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Abstract 

The primary mission of the immune system is to defend against invading 

pathogens. The normal healthy body can distinguish self from non-self antigens. 

When a new antigen is encountered, such discriminatory capacity would generate 

a productive immune response against invasive pathogens or exert 

antigen-specific tolerance, the latter to prevent harmful immune responses against 

self-components or non-dangerous food or environmental antigens. Peripheral 

tolerance plays an important role in preventing T cells response to self or harmless 

antigens. A breakdown in tolerance within an individual can result in the 

development of a variety of autoimmune disorders.  

Full T cell activation requires at least two signals. The first one is provided by the 

TCR recognizing cognate peptides derived from antigen in the context of 

appropriate MHC molecules expressed by antigen presenting cells (APC). The 

second is mediated by “co-stimulation” via interaction of CD28 on the T cell with 

CD80/86 on the APC. The clonal anergy is induced when the TCR is ligated in the 

absence of co-stimulation, one of the proposed mechanisms of peripheral 

tolerance, describes a state of long lasting unresponsiveness to antigen, in the T 

cell. Despite widely studies in this area, however, the mechanisms of induction of 

anergy and the efficient markers for diagnosis of anergy are still not clear. 

One of the mechanisms which contributes to forming tolerance is anergy, which 

can be defined as defect in cellular proliferation and IL-2 production. Furthermore, 

GTPase Rap1 has been reported to inhibit the generation of pERK signals and to 

accumulate in tolerant cells. However, most of previous studies have done by 

biochemical assessment of signaling in T cell lines or clones upon polyclonal 

stimulations in vitro, and thus has generated some conflicting data. For solving this 
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problem, our lab has developed the technique, laser scanning cytometry (LSC), for 

observation of responses in individual antigen-specific T cells within their 

environmental niche within primary or secondary lymphoid tissue. By LSC, it has 

reported that there are significant differences in the amplitude and cellular 

localization of phosphorylated ERK signals when naïve and in vitro-primed and 

tolerized T cells respond to Ag. To further investigate the role of Rap1 by LSC, it 

revealed that counter regulation in Rap1 and phosphor-ERK expression during the 

maintenance phase of tolerance and priming of antigen-specific CD4+ T cells in 

vitro and in vivo. In T cells, the maintenance phase of anergy has been reported to 

reflect defective activation of transcription factor, such as c-Jun/c-Fos, that are 

involved in formation of the AP-1 complex, which is required for inducing 

transcription of the IL-2 gene and optimal activation and effector function of T cells. 

In turn, this appears to be determined by the lack of recruitment of the ERK, JNK 

and p38 MAPK signaling cascades. The small GTPase, Rap1, has long been 

implicated in such desensitisation of ERK, and the consequent reduced IL-2 

production, observed in tolerised T cells. However, the most of these studies were 

processed with T cell lines or clones in vitro and as such are not necessarily 

representative of physiological responses of primary antigen-specific T cells. 

Consistent with the previous finding, we have extended these studies to investigate 

whether Rap1 plays a role in determining commitment to anergy and priming during 

induction and maintenance phases.  As expected, analysis in the DNA synthesis 

during maintenance phase reported that the primed T cells exhibited a higher 

response than either naïve or anergic T cells, whilst the anergic T cells displayed 

an even lower DNA synthesis than naïve T cells undergoing a primary response. 

To further investigation in cytokine production of IL-2 and IFNγ at 24, 48 and 96 

hour during the maintenance phase, consistent with previous studies, the primed T 

cells produced the highest levels of IL-2, relative to anergic cells with the lowest 
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levels, at the first 24 hours after challenge with antigen. However, the IL-2 

production from primed and anergic T cells both drop down from 48 hours and to 

very low level at 96 hours but accompanying with gradual increase of IFNγ 

production. This implicates both anergic and primed cells consumed IL-2 secreted 

in the early stage of maintenance phase for supporting following cellular 

differentiation. The assessment of cellular proliferation also indicates that both 

primed and anergic cells had undergone several rounds of division. Whereas the 

primed cells proliferated more and faster than anergic cells over the first two days, 

after that anergic cells were able to catch up with primed cells. Consistent with 

above proliferative responses, the primed T cells showed higher levels of ERK 

activation than anergic cells at day 1 but lower levels of ERK activation than 

anergic cells at day 3. Surprisingly, there is no difference in Rap1 activation 

between primed and anergic T cells during maintenance phase. 

The additional finding from cellular proliferation during maintenance phase 

revealed that both primed and anergic cells undergo clonal expansion during 

induction of priming and tolerance, which leads the further investigation in 

functional outcomes, MAPK signaling and mTOR pathways studies during 

induction phase. The primed cells exhibited higher levels of DNA synthesis than 

anergic cells at 48 hours whereas they had similar levels of DNA synthesis at 96 

hours. The IL-2 and IFNγ production were only detectable within the first 48 hours 

but not 96 hour. Collaborating with the data from cellular proliferation indicates the 

IL-2 were consumed for promoting the cells survival and proliferation since both 

populations showed clear peaks representing differential numbers of cell division 

from day 2 (48 hour) onwards, whereas the primed cells proliferated more and 

faster than anergic cells during whole induction phase. Moreover, cyclic activation 

of ERK was seen in the primed T cells and at higher levels of activation than in the 
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anergic population, which did not exhibit these kinetics in western blotting. 

Interestingly, the primed T cells exhibited slightly higher levels of Rap1 than anergic 

cells from 48 hour until 96 hour during induction phase.  

Consistent with data from in vitro, the proliferation response in mimicking 

physiological model also can be replicated. Additionally, the counter regulation in 

ERK and Rap1 activation also occurred during the induction of priming and 

tolerance, which is investigated by adenoviral gene transfer of Ad Rap1 S17N, an 

inactive mutant of Rap1. Furthermore, modulation of Rap1 expression with Ad 

Rap1 S17N in cells during induction of anergy, revealed that Rap1 activity acts to 

limit cellular proliferation and thus switching off Rap1 activity upregulates cellular 

proliferation to generate a phenotype more resembling priming of normal (or GFP-) 

T cells by antiCD3+anti-CD28, which showed higher proliferation that GFP- cells 

stimulated with anti-CD3 only. However, when these adenoviral transfer 

experiments were repeated in the more physiological model, the higher 

proliferation exhibited in anergic Ad Rap1 S17N transduced cells were not 

replicated, suggesting that the enhancing effect of Ad Rap1 S17N might be 

substituted by signals generated under these more physiological conditions.  

There did not appear any difference between anergic and primed cells in terms of 

ERK/Rap1 signalling during the induction phase and introduction of Ad Rap1 S17N 

did not modulate ERK activity in transduced cells treated with anti-CD3 or 

anti-CD3+anti-CD28, suggesting that Rap may target some other effector during 

the induction phase. To sum up these data, Rap signaling in anergy and priming as 

well as the use of the dominant negative construct suggested that Rap was not 

acting to suppress ERK activation during induction of anergy. The further 

investigation in the downstream targets, c-Myc, did not see any direct connection 

with ERK/Rap1 activation during induction of anergy and priming. Moreover, the 
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primed T cells tend to skew to catabolic rather anabolic metabolic pathways, when 

compared to anergic T cells during the induction phase, as evidenced by the 

primed cells exhibiting upregulation and phosphorylation of AMPK and Raptor to 

inhibit mTORC1 funtion and in turn, lower levels of pp70 S6K. However, the 

expression of phosphorylated Rictor in anergic t cells was higher than that of 

primed T cells, indicating inhibition of mTORC2 in anergic T cells resulting in 

downregulation of AKT activation during this induction phase. 
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1 Introduction 

1.1 The Immune system 

The immune system is a complex defence system which provides protection to the 

host from a variety of pathogenic microorganisms, including bacteria and viruses. 

The immune system can be divided into innate and adaptive immunity. The innate 

immune system provides critical mechanisms for the rapid sensing and elimination 

of pathogens but is non-specific. Adaptive immunity provides a wider and specific 

recognition for self- and nonself-antigens. Moreover, whilst the innate immune 

response can detect the same pathogen on repeated exposure, adaptive immunity 

allows a memory response to develop so that on subsequent encounter with the 

same antigen, this secondary adaptive immune response is quicker and more 

efficient. 

1.1.1 Innate immunity 

Cells of the innate immune system provide critical mechanisms for the rapid 

sensing and elimination of pathogens. This kind of immunity occurs throughout life 

and is the initial response by the body to eliminate microbes and prevent infection. 

Phagocytes, macrophages and granulocytes, and natural killer (NK) cells provide 

the first line of defence. However, unlike adaptive immunity, innate immunity does 

not recognize individual antigens. Rather, the major mechanism for recognition of 

foreign antigens by these cells involves pattern recognition receptors (PRRs) which 

bind common pathogen-associated molecular patterns (PAMPs) leading to the 

initiation of an innate immune response. These common microbial molecules 

include LPS from gram-negative cell walls, peptidoglycan and lipotechoic acids 

from gram-positive cell walls, the sugar mannose, bacterial and viral unmethylated 
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CpG DNA, bacterial flagellin, the amino acid N-formylmethionine found in bacterial 

proteins, double-stranded and single-stranded RNA from viruses, and glucans from 

fungal cell walls. PAMPs are structures shared by many classes of pathogens 

ensuring that the innate immune response recognises and combats a broad 

spectrum of pathogens in the first few days of infection while the adaptive immune 

system becomes activated. Moreover, innate cells, via their role in antigen 

presentation are crucial for priming of the specific adaptive response. 

1.1.2 Adaptive immunity 

Adaptive immunity has evolved to provide a specific and more finely tuned 

repertoire of recognition of foreign antigen. The cells of the adaptive immune 

system are lymphocytes: T cells and B cells which broadly comprise the two 

branches of cellular and humoral (antibody-mediated) immunity. It is a 

self-regulated system because both the T cell and B cell receptor repertoires 

evolve by interaction with self-ligands to ensure self-tolerance. The activation of T 

cells requires antigen presenting cells (APC), like macrophages or in particular, 

dendritic cells for initiation of primary responses, and these cells present antigen 

that they capture during activation of the innate immune system. Additionally, the 

other significant functions of adaptive immunity are to develop class switched, 

affinity matured antibodies and immunological memory which collectively produces 

more rapidly and more effectively immune responses to the re-encountered antigen 

[1].  

1.1.3 B cells 

Humoral immunity is mediated by antibodies produced by plasma cells that develop 

from B cells under the direction of signals received from T cells and other cells, 

such as dendritic cells. Once the T cell response has been triggered, it can help B 
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cells to further differentiate into memory cells or plasma cells. B cells can mediate 

humoral immunity by producing a variety of antibodies such as IgM, IgD and IgG, 

IgA and IgE by class-switching. Depending on their isotype, the antibodies can 

function via neutralisation, opsonisation or complement activation to eliminate 

extracellular pathogens and toxic products. In addition to producing antibodies, B 

cells are able to act as APC for T cells because of their expression of MHC class II 

on cell surface but they are less effective at this than professional APC, like DCs 

and macrophages [2]. 

1.1.4 T cells  

1.1.4.1 T cell subtypes 

Cellular immunity is conducted by T cells which mature in the thymus: T cells can 

be divided into several subtypes depending on their expression of cell surface 

markers. Two distinct lineages exist in T cell development, αβ and γδ T cells, the 

majority being αβ T cells where the antigen-specific component of the TCR 

consists of two glycoprotein chains, α and β acting in concert with the signal 

transducing CD3 complex can be found on CD4 helper (Th) T cells or CD8 cytoxic 

(CTL) T lymphocytes whereas for γδ T cells which express CD3 but not CD4 or 

CD8, antigen recognition is mediated via γ and δ chains. Most γδ T cells are found 

in gut mucosa and the epidermis. Additionally, unlike αβ T cells which recognise 

MHC class I (CD8+ T cells) or II (CD4+ T cells), γδ T cells are not 

peptide-MHC-restricted and while the antigens recognised by γδ T cells have not 

been fully defined, it appears that they can recognize whole proteins rather than 

peptides presenting by MHC molecules on APCs [3].  

As stated above, αβ T cells also express CD3 and can be divided into two main 

classes, CD8+ and CD4+ T cells that have different effector functions whilst a 
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further minor population of αβ T cells, called natural killer T cells (NKT), can be 

CD4+ or CD8+ or neither [4]. CD8+ T cells, known as cytotoxic T cells (Tc) are MHC 

class I restricted and upon recognising their specific antigen in association with 

MHC class I, in the presence of appropriate cytokines, such cytotoxic T cells 

proliferate and differentiate into effector cells known as cytotoxic T lymphocytes 

(CTL). CTL are responsible for eliminating tumour cells, grafted cells or virally 

infected cells from the body. CD4+ T cells are MHC class II restricted and are 

known as T helper (TH) cells as they act to stimulate other cells, such as B cells and 

macrophages, of the immune system to participate in the immune response. 

Additionally, depending on the cytokine milieu in which an antigenic stimulus is 

received, Th1, Th2 and Th17 effector cells are generated. 

1.1.4.2 T cell development 

T cell development occurs in the thymus; the thymic microenvironment directs 

differentiation as well as positive and negative selection. Lymphoid progenitors 

which have developed from hematopoietic stem cells in the bone marrow migrate 

to the thymus to complete their antigen-independent maturation into functional T 

cells[5-7]. In the thymus, as T cells develop, they upregulate specific T cell markers, 

including TCR, CD3, CD4 or CD8, and CD2 and undergo thymic education through 

positive and negative selection of their TCR specificity to ensure self-tolerance. 

TCR gene-segment rearrangements are termed productive if they do not introduce 

stop codons and give rise to a gene encoding a full-length TCR protein. Sequential 

productive rearrangements of 2 TCR genes leading to surface expression of an αβ 

or γδ TCR in association with its signal transducing complex, CD3 (which 

comprises γ, δ, ε and ζ chains) marks the transition from a pre-T cell to a 

double-positive T cell which expresses both CD4 and CD8. Subsequently these 

double-positive cells which reside in the thymic cortex, differentiate to 
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single-positive T cells in the medulla [8]. This process, which is regulated by both 

positive and negative selection, is termed central tolerance. During positive 

selection, double-positive TCR T cells which bind with low affinity to self-MHC on 

thymic epithelium are selected while those that do not bind to self-MHC, are 

eliminated. In contrast to positive selection, the TCR of double-positive T cells 

which bind with high affinity to self-MHC/peptide are not permitted to mature and 

undergo apoptosis. This is termed negative selection and is the major mechanism 

of ensuring central self tolerance. 

1.1.4.3 T cell activation 

Full T cell activation for effector cell differentiation requires at least two signals. The 

first one is provided by the TCR recognising cognate peptides derived from antigen 

in the context of appropriate MHC molecules expressed by antigen presenting cells 

(APC). The second is mediated by “co-stimulation” via interaction of CD28 on the T 

cell with CD80/86 on the APC. When a T cell receives both signal-1 and signal-2, it 

proliferates, differentiates and has effector function (Figure 1.1A). However, the 

recent discovery that the novel co-stimulatory molecules such as inducible T cell 

co-stimulator (ICOS; aka CD278 [9]) participate to drive the optimal co-stimulation 

of T cells suggested that multiple signals are needed to fully activate T cells [10]. 

ICOS is a member of the CD28 family of co-stimulatory molecules that is not 

expressed on resting cells but can be induced on all activated T cells within 24-48 

hour of T cell activation [11]. It binds to its ligand B7-related protein-1 (B7RP-1), 

which is constitutively expressed on DC and B cells [9]. Furthermore, ICOS plays a 

more important role in the activation of TH2 cells as it preferentially induces 

secretion of IL-4 and IL-10 than IL-2 [12]. Conversely, when a T cell receives only 

signal-1, lack of co-stimulation, or only signal-2 it can undergo apoptosis or become 

anergic or tolerized (Figure 1.1B). The induction of anergy is an active process and 
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ligation of the TCR (signal 1), which occur T cell activation (up-regulation of CD69 

[13]) and proliferation [14].  

1.1.4.4 CD4 T cell differentiation 

Naïve CD4+ T cells stimulated with antigens differentiate in to Th1 cells in the 

presence of IL-12 and IFNγ, however, IL-4 plays an important role for Th2 cell 

differentiation. The activation of downstream signalling molecules of these cytokine 

receptors, such as STAT4/STAT1 or STAT6 are required for differentiation into 

either Th1 or Th2 cells, respectively. 

After antigen recognition by TCR, naïve CD4 T cells undergo clonal expansion and 

differentiate into functionally polarized effector TH cell subsets. Effector CD4+ TH 

cells are characterized phenotypically by a decrease in the expression of CD62L 

and an increase in expression of CD44. As stated above, there are at least four 

major distinct TH subsets, i.e., Th1, Th2, Th17 and Treg cells that have been 

identified to date. The generation of different effector cells depends on the cytokine 

milieu in which antigenic stimuli is received. TH1 cells express the signature 

transcription factor T-bet and produce IL-2, IFNγ and TNF-α. IFNγ upregulates 

IL-12 expression by DC and macrophages and this IL-12, in turn, results in 

upregulation of IFNγ in TH cells and so promotes TH1 cell differentiation in a 

positive feedback loop. Additionally, IFNγ downregulates IL-4 production, therefore, 

further promoting the TH1 phenotype which is involved in the cellular immune 

response and acts to improve phagocytosis of macrophages, proliferation of CTLs 

and production of opsonising antibodies from B cells [15]. 

By contrast to TH1 cells, the major function of TH2 cells is to contribute to humoral 

immunity. They express the transcription factor GATA-3 and can produce IL-4, IL-5, 

IL-6, IL-10 and IL-13. IL-4 stimulates TH cells to differentiate to TH2 cells and 
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contributes to induction of neutralising antibodies produced by B cells [15]. IL-2 and 

IFNγ production are inhibited by IL-10, as is the IL-12 production by DC and 

macrophages.  

TH17 cells is another lineage of CD4+ T cells that has been developed by the 

immune response to kill extracellular bacterial but their dysregulation appears to 

contribute to the induction of autoimmune and allergic inflammation [16]. Th17 cells 

can produce IL-17A, IL-17F, IL-22 as key cytokines but additionally, Th17 cells also 

secrete IL-21 in common with other Th cells. TGF-β and IL-6 are the two key 

cytokines responsible for TH17 differentiation in vitro [17-19] and IL-21 mediates 

many functions of IL-6 [20] as indicated by reports that IL-21 was able to replace 

IL-6: however, both TGF-β and IL-6 are required for promoting TH17 commitment 

[21, 22] IL-23 receptors are not expressed on naïve CD4+ T cells, only being 

upregulated on Th that have partially completed differentiation towards the TH17 

phenotype. Once IL-23 receptors appear, IL-23 is involved in the TH17 priming 

process apparently by promoting maintenance of the TH17 phenotype. Retinoic 

acid-related orphan receptors (ROR) are the signature transcription factors for 

TH17 differentiation [23] and TH17 express high level of RORγt with expression of 

RORγt leading to TH17 cells producing IL-17. RORγt is induced in naïve CD4+ T 

cells within 8 hours of TCR stimulation in the presence of TGF-β and IL-6. 

Consistent with the key role of this transcription factor in Th17 differentiation, it has 

been observed that RORγt-deficient cells produce very low IL-17 and reflecting the 

role of IL-17 in driving autoimmune disease, RORγt-deficient mice are partially 

resistant to experimental autoimmune encephalomyelitis (EAE). However, 

RORγt-deficient cells can still produce low levels of IL-17 due to the activation of 

RORα which is also upregulated in TH17 cells. When both RORγt and RORα are 

deficient, production of IL-17 is completely eliminated in “TH17” cells. 
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The other subset of CD4+ T cells, regulatory T cells (Tregs) can be divided into 

natural regulatory T cells (nTregs) and induced Tregs (iTregs). Although iTregs 

appear to perform similar functions as nTregs in mice, both in vivo and in vitro [24], 

iTregs in humans are not able to replicate the same behaviour as nTregs [25]. The 

major function of nTregs is to maintain immune system homeostasis and act to 

suppress pathological immune responses to self antigen as seen in autoimmune 

disorders or foreign antigens in transplantation and graft versus host disease [26]. 

1.2 Immune tolerance 

The primary mission of the immune system is to defend against invading 

pathogens. The normal healthy body can distinguish self from non-self antigens. 

When a new antigen is encountered, such discriminatory capacity would generate 

a productive immune response against invasive pathogens or exert 

antigen-specific tolerance, the latter to prevent harmful immune responses against 

self components[27] or non-dangerous food or environmental antigens. A 

breakdown in tolerance within an individual can result in the development of a 

variety of autoimmune disorders. T cell tolerance is induced in two main sites: (1) in 

the thymus during early T cell differentiation, designated central tolerance and (2) 

in the secondary lymphoid tissues after T cells are exported from thymus, called 

peripheral tolerance. 

1.2.1 Central tolerance 

As described above, lymphoid progenitor cells are produced in the bone marrow or 

fetal liver before migrating to the thymus where they start out as double negative 

thymocytes, as they lack expression of CD4 and CD8. Subsequently, double 

negative thymocytes which possess a functional TCR-β chain are selected to 
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differentiate into double positive CD4+CD8+ cells. This process is termed 

β-selection. The double-positive thymocytes then undergo positive and negative 

selection, processes which promote the differentiation of single positive CD4+ or 

CD8+ αβ-T cells that are MHC-restricted and self-tolerant.  

1.2.2 Peripheral tolerance 

As central tolerance is not sufficient to prevent autoimmunity and allergy, therefore, 

peripheral tolerance is required to ensure that the tolerance is enforced for all 

self-antigens as well as food and environmental antigens which are not recognized 

in early life. There are several proposed mechanisms of peripheral tolerance.  

1.2.2.1 Antigen ignorance 

Antigen ignorance can arise if the antigen is not presented to the T cell or the TCR 

exhibits low affinity to antigen. For example, antigens can be hidden in 

immune-privileged sites such as the eye and so cannot be seen by circulating T 

cells [28].  

1.2.2.2 Clonal anergy 

Unresponsiveness of T cells to secondary antigenic stimulation is a mechanism of 

peripheral tolerance, known as anergy and which is the functional inactivation of T 

cells. Induction of anergy occurs when naïve T cell receive antigen presentation by 

immature DCs, which have not be exposed to inflammation or “danger” signals 

from pathogens and leads to such T cells being hyporesponsive to re-challenge 

with the same antigen. Anergy induction also occurs when the TCR is ligated upon 

recognition of its specific peptide in the context of MHC, but in the absence of 

co-stimulation, which again induces a state of long lasting unresponsiveness 

(anergy) in T cell [29, 30]. Some experimental methods have been developed to 
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mimic and induce such anergy in vitro [31-33], including exposure to immobilised 

anti-CD3 to ligate the TCR in the absence of co-stimulatory signals [32, 34]. 

Compared to priming conditions (TCR ligation + co-stimulation), under this 

condition re-stimulation with antigen result in downregulation of IL-2 production and 

thus reduction in proliferation of T cells. The state of anergy can be reversed by the 

addition of exogenous IL-2 to the T cells [35].  

Induction of anergy is an active process. Although, anergic T cells fail to proliferate 

and produce decreased IL-2 production after re-challenge with antigen 

(maintenance phase of anergy), anergic T cells exhibit clonal expansion and 

upregulate the activation markerCD69 during induction phase of anergy [13, 36, 37]. 

As described above, anergy may result from lack of co-stimulation (CD28:CD80/86) 

as some studies have indicated that the low level of CD86 expressed on resting 

DCs [38, 39] is not sufficient to induce priming in T cells. However, although the 

interaction of CD80/86:CTLA-4 (cytotoxic T lymphocyte-associated antgen-4) may 

be involved in the maintenance of T cell tolerance [40-43] no specific marker for 

identification of anergic T cells has been found so far. 

1.2.2.3 Active suppression 

Active suppression or dominant tolerance on effector T cells is conducted by 

regulatory T cells. Early studies indicated both CD8+ Treg and CD4+ Treg are 

involved in active suppression by inhibit IL-2 production and cellular proliferation. 

1.2.2.3.1 CD8+ suppressor T cells 

Although early studies suggested that the involvement of CD8+ T cells in active 

suppression, the effector mechanisms of these CD8+ T cells were not fully 

elucidated [44, 45]. Nevertheless, it was clear that although systemic tolerance was 
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not affected, CD8-/- mice showed deficient local suppression of IgA responses in 

the gut after feeding Ag, indicating that CD8+ Tregs may be important for the 

regulation of local mucosal immune responses [46]. More recently, it has emerged 

that in humans, there is a CD8+ Tregs population that expresses the signature 

regulatory transcription factor. Foxp3 that inhibits T cell activation by interfering with 

TCR signalling by secretion of CC chemokine ligand 4 (CCL4) [47].  

1.2.2.3.2 CD4+ Tregs 

Active suppression by CD4+ Treg cells mediates downregulation of activation of 

CD4+ TH cells upon antigen challenge [48] and most of these Tregs cells express 

CD25, which is upregulated on antigen-specific T cells in periphery, for example, 

after feeding with tolerogenic doses of antigen [49, 50]. CD4+CD25+ Tregs are 

capable of “bystander” suppression of naïve T cells specific for an unrelated 

antigen [27, 51] and in addition, CD4+CD25+ Tregs can suppress the cytokine 

production and proliferation of both CD4+ and CD8+ T cells in vitro [52, 53]. 

Furthermore, the number of CD4+CD25+ Tregs in mice are decreased while the 

TGF-β signalling is disrupted since the TGF-β contributes to the generation of Tregs 

in periphery [54]. 

Natural regulatory T cells (CD4+CD25+Foxp3+ Tregs) cells exist in the thymus and 

participate in central tolerance mechanisms, however, those cells can also migrate 

from the thymus and exhibit their regulatory functions in the periphery. Although the 

transcription factor Foxp3 is critically important for their differentiation other signals 

such as TCR/MHC class II interactions, IL-2 signalling, CD80/CD86:CD28 

signalling are also essential [55]. 
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1.2.2.3.3 Tr1 

Some adaptive regulatory cells, like Tr1 and TH3 can arise after contact with 

antigen. CD4+ regulatory 1 (Tr1) cells were first identified, following multiple rounds 

of stimulation of naïve T cells with antigen, in the presence of high concentrations 

of IL-10 in vitro. Such Tr1 cells can suppress TH2 responses by producing TGF-β 

instead of IL-4 in an Ag-specific manner [56], and OVA-specific Tr1 cells have been 

shown to prevent inflammatory bowel disease (IBD) when they are adoptively 

transferred into recipient mice subsequently fed OVA [57]. 

1.2.2.3.4 TH3 

Another subset of CD4+ Tregs has been described, which produce varying amounts 

of the TH2 cytokines IL-4 and Il-10, but have been shown to be a population distinct 

from TH2 cells since they produce TGF-β as well [57]. The IL-10 production 

suppresses TH1 activity via downregulation of expression of costimulatory 

molecules and IL-12 production by APCs [58]. Such cells were designated TH3 

cells and Ag-specific CD4+ TH3 cells have been found in the mesenteric lymph 

nodes (MLN) of DO11.10 Tg mice after feeding tolerogenic multiple low doses of 

antigen [59, 60]. Additionally, the induction of TH3 phenotype was observed 

following co-stimulation mediated through CD86 but not CD80 [42].  

1.3 T cell signaling 

1.3.1 TCR-mediated signalling 

1.3.1.1 Signalling proximal to the TCR  

TCR ligation by the MHC-peptide complex initiates the signalling cascades and 

directing T cell fate. Within seconds of TCR ligation (Figure 1.2), the Src kinases, 
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Fyn and Lck are recruited and activated to phosphorylate the immunoreceptor 

tyrosine-based activation motifs (ITAM) in the ζ chains associated with the 

TCR-CD3 complex [61], resulting in the subsequent recruitment of the tyrosine 

kinase, ζ-associated protein of 70 kDa (ZAP-70), via binding of its SH2 domains to 

the phosphorylated ζ-chains[62]. Following binding of ZAP-70 binds to the ITAMs 

and activation by Fyn/Lck, it phosphorylates a number of cytosolic proteins, 

triggering the assembly of an intracellular complex of scaffolding and activated 

signaling enzymes and adaptors, including linker of activated T cells (LAT) and 

SLP-76 and downstream kinases. For example, phosphorylated SLP-76 associates 

with the guanine nucleotide exchange factor (GEF), Vav, via its SH2 domain and 

binds the Tec family PTK, IL-2 tyrosine kinase (Itk). 

1.3.1.2 Role of adaptor proteins in T cell signalling 

Adaptor proteins play a role in linking to antigen receptor ligation to cellular 

signaling. For example, some of the signaling enzymes and adaptors recruited to 

LAT and phosphorylated by ZAP-70 are phospholipase Cγ1 (PLCγ1), growth factor 

receptor-bound protein 2 (Grb2) and the Grb2 family member, GADS. GADS is an 

adaptor for linking LAT and SLP-76 following TCR ligation [63]. Additionally, T cell 

activation and differentiation requires binding of PLC-γ1 and GADS [64] whilst Grb2 

needs to complex with Son of Sevenless (SOS), which is a GEF for SOS to be able 

to convert Ras-GDP (inactive form) to Ras-GTP (active form) [65]. 

