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Abstract

Several human genetic diseases, including myotonic dystrophy type 1 (DM1) and Huntington dis-

ease (HD), are associated with inheriting an abnormally large unstable DNA simple sequence tan-

dem repeat. These sequences mutate, by changing the number of repeats, many times during the

lifetime of those affected, with a bias towards expansion. High repeat numbers are associated

with early onset and disease severity. The presence of somatic instability compromises attempts to

measure intergenerational repeat dynamics and infer genotype-phenotype relationships. Modelling

the progression of repeat length throughout the lifetime ofindividuals has potential for improving

prognostic information as well as providing a deeper understanding of the underlying biological

process.

Dr Fernando Morales, Dr Anneli Cooper and others from the Monckton lab have characterised

more than 25,000de novosomatic mutations from a large cohort of DM1 patients using single-

molecule polymerase chain reaction (SM-PCR). This rich dataset enables us to fully quantify levels

of somatic instability across a representative DM1 population for the first time. We establish the

relationship between inherited or progenitor allele length, age at sampling and levels of somatic

instability using linear regression analysis. We show thatthe estimated progenitor allele length

genotype is significantly better than modal repeat length (the current clinical standard) at predicting

age of onset and this novel genotype is the major modifier of the age of onset phenotype. Further we

show that somatic variation (adjusted for estimated progenitor allele length and age at sampling)

is also a modifier of the age of onset phenotype. Several families form the large cohort, and we

find that the level of somatic instability is highly heritable, implying a role for individual-specific

trans-acting genetic modifiers.

We develop new mathematical models, the main focus of this thesis, by modifying a previously pro-

posed stochastic birth process to incorporate possible contraction. A Bayesian likelihood approach

is used as the basis for inference and parameter estimation.We use model comparison analysis to

reveal, for the first time, that the expansion bias observed in the distributions of repeat lengths is

likely to be the cumulative effect of many expansion and contraction events. We predict that mu-

tation events can occur as frequently as every other day, which matches the timing of regular cell

activities such as DNA repair and transcription, but not DNAreplication.

Mutation rates estimated under the models described above are lower than expected among in-

dividuals with inherited repeat lengths less than 100 CTGs,suggesting that these rates may be

suppressed at the lower end of the disease causing range. We propose that a length-specific effect

may be operating within this range and test this hypothesis by introducing such an effect into the

model. To calibrate this extended model, we use blood DNA data from DM1 individuals with small

alleles (inherited repeat lengths less than 100 CTGs) and buccal DNA from HD individuals who



almost always have inherited repeat lengths less than 100 CAGs. These datasets comprise single

DNA molecules sized using SM-PCR. We find statistical support for a general length-specific effect

which suppresses mutational rates among the smaller alleles and gives rise to a distinctive pattern

in the repeat length distributions. In a novel application of this new model, fitted to a large co-

hort of DM1 individuals, we also show that this distinctive pattern may help identify individuals

whose effective repeat length, with regards to somatic instability, is less than their actual repeat

length. A plausible explanation for this distinction is that the expanded repeat tract is compromised

by interruptions or other unusual features. For these individuals, we estimate the effective repeat

length of their expanded repeat tracts and contribute to theon-going discussion about the effect of

interruptions on phenotype.

The interpretation of the levels of somatic instability in many of the affected tissues in the triplet

repeat diseases is hindered by complex cell compositions. We extend our model to two cell pop-

ulations whose repeat lengths have different rates of mutation (fast and slow). Swamiet al. have

recently characterised repeat length distributions in endstage HD brain. Applying our model, we

infer for each frontal cortex HD dataset the likely relativeweight of these cell populations and their

corresponding contribution towards somatic variation. Bycomparison with data from laser captured

single cells we conclude that the neuronal repeat lengths most likely mutate at a higher rate than

glial repeat lengths, explaining the characteristic skewed distributions observed in mixed cell tissue

from the brain. We confirm that individual-specific mutationrates in neurons are, in addition to

the inherited repeat length, a modifier of age of onset. Our results support a model of disease pro-

gression where individuals with the same inherited repeat length may reach age of onset, as much

as 30 years earlier, because of greater somatic expansions underpinned by higher mutational rates.

Therapies aimed at reducing somatic expansions would therefore have considerable benefits with

regard to extending the age of onset.

Currently clinical diagnosis of DM1 is based on a measure of repeat length from blood cells, but

variance in modal length only accounts for between 20 - 40% ofthe variance in age of onset and,

therefore, is not a an accurate predictive tool. We show thatin principle progenitor allele length

improves the inverse correlation with age of onset over the traditional model length measure. We

make use of second blood samples that are now available from 40 DM1 individuals. We show

that inherited repeat length and the mutation rates underlying repeat length instability in blood,

inferred from samples at two time points rather than one, arebetter predictors of age of onset than

the traditional modal length measure. Our results are a steptowards providing better prognostic

information for DM1 individuals and their families. They should also lead to better predictions for

drug/therapy response, which is emerging as key to successful clinical trials.

Microsatellites are another type of tandem repeat found in the genome with high levels of intergen-

erational and somatic mutation. Differences between individuals make microsatellites very useful

biomarkers and they have many applications in forensics andmedicine. As well as a general appli-

cation to other expanded repeat diseases, the mathematicalmodels developed here could be used to

better understand instability at other mutational hotspots such as microsatellites.
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parameters, are shown in panels A, E and I respectively. Marginalised joint prob-

ability distributions for parameter pairs,µ andn0, φ andn0, φ andµ, andn0 and

a, the threshold over which expansion and contraction occur are shown in panels

D, G, H and F as contours with the dark to light direction representing increasing

probability. The crosses on each horizontal axis indicate the parameter value used

to generated the data. The shape of the distributions conveythe uncertainty in the

parameter estimation. Given that in this case we know the model that generated the

data, the distribution reflects the stochasticity of the process and the sampling error. 55
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4.1 Parameter estimation results for representative individual CR35, aged 30.The
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marginalised for each parameter over the other parameters,are shown in panels
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pairs,µ[35] andn[35]
0 , φ[35] andn[35]

0 , φ[35] andµ[35], andn[35]
0 anda[35], the threshold

number of repeats over which expansion and contraction occur, are shown, in panels

D, G, H and F, respectively, as contours with the dark to lightdirection represent-

ing increasing probability. (The probability surface was smoothed slightly using a

standard convolution filter to reduce noise). In panel C, thedata, shown as a cumu-

lative distribution (jagged dark line) is compared to the inferred fit with the max-

imum likelihood value (light line) with associated parameter valuesµ[35] = 0.25,

φ[35] = 0.0358, a[35] = 41 andn[35]
0 = 209. . . . . . . . . . . . . . . . . . . . . . 77
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Chapter 1

Introduction

Over 20 genetic diseases are associated with inheriting an abnormally large number of simple se-

quence repeats in genomic DNA. Most of these diseases, but not all, are caused by repeat units of

three nucleotide bases: CTG in myotonic dystrophy type 1, CAG in Huntington disease, and CGG

in fragile X syndrome. Collectively these diseases are known as trinucleotide repeat diseases and

repeats with the motif CAG·CTG comprise the largest class of repetitive elements (Gomes-Pereira

& Monckton 2006). Some expanded repeat diseases are based onfour or more bases. For example,

the repeat unit involved in myotonic dystrophy type 2 contains four bases (CCTG) and in spinocere-

bellar ataxia type 10 is a repeat unit containing five bases (ATTCT) (Castel et al. 2010). Generally,

the longer the inherited repeat length, the earlier symptoms appear (Gomes-Pereira & Monckton

2006).

Myotonic dystrophy type 1 (DM1) and Huntington disease (HD)are among the most common of

the trinucleotide diseases. Based on clinical observations, DM1 has an incidence of around 1 in

8,000 among Europeans (Harper 1989) but is less common in some populations including African

Americans and Japanese (Ashizawa & Epstein 1991). Incidences in a few other populations are

much higher. In the Saguenay region of Quebec the incidence of DM1 is 1 in 500 (Mathieu et al.

1990). This is possibly due to founder effects arising through European migration (Yotova et al.

2005). The prevalence of HD is≈ 1 in 10,000 people in the Americas, Europe, and Australasia

(Bates et al. 2002). The highest prevalence of HD in the worldis near Lake Maracaibo in Venezuela

where it affects around 700 per 100,000 of the population (Wexler et al. 1987).

Inherited unstable DNA mutates by changing the number of repeats during the lifetime of the pa-

tient (Gomes-Pereira & Monckton 2006, Mirkin 2007, McMurray 2010). This happens in both the

germline and soma, leading to repeat length gains between generations and variation between cells

and within tissues. There are no cures for DM1 or HD although molecular therapy is currently mak-
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ing advances in this area (Mulders et al. 2010). The goal of treatment therefore is to help patients

maintain their quality of life by preventing or reducing theseverity of their symptoms. Currently,

patients concerned about their own prognosis and their reproductive choices have limited infor-

mation available to them about how their disease will progress. Thus, there is great potential for

more sophisticated modelling and inference techniques to improve the prognostic value of genetic

information. Understanding how these diseases progress indifferent individuals is also of critical

importance in assessing treatment response and the successof clinical trials. The more we under-

stand about the progression of disease the better we can estimate response and establish the efficacy

of the treatment.

1.1 Myotonic dystrophy

1.1.1 Clinical observations

Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults.

DM1 is a multi-systemic disorder characterised by the presence of myotonia (slow relaxation of

the muscles after voluntary contraction or electrical stimulation) followed by progressive weakness

and wasting of distal limb and facial muscles, cardiac conduction defects, cataracts, frontal balding

and testicular atrophy (Harper 1989). The way DM1 affects patients is very variable. Different

sets of symptoms are observed in different patients, sometimes even within the same family. The

observable characteristics of patients (or phenotype) fall into four broad clinical forms:

∗ mild or late onset disease: the only striking symptoms are cataracts beyond the age of 40;

∗ classic adult onset: patients present most symptoms by their 20s or 30s;

∗ juvenile onset: presence of delayed motor and growth development, myotonia and sometimes

mild mental retardation occurs before 10 years;

∗ congenital: most severe, symptoms (breathing difficultiesand poor muscle tone) are clearly

present at birth. There is a high rate of neonatal mortality with babies often dying within the

first few days of life.
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1.1.2 DM1 mutation

DM1 is transmitted in an autosomal (from one of the 22 non-sexchromosomes) dominant fashion,

meaning that the allele associated with DM1 could come from either parent and one such allele is

sufficient for the child to be affected. A typical family willdiscover that it is affected by DM1 with

the birth of a child with the congenital form the disease. Sometimes the parents of the child will

have symptoms which are unrecognised, but more commonly themother will have the classic form

of the disease with a grandparent, usually the grandfather,having the mild form with just cataracts

(Harper 1989).

The mutation responsible for DM1 is an expansion of an unstable CTG trinucleotide repeat located

in the3′ untranslated region of a gene encoding a serine-threonine protein kinase, nameddystrophia

myotonicaprotein kinase gene (DMPK) and in the promoter region of thesine oculishomeobox ho-

mologue 5 gene (SIX5) located in chromosome 19q13.3 (Aslanidis et al. 1992, Brook et al. 1992,

Buxton et al. 1992, Fu et al. 1992, Harley et al. 1992, Mahadevan et al. 1992). A schematic rep-

resentation of the genomic organisation at the DM1 locus is shown in Figure 1.1. The CTG repeat

is polymorphic (existing in many forms) in the general population, ranging from 5 to 37 repeats

in healthy individuals, and from upwards of 50 to several thousand in affected DM1 patients. The

gene is expressed in smooth, skeletal, and heart muscles, inbrain and testis (Groenen & Wieringa

1998, Ueda et al. 2000).

The length of the inherited repeat tract correlates positively with the severity of the disease and

negatively with age of onset (Ashizawa et al. 1992, Tsilfidiset al. 1992, Harley et al. 1993, Lavedan

et al. 1993). Late onset cases with mild symptoms present theshortest number of repeats (usually

between 50 - 150 repeats). Congenital cases with symptoms from birth show the largest number

of repeats (usually more than 1,000 repeats). The repeat hasbeen shown to be unstable in both the

germline and in the soma (Harris et al. 1996).

The sex of the transmitting parent is important in determining the size of the expansion in the off-

spring. Congenital cases almost exclusively have an affected mother with the classic adult form

of the disease (Harley et al. 1993, Lavedan et al. 1993, Redman et al. 1993, Cobo et al. 1995).

However, males carrying small expansions (below 100 repeats), and associated with the late-onset

form or asymptomatic, are more likely to transmit an allele associated with the adult-onset form,

resulting in an excess of male carriers of small alleles present in the first generation of DM1 fam-

ilies (Brunner et al. 1993, Harley et al. 1993, Lavedan et al.1993, López de Munain et al. 1995).
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Although the repeat usually expands (or has the effect of expanding over time), there have been

reported cases with apparent intergenerational contractions of the repeat (Ashizawa et al. 1994).

DM1-like disorders without the DM1 mutation have been recognised and described, in particular

myotonic dystrophy type 2 (DM2), which is an expansion of an unstable CCTG repeat in intron 1

of the transcription factor cellular retroviral nucleic acid-binding protein 1 (Liquori et al. 2001).

Currently clinical diagnosis is based on a measure of repeatlength from blood cells but variance

in modal length only accounts for between 20 - 40% of the variance in age of onset (Perini et al.

1999, Marchini et al. 2000, Mladenovic et al. 2006) and, therefore, is not an accurate predictive

tool. Correlations with specific symptoms are often worse, or undetectable (Merlevede et al. 2002,

Modoni et al. 2004, Gharehbaghi-Schneli et al. 2008). Hencethe International Myotonic Dystrophy

Consortium have recommended that patients are not offered prognostic information based on the

current test (Gonzalez et al. 2000).

…CTGCTGCTG…CTG…

translated region untranslated region

DMPK

5´ end 3´ end

5-37 non disease

<100 late onset

200-500 adult onset

>1000 congenital

Figure 1.1:Schematic representation of the genomic organisation at the DM1 locus. The dia-
gram shows the location of the CTG unstable repeat in the3′ untranslated region of theDMPK gene.
The non disease range and the pathological ranges of repeat lengths and associated phenotypes are
shown in the boxes above.

1.1.3 Anticipation

Anticipation is defined as the occurrence of a genetic disorder at progressively earlier ages in suc-

cessive generations (Harper et al. 1992). Myotonic dystrophy type 1 has been associated with the
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concept of anticipation since it was first described and recognised as a specific disorder (Green-

field 1911, Fleischer 1918). Until the 1980s there was controversy as to whether the phenomenon

of anticipation resulted from observational and ascertainment biases (Penrose 1948) or reflected a

more fundamental mechanism. Julia Bell made the first quantitative analysis of the genetic aspects

of myotonic dystrophy when she assembled pedigree and clinical data on all families reported up

to that time. Bell noted the extreme variability in the clinical features of myotonic dystrophy, age

at onset and death, and found evidence of anticipation but, despite advances in genetics, there was

not a genetic explanation as to how a gene could change down generations at this time (Bell et al.

1948).

The validation of anticipation followed the study by Höweler who provided clear genetic evidence

that refuted Penrose’s explanation of bias as being solely responsible (Höweler et al. 1989). He

found, as Bell and others had done, that families with myotonic dystrophy showed clear intergener-

ational differences with both anticipation and a close correlation between disease severity and age

at onset. Using segregation analysis he showed that penetrance of the gene was close to complete

with 46% of offspring affected making it unlikely that therewas an ascertainment bias.

The discovery of inherited unstable DNA sequences for fragile-X mental retardation (Fu et al. 1991)

suggested a potential genetic mechanism for anticipation.Sutherland predicted that unstable DNA

sequences might be responsible for other examples of variation in genetic disease, including antic-

ipation in myotonic dystrophy, thus providing a spur to search for a similar genetic mechanism for

this disorder and others such as HD (Sutherland et al. 1991).Independently, several groups found

specific molecular abnormalities in myotonic dystrophy with a variable DNA insert of as much as

5 kb in length (Buxton et al. 1992, Harley et al. 1992, Aslanidis et al. 1992). This finding was

followed, shortly after by the identification that the variable DNA insert comprised CTG repeats

(Brook et al. 1992, Fu et al. 1992, Mahadevan et al. 1992).

1.2 Huntington disease

Huntington disease (HD) is an inherited neurological disorder characterised by progressive move-

ment, psychiatric and cognitive disturbances. Neurodegenerative changes in the brain of affected

individuals follow a typical pattern, with early cellular dysfunction and loss of medium spiny neu-

rons in the striatum, followed by more generalised cell lossacross the brain (Graveland et al. 1985).

The cause of HD is an inherited unstable expanded CAG repeat located in exon 1 of a large gene
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on the small arm of chromosome 4 (The Huntington’s Disease Collaborative Research Group 1993)

that results in the extension of a polyglutamine tract at theN-terminus of the encoded, ubiquitously

expressed protein called huntingtin. This lengthened glutamine tract is thought to confer a novel

toxic property on huntingtin (Mangiarini et al. 1996) that initiates neuron loss from the striatum, in

particular, and also the cortex (Vonsattel et al. 1985).

Affected individuals are seen with repeat lengths over 35 CAGs in HD (The Huntington’s Disease

Collaborative Research Group 1993). But whereas in DM1 inherited repeat length levels range

between 50 and several thousand CTGs, in HD most individualsinherit between 40 and 50 CAGs

and adult onset is the norm. There is not a known congenital form of HD.

Whilst the age of disease onset is strongly inversely correlated with the length of the expanded CAG

repeat length (Andrew et al. 1993, Duyao et al. 1993, Snell etal. 1993, Stine et al. 1993, Gusella

et al. 1996), with repeat length accounting for around 70% ofthe variability in age of onset, this

reduces to less than 50% for the majority of HD patients with repeats less than 60 repeats (Myers

et al. 1998, Li et al. 2003). There is evidence for heritability for the portion of age at onset not

explained by CAG repeat size, which provides support, alongwith several studies (e.g.Li et al.

2003, Wexler et al. 2004), for genetic modifiers of age of onset. Measurement of biomarkers that

contribute to variation in age of onset could be used to identify these genetic modifiers, which are

key targets for therapies aimed at slowing or reversing the pathogenic process. These measurements

could also be used to assess the relative effect of any therapy in specific individuals.

1.3 Expandable DNA repeats and human disease

Microsatellites are short DNA tandem motifs (1 to 6 base pairs in length) that comprise≈ 3% of

the human genome (Lander et al. 2001). As the number of motifsat these loci is highly variable

between individuals, microsatellites make very informative molecular markers with many appli-

cations in genetics, forensics and medicine. Current genome-wide association studies of single

nucleotide polymorphisms have not fully detected the source of genetic variation associated with

complex disease. Tandem repeats, which have been shown to affect a range of biological processes

including brain function and behaviour (Fondon et al. 2008), are potential candidates for this “miss-

ing heritability” (Hannan 2010). The size of microsatellites (often much greater than 75 base pairs

in length) does not make them amenable to current high throughput sequencing methods but as next

generation sequencing makes it possible to sequence longerlengths, microsatellites are expected to
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enjoy renewed focus.

The reason that microsatellites are polymorphic is attributable to length changes which occur more

commonly than other types of mutations such as individual base pair substitutions, at between10−2

and10−6 per locus per generation (Eckert & Hile 2009). Recent work bySunet al. is the largest

study of new mutations to date comprising over 2,000 germ-line changes in 85,000 Icelanders at

nearly 2,500 microsatellites (Sun et al. 2012). Their estimation of the mutation rate is 1.4-2.3×10−8

per base pair per generation. They observe that the ratio of paternal to maternal mutation rate is 3.3

and report a doubling in fathers from age 20 to 58. No association with age is seen in mothers. They

also observe that longer alleles are more mutagenic than small alleles and tend to decrease in size.

Mutation in tetra-nucleotides is mostly stepwise whereas larger gains are seen in di-nucleotides.

Mutation rates for DM1 are several orders of magnitude higher occurring, as described above,

not just between generations, but also at a high rate during the lifetime of individuals. This has

led to the introduction of the descriptive term ‘dynamic’ todistinguish the properties of unstable

DNA sequences from other forms of mutation (Richards & Sutherland 1992). The frequency of the

mutations at the DM1 locus makes them an excellent model system. Hence DNA samples from

individuals with one of these genetic diseases provide an unusual opportunity to estimate the rates

of mutation and the number of events underlying the mechanism of DNA instability.

