. The components added to each reaction and the PCR program 

settings are detailed in Tables 4-1 and 4-2 respectively. 
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Table 4-1: The reaction products required for the first PCR stage of SOE PCR.  
The components required for the production of the overlapping SOE PCR 
fragments; the first ranging from the T7 promoter to the end of the 
ARAFMUTSAR primer, while the second ranges from the start of the ARAFMUTSAF 
primer to the BGHrev promoter. The component volumes listed in this table are 
those which are required per reaction. A control reaction was also run where the 
PCR template was replaced by water.  

Reagent: Volume per Tube (µL) Final Concentration 

10x Pfu Polymerase Buffer 5 1x 
2 mmol/µL Deoxyribonucleotide triphosphate (dNTP) Mix 5 0.2 mmol/µL 
100 pmol/µL ARAFMUTSAR/ARAFMUTSAF Primer 0.5 50 pmol/µL 

100 pmol/µL T7/BGHrev Primer 0.5 50 pmol/µL 
300 ng/µL A-Raf Short Plasmid 0.3 100 ng 

3.5 U/µL Pfu Polymerase 1 3.5 U 
Nuclease-free Water 37.7 - 
Total 50 - 

 

Table 4-2: The PCR program parameters for the first stage of SOE PCR.  The 
PCR cycle details used during the first stage of SOE PCR. As Pfu polymerase was 
utilised, an extension temperature of 72 oC was selected. Meanwhile an 
annealing temperature of 50 oC was selected, so as to enable the binding of the 
primers which contained a mismatch.  

Cycle Number Denature Anneal Extend 
1 95 oC for 3 minutes - - 

2 – 31 95 oC for 1 minute 50 oC for 1 minute 72 oC for 2 minutes 
32 - - 72 oC for 10 minutes 

 

The completed PCR reaction mixes were supplemented with DNA Gel Loading 

Buffer, subjected to agarose gel based purification, and extracted with a 

QIAquick spin column. 

 

4.3.5.3 SOE PCR Overlap Extension 

The purified PCR products from the T7/ARAFMUTSAR and BGHrev/ARAFMUTSAF 

reactions were combined at equal quantities (w/w) and heated to 65 oC for 10 

minutes. The water bath was switched off and the temperature slowly returned 

to that of the room, so as to aid with the annealing of the complementary 

sequence around the modified base. 

 

The second SOE PCR extension reaction was prepared as is detailed in Table 4-3 

and run using the same PCR program as was detailed in Table 4-2. 

 

 



121 

 

Table 4-3: The reaction products required for the second PCR stage of SOE 
PCR.  The components required for the extension of the overlapping SOE PCR 
fragments. The volumes listed on this table are those required per reaction. A 
control reaction was also run where the PCR template was replaced by water. 

Reagent: Volume per Tube (µL) Final Concentration 
10x Pfu Polymerase Buffer 5 1x 

2 mmol/µL dNTP Mix 5 0.2 mmol/µL 
100 ng/µL Purified PCR Mix 2 200 ng 

100 pmol/µL T7 Primer 0.5 50 pmol/µL 
100 pmol/µL BGHrev Primer 0.5 50 pmol/µL 
3.5 U/µL Pfu Polymerase 1 3.5 U 

Nuclease-free Water 36 - 
Total 50 - 

 

4.3.5.4 Restriction Digest of the Final PCR Product 

The final PCR reaction mix (which should be identical to the insert from A-Raf 

Short with the exception of the G→A substitution) was double restriction 

digested with BamHI and NheI, as per the manufacturer’s instructions. Likewise, 

pcDNA3.1(+) was  double restriction digested with BamHI and NheI, as per the 

manufacturer’s instructions. The restriction digested fragments were separated 

via agarose gel based electrophoresis, visualised, excised, purified and 

quantified. The insert and vector were ligated with T4 DNA Ligase, as per the 

manufacturer’s instructions, and transformed into library efficiency DH5α cells. 

The transformed cells were plated and approximately 20 colonies per plate 

screened for the presence of the modified plasmid. In brief, each colony was 

cultured and the amplified plasmid extracted via Miniprep. The purified plasmid 

was double restriction digested with BamHI and NheI, with the aim of identifying 

an insert with a length of approximately 555 bp. Where a suitable plasmid was 

identified, it was sent for sequencing, as to confirm the presence of the single 

base mutation. 

 

4.3.6 Non-Immunoprecipitated Exogenously Expressed A-Raf WT 

1.7x107 HEK293 cells were plated to a 150 mm tissue culture dish and 

transfected with the FLAG-tagged A-Raf WT plasmid, through the application of 

Genejuice transfection reagent, as per the manufacturer’s instructions. After 72 

hours the spent media was drained and the cells lysed through the addition of 

cell lysis buffer. The lysed cells were centrifuged at 12,000 rpm for 10 minutes 
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and the supernatant diluted in Protein Loading Buffer, incubating at 99oC for 15 

minutes. 

 

The exogenously expressed A-Raf WT cell lysate was loaded to an SDS-PAGE gel 

and electrophoresed, stained and the A-Raf WT gel band excised, reduced with 

DTT and alkylated with IAA, prior to digestion with trypsin in the presence of 

each of the A-Raf WT AQUA peptides. The proteolytic peptides were extracted, 

vacuum centrifuged and re-suspended in 2% MeCN, 0.1% FA (v/v), injecting onto 

an Ultimate 3000 and analysing via a QTrap 5500, running the A-Raf MRM 

acquisition method previously devised. 

 

4.3.7 Endogenously Expressed A-Raf WT 

Endogenous A-Raf WT expression was assessed in HEK293 cells incubated for 96 

hours, without the application of transfection. 

 

4.4 Results and Discussion 

4.4.1 AQUA Peptide Selection 

When searching for an AQUA peptide suitable for the quantification of a protein 

isoform, regions of sequence unique to that isoform must first be identified. 

These regions of sequence are theoretically digested, so as to yield a number of 

candidate peptides. Each of these candidate peptides is screened, so as to 

determine its length, if it contains an amino acid residue suitable for stable 

isotopic labelling, and to assess the percentage of hydrophobic residues from 

which the peptides sequence is composed. Each candidate peptide which is 

deemed initially suitable is aligned against the host proteome, using the BLASTP 

search tool, to determine if its sequence is unique within the host proteome, 

and finally each peptide is compared to the AQUA peptide selection criteria, so 

as to determine if it is suitable for an LC-MS based quantitative analysis. 
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Due to the repetitive nature of the AQUA peptide selection process, only the 

selection of an AQUA peptide suitable for the quantification of A-Raf WT will be 

detailed, in addition to which, each AQUA peptide selected will be listed. 

 

4.4.1.1 Sequence Unique to Each A-Raf Isoform 

The areas of sequence unique to each A-Raf protein isoform are shown on Figure 

4-6. Of the A-Raf isoforms, A-Raf WT was found to be the least homologous A-Raf 

isoform, containing some 421 residues of unique sequence.  

 

 
Figure 4-6: An alignment of each of the four A-Raf isoforms, highlighting the 
regions of sequence unique to each.  An alignment of each of the four A-Raf 
isoforms, based on Clustal X. Highlighted in yellow, green and blue are the 
regions of sequence unique to A-Raf Short, DA-Raf-1 and A-Raf WT respectively. 
In being unique these areas are the first targeted in the search for suitable AQUA 
peptides. 
 

From Figure 4-6 it was also clear that A-Raf Short has a reasonable amount of 

unique sequence, totalling some 69 unique residues, of which some 54 result 

from the inclusion of intron two, while the remaining 15 residues resulted from 
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the inclusion of intron four, prior to termination. DA-Raf-1 meanwhile has only 

one residue of unique sequence, resulting from the inclusion of intron six, while 

DA-Raf-2, which results from the inclusion of intron five, appears to be 

completely homologous to A-Raf WT. 

 

4.4.1.2 AQUA Peptide Selection for the Quantification of A-Raf WT 

Of the four known A-Raf protein isoforms, A-Raf WT contained the most unique 

sequence, and as such selecting an AQUA peptide suitable for the quantification 

of A-Raf WT should prove the least problematic. 

 

The first step in the search for a suitable AQUA peptide was thus to take the 

sequence unique to A-Raf WT (Figure 4-6) and to perform a trypsin based 

theoretical digest, screening each peptide so as to determine its length and 

amino acid composition (in relation to the number of hydrophobic residues), 

while searching for the presence of an amino acid suitable for stable isotopic 

labelling. For a peptide to be deemed suitable it should thus: be between 6 and 

15 amino acids in length, be composed of between 10 and 50% hydrophobic 

residues, and contain at least one residue suitable for stable isotopic labelling. 

Any peptide which did not meet these criteria was eliminated from the search. 
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Table 4-4: A theoretical digestion performed on the sequence unique to A-Raf 
WT.  A theoretical digestion performed on the sequence unique to A-Raf WT, 
based upon the use of trypsin. Peptides which resulted from this theoretical 
digestion were subsequently screened, and only those with a length of between 
6-15 amino acids, which were composed of between 10 and 50% hydrophobic 
residues and which contained an amino acid suitable for stable isotopic labelling 
were deemed initially suitable. 

Tryptic Peptide Fragment: 
Length 
(AA) 

Hydrophobic 
Residues (%) 

Contains AQUA 
Suitable AA 

Initially 
Suitable 

R-QHEAPSNRPLNELLTPQGPSPR-T 22 14% TRUE No 
R-TQHCDPEHFPFPAPANAPLQR-I 21 14% TRUE No 

R-IR-S 2 50% TRUE No 
R-STSTPNVHMVSTTAPMDSNLIQLTGQSFSTDAAGSR-G 36 22% TRUE No 
R-GGSDGTPR-G 8 0% TRUE No 

R-GSPSPASVSSGR-K 12 8% TRUE No 
R-K-S 1 0% TRUE No 

K-SPHSK-S 5 0% TRUE No 
K-SPAEQR-E 6 0% TRUE No 
R-ER-K 2 0% TRUE No 

R-K-S 1 0% TRUE No 
K-SLADDK-K 6 17% TRUE Yes 
K-K-K 1 0% TRUE No 

K-K-V 1 0% TRUE No 
K-VKNLGYR-D 7 29% TRUE Yes 

R-DSGYYWEVPPSEVQLLK-R 17 29% TRUE No 
K-R-I 1 0% TRUE No 
R-IGTGSFGTVFR-G 11 36% TRUE Yes 

R-GR-W 2 0% TRUE No 
R-WHGDVAVK-V 8 38% TRUE Yes 
K-VLK-V 3 67% TRUE No 

K-VSQPTAEQAQAFK-N 13 15% TRUE Yes 
K-NEMQVLR-K 7 43% TRUE Yes 

R-K-T 1 0% TRUE No 
K-TRHVNILLFMGFMTRPGFAIITQWCEGSSLYHHLHVADTR-F 40 38% TRUE No 
R-FDMVQLIDVAR-Q 11 55% TRUE No 

R-QTAQGMDYLHAK-N 12 17% TRUE Yes 
K-NIIHR-D 5 40% TRUE No 
R-DLK-S 3 33% TRUE No 

K-SNNIFLHEGLTVK-I 13 38% TRUE Yes 
K-IGDFGLATVK-T 10 40% TRUE Yes 

K-TR-W 2 0% TRUE No 
R-WSGAQPLEQPSGSVLWMAAEVIR-M 23 35% TRUE No 
R-MQDPNPYSFQSDVYAYGVVLYELMTGSLPYSHIGCR-D 36 28% TRUE No 

R-DQIIFMVGR-G 9 56% TRUE No 
R-GYLSPDLSK-I 9 22% TRUE Yes 
K-ISSNCPK-A 7 14% TRUE Yes 

K-AMR-R 3 33% TRUE No 
R-R-L 1 0% TRUE No 

R-LLSDCLK-F 7 43% TRUE Yes 
K-FQR-E 3 33% TRUE No 
R-EERPLFPQILATIELLQR-S 18 39% TRUE No 

R-SLPK-I 4 25% TRUE No 
K-IER-S 3 33% TRUE No 
R-SASEPSLHR-T 9 11% TRUE Yes 

R-TQADELPACLLSAAR-L 15 20% TRUE Yes 
R-LVP 3 67% TRUE No 
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From Table 4-4 it is clear that even when large regions of unique sequence are 

theoretically digested with trypsin, the majority of the candidate peptides 

identified are still unsuitable. Indeed, from the 47 peptides identified during this 

theoretical digest, only 14 were seen as being initially suitable; less than 30%.  

 

Each remaining candidate peptide was subjected to an NCBI BLASTP based 

alignment, identifying which of the 14 remaining peptides were unique to A-Raf 

WT within the Homo sapiens proteome. Where a peptide was identified as 

originating exclusively from the target protein, it was deemed unique. Otherwise 

the peptide was eliminated from the search.  

 

Table 4-5: An NCBI BLASTP based alignment of each A-Raf WT candidate 
peptide against the Homo sapiens proteome.  The results obtained from an 
NCBI BLASTP based alignment of 14 A-Raf WT candidate peptides against the 
Homo sapiens proteome. Peptides found to originate only from A-Raf WT within 
the Homo sapiens proteome were labelled as unique. 

Tryptic Peptide Fragment: Unique 
K-SLADDK-K No 

K-VKNLGYR-D Yes 
R-IGTGSFGTVFR-G Yes 

R-WHGDVAVK-V No 
K-VSQPTAEQAQAFK-N Yes 
K-NEMQVLR-K Yes 

R-QTAQGMDYLHAK-N No 
K-SNNIFLHEGLTVK-I No 
K-IGDFGLATVK-T No 

R-GYLSPDLSK-I No 
K-ISSNCPK-A Yes 

R-LLSDCLK-F No 
R-SASEPSLHR-T No 
R-TQADELPACLLSAAR-L Yes 

 

Following the completion of the NCBI BLASTP based alignment, only six of the 

initial 47 candidate peptides identified in Table 4-4 were found to be unique to 

A-Raf WT within the Homo sapiens proteome (Table 4-5), less than 13%. 

 

The next step in the identification of an optimal A-Raf WT candidate peptide 

was to further analyse each of the six remaining candidate peptides, through 

comparing each to the AQUA peptide selection criteria, so as to identify any 

sequence flaws which may affect the efficiency of the proteolytic digest. Shown 
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in Table 4-6 are the results obtained from the screening of each of the candidate 

peptides. 

 

Table 4-6: Further screening of the A-Raf WT candidate peptides against the 
AQUA peptide selection criteria.  A more thorough analysis of each A-Raf WT 
candidate peptide, identifying which of the six remaining peptides complied 
with each of the AQUA peptide selection criteria.  

Tryptic Peptide Fragment: Comments on Peptide Suitability: 

K-VKNLGYR-D C-terminus of peptide succeeded by Asp. 
KR-IGTGSFGTVFR-G N-terminus of peptide preceded by Lys. 
K-VSQPTAEQAQAFK-N Suitable AQUA peptide. 

K-NEMQVLR-K C-terminus of peptide succeeded by Lys. 
K-ISSNCPK-A Suitable AQUA peptide. 

R-TQADELPACLLSAAR-L Suitable AQUA peptide. 

 

From Table 4-6 it is clear that only three of the six remaining candidate peptides 

were somewhat suitable. Of the three peptides which were rejected, two were 

eliminated due to the presence of flanking basic residues, while the third was 

eliminated due to the presence of a flanking acidic residue. 

 

The final step in the selection a suitable AQUA peptide was thus to compare 

each of the three remaining candidate peptides, so as to determine which was 

most suited to an LC-MS based analysis, assessing both length and sequence, the 

results from which are shown below. 

  

Peptide VSQPTAEQAQAFK: 

Peptide VSQPTAEQAQAFK was cleaved with trypsin, and thus a minimum of two 

charges per peptide would be expected. Furthermore, the initial 

characterisation of this peptide (Table 4-4) suggests it to be composed of just 

15% hydrophobic residues, therefore no problems were foreseen with the use of 

this peptide during LC-MS/MS.    

 

Peptide ISSNCPK: 

Upon reviewing the sequence of peptide ISSNCPK, two consecutive Ser residues 

were detected, which in the presence of a low pH solution, can undergo 

dehydration. This reaction converts the Ser residues to dehydroalanine, and in 
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doing so yielding multiple MS peaks per peptide. As such, this peptide was 

eliminated from the search. 

 

Peptide TQADELPACLLSAAR: 

On reviewing the sequence of peptide TQADELPACLLSAAR, it was found to be 

composed of 15 amino acid residues, which while permitted, increases the 

chance of this peptide presenting with multiple charged states. So as to better 

explain the problem, when a peptide may exist in one of a number of charged 

states, the amount of peptide detected for any specific MS parent ion peak 

would be reduced, therefore increasing the amount of sample required for the 

LoD to be reached. As such this peptide was eliminated from the search. 

 

In conclusion, of the three candidate peptides, only one was deemed suitable for 

an AQUA based quantification, peptide VSQPTAEQAQAFK. This peptide was found 

to be of a reasonable length, while lacking any obvious sequence flaws and was 

found to conform to all of the AQUA peptide selection criteria.  

 

A-Raf WT serves also as an example of the problems associated with selecting a 

proteotypic peptide for the quantification of a protein isoform. From a 58 kDa 

protein, unique sequence totalling 421 amino acids was identified, from which, 

only 47 candidate peptides were identified, only one of which was found to be 

ideal. 

 

4.4.1.3 A-Raf AQUA Peptide Selection Overview 

Through the use of the AQUA peptide selection workflow, as was detailed in 

Chapter 2, it has been possible to select a single AQUA peptide for the 

quantification of all but one A-Raf isoform, A-Raf Short, which instead was 

quantified through the use of two AQUA peptides, each of which is listed on 

Table 4-7, and shown on Figure 4-7. 
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Table 4-7: The AQUA peptides selected for the quantification of each of the 
A-Raf isoforms.  Each of the AQUA peptides selected for the quantification of 
each of the four A-Raf isoforms. 
Peptide Protease Present in: Comments: 
VSQPTAEQAQAFK Trypsin A-Raf WT Located within CR3, and thus unique to A-Raf WT 

TVVTVR Trypsin A-Raf WT, DA-Raf-1 & 
DA-Raf-2 

Selected for the quantification of A-Raf Short, through 
subtracting the quantitation value obtained for this peptide 
from that obtained for peptide GLNQDCCVVYR 

GLNQDCCVVYR Trypsin All four A-Raf isoforms Selected for the quantification of all four A-Raf isoforms.  
LLTPQGPR Glu-C DA-Raf-1 The C-terminus peptide of DA-Raf-1 

VPTVCVDMSTNRQQ Lys-C DA-Raf-2 The C-terminus peptide of DA-Raf-2 

 

 
Figure 4-7: Each of the AQUA peptides selected for the quantification of the 
four A-Raf isoforms.  A Clustal X alignment of each of the four A-Raf isoforms. 
Highlighted in yellow is peptide TVVTVR, present in A-Raf-WT, DA-Raf-1 and DA-
Raf-2. Highlighted in green is peptide GLNQDCCVVYR, present in each of the four 
A-Raf isoforms. Highlighted in blue is peptide LLTPQGPR, present only in DA-Raf-
1. Highlighted in red is peptide VPTVCVDMSTNRQQ, present only in DA-Raf-2. 
Finally, highlighted in purple is peptide VSQPTAEQAQAFK, present only in A-Raf 
WT. 
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4.4.2 AQUA Peptide Optimisation 

4.4.2.1 The Oxidation and Reduction of Met 

4.4.2.1.1 The Modification of Met Within Three Intact Proteins 

So as to assess the efficiency with which DMSO and DMS oxidise and reduce Met, 

respectively; Lactoglobulin, Lysozyme and Myoglobin were reduced, alkylated 

and digested with trypsin, prior to being oxidised with DMSO, or reduced with 

DMS, and analysed via MALDI-ToF. Due to the repetitive nature of this 

experiment, only those results obtained for Myoglobin are detailed. 

 

 
Figure 4-8: The Met containing tryptic peptides identified in Myoglobin.  A 
theoretical tryptic digestion was performed on Myoglobin, so as to identify any 
Met containing peptides, following which the mass to charge ratios for both the 
oxidised and reduced species were calculated. 
 

From Figure 4-8 it is clear that just two Met containing peptides were identified 

during the tryptic digestion of Myoglobin, and while both peptides were 

detected via MS, only peptide HPGDFGADAQGAMTK appears to have been 

affected by either the DMS based reduction or the DMSO based oxidation (Figure 

4-9). 
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Figure 4-9: The DMS and DMSO based reduction and oxidation of Met 
containing Myoglobin peptide HPGDFGADAQGAMTK.  Following the trypic 
digestion of Myoglobin, peptide HPGDFGADAQGAMTK was oxidised with DMSO 
and reduced with DMS, prior to analysis based upon MALDI-ToF. Peptide 
HPGDFGADAQGAMTK is shown in an unmodified state (top spectra), following 
DMSO based oxidation (middle spectra) and after DMS based reduction (bottom 
spectra). 
 

From Figure 4-9 it is clear that peptide HPGDFGADAQGAMTK, in an unmodified 

state, is almost completely reduced. While this is good for gauging the efficiency 

with which DMSO oxidises this peptide, it makes assessing the DMS based 

reduction impossible. When oxidised with DMSO, peptide HPGDFGADAQGAMTK 

presented with a +16 Da peak, approximately 70% the height of reduced peak 

1,503 m/z, therefore, while the oxidation of peptide HPGDFGADAQGAMTK was 

at least partially successful, it is far from being complete. 
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Upon the completion of the DMS and DMSO based reduction and oxidation of 

Met, it was clear that both of these reactions were not as efficient as is required 

for a successful AQUA analysis, and as such were abandoned. When unmodified 

Met containing peptides presented in a partial oxidised state, the DMS and DMSO 

based reactions were reasonably efficient. In comparison, in those situations 

where the unmodified peptide was almost completely reduced, the efficiency of 

the DMSO based oxidation was poor. This would suggest that the reactions may 

only proceed in situations where the Met is susceptible to modification, perhaps 

somewhat influenced by the sequence of the surrounding amino acid residues. 

 

4.4.2.1.2 Met Modification within AQUA Peptide VPTV*CVDMSTNRQQ 

Met containing AQUA peptide VPTV*CVDMSTNRQQ was treated with DTT and IAA 

prior to the addition of sodium periodate, so as to completely oxidise the Met. 

Upon the completion of this reaction, a complete reduction was attempted, 

based on the use of β-mercaptoethanol. 
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Figure 4-10: The Sodium Periodate based oxidation and β-mercaptoethanol 
based reduction of AQUA peptide VPTV*CVDMSTNRQQ.  A screenshot of 
multiple spectra obtained from an Ultraflex II MS, in which the complete sodium 
periodate based oxidation and β-mercaptoethanol based reduction of AQUA 
peptide VPTV*CVDMSTNRQQ were attempted. The reduction of the Met sulfoxide 
back to Met was performed under three conditions, in 1%, 10% and 20% (v/v) β-
mercaptoethanol. All intended modifications are detailed in comparison to the 
singly charged, reduced parent ion peak, 1,578.7 m/z. 
 

From Figure 4-10 it is evident that the Met within AQUA peptide 

VPTV*CVDMSTNRQQ is almost completely reduced. When reacted with DTT and 

IAA, the parent ion peak (1,578.7 m/z) is replaced by two new peaks, the first 

with a mass shift of +57 Da, suggestive of IAA based alkylation, while the second 

has a mass shift of just +9 Da, explained by Kruger et al. to result from IAA 

based non-specific alkylation of Met. In situations where Met alkylation occurs, 
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two 57 Da modifications are incorporated, however, during ionisation, in-source 

fragmentation occurs, causing a loss of 105 Da (Kruger et al., 2005). It is 

therefore recommended that all future alkylation based reactions should be 

proceeded by an additional DTT reduction step, reducing any alkylated Met, so 

as to yield a single +57 Da MS peak (Kleanthous and Coggins, 1990). 

  

The alkylated peptide was subsequently oxidised with sodium periodate, while 

the literature suggested a single +16 Da (+73 Da from unmodified) peak should 

present, instead approximately nine peaks were detected, each at a different 

intensity. While it is conceivable that oxidation based damage may have 

degraded various elements within the peptide, it has proven possible to reduce 

each of these peaks back to a single +57 Da parent ion. Instead, as was the case 

during alkylation, these peaks may result from the sodium periodate causing 

several reversible side reactions, each of which is fragmented during ionisation. 

 

When a β-mercaptoethanol based reduction of the oxidised peptide was 

attempted, 1% (v/v) β-mercaptoethanol proved somewhat inefficient. When the 

level of β-mercaptoethanol was increased to 10% (v/v), however, almost all of 

the Met sulfoxide was reduced to Met. Increasing the level of β-mercaptoethanol 

further, to 20% (v/v), the same results were seen as those obtained in 10% (v/v) 

β-mercaptoethanol, but the reduced Met peak presented at a lower intensity. 

The loss of peak intensity at 20% (v/v) β-mercaptoethanol may result from the 

high levels of β-mercaptoethanol affecting the ability of the peptide to bind the 

Zip Tip resin, resulting in peptide loss prior to MALDI spotting. Similarly if Zip Tip 

purification was failing to remove the β-mercaptoethanol, then matrix 

crystallisation and ionisation may be affected. 

 

While the ability of sodium periodate to oxidise Met was clearly greater than 

that of the acidified DMSO, complete modification though oxidation was still 

seen to be the least attractive option. Through selecting the correct oxidative 

chemical, it was thought that undesirable side reactions could be avoided, yet 

non-specific oxidation persisted. Instead complete reduction in 10% (v/v) β-
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mercaptoethanol, immediately prior to LC-MS, may offer this experiment the 

greatest chance of success. 

 

4.4.2.2 Proteolytic Digest Optimisation 

When an AQUA based quantitative analysis is conducted, the digest efficiency is 

of critical importance. So as to identify the reaction conditions under which the 

maximum digest efficiency could be achieved for each utilised protease (trypsin, 

Glu-C and Lys-C), BSA was digested with each proteases at a range of 

enzyme:substrate ratios ((w/w) from 1:10 to 1:200), with or without the 

addition of RapiGest SF ALS, the results of which are shown on Table 4-8. 

 

Table 4-8: The optimisation of trypsin, Lys-C and Glu-C based digestions of 
BSA.  The results obtained when the digest efficiencies of trypsin, Lys-C and Glu-
C were assessed through the digestion of BSA at a range of enzyme:substrate 
ratios, with and without the addition of 0.1% (w/v) RapiGest SF surfactant. The 
results shown detail the percentage sequence coverages achieved. 

  

Protease Concentration 
(Enzyme:Protein, (w/w)) 

 Surfactant Protease 1:10 1:20 1:50 1:100 1:200 Average 
- trypsin 17% 10% 14% 15% 13% 14% 

0.10% trypsin 14% 16% 11% 14% 14% 14% 
- Glu-C 19% 15% 15% 11% 13% 15% 
0.10% Glu-C 33% 40% 30% 34% 27% 33% 

- Lys-C 4% 5% 6% 4% 7% 5% 
0.10% Lys-C 15% 16% 11% 8% 6% 11% 

Average 17% 17% 15% 14% 13% 
  

It should first be noted that the sequence coverages detailed on Table 4-8, while 

low, do not necessarily indicate the digest efficiencies of the proteases to be 

particularly low. These numbers instead indicate the portion of the BSA 

peptideome which was available for detection on an API 2000 MS. Ideally this 

would include all peptides between 8 and 25 residues in length (Brownridge and 

Beynon, 2011), which yield a m/z of between 400 and 1,500, with a single to 

quadruple charge state, which are suitable for retention on a C18 column, and 

elute within the 60 minute RP-LC gradient.  Further to these limitations, the API 

2000 has a long cycle time and a relatively high LoD, when compared to modern 

MS instruments; as a result, only the most abundant peptides were detected.  
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Each set of protease digests were also run at different times, with slightly 

different instrument setups, and as such the sequence coverages achieved 

between proteases cannot be compared. Indeed, as an alternative strategy, the 

number of peptides detected during each analysis may also have been 

compared. The aim of this experiment was, however, simply to assess if the 

RapiGest SF ALS surfactant had a positive impact on protein digest efficiency, as 

would be indicated through an increase in the BSA sequence coverage, and thus 

the exact method utilised was not critical. In addition, the BSA digest 

efficiencies achieved at a range of enzyme:substrate ratios (w/w) were also 

assessed. 

 

While the addition of the ALS surfactant yielded very little improvement in the 

sequence coverage achieved for BSA digested with trypsin, it appears to have 

made a substantial difference to the sequence coverages achieved for the BSA 

digested with either Glu-C or Lys-C (Table 4-8). In regard to detecting the 

optimum enzyme:substrate ratio (w/w), the results achieved for both the trypsin 

and Glu-C based digestions, without the addition of ALS, would suggest the 

highest sequence coverages were achieved with an enzyme:substrate ratio of 

1:10. These results, however, conflict with those obtained through the digestion 

of BSA in the presence of ALS, for which an enzyme:substrate ratio of 1:20 

yielded the highest sequence coverages. This conflicting data may be traced to 

several factors; firstly, in the absence of the ALS, more protease may have been 

required to obtain a higher sequence coverage. Alternatively, the initial high 

sequence coverages achieved (Trypsin and Glu-C 1:10 enzyme:substrate ratio) 

may have resulted from the optimised ESI spray and the presence of a new 

picotip emitter at the beginning of the batch, temporarily boosting the 

performance of the API 2000. 

 

From this brief experiment it was concluded that an enzyme:substrate ratio of 

at least 1:20 (w/w), should be achieved during each proteolytic digest, and that 

RapiGest SF should be utilised. 
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4.4.3 MRM Acquisition Method Design 

When utilising a triple quadrupole based MS, MRM scanning can be employed, 

thereby increasing the sensitivity of the MS towards the specific target ions, 

while reducing the background noise detected. Indeed this type of acquisition 

method is ideal for use during an AQUA based quantitation where only a limited 

number of target peptides are to be detected. MRM based acquisition methods 

do, however, require a great deal of manual optimisation, including the 

selection of a dwell time low enough to achieve several data points per eluting 

peak, yet high enough so as provide a reasonable sensitivity (Keshishian et al., 

2007), while requiring the selection of suitable fragment ions which are 

reasonably abundant and indeed the optimisation of the collision energy for each 

fragment ion (Kettenbach et al., 2011).  

 

4.4.3.1 MRM Selection and Optimisation 

So as to identify both the exact Q1 mass of each AQUA peptide, and to enable 

the selection of three Q3 fragment ion peaks per peptide, each AQUA peptide 

was reduced, alkylated, Zip Tip purified and loaded onto a Proxeon offline 

Borosilicate emitter and infused on an API 2000 MS. In brief, the m/z ratio of the 

parent ion was detected through the use of an EMS scan, collecting ions between 

300-1000 m/z over one second. So as to obtain a higher quality spectrum, the MS 

data collected over five minutes was summed, prior to analysis. Upon the MS 

parent ion having been detected, the API 2000 scan mode was switched to EPI, 

collecting ions between 100-1500 m/z over one second. Again the EPI data was 

summed for a total of five minutes, prior to analysis. 

 

In this chapter, only the characterisation of peptide VSQP*TAEQAQAFK will be 

detailed, a peptide which most commonly fragments at a single amino acid 

(Pro), and as such is one of the more difficult peptides for which to identify 

multiple fragment ions.  
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Figure 4-11: Both the MS and MS/MS spectra obtained for AQUA peptide 
VSQP*TAEQAQAFK on an API 2000.  (Left), The MS spectrum obtained for AQUA 
peptide VSQP*TAEQAQAFK during a direct injection, showing a single doubly 
charged peak at 706.6 m/z, which was subsequently selected as the Q1 mass of 
interest for all future A-Raf MRM  based analyses. (Right) The product ion 
spectra obtained from the fragmentation of peak 706.6 m/z, with a collision 
energy of 25 eV. Marked in red are the three Q3 fragments manually selected for 
use in the A-Raf MRM acquisition method. 
 

Figure 4-11 shows the intense doubly charged peak detected for peptide 

VSQP*TAEQAQAFK at 706.6 m/z. As no signal was detected for the singly or triply 

charged peptide species (data not displayed), peak 706.6 m/z was selected as 

the Q1 target and therefore subjected to EPI based fragmentation.  
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Figure 4-12: The predicted fragmentation spectrum for both synthetic and 
endogenous peptide VSQPTAEQAQAFK.  A predicted fragmentation spectrum 
for the synthetic (right) and endogenous (left) versions of peptide 
VSQP*TAEQAQAFK, as obtained from Protein Prospector: MS-Product, enabling a 
more rapid identification of suitable Q3 fragment ions. 
 

When Q1 ion 706.6 m/z was subjected to an EPI based scan, several intense 

fragment ions were detected. One of the most abundant peaks identified was 

1,096.6 m/z, which in comparison to a predicted fragmentation spectrum 

(Protein Prospector MS-Product, Figure 4-12) was identified as being the Y10 ion. 

As this peptide contained a Pro residue, the most likely residue for a 

fragmentation to occur, few other intense Y or B-ion peaks were detected. 

Further analysis however identified both the Y6 and B6 ions, which presented at 

692.4 m/z and 590.3 m/z, respectively, both of which were selected as suitable 

Q3 ions. 

 

The optimum collision energy for each fragment ion was determined through 

increasing the Q2 collision energy from 5 eV, in multiples of five, from a 

minimum of five to a maximum of 60. 

 

While selecting the most intense fragment ion for an MRM based acquisition 

method may seem sensible, thereby lowering the amount of peptide required 

per detection, Kettenbach et al. suggests that preference should be given to 

those fragments with a m/z ratio higher than their parent ion. As internal 

fragmentation ions are generally detected in the lower spectrum (below 400 



140 

 

m/z). Selecting a fragment with a higher m/z should therefore ensure less noise 

is detected for the transition (Kettenbach et al., 2011). Furthermore, ion trap 

instruments such as the API 2000 are less efficient at trapping ions with m/z’s 

below approximately 1/3 of the parent ion m/z, therefore selecting low MW 

fragment ions is best avoided (Hopfgartner et al., 2004). 

 

Upon selecting a total of three complete MRM transitions per peptide, the 

corresponding target peptide values were calculated based on the MW of the 

AQUA peptide minus the additional weight of the 13C and 15N labelling. An equal 

dwell time was selected for each A-Raf MRM transition, resulting in a total scan 

time of two seconds per cycle. This approach enabled the collection of 15 data 

points per transition, assuming an LC-MS peak width of 30 seconds. 

 

Shown on Table 4-9 is the complete A-Raf MRM acquisition method, detailing the 

transitions selected for each target and synthetic peptide, with the exception of 

Met containing AQUA peptide VPTV*CVDMSTNRQQ.  
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Table 4-9: The MRM transitions selected for the detection of each A-Raf 
target/AQUA peptide.  The MRM based acquisition method developed for the 
detection of each of the four A-Raf isoforms; including the Q1 and Q3 MRM 
transitions, the Q2 optimised collision energy and the dwell time selected for 
each transition (in milliseconds (ms)). 

Peptide (Q1) Fragment (Q3) Q1 m/z Q3 m/z Dwell Time (ms) Collision Energy (eV) 

TV*VTVR B2 340.7 207.1 75 5 
TV*VTVR Y3 340.7 375.2 75 15 
TV*VTVR Y4 340.7 474.3 75 10 

TVVTVR B2 337.7 201.1 75 5 
TVVTVR Y3 337.7 375.2 75 15 
TVVTVR Y4 337.7 474.3 75 10 

VSQP*TAEQAQAFK Y10 705.9 1096.6 75 25 
VSQP*TAEQAQAFK Y6 705.9 692.4 75 30 

VSQP*TAEQAQAFK B6 705.9 590.3 75 25 
VSQPTAEQAQAFK Y10 702.9 1090.6 75 25 
VSQPTAEQAQAFK Y6 702.9 692.4 75 30 

VSQPTAEQAQAFK B6 702.9 584.3 75 25 

GL*NQDCCVVYR B3 695.8 292.2 75 30 
GL*NQDCCVVYR Y2 695.8 338.2 75 30 
GL*NQDCCVVYR Y3 695.8 437.3 75 30 

GLNQDCCVVYR B3 692.3 285.2 75 30 
GLNQDCCVVYR Y2 692.3 338.2 75 30 
GLNQDCCVVYR Y3 692.3 437.3 75 30 

LLTP*QGPR Y7 444.3 774.4 75 15 
LLTP*QGPR Y6 444.3 661.4 75 15 

LLTP*QGPR Y5 444.3 560.3 75 25 
LLTPQGPR Y7 441.3 768.4 75 15 
LLTPQGPR Y6 441.3 655.4 75 15 

LLTPQGPR Y5 441.3 554.3 75 25 

 

4.4.3.2 Detection of AQUA Peptide VPTV*CVDMSTNRQQ 

When 5 pmol of AQUA peptide VPTV*CVDMSTNRQQ was analysed on an API 2000 

MS, no MS peak was detected. So as to test if this was a fault with the MS, a 

second sample was prepared and injected onto a QSTAR Pulsar MS, which also 

failed to detect the peptide. Both machines were later injected with a range of 

other AQUA peptides, each of which was detected at a reasonable intensity 

(data not shown).  

 

So as to test if the AQUA vials were empty, or if the peptide had failed to re-

suspend, two unopened vials of AQUA peptide VPTVCVDMSTNRQQ were 

reconstituted in either 20 µL of 10% DMSO (v/v), or 20 µL of 10% FA (v/v), each 

of which was then further diluted to 200 µL in 0.1% FA (v/v), and analysed on an 

Ultraflex II MS. 
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Figure 4-13: A MALDI-ToF based characterisation of AQUA peptide 
VPTVCVDMSTNRQQ, based upon the use of both MS and MS/MS.  (Left) The MS 
spectrum obtained from the ionisation of AQUA peptide VPTVCVDMSTNRQQ on an 
Ultraflex II MALDI-ToF MS. Through summing 500 shots it was possible to detect a 
singly charged peak at 1,640.8 m/z. (Right) The MS/MS spectrum obtained from 
the fragmentation of singly charged peak 1,640.8 m/z, marked in red is the 
fragment ion transition selected. 
 

Though a singly charged parent ion peak was detected in both solutions, with a 

mass to charge ratio of 1,640.8 m/z, the ion intensity was low, achieving only 

1,000 counts per 500 summed pulses (Figure 4-13). While not directly 

comparable, AQUA peptides VSQP*TAEQAQAFK and LLTP*QGPR, analysed at a 

similar concentration levels and under similar conditions, achieved ion 

intensities of 5x104 and 3.5x105, respectively. 

 

As peptide VPTV*CVDMSTNRQQ could be detected based upon MALDI ToF, an LC-

MALDI based method was developed for the quantification of this particular 

peptide, separating the target sample via SDS-PAGE, reducing, alkylating, 

digesting in the presence of each of the AQUA peptides, further reducing the 

Met residue in 10% 2-Mercaptoethanol (v/v), injecting onto an Ultimate 3000 

HPLC, and spotting the eluting solution to a 384 well MALDI plate via a Dionex 

Probot MALDI Spotter, prior to sample analysis on an Ultraflex II MS.  
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4.4.3.2.1 AnchorChip Based Sample Concentration  

In an attempt to increase the MS and MS/MS peak intensities obtained for AQUA 

peptide VPTV*CVDMSTNRQQ, an AnchorChip PAC II 384 well MALDI plate was 

tested, which is claimed to offer an increase in sensitivity of 10 and 100-fold 

over conventional ground steel MALDI plates. The PAC II MALDI plate offers this 

increase in sensitivity though the application of 800 nm hydrophilic “Anchors” 

set in a hydrophobic surround. When the sample is spotted to the PAC II MALDI 

plate, the combination of hydrophilic and hydrophobic surfaces concentrates the 

drying sample. Furthermore, the HCCA matrix is pre-applied to the PAC II MALDI 

plate, ensuring ideal analyte crystallisation conditions, while reducing sample 

preparation time. In situ sample purification may also be performed, eliminating 

Zip Tip based sample loss. 

 

AQUA peptide VPTV*CVDMSTNRQQ, reconstituted in either 20 µL of 10% DMSO 

(v/v), diluted to 200 µL in 0.1% FA (v/v), or 20 µL of 10% FA (v/v) diluted to 200 

µL in 0.1% FA (v/v), was spotted to a PAC II MALDI plate and washed in situ in 10 

mM ammonium phosphate. The DMSO containing peptide sample, however, 

failed to crystallise, instead remaining on the MALDI plate as a dense brown 

droplet, as is shown on Figure 4-14. The DMSO containing peptide sample was 

therefore not subjected to MALDI-ToF based analysis. 
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Figure 4-14: AQUA peptide VPTV*CVDMSTNRQQ spotted to an AnchorChip PAC 
II MALDI plate.  AQUA peptide VPTV*CVDMSTNRQQ was spotted to an AnchorChip 
PAC II MALDI plate, reconstituted in either 20 µL of 10% DMSO (v/v), diluted to 
200 µL in 0.1% FA (v/v), or 20 µL of 10% FA (v/v) diluted to 200 µL in 0.1% FA 
(v/v). While peptide VPTV*CVDMSTNRQQ reconstituted in 10% FA (v/v), diluted 
to 200 µL in 0.1% FA (v/v) crystallised on the PAC II MALDI plate, the DMSO 
containing samples failed to crystallise. 
 

When the FA containing peptide sample spot was subjected to MALDI-ToF based 

analysis, relatively intense HCCA matrix peaks were detected at 832 m/z and 

892 m/z (Smirnov et al., 2004), however, the VPTV*CVDMSTNRQQ parent ion 

peak (1,640.8 m/z) could not be detected (Figure 4-15). As the only difference 

between this analysis and those run previously was the use of the PAC II MALDI 

plate, then the application of this plate and in situ washing must have been 

responsible for the loss of the parent ion peak.  
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Figure 4-15: An MS spectrum of AQUA peptide VPTV*CVDMSTNRQQ, detected 
on an Ultraflex III MS.  The spectrum obtained when detecting AQUA peptide 
VPTV*CVDMSTNRQQ, re-suspended in 10% (v/v) FA, diluted to 200 µL in 0.1% 
(v/v) FA, on an Ultraflex II MS featuring an AnchorChip PAC II MALDI plate. AQUA 
peptide VPTV*CVDMSTNRQQ MS peak 1,640.8 m/z was not detected. 
 

As the PAC II MALDI plate is intended for use in proteomics, the components 

contained within this peptide sample should not affect the retention of the 

peptide VPTV*CVDMSTNRQQ. Indeed the only chemical the manufacturer 

cautions the use of is MeCN, which was not present in this sample. As such the 

use of the PAC II MALDI plate was abandoned and a conventional ground steel 

MALDI plate utilised.  

 

4.4.3.3 MALDI Based Characterisation of AQUA Peptide 

VPTV*CVDMSTNRQQ 

AQUA peptide VPTV*CVDMSTNRQQ was reduced, alkylated, Zip Tip purified and 

spotted to a 384 well MALDI plate prior to analysis on an Ultraflex II MS.  

 

As a singly charged peak was previously detected for peptide 

VPTV*CVDMSTNRQQ, at 1,640.8 m/z, the mass spectrometer was switched to 

MS/MS mode and CID performed at 6 x 10-6 Torr of Argon. During the MS/MS scan 

a single peak was found to dominate the spectrum at 864.1 m/z, which in 
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comparison to a predicted peptide fragmentation pattern (Protein Prospector: 

Ms-Product), was identified as being the Y7 ion (Figure 4-16). 

 

 
Figure 4-16: The predicted fragmentation pattern of both endogenous and 
synthetic VPTVCVDMSTNRQQ, as predicted by Protein Prospector: MS-
Product.  The predicted fragmentation pattern of peptide VPTVCVDMSTNRQQ, 
showing (left) the endogenous peptide and (right) synthetic AQUA peptide 
fragment pattern. 
 

While it was possible to detect both MS and MS/MS peaks for AQUA peptide 

VPTV*CVDMSTNRQQ, both were detected with low signal intensities, even when 

relatively high amounts of sample were analysed (5 pmol). As many endogenous 

proteins are expressed at femtomolar to atomolar levels within cell lysates 

(Seibert et al., 2005, He and Chiu, 2003), this MS/MS detection method may 

struggle to detect anything cruder than an enriched IP. The requirement for 

MS/MS fragmentation was thus abandoned for peptide VPTV*CVDMSTNRQQ, 

instead comparing only the parent ion peak heights. 

 

4.4.3.4 MRM Linear Response and LoD on an API 2000 

A total of eight dilutions of each AQUA peptide were prepared at amounts 

ranging from 5 pmol to 100 amol, each of which were reduced and alkylated 

prior to being injected onto an Ultimate 3000 LC and analysed on an API 2000 

MS, using the A-Raf MRM method previously devised. 
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Contained within the AB SCIEX Analyst 4.2 software bundle is an MRM 

quantitation algorithm capable of automatically detecting and integrating a peak 

area for each MRM transition, based on a peak elution time defined by the user. 

While this may seem useful, in reality this automation can be quite problematic. 

For example, if the defined peak elution time is off by a matter of seconds, an 

alternative peak will be selected within the specified time frame, yielding an 

incorrect quantification. Furthermore, when the peak area is automatically 

integrated, the baseline alignment is often incorrect, comparing the peak area 

of half the synthetic peak to the entire endogenous peak, based upon the 

selection of sub-optimal noise percentage and peak grouping settings. Finally, if 

even a single ion is detected within the peak elution window, this peak will 

automatically be selected as the target transition, and as a result, data will 

always be obtained for an MRM transition, even when no target peak was 

present. 
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Figure 4-17: The signal response and LoD automatically/incorrectly assigned 
to AQUA peptide TV*VTVR.  The peak areas/signal response obtained when 
three TV*VTVR transitions were automatically integrated with the IntelliQuan 
quantitation algorithm, present in Analyst 4.2, at eight different quantities, 
ranging from 5 pmol to 100 amol, on an API 2000 MS. The data are presented in a 
logarithm format, plotting the amount of peptide injected against the peak area 
detected. A linear trend line was fitted to each transition, showing the R2 values 
for each equation. In this case the automatic integration has been performed 
incorrectly, as background noise has continued to be integrated, even when no 
analyte peak is present. 
 

Figure 4-17 shows the results obtained when eight dilutions of AQUA peptide 

TV*VTVR were automatically integrated through Analyst 4.2. The peak areas 

obtain can be seen to level out when only a small amount of peptide was 

injected, leading to an intercept greater than zero, whereas under a linear 

response, with an intercept of zero, the peptide should simply fail to be 

detected. This was due to a minimum peak height not being specified in Analyst, 

and thus any noise detected within the specified peak elution timeframe was 

quantified. It is, therefore, important that manual peak integration is performed 

after each experiment (Figure 4-18), as was recommended by Keshishian et al. 

(Keshishian et al., 2007). 
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Figure 4-18: How target 
and synthetic peaks 
should be manually 
integrated for each MRM 
transition.  Each MRM 
peak should be manually 
integrated, so as to 
ensure an accurate LoD is 
assigned. In this case A-
Raf AQUA peptide 
GL*NQDCCVVYR, 
transition Y3 is shown, 
being identified at: A. 5 
pmol, B. 1 pmol, and C. 
200 fmol on a 5500 Qtrap 
MS. As the transition was 
not identified at 200 
fmol, then the limit of 
detection for A-Raf AQUA 
peptide GL*NQDCCVVYR 
should be recorded as 1 
pmol. 
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Figure 4-19: The signal response and LoD manually/correctly assigned to A-Raf 
AQUA peptide TV*VTVR.  The peak areas/signal response obtained when three 
TV*VTVR transitions were manually integrated with the IntelliQuan quantitation 
algorithm, present in Analyst 4.2, at eight different sample quantities, ranging 
from 5 pmol to 100 amol, on an API 2000 MS. The data are presented in a 
logarithm format, plotting the amount of peptide added, against the peak area 
achieved. A linear trend line was fitted to each transition, showing the R2 values 
for each equation. In this case only five of the eight data points were plotted, as 
no analyte peak was detected for the remaining three. 
 

Through removing the 2 fmol, 500 amol and 100 amol data points, the R2 values 

for each remaining linear alignment were seen to increase (Figure 4-19). Despite 

the data for both tables being integrated differently, the same conclusions can 

be drawn. A strong linear relationship was detected for the calibration line, 

down to 50 fmol, after which, the 10 fmol data point was less strongly 

correlated. This is due to the lower signal to noise ratio (SNR) obtained when 

only a small quantity of sample is injected, where obtaining an accurate peak 

area can prove difficult, as small peak integration errors can have a larger effect 

on the final quantity. As a linear response was confirmed for each A-Raf AQUA 

MRM transition, the LoD for each peptide was determined to be the lowest 

quantity at which each of the three Q3 transitions could be detected. For 

peptide TV*VTVR the LoD was thus set at 10 fmol, for GL*NQDCCVVYR the LoD 
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was set at 5 pmol, for LLTP*QGPR the LoD was set at 200 fmol and for 

VSQP*TAEQAQAFK the LoD was set at 1 pmol, assuming detection is performed 

on an API 2000 MS (Table 4-10).  

 

In situations where a non-linear response is detected, this may offer an 

indication of the peptide binding the sample vial, a process which will has a 

greater effect at lower peptide quantities. 

 

Table 4-10: The LoD’s achieved for each of the A-Raf MRM transitions on an 
API 2000.  The peak areas obtained when eight different quantities of each A-
Raf AQUA peptide, ranging from 5 pmol to 100 amol, were injected. Detailed are 
the peak areas, where the detected counts per second (cps) values were 
summed over the width of the peak. 

Peptide Fragment 5 pmol 1 pmol 200 fmol 50 fmol 
TV*VTVR B2 7.96E+05 1.52E+05 3.92E+04 8.37E+03 

TV*VTVR Y3 3.42E+05 6.71E+04 1.64E+04 3.96E+03 
TV*VTVR Y4 1.01E+06 1.88E+05 4.55E+04 9.95E+03 
GL*NQDCCVVYR B3 7.61E+02 0.00E+00 0.00E+00 0.00E+00 

GL*NQDCCVVYR Y2 6.33E+03 0.00E+00 0.00E+00 0.00E+00 
GL*NQDCCVVYR Y3 3.80E+03 1.20E+02 0.00E+00 0.00E+00 
LLTP*QGPR Y7 1.48E+04 1.64E+03 6.01E+02 0.00E+00 

LLTP*QGPR Y6 1.47E+05 1.84E+04 4.20E+03 0.00E+00 
LLTP*QGPR Y5 2.11E+05 2.86E+04 6.58E+03 0.00E+00 

VSQP*TAEQAQAFK Y10 5.15E+04 1.42E+04 2.36E+03 7.61E+02 
VSQP*TAEQAQAFK Y6 1.11E+04 2.88E+03 4.40E+02 0.00E+00 
VSQP*TAEQAQAFK B6 3.92E+03 1.60E+03 0.00E+00 0.00E+00 

Peptide Fragment 10 fmol 2 fmol 500 amol 100 amol 
TV*VTVR B2 2.72E+03 0.00E+00 0.00E+00 0.00E+00 
TV*VTVR Y3 8.01E+02 0.00E+00 0.00E+00 0.00E+00 

TV*VTVR Y4 2.76E+03 0.00E+00 0.00E+00 0.00E+00 
GL*NQDCCVVYR B3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

GL*NQDCCVVYR Y2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
GL*NQDCCVVYR Y3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
LLTP*QGPR Y7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

LLTP*QGPR Y6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
LLTP*QGPR Y5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
VSQP*TAEQAQAFK Y10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

VSQP*TAEQAQAFK Y6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
VSQP*TAEQAQAFK B6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 

During a review of the precision and accuracy of MRM based analyses, Addona et 

al. recommended that a LoD is selected at which the faintest of peptide peaks 

can be detected. Addona et al. does however recommend that quantifications 

are performed at the lower limit of quantification (LLOQ), rather than the LoD, 

a value approximately three times greater than the LoD (Addona et al., 2009). 

Based on the MRM data obtained, the lowest level at which each A-Raf isoform 
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can be quantified is 5 pmol, as set by the LoD for peptide GL*NQDCCVVYR. In 

regard to the LLOQ, a LoD of 5 pmol is already relatively high, and as such the 

LoD was retained as the single limiting factor. 

4.4.3.5 LoD on a QTrap 4000 

When access to a more sensitive triple quadrupole based mass spectrometer 

became available (QTrap 4000), the LoD for peptide GL*NQDCCVVYR was again 

tested, injecting the same amount of peptide (Table 4-11). 

 

Table 4-11: The LoD achieved for AQUA peptide GL*NQDCCVVYR on a QTrap 
4000 MS.  Eight different quantities of alkylated AQUA peptide GL*NQDCCVVYR 
were injected onto an Ultimate 3000 HPLC, and the peak area detected on a 
QTrap 4000, using the previously devised A-Raf MRM based acquisition method. 
Both the peak height and area are measured in cps. 