1.3.1.3 The PLC-γ1 pathway 

Activation of PLC-γ1 is facilitated by recruitment to LAT and consequently PLCγ1 

mediates hydrolysis of the membrane inositol phospholipid, phosphatidylinositol 4, 

5 bisphosphate (PIP2), generating inositol-trisphosphate (IP3) and diacylglycerol 

(DAG). Inositol-trisphosphate (IP3) binds to its receptor on the membrane of the ER 
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which induces a rapid increase in intracellular calcium (Ca2+) levels by means of 

release of stores contained within the endoplasmic reticulum. This calcium flux 

activates a calcium release-activated calcium channel facilitating the influx of 

extracellular calcium [66]. Calcium entering the cytosol from the endoplasmic 

reticulum or extracellular space binds to the regulatory protein calmodulin, which in 

turn activates the phosphatase calcineurin (Cn). Cn is a calcium-dependent 

phosphatase which comprises a catalytic and calmodulin-binding subunit A (CnA) 

and a Ca2+-binding regulatory subunit B (CnB). The activity of CnA is suppressed 

by binding to CnB in resting T cells but after Ca2+ binds to CnB, calmodulin is able 

to ligate to CnA, which causes the activation of enzymatic activity of Cn [67]. 

Activated Cn dephosphorylates nuclear factor of activated T cells (NF-AT) in the 

cytosol, revealing its nuclear localization sequence and generating the active form 

of this critical transcription factor, which then translocates to the nucleus, where it 

associates with activator protein-1 (AP-1) to direct the synthesis of genes like IL-2 

[68]. At the same time, diacylglycerol (DAG), the other product of PLCγ1-mediated 

hydrolysis of phosphatidylinositol bisphosphate, triggers activation of a parallel 

pathway involving protein kinase C. This leads, through intermediates, to the 

activation of nuclear factor κB (NF-κB), another critical transcription factor in T cell 

activation. AP-1 itself is a complex of c-Fos and c-Jun transcription factors. 

Activation of AP-1 alone is not sufficient for transcription of the IL-2 gene. For this to 

occurs, signals from co-stimulatory receptors are necessary. 

1.3.1.4 PKC-mediated signalling in T cells 

The PKC family of serine/threonine kinases act as DAG binding proteins in 

lymphocyte activation that can stimulate accumulation of GTP-bound (activated) 

Ras, independent of SOS [69]. DAG can also bind the GEF Ras guanyl-releasing 

protein 1 (RasGRP1) through its DAG-binding domain. RasGRP1 also contains 
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Ca2+-binding EF hands, and following increases in the levels of intracellular Ca2+ 

and DAG, RasGRP1 is recruited to the Golgi membrane [70, 71]whereupon it 

converts Ras-GDP to the GTP-bound form of Ras and consequently leads to 

activation of downstream mitogen-activated protein (MAP) kinases such as ERK 

[72, 73]. 

1.3.1.5 MAPKinase pathways 

The MAPKinases are a family of serine threonine protein kinases which are 

activated by a variety of extracellular stimuli and are capable of mediating an array 

of cellular functions, ranging from activation and proliferation to growth arrest and 

cell death [74]. The MAPK family includes kinases from three different signalling 

pathways, the classical extracellular signal-regulated kinases (ERKs), the p38 

MAPK and the c-Jun N-terminal kinases (JNK). Each MAPK is activated by 

different upstream MAPK kinases (MEKs) and MAPK kinase kinases (MEKKs). 

MAPK are activated by dual phosphorylation on tyrosine and threonine residues, 

located in a T-X-Y motif [75], where X is different in each group of MAPK. MAPK 

activation results in phosphorylation and activation of distinct downstream 

transcription factors, depending on the group of MAPK activated. Thus, ERK 

activates Elk-1 and c-Myc [76], p38 activates c-Fos [77] and ATF-2 [78], and JNK 

activates c-Jun and ATF-2 [79]. The phosphorylation and activation of these 

transcription factors permits the MAPK family to regulate gene expression and 

hence, cellular fate and effector function.  

The TCR ligation signals to the Ras-ERK MAPK pathway: Ras is a 

membrane-bound guanine nucleotide binding protein which can be activated at the 

plasma membrane (SOS-mediated) and also the Golgi membrane 

(RasGRP1-mediated), prior to recruitment to the plasma membrane. Ras-GTP 
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recruits the serine/threonine kinase Raf-1 to the plasma membrane, where Raf-1 is 

activated [80] following the interaction of Ras with the regulatory N-terminal region 

of Raf-1 the latter of which otherwise inhibit its kinase activity. Activated Raf-1 then 

phosphorylates the dual specificity (Thr/Tyr) mitogen-activated protein kinase 

kinase (MAPKK), MEK (MAPK extracellular signal-regulated kinase (ERK) kinase), 

which subsequently phosphorylates and activates ERK [81, 82]. ERK is a generic 

term that comprises several isoforms that includes the two well-characterised 

isoforms, ERK1 and ERK2. The activation of ERK1 and ERK2 are regulated by the 

dual phosphorylation of neighbouring threonine and tyrosine residues by MEK [83]. 

Additionally, unlike Raf-1, ERK 1 and ERK2 do not exhibit an autoinhibitory domain. 

Once the ERK is activated, in turn it translocates into the nucleus and thus it is able 

to phosphorylate and activates the downstream transcription factors such as AP-1. 

In addition, it can activate a number of cytosolic signalling enzyme effectors. 

1.3.2 Co-stimulation-dependent signalling 

The signalling described so far relates to that occurring following TCR ligation. 

However, co-stimulation is required for induction of IL-2 and consequent productive 

priming of a T cell (Figure 1.3). TCR-signalling alone causes a 

hypo-responsiveness status as in the absence of co-stimulation, there is only 

limited production of IL-2, which is required for autocrine and paracrine stimulation 

of T cell proliferation [84]. Co-stimulation-dependent (CD28-mediated) proliferative 

signals, independent of ERK activation, are crucial for activation of the full range of 

transcription factors required for transcription of the IL-2 gene, and hence 

proliferation [84].  

T cell co-stimulation mediated by CD28 ligation contributes to TCR proximal signals 

via Lck and phosphatidylinositol 3-kinase (PI3K) activation with such PI3K 
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activation essential for optimal lymphocyte proliferation. For example, the 

production of IL-2 in T cells is decreased by pharmacological inhibition of PI3K, 

even upon stimulation of TCR and CD28 [85, 86]. PI3K is composed of a p85 

regulatory subunit, which can bind with CD28 and a p110 catalytic subunit, which is 

activated by the regulatory subunit when this is recruited by CD28 [87]. Once PI3K 

is activated, in turn it will convert PIP2 into the second messenger 

phosphatidylinositol 3, 4, 5-trisphosphate (PIP3) which recruits cytoplasmic 

signalling enzymes containing Pleckstrin Homology (PH) domains such as, 

phosphoinositide-dependent kinase 1 (PDK1) and Akt [87]. Once located correctly 

at the plasma membrane, AKT is first phosphorylated by mammalian target of 

rapamycin complex 2 (mTORC2) and subsequently activated by PDK1 [88]. By 

contrast, activation of AKT is negatively regulated by Tensin homolog deleted on 

chromosome 10 (PTEN), a tumor suppressor molecule that reverses PT3K action. 

AKT activation is observed in T cells upon TCR engagement and this is further 

upregulated by co-stimulatory signals [89, 90]. Activated AKT contributes to 

activation of several downstream effectors and importantly for IL-2 production, 

phosphorylated AKT in T cells correlates with upregulation of NF- κB activity [91, 

92]. Additionally, PDK1 may contribute to phosphorylation of PKC which leads to 

more NF-κB nuclear translocation and activation [93]. PKC-θ, the predominant 

PKC isoform expressed in T cells promotes NK-κB activation induced by 

TCR/CD28-mediated co-stimulation [94] as indicated by studies using T cells from 

PKC-θ-deficient mice that have demonstrated a role for PKC-θ in the activation of 

NK-κB and AP-1 [95]. Moreover, such T cells from PKC-θ-deficient mice also 

exhibit impaired Ca2+ mobilization and NF-AT activation, and hence decreased IL-2 

production and proliferation [96].  

Co-stimulation via CD28 also leads to activation of two classes of MAPKs: JNK 
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(c-Jun N-terminal kinase) and p38 MAPK and such signaling is dependent on the 

key GEF, Vav1. Activation of Vav1 is conducted by two signals: The first one is 

mediated by Fyn after TCR ligation and the second one is by ZAP-70 after its 

recruitment to the immune synapse. Binding of Vav to PIP3 (via its PH domain) 

increases its GEF activity and activation of Vav causes further cytoskeletal 

rearrangements, IS stabilization and signal transduction [97]. Vav1 also regulates 

the activity of PTK and ITK by PI3K-dependent and independent mechanisms [98], 

signals that are crucial to the positive regulation of PLC-γ1 and subsequent 

increase in intracellular calcium concentration, diacylglycerol-dependent activation 

of PKC and activation of RAS/RAF/ERK through RAS-GRP. Additionally, PTK and 

ITK regulate Wiskott-Aldrich syndrome protein (WASP) which is activated by 

Cdc42 resulting in actin polymerization and cytoskeletal rearrangement [99]. Cdc42 

and another Rho family GTPases, Rac activate p21-activated kinase (PAK), which 

in turn activates the dual specificity kinase, SAPK/ERK1 kinase (MKK4) [100] to 

activate the stress activated protein kinase, c-Jun N-terminal kinase (JNK) by 

phosphorylation of its tyrosine threonine motif residues [101]. Activated JNK (c-Jun 

N-terminal kinase) can then phosphorylate c-Jun at serine 63/73 and hence 

contributes to the activation of AP-1. Similar to ERK, p38 can also activate c-Fos 

via activation of ternary complex factors (TCF) within the serum response element 

(SRE) of c-Fos to complete the activation of AP-1. ERK and p38 MAPK signalling 

coverage to act on c-Fos promoter by inducing members of the TCF family of E 

twenty-six (ETS)-domain proteins such as Elk-1 and SAP-1. Hence, all three ERK, 

JNK and p38 MAPK pathways are required for optimal activation of Elk and SAP-1 

for transcription of c-Fos and resultant AP-1 activation. 

Inducible T-cell co-stimulator (ICOS) is another member of CD28 superfamily that 

is expressed on activated T cells. Unlike CTLA-4, ICOS has its own ligand, ICOS-L 
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(also known as CD275, B7RP-1 and B7-H2). The induction of ICOS expression is 

regulated by both TCR and CD28 signalling. To date, the p85α subunit of PI3K is 

the only signalling molecule shown to interact with ICOS and ICOS stimulation 

appears to lead to greater recruitment, phosphorylation and activation of AKT. As 

with CD28, ICOS delivers positive signals and has been shown to play roles in T 

cell differentiation, cytokine secretion (increase in IL-4 production) and survival 

(namely by inhibiting AICD) [102].  

To sum up, while ligation of the TCR alone results in activation of NF-AT and NF-κB, 

as well as ERK-mediated activation of c-Jun and c-Fos, these signals are not 

sufficient for full transcription of the IL-2 gene. For such transcription to occur, 

co-stimulation-dependent signals are required for further phosphorylation and 

activation of c-Jun and c-Fos by JNK and p38 MAPK respectively, as well as p38 

MAPK-mediated activation of ATFs. Together, such signaling induces full 

transcription and hence, production, of IL-2 in T cells. 

1.3.3 Inhibitory molecules 

As mentioned above anergy may be caused by the absence of co-stimulation 

(CD28:CD80/86 interaction). Although resting DC or macrophages express low 

levels of CD86 [38, 39, 103], many studies have indicated that this default level of 

CD86 expression does not contribute to induction of priming but rather appears to 

be required for the induction of T cell tolerance and reflects that the 

CD80/86:CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) interaction may 

actually be necessary for maintaining T cell tolerance [40-43, 104]. Although all the 

CD28 family of co-stimulators exhibit high homology with each other, some of the 

members exhibit inhibitory effects and include CTLA-4 (also known as CD152), 

inducible co-stimulator (ICOS) and programmed death-1 (PD-1). Additional T cell 
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stimulators and co-inhibitors belong to two other structural families of surface 

proteins, namely the immunoglobulin superfamily and the tumour necrosis factor 

receptor (TNFR) superfamily, with members of the TNFR superfamily including 

OX40, CD40, HVEM and others [105] 

CTLA-4 shows high homology to CD28 and consistent with this is capable of 

binding with CD80 and CD86 [106, 107]. However, CTLA-4 is a major inhibitory 

regulator of the immune response, and acts to inhibit the activation of T cells [108]. 

It is expressed primarily by activated T cells being upregulated following antigen 

activation of T cells. Although CD28 is constitutively expressed on T cells, CTLA-4 

binds CD80 and CD86 with higher affinity than CD28 and hence upregulation leads 

to homeostatic downregulation of immune responses. Indeed, deletion or blockage 

of CTLA-4 inhibits the induction of peripheral and oral tolerance, improves 

anti-tumour responses and aggravates autoimmune disorders. This regulation is 

reflected by the phenotype of CTLA-4 deficient mice, which develop a fatal 

lymphoproliferative disease with massive organ infiltration by immune cells [109]. 

Consistent with this, anti-CTLA-4 mAb treatment causes the promotion of cell cycle 

progression, expansion of antigen-specific T cells in the paracortex and follicle of 

draining lymph nodes and enhanced specific Ab production during what normally 

be the induction of tolerance [110]. In addition, the signalling mediated by CTLA-4 

also appears to play an important role in regulating T cell differentiation, for 

instance, blocking of CTLA-4 appears to promote differentiation of CD4+ T cells into 

IL-4 producing Th2 cells [111]. When CTLA-4 surface expression increases and 

out-competes CD28 for ligand (CD80/86) binding upon T cell activation, this results 

in cell cycle arrest at the G1 phase and decreased production of IL-2, due to 

reduction in activation of the transcription factors such as NF-κB, NFAT and AP-1 

[112-115]. Although, the downstream inhibitory signals mediated by CTLA-4 are 
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still unclear, the upregulation of E3-ligase Cbl-b is reported to contribute to this 

inhibitory signal[116].  

Programmed death 1 (PD-1) is another member of the CD28 superfamily that 

interacts with its ligands, PD-L1 (B7.H1; CD273) and PD-L2 (B7.H2; CD274) to 

cause T cell anergy [117] and is inducibly expressed on T cells, B cells, activated 

monocytes. PD-L1 is constitutively expressed on T cells, B cells, DC, macrophages, 

mesenchymal stem cells [118] and bone marrow-derived mast cells whereas, 

PD-L2 is inducibly expressed on DC, macrophages and bone marrow-derived mast 

cells [119]. Co-ligation of TCR or BcR with PD-1 results in the transduction of an 

inhibitory signal whereas no signal is transduced when PD-1 is cross-linked alone. 

PD-1 and its ligands are therefore thought to play important role in both central and 

peripheral tolerance with PD-1 being upregulated upon tolerogen recognition in 

lymphoid organs before they exit to the periphery. This upregulation of PD-1 is 

stimulated by the common gamma-chain cytokines IL-2, IL-7, IL-15 and IL-21 [120] 

and the role of PD-1 in regulation of T cell tolerance and autoimmunity in periphery 

is clearly illustrated by the phenotype of PD-1-deficient (Pdcd1-/-) mice [121, 122]. 

Further evidence was provided more recently, by antibody blockade of PD-1 and 

PD-L1, PD-L2 which demonstrated a critical role for PD-1, but not CTLA-4, in 

maintaining established peripheral CD4+ T cell tolerance. Moreover, disrupting the 

interaction between PD-1:PD-L1 (by antibody blockade) breaks CD8+ T cell 

tolerance to intestinal self-antigen, resulting in severe enteric autoimmunity [123]. 

In addition, PD-2 has been shown to have a role in oral tolerance, as 

PD-L2-deficient mice fed ovalbumin fail to induce tolerance of their CD4+ or CD8+ T 

cells. 
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1.3.4 Signalling in anergy 

As described above primed T cells exhibit a characteristic pattern of signalling for 

transcription of the IL-2 gene and subsequent clonal expansion of T cells [124, 125]. 

In contrast to primed T cells, anergic T cells exhibit a state of antigenic 

unresponsiveness, which is accompanied by downregulation of IL-2 production and 

thus decreased proliferation. However, anergy induction requires T cell activation 

and new protein synthesis [126] and in fact the proximal TCR signalling machinery 

is still capable of being recruited to the TCR-CD3 complex under conditions of 

anergy although the levels of tyrosine phosphorylation of ZAP-70 were significantly 

reduced compared to primed cells [127]. Nevertheless, a number of signalling 

events have been postulated to be associated with the anergised T cells. For 

example, tyrosine phosphorylation of 39, 75 and 98 kDa proteins are decreased in 

an anergic T cell hybridoma compared with control cells [128]. In addition, 

expression of p56lck (Lck) is decreased while the level of p59fyn (Fyn) is increased 

in anergic Th1 clones induced by anti-CD3 signalling in vitro [129-131]. Restoration 

of Lck and Fyn expression to normal levels recovers these cells from anergy, 

suggesting modulated levels of those tyrosine kinases contribute to the 

maintenance of anergy [130]. Furthermore, anergy induced by oral administration 

of OVA has been shown to cause impaired phosphorylation of TCRζ, ZAP70, LAT 

and PLC-γ1 upon re-stimulation of purified splenic CD4+ T cells with OVA and APC 

in vitro [132]. As mentioned above, activation of LAT leads to the recruitment of 

Grb2, GADS, SLP-76 and PLC-γ1 in activated T cells. However, recruitment and 

localisation of LAT to the lipid raft-rich immunological synapse has been shown to 

be defective in anergic T cells and such defects are believed to result from impaired 

palmitoylation of LAT [133].  

PKC-θ signalling is believed to be important in the prevention of anergy by acting 
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as a positive regulator of NF-κB [134]. Moreover, T cells from PKC-θ-deficient mice 

exhibit impaired Ca2+ mobilisation and NF-AT activation, and hence decreased IL-2 

production and proliferation [96]. An immediate downstream target of NF-AT is the 

early growth response (EGR) family of transcription factors. Expression of EGR2 

and EGR3 is known to be upregulated in both in vitro and in vivo anergised T cells. 

EGR expression appears to be calcineurin and PKC dependent and transduction of 

T cells with EGR2 or EGR3 reduces transcription of the IL-2 gene. Moreover, 

expression of EGR2 and EGR3 also contributes to T cell anergy by upregulating 

expression of the E3 ligase Cbl-b [135]. Together, these results suggest a role for 

EGR proteins in the induction of anergy. 

There is increasing evidence that JNK MAPK-mediated induction of c-Fos and 

activation of AP-1 and NF-AT complexes may also be defective in in vitro and in 

vivo anergised T cells. NF-AT and AP-1 associate to enhance transcription of the 

IL-2 gene. As it is well established that Ca2+-mediated translocation of NF-AT into 

the nucleus is unaffected in anergic T cells [136, 137], such data implies that the 

defect in AP-1 binding to NF-AT likely lies at the level of the AP-1 subunits. Indeed, 

Mondino et al demonstrated that the induction of c-Fos and JunB was severely 

impaired in anergic Th1 cells while NF-AT activation was intact in these cells[138]. 

Consistent with this, Fields et al also reported that ERK1/2 MAPK activation was 

decreased in anergic T cells [139] and it has been shown that the reduced ERK 

MAPK activation and impaired IL-2-dependent proliferation observed in anergic T 

cells is due to downregulation of Ras activation [139, 140]. As mentioned earlier, 

Ras GRP1 promotes activation of Ras in a DAG-dependent manner and it has 

been hypothesized that defects in the Ras GRP1-mediated activation of Ras may 

also be involved in T cell anergy as RasGRP1-deficient thymocytes exhibit reduced 

Ras and ERK activation and proliferation [141]. Upon phosphorylation by 
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diacylglycerol kinases (DGKs), DAG is converted to phosphatidic acid and 

consequently, DAG signaling is downregulated. Decreased DAG signaling has 

been observed in multiple models of T cell anergy and is believed to reduce the 

recruitment of RasGRP1, and hence reduce RasGRP1-mediated Ras activation 

[142, 143]. 

1.3.4.1 The role of Rap1 in T cell anergy 

Anergic anergic T cells exhibit downregulation in Ras-mediated ERK activation and 

it has been proposed that this is regulated by the small GTPase Rap1 

(Ras-proximate-1) which is a small G protein in the Ras superfamily. Rap1 is 

expressed in cells as one of 2 isoforms, Rap1a and Rap1b and is most closely 

related to the 2 isoforms of Rap2: Rap2a and Rap2b, small G proteins with 

overlapping but distinct functions. Like all G proteins, Rap1 exists in an inactive 

guanine nucleotide diphosphate (GDP)-bound state and is activated when GDP is 

exchanged for guanine nucleotide triphosphate (GTP) and is targeted to lipid 

membranes by covalent attachment of lipid moieties to the carboxyl terminus. Rap 

and Ras proteins have similar effector-binding regions that interact predominantly 

with “Ras association” or the structurally similar “Ras-binding domain” present in a 

variety of different proteins. Ras is central in a network controlling cell proliferation 

and cell survival, whereas Rap1 predominantly controls cell adhesion, cell junction 

formation, cell secretion, and cell polarity [144]. These different functions are 

reflected in a largely different set of GEFs and GAPs required for activation and 

desensitisation of these G-proteins and by the finding that downstream effector 

proteins tend to operate in a selective manner in either one of the networks. 

Lack of full ERK MAPK pathway activation has been associated with anergy [145]. 

Additionally, accumulation of active Rap1 has been reported to play a role in the 
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maintenance of anergy in human T cell clones where it has been associated with 

downregulation of ERK activation and IL-2 production, but not in primed T cells. 

Rap1 mediates its inhibitory effects on ERK activation by directly antagonising 

Ras-Raf-1 coupling and it has been suggested that the inability of Rap1 to activate 

such bound Raf-1 is because it is not localised in the plasma membrane [146, 147]. 

Consistent with these ideas, while anergic antigen-specific T cells exhibit less 

phosphorylated ERK than primed T cells following re-stimulation with antigen [13], 

anergic T cells displayed higher expression of Rap1 than primed T cells. Moreover, 

in primed T cells phosphorylated ERK was localised with the TCR and lipid raft 

structures whereas anergic T cells exhibited a more diffuse cellular distribution. By 

contrast, Rap1 localises to the TCR and lipid raft in anergic T cells, but not in 

primed T cells [14]. The details of the mechanisms which participate in this 

inhibitory signalling is still not fully understood, however, the 

Fyn-Cbl-CrkL-C3G-Rap1 signalling complex that accumulates in anergic cells is 

not found in primed T cells [30, 148]. Furthermore, there is an inverse relationship 

between ERK and Rap1 activation in various T cell lines [149] and TCR-coupled 

Rap1 activity is suppressed by CD28 signalling [150-152]. Perhaps reflected the 

inability of Rap1 to activate Raf-1, Rap1 has been reported to stimulate ERK via 

activation of B-Raf, however, peripheral T cells generally do not express B-Raf. 

Interestingly, therefore, data from a transgenic mouse model in which ectopic 

expression of B-Raf was used to examine how Rap1 acted to antagonise ERK 

activation in anergic cells, suggested that the suppression of ERK activity and 

anergy in Tg T cells [153]. Furthermore, defective ERK activation and progressive 

unresponsiveness, or anergy, of T cells occurred in mice that were deficient in 

GTPase-activating protein (Rap1GAP), the negative regulator of Rap1 [154]. C3G, 

which is a GEF, has also been reported to involved in activation of Rap1 via CrkL, a 

adaptor protein containing SH2 that interacts with C3G [155, 156]. Thus the 
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prediction is that Cbl contributes to the initiation of recruitment of CrkL although the 

precise mechanism is not fully understood [157]. 

1.3.5 The immunological synapse 

In lymphocytes, many of the molecules, such as Src family tyrosine kinases, 

heterotrimeric G protein subunits, adaptor proteins, PIP2 and lipid kinases and 

phosphatases, involved in cell signalling are associated with detergent-insoluble, 

sphingolipid and cholesterol-rich domains in the cellular membrane, known as lipid 

rafts [15]. These structures in lipid rafts are critical for T cell signalling as they 

function as specialised signalling compartments in the cell membrane where 

molecules are recruited, phosphorylated and activated [158]. For instance, the 

TCR-CD3 complex is found out of lipid rafts in resting T cells but the complex 

translocates into the lipid raft after ζ chain phosphorylation by Lck [159]. It is 

thought that lipid raft macrodomains the assemble to form the immunological 

synapse (IS) and a stable immunological synapse has been considered to be 

required for optimal activation and priming of T cells [160].  

The IS is formed by several specific molecules which are located at the point of 

contact at the interface between a T cell and APC [15]. The proteins and 

intracellular molecules which are present at the IS are organised into distinct spatial 

domains known as supramolecular activation clusters (SMACs), including central 

supramolecular activation complex (cSMAC) and peripheral SMAC (pSMAC). The 

cSMAC is formed by smaller molecules such as the TCR, CD4 and CD28, which 

arise from small clusters of lipid rafts and combine together as a single, large 

molecular platform at the T cell-APC contact site. As the c-SMAC comprises the 

TCR-CD3 complex and PKC-θ, it is the site for TCR ligation. Within seconds of 

peptide-MHC ligation, the TCR initiates tyrosine phosphorylation signalling that 
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recruits many complex signalling cascades. Following this, within minutes following 

T cell contact with APC, the Lck and Fyn also localise to the cSMAC [161, 162]. 

Additionally, initiation of contact of between the T cell and APC drives rapid 

re-organisation of the cytoskeleton and T cell polarisation [163]. Signalling through 

heterotrimeric G proteins then triggers actin polymerisation and integrin activation 

and then large molecules such as leukocyte function-associated antigen-1 (LFA-1) 

and the cytoskeletal protein, talin form the peripheral SMAC (pSMAC) [160]. LFA: 

ICAM-1 binding has been proposed to contribute to the generation of membrane 

protrusions with TCR-enriched tips that allow the initial scanning of peptide-MHC 

complexes [164]. As mentioned before, anergic T cells fail to localise to the IS and 

furthermore, upon re-stimulation with antigen, translocation of CD3 into the cSMAC 

is defective and thus, assembly of the IS is arrested in human anergic T cells [165].  

1.4 mTOR signalling 

mTOR, mammalian target of rapamycin, is a serine/threonine protein kinase, which 

regulates cell survival, growth, proliferation, differentiation, migration and apoptosis. 

However, recently, it has become increasingly clear that mTOR comprises two 

distinct complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) 

[166].  

1.4.1 mTOR function 

As described in Section 1.1.6, full activation of T cell requires two signals: TCR 

ligation and co-stimulation. When a T cell receives both signal-1 and signal-2, it 

proliferates, differentiates and exhibits effector function. Conversely, when a T cell 

receives only signal-1, lack of co-stimulation, or only signal-2 it can undergo 

apoptosis or become anergic or tolerized. In addition to the lack of IL-2 production 
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and resultant deficient cellular proliferation with blockage at the G1/S checkpoint of 

cell cycle, there is also deficiency of up-regulation in nutrient transporters, for 

instance, Glut1, CD71 and CD98 occurring in anergic T cells and this leads towards 

catabolic metabolism of the cell [167].  In contrast to anergic T cells, primed T cells 

signals by TCR engagement and ligation of co-stimulatory CD28 to undergo 

glycolysis by induction of PI3K-dependent activation of AKT [168, 169]. Since the 

paradigm of two signals has explained T cell activation and anergy, inhibition of 

mTOR was indicated in the induction of anergy in T cells by recent reports. For 

instance, inhibition of mTOR in T cells has been shown to lead to anergy, even 

when the T cell receives both signal I + signal II [170]. In addition, TCR stimulation 

in the absence of mTOR activation results in the generation of Foxp3+ regulatory T 

cells [171]. However, mTOR is not only a downstream transducer of the CD28/IL-2 

signalling pathway, it also participates in several energy and nutrient-sensing 

pathways [172]. For example, mTOR senses cellular nutrients and the levels of 

energy and thus glucose, amino acids and lipids are able to regulate mTOR 

signalling and, in turn, to control commitment to T cell activation or anergy. For 

instance, anergic T cells were induced following treatment of T cells with leucine or 

glucose antagonists whereas, in their absence, T cells that received signal I + II 

and secreted normal IL-2 production [167]. Thus, mTOR plays a critical role in 

controlling induction of anergy in T cells. 

mTOR is also proposed to be an important regulator of in T cell differentiation, 

integrating the diverse signals deriving from the microenvironment in which the 

“second” signal is occurring [173, 174] as CD4+ T cells fail to differentiate into 

effector T cells under appropriate stimulation conditions in the absence of mTOR 

signalling. 
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1.4.2 mTOR complex and signalling 

In T cells, mTOR signalling is initiated by three instructive signals, TCR ligation + 

co-stimulation, growth factors such as insulin, and metabolic cues which are mainly 

derived from nutrients [175]. Once mTOR receives those environmental signals, it 

will be activated through the phosphoinositide3-kinase (PI3K)-AKT pathway. As 

described above, mTOR forms two distinctive signalling complexes, mTORC1 and 

mTORC2.  