1.3.1 Mutation analysis by single genome PCR

Measurement of trinucleotide repeat germ-line and somaticmutations has traditionally involved

polymerase chain reaction (PCR) analysis. As single genomeanalysis requires many PCR cycles

for the detection of PCR products, there is a possibility that PCR artefacts might result inin vitro

generated mutations. Hence specific control experiments have been designed to assess the likeli-

hood of such artefacts (e.g.Cortopassi & Arnheim 1990, Zhang et al. 2002). To determine whether

a single sperm mutant arose from a true germ-line event, and was not an artefact of PCR amplifica-

tion, single sperm were amplified for 6 PCR cycles, after which half the PCR product was removed

and saved. For the other half, the reaction continued without interruption. If a mutant was identified

in this half, then the other half was also checked for mutants. Mutants arising from germ-line event

should exist in each of the saved molecules. Mutants arisingduring the first 6 cycles of PCR would

give rise to a mixture of molecules, hence allowing true mutants to be distinguished from PCR arte-

facts. The Arnhein lab, performing this work, reports no evidence for PCR artefacts contributing

to misidentification. Another way to check for true germ-line events is to compare size distribution
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of sperm mutation with mutations in somatic DNA (Leeflang et al. 1995). Again, this approach

led to the conclusion that the observed variation in single sperm allele sizes was due to germ-line

events. Size fractionation of template DNA prior to PCR confirmed the presence of CAG repeat

expansions in the striatum of mice that had inherited theHdh(CAG)150 allele (Hunter et al. 2005).

This work challenges the theoretical possibility that CAG repeat expansions might occur during

PCR. The correspondence of fragment size before and after amplification provides evidence that

the expansions existin vivo. In summary,in vitro PCR artefacts, discussed above, are reported to

be minimal.

1.3.2 Somatic instability

DM1 and HD repeat lengths continue to evolve during the lifetime of individuals, with what looks

like an expansion bias, leading to the presence of cells withdifferent repeat lengths in the same

tissue, known as somatic mosaicism (Monckton et al. 1995, Swami et al. 2009). An increase in the

number of repeats throughout the lifetime of an individual contributes toward the progressive nature

of the symptoms (Morales et al. 2012) and similarly for HD (Swami et al. 2009).

Repeat length variation was first observed as a smear rather than a discrete band on a gel using

polymerase chain reaction (PCR) analysis, a biochemical technique in molecular biology to amplify

DNA fragments which are then loaded on to a gel dispersing DNAfragments by length (Brook et al.

1992). These results were interpreted as cells within a tissue having different repeat lengths. Later,

Moncktonet al. resolved the smear into individual alleles with heterogeneous repeat sizes by using

small molecule or small pool PCR techniques (Monckton et al.1995).

For a DM1 individual, repeat length is larger in muscle DNA than in blood DNA (Anvret et al.

1993, Ashizawa et al. 1993, Thornton et al. 1994, Monckton etal. 1995, Zatz et al. 1995). Typically,

repeat length distributions for the mutant allele in DM1 blood DNA are positively skewed with a

relatively sharp lower boundary below which smaller alleles are relatively rare. This lower boundary

is conserved between tissues and provides an estimate for the inherited or progenitor allele length

(Monckton et al. 1995).

The association of longer repeats with more severe disease and disease related tissues informs the

hypothesis that the expansion-biased, age-dependent and tissue-specific nature of somatic instability

contributes towards both the tissue specificity and the progressive nature of the symptoms. Up until

now, there are no direct data to support this hypothesis.
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The expanded CTG repeat in blood is unstable throughout the life time of the patient. Levels

of somatic mosaicism in blood from DM1 patients correlates significantly with age (Monckton

et al. 1995, Wong et al. 1995, Martorell 1998). These effectsare also size-dependent, with larger

alleles showing the most variation. These studies have alsoshown that somatic mosaicism in blood

DNA from babies with DM1 was minimal despite the large CTG expansions associated with the

congenital form of the disease.

In summary, the data discussed suggests that somatic mosaicism in DM1 is expansion-biased, age

and size dependent and tissue specific in that different tissues increase at different rates, features

which contribute toward the tissue specificity and progressive nature and severity of the symptoms.

This suggests that individual differences in levels of somatic instability may explain why individuals

inheriting the same repeat length may present symptoms withdifferent degrees of severity.

The expanded HD CAG repeat is also somatically unstable, undergoing progressive length increases

over time (Telenius et al. 1994, Kennedy et al. 2003). HD somatic instability is also tissue-specific

with high levels found in striatum and cortex (Shelbourne etal. 2007) and occurs in post-mitotic

neurons (Gonitel et al. 2008). Somatically expanded HD CAG repeats are transcribed and translated

(Aronin et al. 1995, Wheeler et al. 2003, Gonitel et al. 2008). Evidence of somatic expansion in

tissues that are the targets of pathogenesis has given rise to a hypothesis that somatic instability may

itself contribute to the HD pathogenic process. Experiments in a genetically accurate Huntington

disease homologue (Hdh) knock-in mouse model (HdhQ111), in which an early symptomatic, HD

CAG length-dependent phenotype was significantly delayed in mice that lacked somatic instability

as a result of the deletion of mismatch repair geneMsh2, supports this hypothesis (Wheeler et al.

2003).

Despite differences between DM1 and HD with respect to the repeat motif and its position, and

hence differences in the tissues affected and disease pathology, the uni-modal shape of sized single

molecule repeat length distributions is very similar in blood or buccal DNA (Veitch et al. 2007,

Wong et al. 1995). This suggests that there may be similarities in the mechanism underlying mu-

tation in each disease. Differences other than those linkedto cell type may have a molecular basis

related to flanking GC content which differ in DM1 and HD with aslightly higher percentage of

GCs in HD. There is a strong correlation between the relativeexpandability of these repeats and

the flanking GC content (Brock et al. 1999, Nestor & Monckton 2011). Varying degrees of somatic

mosaicism have been reported for other related trinucleotide repeat disorders (Gomes-Pereira &

Monckton 2006).
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1.3.3 What are the mechanisms of repeat expansion?

The precise mechanisms that cause repeat units to become inserted or deleted from the repeat length

tract are not known (Gomes-Pereira & Monckton 2006, McMurray 2010, Mirkin 2007). Expansions

occur at different stages of human development and within different tissues, and this instability has

been linked to DNA repair, transcription and replication but the same pathway is not necessarily at

work within different tissues (McMurray 2010). Two basic types of explanation have been proposed

for the expansion of simple sequence repeats. The first focuson DNA replication and the second on

DNA repair. There has been some debate about whether there isa single mechanism or more than

one mechanism involved. It is important to note that supportfor the various trinucleotide repeat

models has arisen from different systems and different celltypes whose properties are unlikely to

be the same.

DNA polymerase strand slippage has been proposed as the mechanism for instability in simple se-

quence repeats (Richards & Sutherland 1994). During replication, the repeats misalign, resulting

in a DNA loop that if not properly repaired is either incorporated into the nascent strand leading

to expansion or skipped leading to contraction of the DNA strand. However, investigation into

the dynamic nature of triplet repeat sequences in mouse models, believed to provide an accurate

model of somatic instability observed in man, reveals a lackof obvious correlation between levels

of instability and the rates of cell turnover, with high levels of instability observed in post-mitotic

tissues such as brain and muscle (Fortune et al. 2000, Seznecet al. 2000, Kennedy & Shelbourne

2000, Lia et al. 1998). Further, data from a DM1 mouse tissue culture model exhibiting expansion-

biased-age-dependent somatic mosaicism found no correlation between cell proliferation rate and

instability (Gomes-Pereira et al. 2001). As conceptually appealing as the simple slippage model is,

these results suggest that the expansion mechanism cannot be entirely dependent on DNA replica-

tion.

A cell division-independent DNA mismatch repair (MMR) mediated mechanism has been pro-

posed as an alternative explanation for somatic trinucleotide repeat expansion and deletion (Gomes-

Pereira et al. 2004). Several components of MMR are requiredto generate expansions (van den

Broek et al. 2002, Manley et al. 1999, Savouret et al. 2003, Kovtun & McMurray 2001, Gomes-

Pereira et al. 2004) hence implicating inappropriate DNA MMR. This view hypothesises that in-

appropriate DNA MMR is triggered by a slipped-stranded DNA (S-DNA) structure with comple-

mentary loop-outs of 1-3 repeat units which may form when expanded repeat DNA re-anneals out

of register, see Figure 1.2. These alternative DNA conformations form readilyin vitro and are very



1. INTRODUCTION 29

stable (Pearson & Sinden 1996) but have not yet been reportedin vivo. MMR proteins are then

recruited and bound to each loop-out independently. The MMRmachinery either incorporates the

loop-out by creating a gap and filling it on the opposite strand or simply removes the loop-out.

The size of a potential gap is not known but experiments usinghuman nuclear extracts suggests

that the MMR machinery may remove between 60-230 base pairs of DNA (Genschel & Modrich

2003). Incorporation of the loop-out would result in a smallincrease in the number of repeat units

and removal of the loop-out would result in a small decrease in the number of repeat units. How

the decision to incorporate or remove loop-outs is made is anunanswered question. As loop-outs

re-form, this process is re-initiated. A bias towards incorporating the loops, no matter how subtle,

will lead over time, through the accumulation of many small repeats, to expansion gains.

1.3.4 How do repeat expansions result in disease?

The mechanisms underlying pathology depend on where the repeat is found within the gene. The

CTG repeat unit in DM1 is found in the non-coding untranslated region at the3′ end of theDMPK

gene (Buxton et al. 1992, Fu et al. 1992, Brook et al. 1992). InHuntington disease the repeat

unit is CAG in the coding region of the huntingtin gene (The Huntington’s Disease Collaborative

Research Group 1993). Repeats found in non-coding untranslated regions (e.g. DM1) are thought

to give rise to a toxic RNA gain of function whereas repeats found in coding regions (e.g. HD)

are often transcribed and translated, creating expanded polyglutamines and a related toxic gain of

function (Castel et al. 2010).

RNA-mediated muscle disease

DM1 is hailed as the first example of an RNA-mediated disease (Wheeler & Thornton 2007). This

is based on evidence that it is the RNA rather than the proteinproduct of a disease gene that has the

deleterious effect on muscle. DM1 is not explained by reduced expression of DMPK protein (Jansen

et al. 1996). The RNA containing the expanded repeat forms nuclear foci in muscle cells (Taneja

et al. 1995) and expression of mutantDMPK RNA leads to abnormal regulation of alternative

splicing (Philips et al. 1998). RNA splicing is the process by which introns are removed from

the RNA transcript and exons are joined together to make mRNAand is critical for regulation of

gene expression. Often there are multiple introns and exonsand regulated splicing decisions can

yield a spectrum of alternative products for different tissues or at different stages of development.

The outcome of alternative splicing is controlled by splicing regulatory proteins. One group of
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Figure 1.2:Hypothetical mechansism of repeat expansion based on inappropriate DNA mis-
match repair (MMR). Inappropriate MMR is triggered when expanded repeat DNA (1)re-anneals
out of register (2) forming a slipped-stranded DNA (S-DNA) structure with complementary loop-
outs of 1-3 repeat units (3). MMR proteins are then recruitedand bound to each loop-out indepen-
dently (4,5). If both events result in either the loop-out being incorporated or deleted then the net
result is expansion or contraction. If the events are different then there is no change. As loop-outs
re-form, this process is re-initiated. A bias towards incorporating the loop-outs, no matter how
subtle, will lead over time, through the accumulation of many small repeats, to expansion gains.
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RNA binding proteins implicated in myotonic dystrophy pathogenesis are splicing factors in the

muscleblind-like (MBNL) family. MBNL proteins bind toCUG RNA in vitro with high affinity

and are found in RNA inclusions in DM1 muscle nuclei. Considerable evidence supports the theory

that sequestration of MBNL proteins is a critical step in thepathogenesis of myotonic dystrophy

(Ranum & Cooper 2006). One effect of this disease process is to alter the function of alternative

splicing factors and thereby perturb the regulation of RNA processing for other genes.

1.3.5 Cure and treatment

Longer DM1 alleles transmitted to the next generation result in more severe symptoms and an earlier

age at onset, an effect compounded by somatic expansion (Morales et al. 2012). As such, suppres-

sion of somatic expansion is expected to be therapeuticallybeneficial and induction of contractions

potentially curative (Gomes-Pereira & Monckton 2006, Castel et al. 2010). Small molecules that

may reduce somatic expansion have been identified (Gomes-Pereira & Monckton 2006) and novel

technologies (Olsen et al. 2009, Mittelman et al. 2009, Aarts et al. 2009) may prove beneficial

in the future. However, the feasibility of suppressing expansions/inducing contractions remains

largely undetermined.

Further along the pathology cascade, defects in RNA alternative splicing are potentially reversible

so there is a new focus on therapies targeted directly at reversing RNA toxicity, which are showing

promise in preclinical models by correcting spliceopathy and eliminating myotonia (Wheeler 2008,

Mulders et al. 2010). In particular the use of antisense oligonucleotides which target toxic RNA is a

proof-of-principle therapy very effective in cell cultureand mice (Lee et al. 2012). This therapeutic

approach looks very promising and two major drug companies,Biogen Idec and Isis Pharmaceuti-

cals, have recently entered a highly funded (over 50 millionUS Dollars) collaboration to develop

and commercialise a novel antisense drug for the treatment of DM1.

Patient stories

Patient stories can be found online at support groups such aswww.myotonic.org and

www.muscular-dystrophy.org. These stories highlight the need for better prognostic in-

formation and display the efforts made in the hope that a curewill eventually be found.
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1.4 Mathematical models

Mathematical models aim to capture and quantify key features of the biological processes of interest

in order to give insights into how a system works and how it will respond to change. (These

principles are described more fully in (Otto et al. 2007)). Amathematical model is developed by

incorporating biological knowledge into precise mathematical language, which can then be analysed

in a variety of ways. Most models require parameters, some ofthese are known or can be measured

experimentally, but others will not be available. In the later case, modern statistical techniques exist

to fit parameters to the data. Sometimes several different models may be proposed, perhaps based on

competing biological hypotheses, and there is a need to compare models in terms of best fit. In the

mathematical modelling community these issues are active areas of research. The challenge with a

specific biological process is therefore to develop a good class of models along with methods for

parameter estimation and model selection. We want the mathematical model not just to reproduce

the data but to make useful hypotheses about the system that can be tested experimentally.

The biological phenomenon of interest often concerns a component or a system of interacting com-

ponents and how this system changes over time. A dynamical model which aims to describe how a

system changes over time can provide insights into how various forces act to change the component,

which in our case is repeat length. There are two broad classifications of dynamical models: de-

terministic or stochastic. A deterministic model is one where the future is entirely predicted by the

model whereas a stochastic model is based on the assumption that random events affect the biolog-

ical system and so the model can only assign probabilities topossible outcomes. Models which are

stochastic at the single cell level can often be well approximated by simpler deterministic models

if there are large numbers of cells involved. Stochastic models are generally more challenging than

deterministic models in terms of computational demands, analysis and data fitting. But as reduc-

tionist genetic and molecular biology produces quality time course data at single-cell resolution, the

stochastic approach is needed to underpin such a process andcapture complex dynamics (illustrated

in (Wilkinson 2009)).

1.4.1 Models of microsatellite evolution

In the non disease case there exist models for microsatellite evolution, which are summarised in

(Calabrese & Sainudiin 2005). However mutation at these sites occurs at lower rates and typically

involves shorter lengths than in the pathological disease case. Also these models tend to assume that
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an equilibrium in the distribution of lengths has been reached in the population. In the pathological

disease case the data suggests that the distribution of length is time-dependent throughout the life

of a patient. This makes the analysis different as we cannot assume equilibrium status. However

these models form a useful basis for our work. The earliest model for microsatellite evolution is the

stepwise mutation model originally proposed by (Ohta & Kimura 1994). Kruglyaket al. proposed

a proportional slippage model where the mutation rate increases linearly with microsatellite length

(Kruglyak et al. 1998). Although most observed microsatellite mutations are by one repeat unit,

not all are, so Di Rienzoet al. proposed a model which allows for larger mutations (Rienzo et al.

1994). We refer to (Calabrese & Sainudiin 2005) for further details.

In a different, but related context, mathematical models have been applied to the evolution of the

CAG expansion in the huntingtin (HTT) gene in the general population (Falush 2009). The mod-

elling approach (Falush et al. 2001) quantifies the rate of progression of the disease in the population

by measuring the mutational flow. The model can be used to describe the repeat length change, ei-

ther from parents to offspring, or during the mitotic divisions in the germ cells of a single individual,

or over time in a population. These models assume stepwise mutations and incorporate an upper

bound so that all repeats that reach the boundary are removedand the model is well behaved and

results in dynamic equilibria. For HD, they use the upper bound to represent selection against very

large repeats. Warbyet al. looked at the haplotype background of chromosomes carryingthe HD

mutation and the length distribution of the CAG repeat for different haplotypes within the general

population. They concluded thatcis-elements are likely to represent a major predisposing element

in HD expansion. Using evolutionary modelling of the CAG repeat length within populations,

Falushet al. argue that the distribution of CAG repeat length and diseaseincidence can be ex-

plained by founder events, each of which involved expansionof repeats to lengths that are classified

as normal by HD investigators (< 28 repeats). There is no need to invokecis-elements as having a

role in the evolution of HD chromosomes. Whilst the work by Falushet al. provides insights into

the evolution of CAG expansion in HD, there are assumptions in the computational model which

weaken their hypothesis. First, the assumption that negative selection acts strongly against chro-

mosomes with 50 CAG repeats is unrealistic as many individuals with repeat lengths> 50 CAGs

typically do not become symptomatic until their thirties. Second, the mutation rates are based on

sperm typing data from 26 men in a Venezuelan HD cohort with CAG sizes ranging from 37 to 62

repeats (Leeflang et al. 1999). There are no data to validate these mutation rates for chromosomes

in the intermediate allele range (27-35 CAG) or the normal range (< 27). Third, CAG dependency

and upward bias of the mutation may have lower cut-off threshold dictated by Okazaki fragment
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length, DNA damage susceptibility, repair excision tract size andcis-elements (Cleary et al. 2002,

Pollard et al. 2004).

These models describing the evolution of microsatellites relate to differences between generations,

and to short and slowly changing repeats rather than to long and rapidly changing repeats. Patho-

logical mutations associated with rapidly changing repeats arising during the lifetime of individuals

have also been studied using a mathematical modelling framework. Leeflanget al. investigated

germline mutation frequency in HD using a simple Okazaki fragment processing model of trinu-

cleotide repeat instability supporting a cell-division dependent mitotic origin for mutations in sperm

(Leeflang et al. 1999). Falushet al. show that a simple length-dependent stepwise mitotic model

can account for repeat length distribution observed in individual sperm samples, the mutation rate

variation between samples with different somatic repeat lengths and the overall pattern of mutation

observed in disease-chromosome transmissions (Falush et al. 2001). However they also reported

discrepancies with the empirical data: underestimation ofthe mutation rate for female transmis-

sion; inter-individual variation; larger than stepwise changes occurring at a significant rate in sperm;

and underestimation of the mutational bias in sperm samplesfrom individuals with somatic repeat

lengths> 49 CAGs. More recently Veytsman and Akhmadeyeva showed that a simple theoretical

model of pathological microsatellite expansion based on hairpin formation could offer an explana-

tion for the observed phenomena of somatic mosaicism, anticipation and rare reversions (Veytsman

& Akhmadeyeva 2006). Although these models do not incorporate recent insights recognising the

involvement of activities other than replication, such as repair and transcription (Castel et al. 2010),

or are not based onin vivo data, they also form a useful reference for our work.

1.5 Statistical inference

Mathematical models have biological parameters, some of which can be measured experimentally

and some of which must be inferred indirectly. Parameter estimation (recovering unknown param-

eters from experimental data) and model selection (rating competing models that are attempting

to describe the biological processes) are important steps towards obtaining an explanatory model

that can be used for simulation and prediction. Bayesian inference is being used increasingly in

genetics (Beaumont & Rannala 2004) as it provides a solid foundation for parameter estimation

and model selection. Model selection based on information theory is a relatively new paradigm in

the biological and statistical sciences and is quite different from the usual methods based on null

hypothesis testing. Model selection based on information theory is not only an intuitively attractive
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approach but also has philosophical and computational advantages (Burnham & Anderson 2002).

There is currently much interest (Wilkinson 2011) in using statistical methods to estimate param-

eters of detailed mechanistic (bottom-up) biological models using quantitative time course data on

the system.

1.6 Project design and aims

Currently, individuals finding out that they or their familyare affected by DM1, and wanting to

know more about the likely progression of the disease or their reproductive choices, have limited

prognostic information available to them. This is partly because variance in modal repeat length,

measured usually when the symptoms first present themselves, only accounts for around 25% of

the variance in age of onset (Mladenovic et al. 2006, Perini et al. 1999, Marchini et al. 2000). Low

correlation between age of onset of symptoms and modal repeat length is in part due to the antici-

pation associated with DM1 and sampling bias caused by the tendency for people to be tested only

when they or a member of their family presents with symptoms.Thus, there is great potential for

more sophisticated modelling and inference techniques to improve the prognostic value of genetic

information. More broadly, an accurate model for describing the mutation mechanism in DM1 is

likely to give insight into DNA instability in general.

Advances in technologies such as DNA sequencing are generating vast data sets which offer exciting

opportunities for the development of quantitative methodsto understand biological phenomena.