Fragment Amount Analyte Peak Area (cps) Analyte Peak Height (cps) Analyte SNR 
B3 1.5 pmol 2.85E+06 1.58E+05 6.72E+04 
Y2 1.5 pmol 1.23E+07 6.77E+05 3.06E+05 

Y3 1.5 pmol 9.53E+06 4.98E+05 3.39E+05 
B3 300 fmol 6.84E+04 3.74E+03 3.04E+03 

Y2 300 fmol 2.80E+05 1.65E+04 1.52E+04 
Y3 300 fmol 2.03E+05 1.04E+04 8.72E+03 
B3 60 fmol 1.47E+04 8.36E+02 1.08E+03 

Y2 60 fmol 6.38E+04 3.57E+03 2.57E+03 
Y3 60 fmol 5.21E+04 2.83E+03 1.47E+03 
B3 15 fmol 2.68E+03 1.05E+02 1.12E+02 

Y2 15 fmol 4.54E+03 2.25E+02 1.96E+02 
Y3 15 fmol 3.24E+03 1.99E+02 7.19E+01 

B3 3 fmol 0.00E+00 0.00E+00 0.00E+00 
Y2 3 fmol 0.00E+00 0.00E+00 0.00E+00 
Y3 3 fmol 0.00E+00 0.00E+00 0.00E+00 

B3 600 amol 0.00E+00 0.00E+00 0.00E+00 
Y2 600 amol 0.00E+00 0.00E+00 0.00E+00 
Y3 600 amol 0.00E+00 0.00E+00 0.00E+00 

B3 150 amol 0.00E+00 0.00E+00 0.00E+00 
Y2 150 amol 0.00E+00 0.00E+00 0.00E+00 

Y3 150 amol 0.00E+00 0.00E+00 0.00E+00 
B3 30 amol 0.00E+00 0.00E+00 0.00E+00 
Y2 30 amol 0.00E+00 0.00E+00 0.00E+00 

Y3 30 amol 0.00E+00 0.00E+00 0.00E+00 

 

In terms of instrument specification, the API 2000 is detailed as having a 2,400 

Da/sec quadrupole scan time, and an MRM LoD for Reserpine of 50 picograms 

(pg), with a SNR of less than 800. This equates to a LoD for Reserpine of 

approximately 82 fmol under ideal conditions. In comparison, the QTrap 4000 is 

detailed as having a 24,000 Da/sec quadrupole scan time and an MRM LoD for 
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Reserpine of 200 femtogram (fg), with a SNR of less than 1,200 and a CoV of less 

than 5%. This equates to a LoD for Reserpine of 330 amol under ideal conditions, 

250 fold lower than on the API 2000. 

 

From Table 4-11 it is clear that there is a substantial difference in the LoD 

achieved for AQUA peptide GL*NQDCCVVYR on the API 2000 and QTrap 4000. 

While the LoD was originally set to 5 pmol on the API 2000, the smallest quantity 

of peptide which could be injected and all three GL*NQDCCVVYR transitions 

detected, the LoD for the QTrap 4000 was set to 15 fmol, over a 300 fold 

difference, and indeed similar to the LoD changes stated in the instruments 

specifications. This instrument was, however, not available for use on a regular 

basis, and as such method development continued on the API 2000. 

 

4.4.3.6 LoD on a QTrap 5500 

Following the reduced LoD achieved for peptide GL*NQDCCVVYR on the QTrap 

4000 instrument, a QTrap 5500 instrument was tested under the same 

conditions, injecting the same amount of peptide.  

 

The QTrap 5500 is specified as to have a quadrupole scan speed of up to 20,000 

Da/sec and an MRM LoD for Reserpine of 50 fg, with a SNR of less than 2,000, 

and a CoV of less than 5%. The LoD of Reserpine was thus calculated at 

approximately 80 amol under ideal conditions, four fold lower than on the QTrap 

4000 instrument, and 1000 fold lower than on the API 2000 MS. If this increase in 

sensitivity were to translate directly to the LoD achieved for AQUA peptide 

GL*NQDCCVVYR, then the LoD for this A-Raf peptide should fall to just 5 fmol. 
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Table 4-12: The LoD achieved for AQUA peptide GL*NQDCCVVYR on a QTrap 
5500 MS.  Eight different quantities of alkylated AQUA peptide GL*NQDCCVVYR 
were injected onto an Ultimate 3000 HPLC and detected on a QTrap 5500, using 
the previously devised A-Raf MRM based acquisition method. Both the peak 
height and area are measured in cps. 

Fragment Amount Analyte Peak Area (cps) Analyte Peak Height (cps) Analyte SNR 

B3 5 pmol 1.02E+07 1.15E+06 4.65E+03 
Y2 5 pmol 5.39E+07 5.50E+06 4.21E+05 
Y3 5 pmol 4.14E+07 4.41E+06 1.24E+05 

B3 1 pmol 1.21E+05 1.68E+04 5.96E+01 
Y2 1 pmol 5.95E+05 7.37E+04 4.86E+03 
Y3 1 pmol 4.52E+05 5.59E+04 1.51E+03 

B3 200 fmol 0.00E+00 0.00E+00 N/A 
Y2 200 fmol 2.01E+05 2.10E+04 1.57E+03 

Y3 200 fmol 1.28E+05 1.35E+04 3.79E+02 
B3 50 fmol 0.00E+00 0.00E+00 N/A 
Y2 50 fmol 2.00E+04 2.28E+03 1.62E+02 

Y3 50 fmol 1.22E+04 1.72E+03 4.59E+01 
B3 10 fmol 0.00E+00 0.00E+00 N/A 
Y2 10 fmol 0.00E+00 0.00E+00 N/A 

Y3 10 fmol 5.96E+03 6.47E+02 1.76E+01 
B3 2 fmol 0.00E+00 0.00E+00 N/A 

Y2 2 fmol 0.00E+00 0.00E+00 N/A 
Y3 2 fmol 0.00E+00 0.00E+00 N/A 
B3 500 amol 0.00E+00 0.00E+00 N/A 

Y2 500 amol 0.00E+00 0.00E+00 N/A 
Y3 500 amol 0.00E+00 0.00E+00 N/A 
B3 100 amol 0.00E+00 0.00E+00 N/A 

Y2 100 amol 0.00E+00 0.00E+00 N/A 
Y3 100 amol 0.00E+00 0.00E+00 N/A 

 

From Table 4-12 it is clear that the improvement in LoD which was detected on 

the QTrap 4000 did not directly translate to an improvement in LoD on the 

QTrap 5500, which instead yielded a LoD for peptide GL*NQDCCVVYR of 1 pmol. 

This increased LoD was, however, most likely due to sub-optimal acquisition 

method settings, originally designed for use on the API 2000, an older instrument 

with a significantly different hardware setup. If the declustering potential, 

collision cell exit potential, ESI voltage and gas flow settings were further 

optimised on the QTrap 5500, then an increase in sensitivity over the QTrap 4000 

may have been achieved. Access to the QTrap 5500 however was limited and 

thus acquisition method re-optimisation was kept to a minimum during this 

study. 
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4.4.3.7 LoD for AQUA peptide VPTV*CVDMSTNRQQ 

A total of eight dilutions of AQUA peptide VPTV*CVDMSTNRQQ were prepared at 

levels ranging from 5 pmol to 100 amol, each sample was reduced and alkylated, 

reducing the sample a second time, so as to reverse non-specific Met alkylation. 

The peptide was further reduced in 10% 2-Mercaptoethanol (v/v), so as to 

completely reduce the Met residue, prior to the sample being spotted onto a 388 

well MALDI plate, and the sample analysed on an Ultraflex II MS. 

 

 

Figure 4-20: The signal response 
obtained for AQUA peptide 
VPTV*CVDMSTNRQQ on an 
Ultraflex II MS, when eight 
different quantities were 
injected.  Eight dilutions of 
peptide VPTV*CVDMSTNRQQ, 
ranging from 5 pmol to 100 amol, 
were ionised on an Ultraflex II 
MS, the spectra shown detail the 
intensities achieved (summed 
counts) plotted against the m/z. 
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From Figure 4-20 it is clear that only when 5 pmol of peptide VPTV*CVDMSTNRQQ 

was ionised, was a strong MS signal response elicited. Peak 1,641 m/z was 

detected with a signal intensity of 6,600 counts, summed over the 500 laser 

shots fired, and while a signal response was obtained from 1 pmol of 

VPTV*CVDMSTNRQQ, the signal intensity reached only 11 counts. The LoD for 

peptide VPTV*CVDMSTNRQQ was thus set to 1 pmol, which while presenting with 

a weak signal response, was still the limit at which a detection was possible. Due 

to the lack of data points below 5 pmol of peptide VPTV*CVDMSTNRQQ, a linear 

signal response could not be confirmed. 

 

4.4.4 A-Raf Protein Production 

While an AQUA peptide was selected for the quantification of each of the four A-

Raf isoforms, each AQUA peptide was characterised, and a single MRM based MS 

acquisition method developed, a stock solution was required for each A-Raf 

protein isoform, so as to enable the analysis of both the proteolytic digest 

efficiency of the spiked digest technique, and the suitability of the MRM based 

acquisition method for the detection and quantification of each of the four A-Raf 

isoforms, within increasingly complex samples. In terms of the quantity of 

protein required, the A-Raf peptide with the highest LoD was AQUA peptide 

GL*NQDCCVVYR, which requires some 5 pmol of each isoform, so as to enable a 

single quantification to be performed. Furthermore, as each quantitation utilises 

in-gel spiked digestion, then a maximum gel loading volume of 25 µL applied. 

Thus, for an MS sample to be viable, the quantity of protein within the sample 

must be between 250 fmol/µL, assuming 20 µL of sample and 5 µL of protein 

loading buffer, and 200 fmol/µL, assuming the sample is pre-suspended in 

protein loading buffer. While no endogenous concentration data exists for A-Raf, 

it is clear that a sufficient amount of sample may not be achievable based upon 

endogenous expression alone. Instead a simple transient transfection was 

utilised, capable of yielding intracellular protein concentrations as high as 50 

mg/L (Durocher et al., 2002).  

 



157 

 

4.4.4.1 TnT Based Protein Production 

As a way of obtaining protein expression levels similar to that of transient 

transfection, in a solution containing only a limited number of protein species, a 

TNT Quick Coupled Transcription/Translation reaction was performed. This kit, 

it is claimed, is capable of producing significantly more protein (2 to 6-fold) in a 

60 to 90 minute reaction, than a standard in vitro rabbit reticulocyte lysate 

reaction using RNA templates (Hurst et al., 1996). A TNT based reaction was thus 

performed for both A-Raf WT and A-Raf Short, the target proteins 

immunoprecipitated against anti-FLAG, and each isoform sample analysed via 

SDS-PAGE, first staining the gel with Coomassie, then verifying the expression 

through the use of a western blot (Figures 4-21 and 4-22). 

 

 
Figure 4-21: A 1D-SDS-PAGE based separation of TNT transfected A-Raf WT 
and A-Raf Short.  A-Raf WT and Short plasmids were subjected to a TNT based 
transfection, the spent reaction mix was immunoprecipitated against anti-FLAG 
agarose beads and the immunoprecipitate run on a 1D-SDS-PAGE gel. Shown on 
the above image is a gel loaded with 2 µL of each TNT spent reaction mix, 25 µL 
of each IP and 25µL of each IP supernatant, each visualised through the use of 
Coomassie Blue protein stain. 
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Figure 4-22: A western blot of TNT transfected FLAG-tagged A-Raf WT and A-
Raf Short.  A-Raf WT and A-Raf Short plasmids were subjected to a TNT based 
transfection, the spent reaction mix was immunoprecipitated through the use of 
anti-FLAG agarose beads and the immunoprecipitate run on a 1D-SDS-PAGE gel, 
prior to being transferred to a PVDF membrane. Shown on this image is a 
western blot containing 2 µL of each TNT spent reaction mix, 25 µL of each IP 
and 25µL of each IP supernatant, each of which were visualised through the use 
of an anti-FLAG HRP conjugate antibody and BM HRP Chemiluminescence 
reagent. 
 

From Figure 4-21 it is clear that there were still a high number of proteins 

present within the spent TNT reaction mix, with no particularly bright bands 

indicating the presence of the transfected target. The IP supernatant gel lanes 

also yield the same protein expression patterns as the spent reaction mix, with 

no Coomassie stained bands obviously extracted. Furthermore, when the IP gel 

lanes were assessed, no differences could be detected between the A-Raf WT 

and A-Raf Short lanes, with only the anti-FLAG Ig heavy and light antibody chains 

detected at a high abundance. This would indicate that either the amount of 

protein produced was lower than the LoD for Coomassie Blue (50-100 ng 

(Shevchenko et al., 1996)), even upon IP based enrichment, or that the 

transfections had failed. 

 

Western blotting, however, did confirm the expression of the A-Raf target 

proteins, yielding protein bands with a MW of approximately 58 kDa (the average 

MW for A-Raf WT & FLAG tag) and 19 kDa (the average MW for A-Raf Short & 

FLAG tag) (Figure 4-22). Furthermore, as the intensity of the 
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immunoprecipitated protein bands were several times brighter than those of the 

TNT reaction mix, it can be assumed that the IP was successful, indeed no 

excess protein was detected in the IP supernatant, suggesting the volume of 

anti-FLAG beads added to be sufficient. 

 

In conclusion, while it was possible to produce limited amounts of the A-Raf WT 

and A-Raf Short with the TNT reaction kit, the final protein concentrations were 

so low that the protein bands could not be visualised through Coomassie staining 

alone. If a LoD of 100 ng for Coomassie is assumed, then a maximum quantity of 

1.4 pmol can be estimated for A-Raf WT, and 5 pmol estimated for A-Raf Short. 

While this may seem reasonable, this is per reaction, providing enough solution 

to run a single replicate. As such, when several isoforms and replicates are 

considered, the reagent costs and labour are increased significantly. 

 

4.4.4.2 HEK293 Based Protein Production 

Due to the low expression levels achieved during the TNT reactions, HEK293 

based transfections were performed, the protein immunoprecipitated using anti-

FLAG, separated via SDS-PAGE and visualised through both Coomassie Blue and 

western blotting.  
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Figure 4-23: A 1D-SDS-PAGE based separation of HEK293 transfected A-Raf WT 
and A-Raf Short.  A-Raf WT and Short plasmids were transfected into HEK293 
through the use of Genejuice transfection reagent. The transfected cells were 
lysed after 72 hours and the transfected protein immunoprecipitated through 
the use of anti-FLAG M2 agarose beads. A 1D-SDS-PAGE gel was subsequently 
loaded with 25 µL of IP, 25 µL of the IP supernatant and 25 µL of the TNT IP, 
which acted as an A-Raf positive control. The protein bands were visualised with 
Coomassie Blue protein stain. Circled in red are the two transfected A-Raf 
proteins. 
 

From Figure 4-23 we can see that both A-Raf WT and A-Raf Short were expressed 

at levels suitable for detection through the use of Coomassie Blue, and thus both 

were expressed at a level of at least 50 ng/ 25 µL (approximately 860 fmol/ 25 

µL for A-Raf WT, and 3 pmol/ 25 µL for A-Raf Short). While this is still below the 

level required for an accurate detection on an API 2000, it does offer a massive 

improvement over that achieved with the TNT kit.  
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Figure 4-24: A western blot of HEK293 transfected A-Raf WT and A-Raf Short.  
A-Raf WT and A-Raf Short plasmids were transfected into HEK293 through the 
use of Genejuice transfection reagent. The HEK293 cells were lysed after 72 
hours, and the transfected protein immunoprecipitated with anti-FLAG M2 
agarose beads. A 1D-SDS-PAGE gel was loaded with 25 µL of the IP, 25 µL of the 
IP supernatant and 25 µL of the TNT IP, which acted as an A-Raf positive control. 
The separated protein was transferred to a PVDF membrane, and the transfected 
protein bound to an anti-FLAG HRP conjugate antibody. The complex was 
visualised with BM Chemiluminescence reagent. 
 

Figure 4-24 provides confirmation that the protein bands visualised on the 

Coomassie Blue stained gel were indeed the FLAG tagged transfected protein 

targets, expressed at much higher quantity than those achieved with the TNT 

kit. Also worth noting is the level at which A-Raf Short has been expressed, 

which is so high that photobleaching has occurred. Photobleaching will occur 

when all of the HRP substrate has been consumed from the core of the protein 

band, thus providing no further illumination. Furthermore, the MW of the A-Raf 

Short protein band appears to have shifted. While it was previously detected at 

19 kDa (Figure 4-22), it now has a MW of approximately 15 kDa (Figure 4-24).  

 

As the isoform appeared to have been expressed correctly during the TNT based 

transfection, it can be assumed that the HEK293 based transfection is 

responsible, perhaps as a result of incorrect splicing. If the sequence from intron 

two is being incorrectly spliced, then a MW difference of approximately 4.6 kDa 

would be expected, while if it were intron four which was being spliced, then a 



162 

 

MW difference of just 1.6 kDa would be expected. Furthermore, if intron four 

was being spliced out, then the premature stop codon would be missed, 

producing a much longer isoform, further suggesting intron two. 

 

In conclusion, while there appears to have been an issue with the expression of 

A-Raf Short, the levels of protein achieved during the HEK293 based 

transfections were of a suitable level, and far exceed those achieved during the 

TNT based reactions. Furthermore, the volumes of IP produced mean that many 

SDS-PAGE replicates can be run per transfection. 

 

4.4.4.3 A-Raf Short Incorrect Splicing 

4.4.4.3.1 Evidence Supporting Incorrect Splicing 

To further investigate the possible incorrect splicing of A-Raf Short, the A-Raf 

Short transfected HEK293 IP was loaded to, and separated on, an SDS-PAGE gel, 

the appropriate band excised, and in-gel digested with trypsin. The peptide 

solution was injected onto an Ultimate 3000 LC and analysed on an API 2000 MS, 

running the previously devised A-Raf MRM acquisition method. 

 

As peptide TVVTVR crossed the splice site of intron two, it was hoped that 

through assessing the A-Raf Short IP peptideome for the presence of this 

sequence, that its detection would indicate that intron two was being 

incorrectly spliced. Based on the MW difference detected during the A-Raf Short 

transfections (Figures 4-22 and 4-24), which accounts for almost 25% of the 

proteins total MW, this was the only logical variation in sequence. 



163 

 

 
Figure 4-25: An MRM based detection of incorrectly spliced A-Raf Short, 
obtained from a HEK293 based transfection.  The spectrum obtained from an 
MRM based detection of incorrectly spliced A-Raf Short, obtained from a HEK293 
based transfection and analysed on an API 2000 MS, using the previously devised 
A-Raf MRM acquisition method. Shown on the top window is an XIC spectrum 
detailing the time at which peptide TVVTVR was detected. Shown on the bottom 
MRM spectrum meanwhile are the two TVVTVR Q3 fragment ions (B2 and Y4), 
thereby confirming the detection of peptide TVVTVR.  
 

Figure 4-25 indicates that the main protein product produced during the HEK293 

transfection of A-Raf Short was indeed missing the sequence from intron two, as 

is indicated by the presence of intron two crossing peptide TVVTVR. These MRM 

transitions were of a high intensity, discounting the detection of noise and 

spectral artefacts, and as two of the three TVVTVR MRM transitions were 

detected, the presence of peak TVVTVR was confirmed. 

 

 

 



164 

 

4.4.4.3.2 Modifying the Splice Site of Intron Two via Site Directed 

Mutagenesis 

As the HEK293 based transfections were found to yield adequate levels of A-Raf 

protein expression, it was decided that the A-Raf Short plasmid should be 

modified in such a way so as to prevent the incorrect splicing of intron two. The 

full details of site directed mutagenesis, via splice overlap extension PCR (SOE), 

have previously been described by Ho et al. (Ho et al., 1989), in brief however, 

a splice site was selected where a single base pair could be modified, 

maintaining the sequence of A-Raf Short, but disrupting the splice sites 

bordering intron two, preventing the intron from being removed. 

 

The A-Raf Short plasmid was sequenced with CMV and T7 forward primers, 

located upstream of the initiation of transcription, and the BGH reverse primer, 

located downstream of the termination of transcription. The sequence data 

obtained for each primer was aligned using Clustal X and screened for the 

presence of the 3’ and 5’ splice sites and the internal branch point. While the 3’ 

and 5’ splice sites were easily identified, with the introns 5’ beginning GT, of 

conserved sequence MAG|GTRAGT (where M represents either an A or a C and R 

representing either an A or a G), and the introns 3’ ending AG, of conserved 

sequence CAG|G (Reed, 1989), the branch point was harder to identify. While 

the branch point is usually marked by a single adenosine residue, located some 

18-40 bases downstream of the 5’ DNA splice site, several adenosine residues 

were identified, any of which may have been acting as the branch point and as 

such a branch point based mutation was rejected. Of the two remaining 

mutation sites, the 5’ splice site was also found to be unsuitable. If either the G 

or T from consensus sequence GT were modified, to prevent splicing, then this 

would ultimately lead to a change in the proteins sequence, replacing the Val 

with one of several other residues. The modification of the 3’ splice site 

appeared more promising however, where changing the G from consensus 

sequence AG retained the Gln residue, while preventing splicing (Crick, 1968). 

 

So as to enable site directed mutagenesis to be performed on the last base of 

intron two, 40 mer complementary oligonucleotides were created, where base G 
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was replaced with an A, while providing ample sequence to either side of the 

mutation point, so as to enable annealing (Figure 4-26). 
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                     T7 promoter                     NhelI 
>CMV For CTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGCGCC 
>BGH Rev CTTACTGGCTTATCGAAATTAATACGACTCACTATAGGGAGACCCAAGCTGGCTAGCGCC 
        Initiation of transcription 
 
>CMV For GCCACCATGGATTACAAGGATGACGACGATAAGGAGCCACCACGGGGCCCCCCTGCCAAT 
>T7  ----------------AGGATGACGACGATAAGGAGCCACCACGGGGCCCCCCTGCCAAT 
>BGH Rev GCCACCATGGATTACAAGGATGACGACGATAAGGAGCCACCACGGGGCCCCCCTGCCAAT 
>Protein             M  D  Y  K  D  D  D  D M/K E  P  P  R  G  P  P  A  N     
 
>CMV For GGGGCCGAGCCATCCCGGGCAGTGGGCACCGTCAAAGTATACCTGCCCAACAAGCAACGC 
>T7  GGGGCCGAGCCATCCCGGGCAGTGGGCACCGTCAAAGTATACCTGCCCAACAAGCAACGC 
>BGH Rev GGGGCCGAGCCATCCCGGGCAGTGGGCACCGTCAAAGTATACCTGCCCAACAAGCAACGC 
>Protein       G  A  E  P  S  R  A  V  G  T  V  K  V  Y  L  P  N  K  Q  R   
        Border or exon 2/intron 2 
>CMV For ACGGTGGTGAGTCATGGAAGCGAAATGGCAGGGGCTGTGGATGGACCCAGTTGTAACTCT 
>T7  ACGGTGGTGAGTCATGGAAGCGAAATGGCAGGGGCTGTGGATGGACCCAGTTGTAACTCT 
>BGH Rev ACGGTGGTGAGTCATGGAAGCGAAATGGCAGGGGCTGTGGATGGACCCAGTTGTAACTCT 
>Protein       T  V  V  S  H  G  S  E  M  A  G  A  V  D  G  P  S  C  N  S   
 
>CMV For GGGATCAAAAGGGTGACAACGGTTGGGGGAGGCCTTTGCAGAAGGATGGGAACATCAGCT 
>T7  GGGATCAAAAGGGTGACAACGGTTGGGGGAGGCCTTTGCAGAAGGATGGGAACATCAGCT 
>BGH Rev GGGATCAAAAGGGTGACAACGGTTGGGGGAGGCCTTTGCAGAAGGATGGGAACATCAGCT 
>Protein       G  I  K  R  V  T  T  V  G  G  G  L  C  R  R  M  G  T  S  A   
                       Border of intron 2/exon 3 
>ARAFMUTSAF                          CCTACATCTGCACATACACACAAGTGACTGTCCGG 
>CMV For GCGCTTCTGTTGGGCATTGAGGACCCCTACATCTGCACATACACACAGGTGACTGTCCGG 
>T7  GCGCTTCTGTTGGGCATTGAGGACCCCTACATCTGCACATACACACAGGTGACTGTCCGG 
>BGH Rev GCGCTTCTGTTGGGCATTGAGGACCCCTACATCTGCACATACACACAGGTGACTGTCCGG 
>Protein       A  L  L  L  G  I  E  D  P  Y  I  C  T  Y  T  Q  V  T  V  R   
 
>ARAFMUTSAF GATGGC 
>CMV For GATGGCATGAGTGTCTACGACTCTCTAGACAAGGCCCTGAAGGTGCGGGGTCTAAATCAG 
>T7  GATGGCATGAGTGTCTACGACTCTCTAGACAAGGCCCTGAAGGTGCGGGGTCTAAATCAG 
>BGH Rev GATGGCATGAGTGTCTACGACTCTCTAGACAAGGCCCTGAAGGTGCGGGGTCTAAATCAG 
>Protein       D  G  M  S  V  Y  D  S  L  D  K  A  L  K  V  R  G  L  N  Q   
 
>CMV For GACTGCTGTGTGGTCTACCGACTCATCAAGGGACGAAAGACGGTCACTGCCTGGGACACA 
>T7  GACTGCTGTGTGGTCTACCGACTCATCAAGGGACGAAAGACGGTCACTGCCTGGGACACA 
>BGH Rev GACTGCTGTGTGGTCTACCGACTCATCAAGGGACGAAAGACGGTCACTGCCTGGGACACA 
>Protein       D  C  C  V  V  Y  R  L  I  K  G  R  K  T  V  T  A  W  D  T   
 
>CMV For GCCATTGCTCCCCTGGATGGCGAGGAGCTCATTGTCGAGGTCCTTGAAGATGTCCCGCTG 
>T7  GCCATTGCTCCCCTGGATGGCGAGGAGCTCATTGTCGAGGTCCTTGAAGATGTCCCGCTG 
>BGH Rev GCCATTGCTCCCCTGGATGGCGAGGAGCTCATTGTCGAGGTCCTTGAAGATGTCCCGCTG 
>Protein       A  I  A  P  L  D  G  E  E  L  I  V  E  V  L  E  D  V  P  L   
                 Border of exon 4/intron 4  
>CMV For ACCATGCACAATTTTGTGAGTGCAGGGTGGACGGTGGGGGTGGACCATGGTTGGGGGTGT 
>T7  ACCATGCACAATTTTGTGAGTGCAGGGTGGACGGTGGGGGTGGACCATGGTTGGGGGTGT 
>BGH Rev ACCATGCACAATTTTGTGAGTGCAGGGTGGACGGTGGGGGTGGACCATGGTTGGGGGTGT 
>Protein       T  M  H  N  F  V  S  A  G  W  T  V  G  V  D  H  G  W  G  C   
        BamHI 
>CMV For CCTTAGGGATCCACTAGTCCAGTGTGGTGGAATTCTGCAGATATCCAGCACAGTGGCGGC 
>T7  CCTTAGGGATCCACTAGTCCAGTGTGGTGGAATTCTGCAGATATCCAGCACAGTGGCGGC 
>BGH Rev CCTTAGGGATCCACTAGTCCAGTGTGGTGGAATTCTGCAGATATCCAGCAC--------- 
>Protein       P  * 
                                       BGH Reverse promoter 
>CMV For CGCTCGAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTT 
>T7  CGCTCGAGTCTAGAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTT 
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Figure 4-26: The 40 mer oligonucleotide selected for the site directed 
mutagenesis of A-Raf Short.  A Clustal X based alignment of the A-Raf Short 
coding sequence from the A-Raf Short plasmid, showing the intronic sequence 
unique to A-Raf Short (highlighted in blue) and the sequence common to all A-
Raf isoforms (highlighted in green). This alignment was constructed from the 
sequence obtained when the A-Raf Short plasmid was sequenced with T7 and 
CMV forward promoters and BGH reverse promoter (highlighted in red). Based 
upon this genetic map, a 40 mer site directed mutagenesis primer (highlighted in 
purple) was designed to change a single base pair within the A-Raf Short plasmid 
sequence (highlighted in brown), and in doing so preventing intron two from 
being spliced out. Also shown on the alignment are the restriction digest sites 
(highlighted in yellow) used to cleave the SOE PCR strands, and the consensus 
protein sequence for A-Raf Short. 
 

Having performed site directed mutagenesis on A-Raf Short, through SOE based 

PCR, the mutated double stranded DNA insert was restriction digested with NhelI 

(upstream) and BamHI (downstream), prior to agarose gel based purification. 

The digested insert was ligated into pcDNA3.1(+) with T4 DNA ligase, where the 

vector had been pre-digested with the same two restriction enzymes. The 

ligated plasmid was cloned into library efficiency DH5a cells and plated on agar. 

Subsequently each colony was picked and amplified, prior to a miniprep based 

plasmid purification. The amplified DNA was restriction digested with NhelI and 

BamHI, separated via agarose gel based electrophoresis, and screened for the 

presence of a suitably sized plasmid insert (555 bp). 

 

Where a colony was identified as containing a mutated insert, some 500 ng of 

plasmid was sent for sequencing, so as to ensure that only the intended base was 

modified, the results from which are shown on Figure 4-27. 
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Figure 4-27: The genetic sequence obtained from the A-Raf Short plasmid, 
both before and after site directed mutagenesis.  An alignment performed on 
the sequence obtained from the A-Raf Short plasmid both before and after site 
directed mutagenesis, based upon the use of CMV forward. Highlighted in Yellow 
is the T7 forward sequence, while in red is the upstream Nhel1 restriction digest 
site. Finally, in green is the 40 mer site directed mutagenesis oligonucleotide, 
with the single modified nucleotide highlighted in red. 
 

4.4.4.3.3 Confirming the Retention of Intron Two 

Both the mutated and non-mutated A-Raf Short plasmids were amplified via 

Midiprep and transfected into HEK293 with Genejuice transfection reagent. The 

A-Raf Short proteins were immunoprecipitated, separated via SDS-PAGE, and 

visualised via western blot. 

 

 
Figure 4-28: A western blot showing the MW difference between HEK293 
transfected A-Raf short, before and after the completion of site directed 
mutagenesis.  Shown on this WB are the protein bands obtained from 
transfected A-Raf Short, before and after site directed mutagenesis. The protein 
bands shown here were visualised through the use of an anti-FLAG HRP 
conjugate antibody and BM Chemiluminescence reagent. 
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From Figure 4-28 we can see that the MW of the mutated A-Raf Short protein 

increased, in comparison to that produced by the non-mutated plasmid. As to 

further prove the success of this experiment, a spiked digest was performed on 

A-Raf Short, identifying the expression of peptide GLNQDCCVVYR alone. 

 

4.4.5 Spiked Digest Based Quantitative Analyses 

In interfacing the separative capacity of SDS-PAGE with the analytical 

competence of mass spectrometry, the extraction of large polypeptides and 

proteins has proven problematic. The method of choice for protein recovery has 

instead been to perform a proteolytic digestion within the gel, eluting the 

peptide fragments for a bottom-up based MS analysis (Cohen and Chait, 1997). 

Problems have however been described during peptide extraction, with only 70–

80% of the total proteolytic peptides generally being recovered. Furthermore 

post-recovery sample handling has been known to further reduce the amount of 

peptide by 10% to 15%, assuming minimal handling, and up to 50% with vacuum 

centrifugation based techniques (Speicher et al., 2000). 

 

While sample losses are inevitable, AQUA aims to minimise the effect of these 

losses on the precision of the quantitation through adding the peptide standards 

directly to the dehydrated gel pieces, before the protease has been applied. In 

doing so, the synthetic peptides should be fully absorbed into the gel pieces and 

thus will be subject to the same extraction bias as the target peptides. 

Furthermore, any sample loss encountered during downstream processing should 

affect both peptides equally (Gerber et al., 2003a).  

 

4.4.5.1 Single Isoform Based Spiked Digests 

So as to assess the efficiency with which each of the target peptides were 

digested (through comparing peak area ratios for each target peptide/protease, 

each of which should be present at an equal ratio), to identify any problems 

resulting from the re-suspension and modification of each AQUA peptide (which 

would result in a specific peptide presenting with a different peak area ratio), 
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and to test the AQUA based absolute quantification workflow; 25 µL of each A-

Raf IP (obtained from HEK293 immunoprecipitates) was loaded onto an SDS-PAGE 

gel and electrophoresed. The A-Raf isoform gel bands were excised and in-gel 

digested in the presence of each AQUA peptide. Following peptide extraction the 

samples were loaded onto an Ultimate 3000 LC and analysed on an API 2000 MS, 

running the A-Raf MRM acquisition method previously devised. 

 

If we consider that each transfected plate contains some 1.1x108 HEK293 cells, 

and that six plates were transfected per isoform, then a total of 6.6x108 cells 

were lysed, and the transfected protein immunoprecipitated. If we then 

consider that the anti-FLAG beads were re-suspended in 360 µL of protein 

loading buffer, then the 25 µL of IP loaded to each SDS-PAGE gel well should 

contain the transfected, immunoprecipitated contents of approximately 4.6x107 

HEP293 cells. 

 

4.4.5.1.1 A-Raf WT Single Isoform Spiked Digest 

Figure 4-29 shows the extracted ion chromatogram (XIC) obtained from the 

spiked digestion based analysis of A-Raf WT via LC-MS on an API 2000. From the 

spectrum four main peaks can be seen to elute, the first of which was peptide 

TVVTVR, eluting after approximately 17 minutes with a high signal intensity. The 

second peptide to elute was GLNQDCCVVYR, after approximately 21 minutes, 

presenting with a low signal intensity, almost entirely masked by the elution of 

peptide LLTP*QGPR, which also elutes after 21 minutes. Finally peptide 

VSQP*TAEQAQAFK eluted after 22 minutes, again almost entirely masked by the 

high signal intensity of peptide LLTP*QGPR. 
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Figure 4-29: An XIC obtained from the spiked digestion of A-Raf WT on an API 
2000.  Through digesting 25 µL of immunoprecipitated A-Raf WT with trypsin, in 
the presence of 5 pmol of TV*VTVR, GL*NQDCCVVYR, VSQP*TAEQAQAFK and 
LLTP*QGPR, a spiked digest solution was obtained which was injected onto an 
Ultimate 3000 and analysed on an API 2000 MS. 
 

It is also worth noting the shape of the eluting peaks, each of which suffers from 

tailing. This would indicate that the peptides were being retained based upon 

several modes of retention. To better explain, while RP-LC retains and separates 

molecules based upon their hydrophobic interactions with the stationary phase 

(C18), residual polar interactions between the peptides and the silanol groups on 

the PepMap silica based particles may also have been occurring. 

 

The quantification data for the nine A-Raf WT replicates was manually 

integrated with Analyst 4.2, both the average quantity of peptide detected 

(averaging three MRM transitions per peptide) and a CoV value were calculated 

for each peptide (Table 4-13). 
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Table 4-13: The quantity and variation data obtained from the spiked 
digestion of 25 µL of immunoprecipitated A-Raf WT on an API 2000.  Through 
comparing the peak areas for both the synthetic and endogenous A-Raf peptides, 
three sets of quantities were obtained per peptide, per replicate. These values 
were averaged, so as to obtain a single quantity per peptide per replicate, and a 
CoV determined for this value. Further to the above, an overall average was 
calculated for each value. 

 

TVVTVR – Present in all but A-
Raf Short 

VSQPTAEQAQAFK – Unique to 
A-Raf WT 

GLNQDCCVVYR – Present in all 
isoforms 

Replicate 
Average per 
Replicate (pmol/µL) CoV 

Average per 
Replicate (pmol/µL) CoV 

Average per 
Replicate (pmol/µL) CoV 

1 0.65 2.97% 1.06 34.25% 1.38 15.44% 
2 0.67 1.65% 0.97 30.72% 1.14 18.48% 

3 0.66 7.36% 1.13 55.99% 0.99 16.02% 
4 0.69 2.31% 0.95 24.13% 1.27 16.73% 
5 0.64 7.46% 0.86 20.59% 1.19 16.89% 

6 0.72 3.45% 1.06 31.78% 1.39 29.60% 
7 0.66 0.71% 1.08 15.79% 1.24 18.37% 

8 0.71 0.81% 1.21 17.20% 0.83 14.20% 
9 0.71 11.02% 1.28 8.47% 1.33 12.24% 
Average 0.68 5.62% 1.07 27.39% 1.2 21.69% 

 

While the amount of TVVTVR appears to remain constant throughout the run 

(Table 4-13 & Figure 4-30), with a averaged CoV of just 5.62%, the amount of 

peptides GLNQDCCVVYR and VSQPTAEQAQAFK detected per sample appear more 

variable, with averaged CoVs of 21.69% and 27.39%, respectively. This variation 

may have been due to the estimated amount of A-Raf WT within the 25 µL of 

HEK293 IP being between 600 fmol (based upon the quantification data obtained 

for peptide TVVTVR) and 1.2 pmol (based upon the quantification data obtained 

for peptide GLNQDCCVVYR), below the 5 pmol LoD assigned to peptide 

GLNQDCCVVYR, and just achieving the 1 pmol LoD assigned to peptide 

VSQPTAEQAQAFK. 
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Figure 4-30: The quantities of each A-Raf WT target peptide detected during 
the spiked digestion of A-Raf WT transfected HEK293 IP on an API 2000.  The 
amount of each A-Raf WT target peptide detected during the spiked digestion of 
25 µL of A-Raf WT transfected HEK293 IP is shown. In brief, this single quantity, 
per peptide, was calculated through comparing the peak areas for three MRM 
transitions per peptide, per replicate, and the values averaged. A CoV value was 
determined for this averaged value. This bar chart helps to visualise the 
variation detected between each peptide and replicate.  
 

An analysis of variance (ANOVA) based statistical analysis was performed on this 

data, so as to assess if the means of the quantitations achieved for each peptide 

were equal, assuming a normal distribution. Therefore, during this test, the null 

hypothesis (H0) stated that the means of these groups were equal. This analysis 

was performed based upon an alpha level of 0.05 (95% confidence level), giving a 

critical F-value (the variance between groups/the overall variance) of 3.4, which 

if exceeded, would require the H0 to be rejected. As is shown on Table 4-14, an 

F-value of 37.5 was achieved, therefore the H0 was rejected, indicating the 

mean quantification values achieved for these peptides to be significantly 

different. 
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Table 4-14: An ANOVA based statistical analysis performed on the data 
obtained from the spiked digest of A-Raf WT transfected HEK293 IP.  The 
quantification data obtained during the spiked digestion of 25 µL of A-Raf WT 
transfected HEK293 IP was subjected to ANOVA. During this statistical analysis, 
the data obtained for each targeted A-Raf WT peptide, and each digest replicate 
were tested, so as to assess if the means obtained for each peptide were equal. 
Highlighted in yellow is the F-value, which if above 37.5, would indicate the 
data to be significantly different, in 95% of cases. 

Groups Count Sum Average Variance F-value 

TVVTVR 9 6.110681 0.678965 0.000783 37.45343 
VSQPTAEQAQAFK 9 9.607307 1.067479 0.017092 

 GLNQDCCVVYR 9 10.76608 1.196231 0.0344 
  

In conclusion, the data obtained from the spiked digestion of 25 µL of A-Raf WT 

transfected HEK293 IP was found to be inaccurate, containing significant levels 

of variation between peptides. This may have resulted from two of the three A-

Raf WT peptides being below their LoDs within the IP. 

 

4.4.5.1.2 A-Raf Short Single Isoform Spiked Digest  

Twenty five microlitres of A-Raf Short transfected HEK293 IP was digested with 

trypsin in the presence of each of the A-Raf AQUA peptides. Three transitions 

were compared, per peptide, and the data averaged. A total of nine replicates 

were run, the data from which is shown on Table 4-15. 

 

Table 4-15: The quantity and variation data obtained from the spiked 
digestion of 25 µL of immunoprecipitated A-Raf Short on an API 2000.  
Through comparing the peak areas for both the synthetic and endogenous A-Raf 
peptides, three sets of quantities were obtained per peptide, per replicate. 
These values were averaged, so as to obtain a single quantity per peptide per 
replicate, and a CoV determined for this value. Further to the above, an overall 
average was calculated for each value. 

 
GLNQDCCVVYR – Present in all isoforms 

Replicate Average per Replicate (pmol/µL) CoV 

1 3.47 16.22% 
2 3.84 14.42% 
3 4.03 6.98% 

4 3.09 15.21% 
5 4.54 2.89% 

6 3.40 4.06% 
7 3.42 11.78% 
8 3.36 12.28% 

9 5.25 7.23% 
Average 3.82 19.42% 
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As only one target peptide was present in A-Raf Short (peptide GLNQDCCVVYR), 

a comparison could not be made between peptide quantitation values. From 

Table 4-15, it is clear that the estimated amount of peptide GLNQDCVVYR 

detected in the 25 µL of A-Raf Short transfected HEK293 IP was variable between 

samples, despite the level of A-Raf Short being above the LoD. This would 

suggest that the variation detected for peptide GLNQDCCVVYR during the spiked 

digestion of A-Raf WT transfected HEK293 IP may not merely have been due to 

the low protein expression levels (Figure 4-31), but perhaps was due to the way 

in which alkylated peptide GLNQDCCVVYR was prepared.  

 

 
Figure 4-31: The quantity of peptide TVVTVR, detected during the spiked 
digestion of A-Raf Short transfected HEK293 IP on an API 2000.  The amount 
of peptide TVVTVR detected during the spiked digestion of 25 µL of A-Raf Short 
transfected HEK293 IP is shown. In brief, this single quantity was calculated 
through comparing the peak areas for three MRM transitions per replicate, and 
the values averaged. A CoV value was determined for this averaged value. This 
bar chart helps to visualise the variation detected between each peptide and 
replicate.  
 

4.4.5.1.3 DA-Raf-1 Single Isoform Spiked Digest 

The quantification of DA-Raf-1 required the digestion of this truncated A-Raf 

isoform with either trypsin or Glu-C, separately, presenting an opportunity for 
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the digest efficiencies of these proteases to be compared. The data obtained 

from each of the digests is shown on Table 4-16. 

 
Table 4-16: The quantity and variation data obtained from the spiked 
digestion of 25 µL of immunoprecipitated DA-Raf-1 on an API 2000.  Through 
comparing the peak areas for both the synthetic and endogenous A-Raf peptides, 
three sets of quantities were obtained per peptide, per replicate. These values 
were averaged, so as to obtain a single quantity per peptide per replicate, and a 
CoV determined for this value. Further to the above, an overall average was 
calculated for each value. 

 

LLTPQGPR – Unique to DA-Raf-
1 

TVVTVR – Present in all but A-
Raf Short GLNQDCCVVYR – Present in all isoforms 

Replicate 
Average per 
Replicate (pmol/µL) CoV 

Average per Replicate 
(pmol/µL) CoV 

Average per Replicate 
(pmol/µL) CoV 

1 41.26 5.27% 31.56 2.51% 34.02 5.17% 

2 39.75 2.26% 27.48 7.20% 28.04 1.38% 
3 44.34 3.24% 28.06 0.09% 29.6 1.81% 
4 42.28 3.76% 33.54 5.37% 38.1 3.24% 

5 39.49 1.44% 33.29 7.98% 36.58 2.19% 
6 43.73 4.08% 39.04 6.03% 42.05 1.95% 
7 40.22 6.29% 36.49 1.72% 25.4 5.80% 

8 45.82 2.96% 31.35 3.34% 36.65 5.34% 
9 41.55 11.84% 36.09 0.29% 33.71 8.30% 

Average 42.05 6.72% 32.99 11.82% 33.79 15.48% 

 

From Table 4-16, and indeed Figure 4-32, it is clear that the amount of DA-Raf-1 

detected per 25 µL of DA-Raf-1 transfected HEK293 IP was higher than that 

estimated for either A-Raf WT or A-Raf Short. Peptide TVVTVR, which was 

previously found to yield the most reproducible data, estimated there to be 

32.99 pmol of DA-Raf-1 per 25 µL of IP. These high expression levels may have 

been due to the smaller MW of this isoform, yielding higher levels of protein 

expression within the 72 hours, or that more copies of this smaller protein can 

be maintained within the cell before becoming toxic. 
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Figure 4-32: The quantities of each DA-Raf-1 target peptide detected during 
the spiked digestion of DA-Raf-1 transfected HEK293 IP on an API 2000.  The 
amount of each DA-Raf-1 target peptide detected during the spiked digestion of 
25 µL of DA-Raf-1 transfected HEK293 IP is shown. In brief, this single quantity, 
per peptide, was calculated through comparing the peak areas for three MRM 
transitions per peptide, per replicate, and the values averaged. A CoV value was 
determined for this averaged value. This bar chart helps to visualise the 
variation detected between each peptide and replicate.  
 

An ANOVA based statistical analysis was performed on this data, so as to assess if 

the means of the quantitations achieved for each peptide were equal, assuming 

a normal distribution. Therefore, during this test, the H0 stated that the means 

of these groups were equal. This analysis was performed based upon an alpha 

level of 0.05, giving a critical F-value of 3.4, which if exceeded, would require 

the H0 to be rejected. As is shown on Table 4-17, an F-value of 14.3 was 

achieved, therefore the H0 was rejected, indicating the mean quantification 

values achieved for these peptides to be significantly different.  
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Table 4-17: An ANOVA based statistical analysis performed on the data 
obtained from the spiked digest of DA-Raf-1 transfected HEK293 IP.  The 
quantification data obtained during the spiked digestion of 25 µL of DA-Raf-1 
transfected HEK293 IP was subjected to ANOVA. During this statistical analysis, 
the data obtained for each targeted DA-Raf-1 peptide, and each digest replicate 
were tested, so as to assess if the means obtained for each peptide were equal. 
Highlighted in yellow is the F-value, which if above 3.4, would indicate the data 
to be significantly different, in 95% of cases. 

Groups Replicates Sum Average Variance F-value 

LLTPQGPR 9 378.4426 42.04918 4.806482 14.27344 
TVVTVR 9 296.8988 32.98876 14.78117 

 GLNQDCCVVYR 9 304.1512 33.79458 27.98013 
  

From viewing the averaged quantitation values presented on Table 4-16, the 

data obtained for peptides TVVTVR and GLNQDCCVVYR appeared more closely 

grouped than those obtained for peptide LLTPQGPR. As the level of peptide 

LLTPQGPR was higher than the level of peptide TVVTVR, then this difference 

may have resulted from the incomplete re-suspension of AQUA peptide in 2% 

MeCN (v/v) (Figure 4-32). 

 

So as to confirm there was no variation detected between the means of peptides 

GLNQDCCVVYR and TVVTVR, assuming a normal distribution, a two-tailed (two-

tailed as either an increase, or a decrease in mean would be considered 

variation) T-test was performed (Table 4-18). During this test, a H0, that the 

means of these groups were equal, was stated. This analysis was performed 

based upon an alpha level of 0.05, giving a critical P-value of 2.3, which if 

exceeded, would require the H0 to be rejected. As is shown on Table 4-18, a P-

value of 0.64 was achieved, therefore the H0 was accepted, indicating the mean 

quantification values achieved for these peptides was equal.  

 

Table 4-18: A T-test based statistical analysis performed on the data obtained 
from the spiked digest of DA-Raf-1 transfected HEK293 IP.  A comparison of 
the quantitation values obtained for peptides TVVTVR and GLNQDCCVVYR, so as 
to determine if the means of each set of data were significantly different. 
Highlighted in yellow is the two-tailed P-value, which if above 2.3, would 
suggest that there was significant variation between the groups in 95% of cases.  

  TVVTVR GLNQDCCVVYR 
Mean 32.98875937 33.79457691 
Variance 14.7811722 27.98012665 
Replicates 9 9 
P-value 0.642086961 
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In conclusion, when 25 µL of DA-Raf-1 transfected HEK293 IP was digested with 

trypsin, no variation was detected between the quantitation values obtained for 

peptides TVVTVR and GLNQDCCVVYR, based upon a two-tailed t-test. However, 

when a Glu-C based spiked digest was performed and the quantification values 

compared for both the trypsin and Glu-C cleaved peptides via ANOVA, significant 

variation was detected.  

 

Large CoV values were also obtained between each replicate, which may have 

resulted from small variations in pipetting volume made during the loading of 

the SDS-PAGE gel or indeed the accuracy of the gel band excision pre-digestion. 

While these small variations would not usually have a noticeable effect on the 

data obtained, the high expression level at which the DA-Raf-1 was detected 

within the transfected HEK293 IP may have exacerbated this problem. Indeed, 

the signal response of the internal standards (IS) on the API 2000 (data not 

shown) appeared constant between injections, further suggesting the cause of 

the variation to originate before the internal standard was added. 

 

4.4.5.1.4 DA-Raf-2 Single Isoform Spiked Digest 

While DA-Raf-2 contains three AQUA peptides, GLNQDCCVVYR, TVVTVR and 

VPTVCVDMSTNRQQ, peptide VPTVCVDMSTNRQQ failed to be detected via ESI-MS, 

instead requiring a MALDI-ToF based analysis. When running this set of spiked 

digest based analyses, no MALDI MS was available for use, resulting in a 

comparison only being made between peptides TVVTVR and GLNQDCCVVYR. 
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Table 4-19: The quantity and variation data obtained from the spiked 
digestion of 25 µL of immunoprecipitated DA-Raf-2 on an API 2000.  Through 
comparing the peak areas for both the synthetic and endogenous A-Raf peptides, 
three sets of quantities were obtained per peptide, per replicate. These values 
were averaged, so as to obtain a single quantity per peptide per replicate, and a 
CoV determined for this value. Further to the above, an overall average was 
calculated for each value. 

 
TVVTVR – Present in all but A-Raf Short GLNQDCCVVYR – Present in all isoforms 

Replicate Average per Replicate (pmol/µL) CoV Average per Replicate (pmol/µL) CoV 
1 11.39 7.46% 7.27 9.57% 
2 10.86 2.23% 8.25 2.71% 

3 11.27 6.21% 6.80 3.85% 
4 11.60 7.57% 13.91 4.56% 

5 11.04 1.29% 6.50 3.42% 
6 11.52 5.73% 13.29 8.49% 
7 12.14 1.04% 12.96 5.56% 

8 11.57 1.57% 12.85 10.54% 
9 11.42 5.36% 6.93 1.65% 
Average 11.42 4.77% 9.86 32.38% 

 

From Table 4-19, and Figure 4-33, peptide TVVTVR again appears to yield the 

most reproducible data, estimating there to be to 11.42 pmol of DA-Raf-2 per 25 

µL of DA-Raf-2 transfected HEK293 IP, with a CoV of 4.77%. When the quantity of 

DA-Raf-2 is assessed through the use of peptide GLNQDCCVVYR, however, 25 µL 

of transfected IP is estimated to contain between 6.5 and 13.91 pmol of DA-Raf-

2, with an average CoV of 32.38%.  
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Figure 4-33: The quantities of each DA-Raf-2 target peptide detected during 
the spiked digestion of DA-Raf-2 transfected HEK293 IP on an API 2000.  The 
amount of each DA-Raf-2 target peptide detected during the spiked digestion of 
25 µL of DA-Raf-2 transfected HEK293 IP is shown. In brief, this single quantity, 
per peptide, was calculated through comparing the peak areas for three MRM 
transitions per peptide, per replicate, and the values averaged. A CoV value was 
determined for this averaged value. This bar chart helps to visualise the 
variation detected between each peptide and replicate.  
 

So as to assess if there was any variation between the means of peptides 

GLNQDCCVVYR and TVVTVR, assuming a normal distribution, a two-tailed T-test 

was performed. During this test, a H0, that the means of these groups were 

equal, was stated. This analysis was performed based upon an alpha level of 

0.05, giving a critical P-value of 2.3, which if exceeded, would require the H0 to 

be rejected. As is shown on Table 4-20, a P-value of 0.16 was achieved, 

therefore the H0 was accepted, indicating the mean quantification values 

achieved for these peptides was equal.  
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Table 4-20: A T-test based statistical analysis performed on the data obtained 
from the spiked digest of DA-Raf-2.  A T-test based statistical analysis assessing 
the quantitation data obtained for peptides TVVTVR and GLNQDCCVVYR. This 
test was performed so as to assess if each data set contained an equal level of 
variation. Highlighted in yellow is the two-tailed P value, where a figure above 
2.3 would suggest there to be significant variation between the two groups in 
95% of cases.  

  TVVTVR GLNQDCCVVYR 

Mean 11.42455233 9.861816048 
Variance 0.132878544 10.65610144 
Observations 9 9 
P-value 0.160234094 

  

During the analysis of the DA-Raf-2 transfected HEK293 IP, the level of DA-Raf-2 

expressed was above the LoD for peptide GLNQDCCVVYR, and thus an accurate 

quantification should be possible. The high CoV values detected during the 

quantification of peptide GLNQDCCVVYR, however, may indicate the alkylation 

of both the target protein (when the amount of GLNQDCCVVYR detected was 

lower than the amount of TVVTVR) and the IS (when the amount of 

GLNQDCCVVYR detected was higher than the amount of TVVTVR) to be 

incomplete.  

 

4.4.5.1.5 Single Isoform Spiked Digest Overview 

Several problems were identified during the spiked digestion of each of the four 

A-Raf isoforms on an API 2000 MS. Firstly, the high quantitation value achieved 

for peptide LLTPQGPR during the spiked digestion of DA-Raf-1 indicated that 

there may be less peptide LLTP*QGPR within the sample than was expected. If 

this was the case, then it may be due to the incomplete re-suspension of this 

AQUA peptide in 2% MeCN (v/v). So as to test this theory, an unopened vial of 

AQUA peptide LLTPQGPR was re-suspended in 20 µL of 10% FA (v/v), diluting 

further to 200 µL in 0.1% FA (v/v) and the spiked digestions re-running.  

Secondly, peptide GLNQDCCVVYR presented with both high CoV and quantitation 

values, significantly different to those detected for other peptides quantified for 

each A-Raf isoform. So as to ensure peptide GLNQDCCVVYR was alkylated 

correctly, peptide GL*NQDCCVVYR was alkylated in-solution, and the peptide 

further reduced with DTT or quenched with excess Cys. The results from which 

are shown on Figure 4-34.   
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Figure 4-34: An investigation performed so as to determine the source of the 
variation detected during the spiked digestion of AQUA peptide 
GL*NQDCCVVYR.  An analysis performed on 5 pmol of AQUA peptide 
GL*NQDCCVVYR, in an unmodified state (where the peptide exists in a partially 
di-sulfide bonded state), when reduced with DTT (breaking the di-sulfide bonds), 
when reduced with DTT and alkylated with IAA, when reduced with DTT, 
alkylated with IAA and reduced again with DTT, and finally when reduced with 
DTT, alkylated with IAA and the IAA quenched with Cys. Circled in red are the 
various states in which AQUA peptide GL*NQDCCVVYR was identified. This data 
was collected on an Ultraflex II MS. 
 