1.4.2.1 mTORC1 

mTORC1 is composed of mTOR, Raptor (regulatory-associated protein of mTOR), 

mLST8/GβL (mammalian LST8/G-protein β-subunit like protein), PRAS40 (the 

proline-rich Akt substrate 40 kDa) and Deptor (DEP-domain-containing 

mTOR-interacting protein). In immune system cells, mTORC1 regulates cell growth 

and as a downstream molecule of PI3K-AKT, WNT-GSK3 and AMP-activated 

protein kinase (AMPK) signalling. mTORC1 is activated through PI3K-PDK1-AKT 

signalling and this, in turn, results in the downstream phosphorylation of S6K1 and 

4E-BP-1. Thus, growth factors, cytokines, co-stimulatory molecules and antigen 

receptors, which all activate PI3K, in turn activates AKT by phosphorylation at 

threonine 308 [172], inducing the activation of mTORC1. Normally, tuberous 

sclerosis complex 1 (TSC1) and TSC2 form a functional complex which acts to 

inhibit mTORC1 with the activity of TSC1-TSC2 being upregulated by cellular 

stress and DNA damage and thus consequently to inhibiting mTORC1 [176, 177]. 

However, TSC2 is inhibited by fully activated AKT which phosphorylates TSC2 with 

consequent loss of TSC2 inhibitory effects on mTORC1 [178]. The TSC1-TSC2 

complex is also inhibited by activation of Ras-MAPK signalling [176] and the 

mTORC1 complex is also upregulated by a crucial regulator, Ras homolog 

enriched in brain (Rheb), a small GTPase originally isolated from the central 
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nervous system. The mammalian Rheb family are comprised of Rheb1 and Rheb2. 

Both of Rheb1 and Rheb2, both of which are expressed in T cells, although their 

functions have not been clarified yet [179]. Rheb is regulated by the TSC complex 

which acts as a GTPase-activating protein (GAP) for Rheb. Thus, when the TSC 

complex is inhibited, the active, GTP-bound form of Rheb interacts with, and 

activates, mTORC1 [180]. Rheb is a significant regulator of the activation of 

mTORC1 and hence cell differentiation as Rheb-/- mice have shown the 

importance of mTORC1 signalling in TH1 and TH17 effector differentiation, TH2 

differentiation is preserved in its absence. Indeed, mice which harbour T 

cell-specific deletions of Rheb cannot mount TH1 and TH17 responses in vivo and 

hence, are also resistant to the development of classical experimental autoimmune 

encephalomyelitis (EAE) [181].  

1.4.2.2 mTORC2 

mTORC2 consists of mTOR, rapamycin-insensitive companion of mTOR (Rictor), 

Sin1, mLST8 and Protor [169]. In contrast to mTORC1, understanding of mTORC2 

is limited because of the lack of specific mTORC2 inhibitors. Also unlike mTORC1, 

mTORC2 is not sensitive to nutrients or energy [182] but rather, it is an important 

regulator of the cytoskeleton [183]. For instance, mTORC2 regulates actin 

cytoskeletal rearrangements with mTORC2 being itself negatively regulated by 

phosphorylation of Rictor induced by signaling between small GTPase RAS 

homologue (RHO) and protein kinase C [176]. In contrast to mTORC1, the 

upstream signal which leads to activation of mTORC2 is still unclear although the 

activation of mTORC2 is also controlled by PI3K and leads to the phosphorylation 

of its downstream substrate, AKT at residue S473 [173]. Thus the activity of 

mTORC2 can be indirectly measured by this AKT-parameter. Furthermore, 

activation of mTORC1 is independent of mTORC2-mediated activation of AKT as 
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this reflects phosphorylation at S473 whereas activation of mTORC1 occurs by 

AKT phosphorylated at T308 [173]. Additionally, such activity of AKT is controlled 

by p70 S6 kinase as this negatively regulates mTORC2 by phosphorylation of 

Rictor at Thr1135 [184].  

1.4.2.3 S6K1 

Activated S6K1 contributes to upregulation of mRNA translation and cell growth by 

promoting the biosynthesis of the translational apparatus of the cell [176, 177]. 

mTORC1 activity can be measured by phosphorylation of p70 ribosomal S6 kinase 

1 (S6K1) and phosphorylation of the translational inhibitor eukaryotic initiation 

factor 4E binding protein 1 (4EBP-1) [185] as activation of mTORC1 leads 

phosphorylation of S6K1. S6K1 can also phosphorylate and initiate the degradation 

of IRS1, an intermediary between the insulin receptor and PI3K, and thus IRS fails 

to transduce the signal from insulin receptor to PI3K [177, 186-190]. This explains 

the role of S6K1 in desensitizing tissues to insulin as S6K1-deficient mice appear 

hypersensitive to insulin and do not display the obesity-induced insulin resistance 

in wild-type mice which exhibit a dramatic increase in S6K1 activation that is 

accompanied by increasing in IRS1 phosphorylation and attenuation of 

insulin-induce AKT activation [191]. Furthermore, S6K1 can also negatively 

regulate GSK3, which is constitutively activated in the absence of growth factors 

and negatively regulates the mTOR pathway by activation of TSC complex, and 

hence in turn S6K1 activates mTOR signalling and promotes cell proliferation [192, 

193]. However, whether S6K1 can also negatively regulate other input signals from 

other receptor systems that activate mTOR is still unknown. 

1.4.2.4 AMPK 

AMPK (5’-AMP-activated protein kinase) is a heterotrimeric serine/threonine kinase, 
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which is composed of a catalytic α subunit (63 kDa) and regulatory β and γ subunits. 

The α and γ subunits are connected by the β subunit with the γ regulatory subunit 

comprising the four cystathionine-β-synthase domains which can bind ATP or AMP 

interchangeably. With this structure, AMPK and liver kinase B1 (LKB1) act as 

cellular energy sensors and transducers regulated by various metabolic stresses. 

AMPK detects bioenergetic fluctuations in cells and synergises with LKB1 to 

maintain cellular energy homeostasis by promoting catabolic pathways of ATP 

production whilst limiting processes consuming ATP [194]. Thus AMPK is sensitive 

to changes of the AMP: ATP ratio in the cell and is activated by stresses that 

stimulate ATP consumption or inhibit ATP production [195]. For instance, while the 

ratio of AMP/ATP increase, AMP binds to the γ subunit and thus increases the 

kinase activity of the α subunit through allowing phosphorylation of AMPKα at 

threonine 172 by upstream kinases [196, 197].  

Three upstream AMPK kinases have been identified so far: LKB1, 

calmodulin-dependent protein kinase kinase β (CamKKβ), and transforming growth 

factor-β (TGFβ)-activated kinase-1 (TAK1) [198-201]. LKB1 phosphorylates and 

activates AMPK subfamily members in response to bioenergetic stress, including 

nutrient withdrawal and disruption of mitochondrial energy production [201-203]. 

Additionally, LKB1-deficient T cells exhibit decreased TCR- and CD28- mediated 

AMPK activation [204]. This indicates that LKB1 play a role as intermediate linker 

between AMPK and antigen receptors. Deletion of LKB in T cells causes extensive 

apoptosis of T cells, impaired thymic selection and dysregulation in T cell 

metabolism and proliferation. Moreover, TCR stimulation contributes to increasing 

transient fluctuation in cellular energy, which leads LKB1-dependt AMPK activation. 

AMPK is phosphorylated immediately following receiving signals from TCR ligation 

and therefore results in the production of ATP to initiate T cell metabolism during 
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early stages of activation [205]. In addition, Ca2+ flux mediated by TCR ligation is 

also an activator of AMPK through CamKKβ, in lymphocytes [205]. However, 

whether TAK1 is able to mediate similar effects to LKB and CamKKβ in T cells is 

still unknown. 

Recent data indicate that AMPK can influence diverse aspects of T-cell biology 

beyond metabolism, including T-cell development, peripheral T cell homeostasis, 

and T cell effector function [166]. For example, mRNA translation is a highly energy 

consuming process in proliferating cells, accounting for around 20% of cellular ATP 

consumption [206] and since AMPK is a cellular energy sensor, it thus plays an 

important role for controlling mRNA translation. AMPK appears to downregulate 

mRNA translation via negatively regulating mTORC1 signaling through activation of 

TSC1-TSC2 complex or inhibition of Raptor [207-210]. Consistent with this, T cells 

defective in LKB1 or AMPKα1 exhibit increased phosphorylation of mTORC1 and 

consequent upregulation of its downstream molecules, S6K and 4E-BP [204] 

indicating that LKB and AMPK act to antagonize mTORC1 effectors upon TCR 

stimulation. AMPK also acts as a metabolic cell cycle checkpoint occurring in 

mammalian cells in response to shortage of nutrients [208, 210, 211] via mediating 

phosphorylation of Raptor or activation of the cell cycle regulator p27kip1 [212]. 

1.4.2.5 c-Myc 

The transcription factor c-Myc is a potent regulator in metabolic pathways and 

critical for cellular growth and proliferation, differentiation and apoptosis [213-215], 

Overexpression of c-Myc is accompanied by high proliferation both in vivo and also 

in cell culture, in vitro. Indeed, quiescent cells can be driven into cell cycle by 

ectopic expression of c-Myc [216] whereas by contrast, low expression of c-Myc 

causes accumulation of nondividing and differentiated cells [217]. Consistent with 
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this, deregulation of c-Myc expression plays a prominent role in human diseases 

with for instance, overexpression of c-Myc occurring in most cancer cells [218]. 

Thus, normally c-Myc expression is very unstable in quiescent cells that do not 

receive any stimuli. However, upon serum stimulation and cell cycle entry, c-Myc 

becomes transiently stabilised, with consequent accumulation of c-Myc to high 

levels. Activation of Ras has been indicated to contribute to the stabilisation of 

c-Myc, the downstream substrate of Ras, activated Raf, also appearing to stabilise 

c-Myc via the Raf-MEK-ERK kinase cascade, suggesting that regulation of c-Myc 

stability might be mediated by ERK phosphorylation.  

c-Myc exhibits two phosphorylation sites, threonine 58 and serine 62, in its 

N-terminal, which are serum regulated. Serine 62 was indeed shown to be a 

downstream substrate of ERK whilst threonine 58 is a targeted of Glycogen 

Synthase Kinase (GSK-3β) [219-221]. Ras-mediated signalling pathways appear to 

regulate phosphorylation at both of these sites via the Raf/MEK/ERK kinase 

cascade and the phosphatidylinositol-3-OH kinase (PI3K)/AKT pathway, which 

negatively regulates GSK-3β. Serine 62 phosphorylation stabilises c-Myc whereas 

Threonine 58 phosphorylation destabilises c-Myc [222] although Threonine 58 

phosphorylation requires prior phosphorylation of Serine 62 [220, 222]. Mitogen 

stimulation causes new c-Myc protein synthesis and Ras activation and thus 

contributes to stabilisation of c-Myc protein via ERK-mediated phosphorylation of 

Serine 62 and by prevention of c-Myc phosphorylation on Threonine 58 by 

AKT-mediated inhibition of GSK-3β, a dual-pronged mechanism of stabilising 

c-Myc and hence leading to increased c-Myc protein levels [223]. 

Induction of c-Myc expression occurs immediately after TCR stimulation and this in 

turn initiates the metabolic response for producing enough energy to support rapid 

proliferation [224]. This is because the kinase activity of mTORC1 appears to 
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facilitate c-Myc translation by directly phosphorylating the translational repressor 

4E-BP, which results in the release of elF-4e and upregulation of c-Myc protein 

levels. Moreover, as c-Myc is a transcriptional repressor of TSC2 gene expression, 

this suggests that high c-Myc expression will lead to less TSC2 protein and hence, 

higher mTOR activity [225]. Thus by directly regulating the expression of Myc 

protein, high levels of mTOR activity synergizes with Myc expression to 

cooperatively enhance protein translation and elongation [225]. 
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Figure 1.1 Optimum activation of naïve T cells requires two signals. 

Engagement of the TCR by peptide:MHC complex (signal 1) in the 

absence of co-stimulation can lead to T cell anergy and/ or apoptosis. In 

order for T cells to proliferate and begin the process of differentiation and 

production of effector cytokines, CD80/CD86 engagement of CD28 

(signal 2) must take place alongside TCR engagement by peptide:MHC 

complex. APCs, namely DCs, upregulate CD80/CD86 expression after 

maturation, which occurs after activation by the pathogen’s products, 

ensuring immune responses develop only when needed.  
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Figure 1.2 TCR-mediated signalling. 

TCR binding by the MHC-peptide complex results in the activation of Fyn, 

associated with CD3, and Lck, associated with CD4. Activated Lck and 

Fyn then phosphorylate the ITAM of CD3, allowing the recruitment and 

activation of ZAP-70. ZAP-70 phosphorylates LAT, which delivers the 

activation signals through recruitment and assembly of a signalosome 

containing Grb2, GADS, SLP-76 and PLCγ-1. PLCγ-1 hydrolyses PIP2 to 

yield IP3 and DAG. IP3 binds to its receptor on the membrane of the ER 

triggering Ca2+ release and subsequent Ca2+ influx through plasma 

membrane channels; this leads to an increased intracellular Ca2+ 

concentration which will lead to the activation of calcineurin. Activated 

calcineurin de-phosphorylates NFAT, allowing its translocation to the 

nucleus where it associates with other transcription factors, promoting 

transcription of many genes. DAG promotes membrane association and 

activation of PKCθ and RasGRP1. PKCθ mediates the phosphorylation of 

IKK complex phosphorylates IκB, releasing it from NF-κB, and thus 

allowing NF-κB to translocate to the nucleus, where it will promote gene 

transcription. RasGRP1 promotes the conversion of ras to its activated 

form and active Ras recruits Raf to the plasma membrane, allowing its 

activation. Raf phosphorylates MEK, which, in turn, phosphorylates Erk. 

Erk activation leads to the activation of c-Fos, allowing the formation of 

the heterodimeric transcription factor AP-1. 
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Figure 1.3 Co-stimulation-dependent signalling in T cells. 

TCR binding by the MHC-peptide complex in the presence of CD28 

co-stimulation allowing the full activation of the signalling events which 

lead to T cell priming. In this figure, signalling events induced by the 

TCR-mediated signalling are also depicted, but not described; see text 

and Figure 1.2. CD28 engagement enhances TCR proximal signals 

through Lck and PI3K. Activated PI3K converts PIP2 into PIP3 which 

allows the recruitment of cytoplasmic proteins containing pleckstrin 

homology domains to the plasma membrane, such as PDK1, Akt and 

Vav1. Akt is activated by PDK1 and will contribute to the activation of 

NF-κB by what is thought to be indirect activation of the IKK complex. 

PDK1 may also phosphorylate PKCθ thus contributing to its full activation 

and hence, leading to more NF-κB nuclear translocation. Vav1 requires 

Fyn, ZAP-70 and PIP3 to become fully activated. Activated Vav1 

associates with phosphorylated SLP-76 and then activates the plasma 

membrane-localised Cdc42 and Rac, which in turn activate Pak1 and 

Pak3. The Paks will activate MKK4, which in turn phosphorylates Jnk, 

thus activating it resulting in phosphorylation of Jun. The Paks also 

activate MKK3/6, which in turn phosphorylates p38 MAPK. Similarly to 

Erk, p38 MAPK contributes to the activation of c-Fos, and the activation of 

c-Fos and Jun resulting from Erk, p38 and Jnk MAPkinase recruitment 

allows formation of the heterodimeric transcription factor AP-1, which is 

necessary for IL-2 transcription. 
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Figure 1.4 mTOR signalling 

mTOR is able to be activated by integration of insulin, growth factors and 

amino acids. It also senses cellular nutrient and energy levels. mTOR 

signals via two distinct complexes, mTORC1 and mTORC2. mTORC1 

contains the scaffolding protein regulatory-associated protein of mTOR, 

Raptor. Activation of mTORC1 through the PI-3K-Akt promotes protein 

translation and regulates cell proliferation and growth by upregualtion of 

translational regulators S6K1 and inhibition of 4E-BP1. However, 

activation of PI3K-Akt signalling is negatively regulated by phosphatase 

and tensin homologue (PTEN). Moreover, activation of AKT and GSK3 

lead to phosphorylate TSC2 with consequent loss of TSC2 inhibitory 

effects on mTORC1. The TSC1-TSC2 complex is also inhibited by 

activation of Ras-MAPK signalling. AMPK senses bioenergetic 

fluctuations in cells, thus while the ratio of AMP/ATP increased, AMPK 

phosphorylates TSC2 and Raptor and leads to inhibit mTORC1. Different 

from mTORC1, mTORC2 consists of Rictor which mainly regulates actin 

cytoskeletal rearrangements. mTORC2, activated by PI3K, 

phosphorylates Akt at a serine residue S473. The phosphorylation of AKT 

can be controlled by p70 S6 Kinase as this negatively regulates mTORC2 

by phosphorylation of Rictor at Thr1135. 

 



Chapter 2 
MATERIALS AND METHODS 
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2 MATERIALS AND METHODS 

2.1 Animals 

Ovalbumin (OVA) TCR transgenic mice on the BALB/c background (DO.11.10 

BALB/c) were used as donors of antigen-specific T cells for in vitro experiments. 

These Tg T cells recognise OVA323-339 peptide in the context of I-Ad and were 

detected by a clonotypic mAb KJ1.26 [226]. The hCARΔcyt Tg mice (on the BALB/c 

background) expressing the human coxsackie/adenovirus receptor (hCAR) with a 

truncated cytoplasmic domain (hCARΔcyt) on their thymocytes and T lymphocytes 

[227], doubly transgenic OVA-TCR hCARΔcyt mice were bred in house by crossing 

hCARΔcyt with OVA TCR mice and selected by phenotyping hCAR and KJ1.26 

expression on CD4+ T cells by FACs analysis. All mice were maintained at the 

Central Research Facility (CRF), University of Glasgow regarding to Home Office 

regulations. 

2.2 Cell culture reagents 

All cell culture reagents were purchased from Invitrogen (UK). All other reagents 

were from Sigma-Aldrich (UK) unless otherwise descripted. Cell culture was 

maintained under aseptic conditions at 37°C, 5% CO2. 

2.3 Preparation and purification of CD4+ T cells  

2.3.1 Generation of lymph node cells 

Peripheral (axillary, brachial, inguinal, cervical and popliteal) lymph nodes (PLN) 

and mesenteric lymph nodes (MLN) were removed from OVA TCR Tg, hCAR Tg or 
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hCARΔcyt x OVA TCR double Tg mice, pooled and forced through Nitex (Cadisch 

Precision Meshes, UK) to generate single cell suspensions. LN cells were washed 

with sterile RPMI 1640 media and counted by trypan blue exclusion. The 

percentage of CD4+ KJ1.26+ T cells was calculated by flow cytometry. 

2.3.2 Isolation of CD4+ T cells 

CD4+ T cells were isolated by MACS CD4+ Isolation kit according to the procedures 

of Miltenyi Biotec (UK) via an indirect magnetic labelling system. CD4- cells, such 

as cytotoxic T cells, B cells, NK cells, dendritic cells, macrophages, granulocytes 

and erythroid cells were indirectly magnetically labelled by conjugating with a 

cocktail of biotin-conjugated antibodies against CD8a (Ly-2), CD45R (B220), DX5, 

CD11b (Mac-1) and Ter-119, and sequential binding to anti-biotin MicroBeads. The 

magnetically labelled CD4- cells were depleted by retention within the MACS 

column while the unlabelled CD4+ T cells flowed through the column and collected.  

The details of the whole procedure were as follows: The LN cells were prepared as 

a single cell suspension as described in 2.3.1. The single cell suspension was 

centrifuged and the cell pellet re-suspended in 40 µl of MACS buffer (0.5% BSA/ 2 

mM EDTA/PBS) and incubated with 10 µl of the biotin-conjugated antibodies per 

107 total cells, at 4°C for 10 min. In turn, 30 µl of MACS buffer (per107 cells) and 20 

µl of anti-biotin MicroBeads (per 107 total cells) were added in and incubated at 4°C 

for 15 min. Cells were washed with MACS buffer and centrifuged (300 g, 10 min). 

The cell pellet was re-suspended in 500 µl of MACS buffer per 108 total cells before  

being passed through the column. 

2.3.3 Induction of anergy and priming of T cells in vitro 

Tissue culture plates (6-well; Corning) were pre-coated with anti-mouse CD3ε Ab 
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(Clone 145-2C11; 1 µg/well) in the presence or absence of 1 µg/ml anti-mouse 

CD28 (Clone 37.51, BD Pharmingen, Oxford, UK) in PBS (1ml/well) and incubated 

at 4°C for 16 hours. Thereafter, the plates were washed with PBS before naïve 

CD4+ T cells were plated out onto the plates and cultured in complete medium 

(RPMI 1640, 10% FCS, 2 mM L-glutamine, 100 U/ml penicillin, 100 U/ml 

streptomycin, 0.05 mM 2-ME) with anti-mouse CD3ε Ab in presence or absence of 

1 µg/ml anti-mouse CD28 Ab to induce priming or anergy, respectively [32, 34, 228]. 

After 48 hours, the cells were washed twice with complete medium, re-seeded at a 

concentration of 1x106 cells/ml/well in fresh plates and rested in complete RPMI 

medium for an additional 48 hours. 

2.4 Functional analysis of T cells during the maintenance 

phse of anergy and priming in vitro. 

2.4.1 Generation, maturation and antigen-loading of dendritic 
cells 

Dendritic cells (DC) were generated from bone marrow of mice from the BALB/c 

background. Briefly, femurs and tibiae were asceptically removed and the bone 

marrow was harvested by using a syringe with 23 g needle by flushing RPMI 1640 

medium through the bone. Single cell suspensions were prepared and washed with 

RPMI 1640 medium. Cells were counted by trypan blue exclusion and DC 

progenitors were plated at 2 x 105/ml in DC medium (RPMI 1640, 10% 

GM-CSF-conditioned media, 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin, 100 

U/ml streptomycin, 0.05 mM 2-ME) and incubated at 37°C for 7 days. Cells were 

supplemented by addition of fresh DC medium (5 ml per plate) at day 3 and days 5 

before being matured by 1 µg/ml LPS (Salmonella abortus, Sigma) for 24 hours at 

day 7. Mature DCs were loaded with 1 µg/ml of OVA323-339 at 37°C for 3 hours and 
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then washed. 

2.4.2 Production of GM-CSF condition media 

Conditioned medium (supernatant) from the GM-CSF-secreting X63 fibroblast cell 

line was used as the source of GM-CSF for the culture of DCs. X63 cells were 

quickly thawed at 37°C in a water bath, washed and cultured in 5 ml complete 

RPMI 1640 medium supplemented with 0.5 mg/ml of G418. After one week, cells 

were re-suspended in fresh complete media without G418 for further culture. One 

to two weeks later, cells were centrifuged, the supernatant were harvested and 

filter-sterilised before freezing. 

2.4.3 Culture of T cells with DC 

The anergic and primed T cells that were induced with anti-CD3 in absence or 

presence of anti-CD28, respectively, were harvested from tissue-culture plates. 

Naïve T cells were freshly isolated from LN cells of OVA TCR Tg or hCARx OVA 

TCR mice as a primary response control. The naïve, anergic and primed Tg T cells 

were analysed by flow cytometry to calculate the percentage of “live CD4+ KJ+ T 

cells” and then stimulated by culturing with LPS-matured, OVA-loaded DC at a ratio 

of 1:1 (1x106 DC+1x106T cells) in complete RPMI 1640 medium (2ml/well) in 

12-well plates (Costar, Corning, NY). Alternatively, in some experiments cells, 2 x 

106 DC + 2 x 106 T cells, were cultured in complete RPMI 1640 medium in 6-well 

plates (Costar, Corning, NY). T cells and DC were cultured together for up to 4 

days at 37°C in 5% CO2 incubator (Jencons, Leighton Buzzard, UK). 

2.4.4 Assessment of antigen-specific proliferation by [3H] 
Thymidine 

Naïve, anergic and primed T cells were cultured with DC ± OVA323-339, as described 
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in section 2.4.1, at a concentration of 2x105 DC + 2x105 Tg T cells per well, in 

complete RPMI medium, in triplicate for 48 h in 96-well flat-bottomed plates 

(Corning) at 37°C in a 5% CO2 incubator. DNA synthesis was measured in all 

samples by addition of 1µCi per well of [3H] thymidine (Western Infirmary, Glasgow) 

for 16 hours. Cells were then harvested onto glass fibre filter mats (Wallac, 

Warrington, UK) using a Betaplate 96-well harvester (Amersham). [3H] thymidine 

incorporation into DNA was assessed by a 1205 betaplate liquid scintillation 

counter (Amersham). 

2.4.5 Assessment of antigen-specific cytokine production in vitro 

The cytokine production of T cells were quantified by enzyme-linked 

immunosorbent assay (ELISA). To measure IL-2 and IFNγ in supernatants that 

were harvested at different time points (24, 48 and 96 hr), Immulon 4 plates (Costar) 

were coated with rat anti-mouse IL-2 or IFNγ capture Abs (1 or 1.5 µg/ml, 

respectively; 50µl/well; BD Pharmingen) for 16 hours at 4°C before being blocked 

with 10% FCS in PBS for 1 h at 37°C. The sample supernatants were added for 3 

hours at 37°C and in turn following washing with 0.05% Tween®-20 in PBS, were 

subsequently incubated with biotinylated rat anti-mouse IL-2 or IFNγ detection Abs 

(0.5 or 1 µg/ml, respectively; 50 µl/well; BD PharMingen) for 1 h at 37°C. Plates 

were then incubated with 50 µl extravidin peroxidase per well (diluted 1:1000 in 

PBS/0.2% FCS/0.05% Tween®-20; Sigma-Aldrich) for 1hour at 37°C before being 

treated with TMB (3,3’,5,5’-Tetramethylbenzidine) Microwell Peroxidase Substrate. 

Recombinant murine IL-2 or IFNγ preparations (BD Pharmingen) were used to 

produce standard curves from which cytokine levels in samples were calculated. 

2.4.6 CFSE labelling of OVA TCR Tg lymphocytes 

CD4+ T cells were generated from PLN and MLN from OVA TCR or hCAR x OVA 
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TCR mice and isolated by MACS CD4+ T cells isolation kit as described in Sections 

2.3.1 & 2.3.2. CD4+ T cells were stained with CFSE before or after the induction of 

priming or anergy. The naïve CD4+ T cells (staining before induction phase), 

anergic and primed T cells (staining after induction phase) were washed twice in 

PBS via centrifugation at 450 g for 5 min and then cells were re-suspended at 1 

x107/ml in cold PBS and labelled with 5 µM 5-(and-6)-carboxyfluorescein diacetate, 

succinimidyl ester (5(6)-CFDA SE; CFSE; Invitrogen) for 10 min at 4°C. Next, cells 

were washed in blocking buffer (2% FCS/PBS) immediately. The CFSE-stained 

cells were washed two times more with blocking buffer before stimulation or 

co-culture with DC. 

2.4.7 eFluor 670 labelling of Tg lymphocytes 

CD4+ T cells were generated from PLN and MLN from OVA TCR or hCAR x OVA 

TCR mice and isolated by MACS CD4+ T cells isolation kit as described in Section 

2.3.1 & 2.3.2. CD4+ T cells were stained with eFluor 670 before or after induction of 

priming or tolerance. The naïve CD4+ T cells (staining before induction phase), 

anergic and primed T cells (staining after induction phase) were washed twice in 

PBS via centrifugation at 450 g for 5 min before cells were re-suspended at 1 

x107/ml in PBS and labelled with 5 µM eFluor 670 (eBioscience) for 10 min at 37°C 

in the dark. Labelling was then terminated by incubating in cold complete media 

(containing ≥ 10% FCS) for 5 min at 4°C. The eFluor 670-loaded cells were washed 

three times with complete media before induction of anergy and priming or 

alternatively, co-culture with DC. 
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2.5 Functional analysis of T cells during the induction 

phase of anergy and priming in vitro.  

2.5.1 Assessment of DNA synthesis in anergic and primed T cells 
during induction phase 

Naïve CD4+ T cells were cultured with anti-CD3 in presence or absence of 

anti-CD28, as described in section 2.3.3, at a concentration of 2x105 Tg T cells per 

well in complete RPMI medium, in triplicate, for 48 or 96 h, in 96-well flat bottomed 

plates (Corning) at 37°C in a 5% CO2. DNA synthesis was measured in all samples 

by addition of 1 µCi per well of [3H] thymidine (Western Infirmary, Glasgow) for 16 

hours. Cells were then harvested onto glass fibre filter mats (Wallac, warrington, 

UK) using a Betaplate 96-well harvester (Amersham). [3H] thymidine incorporation 

into DNA was assessed by a 1205 betaplate liquid scintillation counter 

(Amersham). 