Ongoing studies (Morales et al. 2012) are measuring somaticmosaicism in many DM1 families

and sequencing the affected region of DNA. These recent quantitative data sets make it feasible to

develop a mathematical model which aims to explore the underlying mechanism of mutation and

identify the key drivers and, most importantly, have predictive power. Increasingly there is a need

to combine numerical techniques with biological understanding to get the most out of the data. We

seek to bridge this divide by deriving new mathematical models, using a range of deterministic and

stochastic modelling techniques, for the genetic phenomenon of hypermutational DNA dynamics.

This work, as well as improving prognostic information for patients, could have an important role

in the design and interpretation of clinical trials. For example, by accounting for variation between

patients, we should be able to exclude outliers and thus narrow the estimates for drug response.

By increasing our understanding of the mechanism underlying unstable repeats, we also expect our

models to have general application to unstable microsatellites and other trinucleotide diseases.
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Our extensive data arises from elaborate small pool PCR analysis of repeat length in blood cells

from a cohort of 145 individuals with DM1 expansions (Morales et al. 2012). The cohort includes

affected individuals as well as asymptomatic carriers. Since the first application of small pool PCR

to quantify variation at the myotonic dystrophy locus in 1995 (Monckton et al. 1995), the technique

has become well established as robust and reliable, and has been used to quantify triplet repeat

dynamics in a wide range of scenarios and at various loci (Fortune et al. 2000, Martorell et al. 2000,

Libby et al. 2003, Gomes-Pereira et al. 2004, Gomes-Pereira& Monckton 2004, Monckton et al.

1999, Zhang et al. 2002, Kennedy et al. 2003, Watase et al. 2003). For each individual, Morales

et al. have used single molecule analysis to size the expanded CTG repeat tract in between 100

and 350 cells (see Figure 2.1), providing a total data set of over 25,000 observations (Morales

et al. 2012). These data reveal the variation in repeat length between cells and individuals. The

shapes of the distributions of repeat lengths are seen to depend on both age and typical length.

Older individuals with longer than average repeat lengths have broader distributions than younger

subjects with similar repeat lengths, whereas older individuals with shorter repeat lengths have

narrow skewed distributions. Subjects from the same familyor with potentially the same inherited

repeat length can have quite different distributions. These data are highly suited for quantitative

treatment to develop mathematical models that capture the key features of the mutation mechanism

underlying repeat length evolution.

The overall challenge of this work is to develop a mathematical model that sheds light on the

underlying dynamical process of DNA mutation and calibrateit to a large dataset. Unlike other

applications where only one population may be observed overtime, by sampling many cells from

individuals we have many realisations of the same stochastic process at one point in time. Hence,

our data provides a unique opportunity to access directly the inherent fluctuations that are required

to fit a stochastic process. This enables us to quantify several important biological parameters

relating to the mechanism underlying repeat length evolution. This is an important step towards

understanding pathological mutations and ultimately providing better prognostic information for

individuals with diseases arising from these mutations.

Our model builds on Kaplanet al. who used a simple birth process to describe repeat length evo-

lution and derived expressions to fit basic clinical and genetic data (age at onset and modal repeat

length) for a range of diseases associated with expanded repeats (Kaplan et al. 2007). They were

able to demonstrate that somatic mosaicism contributes to disease onset and progression. How-

ever their model is concerned with only expansions. Contractions have been seen in cell modelsin

vitro (Gorbunova et al. 2003, Gomes-Pereira & Monckton 2004) and mouse tissuein vivo (Gomes-
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Pereira et al. 2004) providing a basis for the assumption that contractions occur in somatic human

cells in vivo. There is also evidence for contractions between generations arising in the germline

(Ashizawa et al. 1994, Monckton et al. 1995, Martorell et al.2004). Thus we statistically test here

the possibility that somatic variation is due to the difference between expansion and contraction

mutations. We use the same stochastic modelling framework as described in (Kaplan et al. 2007),

but extend it to include contractions (death process) and a threshold below which expansion and

contraction does not occur. Such a threshold is consistent with the relative stability of the normal

allele (Monckton et al. 1995).

1.6.1 Experimental approaches

Our new experiments will predominantly bein silico using precise mathematical language and

computer power to generate results. In our case the key toolsrequired include probability theory,

calculus and statistical inference.

∗ We use a stochastic approach to model the evolution of repeatlength which assigns probabili-

ties to the biological events of expansion and contraction.Some simple stochastic approaches

can be formally analysed but others require simulation techniques to realise the model out-

comes (for example Gillespie’s Algorithm).

∗ A variety of computational techniques are required for the numerical solution of the under-

lying equations. This includes state-of-the-art softwaretools for non-linear equations and

ordinary differential equations.

∗ In order to obtain estimates for the model parameters we willexplore Bayesian techniques to

calibrate the model against the biological data. This is a very modern research area with little

specific existing software, and a large component of our workinvolves customised design

and implementation of computational algorithms for our specific class of models.

∗ Modelling is an iterative process and the models will be subjected to tests and refinements

following biological discussions and validations. This isin accord with the highly interdisci-

plinary nature of the project.
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1.6.2 Summary of project aims

In summary, the principle aim of this work is to develop and test new mathematical models using a

range of modelling techniques that capture the key featuresof the mutation mechanism underlying

repeat length evolution. Values for the biological parameters informing the models will be inferred

from the data using modern Bayesian statistical methods. A model will be developed, in the first

instance, for blood DNA from DM1 affected individuals, and then extended to DNA from other

tissues. We will also fit the models to DNA from HD affected individuals. We expect there to be

some differences in parameter values between tissues and diseases. The calibrated models will then

be employed in a number of ways:

∗ To investigate the possibility that expansion bias is due tothe difference between expansion

and contraction mutations, rather than expansion alone.

∗ To quantify different aspects of repeat instability such asmutation rates between tissues and

diseases.

∗ To predict the progression of the disease in an individual and within families and hence con-

tribute towards the development of a useful prognostic tool.

∗ To reduce the unaccounted for variability between patientsand enable better stratification of

the patient cohort in clinical trials.

∗ To estimate the length of the inherited allele and allow us torevisit pedigree data with a view

to shedding light on important issues such as heritability.



Chapter 2

Materials and methods

2.1 Introduction

This chapter covers the construction of the mathematical models and the inference method used

for fitting the models to the data. The aim of our models, in thefirst instance, is to describe the

progression over time of the unstable repeat length found atthe myotonic dystrophy type 1 locus

in blood DNA. The dataset used to calibrate this first model isoutlined in Section 2.2. In later

chapters, we describe the extension of this first model to tissues other than blood and to Huntington

disease (Chapters 5 and 6). In Chapter 7 we adapt the model to handle two DNA samples taken at

different time points from one individual.

Before using individual data to infer the parameters of a model, it is informative to establish what

can be inferred in the best possible scenario, when the data are generated synthetically from the

appropriate model with known parameter values. Even in thisidealised case, there will still be some

uncertainty in the inference process due to the finiteness ofthe sample size and the impossibility

of searching exhaustively over a high-dimensional real-valued parameter space. Hence this type of

computational experiment helps to quantify the inherent uncertainty. In Section 2.7 the inference

method is applied to a synthetic dataset to assess how well the method infers parameters.

2.2 Project data

The data analysed in this study comes from DNA blood samples collected from patients with

myotonic dystrophy type 1 across four countries: 77 from Costa Rica provided by Dr Fernando

Morales, 36 from Texas, USA provided by Prof. Tetsuo Ashizawa, 27 from the western region

39
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of Scotland provided by Dr Douglas Wilcox and Dr Alison Wilcox and 5 from Uruguay pro-

vided by Dr Claudia Braida. All the samples were purified fromperipheral blood leukocytes using

phenol-chloroform purification and proteinase K. The patients include affected individuals as well

as asymptomatic carriers and clinical information was obtained from their hospitals. The informa-

tion collected includes age of onset if applicable, age at sampling and a brief description of the

main symptoms. Signed informed consent was obtained for everyone in this clinical and molecular

investigation as in accordance with the relevant ethical protocols.

2.2.1 Small-pool PCR

Small-pool polymerase chain reaction (PCR) analysis was performed using oligonucleotide primers

DM-C and DM-BR as previously described (Monckton et al. 1995) by Dr Fernando Morales, Berit

Adams and others from the Monckton lab to estimate the progenitor allele length (the inherited

repeat length) using the lower boundary of the total allele length distribution and to quantify the

degree of somatic variation in 145 DM1 samples. Restrictiondigested genomic DNA is diluted

and multiple aliquots or small pools are amplified using the PCR and primers flanking the repeat.

Products are resolved by agarose gel electrophoresis and detected by Southern blot hybridization

with an interval probe. The PCR products are sized using Kodak Digital Science software by

lining up and comparing the bands with known molecular weight markers. To assess the variation

in the data, the first issue to consider is the DNA concentration required so that individual bands

can be distinguished from one another in the small pools, effectively the lanes on the gel. For

samples where there is less expected variation (i.e. samples with short repeat lengths), the level of

concentration needs to be lower (fewer bands per lane) and gels run for longer so that the bands

are well dispersed and can be individually identified. Typically several gels are run at increasingly

lower dilutions to determine best dilution level. As a further check that all the molecules have been

accounted for, the number of molecules amplified in each reaction is expected to follow a Poisson

distribution over the number of lanes. Gels that do not conform to these criteria are rejected. Further

details can be found in (Morales 2006, Morales et al. 2012) and some typical output is shown in

Figure 2.1. The data can be visualised as allele length frequencies in a histogram format (Figure

2.2) and the mathematical models describe these distributions in terms of the biological parameters

of interest.
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2.2.2 PCR artefacts and interpretation of the data

The original SP-PCR procedure (Jeffreys et al. 1994) was adapted for analysis of CTG variability

by (Monckton et al. 1995). Measuring somatic instability atthe expanded repeat loci is challenging

and requires relatively sophisticated approaches. These methods are still heavily used today by the

Monckton lab, University of Glasgow, and have been developed for HD CAG repeats, principally

by the Wheeler lab, Center for Human Genetic Research, Harvard Medical School. Even between

these two labs, as there are differences in typical repeat sizes for DM and HD, there are consequently

differences in the equipment and products used. Although on-going comparisons between labs

would provide further reassurance about the quality of the data, small-pool PCR is a well proven

method (Jeffreys et al. 1994, Monckton et al. 1995) that provides a robust approach to quantification

of length variation in somatic DNA. Currently, emphasis is put on checking the internal consistency

of the data, discussed below, and overcoming new challengessuch as characterizing interruptions

in the expanded repeat (Musova et al. 2009, Braida et al. 2010). The main issue is whether the PCR

products are faithful representations of alleles present in single cells. The following observations,

from the data, provide positive support: variant length alleles associated with expanded allele reflect

variation in an independent Southern blot analysis; the number of bands are directly proportional

to quantity of input DNA; and distributions are sample-specific and not merely a reflection of allele

length (two samples indistinguishable by SB have differentdistributions with small-pool PCR).

However PCR and other technical artefacts can confound the interpretation of the data. PCR stutter,

the generation of shadow bands by products of the PCR amplification differing in length from the

original allele, is a particular issue. When analysing the products of single molecules the effect of

PCR stutter is greatly reduced and has been estimated to be atmost one single repeat at 35 cycles

of PCR (Zhang et al. 2002). In our case, as well as minimising PCR stutter by employing fewer

cycles of PCR (28), the underlying variation is typically spread over many hundreds of repeats.

PCR artefacts could be included in the model likelihood as in(Leeflang et al. 1996), but we con-

sider that most of the uncertainty in our parameter estimation arises from the finite sampling of a

highly diverse distribution with only a small contributionfrom PCR artefacts such as PCR stutter.

Hence finite sampling is of more concern than PCR artefacts. By applying our parameter estimation

method to a synthetic dataset where the parameter values areknown we can quantify this level of

uncertainty and these results are discussed in Section 2.7.
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Figure 2.1:Representative data of single molecule analysis by PCR in a DM1 sample.The total
number of molecules sized in this sample was 141 alleles. Three marker lanes were run (M) with
the PCR products and the band sizes of the marker were transformed to the corresponding number
of CTG repeats in the scale on the left (Morales 2006).
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Figure 2.2:Representative allele length distributions in DM1 patients. The histograms represent
the frequencies of allele lengths (allele sizes were collated into 80 repeat groups). As seen in the
histograms, data from top right appears, although skewed tothe right, to be more more normal than
the data from sample top left. Data from bottom left also appears to be relatively close to a normal
distribution. Data from sample bottom right shows a distribution that is highly skewed to the left,
suggesting the presence of contracted alleles. The age of sampling of each patient is also shown
(Morales 2006).
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2.3 Modelling context

We base our model on a stochastic birth and death framework which was traditionally developed

to model the growth of a population (Renshaw 1991). Birth anddeath models are used to count

entities over time and are applied to many types of biological processes where the individuals can

involve anything from molecules, cells, tissues, organisms, ecosystems or biospheres (Novozhilov

et al. 2006). The entity, in our case a CTG repeat length, is treated as a discrete random variable

at each continuous point in time with “birth” being the expansion of the repeat length and “death”

the contraction of the repeat length. The use of random variables, whose value results from a

measurement on some type of random process, means that we areconcerned with how likely the

events under investigation, expansion and contraction, are and assign these events a probability. We

can obtain expressions for the probable CTG repeat length, given its starting length, at a point in

time. We can also obtain expressions for the mean repeat length and variance in repeat length for

an ensemble of alleles.

The use of a stochastic process is appropriate for our dataset as we can interpret the individual sam-

ples as resulting from many independent (see below) runs of the same process. The data that we

use in our study effectively provides between 100 and 300 outcomes of an independent stochastic

process in the somatic blood cells sampled at a single point in time. In total, 25,000 repeat lengths

were sized, representing one of the largest databases of itskind. Of those alleles, over 20,000 are

estimated to bede novo, having arisen during the lifetime of individuals. So as well as information

about the mean behaviour of this process, we also have information about the variation and distri-

bution. This allows us to uncover more aspects of the underlying mechanism, increase the fitting

capacity, and obtain more information about the parametersof the biological processes involved in

DM1.

Our model builds on Kaplan et al. who used a simple birth process to describe repeat length evo-

lution and derived expressions to fit basic clinical data (age at onset and modal repeat length) for a

range of diseases associated with expanded repeats (Kaplanet al. 2007). They were able to demon-

strate that somatic mosaicism contributes to disease onsetand progression. However, because their

data was limited to modal summaries, it did not indicate any variation that might be present within

an individual, making it impossible to distinguish betweenexpansion and contraction. Hence their

work assumed that the expansion bias observed in individuals is solely due to expanding lengths.

As mentioned above, we have information about the variationand distribution of repeat lengths.
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This allows us to uncover more aspects of the underlying mechanism, increase the fitting capacity,

and obtain more information about the parameters of the biological processes involved in DM1.

We investigate here the possibility that somatic variationis due to the difference between expan-

sion and contraction mutations. We use the same stochastic modelling framework as Kaplan et al.

but extend it to include contractions (death process) and a threshold below which expansion and

contraction does not occur (Kaplan et al. 2007). Such a threshold is consistent with the relative

stability of the normal allele (Monckton et al. 1995). In thecontext of this work, we are counting

the number of CTG repeats within each cell. The mathematicalmodel quantifies the probability of

an increase or decrease in the repeat length per unit time. Ascirculating white blood cells typically

do not replicate, we assume that the main mutational changesin DNA occur in the progenitor stem

cells before cell differentiation and not in the relativelyshort window between cell differentiation

and cell release into the bloodstream. At puberty, the steady state number of hematopoietic stem

cells is estimated between 11,000 and 22,000 (Abkowitz et al. 2002, Catlin et al. 2011). These stem

cells give rise to differentiated multipotent clones that generate around 100 billion blood cells per

day over a few weeks before the clone exhausts (Catlin et al. 2011). These circulating blood cells,

including erythrocytes and nucleated white blood cells, have lifespans typically ranging from days

to weeks. As somatic mosaicism accumulates with age (Wong etal. 1995, Martorell 1998, Martorell

et al. 2000), variation must therefore be accumulating in the population of stem cells. Stem cells re-

plenish every 40 weeks or so and hence typically for the individuals in our study, many generations

will have passed since the stem cells shared a common ancestor. At birth, virtually no mosaicism

is seen in blood in DM1 patients, even those with the congenital form of the disease (Wong et al.

1995, Martorell 1997, Wong & Ashizawa 1997, Martorell 1998). On this basis it is reasonable to

assume that the stem cells effectively have independent mutational histories. Thus we interpret our

samples of between 100-350 cells as a proxy representation of the 11,000 - 22,000 ultra progenitor

stem cells with each sample informing us about the underlying process. Hence the stochastic pro-

cess model is derived under the assumption that the cells have independent mutational histories and

at each continuous point in time a discrete random variable represents the repeat lengths.

Another key issue for the model formulation is the number of CTGs inserted or deleted at either

mutational event. Studies using microsatellite data (Weber & Wong 1993, Xu et al. 2000) found that

the majority of insertions or deletions were of one CTG repeat. Data from HD individuals where

the alleles are smaller and there is less variation, and where it is assumed that a similar mechanism

underlies DNA instability, provide an opportunity to observe the possible number of repeat units

that might be inserted or deleted at one mutation event. The patterns of length distribution in
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these data (Veitch et al. 2007, Wheeler et al. 2007) suggest that the inserted or deleted tracts are

predominantly one repeat unit long but may include occasional longer lengths up to 5-15 repeat

units. The same observation is made from data from DM1 individuals with small alleles (less than

100 CTGs) (Morales et al. 2012). So, in our case, it is a reasonable working assumption that the

birth and death process treats one CTG repeat as the individual unit and we associate “birth” with

expansion and “death” with contraction. In effect we consider whether the observed distributions

from individuals could have arisen from the cumulative effect of small incremental gains and losses

of one repeat length.

The overall aim of this work is to develop and test a mathematical model that sheds light on the

underlying dynamical process of DNA mutation and calibrateit to a large data set. Unlike other

applications where only one population may be observed overtime, by sampling many cells from

individuals we have many realisations of the same stochastic process at one point in time. Hence,

our data provides a unique opportunity to access directly the inherent fluctuations that are required

to fit a stochastic process. Since a likelihood arises naturally from the stochastic process, both

maximum likelihood and Bayesian methods lend themselves tofitting the data to the model. We

are able to quantify several important biological parameters relating to the mechanism underlying

repeat length evolution. This is an important step towards understanding pathological mutations and

providing better prognostic information for individuals with diseases arising from these mutations.

2.4 Mathematical model

The mathematical modelling approach commences by quantifying the probability of an increase

or decrease in the repeat length in one cell. Suppose that thelength, defined as the number of

consecutive CTG units, isn at timet. Let λ be the rate of expansion above the threshold length,

a, µ the rate of contraction abovea ands the increment step size. Then at timet+ δt, whereδt is

small:

∗ the probability that the length isn+ s ≈ λ (n− a) δt,

∗ the probability that the length isn− s ≈ µ (n− a) δt,

∗ the probability that the length isn ≈ 1− (λ+ µ) (n− a) δt.
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For reasons covered above, the increment step sizes in our model is one CTG unit. However the

model could readily be extended to other step sizes by appropriate adjustment to these expressions.

Let Pn (t) denote the probability that an allele has lengthn at timet. Then the rate of change of

Pn (t) with respect to time is governed by the master equation:

dPn (t)

dt
= − (λ+ µ) (n− a)Pn (t) + λ (n− a− 1)Pn−1 (t) + µ (n− a+ 1)Pn+1 (t) , (2.1)

wherePk (t) ≡ 0 for all k < a, sincen > a at t = 0 for all individuals with the pathological

condition. Given the allele length at time zero, we may solvethis infinite system of ordinary dif-

ferential equations numerically by truncating the system at a suitably large value ofn = N , setting

Pn (t) = 0 for all n ≥ N + 1.

We may then derive expressions for repeat length mean,M , and variance,V , from the first and

second moments ofPn (t), denotedM (t) andM2 (t), respectively, and defined as

M (t) =
∑

n≥a

nPn (t) , (2.2)

M2 (t) =
∑

n≥a

n2Pn (t) . (2.3)

Differentiating both (2.2) and (2.3) with respect tot and substituting (2.1) into the result leads, after

some manipulation, to

dM (t)

dt
= (λ− µ) (M (t)− a) , (2.4)

dM2 (t)

dt
= 2 (λ− µ)M2 (t) + [λ+ µ− 2a (λ− µ)]M (t)− a (λ+ µ) . (2.5)

Solving (2.4) and (2.5) withM (t = 0) = n0 andV (t = 0) = 0, wheren0 is inherited repeat

length, and settingV (t) = M2 (t)− (M (t))2 for the variance at timet gives the analytical expres-

sions (2.6) and (2.7).

For completeness, we mention that this modelling approach may also be extended to a more gen-

eral setting that allows a range of possible increments to beincorporated. Here, a general state-

dependent function g could be supplied such that, given length n at timet, at timet+ δt:
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∗ the probability that the length isi ≈ g (n, i) δt, for i = 0, 1, 2, . . . , n− 1, n+ 1, n + 2, . . .,

∗ the probability that the length isn ≈ 1− Σinf
i=0,i 6=ng (n, i) δt.