From Figure 4-34 it appears that when peptide GL*NQDCCVVYR was treated with 

DTT and IAA that multiple alkylation peaks were detected. Similar results have 

previously been reported, including the alkylation of the amino-group on Lys 

(Galvani et al., 2001), it is therefore possible that in this situation the amino-

group on either the peptides N-terminus, or the C-terminal Arg residue may have 

been alkylated. These unintended alkylations could, however, be reversed or 

prevented through the addition of excess DTT or Cys, post-alkylation. This 

experiment helps to explain some of the variation detected during the spiked 

digest based analyses, and as a result all future in-gel and in-solution alkylation 

reactions will be quenched with one of the above reagents. 
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4.4.5.2 Optimisation of the Single Isoform Based Spiked Digests 

4.4.5.2.1 A-Raf WT Single Isoform Spiked Digest Optimisation 

As peptides GLNQDCCVVYR and VSQPTAEQAQAFK yielded highly variable CoV 

values during the previous A-Raf WT spiked digestion, perhaps due in part to the 

low level of A-Raf WT detected within the transfected HEK293 IP, a second 

transfected HEK293 IP was prepared, in this case re-suspending the washed anti-

FLAG beads in half the volume of protein loading buffer (180 µL). The 25 µL of IP 

loaded into each SDS-PAGE gel well, therefore, should contain the transfected, 

immunoprecipitated contents of approximately 9.2x107 HEP293 cells. This 

change, it was hoped, would double the amount of the A-Raf WT within the IP, 

from 600 fmol per 25 µL to approximately 1.2 pmol per 25 µL, enabling larger 

MRM peak areas to be obtained for peptides VSQPTAEQAQAFK and 

GLNQDCCVVYR. In addition to this change, a second DTT based reduction step 

was incorporated into the in-gel spiked digest based protocol, so as to ensure 

any undesirable alkylations were reversed, prior to LC-MS. 
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Table 4-21: The quantity and variation data obtained from the optimised 
spiked digestion of 25 µL of immunoprecipitated A-Raf WT on an API 2000.  
Through comparing the peak areas for both the synthetic and endogenous A-Raf 
peptides, three sets of quantities were obtained per peptide, per replicate. 
These values were averaged, so as to obtain a single quantity per peptide per 
replicate, and a CoV determined for this value. Further to the above, an overall 
average was calculated for each value. 

 

TVVTVR – Present in all but A-
Raf Short 

VSQPTAEQAQAFK – Unique to A-
Raf WT 

GLNQDCCVVYR – Present in all 
isoforms 

Replicate 
Average per 
Replicate (pmol/µL) CoV 

Average per Replicate 
(pmol/µL) CoV 

Average per Replicate 
(pmol/µL) CoV 

1 1.24 16.04% 1.6 8.36% 2.2 13.50% 
2 1.44 17.62% 1.8 3.53% 2.56 9.60% 

3 1.01 13.00% 1.14 1.34% 2.31 5.58% 
Average 1.23 20.61% 1.53 18.90% 2.36 10.88% 

 

From reviewing Table 4-21 and Figure 4-35, it would appear that the amount of 

A-Raf WT detected within the transfected HEK293 IP increased from 600 fmol 

per 25 µL, to 1.23 pmol per 25 µL, as quantified with peptide TVVTVR, over 

three sample replicates, with a CoV of 20.6%. 
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Figure 4-35: The quantities of each A-Raf WT target peptide detected during 
the optimised spiked digestion of A-Raf WT transfected HEK293 IP on an API 
2000.  The amount of each A-Raf WT target peptide detected during the 
optimised spiked digestion of 25 µL of A-Raf WT transfected HEK293 IP is shown. 
In brief, this single quantity, per peptide, was calculated through comparing the 
peak areas for three MRM transitions per peptide, per replicate, and the values 
averaged. A CoV value was determined for this averaged value. This bar chart 
helps to visualise the variation detected between each peptide and replicate.  
 

An ANOVA based statistical analysis was performed on this data, so as to assess if 

the means of the quantitations achieved for each peptide were equal, assuming 

a normal distribution. Therefore, during this test, the H0 stated that the means 

of these groups were equal. This analysis was performed based upon an alpha 

level of 0.05, giving a critical F-value of 5.1, which if exceeded, would require 

the H0 to be rejected. As is shown on Table 4-22, an F-value of 15.9 was 

achieved, therefore the H0 was rejected, indicating the mean quantification 

values achieved for these peptides to be significantly different.  
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Table 4-22: An ANOVA based statistical analysis performed on the data 
obtained from the optimised spiked digest of A-Raf WT transfected HEK293 
IP.  The quantification data obtained during the optimised spiked digestion of 25 
µL of A-Raf WT transfected HEK293 IP was subjected to ANOVA. During this 
statistical analysis, the data obtained for each targeted A-Raf WT peptide, and 
each digest replicate were tested, so as to assess if the means obtained for each 
peptide were equal. Highlighted in yellow is the F-value, which if above 5.1, 
would indicate the data to be significantly different, in 95% of cases. 

Groups Count Sum Average Variance F-value 
 TVVTVR 3 3.69 1.23 0.0463 15.86367 
 VSQPTAEQAQAFK 3 4.54 1.513333 0.114533 

  GLNQDCCVVYR 3 7.07 2.356667 0.034033 
   

While significant variation was detected between the means of the three A-Raf 

WT peptides, quantified through the spiked digestion of 25 µL of A-Raf WT 

transfected HEK293 IP, the data obtained for peptides VSQPTAEQAQAFK and 

TVVTVR appeared more closely grouped (Table 4-21). So as to assess if there was 

any variation between the means of peptides TVVTVR and VSQPTAEQAQAFK, 

assuming a normal distribution, a two-tailed T-test was performed. During this 

test, a H0, that the means of these groups were equal, was stated. This analysis 

was performed based upon an alpha level of 0.05, giving a critical P-value of 

2.8, which if exceeded, would require the H0 to be rejected. As is shown on 

Table 4-23, a P-value of 0.28 was achieved, therefore the H0 was accepted, 

indicating the mean quantification values achieved for these peptides was equal.  

 

Table 4-23: A T-test based statistical analysis performed on the data obtained 
from the optimised spiked digestion of A-Raf WT.  A T-test based statistical 
analysis performed on the quantitation data obtained for peptides TVVTVR and 
VSQPTAEQAQAFK. This test was performed so as to assess if the data obtained 
for each of the peptide contained an equal level of variation. Highlighted in 
yellow is the two-tailed P-value, where a value above 2.8 would indicate that 
there was significant variation between the groups in 95% of cases.  

  TVVTVR VSQPTAEQAQAFK 
Mean 1.227833452 1.514465864 
Variance 0.045132721 0.113404655 
Replicates 3 3 
P-value 0.280471873 

  

As the CoV values obtained for peptide GLNQDCCVVYR remained low over the 

three replicates, and with three transitions per replicate, this would suggest 

that the in-gel digestion, recovery and LC-MS/MS methods were reproducible. 

Variation was detected between the quantitation values obtained for peptide 
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GLNQDCCVVYR and those obtained for peptides TVVTVR and VSQPTAEQAQAFK, 

however, which would indicate a problem with the quantification of this peptide 

(Figure 4-35). As the in-gel digest and in-solution AQUA preparation protocols 

were previously modified to ensure excess alkylation was not an issue (which 

eliminated quantification ratios which presented at a rate lower than expected), 

the only logical conclusion was that the in-solution processing of the AQUA 

peptide, prior to spiking the gel pieces, was responsible for the sample loss. 

 

Sample loss occurring during downstream processing has previously been 

documented, with vacuum centrifugation based protocols, such as this, causing 

losses of up to 50% (Speicher et al., 2000). The only solution would therefore be 

to order each of the Cys containing AQUA peptides pre-alkylated, requiring no 

further down-stream processing. While unmodified peptides were intentionally 

selected during this study to correct for any inefficiency encountered during the 

alkylation of Cys, this reaction has since been shown to be complete.  

 

4.4.5.2.2 DA-Raf-1 Single Isoform Spiked Digest Optimisation 

When a spiked digestion was first performed on the DA-Raf-1 transfected HEK293 

IP, 32.99 pmol of DA-Raf-1 was detected, per 25 µL of sample, with a CoV value 

of 11.82% (based upon the use of peptide TVVTVR). In comparison, when peptide 

LLTPQGPR was quantified, the amount of DA-Raf-1 within 25 µL of DA-Raf-1 

transfected HEK293 IP was calculated to be 42.05 pmol, with a CoV of 6.72%. 

Therefore, the incomplete re-suspension of AQUA peptide LLTPQGPR was 

suspected. So as to test this theory, an unopened vial of peptide LLTPQGPR was 

re-suspended in 20 µL of 10% FA (v/v), further diluting to 200 µL in 0.1% FA 

(v/v). The spiked digest was then re-run, loading 5 µL of the DA-Raf-1 

transfected HEK293 IP to each SDS-PAGE gel lane, equal to the transfected, 

immunoprecipitated contents of approximately 9x106 HEP293 cells. 
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Table 4-24: The quantity and variation data obtained from the spiked 
digestion of 5 µL of immunoprecipitated DA-Raf-1 on an API 2000.  Through 
comparing the peak areas for both the synthetic and endogenous A-Raf peptides, 
three sets of quantities were obtained per peptide, per replicate. These values 
were averaged, so as to obtain a single quantity per peptide per replicate, and a 
CoV determined for this value. Further to the above, an overall average was 
calculated for each value. 

 
LLTPQGPR – Unique to DA-Raf-1 

TVVTVR – Present in all but A-
Raf Short 

GLNQDCCVVYR – Present in all 
isoforms 

Replicate 
Average per Replicate 
(pmol/µL) CoV 

Average per Replicate 
(pmol/µL) CoV 

Average per Replicate 
(pmol/µL) CoV 

1 7.54 9.65% 7.37 3.29% 5.46 35.67% 
2 7.81 16.41% 7.64 13.48% 4.69 9.64% 

Average 7.68 12.30% 7.51 9.12% 5.08 26.29% 

 

 
Figure 4-36: The quantities of each DA-Raf-1 target peptide detected during 
the optimised spiked digestion of DA-Raf-1 transfected HEK293 IP on an API 
2000.  The amount of each DA-Raf-1 target peptide detected during the 
optimised spiked digestion of 5 µL of DA-Raf-1 transfected HEK293 IP is shown. In 
brief, this single quantity, per peptide, was calculated through comparing the 
peak areas for three MRM transitions per peptide, per replicate, and the values 
averaged. A CoV value was determined for this averaged value. This bar chart 
helps to visualise the variation detected between each peptide and replicate.  
 

Through assessing Table 4-24 and Figure 4-36, the precision of the 

quantifications achieved through the use of peptide LLTPQGPR were seen to 

improve, at least in comparison to those achieved through the use of peptide 

TVVTVR. An ANOVA based statistical analysis was performed on this data, so as 
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to assess if the means of the quantitations achieved for each peptide were 

equal, assuming a normal distribution. Therefore, during this test, the H0 stated 

that the means of these groups were equal. This analysis was performed based 

upon an alpha level of 0.05, giving a critical F-value of 9.6, which if exceeded, 

would require the H0 to be rejected. As is shown on Table 4-25, an F-value of 

34.4 was achieved, therefore the H0 was rejected, indicating the mean 

quantification values achieved for these peptides to be significantly different.  

 

Table 4-25: An ANOVA based statistical analysis performed on the data 
obtained during the optimised spiked digest of DA-Raf-1 transfected HEK293 
IP.  The quantification data obtained during the optimised spiked digestion of 5 
µL of DA-Raf-1 transfected HEK293 IP was subjected to ANOVA. During this 
statistical analysis, the data obtained for each targeted A-Raf WT peptide, and 
each digest replicate were tested, so as to assess if the means obtained for each 
peptide were equal. Highlighted in yellow is the F-value, which if above 9.6, 
would indicate the data to be significantly different, in 95% of cases. 

Groups Count Sum Average Variance F-value 
LLTPQGPR 2 15.35 7.675 0.03645 34.36794 
TVVTVR 2 15.01 7.505 0.03645 

 GLNQDCCVVYR 2 10.15 5.075 0.29645   

 

While significant variation was detected between the quantification values 

obtained for each of the three DA-Raf-1 peptides, during the spiked digestion of 

the DA-Raf-1 transfected HEK293 IP, the averaged quantitation values obtained 

for peptides TVVTVR and LLTPQGPR appeared more closely grouped (Table 4-

24). So as to assess if there was any variation between the means of peptides 

TVVTVR and LLTPQGPR, assuming a normal distribution, a two-tailed T-test was 

performed. During this test, a H0, that the means of these groups were equal, 

was stated. This analysis was performed based upon an alpha level of 0.05, 

giving a critical P-value of 4.3, which if exceeded, would require the H0 to be 

rejected. As is shown on Table 4-26, a P-value of 0.5 was achieved, therefore 

the H0 was accepted, indicating the mean quantification values achieved for 

these peptides to be equal. This is particularly impressive as each of the 

peptides originated from a different SDS-PAGE gel, and indeed were both 

peptides were digested with different proteases. 
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Table 4-26: A T-test based statistical analysis performed on the data obtained 
from the optimised spiked digestion of DA-Raf-1.  A T-test based statistical 
analysis performed on the quantitation data obtained from peptides TVVTVR and 
LLTPQGPR. This statistical test was performed so as to determine if the variation 
between the data sets was equal. Highlighted in yellow is the two-tailed P value, 
where a figure above 4.3 would indicate there to be significant variation 
between the groups in 95% of cases.  

  LLTPQGPR TVVTVR 

Mean 7.67510408 7.505279247 
Variance 0.037150395 0.035091527 
Observations 2 2 
P-value 0.465849755 

  

As peptides TVVTVR and LLTPQGPR were found to have equal means, while 

significant variation was identified between the means of the three DA-Raf-1 

peptides, this would indicate peptide GLNQDCCVVYR to be the cause of the 

variation. As this experiment was conducted before the in-gel digest protocol 

was modified, then this variation most likely resulted from peptide 

GLNQDCCVVYR receiving excess alkylation. 

 

4.4.5.2.3 DA-Raf-2 QTrap 4000 and Ultraflex II Based Analysis 

When a spiked digestion was last performed on the DA-Raf-2 transfected HEK293 

IP, no MALDI-ToF MS was available for the quantification of Lys-C cleaved 

peptide VPTVCVDMSTNRQQ. When running this spiked digestion however, an 

Ultraflex II was available, enabling all three DA-Raf-2 peptides to be quantified. 

Furthermore, as 11.42 pmol of DA-Raf-2 was detected per 25 µL of IP (based 

upon the data obtained for peptide TVVTVR), the SDS-PAGE gel loading volume 

was reduced by 50% (to 12.5 µL), equal to the transfected, immunoprecipitated 

contents of approximately 2.3x107 HEP293 cells. 

 

Regarding the MALDI based data analysis; the peak heights for isotopic peaks M, 

M+1, M+2 and M+3 were assessed, the data averaged, and a CoV value calculated.  
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Table 4-27: The quantity and variation data obtained from the spiked 
digestion of 12.5 µL of immunoprecipitated DA-Raf-2 on a QTrap 4000.  
Through comparing the peak areas for both the synthetic and endogenous A-Raf 
peptides, three sets of quantities were obtained per peptide, per replicate. 
These values were averaged, so as to obtain a single quantity per peptide per 
replicate, and a CoV determined for this value. Further to the above, an overall 
average was calculated for each value. 

 

TVVTVR – Present in all but A-
Raf Short 

GLNQDCCVVYR – Present in all A-
Raf isoforms 

VPTVCVDMSTNRQQ – Unique to 
DA-Raf-2 

Replicate 
Average per Replicate 
(pmol/µL) CoV 

Average per Replicate 
(pmol/µL) CoV 

Average per Replicate 
(pmol/µL) CoV 

1 6.67 2.07% 9.66 9.40% 10.75 14.47% 
2 6.97 3.26% 9.7 9.69% 16.69 6.88% 

3 6.14 4.49% 9.16 8.90% 14.91 5.06% 
4 6.18 3.11% 8.67 9.99% 17.39 7.48% 
5 5.78 4.61% 8.12 10.35% 18.57 7.98% 

Average 6.41 7.03% 9.17 10.69% 15.66 8.37% 

 

Table 4-27 and Figure 4-37 show the quantitation data obtained from the spiked 

digestion of 12.5 µL of DA-Raf-2 IP. Of the results obtained, peptide TVVTVR 

estimated there to be 6.41 pmol of DA-Raf-2 per 12.5 µL of DA-Raf-2 transfected 

HEK293 IP, with an averaged CoV of just 7.03%. 
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Figure 4-37: The quantities of each DA-Raf-2 target peptide detected during 
the spiked digestion of DA-Raf-2 transfected HEK293 IP on a QTrap 4000, and 
an Ultraflex II.  The amount of each DA-Raf-2 target peptide detected during 
the spiked digestion of 12.5 µL of DA-Raf-2 transfected HEK293 IP is shown. In 
brief, this single quantity, per peptide, was calculated through comparing the 
peak areas for three MRM transitions per peptide, per replicate, and the values 
averaged. A CoV value was determined for this averaged value. This bar chart 
helps to visualise the variation detected between each peptide and replicate.  
 

An ANOVA based statistical analysis was performed on this data, so as to assess if 

the means of the quantitations achieved for each peptide were equal, assuming 

a normal distribution. Therefore, during this test, the H0 stated that the means 

of these groups were equal. This analysis was performed based upon an alpha 

level of 0.05, giving a critical F-value of 3.9, which if exceeded, would require 

the H0 to be rejected. As is shown on Table 4-28, an F-value of 34.5 was 

achieved, therefore the H0 was rejected, indicating the mean quantification 

values achieved for these peptides to be significantly different.  
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Table 4-28: An ANOVA based statistical analysis performed on the data 
obtained during the optimised spiked digest of DA-Raf-2 transfected HEK293 
IP.  The quantification data obtained during the optimised spiked digestion of 5 
µL of DA-Raf-2 transfected HEK293 IP was subjected to ANOVA. During this 
statistical analysis, the data obtained for each targeted A-Raf WT peptide, and 
each digest replicate were tested, so as to assess if the means obtained for each 
peptide were equal. Highlighted in yellow is the F-value, which if above 3.9, 
would indicate the data to be significantly different, in 95% of cases. 

Groups Count Sum Average Variance F-value 

TVVTVR 5 31.74 6.348 0.22117 34.5119 
GLNQDCCVVYR 5 45.31 9.062 0.45382 

 VPTVCVDMSTNRQQ 5 78.31 15.662 9.29812   

 

In comparison to the amount of DA-Raf-2 detected in 12.5 µL of DA-Raf-2 

transfected HEK293 IP through the quantitation of peptide TVVTVR, peptide 

GLNQDCCVVYR estimated there to be 9.17 pmol of DA-Raf-2 per 12.5 µL of 

sample, a value approximately 25% higher. This phenomenon was previously 

been explained to result from the loss of IS during the alkylation of peptide 

GLNQDCCVVYR. In comparison to both peptides TVVTVR and GLNQDCCVVYR, 

however, peptide VPTVCVDMSTNRQQ predicted the amount of DA-Raf-2 per 12.5 

µL of sample to be even higher (15.66 pmol/ 12.5 µL with a CoV of only 8.37%). 

Therefore, there most likely was also a problem with the preparation of AQUA 

peptide VPTVCVDMSTNRQQ, rather than the incomplete digestion of DA-Raf-2 

with Lys-C. As peptide VPTVCVDMSTNRQQ was already re-suspended in 10% FA 

(v/v), and diluted to 200 µL in 0.1% FA (v/v), then there was no reason to 

suspect incomplete re-suspension. Instead, as with peptide GLNQDCCVVYR, 

AQUA peptide VPTVCVDMSTNRQQ may suffer from sample loss as a result of 

down-stream processing. Some redundancy does, however, exist in the 

quantification of the four A-Raf peptides, enabling the amount of DA-Raf-2 to be 

determined when each of the four A-Raf isoforms are quantified. 

 

4.4.5.3 Multiple Isoform Spiked Digest Based Analysis 

Having performed single isoform based spiked digestions to quantify the amount 

of A-Raf expressed in a range of transfected HEK293 cell IP, and having obtained 

statistically comparable quantification values for peptides TVVTVR, 

VSQPTAEQAQAFK and LLTPQGPR, it should be possible to combine known 
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amounts of each A-Raf isoform, and to re-quantify each, based upon the amount 

of each target peptide detected. 

 

Approximately 1 pmol of each A-Raf isoform (each based upon a quantification 

performed with peptide TVVTVR, with the exception of A-Raf Short, which was 

instead quantified with peptide GLNQDCCVVYR) was separated via SDS-PAGE, the 

target gel bands excised, reduced and alkylated before being transferred to a 

single vial and digested in the presence of 5 pmol of each AQUA peptide. The 

peptides were extracted and vacuum centrifuged, injecting onto an Ultimate 

3000 HPLC and analysing on a QTrap 5500 MS, running the MRM acquisition 

method previously devised.   
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Figure 4-38: The complex XIC obtained during the trypsin based spiked 
digestion of each of the four A-Raf isoforms, analysed on a QTrap 5500.  
Through digesting immunoprecipitated A-Raf WT, A-Raf Short, DA-Raf-1 and DA-
Raf-2 with trypsin, in the presence of 5 pmol of AQUA peptides TV*VTVR, 
GL*NQDCCVVYR, VSQP*TAEQAQAFK and LLTP*QGPR, a spiked digest solution was 
obtained which was injected onto an Ultimate 3000 HPLC and analysed on an 
QTrap 5500 MS. 
 

From Figure 4-38 it is clear that the XIC obtained from the trypsin based 

digestion of the four A-Raf isoforms is a lot more complex than that obtained for 

A-Raf WT on the API 2000 (Figure 4-29). This will, in part, be due to the 

increased number of isoforms being analysed, but also due to the increase in 
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sensitivity offered by the QTrap 5500 over the API 2000, detecting more ions 

with m/z ratios similar to those targeted by the MRM acquisition method within 

the sample. It is thus important that when each peptide is quantified, that the 

correct peak is selected (selecting a peak which is present in each MRM 

transition, three transitions per peptide, and is present in both the synthetic and 

target XICs). The data obtained from the mixed isoform based analyses are listed 

on Table 4-29 and presented on Figure 4-39. 

 
Table 4-29: The quantity and variation data obtained from the spiked 
digestion of 1 pmol of each of the four immunoprecipitated A-Raf isoforms on 
a QTrap 5500.  Through comparing the peak areas for both the synthetic and 
endogenous A-Raf peptides, three sets of quantities were obtained per peptide, 
per replicate. These values were averaged, so as to obtain a single quantity per 
peptide per replicate, and a CoV determined for this value. Further to the 
above, an overall average was calculated for each value. 

 
TVVTVR – Present in all but A-Raf Short GLNQDCCVVYR – Present in all A-Raf isoforms 

Replicate Average per Replicate (pmol/µL) CoV Average per Replicate (pmol/µL) CoV 

1 2.00 5.73% 2.42 7.71% 
2 1.93 1.77% 2.19 7.93% 
3 2.07 4.27% 2.52 2.97% 

Average 2.00 4.81% 2.37 8.26% 

 
LLTPQGPR – Unique to DA-Raf-1 VSQPTAEQAQAFK – Unique to A-Raf WT 

Replicate Average per Replicate (pmol/µL) CoV Average per Replicate (pmol/µL) CoV 
1 0.75 2.71% 0.33 18.21% 
2 0.69 4.48% 0.33 14.15% 

3 0.72 3.42% 0.44 2.03% 
Average 0.72 4.69% 0.37 18.40% 
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Figure 4-39: The quantities of each A-Raf target peptide detected during the 
spiked digestion of 1 pmol of each of the four A-Raf isoforms on a QTrap 
5500.  The amount of each A-Raf target peptide detected during the spiked 
digestion of 1 pmol of each of the four A-Raf isoforms. In brief, this single 
quantity, per peptide, was calculated through comparing the peak areas for 
three MRM transitions per synthetic or endogenous A-Raf peptide, per replicate, 
and the values averaged. A CoV value was determined for this value. This bar 
chart helps to visualise the variation detected between each peptide and 
replicate.  
 

In theory, as 1 pmol of each of the four A-Raf isoforms is digested, 4 pmol of 

peptide GLNQDCCVVYR would be expected (present in each of the four 

isoforms), 3 pmol of peptide TVVTVR would be expected (present in A-Raf WT, 

DA-Raf-1 and DA-Raf-2), 1 pmol of peptide LLTPQGPR would be expected 

(present only in DA-Raf-1) and 1 pmol of peptide VSQPTAEQAQAFK would be 

expected (present only in A-Raf WT). Instead, however, 2.37 pmol of peptide 

GLNQDCCVVYR was detected, with a CoV of 8.26%, 2 pmol of peptide TVVTVR 

was detected, with a CoV of 4.81%, 0.72 pmol of peptide LLTPQGPR was 

detected, with a CoV of 4.69%, and 0.37 pmol of peptide VSQPTAEQAQAFK was 

detected, with a CoV of 18.40% (Table 4-29). This peptide quantitation data was 

subsequently used to calculate the amount of each A-Raf isoform present within 

the sample. In brief, A-Raf Short was quantified through subtracting the amount 

of peptide TVVTVR detected, from the amount of peptide GLNQDCCVVYR 
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detected. Furthermore, DA-Raf-2 was quantified through subtracting the amount 

of peptide LLTPQGRP and VSQPTAEQAQAFK detected, from the amount of 

peptide TVVTVR detected (Table 4-30). 

 
Table 4-30: The amount of each A-Raf isoform detected during a mixed 
isoform based spiked digestion.  A set of spiked digests were performed, in 
which 1 pmol of each of the four A-Raf isoforms were digested. Through 
comparing the peak areas obtained for each peptide, a quantitation was 
attempted for each A-Raf isoform. 

Peptide Present in: Average quantity (pmol) 

GLNQDCCVVYR A-Raf WT, A-Raf Short, DA-Raf-1, DA-Raf-2 2.37 
TVVTVR A-Raf WT, DA-Raf-1, DA-Raf-2 2.00 

LLTPQGPR DA-Raf-1 0.72 
VSQPTAEQAQAFK A-Raf WT 0.37 

Isoform Calculating the quantity of each isoform: Quantity (pmol) 
A-Raf WT VSQPTAEQAQAFK 0.37 
A-Raf Short GLNQDCCVVYR - TVVTVR 0.38 

DA-Raf-1 LLTPQGPR 0.72 
DA-Raf-2 TVVTVR - VSQPTAEQAQAFK - LLTPQGPR 0.91 

 

The data presented in Table 4-30 suggests that each of the four A-Raf isoforms 

were present at a level below 1 pmol. There may be several reasons why the 

peptide and protein levels detected during this experiment differed from those 

expected. Firstly, the amount of A-Raf Short detected within the A-Raf Short 

transfected HEK293 IP was quantified through the use of peptide GLNQDCCVVYR, 

meaning the amount of A-Raf Short, and thus the amount of peptide 

GLNQDCCVVYR, added to the gel, may have been incorrect. Secondly, as A-Raf 

Short was again quantified during this experiment with peptide GLNQDCCVVYR, 

the quantity detected may also have been incorrect. 

 

In conclusion, the mixed isoform based spiked digestion may have been more 

successful if an accurate quantitation could have been achieved for peptides 

GLNQDCCVVYR and VPTVCVDMSTNRQQ. 

 

4.4.5.4 Non-Immunoprecipitated Exogenous HEK293 Spiked Digest 

While further optimisation may have improved the results obtained from the 

mixed isoform based spiked digestions, and indeed the single isoform based 

spiked digestions; a few final experiments were performed, so as to assess if it 



200 

 

was possible to detect the exogenous level of A-Raf WT within a transfected cell 

lysate, without the use of immunoprecipitation based sample enrichment. As the 

spiked digestions featured 1D-SDS-PAGE, LC based separation and MRM based 

acquisition, then in theory the majority of the non-target protein and peptide 

species within the cell lysate should be isolated from the point at which the 

target peptides elute. Should any non-target peptides co-elute with the target, 

it is likely they would have different Q1 and Q3 m/z ratios, and therefore should 

not be detected.  

 

A 150 mm dish of HEK293 cells was transfected with A-Raf WT, and lysed after 

72 hours. The cell lysate was centrifuged to remove any un-lysed cells and 

cellular debris and diluted to 1 mL with Protein Loading Buffer. Twenty five 

microlitres of cell lysate was loaded to an SDS-PAGE gel, separated, and digested 

with trypsin in the presence of each of the A-Raf AQUA peptides. The resulting 

solution was injected onto an Ultimate 3000 HPLC and detected via a QTrap 

5500 MS, using the MRM acquisition method previously devised. 
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Figure 4-40: The XIC obtained when 25 µL of transfected, un-enriched, A-Raf 
WT lysate was subjected to a spiked digest based analysis, detecting on a 
QTrap 5500, utilising either low or unit Q1 resolution MRM transition 
windows.  Twenty five µL of non-enriched, HEK 293 transfected A-Raf WT was 
analysed on a QTrap 5500 MS using the A-Raf MRM based MS acquisition method. 
The XIC spectra shown were performed with a Q1 resolution set to either low 
(top) or unit (bottom), utilising mass transmission windows of 1-1.4 atomic mass 
units (amu) and 0.6-0.8 amu, respectively, so as to reduce the number of non-
targeted peaks detected. 
 

From Figure 4-40, we can see that the XIC spectra obtained with a low resolution 

Q1 transition window (permitting ions within 1.2 ± 0.2 amu of the target m/z) 

was a lot more complex than the XICs obtained for either the QTrap 5500 based 

mixed isoform digests (Figure 4-38) or the API 2000 based A-Raf WT single 

isoform digests (Figure 4-29). In addition to the many non-target peaks 

detected, the spectra background was also found to contain excessive noise. 

This was most likely due to the absence of the IP enrichment step, adding the 

cell lysate directly to the SDS-PAGE gel, which resulted in more proteins being 

digested and thus more ions entering the mass spectrometer with similar Q1 and 

Q3 m/z ratios to those of the target peptides. 

 

While the use of low Q1 and Q3 transition windows were required for the 

detection of each of the A-Raf AQUA peptides on the low sensitivity API 2000 MS, 

ensuring that all target ions were permitted to the detector, a more restrictive 

transmission window could be selected for the high sensitivity QTrap 5500, so as 

to reduce excessive noise. 

 

The Q1 transmission window was thus changed from low resolution, permitting 

ions within 1.2 ± 0.2 amu of the target m/z, to unit resolution, permitting only 

ions within 0.7 ± 0.1 amu of the target m/z to the collision cell, while the Q3 

transmission window was retained with a low resolution transition window. At 

the expense of slightly reducing the sensitivity of the QTrap 5500, this change in 

the Q1 transmission window should filter out the majority of the noise being 

permitted to the collision cell, and in doing so reducing the noise entering Q3. 

Indeed Figure 4-40 appears to confirm that using unit resolution in Q3 has 
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removed a number of non-target peaks from the XIC, further reducing the 

background noise against which the target peaks are quantified. 

 

An additional route through which the background noise could be reduced would 

be to apply stable isotope standards with capture by anti-peptide antibodies 

(SISCAPA), post-proteolytic digestion. While the IP enriched A-Raf WT solution 

was separated via 1D-SDS-PAGE and only a segment of the gel excised (relating 

to the MW of the protein of interest), this gel band may still contain hundreds of 

proteins, in addition to the high amount of protease added to the gel. Therefore 

post-digestion many thousands of peptides may yet exist within the extracted 

sample, competing with the target peptides for ionisation, and possibly 

introducing interfering peaks to the MRM spectrum. So as to reduce the 

complexity of the extracted sample, SISCAPA utilises a 100 nanolitre (nL) 

nanoaffinity column, which contains immobilised antibodies specific to the 

target peptides, enabling any unbound peptides to be washed off the column 

and only those peptides of interest eluted (Anderson et al., 2004a). 

 

Table 4-31: The quantity and variation data obtained for each A-Raf WT target 
peptide, detected during the spiked digestion of an A-Raf WT transfected, 
un-enriched, HEK293 cell lysate.  Through comparing the peak areas for both 
the synthetic and endogenous A-Raf peptides, three sets of quantities were 
obtained per peptide, per replicate. These values were averaged, so as to obtain 
a single quantity per peptide per replicate, and a CoV determined for this value. 
Further to the above, an overall average was calculated for each value. 

 

TVVTVR – Present in all but A-
Raf Short 

VSQPTAEQAQAFK – Unique to A-
Raf WT 

GLNQDCCVVYR – Present in all 
A-Raf isoforms 

Replicate 
Average per 
Replicate (pmol/µL) CoV 

Average per 
Replicate (pmol/µL) CoV 

Average per 
Replicate (pmol/µL) CoV 

1 0.07 71.88% 6.12 149.01% 0.1 99.18% 

2 0.03 136.02% 0.91 67.71% 0.1 106.65% 
3 0.02 119.22% 6.02 134.43% 0.1 97.16% 
4 0.1 83.35% 5.28 94.63% 0.09 88.95% 

5 0.07 112.22% 8.44 145.54% 0.09 87.03% 
Average 0.06 98.27% 5.35 135.84% 0.1 81.70% 

 

From Table 4-31 it is clear that while high levels of peptide VSQPTAEQAQAFK 

were detected, 5.35 pmol of A-Raf WT per 25 µL of transfected HEK293 cell 

lysate, large CoV values were also achieved (135.84%). Large CoV values were 

also achieved for both peptides TVVTVR and GLNQDCCVVYR, achieving some 

98.27% and 81.70%, respectively. The quantitation values obtained for peptides 
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TVVTVR and GLNQDCCVVYR, however, were considerably lower, detecting just 

60 fmol of A-Raf WT per 25 µL of cell lysate, and 100 fmol of A-Raf WT per 25 µL 

of cell lysate, respectively. When the MRM transitions were reviewed, the cause 

of the erratic quantitation values was determined (Figure 4-41). While AQUA 

peptides TVVTVR and GLNQDCCVVYR were detected at a high intensity, AQUA 

peptide VSQPTAEQAQAFK was missing. As such, while 5 pmol of AQUA peptides 

TV*VTVR and GL*NQDCCVVYR was being compared to background noise, resulting 

in low quantitation values, background noise was being compared to background 

noise for VSQPTAEQAQAFK, resulting in a much higher quantitation value. 
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Figure 4-41: The MRM spectra obtained from both the synthetic and 
endogenous peaks detected during the analysis of 25 µL of A-Raf WT 
transfected, non-enriched HEK293 cell lysate.  The MRM peaks obtained for 
target and synthetic peptides VSQPTAEQAQAFK, GLNQDCCVVYR and TVVTVR 
following the injection of 25 µL of A-Raf WT transfected, un-enriched, HEK293 
cell lysate, on a QTrap 5500.  
  

In conclusion, no A-Raf WT was detected during the quantification of the A-Raf 

WT transfected HEK293 cell lysate, suggesting the level of A-Raf WT within the 

non-immunoprecipitated solution to be below the LoD for this isoform on a 

QTrap 5500. 
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If we consider that the previous A-Raf WT transfected HEK293 IP contained 1.2 

pmol of A-Raf WT per 25 µL of sample, and that approximately 360 µL of IP was 

produced from a total of six cell culture plates, then the total amount of 

transfected A-Raf WT protein, per plate, was 2.88 pmol. If the same quantity is 

assumed for this non-enriched sample, diluted to 1 mL in protein loading buffer, 

then the 25 µL added to the SDS-PAGE gel should contain approximately 72 fmol 

of the A-Raf WT. While this is below the LoD for peptide GLNQDCCVVYR on the 

QTrap 5500, a quantification should be possible on a QTrap 4000 MS. 

 

4.4.5.5 Endogenously Expressed A-Raf WT Spiked Digest 

Further to the detection of exogenously expressed A-Raf WT from a non-

immunoprecipitated cell lysate, the detection of endogenously expressed A-Raf 

WT was attempted from a HEK293 cell lysate. 

 

A 150 mm plate of HEK293 cells was incubated for 96 hours, lysed, diluted to 1 

mL in Protein Loading Buffer, and 25 µL loaded to an SDS-PAGE gel. A gel band, 

centred on a MW of 58 kDa, was excised from the gel and digested with trypsin, 

in the presence of each of the four A-Raf AQUA peptides. The tryptic peptides 

were extracted and vacuum centrifuged, re-suspended in 20 µL of Buffer A and 

injected onto an Ultimate 3000 HPLC, coupled to a QTrap 5500 MS. 

 

As was the case with the non-immunoprecipitated exogenously expressed cell 

lysate, no A-Raf WT was detected during this analysis (data not shown). 

 

4.5 Conclusion 

During this project it has been possible to develop a set of AQUA peptide 

selection criteria, and to apply these to the selection of AQUA peptides suitable 

for the quantification of each of the four A-Raf isoforms. In the case of A-Raf WT 

this was as simple as selecting a peptide located in the catalytic domain, unique 

to this isoform, while for DA-Rafs 1 and 2, non-ideal C-terminus peptides were 

the only solution. These non-ideal peptides contained Cys and Met residues, or 
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were cleaved with non-ideal proteases, each challenge enabled the author to 

test how detrimental these sequence flaws were to an AQUA based 

quantification. Finally, a subtraction based quantification was performed for A-

Raf Short, subtracting the estimated amount of a peptide present in A-Raf WT, 

DA-Raf-1 and DA-Raf-2 from that achieved for a peptide present in each of the 

four A-Raf isoforms. 

 

Through characterising and quantifying these AQUA peptides it was possible to 

detect each Q1 ion, and to select several Q3 transitions, per peptide, in doing so 

creating an A-Raf MRM acquisition method capable of detecting each targeted 

peptide within a complex sample. Protocols were also developed for the 

complete modification of Cys and Met, while proteolytic digest parameters were 

optimised, so as to maximise the peptide yield per proteolytic digestion.  

 

Upon development of the MS based analysis, the LoD was determined for each A-

Raf isoform on a range of triple quadrupole based mass spectrometers, and each 

A-Raf isoform expressed at a level suitable for spiked digest based quantitative 

analyses. 

 

Several problems were encountered during this project however. The first of 

which was the MS instrumentation available for use. As the LoD test showed, the 

API 2000 MS was 300 times less sensitive than the QTrap 4000 MS. Should a more 

sensitive instrument have been available, then the detection of each of the 

endogenously expressed A-Raf isoform should have been possible. Secondly, 

problems were encountered with AQUA peptide GL*NQDCCVVYR. While peptide 

GLNQDCCVVYR was intentionally ordered in a reduced state, so as to enable a 

comparable IAA based alkylation to be performed on both the target and 

synthetic peptides, this additional processing led to a 25% sample loss. 

 

While several problems were encountered during this project, slowing the 

development of this quantitative technique drastically, the theory behind this 

analysis remains sound, and indeed some promising results were obtained during 

the spiked digest based analyses. Through simply re-ordering the Cys containing 
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AQUA peptides pre-alkylated, utilising SISCAPA base peptide purification and 

performing the quantitative analyses on a sensitive triple quadrupole based MS, 

the detection of endogenous A-Raf within a HEK293 cell lysate should be 

possible. 
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5 Absolute Quantification of the PDE4B Group of Protein 

Isoforms 

5.1 Introduction 

5.1.1 cAMP and PKA Activation 

Adenine ribonucleotide, later named 3'-5'-cyclic adenosine monophosphate 

(cAMP), was first discovered in 1957 when Sutherland and Rall subjected dog 

liver fractions to homogenisation in the presence of adenosine-5'-triphosphate 

(ATP), Mg++ and epinephrine or glucagon (Sutherland and Rall, 1957). By way of 

an explanation the author suggested that the cAMP may be acting as a secondary 

messenger within the cell (Sutherland and Rall, 1958). 

 

Several discoveries have since been made in the field of intra-cellular signalling; 

one of which was the discovery that cAMP is generated through the conversion of 

cytoplasmic ATP by adenylyl cyclase (Gary M, 1988). In turn, it was discovered 

that distinct ligands were capable of elevating the production of cAMP, 

suggesting the existence of hormone specific receptors (such as for epinephrine 

or norepinephrine) (Orly and Schramm, 1976). Previously each hormone had 

been thought to bind adenylyl cyclase directly. It was also noted that GTP was 

required for the activation of adenylyl cyclase, leading to the development of a 

new signalling model in which an adenylyl cyclase-stimulatory GTP-binding 

protein (G-protein) was required for the production of cAMP (Dohlman et al., 

1991). This G-protein was first purified and cloned in 1987 by Gilman (Gilman, 

1987), who noted it to be composed of three distinct subunits, the α, β, and γ, 

each of which were present in a 1:1:1 ratio and named in order of decreasing 

mass.  

 

In the most recent model of cAMP production, the primary signalling molecule 

binds to activate its specific extracellular receptor, creating a receptor based 

binding site for protein G. By binding with the receptor, a conformational 

change occurs within the G-protein, causing the α subunit to exchange a bound 

GDP for a cytoplasmic GTP, and in doing so disassociating from both the β and γ 
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subunits (Patel et al., 2001). Having activated the G-protein, the free α subunit 

binds adenylyl cyclase, enabling the conversion of ATP to cAMP (Dohlman et al., 

1991), as is shown on Figure 5-1. 

 

 
Figure 5-1: The signalling cascade required for the production of intercellular 
cAMP.  This image depicts how an extracellular hormone can lead to the 
production of intercellular cAMP, which requires the extracellular hormone 
binding its specific receptor. This binding causing the α subunit of the G-protein 
to exchange a bound GDP molecule for a GTP, and in doing so disassociating 
from both the β and γ subunits. The α subunit of the activated G-protein can 
then bind the adenylyl cyclase, initiating the conversion of cytoplasmic ATP to 
cAMP. 
 

Upon uncovering the mechanism of cAMP generation, and unhappy with a theory 

in which cAMP dependent protein kinase A (PKA) was “swimming about, happily 

phosphorylating a variety of cellular constituents” (Beavo and Brunton, 2002), it 

was suggested that cAMP based signalling may be compartmentalised. Were this 

proven to be the case, then it was theorised that the hormone specific 

receptors, nine of which had been identified, would be located within close 

proximity to the final effector (TASKÉN and AANDAHL, 2004). This was later 
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confirmed through experimentation with prostaglandin E and the β-adrenergic 

receptor agonist isoprenaline, both of which resulted in equivalent elevation of 

cardiac cAMP levels, but only isoprenaline activated glycogen phosphorylase 

(Beavo and Brunton, 2002).  

 

Upon the production of cAMP, PKA is the classical cAMP effector protein, 

responsible for transmitting the secondary signal (Houslay and Adams, 2003). 

PKA exists within the cell as a tetramer, composed of two regulatory (R) 

subunits, held together by N-terminal dimerisation domains, each of which is 

independently bound to a catalytic (C) subunit (Francis et al., 2011). Several R 

and C subunit isoforms have been identified, with some four genes encoding 

subunit R (RI-α, RI-β, RII-α and RII-β), and three encoding subunit C (C-α, C-β 

and C-γ). Due to the range of possible isozymes, PKA can be classified as either a 

Type I or Type II enzyme; based on which R subunit it contains. Type I enzymes 

(RI) are predominantly located within the cytoplasm, while Type II enzymes (RII) 

have been identified on the cell membrane and organelles (Kim et al., 2007). 

This range of PKA isoforms helps to further increase the substrate specificity of 

the kinase (Francis et al., 2011). 

 

The final method by which the specificity of PKA is increased is via binding to an 

A-kinase anchoring protein (AKAP), a scaffolding protein which maintains PKA 

within close proximity to its final substrate pool (Edwards and Scott, 2000). Type 

II PKA tetramers are bound strongly to AKAPs, with a nM affinity. In contrast, 

Type I PKA tetramers only display µM levels of affinity towards the ligand, and 

have not as yet been shown to bind AKAP in vitro (Beavo and Brunton, 2002, 

Houslay and Adams, 2003, Kim et al., 2007). 

 

In terms of PKA activation, each tetramer binds four cAMP molecules (two cAMP 

molecules per R subunit), causing the catalytic subunits to dissociate from the 

regulatory subunits. This conformational change activates the PKA, enabling 

phosphorylation, as is shown on Figure 5-2 (Kim et al., 2007, Lugnier, 2006).  
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Figure 5-2: The signalling cascade required for the activation of PKA and 
subsequent protein phosphorylation.  This image depicts how the production of 
cAMP, can activate AKAP-bound PKA, causing the catalytic subunits to dissociate 
from the regulatory, enabling protein phosphorylation to proceed. In brief, the 
extracellular hormone binds its specific receptor, causing the α subunit of the G-
protein to exchange a bound GDP molecule for a GTP, and in doing so 
disassociating from both the β and γ subunits. The α subunit of the activated G-
protein can then bind the adenylyl cyclase, initiating the conversion of 
cytoplasmic ATP to cAMP. Upon the release of cAMP into the cytoplasm it can 
bind an AKAP-bound PKA tetramer, causing the catalytic subunits (C) to 
dissociate from the regulatory (R), activating PKA and enabling it to 
phosphorylate protein substrates through the conversion of ATP to ADP. 
 

Once created, the only route through which cAMP can be degraded, and thus the 

signalling event terminated, is through the conversion of the cAMP to 5’-AMP by 

cAMP degrading phosphodiesterases (PDE) (Houslay and Adams, 2003). These PDE 

proteins are anchored throughout the cytosol and nuclear and plasma 

membranes, degrading cAMP in such a way so as to create an asymmetric 

gradient of cAMP localised within the vicinity of the final effector, as is shown 

on Figure 5-3. These cAMP gradients are “read” by AKAP-bound PKA molecules, 
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leading to gene expression and phenotypic changes which mark the completion 

of the signalling cascade (Houslay et al., 1998, Miles D, 2001). 

 

 
Figure 5-3: cAMP gradient compartmentalisation, based upon the expression 
of PDE.  Depicted above is the route through which cAMP is compartmentalised 
exclusively to the region of the final effector. Through the expression of PDE, 
and thus the degradation of cAMP, cAMP gradients can be established within the 
cell.  
 

By the late 1970s and early 1980s the possibility of stimulating or inhibiting 

these distinct PDE isoforms through the application of small organic molecules 

had been proposed (LEVIN and WEISS, 1976, Wells et al., 1981). This was of 

particular interest to the therapeutic drugs industry as PKA signalling and PDE 

catalysed signal degradation had been known to influence a wide range of 

pharmacological processes, including the production and action of 

proinflammatory mediators, ion channel functioning, muscle contraction, 

learning, cell differentiation, apoptosis, lipogenesis, glycogenolysis and 

gluconeogenesis (Perry and Higgs, 1998). By targeting the actions of these PDE 

enzymes it appeared possible to develop drugs for the treatment of heart 
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failure, depression, asthma, inflammation and erectile dysfunction (TORPHY, 

1998). Furthermore, as each PDE isozyme appeared to exhibit a unique tissue 

expression pattern, then these therapeutic agents should be organ and tissue 

specific (TORPHY, 1998). 

 

5.1.2 cAMP Specific Phosphodiesterases 

The first research to be carried out on a PDE was undertaken by Butcher and 

Sutherland in 1962, identifying a magnesium dependent phosphodiesterase 

capable of cAMP degradation (Butcher and Sutherland, 1962). Furthermore, the 

authors identified this specific PDE species to be inhibited by methyl xanthenes, 

and stimulated by imidazole (Butcher and Sutherland, 1962). Following this 

discovery, it was hypothesised that there may be a number of different isoforms 

(Boswell-Smith et al., 2006), which was confirmed in 1970 when Beavo at al. 

characterised three PDE isoforms from bovine and rat tissues based on anion-

exchange chromatography (BEAVO et al., 1970). These isozymes were calcium-

calmodulin (CaM)-PDE, cAMP-PDE and cGMP-PDE, each named in regard to their 

substrate specificity and sensitivity to CaM, and numbered based on the order in 

which they eluted from the LC column (Boswell-Smith et al., 2006). By 

performing similar PDE based separations on a range of tissues (BEAVO et al., 

1970, Wells et al., 1975, Butcher and Sutherland, 1962), and with the advent of 

the molecular age (Boswell-Smith et al., 2006), the number of PDE isoforms 

identified grew extensively. By 1995 this amounted to seven different gene 

families having been identified in mammalian tissues, with most families 

presenting several distinct genes and isoforms (Beavo, 1995, Boswell-Smith et 

al., 2006). This increasingly complex set of data and its associated naming 

convention led to several problems. For example, often when PDE isoforms 

eluted they didn’t display the biochemical characteristics with which they were 

associated. While this led to some confusion, it was found to be due to the 

varying complement of PDE isoforms present in each tissue and species 

(TORPHY, 1998). Further to this, it was also common for a PDE isozyme to be 

named based on its inhibitor, activator or the ligand to which it preferentially 

bound; some examples of which include: ROI-PDE (rolipram-inhibited PDE), CaM-
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PDE (calmodulin-activated PDE), cGS-PDE (cGMP-stimulated PDE), and cGB-PDE 

(cGMP-binding PDE) (Beavo, 1995, Lugnier, 2006). Therefore it was decided that 

an official PDE naming convention was required, a process which was initiated in 

1995 by Beavo (Beavo, 1995). Under this convention, the first two letters of a 

protein’s name indicated the species from which the gene was extracted, HS, for 

example, indicating a Homo sapiens origin. Further to this, the next three 

letters and one or two Arabic numerals indicated the gene family, and thus the 

elution order previously assigned to the protein, an example of which is PDE4 

(HSPDE4 thus far). The penultimate letter in this nomenclature related to the 

specific PDE gene, for example gene B within the PDE4 family (HSPDE4B thus 

far), while the final Arabic numeral indicated the specific PDE isoform, for 

example isoform splice pattern 1, giving a final designation of HSPDE4B1 (Beavo, 

1995, Lugnier, 2006). 

 

In regards to this project, all further PDE isoforms discussed are of a Homo 

sapiens origin, unless otherwise stated, and as such the naming convention will 

be shortened through the removal of the first two letters, indicative of species. 

 

5.1.3 The Physical Properties of the PDE Family  

As of 2011, a total of 11 mammalian PDE families had been described, giving rise 

to over 20 unique genes and some 50 protein isoforms (Jeon et al., 2005). Each 

of these isoforms has been sequenced, biochemically analysed and 

pharmacologically characterised. Furthermore, an NCBI gene reference for 

PDE12 (NCBI:201626) was created on the 9th October 2011, suggesting there may 

yet be many more unknown PDE families, genes and isoforms. 

 

Each of the 11 PDE families has been shown to share a basic common structure, 

which includes a catalytic domain, and one or more regulatory domains, located 

between the N-terminus and the catalytic domain (Lugnier, 2006). The PDE 

catalytic domain has been shown to consist of some 270 amino acids, 

homologous in nature and highly conserved throughout evolution (Lugnier, 2006, 

Zoraghi et al., 2004). Indeed, it is because of this distinct yet conserved 
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catalytic domain that each of the PDE isoforms are thought to have diverged 

from a common ancestor some 940 million years ago, before the separation of 

sponges and eumetozoans (Koyanagi et al., 1998). Research into the structure of 

the Homo sapiens PDE catalytic sub-units found only a 50% sequence identity 

across each family (David M, 1999). Similarly, research conducted in vertebrate 

and insect species found only a 30% sequence identity across each PDE family, 

but a 60–90% sequence identity when comparing any single PDE family between 

species (Graeme B, 1994). This shows just how important the conservation of 

each PDE family has been in evolution, while confirming just how great the 

differences are between each of the PDE species (Lugnier, 2006). 

 

Of particular interest to PDE based research are the structural sub-domains of 

the catalytic core, frequently targeted by therapeutic agents, so as to 

allosterically regulate targeted PDE isozymes (TORPHY, 1998). Over the last 

decade this research has unveiled three helical sub-domains, including an N-

terminal cyclin-folding region, a linker region, and a C-terminal helical bundle. 

Where these three regions interface, a deep hydrophobic pocket is formed. This 

pocket is composed of four sub-sites; including a metal-binding site (M site), a 

core pocket (Q pocket), a hydrophobic pocket (H pocket) and a lid region (L 

region) (Sung et al., 2003, Francis et al., 2000).  

 

In comparison to the highly conserved catalytic domain, each of the 11 PDE 

families have been shown to contain unique regulatory regions, including a 

calmodulin binding site, unique to PDE1, an allosteric cGMP binding site, present 

in PDE species PDE2, PDE5, PDE6, PDE10, and PDE11 (Zoraghi et al., 2004), a 

phosphatidic binding site, unique to PDE4, a PAS domain, unique to PDE8, 

autoinhibitory sequence, unique to PDE species PDE1 and PDE4, and a membrane 

association domain, present on PDE species PDE2, PDE3 and PDE4. Furthermore, 

each PDE family has been found to contain various unique phosphorylation sites 

and dimerization motifs  (Bolger, 1994). 
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5.1.4 PDE4  

PDE4, previously termed cAMP-PDE, is characterised by its specificity towards 

cAMP. It is also potently and specifically inhibited by rolipram (Francis et al., 

2000). PDE4 expression has been identified in the smooth muscle cells of the 

airway, within the brain and within the tissues of the cardiovascular system 

(Muller et al., 1996). Furthermore, PDE4 has been shown to be the predominant 

PDE species expressed within inflammatory cells, and has been implicated in 

inflammatory airway disease (Wang et al., 1999, Houslay et al., 1998).  