2.5.2 Assessment of cytokine production during induction of 
anergy and priming in T cells 

The cytokine productions of T cells during induction of anergy and priming were 

quantified by ELISA. Naïve CD4+ T cells were plated out onto 6-well plates coated 

with anti-CD3 in presence or absence of anti-CD28 at a concentration of 10x106 

/4ml/well. The supernatants were harvested at 48 h and the cells washed twice with 

complete medium, and rested in complete RPMI medium for an additional 48 h (96 

h of induction) before supernatants were harvested again. The measurement of 

IL-2 and IFNγ in supernatants by ELISA was described in section 2.4.5. 
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2.5.3 Assessment of cellular proliferation by eFluor 670 during 
induction phase of T cell priming or anergy. 

CD4+ T cells were generated from PLN and MLN from OVA TCR or hCAR x OVA 

TCR mice and isolated by MACS CD4+ T cells isolation kit as described in Section 

2.3.1 & 2.3.2. Naïve CD4+ T cells were washed twice in PBS via centrifugation at 

450 g for 5 min and cells were re-suspended at 1 x107/ml in PBS and labelled with 

5 µM eFluor 670 (eBioscience) for 10 min at 37°C in the dark. Next, labelling of 

cells was stopped labelling by incubating in cold complete media (containing ≥ 10% 

FCS) for 5 min at 4°C. The eFluor 670-loaded cells were washed three times with 

complete media before plating out onto 6-well plates pre-coated with anti-CD3 ± 

anti-CD28 for induction of priming and anergy for 4 days, respectively. The cells 

were harvested everyday and the profile of eFluor 670 fluorescence analysed by 

FACS (FACS Calibur, BD). 

2.6 Transduction of Tg T cells with bicistronic Ad Rap1 

WT and S17N adenoviral gene transfer construct 

2.6.1 Preparation of Adenovirus  

Ad Rap1 WT and Ad Rap1 S17N were amplified from the stock. High-titer stocks of 

Ad Rap1 WT and AdRap1 S17N were produced by large scale amplification of a 

plaque pure stock of adenovirus in a HEK293 cell line (ATCC, Rockville, MD, CRL 

1573; Human Adenovirus 5-transformed Human Embryonic Kidney 293 cell line). 

Low passage 293A cells were sub-cultured in complete minimal essential medium 

(Dulbecco’s modified Eagle’s Medium (DMEM); 10% FCS, 2 mM L-Glutamine, 100 

U/ml penicillin and 100 µg/ml streptomycin (all Invitrogen)), in 75T Flask (Corning). 

Subsequently, HEK293 cells were sub-cultured 2-3 times in 150T flasks for large 

scale amplification. Cells were allowed to reach 80-90% confluence before being 
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infected with Ad Rap1 WT and S17N (approximately 1 plaque forming unit (pfu) per 

cell). The medium was replaced every 3 days until the cells started to detach from 

the flask. Fresh medium (10 ml) was added to the flasks until this cytopathic effect 

was complete. Cells were harvested immediately and centrifuged 1500 rpm for 10 

minutes at room temperature. The cell pellet containing virus was resuspened in 

500 µl sterile, fresh, complete culture medium. The cells were lysed with three 

consecutive freeze-thaw cycles: freeze cells in a dry ice/ethanol bath; then place 

the tube in a 37°C water bath until the ice is just thawed. Do not allow the 

suspension to reach 37°C. After the third cycle, briefly centrifuge to pellet debris 

and transfer the lysate to a clean, sterile centrifuge tube and store the lysate at 

-20°C. The purification of virus was using Adeno-X Virus Purificaiton Kit (Cat. No. 

632248) and the titer of the lysate was assessed by Adeno-X Rapid Titer Kit (cat. 

No. 631028). All steps were following with the manual. 

2.6.2 Adenoviral transduction of hCAR and hCAR X OVA TCR 
cells  

LNs were generated from hCAR or hCAR x OVA TCR mice and single cell 

suspensions were prepared, as described in section 2.3.1. hCAR LN cells were 

then infected with adenovirus ( Ad Rap1 WT or Ad Rap1 S17N) for 30 min at a 

variety of multiplicities of infection (MOI) before excess Ad was washed off and the 

cells were subsequently induced with anti-CD3 in absence or presence of 

anti-CD28 for induction of anergy and priming in T cells. In order to examine the 

optimal MOI for transduction of Tg T cells, LNs were infected with Ad at MOI 0, 3, 

10, and 30. All cells were stained for CD4 expression and with 7-AAD to assess 

viability prior to induction experiments proceeding. 
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2.6.3 Assessment of cellular proliferation regulated by Rap1 
during induction phase 

LNs were generated from hCAR or hCAR x OVA TCR mice and single cell 

suspensions were prepared, as described in section 2.3.1. hCAR LN cells (10 x 106 

/ml) were then infected with adenovirus ( Ad Rap1 WT or Ad Rap1 S17N) for 30 

min at MOI 30 in infection media (DMEM/10 mM HEPES) before excess Ad was 

washed off. Subsequently the infected cells were loaded with 5 µM eFluor 670 in 

(Section 2.4.7) before induction of anergy and priming in T cells for 4 days (Section 

2.3.3). The cells were harvested everyday and analysed by FACS. 

2.6.4 Induction of anergy and priming of T cells using immature 
and mature DC  

2.6.4.1 Assessment of cellular proliferation during induction phase. 

In order to investigate induction of priming and tolerance in T cells under more 

physiological conditions, LN cells (3 x 106/ml/well) generated from hCAR x OVA 

TCR Tg mice were infected, or not, with adenovirus (Ad Rap1 WT and S17N) for 30 

min at MO 30 in infection media (DMEM/10 mM HEPES) before excess Ad was 

washed off and the cells were subsequently incubated for 24 h in complete media. 

The Ad-infected cells were analysed for GFP expression after transduction for 24 h 

and all cells were stained with 5 µM eFluor 670 before co-culturing with 

OVA-loaded, immature or LPS-matured DC in plates for 4 days. Cellular 

proliferation in terms of eFluor 670 fluorescence was analysed by FACS. 

2.6.5 Analysis metabolism of induction of anergy and priming in 
T cells by metabolomics 

Naïve CD4+ T cells were generated from Tg mice and isolated by MACS CD4+ T 

cell isolation kit. The CD4+ T cells then stimulated with complete media alone, 
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anti-CD3 alone and anti-CD3 + anti-CD28, as described in section 2.3.3, at a 

concentration of 2x106/4 ml/well Tg T cells per well in complete RPMI medium, for 

48 hours, the cells were washed twice with complete medium, re-plate and rested 

in complete RPMI medium for an additional 48 h at 37°C in 5% CO2. The incubation 

medium (secreted metabolites) and stimulated cells were harvested at 24, 48, 72 

and 96 h. The sample preparation for metabolomics involved mixing of 0.2 ml of 

incubation medium with 0.8 ml of acetonitrile in Eppendorf tubes. The stimulated 

cells were washed with PBS three time at 37°C aspirating PBS completely before 

addition of 1 ml of Extraction solution (Methanol: Acetonitrile: H2O = 50:30:20) 

(cooled to 0°C). The incubation medium samples were shaken by Thermo mixer at 

1440 rpm for 12 min, at 4°C whilst lysed cell samples were centrifuged at 13000 

rpm for 15 min at 0°C. The supernatant from both samples were transferred to 

fresh Eppendorf tubes and kept at -20° 

2.7 Western Blotting 

Naïve CD4+ T cells (1x107) were stimulated with anti-CD3 in the presence or 

absence of anti-CD28 for 0, 1, 2, 4, 8, 24, 48 and 96 h during induction of priming 

and anergy as described in 2.3.3. The cells were harvested at each timepoint and 

lysed in lysis buffer (50mM Tris-HCl buffer pH 7.5 containing 150 mM NaCl, 2% (v/v) 

Nonidet P40, 0.25% (w/v) sodium deoxycholate, 1mM EDTA (pH 8.0), 1 mM PMSF, 

10 mM Sodium orthovanadate, 10 µg/ml chymostatin, 10 µg/ml leupeptin, 10 µg/ml 

antipain, 10 µg/ml pepstatin A; all obtained from Sigma) for 30 min on ice before 

centrifugation of lysates at 16,000 g for 15 min at 4°C and the resulting 

supernatants (cell lysates) were stored at -20°C. The protein concentration of the 

cell lysates was determined by the Micro BCA protein assay reagent kit (Pierce, 

Rockford, IL). Samples (30 µg) were mixed with an equal volume of 2x SDS PAGE 
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gel loading buffer (20% (v/v) Glycerol, 4% (w/v) SDS, 100 mM Tris-HCl pH 6.8, 2 

µg/ml Bromophenol Blue, 5% (w/v) β- mercaptoethanol), boiled for 5 min and then 

then separated (Precision Plus Protein Standard markers were added to one well) 

by 4-12% NuPAGE Bis-Tris gels with NuPAGE MOPS running buffer 

(supplemented with NuPAGE antioxidant) at 180 V for 1 hour following the 

manufacturers instructions. Proteins were then transferred onto nitrocellulose 

membranes (Amersham, UK) using NuPAGE transfer buffer with 20% (v/v) 

methanol at 30 V for 1 hour. 

Following transfer, nitrocellulose membranes were washed once in TBS/Tween 

(0.5 M NaCl and 20 mM Tris pH7.5 with 0.1% (v/v) Tween-20) and blocked for 1 h 

in TBS/Tween containing 5% non-fat milk protein. The membranes were then 

incubated with the appropriate primary antibody (Table2.2) which is diluted in 

TBS/Tween/5% non-fat milk solution in 1:1000 in cold room (4°C) overnight. 

Following incubation with primary antibody nitrocellulose membranes were washed 

with TBS/Tween buffer 5 times (5 min each time) and incubated with 

HRP-conjugated secondary antibody (Table 2.2) within TBS/Tween/5% non-fat 

milk for 1 hour at room temperature. Again, the nitrocellulose membranes were 

then washed 5 times (5 min each time) with TBS/Tween buffer before incubation 

with a mixture of equal volumes of ECL solution A (2.5 mM luminol, 0.4 mM 

p-coumaric acid and 100 mM Tris buffer pH 8.5) and ECL solution B (0.002% 

hydrogen peroxide and 100 mM Tris buffer pH 8.5) for 1 min before exposing blots 

to Kodak X-Ray film. Nitrocellulose membranes were stripped and re-probed with 

other primary antibodies if necessary. The blots were stripped at room temperature 

for 1 h in stripping buffer (100 mM 2-mercaptoethanol, 2% SDS and 62.5 mM Tris 

buffer pH 7). Nitrocellulose membranes were washed thoroughly in TBS/Tween 

buffer for several times before adding alternative primary antibody. 
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2.8 FACS analysis 

2.8.1 Staining of surface markers 

Aliquots of cells (105-106 per sample) in 5 ml polystyrene tubes (Falcon, BD) were 

washed with 200 µl cold FACS buffer at 1400 rpm for 5 min at 4 °C. Cells were 

re-suspended in 100 µl of Fc receptor (FcR) blocking buffer (anti-CD16/32, clone 

2.4G2, hybridoma supernatant, 10% mouse serum, 0.1% sodium azide) containing 

the appropriate fluorochrome-conjugated, biotinylated or purified primary Abs for 20 

min in the dark at 4 °C. Anti-CD16/32 binds to FcγRII/III and the immunoglobulin in 

mouse serum binds to FcγRI, and so the FcR blocking buffer blocks non-specific 

binding of Ab to such FcR-bearing cells. Details of the antibody clones, their 

specificities and isotype controls used are provided in Table 2.1. Cells were 

washed with 1 ml of FACS buffer as before and, where appropriate, biotinylated or 

purified Abs were detected following incubation with fluorochrome-conjugated 

streptavidin for 10-20 min in the dark, at 4°C. Cells were washed again in FACS 

buffer and re-suspended in 200 µl FACS buffer before being analysed by FACS 

(FACS Calibur BD) and FlowJo software (TreeStar).  

2.8.1.1 Phenotyping of DO11.10 TCR, hCAR, hCAR x DO11.10 transgenic T 
cells 

Cells were incubated with PerCP-conjugated species anti- mouse CD4 antibody, 

biotinylated species anti-KJ1.26 antibody and purified species anti-CAR antibody, 

or their respective isotype controls, for 20 min at 4°C. Cells were then washed in 

FACS buffer and incubated with PE-conjugated Streptavidin and anti- species IgG1 

FITC for 10 min at 4°C. Phenotyping was performed by two or three-colour flow 

cytometry (FACS Calibur) and analysis by FlowJo software (Figure 2.1 & Figure 

2.2). 
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2.8.2 Detection of intracellular signalling molecules 

For detection of intracellular signalling molecules, cells were firstly stained for 

surface markers, prior to fixation and permeabilisation, as described above. For 

staining intracellular proteins, cells were washed with 1 ml PBS before addition of 

200 µl Cytofix/Cytoperm solution (BD Pharmingen) for 20 min at 4°C and further 

washing twice with 500 µl BD Perm/Wash solution (BD Pharmingen) (450 g, 5 min). 

The relevant anti-intracellular protein antibodies or their respective isotype controls 

were mixed properly with 50 µl Perm/Wash solution in the tube and incubated with 

the cells in the dark at RT for 30 min. After washing, cells were incubated with 

fluorochrome-conjugated secondary antibody, if applicable, in the dark at RT for 30 

min. Finally, cells were washed in Perm/Wash twice and resuspended in 250 µl 

FACS buffer and analysed using FACS Calibur and Flowjo software. 

2.8.3 Detection of intracellular signalling molecules in cells 
transduced with bicistronic adenoviral constructs  

For detection of intracellular signalling molecules in cells which were transduced 

with virus, the cells were centrifuged and incubated in 0.5 ml of pre-warmed 

Fixation buffer (BioLegend) at 37°C for 10 min and then washed in cold FACS 

buffer. After treatment with Fixation buffer, the surface markers were stained at 4°C 

for 20 min. Cells were washed with 1 ml of PBS before addition of 1 ml diluted 

Permeabilisation Wash Buffer (BioLegend) and washed twice. The fixed and 

permeabiilsed cells were re-suspended in 50 µl of diluted Permeabilisation Wash 

Buffer and incubated with relevant anti-intracellular protein antibodies or 

appropriate isotype control in the dark at RT for 20 min. Cells were washed twice 

with 1 ml of Permeabilisation Wash Buffer and re-suspended in 250 µl FACS buffer 

and analysed using FACS Calibur and Flowjo software. 
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2.8.3.1 Measurement of ERK1/2 and Rap1 activation during induction phase 
of priming and tolerance 

As described in 2.5.6.1, LN cells (3 x 106/ml/well) generated from hCAR x OVA 

TCR Tg mice were infected or not with adenovirus (Ad Rap1 WT and S17N) for 30 

min at MOI 30 in infection media (DMEM/10 mM HEPES) before excess Ad was 

washed off and the cells were subsequently incubated for 24 h in complete media 

to allow for induction of expression of the gene of interest as indicated by GFP 

expression. All cells were co-cultured with OVA-loaded, immature or LPS-matured 

DC for 4 days. ERK and Rap1 activation during induction of anergy and priming in 

T cells was then assessed by FACS. 
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Figure 2.1 Idedntification of DO11.10 OVA TCR transgenic T cells by 

flow cytometry 

Lymphocytes were firstly distinguished via forward scatter (FSC), which 

correlates with size, and side scatter (SSC), which correlates with 

granularity; events gated within region 1 (R1) were lymphocytes. These 

events were then analysed for the (B) expression of CD4 and DO11.10 

(gated within R2). (A) Isotype control for KJ1.26 antibody was mouse 

IgG2a. 
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Figure 2.2 Identification of hCAR x DO11.10 TCR transgenic T cells 

by flow cytometry 

Lymphocytes were firstly distinguished via forward scatter (FSC), which 

correlates with size, and side scatter (SSC), which correlates with 

granularity; events gated within region 1 (R1) were lymphocytes. Firstly 

the hCAR+ and KJ1.26+ populations were discriminated by setting 

appropriate gates on isotype controls, mouse IgG2a and mouse IgG1 for 

(A) hCAR and (B) KJ1.26 respectively. (C) PerCP-conjugated anti-CD4 

was used to identify CD4+ T cells (R2). (D) Biotinylated KJ1.26 plus 

SA-PE and hCAR-FITC were used to stain the Ag-specific hCAR + T cell 

population (G1).  
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Figure 2.3 Identification of hCAR x DO11.10 TCR transgenic T cells 

by flow cytometry 

Lymph node cultures from hCARΔcyt.DO11.10 mice were cultured alone 

or infected with Ad Rap1 S17N, which encodes a bicistronic GFP reporter 

gene, for 30 minutes at MOI of 3, 10 and 30. Following infection, anergy 

or priming was induced in the T lymphocytes, as described in Section 

2.3.3, and the cells were cultured for the other 24 hours. Subsequently, 

cells were stained with CD4+ PerCP for assessing CD4 expression. 

Lymphocytes were identified on the basis of size and granularity (A). R1 

was gated as “live cells population” and assessed for CD4 and GFP 

expression (B). The analysis of CD4+ population showed that by 

comparison to mock infection of cells (MOI 0) that resulted in no 

GFP+CD4+ T cells, naïve lymphocytes infected with Ad Rap1 S17N at 

MOI 3, 10 and 30 produced about 5%, 14% and 30%, respectively, of the 

CD4+ T cells expressing GFP. 
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Table 2.1 Antibodies used for flow cytometry. 
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Table 2.2 Antibodies used in Western blotting. 

 

 



Chapter 3 
Results 
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3 Results 

Introduction 

Previous studies from this lab have reported that the distinct functional outcomes of 

T cell priming and tolerance are associated with marked differences in the 

amplitude, kinetics and cellular localisation of activated, phosphorylated ERK 

signals with primed Ag-specific T cells showing enhanced activation of ERK relative 

to tolerised Ag-specific cells at the single cell level [13]. Consistent with this, it has 

also previously been shown that anergic T cells exhibit a deficiency in IL-2 

production which is the outcome of a lack of ERK and AP-1 activation [229]. These 

earlier studies suggested that such defective ERK activation is accompanied by 

accumulation of the GTPase, Rap1 [150, 230]. Such accumulation of Rap1 is able 

to disrupt TCR coupling to ERK activation by sequestering Raf-1 and thus directly 

antagonising the Ras-Raf-ERK signalling cascade [148]. Supporting this, 

accumulation of active Rap1 has been reported to play a role in the maintenance of 

anergy in human T cell clones [30, 148], with tolerized cells displaying decreased 

ERK activation because of recruitment of a Fyn-Cbl-CrkL-C3G-Rap1 signalling 

complex not found in their primed counterparts [148]. Furthermore, an inverse 

relationship between ERK and Rap1 activation has been shown in various T cells 

lines and also that CD28 signalling abolishes TCR-coupled Rap1 activity [150-152]. 

Our lab also reported that inverse relationship between Rap1 and phosphorylated 

ERK expression occurs during maintenance phase of anergy and priming of 

antigen-specific CD4+ T cells in vitro and in vivo [14]. However, these latter findings 

only related to the initial 24 h period of the maintenance phase and were not able to 

probe the role of Rap activity, rather than Rap expression because of lack of 

suitable reagents to investigate this in situ. Thus, it was the aim of this project to 
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assess the functional importance of ERK and Rap1 activation throughout the 

maintenance phase. 

Maintenance of Ag-specific priming and tolerance was examined by exploiting the 

capability of the OVA TCR Tg mouse to provide antigen-specific CD4+ T cells which 

can be induced to be anergic and primed T cells by anti-CD3 or anti-CD3 plus 

anti-CD28 antibodies, respectively before stimulation with antigen. In particular, it 

was planned to focus on the associations between ERK and Rap1 activation and 

cellular proliferation and cytokine production. In addition to examining proliferation 

by DNA synthesis by [3H] thymidine administration, the two cell tracking dyes, 

CFSE and eFluor 670 can be utilized to monitor long term cellular proliferation and 

cell division to reveal more detail than that provided by DNA synthesis analysis 

during the maintenance phase. For instance, the percentage and numbers of 

antigen-specific CD4+ T cells in each division are could be analysed by FACS. 

Furthermore, the observation of ERK and Rap1 activation in Ag-specific cells at the 

single cell level can also be assessed during the maintenance phase using 

antibodies that recognise the active form of these enzymes by FACS analysis. With 

these reagents and techniques, the profile of cellular proliferation and MAPK 

molecular signalling in antigen-specific anergic and primed cells it is now possible 

to investigate the functional relationship of these signals in priming and tolerance. 

3.1 Characterisation of the Maintenance phase of anergy 

and priming in CD4+ T cells 

The core aim of the project is to investigate the differential signalling mechanisms 

underpinning the induction and maintenance of anergy and priming of Antigen 

(Ag)-specific T cells. Thus, it was first planned to build on our previously published 
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work [14] indicating that counter-regulatory Erk and Rap-1 signalling occurred 

during the maintenance phase of such priming and tolerance by investigating the 

functional role of these potentially antagonistic signals. To do this, the in vitro model 

of induction and maintenance of priming and tolerance was further characterised 

and optimised. In this model, CD4+ T cells from OVA-specific TCR Tg DO11.10 Tg 

mice (purified as described in Chapter 2) in which 80% of the TH cells are specific 

for OVA and preferentially differentiate into Th1 cells upon priming with DC and 

high levels of Ag in vitro, were induced into an anergic or primed state by TCR 

ligation with or without appropriate co-stimulation (via CD28), respectively, by 

culture for 2 days on plate bound anti-CD3 [32, 34]. These cells were then washed 

and rested for an additional 2 days in fresh medium (4-day induction phase) before 

being re-stimulated with LPS-matured DC that have been loaded or not with or 

without OVA peptide323-339 (1µg/ml), the peptide Ag which the T cells generated 

from DO11.10 TCR Tg mice can recognise (Figure 3.1). LPS-matured DC are used 

to mimic DC that have been exposed to inflammation and/or danger signals and 

have therefore upregulated the costimulatory antigens necessary for “priming” 

signals as “immature” DC are widely reported to induce tolerance [231]. 

3.1.1 Assessment of DNA synthesis during the maintenance 
phase of anergy and priming in CD4+ T cells in vitro 

To establish the optimal concentration of antigen in the functional study during 

maintenance phase, the naïve T cells loaded with the proliferation-tracking, 

fluorescent dye CFSE (Chapter 2.4.6) were co-cultured with LPS-matured DC 

loaded with 0.1 µg/ml or 1 µg/ml of OVA peptide323-339 and cellular proliferation 

assessed from day 1-4. CFSE is a cell permeable fluorescent dye that is retained 

within cells and covalently couples to intracellular molecules. During each cell 

division, the daughter cells inherit half the amount of cellular dye from the original 
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cell population. Thus CFSE is a valuable fluorescent dye for investigating 

lymphocyte proliferation. Such analysis showed that cells treated with either of 

these two concentrations of OVA peptide both exhibited clear profiles of 

proliferation and cell division from day 3 although it was obvious that a substantial 

population in both cases did not undergo division. Nevertheless, it was also clear 

that the cells treated with 1 µg/ml of OVA proliferated more than 0.1 µg/ml one 

(Figure 3.2). Regarding this result, 1 µg/ml of OVA was therefore used in the 

following experiments to produce sufficient intensity of stimulation for the cells.  

Analysis of the proliferative responses of naïve cells to OVA-loaded LPS-matured 

DC versus immature DC showed that whilst the OVA-loaded immature DC induced 

some proliferation, the mature DC induced higher levels of proliferation, both in 

proportions of cells undergoing more rounds of division but also in terms of 

absolute numbers of cells generated (Figure 3.3). Although the dogma suggests 

that immature DC should not induce proliferation we and others have observed this 

[232] and this in part probably reflects the difficulty in maintaining DC in an 

“Immature” state where there is no costimulation: indeed, analysis of costimulatory 

molecule expression by such populations of DC shows that matured DC expressed 

higher levels of CD80 expression than immature DC, although this increase was 

not to a great extent (Figure 4.6B). By contrast, the matured DC expressed 

substantially higher levels of CD86 than immature DCs (Figure 4.6C). Collectively, 

these data suggested the DC treated with LPS were more matured than immature 

DC but the “immature DC” had been partially matured during derivation. However, 

it also more likely reflects that it is becoming increasingly evident that clonal 

expansion of T cells occurs during the induction phase of tolerance, albeit at a 

lower level than observed in response to priming signals [14]. The first functional 

assessment of the primed and anergic populations was of the proliferative 
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response and this was first analysed in terms of DNA synthesis (by [3H] uptake into 

DNA) as an indication of cell cycle progression (Figure 3.4). Firstly, it was shown 

that naïve CD4+ T cells were activated and proliferated well in response to the 

challenge with peptide-loaded DC, and this response was substantially higher than 

that of the naïve CD4+ T cells which were challenged with or without OVA323-339 

alone, in the absence of DC. Neither DC, nor unstimulated naïve T cells displayed 

DNA synthesis (Figure 3.4A). Whilst the strong response of naïve T cells stimulated 

with OVA-DC underlined the crucial role of DC in priming naïve T cell responses, it 

was somewhat unexpected that DNA synthesis of naïve T cells in response to OVA 

was observed, although this was much lower than the response of naïve T cells 

co-cultured with antigen loaded, matured DC. This high basal activation might 

simply reflect the presence of some “activated” or “memory” T cells in the “naïve” 

population (due to the non-SPF status of the animal house) that could respond to 

the high levels of peptide in vitro, or alternatively non-specific activation of these 

antigen-specific cells during isolation from lymph nodes. That allowed them to 

respond to the high levels of Ag present in the assay. Nevertheless, these data 

indicated that this assay was suitable for corroborating cell cycle progression and 

proliferation by primed and anergic populations. 

Thus, to assess the DNA synthesis of T cells to antigen during the maintenance 

phase of priming and tolerance, anergic and primed populations of CD4+ KJ+ T 

cells were re-challenged with OVA-loaded matured DCs (as described in 2.4.1). As 

expected, the primed T cells (induction of CD4+ T cells with anti-CD3 and 

anti-CD28) exhibited a higher response than either naïve or anergic T cells 

(induction of CD4+ T cells with anti-CD3), which were challenged with 

antigen-pulsed DCs, whilst the anergic T cell displayed an even lower DNA 

synthesis than the naïve T cells undergoing a primary response (Figure 3.4B). In 
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addition, and consistent with the dogma that for full T cell activation and 

proliferation, APC-derived signals in addition to antigen are required, the primed T 

cells exhibited similar basal levels of proliferation as the OVA-treated naïve T cells 

(Figure 3.4A).  

Analysis of DNA synthesis provides a snapshot of the cells transiting S phase of 

the cell cycle when [3H] thymidine has been administered. Hence, although it is an 

indicator of cellular proliferation, it provides no information relating to the actual 

numbers of cell division undergone. 

3.1.2 Assessment of proliferation of populations of primed and 
anergic T cells when challenged with immature or mature 
DC during maintenance phase. 

To further examine the differential proliferative responses among naïve, anergic 

and primed populations following challenge with antigen, the responses of these 

populations to immature and LPS-matured DC loaded were investigated. Firstly, 

the cells in the anergic and primed T cells populations were stained with 

proliferation dye, CFSE, before the induction phase (Figure 3.3A) and this showed 

that whilst the cells undergoing induction of anergy proliferated, this was to a lower 

level that observed for the primed group both in terms of proportions and absolute 

numbers. There was however, a much larger population of the “anergic” cells that 

did not appear to undergo division at all when compared to the primed group. 

Nevertheless, collectively these data provide further support to previous reports of 

clonal expansion of cells during the induction of anergy. Replicate group of these 

cells were then further analysed at day 4 following challenge with immature or 

LPS-matured DC loaded with OVA and this showed that whilst immature DC did 

not induce substantial proliferation of either primed or anergic T cells, the 

LPS-matured DC did, with primed cells proliferating more than anergic cells, both in 
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terms of proportions and absolute numbers (Figure 3.3B). The final parameter 

optimised was the ratio of DC to T cells utilised for priming. The anergic and primed 

cells co-cultured with LPS-matured, OVA-loaded DC in ratio of 10:1 (Figure 3.5A) 

and 1:1 (Figure 3.5B) for 4 days.  The primed T cells exhibited faster and more 

obvious proliferation than anergic cells while co-culture with LPS-matured, 

OVA-loaded DC in ratio of 1:1 (Figure 3.5).  

Following this optimisation of the protocols, the differential proliferation responses 

of naïve, anergic and primed populations in response to OVA-loaded, LPS-matured 

DC were explored in more detail. Firstly, analysis of the naïve population showed 

that T cells alone, or cultured in the absence of antigen, respectively, did not 

proliferate as indicated by the single peak of high CFSE fluorescence. By contrast, 

naïve T cells stimulated with OVA-loaded LPS-matured DC exhibited a clear 

cellular division peak profile, thus indicating cell proliferation (Figure 3.6A). 