Here, the non-negative functiong must be chosen so thatΣinf
i=0,i 6=ng (n, i) δt is finite. The form of

the functiong would, of course, require justification from a biological perspective, and the extra

freedom of specifying a range of possible expansion and contraction increments would come at the

expense of an increase in the number of unknown model parameters.

2.4.1 Analytical expressions for mean and variance

Equations (2.6) and (2.7) link measurable quantities of themean and variance found in the blood

DNA samples to the biological parameters which underlie themechanism of repeat length evolution:

M (t) = (n0 − a) e(λ−µ)t + a, (2.6)

V (t) = (n0 − a)

(
λ+ µ

λ− µ

)(
e2(λ−µ)t − e(λ−µ)t

)
, (2.7)

where we recall thatt is the age of the individual in years when the samples were collected,n0 is the

repeat length att = 0, which is referred to as the inherited or progenitor repeat length,λ andµ are

the rates of expansion and contraction, per CTG unit per year, respectively, anda is the threshold

above which non-negligible expansion and contraction occurs.

We see from (2.6) that mean repeat length changes exponentially over time at a rate determined by

the difference denotedφ = λ−µ. It follows that values forλ andµ cannot be extracted individually

from the mean data alone. Only the difference can be found this way. However the variance depends

on the difference betweenλ andµ and also on the sum,λ+µ. As our data comprises many samples,

resolved at the cell level, from individuals, it is possibleto estimate both mean and variance, making

it feasible to fitλ − µ andλ + µ and hence obtainλ andµ individually. However, in the next

subsection, we describe a more systematic, likelihood-based approach to parameter estimation.
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2.5 Model comparison and parameter estimation

2.5.1 Likelihood

We use likelihood methods to carry out model comparison and parameter estimation. The likelihood

is defined to be the probability that a repeat length has reached the length observed given the model

and its parameters. We can solve Equation (2.1) numericallyin order to obtain the probability

distribution functionPn (t), which gives the probability that a repeat length isn at time t. The

likelihood L[i] is then the product over all the datad[i]j , which denotes the repeat length for the

jth observation from individuali, of the probabilityP
d
[i]
j

(t[i]; θ[i])n≥a, whereθ[i] are the model

parameters for that individual andt[i] the age of the individual when the data sample was taken.

This gives the likelihood for individuali,

L[i] =
∏

j

P
d
[i]
j

(t[i]; θ[i]), (2.8)

and the overall likelihoodL is found by taking the product over all individuals in the population,

L =
∏

i

L[i]. (2.9)

The model parameters comprise the contraction rate,µ[i], the expansion minus contraction rate,φ[i],

the threshold,a[i], and the inherited repeat length,n
[i]
0 .

As a proof-of-principle for the inference procedure, we performed computational experiments on an

appropriate amount of synthetic data, generated from the underlying stochastic birth death process

with known parameter values (see Section 2.7). This gives usan indication of the level of certainty

arising from the inference procedure.

2.5.2 Evaluation of the likelihood

The likelihood, Equation (2.9), is calculated numericallyusing a computer algorithm. A repre-

sentative MATLAB code with comments for evaluating the likelihood for an individual sample is

provided in Appendix 1. The main numerical method used,ode15s, is based on a family of implicit

schemes, known as backward differentiation formulae (BDF). The program implements the formu-
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lae between orders one and five, adaptively choosing both theorder and the discretisation level (step

size) in order to meet the specified error tolerance. The BDF family are examples of implicit lin-

ear multi-step methods, widely used because of their excellent stability properties (Shampine et al.

2003)

It is computationally very expensive to evaluate the full likelihood equation for reasons to do with

the stiffness of the ODE problem. In Chapter 4, we therefore propose a pragmatic approach, namely

to approximate the likelihood function in order to explore the full parameter space and to narrow

down the parameter space on which we calculate the full likelihood, thereby making the prob-

lem computationally feasible. Our approximation arises from quasi-likelihood theory (Wedderburn

1974) where the relationship between mean and variance can be used to inform a quasi-likelihood

which has the required properties of a full likelihood. The full details of this approach are found in

Chapter 4.

2.5.3 Model comparison

The Akaike information criterion (AIC) is used to assess thegoodness of the fit of the model (Akaike

1974). AIC uses the maximised value of the likelihood of the model,Lmax, penalised by the number

of model parameters,k, to rank models thus

AIC = 2k − 2 log Lmax. (2.10)

As an alternative, the likelihood ratio test statistic can be estimated for pairs of nested models

with maximised likelihoodsLmax1 andLmax2 and number of independent parametersk1 andk2

respectively, as follows

2 (logLmax2 − logLmax1) . (2.11)

This statistic has asymptotically aχ2
k2−k1

distribution under the null hypothesis (Cox & Hinkley

1994) thus it can be established whether the difference between the two models is significant.

We obtain the maximum value of the likelihood by evaluating the likelihood over a broad parameter

space, as illustrated in Tables 4.1, 5.1 and 6.1. Maximisation of the likelihoodL in Equation (2.9)

is equivalent to the maximisation ofL[i], in Equation (2.8), of each dataset from an individual.
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2.5.4 Bayesian parameter estimation

We use a Bayesian framework for parameter estimation. Bayes’ theorem (Sivia 2006) states that

the posterior distribution,π, of the parametersθ[i] given the observed datad[i]j is

π
(
θ[i]|d

[i]
j

)
=

L
(
d
[i]
j |θ[i]

)
p
(
θ[i]
)

f
(
d
[i]
j

) , (2.12)

whereL
(
d
[i]
j |θ[i]

)
is the likelihood of the data given the parameter values,p

(
θ[i]
)

is the prior

distribution of the parameters representing our initial beliefs about the parameter values before

observing any data andf
(
d
[i]
j

)
is the normalising constant that makes the posterior distribution

a valid probability function, otherwise interpreted as themodel evidence. Equation (2.12) has the

important consequence

π
(
θ[i]|d

[i]
j

)
∝ L

(
d
[i]
j |θ[i]

)
p
(
θ[i]
)
. (2.13)

In the special case of a uniform prior,p
(
θ[i]
)

is greater than zero only for a truncated range of

θ[i], see Table 4.1, and hence a constantc can be chosen so that the probabilities sum to unity and

Equation (2.13) further simplifies to

π
(
θ[i]|d

[i]
j

)
∝ L

(
d
[i]
j |θ[i]

)
. (2.14)

Note that in this case, the posterior mode of the distribution π is equal to the maximum likelihood

estimator of the parameter. Also, the posterior distribution can be said to be data-driven as the

likelihood now dominates the posterior.

2.5.5 Hierarchical Bayes

The underlying distribution of two parameters of particular interest,µ andφ, within the population

can be inferred using a hierarchical Bayesian approach. We assume that these are gamma distri-

butions, in shape, chosen because the gamma distribution isdefined by two hyper-parameters and

hence offers flexibility as to the shape of this distribution. We then infer these hyper-parameters,αµ

andβµ for parameterµ andαφ andβφ for parameterφ, by a modification to the posterior probability
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distribution function

π
(
θ[i]|d

[i]
j

)
∝ L

(
d
[i]
j |θ[i]

)
p
(
θ[i]|αµ, βµ, αφ, βφ

)
p (αµ) p (βµ) p (αφ) p (βφ) . (2.15)

In effect we are weighting the likelihood on the strength of the support for the parameters of interest

from the underlying gamma distributions.

2.6 Other techniques

Sections 2.4 and 2.5 above outline the main mathematical andstatistical tools used. Further tech-

niques are introduced in context in the following chapters with their related experiments and results.

2.7 Synthetic experiments

One hundred datasets, of a comparable size to the individualdata, were simulated using the Gille-

spie algorithm adapted for our specific stochastic process with the model parameters preassigned

(Renshaw 1991, Wilkinson 2011). The inference procedure, described in detail in Chapter 4, Sec-

tion 4.5.2, was then applied to infer the parameters back from the synthetic data set, as illustrated

in Figure 2.3.

2.7.1 Simulation method

A pseudo code for the simulation of repeat length evolution in several cells using the Gillespie

algorithm is as follows:

for each repeat lengthdo

initialise time,t, to 0 and repeat length,N , to the inherited repeat length value

while t is less than the age of the individual when the sample was taken do

setλN to λ ∗ (N − a) andµN to µ ∗ (N − a)

choose a numberY1 at random uniformly in(0, 1)

if Y1 <
λN

λN+µN
then

the next event is an expansion andN is updated toN + 1

else
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the next event is a contraction andN is updated toN − 1

end if

choose a numberY2 at random uniformly in(0, 1)

the time to the next events is − log(Y2)
λN+µN

andt is updated tot+ s

end while

end for

One hundred synthetic datasets were simulated from the expansion and contraction model with

parametersn0 = 160, µ = 0.55, φ = 0.0142, a = 40 andt = 30.

Root mean square error (RMSE) was calculated for the maximumlikelihood (ML) solution and the

posterior mean so that these potential point estimates could be assessed. Results are shown as an

absolute distance and percentage difference of the underlying true parameter, see Table 2.1A. The

ML estimate has smaller estimated bias than the posterior mean for inherited repeat length and net

expansion, but in all cases the posterior mean has lower RMSE. To quantify the possible effect of

PCR stutter (small errors in sizing alleles, discussed in Section 2.2), random unit amounts (-3,-2-1,

0, 1, 2, 3) were added t the dataset to recreate a situation where PCR stutter led to either lower or

higher estimates. This does not appear to affect the accuracy of the parameter inference, see Table

2.1B. In summary, we attribute the uncertainty to finite sampling and would expect this to reduce if

larger samples could be obtained.

A histogram of one illustrative synthetic dataset is shown in Figure 2.3. The same data is shown

as a cumulative distribution, along with the inferred fit with the maximum likelihood value. The

inferred parameter values correspond well with the actual values used to generate the synthetic data

set and provide a good fit to the data.

We investigated the posterior probability distributions for each parameter, marginalised by summing

over all the other parameters, see Figure 2.3. The shape of the posterior probability distributions

shown in Figure 2.3 convey the uncertainty in the parameter estimation. The crosses on each hori-

zontal axis indicate the parameter value used to generated the data. Given that in this case we know

the model that generated the data, the distribution reflectsthe stochasticity of the process and the

sampling error. We see in Figure 2.3 that the credible interval forn0 is fairly large, lying between 50

and 250 repeats, similarly forφ, between 0.001 and 0.06. Further analysis of these two parameters

suggests that they are inversely correlated through the model. Consequently, these parameters are

really only informative when considered together. This could be rectified by using prior knowledge



2. MATERIALS AND METHODS 54

aboutn0 to improve the result forφ. Forµ the distribution is clearly peaked, which suggests that

this parameter is more well determined than the other parameters. The inference for parametera is

more clearly viewed jointly with parametern0 with a peak just below 50.

A. N=100 simulated datasets (t = 20 years) 

MAXIMUM LIKELIHOOD POSTERIOR MEAN Parameter True 

value mean 

 

RMSE STD RMSE 

%true value 

mean RMSE STD RMSE 

%true value 

contraction, µ 0.55    0.6217     0.1422     0.1234     0.2586     0.6165     0.0904     0.0616     0.1644

net expansion, ! " µ 0.0142    0.0101     0.0081     0.0070     0.5688     0.0088     0.0054     0.0004     0.3803

threshold, a 40   49.98    15.3010     11.6567     0.3825    45.6905     6.2039     2.4836     0.1551

inherited repeat, n0 160 172.92    22.1088    18.0312     0.1382   175.2089    15.6817     3.8409     0.0980

 

B. N=100 simulated datasets (t = 20 years) + random repeat unit(s) to recreate PCR stutter 

MAXIMUM LIKELIHOOD POSTERIOR MEAN Parameter True 

value mean 

 

RMSE STD RMSE 

%true value 

mean RMSE STD RMSE 

%true value 

contraction, µ 0.55    0.6223    0.1411 0.1218 0.2566     0.6167    0.0904 0.0614 0.1644

net expansion, ! " µ 0.0142     0.0100     0.0081 0.0070 0.5739     0.0088     0.0054 0.0004 0.3800

threshold, a 40    49.36    15.2250 12.0684 0.3806    45.1744     5.7936 2.6192 0.1448

inherited repeat, n0 160    172.52    21.8833 18.0384 0.1368   174.6930    15.1869 3.8609 0.0949

 

Table 2.1: Analysis of the inference method.Root mean square error (RMSE) was calculated
for the maximum likelihood (ML) solution and the posterior mean so that these potential point
estimates could be assessed. Results are shown as an absolute distance and percentage difference
of the underlying true parameter.

The multi-modality seen originally in Figure 2.3D, still appears, when a finer grid is used, in ap-

proximately 1 in 5 cases, see the joint posterior probability distribution for the contraction rate and

inherited repeat length, dataset 20, see Figure 2.4. Referring to the marginal posterior probability

distribution for the contraction rate and inherited repeatseparately, see Figure 2.5, an interpretation

of this multi-modality is the ridge feature of the marginal posterior for inherited repeat length.
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Figure 2.3: Synthetic data and inference results from the expansion andcontraction model
with parameters: µ = 0.55, φ = 0.0142, n0 = 160, a = 40 and t = 20. B. The distribution of
this synthetic dataset. C. The same data is shown as a cumulative distribution (dark line), along with
the inferred fit with the maximum likelihood value (light line). These inferred parameter values are:
µ = 0.61, φ = 0.015, a = 50 andn0 = 160. The individual age,t, is taken as known and not in-
ferred. The posterior probability density distributions for parametersn0, the inherited repeat length,
µ, the rate of contraction per CTG repeat per year, andφ the rate of expansion minus contraction
per CTG repeat per year, marginalised for each parameter over the other parameters, are shown in
panels A, E and I respectively. Marginalised joint probability distributions for parameter pairs,µ
andn0, φ andn0, φ andµ, andn0 anda, the threshold over which expansion and contraction occur
are shown in panels D, G, H and F as contours with the dark to light direction representing increas-
ing probability. The crosses on each horizontal axis indicate the parameter value used to generated
the data. The shape of the distributions convey the uncertainty in the parameter estimation. Given
that in this case we know the model that generated the data, the distribution reflects the stochasticity
of the process and the sampling error.
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Figure 2.4:Joint posterior distributions (µ and n0) for four representative datasets
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Chapter 3

Somatic instability of the expanded CTG repeat in myotonic dystrophy

type 1 is a heritable quantitative trait and modifier of disease

Some of the results in this Chapter (Sections 3.3.1 to 3.3.3)have been published, see Morales, F.,
Couto, J.M., Higham, C.F., Hogg, G., Cuenca, P., Braida, C.,Wilson, R.H., Adam, B., del Valle,
G., Brian, R., Sittenfeld, M., Ashizawa, T., Wilcox, A., Wilcox, D.E. and Monckton, D.G. (2012),
Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable
quantitative trait and modifier of disease severity, Human Molecular Genetics (21), 3558 - 3567.

3.1 Abstract

The expanded CTG repeat in myotonic dystrophy type 1 (DM1) shows extremely high levels of
somatic instability. These levels are age-dependent, length-dependent and tissue-specific. The pres-
ence of somatic instability compromises attempts to measure intergenerational repeat dynamics and
infer genotype-phenotype relationships. Using single-molecule PCR, Moraleset al. characterized
more than 25,000de novosomatic mutations from a large cohort of DM1 patients. This rich dataset
enables us to fully quantify levels of somatic instability across a representative DM1 population
for the first time. We establish the relationship between estimated progenitor allele length, age at
sampling and levels of somatic instability using linear regression analysis. We show that the esti-
mated progenitor allele length genotype is significantly better than modal repeat length (the current
clinical standard) at predicting age of onset and this novelgenotype is the major modifier of the
age of onset phenotype. Further we show that somatic variation (adjusted for estimated progenitor
allele length and age at sampling) is also a modifier of the ageof onset phenotype. Several families
form the large cohort, and we find that the level of somatic instability is highly heritable, implying
a role for individual-specifictrans-acting genetic modifiers. Identifying thesetrans-acting genetic
modifiers will facilitate the formulation of novel therapies that curtail the accumulation of somatic
expansions and may provide clues to the role these factors play in the development of cancer, ageing
and inherited disease in the general population. We also investigate whether our findings can, in
principle, be transferred to another dataset.

57
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3.2 Introduction

This chapter focuses on the relationship between genotype and phenotype in myotonic dystrophy

type 1 (DM1) and covers, in the first part of the chapter, the statistical analysis prepared for the

publication of our findings (Morales et al. 2012). This primary dataset is used here to answer

questions about the relationship between inherited repeatlength (a novel genotype) and the clinical

manifestation of disease (phenotype). In the second part ofthe chapter, we investigate transferring

the findings from this dataset to another dataset to add valueto the analysis. In later chapters,

which form the main body of the thesis, we use this rich dataset in a different manner, to calibrate

mathematical models and address a different set of questions.

As discussed in Chapter 1 (Introduction) affected DM1 individuals present with expansions from

50 CTGs to up to several thousand repeats (Brook et al. 1992).Longer alleles are associated with

a more severe form of the disease and an earlier age of onset (Hunter et al. 1992, Harley et al.

1993, Redman et al. 1993). The expanded CTG repeat in DM1 shows extremely high levels of

somatic instability. These levels are age-dependent, length-dependent and tissue-specific (Anvret

et al. 1993, Ashizawa et al. 1993, Thornton et al. 1994, Monckton et al. 1995, Wong et al. 1995,

Martorell 1998). Hence the allele lengths observed when a DNA sample is taken depend not only

on the progenitor allele length but the age of the individualwhen, and the tissue from which, the

DNA sample is taken.

Currently clinical diagnosis is based on a measure of modal repeat length from blood cells, but

variance in modal length only accounts for between 20 - 40% ofthe variance in age of onset (Perini

et al. 1999, Marchini et al. 2000, Mladenovic et al. 2006) and, therefore, is not an accurate predictive

tool. Correlations with specific symptoms are often worse, or undetectable (Merlevede et al. 2002,

Modoni et al. 2004, Gharehbaghi-Schneli et al. 2008). Hencethe International Myotonic Dystrophy

Consortium have recommended that patients are not offered prognostic information based on the

current test (Gonzalez et al. 2000). We hypothesise that previous genotype-phenotype correlations

have been compromised by failure to take into account the age-dependent, expansion biased nature

of somatic mosaicism.

Single-molecule based small pool PCR approaches resolve the heterogeneous smear of CTG re-

peats into the discrete alleles present in individual cells(Monckton et al. 1995). This provides a

quantitative measure of repeat length variation and reveals the underlying shape of the distribution

of repeat lengths. Typically, repeat length distributionsfor the mutant allele in DM1 blood DNA are
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positively skewed with a relatively sharp lower boundary below which smaller alleles are relatively

rare. This lower boundary is conserved between tissues overtime and provides a useful estimate

for the inherited or progenitor allele length (Monckton et al. 1995). A key aim in this chapter is to

estimate progenitor allele length and measure the total level of allelic variation in blood DNA in a

large number of DM1 patients using single-molecule based small pool PCR data. We quantify the

effect of progenitor allele length and age at sampling on somatic variation and the relationship of

these effects with disease severity. We also investigate whether variation in somatic instability is

heritable.

If our hypothesis that previous genotype-phenotype correlations have been compromised by failure

to take into account the age-dependent, expansion biased nature of somatic mosaicism holds then

there is a wealth of data to revisit. For example, a large study at 23 neuromuscular disease clinics

in the United States was initiated in April 1997 with on-going follow-up and comprises 406 DM1

affected individuals (Groh et al. 2008). At the end of this chapter, we investigate whether find-

ings from our in-depth analysis of repeat length distribution and age of onset can, in principle, be

transferred to another dataset (Groh et al. 2008).

3.3 Results

The full dataset comprises sized repeat lengths in blood DNAfrom 145 DM1 individuals as de-

scribed in Chapter 2, Section 2.2.

In DM1 and HD, age at onset is considered to have biological and clinical relevance as it takes into

account both when the disease might start and the severity ofthe symptoms (typically the symptoms

associated with late onset are much less severe than those associated with juvenile/adult onset).

This information would be useful in reproductive counselling to as it makes sense of the patterns

of inheritance seen in families due to the phenomenon of anticipation. Hence efforts are directed

at looking for explanatory variables for age of onset. However several issues have to be taken

into account. First, modal repeat length,MA, an obvious candidate as an explanatory variable, is

highly dependent on the age at which it is measured,AS. Second, as typically many individuals are

recruited to studies after the symptoms have appeared in their families, there is a strong correlation

betweenAS and age of onset. One way to remove the effect of age from this analysis is to consider

the progenitor repeat length,PAL, which is the modal repeat length at birth. Another approach,

would be to consider the difference between age of onset andAS, time to onset,TTO as the
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response. In our study and others,TTO is negative for many individuals as they are symptomatic,

but this does not affect our ability to useTTO as a response indicator. Taking all these issues

into account we analyse a series of models usingTTO as the response dependent variable (model

series 1) and age of onset,AO, as the response dependent variables. The independent explanatory

variables are modal repeat length,MA, progenitor allele length,PAL, age at sampling,AS and

finally, somatic instability,SI, which is defined as the difference in the number of repeats atthe

10th and at the90th percentile of the repeat length distribution.