 

The PDE4 family of protein isoforms are the most widely characterised of the 

PDE families, though it was not until the advent of molecular cloning during the 

1990s that the extraordinary diversity of this family was revealed (Perry and 

Higgs, 1998). Four genetically distinct PDE4 genes have so far been identified, 

termed PDE4A–D, each spanning some 50 kb and containing at least 18 exons 

(Houslay and Adams, 2003). These genes are thought to give rise to at least 35 

different isoforms through the alternative splicing of each protein’s N-terminal 

(Boswell-Smith et al., 2006, Muller et al., 1996, Bolger, 1994). 

 

In terms of structure, each PDE4 isozyme has been shown to contain the same 

three functional domains; the PDE catalytic domain, which accounts for between 

18 and 46% of the protein and is located close to the protein’s C-terminal (Jeon 

et al., 2005), and two regulatory sub-domains. The first of which, upstream 

conserved region one (UCR1), consisting of some 60 amino acids and located 

close to the proteins N-terminal, while the second, upstream conserved region 

two (UCR2), consists of some 80 amino acids and is located between the first 

regulatory domain and the catalytic core (Thompson, 1991, Bolger, 1994), as is 

depicted on Figure 5-4.  
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Figure 5-4: The sequence orientation of typical long, short and super-short 
PDE isoforms.  Depicted above are the typical structures of long, short and 
super-short PDE4 isoforms, detailing how long PDE4 isoforms contain both UCR’s 
1 and 2, whereas short PDE4 isoforms contain only UCR2. Finally super-short PDE 
isoforms contain only half of UCR2, while each of the PDE4 isoforms contains the 
conserved catalytic core. 
 

PDE4 isoforms found to contain both UCRs 1 and 2 have been termed long 

isoforms, whereas those found to contain only UCR2 have been termed short-

isoforms. Super-short PDE4 isoforms have also been documented, containing only 

a truncated version of UCR2 (Houslay et al., 1998). Of these conserved 

regulatory domains, it has been suggested that it is UCR1 which is the most 

heavily regulated, involving allosteric regulation, membrane targeting and 

catalytic inhibition. UCR2, meanwhile, is thought to be involved in the formation 

of PDE4 dimers (Graeme B, 1994), a theory which complements the work of 

Zoraghi et al., who suggests PDE to be dimeric, but concluded that the function 

of this dimerisation was, as yet, poorly understood (Zoraghi et al., 2004). 

 

Research by Oki et al. has shown long PDE4 isoforms to be stimulated by the PKA 

catalysed phosphorylation of Ser-54 within UCR1 of PDE4D3. This conformational 

change has been shown to increase the kinase activity of all long PDE isoforms by 

approximately 60%. This increase in kinase activity is thought to act as a short-

term feedback mechanism, helping to restore basal levels of cAMP within the 

cell following a signalling event (Oki et al., 2000). Richter and Conti have also 

demonstrated PKA catalysed phosphorylation to be dependent on long PDE 

isoform dimerisation. This dimeric state, it is thought, may help to stabilise the 

PDE4 isoforms in a high-affinity rolipram binding state (Richter and Conti, 2004). 
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In the early 1970s the characteristic PDE4 inhibitor rolipram was tested as a 

potential therapeutic agent (Scott et al., 1991). This research was conducted 

around the premise that elevated levels of cAMP may enhance noradrenergic 

neurotransmission within the central nervous system. Rolipram was thus seen as 

a potential treatment for depression, which, while proven effective, was shown 

to cause nausea and disturbance of the gastrointestinal tract long before any 

statistically significant therapeutic effect could be established (Scott et al., 

1991). These side effects were attributed to “off target” events, which 

characterise general PDE4 inhibitors which inhibit each of the 35 isoforms 

equally, due to their action on the highly conserved catalytic site. Further 

research into PDE4 inhibition found it to block cell trafficking, cell proliferation 

and to attenuate the production of inflammatory mediators, cytokines and 

reactive oxygen species (Souness et al., 2000), while suppressing the immune 

system (Boswell-Smith et al., 2006). 

 

One physical property of the PDE4 family which does lend itself toward further 

drug development is the distinct cellular and tissue specific distribution pattern 

displayed by each of the four PDE4 isoforms. Therefore, should one specific PDE 

isoform by targeted by a drug treatment, any side effects should be minimised. 

For example, PDE4B appears to be expressed in the heart, brain, skeletal 

muscle, and lung, but not in the placenta, liver, kidney, or pancreas (McLaughlin 

et al., 1993). PDE4C meanwhile appears to be expressed in neuronal tissues but 

not in immune or inflammatory cells (Engels et al., 1995, Engels et al., 1994), 

while PDE4D appears to be expressed in the blood fractions and skeletal muscles 

(Cheung et al., 2007). The exception in this case is PDE4A which appears to be 

expressed ubiquitously, though slightly higher levels of expression have been 

noted in monocytes, the skeletal muscles, the testis, and the pons (Bolger et al., 

1993, Obernolte et al., 1993, Livi et al., 1990).  

 

It should be noted that isoform specific PDE4 inhibitors which compete with 

cAMP for the active site have proven elusive due to the conserved nature of the 

PDE4 catalytic unit. Several PDE4 inhibitors have, however, entered clinical 

trials more recently, aiming to treat reactive airway diseases, autoimmune 
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diseases, B-cell malignancies, chronic lymphocytic leukemia and acute 

lymphoblastic leukemia (Smith et al., 2005). 

 

5.1.4.1 PDE4B 

The sequence which encodes the PDE4B family of protein isoforms is thought to 

be located on chromosome 1p31.2-32.1, spanning some 580 kb, and comprising 

at least 17 exons (Otowa et al., 2011). Alternative splicing of this gene has been 

shown to give rise to at least five protein isoforms (PDE4B1–5), each varying in 

length and regulation, as a result of a unique N-termini. The transcription of 

each of the five PDE4B isoforms is thought to be initiated through unique 

upstream promoters, each transcribing a unique 5’ exon before incorporating a 

shared catalytic C-terminal (Wallace et al., 2005). 

 

As was discussed previously, PDE4B appears to be expressed in the heart, brain, 

skeletal muscle, lung (McLaughlin et al., 1993) and blood fractions (Wallace et 

al., 2005). In terms of expression within the central nervous system, PDE4B has 

been detected in the amygdala, hypothalamus and frontal cortex (Cherry and 

Davis, 1999), regions which are thought to be key in the mediation of stress and 

anxiety (Charney and Deutch, 1996). While many members of the PDE4 family 

are expressed throughout the brain, including those areas associated with 

reward and affect (Iona et al., 1998, Cherry and Davis, 1999), the PDE4B family 

is thought to be of particular importance for the transduction of complex signals 

and brain integration (Menniti et al., 2006). Furthermore, PDE4 has been found 

to account for approximately 33% of the total cAMP hydrolytic activity within 

mouse heart (Leroy et al., 2011).  

 

Recent publications have further defined the role of PDE4B within the brain to 

include the regulation of anxiety and depression (Pandey et al., 2005), with 

PDE4 inhibitor rolipram exhibiting antidepressant (O’Donnell and Frith, 1999) 

and anxiolytic-like behaviours in animals (Silvestre et al., 1999). As a way of 

confirming this function Rutten et al. prepared PDE4B -/- knockout mice, 

commenting that the animals showed “enhanced basal postsynaptic responses to 
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stimulation and long-term depression” (Rutten et al., 2011). PDE4B has also 

been linked to multifunctional scaffolding protein Disrupted-in-Schizophrenia-1 

(DISC1), which is thought to be required for the parallel processing of signals 

from GSK-3 and PDE4. DISC1 is thought to play a role in the regulation of 

neurodevelopment, signal transduction and intracellular transport and exocytosis 

within the brain (Jaaro-Peled et al., 2010). Furthermore, DISC1 has been seen as 

a candidate susceptibility factor for psychiatric disorders such as schizophrenia, 

schizoaffective disorder, bipolar disorder and depression (Millar et al., 2005). 

Indeed post-mortem brain samples obtained from patients with schizophrenia 

and bipolar disorder have suggested that each of these conditions may be linked 

to the expression pattern of PDE4B, which appears to differ from that of healthy 

individuals (Fatemi et al., 2008, Kähler et al., 2010, Numata et al., 2009a). 

 

5.1.4.1.1 PDE4B1 

PDE4B1 is a long PDE isoform, incorporating both UCRs 1 and 2. PDE4B1 is 

thought to span some 736 amino acids (Bolger et al., 1993), and to present with 

a single SDS-PAGE gel band with a MW of approximately 104 kDa (Shepherd et 

al., 2003). Unlike the majority of the PDE4B family, PDE4B1 appears not to be 

expressed at a high concentration within human brain (Dwivedi, 2010). Instead 

PDE4B1 has been implicated in the transduction of cAMP based signalling within 

osteoblast cells; where glucocorticoid dexamethasone (DEX) based 

immunosuppressive treatments have been shown to reduce the levels of PDE4B1 

transcription. Following long-term treatment with DEX, the metabolic activity of 

these osteoblast cells appears modified and the life span of the cells reduced 

through inhibiting bone formation (Ahlström et al., 2005). 

 

5.1.4.1.2 PDE4B2 

PDE4B2 is a short-PDE isoform, and thus is regulated solely through UCR2 and 

cannot be phosphorylated by PKA. PDE4B2 is thought to span some 564 amino 

acids (Bolger et al., 1993), and to present with a single SDS-PAGE gel band with 

a MW of approximately 78 kDa (Shepherd et al., 2003). The Homo sapiens 
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consensus sequence for PDE4B2, appears to be of a length identical to, and to 

display 90% sequence identity with, its counterpart in Rattus norvegicus (Bolger, 

1994). 

 

Unlike PDE4B1, PDE4B2 has been shown to be expressed at a high concentration 

within the human brain (Dwivedi, 2010). However, PDE4B2 expression within the 

prefrontal cortex and hippocampus appears to be decreased in patients suffering 

from depression (Dwivedi, 2010) and schizophrenia (Fatemi et al., 2008). Several 

single nucleotide polymorphisms (SNPs) linked to schizophrenia have also been 

identified in the introns bracketing the PDE4B2 coding locus in Caucasian and 

African American populations (Fatemi et al., 2008), again proving this isoform to 

be of critical importance to mental health.  

 

PDE4B2 inhibition has also be seen as a potential treatment for diffuse large B-

cell lymphoma (DLBCL), where PDE4B2 has been identified as the predominant 

PDE4B isoform in normal B cells, which when unabated prevents cAMP induced 

apoptosis (Smith et al., 2005). 

 

5.1.4.1.3 PDE4B3 

PDE4B3, much like PDE4B1, is a long PDE isoform, incorporating both UCRs 1 and 

2. PDE4B3 is thought to span some 721 amino acids (Huston et al., 1997) and to 

yield a single SDS-PAGE gel band with a MW of approximately 103 kDa (Shepherd 

et al., 2003). Like PDE4B2, the consensus sequence for Homo sapiens PDE4B3 

appears to have a length identical to, and to display a 90% sequence identity 

with, its counterpart in Rattus norvegicus (Bolger, 1994). 

 

While PDE4B2 has been shown to be highly expressed within the human brain, 

PDE4B3 has been shown to be highly expressed within the brain, heart, lung and 

liver (Dwivedi, 2010). PDE4B3 expression has been shown to be decreased in 

patients suffering from bipolar disorder, but not from depression or 

schizophrenia, suggestion isoform specificity in mental illness (Fatemi et al., 

2008). PDE4B3 has also been shown to be of importance for hippocampal long-
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term potentiation (LTP) during learning, with PDE4B3 expression being up-

regulated just two hours after tetanisation, peaking after six and rapidly 

degrading after eight (Fatemi et al., 2008). 

 

5.1.4.1.4 PDE4B4 

Whether PDE4B4 is expressed in Homo sapiens is a hotly debated topic first 

addressed by Shepherd et al. in 2003. While Shepherd failed to identify PDE4B4 

in human tissues, a previously unpublished 659 amino acid long-PDE4B isoform 

was successfully identified in Rattus norvegicus. This new PDE4B isoform was 

found to express a unique 17 amino acid N-terminal, while incorporating the 

same regulatory and catalytic domains as are present in PDE4B1 and PDE4B3 

(Shepherd et al., 2003). Upon analysis, this novel PDE4B3 coding mRNA sequence 

in Rattus norvegicus was found to be expressed in multiple tissues, including the 

liver and brain. BAC screening of Mus musculus chromosome four meanwhile, 

identified a gene with a sequence identity of greater than 95% to that of the 

Rattus norvegicus PDE4B4 gene. Indeed, while several Homo sapiens BACs were 

also found to contain a similar sequence, every possible reading frame was found 

to contain tightly clustered stop codons. Shepherd et al. thus concluded that the 

gene coding for PDE4B4 in Homo sapiens amounted to a dead exon (or 

pseudogene), coding a protein of function in rodents, but not humans (Shepherd 

et al., 2003). Several authors however have reported the detection of PDE4B4 in 

Homo sapiens tissues (Farooqui et al., 2000, Takahashi et al., 1999), including 

Fatemi et al. who detected three long PDE4B isoforms (PDE4B1, PDE4B3, and 

PDE4B4) and one short-PDE4B isoform (PDE4B2) through western blotting (Fatemi 

et al., 2008), and Braun et al. who reported the detection of a distinct 85 kDa 

protein band in several human tissues when western blotting with two well 

characterized antibodies (Braun et al., 2007). 

 

In terms of function, Fatemi et al. observed a significant decrease in the levels 

of PDE4B4 transcription in patients suffering from schizophrenia (Fatemi et al., 

2008), while Shepherd et al. noted PDE4B4 expression to be restricted to the 

cytosol of transfected COS7 cells. This was seen as being particularly interesting 
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as each of the previously identified long PDE4B isoforms were all membrane 

associated. Shepherd et al. did acknowledge however that this change in 

localisation may be due to the COS7 cells not expressing the correct PDE 

anchoring protein (Shepherd et al., 2003). 

 

5.1.4.1.5 PDE4B5 

PDE4B5 is a super-short PDE4 isoform discovered by Cheung et al. in 2007. 

PDE4B5 is thought to span some 484 amino acids, and to include a unique 16 

amino acid N-terminal region and a truncated UCR2, while maintaining the same 

catalytic subunit present in each of the PDE4B isoforms (Cheung et al., 2007). 

High levels of PDE4B5 expression have been noted in brain (fetal brain, 

cerebellum, frontal lobe, pons, putamen, thalamus, and hippocampus), and 

weaker levels of expression have also been noted in the retina, spinal cord, 

pituitary, fetal kidney, jejunum, ileum, lung carcinoma A549 cells, testis, HeLa 

cells, and G361 melanoma cells. PDE4B5 has also been shown to be conserved in 

vertebrae, chicken, frog, zebrafish, and fugu; suggesting it may play a strong 

functional role. Furthermore, the N-terminal region unique to PDE4B5 was also 

identified in PDE4D6, suggesting this sequence to be both functional and highly 

conserved (Cheung et al., 2007).  

 

In regard to the function of PDE4B5, the uneven distribution pattern of this 

isoform within the cytosol suggests that PDE4B5 may play a role within the 

cytosolic vesicles and complexes (Cheung et al., 2007). 

 

5.1.5 PDE4B Literature Overview 

While the first PDE isoform was identified some 50 years ago (Butcher and 

Sutherland, 1962), it was not until the advent of molecular cloning during the 

1990s that the extraordinary diversity of PDE isoforms was revealed (Perry and 

Higgs, 1998). As of 2011 this has resulted in the description of some 11 

mammalian PDE families, giving rise to over 20 unique genes and at least 50 PDE 

isoforms (Jeon et al., 2005). While many PDE isoforms have been identified, and 
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their expression patterns mapped to a range of tissues, very little information 

exists about their specific function, aside from degrading cAMP. For example, 

PDE4B1 is not highly expressed within the brain, but has instead been linked to 

cell signalling within osteoblast cells (Ahlström et al., 2005).  

 

The focus of PDE based research appears aimed at entire PDE families or genes, 

with PDE4 having been characterised by its potent inhibition through therapeutic 

agent rolipram, and thus PDE4 has been implicated in depression (Scott et al., 

1991). Likewise PDE4B has been linked to multifunctional scaffolding protein 

DISC1, and as such has been implicated in both schizophrenia and bipolar 

disorder (Fatemi et al., 2008, Kähler et al., 2010, Numata et al., 2009a).  

 

In keeping with the functions assigned to PDE4 and PDE4B, PDE4B2 has been 

linked to depression and schizophrenia, and PDE4B3 linked to bipolar disorder 

(Fatemi et al., 2008, Dwivedi, 2010). It should be noted however that the 

function of these isoforms was determined based on the probing of tissues 

obtained from patients with mental disorders specifically, and so other cellular 

roles may exist. 

 

The existence of long-isoform PDE4B4 has proven controversial, with several 

authors having identified the isoform (Braun et al., 2007, Fatemi et al., 2008, 

Farooqui et al., 2000, Takahashi et al., 1999), despite all possible N-terminal 

reading frames being noted as to contain tightly clustered stop codons (Shepherd 

et al., 2003). Where PDE4B4 expression has been identified, the isoform has, like 

short-isoform PDE4B2, been implicated in schizophrenia (Fatemi et al., 2008), 

which is interesting as PDE4B4 appears to be localised exclusively to the 

cytoplasm, a location generally assigned to the short-PDE isoforms (Shepherd et 

al., 2003). 

 

Finally, PDE4B5 has only recently been identified, and as yet no specific function 

has been assigned to this super-short isoform. However, the uneven distribution 

pattern identified for PDE4B5 within the cytosol, suggesting the isoform may be 
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involved in signalling within the cytosolic vesicles or complexes (Cheung et al., 

2007). 

 

While the discovery of PDE4B5 as recently as 2007 showed that new PDE isoforms 

continue to be discovered, the registering of a new PDE family, PDE12, on 9th 

October 2011 suggests our knowledge of these protein families may yet be in its 

infancy.  

 

5.2 Project Aims 

Despite there being very few peer reviewed publications confirming the function 

and tissue specific distribution pattern of each of the five PDE4B isoforms, they 

should make excellent candidates for this project, enabling a range of human 

tissues to be probed, so as to identify: (i) Which PDE4B isoforms are expressed 

within a tissue, and indeed whether PDE4B4 is expressed at all (through 

detecting isoform specific target peptides). (ii) The concentration at which each 

PDE4B isoform is expressed (through detecting both the isoform specific target 

and synthetic AQUA peptide), and (iii) How the PDE4B isoform expression ratio 

varies under different physiological conditions (including in patients suffering 

from mental disorders). 

 

As the goals listed above are beyond the scope of a PhD project, a more 

achievable set of project aims were devised. As such, during this project I aim 

to: (i) Screen for each of the PDE4B isoforms, identifying and selecting suitable 

AQUA peptides for the absolute quantification of each PDE4B protein. (ii) 

Characterise each AQUA peptide/intrinsic target peptide so as to develop a 

suitable triple-quadrupole based MRM acquisition method for the identification 

of each peptide within a single LC-MS run. (iii) Express suitable amounts of each 

PDE4B isoform, enabling the proteolytic digestion of each isoform to be 

optimised using a range of commercially available proteases, and (iv) Assess the 

accuracy and reproducibility of the AQUA technique though quantifying each 

protein solution expressed with a suitable number of replicates. 
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5.3 PDE Specific Methods 

5.3.1 Proteolytic Digest Optimisation 

5.3.1.1 Arg-C Digest Optimisation 

Lyophilised BSA was re-suspended in 500 mM AMBIC, containing 0.1% RapiGest SF 

surfactant (w/v), reduced with DTT and alkylated with IAA, prior to the IAA 

being quenched with excess Cys. Following vacuum centrifugation, the BSA was 

re-suspended and digested with Arg-C at an enzyme:substrate ratio of 1:10, 

1:20, 1:50, 1:100 and 1:200 (w/w), as per the manufacturer’s instructions. Each 

digested BSA sample was vacuum centrifuged to completion and re-suspended in 

2% MeCN, 0.1% FA (v/v), prior to analysis on an API 2000 MS. The resulting data 

files were analysed via MASCOT. The percentage sequence coverage of BSA was 

recorded. 

 

5.3.1.2 Probing for Residual Glu-C Catalysed Asp Cleavage in AMBIC 

Lyophilised BSA was re-suspended in 500 mM AMBIC, containing 0.1% RapiGest SF 

surfactant (w/v), reduced with DTT and alkylated with IAA, prior to the IAA 

being quenched with excess Cys. Following vacuum centrifugation, the BSA was 

re-suspended in 25 mM AMBIC and digested with Glu-C at an enzyme:substrate 

ratio of 1:20 (w/w), as per the manufacturer’s instructions. The digest 

proceeded for between 10 and 20 hours, with a vial being removed every hour 

and the digest terminated through the addition of FA. Each digested BSA sample 

was vacuum centrifuged to completion and re-suspended in 2% MeCN, 0.1% FA 

(v/v), spotting each solution to a 384 well MALDI plate. PepMix II calibration 

standard and HCCA matrix was added to each MALDI spot, prior to analysis on an 

Ultraflex II MS.  
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5.3.2 PDE4B Plasmid Preparation 

5.3.2.1 Sequencing PDE4B in pEE7 

Homo sapiens PDE4B1, PDE4B2 or PDE4B3 coding cDNA in pEE7 was sequenced 

with HCMV and SV40 and the sequence data subjected to a standard NCBI 

nucleotide based BLAST search, so as to identify any significant regions of known 

sequence, in this case seeking an alignment with the Homo sapiens PDE4B gene 

set. Because of the size of both the PDE4B cDNA inserts (accounting for between 

1.8 and 2.2 kb), and the pEE7 vector (approximately 7 kb), however, the 

sequence of the entire plasmid could not be determined based upon the use of 

HCMV and SV40 alone. The pEE7 upstream regulatory domains were therefore 

sequenced with a custom 21 mer reverse primer “PDE4B_SEQ” 

(GTTCAGCATTCTTTTGAACTT). Upon receipt of this sequencing data, the 

sequences were again subjected to a standard NCBI nucleotide based BLAST 

search. 

 

With both the up and downstream pEE7 regulatory domains having been 

sequenced, the plasmid was screened with software package NEBcutter, version 

2.0, so as to identify suitable restriction digest sites applicable for the removal 

of the intact PDE4B inserts, yet ensuring that the enzymes presented in an order 

suitable for the forward ligation of the fragments into pcDNA3, enabling a higher 

copy number amplification of the plasmid. 

  

5.3.2.2 Transferring the PDE4B Inserts from pEE7 

PDE4B1 in pEE7, PDE4B3 in pEE7 and pcDNA3 were restriction digested with 

EcoRI, as per the manufacturer’s instructions. Likewise, PDE4B2 in pEE7 and 

pcDNA3.1(+) were restriction digested with BamHI and HindII, as per the 

manufacturer’s instructions. The restriction digest products were separated via 

agarose gel based electrophoresis, visualised with SYBR green, and excised based 

upon expected insert lengths of 2.3 kb for PDE4B1, 1.7 kb for PDE4B2, 2.2 kb for 

PDE4B3 and 5.4 kb for pcDNA3 and pcDNA3.1(+). The purified DNA fragments 
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were recovered via a QIAquick gel extraction kit and quantified on a Nanodrop 

1000 Spectrophotometer. 

 

Each PDE4B cDNA insert and complementary pcDNA vector were ligated with T4 

DNA Ligase, as per the manufacturer’s instructions, and transformed into library 

efficiency DH5α cells, as per the manufacturer’s instructions. The transformed 

cells were plated and approximately 20 colonies per plate screened for the 

presence of the modified plasmids. In brief, each viable colony was cultured and 

the amplified plasmid extracted via Miniprep, prior to restriction digestion with 

either EcoRI (for PDE4B1 and PDE4B3) or BamHI and HindIII (for PDE4B2). Each 

digested sample was separated via agarose gel based electrophoresis and 

visualised through the use of SYBR green, with the aim of identifying an 

appropriate restriction digest pattern, based on the previously detailed cDNA 

insert sizes. Where a plasmid appeared compliant it was sent for sequencing, so 

as to confirm the presence of the correct insert, and indeed that the insert was 

ligated in the correct orientation. 

 

5.3.2.3 FLAG-tag Insertion Into PDE4B Containing pcDNA3 or 

pcDNA3.1(+) 

PDE4B1 and PDE4B3 cDNA inserts in pcDNA3 were restriction digested with 

HindIII and BamHI, as per the manufacturer’s instructions. Likewise, PDE4B2 in 

pcDNA3.1(+) was restriction digested with NheI and HindIII, as per the 

manufacturer’s instructions. The restriction digested DNA was separated via 

agarose gel based electrophoresis and visualised with SYBR green. The gel bands 

of interest were excised and recovered via a QIAquick gel extraction kit, as per 

the manufacturer’s instructions, quantifying each sample with a Nanodrop 1000 

Spectrophotometer. 

 

Custom N-terminal FLAG-tag forward and reverse primers PDE1&3FLAGFor 

(AGCTTGGTACCTATGGATTACAAGGATGACGACGATAAGACG) and PDE1&3FLAGRev 

(GATCCGTCTTATCGTCGTCATCCTTGTAATCCATAGGTACCA) for long PDE4B 

isoforms PDE4B1 and PDE4B3, and custom N-terminal FLAG-tag forward and 
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reverse primers B2-PC3.1Forward (CTAGCGCGGCCGCATGGATTACAAGGATGAC 

GACGATAAGA) and B2-PC3.1Reverse (AGCTTCTTATCGTCGTCATCCTTGTAATCCA 

TGCGGCCGCG) for short-PDE4B isoform PDE4B2 were combined at an equal 

concentration (w/w) and heated to 65 oC for 10 minutes. The water bath was 

switched off and the temperature slowly equilibrated to that of the room, 

enabling the single stranded primers to anneal to form a double stranded insert, 

ready for ligation. 

 

The double stranded FLAG-tag inserts were combined with their complementary 

plasmid and ligated with T4 DNA Ligase, as per the manufacturer’s instructions. 

The ligated plasmids were transformed into library efficiency DH5α cells, as per 

the manufacturer’s instructions. The transformed cells were plated and 

approximately 20 colonies per plate screened for the presence of the modified 

plasmids. In brief, each colony was cultured and the amplified plasmid 

recovered via Miniprep. The plasmids were restriction digested with either KpnI 

(for PDE4B1 and PDE4B3) or NotI (for PDE4B2) and the restriction digest products 

separated via agarose gel based electrophoresis, visualising through the 

application of SYBR green. Where a plasmid appeared to contain a FLAG tagged 

insert, with a length greater than the unmodified PDE4B cDNA containing 

plasmid, it was sent for sequencing. 

 

5.4 Results and Discussion 

5.4.1 AQUA Peptide Selection 

5.4.1.1 Sequence Unique to Each PDE4B Isoform 

While the four A-Raf isoforms presented with a shared N-terminal, and each was 

differentiated by the intron at which the isoform terminated (each encountering 

a premature stop codon), each of the PDE4B isoforms were found to contain a 

shared C-terminal and were instead differentiated on a short run of unique N-

terminal sequence. In some ways, this made the quantification of the PDE4B 

isoforms more difficult, as the selection of unique C-terminal peptides was 

impossible. Instead, the quantification of PDE4B focused on the selection of 
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unique N-terminal proteolytic peptides, generated by a range of proteases. In 

those cases where a suitable peptide could not be identified, subtraction based 

quantification was again employed.  

 

Shown on Figure 5-5 is the sequence unique to each of the four PDE4B isoforms, 

the first of which, long-isoform PDE4B1, was found to contain 93 residues of 

unique sequence before the inclusion of shared domain UCR1. PDE4B2 

meanwhile, being a short-isoform, was found to contain only 39 residues of 

unique sequence before the inclusion of shared domain UCR2, while long-isoform 

PDE4B3 was found to contain 78 residues of unique sequence before the 

inclusion of shared domain UCR1.  
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Figure 5-5: A Clustal X based alignment of PDE4B1, PDE4B2, PDE4B3 and 
PDE4B5, highlighting the areas of sequence unique to each of the isoforms.  
Each of the PDE4B isoforms was aligned via Clustal X, with the exception of 
PDE4B4 which has no confirmed sequence. Highlighted in purple are the areas of 
sequence unique to PDE4B1, highlighted in green are the areas of sequence 
unique to PDE4B2, highlighted in yellow are the areas of sequence unique to 
PDE4B3 and highlighted in blue are the areas of sequence unique to PDE4B5. 
 

As no protein sequence has as yet been described for long-PDE4B isoform 

PDE4B4, it was excluded from this particular alignment. It was imperative, 

however, that the sequence of PDE4B4 was considered when peptides were 

selected for the quantification of multiple PDE4B isoforms.  

 

Finally, super-short isoform PDE4B5 was found to contain only 15 residues of 

unique sequence, before the inclusion of a truncated version of shared domain 

UCR2, making it the most difficult to quantify. 
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5.4.1.2 AQUA Peptides Selected for the Quantification of PDE4B 

Through the use of the AQUA peptide selection workflow, as was detailed in 

Chapter 2, five AQUA peptides have been selected for the quantification of each 

of the five PDE4B isoforms (Table 5-1). 

 

Table 5-1: The AQUA peptides selected for the quantification of each of the 
PDE4B isoforms.  Each of the AQUA peptides selected for the quantification of 
each of the four PDE4B isoforms. 

Peptide Protease Present in: Comments: 

DYFECSLSK Trypsin PDE4B1 Located within the unique C-terminal of PDE4B1. 

NSPCFFR Arg-C PDE4B3 Located within the unique C-terminal of PDE4B3. 

VNPQEESYQK Trypsin 
PDE4B1, PDE4B3 and 
PDE4B4 

Bridges the UCR2 N-terminal splice site, and therefore is present 
only in the long PDE4B isoforms. 

TIQTYRSVSE Glu-C 
PDE4B1, PDE4B2, 
PDE4B3 and PDE4B4 

Located within UCR2, and this is present in both long and short 
PDE4B isoforms. 

TDIDIATE Glu-C 
All five PDE4B 
isoforms 

Located in close proximity to the C-terminal of the PDE4B 
isoforms, and therefore is present in each of the PDE4B isoforms. 

 

Each of the peptides selected for the quantification of the five PDE4B isoforms is 

also shown on Figure 5-6. 
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Figure 5-6: The AQUA peptides selected for the quantification of each of the 
five PDE4B isoforms.  A Clustal X based alignment of the four known PDE4B 
consensus sequences. Highlighted in blue is peptide NSPCFFR, selected for the 
quantification of PDE4B3 exclusively, highlighted in purple is peptide 
DYFECSLSK, selected for the quantification of PDE4B1 exclusively, highlighted in 
red is peptide VNPQEESYQK, selected for the quantification of PDE4B1, PDE4B3 
and PDE4B4, highlighted in green is peptide TIQTYRSVSE, selected for the 
quantification of PDE4B1, PDE4B2, PDE4B3 and PDE4B4, and highlighted in brown 
is peptide TDIDIATE, selected for the quantification of each of the five PDE4B 
isoforms. 
 

5.4.2 AQUA Peptide Optimisation 

As each of the techniques developed for optimising both the target and synthetic 

peptides have previously been discussed, then the optimisation of each of the 

PDE4B peptides will not be discussed here. This includes the selection of suitable 
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Q1 and Q3 masses, collision energy optimisation, Cys alkylation, and the 

optimisation of tryptic, Glu-C and Lys-C catalysed digests. 

 

As Proteolytic enzyme Arg-C has not yet been optimised however, a BSA based 

digest optimisation was conducted for this protease. Furthermore, while Glu-C 

has been optimised, AQUA peptide TDIDIATE was found to be cleaved at Glu, yet 

was found to contain two Asp residues, and as such this digest was further 

assessed for any residual Asp based cleavage upon the depletion of Glu-X 

peptide bonds.  

  

5.4.2.1 Proteolytic Digest Optimisation 

When performing an AQUA based absolute quantification, the digest is of critical 

importance (Kirkpatrick et al., 2005a). Indeed, the only protease used within 

this research to have not been optimised is Arg-C, as it is required for the 

digestion of long-PDE4B isoform PDE4B3, and thus the production of target 

peptide NSPCFFR. 

 

As was performed with trypsin, Lys-C and Glu-C, 25 µg vials of BSA were digested 

at a range of enzyme:substrate ratios (w/w), ranging from 1:10 to 1:200, in the 

presence of 0.1% (w/v) RapiGest SF surfactant, as per the manufacturer’s 

instructions. From these digests (the data for which is not shown) proteolytic 

peptides were detected from only the 1:20 enzyme:substrate ratio (w/w) digest 

sample, which even then achieved a sequence coverage for BSA of only 5%. If we 

consider that trypsin cleaves at both Lys and Arg, each of which occur at a 

frequency of 5% within an average mix of proteins (Tsuji et al., 2010), and that 

tryptic peptides are rarely larger than 10 to 15 amino acids in length, with a 

mass of between 1,000 and 3,000 Da, then it is clear that a high sequence 

coverage is possible. In comparison, if we consider that Arg-C cleaves exclusively 

at Arg, which occurs at a frequency of only 5%, then the expected peptide 

length doubles to approximately 20 amino acids, with a mass of between 2,000 

and 6,000 Da, somewhat unsuitable for detection on modern triple quadrupole 

based mass spectrometers (Kelleher et al., 1999). By way of an example, when 
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BSA was theoretically digested with trypsin, some 47 peptides were identified, 

presenting with an average peptide length of 11.6 amino acids. When the same 

protein was digested with Arg-C however, only 21 peptides were identified, 

presenting with an average peptide length of 25 amino acids. 

 

In conclusion, perhaps it was poor experimental design which has limited this 

Arg-C catalysed digest optimisation, where Arg-C may be more suitable for 

specific cleavages or for use in combination with a second protease, rather than 

being the sole enzyme responsible for yielding peptides suitable for MS. This 

result does not however necessarily signify the elimination of either peptide 

NSPCFFR or the use of Arg-C, as low sequence coverages were also obtained 

during the digestion of BSA with trypsin, Lys-C and Glu-C, yet the spiked 

digestion of A-Raf in no way suggested either protease based digestion to be 

incomplete.  

 

5.4.2.2 Residual Glu-C Catalysed Cleavage at Asp 

As has previously been discussed, in the presence of a phosphate based buffer, 

Glu-C is thought to cleave specifically at Glu and Asp, with Asp based cleavage 

occurring at a 3000 fold lower rate. When the same digest is performed in AMBIC 

however, the digest is thought to be restricted exclusively to Glu (Houmard and 

Drapeau, 1972). As AQUA peptide TDI*DIATE, selected for the quantification of 

PDE4B isoform PDE4B5, was found to be cleaved to both the C and N-termini at 

Glu, but to contain two Asp residues, an experiment was devised to detect any 

residual Asp based cleavage. This focussed on the final few hours of a typical 18 

hour proteolytic digest, the point at which the majority of the Glu-X peptide 

bonds will have been depleted (based on the manufacturer’s recommended 

digest time). 

 

The first step in this experiment was thus to identify Glu-C cleaved BSA peptides 

which are digested at Glu, but which contain one or more Asp residues, the 

results of which are shown on Figure 5-7. 
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Figure 5-7: Proteolytic peptides obtained from BSA cleaved with Glu-C at Glu, 
but which contain Asp.  A theoretical Glu-C catalysed digestion was performed 
on BSA, identifying any peptides which were cleaved at Glu exclusively, but 
which contained Asp. Highlighted in yellow are those Glu-C cleaved peptides, 
while the residue marked in red is a Glu-C cleavage site between two such 
peptides. 
 

From Figure 5-7, we can see that some four Glu cleaved, Asp containing BSA 

peptides were identified. These digest solutions were spotted to a 384 well 

MALDI plate and ionised in an Ultraflex II MS. Analysis of the resulting MS data 

revealed that only one peptide was detected at a high intensity, peptide 

AKDAFLGSFLYE, while peptides DKGACLLPKIE and LTEFAKTCVADE were barely 

detectable above the spectrum background noise and no signal was detected for 

peptide DKDVCKNYQE. Therefore, the intensity of peptide AKDAFLGSFLYE alone 

was recorded at each of the ten digest time points, as to detect any residual Asp 

based cleavage.  

 

So as to increase the reliability of the results obtained, PepMix II MALDI 

calibration standard was added to each of the digest spots. By assessing any 

change in the ionisation response to these known calibrants, the intensity of 

peptide AKDAFLGSFLYE could be adjusted so as to account for any variation in 

analyte-matrix co-crystallisation. 
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Figure 5-8: The peak intensities obtained for three PepMix II calibration 
standards.  The peak intensities detected for three molecules from the PepMix II 
calibration standard, ionised on an Ultraflex II MS. 1 µL of the PepMix II 
calibration standard was added to each of the BSA digest MALDI spots, enabling 
any variations in signal intensity detected to be used to normalise the ion 
intensity detected for peptide AKDAFLGSFLYE. 
 

Figure 5-8 shows the ion intensity/MS response detected for the three small 

molecules from the PepMix II calibration standard, and while the ion intensity 

for peaks 1347 m/z and 1619 m/z appears stable over the time course, each 

achieving an R2 value of 0.01, peak 1046 m/z has presented with a slight 

increase in intensity over the course of the digest, achieving an R2 value of 0.39. 

While an actual change in quantity is not possible, this increase in intensity may 

instead be due to Angiotension II (peak 1046 m/z) being the smallest of the 

molecules detected, and as such may have been more prone to ion suppression 

and analyte-matrix co-crystallisation conditions. 

 

The data collected from these PepMix II molecules was averaged for each time 

point and this data set compared to an overall average value for the PepMix II 

batch. Any variations detected in the MS response to the PepMix II molecules was 
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used to adjust the ion intensity detected for peptide AKDAFLGSFLYE at each 

time point, as is shown on Figure 5-9. 

 

 
Figure 5-9: The ion intensity detected for Glu-C cleaved peptide 
AKDAFLGSFLYE.  The ion intensity detected for Glu-C cleaved BSA peptide 
AKDAFLGSFLYE, as digested over a ten hour time period (between 10 and 20 
hours). This peptide was selected due to its cleavage at Glu exclusively, while 
containing an Asp residue, enabling the detection of any residual Asp based 
cleavage. The ion intensity detected for peptide AKDAFLGSFLYE during this 
analysis was normalised based on the signal response detected for three PepMix 
II calibrants, so as to account for any variation in ionisation efficiency/analyte-
matrix co-crystallisation conditions. 
 

From Figure 5-9 it is clear that there is a slight increase in the amount of 

peptide AKDAFLGSFLYE detected over the course of the experiment, achieving 

an R2 value of 0.35. This would suggest that the Glu-C catalysed digestion of BSA 

has continued slowly, right up until the experiment was terminated. If any 

residual Asp based cleavage was present, then the quantity of peptide 

AKDAFLGSFLYE would have been expected to fall, however this appeared to not 

be the case. Indeed even if a small number of Asp bonds were cleaved upon the 

depletion of Glu catalysed digest sites during an in-gel digestion, this residual 

activity should affect both the target and synthetic peptides equally.  
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In conclusion; as no residual Asp based cleavage was detected during the Glu-C 

catalysed digestion of BSA, therefore the selection and use of peptides cleaved 

at Glu, but which contain Asp, would appear to be a suitable approach. 

 

5.4.3 MRM Based Acquisition 

5.4.3.1 MRM Method Development 

Having previously detailed the technique through which suitable Q1 and Q3 

masses were selected, the optimisation of the collision energy for each 

transition and the selection of a suitable dwell time for each of the MRM 

transitions, none of these techniques will be discussed here. Instead, shown on 

Table 5-2 is the complete MRM acquisition method designed for the detection of 

the five AQUA peptides, and thus capable of quantifying each of the four known 

PDE4B isoforms. 
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Table 5-2: The MRM transitions selected for the detection of each of the 
PDE4B peptides.  The acquisition method developed for the detection of each of 
the five PDE4B isoforms; detailing the Q1 and Q3 MRM transitions, the Q2 
optimised collision energies and the dwell times selected for each transition. 

Peptide Sequence (Q1) Fragment Ion (Q3) Q1 m/z Q3 m/z Dwell Time (ms) Collision Energy (eV) 
NSPCFFR B2 464.2 202.1 60 20 

NSPCFFR Y4 464.2 629.3 60 25 
NSPCFFR Y5 464.2 726.3 60 20 

NSP*CFFR B2 467.2 202.1 60 20 
NSP*CFFR Y4 467.2 629.3 60 25 
NSP*CFFR Y5 467.2 732.3 60 20 

TIQTYRSVSE Y2 592.3 235.1 60 25 
TIQTYRSVSE Y7 592.3 841.4 60 25 
TIQTYRSVSE Y8 592.3 969.5 60 20 

TIQTYR*SVSE Y2 597.3 235.1 60 25 
TIQTYR*SVSE Y7 597.3 851.4 60 25 

TIQTYR*SVSE Y8 597.3 979.5 60 20 
VNPQEESYQK Y4 611.3 525.3 60 35 
VNPQEESYQK Y6 611.3 783.4 60 30 

VNPQEESYQK Y8 611.3 1008.5 60 30 
VNP*QEESYQK Y4 614.3 525.3 60 35 
VNP*QEESYQK Y6 614.3 783.4 60 30 

VNP*QEESYQK Y8 614.3 1014.5 60 30 
TDIDIATE B5 877.4 558.3 60 30 

TDIDIATE B6 877.4 629.3 60 30 
TDIDIATE B7 877.4 730.4 60 30 
TDI*DIATE B5 884.4 565.3 60 30 

TDI*DIATE B6 884.4 636.3 60 30 
TDI*DIATE B7 884.4 737.4 60 30 
DYFECSLSK B2 574.8 279.1 60 20 

DYFECSLSK Y6 574.8 723.3 60 20 
DYFECSLSK Y7 574.8 870.4 60 20 

DYF*ECSLSK B2 579.8 279.1 60 20 
DYF*ECSLSK Y6 579.8 723.3 60 20 
DYF*ECSLSK Y7 579.8 880.4 60 20 

 

5.4.3.2 MRM Linear Response and LoD on an API 2000 

As was performed for each of the A-Raf peptides, each PDE4B AQUA peptide was 

injected onto an Ultimate 3000 HPLC and detected on an API 2000 MS using the 

previously devised PDE4B MRM acquisition method. Each peptide was injected at 

eight different quantities, ranging from 5 pmol to 100 amol, and analysed 

through Analyst software package, version 4.2. Each peak automatically selected 

by the quantitation software was reviewed manually, so as to avoid erroneous 

peak integration. The results from this experiment are shown on Table 5-3.  
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Table 5-3: The LoD’s achieved for each of the PDE4B MRM transitions, as 
detected on an API 2000.  The data obtained when eight different quantities of 
each AQUA peptide, ranging from 5 pmol to 100 amol, were injected. Shown are 
the peak areas detected, in counts per second (cps), summed over the width of 
the peak. As no peaks were detected below 50 fmol, the results from these 
experiments were omitted. 

Peptide Q3 Ion 5 pmol 1 pmol 200 fmol 50 fmol 

NSP*CFFR B2 2.72E+005 1.82E+004 8.41E+002 0.00E+000 
NSP*CFFR Y4 4.81E+004 3.27E+003 2.60E+002 0.00E+000 
NSP*CFFR Y5 1.10E+005 7.75E+003 4.20E+002 0.00E+000 

TIQTYR*SVSE Y2 1.35E+005 3.09E+004 9.68E+003 4.05E+002 
TIQTYR*SVSE Y7 2.79E+004 6.33E+003 1.80E+003 2.58E+002 
TIQTYR*SVSE Y8 4.45E+004 9.63E+003 3.24E+003 4.30E+002 

VNP*QEESYQK B5 3.77E+004 8.11E+003 1.00E+003 0.00E+000 
VNP*QEESYQK B6 3.01E+004 5.53E+003 1.40E+003 0.00E+000 

VNP*QEESYQK B7 1.15E+005 2.18E+004 4.27E+003 0.00E+000 
TDI*DIATE B2 7.18E+004 1.90E+004 3.78E+003 1.07E+003 
TDI*DIATE Y6 5.89E+004 1.62E+004 3.49E+003 7.71E+002 

TDI*DIATE Y7 2.32E+004 7.22E+003 1.49E+003 3.68E+002 
DYF*ECSLSK B2 1.16E+005 7.01E+003 1.45E+003 0.00E+000 
DYF*ECSLSK Y4 3.30E+004 1.15E+003 4.23E+002 0.00E+000 

DYF*ECSLSK Y5 4.41E+004 1.43E+003 5.85E+002 0.00E+000 

 

From Table 5-3 it is clear that there are varying LoDs for each of the PDE4B 

isoforms, for example, AQUA peptides TDI*DIATE and TIQTYR*SVSE could be 

detected on the API 2000 when 50 fmol of either peptide was injected. It should, 

therefore, be possible to quantify both short and super-short PDE4B isoforms, 

PDE4B2 and PDE4B5, in a sample containing 50 fmol or more of each protein and 

to achieve a linear MS response (Figure 5-10). As AQUA peptides NSP*CFFR, 

DYF*ECSLSK and VNP*QEESYQK were only detected when 200 fmol of peptide was 

injected, however, then the LoD for long-PDE4B isoforms PDE4B1, PDE4B3 and 

PDE4B4 on an API 2000 was set to 200 fmol.  
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Figure 5-10: The signal intensity and LoD achieved for PDE4B AQUA peptide 
TDI*DIATE.  The peak areas obtained during the analysis of three TDI*DIATE 
transitions, when injected at eight quantities, ranging from 5 pmol to 100 amol, 
on an API 2000 MS. This data is presented in a logarithm format, plotting the 
amount of peptide added against the summed signal intensity. Linear trend lines 
are included for each transition, showing the R2 values for each equation. 
 

5.4.3.3 LoD on a QTrap 5500 

As was the case when quantifying each of the A-Raf protein isoforms, when 

instrument time became available on a more powerful triple quadrupole based 

MS, the LoD for the lowest performing PDE4B AQUA peptide was re-analysed. 

The reason for this switch in instrument was to increase the sensitivity of the 

MRM based acquisition method, and in doing so, lowering the LoD for each of the 

PDE4B peptides, thereby reducing the quantity of sample required for an 

analysis to be performed.  

 

While previously the LoD for each of the long-PDE4B isoforms was found to be 

200 fmol, due to the low ionisation efficiencies detected for peptides NSP*CFFR, 

DYF*ECSLSK and VNP*QEESYQK, the lowest ion intensity was detected for PDE4B3 

peptide NSP*CFFR (Table 5-3). AQUA peptide NSP*CFFR was thus injected onto 
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an Ultimate 3000 HPLC and analysed on a QTrap 5500 at eight different 

quantities, the results of which are shown on Table 5-4. 

 

Table 5-4: The LoD’s achieved for each NSP*CFFR transition, as detected on a 
QTrap 5500 MS.  Eight quantities of alkylated AQUA peptide NSP*CFFR were 
injected on an Ultimate 3000 HPLC and detected on a QTrap 5500, using the 
previously devised PDE4B MRM based acquisition method. Both the peak height 
and peak area were measured and summed, with cps denoting counts per 
second. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Table 5-4 it is clear that the LoD for PDE4B3 peptide NSP*CFFR on a QTrap 

5500 is 2 fmol, the lowest quantity at which all three peptide transitions could 

be detected above the background noise. As the LoD for peptide NSP*CFFR on an 

API 2000 was 200 fmol, this change in instrument has presented a 100 fold 

increase in sensitivity. While the manufacturer has documented the LoD for 

Reserpine to have increased 1000 fold from the API 2000 to the QTrap 5500, this 

increase in sensitivity failed to be achieved during the analysis of A-Raf peptide 

GL*NQDCCVVYR, which showed only a 5 fold increase. This low sensitivity may 

have in part been due to sub-optimal instrument parameters, where altering the 

Fragment Quantity Analyte Peak Area (cps) Analyte Peak Height (cps) Analyte SNR 
B2 5 pmol 7.84E+07 4.81E+06 2.11E+05 
Y4 5 pmol 5.66E+07 3.54E+06 3.07E+05 
Y5 5 pmol 1.10E+08 6.45E+06 5.54E+05 
B2 1 pmol 2.01E+06 1.35E+05 5.08E+03 
Y4 1 pmol 1.45E+06 9.94E+04 7.67E+03 
Y5 1 pmol 3.00E+06 1.95E+05 2.19E+04 
B2 200 fmol 3.83E+05 2.70E+04 9.48E+02 
Y4 200 fmol 2.74E+05 1.86E+04 1.35E+03 
Y5 200 fmol 5.82E+05 4.00E+04 4.08E+03 
B2 50 fmol 6.04E+04 4.01E+03 1.47E+02 
Y4 50 fmol 4.25E+04 2.81E+03 1.92E+02 
Y5 50 fmol 9.10E+04 6.93E+03 8.22E+02 
B2 10 fmol 2.71E+04 1.77E+03 6.01E+01 
Y4 10 fmol 2.24E+04 1.36E+03 8.13E+01 
Y5 10 fmol 4.19E+04 2.81E+03 2.63E+02 
B2 2 fmol 2.01E+03 2.44E+02 8.76E+00 
Y4 2 fmol 1.20E+03 2.33E+02 1.82E+01 
Y5 2 fmol 2.86E+03 2.86E+02 3.37E+01 
B2 500 amol 0.00E+00 0.00E+00 N/A 
Y4 500 amol 0.00E+00 0.00E+00 N/A 
Y5 500 amol 0.00E+00 0.00E+00 N/A 
B2 100 amol 0.00E+00 0.00E+00 N/A 
Y4 100 amol 0.00E+00 0.00E+00 N/A 
Y5 100 amol 0.00E+00 0.00E+00 N/A 
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declustering potential, collision cell exit potential and gas flow rates may have 

lowered the LoD. 

 

5.4.4 PDE4B Protein Production 

With a LoD similar to that of A-Raf, and an effective technique for protein 

production already developed, it was the author’s intention for the PDE4B 

plasmids to be transfected into HEK293 cells using Genejuice transfection 

reagent, expressed exogenously, and purified via IP. Unlike the A-Raf plasmids 

however, the PDE4B genes were supplied in a pEE7 vector designed by Celltech 

in 1989 (Stephens and Cockett, 1989). While the use of an alternative plasmid 

was in itself not a problem, no sequence information could be obtained as to the 

up and downstream regulatory domains of the pEE7 plasmid, preventing the 

PDE4B isoforms from being FLAG tagged. Furthermore, when the PDE4B plasmids 

were amplified and purified via Midiprep, the plasmid yields were on average 10 

fold lower than those obtained for A-Raf (data not shown). By way of an example 

of the scale of the problem, a typical A-Raf transfection batch would utilise six 

150 x 25 mm tissue culture plates and require a total of 120 ng of plasmid. As 

each 50 mL midiprep reaction yielded only 20 ng of plasmid on average, protein 

production on this scale became unviable. Instead it was decided that the PDE4B 

inserts should be transferred to pcDNA3, and each isoform supplemented with an 

N-terminal FLAG tag so as to enable purification. In order to achieve this aim, 

the pEE7 based PDE4B plasmids were first partially sequenced to identify 

suitable up and downstream restriction digest sites, the inserts ligated into 

pcDNA3, and suitable N-terminal FLAG tags designed for each species. In brief, a 

FLAG tag consists of an artificial 8-amino acid peptide sequence, which in theory 

does not occur in nature and thus an anti-flag antibody based IP should be 

specific to the FLAG tagged target protein. Furthermore, as the FLAG tag is 

designed to be hydrophilic, it should be located on the surface of the protein, 

ensuring the sequence is available for anti-FLAG binding. 
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5.4.4.1 Sequencing PDE4B in a pEE7 Vector  

As the only source of literature to be identified detailing the construction of the 

pEE7 plasmid noted the presence of a HCMV promoter and an SV40 poly(A) 

(Stephens and Cockett, 1989), each of the PDE4B plasmids were sequenced with 

both of the above primers. While the HCMV promoter appeared to be present 

within the pEE7 plasmid (the sequence data obtained is not shown), the data in 

no way aligned with any published Homo sapiens PDE4B sequence, though many 

non-PDE4B alignments were achieved, suggesting the sequence may instead have 

originated from the pEE7 plasmid. When the SV40 sequence data was aligned via 

a nucleotide BLAST search, however, a stretch of shared PDE4B sequence was 

revealed, from the catalytic domain of the PDE4B isoforms, to just downstream 

of each insert, showing both EcoRI and BamHI restriction digest sites. 

 

Based on the sequence data obtained from the SV40 primer, a custom 21 mer 

reverse primer was created “GTTCAGCATTCTTTTGAACTT” (PDE4B_SEQ), capable 

of sequencing the UCRs and upstream regulatory domains of the pEE7 plasmid. In 

addition to confirming the sequence of each PDE4B isozyme, the sequence 

obtained through the use of PDE4B_SEQ primer revealed the PDE4B1 and PDE4B3 

inserts to be preceded by both EcoRI and HindIII restriction digest sites, while 

PDE4B2 was found to be preceded by HindIII. 

 

5.4.4.2 Transfer of the PDE4B Inserts to pcDNA3 and pcDNA3.1(+) 

In terms of the selection of suitable restriction enzymes for the transfer of the 

PDE4B inserts from pEE7 to pcDNA3, both long-PDE4B isozymes PDE4B1 and 

PDE4B3 were found to be preceded by both EcoRI and HindIII and proceeded by 

both EcoRI and BamHI. During the sequencing of the PDE4B1 and PDE4B3 UCRs 

with PDE4B_SEQ however, both isozymes were found to contain an additional 

BamHI restriction digest site, discounting the use of this restriction enzyme.  