Furthermore, similar proliferation peaks were observed in the anergic and primed T 

cells upon re-stimulation, with both anergic and primed populations appearing to 

have undergone several rounds of division. As predicted, relative to the primed 

population, anergic CD4+KJ+ T cells had higher percentage of non-dividing cells 

even at the end of the maintenance phase: 17.8% versus 11.7% on day 1 and 

18.5% versus 9.68% on day 2. By contrast, the primed T cells obtained higher 

percentage of cells that had divided: 27.2% versus 14.7% on day 1 and 19.2% 

versus 8.13% on day 2 (Figure 3.6B & C). Although individual peaks representing 

higher numbers of divisions, due to resulting low levels of CFSE fluorescence, at 

day 3 and day 4 cannot be seen, the progress of cellular proliferation from these 

anergic and primed CD4+KJ+ T cells still can be assessed by comparing the 

percentage of cells from the fifth peak (near the Y-axis). This again indicated that 

the primed population proliferated more than anergic group: 68.4% versus 50.6% 
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on day 3 and 66.7% versus 53.2% on day 4. Briefly summarized, the primed T cells 

proliferated faster than anergic T cells over the first two days with, as seen in Figure 

3.6 D, primed T cells showing less non-dividing cells and more proliferating cells on 

day 1. The difference between these two populations was most obvious on day 2, 

after which the proliferation of anergic T cells started to catch up with the primed T 

cells (Figure 3.6E), possibly partly due to exhaustion of the media for primed cells 

and/or loss of sensitivity of CFSE-tracked division as the levels of CFSE fall below 

detection. 

3.1.3 Assessment of cytokine secretion during the maintenance 
phase of anergy and priming in CD4+ T cells in vitro 

As defective IL-2 production has been reported to be the signature defect 

associated with anergy, the secretion of IL-2 by naïve, primed and anergic cells in 

response to antigen-pulsed DCs was examined at the following timepoints: 0-24, 

24-48 and 48-96 hours during the maintenance phase. Perhaps as predicted, 

during the first 24 hours, primed T cells produced the highest levels of IL-2, relative 

to anergic and naïve T cells, after challenge with antigen (Figure 3.7A), data 

consistent with the idea that the primed cells make faster, stronger responses than 

naïve cells. However, the secretion of IL-2 from the primed cell population dropped 

between 24-48 h and particularly dramatically, 48-96 h following stimulation with 

antigen, although it cannot be ruled out that this loss of production reflects that the 

produced IL-2 is being consumed by the primed cells. Nevertheless, these data 

indicate that this rapid but transient production of primed T cells fuels the faster 

(secondary) response observed in primed cells. Consistent with this anergic T cells 

produce the lowest levels of IL-2 overall with similar levels of IL-2 production at 24 

and 48 hours but as with the primed cells, the quantity of IL-2 also diminished by 96 

hours perhaps also indicating exhaustion and/or death of these cells. By contrast, 
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the level of IL-2 produced from naïve T cells increased gradually with time in 

keeping with the slower kinetics of primary responses. Interestingly, the levels of 

IFNγ production by primed T cells continued to rise strongly over the first 48 h and 

was maintained for the further period to 96 h indicating that the loss of IL-2 

production by these cells did not reflect cell death. Moreover, such IFNγ production 

was much stronger than that of naïve of anergic cells, neither of which was 

detectable before the 24-48 h time point and reflected the slower kinetics of Th1 

differentiation from naïve cells and the desensitized responses of anergic (Th1) 

cells (Figure 3.7B). 

Collectively, therefore in terms of cell cycle progression (DNA synthesis) 

proliferation (CFSE), IL-2 production and Th1 (IFNγ) differentiation and 

maintenance, these data indicate that primed cells make faster and stronger 

responses to Ag presented by APC expressing costimulatory molecules, for 

instance those matured under inflammatory or “danger” conditions. Similarly, they 

indicate that such responses are desensitized when T cells are anergised by 

exposure to Ag alone in the primary response. Indeed, these data probably 

underestimate the full nature of differential responses of the primed and anergic 

populations as not all the cells in the former will be primed nor will all be anergised 

in the latter group. Thus, this system appears to constitute a good model for 

studying both the induction and maintenance phases of priming and tolerance in 

vitro.  

3.1.4 Assessment of expression of inhibitory co-stimulatory 
molecules on T cells during maintenance phase of priming 
and tolerance 

As stated above, the analysis probably underestimates the differences between 

anergic and primed cells as not all cells in either populations will be completely 
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functionally polarised. Indeed much effort has been spent on trying to identify 

markers of anergy by our group and others [25, 29, 117] but to date, a robust 

marker has proved elusive. Thus it was decided to further characterise the surface 

expression of “anergic” and “primed” T cells (induced with anti-CD3 alone or 

anti-CD3+anti-CD28) following their challenge with immature or LPS-matured DC 

loaded with OVA in terms of costimularory molecules and Treg markers such as 

CD25 as Tregs have been reported to exhibit some of the attributes of anergic cells 

[50, 233]. Moreover, it has been reported that after feeding with tolerogenic doses 

of antigen, antigen-specific T cells in the periphery showed upregulation of CD25 

expression [49, 50]. Furthermore, CD25 is thought to expressed constitutively on a 

subset of antigen-specific cells, CD4+ CD25+, that are capable of suppressing the 

cytokine production and proliferation of CD4+ and CD8+ T cells in vitro [233, 234]. 

Therefore, the expression of CD25 was examined on anergic and primed T cells 

which were treated with antigen-loaded, LPS-matured DC and immature DC. When 

anergic and primed T cells were co-cultured with OVA-loaded, LPS-matured DC, 

the expression of CD25 on both these two populations increased over the first 48 

hours before returning to below the level on day 1 (Figure 3.8A). A similar pattern 

was also seen following treatment with immature DC but the expression of CD25 

was lower than that observed when the cells co-cultured with matured DC (Figure 

3.8D). Interestingly, however, although the patterns were similar the anergic cells 

(in both cases) showed higher levels of CD25 relative to primed cells perhaps 

consistent with them displaying a more Treg/anergic phenotype. However, these 

cells are not the same as Tregs as analysis of Foxp3 expression showed that those 

cells exhibited very low Foxp3 expression (Figure 3.8G).  

As described earlier, when CD80/86 on the APC interacts with CD28 on T cells, 

this provides costimulatory signals essential for full T cell activation. CD28 is a 
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member of the CD28 family of co-stimulators which exhibits high homology 

amongst members including those with inhibitory effects. Here, we phenotyped the 

expression of CTLA-4 (also known as CD152) and programmed death-1 (PD-1; 

also known as CD279) on anergic and primed T cells co-cultured with OVA-loaded 

LPS-matured DC to see if expression of either correlated with an “anergic” 

functional response. The expression of CTLA-4 on anergic and primed T cells that 

co-cultured with matured DC+OVA had very similar level from day 1 to day 4 

(Figure 3.8B) and comparing the MFI of CTLA-4 on anergic and primed populations 

which treated with LPS-matured DC and immature DC, revealed no difference in 

the value of MFI of these populations (Figure 3.8B&E). Furthermore, the levels of 

PD-1 which expressed by anergic and primed T cells were very similar and 

decreased by time (Figure 3.8C), irrespective of whether in anergic and primed 

populations were co-cultured with immature DC or LPS-matrued DC  (Figure 3.8F). 

Collectively, these data indicated that anergic and primed cells could not be 

discriminated of any of these markers as although CD25 was elevated in anergic 

cells, it is not a reliable marker due to its upregulation during activation in the 

primary response and also in Tregs. 

3.1.5 Assessment of cellular proliferation of during maintenance 
phase of anergy and priming in CD4+ T cells in vitro. 

The CFSE proliferation data resulting after stimulation of naïve and primed 

populations with OVA-loaded LPS-matured DC presented so far relate to the 

cumulative number of divisions by T cells during both the induction and 

maintenance phases of priming and tolerance and do not give an indication of the 

proliferative responses occurring in the two individual phases. Although analysis of 

an aliquot of the anergic and primed cells prior to challenge with antigen would 

allow analysis of the induction phase, interpretation of maintenance phase 
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responses from the cumulative analysis would be difficult due to the technical 

inability to dissect whether the extra proliferation reflected that of the high or low 

dividing populations. Moreover, our data suggest that the loss of CFSE detection 

resulting from multiple rounds of division might cause artefacts that lead to an 

underestimation of the levels of proliferation in primed cells. 

Thus to address analysing the proliferative responses of the maintenance phase, 

freshly isolated naïve CD4+ T cells and CD4+ T cells from the anergic and primed 

populations were labelled with CFSE after the induction phase and prior to 

challenge with OVA-loaded LPS-matured DC. As expected the naïve CD4+ T cells 

showed clear evidence of multiple rounds of division over 4 days following 

challenge with Ag (Figure 3.9A). However, the primed and anergic cells did not 

appear to reproducibly load/retain dye in the same manner as naïve cells as 

evidenced by a broad peak profile and trailing edge (Figure 3.9B&C) that made 

interpretation of cell status difficult: in particular, rather than showing individual 

peaks indicating different numbers of cell division, this broad peak simply widened 

and shifted to a lower fluorescence intensity making meaningful analysis 

impossible. The reasons for this are not clear but may reflect that following 

induction of priming and tolerance the T cell membrane may differ from that of 

naïve cells and hence not allow equivalent loading or indeed, may permit leakage 

of the dye. 

It was therefore planned to address the possible impact of using a different 

fluorescent dye, in particular one which could be optimised for used in later 

experiments utilising bicistronic GFP adenoviral vector constructs for which CFSE 

which is detected in the GFP channel (FL1) would not be suitable. We therefore 

tested another cell tracker dye, CMTPX (detected in FL2) which like CFSE passes 

through cell membranes and is converted to cell-impermeant reaction products and 
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subsequently passed to at half the intensity of cellular dye to daughter cells. In 

order to optimise the system, LN cells were stained with CMTPX in different 

concentrations, the titration initially involving a series concentration of CMTPX from 

5 µM to 1 µM and subsequently stained for CD4 expression prior to Flow 

Cytometric analysis (Figure 3.10B). Again, lymphocytes were identified on the 

basis of their known size (forward scatter) and granularity (side scatter) and only 

the viable cells in the lymphocyte population was subsequently analysed. These 

live lymphocytes were then examined for expression of CD4 (Figure 3.10A) before 

assessing the optimal CMTPX staining concentration. Unfortunately, as shown in 

Figure 3.10B, these concentrations (5, 4, 3, 2 and 1 µM) are too high as the 

intensity of CMTPX is too strong causing detection of the dye to leak through FL-3 

parameter into FL-4 channel as indicated by the “loss” of the CD4+ (APC-FL4) 

population, thereby inducing autofluorescent artefacts. So following the same 

protocol, the LNs were stained with lower concentrations of CMTPX (0.2 to 0.8 µM) 

and this demonstrated that the LNs stained with CMTPX (≤ 0.8 µM) and 

biotinylated anti-CD4/streptavidin-APC obtained the best resolution, with two clear 

separate populations evident (Figure 3.10C). In order to have efficient staining and 

better cell populations, a CMTPX concentration of 0.75 µM was selected as the 

optimal concentration since staining in 0.7 µM had more clear separation of the two 

populations relative to 0.8 µM.  

After optimizing the staining concentration, CMTPX was used to observe 

proliferation of LN cells transduced with a bicistronic Adenoviral construct 

expressing GFP to determine whether it would be possible to analyse proliferation 

of the GFP+ and GFP- cells using this dye. Thus, as we were particularly interested 

in the counter-regulatory signalling of Rap and Erk, LN cells were transduced with a 

construct expressing a dominant negative (DN) version of Rap1 upstream of GFP 
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(Ad Rap1 S17N) at various MOI (0, 3,10,30 and 50) for 30 minutes prior to staining 

with CMTPX (0.75 µM). Anergy or priming of the transduced and stained LN cells 

was induced by culturing with anti-CD3 in absence or presence of anti-CD28 for 4 

days during which period, the LN cells were harvested everyday for monitoring 

cellular proliferation. As mentioned above, all LN cells were subsequently stained 

for CD4 expression prior to Flow Cytometric analysis the Th cells.  

As expected, mock infection (MOI 0) resulted in no GFP-expressing CD4+ cells, 

and so only analysis of the cellular proliferation of the GFP- population was 

possible for this group. This showed that, as suggested above, although primed 

cells proliferate more, during the induction phase both the anergic and primed cells 

proliferated similarly and in this particular experiment this appeared almost to an 

identical degree with only a more pronounced shift to lower fluorescence and loss 

of a higher fluorescence trailing edge being evident at day 3 by the primed 

population (Figure 3.10 F&G). By contrast, at each MOI (3, 10, 30 and 50) the 

cellular proliferation of GFP- and GFP+ of the adenovirally-infected LN cell 

populations could be compared and this analysis appeared to indicate that, for both 

primed and anergic cells, the LN transduced with Ad Rap1 S17N (GFP+) 

proliferated more than LN without construct (GFP-) irrespective of whether they 

were treated with anti-CD3 or anti-CD3+anti-CD28 on both day 1 but particularly on 

day 3. Moreover, although the enhancement was similar throughout there did 

appear to be a positive association with MOI. Reassuringly, the GFP- populations 

exhibited responses similar to the MOI 0 control (Figure 3.10 E-H). 

However, to try to further investigate the potential link of increasing MOI inducing 

stronger enhancement of proliferation and hence examine the effect of Rap signal 

strength on limitation of CD4 T cell proliferation, the analysis at day 1 was also 

performed at a higher voltage setting (860 vs 620) to amplify the fluorescence and 
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hence try to circumvent quantitation artefacts arising out of loss of CMTPX signal 

as exemplified the pile-up of cells of the y-axis which prevents determination of 

differential numbers of cell division. However, this approach had an unexpected 

result in that the completely opposite result was obtained, for example the DN Rap 

construct appeared to inhibit proliferation although this appeared artefactual as the 

fluorescence was higher than that being observed in the cells at day 0 suggesting 

that CMTPX was again induce autofluorescence artefacts at high signal strength, 

this time occurring in conjunction with GFP of the construct, and this idea appeared 

to be validated by an additional experiment on day where the responses an 

intermediate voltage (720) was compared with the standard 620 level and this 

showed no difference between the GFP ± populations and indicating a titration 

effect on the autofluorescence. Thus, although the data, obtained at the lowest 

voltage where there appeared to be negligible autofluorescence, suggested that 

blocking Rap activity promoted proliferation of both anergic and primed cells during 

their induction, these conclusions were not considered convincing and hence it was 

proposed to optimise a more robust system using a different dye. 

3.1.6 Comparing the assessment of cellular proliferation by CFSE 
and eFluor 670 during maintenance phase.  

Thus, although an optimal staining concentration of CMTPX was achieved by 

titration, CMTPX was difficult to apply in the following experiments because of its 

strong intensity and hence, difficult compensation when used in conjunction with 

multiple fluorochromes. Thus, another “red” cell tracking dye, eFluor 670 which had 

been developed at this time to circumvent these problems was trialled in order to 

assess its exploitability in future adenovirus experiments. To illustrate any impact of 

using this different dye, which possibly influences the proliferation result, the first 

assessment of eFluor 670 was to compare proliferation responses of anergic and 



78	  

primed cells with those previously shown above, obtained with CFSE. The first 

assessment was to examine the proliferation of CD4+ T cells at the end of the 

maintenance phase (day 8) which were stained with eFluor 670 before induction of 

anergy or priming (day 0). Analysis of staining at day 4 immediately prior to 

challenge with OVA-loaded LPS-matured DCs revealed that, as previously shown 

with CFSE (Figure 3.3B), CD4+ T cells undergoing induction of priming proliferated 

more than those undergoing anergy (Figure 3.11A). Moreover, although the 

difference were slight, this was also clear day 1 post challenge with antigen 

although the ability to track this was lost on following days due to loss of detectable 

signal (Figure 3.11A). Importantly however, optimisation experiments revealed that 

unlike the situation with CFSE, it was possible to efficiently load cells with eFluor 

670 after the induction of anergy and priming and hence track subsequent 

proliferation during the challenge/maintenance phase: this is illustrated in panel B 

which shows that although similar in this experiment, there is increased 

proliferation of the primed population.  

Thus these data indicated that eFluor 670 was competent for investigation of 

proliferation during both the induction and maintenance phases of priming and 

tolerance. 

3.1.7 Assessment of cellular proliferation CD4+ T cells in vitro 
during maintenance phase of priming and tolerance.  

Since it was possible to efficiently stain and track proliferation of CD4+ T cells after 

induction phase using eFluor 670, it was now possible to compare the cellular 

proliferations of the different groups (naïve, anergic and primed). Analysis at day 

post-stimulation with OVA-loaded LPS-mature DC showed that, as expected, the 

primed cells have started first and although the naïve cells start to catch up by day 

2 (Figure 3.12A) the responses of anergic cells remain lower than that of the 
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primed cells, especially in terms of absolute numbers of T cells given that they were 

seeded at equivalent levels. These results are consistent with the belief that 

secondary responses are faster and stronger than primary responses and that 

anergic responses reflect desensitisation (Figure 3.12 B&C). This was reinforced 

when, to further understand what the proliferation result reflected in terms of T cell 

clonal expansion, the percentage of live cells was examined in both populations 

from day 1 to day 4 (Figure 3.12D&E). This showed that the primed T cells 

exhibited a higher percentage of live cells than the anergic T cells population after 

challenge with OVA. Thus, clonal expansion and survival of these two populations 

correlated with the cellular proliferation data since the primed T cells showed more 

proliferation than anergic cells throughout days 1-4 (Figure 3.12F).  

3.1.8 Assessment of pERK and active Rap expression in 
Ag-specific T cells during maintenance phase of priming 
and tolerance. 

We had previously shown that primed cells showed enhanced levels of active Erk 

(dually phosphorylated pErk) and reduced expression of Rap1 relative to anergic 

cells both in vitro and in vivo [14], consistent with the idea that Rap1 antagonised 

TCR-mediated Ras-dependent signaling by sequestering Raf-1 and disrupting 

coupling to Erk. However, at that time due to a lack of in situ reagents, we were not 

able to determine if Rap activity was required for this, but with the advent of 

antibodies that recognize the active GTP-bound form of Rap, this was now 

possible. 

Consistent with our previous data, there is a higher percentage of live cells, 

particularly in the blasting gate, in the primed, relative to anergic, group following 

challenge of CD4+ T cells with OVA-loaded LPS-matured DC (Figure 3.13B). Also, 

consistent with our previous findings, analysis of ERK activation by CD4+ T cells in 
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the blasting gate, as determined by the ratio of pERK/ERK expression, indicated 

that primed T cells expressed higher level of ERK activation than anergic T cells 

and anergic cells expressed lower levels than those of naïve cells undergoing a 

primary response, on day 1 following challenge with Ag in this maintenance phase. 

Perhaps surprisingly, given the increase in Rap1 expression in anergic relative to 

primed cells [14], there was no real apparent change in Rap1 activity detected 

amongst the 3 blasting groups on this day, although the level in the primed group 

was very slightly decreased (Figure 3.13C). A similar pattern was observed with 

resting cells, although here Rap1 activation was suppressed below those of naïve 

cells in both primed and anergic groups relative to naïve cells (Figure 3.13D). In 

order to address the potential for counter-regulation of these signals analysis of the 

ratio of ERK: Rap1 activation showed that this was highest in primed cells at day 1 

(Figure 3.13G), consistent with our previous proposal that Erk activation was 

associated with priming whilst that of Rap promoted desensitization and anergy [14, 

235]. Moreover, the elevated levels of Erk and Rap1 in naïve, relative to anergic, 

cells is consistent with the proposal by Cantrell’s group [236] that Rap was 

important in primary responses. 

Here we extended our analysis to day 3 and rather surprisingly we found Erk 

activation to be higher in anergic, and to a lesser extent, primed proliferating cells 

relative to those undergoing a primary response (Figure 3.13E), whilst Rap1 

activation was equivalent in all populations. Moreover, analysis of the resting cells 

indicated that the anergic cells exhibited the highest the Erk activation whilst, and 

consistent with counter-regulatory signaling, primed cells displayed the lowest 

levels of Erk and the highest levels of Rap1 activation, kinetics that were supported 

by analysis of the ratios of Erk:Rap activation (Figure 3.13F&H). These data were 

therefore consistent with our previous findings that the anergic population tended to 
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“catch-up” with the primed populations in terms of proliferation at days 3-4 and may 

indicate that the maintenance of tolerance may be “leaky” in this in vitro system. 

Alternatively, it may indicate that not all the “anergic” cells are anergic and hence 

are responding to Ag normally whilst not all of the “primed” cells are primed. 

Moreover, the data also suggest that in primed cells Erk:Rap counter-regulation 

may occur to terminate responses homeostatically. Alternatively, this switch in 

signaling may reflect cessation of proliferation of primed cells due to media 

exhaustion (Figure 3.13C&E). 
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Conclusion 

Previous published work from this laboratory indicated that counter-regulatory ERK 

and Rap1 signalling occurred during the maintenance phase of Ag-specific priming 

and tolerance. This study further investigated the functional role of these potentially 

antagonistic signals in the functional outcomes of anergy and priming in throughout 

the maintenance phase. 

Firstly however, it was important to optimize the in vitro assay system: thus to 

optimize Ag-presentation, LPS-matured DC were loaded with 0.1 and 1 µg/ml of 

OVA peptide323-339 and priming of naïve T cells assessed, by using, 

proliferation-tracking fluorescent dye CFSE, were for the optimal concentration of 

antigen for proliferative responses. According to the cellular proliferation, although 

cells treated with either of these two concentrations of OVA peptide both exhibited 

clear profiles of proliferation and cell division from day 3, the cells treated with 

1µg/ml of OVA proliferated more than those with 0.1 µg/ml. Thus 1 µg/ml of OVA 

was used in the all the experiments investigating maintenance phase. Meanwhile, 

the analysis of the proliferative responses of naïve cells to OVA-loaded 

LPS-matured DC versus immature DC showed that whilst the OVA-loaded 

immature DC induced some proliferation, the mature DC induced higher levels of 

proliferation, both in proportions of cells undergoing more rounds of division but 

also in terms of absolute numbers of cells generated. However, in theory the 

immature DC should not induce proliferation, thus the “maturation” status of DC as 

in both immature and LPS-matured DC was further investigated. Analysis of 

CD11c-expressing DC were therefore examined for expression of CD80 and CD86, 

and as expected, LPS-matured DC expressed higher levels of CD80 expression 

than immature DC, although this increase was not to a great extent. In contrast to 
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CD80, the LPS-matured DC expressed substantially higher levels of CD86 than the 

immature DC. 

The first functional assessment of the primed and anergic populations was of their 

proliferative response and this was first analysed in terms of DNA synthesis by 

thymidine uptake. As expected, the primed T cells (induction of CD4+ T cells with 

anti-CD3+anti-CD28) exhibited a higher response than either naïve or anergic T 

cells (induction of CD4+ T cells with anti-CD3), when challenged with 

antigen-pulsed DC, whilst the anergic T cell displayed an even lower DNA 

synthesis than the naïve T cells undergoing a primary response. To further 

investigate the functional outcomes of anergic and primed T cells, the IL-2 and 

IFNγ responses were also assessed at 24, 48 and 96 hours during the 

maintenance phase. During the first 24 hours, primed T cells produced the highest 

levels of IL-2, relative to anergic and naïve T cells, after challenge with antigen. 

However, the secretion of IL-2 from the primed cell population dropped between 

24-48 hour and particularly dramatically, 48-96 hour following stimulation with 

antigen. Consistent with this, anergic T cells produce the lowest levels of IL-2 at 24 

hours and similar levels of IL-2 production at 48 hours but as with the primed cells, 

the quantity of IL-2 also diminished by 96 hours. On the other hand, the levels of 

IFNγ production by primed T cells continued to rise strongly over the first 48 hours 

and was maintained for the further period to 96 hour indicating that the loss of IL-2 

production by these cells did not reflect cell death. Additionally, the levels of IFNγ 

production by anegic T cells increased gradually from 24 to 96 hour. However, it 

was not as rapid and much less than primed T cells. These data illustrated that both 

anergic and primed T cells utilize the IL-2 secreted in the early stage of induction 

phase to sustain the consequent differentiation responses.  

Compared to the snapshot information provided by DNA synthesis assessed by [3H] 
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thymidine of the cells transiting S phase of the cell cycle, cell tracking dyes, CFSE 

and eFluoro provide more details of primed and anergic cell proliferative responses 

and this approach indicated that both anergic and primed cells had undergone 

several rounds of division. Although, the primed T cells proliferated faster than 

anergic T cells over the first two days, after that the proliferation of anergic T cells 

was able to catch up with primed T cells, a point, that had not been revealed from 

our previous studies. Notably, this additional information revealed that whilst the 

cells undergoing induction of anergy proliferated, this was to a lower level that 

observed for the primed group both in terms of proportions and absolute numbers. 

With this lead, further investigation was conducted and assessment of expression 

of inhibitory co-stimulatory molecules illustrated that both anergic and primed 

exhibited upregulation of CD25 following treatment with immature and mature DC, 

although the cell culture with mature DC resulted in expression of higher levels of 

CD25 on both populations. Moreover, anergic cells showed higher levels of CD25 

relative to primed cells but further investigation also indicated those cells are not 

Treg (CD4+CD25+Foxp3+) since they expressed very low Foxp3. Neither anergic 

nor primed cells exhibited any difference in expression of CTLA-4 and PD-1 

following co-culture with immature and mature DC. Furthermore, the expression of 

CTLA-4 and PD-1 on anergic and primed T cells had very similar level during 

maintenance phase as well.  

Consistent with the observed proliferative responses, the primed T cells expressed 

higher levels of ERK activation than anergic T cells and indeed, anergic T cells 

expressed lower levels than those of naïve cells undergoing a primary response on 

day 1 following challenge with Ag in this maintenance phase. However, there was 

no real change in Rap1 activity amongst naïve, anergic and primed cells on day 1. 

The ratio of ERK: Rap1 activation, which addresses the potential for 
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counter-regulation of these signals, exhibited that the primed cells had the highest 

ratio at day 1. However, when these studies were extended to day 3, ERK 

activation was at higher levels in anergic T cells than primed T cells whilst Rap1 

activation was equivalent in all populations. The ratio of ERK: Rap1 activation 

showed that the primed cells had lower ratio than anergic cells at day 3 and 

interestingly, these data were consistent with previous finding that the anergic 

population tended to “catch-up” with the primed populations in terms of proliferation 

at day 3-4. 

To sum up, the primed T cells exhibited a higher percentage of live cells than the 

anergic T cells population after challenge with OVA. Thus, clonal expansion and 

survival of these two populations correlated with the cellular proliferation data since 

the primed T cells showed more proliferation than anergic cells throughout day 1 to 

day 4 during maintenance phase. Additionally, ERK activation correlated with the 

differential cellular proliferation observed between anergic and primed T cells 

whereas Rap activation presented no difference between these two populations 

during maintenance phase. 
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Figure 3.1 Induction of anergy and priming in Ag-specific TCR Tg T 

cells. 

Lymph node cells were generated from OVA TCR or hCAR x OVA TCR 

mice and prepared as single cells suspension. CD4+ T cells were isolated 

from suspension solution by CD4+ T cell isolation MACS and stimulated 

with anti-CD3 in presence or absence of anti-CD 28 for 2 days as anergic 

or primed T cells, respectively. After 2 days induction, the anergic and 

primed T cells were washed and rested for the other 2 days before 

co-cultured day. On the co-culture day, the naïve CD4+ T cells were 

freshly extracted from OVA TCR mice and isolated by CD4+ T cell 

isolation MACS. The naïve, anergic and primed T cells were co-cultured 

with OVA loaded LPS matured dendritic cells for 4 days as maintenance 

phase. 
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Figure 3.2 Assessment of the cellular proliferation in naïve TCR Tg T 

cells with different concentration (0.1&1µg/ml) of antigen 

OVA. 

The naïve CD4+ T cells were generated from lymph node cells of OVA 

TCR mice and freshly isolated by CD4+ T cell isolation MACS. The CD4+ 

T cells were stained with CFSE in 5 µM. The CFSE-stained CD4+ T cells 

(4x105) were co-cultured with LPS-matured, OVA (0.1 and 1µg/ml) loaded 

DCs (4x105) in 2 ml of media for 4 days. The cellular proliferation was 

analysed by FACS. 
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Figure 3.3 Assessment of cellular proliferation of anergic and primed 

T cells cocultured with immature and mature DC during 

maintenance phase. 

The CD4+ T cells were extracted from lymph nodes of OVA TCR or hcAR 

x OVA TCR mice and isolated by MACS CD4+ T cell isolation kit. The 

CD4+ T cells were stained with CFSE in 5 µM before induction of anergy 

and priming. As mentioned in Figure 3.1, briefly, the CFSE stained- CD4+ 

T cells were stimulated with anti-CD3 in presence or absence of 

anti-CD28 for induction of anergy and priming, respectively, for 2 days 

and rested for the other 2 days. The DC were cultured in conditional 

media for 7 days before pulsed with LPS or culture with complete media 

alone for 24 hours as matured and immature DC, respectively. The naïve 

CD4+ T cells (freshly prepared and stained with CFSE on co-culture day), 

CFSE stained-anergic and CFSE stained-primed CD4+ T cells (4x105/ml) 

were co-cultured with immature or mature, OVA-loaded DC (4x105/ml) for 

4 days. The cellular proliferation were analysed by FACS (A) (B). Data are 

representative of at least three independent experiments. 
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Figure 3.4 Analysis of DNA synthesis in anergy and primed T cells 

by Thymidine [3H] during maintenance phase. 