3.3.1 Progenitor allele length is a modifier of age of onset inDM1

The progenitor allele length was estimated from the lower boundary of the repeat length distribution

established by small pool PCR analysis (Monckton et al. 1995) for 137 DM1 affected individuals

for whom age of onset was known. Modal repeat length measuredvia a traditional Southern blot

(SB) of restricted digested genomic DNA, currently the clinical method for establishing CTG repeat

length and diagnosis of DM1, was available for a subset of 82 individuals.

Linear regression analysis was used to fitMA (Models 1A and 2A),MA + AS (Models 1D and

2D),MA+PAL+AS (Models 1F and 2F) andMA+PAL+AS +SI (Models 1G and 2G) to

TTO (Models 1A-1G) andAO (Models 2A-2G) respectively, see Tables 3.1 and 3.2. The models

were compared using adjustedR2 and AIC criteria. ConcerningTTO, includingAS improves the

model (1D vs 1A), includingPAL further improves the model (1F vs 1D) and addingSI further

improves the model (1G vs 1F). These results support the basic premise thatPAL andSI explain

some of the variance in disease onset and progression not already explained by modal repeat length.

In terms of response variables,AO is the better response variable in terms of the adjustedR2 criteria

but comparable toTTO in terms of the AIC criteria, explained by higher correlations underAO

but equivalent residuals, and hence fit betweenAO andTTO.

A series of models (linear, quadratic, exponential and power) were then fitted to all 137 DM1 af-

fected individuals using least squares regression analysis with age of onset as the dependent variable

and the logarithm (base 10) of the estimated progenitor allele length as the independent variable. For

all these models the negative sign of the coefficient for the independent variable indicates that age

at onset and estimated progenitor allele length are inversely correlated, with age of onset decreasing

as progenitor allele length increases. The non-linear models (adjustedR2 ≈ 0.7, P < 0.0001)

provided a better fit than the linear model (adjustedR2 = 0.640, P < 0.0001) which suggests that
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N=82 Model R
2
 

 

adjusted R
2
 Pm AIC Parameter Coefficient P 

1A TTO~MA 0.154 0.143 2.7e!04  375  0!

 1!log!MA!

21.88

!5.53

2.0e!02 

2.7e!04 

1B TTO~PAL 0.084 0.073 8.1e!03  382  0!

 1!log!PAL!

15.78

!4.92

1.4e!01 

8.1e!03 

1C TTO~AS 0.122 0.111 1.3e!03  378  0!

 1!ages!

!4.55

!0.25

9.9e!02 

1.3e!03 

1D TTO~MA + AS 0.433 0.419 1.8e!10  344  0!

 1!log!MA!

 2!ages!

53.84

!8.47

!0.41

8.8e!08 

4.5e!09 

2.0e!08 

1E TTO~PAL + AS 0.430 0.416 2.2e!10  345  0!

 1!log!PAL!

 2!ages!

67.95

!11.05

!0.49

5.3e!08 

5.5e!09 

1.0e!09 

1F TTO~MA+PAL+AS   0.476 0.456 5.5e!11  340  0!

 1!log!MA!

 2!log!PAL!

 3!ages!

70.16

!4.90

!6.23

!0.48

1.0e!08 

1.1e!02 

1.3e!02 

1.1e!09 

1G TTO~MA+PAL+AS +SI  0.588 0.567 3.4e!14  322  0!

 1!log!MA!

 2!log!PAL!

 3!ages!

 4!SI!

23.49

!0.72

!2.31

!0.25

!0.03

1.0e!01 

7.1e!01 

3.3e!01 

2.8e!03 

1.8e!05 

1H TTO~SI 0.526 0.520 1.3e!14  328  0!

 1!SI!

0.20

!0.04

9.0e!01 

1.3e!14 

1I TTO~SI+AS 0.579 0.568 1.5e!15  320  0!

 1!SI!

 2!ages!

5.08

!0.03

!0.17

2.2e!02 

3.0e!14 

2.2e!03 

TTO = time to onset  (age at onset – age at sampling), MA= modal allele length (Southern blot), PAL=progenitor allele length, AS= age at sampling, 

SI=somatic instability (10
th

!90
th

 percentile) and  AO= age at onset.  

Table 3.1:Linear regression analysis to fit different models to the response variableTTO.

N=82 Model R
2
 

 

adjusted R
2
 Pm AIC Parameter Coefficient P 

2A AO~MA 0.412 0.405 8.1e!11  401  0!

 1!log!MA!

100.42

!12.74

1.9e!14 

8.1e!11 

2B AO~PAL 0.529 0.523 1.0e!14  383  0!

 1!log!PAL!

121.23

!17.31

2.7e!18 

1.0e!14 

2C AO~AS 0.555 0.550 1.0e!15  378  0!

 1!ages!

!4.55

0.75

9.9e!02 

1.0e!15 

2D AO~MA + AS 0.713 0.706 3.9e!22  344  0!

 1!log!MA!

 2!ages!

53.84

!8.47

0.59

8.8e!08 

4.5e!09 

6.2e!14 

2E AO~PAL + AS 0.712 0.704 4.7e!22  345  0!

 1!log!PAL!

 2!ages!

67.95

!11.05

0.51

5.3e!08 

5.5e!09 

5.3e!10 

2F AO~MA+PAL+AS   0.735 0.725 2.0e!22  340  0!

 1!log!MA!

 2!log!PAL!

 3!ages!

70.16

!4.90

!6.23

0.52

1.0e!08 

1.1e!02 

1.3e!02 

7.5e!11 

2G AO~MA+PAL+AS +SI  0.791 0.781 1.9e!25  322  0!

 1!log!MA!

 2!log!PAL!

 3!ages!

 4!SI!

23.49

!0.72

!2.31

0.75

!0.03

1.0e!01 

7.1e!01 

3.3e!01 

1.8e!14 

1.8e!05 

2H AO~SI 0.122 0.111 1.3e!03  434  0!

 1!SI!

29.28

!0.02

7.4e!15 

1.3e!03 

2I AO~SI+AS 0.787 0.781 3.1e!27  320  0!

 1!SI!

 2!ages!

5.08

!0.03

0.83

2.2e!02 

3.0e!14 

5.5e!26 

TTO = age to onset (age at onset – age at sampling), MA= modal allele length (Southern blot), PAL=progenitor allele length, AS= age at sampling, SI=somatic 

instability (10
th

!90
th

 percentile) and AO= age at onset. 

Table 3.2:Linear regression analysis to fit different models to the response variableAO.
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age of onset decreases more slowly as progenitor allele length increases or equivalently, that age of

onset increases more rapidly as progenitor length decreases.

3.3.2 Age at sampling and progenitor allele length modify the level of somatic insta-

bility

We quantify somatic variation for an individual patient as the difference in the number of repeats

at the10th and at the90th percentile of the repeat length distribution. This was recorded via single

molecule PCR for 136 DM1 affected or at risk individuals in total. The group contains some

asymptomatic patients whereas the group of 137 used in Section 3.3.1 did not. This measure of

variation captures the repeat length range of alleles whilst eliminating outliers that are sensitive to

finite sampling. Linear regression analysis was performed with a series of models that took the

logarithm (base 10) of somatic variation as the dependent variable and either the logarithm (base

10) of inherited allele length, the logarithm (base 10) of age at sampling or a combination of both

as the independent explanatory variables. The objective was to establish whether and to what extent

age and progenitor length modify the level of somatic instability.

Alone, progenitor allele length,logPAL, is positively correlated to somatic variation,logSI (ad-

justedR2 = 0.644, P < 0.0001) whereas age at sampling,log ages, is not significantly correlated

to logSI (adjustedR2 = −0.005, P = 0.6). Together,log PAL andlog ages are both significantly

correlated tologSI (adjustedR2 = 0.746 andP < 0.0001) with coefficient p-values,8.3× 10−42

and1.2× 10−11, respectively, see Table 3.3. These results suggest that progenitor allele length has

a greater effect than age at sampling on levels of somatic instability. Inclusion of the interactive

term, log PAL× log ages (P = 6.5 × 10−3), and quadratic terms,log PAL2 (P = 2.3 × 10−24)

andlog age2s (P = 5.6 × 10−5), results in a better fit, allowing for the extra parameters (adjusted

R2 = 0.890, P < 0.001), and indicates that the relationship betweenlogSI, logPAL andlog ages

is non-linear and complex. Analysis of the residuals, in terms of constant variance, in particular for

the smaller SI values, improves and confirms the superior fit of the quadratic model, see Figure 3.1.

We observe also that the trend in the plot for the linear models disappears when the quadratic term

is included, justifying the need for the non-linear term.
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Model R
2

adj R
2

Pm parameter coeff
std

error
t-stat P 

log(SI) =  0 + 

 1log(PAL) 

0.646 0.644 < 0.0001 intercept  0 -0.84 0.21 -4.0 9.3 x 10
-05

log(PAL)  1 1.29 0.08 15.7 4.9 x 10
-32

 

log(SI) =  0 + 

 1log(ages)
0.002 -0.005 0.60 intercept  0 2.27 0.25 9.2 7.4 x 10

-16

log(ages)  1 0.09 0.16 0.5 6.0 x 10
-01

 

0.750 0.746 < 0.0001 intercept  0 -2.24 0.26 -8.7 1.2 x 10
-14log(SI) =  0 + 

 1log(PAL) + 

 2log(ages)
log(PAL)  1 1.47 0.07 20.0 8.3 x 10

-42

log(ages)  2 0.65 0.09 7.4 1.2 x 10
-11

 

0.764 0.759 < 0.0001 intercept  0 -0.40 0.70 -0.6 5.7 x 10
-01

log(PAL)  1 0.79 0.25 3.2 2.1 x 10
-03

log(SI) =  0 + 

 1log(PAL) + 

 2log(ages) + 

 3log(PAL)*log(ages) log(ages)  2 -0.56 0.44 -1.3 2.0 x 10
-01

log(PAL)*

log(ages)
 3 0.44 0.16 2.8 5.8 x 10

-03

 

0.894 0.890 < 0.0001 intercept  0 -9.04 0.99 -9.1 1.1 x 10
-15

log(PAL)  1 8.78 0.68 12.9 4.3 x 10
-25

log(ages)  2 -1.62 0.58 -2.8 6.5 x 10
-03

log(SI) =  0 + 

 1log(PAL) + 

 2log(ages) + 

 3log(PAL)*log(ages)

+  4log(PAL)
2

+

 5log(ages)
2  

log(PAL)*

log(ages)
 3 0.40 0.15 2.7 7.7 x 10

-03

log(PAL)
2

 4 -1.67 0.13 -12.6 2.3 x 10
-24

log(ages)
2

 5 0.44 0.11 4.2 5.6 x 10
-05

Table 3.3:The relationship between somatic instability (SI), estimated progenitor allele length
(PAL) and age at sampling (ages), established using regression analysis.The table shows the
squared coefficient of correlation (R2) and the statistical significance (Pm) for each relationship,
and the coefficient, standard error, t-statistic and statistical significance (P ) associated with each
parameter in the linear regression analysis (N = 136).
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3.3.3 Heritability analysis

Genetic correlations and heritability estimates were acquired using QTDT, a general test package

for the association of quantitative measures in nuclear families (Abecasis et al. 2000). After correct-

ing for the two major modifiers of somatic instability (progenitor allele length and age at sampling),

the residual variation in somatic instability represents an individual-specific measure of genetic in-

stability. Individual differences in the level of somatic instability may be attributable to genetic

modifiers and therefore may be heritable. Of the 136 individuals with derived repeat length dis-

tributions, 89 were part of 21 families and formed 51 siblingpairs. Using QTDT (Abecasis et al.

2000), we estimated the sib-pair intra-class correlationsfor residual somatic instability to be 0.28

(P = 0.04). We then used QTDT to partition this variation and yield a heritability estimate. The

variance was partitioned into additive genetic,Vg, non-shared environment,Ve and shared environ-

ment,Vc. The analysis yielded the estimates of heritability,Vg = 0.42, Ve = 0.58 andVc = 0,

establishing residual somatic instability as a heritable quantitative genetic trait.

3.4 Extension to another dataset

We hypothesise that the interpretation of SB modal repeat length is compromised by not taking

progenitor allele length and age at sampling into account. Implicit in this assumption is that there

is a relationship between progenitor allele length, age at sampling and SB modal repeat length. If

such a relationship can be established, in a simple analytical manner, then it should be possible to

deduce one of these variables from the other two. In particular, given the predictive importance of

progenitor allele length, it would be useful to deduce progenitor allele length from age at sampling

and SB modal repeat length. Blood DNA samples are taken in many DM1 or other related disease

studies and variables such as age at sampling or SB modal length are usually known or measured,

whereas progenitor allele length is not typically known or measured.

In our dataset, there are 82 individuals for whom we have age at sampling, an estimate of progen-

itor allele length from small pool PCR analysis and in addition, SB modal repeat length measured

from traditional Southern blot of restricted digested genomic DNA. We confirmed the relation-

ship between these variables statistically using linear regression analysis. We then projected this

framework on to an American dataset (Groh et al. 2008), kindly provided by Dr William Groh and

described below, to estimate progenitor allele length fromSB modal repeat length and age at sam-

pling. We therefore now investigate whether this quantity can add predictive value to the American
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Figure 3.1:Residual analysis for SI response modelsResiduals (vertical axis) plotted against the
response variable SI (log transformation base 10) for four models, see Table 3.3 for further details.
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Figure 3.2: Summary of the Glasgow data: Log transformation of estimated progenitor allele
length (vertical axis) versus log transformation of CTG modal repeat length determined by Southern
blot and age at sampling (horizontal axes) for 82 patients from the Glasgow study. Surface fitted
using linear regression (R2 = 80%).
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data.

3.4.1 American data

A large study at 23 neuromuscular disease clinics in the United States was initiated in April 1997

with on-going follow-up. Patients comprise adults (18 years and older) with a clinical diagnosis of

myotonic dystrophy and an abnormal CTG repeat sequence (oneor both alleles with≥ 38 repeats)

confirmed by the traditional Southern blot of restricted digested genomic DNA (Groh et al. 2008).

Also available were the ages of individuals when the blood DNA for diagnosis was taken.

3.4.2 Relationship between age of onset, SB modal repeat length, progenitor allele

length and age at sampling in the University of Glasgow study

Variance of SB modal repeat length and age at sampling explains about80% of the variance in the

estimated progenitor allele length, see Figure 3.2. This finding supports the use of the fitted linear

model to predict progenitor allele length for new patients given SB modal repeat length and age at

sampling.

IncludingMA + AS in the linear model to explain age of onset is mathematicallyequivalent to

includingPAL+AS, see Table 3.2, Models 2D and 2E. the explanation for this is thatMA+AS

is a proxy forPAL which is the biologically meaningful parameter as opposed toAS.

3.4.3 Adding value to the American data

We analysed the American data following the approach in Section 3.3.1, see Table 3.4. Currently,

SB modal repeat length is used to indicate broadly the phenotype and corresponding age of onset.

In the American study, the variance of SB modal repeat lengthexplains about26% of the variance

in age of onset (Figure 3.3, top row). This increases to35% if the SB modal repeat length is

transformed using logarithms (Figure 3.3, middle row).MA + AS is treated as a proxy forPAL

and this substitution improves the explained variance by a further 12 percentage points to63%.
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Figure 3.3:Summary of the American data. Top row: Scatter plot of SB modal repeat length
(horizontal axis) and age at onset (vertical axis) for 406 USpatients. Line fitted using linear regres-
sion (R2 = 26%). Middle row : Scatter plot of the log transformation of SB modal repeat length
(horizontal axis) and age at onset (vertical axis) for the same 406 US patients (R2 = 35%). Bottom
row: Scatter plot of the log transformation of estimated progenitor allele length (horizontal axis)
and age at onset (vertical axis) for the same 406 US patients (R2 = 47%).
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3.5 Discussion

We have shown that the progenitor allele length is better than SB modal repeat length in blood

for predicting age of onset. A key factor behind this improvement is that progenitor allele length

does not depend on age or tissue whereas both these factors affect and confound the interpretation

of SB modal repeat length. SB modal repeat length is expectedto increase with age and vary

between tissues (Monckton et al. 1995) whereas the true progenitor allele length does not. Blood

DNA is relatively stable compared to muscle DNA and so SB modal repeat length measured in

blood may not reflect levels of instability in the disease related tissues pertinent to age of onset

and disease progression. However blood is easily accessible in a large number of patients and is a

tissue within which the repeat remains relatively stable. Analysing blood DNA thus gives us a good

chance to estimate the progenitor allele length. Measuringinstability in other tissues poses several

challenges. Muscle biopsies are considered too invasive for routine testing and other tissues are

only available post mortem. Complex tissues often display multi-modal distributions reflecting the

presence of very different cell types within the same tissue. Although SB modal length in muscle

would indicate actual levels of instability realised, in the absence of this measure the progenitor

allele is closely associated with the DM1 phenotype (congenital, juvenile, adult and late adult) and

is expected to be indicative of age of onset.

Some studies, such as (Groh et al. 2008), have measured the SBmodal repeat length in blood and

used this measure in their analysis. For those studies whereage at sampling DNA is also recorded,

we suggest that is possible to reinterpret the findings. In particular, we have shown that it is possible

to use modal repeat length and age at sampling as a proxy for progenitor allele length. This allows

re-interpretation of the relationship between genotype and phenotype using a novel genotype with

more predictive power. This approach can add value to a secondary dataset and extends the range

of analysis.

Basing progenitor allele length on the lower boundary is subjective and relies on the progenitor

allele being sufficiently prevalent in the sample when, conceivably for advanced DM1 individuals,

this may not be the case when the progenitor allele has mostlymutated and mutations have blurred

the lower boundary. The main work of this thesis, described in the subsequent chapters, takes a

different, more objective approach. By using a mathematical model to describe the evolution of the

repeat (Chapter 4), we treat the progenitor allele length asan unknown entity and infer its value

from the data. However, importantly, we have shown here thata simple estimate of progenitor
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allele length is available that forms a good predictor of ageof onset. This type of readily accessible

prognostic information is very important for families withDM1. Age to onset is an additional

response variable with prognostic utility but we would argue that for DM1, it is not clear that time

to onset represents a biologically relevant outcome. Thinking about how we would want to use the

model in a predictive sensee.g. in prenatal testing then the AS versus AO ascertainment mediated

correlation would on longer exist.

Overall in this chapter, evidence of somatic expansion in tissues that are the targets of pathogenesis

has informed the hypothesis that somatic instability may itself contribute to the pathogenic process.

Through quantification of somatic variation in a large cohort of DM1 individuals, we are able to

show, for the first time, that somatic variation, adjusted for estimated progenitor allele length and

age at sampling, is a modifier of the age of onset phenotype. These important results concerning

somatic instability are discussed again in more detail in Chapter 5. Several families form the large

cohort, and we find that the level of somatic instability is highly heritable, implying a role for

individual-specifictrans-acting genetic modifiers. Identifying thesetrans-acting genetic modifiers

is a future direction for this work that is discussed in more detail in Chapter 8.
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American Data 

N=406 Model R
2
 

 

adjusted R
2
 Pm AIC Parameter Coefficient P 

3A TTO~MA 0.153 0.151 2.6e!16   15  0!

 1!log!MA!

17.68

!5.26

5.5e!06 

2.6e!16 

3C TTO~AS 0.005 0.003 1.4e!01   15  0!

 1!ages!

!12.13

!0.06

7.9e!10 

1.4e!01 

3D TTO~PAL(=MA + AS) 0.220 0.217 1.6e!22   17  0!

 1!log!MA!

 2!ages!

38.13

!6.85

!0.25

3.4e!13 

4.1e!23 

8.0e!09 

4A AO~MA 0.350 0.349 9.4e!40   15  0!

 1!log!MA!

98.90

!11.57

2.4e!63 

9.4e!40 

4C AO~AS 0.530 0.528 3.9e!68   15  0!

 1!ages!

!12.13

0.94

7.9e!10 

3.9e!68 

4D AO~PAL(=MA + AS) 0.631 0.629 5.0e!88   17  0!

 1!log!MA!

 2!ages!

38.13

!6.85

0.75

3.4e!13 

4.1e!23 

1.7e!51 

TTO = age to onset (age at onset – age at sampling) and AO= age at onset. 

MA= modal allele length (Southern blot),  AS= age at sampling and  PAL=progenitor allele length a proxy for MA+AS.  

Table 3.4:American Data: Linear regression analysis to fit different models to the response
variablesTTO and AO respectively.



Chapter 4

High levels of somatic DNA diversity at the myotonic dystrophy type 1

locus are driven by ultra frequent expansion and contraction

mutations

The results in this Chapter (Sections 4.3.1 to 4.3.5) have been published, see Higham, C.F., Morales,
F., Cobbold, C.A., Haydon, D.T. and Monckton, D.G., (2012)High levels of somatic DNA diversity
at the myotonic dystrophy type 1 locus are driven by ultra-frequent expansion and contraction
mutations, Human Molecular Genetics (21), 2450 - 2463.