 

With EcoRI thus selected as the 3’ restriction enzyme, both EcoRI and HindIII 

were identified as suitable 5’ restriction enzymes for the forward insertion of 

PDE4B1 and PDE4B3 into pcDNA3, though neither was completely ideal. In the 
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case of utilising EcoRI as both the 3 and 5’ restriction digest site, this risked the 

ligation of multiple inserts per plasmid or the insert being incorrectly 

orientated. While the use of HindIII as the 5’ digest site appeared more trivial, it 

was discovered that HindIII was the first restriction digest site after the pcDNA3 

T7 promoter, making the insertion of a FLAG-tag more complicated. As such, 

EcoRI was selected as the single restriction enzyme for the cleavage of both 

PDE4B1 and PDE4B3 from pEE7.    

 

In contrast, short-PDE4B isoform, PDE4B2, was found to be preceded by HindIII 

exclusively, making it the only choice, while being proceeded by both EcoRI and 

BamHI, each of which were suitable for the forward ligation of PDE4B2 into 

pcDNA3. Of these two enzymes, BamHI was finally selected as it yielded the 

shorter insert of the two.  

 

One problem which was encountered with the transfer of PDE4B2 to pcDNA3 

resulted from the use of non-optional 5’ restriction digest site HindIII, which as 

previously discussed, was found to immediately precede the T7 promoter in 

pcDNA3. As to prevent further problems arising during the insertion of a FLAG-

tag, PDE4B2 was instead ligated into pcDNA3.1(+), which featured several 

additional restriction digest sites upstream of HindIII. 

 

5.4.4.3 Incorporation of FLAG-tags into the PDE4B Plasmids 

Several components are required for the incorporation of a successful N-terminal 

FLAG tag, these include: (i) The identification of several restriction digest sites 

between the promoter of the vector and the start codon of the insert, and (ii) 

The incorporation of a double stranded insert which: (a) Contains restriction 

digest sites complementary to those used to cleave from the plasmid, featuring 

an overhang ready for ligation. (b) Contains an appropriate sequence for the 

expression of a FLAG-tag. (c) Contains an additional restriction digest site 

upstream of the FLAG-tag, ideally not present within the vector, for the purpose 

of screening colonies post cloning. (d) Contains a start codon, and (e) Maintains 

the correct reading frame through the incorporation of an appropriate number of 
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additional nucleotides, while ensuring the additional sequence does not 

inadvertently contain a stop codon, which would terminate translation. 

 

In the case of long-PDE4B isoforms PDE4B1 and PDE4B3, both of which were 

ligated into pcDNA3 with EcoRI, a shared double stranded insert was designed to 

replace a stretch of sequence cleaved from the pcDNA3 vector, stretching from 

the HindIII restriction digest site (immediately downstream of the T7 promoter) 

to the BamHI restriction digest site (immediately upstream of the EcoRI 

restriction digest site). The final sequences for these single stranded primers are 

“AGCTTGGTACCTATGGATTACAAGGATGACGACGATAAGACG” for PDE1&3FLAGFor, 

and “GATCCGTCTTATCGTCGTCATCCTTGTAATCCATAGGTACCA” for 

PDE1&3FLAGRev, the components of which are more fully explained on Figures 

5-11 and 5-12, for PDE4B isoforms PDE4B1 and PDE4B3, respectively. 

 

 
Figure 5-11: The design of the N-terminal FLAG-tag to be inserted into 
PDE4B1 in pcDNA3.  The components required for a successful FLAG-tag capable 
of spanning the gap between HindIII (marked in red) and BamHI (marked in 
purple) in pcDNA3, enabling the rapid purification of the PDE4B protein. 
Included within the FLAG-tag insert are a KpnI restriction digest site (marked in 
orange), an ATG (Met) start codon (marked in green), the sequence for the 
FLAG-tag (marked in blue) and some additional sequence intended to maintain 
the correct reading frame (retained in black). 
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Figure 5-12: The design of the N-terminal FLAG-tag to be inserted into 
PDE4B3 in pcDNA3.  The components required for a successful FLAG-tag capable 
of spanning the gap between HindIII (marked in red) and BamHI (marked in 
purple) in pcDNA3, enabling the rapid purification of the PDE4B protein. 
Included within the FLAG-tag insert are a KpnI restriction digest site (marked in 
orange), an ATG (Met) start codon (marked in green), the sequence for the 
FLAG-tag (marked in blue) and some additional sequence intended to maintain 
the correct reading frame (retained in black). 
 

In the case of short-PDE4B isozyme PDE4B2, ligated into pcDNA3.1(+) with both 

HindIII and BamHI, a double stranded insert was designed to replace a stretch of 

sequence spanning from the NheI restriction digest site (immediately 

downstream of the T7 promoter), to the HindIII restriction digest site (the 3’ site 

at which PDE4B2 was ligated). The final sequence for these single stranded 

inserts was “CTAGCGCGGCCGCATGGATTACAAGGATGACGACGATAAGA” for B2-

PC3.1Forward and “AGCTTCTTATCGTCGTCATCCTTGTAATCCATGCGGCCGCG” for 

B2-PC3.1Reverse, the structures of which are more fully explained on Figure 5-

13. 
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Figure 5-13: The design of the N-terminal FLAG-tag to be inserted into 
PDE4B2 in pcDNA3.1(+).  The components required for a successful FLAG-tag 
capable of spanning the gap between NheI (marked in orange) and HindIII 
(marked in red) in pcDNA3.1(+), enabling the rapid purification of the PDE4B 
protein. Included within the FLAG-tag insert are a NotI restriction digest site 
(marked in scarlet), an ATG (Met) start codon (marked in green), the sequence 
for the FLAG-tag (marked in blue) and some additional sequence intended to 
maintain the correct reading frame (retained in black). 
 

5.4.5 Spiked Digest Based Quantitative Analyses 

So as to assess the efficiency with which each of the target peptides were 

digested (through comparing peak area ratios for each target peptide/protease, 

each of which should be present at an equal ratio), to identify any problems 

resulting from the re-suspension and modification of each AQUA peptide (which 

would result in a specific peptide presenting with a different peak area ratio), 

and to test the AQUA based absolute quantification workflow; 25 µL of each 

PDE4B transfected HEK93 IP was loaded onto an SDS-PAGE gel and 

electrophoresed. The PDE4B isoform containing gel bands were excised and in-

gel digested in the presence of each AQUA peptide. Following peptide extraction 

the samples were loaded onto an Ultimate 3000 LC and analysed on a QTrap 

4000 MS, running the PDE4B MRM acquisition method previously detailed. 

 

If we consider that each transfected plate contains some 1.1x108 HEK293 cells, 

and that six plates were transfected per isoform, then a total of 6.6x108 cells 
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were lysed, and the transfected protein immunoprecipitated. If we then 

consider that the anti-FLAG beads were re-suspended in 360 µL of protein 

loading buffer, then the 25 µL of IP loaded to each SDS-PAGE gel well should 

contain the transfected, immunoprecipitated contents of approximately 4.6x107 

HEP293 cells. 

 

While only three of the five PDE4B plasmids were transfected (PDE4B1, PDE4B2 

and PDE4B3), together these three PDE4B isoforms contained each of the five 

PDE4B AQUA peptides, thus enabling each to be analysed. 

 

5.4.5.1 PDE4B1 Single Isoform Spiked Digest 

As was performed during the spiked digestion of A-Raf, 25 µL of PDE4B1 

transfected HEK293 IP was digested with either trypsin, or Glu-C, in the 

presence of each of the PDE4B AQUA peptides. Three transitions per peptide 

were analysed and the data averaged. A total of five digest replicates were 

performed and each replicate injected twice, the data from which is shown on 

Table 5-5. 
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Table 5-5: The quantity and variation data obtained from the spiked digestion 
of 25 µL of immunoprecipitated PDE4B1 on a QTrap 4000.  Through comparing 
the peak areas for both the synthetic and endogenous PDE4B peptides, three 
sets of quantities were obtained per peptide, per replicate. These values were 
averaged, so as to obtain a single quantity per peptide, per replicate, and a CoV 
determined for this value. Further to the above, an overall average was 
calculated for each value. 

 
TIQTYRSVSE – Present in all but PDE4B5 TDIDIATE – Present in all isoforms 

Replicate Average per Replicate (pmol/µL) CoV Average per Replicate (pmol/µL) CoV 
1-1 2.28 1.09% 1.62 6.62% 
1-2 2.25 6.03% 1.76 15.07% 
2-1 2.03 1.84% 2.83 27.81% 
2-2 1.99 2.71% 2.67 35.93% 

3-1 2.18 2.69% 2.29 23.37% 
3-2 2.21 2.52% 2.26 14.44% 
4-1 2.10 1.19% 2.22 27.05% 

4-2 2.10 0.02% 2.17 25.37% 
5-1 2.51 2.69% 2.56 1.27% 
5-2 2.51 2.80% 2.53 2.19% 

Average 2.21 8.36% 2.29 24.74% 

 
VNPQEESYQK – Present in PDE4B1, 3 and 4 DYFECSLSK – Unique to PDE4B1 

Replicate Average per Replicate (pmol/µL) CoV Average per Replicate (pmol/µL) CoV 
1-1 2.99 4.91% 3.63 3.25% 
1-2 3.03 4.76% 3.61 3.05% 
2-1 2.98 6.11% 3.51 2.93% 
2-2 2.98 5.63% 3.56 3.24% 
3-1 2.72 4.68% 3.20 2.48% 

3-2 2.74 5.99% 3.23 3.44% 
4-1 3.04 5.42% 3.41 2.56% 

4-2 3.03 5.36% 3.41 3.30% 
5-1 2.66 5.55% 3.35 2.41% 
5-2 2.71 6.17% 3.40 3.74% 

Average 2.89 6.94% 3.43 4.91% 
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Figure 5-14: The quantities of each PDE4B1 target peptide detected during 
the spiked digestion of PDE4B1 transfected HEK293 IP on a QTrap 4000.  The 
amount of each PDE4B1 target peptide detected during the spiked digestion of 
25 µL of PDE4B1 transfected HEK293 IP is shown. In brief, this single quantity, 
per peptide, was calculated through comparing the peak areas for three MRM 
transitions per peptide, per replicate, and the values averaged. A CoV value was 
determined for this averaged value. This bar chart helps to visualise the 
variation detected between both peptides and replicates. 
 

The data presented on Table 5-5 and Figure 5-14 is interesting as each peptide 

initially appears to be detected at a different level. Throughout the batch, 

however, the peptides cleaved with Glu-C (TIQTYRSVSE and TDIDIATE) appear to 

be detected at levels closer to those detected for tryptic peptide VNPQEESYQK. 

As each digest replicate was performed on the same PDE4B1 transfected IP and 

each digest conducted under the same conditions, this variation can only be 

attribute to either the HPLC column or the ESI needle, either of which may have 

required further equilibration so as to enable optimal peptide binding and 

elution, or for a more stable ESI spray. Figure 5-15 provides evidence of this 

increase in ion intensity over the course of the batch. 
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Figure 5-15: The increasing ion intensity detected over the course of an MRM 
based LC-MS/MS analysis of Glu-C cleaved PDE4B1.  The increase in ion 
intensity detected for AQUA peptide TIQTYRSVSE, fragment Y2, and AQUA 
peptide TDIDIATE, fragment B5, over the course of a batch of five Glu-C digested 
PDE4B1 transfected HEK293 IP replicates. 
 

As only a single spiked digest replicate was considered accurate, then an ANOVA 

based statistical analysis was not performed. From reviewing the data presented 

on Table 5-5 however, the quantity of peptide DYFECSLSK detected during the 

spiked digestion of 25 µL of PDE4B1 transfected HEK293 IP, was approximately 

40% higher than that obtained for each of the other peptides. As was the case 

with AQUA peptide GL*NQDCCVVYR, this variation may be due to the additional 

processing (in-solution alkylation and vacuum centrifugation) which this Cys 

containing AQUA peptide was subjected to, prior to in-gel digestion. 

 

5.4.5.2 PDE4B2 Single Isoform Spiked Digest 

Twenty-five micro litres of PDE4B2 transfected HEK293 cell IP was digested with 

Glu-C in the presence of each of the PDE4B AQUA peptides, three transitions per 

peptide were analysed, and the data averaged. A total of five digest replicates 
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were performed, injecting each replicate twice, the data from which is shown 

on Table 5-6. 

 

Table 5-6: The quantity and variation data obtained during the spiked 
digestion of 25 µL of immunoprecipitated PDE4B2 on a QTrap 4000.  Through 
comparing the peak areas for both the synthetic and endogenous PDE4B 
peptides, three sets of quantitation values were obtained, per peptide, per 
replicate. These values were averaged, so as to obtain a single quantity, per 
peptide, per replicate, and a CoV determined for this value. Further to the 
above, an overall average was calculated for each value. 

 
TIQTYRSVSE – Present in all but PDE4B5 TDIDIATE – Present in all isoforms 

Replicate Average per Replicate (pmol/µL) CoV Average per Replicate (pmol/µL) CoV 
1-1 0.38 4.88% 0.81 59.67% 

1-2 0.38 1.41% 0.78 60.39% 
2-1 0.42 2.85% 0.80 54.99% 
2-2 0.42 5.03% 0.84 59.27% 

3-1 0.35 2.65% 0.67 68.18% 
3-2 0.35 1.73% 0.72 67.58% 

4-1 0.34 1.93% 0.78 66.76% 
4-2 0.35 2.37% 0.67 61.74% 
5-1 0.35 5.84% 0.67 69.69% 

5-2 0.35 5.82% 0.66 59.34% 
Average 0.37 9.01% 0.74 52.90% 
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Figure 5-16: The quantities of each PDE4B2 target peptide detected during 
the spiked digestion of PDE4B2 transfected HEK293 IP on a QTrap 4000.  The 
amount of each PDE4B2 target peptide detected during the spiked digestion of 
25 µL of PDE4B2 transfected HEK293 IP is shown. In brief, this single quantity, 
per peptide, was calculated through comparing the peak areas for three MRM 
transitions per peptide, per replicate, and the values averaged. A CoV value was 
determined for this averaged value. This bar chart helps to visualise the 
variation detected between both each peptide and each replicate. 
 

As is shown on Table 5-6 and Figure 5-16, despite PDE4B2 being digested with 

only one protease, and containing just two peptides, the results obtained for 

this isozyme appeared more variable than those achieved during the analysis of 

PDE4B1 (Table 5-5). While peptide TIQTYRSVSE achieved an average CoV of less 

than 10%, peptide TDIDIATE achieved a CoV of 52.9%, warranting further 

investigation.  

 

So as to assess if there was any variation between the means of peptides 

TIQTYRSVSE and TDIDIATE, assuming a normal distribution, a two-tailed T-test 

was performed. During this test, a H0, that the means of these groups were 

equal, was stated. This analysis was performed based upon an alpha level of 

0.05, giving a critical P-value of 2.1, which if exceeded, would require the H0 to 
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be rejected. As is shown on Table 5-7, a P-value of 7x1012 was achieved, 

therefore the H0 was rejected, indicating that the mean quantification values 

achieved for these peptides was different.  

 

Table 5-7: A T-test based statistical analysis performed on the data obtained 
from the spiked digest of PDE4B2.  A T-test based statistical analysis assessing 
the quantitation data obtained for peptides TIQTYRSVSE and TDIDIATE. This test 
was performed so as to assess if each data set contained an equal level of 
variation. Highlighted in yellow is the two-tailed P value, where a figure above 
2.1 would suggest there to be significant variation between the two groups in 
95% of cases.  

  TIQTYRSVSE TDIDIATE 
Mean 0.369 0.74 
Variance 0.000898889 0.0048 
Observations 10 10 
P(T<=t) two-tail 7.11469E-12 

  

Upon further investigating the data obtained for peptide TDIDIATE, fragment B5 

was found to be present at a level more than three times higher than that 

achieved for peptide TIQTYRSVSE (Table 5-6). However, when TDIDIATE 

fragment B6 alone was analysed, the amount of peptide TDIDIATE detected in 

the sample was identical to the amount of peptide TIQTYRSVSE detected (Table 

5-8).  

 

Table 5-8: The amount of PDE4B2 detected, based upon the quantitation of 
for each TDIDIATE transition, during the spiked digestion of PDE4B2 
transfected HEK293 IP on a QTrap 4000.  The amount of peptide TDIDIATE 
detected within 25 µL of PDE4B2 transfected HEK293 IP, based upon a 
quantitation performed with each of the three TDIDIATE transitions. 

 
TDIDIATE transition (pmol/µL) 

Replicate B5 B6 B7 
1-1 1.34 0.39 0.70 
1-2 1.30 0.38 0.66 

2-1 1.27 0.40 0.73 
2-2 1.38 0.42 0.71 

3-1 1.18 0.33 0.49 
3-2 1.28 0.38 0.50 
4-1 1.36 0.39 0.57 

4-2 1.13 0.34 0.52 
5-1 1.20 0.29 0.53 
5-2 1.09 0.34 0.54 

Average 1.25 0.37 0.60 

 

When the MRM spectra obtained for fragment B5 were analysed, it was found 

that several highly intense co-eluting peaks were present. In addition, fragment 
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B5 was only the second most intense peak detected in the spectrum. It is 

therefore possible that beneath the target peak, there may also be a co-eluting 

matrix peak, which certainly would explain the higher than expected 

quantitation data obtained (Figure 5-17). 

 

 
Figure 5-17: The XIC spectra obtained for TDIDIATE transitions B5 and B6, 
during the spiked digestion of 25 µL of PDE4B2 transfected HEK293 IP.  The 
XIC spectra obtained for TDIDIATE transitions B5 (A) and B6 (B) during the analysis 
of 25 µL of PDE4B2 transfected HEK293 IP. Shown on spectrum A are the high 
intensity non-target peaks detected, eluting at a time similar to that of peptide 
TDIDIATE. While similar peaks were detected in spectrum B, these were of a 
lower intensity. 
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As the majority of the work conducted during this study was performed on a 

relatively insensitive API 2000, then both the Q1 and Q3 transmission windows 

were set to a low resolution, permitting ions within 1.2 ± 0.2 amu of the target 

m/z, to obtain the best possible limits of detection. This hardware profile, 

however, also permits more noise to reach the detector, including co-eluting 

peaks, which may interfere with an accurate quantification of the target and 

synthetic peptides. On transferring this acquisition method to a more sensitive 

MS, such as the QTrap 4000, it may be more prudent to select a more restrictive 

transmission window as to reduce excessive noise, such as that detected during 

the quantitative analysis of PDE4B2. 

 

5.4.5.3 PDE4B3 Single Isoform Spiked Digest 

Twenty-five micro litres of PDE4B3 transfected HEK293 cell IP was digested with 

either trypsin, Glu-C or Arg-C, in the presence of each of the PDE4B AQUA 

peptides. Three fragment ions were analysed per peptide, and the data 

averaged. A total of five digest replicates were performed and each replicate 

injected twice, the data from which is shown on Table 5-9. 
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Table 5-9: The quantity and variation data obtained during the spiked 
digestion of 25 µL of immunoprecipitated PDE4B3 on a QTrap 4000.  Through 
comparing the peak areas for both the synthetic and endogenous PDE4B 
peptides, three sets of quantities were obtained, per peptide, per replicate. 
These values were averaged, so as to obtain a single quantity, per peptide, per 
replicate, and a CoV determined for this value. Further to the above, an overall 
average was calculated for each value. 

 
TIQTYRSVSE – Present in all but PDE4B5 TDIDIATE – Present in all isoforms 

Replicate Average per Replicate (pmol/µL) CoV Average per Replicate (pmol/µL) CoV 
1-1 1.99 1.31% 2.59 21.63% 
1-2 2.01 2.63% 2.82 23.56% 
2-1 5.10 0.88% 2.38 22.58% 
2-2 5.11 2.14% 2.57 27.07% 

3-1 3.20 3.88% 2.79 17.83% 
3-2 3.13 2.12% 2.96 21.68% 
4-1 3.03 0.97% 3.01 15.28% 

4-2 3.02 0.83% 3.09 14.94% 
5-1 5.76 2.80% 2.66 26.81% 
5-2 5.76 1.67% 2.41 22.98% 

Average 3.81 37.37% 2.73 19.82% 

 
VNPQEESYQK – Present in PDE4B1, 3 and 4 NSPCFFR – Unique to PDE4B3 

Replicate Average per Replicate (pmol/µL) CoV Average per Replicate (pmol/µL) CoV 
1-1 4.40 38.63% 0.05 56.73% 
1-2 5.45 17.81% 0.03 45.54% 
2-1 4.02 4.56% 0.02 58.03% 
2-2 3.81 10.66% 0.02 60.36% 
3-1 5.29 14.43% 0.03 56.89% 

3-2 4.99 14.94% 0.03 68.71% 
4-1 6.43 2.24% 0.03 78.22% 

4-2 6.21 4.43% 0.02 56.77% 
5-1 4.80 9.24% 0.02 57.79% 
5-2 5.06 6.85% 0.02 49.71% 

Average 5.05 20.43% 0.02 65.15% 
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Figure 5-18: The quantity of each PDE4B3 target peptide detected during the 
spiked digestion of PDE4B3 transfected HEK293 IP on a QTrap 4000.  The 
amount of each PDE4B3 target peptide detected during the spiked digestion of 
25 µL of PDE4B3 transfected HEK293 IP is shown. In brief, this single quantity, 
per peptide, was calculated through comparing the peak areas for three MRM 
transitions per peptide, per replicate, and the values averaged. A CoV value was 
determined for this averaged value. This bar chart helps to visualise the 
variation detected between each peptide and replicate. 
 

From assessing the data shown on Table 5-9 and Figure 5-18, the levels of 

peptide NSPCFFR detected (digested with Arg-C) were seen to be extremely low. 

While this peptide contained a Cys residue, the amount of peptide detected was 

lower than expected, suggesting an inefficient digestion may have been 

responsible. Further Arg-C based digest optimisations should therefore be 

performed prior to the re-analysis of PDE4B3. Indeed, when the raw data 

obtained for peptide NSPCFFR was investigated (data not shown), no analyte 

peaks were detected, and background noise had instead been integrated, 

explaining the large CoV values obtained (with an average CoV value of 65.15%). 

Due to peptide NSPCFFR not being detected during this spiked digestion, and 

thus variation existing between the quantities of each peptide detected, an 

ANOVA based statistical analysis was not performed. 
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Figure 5-19: A typical peak detected for peptide VNPQEESYQK, fragment 
KQYS, during the spiked digestion of PDE4B3 on a QTrap 4000.  A typical XIC 
spectra obtained for each VNPQEESYQK transition, in this case showing fragment 
KQYS. In addition to the low peak heights detected (<300 counts per second), 
the peaks were dwarfed by the background noise detected during these LC-MRM 
experiments.  
 

In an attempt to further explain the variability of the data obtained during the 

analysis of PDE4B3 (Table 5-9), the individual XIC spectra were reviewed for 

each peptide and each replicate. From this review, the peak heights obtained 

for peptide VNPQEESYQK were noted to be considerably lower than those 
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achieved for the same peptide during the analysis of PDE4B isoform PDE4B1 

(data not shown). While each transition of peptide VNPQEESYQK achieved a peak 

height greater than 1x105 during the analysis of PDE4B1, each achieved a peak 

height of less than 300 cps during the analysis of PDE4B3 (Figure 5-19). As low 

peak heights were achieved for both the IS and the target peptide, it would 

appear that an inefficient proteolytic digestion was not at fault. A more likely 

explanation was the inefficient recovery of peptide VNPQEESYQK from the gel, 

or an incomplete re-suspension of peptide VNPQEESYQK after drying. 

 

When the data obtained from the Glu-C catalysed digestion of PDE4B3 alone was 

analysed, the data appeared just as variable (Table 5-9). While the levels of 

peptides TDIDIATE and TIQTYRSVSE were similar for replicates one, three and 

four, replicates two and five identified levels of peptide TIQTYRSVSE 87% and 

110% higher, respectively, than the average quantity detected for peptide 

TDIDIATE. As the XIC spectra for each of the replicates appeared normal (data 

not shown), it may have been easy to attribute this quantitation pattern to the 

amount of AQUA peptide present within the sample being less than intended. 

The MS signal response to the AQUA peptide however was constant throughout 

this batch, if slightly decreasing (Figure 5-20), making this variation hard to 

explain. 
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Figure 5-20: The MS signal intensity detected for both the TIQTYRSVSE IS and 
target peptide, over the duration of the PDE4B3 batch.  Shown on this graph 
are the peak areas detected for both TIQTYRSVSE and TIQTYR*SVSE, fragment 
ion Y2, over the duration of a PDE4B3 LC-MS/MS run. Interestingly, the IS signal 
intensity appears consistent, if slightly decreasing, while the target peptide 
response detected appears to increase during the analysis of replicates two and 
five. 
 

5.5 Conclusion 

Unlike the four A-Raf isoforms, where each contained a shared stretch of N-

terminal sequence and the protein isoforms were differentiated on unique C-

terminal sequence, each of the PDE4B isoforms contained a shared C-terminal, 

and were differentiated on a small amount of unique N-terminal sequence. In 

some ways this has made the quantification of the PDE4B isoforms more 

complicated, as a C-terminal peptide could not be selected as a last resort. 

 

As long-PDE4B isoforms PDE4B1 and PDE4B3 PDE4B had the most unique 

sequence, it was possible to select unique AQUA peptides suitable for their 

quantification. While the literature would also suggest PDE4B4 to be a long-

PDE4B isoform, no consensus sequence has as yet been published for this 

isozyme, and indeed its expression in Homo sapiens had as yet to be proven. 
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Assuming PDE4B4 was indeed expressed, then it would certainly contain both 

UCRs 1, 2 and the PDE4B shared catalytic domain, requiring its quantification so 

as to enable a subtraction based quantification to be performed on short and 

super-short PDE4B isoforms PDE4B2 and PDE4B5, respectively. A peptide was 

thus selected from UCR1, present in long-PDE4B isoforms PDE4B1, PDE4B3 and 

PDE4B4, which through the subtraction of the quantitation values obtained for 

PDE4B1 and PDE4B3, should enable PDE4B4 alone to be quantified. Likewise, 

when the selection of a peptide unique to PDE4B2 could not be identified, a 

peptide was instead selected from the N-terminal of UCR2, present in each of 

the PDE4B isoforms but super-short PDE4B isoform PDE4B5, and thus enabling 

PDE4B2 alone to be quantified though the subtraction of the quantitation value 

obtained for PDE4B isoforms PDE4B1, PDE4B3 and PDE4B4. Finally, through 

selecting a peptide located in the C-terminal of each of the five PDE4B isoforms, 

the quantification of super-short PDE4B isoform PDE4B5 was possible, again 

based on the subtraction of the known quantitation values for each of the four 

other PDE4B isoforms. 

 

In order to allow a spiked digest based analysis on each of the PDE4B isoforms, 

PDE4B1, PDE4B2 and PDE4B3 were transferred from Celltech pEE7 plasmids to 

higher copy number pcDNA3 and pcDNA3.1(+) vectors. The PDE4B plasmids were 

then FLAG-tagged so as to enable sample enrichment. Each plasmid was then 

amplified, transfected into HEK293 cells, over-expressed, and 

immunoprecipitated, ready for quantitation. 

 

Each of the five PDE4B AQUA peptides were characterised and an MRM based MS 

acquisition method developed. During the spiked digest based analysis of the 

three PDE4B isozymes, several points of interest were noted. Firstly, the LC-

MS/MS equipment took a significantly longer amount of time to equilibrate than 

was previously thought; suggesting that in future more blanks and system 

suitability tests should be run prior to the batch being submitted. Furthermore, 

with the improvements in sensitivity offered by the QTrap 4000 and QTrap 5500 

over the API 2000, an increase in co-eluting peaks was also realised. In future it 
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may be prudent to reduce the MS background through restricting the Q1 and Q3 

transmission windows to unit resolution. 

 

Finally, the Arg-C catalysed digestion of PDE4B3 was discovered to be 

incomplete. Further optimisation of this critical step should therefore be 

undertaken prior to the analysis being repeated. 

 

Several problems were encountered during the development of this quantitative 

technique, however. Firstly, despite the limited regions of unique sequence 

expressed within each of the PDE4B isoforms, it was possible to select an AQUA 

peptide suitable for the quantification of each. Secondly, each of these AQUA 

peptides selected was successfully characterised, a single MRM based acquisition 

method developed, and each target peptide and IS detected during the spiked 

digestion of the PDE4B isoforms. Finally, when the flawed and erroneous data 

had been explained, and thus could be removed, the spiked digest data obtained 

was accurate, both between peptides and indeed between proteases (trypsin 

and Glu-C).  

 

In conclusion, further to additional optimisation, the acquisition method 

developed here should be suitable for the detection and quantification of 

endogenous PDE4B populations; assuming a sensitive triple quadrupole based MS 

is available and that further steps are taken to purify the sample, so as to 

reduce the presence of interfering peaks which led to inaccurate quantitative 

data throughout this project. 
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6 Absolute Quantification of the SERCA 2 Group of 

Protein Isoforms 

6.1 Introduction 

6.1.1 P-Type ATPase 

P-type pumps constitute a superfamily of integrated membrane ATPases which 

are responsible for transporting ions and lipids across the cellular membrane 

based upon the hydrolysis of ATP (Palmgren and Nissen, 2011, Olesen et al., 

2007). Indeed, the activity of P-type ATPases are thought to account for 

approximately one-third of the energy usage in humans (Rolfe and Brown, 1997). 

The action of such pumps are thus thought to be of critical importance within 

the body, enabling homeostasis of heavy metals and the asymmetric distribution 

of lipid within the membrane (Olesen et al., 2007). Early work conducted on P-

type ATPases by Skou, found that by adding radiolabelled ADP to a Na+/K+ pump 

assay, that small amounts of radiolabelled ATP could be obtained. Skou thus 

rationalised that the intermediate step in the breakdown of ATP must be “the 

formation of a phosphorylated enzyme in which the phosphate is bound” (Skou, 

1960, Palmgren and Nissen, 2011). Two distinct conformational states of 

phosphorylated ATPase intermediate were later identified, Enzyme1-P (E1-P) 

which can be dephosphorylated through the addition of ADP, but which is 

insensitive to K+, and Enzyme2-P (E2-P) which is sensitive to K+ but insensitive to 

ADP (Whittam and Wheeler, 1970, Palmgren and Nissen, 2011). It is now known 

that the pumps E1 state can be phosphorylated to yield E1-P, and that following a 

change in conformation from E1-P to E2-P, that a simultaneous movement of ions 

across the cell membrane will occur. Likewise, when the E2-P state is 

dephosphorylated back to E2, the change in conformation from E2 to E1, will 

cause the simultaneous movement of ions (Albers, 1967), as is depicted on 

Figure 6-1. 
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Figure 6-1: The cycle of changes in conformation undergone by P-type 
ATPases, enabling the transportation of ions.  Depicted are the various 
conformations through which P-type ATPases will cycle while transporting ions 
both in and out of the cytoplasm. Conformational state “Enzyme1” initially 
accepts an ATP molecule, with which the nucleotide binding domain auto-
phosphorylates the phosphorylation domain of the enzyme, yielding an ADP 
molecule and through changing in conformation, transporting ions from the 
cytoplasm to the extracellular space. Conformational state “Enzyme2” is then 
dephosphorylated by the actuator domain, yielding an inorganic phosphorous 
(Pi), and in doing so changing in conformation back to “Enzyme1” while 
transporting ions from the extracellular space to the cytoplasm. It should be 
noted that Enzyme1 and Enzyme2 are simply names given to the various 
conformational states of the P-type ATPase, not separate biomolecules. 
 

In terms of structure, P-type ATPases have been shown to be elongated, with a 

length approximately three times that of their width. While the ATPases are 

embedded in the cell membrane, the majority of the protein forms a large 

cytoplasmic headpiece, with only a fraction of the protein exposed outside of 

the cell (Palmgren and Nissen, 2011). P-type ATPases have been shown to 

contain five functionally and structurally distinct domains, three of which are 

located within the exposed cytoplasmic headpiece, including the actuator, 

nucleotide binding and phosphorylation domains, while two are embedded in the 
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membrane, including the transport and class specific support domains. The final 

domain contained within P-type ATPases is the regulatory domain, which 

depending on the specific ATPase, can be located on either the C- or N-terminal 

and is capable of acting as an auto inhibitor to the ATPase pump molecule (Rolfe 

and Brown, 1997). 

 

During each cycle of the P-type ATPase pump mechanism, it is the nucleotide 

binding domain which is responsible for phosphorylating the ATPase at the 

phosphorylation domain, while subsequent dephosphorylation is performed by 

the actuator domain (Rolfe and Brown, 1997). 

 

6.1.2 Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 

One such group of P-type ATPases are the P2A-ATPase family of Ca2+ ion 

transporters (Olesen et al., 2007), an evolutionarily conserved group of P-type 

ATPases which are thought to be present in all living organisms, from yeast to 

mammalian systems (Brandl et al., 1987). While these pumps most likely evolved 

as a mechanism for exporting Ca2+ ions against steep transmembrane gradients 

(Devés and Brodie, 1981), their main function in mammalian cells is in the 

relaxation of muscle cells by Ca2+ ion transport from the sarcoplasm, post-action 

potential, back into the sarcoplasmic reticulum. Muscle cells contract by 

releasing Ca2+ from the sarcoplasmic reticulum into the sarcoplasm, where they 

combine with troponin, so as to establish a cross-link between actin and myosin. 

For relaxation to occur, those same Ca2+ ions must dissociate from the myofibrils 

and be pumped back into the sarcoplasmic reticulum (Berchtold et al., 2000). 

 

P2A-ATPase, or sarcoplasmic /endoplasmic reticulum calcium ATPase (SERCA), 

can also found in the endoplasmic reticulum (ER) of both muscle and non-muscle 

cells where it is responsible for maintaining calcium homeostasis by exporting 

two Ca2+ ions into the lumen of the endoplasmic reticulum per hydrolysed ATP 

molecule, counter-transporting four H+ ions into the cytoplasm in the process 

(Skou, 1960, Whittam and Wheeler, 1970). 
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While just one SERCA gene has been identified in invertebrates (Periasamy and 

Kalyanasundaram, 2007), three have been described in mammalian systems. 

Each of these three genes are highly conserved and are located on different 

chromosomes, giving rise to three separate SERCA families (SERCA1-3) and some 

11 protein isoforms (Pegoraro et al., 2011). Each isoform is thought to vary in its 

affinity towards Ca2+, its Ca2+ turnover rate, and its tissue expression pattern, 

suggesting each may contribute to the unique physiological state of the tissue in 

which it is expressed (Periasamy and Kalyanasundaram, 2007).  

 

SERCA1 has two known isoforms, SERCA1a, which encodes a 994 amino acid 

protein in adult fast-twitch skeletal muscle cells, and SERCA1b, which encodes a 

1011 amino acid protein involved in the differentiation and growth of skeletal 

myogenic tissue in foetal populations  (Brandl et al., 1987, Periasamy and 

Kalyanasundaram, 2007).  

 

SERCA2, meanwhile, has three known protein isoforms and one recently 

described mRNA transcript. The first of these, SERCA2a, encodes a 997 amino 

acid protein which is expressed predominantly in both cardiac and slow-twitch 

skeletal muscle cells (MacLennan et al., 1985), while SERCA2b encodes a 1042 

amino acid protein which is expressed in all tissues at a low level (Delabastie et 

al., 1990). SERCA2c encodes a 999 amino acid protein which is thought to be 

expressed in both heart and skeletal muscle cells (Dally et al., 2006, Periasamy 

and Kalyanasundaram, 2007). A SERCA2d transcript has also recently been 

described, which while having not yet been shown to yield a functional protein is 

thought to encode a 1007 amino acid protein (Kimura et al., 2005). Indeed, 

SERCA2 is thought to be the most studied of the P2A-ATPase families, especially 

in regard to its regulation (Albers, 1967).  

 

SERCA3 has six known isoforms, SERCA3a, which encodes a 999 amino acid 

protein, SERCA3b, which encodes a 1042 amino acid protein, SERCA3c, which 

encodes a 1029 amino acid protein, SERCA3d, which encodes a 1044 amino acid 

protein, SERCA3e, which encodes a 1052 amino acid protein, and SERCA3f, which 

encodes a 1033 amino acid protein (Dally et al., 2010). Unlike the isoforms of 
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both SERCA1 and SERCA2, the function and tissue specific distribution pattern of 

each SERCA3 isoform has yet to be assessed. High levels of SERCA3 expression 

have however been documented in several non-muscle cells, including platelets, 

mast cells, T cells, epithelial cells, fibroblast cells, and endothelial cells 

(Pegoraro et al., 2011). 

 

A small number of transmembrane-bound proteins capable of regulating the 

activity of SERCA have previously been identified; these including 

phospholamban, capable of regulating cardiac P2A-ATPase SERCA2a, and 

sarcolipin, capable of regulating fast-twitch skeletal muscle P2A-ATPase 

SERCA1a (MacLennan et al., 2003). These proteins are thought to act by 

interfering with a membrane-spanning segment (M2) of the transport domain 

within SERCA, stabilising the ATPase in its low affinity Ca2+ binding 

conformational state (E2) (Palmgren and Nissen, 2011).  

 

A recent study into the activity of sarcolipin on SERCA1a within rat muscle, 

found that the over expression of this protein caused a significant reduction in 

both twitch and tetanic peak force amplitude, a reduction in the maximum rate 

of contraction and relaxation, and increased fatigability with repeated electrical 

stimulation. This suggested that the over-expression of sarcolipin impaired the 

actions of SERCA1a, which as a result led to the depletion of the sarcoplasmic 

reticulum Ca2+ stores (Devés and Brodie, 1981). 

 

6.1.2.1 SERCA2 

SERCA2 is thought to be oldest of the SERCA P2A-ATPase Ca2+ pumps, and as such 

is widely distributed throughout nature (Devés and Brodie, 1981). Indeed, this 

may partially explain why it has the greatest number of modulator factors of all 

the SERCA ATPase families. 

 

The gene which encodes SERCA2 in humans is thought to contain some 26 exons, 

with each of the four SERCA2 isoforms containing the first 20 exons prior to 

exhibiting a unique C-terminal transcription pattern. SERCA2a has been shown to 
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splice out exons 21, 23, 24 and 25, combining exon 20 and exon 22 before 

terminating during the translation of exon 26. SERCA2b meanwhile has been 

found to be coded for by three different mRNAs, each of which has been shown 

to remove only exon 21, therefore combining exons 20 and 22 before terminating 

during the translation of exon 23 (Brini and Carafoli, 2009), while SERCA2c has 

been shown to splice out exons 21 and 23, combining exons 20 and 22 before 

terminating during the translation of exon 24. Finally, assuming SERCA2d is 

expressed (Albers, 1967), this recently discovered isoform has been predicted to 

contain exon 21, and to terminate just six amino acids into exon 22 (as a result 

of the alternative reading frame utilised during the translation of this exon) 

(Dally et al., 2010, Kimura et al., 2005), as is shown on Figure 6-2. 

 

 
Figure 6-2: The exon expression patterns of each of the SERCA2 isoforms.  
The pattern of exons expressed by each of the SERCA2 isoforms, where SERCA2a 
contains exons 20, 22 and 26, splicing out exons 21, 23, 24 and 25, while 
SERCA2b contains exons 20, 22 and 23, splicing out exon 21. SERCA2c contains 
exons 20, 22 and 24, splicing out exons 21 and 23, while SERCA2d contains exons 
20, 21 and 22. The letter T is used to indicate the introns termination site. 
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It is because of this mRNA sequence homology that the first 993 amino acids of 

each SERCA2 isoform are identical, each differentiated based solely upon a 

unique C-terminal. SERCA2a has been detailed to contain a unique four amino 

acid C-terminal, resulting from the incorporation of exon 26, while SERCA2b has 

been found to contain a 49 amino acid unique C-terminal, resulting from the 

inclusion of exon 23. SERCA2c had been found to contain a six amino acid unique 

C-terminal resulting from the inclusion of exon 24, while SERCA2d is predicted to 

express a 54 amino acid unique C-terminal, resulting from the inclusion of exons 

21 and 22, with exon 22 being translated based on an alternative reading frame 

(Delabastie et al., 1990). 

 

6.1.2.1.1 SERCA2a 

SERCA2a is thought to be expressed in both cardiac and slow-twitch skeletal 

muscle cells (MacLennan et al., 1985). It is also thought to be the major Ca2+ 

ATPase within the heart, accounting for more than 50% of the total membrane 

protein within the sarcoplasmic reticulum and thus is responsible ensuring 

normal contractility in the working myocardium (Dally et al., 2010). 

 

A recent study into cardiac dysfunction led to an experiment being conducted in 

transgenic mice in which either SERCA1a or SERCA2a was over-expressed. It was 

found that even when the mRNA encoding SERCA2a was increased 2-4 fold that 

only a 20 – 30% increase in endogenous SERCA2a expression was detected, 

leading to both an increase in the velocity at which Ca2+ was transported into the 

sarcoplasmic reticulum and an increase in maximum rate of contraction and 

relaxation within the heart. When SERCA1a was over-expressed by 2-2.5 fold 

however, the expression of SERCA2a was seen to drop by 50%, also leading to a 

decrease in L-type Ca2+ channel expression. This would suggest that SERCA2a can 

be substituted by SERCA1a within the heart, and that isoform specificity is not 

absolute (Periasamy and Huke, 2001). Furthermore, a study conducted into the 

intracellular location of the SERCA2 isoforms within human cardiomyocytes 

found SERCA2a to be present in both transverse and longitudinal immunostaining 

assays. This would suggest that SERCA2a is widely expressed throughout the 
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sarcoplasmic reticulum, including those locations which are in close proximity to 

the T-tubules (Whittam and Wheeler, 1970). 

 

6.1.2.1.2 SERCA2b 

SERCA2b is thought to be expressed at a low level in both muscle and non-

muscle cells and as such is thought to fulfil a house-keeping role in maintaining 

cellular Ca2+ levels (Lytton et al., 1992, Delabastie et al., 1990). It has been 

suggested however that the expression of SERCA2b may be induced in response 

to cellular stress (Wang et al., 2011). 

 

When both SERCA2a and SERCA2b were compared in terms of their ability to 

transport Ca2+, SERCA2b was found to have a twofold higher affinity towards Ca2+ 

than SERCA2a, but also to have a 50% lower Ca2+ turnover rate (Wang et al., 

2011). This variation in both affinity and Ca2+ turnover is thought to result from 

the varying C-terminal sequences expressed by each isoform, where the 49 

amino acids unique to SERCA2b are mostly hydrophobic and have been shown to 

create an extra transmembrane segment within the structure of the protein, 

shifting the C-terminal of the isoform from the cytoplasm to the lumen. This 

change in conformation is thought to stabilise SERCA2b within its Ca2+ binding 

conformation (E1), accounting for the high Ca2+ binding affinity of this isoform 

(Pegoraro et al., 2011).  

 

The ability of SERCA2b to act as a substitute for SERCA2a within cardiac muscle 

cells has also been investigated. On assessing the expression levels of SERCA2 

within SERCA2a −/− transgenic mice, the expression levels of SERCA2b were seen 

to increase, however the overall expression of SERCA2 within the cell was only 

50% of that of the wild type. In 40% of cases, this resulted in embryonic or 

neonatal mortality, while those specimens which did survive showed mild 

concentric hypertrophy and impaired relaxation and contraction kinetics (Ver 

Heyen et al., 2001).  
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In regard to the intracellular expression pattern of SERCA2b, SERCA2b was 

detected only during the transverse immunostaining of human cardiomyocytes, 

suggesting the expression of this protein may be restricted to those areas of the 

sarcoplasmic reticulum which run parallel to both the actin and myosin, but not 

those areas which are in close proximity to the T-tubules (Whittam and Wheeler, 

1970). 

 

6.1.2.1.3 SERCA2c 

SERCA2c is thought to be expressed in both heart and skeletal muscle cells and is 

thought to exist only in Homo sapiens (Whittam and Wheeler, 1970, Dally et al., 

2006, Periasamy and Kalyanasundaram, 2007). While very little data has been 

published detailing the specific function of SERCA2c, SERCA2c is thought to have 

a lower binding affinity for Ca2+ than either SERCA2a or SERCA2b, but to have a 

high Ca2+ turnover rate, similar to that of SERCA2b (Whittam and Wheeler, 

1970). 

 

In regard to the intracellular expression pattern of SERCA2c, SERCA2c was found 

to be restricted to the intercalated discs and the subplasmalemmal areas of 

human cardiomyocytes. Indeed, these are the areas of the cell where the 

cytoplasmic Ca2+ concentrations are highest, which helps to explain both the 

expression of SERCA2c in those areas and the lower binding affinity of this 

isoform towards Ca2+ (Skou, 1960, Whittam and Wheeler, 1970).  

 

Proceeding from the end of exon 20 (the point at which SERCA2d differentiates 

through the inclusion of exon 21) SERCA2c incorporates exon 22 (present in 

SERCA2a, b & c) before terminating during the translation of exon 24 (which 

provided SERCA2c with its unique six amino acid c-terminal). 

 

6.1.2.1.4 SERCA2d 

A new SERCA2 mRNA has recently been described, SERCA2d, which is predicted 

to code for a 1007 amino acid protein. Unlike SERCA2a, b and c, SERCA2d 
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contains exon 21, leading to a frame shift in the translation of exon 22, 

transcribing a unique C-terminal before encountering a premature stop codon 

(Kimura et al., 2005). The predicted protein sequence for SERCA2d has been 

described by both (Berchtold et al., 2000) and (Albers, 1967), however, no 

protein product has as yet been identified for this isoform. 

 

6.1.2.1.5 SERCA2 Oxidation as a Disease Biomarker 

Nitric oxide (NO) is produced within the body through the degradation of Arg to 

L-citrulline based upon the action of nitric oxide synthase (NOS) (Knyushko et 

al., 2005). Indeed both NO and L-citrulline are of great biological importance, 

with L-citrulline being involved in the efficient removal of ammonia from the 

body and NO being involved in the modulation of blood flow, thrombosis, and 

neural activity (Luiking et al., 2010). NO can however react with a mitochondrial 

by-product superoxide (O2
•−) to form a powerful oxidant, peroxynitrite (ONOO-), 

capable of nitrating tyrosine residues to 3-nitrotyrosine. Indeed 3-nitrotyrosine 

modified proteins have been observed in over 80 different pathologies in a 

variety of tissues (Ischiropoulos, 1998).   

 

The levels of 3-nitrotyrosine modified SERCA2a (nitrated at both Tyr294 and 

Tyr295) within skeletal muscle has recently been shown to increase with age, 

with young adults expressing 1.0 ± 0.5 mol of nitrotyrosine/mol of SERCA2a, in 

comparison to the elderly where 3.5 ± 0.7 mol of nitrotyrosine/mol of SERCA2a 

has been measured. This correlates to a 40% loss in Ca-ATPase activity (Knyushko 

et al., 2005). The nitration of SERCA2a within cardiac muscle has also been 

investigated because mitochondria account for approximately 1/3 of the volume 

of a cardiomyocyte, and the potential for peroxynitrate to modify SERCA2a 

(which accounts for up to 50% of the total membrane protein within the 

sarcoplasmic reticulum (Dally et al., 2010)) is increased (Lokuta et al., 2005). 

This study found that nitrated SERCA2a was increased in dilated cardiomyopathy 

(DCM) related heart failure as a result of Ca2+ pump failure (Lokuta et al., 2005). 
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6.2 Project Aims 

In addition to developing a technique capable of quantifying each of the SERCA2 

isoforms in a range of tissues, a peptide will also be selected which is capable of 

quantifying the frequency at which SERCA2 is nitrated. Therefore, the 

development of a SERCA2 based quantitative technique should allow for the 

assessment of: (i) Which SERCA2a isoforms are expressed within a tissue, and 

whether SERCA2d is translated into a functional protein (by detecting isoform 

specific target peptides). (ii) The concentration at which each SERCA2 isoform is 

expressed (by detecting both the isoform specific target and synthetic AQUA 

peptide), and (iii) How both the SERCA isoform expression ratios, and the 

frequency at which SERCA2 is nitrated, vary under different physiological 

conditions. As such, during this part of the project I aim to: (i) Screen each of 

the previously detailed SERCA2 isoforms, identifying and selecting suitable AQUA 

peptides for the absolute quantification of each protein, and (ii) Screen SERCA2 

with the aim of identifying a suitable AQUA peptide for the absolute 

quantification of nitrated Tyr294 and Tyr295. 

 

6.3 SERCA2 Specific Methods 

6.3.1 3-Nitrotyrosine Generation 

Some 25 pmol of AQUA peptide GLNQDCCVVYR was reduced and alkylated, with 

DTT and IAA, respectively. The alkylated peptide was nitrated with either: (i) 3-

Morpholinosydnonimine hydrochloride (SIN-1) for one hour at 37 oC, as has been 

described by (Richards et al., 2006); (ii) Tetranitromethane (TNM) for one hour 

at 37 oC, as has been described by (Yamada et al., 1990), or with (iii) Sodium 

nitrite (NaNO2) for one hour at 37 oC, as has been described by (Ohshima et al., 

1990). Each reaction was performed at a 1:1 ratio, a 1:500 ratio and a 1:1000 

ratio of peptide to nitrating agent (mol:mol), prior to undergoing a Zip-Tip based 

cleanup and a MALDI-ToF based analysis on an Ultraflex II. 
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6.4 Results and Discussion 

6.4.1 AQUA Peptide Selection 

While each of the five PDE4B isoforms had unique N-terminals, with PDE4B1 

containing 93 residues of unique sequence, PDE4B2 containing 39 residues of 

unique sequence, PDE4B3 containing 78 residues of unique sequence and PDE4B5 

containing 15 residues of unique sequence, the SERCA2 isoforms are much more 

homologous, with SERCA2a containing only four residues of unique sequence, 

SERCA2b containing 49 residues of unique sequence, SERCA2c containing only 6 

residues of unique sequence and SERCA2d predicted to contain 54 residues of 

unique sequence, making the selection of suitable AQUA peptides increasingly 

difficult. 

 

While the A-Raf family of protein isoforms were also differentiated based upon 

unique C-terminal sequence, A-Raf WT contained an extensive unique C-terminal 

sequence and A-Raf Short contained intronic sequence, each reducing the 

homology of those particular isoforms, and thus increasing the likelihood of a 

suitable AQUA peptide being identified. 

 

Through the use of the AQUA peptide selection workflow, four AQUA peptides 

were selected for the quantification of each of the four SERCA2 isoforms and a 

single additional AQUA peptide selected for the quantification of nitrated 

SERCA2 (Table 6-1). 

 

Table 6-1: The AQUA peptides selected for the quantification of each of the 
SERCA2 isoforms and nitrated SERCA2.  Each of the AQUA peptides selected for 
the quantification of each of the four PDE4B isoforms. 
Peptide Protease Present in: Comments: 

NYLEPAILE Trypsin SERCA2a 
As this peptide has an N-terminal Asn residue, then it should be 
ordered with extended sequence to the N-terminal and cleaved 
with trypsin during sample preparation. 

FVARNYLEPGK Lys-C SERCA2b Located within the unique C-terminal of SERCA2b. 

NYLEPVLSSEL Trypsin SERCA2c 
As this peptide has an N-terminal Asn residue, then it should be 
ordered with extended sequence to the N-terminal and cleaved 
with trypsin during sample preparation. 

CVSAHLP Asp-N SERCA2d Located within the unique C-terminal of SERCA2d. 

IRGAIYYF Glu-C All four SERCA2 
isoforms 

Cleaved with Chymotrypsin, which has documented to undergo 
non-specific proteolytic cleavage. 
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6.4.2 SERCA2 Nitration  

As pre-nitrated Fmoc SPPS Tyr residues are commercially available, it should be 

possible to chemically synthesise a pre-nitrated version of AQUA peptide 

IRGAIYYF. If an accurate quantification is to be undertaken on the frequency at 

which each Tyr residue is nitrated in vivo however, several nitrated AQUA 

peptide species must be synthesised, one of which is only nitrated at Tyr294, one 

which is only nitrated at Tyr295, one which is nitrated at both Tyr294 and Tyr295, 

and one which is nitrated at neither Tyr294 or Tyr295. For this quantitative 

technique to be validated however, an intact nitrated SERCA2 protein must also 

be produced. 

 

Due to the various pathologies in which 3-nitrotyrosine modified proteins have 

been observed (Ischiropoulos, 1998), several techniques already exist which 

enable the nitration of intact proteins under relatively mild conditions (Gow et 

al., 1997), these include the application of SIN-1, TNM or NaNO2. Of these three 

nitration methods, the process through which SIN-1 is applied to the nitration of 

Tyr best mimics that which occurs in vivo. In brief, when SIN-1 is introduced to a 

sample with a pH greater than pH 7 (Bohn and Schönafinger, 1989), SIN-1 

spontaneously decomposes. In doing so, it consumes oxygen and releases 

equimolar volumes of both NO and O2
.− (Richards et al., 2006, Ashki et al., 

2008). SIN-1 based nitration has, however, been found to increase the level of 3-

nitrotyrosine in HepG2 cells from 23.2% to just 59.2% (Yasuda et al., 2007) and 

thus is somewhat inefficient. 

 

While TNM is used in the manufacture of explosives, the technique through 

which TNM is applied to the nitration of Tyr is also considered mild, in that the 

reaction is conducted under mild pHs, ionic strengths and temperatures 

(Subbarao and Kenkare, 1977). Indeed TNM is  seen as being the method of 

choice for protein nitration (Ischiropoulos, 1998). While TNM is thought to react 

specifically with Tyr, oxidation of Cys has also been documented (Sokolovsky et 

al., 1966). It is therefore imperative that Cys residues are blocked with IAA prior 

to the application of TNM. Indeed, while Trp and Met can also readily undergo 

oxidation, their oxidation has not been recorded during TNM based Tyr nitration. 
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Furthermore, as none of the AQUA peptides selected for the quantification of 

SERCA2 contain either Trp or Met, the use of this nitrating agent would appear 

ideal. 