The CD4+ T cells were extracted from lymph nodes of OVA TCR or hCAR 

x OVA T cR mice and isolated by MACS CD4+ T cell isolation kit. As 

mentioned in Figure 3.1, briefly, the naïve CD4+ T cells (freshly prepared 

on co-culture day), anergic and primed CD4+ T cells (2x105/200µl) were 

stimulated with anti-CD3 ± anti-CD28 for 2 day and rested for 2 days 

before co-cultured with LSP matured, antigen loaded DC (2x105/200µl) 

for 48 hours. Sequentially the thymidine were added into naïve, anergic 

and primed T cells culture for extra 16 hours culture. (A) The APC and 

antigen were essential for T cell fully activation (B) Primed T cells 

exhibited higher DNA synthesis than anergic T cells. Data are 

representative of at least three independent experiments. 
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Figure 3.5 Assessment of cellular proliferation of anegic and primed 

T cells cultured with matured DC in ration 10:1 and 1:1 in 

maintenance phase. 

The CD4+ T cells were extracted from lymph nodes of OVA TCR or hCAR 

x OVA TCR mice and isolated by MACS CD4+ T cell isolation kit. As 

mentioned in Figure 3.1, briefly, CD4+ T cells were stained with CFSE in 

5µM before stimulated with anti-CD3 in presence or absence of anti-CD28 

for induction of anergy and priming, respectively, for 2 days and rested for 

the other 2 days. The CFSE-stained anergic and CFSE-stained primed T 

cells (4x105/2ml) were co-cultured with LPS-matured, OVA loaded DC (A) 

(4x104/2ml) or (B) (4x105/2ml) for 4 days.  



91	  

Figure 3.6 Assessment of cellular proliferation by CFSE in 

maintenance phase (CFSE staining from induction 

phase) 

The CD4+ T cells were extracted from lymph nodes of OVA TCR or hCAR 

x OVA TCR mice and isolated by MACS CD4+ T cell isolation kit. As 

mentioned in Figure 3.1, briefly, CD4+ T cells were stained with CFSE in 

5µM before stimulated with anti-CD3 in presence or absence of anti-CD28 

for induction of anergy and priming, respectively, for 2 days and rested for 

the other 2 days. The naïve CD4+ T cells were freshly prepared on 

co-culture day and stained with CFSE in 5µM. CFSE-stained naïve, 

CFSE-stained anergic and CFSE-stained primed T cells (4x105/2ml) were 

co-cultured with LPS-matured, OVA loaded DC (4x105/2ml) for 4 days. 

The cells were harvested from day 1 to day 4 and the cellular proliferation 

of (A) naïve, (B) anergic and (C) primed T cells were analysed by FACS. 

(D-G) The percentage of cells in each division were calculated from day 1 

to day 4. 
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Figure 3.7 Analysis of cytokine secretion by anergic and primed T 

cells during maintenance phase 

The CD4+ T cells were extracted from lymph nodes of OVA TCR or hCAR 

x OVA T cR mice and isolated by MACS CD4+ T cell isolation kit. As 

mentioned in Figure 3.1, briefly, the naïve CD4+ T cells (freshly prepared 

on co-culture day) anergic and primed CD4+ T cells were stimulated with 

anti-CD3 in presence or absence of anti-CD28, respectively, for 2 day and 

rested for 2 days before co-cultured with LSP matured, antigen loaded 

DC. The supernatant were harvested at 24, 48 and 96 hours after naïve, 

anergic and primed T cells re-challenged with OVA peptide323-339. The 

levels of IL-2 (A)and IFN-γ (B) were measured by ELISA.  
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Figure 3.8 Assessment of inhibitory molecules expression in anergic 

and primed T cells cocultured with immature and mature 

DC during maintenance phase. 

The CD4+ T cells were extracted from lymph nodes of OVA TCR or hcAR 

x OVA TCR mice and isolated by MACS CD4+ T cell isolation kit. The 

CD4+ T cells were stained with CFSE in 5 µM before induction of anergy 

and priming. As mentioned in Figure 3.1, briefly, the CFSE stained-CD4+ 

T cells were stimulated with anti-CD3 in presence or absence of 

anti-CD28 for induction of anergy and priming, respectively, for 2 days 

and rested for the other 2 days. The DC were cultured in conditional 

media for 7 days before pulsed with LPS or culture with complete media 

alone for 24 hours as matured and immature DC, respectively. The naïve 

CD4+ T cells (freshly prepared and stained with CFSE on co-culture day), 

CFSE stained-anergic and CFSE stained-primed CD4+ T cells (4x105/ml) 

were co-cultured with immature or mature, OVA-loaded DC (4x105/ml) for 

4 days. The cells were harvested everyday and stained with 

KJ-bio-PerCP, CD25 APC, CTLA-4 APC, PD-1 APC and Foxp3 PE. The 

expression of these inhibitory molecules were analysed by FACS. Data 

are representative of two independent experiments. 
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Figure 3.9 Assessment of cellular proliferation by CFSE in 

maintenance phase (CFSE staining from maintenance 

phase) 

The CD4+ T cells were extracted from lymph nodes of OVA TCR or hcAR 

x OVA TCR mice and isolated by MACS CD4+ T cell isolation kit. As 

mentioned in Figure 3.1, briefly, CD4+ T cells were stimulated with 

anti-CD3 in presence or absence of anti-CD28 for induction of anergy and 

priming, respectively, for 2 days and rested for the other 2 days. The 

naïve CD4+ T cells (freshly prepared on co-culture day), anergic and 

primed T cells (4x105/2ml) were stained with CFSE in 5µM before 

co-cultured with LPS-matured, OVA loaded DC (4x105/2ml) for 4 days. 

The cells were harvested on day 4 and the cellular proliferation of (A) 

naïve, (B) anergic and (C) primed T cells were analysed by FACS. Data 

are representative of at least three independent experiments. 
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Figure 3.10 Assessment of cellular proliferation by regulation of Rap1 

S17N during induction of anergy and priming by CMPTX 

In order to observe the how the Rap1 S17N regulate the cellular 

proliferation of induction of anergy and priming during induction phase. 

The LNs extracted from hCAR mice were transduced with Ad Rap1 S17N 

which carry GFP (FL-1). For observation of the cellular proliferation in 

virus transduced LNs, the new cell track dye, CMPTX (FL-2) was used to 

stain to transduced LNs. Before the CMPTX was applied to the following 

Adenovirus experiments, the CMPTX was titrated for optimal 

concentration. The LNs were stained with (A) CD4-bio-PerCP antibody for 

population gating. (B) The titration of CMPTX was testing from high 

concentration 5µM, 4µM, 3µM, 2µM and 1µM, however, the fluorescence 

was too strong to distinguish the CD4 population. Thus the LNs were 

stained with (C) lower concentration series, 0.8µM, 0.7µM, 0.6µM, 0.5µM 

and 0.4µM. 

Regarding to the titration of CMPTX, 0.75µM was chosen as the optimal 

staining concentration. The LN extracted from hCAR mice were 

transduced with Ad Rap1 S17N in MOI 0, 3, 10, 30 and 50 before staining 

with CMPTX in 0.75µM. The virus-transduced, CMPTX-stained LNs were 

stimulated with anti-CD3 in presence or absence of anti-CD28 for 2 days 

and rested for the other 2 days. The cellular proliferation were analysed 

by FACS under voltage 620 on day1 (D) and day 3 (E), voltage 860 on 

day1 (F) and 720 on day 3 (G).  
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Figure 3.11 Assessment of cellular proliferation of anergic and primed 

T cells which were stained with track dye, eFluor 670 

from induction phase and maintenance phase. 

The CD4+ T cells were extracted from lymph nodes of OVA TCR or hCAR 

x OVA TCR mice and isolated by MACS CD4+ T cell isolation kit. The half 

of CD4+ T cells were stained with eFluor 670 in 5µ before stimulating with 

anti-CD3 in presence or absence of anti-CD28 for induction of anergy and 

priming, respectively, for 2 days and rested for the other 2 days. The 

eFluor 670 stained-anergic and eFluor 670 stained-primed T cells were 

co-cultured with LPS-matured, OVA loaded DC for 4 days. (A) The 

cellular proliferation of anergic and primed T cells which were stained with 

eFluor 670 from induction phase were analysed by FACS. (in Figure 

3.10A, Day 4 is co-culture day since the time was counted from the cells 

were stained with track dye) 

The other half of CD4+ T cells were treated with anti-CD3 or 

anti-CD3+anti-CD28 for induction of anergy and priming for 2 days and 

resting for the other 2 days. The anergic and primed T cells were 

harvested on co-culture day and stained with eFluor 670 in 5µM before 

co-cultured with LPS-matured, OVA loaded DC for 4 days. (B) The 

cellular proliferation of anergic and primed T cells that were stained with 

eFluor 670 from maintenance phase (on co-culture day). 
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Figure 3.12 Assessment of cellular proliferation and percentage of 

clonal expansion in anergic and primed T cells during 

maintenance phase by eFluor 670. 

The CD4+ T cells were extracted from lymph nodes of OVA TCR or hCAR 

x OVA TCR mice and isolated by MACS CD4+ T cell isolation kit. The 

CD4+ T cells were stimulated with anti-CD3 in presence or absence of 

anti-CD28 for induction of anergy and priming, respectively, for 2 days 

and rested for the other 2 days. The naïve CD4+ T cells were isolated and 

stained with eFluor 670 on co-culture day. The naïve, anergic and primed 

T cells (1x106) were co-cultured with LPS-matured, OVA loaded DC 

(1x106) for 4 days. The cellular proliferation of (A) naïve, (B) anergic and 

(C) primed T cells were analysed by FACS. The percentage of clonal 

expansion of (D) anergic and (E) primed T cell within large gate were plot 

in (F). Data are representative of two independent experiments. 
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Figure 3.13 Analysis of activation of ERK1/2 expression during the 

maintenance phase by FACS. 

The CD4+ T cells were extracted from lymph nodes of OVA TCR or hCAR 

x OVA TCR mice and isolated by MACS CD4+ T cell isolation kit. The 

CD4+ T cells were stimulated with anti-CD3 in presence or absence of 

anti-CD28 for induction of anergy and priming, respectively, for 2 days 

and rested for the other 2 days. The naïve CD4+ T cells were isolated by 

MACS CD4+ T cell isolation kit on co-culture day. Naïve, nergic and 

primed Ag-specific T cells (1x106) were co-cultured with LPS matured 

OVA loaded DC (1x106) for 4 days. The cells were harvested from each 

group on day 1 and day 3 during maintenance phase. The cells were 

sequentially stained with CD4, KJ1.26 and ERK, pERK, Rap1, active 

Rap1 antibodies for analysis by FACS. (A) The expression profile of ERK 

activation and Rap1 activation assessed in both blasting and resting 

gates within large gate. (B) The percentage of clonal expansion of anergic 

and primed T cells within blasting and resting gates on day 1 and day 3. 

(C) The activation of ERK and Rap1 in naïve, anergic and primed T cells 

within blasting gate on day 1. (D) The activation of ERK and Rap1 in 

naïve, anergic and primed T cells within resting gate on day 1. (E) The 

activation of ERK and Rap1 in naïve, anergic and primed T cells within 

blasting gate on day 3. (F) The activation of ERK and Rap1 in naïve, 

anergic and primed T cells within resting gate on day 3.  
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4 Results 

Introduction 

As discovered in Chapter 3, both primed and anergic cells exhibited clonal 

expansion before and during the maintenance phase: thus, the widely held view 

that only cells receiving costimulation proliferate is a misconception that more likely 

reflects the situation during the maintenance phase. Additionally, an inverse 

relationship between Rap1 activation and phospho-ERK has been shown during 

the maintenance phase of tolerance and priming of antigen-specific CD4+ T cells in 

both in vitro and in vivo. Thus, it was decided to investigate the functional outcomes 

and regulation of ERK/Rap signalling during induction phase, to determine whether 

these signals also play counter regulatory roles in the induction of priming and 

anergy. 

In addition to the assays of DNA synthesis, cellular proliferation, cytokine 

production and Erk and Rap1 activation used in the previous maintenance phase 

experiments, to investigate the role of Rap1 activity during induction of anergy and 

priming, viral transduction offers a method of gene delivery into primary resting 

cells. Here we used a bicistronic GFP-system which by allowing instant 

transgenesis does not induce adaptation artefacts and also allows direct analysis of 

the modification (GFP+ cells) of the gene-of-interest relative to control cells (GFP-) 

within the same population of cells. 

In addition to examining ERK and Rap1 activation by FACS, those signalling 

molecules were also investigated by Western Blot analysis. Moreover, many 

studies have reported that regulation of metabolism in T cells, which is a 

downstream target of Erk signalling, is significant in the control of T cell activation 
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and differentiation, and so it was also planned to investigate the role of the mTOR 

signalling pathways in the induction of anergy and priming in T cells.  
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4.1 The induction phase of anergy and priming in CD4+ T 

cells 

To investigate the differential signalling of anergic and primed T cells during the 

induction phase in vitro, OVA-specific CD4+ T cells were freshly isolated and 

purified from DO11.10 Tg mice as described in Chapter 2. These cells were 

induced into a primed or anergic state by TCR ligation with or without appropriate 

co-stimulation (via CD28), respectively, for 2 days on plate bound anti-CD3 [32, 34]. 

These cells were then washed and rested for an additional 2 days in fresh medium 

to allow full induction. 

4.2 Characterisation of the induction phase of anergy and 

priming in CD4+ T cells 

4.2.1 Assessment of DNA synthesis during the induction phase 
of anergy and priming in CD4+ T cells in vitro 

As discussed above, it is increasingly clear that cells undergoing induction of 

priming or tolerance both undergo clonal expansion, albeit to a lesser extent during 

anergy. Thus the widely held view that only cells receiving costimulation undergo 

proliferation is a misconception that more likely reflects the situation during the 

maintenance phase although as we have shown above such cells also undergo 

proliferation in this phase, at least in this in vitro model. To address this, we 

analysed the functional responses of Ag-specific T cells during the induction phase 

of priming and tolerance. Here we have also used the OVA TCR Tg cells as we 

wished to address developing a more physiological system that anti-CD3 ± 

anti-CD28 but also because, by using the Tg TCR cells, essentially all the CD4+ T 

cells would be expressing the Tg TCR and hence should all have receptors of the 
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same affinity and avidity and hence we would be controlling for clonal artefacts. 

Thus, firstly we examined the proliferative capacity of the cells during induction of 

anergy and priming as indicated by DNA synthesis ([3H] thymidine uptake) at 48 

and 96 h following stimulation with anti-CD3 or anti-CD3+anti-CD28, respectively. 

Alternative treatments have previously been used in the literature for the induction 

of anergy and priming, for example, Ionomycin or Ionomycin plus PMA, 

respectively. PMA plus Ionomycin is considered mitogenic since Ionomycin is a 

calcium Ionophore which raises the intracellular level of calcium and activates 

Ca2+/calmodulin-dependent signalling pathways leading to activation of NFAT 

whilst PMA is able to activate Protein kinase C and consequently, NFκB and AP-1 

[32]. Thus, in addition to our normal protocols of induction of priming and tolerance 

by anti-CD3 and anti-CD28 antibodies, the CD4+ T cells were also stimulated with 

other mitogenic treatments such as ConA or PMA plus Ionomycin as positive 

priming controls whilst stimulation with Ionomycin alone was used to induce anergy 

as a mimetic of the unbalanced calcium signalling proposed to underly anergy [237]. 

In addition, cells were treated with anti-CD28 alone as a control for responses to 

costimulation occurring in the absence of antigen eg during sterile inflammation: 

thus these combinations provide a range of positive and negative controls for 

comparing the induction of anergy and priming via Ag-specific receptors. 

As expected, the primed T cells (all “priming” stimuli) exhibited higher levels of DNA 

synthesis than anergic T cells (both anti-CD3 and particularly Ionomycin) at 48 

hours although the antibody-primed or anergic cells presented similar levels of 

DNA synthesis at 96 hours (Figure 4.1A&B). As shown in Figure 4.1A, the CD4+ T 

cells treated with Ionomycin had the lowest levels of DNA synthesis whilst PMA 

together with Ionomycin, induced the highest responses.  
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To further investigate these responses, the profile of IL-2 secretion, a widely 

accepted defective function of anergic cells was measured during this induction 

phase, with the cell culture media were harvested at 48 and 96 hours. Both IL-2 

and IFN-γ released from anergic and primed T cells were only detectable at the first 

48 hours (Figure	   4.1C&D), indicating that production ceased during the resting 

period or was consumed to promote survival/proliferation of the cells at this point. 

Surprisingly, the significant difference shown in DNA synthesis (Figure	   4.1A) 

between anergic and primed T cells did not appear here, although the level of IL-2 

produced from primed T cells was very slightly higher than that from the anergic T 

cells (Figure	  4.1C).  

4.2.2 Assessment of cellular proliferation during induction of 
anergy and priming in CD4+ T cells by eFluor 670, in vitro 

CD4+ T cells were isolated from OVA TCR/hCARxOVA TCR mice as described in 

the Materials and Methods and stained with eFluor 670. The stained CD4+ T cells 

were stimulated with immobilised anti-CD3 or anti-CD3+anti-CD28 antibodies to 

induce anergy and priming, respectively (Figure 3.1). Cellular proliferation was 

measured by FACS analysis of eFluor 670 fluorescence from day 1 to day 4 during 

this induction phase. As expected the cells cultured with media alone did not 

proliferate over the 4 days (Figure 4.2A). In contrast to non-treated cells, the CD4+ 

T cells that were primed with antibodies exhibited clear peaks representing 

differential numbers of cell divisions (Figure 4.2B&C) for anergic and primed cells 

from day2. For example, on day 3 whilst for the primed T cells, 29.5% of cells had 

not proliferated, the anergic T cells retained a much higher proportion of 

non-proliferated cells at 41.5%. The difference between these two groups was even 

more obvious at day 4 when many more of the primed T cells (66.9%) proliferated 

relative to the anergic T cells (27.3%) during this induction phase.  
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4.2.3 Functional assessment of the role of Rap1 in the priming 
and tolerance of CD4+ T cells in vitro. 

Thus, whilst studies using Tg mice expressing constitutively active constructs of 

Rap (Cantrell vs Bouyssiotis) resulted in conflicting conclusions as to the role of 

Rap1 in priming and tolerance, it was decided to investigate the potential role of 

Rap1 in the induction of anergy and priming, by adenoviral gene transfer using the 

bicistronic GFP-system which by allowing instant transgenesis does not induce 

adaptation artefacts and also allows direct analysis of the modification (GFP+ cells) 

of the gene-of-interest to control cells (GFP-) within the same population of cells. 

Moreover, this adenoviral approach is tightly regulated in that the cells express 

normal, not overexpressed levels of the constructs and hence are less likely to 

induce unforeseen artefacts due to disruption of unknown interacting pathways. 

Thus, following preliminary optimization experiments, LN cells from hCAR or 

hCARxOVA TCR mice were first transduced with Ad Rap1 S17N at MOI 30 for 30 

minutes and stained with eFluor 670 before plated out onto plates pre-coated with 

anti-CD3 in presence or absence of anti-CD28 for 4 days to test the effect of this 

dominant negative Rap1 construct on the induction of priming and anergy 

respectively (Figure 4.3B). GFP+ cells started to appear 24 hours after the LN cells 

were transduced with the adenoviral construct and both groups of cells started to 

proliferate from day 2. Analysis of the GFP- and GFP+ CD4+ T cells which had been 

stimulated with anti-CD3 in presence or absence of anti-CD28 was therefore used 

to investigate how the Rap1 S17N dominant construct regulated cellular 

proliferation during the induction phase.  

Both of GFP- and GFP+ CD4+ T cells which were treated with anti-CD3 exhibited 

clear proliferation peaks by day 3, however, it was clear, especially when analyzing 

absolute numbers of cells, that the GFP+ cells expressing Rap1 S17N were 
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undergoing more division that the control GFP- cells, both in terms of numbers of 

divisions and also in terms of numbers of cells produced (Figure 4.3C). Since Rap1 

S17N is the inactive mutant of Rap1, this suggested, as we have suggested 

previously for the maintenance phase [14], that Rap1 activity acts to limit cellular 

proliferation during anergy and that switching off Rap1 activity upregulates cellular 

proliferation. As predicted, GFP- cells stimulated with anti-CD3 plus anti-CD28, 

showed higher proliferation than GFP- anti-CD3-treated cells: indeed the GFP- 

anti-CD3/CD28-treated cells somewhat resembled the GFP+ anti-CD3 cells (Figure 

4.3D) suggesting that CD28 signalling may in part act to switch off Rap1 activation. 

Analysis of the GFP+ anti-CD3/CD28 population also showed enhanced 

proliferative capacity in this case also but there was less evidence of a further 

increase in the number of divisions but rather a decrease in the number of cells not 

undergoing any proliferation and an increase in the absolute numbers of cells being 

produced and/or surviving (Figure 4.3D-F).  

4.2.4 Assessment of ERK activation following adenoviral 
regulation of Rap1 activity during induction of anergy and 
priming, in vitro. 

The data presented above suggest that TH cell proliferation is upregulated when 

Rap 1 is switched off during induction of anergy and priming. To further investigate 

this, in particular to determine whether this reflects counter-regulation of the 

activation of ERK, the LN cells were transduced with wild type (WT) Rap1 and 

dominant negative (DN) Rap1 S17N and then cultured in media alone or stimulated 

with anti-CD3 in presence or absence of anti-CD28 for 4 days. 

Analysis of the GFP- populations indicated that although the levels of Erk activation 

tended to oscillate with peaks around 1 and 24 h as demonstrated previously [14], 

there was only low levels of Erk activation generally and these did not differ 
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dramatically between the anergic and primed groups. Interestingly, therefore, given 

the evidence for counter-regulation of ERK and Rap1 during the maintenance 

phase of priming and tolerance and the fact that switching off Rap1 promotes 

proliferation of cells undergoing both priming or tolerance, that whilst as expected 

there was no significant difference in ERK activation among the cells which had 

been transduced with Ad Rap1 WT (Figure 4.4 A&B), there was also no difference 

in terms of ERK activation when the cells were transduced with Ad Rap1 S17N 

(Figure 4.5 A&B). 

To determine the impact of Rap1 activation during the induction of anergy and 

priming, active Rap1 (Rap1-GTP) was also assessed and again, the GFP- data 

(Figure 4.4C&D) (Figure 4.5C&D) suggested that during induction of priming and 

anergy the cells were signalling similarly in terms of Rap1 activation. Moreover, 

although the GFP+ data at the early time points somewhat surprisingly suggested 

an increase in Rap1 activation in cells transduced with either the WT and S17N 

constructs (Figure 4.4C&D) (Figure 4.5 C&D), these were considered artefacts of 

the very low numbers and percentage of cells that were GFP+ at these time points. 

Also, it should be noted here that only active Rap1 could be detected here, with 

detection of total Rap1 not being possible in these experiments and as the absolute 

levels of Rap1 could not be determined here, it is possible that simply analysing the 

levels of active Rap1 expression do not give a true picture of the relative Rap1 

activation in that a small pool of Rap1 could be highly activated under these 

conditions. 

Collectively, these data suggested that under these priming and tolerance induction 

protocols, Erk and Rap1 signalling was very similar and Rap1 counter-regulation of 

Erk signalling could not account for the enhanced proliferation of Ad Rap1 

S17N-GFP+ cells. 
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4.2.5 Functional assessment of the induction of anergic and 
primed CD4+ T cells using immature and LPS-matured DC, 
in vitro. 

We next investigated whether a more physiological, antigen-specific system of 

inducing priming and anergy using immature and LPS-matured DC could be 

developed. However, before the proliferation assay was assessed, the DCs were 

firstly examined for the expression of maturation markers to determine how 

“immature” or “mature” these cells were. DCs were derived from the bone marrow 

progenitors (Balb/c mice) by culture with GM-CSF conditioned complete media 

onto low adhesion 6-well plates (to prevent maturation) for 7 days. The “immature 

DC” were maintained in complete media alone whilst DCs were treated with LPS 

for 24 hours on day 7 to induce “maturation”. Following harvesting, the matured and 

immature DCs were phenotyped in terms of CD11c, CD80 and CD86 expression. 

Analysis of CD11c-expressing DC (Figure 4.6A) were examined for expression of 

CD80 and CD86 and, as expected, matured DC expressed higher levels of CD80 

expression than immature DC, although this increase was not to a great extent 

(Figure 4.6B). By contrast, the matured DC expressed substantially higher levels of 

CD86 than immature DCs (Figure 4.6C). Collectively, these data suggested the DC 

treated with LPS were more matured than immature DC but the “immature DC” had 

been partially matured during derivation. 

4.2.6 Functional assessment of the induction of anergy and 
priming in CD4+ T cells in response to OVA-loaded 
immature and LPS-matured DC, in vitro. 

Immature and LPS-matured DC were loaded with OVA peptide and co-cultured 

with eFluor 670-labelled naïve CD4+ T cells for induction of anergy and priming for 

4 days (Figure 4.7A). The cells were harvested daily and cellular proliferation was 

assessed by FACS. The cells co-cultured with mature DC exhibited proliferation 
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from day 2 whereas the cells cultured with immature DC were still not showing any 

evidence of division at this time point. The cells treated with immature DC started to 

proliferate on day 3, however, those cells still showed higher percentage and 

absolute number of cells that had not undergone on day 3 and even on day 4, albeit 

to a much lesser extent. These data are consistent with the LPS-matured DC 

driving priming whilst as the immature DC were not so effective at driving 

proliferation it is possible that they are inducing anergy. 

In addition, the cytokine secretions of both groups of cells were also examined for 

further functional assessment. Thus, the supernatants were harvested from each 

group everyday and the levels of cytokines were analysed for IL-2 and IFN-γ by 

ELISA (Figure 4.7 B&C). Generally, this revealed that as expected, T cells 

stimulated by the LPS-matured DC group exhibited higher concentration of IL-2 

and IFN-γ release than those in the immature DC group throughout the whole 

period of induction. 

Thus, although maintenance phase experiments have not been performed to 

corroborate this, it appears that this is a promising protocol for inducing Ag-specific 

priming and tolerance, particularly if the levels of costimulatory molecules such as 

CD80 and CD86 can kept to an absolute minimum in the “immature” DC. 

4.2.7 Assessment of the role of Rap1 during induction phase of 
priming and tolerance mimicking physiological condition 

In order to investigate whether the effects shown in Figure 4.3, Figure 4.4&Figure 

4.5 were replicated under more physiological conditions, priming of T cells, 

transduced with Ad Rap1 WT and S17N was induced by co-culture with 

LPS-matured, OVA pulsed DC for 4 days. As expected, since adenoviral 

transduction does not result in overexpression of the gene of interest, the GFP- and 
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GFP+ T cells transduced with Ad Rap1 WT exhibited similar proliferation progress 

after inducing by mature DC+OVA (Figure 4.8A). Moreover, and similarly to what 

was observed with cells primed with anti-CD3/CD28, but not those induced with 

anti-CD3 alone, the cells transduced with Ad Rap1 S17N did not undergo higher 

number of cell division than the GFP- population from the same treatment (Figure 

4.8B). Furthermore, in this case, there did not appear to be higher absolute 

numbers of cells recovered suggesting that perhaps the more physiological 

conditions substituted for the “survival” effects of Ad Rap1 S17N observed when 

cells were primed with anti-CD3 plus anti-CD28. 

Although the proliferation outcomes of mimicking more physiological conditions did 

not replicate the increased cellular proliferation of T cells stimulated with 

anti-CD3/28 resulting from transduction with Ad Rap1 S17N, the effects of the 

constructs on ERK and Rap1 activation were also examined under these conditions. 

As shown previously, the cell populations were analyzed within blasting and resting 

gates with the GFP- and GFP+ populations being investigated for ERK and Rap 

activation expression. This revealed that, as expected due to the low levels of GFP 

expression, that there was essentially no difference in ERK or Rap1 activation 

between the GFP+ and GFP- populations on day 0. Again ERK activation did not 

appear to change much on day 1 between the GFP- and GFP+ populations in either 

gate, but was decreased below the level observed on day 0 suggesting that for this 

model of T cell activation, Erk activation is at or below basal levels in the cyclic 

pattern observed previously [14] and consistent with this, the level in GFP- and 

GFP+ cells is very slightly upregulated from this at day 3 in both cellular gates. 