4.1 Abstract

Several human genetic diseases are associated with inheriting an abnormally large unstable DNA
simple sequence repeat. These sequences mutate, by changing the number of repeats, many times
during the lifetime of those affected, with a bias towards expansion. These somatic changes lead
not only to the presence of cells with different numbers of repeats in the same tissue, but also
produce increasingly longer repeats, contributing towardthe progressive nature of the symptoms.
Modelling the progression of repeat length throughout the lifetime of individuals has potential for
improving prognostic information as well as providing a deeper understanding of the underlying
biological process. A large data set comprising blood DNA samples from individuals with one such
disease, myotonic dystrophy type 1, provides an opportunity to parametrise a mathematical model
for repeat length evolution that we can use to infer biological parameters of interest. We developed
new mathematical models by modifying a proposed stochasticbirth process to incorporate possible
contraction. A hierarchical Bayesian approach was used as the basis for inference and we estimated
the distribution of mutation rates in the population. We used model comparison analysis to reveal,
for the first time, that the expansion bias observed in the distributions of repeat lengths is likely to
be the cumulative effect of many expansion and contraction events. We predict that mutation events
can occur as frequently as every other day, which matches thetiming of regular cell activities such
as DNA repair and transcription but not DNA replication.

71
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4.2 Introduction

The main aim of this work is to develop a mathematical model that sheds light on the underlying dy-

namical process of DNA mutation and calibrate it to experimental data. This chapter focuses on the

results from fitting mathematical models to the primary dataset described in Chapter 3, as published

in (Higham et al. 2012). As discussed in more detail in Chapter 2, by sampling many cells from in-

dividuals we have many realisations of the same stochastic process at one point in time. Hence, our

data provides a unique opportunity to access directly the inherent fluctuations that are required to fit

a stochastic process. This enables us to quantify several important biological parameters relating to

the mechanism underlying repeat length evolution. This is an important step towards understanding

pathological mutations and ultimately providing better prognostic information for individuals with

diseases arising from these mutations.

4.3 Results

4.3.1 Model definitions

The features of the dynamics underlying repeat length instability are largely unknown. By fitting

different models which represent different hypotheses about this mechanism to the dataset we can

use model comparison methods to rank the hypothetical models in order of best fit. Thus we can

establish which models are more likely to explain the data than others. Is the underlying process

driven by expansion only, as hypothesised by (Kaplan et al. 2007), or could it be a combination

of expansion and contraction? Are the rates of expansion andcontraction universal or are there

significant differences between individuals indicating the influence of individual-specific factors?

Is there a fixed or individual-specific threshold number of repeats around the instability threshold

of 40 CTGs?

To answer these questions we defined the following eight models:

∗ expansion only with a global parameter for expansion and a fixed threshold (ModelM1);

∗ expansion only with an individual-specific parameter for expansion and a fixed threshold

(ModelM2a);

∗ expansion only with individual-specific parameters for expansion and threshold (ModelM2b);
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∗ expansion and contraction with global parameters for expansion and contraction, and a fixed

threshold (ModelM3);

∗ expansion and contraction with a global parameter for contraction and individual-specific

parameters for expansion and threshold (ModelM4);

∗ expansion and contraction with a global parameter for expansion and individual-specific pa-

rameters for contraction and threshold (ModelM5);

∗ expansion and contraction with individual-specific parameters for expansion and contraction,

and a fixed threshold (ModelM6a); and finally

∗ expansion and contraction with individual-specific parameters for expansion, contraction and

threshold (ModelM6b).

4.3.2 Model comparison

We used model comparison methods as described in Chapter 2, Section 2.5.3, to evaluate several

hypotheses relating to the mechanics of how the distributions of repeat lengths arise in samples of

blood DNA, the shape of which can differ between individualsdepending on their age when the

sample was taken and the size of the repeat lengths. Since a likelihood arises naturally from the

stochastic process, both Bayesian and non-Bayesian likelihood methods lend themselves to fitting

the data to the model. We used the maximised log-likelihood with the Akaike information criterion

and the likelihood ratio test as the bases for model comparison. The likelihood is also employed as

part of a Bayesian framework with prior information to provide parameter distributions.

Data comprising the distribution of CTG repeat lengths within a blood sample from 142 individuals

(out of 145 individuals tested) was used to fit the eight models, described above, representing the

different hypotheses. As detailed below in Section 4.5.1, three individuals were excluded from this

analysis. In the most general case we had the following unknown parameters for each individual:

the number of CTG units from which the process started, otherwise known as the progenitor or in-

herited allele length,n0; the threshold number of CTG units over which expansion and contraction

are non-negligible,a; the rates of expansion and contraction, over this threshold, per CTG unit per

year,λ andµ, respectively, which define the net expansion rate,φ = λ−µ. These parameters were

treated as unknowns and investigated over a broad range of values (Table 4.1). To formally compare

the different models, we used the Akaike information criterion (AIC) (Akaike 1974, Burnham &
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Anderson 2002) and the likelihood ratio test (Cox & Hinkley 1994) which both employ the max-

imised log-likelihood penalised by the number of parameters in the model, summarised in Table

4.2. The likelihood of the data given the model arose naturally from the stochastic process and we

obtained the maximised log-likelihood value for each model. Further details of how the models and

their likelihood were derived is found in Chapter 2, Sections 2.4 and 2.5.

Parameters Range for uniform 

prior
(i)

(small alleles) 

Increment 

size 

Contraction, rate per CTG repeat 

per year,  

 0.01 to 3.01 

(0.001 to 0.011) 

 0.06 

Expansion minus contraction, rate 

per CTG repeat per year,  

 0.001 to 0.061 

(0.001 to 0.026) 

 0.0012 

Threshold, number of CTG 

repeats, a

 0 to 50  1 

Inherited repeat length, number of 

CTG repeats, n0

 82 to PAL
(ii)

+ 200
2

(51 – 81)
1

 8 

(2)

Table 4.1:Prior ranges for parameter estimation for myotonic dystrophy type 1 blood.Notes:
(i) This range was adapted for some patients with:1 small alleles in order to investigate smaller
rates of contraction (see figures in parentheses); and2 possibly unreliable progenitor allele length
(PAL) estimates due to ambiguous or dispersed distributions. This included both extending up to
the maximum possible value and down to the pathological threshold of 50 CTGs; and (ii) PAL
was broadly estimated from the small-pool PCR data which resolves the cells into different lengths
based on the position of the 10th percentile or a sharp lower bound if one existed. This measure can
only be considered a rough estimate and the priors are set wide of this mark to eliminate any bias
that this estimate could introduce into the inference procedure.

The very negative values of the maximised log-likelihoods,around−1.35 × 105, reflect the vast

quantity of data (between 100 and 350 samples for each of the 142 individuals) and lead to cor-

respondingly large AICs. However, what is important for model comparison is not the absolute

value of AIC but the difference between models, with more supporting evidence for the model with

the lowest value of AIC. To see this more clearly, we adjustedeach AIC by subtracting the low-

est value overall and ranked the models in order, with the smallest difference and hence strongest

model first. We conclude that there is most support for modelM6a (expansion and contraction

with individual-specific parameters and a fixed threshold) and modelM6b (expansion and contrac-

tion with individual-specific parameters and a variable threshold) with adjusted AICs of 0 and 100

respectively followed by modelM5 (expansion and contraction with a global parameter for expan-

sion, an individual-specific parameter for contraction anda fixed threshold) with an adjusted AIC

of 1,274. Expansion only modelsM2a andM2b have adjusted AICs of 1,930 and 1,996 respec-
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tively. Comparing modelsM6a andM6b using the likelihood ratio test indicates that the difference

between these models is of low significance (P = 0.01). However comparing modelsM6a, M6b

andM5 to modelM2a using the likelihood ratio test gives a highly significant result (P < 10−15).

The Bonferroni correction for eight multiple tests is 0.00625. This strongly supports the hypothesis

that contractions are present in the underlying process of repeat length evolution.

The models with individual-specific parameters, both with and without contractions, are better sup-

ported by the AIC evidence, ranging from 0 to 8,194, than the models with global parameters, AICs

ranging from 9,822 to 102,308 (ranked 7 to 8 in Table 4.2). This suggests that there is significant

parameter variation between individuals. When considering the threshold parameter,a, we observe

that modelM6a (ag = 40) provides a better fit to the data as modelM6b (individual values for a),

providing support for the involvement of a universal threshold effect in the mechanism of repeat

instability. This finding is consistent with the observed instability threshold of around 40 repeats in

DM1 (Fu et al. 1992, Brook et al. 1992).

Models

N=142 individuals 

Number of 

parameters

Maximised 

log-likelihood

AIC Adjusted

AIC

Likelihood

ratio test 

 (rank) 

6a. Expansion and contraction with individual-specific 

parameters for expansion, contraction and a fixed 

threshold, a
g
=40,  

[i]
, !

[i]
, n0

[i]
  

427 -135,614 272,082 0 (1) (2)* 

6b. Expansion and contraction with individual-specific 

parameters for expansion, contraction and threshold, a
[i]

, 

 
[i]

, !
[i]

, n0
[i]

    

568 -135,523 272,182 100 (2) (1)*

5.   Expansion and contraction with a global parameter for 

expansion, an individual-specific parameter for 

contraction and a fixed threshold, a
g
=40,  

g
, !

[i]
, n0

[i]
    

286 -136,392 273,356 1,274 (3) (3)*

2a. Expansion only with an individual-specific parameter for 

expansion and a fixed threshold, a
g
=40,  

[i]
, n0

[i]
    

285 -136,721 274,012 1,930 (4) (5)

2b. Expansion only with individual-specific parameters for 

expansion and threshold, a
[i]

,  
[i]

, n0
[i]

    

426 -136,613 274,078 1,996 (5) (4)

4.   Expansion and contraction with a global parameter for 

contraction, an individual-specific parameter for 

expansion and a fixed threshold, a
g
=40,  

[i]
, !

g
, n0

[i]
      

286 -139,852 280,276 8,194 (6) (6)

3.   Expansion and contraction with global parameters for 

expansion and contraction, and a fixed threshold, a
g
=40, 

 
g
, !

g
, n0

[i]

145 -140,807 281,904 9,822 (7) (7)

1.   Expansion only with a global parameter for expansion and 

a fixed threshold, a
g
=40,  

g
, n0

[i]
    

144 -187,051 374,390 102,308 (8) (8)

Table 4.2:Model comparison summary for myotonic dystrophy type 1.The mathematical mod-
els, listed in column 1, were ranked according to their AIC score which penalises the maximised
log-likelihood by the number of parameters. Adjusted AIC (column 5) was obtained by subtract-
ing the lowest value overall (272,082 ModelM6a) from the value for each model (column 4).
∗Significantly (P < 10−15) better than ModelM2a. The models were also compared pairwise
using a likelihood ratio test and ranked on this basis to provide a summary comparison to AIC
(column 6).

4.3.3 Parameter estimation

The model fitting produces some evidence for individual variation inµ andφ. The maximum like-

lihood approach provides point estimates of parameters butit is also desirable to have information

on the parameter distributions. We compute the parameter distributions for each individual using
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a Bayesian framework which fully takes into account any uncertainty arising from the finite nature

of the sample for each DM1 affected individual and the PCR technique. As elaborated in Chapter

2, the effect of the finite sample outweighs that of the PCR technique and simulation experiments

investigating sample size show that we have enough individually sized alleles from each DM1 af-

fected individual to satisfactorily infer the parameters of interest, namely, expansion and contraction

rates, and the inherited repeat length (Chapter 2, Section 2.7).

The parameters (λ[i], µ[i], a[i] andn[i]
0 where a particular individual is denotedi for i = 1, . . . , 142

corresponding to the 142 individuals analysed) were treated as unknowns and their probable values

were inferred from the data using a Bayesian framework and biologically informed prior for each

parameter (Table 4.1). This approach provided not only the most probable value for each param-

eter but also a credible range. In some cases, there is evidence of solutions at local maxima. By

presenting the results in this way, we retain a full picture of the parameter solution space which

is particularly important when the model has non-linear components causing such sub-optimal so-

lutions to arise. We report the parameter estimates as probability density functions, or posterior

distributions, the peaks of which indicate the most probable parameter values whilst capturing any

uncertainty in the prediction. The results for individual CR35 (i = 35), Figure 4.1, are typical of

many individuals. The parameter with the highest posteriorprobability peak, and hence for which

the data are the most informative, is the contraction rateµ[35] (Figure 4.1E). The peak is located

at 0.25 contractions per CTG unit per year. For parametersn
[35]
0 andφ[35] (Figures 4.1A and 4.1I)

peaking over 209 CTGs and 0.0346 expansions minus contractions per CTG unit per year respec-

tively, the posterior distributions are wider than that forµ[35]. Given the range of repeat lengths

sampled for this individual (between 300 and 1,300 CTGs), the posterior distribution fora[35] is

best viewed jointly withn0 (Figure 4.1F). The resulting contour is widely spread over the range for

a[35] (0 to 50 CTGs), implying that the observed repeat lengths, for this particular individual, are

not informative for this parameter. This is because the observed repeat lengths are much greater in

length than the plausible range for the threshold (below 50 CTGs) and consequently we conclude

that parametera[35] has little effect on the dynamics of repeat length evolutionfor this particular in-

dividual. Inspection of the joint probabilities for pairs of parameters can indicate interdependencies

between parameters. For many individuals there is a trade-off betweenφ andn0 (anti-correlation)

concerning the best fit, as illustrated by the contour (Figure 4.1G).

The parameter values associated with the maximum likelihood for each DM1 individual form part

of the supplementary files of (Higham et al. 2012), Supplementary Figure 3, available for viewing

athttp://hmg.oxfordjournals.org/content/21/11/2450/suppl/DC1. The av-
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Figure 4.1: Parameter estimation results for representative individual CR35, aged 30. The
data is presented in panel B as a histogram showing the distribution of repeat lengths for individual
CR35 (i = 35). The posterior probability density distributions for parametersn[35]

0 , the inherited
repeat length,µ[35], the rate of contraction per CTG unit per year,φ[35], the rate of expansion minus
contraction per CTG unit per year, marginalised for each parameter over the other parameters, are
shown in panels A, E and I, respectively. Marginalised jointprobability distributions for parame-
ter pairs,µ[35] andn[35]

0 , φ[35] andn[35]
0 , φ[35] andµ[35], andn[35]

0 anda[35], the threshold number
of repeats over which expansion and contraction occur, are shown, in panels D, G, H and F, re-
spectively, as contours with the dark to light direction representing increasing probability. (The
probability surface was smoothed slightly using a standardconvolution filter to reduce noise). In
panel C, the data, shown as a cumulative distribution (jagged dark line) is compared to the inferred
fit with the maximum likelihood value (light line) with associated parameter valuesµ[35] = 0.25,
φ[35] = 0.0358, a[35] = 41 andn[35]

0 = 209.

erage expansion rate is 0.53 CTGs per CTG unit per year and theaverage contraction rate is 0.51

CTGs per CTG unit per year. The resulting net expansion (expansion minus contraction) is 0.02

CTGs per CTG unit per year. Hence, a relatively small gain is achieved by very many expansions

and contractions. Interestingly, although there is a lot ofindividual-specific variation in the mutation

rates, the correlation between expansion rates and contraction rates across the 142 DM1 individuals

is very high (correlation coefficient> 0.99).



4. HIGH LEVELS OF SOMATIC DNA DIVERSITY 78

4.3.4 Model fit

ModelsM6a andM6b fitted the data equally well but as modelM6b is more general concerning

the threshold, we consider further the fit of modelM6b (expansion and contraction with individual

parameters) to the data. For representative individual CR35, the maximum likelihood solution (µ =

0.25, φ = 0.036, a = 41 andn0 = 209) traces closely the rising slope of the cumulative data (Fig-

ure 4.1 C) and the inferred value ofµ is non-zero under the expansion and contraction model. Fur-

ther to this, the maximum log-likelihood of the expansion and contraction model (-1,495) is greater

than the maximum log-likelihood of the expansion only model(-1,511). Capturing the variance

seen in the data is key to fitting these models. In the expansion and contraction model, the variance

seen in the data is the result of both expansion and contraction. The contraction process is playing

an important role in generating the variance in the data. In the expansion only model, the observed

variance can only be explained by an inherited repeat lengthbelow the lowest observed repeat

length. As well as a poorer fit, indicated by the AIC analysis,the resulting predicted inherited allele

length,n0, from the expansion only model is also implausibly close to the range seen in the general

population (5-37 CTGs) which would argue against this beinga disease allele in the first place.

For illustrative purposes, the time dependent distribution generated first by the expansion and con-

traction model and second by the expansion only model were simulated for 120 cells with an initial

repeat length of 160 CTGs over 30 years, see Supplementary Videos 1 and 2 in (Higham et al. 2012)

at http://hmg.oxfordjournals.org/content/21/11/2450/suppl/DC1. In each

scenario, the expansion bias was set at 0.02 CTGs per CTG unitper year. Inspection of the re-

sulting distributions confirms that repeat length varianceis much greater under the expansion and

contraction model whereas mean repeat length is the same foreach model. Under expansion only,

the distribution lies above the initial repeat length. These simulations visually confirm the higher

plausibility of the expansion and contraction model and support our more rigorous statistical finding

that contractions underlie this mutational mechanism. Further visual evidence of the model fit is

provided by comparing simulations, based on the parameter estimates for six DM1 individuals with

different ranges of allele lengths, with the original autoradiographs, see Appendix 2.

The full modelM6b assumed that the rates of expansion and contraction are linearly proportional

to repeat length beyond a threshold. Equivalently, each CTGunit beyond the threshold is equally

likely to give rise to an event. The fitting of this model to theindividual data sets suggests that this

assumption is a good approximation for the majority of individuals (121 out of 142) whose repeat

lengths lie in the mid-range, see Supplementary Data, Higham et al. 2012. This excludes con-
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gential cases where repeat length is very high and asymptomatic individuals whose repeat lengths

are relatively low. For low-range individuals (allele lengths less than 200 CTGs), contraction rates

cluster around the low end of the parameter spectrum (Figure4.2A). For high-range individuals

(allele lengths greater than 800 CTGs), expansion minus contraction values cluster around the low

end of the spectrum (Figure 4.2B). In both cases, having accounted for repeat length and age, it is

reasonable to expect these rates to be randomly distributedthroughout the spectrum. These results

provide an indication that the overall model may be improvedfurther by introducing a non-linear

response in line with differences in the biology of small alleles or large alleles. Small alleles may

have a reduced propensity to expand or contract due to possible end effects and there may be a

mechanism either limiting the expansion of the large alleles or causing more contraction. To fit

fully such a non-linear response requires additional analysis among low-range individuals and in-

dividuals bridging the mid-range and the high range. Data with which to do this is now available.

In Chapter 5, we investigate small alleles through analysisof buccal cell DNA from HD individuals

who, as discussed in Chapter 1, invariably have alleles in the low range as their inherited repeat

lengths are much lower; typically between 40 and 50 CAGs. Over time, alleles generally expand

and, in some individuals, change from the mid-range to the high-range. Hence a second blood DNA

sample taken at a later point in time increases the number of long alleles in our study. We revisit

this topic in Chapter 7.

4.3.5 Hierarchical Bayesian analysis

Given there is support for individual variation inµ andφ, the aim of the hierarchical Bayesian

analysis was to use the data to predict the probable range anddistribution ofµ andφ in the general

DM1 population. To do this, we make some assumptions about the shape and scale of the underlying

distribution, which are summarised as theprior information (Table 4.3).

This information reflects our knowledge about the mutation rates before analysing the data. In

our case, the gamma distribution is a good choice as it necessarily lies over positive values and

allows for the possibility that the distribution may be skewed, either towards zero or with a long

tail. The shape and scale of the gamma distribution ensures that a wide range of possibilities were

considered. This analysis effectively weights the probability of each parameter value of interest by

the probability that it could have arisen from each of the underlying distributions under considera-

tion. For this analysis we considered first, all our individuals together (N = 142) and second, the

subset of individuals who do not have the congenital form of the disease but do have symptoms
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Figure 4.2:Scatter plot of the maximum likelihood parameter values formodelM6b. A. Con-
traction, rate per CTG unit per year,µ, on the vertical axis versus inherited allele lengthn0 on the
horizontal axis (N = 142). B. Expansion minus contraction, rate per CTG unit per year, φ = λ−µ.

(N = 121). By excluding those diagnosed at birth or those asymptomatic individuals who have yet

to develop symptoms we focus on the group for whom progression of the disease is most variable

and hence diagnosis most open and pertinent. The range of shared values for all 142 individuals

peaks at 0.14 contractions per CTG unit per year and the subgroup group of 121 individuals peaks

at 0.25 contractions per CTG unit per year (Figure 4.3A). Forφ, the shared values peak at around

0.0026 expansions minus contractions per CTG unit per year (N = 142) and 0.0032 expansions

minus contractions per CTG unit per year (N = 121) (Figure 4.3B). The credible interval (5-95

percentile) for this prediction is shown as a shaded grey area (Figure 4.3). All distributions are

skewed towards the right with long tails. The lower rates when individuals with very short and very

long alleles are included is another indication that there may be length effects unaccounted for in

the model.