 

As TNM has been documented as being carcinogenic, any un-reacted TNM will be 

quenched through the application of 2-mercaptoethanol (Klevan and Tse, 1983), 

which is capable of quenching TNM, but will not to reverse the nitration 

(Subbarao and Kenkare, 1977). 

 

Finally, the acidification of NaNO2 can also be applied to the nitration of Tyr. 

This technique had been found to yield efficiencies of up to 90% when the two 

components are combined at an equimolar ratio (Radabaugh et al., 2008). While 

this reaction is conducted at a pH lower than pH 1, and thus is not particularly 

mild, this method of nitration is both less toxic than TNM and more efficient 

than SIN-1 (Oldreive et al., 1998).   

 

6.4.2.1 Optimisation of Tyr Nitration  

In order to test the relative efficiency with which SIN-1, TNM and NaNO2 are 

capable of nitrating a Tyr containing peptide, A-Raf AQUA peptide 

GLNQDCCVVYR was subjected to nitration under three different ratios of 

peptide:nitrating agent (mol:mol), including 1:1, 1:500 and 1:1000. 

 

While only an unmodified parent ion peak was detected during the SIN-1 based 

nitration (data not shown), confirming this technique to be too inefficient for 

the nitration of SERCA2, the spectra obtained from the TNM based nitration 

contained no peaks (data not shown), not even those of the unmodified parent 

ion. This would suggest the TNM was either too harsh for use in the nitration of 

the Tyr containing peptide, possibly degrading the peptide into smaller 

constituents (though none were identified on the mass spectrum), or that the 

TNM interfered with the Zip Tip based purification of the nitrated peptide, 

explaining the blank spectrum. 
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The NaNO2 based nitration of AQUA peptide GLNQDCCVVYR appeared more 

suitable however, yielding three previously unidentified peaks with mass 

increases of +14 Da, +29 Da and +45 Da, as is shown on Figure 6-3. While the +45 

Da and +29 Da peaks are indicative of nitration, with the +49 Da increase 

equating to the addition of NO2 and the loss of a hydrogen, and the +29 Da 

increase equating to the addition of NO, and the loss of a hydrogen, the +14 Da 

peak is somewhat unexpected. While +14 Da would suggest the addition of 

nitrogen, nitrogen has a valency of three and thus its binding to a single carbon 

atom on the Tyr residue would be unfavourable. Instead, the +14 Da increase 

may indicate an ortho-quinone like oxidation product of the Tyr residue 

(Steinmann et al., 2012), as is shown on Figure 6-4. An alternative theory has 

also been proposed in which both the +29 and +14 Da peaks actually related to 

the decomposition of the +45 Da nitrated peak during the MALDI-ToF based 

analysis (Lee et al., 2007).  
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Figure 6-3: The nitration of alkylated AQUA peptide GLNQDCCVVYR, through 
the acidification of NaNO2.  So as to test the efficiency with which NaNO2 
nitrates Tyr residues within a peptide, an existing Tyr containing AQUA peptide, 
GLNQDCCVVYR, originally selected for the quantification of A-Raf isoforms A-Raf 
WT, DA-Raf-1 and DA-Raf-2, was modified. As can be seen above, when the 
unmodified peptide, the processing control (exposed to TFA, vacuum centrifuged 
to completion and purified via Zip Tip) and the 1:1 (mol:mol) NaNO2 nitrated 
peptide were analysed via MALDI-ToF, each was found to yield only the 
GLNQDCCVVYR parent ion. When both the 1:500 and 1:1000 NaNO2 nitrated 
peptides were analysed however, the parent ion was no longer detectable, 
instead being replaced with three peaks, one at +14 Da, one at +29 Da and one 
at +45 Da. 
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Figure 6-4: The possible nitration products of AQUA peptide GLNQDCCVVYR, 
when exposed to acidified NaNO2.  When AQUA peptide GLNQDCCVVYR was 
nitrated with NaNO2, three previously undetected peaks were identified, 
including one at +45 Da, most likely resulting from the production of 3-
nitrotyrosine, one at +29 Da, most likely from to the introduction of an NO group 
and the loss of hydrogen. Finally a +14 Da peak was identified, which may result 
from either the production of ortho-quinone or from the MALDI-ToF based 
degradation of either the +29 or +45 Da peaks. 
 

In conclusion, of the three nitrating agents applied to the nitration of AQUA 

peptide GLNQDCCVVYR, including SIN-1, TNM and NaNO2, only NaNO2 has been 

shown to yield nitrated tyrosine. While this reaction may not be complete, or 

may be complete but undergoes degradation during MALDI-ToF, this technique 

should be capable of creating a small amount of nitrated SERCA2, suitable for 

use in the optimisation of the AQUA based quantification. 

 

6.5 Conclusion 

As the SERCA2 family of proteins was the last of the three groups of isoforms to 

be analysed, much less work has been completed for SERCA2 than either A-Raf 

or PDE4B. This group of protein isoforms has, however, proven both interesting 

and unique, requiring the selection of longer than necessary AQUA peptides, 

which are co-digested with the target protein, due to the presence of N-terminal 

Asn residues, the use of Chymotrypsin, a protease which has yet to be utilised 

during this study, and the selection of an AQUA peptide unique to SERCA2d, a 

predicted protein isoform which as yet has not been proven to yield a functional 

protein. 
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Furthermore, due to the description of nitrated Tyr294 and Tyr295 in various 

physiological conditions, a peptide sequence was also selected which is capable 

of quantifying the various nitrated and un-nitrated states at which SERCA2 

isoforms may present, enabling the ratio of SERCA2 nitration to be assessed 

under a range of physiological conditions. 

 

The development of this AQUA based technique for the quantification of the 

SERCA2 isoforms can thus be seen as successful, with a single AQUA peptide 

having been selected for the quantification of each protein species. 
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7 Conclusion 

From the outset, the aims of this project have been to identify several families 

of protein isoforms, and to select suitable AQUA peptides for the quantification 

of each.  Following the development of an MRM based LC-MS acquisition method 

capable of quantifying each protein isoform within a single LC-MS run, it was 

intended that a HEK293 cell lysate would be analysed, enabling the detection 

and quantification of each endogenous protein isoform. 

 

While three families of protein isoforms have been analysed during this project, 

the rate at which work has progressed on each has been variable. The first set of 

protein isoforms to be analysed were the four A-Raf protein isoforms, as 

described in Chapter 4, for which the majority of the project aims were 

fulfilled. Indeed, in addition to aligning the sequence of each A-Raf protein 

isoform and selecting an AQUA peptide suitable for the quantification of each, 

each AQUA peptide was also characterised and optimised; so as to enable the 

development of an MRM based MS acquisition method. Furthermore, upon 

performing SOE PCR on A-Raf Short, each A-Raf isoform was expressed in 

transfected HEK293 at a quantity suitable for detection during this project. Each 

transfected HEK293 cell lysate was subjected to FLAG-tag immunoprecipitation, 

and the enriched protein used as a basis for single isoform based spiked digests, 

so as to assess the reproducibility of this quantitative technique. Finally, the 

optimised A-Raf MS acquisition method was applied to the quantification of both 

non-immunoprecipitated exogenous A-Raf expression in HEK293, and endogenous 

A-Raf expression in HEK293, though both of these analyses failed detected either 

A-Raf isoform, due to the limitations of the mass spectrometer utilised. 

 

The second set of protein isoforms to be analysed meanwhile were the four 

confirmed and one predicted PDE4B protein isoforms, as described in Chapter 5, 

and while the same level of progress was not achieved, the protein sequence for 

each PDE4B isoform was aligned, and a suitable AQUA peptide selected for the 

quantification of each. Each of the PDE4B AQUA peptides were then 

characterised and optimised; so as to enable the development of an MRM based 
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MS acquisition method. Furthermore, upon transferring each PDE4B insert to 

pcDNA3 or pcDNA3.1(+), and FLAG-tagging each insert, so as to enable a rapid 

enrichment, each PDE4B isoform was expressed in transfected HEK293 at a level 

suitable for detection during this project. Finally, each transfected HEK293 cell 

lysate was FLAG-tag immunoprecipitated, using the enriched protein as a basis 

for single isoform based spiked digests, so as to assess the reproducibility of this 

quantitative technique. Indeed, while the MS acquisition method developed for 

the quantification of PDE4B was complete, this technique was not applied to the 

absolute quantification of endogenous PDE4B expression, due both to the 

negative results obtained from the endogenous A-Raf quantification, but also as 

a result of time constraints. 

 

Finally, the last set of protein isoforms to be analysed were the three confirmed 

and one predicted SERCA2 protein isoforms, as detailed in Chapter 6, and while 

this set of protein isoforms was explored only in brief, due to time constraints, 

the sequence for each SERCA2 isoform was aligned, and a suitable AQUA peptide 

selected for the quantification of each. Furthermore, an AQUA peptide was also 

selected for the quantification of nitrated SERCA2, a PTM which has been linked 

to more than 80 different pathologies in a variety of Homo sapiens tissues 

(Ischiropoulos, 1998). 

 

Indeed, of the 11 confirmed protein isoforms and two predicted protein isoforms 

explored during this study, it has been possible to select a suitable AQUA 

peptide for the quantification of each, although each family of protein isoforms 

presented the author with unique challenges. For example, when the four A-Raf 

protein isoforms were explored, each of which exhibited a homologous N-

terminal, and three of which were translated from a truncated version of the A-

Raf WT mRNA, it was necessary to explore the quantification of unique C-

terminal peptides, subtraction based quantification, the selection of peptides 

which included reactive amino acids and the selection of peptides cleaved 

through the use of non-ideal proteases. To the author’s knowledge no 

publications have yet explored the quantification of an entire family of protein 

isoforms, nor the use of such intricate peptide selection techniques, such as 
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subtraction based quantification, thus this work significantly advancing the field 

of absolute protein quantification. 

 

Furthermore, when assessing the four confirmed PDE4B protein isoforms, and the 

one predicted PDE4B protein isoform, each of which exhibited a homologous C-

terminal and was differentiated based upon a unique N-terminal, it was 

necessary to explore the use of several proteases, so as to maximise the number 

of candidate peptides which could be generated from the limited amounts of 

unique sequence. In addition, where a suitable AQUA peptide was not identified, 

subtraction based quantification was again employed. As was previously 

mentioned, to the author’s knowledge the use of subtraction based 

quantification has not yet been explored in an AQUA based quantification. 

Furthermore, this specific set of protein isoforms provided the author with an 

opportunity to develop an AQUA based quantitative technique which should 

enable the confirmation of a predicted protein, a process which is more 

commonly based upon either immunoblotting (Shepherd et al., 2003), or LC-MS ( 

through analysing a cell lysate with the aim of identifying each of the proteins 

contained within) (Lamontagne et al., 2010). Indeed while the MS sensitivity 

achieved during this project did not allow for the exploration of endogenous 

protein expression levels, this technique should enable others to both quantify 

endogenous PDE4B expression, but also to confirm the existence of PDE4B4. 

 

Indeed, utilising an AQUA based approach to confirm a predicted protein has 

several advantages over both immunoblotting and LC-MS. For example, if an 

antibody is to be raised against a predicted protein, a biomolecule which shares 

a certain amount of sequence homology must serve as an antigen (such as a 

protein isoform generated from the same pre-mRNA), restricting the use of this 

technique. Furthermore, any proteins which do share a degree of homology must 

have a significantly different MW to that of the predicted protein, if a 

differentiation is to be achieved. Finally, LC-MS based proteomic analyses are 

most commonly performed through the use of bottom-up based proteomics 

(Zhang et al., 2010), a technique through which only those peptides which are 
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present in each of the protein isoforms will be detected, rendering highly 

homologous proteins indistinguishable (Wu et al., 2009). 

 

Finally, when the three confirmed SERCA2 protein isoforms, and one predicted 

SERCA2 protein isoform were explored, each of which exhibited a homologous 

993 amino acid N-terminal and was differentiated based upon a region of unique 

C-terminal sequence (ranging from 4 to 54 amino acids in length), it was again 

necessary to explore the selection of unique C-terminal peptides, the use of 

several non-ideal proteases, and indeed the selection of longer than necessary 

AQUA peptides which require a proteolytic digestion step to yield the final AQUA 

product. To the author’s knowledge no data has yet been published which 

explores the use of AQUA peptides which require a proteolytic digest step, 

however, this technique is somewhat similar to both PSAQ and QconCAT. 

 

While QconCAT utilises an artificial protein, constructed of several Qpeptides, 

and thus also requires a proteolytic digest step, this technique would be non-

ideal for use on C-terminal peptides as C-terminal peptides require only a single 

digest step, while each Qpeptide would require two, reducing the accuracy of 

this technique. In the case of PSAQ, while the digest efficiency of both the 

target and labelled proteins would be identical, the in vitro synthesis and 

subsequent quantification of the labelled protein would require considerable 

effort so as to enable the quantification of a single target peptide. 

 

As such, while the quantitative techniques explored during this study have been 

based upon existing technologies, the further development of these methods has 

enabled their application in a completely different field of research, the 

exploration and quantitation of protein isoforms. Indeed while previously the 

selection of proteotypic peptides has been the cornerstone of a successful AQUA 

quantitation, this project has shown that both non-ideal peptides and non-ideal 

proteases may be utilised so as to enable a quantitative analysis. Finally, while 

the overall aim of this project, the absolute quantification of endogenous 

protein isoforms, was not achieved, the factor limiting this achievement was the 

MS instrumentation available for use. 
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7.1 Significance of this Research 

Increasingly complex sets of proteins have being quantified through the use of 

synthetic, isotopically-labelled, internal standards since the first description of 

AQUA in 2003 (Gerber et al., 2003a). Initially this form of quantitative analysis 

was restricted to the quantification of single protein species (Gerber et al., 

2007, Gerber et al., 2003a). Two such low-abundance proteins were quantified 

in an unspecified whole yeast lysate (Sir2 and Sir4), for which protein expression 

levels of 1,750 molecules per cell and 1,150 molecules per cell were identified, 

respectively (Gerber et al., 2003a). 

 

More recently QconCAT was applied to the absolute quantitation of 27 proteins 

involved in the glycolytic pathway of Saccharomyces cerevisiae (Carroll et al., 

2011). From this study, protein expression levels of between 14,000 and 10 

million molecules per cell were identified (Carroll et al., 2011). Furthermore, 

work is underway to quantify at least 4,000 proteins from Saccharomyces 

cerevisiae, again based upon the use of QconCAT (Brownridge et al., 2011), 

suggesting the field of quantitative proteomics may still be in its infancy. 

 

Fewer sets of protein isoforms have thus far been quantified however, and to 

the author’s knowledge, the absolute quantitation of a complete family of 

protein isoforms has yet to be explored. Those families of protein isoforms which 

have been quantified include: (i) Three of five known sucrose synthase isoforms 

from the root nodules of Medicago truncatula, for which concentrations of 

between 0.3 and 160 fmol/µg of protein were identified (Wienkoop et al., 2008), 

and (ii) Several members of the Cytochrome P450 superfamily of protein 

isoforms in human liver microsomes, from which a LLOQ of approximately 20 

fmol was achieved (a value which is defined as being three times the LoD 

(Addona et al., 2009)) (Wang et al., 2008b). 

 

During this study three complete sets of protein isoforms have been explored, A-

Raf, PDE4B and SERCA2. However, when a HEK293 cell lysate was probed to 

assess its endogenous expression of A-Raf, none of the four A-Raf isoforms was 

identified. The failure of this experiment can be traced to two main problems. 
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Firstly, the majority of the work completed during this project was conducted on 

an API 2000 MS, an instrument with a LoD for Reserpine of 50 pg, relatively 

insensitive in comparison to most modern triple quadrupole based mass 

spectrometers. Secondly, when a limited amount of instrument time became 

available on a QTrap 5500, the sub-optimal instrument parameters set in the A-

Raf MRM acquisition method failed to fully utilise the sensitivity offered by this 

device, which has a LoD for Reserpine of just 50 fg.  

 

To better explain, when the API 2000 A-Raf MRM based acquisition method was 

imported to an optimised QTrap 4000 MS, the LoD for AQUA peptide 

GLNQDCCVVYR fell from 5 pmol to just 15 fmol, comparable to the femtomolar 

levels of protein expression detected during other published quantitative 

analyses (Wang et al., 2008b, Wienkoop et al., 2008). Based upon this increase 

in sensitivity, if the QTrap 5500 were fully optimised, the LoD for GLNQDCCVVYR 

should fall to just 5 fmol, increasing the likelihood of endogenous A-Raf being 

detected. Indeed AB SCIEX has just recently released a new QTrap instrument, 

the QTrap 6500, which offers a 10 x increase in sensitivity over the QTrap 5500. 

This would suggest that a LoD as low as 500 amol could be achieved for A-Raf 

limiting peptide GLNQDCCVVYR. Indeed the only factor limiting the 

quantification of endogenous A-Raf expression is the sensitivity offered by the 

MS instrument utilised, which if not detectable on either the QTrap 5500 or 

QTrap 6500, should be detectable upon the release of new instrumentation in 

the future. 

 

Despite the poor LoDs achieved during this study, this AQUA based quantitative 

technique still offers researchers many advantages over other methods of 

isoform quantitation, including antibody based techniques such as western 

blotting, gene expression based techniques such as qPCR, and general LC-MS 

based quantitative techniques. Regarding quantitation based on the use of an 

antibody, each targeted protein isoform must present with significantly different 

MW’s, if each isoform is to be differentiated. Furthermore, if mRNA expression is 

to be used as an indicator of protein concentration, it should be noted that not 

all mRNAs are translated into functional proteins, and that those which are may 
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be translated at different rates. Finally, if a non-isoform specific LC-MS based 

quantitative method is used, only those peptides which are present in multiple 

protein isoforms will be detected, rendering highly homologous proteins 

indistinguishable (Wu et al., 2009).  

 

The description of this AQUA based technique for the quantitation of protein 

isoforms thus offers researchers a new tool to both confirm the expression of 

predicted proteins, and to quantify known protein isoforms. 

  

7.2 Further Research 

While the mass spectrometers available for use during the development of this 

quantitative method have hindered progress, it is the author’s opinion that 

several other aspects of this project could be improved upon.  

 

Firstly, when Cys containing AQUA peptides GLNQDCCVVYR, VPTVCVDMSTNRQQ, 

DYFECSLSK and NSPCFFR were ordered, each was intentionally selected with a 

reduced sulfhydryl group, so as to ensure both the synthetic peptide and the 

target protein were alkylated with an equal efficiency. Upon reviewing the 

efficiency of the IAA based alkylation however, the reaction appeared complete. 

Instead, through choosing to reduce and alkylate each of the Cys containing 

AQUA peptide separately, considerable sample losses were incurred, most likely 

as a result of non specific peptide binding (Speicher et al., 2000). If each Cys 

containing AQUA peptide was to be re-ordered pre-alkylated, each should enable 

a more reliable quantitation.  

 

Secondly, when an AQUA based protein quantification is conducted on a complex 

protein sample such as a cell lysate, an alternative method of protein 

purification may be more appropriate. While 1D-SDS-PAGE enables the number 

of proteins permitted to the proteolytic digest step to be reduced considerably, 

it relies upon the excision of a single gel band for each protein isoform, which 

are then combined and digested in a single tube, a process which is prone to 

both inter-gel variability and human error. Furthermore, only a relatively small 
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number of samples can be run on a single 1D-SDS-PAGE gel, where a 4-12% Bis-

Tris gel contains 10 wells, in which only five samples were run, leaving a blank 

well between each sample so as to prevent mixing. A suitable sample cleanup 

technique may instead be solid-phase extraction, a method which enables 

sample multiplexing, orthogonal sample purification and faster sample cleanup 

and elution (Nissum et al., 2004).  

 

Thirdly, when complex samples such as mixed isoform spiked digests and HEK293 

cell lysates were analysed, additional MRM peaks were detected which often 

interfered with the integration of either the IS or analyte peaks. These peaks 

most likely resulted from the detection of proteolytic peptides with m/z’s 

similar to those of targeted peptides, where the Q1 and Q3 MS transmission 

windows used during this study were set to permit ions within 1.2 ± 0.2 amu of 

the target m/z to reach the collision cell/detector. A method for reducing the 

number of interfering peaks may be to modify the Q1 and Q3 transmission 

window parameters, so as to permit only those ions within 0.7 ± 0.1 amu of the 

target m/z to reach the collision cell/detector. Alternatively SISCAPA based 

peptide purification could also be applied to reduce the complexity of the 

lysate, post-proteolytic digestion. Through reducing the complexity of the 

peptide sample, fewer undesirable MRM peaks should be detected, while 

lowering the background MS noise detected. 

 

Aside from the improvements detailed above, the overall aims behind the 

development of this quantitative method included (i) The identification of which 

protein isoforms from a particular protein family are expressed within a given 

tissue. (ii) The accurate quantification each isoform detected, and (iii) The 

detection of changes in the isoform expression ratio under different 

physiological conditions. These aims thus set the scene for any future work 

which may be conducted upon the completion of this project. 

 



293 

 

7.3 Final Conclusion 

While comparative and quantitative proteomic technologies have not yet 

progressed to the same extent as genomic and transcriptomic technologies in 

their ability to access differential gene expression (Roulhac et al., 2011), new 

mass spectrometers and analytical quantitative techniques are being released 

regularly, offering increased sensitivity, dynamic range, resolution and 

specificity to the field of proteomics. 

 

Indeed proteomics only progressed beyond the limitations of 2DGE in the early 

1990s with the description of soft biomolecule ionisation, enabling proteomic 

analyses to be performed based upon the use of mass spectrometry (Falk et al., 

2006). Even then, proteomic research has required the development of a whole 

new range of complex multi-stage mass spectrometers, so as to enable peptide 

fragmentation, peptide/protein sequencing and PTM identification (Domon and 

Aebersold, 2006). 

 

In regard to quantitative proteomics, the first MS based quantitative technique, 
15N labelling, was described as recently as 1999 (Oda et al., 1999), while the 

first stable isotopically labelled internal standard based absolute quantitative 

technique was described less than a decade ago (Gerber et al., 2003a).  

 

Building upon these successes, this project has explored the use of stable 

isotopically labelled internal standard peptides so as to enable the 

quantification of complete families of protein isoforms, and in doing so has 

investigated the use of novel non-ideal peptide selection criteria. 



294 

 

8 References 

ABRAHAM,!D.,!PODAR,!K.,!PACHER,!M.,!KUBICEK,!M.,!WELZEL,!N.,!HEMMINGS,!B.!A.,!DILWORTH,!
S.! M.,! MISCHAK,! H.,! KOLCH,! W.! &! BACCARINI,! M.! 2000.! Raf=1=associated! Protein!
Phosphatase! 2A! as! a! Positive! Regulator! of! Kinase! Activation.! Journal( of( Biological(
Chemistry,!275,!22300=22304.!

ADDONA,! T.! A.,! ABBATIELLO,! S.! E.,! SCHILLING,! B.,! SKATES,! S.! J.,! MANI,! D.! R.,! BUNK,! D.! M.,!
SPIEGELMAN,!C.!H.,!ZIMMERMAN,!L.!J.,!HAM,!A.=J.!L.,!KESHISHIAN,!H.,!HALL,!S.!C.,!ALLEN,!
S.,! BLACKMAN,! R.! K.,! BORCHERS,! C.! H.,! BUCK,! C.,! CARDASIS,! H.! L.,! CUSACK,! M.! P.,!
DODDER,!N.!G.,! GIBSON,! B.!W.,! HELD,! J.!M.,! HILTKE,! T.,! JACKSON,! A.,! JOHANSEN,! E.! B.,!
KINSINGER,! C.! R.,! LI,! J.,! MESRI,! M.,! NEUBERT,! T.! A.,! NILES,! R.! K.,! PULSIPHER,! T.! C.,!
RANSOHOFF,!D.,!RODRIGUEZ,!H.,!RUDNICK,!P.!A.,!SMITH,!D.,!TABB,!D.!L.,!TEGELER,!T.! J.,!
VARIYATH,! A.!M.,! VEGA=MONTOTO,! L.! J.,!WAHLANDER,! A.,!WALDEMARSON,! S.,!WANG,!
M.,!WHITEAKER,!J.!R.,!ZHAO,!L.,!ANDERSON,!N.!L.,!FISHER,!S.!J.,!LIEBLER,!D.!C.,!PAULOVICH,!
A.! G.,! REGNIER,! F.! E.,! TEMPST,! P.! &! CARR,! S.! A.! 2009.! Multi=site! assessment! of! the!
precision! and! reproducibility! of! multiple! reaction! monitoring=based! measurements! of!
proteins!in!plasma.!Nat(Biotech,!27,!633=641.!

AHLSTRÖM,!M.,!PEKKINEN,!M.,!HUTTUNEN,!M.!&! LAMBERG=ALLARDT,!C.! 2005.!Dexamethasone!
down=regulates! cAMP=phosphodiesterase! in! human! osteosarcoma! cells.! Biochemical(
Pharmacology,!69,!267=275.!

ALBERS,!R.!W.!1967.!Biochemical!Aspects!of!Active!Transport.!Annual(Review(of(Biochemistry,!36,!
727=756.!

ANDERSON,!L.!&!SEILHAMER,!J.!1997.!A!comparison!of!selected!mRNA!and!protein!abundances!in!
human!liver.!Electrophoresis,!18,!533=7.!

ANDERSON,!N.!L.!&!ANDERSON,!N.!G.!2002.!The!Human!Plasma!Proteome.!Molecular(&(Cellular(
Proteomics,!1,!845=867.!

ANDERSON,!N.!L.,!ANDERSON,!N.!G.,!HAINES,!L.!R.,!HARDIE,!D.!B.,!OLAFSON,!R.!W.!&!PEARSON,!T.!
W.!2004a.!Mass!Spectrometric!Quantitation!of!Peptides!and!Proteins!Using!Stable!Isotope!
Standards! and! Capture! by! Anti=Peptide! Antibodies! (SISCAPA).! Journal( of( Proteome(
Research,!3,!235=244.!

ANDERSON,! N.! L.,! POLANSKI,! M.,! PIEPER,! R.,! GATLIN,! T.,! TIRUMALAI,! R.! S.,! CONRADS,! T.! P.,!
VEENSTRA,!T.!D.,!ADKINS,!J.!N.,!POUNDS,!J.!G.,!FAGAN,!R.!&!LOBLEY,!A.!2004b.!The!Human!
Plasma!Proteome.!Molecular(&(Cellular(Proteomics,!3,!311=326.!

ANDREADIS,! A.,! GALLEGO,! M.! E.! &! NADAL=GINARD,! B.! 1987.! Generation! of! protein! isoform!
diversity! by! alternative! splicing:! mechanistic! and! biological! implications.! Annu( Rev( Cell(
Biol,!3,!207=42.!

ARAUJO,!P.!P.!C.,!MARCELLO,!M.!A.,!TINCANI,!A.!J.,!GUILHEN,!A.!C.!T.,!MORARI,!E.!C.!&!WARD,!L.!S.!
2012.! mRNA! BRAF! expression! helps! to! identify! papillary! thyroid! carcinomas! in! thyroid!
nodules!independently!of!the!presence!of!BRAFV600E!mutation.!Pathology(@(Research(and(
Practice,!208,!489=492.!

ASHKI,! N.,! HAYES,! K.! C.! &! BAO,! F.! 2008.! The! peroxynitrite! donor! 3=morpholinosydnonimine!
induces!reversible!changes!in!electrophysiological!properties!of!neurons!of!the!guinea=pig!
spinal!cord.!Neuroscience,!156,!107=117.!

BAAK,!J.!P.!A.,!JANSSEN,!E.!A.!M.,!SOREIDE,!K.!&!HEIKKILÆ,!R.!2005.!Genomics!and!proteomics—
the!way!forward.!Annals(of(Oncology,!16,!ii30=ii44.!

BABU,! G.! J.,! WHEELER,! D.,! ALZATE,! O.! &! PERIASAMY,! M.! 2004.! Solubilization! of! membrane!
proteins!for!two=dimensional!gel!electrophoresis:!identification!of!sarcoplasmic!reticulum!
membrane!proteins.!Analytical(Biochemistry,!325,!121=125.!

BACCARINI,!M.!2005.!Second!nature:!Biological!functions!of!the!Raf=1!"kinase".!FEBS(Letters,!579,!
3271=3277.!



295 

 

BAKHTIAR,!R.!&!TSE,!F.!L.!S.!2000.!Biological!mass!spectrometry:!a!primer.!Mutagenesis,!15,!415=
430.!

BALJULS,!A.,!MUELLER,!T.,!DREXLER,!H.!C.!A.,!HEKMAN,!M.!&!RAPP,!U.!R.!2007.!Unique!N=region!
Determines! Low! Basal! Activity! and! Limited! Inducibility! of! A=RAF! Kinase.! Journal( of(
Biological(Chemistry,!282,!26575=26590.!

BALJULS,!A.,!SCHMITZ,!W.,!MUELLER,!T.,!ZAHEDI,!R.!P.,!SICKMANN,!A.,!HEKMAN,!M.!&!RAPP,!U.!R.!
2008.!Positive!Regulation!of!A=RAF!by!Phosphorylation!of!Isoform=specific!Hinge!Segment!
and! Identification! of! Novel! Phosphorylation! Sites.! Journal( of( Biological( Chemistry,! 283,!
27239=27254.!

BANTSCHEFF,!M.,! SCHIRLE,!M.,! SWEETMAN,! G.,! RICK,! J.! &! KUSTER,! B.! 2007.! Quantitative!mass!
spectrometry!in!proteomics:!a!critical!review.!Anal.(Bioanal.(Chem.,!3899,!1017=31.!

BARNIER,! J.!V.,!PAPIN,!C.,!EYCHÈNE,!A.,! LECOQ,!O.!&!CALOTHY,!G.!1995.!The!Mouse!B=raf!Gene!
Encodes!Multiple! Protein! Isoforms!with! Tissue=specific! Expression.! Journal( of( Biological(
Chemistry,!270,!23381=23389.!

BEAVO,! J.! A.! 1995.! Cyclic! nucleotide! phosphodiesterases:! functional! implications! of! multiple!
isoforms.!Physiological(Reviews,!75,!725=748.!

BEAVO,!J.!A.!&!BRUNTON,!L.!L.!2002.!Cyclic!nucleotide!research![mdash]!still!expanding!after!half!a!
century.!Nat(Rev(Mol(Cell(Biol,!3,!710=718.!

BEAVO,! J.! A.,! HARDMAN,! J.! G.! &! SUTHERLAND,! E.!W.! 1970.! Hydrolysis! of! cyclic! guanosine! and!
adenosine! 30,50=monophosphates! by! rat! and! bovine! tissues.! J.Biol.Chem.,! 245,! 5649–
5655.!

BENNINGHOVEN,! A.,! JASPERS,! D.! &! SICHTERMANN,!W.! 1976.! Secondary=ion! emission! of! amino!
acids.!Applied(Physics(A:(Materials(Science(&(Processing,!11,!35=39.!

BERCHTOLD,!M.!W.,!BRINKMEIER,!H.!&!MÜNTENER,!M.!2000.!Calcium! ion! in!skeletal!muscle:! its!
crucial! role! for!muscle! function,!plasticity,!and!disease.!Physiological(Reviews,! 80,! 1215=
1265.!

BEYNON,! R.! J.,! DOHERTY,! M.! K.,! PRATT,! J.! M.! &! GASKELL,! S.! J.! 2005.! Multiplexed! absolute!
quantification! in! proteomics! using! artificial! QCAT! proteins! of! concatenated! signature!
peptides.!Nat(Meth,!2,!587=589.!

BISLEV,!S.!L.,!KUSEBAUCH,!U.,!CODREA,!M.!C.,!BEYNON,!R.! J.,!HARMAN,!V.!M.,!RØNTVED,!C.!M.,!
AEBERSOLD,!R.,!MORITZ,!R.!L.!&!BENDIXEN,!E.!2012.!Quantotypic!Properties!of!QconCAT!
Peptides! Targeting! Bovine!Host! Response! to! Streptococcus! uberis.! Journal( of( Proteome(
Research,!11,!1832=1843.!

BOHN,!H.!&!SCHÖNAFINGER,!K.!1989.!Oxygen!and!oxidation!promote!the!release!of!nitric!oxide!
from!sydnonimines.!Journal(of(cardiovascular(pharmacology,!14!Suppl!11,!S6=12.!

BOLGER,! G.,! MICHAELI,! T.,! MARTINS,! T.,! ST! JOHN,! T.,! STEINER,! B.,! RODGERS,! L.,! RIGGS,! M.,!
WIGLER,!M.!&!FERGUSON,!K.!1993.!A!family!of!human!phosphodiesterases!homologous!to!
the!dunce! learning!and!memory!gene!product!of!Drosophila!melanogaster!are!potential!
targets!for!antidepressant!drugs.!Molecular(and(Cellular(Biology,!13,!6558=6571.!

BOLGER,! G.! B.! 1994.! Molecular! biology! of! the! cyclic! AMP=specific! cyclic! nucleotide!
phosphodiesterases:! A! diverse! family! of! regulatory! enzymes.!Cellular( Signalling,! 6,! 851=
859.!

BOSWELL=SMITH,!V.,!SPINA,!D.!&!PAGE,!C.!P.!2006.!Phosphodiesterase!inhibitors.!British(Journal(of(
Pharmacology,!147,!S252=S257.!

BRAND,! E.! 1946.! AMINO! ACID! COMPOSITION! OF! SIMPLE! PROTEINS.! Annals( of( the( New( York(
Academy(of(Sciences,!47,!187=228.!

BRANDL,!C.!J.,!DELEON,!S.,!MARTIN,!D.!R.!&!MACLENNAN,!D.!H.!1987.!ADULT!FORMS!OF!THE!CA=
2+! ATPASE! OF! SARCOPLASMIC=RETICULUM! =! EXPRESSION! IN! DEVELOPING! SKELETAL=
MUSCLE.!Journal(of(Biological(Chemistry,!262,!3768=3774.!



296 

 

BRAUN,! N.! N.,! REUTIMAN,! T.! J.,! LEE,! S.,! FOLSOM,! T.! D.! &! FATEMI,! S.! H.! 2007.! Expression! of!
phosphodiesterase! 4! is! altered! in! the! brains! of! subjects! with! autism.!NeuroReport,! 18,!
1841=1844.!

BRINI,!M.!&!CARAFOLI,!E.!2009.!Calcium!Pumps!in!Health!and!Disease.!Physiological(Reviews,!89,!
1341=1378.!

BROWN,!R.!S.!&!LENNON,! J.! J.!1995a.!Mass!Resolution! Improvement!by! Incorporation!of!Pulsed!
Ion!Extraction!in!a!Matrix=Assisted!Laser!Desorption/Ionization!Linear!Time=of=Flight!Mass!
Spectrometer.!Analytical(Chemistry,!67,!1998=2003.!

BROWN,!R.!S.!&!LENNON,!J.!J.!1995b.!Sequence=Specific!Fragmentation!of!Matrix=Assisted!Laser=
Desorbed!Protein/Peptide!Ions.!Analytical(Chemistry,!67,!3990=3999.!

BROWNRIDGE,!P.!&!BEYNON,!R.! J.!2011.!The! importance!of! the!digest:!Proteolysis!and!absolute!
quantification!in!proteomics.!Methods,!54,!351=360.!

BROWNRIDGE,!P.,!HOLMAN,!S.!W.,!GASKELL,!S.!J.,!GRANT,!C.!M.,!HARMAN,!V.!M.,!HUBBARD,!S.!J.,!
LANTHALER,!K.,!LAWLESS,!C.,!O'CUALAIN,!R.,!SIMS,!P.,!WATKINS,!R.!&!BEYNON,!R.!J.!2011.!
Global!absolute!quantification!of!a!proteome:!Challenges!in!the!deployment!of!a!QconCAT!
strategy.!Proteomics,!11,!2957=2970.!

BRUN,!V.,!DUPUIS,!A.,!ADRAIT,!A.,!MARCELLIN,!M.,!THOMAS,!D.,!COURT,!M.,!VANDENESCH,!F.!&!
GARIN,! J.! 2007.! Isotope=labeled! Protein! Standards.!Molecular( &( Cellular( Proteomics,! 6,!
2139=2149.!

BRUN,!V.,!MASSELON,! C.,!GARIN,! J.!&!DUPUIS,! A.! 2009.! Isotope!dilution! strategies! for! absolute!
quantitative!proteomics.!Journal(of(Proteomics,!72,!740=749.!

BUTCHER,!R.!W.!&!SUTHERLAND,!E.!W.!1962.!Adenosine!3',5'=phosphate!in!biological!materials.!I.!
Purification! and! properties! of! cyclic! 3',5'=nucleotide! phosphodiesterase! and! use! of! this!
enzyme! to! characterize! adenosine! 3',5'=phosphate! in! human! urine.! The( Journal( of(
biological(chemistry,!237,!1244=50.!

BYERS,!H.! L.,!CAMPBELL,! J.,!VAN!ULSEN,!P.,!TOMMASSEN,! J.,!WARD,!M.!A.,! SCHULZ=KNAPPE,!P.,!
PRINZ,!T.!&!KUHN,!K.!2009.!Candidate!verification!of!iron=regulated!Neisseria!meningitidis!
proteins! using! isotopic! versions! of! tandem! mass! tags! (TMT)! and! single! reaction!
monitoring.!Journal(of(Proteomics,!73,!231=239.!

CARROLL,! K.!M.,! SIMPSON,!D.!M.,! EYERS,! C.! E.,! KNIGHT,! C.!G.,! BROWNRIDGE,! P.,! DUNN,!W.! B.,!
WINDER,!C.!L.,!LANTHALER,!K.,!PIR,!P.,!MALYS,!N.,!KELL,!D.!B.,!OLIVER,!S.!G.,!GASKELL,!S.!J.!
&! BEYNON,! R.! J.! 2011.! Absolute! Quantification! of! the! Glycolytic! Pathway! in! Yeast.!
Molecular(&(Cellular(Proteomics,!10.!

CHAIT,! B.! T.! &! KENT,! S.! B.! H.! 1992.! Weighing! naked! proteins:! practical,! high! accuracy! mass!
measurement!of!peptides!and!proteins.!Science,!257,!1885=94.!

CHAPMAN,!T.!2005.!Protein!purification:!pure!but!not!simple.!Nature,!424,!795=8.!
CHARNEY,!D.!S.!&!DEUTCH,!A.!1996.!A!functional!neuroanatomy!of!anxiety!and!fear:!implications!

for!the!pathophysiology!and!treatment!of!anxiety!disorders.!Crit(Rev(Neurobiol,!10,!419–
446.!

CHERRY,!J.!A.!&!DAVIS,!R.!L.!1999.!Cyclic!AMP!phosphodiesterases!are!localized!in!regions!of!the!
mouse!brain!associated!with!reinforcement,!movement,!and!affect.! J(Comp(Neurol,!407,!
287–301.!

CHEUNG,!Y.=F.,!KAN,!Z.,!GARRETT=ENGELE,!P.,!GALL,!I.,!MURDOCH,!H.,!BAILLIE,!G.!S.,!CAMARGO,!L.!
M.,!JOHNSON,!J.!M.,!HOUSLAY,!M.!D.!&!CASTLE,!J.!C.!2007.!PDE4B5,!a!Novel,!Super=Short,!
Brain=Specific! cAMP! Phosphodiesterase=4! Variant!Whose! Isoform=Specifying! N=Terminal!
Region! Is! Identical! to! That! of! cAMP! Phosphodiesterase=4D6! (PDE4D6).! Journal( of(
Pharmacology(and(Experimental(Therapeutics,!322,!600=609.!

CIAMPI,! R.! &! NIKIFOROV,! Y.! E.! 2005.! Alterations! of! the! BRAF! gene! in! thyroid! tumors.! Endocr.(
Pathol.,!16,!163=172.!



297 

 

CLAUSER,!K.!R.,!BAKER,!P.!&!BURLINGAME,!A.!L.!1999.!Role!of!Accurate!Mass!Measurement!(±10!
ppm)! in! Protein! Identification! Strategies! Employing! MS! or! MS/MS! and! Database!
Searching.!Analytical(Chemistry,!71,!2871=2882.!

COHEN,!G.! B.,! REN,! R.!&!BALTIMORE,!D.! 1995.!Modular! binding! domains! in! signal! transduction!
proteins.!Cell,!80,!237=248.!

COHEN,! S.! L.! &! CHAIT,! B.! T.! 1997.! Mass! Spectrometry! of! Whole! Proteins! Eluted! from! Sodium!
Dodecyl! Sulfate–Polyacrylamide! Gel! Electrophoresis! Gels.! Analytical( Biochemistry,! 247,!
257=267.!

COLLIER,!T.!S.,!HAWKRIDGE,!A.!M.,!GEORGIANNA,!D.!R.,!PAYNE,!G.!A.!&!MUDDIMAN,!D.!C.!2008.!
Top=Down! Identification! and! Quantification! of! Stable! Isotope! Labeled! Proteins! from!
Aspergillus! flavus! Using! Online! Nano=Flow! Reversed=Phase! Liquid! Chromatography!
Coupled!to!a!LTQ=FTICR!Mass!Spectrometer.!Analytical(Chemistry,!80,!4994=5001.!

COMISAROW,! M.! B.! &! MARSHALL,! A.! G.! 1974.! Fourier! transform! ion! cyclotron! resonance!
spectroscopy.!Chemical(Physics(Letters,!25,!282=283.!

CORNETT,!D.!S.,!FRAPPIER,!S.!L.!&!CAPRIOLI,!R.!M.!2008.!MALDI=FTICR!Imaging!Mass!Spectrometry!
of!Drugs!and!Metabolites!in!Tissue.!Analytical(Chemistry,!80,!5648=5653.!

CORTHALS,! G.! L.,!WASINGER,! V.! C.,! HOCHSTRASSER,! D.! F.! &! SANCHEZ,! J.=C.! 2000.! The! dynamic!
range! of! protein! expression:! A! challenge! for! proteomic! research.! Electrophoresis,! 21,!
1104=1115.!

CRAIG,!R.,!CORTENS,!J.!P.!&!BEAVIS,!R.!C.!2005.!The!use!of!proteotypic!peptide!libraries!for!protein!
identification.!Rapid(Communications(in(Mass(Spectrometry,!19,!1844=1850.!

CRICK,!F.!H.!C.!1968.!The!origin!of!the!genetic!code.!Journal(of(Molecular(Biology,!38,!367=379.!
CUI,!W.,!ROHRS,!H.!W.!&!GROSS,!M.!L.!2011.!Top=down!mass!spectrometry:!Recent!developments,!

applications!and!perspectives.!Analyst,!136,!3854=3864.!
DALLY,!S.,!BREDOUX,!R.,!CORVAZIER,!E.,!ANDERSEN,!J.!P.,!CLAUSEN,!J.!D.,!DODE,!L.,!FANCHAOUY,!

M.,! GELEBART,! P.,! MONCEAU,! V.,! DEL! MONTE,! F.,! GWATHMEY,! J.! K.,! HAJJAR,! R.,!
CHAABANE,! C.,! BOBE,! R.,! RAIES,! A.! &! ENOUF,! J.! 2006.! Ca2+=ATPases! in! non=failing! and!
failing! heart:! evidence! for! a! novel! cardiac! sarco/endoplasmic! reticulum! Ca2+=ATPase! 2!
isoform!(SERCA2c)!Biochem.(J.,!394,!249=258.!

DALLY,! S.,! CORVAZIER,! E.,! BREDOUX,! R.,! BOBE,! R.! &! ENOUF,! J.! 2010.! Multiple! and! diverse!
coexpression,! location,! and! regulation! of! additional! SERCA2! and! SERCA3! isoforms! in!
nonfailing!and!failing!human!heart.!Journal(of(Molecular(and(Cellular(Cardiology,!48,!633=
644.!

DAUB,!M.,! JOCKEL,! J.,!QUACK,!T.,!WEBER,!C.!K.,! SCHMITZ,! F.,!RAPP,!U.!R.,!WITTINGHOFER,!A.!&!
BLOCK,! C.! 1998.! The! RafC1! Cysteine=Rich! Domain! Contains!Multiple! Distinct! Regulatory!
Epitopes!Which!Control!Ras=Dependent!Raf!Activation.!Mol.(Cell.(Biol.,!18,!6698=6710.!

DAVID!M,!E.!1999.!Cyclic!nucleotide!phosphodiesterase!(PDE)!inhibitors!and!immunomodulation.!
Biochemical(Pharmacology,!57,!965=973.!

DAVIES,!H.,!BIGNELL,!G.!R.,!COX,!C.,!STEPHENS,!P.,!EDKINS,!S.,!CLEGG,!S.,!TEAGUE,!J.,!WOFFENDIN,!
H.,!GARNETT,!M.!J.,!BOTTOMLEY,!W.,!DAVIS,!N.,!DICKS,!E.,!EWING,!R.,!FLOYD,!Y.,!GRAY,!K.,!
HALL,! S.,! HAWES,! R.,!HUGHES,! J.,! KOSMIDOU,!V.,!MENZIES,! A.,!MOULD,! C.,! PARKER,!A.,!
STEVENS,! C.,! WATT,! S.,! HOOPER,! S.,! WILSON,! R.,! JAYATILAKE,! H.,! GUSTERSON,! B.! A.,!
COOPER,!C.,!SHIPLEY,!J.,!HARGRAVE,!D.,!PRITCHARD=JONES,!K.,!MAITLAND,!N.,!CHENEVIX=
TRENCH,! G.,! RIGGINS,! G.! J.,! BIGNER,! D.! D.,! PALMIERI,! G.,! COSSU,! A.,! FLANAGAN,! A.,!
NICHOLSON,! A.,! HO,! J.! W.! C.,! LEUNG,! S.! Y.,! YUEN,! S.! T.,! WEBER,! B.! L.,! SEIGLER,! H.! F.,!
DARROW,!T.!L.,!PATERSON,!H.,!MARAIS,!R.,!MARSHALL,!C.!J.,!WOOSTER,!R.,!STRATTON,!M.!
R.!&!FUTREAL,!P.!A.!2002.!Mutations!of!the!BRAF!gene!in!human!cancer.!Nature,!417,!949=
954.!

DAYON,!L.,!HAINARD,!A.,!LICKER,!V.,!TURCK,!N.,!KUHN,!K.,!HOCHSTRASSER,!D.!F.,!BURKHARD,!P.!R.!
&!SANCHEZ,!J.=C.!2008.!Relative!Quantification!of!Proteins!in!Human!Cerebrospinal!Fluids!
by!MS/MS!Using!6=Plex!Isobaric!Tags.!Analytical(Chemistry,!80,!2921=2931.!



298 

 

DELABASTIE,! D.,! LEVITSKY,!D.,! RAPPAPORT,! L.,!MERCADIER,! J.! J.,!MAROTTE,! F.,!WISNEWSKY,! C.,!
BROVKOVICH,! V.,! SCHWARTZ,! K.! &! LOMPRE,! A.! M.! 1990.! FUNCTION! OF! THE!
SARCOPLASMIC=RETICULUM!AND!EXPRESSION!OF! ITS!CA=2+=ATPASE!GENE! IN!PRESSURE!
OVERLOAD=INDUCED!CARDIAC=HYPERTROPHY!IN!THE!RAT.!Circulation(Research,!66,!554=
564.!

DEVÉS,!R.!&!BRODIE,!A.!F.!1981.!Active!transport!of!Ca2+!in!bacteria:!bioenergetics!and!function.!
Molecular(and(cellular(biochemistry,!36,!65=84.!

DEVIENNE,!F.!M.!&!ROUSTAN,!J.=C.!1982.!‘Fast!atom!bombardment’—A!rediscovered!method!for!
mass!spectrometry.!Organic(Mass(Spectrometry,!17,!173=181.!

DI!NICOLANTONIO,!F.,!MARTINI,!M.,!MOLINARI,!F.,!SARTORE=BIANCHI,!A.,!ARENA,!S.,!SALETTI,!P.,!
DE!DOSSO,!S.,!MAZZUCCHELLI,!L.,!FRATTINI,!M.,!SIENA,!S.!&!BARDELLI,!A.!2008.!Wild=Type!
BRAF! Is! Required! for! Response! to! Panitumumab! or! Cetuximab! in!Metastatic! Colorectal!
Cancer.!Journal(of(Clinical(Oncology,!26,!5705=5712.!

DIEFFENBACH,! C.! W.,! LOWE,! T.! M.! &! DVEKSLER,! G.! S.! 1993.! General! concepts! for! PCR! primer!
design.!Genome(Res,!3,!S30=S37.!

DILLON,!R.,!NILSSON,!C.!L.,!SHI,!S.!D.!H.,!LEE,!N.!V.,!KRASTINS,!B.!&!GREIG,!M.!J.!2011.!Discovery!of!
a! Novel! B=Raf! Fusion! Protein! Related! to! c=Met! Drug! Resistance.! Journal( of( Proteome(
Research,!10,!5084=5094.!

DODDS,! E.! D.,! GERMAN,! J.! B.! &! LEBRILLA,! C.! B.! 2007.! Enabling! MALDI=FTICR=MS/MS! for! High=
Performance! Proteomics! through! Combination! of! Infrared! and! Collisional! Activation.!
Analytical(Chemistry,!79,!9547=9556.!

DOHLMAN,!H.!G.,!THORNER,! J.,!CARON,!M.!G.!&!LEFKOWITZ,!R.! J.!1991.!Model!Systems! for! the!
Study!of!Seven=Transmembrane=Segment!Receptors.!Annu.(Rev.(Biochem.,!60,!653–688.!

DOLE,! M.,! MACK,! L.! L.,! HINES,! R.! L.,! MOBLEY,! R.! C.,! FERGUSON,! L.! D.! &! ALICE,! M.! B.! 1968.!
Molecular!Beams!of!Macroions.!The(Journal(of(Chemical(Physics,!49,!2240=2249.!

DOMON,!B.!&!AEBERSOLD,!R.!2006.!Mass!Spectrometry!and!Protein!Analysis.!Science,!312,!212=
217.!

DREWS,!J.!2000.!Drug!discovery:!a!historical!perspective.!Science,!287,!1960=4.!
DUGGAN,! D.! J.,! BITTNER,!M.,! CHEN,! Y.,!MELTZER,! P.! &! TRENT,! J.!M.! 1999.! Expression! profiling!

using!cDNA!microarrays.!Nat.(Genet.,!21,!10=4.!
DUNN,!M.!J.!2007.!PROTEOMICS:!The!Birth!of!the!PROTEOMICS!Family!of!Journals.!Proteomics,!7,!

1=3.!
DUROCHER,! Y.,! PERRET,! S.! &! KAMEN,! A.! 2002.! High=level! and! high=throughput! recombinant!

protein! production! by! transient! transfection! of! suspension=growing! human! 293=EBNA1!
cells.!Nucleic(Acids(Research,!30,!e9.!

DWIVEDI,! Y.! 2010.! S24=02! =! Phosphodiasterase! 4! (PDE4)! variants:! role! in! depression! and!
treatment.!European(Psychiatry,!25,!Supplement!1,!30.!

EDMAN,! P.! 1949.! Method! for! determination! of! the! amino! acid! sequence! in! peptides.! Arch(
Biochem.,!22,!475.!

EDWARDS,!A.!S.!&!SCOTT,!J.!D.!2000.!A=kinase!anchoring!proteins:!protein!kinase!A!and!beyond.!
Current(Opinion(in(Cell(Biology,!12,!217=221.!

EL=ANEED,! A.,! COHEN,! A.! &! BANOUB,! J.! 2009.! Mass! Spectrometry,! Review! of! the! Basics:!
Electrospray,!MALDI,!and!Commonly!Used!Mass!Analyzers.!Applied(Spectroscopy(Reviews,!
44,!210=230.!

ENGELS,! P.,! FICHTEL,! K.! &! LÜBBERT,! H.! 1994.! Expression! and! regulation! of! human! and! rat!
phosphodiesterase!type!IV!isogenes.!FEBS(letters,!350,!291=295.!

ENGELS,! P.,! SULLIVAN,! M.,! MÜLLER,! T.! &! LÜBBERT,! H.! 1995.! Molecular! cloning! and! functional!
expression! in! yeast! of! a! human! cAMP=specific! phosphodiesterase! subtype! (PDE! IV=C).!
FEBS(letters,!358,!305=310.!

FALK,! R.,! RAMSTROM,! M.,! STAHL,! S.! &! HOBER,! S.! 2006.! Approaches! for! systematic! proteome!
exploration.!Biomolecular(Engineering,!24,!13.!



299 

 

FAROOQUI,! S.! M.,! ZHANG,! K.,! MAKHAY,! M.,! JACKSON,! K.,! FAROOQUI,! S.! Q.,! CHERRY,! J.! A.! &!
O’DONNELL,! J.!M.! 2000.!Noradrenergic! lesions!differentially! alter! the!expression!of! two!
subtypes!of! low!Km!cAMP=sensitive!phosphodiesterase!type!4!(PDE4A!and!PDE4B)! in!rat!
brain.!Brain(Research,!867,!52=61.!

FASSETT,! J.! D.! 1995.! Isotopic! and! nuclear! analytical! techniques! in! biological! systems:! A! critical!
study=X.! Elemental! isotope! dilution! analysis! with! radioactive! and! stable! isotopes!
(Technical!Report).!Pure(Appl.(Chem.,!67,!1943=1949.!

FATEMI,!S.!H.,!KING,!D.!P.,!REUTIMAN,!T.! J.,!FOLSOM,!T.!D.,!LAURENCE,! J.!A.,! LEE,!S.,!FAN,!Y.=T.,!
PACIGA,! S.! A.,! CONTI,!M.!&!MENNITI,! F.! S.! 2008.! PDE4B! polymorphisms! and! decreased!
PDE4B!expression!are!associated!with!schizophrenia.!Schizophrenia(Research,!101,!36=49.!

FENN,! J.! B.! 2002.! Electrospray! ionization! mass! spectrometry:! How! it! all! began.! Journal( of(
biomolecular(techniques(:(JBT,!13,!101=118.!