Similarly, these was no difference in Rap1 activation between GFP- and GFP+ cells 

in either gate at day 0 although there was a reduction in the GFP+ cells at day 1, 

particularly clear in those in the blasting gate as there was also a partial reduction 
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in the GFP- cells in the resting gate at this time point suggesting that in these 

control cells stimulation with OVA+DC also acted to switch off Rap1 activation. This 

enhanced reduction of Rap1 activation in the GFP+ cells was lost at day 3 in both 

the resting and blasting gates but as the GFP- cells showed essentially identical 

levels of active Rap1 expression, this suggested that at this time point we were 

detected only the basal level of Rap1 activity in these cells, a proposal consistent 

with the gradual decline in Rap 1 activity observed in GFP- and GFP+ populations 

following stimulation with anti-CD3 or anti-CD3+anti-CD28. The divergent nature of 

ERK and Rap1 signalling, and its modulation by the Ad Rap1 S17N construct was 

amplified when the data were analyzed as ERK/Rap1 activity ratios (Figure 4.10A) 

(Figure 4.10B). Thus analysis of the ratio of pERK/active Rap showed a clear 

cycling pattern of increased ERK relative to Rap1 activation in the blasting, but not 

resting, cells perhaps consistent with them progressing through the cell cycle. This 

was reflected by an enhanced relative level of ERK activation in the day 1 samples 

of GFP+ relative to GFP- cells, perhaps suggesting some degree of 

counteregulation that did not translate to enhanced proliferation at this time point. 

Rather counterintuitively, therefore, whilst the cells transduced with Rap1 WT 

exhibited lower levels of ERK at day 1 in blasting cells, they expressed higher 

levels in both cell populations at day 3 (and also day 1 for resting cells) suggesting 

here that transduction of Rap1 promoted ERK activation (Figure 4.9A & D).  

Although the expression of active Rap did not appear to differ between GFP- and 

GFP+ populations in resting cells (Figure 4.9E), there did appear to be an increase 

at day 0 and day 1 in the blasting cells suggesting that the ectopic Rap1 resulted in 

Rap1 activation (Figure 4.9B). This was not predicted because the Rap mutant 

constructs carried by Adenovirus do not appear to overexpress in the bicistronic 

system, and so it was expected that the cells transduced with Ad Rap1 WT would 

exhibit similar behaviour as GFP- cells. When the relation between phosphorylated 
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ERK and active Rap was further analyzed, a similar but more dramatic pattern of 

enhanced ERK signaling (relative to Rap1) was seen in GFP+ blasting cells at day 

3, relative to those transduced with the Ad Rap1 S17N construct (Figure 4.10C), 

although the pattern seen in the control GFP- cells was the inverse of that seen with 

Ad Rap1 S17N experiment, perhaps indicating that these cells are at a different 

stage in the kinetics of their response. In any case, it appeared that transduction 

with either WT or DN Rap1 appeared to disrupt Rap1 activation and lead to a 

higher relative level of ERK activation. This suggested that the activity of Rap1 

perhaps was not the key factor in this modulation but rather perhaps reflected 

differential localization/processing or Rap1 or alternatively its differential interaction 

with signaling partners to that of endogeneous. Whatever, the molecular 

mechanism, this shift in relative ERK/Rap1 activation did not appear to exert any 

substantial effect on the proliferative responses of the cells. 

4.2.8 Assessment of active Rap1 and ERK MAP kinase 
expression during induction of anergy and priming by 
Western Blot 

Since the ERK MAPKinase is critically important for many aspects of T cell biology, 

especially in IL-2 production, cell cycle and proliferation [137], the potential for 

counter-regulatory Rap1/ERK signaling during the induction of priming and 

tolerance was further explored. Overall, both anergic and primed T cells exhibited 

steady expression of active Rap1 after priming with antibodies for at least 48 hours 

after which this increased dramatically until 96 hours, with the primed T cells 

expressing slightly higher levels of active Rap1 than anergic T cells (Figure 4.11A) 

and this higher expression was also reflected at the level of Rap1 protein (Figure 

4.11B). In contrast to the early static expression of active Rap, the expression of 

pERK during induction phase was more dynamic. Reflecting our previous studies of 

the maintenance phase [14], cyclic activation of ERK was seen in the primed T 
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cells but not the anergic population, with overall the primed T cells exhibiting higher 

levels of activation of ERK than in anergic T cells until 48-96 hours (Figure 4.11C). 

These western blot experiments did not completely reflect the patterns observed in 

the FACS analysis of intracellular staining of these signaling elements in cells 

treated with the adenoviral constructs but this could reflect the differential culture 

conditions required for the FACS and Western Blotting experiments, differential 

efficacy of the antibodies with respect to intracellular staining and Western Blotting, 

or else a difference in kinetics induced by exposure to the virus as it has previously 

been reported that exposure of hCAR-expressing T cells to virus results in some 

activation, perhaps suggesting earlier expression of the ERK peaks in the 

intracellular staining experiments. Although this would not appear to be the case for 

the Rap1 activation, this may reflect our failure to measure total Rap1 expression in 

the FACS experiments as it can be seen here that Rap1 expression falls 24-96 h, 

consistent with expression of a residual pool of highly activated Rap1. Analysis of 

the relative ratio of active pERK/active Rap1 showed that a clear cycling pattern of 

increased ERK relative to Rap1 activaion during 0-8 hr in primed T cells. However, 

anergic T cells exhibited dramatically increased ERK during 24-48 hr, which is 

consistent with proliferative response during induction of anergy. Both populations 

drop down to similar level after 48 hr, this may suggest that after anergic T cells 

catch up the proliferative progress of primed T cells, both anergic and primed T 

cells had similar level of proliferation (Figure 4.11D). 

4.2.9 Investigation of potential differential c-Myc signaling during 
induction of priming and tolerance 

The transcription factor, c-Myc plays important roles in the regulation of cell growth, 

proliferation, differentiation and apoptosis [213-215]. The previous studies [216] 

have indicated that high proliferation rates in vivo and in cell culture experiments 
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were related to c-Myc overexpression. By contrast, low expression of c-Myc is 

associated with nondividing cells and defects in cellular differentiation [217]. 

Expression of c-Myc in quiescent cells is not stable but once cell cycle progression 

occurs, c-Myc becomes transiently stabilized and accumulates to high levels. Such 

stabilization requires activation of the Ras-Raf-MEK-ERK kinase cascade and 

hence activation of ERK MAP kinase impacts on cellular proliferation and cell 

survival, at least in part via this effector transcription factor. c-Myc contains two 

phosphorylation sites, Threonine 58 (T58) and Serine 62 (S62), in the N-terminal 

region and these two phosphorylation sites play opposite roles in controlling 

stability of c-Myc, with Serine 62 being targeted by ERK and Threonine 58 is 

targeted by define GSK-3β. The phosphorylation of Ser62 participates in the 

stabilization of c-Myc whereas phosphorylation of Thr58 targets c-Myc towards to 

degradation through the ubiquitin-proteasome pathway [222]. Thus, because of the 

potential conter-regulatory ERK/Rap1 signalling, we decided to investigate c-Myc 

expression and its stabilization/proteasome targeting status during induction of 

priming and tolerance of T cells to determine whether these signaling events could 

be linked. As shown in Figure 4.11C, ERK activation exhibited an oscillating pattern 

in both anergic and primed T cells and consistent with it being downstream of the 

MAP kinase pathway, the kinetics of pS62 c-Myc expression were consistent with 

following activation of pERK in both primed and tolerised cells at 24-96 h (Figure 

4.12A). However, although the primed T cells showed higher levels of activation of 

ERK than the anergic cells before 24 hours, generally the anergic T cells exhibited 

higher levels of pS62 c-Myc than primed T cells during induction phase. 

Surprisingly, the pT58 c-Myc expression more similarly reflected the pattern of ERK 

activation which had not been predicted as phosphorylation at T58 has the 

opposite role to that at S62, as it targets c-Myc for degradation (Figure 4.12C). 

However, and perhaps consistent with the stabilization data, the total expression of 
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cMyc was strongly upregulated accumulating at later times in both anergic and 

primed T cells with the anergic T cells expressing higher levels of c-Myc at all the 

time points tested (Figure 4.12B&D). Moreover, the delay in such accumulation and 

the apparent downregulation at the end of the timecourse occurred following he 

peaks in the proteasome targeting pT58 form. Although, this accumulation of c-Myc 

in anergic cells was surprising as c-Myc upregulation is typically associated with 

proliferation it may reflect its involvement [213, 225] in other cellular processes 

such as apoptosis. 

4.2.10 Assessment of mTOR signaling during induction of anergy 
and priming 

mTOR is a Serine/Threonine protein kinase that regulates cell survival, growth, 

proliferation, differentiation and cell migration. It forms two distinct signaling 

complexes: mTORC1 and mTORC2 [166]. The mTORC1 is composed of Raptor, 

mLST8, PRAS40 and DEPTOR, whilst mTORC2 is consisted of mTOR, Rictor, 

Sin1, mLST8 and Protor [166] (Figure 1.4). The PI-3K-PDK1-AKT signaling is 

involved in activation of mTORC1 and leads to phosphorylation of p70 ribosomal 

S6 kinase 1 (S6K1) and 4E-BP-1, thus promoting translation and protein synthesis 

[185]. Ras/Raf/MEK/ERK signaling has been indicated to positively regulate 

mTORC1. Indeed, ERK1/2 phosphorylate tuber sclerosis protein 2 (TSC2) and 

suppress the inhibitory function of TSC2 [238, 239]. In contrast to mTORC1, the 

upstream signals which lead to activation of mTORC2 are still unclear although the 

activity of mTORC2 can be monitored by the downstream phosphorylation of AKT 

at its hydrophobic motif, serine 473 [240]. In brief therefore, AKT phosphorylation 

occurs both upstream and downstream of mTOR although the phosphorylation of 

AKT at threonine 308 which leads to activation of mTORC1 is independent from 

that mTORC2-mediated phosphorylation of AKT at serine 473 [173]. 
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Initial studies using rapamycin, the mTOR inhibitor, had shown that blocking mTOR 

activation was sufficient to induce anergy in T cells following full activation with 

anti-CD3 and anti-CD28 and leads to inhibit cell proliferation [170]. The further 

investigation showed that full anergy induction required the activation of the 

CaN/NFAT pathway with concomitant repression of mTOR activation. Thus as the 

downstream of the IL-2R pathway, mTOR was indicated to be a major regulator of 

anergy [241]. mTOR is not only downstream of CD28 and IL-2 signalling pathways 

but is also participates several energy and nutrient-sensing pathways in eukaryotic 

cells [172]. Regarding to Warbur effect, during TCR stimulation, signals from 

growth factor like IL-2, and the ligation of co-stimulatory CD28, lead to an increase 

in glycolysis by inducing the PI3K-dependent activation of Akt. While T cells 

undergo clonal expansion, they preferentially ferment glucose to obtain their 

mitochondrial oxidative phosphorylation [242-244]. With this line, in the presence of 

a leucine or glucose antagonist could actively induce anergy in T cells, even T cells 

receive the signals 1 and 2 from TCR ligation and co-stimulation, as well as normal 

IL-2 production. Thus, the investigation of induction of anergy was extent to energy 

and nutrition homeostasis regulated by mTOR. 

AMPK is a cellular energy sensor and signal transducer which is regulated by 

various metabolic stresses. AMPK is activated under conditions of stress and acts 

to inhibit energy consumption. Indeed, activation of AMPK by AICAR, activator of 

AMPK, has been reported to induce anergy in T cells.  Raptor, the downstream 

target of negative regulation by AMPK, plays an important role in activation of 

mTORC1 which in turn leads to activation of p70 S6 kinase to promote protein 

synthesis. However, when under conditions of energy stress, the ratio of AMP: ATP 

increases, the AMPK is phosphorylated at serine 772 and 792 and this activation 

results in AMPK phosphorylating TSC2 and Raptor, with consequent inhibition of 



117	  

mTORC1 and its downstream effector, p70 S6 kinase.  

We therefore investigated mTOR activation during the induction phase of priming 

and tolerance of Th cells, firstly by examining AMPK activation. Upregulation of 

phosphorylation of AMPK was observed during the induction of anergy (24-48 h) 

and, more rapidly, priming of (8-48h) T cells, the latter perhaps reflecting that 

during productive immune responses T cells undergo catabolic metabolism (Figure 

4.13A) [245]. These data suggest that mTORC1 might be being inhibited to 

conserve energy and consistent with this, the same pattern was reflected by 

phosphorylated Raptor at these time points (Figure 4.13C). Interestingly, and 

perhaps reflecting their quiescient state levels of phosphor-Raptor were high in 

both groups at time zero and were maintained so for the first 4 hours of stimulation 

before dropping dramatically presumably as the cells began to enter and progress 

through cell cycle and this was reflected by a peak in pp70S6K between 8-24 h 

when protein synthesis would be required for this process. S6K activity was then 

dramatically switched off corresponding to the activation of AMPK and 

phosphorylation of Raptor resulting in inhibition of mTORC1 and, in turn, the 

phosphorylation of p70 S6 kinase (Figure 4.13E). Notably, the primed cells 

exhibited higher activation of AMPK than anergic T cells (Figure 4.13A) and 

correspondingly lower levels of S6K, perhaps reflecting induction of anergy-specific 

genes. Additionally, and unlike ERK expression, the total expression of AMPK, 

raptor and p70 S6 kinase also changed (Figure 4.13B, D&F) in response to the 

different stimulations. For instance, the anergic cells expressed more AMPK and 

less S6K than primed cells during the induction phase. Although as mentioned 

above, Raptor was highly phosphorylated in the early stages of induction of priming 

and tolerance, this did not reflect AMPK activation and hence must involve some 

other regulatory mechanism, as yet not identified. 
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By comparison to mTORC1, the precise mechanisms of activation of mTORC2 are 

still not fully understood because of lack of an mTORC2 specific inhibitor. However 

previous studies have shown that mTORC2 is activated by costimulation and 

cytokines in T cells [90] and that PI3K controls the activity of mTORC2 to 

phosphorylate its downstream substrate, AKT at residue S473. The 

phosphorylation of AKT can be controlled by p70 S6 Kinase as this negatively 

regulates mTORC2 by phosphorylation of Rictor at Thr1135 [184]. Consistent with 

this, the pattern of phosphorylation of Rictor in both anergic and primed T cells 

mirrored that of pp70S6K in that it peaked at 24 h when it started to decline till 48 

hours before being upregulated again in primed, but not anergic T cells (Figure 

4.14A). Interestingly the expression of phosphorylated Rictor in anergic T cells was 

higher than that of primed T cells (Figure 4.14A), which again represented the 

same pattern as the activation of p70 S6 kinase in both populations (Figure 4.13E). 

This indicated that anergic T cells exhibited higher level of phosphorylated p70 S6 

kinas and thus induced higher expression of phosphorylated Rictor to inhibit the 

AKT activation (Figure 4.14C), with the peaks in pS437AKT (24 and 96h) 

corresponding to the decline in pRictor. It is notably that whilst the anergic T cells 

continued to exhibit decreased expression of pRictor after 48 hours, primed T cells 

did not and this was reflected by a switch in the relative levels of pS473AKT in 

primed and tolerised cells with much higher levels in the anergic cells relative to 

primed T cells after 48 hours. This may suggest that in anergic T cells, activation of 

the mTORC2 pathway by be triggered to promote cell survival after 48 hours. 
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Conclusion 

Following the findings that during the maintenance phase cells undergoing 

induction of priming and tolerance both undergo clonal expansion, the functional 

outcomes, ERK/Rap1 activation and influence of modulation of Rap1 expression 

within anergic and primed cells were assessed during induction phase. 

As expected, during the induction phase T cells undergoing priming exhibited 

higher levels of DNA synthesis than those becoming anergic at 48 hours, although 

the primed and anergic T cells presented similar levels at 96 hours. In the aspect of 

cytokine secretion, IL-2 and IFNγ released from anergic and primed T cells was 

only detectable within the first 48 hours but not 96 hours, indicating that early 

production was then consumed to promote their survival and proliferation. As 

regarding to the proliferation of anergic and primed T cells during induction phase, 

both populations exhibited clear peaks representing differential numbers of cell 

divisions for anergic and primed cells from day2 (48 hour) onwards and proliferated 

strongly and rapidly from day 3 to day 4. In order to try and develop a more 

physiological model with which to induce priming and tolerance, immature and 

LPS-matured DC were loaded with OVA and co-culture with antigen-specific naïve 

T cells. As predicted, T cells stimulated by the LPS-matured DC group exhibited 

proliferation from day 2, whilst the cells cultured with immature DC still showed 

relatively high percentages and absolute number of cells that had not undergone 

any proliferation on day 3 and even on day 4. Consistent with this proliferation data, 

as expected, the T cells stimulated by the LPS-matured DC group exhibited higher 

IL-2 and IFNγ release than those stimulated with the immature DC group. 

Regarding whether the inverse Rap1 and ERK signalling observed during 

maintenance phase also occurred during the induction of priming and tolerance, 
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the role of Rap1 in the induction of anergy and priming was investigated by 

adenoviral gene transfer of Ad Rap1 S17N, an inactive mutant of Rap1. This 

revealed that both normal (GFP-) and dominant negative Rap1-expressing CD4+ T 

cells (GFP+) which were treated with anti-CD3 exhibited clear proliferation peaks by 

day 3. However, the GFP+ cells expressing Rap1 S17N were undergoing more 

division than the control GFP- cells. This suggested, Rap1 activity acts to limit 

cellular proliferation during anergy and thus switching off Rap1 activity upregulates 

cellular proliferation to generate a phenotype more resembling priming of normal 

(or GFP-) T cells by anti-CD3 plus anti-CD28, which showed higher proliferation 

that GFP- cells stimulated with anti-CD3 only. Indeed, as the GFP- cells treated with 

anti-CD3+anti-CD28 somewhat resembled the GFP+ cells treated with anti-CD3, 

this suggested that CD28 signalling may in part act to switch off Rap1 activation. 

GFP+ cells treated with anti-CD3+anti-CD28 also showed enhanced proliferative 

capacity, however, this is not as obvious as with comparison of GFP-/GFP+ cells 

treated with anti-CD3. However, there did not appear to be any difference between 

anergy and primed cells in terms of Erk/Rap signalling during the induction phase 

and the introduction of Ad Rap1 S17N did not appear to modulate Erk activity in 

transduced cells treated with anti-CD3 or anti-CD3+anti-CD28, suggesting that Rap 

was targeting some other effector during the induction phase. When these 

adenoviral transfer experiments were repeated in the more physiological model, 

the higher proliferation exhibited in anergic Ad Rap1 S17N transduced cells were 

not replicated suggests that the enhancing effects of Ad Rap1 S17N might be 

substituted by other signals generated under these more physiological conditions.  

Nevertheless, as indicated above, the activation of Rap1 and ERK as assessed by 

western blotting revealed that both anergic and primed T cells exhibited steady 

expression of active Rap1 after priming with antibodies for at least 48 hours after 
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which this increased dramatically until 96 hours, with the primed T cells expressing 

slightly higher levels of Rap1 than anergic T cells. Cyclic activation of ERK was 

seen in the primed T cells and at higher levels of activation than in the anergic 

population, which did not exhibit these kinetics. However, as these data showing 

similarities in Rap signaling in anergy and priming as well as the use of the 

dominant negative construct suggested that Rap was not acting to suppress ERK 

activation during induction of anergy other potential downstream targets such as 

the key transcription factor, c-Myc were also examined. The phosphorylation of 

Ser62 (by ERK) participates in stabilization of c-Myc whereas phosphorylation of 

Thr58 targets c-Myc towards to degradation. The kinetic of pS62 c-Myc expression 

were consistent with following activation of pERK in both primed and tolerised cells 

at 24-96 hour during induction phase. Although the primed T cells exhibited higher 

levels of ERK activation than anergic T cells, the anergic T cells showed higher 

levels of pS62 c-Myc than primed T cells during induction phase. Surprisingly, the 

pT58 c-Myc expression more similarly reflected the pattern of ERK activation. 

Additionally, the primed T cells tend to skew to catabolic, rather anabolic metabolic 

pathways, when compared to anergic T cells during the induction phase, as 

evidenced by the primed cells exhibiting upregulation and phosphorylation of 

AMPK and Raptor to inhibit mTORC1 function and in turn, lower levels of pp70 S6 

kinase. However, the expression of phosphorylated Rictor in anergic T cells was 

higher than that of primed T cells, indicating inhibition of mTORC2 in anergic T cells 

resulting in downregulation of AKT activation during this induction phase. 
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Figure 4.1 Analysis of DNA synthesis and cytokine secretion in 

anergic and primed T cells by Thymidine [3H] and ELISA 

during induction phase. 

The CD4+ T cells were extracted from lymph nodes of OVA TCR or hCAR 

x OVA T cR mice and isolated by MACS CD4+ T cell isolation kit. As 

mentioned in Figure 3.1, briefly, the naïve CD4+ T cells (2x105/200µl) 

were stimulated with anti-CD3 ± anti-CD28 for 48 and 96 hours. 

Sequentially the thymidine were added into the CD4+ T cells which were 

treated in different conditions and cultured for extra 16 hours culture. (A) 

The DNA synthesis at 48 hours (B) The DNA synthesis at 96 hours. 

The CD4+ T cells were extracted from lymph nodes of OVA TCR or hCAR 

x OVA T cR mice and isolated by MACS CD4+ T cell isolation kit. As 

mentioned in Figure 3.1, briefly, the naïve CD4+ T cells (10x106/4ml) were 

stimulated with anti-CD3 ± anti-CD28 in 6-well tissue culture plate for 48 

and 96 hours. The supernatant were firstly collected at 48 hours 

meanwhile the cells were washed and rested until 96 hours when the 

supernatant were harvested. (C) The IL-2 production at 48 and 96 hour 

during induction phase (D) IFN-γ production at 48 and 96 hour during 

induction phase. 
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Figure 4.2 Assessment of cellular proliferation of anergic and primed 

T cell during induction phase. 

The CD4+ T cells were extracted from lymph nodes of OVA TCR or hCAR 

x OVA T cR mice and isolated by MACS CD4+ T cell isolation kit. The 

naïve CD4+ T cells were stained with eFluor 670 in 5µM before induction 

of anergy and priming with anti-CD3 ± anti-CD28 for 4 days. The cells 

were harvested everyday and the cellular proliferation was analysed by 

FACS. (A) The cellular proliferation of naïve CD4+ T cells which were 

cultured with media alone (B) The cellular proliferation of CD4+ T cells 

which were induced with anti-CD3. (C) The cellular proliferation of CD4+ T 

cells which were induced with anti-CD3/anti-CD28. Data are 

representative of at least three independent experiments. 
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Figure 4.3 Assessment of cellular proliferation by regulation of Rap1 

S17N during induction of anergy and priming in Ag 

specific CD4+ T cells by eFluor 670. 

The LNs were generated from hCAR or hCARxOVA TCR mice and 

transduced with Ad Rap1 S17N at MOI 30 before staining with eFluor 670 

in 5µM. The transduced and stained LNs were cultured with anti-CD3 in 

presence or absence of anti-CD28 for 2 days and rested for the other 2 

days. The cellular proliferation were analysed by FACS on day 1 and day 

3. (A) Uninfected cells (B) LNs were transduced with Ad Rap1 S17N at 

MOI 30 (uninfected cell (GFP-) was 16.9% and infected cells (GFP+) was 

54.5%). (C) The cellular proliferation of GFP- and GFP+ LNs during 

induction of anergy. (D) The cellular proliferation of GFP- and GFP+ LNs 

during induction of priming (E) The percentage of clonal expansion 

among each cell division in GFP- and GFP+ populations during induction 

of anergy (F) The percentage of clonal expansion among each cell 

division in GFP- and gFP+ populations during induction of priming. Data 

are representative of at least three independent experiments. 
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Figure 4.4 Assessment of ERK and Rap1 activation in Ag specific 

CD4+ T cells regulated by Ad Rap1 WT during induction 

of anergy and priming. 

The LNs were generated from hCAR or hCARxOVA TCR mice and 

transduced with Ad Rap1 WT at MOI 30. The LNs transduced with Ad 

Rap1 WT were cultured with anti-CD3 and anti-CD3+anti-CD28 for 0, 10, 

30, 60 and 180 minutes and 6 to 96 hours. ERK activation (A) (B) and 

active Rap1 (C) (D) were assessed by FACS. 
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Figure 4.5 Assessment of ERK and Rap1 activation in Ag specific 

CD4+ T cells regulated by Ad Rap1 S17N during induction 

of anergy and priming. 

The LNs were generated from hCAR or hCARxOVA TCR mice and 

transduced with Ad Rap1 S17N at MOI 30. The LNs transduced with Ad 

Rap1 S17N were cultured with anti-CD3 and anti-CD3+anti-CD28 for 0, 

10, 30, 60 and 180 minutes and 6 to 96 hours. ERK activation (A) (B) and 

active Rap1 (C) (D) were assessed by FACS 
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Figure 4.6 Assessment of maturation markers expressed on 

immature and mature DC in vitro. 

The DC were generated from bone marrow of OVA TCR mice and 

cultured in the low adhesion plate with conditional media for 6 days. On 

the day 7 the DC were scrap off from plate and washed with complete 

media. Half of DC were cultured with complete media alone as immature 

DC. The other half of DC were treated with LPS for 24 hours as mature 

DC. On the day 8, the DC were harvested from low-adhesion plate and (A) 

stained with CD11c and its Isotype control. 22% of cells within in R1 gate 

were CD11c+ cells. (B) The immature and mature DC were stained with 

CD80 antibody and (C) CD86 antibody. Data are representative of three 

independent experiments. 
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Figure 4.7 Assessment of cellular proliferation in CD4+ T cells 

induced by immature and mature DC. 

The lymph nodes were extracted from hCAR x OVA TCR mice and 

prepared as single cell suspension. The immature and mature DC 

generation and preparation was same as described in Figure 4.3. The 

immature and mature DCs were treated with OVA pepetide before they 

were co-cultured with lymph nodes. The lymph nodes (1x107) were 

induced with OVA-loaded immature and OVA-loaded, LPS-matured DC 

(1x106) for 4 days. The LN cells and supernatant were harvested 

everyday for (A) analysis of proliferation and the production of (B) IL-2 

and (C) IFN-γ. 
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Figure 4.8 Assessment of cellular proliferation regulated by Ad Rap1 

WT and S17N underlying more physiological condition. 

The LNs (3x106) were transduced with (A) Ad Rap1 WT and (B) S17N at 

MOI 30 for 24 hours before co-culture day. The transduced LNs were 

stained with eFluor 670 in 5µM before co-cultured with OVA-loaded, 

mature DC (1.5x106) for 4 days. The cells were harvested on day 2 and 

day 4 and analysed by FACS. 
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Figure 4.9 Assessment of ERK and Rap1activation in Ag specific 

CD4+ T cells regulated by Ad Rap1 WT underlying more 

physiological condition. 

The LNs (3x106) were transduced with Ad Rap1 WT at MOI 30 for 24 

hours before co-culture day. The transduced LNs were co-cultured with 

OVA-loaded, mature DC (1.5x106) for 4 days. The cells were harvested 

on day 2 and day 4 and analysed by FACS. To investigate more than 

previous experiment, the ERK and Rap1 activation were analysed in 

GFP- and GFP+ populations within (A) (B) blasting gate and (D) (E) 

resting gate. Regarding to the difference between the ratio of pERK/ERK 

and active Rap1/Rap1 was not very obvious, the ratio was calculated as 

pERK/active Rap1 (C) (F) to amplify the bias towards to ERK activation 

between GFP- and GFP+ populations. 
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Figure 4.10 Assessment of ERK and Rap1activation in Ag specific 

CD4+ T cells regulated by Ad Rap1 S17N underlying more 

physiological condition. 

The LNs (3x106) were transduced with Ad Rap1 S17N at MOI 30 for 24 

hours before co-culture day. The transduced LNs were co-cultured with 

OVA-loaded, mature DC (1.5x106) for 4 days. The cells were harvested 

on day 2 and day 4 and analysed by FACS. To investigate more than 

previous experiment, the ERK and Rap1 activation were analysed in 

GFP- and GFP+ populations within (A) (B) blasting gate and (D) (E) 

resting gate. Regarding to the difference between the ratio of pERK/ERK 

and active Rap1/Rap1 was not very obvious, the ratio was calculated as 

pERK/active Rap1 (C) (F) to amplify the bias towards to ERK activation 

between GFP- and GFP+ populations. 
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Figure 4.11 Analysis of Rap1 and ERK1/2 activation during induction 

of anergy and priming by Western Blotting. 

The naïve CD4+ T cells were stimulated with anti-CD3 in presence or 

absence of anti-CD28 for 0, 1, 2, 4, 8, 24, 48 and 96 hours. The levels of 

active Rap1, total Rap1, phosphorylated ERK1/2 (pERK1/2), total ERK1/2 

and loading control (GAPDH) in whole cell lysates of each population 

were measured at each timepoint using Western Blot analysis. The 

activation of Rap1 (A), expression of Rap1 (B), activation of ERK (C) and 

ERK/Rap1 (D) were quantitated by ImageJ64. 
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Figure 4.12 Analysis of c-Myc activation during induction of anergy 

and priming by Western Blotting. 