4.4 Discussion

We have shown that a thresholded stochastic birth and death process, where birth represents ex-

pansion and death contraction, can explain a wide range of repeat length distributions arising in
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Figure 4.3:Hierarchical Bayesian analysis results.Panel A shows the modal distribution of the
contraction rate (dark line) for all individuals except those who have had DM since birth (congenital)
or who have no symptoms yet (asymptomatic), 121 individualsin total. Panel B shows the modal
distribution of the expansion minus contraction rate (darkline) for the same 121 individuals. The
shaded area, in both panels, represents the 5-95 percentilecredible range. The modal distribution
for all 142 individuals is shown by the dashed line.

the blood cells of individuals with myotonic dystrophy type1. This conclusion remains valid both

when individuals and the population as a whole are considered.

Alternative modelling frameworks for pathological mutations associated with rapidly changing re-

peats have been proposed and discussed in Chapter 1, Section1.4.1, in the larger context of models

of microsatellite evolution. Leeflanget al. investigated germline mutation frequency in HD us-

ing a simple Okazaki fragment processing model of trinucleotide repeat instability (Leeflang et al.

1999). This model could be fitted very nicely to sperm data andrevealed support for a mitotic

cell division dependent mutational mechanism in the rapidly dividing spermatogonial stem cells in

the male germline. In contrast, our data do not support an association with mitotic cell division

in the hematopoietic stem cell population with hundreds of mutations predicted each year (see be-

low) relative to a stem cell renewal rate of once every 40 weeks (Catlin et al. 2011). Interestingly
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though, Leeflanget al., did, as did we, reveal evidence for individual-specific mutational parame-

ters, suggesting that both germline and somatic instability are modified by as yet unknown genetic

and/or environmental factors. More recently Veytsman and Akhmadeyeva showed that a simple

theoretical model of pathological microsatellite expansion based on hairpin formation, including

both expansions and contractions, could offer a qualitative explanation for the observed phenom-

ena of mosaicism, anticipation and rare reversions (Veytsman & Akhmadeyeva 2006). However,

this model did not incorporate anyin vivo somatic data and thus the actual parameters could not

be calculated. Our model builds on Kaplanet al. who used a simple birth process to describe re-

peat length evolution (Kaplan et al. 2007). Because their data was limited to modal summaries, it

did not indicate any variation that might be present within an individual, making it impossible to

distinguish between expansion and contraction. Hence their work assumed that the expansion bias

observed in individuals is solely due to expanding lengths.By contrast, for each DM1 individual,

the data that we use in our study effectively provides between 100 and 350 outcomes of a stochastic

process in the somatic blood cells sampled at a single point in time. In total, over 25,000 repeat

lengths were sized representing one of the largest databases of its kind. Of those alleles, around

20,000 are estimated to bede novo, having arisen during the lifetime of individuals. So as well as

information about the mean behaviour of this process, we also have information about the variation

and distribution. This allows us to uncover more aspects of the underlying mechanism, increase

the fitting capacity, and obtain more information about the parameters of the biological processes

involved in DM1.

The key question we posed is whether the variation observed in these repeat lengths is solely due to

expansion, as implicitly assumed in the model of Kaplanet al., or whether it is the combined result

of expansions and contractions. We also wanted to establishhow much variation exists between

individuals. To address these questions in a rigorous, statistical way, we formulated the hypotheses

as a series of models and then ranked them using AIC and the likelihood ratio test. There was most

support for the expansion and contraction model with individual-specific parameters. Previously,

it was thought that the expansion bias observed in individuals was mostly due to expansions with

relatively rare incidences of contractions. We show that the observed expansion bias is actually the

difference between expansions and contractions. Consequently, there are many more mutational

events in total, comprising both expansions and contractions, than an expansion only model would

predict. Assuming that mutational gains and/or losses are mostly of one repeat unit, our results

suggest that a relatively small net gain of two repeats may arise from 100 expansions and 98 con-

tractions: in total 198 mutational events. This makes the DM1 locus even more hyper-mutational
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than we thought and is a provocative hypotheses for future experimental research. The closeness

of the contraction and expansion rates could be experimentally verified with various model systems

such as transgenic mice, assuming that the mechanisms and dynamics are accurately reflected in

such models. Whilst transgenic mouse models do not usually show large intergenerational changes,

substantial expansion-biased and age-dependent somatic length changes of many hundreds of re-

peats are observed in some somatic tissues but not usually inblood (Fortune et al. 2000, Kennedy

& Shelbourne 2000, Seznec et al. 2000).

The expansion and contraction rates are assumed to be constant with age. With one sample for

each individual, it is not possible to distinguish clearly an age effect from another effect (genetic

or environmental). Repeat samples from the same DM1 individuals at different ages would allow

us to test whether the individual specific rates of contraction and expansion vary over time. With

another time sample we can assume that other effects are constant and quantify temporal changes.

Collection of further samples is currently under way in a longitudinal study and we address these

issues in Chapter 7.

For a thirty year old individual with an inherited repeat length of 200 and a net gain of two repeats

per 100 expansions, the model predicts about 5,500 expansion and contraction events per cell during

their life time, which is about 1 event every other day. Significantly, for establishing a causal link

for instability with DNA replication, this number is not consistent with the number of stem cell

divisions, once every 40 weeks (Catlin et al. 2011). Rather,this number links the mutation process

with the time scale of other more frequent cell activities such as DNA repair and transcription.

Compared with estimates of the amount of DNA damage endured each day in a white blood cell,

which is thought to be over104 events and may be as many as106, over the3.2× 109 base pairs of

the genome, discussed in (Kunkel 1999) and (Lindahl 1993), mutational events at the DM1 locus

are occurring between 10 and 100 times more frequently. The strong link between expansion and

contraction rates within an individual may arise from similarities in the mutational mechanism,

suggesting that expansions and contractions may result from the stochastic effects of one biological

process rather than two. Further support for this idea is provided by studies of transgenic mice

in which the expanded repeat is completely stabilized in either anMsh2or Msh3null background

(Manley et al. 1999, van den Broek et al. 2002), implying thatboth the underlying expansions and

contractions have been affected by loss of function of the same pathway.

Longer DM1 alleles transmitted to the next generation result in more severe symptoms and an ear-

lier age at onset, an effect compounded by somatic expansion, see Chapter 3. As such, suppression
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of somatic expansion is expected to be therapeutically beneficial and induction of contractions po-

tentially curative (Gomes-Pereira & Monckton 2006, Castelet al. 2010). However, the feasibility

of suppressing expansions/inducing contractions remainslargely undetermined. Our results have

revealed that the mutational pathway is even more dynamic than previously envisioned, and that

although overall biased toward expansion, net gains are theproduct of a very subtle bias toward

expansions relative to almost equally frequent contractions. The high underlying frequency of con-

tractions suggest therefore that a therapeutically beneficial impact may be mediated by a relatively

subtle shift in the relative bias from small expansions toward small contractions. With the under-

lying expansion and contraction frequencies so closely matched, either a 3% decrease in the basal

expansion frequency, or a 3% increase in the basal contraction frequency, would result in a net loss

of repeats over time. Such a subtle intervention would appear more pharmacologically achievable

than the major suppression of expansions foreseen as required in an expansion only system.

The hierarchical analysis establishes the underlying distribution for parametersµ andφ by effec-

tively weighting the evidence from individuals to form a population prediction. This prediction

is based on individuals who have developed symptoms since birth and who represent the group

for which prognosis is most variable. The results forµ suggest that population rates peak at 0.25

contractions per CTG unit per year. Forφ, which represents the difference between expansion and

contraction rate, the values peak at 0.0032 per CTG unit per year. This analysis supports the model

comparison finding that individual parameters give rise to the best model fit. This indicates that

individual specific factors, either environmental and genetic or both, may influence instability.

Our model could also be extended to other triplet repeat expansion diseases depending on the avail-

ability of suitable datasets and we do this in Chapter 6 for Huntington disease. However, compared

to DM1 the expanded repeat tract in most other triplet repeatdiseases is relatively stable, particu-

larly in blood. Other tissues such as brain are difficult to obtain and have a greater complexity than

blood in terms of cell composition which would necessitate adding additional parameters partition-

ing mutations between cell types. If the model could be calibrated to another disease we would

expect differences in the parameter values but similarity in the underlying mechanism.

Mathematical modelling and inference of somatic DNA dynamics at the DM1 locus has enabled

the estimation of biological parameters, inherited repeatlength and mutation rates, which could not

otherwise be obtained. The level of these measures provide adeeper understanding of the underly-

ing mechanisms and we can use a calibrated model to simulate scenarios and to make predictions.

In Chapter 3, we found that the inherited CTG repeat length ispotentially much better than the
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current modal CTG repeat length measure taken during diagnosis of the expansion repeat diseases

at explaining age of onset and the progression of the disease. This is partly because the analysis

of the modal repeat length is confounded by the tissue and agespecificity of somatic mutations.

With one blood DNA sample, our method can broadly estimate the most probable inherited repeat

length. Data from another time point could in principle narrow this estimate even further and we

investigate this issue in Chapter 7.

Further, these quantitative traits,µ andφ, are potential biomarkers that can be used via GWAS

(genome-wide association study) to identifytrans-acting genetic factors thought to be linked to this

somatic variation, see Chapter 3. This is a future directionfor our work and is discussed in our

concluding remarks, Chapter 8.

4.5 Materials and methods

4.5.1 Project data

The dataset analysed in this study and described in Chapter 3was derived from a large cohort of

individuals with DM1 expansions (> 50 repeats). The total cohort comprised 145 individuals. In

addition to a normal allele, two individuals (CR51 and CR115) presented an expanded allele with

two distinct modes. The two modes likely represent the products of an early embryonic mutation

(Gibbs et al. 1993, Monckton et al. 1997) and because of our inability to clearly apportion addi-

tional variants to either of these two progenitors, these individuals were excluded from the model

comparison analysis. In addition, one other individual (CR105) who presented with very high levels

of instability despite their very young age at sampling was therefore also excluded from the model

comparison analysis.

4.5.2 Other techniques

Evaluation of the likelihood

Each individual has a unique age and inherited allele lengthwhich means that the model is fitted

over a different length of time for each individual. Consequently certain parameter combinations

are less viable than others, particularly concerningn0. It is computationally very expensive to

evaluate the full likelihood, see Chapter 2, Equation (2.9), for reasons to do with the stiffness of



4. HIGH LEVELS OF SOMATIC DNA DIVERSITY 86

the ODE problem. We therefore propose a pragmatic approach,namely to approximate the likeli-

hood function in order to explore the full parameter space and to narrow down the parameter space

on which we calculate the full likelihood thereby making theproblem computationally feasible.

Our approximation arises from quasi-likelihood theory (Wedderburn 1974) where the relationship

between mean and variance can be used to inform a quasi-likelihood which has the required prop-

erties of a full likelihood. Rearranging the derived analytical expressions for meanM and variance

V , Equations (2.6) and (2.7) respectively, gives an expression for variance in terms of the mean

adjusted for the threshold,a denoted bŷM :

M̂ = M − a, (4.1)

V =

(
λ+ µ

λ− µ

)(
M̂2

n0
− M̂

)
. (4.2)

The equation for the variance is now a quadratic in̂M and the theory behind quasi-likelihood

informs us that the full likelihood can be approximated by a negative binomial distribution with

parameters that depend directly on̂M andV . We therefore approximate the full distribution,Pn(t),

by a negative binomial distribution with parametersp andr defined in terms of̂M andV :

p = 1−
M̂

V
, (4.3)

r =
M̂2

V − M̂
. (4.4)

This approximate likelihood has the advantage of introducing the model parameters via the mean

and variance into a likelihood with, by definition, the properties of a likelihood in terms of the error

distribution and allows us to utilise all our data when evaluating the parameter space. Simulations

with a range of individuals shows this to be a good approximation, capturing both the mean and

variance of the full distribution. The negative binomial distribution is also recommended for count

data when there is over dispersion, which applies in our caseas the variance exceeds the mean (Ver

Hoef & Boveng 2007).

The corresponding likelihood,LNB, is

LNB =
∏

i

∏

j

Γ
(
d
[i]
j + r[i] − 1

)

Γ
(
d
[i]
j

)
Γ
(
r[i] − 1

)
(
1− p[i]

)r[i]
p[i]

d
[i]
j . (4.5)
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Parameter combinations with a log likelihood value that satisfy the condition

log (LNB)− log (maxLNB) > κ, (4.6)

were then subjected to the full likelihood computation.κ was chosen (typicallyκ = −2) to obtain

computationally manageable sample sizes (about 50,000). Parameter combinations arising under

these conditions generally form a cloud of values, close in distance, and are not expected to give

rise to discontinuities in the likelihood at the transition.
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Distribution Hyper

parameters

Range for uniform 

prior

Incremental 

step size for 

parameter

exploration

mean  ! "! 0.3 to 0.8 0.01  !   ( "! , #! )

variance  ! "!
2

0.05 to 0.55 0.01 

mean    ! 0.005 to 0.03 0.0005  ! ( "! , #! )

variance  ! "!
2

0.0001 to 0.0006 0.00001 

Table 4.3:Hierarchical Bayesian analysis.For the hierarchical Bayesian analysis we require an
assumption about the shape of the distribution underlying the model parameters of interest,µ andφ,
and priors, which encapsulate any information we may have, for the parameters of that distribution.
We assume that the distribution underlyingµ, the rate of contraction per CTG repeat per year
is a gamma distribution,Γµ, defined by a shape parameterαµ and a scale parameterβµ, as the
gamma distribution has many different forms over positive values. The mean and variance of this
distribution areαµβµ andαµβ

2
µ respectively and we chose, for convenience, to place our priors on

the mean and variance to ensure we cover a range of possible shapes for this distribution. Forφ, the
rate of expansion minus contraction per CTG repeat per year,we also assume that the underlying
distribution is a gamma distribution,Γφ, defined by a shape parameterαφβφ andαφβ

2
φ.



Chapter 5

A length-specific effect is associated with less somatic instability in

myotonic dystrophy type 1 and Huntington disease

5.1 Abstract

Over 20 genetic diseases, including myotonic dystrophy type 1 (DM1) and Huntington disease
(HD) are caused by inheriting an unstable expanded simple sequence repeat. Repeat lengths at
the lower end of the disease causing range are associated with less somatic instability, less severe
symptoms and later disease onset. It was initially assumed that the repeat lengths in DM1 were
pure CTG tracts, but interruptions within the repeat lengths have recently been estimated to exist in
around 5% of DM1 individuals. Some of these interruptions are associated with less instability and
less severe phenotypes in DM1. We have developed a mathematical model that describes changes
over time in repeat length distributions in DM1 blood. This model has been fitted to sized repeat
lengths from a large cohort of DM1 affected or at risk individuals with inherited repeat lengths,
ranging between 50 CTGs and 1,500 CTGs, and explains differences, in repeat length distributions,
across this varied group of DM1 individuals. However the mutation rates estimated under the
model are lower than expected among individuals with inherited repeat lengths less than 100 CTGs,
suggesting that these rates may be suppressed at the lower end of the disease causing range. We
propose that a length-specific effect may be operating within this range and test this hypothesis by
introducing such an effect into the model. For data, to calibrate the model, we use blood DNA from
DM1 individuals with small alleles (inherited repeat lengths less than 100 CTGs) and buccal DNA
from HD individuals who almost always have inherited repeatlengths less than 100 CAGs. These
datasets comprise single DNA molecules sized using small-pool PCR. We find statistical support
for a general length-specific effect which suppresses mutational rates among the smaller alleles
giving rise to a distinctive pattern in the repeat length distributions. In a novel application of the
new model, fitted to a large cohort of DM1 individuals, we alsoshow that this distinctive pattern
may help identify individuals whose effective repeat length, with regards to somatic instability, is
less than their actual repeat length. A plausible explanation for this distinction is that the expanded
repeat tract is compromised by interruptions or other unusual features. For these individuals, we
estimate the effective repeat length of their expanded repeat tracts and contribute to the on-going
discussion about the effect of interruptions on phenotype.

89
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5.2 Introduction

In Chapter 4, we developed a mathematical model that describes changes over time in repeat length

distributions in DM1 blood DNA. This model was fitted to sizedrepeat lengths from a large cohort

of DM1 affected or at risk individuals whose estimated inherited repeat lengths range between 50

CTGs and 1,500 CTGs. This model was shown to explain satisfactorily the variable distributions

of repeat lengths seen across this group of DM1 individuals.However, we observed that the vari-

ance to mean ratios of the repeat length distribution among individuals with inherited repeat lengths

below 100 CTGs were very low, especially when age is also taken into account. To visualise this

effect, Figure 5.1 shows the variance to mean ratios, highlighting those for the 14 individuals with

estimated progenitor allele lengths below 100, along with the predicted level from modelM6b. In

terms of the difference between the expected and the observed ratio, the fact that all 14 DM1 indi-

viduals with estimated repeat lengths less than 100 CTGs lieat the low end (15th percentile) of this

distribution is highly significant (P < 10−5 using a permutation test). In addition, the estimated

model parameters that quantify the rates of mutation were slightly biased, with individuals with the

lowest estimated inherited repeat values having lower thanexpected rates of expansion and con-

traction (Figure 4.2). These results strongly suggest a length effect not accounted for in the model:

an effect that results in proportionally less mutation within the small alleles. In this chapter, we

account for a length-specific factor using first-principle mathematical modelling arguments (Sec-

tion 5.5.2 and Figure 5.2) and compare the fit of this new modelwith the fit of the original model

using the Akaike information criterion (AIC) (Akaike 1974). AIC is an appropriate choice when

comparing un-nested models, as in our case. We fit this new model to blood DNA data from the 14

DM1 individuals with estimated inherited repeat lengths less than 100 CTGs (a subset of the DM1

individuals analysed in Chapter 4) and buccal DNA data from 12 HD individuals with estimated

inherited repeat lengths between 39 and 48 CAGs (Veitch et al. 2007).

It was initially thought that the expanded DM1 repeats were pure, but interruptions within DM1

repeat lengths have been recently reported (Musova et al. 2009, Braida et al. 2010). These variant

repeats (pure repeats containing interruptions) are now associated with less instability and less se-

vere phenotypes in between 3 - 5% of DM1 individuals (Coutoet al., in preparation). As discussed

in Chapter 3, inherited repeat length explains most of the variation in age of onset for many of the

expanded repeat diseases and somatic instability is a candidate modifier of age of onset and disease

progression. It is possible that some interruptions increase the stability of the pure repeat tract by

reducing the effective length of an allele. An explanation for how variant repeats might modify
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Figure 5.1:Comparison of the actual variance over mean (adjusted for the threshold effect)
by age (circles) among 142 DM1 individuals (blood DNA) and the predicted variance over
mean path under modelM6b (line). DM1 individuals with mean repeat lengths less than 100 are
indicated by a cross within a circle. Some DM1 individuals are further identified by a code, see
Table 5.3A for more details, and discussed in Section 5.3.6.

0 40 80 120 160
0

1

2

3

4

5

6

7

8

number of CTGs

pr
ed

ic
te

d 
nu

m
be

r 
of

 e
xp

an
si

on
s 

pe
r 

ye
ar

Figure 5.2:Predicted number of expansions (of one CTG unit on the vertical axis) per year as
a function of repeat length (number of CTGs on the horizontalaxis) under modelM6b (dark
straight line) and under modelMα with a length-specific effect (light curved line).

mutational dynamics in an adjacent stretch of pure CTG repeats is outlined in (Braida et al. 2010)

and illustrated in Figure 5.3. In summary, for pure expandedalleles the mutational dynamics of the

CTG tract is driven by the action of acis-acting modifier in the3′ flanking sequence. As discussed

in (Braida et al. 2010) there is evidence that the content of flanking DNA has a role in repeat length

stability, for example the GC content (Nestor & Monckton 2011). In the presence of variant repeats

at the3′ end of the array, the distance between the pure CTG tract and thecis-acting modifier will be
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increased and its effect may be reduced. Alternatively, thepresence of variant repeats may directly

inhibit the mutability of the pure CTG tract. A novel application of our new model is to estimate

the effective length, as well as the inherited length, underlying the repeat length distributions. We

therefore fitted this new model to the rest of the DM1 datasets, 128 DM1 individuals with repeat

lengths in the mid-to-high range, and compared the results with the original model.

The objectives of this Chapter are to develop and test a more sophisticated mathematical model

based on plausible biological assumptions about small alleles. We use this model to establish

whether mutational propensity is lower in the small allelesand whether reduced levels of somatic

mosaicism give rise to distinctive repeat length distributions. We also introduce and quantify the

concept of effective length, see Section 5.3.4. Individuals whose effective length is different from

their actual length are strong candidates for further investigation, as lower than expected levels of

somatic mosaicism may indicate the presence of modifiers of somatic instability such as interrup-

tions in the repeat lengths.