FENN,! J.! B.,! MANN,! M.,! MENG,! C.! K.,! WONG,! S.! F.! &! WHITEHOUSE,! C.! M.! 1989.! Electrospray!
ionization!for!mass!spectrometry!of!large!biomolecules.!Science,!246,!64=71.!

FENSELAU,! C.! 2007.! A! review! of! quantitative! methods! for! proteomic! studies.! J( Chromatogr( B(
Analyt(Technol(Biomed(Life(Sci.,!855,!14=20.!

FERGUSON,!J.!T.,!WENGER,!C.!D.,!METCALF,!W.!W.!&!KELLEHER,!N.!L.!2009.!Top=Down!Proteomics!
Reveals! Novel! Protein! Forms! Expressed! in! Methanosarcina! acetivorans.! Journal( of( the(
American(Society(for(Mass(Spectrometry,!20,!1743=1750.!

FOURNIER,! M.! L.,! GILMORE,! J.! M.,! MARTIN=BROWN,! S.! A.! &! WASHBURN,! M.! P.! 2007.!
Multidimensional! Separations=Based! Shotgun!Proteomics.!Chemical( Reviews,! 107,! 3654=
3686.!

FRANCIS,! S.! H.,! BLOUNT,! M.! A.! &! CORBIN,! J.! D.! 2011.! Mammalian! Cyclic! Nucleotide!
Phosphodiesterases:! Molecular! Mechanisms! and! Physiological! Functions.! Physiological(
Reviews,!91,!651=690.!

FRANCIS,!S.!H.,!TURKO,!I.!V.!&!CORBIN,!J.!D.!2000.!Cyclic!nucleotide!phosphodiesterases:!Relating!
structure! and! function.! Progress( in( Nucleic( Acid( Research( and( Molecular( Biology.!
Academic!Press.!

FUJII,! N.,! SASAKI,! T.,! FUNAKOSHI,! S.,! IRIE,! H.! &! YAJIMA,! H.! 1978.! Studies! on! Peptides.! LXXIV.!
Convenient!Procedure! for! the!Preparation!of!Methionine!Sulphoxide!Derivatives.!Chem.(
Pharm.(Bull.,!26,!650=653.!

GALEVA,!N.!&!ALTERMANN,!M.! 2002.! Comparison!of! one=dimensional! and! two=dimensional! gel!
electrophoresis! as! a! separation! tool! for! proteomic! analysis! of! rat! liver! microsomes:!
cytochromes!P450!and!other!membrane!proteins.!Proteomics,!2,!713=22.!

GALVANI,!M.,!HAMDAN,!M.,!HERBERT,!B.!&!RIGHETTI,!P.!G.!2001.!Alkylation!kinetics!of!proteins!in!
preparation! for! two=dimensional! maps:! A! matrix! assisted! laser! desorption/ionization=
mass!spectrometry!investigation.!Electrophoresis,!22,!2058=2065.!

GARDNER,! A.! M.,! VAILLANCOURT,! R.! R.,! LANGE=CARTER,! C.! A.! &! JOHNSON,! G.! L.! 1994.!MEK=1!
phosphorylation! by!MEK! kinase,! Raf,! and! mitogen=activated! protein! kinase:! analysis! of!
phosphopeptides!and!regulation!of!activity.!Molecular(Biology(of(the(Cell,!5,!193=201.!

GARY!M,! K.! 1988.! The! adenylate! cyclase=cAMP=protein! kinase!A! pathway! and! regulation! of! the!
immune!response.!Immunology(Today,!9,!222=229.!

GERBER,! S.! A.,! KETTENBACH,! A.! N.,! RUSH,! J.! &! GYGI,! S.! P.! 2007.! The! Absolute! Quantification!
Strategy.!

GERBER,! S.! A.,! RUSH,! J.,! STEMMAN,! O.,! KIRSCHNER,! M.! W.! &! GYGI,! S.! P.! 2003a.! Absolute!
quantification! of! proteins! and! phosphoproteins! from! cell! lysates! by! tandem! MS.!
Proceedings(of(the(National(Academy(of(Sciences,!100,!6940=6945.!

GERBER,! S.! A.,! RUSH,! J.,! STEMMAN,! O.,! KIRSCHNER,! M.! W.! &! GYGI,! S.! P.! 2003b.! Absolute!
quantification! of! proteins! and! phosphoproteins! from! cell! lysates! by! tandem!MS.! Proc.(
Nat.(Acad.(Sci.(U.S.A.,!100,!6940=5.!



300 

 

GHOSH,!S.,!STRUM,! J.!C.,!SCIORRA,!V.!A.,!DANIEL,!L.!&!BELL,!R.!M.!1996.!Raf=1!Kinase!Possesses!
Distinct! Binding! Domains! for! Phosphatidylserine! and! Phosphatidic! Acid.! Journal( of(
Biological(Chemistry,!271,!8472=8480.!

GIDDINGS,! J.!C.!1984.!Two=dimensional! separations:! concept!and!promise.!Analytical(Chemistry,!
56,!1258A=1270A.!

GILMAN,! A.! G.! 1987.! G! Proteins:! Transducers! of! Receptor=Generated! Signals.!Annual( Review( of(
Biochemistry,!56,!615=649.!

GODOVAC=ZIMMERMANN,!J.,!KLEINER,!O.,!BROWN,!L.!R.!&!DRUKIER,!A.!K.!2005.!Perspectives! in!
spicing!up!proteomics!with!splicing.!Proteomics,!5,!699=709.!

GORDON,! J.! A.! &! JENCKS,! W.! P.! 1963.! The! relationship! of! structure! to! the! effectiveness! of!
denaturing!agents!for!proteins.!Biochemistry,!2,!47=57.!

GOVERMAN,!J.!M.!&!PIERCE,!J.!G.!1981.!Differential!Effects!of!Alkylation!of!Methionine!Residues!
on! the! Activities! of! Pituitary! Thyrotropin! and! Lutropin*.! The( Journal( of( Biological(
Chemistry,!256,!9431=9435.!

GOW,! A.! J.,! MCCLELLAND,! M.,! GARNER,! S.! E.,! MALCOLM,! S.! &! ISCHIROPOULOS,! H.! 1997.! The!
Determination!of!Nitrotyrosine!Residues!in!Proteins.!

GRAEME! B,! B.! 1994.! Molecular! biology! of! the! cyclic! AMP=specific! cyclic! nucleotide!
phosphodiesterases:! A! diverse! family! of! regulatory! enzymes.!Cellular( Signalling,! 6,! 851=
859.!

GRANDIS,!J.!R.!&!SOK,!J.!C.!2004.!Signaling!through!the!epidermal!growth!factor!receptor!during!
the!development!of!malignancy.!Pharmacology(&amp;(Therapeutics,!102,!37=46.!

GRIFFITHS,!J.!2008.!A!Brief!History!of!Mass!Spectrometry.!Analytical(Chemistry,!80,!5678=5683.!
GUERRERA,!I.!C.!&!KLEINER,!O.!2005.!Application!of!mass!spectrometry!in!proteomics.!Biosci(Rep.,!

25,!71=93.!
GUNNING,!P.!W.!2001.!Protein!Isoforms!and!Isozymes.!eLS.!John!Wiley!&!Sons,!Ltd.!
GYGI,!S.!P.,!CORTHALS,!G.!L.,!ZHANG,!Y.,!ROCHON,!Y.!&!AEBERSOLD,!R.!2000.!Evaluation!of!two=

dimensional!gel!electrophoresis=based!proteome!analysis!technology.!Proceedings(of(the(
National(Academy(of(Sciences,!97,!9390=9395.!

GYGI,!S.!P.,!RIST,!B.,!GERBER,!S.!A.,!TURECEK,!F.,!GELB,!M.!H.!&!AEBERSOLD,!R.!1999.!Quantitative!
analysis! of! complex! protein!mixtures! using! isotope=coded! affinity! tags.!Nat(Biotech,! 17,!
994=999.!

HAGEMANN,!C.!&!RAPP,!U.!R.!1999.! Isotype=Specific!Functions!of!Raf!Kinases.!Experimental(Cell(
Research,!253,!34=46.!

HAGER,! J.!W.! 2002.! A! new! linear! ion! trap!mass! spectrometer.! Rapid( Communications( in(Mass(
Spectrometry,!16,!512=526.!

HALLBERG,! B.,! RAYTER,! S.! I.! &! DOWNWARD,! J.! 1994.! Interaction! of! Ras! and! Raf! in! intact!
mammalian! cells! upon! extracellular! stimulation.! Journal( of( Biological( Chemistry,! 269,!
3913=3916.!

HAVLIŠ,! J.! &! SHEVCHENKO,! A.! 2004.! Absolute! Quantification! of! Proteins! in! Solutions! and! in!
Polyacrylamide!Gels!by!Mass!Spectrometry.!Analytical(Chemistry,!76,!3029=3036.!

HAYNES,!P.!A.!&!YATES!III,!J.!R.!2000.!Proteome!Profiling=Pitfalls!and!Progress.!Yeast,!1,!81=87.!
HE,!C.,!ZHOU,!F.,!ZUO,!Z.,!CHENG,!H.!&!ZHOU,!R.!2009.!A!Global!View!of!Cancer=Specific!Transcript!

Variants!by!Subtractive!Transcriptome=Wide!Analysis.!PLoS(ONE,!4,!e4732.!
HE,!Q.=Y.!&!CHIU,!J.=F.!2003.!Proteomics!in!biomarker!discovery!and!drug!development.!Journal(of(

Cellular(Biochemistry,!89,!868=886.!
HECKMAN,! K.! L.! &! PEASE,! L.! R.! 2007.! Gene! splicing! and! mutagenesis! by! PCR=driven! overlap!

extension.!Nat.(Protocols,!2,!924=932.!
HENCHMAN,!M.!&!STEEL,!C.!1998.!Understanding!the!Quadrupole!Mass!Filter!through!Computer!

Simulation.!Journal(of(Chemical(Education,!75,!1049.!
HERBERT,!B.!R.,!HARRY,! J.! L.,! PACKER,!N.!H.,!GOOLEY,!A.!A.,! PEDERSEN,! S.! K.!&!WILLIAMS,!K.! L.!

2001.!What!place!for!polyacrylamide!in!proteomics?!Trends(in(Biotechnology,!19,!S3=S9.!



301 

 

HERRMANN,!K.!A.,!SOMOGYI,!Á.,!WYSOCKI,!V.!H.,!DRAHOS,!L.!&!VÉKEY,!K.!2005.!Combination!of!
Sustained! Off=Resonance! Irradiation! and! On=Resonance! Excitation! in! FT=ICR.! Analytical(
Chemistry,!77,!7626=7638.!

HERVEY,!STRADER,!M.!B.!&!HURST,!G.!B.!2007.!Comparison!of!Digestion!Protocols!for!Microgram!
Quantities!of!Enriched!Protein!Samples.!Journal(of(Proteome(Research,!6,!3054=3061.!

HILLENKAMP,! F.! &! KARAS,! M.! 1990.! Mass! spectrometry! of! peptides! and! proteins! by! matrix=
assisted! ultraviolet! laser! desorption/ionization.! In:! JAMES,! A.! M.! (ed.)! Methods( in(
Enzymology.!Academic!Press.!

HILLENKAMP,! F.! &! KARAS,!M.! 2000.!Matrix=assisted! laser! desorption/ionisation,! an! experience.!
International(Journal(of(Mass(Spectrometry,!200,!71=77.!

HINGORANI,! S.! R.,! JACOBETZ,! M.! A.,! ROBERTSON,! G.! P.,! HERLYN,! M.! &! TUVESON,! D.! A.! 2003.!
Suppression! of! BRAFV599E! in! Human! Melanoma! Abrogates! Transformation.! Cancer(
Research,!63,!5198=5202.!

HMITOU,! I.,!DRUILLENNEC,! S.,!VALLUET,!A.,!PEYSSONNAUX,!C.!&!EYCHENE,!A.!2007.!Differential!
Regulation! of! B=Raf! Isoforms! by! Phosphorylation! and! Autoinhibitory!Mechanisms.!Mol.(
Cell.(Biol.,!27,!31=43.!

HO,! S.! N.,! HUNT,! H.! D.,! HORTON,! R.! M.,! PULLEN,! J.! K.! &! PEASE,! L.! R.! 1989.! Site=directed!
mutagenesis!by!overlap!extension!using!the!polymerase!chain!reaction.!Gene,!77,!51=59.!

HOPFGARTNER,!G.,!VARESIO,!E.,!TSCHÄPPÄT,!V.,!GRIVET,!C.,!BOURGOGNE,!E.!&!LEUTHOLD,!L.!A.!
2004.! Triple! quadrupole! linear! ion! trap! mass! spectrometer! for! the! analysis! of! small!
molecules!and!macromolecules.!Journal(of(Mass(Spectrometry,!39,!845=855.!

HOUEL,! S.,! ABERNATHY,! R.,! RENGANATHAN,! K.,!MEYER=ARENDT,! K.,! AHN,! N.! G.! &! OLD,!W.!M.!
2010.! Quantifying! the! Impact! of! Chimera! MS/MS! Spectra! on! Peptide! Identification! in!
Large=Scale!Proteomics!Studies.!Journal(of(Proteome(Research,!9,!4152=4160.!

HOUMARD,!J.!&!DRAPEAU,!G.!R.!1972.!Staphylococcal!Protease:!A!Proteolytic!Enzyme!Specific!for!
Glutamoyl!Bonds.!Proceedings(of(the(National(Academy(of(Sciences,!69,!3506=3509.!

HOUSLAY,!M.!D.!&!ADAMS,!D.!R.!2003.!PDE4!cAMP!phosphodiesterases:!modular!enzymes! that!
orchestrate! signalling! cross=talk,! desensitization! and! compartmentalization.!Biochemical(
Journal,!370,!1=18.!

HOUSLAY,!M.!D.,!SULLIVAN,!M.!&!BOLGERZ,!G.!B.!1998.!The!Multienzyme!PDE4!Cyclic!Adenosine!
Monophosphate=Specific! Phosphodiesterase! Family:Intracellular! Targeting,! Regulation,!
and! Selective! Inhibition! by! Compounds! Exerting! Anti=inflammatory! and! Antidepressant!
Actions.! In:! J.! THOMAS! AUGUST,! M.! W.! A.! F.! M.! &! JOSEPH,! T.! C.! (eds.)! Advances( in(
Pharmacology.!Academic!Press.!

HU,!Q.,!NOLL,!R.!J.,!LI,!H.,!MAKAROV,!A.,!HARDMAN,!M.!&!GRAHAM!COOKS,!R.!2005.!The!Orbitrap:!
a!new!mass!spectrometer.!Journal(of(Mass(Spectrometry,!40,!430=443.!

HURST,!R.,!MAFFITT,!M.,!MURRAY,!E.,!KAPPELMAN,!J.,!XU,!Q.,!MENDEZ,!J.,!BUTLER,!B.,!RYAN,!A.!&!
BECKLER,! G.! S.! 1996.! The! TNT®! T7! Quick! Coupled! Transcription/Translation! System.!
Promega(Notes,!58,!68.!

HUSER,! M.,! LUCKETT,! J.,! CHILOECHES,! A.,! MERCER,! K.,! IWOBI,! M.,! GIBLETT,! S.,! SUN,! X.=M.,!
BROWN,! J.,!MARAIS,!R.!&!PRITCHARD,!C.! 2001.!MEK!kinase!activity! is!not!necessary! for!
Raf=1!function.!EMBO(J,!20,!1940=1951.!

HUSTON,! E.,! LUMB,! S.,! RUSSELL,! A.,! CATTERALL,! C.,! ROSS,! A.! H.,! STEELE,!M.! R.,! BOLGER,! G.! B.,!
PERRY,! M.! J.,! OWENS,! R.! J.! &! HOUSLAY,! M.! D.! 1997.! Molecular! cloning! and! transient!
expression! in! COS7! cells! of! a! novel! human! PDE4B! cAMP=specific! phosphodiesterase,!
HSPDE4B3.!.!Biochem.(J.,!328,!549=58.!

IKAWA,!S.,!FUKUI,!M.,!UEYAMA,!Y.,!TAMAOKI,!N.,!YAMAMOTO,!T.!&!TOYOSHIMA,!K.!1988.!B=raf,!a!
new!member! of! the! raf! family,! is! activated! by! DNA! rearrangement.!Mol.( Cell.( Biol.,! 8,!
2651=2654.!

IONA,!S.,!CUOMO,!M.,!BUSHNIK,!T.,!NARO,!F.,!SETTE,!C.,!HESS,!M.,!SHELTON,!E.!R.!&!CONTI,!M.!
1998.!Characterization!of!the!rolipram=sensitive,!cyclic!AMP=specific!phosphodiesterases:!



302 

 

identification! and! differential! expression! of! immunologically! distinct! forms! in! the! rat!
brain.!Mol.(Pharmacol.,!53,!23=32.!

IRUNGU,! J.,! GO,! E.,! ZHANG,! Y.,! DALPATHADO,! D.,! LIAO,! H.=X.,! HAYNES,! B.! &! DESAIRE,! H.! 2008.!
Comparison!of!HPLC/ESI=FTICR!MS!versus!MALDI=TOF/TOF!MS!for!glycopeptide!analysis!of!
a!highly!glycosylated!HIV!envelope!glycoprotein.!Journal(of(the(American(Society(for(Mass(
Spectrometry,!19,!1209=1220.!

ISCHIROPOULOS,! H.! 1998.! Biological! Tyrosine! Nitration:! A! Pathophysiological! Function! of! Nitric!
Oxide!and!Reactive!Oxygen!Species.!Archives(of(Biochemistry(and(Biophysics,!356,!1=11.!

ISHIHAMA,! Y.,! ODA,! Y.,! TABATA,! T.,! SATO,! T.,! NAGASU,! T.,! RAPPSILBER,! J.! &!MANN,! M.! 2005.!
Exponentially! modified! protein! abundance! index! (emPAI)! for! estimation! of! absolute!
protein!amount!in!proteomics!by!the!number!of!sequenced!peptides!per!protein.!Mol(Cell(
Proteomics,!4,!1265=72.!

ISHIKAWA,!F.,!TAKAKU,!F.,!NAGAO,!M.!&!SUGIMURA,!T.!1987.!The!complete!primary!structure!of!
the!rat!A=raf!cDNA!coding!region:!Conservation!of!the!putative!regulatory!regions!present!
in!rat!c=raf.!Oncogene(Research,!1,!243=253.!

JAARO=PELED,! H.,! AYHAN,! Y.,! PLETNIKOV,! M.! V.! &! SAWA,! A.! 2010.! Review! of! Pathological!
Hallmarks!of!Schizophrenia:!Comparison!of!Genetic!Models!With!Patients!and!Nongenetic!
Models.!Schizophrenia(Bulletin,!36,!301=313.!

JANSEN,!H.!W.,!LURZ,!R.,!BISTER,!K.,!BONNER,!T.!I.,!MARK,!G.!E.!&!RAPP,!U.!R.!1984.!Homologous!
cell=derived! oncogenes! in! avian! carcinoma! virus!MH2! and!murine! sarcoma! virus! 3611.!
Nature,!307,!281=4.!

JAQUINOD,!M.,!TRAUCHESSEC,!M.,!HUILLET,!C.,!LOUWAGIE,!M.,!LEBERT,!D.,!PICARD,!G.,!ADRAIT,!
A.,!DUPUIS,!A.,!GARIN,!J.,!BRUN,!V.!&!BRULEY,!C.!2012.!Mass!spectrometry=based!absolute!
protein! quantification:! PSAQ™! strategy! makes! use! of! “noncanonical”! proteotypic!
peptides.!Proteomics,!12,!1217=1221.!

JEFFREY,!M.!J.!M.!P.!2012.!Tearing!the!top!off!'Top=Down'!Proteomics.!Biotechniques,!53,!75=78.!
JEON,! Y.! H.,! HEO,! Y.! S.,! KIM,! C.! M.,! HYUN,! Y.! L.,! LEE,! T.! G.,! RO,! S.! &! CHO,! J.! M.! 2005.!

Phosphodiesterase:!overview!of!protein!structures,!potential!therapeutic!applications!and!
recent!progress!in!drug!development.!Cellular(and(Molecular(Life(Sciences,!62,!1198=1220.!

JOHNSON,! J.! M.,! CASTLE,! J.! C.,! GARRETT=ENGELE,! P.,! KAN,! Z.,! LOERCH,! P.!M.,! ARMOUR,! C.! D.,!
SANTOS,! R.,! SCHADT,! E.! E.,! STOUGHTON,! R.! &! SHOEMAKER,! D.! D.! 2003.! Genome=wide!
survey!of!human!alternative!pre=mRNA!splicing!with!exon! junction!microarrays.!Science,!
302,!2141=4.!

JONSSON,!A.!P.!2001.!Mass!spectrometry!for!protein!and!peptide!characterization.!Cell.(Mol.(Life(
Sci.,!58,!868=84.!

KÄHLER,!A.!K.,!OTNAESS,!M.!K.,!WIRGENES,!K.!V.,!HANSEN,!T.,!JÖNSSON,!E.!G.,!AGARTZ,!I.!&!AL.,!E.!
2010.!Association!study!of!PDE4B!gene!variants!in!Scandinavian!schizophrenia!and!bipolar!
disorder! multicenter! case–control! samples.! Am( J( Med( Genet( B( Neuropsychiatr( Genet,!
153b,!86–96.!

KARAS,! M.,! BACHMANN,! D.! &! HILLENKAMP,! F.! 1985.! Influence! of! the! wavelength! in! high=
irradiance!ultraviolet!laser!desorption!mass!spectrometry!of!organic!molecules.!Analytical(
Chemistry,!57,!2935=2939.!

KARLIN,!S.,!BUCHER,!P.,!BRENDEL,!V.!&!ALTSCHUL,!S.!F.!1991.!Statistical!methods!and!insights!for!
protein!and!DNA!sequences.!Annu(Rev(Biophys(Biophys(Chem,!20,!175=203.!

KAUFMANN,!R.,!KIRSCH,!D.!&!SPENGLER,!B.!1994.!Sequencing!of!Peptides!in!a!Time=of=Flight!Mass!
Spectrometer! =! Evaluation! of! Postsource! Decay! Following! Matrix=Assisted! Laser!
Desorption! Ionisation! (MALDI).! International( Journal( of( Mass( Spectrometry( and( Ion(
Processes,!131,!355.!

KECK,! R.! G.! 1995.! The! Use! of! t=Butyl! Hydroperoxide! as! a! Probe! for! Methionine! Oxidation! in!
Proteins.!Analytical(Biochemistry,!236,!56=62.!



303 

 

KELLEHER,!N.!L.,!LIN,!H.!Y.,!VALASKOVIC,!G.!A.,!AASERUD,!D.!J.,!FRIDRIKSSON,!E.!K.!&!MCLAFFERTY,!
F.! W.! 1999.! Top! Down! versus! Bottom! Up! Protein! Characterization! by! Tandem! High=
Resolution!Mass!Spectrometry.!Journal(of(the(American(Chemical(Society,!121,!806=812.!

KESHISHIAN,! H.,! ADDONA,! T.,! BURGESS,! M.,! KUHN,! E.! &! CARR,! S.! A.! 2007.! Quantitative,!
Multiplexed! Assays! for! Low! Abundance! Proteins! in! Plasma! by! Targeted! Mass!
Spectrometry!and!Stable!Isotope!Dilution.!Molecular(&(Cellular(Proteomics,!6,!2212=2229.!

KETTENBACH,!A.!N.,!RUSH,!J.!&!GERBER,!S.!A.!2011.!Absolute!quantification!of!protein!and!post=
translational!modification!abundance!with!stable!isotope=labeled!synthetic!peptides.!Nat.(
Protocols,!6,!175=186.!

KHALSA=MOYERS,! G.! &! MCDONALD,! W.! H.! 2006.! Developments! in! mass! spectrometry! for! the!
analysis!of! complex!protein!mixtures.!Briefings( in( Functional(Genomics(&(Proteomics,! 5,!
98=111.!

KHMELNITSKY,! Y.! L.,!MOZHAEV,! V.! V.,! BELOVA,! A.! B.,! SERGEEVA,!M.! V.! &!MARTINEK,! K.! 1991.!
Denaturation! capacity:! a! new! quantitative! criterion! for! selection! of! organic! solvents! as!
reaction!media!in!biocatalysis.!European(Journal(of(Biochemistry,!198,!31=41.!

KICMAN,! A.! T.,! PARKIN,!M.! C.! &! ILES,! R.! K.! 2006.! An! introduction! to!mass! spectrometry! based!
proteomics—Detection! and! characterization! of! gonadotropins! and! related! molecules.!
Molecular(and(Cellular(Endocrinology,!260!=!262,!212=27.!

KIM,!C.,!CHENG,!C.!Y.,!SALDANHA,!S.!A.!&!TAYLOR,!S.!S.!2007.!PKA=I!Holoenzyme!Structure!Reveals!
a!Mechanism!for!cAMP=Dependent!Activation.!Cell,!130,!1032=1043.!

KIM,!Y.!H.,!BERRY,!A.!H.,! SPENCER,!D.!S.!&!STITES,!W.!E.!2001.!Comparing! the!effect!on!protein!
stability!of!methionine!oxidation!versus!mutagenesis:!steps!toward!engineering!oxidative!
resistance!in!proteins.!Protein(Engineering,!14,!343=347.!

KIMURA,!E.!T.,!NIKIFOROVA,!M.!N.,!ZHU,!Z.,!KNAUF,! J.!A.,!NIKIFOROV,!Y.!E.!&!FAGIN,! J.!A.!2003.!
High!Prevalence!of!BRAF!Mutations!in!Thyroid!Cancer.!Cancer(Research,!63,!1454=1457.!

KIMURA,!T.,!NAKAMORI,!M.,!LUECK,!J.!D.,!POULIQUIN,!P.,!AOIKE,!F.,!FUJIMURA,!H.,!DIRKSEN,!R.!T.,!
TAKAHASHI,!M.! P.,! DULHUNTY,! A.! F.! &! SAKODA,! S.! 2005.! Altered!mRNA! splicing! of! the!
skeletal! muscle! ryanodine! receptor! and! sarcoplasmic/endoplasmic! reticulum! Ca2+=
ATPase!in!myotonic!dystrophy!type!1.!Human(Molecular(Genetics,!14,!2189=2200.!

KIRKPATRICK,! D.! S.,! GERBER,! S.! A.! &! GYGI,! S.! P.! 2005a.! The! absolute! quantification! strategy:! a!
general!procedure!for!the!quantification!of!proteins!and!post=translational!modifications.!
Methods,!35,!265=273.!

KIRKPATRICK,! D.! S.,! GERBER,! S.! A.! &! GYGI,! S.! P.! 2005b.! The! absolute! quantification! strategy:! a!
general!procedure!for!the!quantification!of!proteins!and!post=translational!modifications.!
Mass(Spectrometry(in(Proteomics,!35,!265=73.!

KLEANTHOUS,! C.! &! COGGINS,! J.! R.! 1990.! Reversible! Alkylation! of! an! Active! Site! Methionine!
Residue!in!Dehydroquinase*.!The(Journal(of(Biological(Chemistry,!265,!10935=10939.!

KLEVAN,! L.! &! TSE,! Y.=C.! 1983.! Chemical! modification! of! essential! tyrosine! residues! in! DNA!
topoisomerases.!Biochimica( et( Biophysica( Acta( (BBA)( @( Protein( Structure( and(Molecular(
Enzymology,!745,!175=180.!

KLOSE,! J.!1975.!Protein!mapping!by!combined! isoelectric! focusing!and!electrophoresis!of!mouse!
tissues.! A! novel! approach! to! testing! for! induced! point! mutations! in! mammals.!
Humangenetik,!26,!231=43.!

KNYUSHKO,! T.! V.,! SHAROV,! V.! S.,! WILLIAMS,! T.! D.,! SCHÖNEICH,! C.! &! BIGELOW,! D.! J.! 2005.! 3=
Nitrotyrosine! Modification! of! SERCA2a! in! the! Aging! Heart: ! A! Distinct! Signature! of! the!
Cellular!Redox!Environment†.!Biochemistry,!44,!13071=13081.!

KÖCHER,! T.,! ENGSTRÖM,! Å.! &! ZUBAREV,! R.! A.! 2004.! Fragmentation! of! Peptides! in! MALDI! In=
Source!Decay!Mediated!by!Hydrogen!Radicals.!Analytical(Chemistry,!77,!172=177.!

KOJIMA,! T.,! SANO,! K.,! HIRABAYASHI,! T.! &! OBINATA,! T.! 1990.! Characterization! of! C=Protein!
Isoforms!Expressed! in!Developing,!Denervated,!and!Dystrophic!Chicken!Skeletal!Muscles!
by!Two=Dimensional!Gel!Electrophoresis.!Journal(of(Biochemistry,!107,!470=475.!



304 

 

KOLCH,!W.! 2000.!Meaningful! relationships:! the! regulation!of! the!Ras/Raf/MEK/ERK!pathway!by!
protein!interactions.!Biochem(J.,!351,!289=305.!

KONDO,! T.!&!HIROHASHI,! S.! 2007.! Application! of! highly! sensitive! fluorescent! dyes! (CyDye!DIGE!
Fluor! saturation! dyes)! to! laser! microdissection! and! two=dimensional! difference! gel!
electrophoresis!(2D=DIGE)!for!cancer!proteomics.!Nat.(Protocols,!1,!2940=2956.!

KOYANAGI,!M.,!SUGA,!H.,!HOSHIYAMA,!D.,!ONO,!K.,! IWABE,!N.,!KUMA,!K.=I.!&!MIYATA,!T.!1998.!
Ancient! gene! duplication! and! domain! shuffling! in! the! animal! cyclic! nucleotide!
phosphodiesterase! family1! The! nucleotide! sequence! data! reported! in! this! paper! will!
appear! in! the!DDBJ,! EMBL! and!GenBank!nucleotide! sequence!databases!with! accession!
numbers!AB017021–AB017024.1.!FEBS(letters,!436,!323=328.!

KRUGER,! R.,! HUGH,! C.!W.,! EDELSON=AVERBUKH,!M.! &! LEHMANN,!W.! D.! 2005.! Iodoacetamide=
alkylated!methionine!can!mimic!neutral!loss!of!phosphoric!acid!from!phosphopeptides!as!
exemplified! by! nano=electrospray! ionisation! quadrupole! time=of=flight! parent! ion!
scanning.!Rapid(Communications(in(Mass(Spectrometry,!19,!1709=1716.!

KURODA,! S.,! OHTSUKA,! T.,! YAMAMORI,! B.,! FUKUI,! K.,! SHIMIZU,! K.! &! TAKAI,! Y.! 1996.! Different!
Effects!of!Various!Phospholipids!on!Ki=Ras=,!Ha=Ras=,!and!Rap1B=induced!B=Raf!Activation.!
Journal(of(Biological(Chemistry,!271,!14680=14683.!

KWIETNY,!H.,!LEVIN,!G.,!BERGMANN,!F.!&!BROWN,!D.!J.!1959.!Mechanism!of!Enzymatic!Oxidation!
of!Purines.!Science,!130,!711=712.!

LAHM,! H.=W.!&! LANGEN,! H.! 2000.!Mass! spectrometry:! A! tool! for! the! identification! of! proteins!
separated!by!gels.!Electrophoresis,!21,!2105=2114.!

LAMONTAGNE,!J.,!BELAND,!M.,!FOREST,!A.,!COTE=MARTIN,!A.,!NASSIF,!N.,!TOMAKI,!F.,!MORIYON,!
I.,! MORENO,! E.! &! PARAMITHIOTIS,! E.! 2010.! Proteomics=based! confirmation! of! protein!
expression! and! correction! of! annotation! errors! in! the! Brucella! abortus! genome.! BMC(
Genomics,!11,!300.!

LANGE,! V.,! PICOTTI,! P.,! DOMON,! B.! &! AEBERSOLD,! R.! 2008.! Selected! reaction! monitoring! for!
quantitative!proteomics:!a!tutorial.!Mol.(Syst.(Biol.,!4,!222.!

LEE,! J.! E.,! BECK,! T.! W.,! WOJNOWSKI,! L.! &! RAPP,! U.! R.! 1996.! Regulation! of! A=raf! expression.!
Oncogene,!12,!1669=77.!

LEE,!S.!J.,!LEE,!J.!R.,!KIM,!Y.!H.,!PARK,!Y.!S.,!PARK,!S.!I.,!PARK,!H.!S.!&!KIM,!K.!P.!2007.!Investigation!
of! tyrosine! nitration! and! nitrosylation! of! angiotensin! II! and! bovine! serum! albumin!with!
electrospray!ionization!mass!spectrometry.!Rapid(Communications(in(Mass(Spectrometry,!
21,!2797=2804.!

LEEVERS,!S.!J.,!PATERSON,!H.!F.!&!MARSHALL,!C.!J.!1994.!Requirement!for!Ras!in!Raf!activation!is!
overcome!by!targeting!Raf!to!the!plasma!membrane.!Nature,!369,!411=414.!

LEONI,!G.,!LE!PERA,!L.,!FERRÈ,!F.,!RAIMONDO,!D.!&!TRAMONTANO,!A.!2011.!Coding!potential!of!
the!products!of!alternative!splicing!in!human.!Genome(Biology,!12,!1=10.!

LEROY,! J.,! RICHTER,! W.,! MIKA,! D.,! CASTRO,! L.! R.! V.,! ABI=GERGES,! A.,! XIE,! M.,! SCHEITRUM,! C.,!
LEFEBVRE,! F.,! SCHITTL,! J.,! MATEO,! P.,! WESTENBROEK,! R.,! CATTERALL,! W.! A.,!
CHARPENTIER,! F.,! CONTI,! M.,! FISCHMEISTER,! R.! &! VANDECASTEELE,! G.! 2011.!
Phosphodiesterase!4B!in!the!cardiac!L=type!Ca2+!channel!complex!regulates!Ca2+!current!
and!protects!against!ventricular!arrhythmias!in!mice.!The(Journal(of(Clinical(Investigation,!
121,!2651=2661.!

LEVIN,!R.!M.!&!WEISS,!B.!1976.!Mechanism!by!Which!Psychotropic!Drugs!Inhibit!Adenosine!Cyclic!
3',5'=Monophosphate!Phosphodiesterase!of!Brain.!Molecular(Pharmacology,!12,!581=589.!

LILLEY,!K.!S.!&!FRIEDMAN,!D.!B.!2004.!All!about!DIGE:!quantification! technology! for!differential=
display!2D=gel!proteomics.!Expert(Review(of(Proteomics,!1,!401=409.!

LINK,!A.! J.,! ENG,! J.,! SCHIELTZ,!D.!M.,!CARMACK,!E.,!MIZE,!G.! J.,!MORRIS,!D.!R.,!GARVIK,!B.!M.!&!
YATES,! J.! R.! 1999.! Direct! analysis! of! protein! complexes! using! mass! spectrometry.! Nat(
Biotech,!17,!676=682.!



305 

 

LITTLE,!D.!P.,! SPEIR,! J.!P.,! SENKO,!M.!W.,!O'CONNOR,!P.!B.!&!MCLAFFERTY,!F.!W.!1994.! Infrared!
Multiphoton! Dissociation! of! Large! Multiply! Charged! Ions! for! Biomolecule! Sequencing.!
Analytical(Chemistry,!66,!2809=2815.!

LIU,!H.,!LIN,!D.!&!YATES,!J.!R.!R.!2002.!Multidimensional!separations!for!protein/peptide!analysis!in!
the!post=genomic!era.!Biotechniques,!32,!898=911.!

LIVI,!G.!P.,!KMETZ,!P.,!MCHALE,!M.!M.,!CIESLINSKI,!L.!B.,!SATHE,!G.!M.,!TAYLOR,!D.!P.,!DAVIS,!R.!L.,!
TORPHY,!T.!J.!&!BALCAREK,!J.!M.!1990.!Cloning!and!expression!of!cDNA!for!a!human!low=
Km,!rolipram=sensitive!cyclic!AMP!phosphodiesterase.!Molecular(and(Cellular(Biology,!10,!
2678=2686.!

LOBODA,!A.!V.!&!CHERNUSHEVICH,!I.!V.!2009.!A!Novel!Ion!Trap!That!Enables!High!Duty!Cycle!and!
Wide! m/z! Range! on! an! Orthogonal! Injection! TOF! Mass! Spectrometer.! Journal( of( the(
American(Society(for(Mass(Spectrometry,!20,!1342=1348.!

LOKUTA,! A.! J.,! MAERTZ,! N.! A.,! MEETHAL,! S.! V.,! POTTER,! K.! T.,! KAMP,! T.! J.,! VALDIVIA,! H.! H.! &!
HAWORTH,! R.! A.! 2005.! Increased! Nitration! of! Sarcoplasmic! Reticulum! Ca2+=ATPase! in!
Human!Heart!Failure.!Circulation,!111,!988=995.!

LOO,! J.,!EDMONDS,!C.!&!SMITH,!R.!1990.!Primary!sequence! information! from! intact!proteins!by!
electrospray!ionization!tandem!mass!spectrometry.!Science,!248,!201=204.!

LUGNIER,!C.! 2006.!Cyclic!nucleotide!phosphodiesterase! (PDE)! superfamily:!A!new! target! for! the!
development!of!specific!therapeutic!agents.!Pharmacology(&(Therapeutics,!109,!366=398.!

LUIKING,! Y.! C.,! ENGELEN,! M.! P.! &! DEUTZ,! N.! E.! 2010.! Regulation! of! nitric! oxide! production! in!
health!and!disease.!Curr(Opin(Clin(Nutr(Metab(Care.,!1,!97=104.!

LUO,! Y.,! LI,! T.,! YU,! F.,! KRAMER,! T.! &! CRISTEA,! I.! 2010.! Resolving! the! composition! of! protein!
complexes! using! a! MALDI! LTQ! orbitrap.! Journal( of( the( American( Society( for( Mass(
Spectrometry,!21,!34=46.!

LYTTON,! J.,! WESTLIN,! M.,! BURK,! S.! E.,! SHULL,! G.! E.! &! MACLENNAN,! D.! H.! 1992.! Functional!
comparisons! between! isoforms! of! the! sarcoplasmic! or! endoplasmic! reticulum! family! of!
calcium!pumps.!Journal(of(Biological(Chemistry,!267,!14483=14489.!

M.! NAKAO,! R.! A.! BARRERO,! Y.! MUKAI,! C.! MOTONO,! M.! SUWA! &! K.! NAKAI! 2005.! Large=scale!
analysis!of!human!alternative!protein!isoforms:!pattern!classification!and!correlation!with!
subcellular!localization!signals.!Nucleic(Acids(Res.,!33,!8.!

M.!UNLU,!M.!MORGAN!&!J.!MINDEN!1997.!Difference!gel!electrophoresis.!A!single!gel!method!for!
detecting!changes!in!protein!extracts.!Electrophoresis,!18,!2071=2077.!

MACLENNAN,!D.!H.,!ASAHI,!M.!&!TUPLING,!A.!R.!2003.!The!Regulation!of!SERCA=Type!Pumps!by!
Phospholamban!and!Sarcolipin.!Annals(of( the(New(York(Academy(of( Sciences,! 986,! 472=
480.!

MACLENNAN,!D.!H.,!BRANDL,!C.!J.,!KORCZAK,!B.!&!GREEN,!N.!M.!1985.!Amino=acid!sequence!of!a!
Ca2+! +!Mg2+! =dependent! ATPase! from! rabbit! muscle! sarcoplasmic! reticulum,! deduced!
from!its!complementary!DNA!sequence.!Nature,!316,!696=700.!

MAKAROV,! A.! 2000.! Electrostatic! Axially! Harmonic! Orbital! Trapping: ! A! High=Performance!
Technique!of!Mass!Analysis.!Analytical(Chemistry,!72,!1156=1162.!

MAKAROV,! A.! &! SCIGELOVA,! M.! 2004.! Orbitrap! mass! analyzer.! Encyclopedia( of( Genetics,(
Genomics,(Proteomics(and(Bioinformatics.!John!Wiley!&!Sons,!Ltd.!

MAMYRIN,!B.!A.,!KARATAEV,!V.! I.,!SHMIKK,!D.!V.!&!ZAGULIN,!V.!A.!1973.!The!mass=reflectron,!a!
new!nonmagnetic!time=of=flight!mass!spectrometer!with!high!resolution.!TrAC,(Trends(in(
Anal.(Chem.,!37,!45=48.!

MANN,!M.!&!WILM,!M.!1994.!Error=Tolerant!Identification!of!Peptides!in!Sequence!Databases!by!
Peptide!Sequence!Tags.!Analytical(Chemistry,!66,!4390=4399.!

MARAIS,! R.! &!MARSHALL,! C.! J.! 1996.! Control! of! the! ERK!MAP! kinase! cascade! by! Ras! and! Raf.!
Cancer(Surv.,!27,!101=25.!



306 

 

MAROUGA,! R.,! DAVID,! S.! &! HAWKINS,! E.! 2005.! The! development! of! the! DIGE! system:! 2D!
fluorescence! difference! gel! analysis! technology.!Analytical( and( Bioanalytical( Chemistry,!
382,!669=678.!

MARX,! M.,! EYCHÈNE,! A.,! LAUGIER,! D.,! BÉCHADE,! C.,! CRISANTI,! P.,! DEZÉLÉE,! P.,! PESSAC,! B.! &!
CALOTHY,!G.!1988.!A!novel!oncogene!related!to!c=mil!is!transduced!in!chicken!neuroretina!
cells! induced! to! proliferate! by! infection!with! an! avian! lymphomatosis! virus.!EMBO( J,! 7,!
3369=3373.!

MASON,!C.!S.,!SPRINGER,!C.!J.,!COOPER,!R.!G.,!SUPERTI=FURGA,!G.,!MARSHALL,!C.!J.!&!MARAIS,!R.!
1999.!Serine!and!tyrosine!phosphorylations!cooperate! in!Raf=1,!but!not!B=Raf!activation.!
EMBO(J,!18,!2137=2148.!

MATALLANAS,!D.,!BIRTWISTLE,!M.,!ROMANO,!D.,!ZEBISCH,!A.,!RAUCH,!J.,!VON!KRIEGSHEIM,!A.!&!
KOLCH,!W.!2011.!Raf!Family!Kinases:!Old!Dogs!Have!Learned!New!Tricks.!Genes(Cancer,!2,!
232–260.!

MAYYA,! V.,! REZUAL,! K.,! WU,! L.,! FONG,! M.! B.! &! HAN,! D.! K.! 2006.! Absolute! Quantification! of!
Multisite! Phosphorylation! by! Selective! Reaction! Monitoring! Mass! Spectrometry.!
Molecular(&(Cellular(Proteomics,!5,!1146=1157.!

MCLAUGHLIN,!M.!M.,!CIESLINSKI,!L.!B.,!BURMAN,!M.,!TORPHY,!T.!J.!&!LIVI,!G.!P.!1993.!A!low=Km,!
rolipram=sensitive,! cAMP=specific! phosphodiesterase! from! human! brain.! Cloning! and!
expression! of! cDNA,! biochemical! characterization! of! recombinant! protein,! and! tissue!
distribution!of!mRNA.!Journal(of(Biological(Chemistry,!268,!6470=6476.!

MEDZIHRADSZKY,!K.!F.,!CAMPBELL,!J.!M.,!BALDWIN,!M.!A.,!FALICK,!A.!M.,!JUHASZ,!P.,!VESTAL,!M.!
L.! &! BURLINGAME,! A.! L.! 1999.! The! Characteristics! of! Peptide! Collision=Induced!
Dissociation! Using! a! High=Performance! MALDI=TOF/TOF! Tandem! Mass! Spectrometer.!
Analytical(Chemistry,!72,!552=558.!

MENNITI,!F.!S.,!FARACI,!W.!S.!&!SCHMIDT,!C.!J.!2006.!Phosphodiesterases!in!the!CNS:!targets!for!
drug!development.!Nat(Rev(Drug(Discov,!5,!660=670.!

MERCER,!K.,!CHILOECHES,!A.,!HÜSER,!M.,!KIERNAN,!M.,!MARAIS,!R.!&!PRITCHARD,!C.!2002.!ERK!
signalling!and!oncogene!transformation!are!not!impaired!in!cells!lacking!A=Raf.!Oncogene,!
21,!347=55.!

MERCHANT,! M.! &! WEINBERGER,! S.! R.! 2000.! Recent! advancements! in! surface=enhanced! laser!
desorption/ionization=time!of!flight=mass!spectrometry.!Electrophoresis,!21,!1164=1177.!

MEUZELAAR,!H.!L.!C.,!POSTHUMUS,!M.!A.,!KISTEMAKER,!P.!G.!&!KISTEMAKER,!J.!1973.!Curie!point!
pyrolysis! in! direct! combination! with! low! voltage! electron! impact! ionization! mass!
spectrometry.! New!method! for! the! analysis! of! nonvolatile! organic!materials.!Analytical(
Chemistry,!45,!1546=1549.!

MIKULA,! M.,! SCHREIBER,! M.,! HUSAK,! Z.,! KUCEROVA,! L.,! RUTH,! J.,! WIESER,! R.,! ZATLOUKAL,! K.,!
BEUG,! H.,! WAGNER,! E.! F.! &! BACCARINI,! M.! 2001.! Embryonic! lethality! and! fetal! liver!
apoptosis!in!mice!lacking!the!c=raf=1!gene.!EMBO(J,!20,!1952=1962.!

MILES!D,!H.!2001.!PDE4!cAMP=specific!phosphodiesterases.!Progress(in(Nucleic(Acid(Research(and(
Molecular(Biology.!Academic!Press.!

MILLAR,!J.!K.,!PICKARD,!B.!S.,!MACKIE,!S.,!JAMES,!R.,!CHRISTIE,!S.,!BUCHANAN,!S.!R.,!MALLOY,!M.!
P.,!CHUBB,!J.!E.,!HUSTON,!E.,!BAILLIE,!G.!S.,!THOMSON,!P.!A.,!HILL,!E.!V.,!BRANDON,!N.!J.,!
RAIN,! J.=C.,! CAMARGO,! L.!M.,!WHITING,! P.! J.,! HOUSLAY,!M.! D.,! BLACKWOOD,! D.! H.! R.,!
MUIR,!W.!J.!&!PORTEOUS,!D.!J.!2005.!DISC1!and!PDE4B!Are!Interacting!Genetic!Factors!in!
Schizophrenia!That!Regulate!cAMP!Signaling.!Science,!310,!1187=1191.!

MOELLING,!K.,!HEIMANN,!B.,!BEIMLING,!P.,!RAPP,!U.!R.!&!SANDER,!T.!1984.!Serine=!and!threonine=
specific!protein!kinase!activities!of!purified!gag=mil!and!gag=raf!proteins.!Nature,!312,!558=
61.!

MONTPETIT,! B.! 2003.! Proteomics! in! the! Post=Genomics! Era:! Weighing! in! the! Data.! BioTeach(
Reviews(and(Readings,!1,!9=12.!



307 

 

MORRISON,!D.!K.,!KAPLAN,!D.!R.,!ESCOBEDO,!J.!A.,!RAPP,!U.!R.,!ROBERTS,!T.!M.!&!WILLIAMS,!L.!T.!
1989.! Direct! activation! of! the! serine/threonine! kinase! activity! of! raf=1! through! tyrosine!
phosphorylation!by!the!PDGF!β=receptor.!Cell,!58,!649=657.!

MOTOYAMA,! A.! &! YATES,! J.! R.! 2008.! Multidimensional! LC! Separations! in! Shotgun! Proteomics.!
Analytical(Chemistry,!80,!7187=7193.!

MULLER,!T.,!ENGELS,!P.!&!FOZARD,!J.!R.!1996.!Subtypes!of!the!type!4!cAMP!phosphodiesterases:!
Structure,!regulation!and!selective!inhibition.!Trends(in(Pharmacological(Sciences,!17,!294=
298.!

MUNDY,!C.!2001.!The!human!genome!project:!a!historical!perspective.!Pharmacogenomics,!2,!37=
49.!

NAKAMURA,!K.=I.,!OKUYA,!Y.,!KATAHIRA,!M.,!YOSHIDA,!S.,!WADA,!S.!&!OKUNO,!M.!1994.!Analysis!
of!tubulin! isoforms!by!two=dimensional!gel!electrophoresis!using!SDS=polyacrylamide!gel!
electrophoresis! in! the! first! dimension.! Journal( of( Biochemical( and( Biophysical(Methods,!
24,!195=203.!

NEKHOROSHKOVA,!E.,!ALBERT,!S.,!BECKER,!M.!&!RAPP,!U.!R.!2009.!A=RAF!Kinase!Functions!in!ARF6!
Regulated!Endocytic!Membrane!Traffic.!PLoS(ONE,!4,!e4647.!

NESVIZHSKII,!A.!I.!&!AEBERSOLD,!R.!2005.!Interpretation!of!Shotgun!Proteomic!Data:!The!Protein!
Inference!Problem.!Molecular(&(Cellular(Proteomics,!4,!1419=1440.!

NISSUM,! M.,! SCHNEIDER,! U.,! KUHFUSS,! S.,! OBERMAIER,! C.,! WILDGRUBER,! R.,! POSCH,! A.! &!
ECKERSKORN,! C.! 2004.! In=Gel! Digestion! of! Proteins! Using! a! Solid=Phase! Extraction!
Microplate.!Analytical(Chemistry,!76,!2040=2045.!

NORRGRAN,!J.,!WILLIAMS,!T.!L.,!WOOLFITT,!A.!R.,!SOLANO,!M.!I.,!PIRKLE,!J.!L.!&!BARR,!J.!R.!2009.!
Optimization!of!digestion!parameters! for!protein!quantification.!Analytical(Biochemistry,!
393,!48=55.!

NUMATA,! S.,! UENO,! S.,! IGA,! J.,! SONG,! H.,! NAKATAKI,!M.,! TAYOSHI,! S.! &! AL.,! E.! 2009a.! Positive!
association!of!the!PDE4B!(phosphodiesterase!4B)!gene!with!schizophrenia!in!the!Japanese!
population.!J(Psychiatr(Res,!43,!7=12.!

O’DONNELL,! J.! M.! &! FRITH,! S.! 1999.! Behavioral! Effects! of! Family=Selective! Inhibitors! of! Cyclic!
Nucleotide!Phosphodiesterases.!Pharmacology(Biochemistry(and(Behavior,!63,!185=192.!

O’FARRELL,! P.! H.! 1975.! High! resolution! two=dimensional! electrophoresis! of! proteins.! J.( Biol.(
Chem.,!250,!4007=21.!

OBERNOLTE,!R.,!BHAKTA,!S.,!ALVAREZ,!R.,!BACH,!C.,!ZUPPAN,!P.,!MULLEINS,!M.,!JARNAGIN,!K.!&!
SHELTON,! E.! R.! 1993.! The! cDNA!of! a! human! lymphocyte! cyclic=AMP!phosphodiesterase!
(PDE!IV)!reveals!a!multigene!family.!Gene,!129,!239=247.!

ODA,! Y.,!HUANG,!K.,! CROSS,! F.! R.,! COWBURN,!D.!&!CHAIT,!B.! T.! 1999.!Accurate!quantitation!of!
protein! expression! and! site=specific! phosphorylation.! Proceedings( of( the( National(
Academy(of(Sciences,!96,!6591=6596.!

OHSHIMA,!H.,! FRIESEN,!M.,!BROUET,! I.!&!BARTSCH,!H.!1990.!Nitrotyrosine!as!a!new!marker! for!
endogenous!nitrosation!and!nitration!of!proteins.!Food(and(Chemical(Toxicology,!28,!647=
652.!

OKI,!N.,!TAKAHASHI,!S.=I.,!HIDAKA,!H.!&!CONTI,!M.!2000.!Short!Term!Feedback!Regulation!of!cAMP!
in!FRTL=5!Thyroid!Cells.!Journal(of(Biological(Chemistry,!275,!10831=10837.!

OLD,!W.!M.,!MEYER=ARENDT,!K.,!AVELINE=WOLF,!L.,!PIERCE,!K.!G.,!MENDOZA,!A.,!SEVINSKY,!J.!R.,!
RESING,! K.! A.! &! AHN,! N.! G.! 2005.! Comparison! of! Label=free! Methods! for! Quantifying!
Human!Proteins!by!Shotgun!Proteomics.!Molecular(&(Cellular(Proteomics,!4,!1487=1502.!

OLDREIVE,!C.,!ZHAO,!K.,!PAGANGA,!G.,!HALLIWELL,!B.!&!RICE=EVANS,!C.!1998.!Inhibition!of!Nitrous!
Acid=Dependent!Tyrosine!Nitration!and!DNA!Base!Deamination!by!Flavonoids!and!Other!
Phenolic!Compounds.!Chemical(Research(in(Toxicology,!11,!1574=1579.!

OLESEN,!C.,!PICARD,!M.,!WINTHER,!A.=M.!L.,!GYRUP,!C.,!MORTH,!J.!P.,!OXVIG,!C.,!MOLLER,!J.!V.!&!
NISSEN,!P.!2007.!The!structural!basis!of!calcium!transport!by!the!calcium!pump.!Nature,!
450,!1036=1042.!



308 

 

OLSEN,!J.!V.,!MACEK,!B.,!LANGE,!O.,!MAKAROV,!A.,!HORNING,!S.!&!MANN,!M.!2007.!Higher=energy!
C=trap!dissociation!for!peptide!modification!analysis.!Nat(Meth,!4,!709=712.!

OLSEN,!J.!V.,!ONG,!S.=E.!&!MANN,!M.!2004.!Trypsin!Cleaves!Exclusively!C=terminal!to!Arginine!and!
Lysine!Residues.!Molecular(&(Cellular(Proteomics,!3,!608=614.!