The naïve CD4+ T cells were stimulated with anti-CD3 in presence or 

absence of anti-CD28 for 0, 1, 2, 4, 8, 24, 48 and 96 hours. The levels of 

phosphorylated c-Myc (S62), phosphorylated c-Myc (T58), c-Myc and 

loading control (GAPDH) in whole cell lysates of each population were 

measured at each timepoint using Western Blot analysis. The activation 

of c-Myc S62 (A) and c-Myc T58 (C), and expression of c-Myc (B) (D) 

were quantitated by ImageJ64. 
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Figure 4.13 Analysis of mTORC1 activation during induction of anergy 

and priming by Western Blotting. 

The naïve CD4+ T cells were stimulated with anti-CD3 in presence or 

absence of anti-CD28 for 0, 1, 2, 4, 8, 24, 48 and 96 hours. The levels of 

phosphorylated AMPK, AMPK, phosphorylated Raptor, Raptor, 

phosphorylated p70 S6 kinase, p70 S6 kinase and loading control 

(GAPDH) in whole cell lysates of each population were measured at each 

timepoint using Western Blot analysis. The activation of AMPK (A) 

expression of AMPK (B), activation of Raptor (C), expression of Raptor 

(D), activation of p70 S6 kinase (E) and expression of p70 S6 kinase (F) 

were quantitated by ImageJ64. 
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Figure 4.14 Analysis of mTORC2 activation during induction of anergy 

and priming by Western Blotting. 

The naïve CD4+ T cells were stimulated with anti-CD3 in presence or 

absence of anti-CD28 for 0, 1, 2, 4, 8, 24, 48 and 96 hours. The levels of 

phosphorylated Rictor, Rictor, phosphorylated AKT, AKT and loading 

control (GAPDH) in whole cell lysates of each population were measured 

at each timepoint using Western Blot analysis. The activation of Rictor (A) 

expression of Rictor (B), activation of AKT (C) and expression of AKT (D) 

were quantitated by ImageJ64. 



Chapter 5 
Discussion 
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5 Discussion 

5.1 Comparison of the levels of DNA synthesis, cellular 

proliferation and cytokine secretion during the 

induction and maintenance phase of anergy and 

priming in CD4+ T cells in vitro 

As the DNA synthesis (measured by [3H] thymidine uptake into DNA) is an 

indication of the S phase of cell cycle progression, it is thus referred as an indicator 

of cellular proliferation. Thus, as a first step to investigating the differential 

proliferative responses of primed and anergised T cells, DNA synthesis in primed 

and anergic antigen-specific T cells was first investigated during the induction and 

maintenance phases. Previous studies had shown that the anergic T cells exhibited 

reduced proliferation after re-stimulation with OVA323-339 in vitro [14] and here, a 

similar result was replicated in these optimised models as assessment of [3H] 

thymidine uptake during maintenance phase of anergy and priming in CD4+ T cells 

(Figure 3.3) showed that anergic T cells also undergo Ag-driven DNA synthesis, 

they do to a lesser extent than primed cells (Figure 3.3A). This finding goes against 

the concept that only cells receiving costimulation are able to proliferate during 

maintenance phase and thus it was investigated further by examining if this also 

occurred during the induction phase. Thus, firstly we examined the proliferative 

capacity of the cell during induction of anergy and priming as indicated by DNA 

synthesis at 48 and 96 h following stimulation with anti-CD3 or anti-CD3+anti-CD28, 

respectively. Again, the primed T cells exhibited higher levels of DNA synthesis 

than anergic T cells at 48 hours although both of primed and anergic cells 

presented similar levels of DNA synthesis at 96 hours. Nevertheless, there is no 
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doubt that the primed cells shows higher level of DNA synthesis after re-stimulation 

of with Ag. Moreover, although both groups of cells had similar levels of DNA 

synthesis at 96 hours after induction of anergy and priming, this could reflect 

limitations of the culture system, particularly with respect to the primed group. 

Further, since analysis of DNA synthesis only provides a snapshot of the cells 

transiting S phase of the cell cycle, it provides no information relating to the actual 

numbers of cell division undergone. 

Thus for further investigation of cellular proliferation during induction of anergy and 

priming, cell division tracking dyes were used to provide more information on 

differential proliferative responses between anergic and primed populations. 

Interestingly, during the induction phase, both anergic and primed T cells exhibited 

clear peaks representing differential numbers of cell divisions for anergic and 

primed cells from day 2, the same time point (48 hours) that the cells treated with 

anti-CD3/anti-CD28 exhibited much higher levels of DNA synthesis. Additionally, 

the difference between these two groups was even more obvious at day 4 when 

many more of the primed T cells (66.9%) proliferated relative to the anergic T cells 

(27.3%) during induction phase. By contrast, the DNA synthesis data presented no 

significant difference between these two groups at 96 hours (day 4) in the induction 

phase. Again, this suggests that cellular proliferation analysed with a cellular track 

dye provides more detail than the [3H] thymidine assay. These results did not 

reflect an artefact of CFSE staining as regarding the proliferation of anergic and 

primed cells stained with eFluor 670, although the primed T cells had 29.5% of cells 

had not proliferated, the anergic T cells retained a much higher proportion of 

non-proliferated cells at 41.5% on day 3. The difference between two groups was 

even more obvious at day 4 at the end of the induction period of anergy and 

priming, where 66.9% of primed T cells. 
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Similar patterns were shown during the maintenance phase as well. Consistent 

with the above data for the induction phase studies, anergic CD4+KJ+ T cells had a 

higher percentage of non-dividing cells than primed T cells at the beginning of the 

maintenance phase: 17.8% versus 11.7% on day 1 and 18.5% versus 9.68% on 

day 2. By contrast, the primed T cells obtained higher percentage of cells that had 

divided: 27.2% versus 14.7% on day 1; and 19.2% versus 8.13% on day 2; 68.4% 

versus 50.6% on day 3 and 66.7% versus 53.2% on day 4. Overall, the primed T 

cells proliferated faster than anergic T cells in the first two days with primed T cells 

showing less non-dividing cells and more proliferating cells on day 1. The 

difference between the proliferation of anergic T cells was most obvious on day 2, 

after which the proliferation of anergic T cells started to catch up with primed T cells, 

which possibly partly due to exhaustion of the media for primed cells and loss of 

sensitivity of CFSE-tracked division since the levels of CFSE was too low to detect. 

In addition to assessing cellular proliferation, the cytokine secretion during 

induction and maintenance phase were further investigated, as the lack of IL-2 

production is the key indicator for identification of T cell tolerance [137]. IL-2 and 

IFNγ released from anergic and primed T cells was only detectable at the first 48 

hours of the induction phase, indicating that production ceased during the resting 

period or was consumed to promote survival or proliferation of the cells at this point. 

Notably, the dramatic difference exhibited in DNA synthesis between anergic and 

primed T cells was not reflected here, as the level of IL-2 produced from primed T 

cells was only slightly higher than anergic T cells and appeared to correlate better 

with the observed patterns of cellular proliferation. For example, the primed T cells 

proliferated slightly faster and underwent more than rounds of division than anergic 

T cells at day 2, reflecting the relative IL-2 production at 48 hours. Meanwhile the 

anergic T cells released higher IFNγ than primed T cells at 48 hours, which 
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suggested that more anergic T cells may have been differentiated to Th1 cells. 

However, both IL-2 and IFNγ were diminished at 96 hours, which suggested that 

the IL-2 might be being consumed for proliferation since both anergic and primed T 

cells proliferated much faster and more on day 3 and day 4 than day 2. The 

reduction in IFNγ may reflect lack of production on establishment of anergy but this 

as also observed with the primed cells and so may reflect some homeostatic 

regulatory mechanism.  

Distinct from the induction phase, primed T cells produced the highest levels of IL-2 

during the first 24 hours after challenge with antigen. However, the secretion of Il-2 

from the primed cell population dropped between 24-48 h and particularly 

dramatically, 48-96 h following stimulation with antigen, findings which were 

reflected functionally by the cellular proliferation data, since the primed T cells 

exhibited strong proliferation, relative to anergic T cells. Additionally, the reduced 

levels of IL-2 at 96 hours for both anergic and primed T cells reflected their strong 

proliferation by day 4. The levels of IFNγ production also supports the evidence of 

cell survival and differentiation at 48 and 96 hours. To sum up, it is interesting that 

there were no differences in IL-2 and IFNγ production during the first 48 hours and 

release of these two cytokines were diminished at 96 hours during the induction 

phase. Unlike induction phase, however, higher levels of IL-2 were produced from 

primed T cells during the first 24 hours after stimulation with antigen. Although the 

secretion of IL-2 from both the primed and anergic cell populations dropped at 48 

and 96 hours, this was also reflected in the cellular proliferation responses. 

However, the levels of IFNγ generated from these two populations supports that 

both populations are surviving and d9fferentiating. Thus contrary to what is widely 

portrayed and believed, T cells proliferate during the induction and maintenance 

phases of both priming and tolerance. However, anergic cells exhibited slower and 
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less proliferation than primed cells. Interestingly, whilst the anergic and primed cells 

had produced similar levels of IL-2 and IFNγ during induction phase, primed cells 

produce higher IL-2 and IFNγ during maintenance phase, findings more consistent 

with the dogma of functional defects in anergy suggesting that the precise phases 

and models of priming and tolerance in the literature need to be carefully evaluated. 

5.2 pERK and active Rap expression during induction 

and maintenance phase 

The molecular signalling pathway in anergic cells responsible for the differential 

functional outcomes outlined above remain to be fully explored in order to explain 

these phenomena. The first step was to build on data from this lab showing 

counter-regulatory Erk/Rap1 signalling during the first 24 h of the maintenance 

phase of priming and tolerance, especially as these data could only account for 

Rap1 expression, not activity. The levels of ERK activation presented here show it 

to oscillate with peaks during 1 to 24 hours in induction phase (Figure 4.7B-F), 

which is similar as what has been demonstrated previously for survival and 

proliferation of B cells [246]. However, only low levels of ERK activation were 

generated and no significant difference shown between anergic and primed 

populations during this time period whereas the primed T cells exhibited more and 

faster proliferation than anergic cells during induction phase. The similar pattern 

also showed that the active Rap1 did not exhibit significant difference between 

anergic and primed cells during induction of priming and anergy, however, the 

assessment of total Rap1 was not available at the time, thus the relative Rap1 

activation was not able to provide here, indicating the comparison of Rap1 

activation in cells during priming and tolerance is still not available from this FACS 

approach. However, the information of ERK and Rap1 activation is available from 
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the cells assessed by western blot where the primed T cells exhibited cyclic 

activation of ERK and expressed higher levels of activation of ERK than anergic 

from 0- 48 hour, whereas the anergic T cell exhibited increasing ERK activation 

from 48 -96 hour (Figure 4.11C), consistent with their relative patterns of cellular 

proliferation during induction of priming and anergy (Figure 4.2). The further 

analysis of Rap1 activation by western blot, both anergic and primed T cells 

exhibited steady expression of active Rap1 from 0- 48 hour after priming with 

antibodies, after which the Rap1 activation increased dramatically in both anergic 

and primed T cells until 96 hours (Figure 4.11A). This higher expression was also 

reflected at the level of Rap1 protein (Figure 4.11B). Notably, these western blot 

experiments perform different pattern of ERK and Rap1 activation from these 

signals detected by FACS analysis of intracellular staining. These differences 

between two different detection system may reflect the differential culture 

conditions required for the FACS and Western blotting experiments, differential 

efficacy of the antibodies with respect to intracellular staining and Western Blotting 

or else a difference in kinetics induced by exposure to the virus (in the GFP± 

experiments) as it has previously been reported that exposure of hCAR-expressing 

T cells to virus results in some activation [227], perhaps suggesting earlier 

expression of the ERK peaks in the intracellular staining experiments. Although this 

would not appear to be the case for the Rap1 activation, this may reflect the failure 

to measure total Rap expression in the FACS experiments as it can be seen here 

that Rap1 expression falls 24-96 h (Figure 4.12B), consistent with expression of a 

residual pool of highly activated Rap1 (Figure 4.12A). 

The previous study from our lab shown that primed cells exhibited enhanced levels 

of active ERK (dually phosphorylated pERK) and reduced expression of Rap1 

relative to anergic cells in the first 24 h of the maintenance phase both in vitro and 
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in vivo, consistent with the idea that Rap1 antagonised TCR-mediated 

Ras-dependent signalling by sequestering Raf-1 and disrupting coupling to ERK 

[144]. Following this line, the Ras-Raf-MEK-ERK signalling cascade has now been 

examined during induction and the later stages of the maintenance phases with 

respect to Rap1 activation rather than just Rap1 expression. Consistent with our 

previous findings, the inverse relationship between Rap1 and phosphorylated ERK 

expression occurred during maintenance phase of induction of anergy and priming 

[14], the ERK activation by CD4+ T cells in the blasting and resting gate indicated 

that primed T cells expressed higher levels than anergic T cells and indeed, anergic 

T cells expressed lower levels than naïve cells which undergo a primary response 

on day 1 following challenge with antigen during maintenance phase. However, 

there was no real apparent change in Rap activity detected amongst the 3 blasting 

groups on day 1 although, analysis of ERK and Rap1 activation by ratio of ERK: 

Rap1 activation representing counter-regulation emphasised this inverse 

relationship. As shown in Figure 3.13G, the primed cells exhibited highest ratio of 

ERK: Rap1 activation in both blasting and resting cells on day 1. Additionally, the 

elevated levels of ERK and Rap1 in naïve, relative to anergic, cells is consistent 

with the proposal by Cantrell’s group [236] that Rap is important in primary 

responses. However, perhaps surprisingly, the anergic cells exhibited highest ERK 

activation but consistent with counter-regulatory signaling, primed cells displayed 

the lowest levels of ERK and the highest levels of Rap1 activation on day 3. 

Nevertheless, these data were consistent with the cellular proliferation which 

showed that the primed cells proliferated much faster and more than anergic cells 

at the first two days but anergic cells are able to catch up at day 3 and day 4 and 

may indicate that the maintenance of tolerance may be “leaky” in this in vitro 

system. Alternatively, the other possibility is that not all “anergic” and “primed” cells 

which induced with antibodies are anergic and primed since no efficient markers or 
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methods to ensure the cells treated with anti-CD3 or anti-CD3/anti-CD28 are “all” 

induced to anergic and primed cells. Moreover, it may suggest that 

counter-regulatory Erk-Rap1 signalling functions to homeostatically regulate 

proliferation in the antigen-rechallenge maintenance phase with high ERK/Rap1 

signalling for proliferation whilst a switch to low Erk/Rap1 could function as a 

negative feedback signal and is reminiscent of Boussiotis proposal that high Rap1 

activity may be representative of T cell unresponsiveness in general, for example in 

Tregs or anergy cells [26, 31, 237], or in this case, during the termination of primed 

responses. 

5.3 Modulation of Rap1 in regulation of MAPK during 

induction of anergy and priming 

As mentioned above, Th cell proliferation is upregulated when Rap 1 activation is 

switched off during induction of anergy and priming and thus, it was further 

investigated whether this reflected counter-regulation of ERK and Rap1 activation. 

As expected, there was no difference in ERK and Rap1 activation between GFP- 

and GFP+ cells transduced with Ad Rap1 WT during induction of anergy and 

priming (Figure 4.6 B &C) as the adenoviral system does not generally lead to 

overexpression of the gene of interest [227, 247]. Perhaps surprisingly, there was 

also no difference in the levels of ERK activation and active Rap1 in cells 

transduced with Ad Rap S17N during induction of anergy and priming as well 

despite the cells transduced with Ad Rap1 S17N proliferating more than the cells 

without Rap S17N during induction of anergy and priming. Although the GFP+ data 

at the early time points indicates an increase in active Rap1 in cells transduced with 

either the WT and S17N constructs, these were considered artefacts of the very 

low numbers and percentage of cells that were GFP+ at these time points. 
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Additionally, due to data for total Rap1 expression not being available in these 

studies, the absolute levels of Rap1 activation could not be determined here as 

analysing the levels of active Rap1 expression only does not give the true picture of 

the relative cellular Rap1 activation. Nevertheless, overall, the anti-CD3 treated Ad 

Rap1 S17N transduced cells (the cells switching off Rap and under induction of 

anergy) despite exhibiting more proliferation than GFP- cells do not show increased 

ERK activation, suggesting that other pathways may contribute for proliferation 

here and Rap1 may target other its downstream proteins such as RAPL and Mst1 

(Figure 5.1A). RAPL, a critical Rap1 effector that regulates lymphocyte adhesion, 

negatively controls lymphocyte proliferation via modulation of lymphocyte 

function-associated antigen-1 (LFA-1) adhesiveness [248]. Alternatively, Rap1 has 

been reported to be an essential modulator of NF-κB-mediated pathways. As 

NF-κB is induced by ectopic expression of Rap1, whereas its activity is inhibited by 

Rap1 depletion [249]. 

Although the proliferation outcomes of mimicking more physiological conditions did 

not replicate the increased cellular proliferation of T cells stimulated with anti-CD3 

or anti-CD3/anti-CD28 resulting from transduction with Ad Rap1 S17N, the effects 

of constructs on ERK and Rap1 activation were also examined under these 

conditions. The ERK activation exhibited the cyclic pattern in both GFP+ (S17N) 

and GFP- populations within either blasting or resting gates, similar the pattern 

observed previously [14] (Figure 4.11A &D). Furthermore, the level of Rap1 

activation decreased in GFP+ cells on day 2 but not in GFP- cells, indicating the 

efficacy of the construct. This enhanced reduction of Rap1 activation in the GFP+ 

cells was lost at day 3, with both GFP- and GFP+ cells showing similar levels at day 

2, perhaps indicating that this is the basal level of Rap1 activity in these cells. 

Additionally, the gradual decline in Rap1 activity observed in GFP- and GFP+ 
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populations following stimulation with anti-CD3 or anti-CD28 (Figure 3.12) is 

consistent with the kinetic pattern showed here (Figure 4.11B). Analysis of the ratio 

of pERK/active Rap showed a clear cycling pattern of increased ERK relative to 

Rap1 activation in the blasting but not resting cells, perhaps consistent with them 

progressing through the cell cycle. This was reflected by an enhanced relative level 

of ERK activation in the day 1 samples of GFP+ relative to GFP- cells, perhaps 

suggesting some degree of counter regulation that did not translate to enhanced 

proliferation at this time point. Alternatively, it may reflect that such 

counter-regulation was a requirement for induction of “late” priming signals. 

Rather surprisingly, analysis of the levels and pattern of ERK and Rap1 activation 

in the cells transduced with Ad Rap1 WT in this model revealed that transduction of 

Rap1 promoted ERK activation (Figure 4.9C&D). Since cells transduced with Ad 

Rap1 WT did not exhibit different levels of Rap1 activation between GFP- and GFP+ 

populations but increased ERK activation, indicating the ectopic Rap1 somehow 

results in ERK activation independently of Rap1 activation (Figure 4.9F). 

Combining these two factors, the changes in the ratio of pERK/active Rap1 display 

with more dramatic patterns. Additionally, whilst the Rap1 activation in GFP+ (S17N) 

cells drops at day 1 but not in GFP- cells, indicating the dominant negative effects 

of this construct, both GFP- and GFP+ cells exhibited similar level of Rap1 

activation at day3 (Figure 4.11B). By contrast, the level of Rap1 activation in both 

GFP- and GFP+ (WT) decrease and display similar levels at day 1, reflecting that 

the cells transduced with Ad Rap1 WT and S17N are at different stage in the 

kinetics of their response and also perhaps that the WT construct is exerting some 

Rap1 activation-independent effects that could reflect, for example, signalsome 

scaffolding and/or subcellular localisation effects relative to the endogenous 

element, possible due to defects in post-translational modification of the ectopic 
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Rap1 construct. 

5.4 c-Myc activation during induction phase 

The kinetic of pS62 c-Myc expression were consistent with that predicted following 

activation of pERK in both primed and tolerised cells at 24-96 h during induction 

phase. However, although the primed T cells showed higher levels of activation of 

ERK than anergic cells before 24 hours, generally the anergic T cells exhibited 

higher levels of pS62 c-Myc than primed T cells during induction phase.  

Surprisingly, the pT58 c-Myc expression more similarly reflected the pattern of ERK 

activation, a finding which had not been predicted as phosphorylation at T58 has 

the opposite role to that at S62, as it targets c-Myc for degradation (Figure 4.12C & 

3.26C). Additionally, the total expression of c-Myc was strongly upregulated 

accumulating at later times in both anergic and primed T cells with anergic T cells 

expression higher levels of c-Myc at all the time points tested (Figure 4.12B&D). 

However, the delay in such accumulation and the apparent downregulation at the 

end of the timecourse occurred following the peaks in the proteasome targeting 

pT58 form. Although, this accumulation of c-Myc in anergic cells was surprising as 

c-Myc upregulation is typically associated with proliferation it may reflect its 

involvement [224] in other cellular processes such as apoptosis and may reflect 

homeostatic cell death in the end of induction of anergy and priming. Tracking 

c-Myc activation in a prolonged induction phase and its relative downstream targets 

may reveal however that this apparently similar signal may have very different 

functional outcomes for example in terms of gene induction and cell survival and 

apoptosis.  
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5.5 mTOR 

5.5.1 mTORC1 

Naïve cells exhibited high levels of phosphorylated Raptor at time zero and these 

were maintained for the first 4 hours of stimulation, perhaps indicating their 

emergence from a quiescient state and entry into cell cycle. Consistent with this, 

levels of pp70S6K largely increased between 8-24 h corresponding with the decline 

in pRaptor. S6K activity was then dramatically switched off (48-96h) which is 

coherent with the activation of AMPK (Figure 4.13A, C &E). This pattern illustrates 

the energy status and metabolism of the cells following the stimuli, from quiescient 

state to catabolic metabolism associated with proliferation, resulting in a low energy 

status in the cells that therefore leads to AMPK activation to inhibit mTORC1 

pathway. Notably, the primed cells exhibited higher activation of AMPK than 

anergic T cells and correspondingly lower levels of S6K, the latter finding perhaps 

reflecting induction of anergy-specific genes. Additionally, unlike ERK expression in 

the induction phase, the total expression of AMPK, Raptor and p70 S6 kinase 

changed in response to the different stimulations. During induction of anergy and 

priming, the anergic cells expressed more AMPK and less S6K than primed cells, 

perhaps due to the low level of glucose within cells or other associated regulatory 

mechanisms. Thus further investigation of the energy and nutrition status of those 

cells are necessary and although initial metabolomics studies have been performed, 

at this stage the analysis is still awaited.  

5.5.2 mTORC2 

The pattern in phosphorylation of Rictor is consistent with pp70 S6 kinase in both 

anergic and primed cells. As seen in Figure 4.13E & 3.27A, the anergic cells 

exhibited higher proportion of pp70 S6 kinase than primed cells most of the time, 



149	  

this reflects in the phosphorylation of Rictor as well. Thus the anergic cell exhibited 

higher phosphorylation of Rictor than primed cells from beginning of culture until 48 

hour at which point the primed cells displayed increasing pRictor. This suggests 

that the anergic cells exhibited lower activation of mTORC2 than primed for the first 

48 hours after receiving stimulation. It is also clear, the primed cells showed higher 

pRictor than anergic cells after 48 hour, which consistent with the pAKT expression 

between these two populations. This may suggest that in anergic T cells, activation 

of the mTORC2 pathway was triggered to promote cell survival after 48 hours. 

To sum up, both mTORC1 and mTORC2 delivery details about energy status and 

metabolism in anergic and primed cells. The cellular proliferations occurred in both 

populations are accompany with low evergy and lead to AMPK activation. 

Surprisingly, the primed cells exhibited lower activation of mTORC1 than anergic. 

This may due to low energy consuming by rapid proliferation during induction of 

priming. On the other hand, the anergic T cells exhibited higher activity of mTORC1 

during 8-24 h, which reflected in higher expression in pp70S6K, may also explain 

that the proliferation progress of anergic T cells were able to catch up primed t cells 

after 48 h during induction of anergy and priming. Consistent with this, the anergic 

T cells exhibited higher activation of mTORC2 than primed T cell at 48 h after 

receiving stimulation, which also refer to similar behavior pattern occurred in 

anergic T cells. However, the further investigation in downstream molecules are 

required, because upregulation of mTORC1 activity during 8-24 h in induction of 

anergy occurred earlier than the time point of increasing the activity of mTORC2. It 

is more likely that mTORC1 contributes to the signaling which involve in cellular 

rescue and survival and mTORC2 participates after mTORC1 been activated. 
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5.6 Potential mechanism for Rap1 S17N in enhanced 

proliferation under in vitro and physiological model 

Rap1, a molecule originally identified as an integrin regulator, also plays an 

inhibitory role in cell proliferation and provides a molecular link with cell 

adhesion and growth. Rap1 induces cell adhesion via RAPL-Mst1-LFA-1 

signaling upon TCR stimulation (Figure 5.1A) [250, 251]. Interestingly, several 

studies have shown that proliferative responses were enhanced in RAPL- and 

Mst1-deficient T cells (Figure 5.1B) [252, 253]. RAPL-deficient T cells 

exhibited increasing DNA synthesis in response to stimulation of anti-CD3 and 

anti-CD3/CD28, accompanying with similar levels in activation of proliferative 

signaling pathways, MAPK, NF-κB and PI-3K [253]. The evidence revealed 

that the enhanced proliferation in RAPL-deficient T cell during stimulation of 

anti-CD3 in presence or absence of anti-CD28 was due to mislocalization of 

p27kip1, inhibitor for Cdk2. This occurred via kinase interacting stathmin (KIS) 

mediated-upregulation of Serine 10 phosphorylation in p27 that inhibited 

nuclear localization of p27 in T cell, leading to an increased Cdk2 activity in 

nucleus, which contributes G1-S phase transition in lymphocytes. As partial 

inhibition of hyperproliferation was observed in S10 mutation of p27 in 

RAPL-deficient T cell, it suggests that other mechanisms like Mst1 may involve 

in the enhanced proliferation in RAPL-deficient T cell (Figure 5.2). Although the 

hyperproliferative response was also observed in Mst1-deficient T cell, the 

enhanced proliferation was regulated independently of p27 [253]. The work 

described in my study indicated that both anti-CD3 and anti-CD3/CD28-treated 

cells transduced with Ad Rap1 S17N exhibited enhanced proliferation, and no 

difference in activation of ERK, which might be able to be explained by 

Katagiri’s paper [253]. The hypothesis would be that Rap1 S17N impairs the 
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signaling in RAP1-1RAPL pathway, the cellular adhesion is abolished and 

cellular proliferation is enhanced via upregulated Serine 10 phosphorylation in 

p27 via increased KIS activity, which leads an increase of nuclear Cdk2 activity 

and promotes cell cycle (Figure 5.2). Alternatively, as mentioned above, 

abrogating the signaling pathway in RAPL by Rap1 S17N, which in turn 

disrupts Mst1 signaling, might offer another possible explanation on enhanced 

proliferation result. Although the proliferation outcomes of mimicking more 

physiological conditions did not replicate the increased cellular proliferation of 

T cells stimulated with anti-CD3 or anti-CD3/CD28 resulting from transduction 

with Ad Rap1 S17N, this did not mean that the model showed in Figure 5.2 

was wrong. Since the Ad Rap1 S17N transduced T cells co-cultured with 

OVA-loaded, LPS-matured DC received not only signal I and signal II, other 

molecules, e.g. integrin, triggering other signaling pathways also involved 

while DCs present antigen to T cells. As Rap1 can play dual functions in 

inhibition of cell proliferation and induction of cell adhesion in T cell, with this 

line, the hypothesis would be that Ad Rap1 S17N transduced T cell received 

“positive” signal promoting cell proliferation from TCR ligation and 

co-stimulation (Figure 5.3B), which replicated the antibody treatment model 

(anti-CD3/CD28) (Figure 5.3A) and “negative” signal inhibiting cell proliferation 

via integrin signaling pathway (Figure 5.3B). Overall, Ad Rap1 S17N 

transduced T cell received both “positive” and “negative” signals from DC, no 

more “enhanced” signal appeared in cellular proliferation between GFP- and 

GFP+ (Rap1 S17N) cells underlying this physiological model.  
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Figure 5.1 Rap1 induced cell adhesion pathway and its downstream 

effectors. 

(A) Rap1 mediates cell adhesion via its effector RAPL associating with 

Mst1 and leads to LFA-1 clustering in turns promoting cell adhesion and 

migration. (B) Both RAPL-deficient and Mst1-deficient lymphocytes 

exhibit enhanced cellular proliferation. 
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Figure 5.2 Potential mechanism for Rap1 S17N in in vitro model. 
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Figure 5.3 Potential mechanism for Rap1 S17N regulating cellular 

proliferation underlying in vitro and physiological 

models. 

(A) In vitro model: Ad Rap1 S17N transduced LN were stimulated with 

antibodies: anti-CD3+anti-CD28. (B) Mimicking physiological model: Ad 

Rap1 S17N transduced LN were co-culture with OVA-loaded, 

LPS-matured DC. In this more physiological model, Ad Rap1 S17N 

transduced LN received “positive” signal for enhancing cellular 

proliferation from TCR ligation and co-stimulation, and “negative” signal 

for integrin mediated-cell adhesion from DC. 
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