ONG,!S.=E.,!BLAGOEV,!B.,!KRATCHMAROVA,!I.,!KRISTENSEN,!D.!B.,!STEEN,!H.,!PANDEY,!A.!&!MANN,!
M.!2002.!Stable! Isotope!Labeling!by!Amino!Acids! in!Cell!Culture,!SILAC,!as!a!Simple!and!
Accurate! Approach! to! Expression! Proteomics.!Molecular( &( Cellular( Proteomics,! 1,! 376=
386.!

ORLY,!J.!&!SCHRAMM,!M.!1976.!Coupling!of!catecholamine!receptor!from!one!cell!with!adenylate!
cyclase!from!another!cell!by!cell!fusion.!PNAS,!73,!4410=4414.!

OTOWA,! T.,! KAWAMURA,! Y.,! SUGAYA,! N.,! YOSHIDA,! E.,! SHIMADA,! T.,! LIU,! X.,! TOCHIGI,! M.,!
UMEKAGE,! T.,! MIYAGAWA,! T.,! NISHIDA,! N.,! KAIYA,! H.,! OKAZAKI,! Y.,! TOKUNAGA,! K.! &!
SASAKI,! T.! 2011.! Association! study! of! PDE4B! with! panic! disorder! in! the! Japanese!
population.! Progress( in( Neuro@Psychopharmacology( and( Biological( Psychiatry,! 35,! 545=
549.!

PAIZS,!B.!&!SUHAI,!S.!2005.!Fragmentation!pathways!of!protonated!peptides.!Mass(Spectrometry(
Reviews,!24,!508=548.!

PALMGREN,!M.!G.!&!NISSEN,!P.!2011.!P=Type!ATPases.!Annual(Review(of(Biophysics,!40,!243=266.!
PAN,!Q.,!SHAI,!O.,!LEE,!L.! J.,!FREY,!B.! J.!&!BLENCOWE,!B.! J.!2008a.!Deep!surveying!of!alternative!

splicing! complexity! in! the! human! transcriptome! by! high=throughput! sequencing.! Nat(
Genet,!40,!1413=1415.!

PAN,! S.,! AEBERSOLD,! R.,! CHEN,! R.,! RUSH,! J.,! GOODLETT,!D.! R.,!MCINTOSH,!M.!W.,! ZHANG,! J.!&!
BRENTNALL,! T.! A.! 2008b.! Mass! Spectrometry! Based! Targeted! Protein! Quantification:!
Methods!and!Applications.!Journal(of(Proteome(Research,!8,!787=797.!

PANDEY,! S.! C.,! ZHANG,! H.,! ROY,! A.! &! XU,! T.! 2005.! Deficits! in! amygdaloid! cAMP=responsive!
element–binding! protein! signaling! play! a! role! in! genetic! predisposition! to! anxiety! and!
alcoholism.!The(Journal(of(Clinical(Investigation,!115,!2762=2773.!

PAPPIN,!D.! J.! C.,!HOJRUP,!P.!&!BLEASBY,!A.! J.! 1993.!Rapid! identification!of!proteins!by!peptide=
mass!fingerprinting.!Current(Biology,!3,!327=332.!

PATEL,!T.!B.,!DU,!Z.,!PIERRE,!S.,!CARTIN,!L.!&!SCHOLICH,!K.!2001.!Molecular!biological!approaches!
to!unravel!adenylyl!cyclase!signaling!and!function.!Gene,!269,!13=25.!

PATTERSON,!S.!D.!&!AEBERSOLD,!R.!H.!2003.!Proteomics:!the!first!decade!and!beyond.!Nat(Genet,!
33,!311=23.!

PATTON,!W.!F.,!SCHULENBERG,!B.!&!STEINBERG,!T.!H.!2002.!Two=dimensional!gel!electrophoresis;!
better!than!a!poke!in!the!ICAT?!Current(Opinion(in(Biotechnology,!13,!321=328.!

PAUL,! W.! 1990.! Electromagnetic! traps! for! charged! and! neutral! particles.! Reviews( of( Modern(
Physics,!62,!531=540.!

PAWSON,! T.! &! NASH,! P.! 2000.! Protein–protein! interactions! define! specificity! in! signal!
transduction.!Genes(&(Development,!14,!1027=1047.!

PEGORARO,! C.,! POLLET,! N.! &! MONSORO=BURQ,! A.! H.! 2011.! Tissue=specific! expression! of!
Sarcoplasmic/Endoplasmic! Reticulum! Calcium! ATPases! (ATP2A/SERCA)! 1,! 2,! 3! during!
Xenopus!laevis!development.!Gene(Expression(Patterns,!11,!122=128.!

PERIASAMY,!M.!&!HUKE,!S.!2001.!SERCA!Pump!Level!is!a!Critical!Determinant!of!Ca2+Homeostasis!
and!Cardiac!Contractility.!Journal(of(Molecular(and(Cellular(Cardiology,!33,!1053=1063.!

PERIASAMY,!M.! &! KALYANASUNDARAM,! A.! 2007.! SERCA! pump! isoforms:! Their! role! in! calcium!
transport!and!disease.!Muscle(&(Nerve,!35,!430=442.!

PERRY,!M.! J.!&!HIGGS,!G.!A.!1998.!Chemotherapeutic!potential!of!phosphodiesterase! inhibitors.!
Current(Opinion(in(Chemical(Biology,!2,!472=481.!

PEYSSONNAUX,!C.!&!EYCHÈNE,!A.!2001.!The!Raf/MEK/ERK!pathway:!new!concepts!of!activation.!
Biology(of(the(Cell,!93,!53=62.!



309 

 

PICHLER,)P.,)KÖCHER,)T.,)HOLZMANN,)J.,)MAZANEK,)M.,)TAUS,)T.,)AMMERER,)G.)&)MECHTLER,)K.)
2010.!Peptide!Labeling!with!Isobaric!Tags!Yields!Higher!Identification!Rates!Using!iTRAQ!4=
Plex!Compared!to!TMT!6=Plex!and!iTRAQ!8=Plex!on!LTQ!Orbitrap.!Analytical(Chemistry,!82,!
6549=6558.!

POLSON,! C.,! SARKAR,! P.,! INCLEDON,! B.,! RAGUVARAN,! V.! &! GRANT,! R.! 2003.! Optimization! of!
protein!precipitation!based!upon!effectiveness!of!protein!removal!and!ionization!effect!in!
liquid! chromatography–tandem!mass! spectrometry.! Journal( of( Chromatography( B,! 785,!
263=275.!

PORTER,! J.! J.,! MEHIGH,! R.! J.,! WILDSMITH,! J.,! HARVEY,! M.! C.,! BOYLE,! J.! A.,! EWING,! B.! K.,!
HEUERMANN,! K.! E.,! POLAND,! K.! A.,! KAPPEL,! W.! K.! &! SCOTT,! G.! B.! I.! Absolute!
Quantification! as! an! Effective! Tool! for!Measuring! Protein! Expression! in! Targeted! Gene!
Knockdown!Experiments.!Sigma@Aldrich(Biotechnology.!

POSTHUMUS,!M.!A.,!KISTEMAKER,!P.!G.,!MEUZELAAR,!H.!L.!C.!&!TEN!NOEVER!DE!BRAUW,!M.!C.!
1978.! Laser! desorption=mass! spectrometry! of! polar! nonvolatile! bio=organic! molecules.!
Analytical(Chemistry,!50,!985=991.!

PRAHALLAD,! A.,! SUN,! C.,! HUANG,! S.,! DI! NICOLANTONIO,! F.,! SALAZAR,! R.,! ZECCHIN,! D.,!
BEIJERSBERGEN,! R.! L.,! BARDELLI,! A.! &! BERNARDS,! R.! 2012.! Unresponsiveness! of! colon!
cancer!to!BRAF(V600E)!inhibition!through!feedback!activation!of!EGFR.!Nature,!483,!100=
103.!

PRATT,!J.!M.,!SIMPSON,!D.!M.,!DOHERTY,!M.!K.,!RIVERS,!J.,!GASKELL,!S.!J.!&!BEYNON,!R.!J.!2006.!
Multiplexed! absolute! quantification! for! proteomics! using! concatenated! signature!
peptides!encoded!by!QconCAT!genes.!Nat.(Protocols,!1,!1029=1043.!

PRITCHARD,! C.! A.,! BOLIN,! L.,! SLATTERY,! R.,! MURRAY,! R.! &! MCMAHON,! M.! 1996.! Post=natal!
lethality!and!neurological!and!gastrointestinal!defects!in!mice!with!targeted!disruption!of!
the!A=Raf!protein!kinase!gene.!Current(Biology,!6,!614=617.!

PRITCHARD,!C.!A.,!HAYES,!L.,!WOJNOWSKI,!L.,!ZIMMER,!A.,!MARAIS,!R.!M.!&!NORMAN,!J.!C.!2004.!
B=Raf! Acts! via! the! ROCKII/LIMK/Cofilin! Pathway! To! Maintain! Actin! Stress! Fibers! in!
Fibroblasts.!Mol.(Cell.(Biol.,!24,!5937=5952.!

PURCELL,! A.! W.! &! GORMAN,! J.! J.! 2001.! The! use! of! post=source! decay! in! matrix=assisted! laser!
desorption/ionisation! mass! spectrometry! to! delineate! T! cell! determinants.! Journal( of(
Immunological(Methods,!249,!17=31.!

RABILLOUD,! T.! 1990.! Mechanisms! of! protein! silver! staining! in! polyacrylamide! gels:! a! 10! year!
synthesis.!Electrophoresis,!11,!785=94.!

RADABAUGH,!M.!R.,!NEMIROVSKIY,!O.!V.,!MISKO,!T.!P.,!AGGARWAL,!P.!&!MATHEWS,!W.!R.!2008.!
Immunoaffinity! liquid! chromatography–tandem! mass! spectrometry! detection! of!
nitrotyrosine! in! biological! fluids:! Development! of! a! clinically! translatable! biomarker.!
Analytical(Biochemistry,!380,!68=76.!

RAIKOS,!V.,!HANSEN,!R.,!CAMPBELL,!L.!&!EUSTON,!S.!R.!2006.!Separation!and!identification!of!hen!
egg!protein! isoforms!using!SDS–PAGE!and!2D!gel!electrophoresis!with!MALDI=TOF!mass!
spectrometry.!Food(Chemistry,!99,!702=710.!

RAJAGOPALAN,! K.! V.,! FRIDOVICH,! I.! &! HANDLER,! P.! 1961.! Competitive! Inhibition! of! Enzyme!
Activity!by!Urea.!Journal(of(Biological(Chemistry,!236,!1059=1065.!

RAPP,!U.!R.,!GOLDSBOROUGH,!M.!D.,!MARK,!G.!E.,!BONNER,!T.!I.,!GROFFEN,!J.,!REYNOLDS,!F.!H.!&!
STEPHENSON,! J.! R.! 1983.! Structure! and! biological! activity! of! v=raf,! a! unique! oncogene!
transduced!by!a! retrovirus.!Proceedings(of( the(National(Academy(of( Sciences,! 80,! 4218=
4222.!

RAPPSILBER,!J.!&!MANN,!M.!2002.!What!does!it!mean!to!identify!a!protein!in!proteomics?!Trends(
in(Biochemical(Sciences,!27,!74=78.!

RAUCH,!J.,!MORAN=JONES,!K.,!ALBRECHT,!V.,!SCHWARZL,!T.,!HUNTER,!K.,!GIRES,!O.!&!KOLCH,!W.!
2011.! c=Myc! Regulates! RNA! Splicing! of! the! A=Raf! Kinase! and! Its! Activation! of! the! ERK!
Pathway.!Cancer(Research,!71,!4664=4674.!



310 

 

RAUCH,! J.,! O'NEILL,! E.,! MACK,! B.,! MATTHIAS,! C.,! MUNZ,! M.,! KOLCH,! W.! &! GIRES,! O.! 2010.!
Heterogeneous!Nuclear!Ribonucleoprotein!H!Blocks!MST2=Mediated!Apoptosis!in!Cancer!
Cells!by!Regulating!a=raf!Transcription.!Cancer(Research,!70,!1679=1688.!

REED,! R.! 1989.! The! organization! of! 3'! splice=site! sequences! in! mammalian! introns.! Genes( &(
Development,!3,!2113=2123.!

REGNIER,! F.! E.! &! JULKA,! S.! 2006.! Primary! amine! coding! as! a! path! to! comparative! proteomics.!
Proteomics,!6,!3968=3979.!

RICHARDS,! D.! A.,! SILVA,! M.! A.! &! DEVALL,! A.! J.! 2006.! Electrochemical! detection! of! free! 3=
nitrotyrosine:!Application!to!microdialysis!studies.!Analytical(Biochemistry,!351,!77=83.!

RICHTER,!W.!&!CONTI,!M.!2004.!The!Oligomerization!State!Determines!Regulatory!Properties!and!
Inhibitor! Sensitivity! of! Type! 4! cAMP=specific! Phosphodiesterases.! Journal( of( Biological(
Chemistry,!279,!30338=30348.!

ROEPSTORFF,! P.! &! FOHLMAN,! J.! 1984.! Letter! to! the! editors.!Biological(Mass( Spectrometry,! 11,!
601=601.!

ROGOZIN,!I.!B.,!SVERDLOV,!A.!V.,!BABENKO,!V.!N.!&!KOONIN,!E.!V.!2005.!Analysis!of!evolution!of!
exon=intron!structure!of!eukaryotic!genes.!Briefings(in(Bioinformatics,!6,!118=134.!

ROLFE,!D.! F.!&!BROWN,!G.!C.! 1997.!Cellular! energy!utilization!and!molecular!origin!of! standard!
metabolic!rate!in!mammals.!Physiological(Reviews,!77,!731=758.!

ROMANO,! D.,! MATALLANAS,! D.,! WEITSMAN,! G.,! PREISINGER,! C.,! NG,! T.! &! KOLCH,! W.! 2010.!
Proapoptotic!Kinase!MST2!Coordinates!Signaling!Crosstalk!between!RASSF1A,!Raf=1,!and!
Akt.!Cancer(Research,!70,!1195=1203.!

ROSS,! P.! L.,! HUANG,! Y.! N.,! MARCHESE,! J.! N.,! WILLIAMSON,! B.,! PARKER,! K.,! HATTAN,! S.,!
KHAINOVSKI,!N.,!PILLAI,!S.,!DEY,!S.,!DANIELS,!S.,!PURKAYASTHA,!S.,! JUHASZ,!P.,!MARTIN,!
S.,!BARTLET=JONES,!M.,!HE,! F.,! JACOBSON,!A.!&!PAPPIN,!D.! J.!2004.!Multiplexed!Protein!
Quantitation! in! Saccharomyces! cerevisiae! Using! Amine=reactive! Isobaric! Tagging!
Reagents.!Molecular(&(Cellular(Proteomics,!3,!1154=1169.!

ROULHAC,!P.!L.,!WARD,!J.!M.,!THOMPSON,!J.!W.,!SODERBLOM,!E.!J.,!SILVA,!M.,!MOSELEY,!M.!A.!&!
JARVIS,!E.!D.!2011.!Microproteomics:!Quantitative!Proteomic!Profiling!of!Small!Numbers!
of!Laser=Captured!Cells.!Cold(Spring(Harbor(Protocols,!2011,!pdb.prot5573.!

RUTTEN,!K.,!WALLACE,!T.!L.,!WORKS,!M.,!PRICKAERTS,!J.,!BLOKLAND,!A.,!NOVAK,!T.!J.,!SANTARELLI,!
L.!&!MISNER,!D.!L.!2011.!Enhanced!long=term!depression!and!impaired!reversal!learning!in!
phosphodiesterase!4B=knockout!(PDE4B−/−)!mice.!Neuropharmacology,!61,!138=147.!

RYAN,!C.!M.,!SOUDA,!P.,!BASSILIAN,!S.,!UJWAL,!R.,!ZHANG,!J.,!ABRAMSON,!J.,!PING,!P.,!DURAZO,!
A.,!BOWIE,!J.!U.,!HASAN,!S.!S.,!BANIULIS,!D.,!CRAMER,!W.!A.,!FAULL,!K.!F.!&!WHITELEGGE,!
J.! P.! 2010.! Post=translational!Modifications! of! Integral!Membrane! Proteins! Resolved! by!
Top=down!Fourier!Transform!Mass!Spectrometry!with!Collisionally!Activated!Dissociation.!
Molecular(&(Cellular(Proteomics,!9,!791=803.!

S.!A.!GERBER,!J.!RUSH,!O.!STEMMAN,!M.!W.!KIRSCHNER!&!S.!P.!GYGI!2003.!Absolute!quantification!
of! proteins! and! phosphoproteins! from! cell! lysates! by! tandem!MS.!Proc.( Nat.( Acad.( Sci.(
U.S.A.,!100,!5.!

S.! P.! GYGI,! G.! L.! CORTHALS,! Y.! ZHANG,! Y.! ROCHON! &! R.! AEBERSOLD! 2000.! Evaluation! of! two=
dimensional! gel! electrophoresis=based! proteome! analysis! technology.! Proc.( Nat.( Acad.(
Sci.,!97,!5.!

S.!PAN,!R.!AEBERSOLD,!R.!CHEN,! J.!RUSH,!D.!R.!GOODLETT,!M.!W.!MCINTOSH,! J.!ZHANG!&!T.!A.!
BRENTNALL! 2009.! Mass! Spectrometry! Based! Targeted! Protein! Quantification:! Methods!
and!Applications.!J.(Proteome.(Res.,!8,!10.!

SAUER,!S.!&!KLIEM,!M.!2010.!Mass!spectrometry!tools!for!the!classification!and!identification!of!
bacteria.!Nat(Rev(Micro,!8,!74=82.!

SCHLESSINGER,!J.!2000.!Cell!Signaling!by!Receptor!Tyrosine!Kinases.!Cell,!103,!211=225.!



311 

 

SCHLESSINGER,! J.! &! BAR=SAGI,! D.! 1994.! Activation! of! Ras! and! Other! Signaling! Pathways! by!
Receptor!Tyrosine!Kinases.!Cold(Spring(Harbor(Symposia(on(Quantitative(Biology,!59,!173=
179.!

SCHNÖLZER,!M.,!JEDRZEJEWSKI,!P.!&!LEHMANN,!W.!D.!1996.!Protease=catalyzed!incorporation!of!
18O!into!peptide!fragments!and!its!application!for!protein!sequencing!by!electrospray!and!
matrix=assisted! laser!desorption/ionization!mass! spectrometry.!Electrophoresis,! 17,! 945=
953.!

SCHULZE,!W.!X.!&!USADEL,!B.!2010.!Quantitation!in!Mass=Spectrometry=Based!Proteomics.!Annual(
Review(of(Plant(Biology,!61,!491=516.!

SCOTT,! A.! I.! F.,! PERINI,! A.! F.,! SHERING,! P.! A.! &! WHALLEY,! L.! J.! 1991.! INPATIENT! MAJOR!
DEPRESSION!=!IS!ROLIPRAM!AS!EFFECTIVE!AS!AMITRIPTYLINE.!European(Journal(of(Clinical(
Pharmacology,!40,!127=129.!

SEIBERT,! V.,! EBERT,!M.! P.! A.! &! BUSCHMANN,! T.! 2005.! Advances! in! clinical! cancer! proteomics:!
SELDI=ToF=mass!spectrometry!and!biomarker!discovery.!Briefings( in(Functional(Genomics(
&(Proteomics,!4,!16=26.!

SHAW,! J.,!ROWLINSON,!R.,!NICKSON,! J.,!STONE,!T.,!SWEET,!A.,!WILLIAMS,!K.!&!TONGE,!R.!2003.!
Evaluation! of! saturation! labelling! two=dimensional! difference! gel! electrophoresis!
fluorescent!dyes.!Proteomics,!3,!1181=95.!

SHECHTER,! Y.! 1984.! Selective!Oxidation! and!Reduction!of!Methionine!Residues! in! Peptides! and!
Proteins! by!Oxygen! Exchange! between! Sulfoxide! and! Sulfide*.!The( Journal( of( Biological(
Chemistry,!261,!66=70.!

SHEN,! Y.! &! SMITH,! R.! D.! 2002.! Proteomics! based! on! high=efficiency! capillary! separations.!
Electrophoresis,!23,!3106=3124.!

SHEPHERD,!M.,!MCSORLEY,! T.,! OLSEN,! A.! E.,! JOHNSTON,! L.! A.,! THOMSON,!N.! C.,! BAILLIE,! G.! S.,!
HOUSLAY,!M.!D.!&!BOLGER,!G.!B.!2003.!Molecular!cloning!and!subcellular!distribution!of!
the!novel!PDE4B4!cAMP=specific!phosphodiesterase!isoform.!Biochem(J.,!370,!429–438.!

SHERWOOD,! C.! A.,! EASTHAM,! A.,! LEE,! L.! W.,! RISLER,! J.,! VITEK,! O.! &! MARTIN,! D.! B.! 2009.!
Correlation! between! y=Type! Ions! Observed! in! Ion! Trap! and! Triple! Quadrupole! Mass!
Spectrometers.!Journal(of(Proteome(Research,!8,!4243=4251.!

SHEVCHENKO,! A.,!WILM,!M.,! VORM,!O.!&!MANN,!M.! 1996.!Mass! Spectrometric! Sequencing! of!
Proteins!from!Silver=Stained!Polyacrylamide!Gels.!Analytical(Chemistry,!68,!850=858.!

SHI,! Y.,! XIANG,! R.,! HORVÁTH,! C.! &! WILKINS,! J.! A.! 2004.! The! role! of! liquid! chromatography! in!
proteomics.!Journal(of(Chromatography(A,!1053,!27=36.!

SHUKLA,! A.! K.! &! FUTRELL,! J.! H.! 2000.! Tandem! mass! spectrometry:! dissociation! of! ions! by!
collisional!activation.!Journal(of(Mass(Spectrometry,!35,!1069=1090.!

SIEPEN,!J.!A.,!KEEVIL,!E.=J.,!KNIGHT,!D.!&!HUBBARD,!S.!J.!2006.!Prediction!of!Missed!Cleavage!Sites!
in! Tryptic! Peptides! Aids! Protein! Identification! in! Proteomics.! Journal( of( Proteome(
Research,!6,!399=408.!

SILVESTRE,! J.!S.,!FERNÁNDEZ,!A.!G.!&!PALACIOS,! J.!M.!1999.!Effects!of! rolipram!on! the!elevated!
plus=maze!test!in!rats:!a!preliminary!study.!Journal(of(Psychopharmacology,!13,!274=277.!

SKOU,! J.! C.! 1960.! Further! investigations! on! a! Mg++! +! Na+=activated! adenosintriphosphatase,!
possibly!related!to!the!active,!linked!transport!of!Na+!and!K+!across!the!nerve!membrane.!
Biochimica(et(Biophysica(Acta,!42,!6=23.!

SLENO,!L.!&!VOLMER,!D.!A.!2004.!Ion!activation!methods!for!tandem!mass!spectrometry.!Journal(
of(Mass(Spectrometry,!39,!1091=1112.!

SMIRNOV,!I.!P.,!ZHU,!X.,!TAYLOR,!T.,!HUANG,!Y.,!ROSS,!P.,!PAPAYANOPOULOS,!I.!A.,!MARTIN,!S.!A.!
&!PAPPIN,!D.!J.!2004.!Suppression!of!α=Cyano=4=hydroxycinnamic!Acid!Matrix!Clusters!and!
Reduction!of!Chemical!Noise!in!MALDI=TOF!Mass!Spectrometry.!Analytical(Chemistry,!76,!
2958=2965.!

SMITH,!P.!G.,!WANG,!F.,!WILKINSON,!K.!N.,!SAVAGE,!K.!J.,!KLEIN,!U.,!NEUBERG,!D.!S.,!BOLLAG,!G.,!
SHIPP,! M.! A.! &! AGUIAR,! R.! C.! T.! 2005.! The! phosphodiesterase! PDE4B! limits! cAMP=



312 

 

associated!PI3K/AKT–dependent!apoptosis! in!diffuse! large!B=cell! lymphoma.!Blood,! 105,!
308=316.!

SOGA,!M.,!MATSUZAWA,! A.!&! ICHIJO,! H.! 2012.! Oxidative! Stress=Induced!Diseases! via! the! ASK1!
Signaling!Pathway.!International(Journal(of(Cell(Biology,!2012,!5.!

SOKOLOVSKY,!M.,! RIORDAN,! J.! F.! &! VALLEE,! B.! L.! 1966.! Tetranitromethane.! A! Reagent! for! the!
Nitration!of!Tyrosyl!Residues!in!Proteins*.!Biochemistry,!5,!3582=3589.!

SOUNESS,! J.! E.,! ALDOUS,! D.! &! SARGENT,! C.! 2000.! Immunosuppressive! and! anti=inflammatory!
effects!of! cyclic!AMP!phosphodiesterase! (PDE)! type!4! inhibitors.! Immunopharmacology,!
47,!127=162.!

SPEICHER,! K.,! KOLBAS,! O.,! HARPER,! S.! &! SPEICHER,! D.! 2000.! Systematic! analysis! of! peptide!
recoveries!from!in=gel!digestions!for!protein!identifications!in!proteome!studies.!J(Biomol(
Tech.,!11,!74=86.!

STEEN,!H.!&!MANN,!M.!2004.!The!abc's!(and!xyz's)!of!peptide!sequencing.!Nat(Rev(Mol(Cell(Biol,!5,!
699=711.!

STEINMANN,! D.,! JI,! J.! A.,! WANG,! Y.! J.! &! SCHÖNEICH,! C.! 2012.! Oxidation! of! Human! Growth!
Hormone!by!Oxygen=Centered!Radicals:!Formation!of!Leu=101!Hydroperoxide!and!Tyr=103!
Oxidation!Products.!Molecular(Pharmaceutics,!9,!803=814.!

STEPHENS,!P.!E.!&!COCKETT,!M.!I.!1989.!The!construction!of!a!highly!efficient!and!versatile!set!of!
mammalian!expression!vectors.!Nucleic(Acids(Res.,!17,!7110.!

STOKOE,!D.,!MACDONALD,!S.,!CADWALLADER,!K.,!SYMONS,!M.!&!HANCOCK,!J.!1994.!Activation!of!
Raf!as!a!result!of!recruitment!to!the!plasma!membrane.!Science,!264,!1463=1467.!

STORM,!S.!M.,!CLEVELAND,!J.!L.!&!RAPP,!U.!R.!1990.!Expression!of!raf!family!proto=oncogenes!in!
normal!mouse!tissues.!Oncogene,!5,!345=51.!

SUBBARAO,! B.! &! KENKARE,! U.!W.! 1977.! Reaction! of! brain! hexokinase! with! tetranitromethane:!
Oxidation!of!essential!thiol!groups.!Archives(of(Biochemistry(and(Biophysics,!181,!8=18.!

SUCKAU,!D.,!RESEMANN,!A.,!SCHUERENBERG,!M.,!HUFNAGEL,!P.,!FRANZEN,!J.!&!HOLLE,!A.!2003.!A!
novel! MALDI! LIFT=TOF/TOF! mass! spectrometer! for! proteomics.! Analytical( and(
Bioanalytical(Chemistry,!376,!952=965.!

SUNG,!B.=J.,!YEON!HWANG,!K.,!HO!JEON,!Y.,!LEE,! J.! I.,!HEO,!Y.=S.,!HWAN!KIM,! J.,!MOON,! J.,!MIN!
YOON,! J.,!HYUN,!Y.=L.,!KIM,!E.,! JIN!EUM,!S.,!PARK,!S.=Y.,! LEE,! J.=O.,!GYU!LEE,!T.,!RO,!S.!&!
MYUNG!CHO,! J.! 2003.! Structure!of! the! catalytic!domain!of!human!phosphodiesterase!5!
with!bound!drug!molecules.!Nature,!425,!98=102.!

SUTHERLAND,! E.! W.! &! RALL,! T.! W.! 1957.! THE! PROPERTIES! OF! AN! ADENINE! RIBONUCLEOTIDE!
PRODUCED!WITH! CELLULAR! PARTICLES,! ATP,!Mg++,! AND! EPINEPHRINE!OR!GLUCAGON.!
Journal(of(the(American(Chemical(Society,!79,!3608=3608.!

SUTHERLAND,!E.!W.!&!RALL,!T.!W.!1958.!FRACTIONATION!AND!CHARACTERIZATION!OF!A!CYCLIC!
ADENINE!RIBONUCLEOTIDE!FORMED!BY!TISSUE!PARTICLES!J.(Biol.(Chem.,!232,!1077=1092.!

SUTRAVE,! P.,! BONNER,! T.! I.,! RAPP,! U.! R.,! JANSEN,! H.!W.,! PATSCHINSKY,! T.! &! BISTER,! K.! 1984.!
Nucleotide!sequence!of!avian!retroviral!oncogene!v=mil:!homologue!of!murine!retroviral!
oncogene!v=raf.!Nature,!309,!85=88.!

TAKAHASHI,!M.,!TERWILLIGER,!R.,!LANE,!C.,!MEZES,!P.!S.,!CONTI,!M.!&!DUMAN,!R.!S.!1999.!Chronic!
antidepressant! administration! increases! the! expression! of! cAMP=specific!
phosphodiesterase!4A!and!4B!isoforms.!J.(Neurosci.,!19,!610=618.!

TANAKA,!K.,!WAKI,!H.,! IDO,!Y.,!AKITA,!S.,!YOSHIDA,!Y.,!YOSHIDA,!T.!&!MATSUO,!T.!1988.!Protein!
and! polymer! analyses! up! to! m/z! 100! 000! by! laser! ionization! time=of=flight! mass!
spectrometry.!Rapid(Communications(in(Mass(Spectrometry,!2,!151=153.!

TASKÉN,! K.!&!AANDAHL,! E.!M.! 2004.! Localized! Effects! of! cAMP!Mediated! by!Distinct! Routes! of!
Protein!Kinase!A.!Physiological(Reviews,!84,!137=167.!

TERAI,!K.!&!MATSUDA,!M.!2005.!Ras!binding!opens!c=Raf!to!expose!the!docking!site!for!mitogen=
activated!protein!kinase!kinase.!EMBO(Rep,!6,!251=255.!

THOMAS,!J.!J.!1910.!LXXXIII.!Rays!of!positive!electricity.!Philosophical(Magazine(Series(6,!20.!



313 

 

THOMPSON,!A.,! SCHÄFER,! J.,!KUHN,!K.,!KIENLE,! S.,! SCHWARZ,! J.,! SCHMIDT,!G.,!NEUMANN,!T.!&!
HAMON,!C.! 2003.! Tandem!Mass!Tags: !A!Novel!Quantification!Strategy! for!Comparative!
Analysis!of!Complex!Protein!Mixtures!by!MS/MS.!Analytical(Chemistry,!75,!1895=1904.!

THOMPSON,!W.! J.!1991.!Cyclic!nucleotide!phosphodiesterases:!Pharmacology,!biochemistry!and!
function.!Pharmacology(&amp;(Therapeutics,!51,!13=33.!

THORREZ,!L.,!VAN!DEUN,!K.,!TRANCHEVENT,!L.=C.,!VAN!LOMMEL,!L.,!ENGELEN,!K.,!MARCHAL,!K.,!
MOREAU,! Y.,! VAN!MECHELEN,! I.! &! SCHUIT,! F.! 2008.! Using! Ribosomal! Protein! Genes! as!
Reference:!A!Tale!of!Caution.!PLoS(ONE,!3,!e1854.!

TONGE,! R.,! SHAW,! J.,! MIDDLETON,! B.,! ROWLINSON,! R.,! RAYNER,! S.,! YOUNG,! J.,! POGNAN,! F.,!
HAWKINS,! E.,! CURRIE,! I.! &! DAVIDSON,! M.! 2001.! Validation! and! development! of!
fluorescence! two=dimensional! differential! gel! electrophoresis! proteomics! technology.!
Proteomics,!1,!377=96.!

TORGERSON,!D.!F.,!SKOWRONSKI,!R.!P.!&!MACFARLANE,!R.!D.!1974.!New!approach!to!the!mass!
spectroscopy! of! non=volatile! compounds.! Biochemical( and( Biophysical( Research(
Communications,!60,!616=621.!

TORPHY,! T.! J.! 1998.! Phosphodiesterase! Isozymes.! American( Journal( of( Respiratory( and( Critical(
Care(Medicine,!157,!351=370.!

TRAN,!J.!C.,!ZAMDBORG,!L.,!AHLF,!D.!R.,!LEE,!J.!E.,!CATHERMAN,!A.!D.,!DURBIN,!K.!R.,!TIPTON,!J.!D.,!
VELLAICHAMY,!A.,! KELLIE,! J.! F.,! LI,!M.,!WU,!C.,! SWEET,! S.!M.!M.,! EARLY,!B.!P.,! SIUTI,!N.,!
LEDUC,!R.!D.,!COMPTON,!P.!D.,!THOMAS,!P.!M.!&!KELLEHER,!N.!L.!2011.!Mapping! intact!
protein!isoforms!in!discovery!mode!using!top=down!proteomics.!Nature,!480,!254=258.!

TRESS,!M.!L.,!MARTELLI,!P.!L.,!FRANKISH,!A.,!REEVES,!G.!A.,!WESSELINK,!J.!J.,!YEATS,!C.,!ÓLASON,!P.!
Ĺ.,!ALBRECHT,!M.,!HEGYI,!H.,!GIORGETTI,!A.,!RAIMONDO,!D.,!LAGARDE,!J.,!LASKOWSKI,!R.!
A.,!LÓPEZ,!G.,!SADOWSKI,!M.!I.,!WATSON,!J.!D.,!FARISELLI,!P.,!ROSSI,!I.,!NAGY,!A.,!KAI,!W.,!
STØRLING,!Z.,!ORSINI,!M.,!ASSENOV,!Y.,!BLANKENBURG,!H.,!HUTHMACHER,!C.,!RAMÍREZ,!
F.,!SCHLICKER,!A.,!DENOEUD,!F.,! JONES,!P.,!KERRIEN,!S.,!ORCHARD,!S.,!ANTONARAKIS,!S.!
E.,! REYMOND,! A.,! BIRNEY,! E.,! BRUNAK,! S.,! CASADIO,! R.,! GUIGO,! R.,! HARROW,! J.,!
HERMJAKOB,!H.,! JONES,!D.!T.,!LENGAUER,!T.,!A.!ORENGO,!C.,!PATTHY,!L.,!THORNTON,!J.!
M.,!TRAMONTANO,!A.!&!VALENCIA,!A.!2007.!The!implications!of!alternative!splicing!in!the!
ENCODE! protein! complement.! Proceedings( of( the( National( Academy( of( Sciences,! 104,!
5495=5500.!

TSUJI,!J.,!NYDZA,!R.,!WOLCOTT,!E.,!MANNOR,!E.,!MORAN,!B.,!HESSON,!G.,!ARVIDSON,!T.,!HOWE,!
K.,!HAYES,!R.,!RAMIREZ,!M.!&!WAY,!M.!2010.!The!Frequencies!of!Amino!Acids!Encoded!by!
Genomes!that!Utilize!Standard!and!Nonstandard!Genetic!Codes.!BIOS,!81,!22–31.!

UNWIN,!R.!D.,!EVANS,!C.!A.!&!WHETTON,!A.!D.!2006.!Relative!quantification!in!proteomics:!new!
approaches!for!biochemistry.!Trends(Biochem.(Sci.,!31,!473=84.!

UNWIN,!R.!D.!&!WHETTON,!A.!D.!2006.!Systematic!proteome!and!transcriptome!analysis!of!stem!
cell!populations.!Cell(Cycle,!5,!1587=91.!

UNWIN,!R.!D.!&!WHETTON,!A.!D.!2007.!How!Will!Haematologists!Use!Proteomics?!Blood(Reviews,!
21,!315=26.!

V.!MAYYA,!K.!REZUAL,!L.!WU,!M.!B.!FONG!&!D.!K.!HAN!2006.!Absolute!Quantification!of!Multisite!
Phosphorylation!by!Selective!Reaction!Monitoring!Mass!Spectrometry.!Mol.(Cell(Prot.,!5,!
11.!

VALLEJO,!A.!N.,! POGULIS,!R.! J.!&!PEASE,! L.!R.! 2008.!PCR!Mutagenesis!by!Overlap!Extension!and!
Gene!SOE.!Cold(Spring(Harbor(Protocols,!2008,!pdb.prot4861.!

VAUDEL,!M.,! SICKMANN,!A.!&!MARTENS,! L.! 2010.!Peptide!and!protein!quantification:!A!map!of!
the!minefield.!Proteomics,!10,!650=670.!

VENABLES,! J.! P.! 2004.! Aberrant! and! Alternative! Splicing! in! Cancer.! Cancer( Research,! 64,! 7647=
7654.!

VENTER,!J.!C.,!ADAMS,!M.!D.,!MYERS,!E.!W.,!LI,!P.!W.,!MURAL,!R.!J.,!SUTTON,!G.!G.,!SMITH,!H.!O.,!
YANDELL,!M.,!EVANS,!C.!A.,!HOLT,!R.!A.,!GOCAYNE,!J.!D.,!AMANATIDES,!P.,!BALLEW,!R.!M.,!



314 

 

HUSON,! D.! H.,! WORTMAN,! J.! R.,! ZHANG,! Q.,! KODIRA,! C.! D.,! ZHENG,! X.! H.,! CHEN,! L.,!
SKUPSKI,! M.,! SUBRAMANIAN,! G.,! THOMAS,! P.! D.,! ZHANG,! J.,! GABOR! MIKLOS,! G.! L.,!
NELSON,!C.,!BRODER,!S.,!CLARK,!A.!G.,!NADEAU,!J.,!MCKUSICK,!V.!A.,!ZINDER,!N.,!LEVINE,!
A.!J.,!ROBERTS,!R.!J.,!SIMON,!M.,!SLAYMAN,!C.,!HUNKAPILLER,!M.,!BOLANOS,!R.,!DELCHER,!
A.,! DEW,! I.,! FASULO,! D.,! FLANIGAN,! M.,! FLOREA,! L.,! HALPERN,! A.,! HANNENHALLI,! S.,!
KRAVITZ,! S.,! LEVY,! S.,! MOBARRY,! C.,! REINERT,! K.,! REMINGTON,! K.,! ABU=THREIDEH,! J.,!
BEASLEY,! E.,! BIDDICK,! K.,! BONAZZI,! V.,! BRANDON,! R.,! CARGILL,! M.,!
CHANDRAMOULISWARAN,!I.,!CHARLAB,!R.,!CHATURVEDI,!K.,!DENG,!Z.,!FRANCESCO,!V.!D.,!
DUNN,!P.,!EILBECK,!K.,!EVANGELISTA,!C.,!GABRIELIAN,!A.!E.,!GAN,!W.,!GE,!W.,!GONG,!F.,!
GU,!Z.,!GUAN,!P.,!HEIMAN,!T.!J.,!HIGGINS,!M.!E.,!JI,!R.=R.,!KE,!Z.,!KETCHUM,!K.!A.,!LAI,!Z.,!
LEI,!Y.,!LI,!Z.,!LI,!J.,!LIANG,!Y.,!LIN,!X.,!LU,!F.,!MERKULOV,!G.!V.,!MILSHINA,!N.,!MOORE,!H.!
M.,!NAIK,!A.!K.,!NARAYAN,!V.!A.,!NEELAM,!B.,!NUSSKERN,!D.,!RUSCH,!D.!B.,!SALZBERG,!S.,!
SHAO,!W.,! SHUE,!B.,! SUN,! J.,!WANG,!Z.!Y.,!WANG,!A.,!WANG,!X.,!WANG,! J.,!WEI,!M.=H.,!
WIDES,!R.,!XIAO,!C.,!YAN,!C.,!et!al.!2001.!The!Sequence!of!the!Human!Genome.!Science,!
291,!1304=1351.!

VER!HEYEN,!M.,!HEYMANS,! S.,!ANTOONS,!G.,!REED,!T.,! PERIASAMY,!M.,!AWEDE,!B.,! LEBACQ,! J.,!
VANGHELUWE,!P.,!DEWERCHIN,!M.,!COLLEN,!D.,!SIPIDO,!K.,!CARMELIET,!P.!&!WUYTACK,!F.!
2001.!Replacement!of! the!Muscle=Specific! Sarcoplasmic!Reticulum!Ca2+=ATPase! Isoform!
SERCA2a! by! the! Nonmuscle! SERCA2b! Homologue! Causes! Mild! Concentric! Hypertrophy!
and!Impairs!Contraction=Relaxation!of!the!Heart.!Circulation(Research,!89,!838=846.!

VESTAL,! M.! L.,! JUHASZ,! P.! &! MARTIN,! S.! A.! 1995.! Delayed! extraction! matrix=assisted! laser!
desorption! time=of=flight! mass! spectrometry.! Rapid( Communications( in( Mass(
Spectrometry,!9,!1044=1050.!

VICKERY,!H.!B.!1950.!The!Origin!of!the!Word!Protein.!Yale(J(Biol(Med.,!22,!387=393.!
WALL,!M.! J.,! CROWELL,!A.!M.! J.,! SIMMS,!G.!A.,! LIU,! F.!&!DOUCETTE,!A.!A.!2011.! Implications!of!

partial! tryptic! digestion! in! organic–aqueous! solvent! systems! for! bottom=up! proteome!
analysis.!Analytica(Chimica(Acta,!703,!194=203.!

WALLACE,!D.!A.,!JOHNSTON,!L.!A.,!HUSTON,!E.,!MACMASTER,!D.,!HOUSLAY,!T.!M.,!CHEUNG,!Y.=F.,!
CAMPBELL,! L.,! MILLEN,! J.! E.,! SMITH,! R.! A.,! GALL,! I.,! KNOWLES,! R.! G.,! SULLIVAN,! M.! &!
HOUSLAY,!M.!D.! 2005.! Identification! and! Characterization! of! PDE4A11,! a!Novel,!Widely!
Expressed! Long! Isoform!Encoded!by! the!Human!PDE4A! cAMP!Phosphodiesterase!Gene.!
Molecular(Pharmacology,!67,!1920=1934.!

WAN,!P.!T.!C.,!GARNETT,!M.!J.,!ROE,!S.!M.,!LEE,!S.,!NICULESCU=DUVAZ,!D.,!GOOD,!V.!M.,!PROJECT,!
C.!G.,! JONES,!C.!M.,!MARSHALL,!C.! J.,!SPRINGER,!C.! J.,!BARFORD,!D.!&!MARAIS,!R.!2004.!
Mechanism!of!Activation!of!the!RAF=ERK!Signaling!Pathway!by!Oncogenic!Mutations!of!B=
RAF.!Cell,!116,!855=867.!

WANG,!E.!T.,!SANDBERG,!R.,!LUO,!S.,!KHREBTUKOVA,!I.,!ZHANG,!L.,!MAYR,!C.,!KINGSMORE,!S.!F.,!
SCHROTH,! G.! P.! &! BURGE,! C.! B.! 2008a.! Alternative! isoform! regulation! in! human! tissue!
transcriptomes.!Nature,!456,!470=476.!

WANG,!M.!Z.,!WU,!J.!Q.,!DENNISON,!J.!B.,!BRIDGES,!A.!S.,!HALL,!S.!D.,!KORNBLUTH,!S.,!TIDWELL,!R.!
R.,!SMITH,!P.!C.,!VOYKSNER,!R.!D.,!PAINE,!M.!F.!&!HALL,!J.!E.!2008b.!A!gel=free!MS=based!
quantitative! proteomic! approach! accurately! measures! cytochrome! P450! protein!
concentrations!in!human!liver!microsomes.!Proteomics,!8,!4186=4196.!

WANG,!P.,!WU,!P.,!OHLETH,!K.!M.,!EGAN,!R.!W.!&!BILLAH,!M.!M.!1999.!Phosphodiesterase!4B2!Is!
the! Predominant! Phosphodiesterase! Species! and! Undergoes! Differential! Regulation! of!
Gene! Expression! in! Human! Monocytes! and! Neutrophils.!Molecular( Pharmacology,! 56,!
170=174.!

WANG,! Y.,! BRUCE,! A.! T.,! TU,! C.,! MA,! K.,! ZENG,! L.,! ZHENG,! P.,! LIU,! Y.! &! LIU,! Y.! 2011.! Protein!
aggregation! of! SERCA2! mutants! associated! with! Darier! disease! elicits! ER! stress! and!
apoptosis!in!keratinocytes.!Journal(of(Cell(Science,!124,!3568=3580.!



315 

 

WANG,! Z.! &! STOUT,! S.! A.! 2007.! Oil( spill( environmental( forensics:( fingerprinting( and( source(
identification,!Academic!Press.!

WASINGER,!V.!C.,!CORDWELL,!S.!J.,!POLJAK,!C.,!YAN,!J.!X.,!GOOLEY,!A.!A.,!WILKINS,!M.!R.,!DUNCAN,!
M.! W.,! HARRIS,! R.,! WILLIAMS,! K.! L.! &! SMITH,! H.! 1995.! Progress! with! gene=product!
mapping!of!the!Mollicutes:!Mycoplasma!genitalium.!Electrophoresis),!16,!1090=1094.!

WELLBROCK,!C.,!KARASARIDES,!M.!&!MARAIS,!R.!2004a.!The!RAF!proteins!take!centre!stage.!Nat.(
Rev.(Mol.(Cell(Biol.,!5,!875=85.!

WELLBROCK,!C.,!KARASARIDES,!M.!&!MARAIS,!R.!2004b.!The!RAF!proteins!take!centre!stage.!Nat(
Rev(Mol(Cell(Biol,!5,!875=885.!

WELLS,!J.!N.,!BAIRD,!C.!E.,!WU,!Y.!J.!&!HARDMAN,!J.!G.!1975.!Cyclic!nucleotide!phosphodiesterase!
activities!of!pig!coronary!arteries.!Biochimica(et(Biophysica(Acta((BBA)(@(Enzymology,!384,!
430=442.!

WELLS,!J.!N.,!GARST,!J.!E.!&!KRAMER,!G.!L.!1981.!Inhibition!of!separated!forms!of!cyclic!nucleotide!
phosphodiesterase! from! pig! coronary! arteries! by! 1,3=disubstituted! and! 1,3,8=
trisubstituted!xanthines.!Journal(of(Medicinal(Chemistry,!24,!954=958.!

WHITTAM,! R.! &! WHEELER,! K.! P.! 1970.! Transport! Across! Cell! Membranes.! Annual( Review( of(
Physiology,!32,!21=60.!

WIENKOOP,!S.,!LARRAINZAR,!E.,!GLINSKI,!M.,!GONZÁLEZ,!E.!M.,!ARRESE=IGOR,!C.!&!WECKWERTH,!
W.!2008.!Absolute!quantification!of!Medicago!truncatula!sucrose!synthase! isoforms!and!
N=metabolism! enzymes! in! symbiotic! root! nodules! and! the! detection! of! novel! nodule!
phosphoproteins!by!mass!spectrometry.!Journal(of(experimental(botany,!59,!3307=3315.!

WOJNOWSKI,!L.,!STANCATO,!L.!F.,!LARNER,!A.!C.,!RAPP,!U.!R.!&!ZIMMER,!A.!2000.!Overlapping!and!
specific! functions! of! Braf! and! Craf=1! proto=oncogenes! during! mouse! embryogenesis.!
Mechanisms(of(Development,!91,!97=104.!

WOLSCHNER,!C.,!GIESE,!A.,! KRETZSCHMAR,!H.!A.,!HUBER,!R.,!MORODER,! L.!&!BUDISA,!N.! 2009.!
Design!of!anti=!and!pro=aggregation!variants!to!assess!the!effects!of!methionine!oxidation!
in! human! prion! protein.! Proceedings( of( the( National( Academy( of( Sciences,! 106,! 7756=
7761.!

WU,! Q.,! YUAN,! H.,! ZHANG,! L.! &! ZHANG,! Y.! 2012.! Recent! advances! on! multidimensional! liquid!
chromatography–mass! spectrometry! for! proteomics:! From! qualitative! to! quantitative!
analysis—A!review.!Analytica(Chimica(Acta,!731,!1=10.!

WU,$S.,$LOURETTE,$N.$M.,$TOLIĆ,$N.,$ZHAO,$R.,$ROBINSON,$E.$W.,$TOLMACHEV,$A.$V.,$SMITH,$R.$D.$
&" PAŠA=TOLIĆ,' L.' 2009.' An' Integrated' Top=Down! and! Bottom=Up! Strategy! for! Broadly!
Characterizing! Protein! Isoforms! and! Modifications.! Journal( of( Proteome( Research,! 8,!
1347=1357.!

WU,!W.!W.,!WANG,! G.,! BAEK,! S.! J.! &! SHEN,! R.! F.! 2006.! Comparative! study! of! three! proteomic!
quantitative! methods,! DIGE,! cICAT,! and! iTRAQ,! using! 2D! gel=! or! LC=MALDI! TOF/TOF.! J.(
Proteome.(Res.,!5,!651=8.!

YAMADA,! H.,! YAMASHITA,! T.,! DOMOTO,! H.! &! IMOTO,! T.! 1990.! Reaction! of! Hen! Egg=White!
Lysozyme! with! Tetranitromethane:! A! New! Side! Reaction,! Oxidative! Bond! Cleavage! at!
Glycine!104,!and!Sequential!Nitration!of!Three!Tyrosine!Residues.!Journal(of(Biochemistry,!
108,!432=440.!

YAMASAKI,! R.! B.,! OSUGA,! D.! T.! &! FEENEY,! R.! E.! 1982.! Periodate! oxidation! of! methionine! in!
proteins.!Analytical(Biochemistry,!126,!183=189.!

YAN,! M.! &! TEMPLETON,! D.! J.! 1994.! Identification! of! 2! serine! residues! of! MEK=1! that! are!
differentially! phosphorylated! during! activation! by! raf! and! MEK! kinase.! Journal( of(
Biological(Chemistry,!269,!19067=19073.!

YAO,!X.,!FREAS,!A.,!RAMIREZ,!J.,!DEMIREV,!P.!A.!&!FENSELAU,!C.!2001.!Proteolytic!18O!Labeling!for!
Comparative! Proteomics: ! Model! Studies! with! Two! Serotypes! of! Adenovirus.!Analytical(
Chemistry,!73,!2836=2842.!



316 

 

YASUDA,! S.,! IDELL,! S.! &! LIU,! M.! C.! 2007.! Generation! and! release! of! nitrotyrosine! O=sulfate! by!
HepG2!human!hepatoma! cells! upon! SIN=1! stimulation:! identification! of! SULT1A3! as! the!
enzyme!responsible.!Biochem.(J.,!401,!497–503.!

YI,!E.!C.,!LI,!X.=J.,!COOKE,!K.,!LEE,!H.,!RAUGHT,!B.,!PAGE,!A.,!ANELIUNAS,!V.,!HIETER,!P.,!GOODLETT,!
D.! R.!&! AEBERSOLD,! R.! 2005.! Increased! quantitative! proteome! coverage!with! 13C/12C=
based,! acid=cleavable! isotope=coded! affinity! tag! reagent! and! modified! data! acquisition!
scheme.!Proteomics,!5,!380=387.!

YOKOYAMA,! T.,! TAKANO,! K.,! YOSHIDA,! A.,! KATADA,! F.,! SUN,! P.,! TAKENAWA,! T.,! ANDOH,! T.! &!
ENDO,!T.!2007.!DA=Raf1,!a!competent!intrinsic!dominant=negative!antagonist!of!the!Ras–
ERK! pathway,! is! required! for!myogenic! differentiation.!The( Journal( of( Cell( Biology,! 177,!
781=793.!

YU,! Y.=Q.,! GILAR,!M.,! LEE,! P.! J.,! BOUVIER,! E.! S.! P.!&!GEBLER,! J.! C.! 2003.! Enzyme=Friendly,!Mass!
Spectrometry=Compatible! Surfactant! for! In=Solution! Enzymatic! Digestion! of! Proteins.!
Analytical(Chemistry,!75,!6023=6028.!

ZABŁOTNA,!E.,!DYSASZ,!H.,!LESNER,!A.,!JAŚKIEWICZ,!A.,!KAŹMIERCZAK,!K.,!MIECZNIKOWSKA,!H.!&!
ROLKA,!K.!2004.!A! simple!method! for! selection!of! trypsin! chromogenic! substrates!using!
combinatorial! chemistry! approach.! Biochemical( and( Biophysical( Research(
Communications,!319,!185=188.!

ZHANG,! B.=H.! &! GUAN,! K.=L.! 2000.! Activation! of! B=Raf! kinase! requires! phosphorylation! of! the!
conserved!residues!Thr598!and!Ser601.!EMBO(J,!19,!5429=5439.!

ZHANG,!R.,!SIOMA,!C.!S.,!WANG,!S.!&!REGNIER,!F.!E.!2001.!Fractionation!of! Isotopically!Labeled!
Peptides!in!Quantitative!Proteomics.!Analytical(Chemistry,!73,!5142=5149.!

ZHANG,!X.,!FANG,!A.,!RILEY,!C.!P.,!WANG,!M.,!REGNIER,!F.!E.!&!BUCK,!C.!2010.!Multi=dimensional!
liquid!chromatography!in!proteomics—A!review.!Analytica(Chimica(Acta,!664,!101=113.!

ZHU,!W.,!SMITH,!J.!W.!&!HUANG,!C.=M.!2010.!Mass!Spectrometry=Based!Label=Free!Quantitative!
Proteomics.!Journal(of(Biomedicine(and(Biotechnology,!2010.!

ZORAGHI,!R.,!CORBIN,! J.!D.!&!FRANCIS,!S.!H.!2004.!Properties!and!Functions!of!GAF!Domains! in!
Cyclic!Nucleotide! Phosphodiesterases! and!Other! Proteins.!Molecular( Pharmacology,! 65,!
267=278.!

!

 