5.3 Results

5.3.1 Formulation of an expansion and contraction model incorporating a length-

specific effect

The framework we use to describe changes in repeat length (measured by the number of repeat

units) over time in a population of cells is a stochastic birth and death process. In our context birth

is the gain of one repeat unit (expansion) and death is the loss of one repeat unit (contraction) within

a cell. This is a probabilistic model with probability functions defined for the mutational events of

expansion and contraction. In Chapter 4, we assumed that thelikelihood of a mutational event

increased linearly with repeat length over a threshold number of repeats and it is this assumption

and corresponding function definitions that we will refine inthis chapter. Another key modelling as-

sumption is that the cells acquire mutations independentlyof one another, and this was justified (see

Chapter 2, Section 2.3) for DM1 blood cells. Application of the model to another disease and cell

type, HD buccal cells, requires the assumption that buccal cells acquire mutations independently of

one another. Buccal cells, like other external epithelium cells, are replenished from a large pool of

self-renewing stem cells (Fuchs 2008) hence an assumption of independence is reasonable.

A biological explanation as to why small alleles may differ from long alleles, in terms of DNA
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Figure 5.3: Hypothetical explanation for how variant repeats might modify mutational dy-
namics in an adjacent stretch of pure CTGs. For a pure expanded allele (top) the mutational
dynamics of the CTG tract is driven by the action of acis-acting modifier in the3′ flanking se-
quence (a). For a CTG tract containing variant repeats at the3′ end of the array (bottom), the
distance between the pure CTG tract and thecis-acting modifier is increased and its effect reduced
(b). Alternatively, the presence of variant repeats may directly inhibit the mutability of the pure
CTG tract (c). This figure was adapted from Figure 5A in (Braida et al. 2010).

stability, can be based on the physical structure that theserepeat lengths assume during the cell

processes of transcription, repair, replication and recombination (Pearson & Sinden 1996). Simple

repeat sequences in DNA are prone to adopt slipped strand structures comprising complementary

loop-outs of one to three repeats on opposite strands (Pearson et al. 2005). One such working model

for repeat instability (as illustrated in Chapter 1, Figure1.2) is as follows. Sequences opposite the

loop-outs can be excised and the gap filled by DNA mismatch repair proteins resulting in expansion.

Alternatively sequences comprising the loop-outs can be excised resulting in contraction (Gomes-

Pereira & Monckton 2006). Whilst loop-outs far apart may be repaired independently, it is possible

that loop-outs that occur close to one another may be encompassed by the DNA repair domain and

repaired together, effectively cancelling each other out and resulting in neither expansion nor con-

traction. The size of this domain is not known but, as discussed in Chapter 1, Section 1.3.2, may

be between 60-230 base pairs of DNA (Genschel & Modrich 2003). If this is the case, then the

likelihood that arbitrarily located loop-outs fall close to each other (and hence no mutation) would
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be higher in smaller alleles than in longer alleles, see Figure 5.4. Similarly, in support of relatively

lower rates of mutation below 200 CTGs, Gellibolianet al. concluded from the biophysical ex-

amination of DNA mis-pairing in different CTG repeat lengths using plasmid DNA (Gellibolian

et al. 1997) that for CTG repeat lengths up to 200 CTGs there isincreasing mis-pairing per repeat

unit (and hence increasingly more mutation) after which rates per repeat unit are constant. These

investigations inform our hypothesis that a constraint on the mutational mechanism, whose effect

decreases as repeat length increases, may operate at the lower end of the range of repeat lengths. We

quantify this length-specific effect using a combinatorialcounting method based on the length of

the constraint (one interpretation being the distance between loop-outs), denoted asα, and the like-

lihood that mutation occurs. We introduce this effect into the probability functions for expansion

and contraction, as described in Section 5.5.2.

We use statistical inference based on the available data to determine the value ofα, along with the

other model parameters (expansion per repeat unit per year,contraction per repeat unit per year and

the inherited repeat length), and to determine whetherα varies between individuals. Our approach,

to quantify a length-specific effect and to determine the range over which it operates, is sufficiently

general to incorporate other distance requirements, not just the distance between loop-outs, that

might suppress mutation proportional to length. Such a distance requirement might be created by

an interruption in the repeat length. Alternatively,α may be interpreted as the length of a DNA

fragment typically processed by the DNA repair mechanism and/or DNA replication machinery.

5.3.2 Model comparison supports a role for a length-specificeffect suppressing mu-

tational rates in DM1

We introduced a length-specific effect,Rn (n, α), which is a function of repeat length,n, and the

distance constraint,α, into modelM6b, as described in Section 5.5.2. We tested our hypothesis that

this extended model, denotedMα, would provide a better explanation for the mutational dynamics

within the smaller alleles by fitting to sized blood DNA repeat length distributions from 14 DM1

individuals with repeat lengths at the lower end of the DM1 range. The relative goodness of fit of

the original modelM6b and new modelMα was assessed using the Akaike information criterion

(AIC) (Akaike 1974). The models have the same number of parameters and are not nested, so

AIC is an appropriate method to rank the models through a relative measure of the goodness of fit.

Application of AIC involved calculating the maximum likelihood value using a grid search over the

parameter space, as outlined in Table 5.1 (see Chapter 2, Section 2.5, for further details). ModelMα
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> 60-230bp DNA

or loop-outs occur close 

together < 60-230bp DNA
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Figure 5.4:Hypothetical explanation for how a length-specific effect may modify mutational
rates. Loop-outs occurring far apart (> 60 - 230 base pairs DNA) are repaired independently. This
results in either expansion, contraction or no change in therepeat length (left column). Loop-outs
occurring close together (< 60 - 230 base pairs DNA) are repaired together resulting in nochange
in the repeat length (right column).

(maximum likelihood value = -4,779 and AIC = 9,670) ranks higher than modelM6b (maximum

likelihood value = -4,805 and AIC = 9,721), see Table 5.2A. The difference in AIC values of 51

indicates that the relative likelihood (relative likelihood = 6.90 × 10−12) of modelM6b compared

with Mα is very low and so we conclude that modelMα fits the data better than modelM6b among

individuals with repeat lengths at the lower end of the DM1 range. The model fit can be visualised

as a distribution curve or a cumulative distribution curve.The fits of modelsM6b andMα compared

with the data and each other are shown in Figures 5.5 and 5.6 for representative DM1 individuals.
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ModelMα is seen to be better than modelM6b at tracking the initially steep ascent of the cumulative

distribution typical of the distributions among these individuals.

A
ModelM6b parameters Prior ranges 

DM1 blood 

Prior ranges 

HD buccal 

Contraction rate per repeat 

unit per year ( )

0 to 1.2 0 to 0.005 

Net expansion rate per repeat 

unit per year (  -  )

0.001 to 0.5 0.0001 to 0.1 

Threshold number of repeat 

units (a)

0 to 50 0 to 40 

Inherited repeat length, 

number of repeat units (n0)

51 to 100 38 to 50 

B
ModelM  parameters Prior ranges 

DM1 blood 

Prior ranges 

HD buccal 

Contraction rate per repeat 

unit per year ( )

0 to 1.2 0 to 0.01 

Net expansion rate per repeat 

unit per year (  -  )

0.001 to 0.5 0.0001 to 0.1 

Length parameter number of 

repeat units ( )

0 to 200 0 to 40 

Inherited repeat length, 

number of repeat units (n0)

51 to 100 38 to 50 

Table 5.1:Prior ranges for parameter estimation for small alleles.For modelM6b (A) and for
modelMα (B).

The average among these 14 DM1 individuals of the maximum likelihood value ofα was 51 CTGs,

but there was considerable variation (standard deviation =22 CTGs). This result placesα within the

DNA repair domain 60-230 bp suggested by (Genschel & Modrich2003) and thus is consistent with

a hypothesis implicating inappropriate DNA repair, as outlined in Figure 5.4. With a fixed length

parameter,α = 51 CTGs, we estimate that the length-specific effect would be strongest between

51 CTGs and 173 CTGs (Figure 5.7). These results provide support for a length-specific effect

operating below 200 CTGs in DM1. By suppressing the mutationrate per repeat unit, the length-

specific effect makes a big difference to the shape of the repeat length distribution below 200 CTGs

but increasingly less difference over 200 CTGs.
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A
myotonic dystrophy type 1 

(N=14 individuals) 

Number of 

parameters

Maximised

log-

likelihood

AIC

M         expansion and contraction with 

length-specific effect 56 -4,779 9,670

M6b      expansion and contraction over 

a threshold number of repeats 56 -4,805 9,721

B
Huntington disease 

(N=12 individuals) 

Number of 

parameters

Maximised

log-

likelihood

AIC

M         expansion and contraction with 

length-specific effect 48 -1,312 2,746

M6b      expansion and contraction over 

a threshold number of repeats 48 -1,343 2,781

Table 5.2:Model comparison summary. The models, listed in column 1, were compared using
AIC (column 4) for myotonic dystrophy type 1 (A) and for Huntington disease (B).
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Figure 5.5:Model fitting results for a representative DM1 individual CR8. Top: Distribution
of repeat lengths.Bottom: Model Mα fit (grey solid line) and modelM6b fit (black dashed line)
compared with the cumulative distribution of repeat lengths (black jagged line).
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Figure 5.6:Model fitting results for a representative DM1 individual CR27. Top: Distribution
of repeat lengths.Bottom: Model Mα fit (grey solid line) and modelM6b fit (black dashed line)
compared with the cumulative distribution of repeat lengths (black jagged line).

5.3.3 Model comparison supports a role for a length-specificeffect suppressing mu-

tational rates in HD

For comparison, both models,M6b andMα, were fitted to sized distributions of buccal DNA single

molecule repeat lengths from 12 unrelated HD individuals, all aged 39 years when the samples were
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Figure 5.7:Length-specific effect (1−Rn) for DM1 as a function of repeat length for an average
α value 51 CTGs (solid line).The10th and90th percentiles are indicated by the lower dashed line
and upper dashed line, respectively.

taken, as collected and previously analysed by (Veitch et al. 2007). The prior ranges for Bayesian

parameter estimation were chosen to represent HD buccal cells: expansion per CAG unit per year,

contraction per CAG unit per year, and a threshold measured in CAG units (Table 5.1). The inherited

number of CAG repeats,n0, was treated as an unknown parameter and its value inferred from the

data along with the other parameters. The maximum likelihood was calculated using a grid search

over the parameter space, modified for buccal cells and HD rather than blood cells and DM1.

As for DM1, the results from AIC indicate that modelMα (maximum likelihood value = -1,312 and

AIC = 2,746) ranks higher than modelM6b (maximum likelihood value = -1,343 and AIC = 2,781),

see Table 5.2B. The difference in AIC values of 35 indicates that the relative likelihood (relative

likelihood =2.06× 10−8) of modelM6b compared withMα is very low so we conclude that model

Mα fits the buccal DNA data better than modelM6b among individuals with repeat lengths at the

lower end of the range. As was the case for DM1, modelMα is better than modelM6b at tracking

the initially steep ascent of the cumulative distribution,see Figure 5.8.

Among these 12 HD individuals, there were three individualsfor whom the two models,M6b and
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Figure 5.8:Model fitting results for a representative HD individual HD10. Top: Distribution
of repeat lengths.Bottom: Model Mα fit (grey solid line) and modelM6b fit (black dashed line)
compared with the cumulative distribution of repeat lengths (black jagged line).

Mα, were equally likely and the estimates for the fixed length parameter were below 3 CAGs.

These three individuals had low levels of somatic mosaicismand hence it may not be possible to

distinguish between the models and estimate the length-specific factor for this type of individual.

Among the other 9 HD individuals the average value ofα associated with the maximum likelihood

value was 26 CAGs (standard deviation = 11 CAGs). These results provide support for a length-

specific effect, suppressing the mutation rate per repeat unit, over the whole range of observed

repeat lengths in this HD dataset (59 CAGs or less), see Figure 5.9.

We also considered a model with global parameters for the mutation rates and length effect and

individual-specific parameters only for the inherited length (results not shown). However, as re-

ported for DM1 in Chapter 4, global parameters did not capture the variation seen in the data,

indicating that individual-specific factors play a major role in HD somatic instability. Inclusion of

contraction events,i.e. decreases in repeat length of one CTG unit for DM1 or one CAG unit for

HD, was also justified statistically, as there was no supportfor the contraction rates being zero.

5.3.4 Estimates of inherited repeat length under modelMα are in agreement with

original predictions

In our study we treated inherited repeat length,n0, as an unknown parameter to be inferred from

the data. Our estimates of the value ofn0 are in agreement (correlation coefficient = 0.93) with
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Figure 5.9:Length-specific effect (1−Rn) for HD as a function of repeat length for an average
α value 26 CAGs (solid line).The10th and90th percentiles are indicated by the lower dashed line
and upper dashed line, respectively. Results are shown overthe observed range of repeat lengths
(less than 60 CAGs).

those estimated using the lower bound of the distribution asseen with small pool PCR, discussed

in Chapter 3, Section 3.3.1. Further, our estimates of the value of n0 are in complete agreement

(correlation coefficient> 0.99) with the estimates by Veitchet al. which for the HD individuals

in this study were based on the lower boundary of their highlyskewed distributions (Veitch et al.

2007).

5.3.5 Mutational levels are higher in DM1 blood cells than inHD buccal cells, indi-

cating differences in the overall level rather than the underlying mechanism

The parameter values associated with the maximum likelihood value provide a point estimate for

mutation rates, in terms of expansion per repeat unit and contraction per repeat unit for each in-

dividual. Comparing parameter values under modelMα for DM1 blood with those for HD buc-

cal, the median expansion rate for DM1 (9.1 × 10−2 per CTG per year) is significantly higher

(P = 8.28 × 10−5 using the Mann Whitney U test) than for HD (8.5 × 10−4 per CAG per year).
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Similarly the median contraction rate is significantly higher (P = 1.32 × 10−5 using the Mann

Whitney U test) for DM1 (7.0 × 10−2 per CTG per year) than for HD (1.5 × 10−4 per CAG per

year), see Figure 5.10 for comparison. The number of individuals is small but there appears to be

a correlation between expansion and contraction rates within DM1 (correlation coefficient> 0.99)

and within HD (correlation coefficient = 0.70) suggesting a link between expansion and contraction,

within the mutational mechanism, in both diseases. Interestingly, the ratio of contraction to total

mutation (expansion and contraction) is higher for DM1 (0.40) than for HD (0.18) and this most

probably reflects biological differences between DM1 bloodcells and HD buccal cells.
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Figure 5.10:Comparison of mutation rates between DM1 (14 individuals) and HD (12 indi-
viduals)

5.3.6 For some DM1 individuals, effective length is lower than inherited repeat

length which may have resulted from an interruption or another anomaly

We have shown that incorporating a length parameter,α, via a length-specific effect into modelMα

better explains the distinctive distributions among DM1 individuals with smaller alleles than model

M6b. Variance to mean ratios of the repeat length distribution among individuals with inherited

repeat lengths less than 100 CTGs were very low, especially when age is also taken into account.
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In terms of the difference between the expected and the observed ratio, the fact that all 14 DM1

individuals lie at the low end (15th percentile) of this distribution is highly significant (P < 10−5

using a permutation test). We hypothesise that a length-specific effect may operate in other unusual

individuals (particularly those with low variance to mean ratios) and that applying this new model

to the data in order to infer a value forα may establish whether, and if so where, this effect operates.

A further eight individuals with low variance to mean ratios(within the15th percentile) comparable

to individuals with small alleles (Figure 5.1) are listed inTable 5.3A.

We now fit the new model,Mα, to distributions of repeat lengths (blood DNA) from the rest of the

cohort (128 DM1 individuals with estimated inherited repeat length,n0, over 100 CTGs including

the eight DM1 individuals mentioned above). The prior rangefor α was chosen to be 0 to 200

CTGs (for individuals with inherited repeat length greaterthan 200 CTGs) andn0 to 200 CTGs

(for individuals with inherited repeat length less than 200CTGs). Five of the 8 DM1 individuals,

mentioned above, have estimates forα of 80 repeat units or more and an improvement in fit (log-

likelihood gain of 2 or more). The improvement in fit can be seen by comparing the fit of both

models to the data for representative individuals BC19 and SCO117 (Figures 5.11 and 5.12). As

seen before (Figures 5.5 and 5.6) modelMα is better than modelM6b at capturing the steep rise at

the beginning of the cumulative distribution. Other DM1 individuals, with estimated values forα

over 100 CTGs, are listed in Table 5.3B. For most of these individuals there is an improvement in

fit (likelihood gain of 2 or more).
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Figure 5.11:Model fitting results for an unusual DM1 individual BC19. Top: Distribution of
repeat lengths.Bottom: Model Mα fit (grey solid line) and modelM6b fit (black dashed line)
compared with the cumulative distribution of repeat lengths (black jagged line).
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A
Code Age at 

sampling 

Sex, 

family 

PAL 
(estimated 

from ML) 

log-

likelihood

gain 

  
(estimated 

from ML) 

Notes 

CR12 49 1,1 132 13 110  

CR28 35 NA 107 0 20  

CR70 50 1,12 102 18 80  

BC6 51 1,101 279 2 110 Couto CGG +ve 

BC19 27 1,101 229 9 175 Couto CGG +ve 

SCO4 39 1,6401 114 14 90  

SCO99 36 1,2449 140 0 10 Couto CCG +ve 

SCO117 29 1,18328 134 14 120  

B
CR10 29 2,3 197 3 120  

CR11 31 1,7 160 9 110  

CR18 38 1,5 225 0 130  

CR26 44 2,6 160 4 120  

CR35 30 2,8 353 4 140  

CR39 21 1,11 194 8 175  

CR69 13 1,9 471 0 130  

BC8 50 2,101 152 26 120  

BC10 42 1,101 261 3 140  

BC11 43 1,101 341 1 130  

BC16 34 1,100 342 0 150  

BC47 36 1,175 160 9 120  

SCO95 51 1,0897 184 9 110  

SCO96 29 1,0897 431 2 200  

SCO115 35 2,18328 134 39 130  

SCO134 36 2,1964 225 5 130  

C
CR21 

 

 

36 2,6 265 0 70 Couto CCG +ve 

BC39 34 2,137 332 1 10 Couto G C 3 

prime flanking 

sequence 

BC40 10 1,137 621 -2 0 Couto G C 3 

prime flanking 

sequence 

Table 5.3: DM1 individuals with unusual repeat length distributions. Individuals with low
variance mean ratio (15th percentile) and inherited repeat length> 100 CTGs (A). Individuals with
high estimatedα value (B). Individuals with unusual features (C). Notes: (i) 1=male, 2=female; (ii)
Couto CGG+ve - these individuals tested positive for CGG interruptions in their repeat lengths;
(iii) Couto CCG+ve - these individuals tested positive for CCG interruptions in their repeat lengths;
and (iv) Couto G→ C - a C instead of a G was found in the3′ flanking sequence.
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Figure 5.12:Model fitting results for an unusual DM1 individual SCO117. Top: Distribution
of repeat lengths.Bottom: Model Mα fit (grey solid line) and modelM6b fit (black dashed line)
compared with the cumulative distribution of repeat lengths (black jagged line).

In defining effective length, we use inherited repeat lengthas a point of reference as it is both the

initial repeat length and the major modifier of age of onset. Hence we define effective length as the

difference between inherited repeat andα, that isn0−α. Consequently higherα values imply lower

effective lengths. For example, BC19 (inherited repeat length equals 229 CTGs andα equals 175

CTGs) has an effective length of 54 CTGs. Interestingly, after a general screen for CGG and CCG

interruptions in the expanded repeat lengths (Coutoet al., in preparation) BC19 tested positively for

CGG interruptions and the father of BC19 (BC6), who has an estimatedα value of 110 CTGs, also

tested positive for CGG interruptions. BC19 and BC6 were previously noted for two reasons. First,

they have unusually mild symptoms given their estimated inherited repeat lengths (see Figure 2 in

ref. (Ashizawa et al. 1992), BC6=II.2 and BC19=III.2). Second, the germline transmission from

father (BC6) to son (BC19) resulted in relatively rare apparent contractions (Ashizawa et al. 1992).

Also of interest are two individuals, SCO99 and CR21, see Table 5.3A and Table 5.3C, respectively,

who tested positive for CCG interruptions but did not have high values forα and two individuals

who had changes in their DM1 flanking sequence, BC39 and BC40,but did not have high values

for α, see Table 5.3B.
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5.4 Discussion

In DM1, small inherited repeat lengths (less than 100 CTGs) are associated with late onset and

less disease severity. Investigation of repeat length distributions in DM1 blood DNA among a large

cohort of 145 individuals with a range of inherited repeat lengths (see Chapter 4) found that in-

dividuals with inherited repeat lengths less than 100 CTGs had very low variance to mean ratios

especially when taking into account their advanced age whenthe blood DNA samples were taken

(Figure 5.1). Correspondingly, when we estimated the ratesof mutation per repeat unit per year

for these 14 DM1 individuals, using the original modelM6b, the rates of expansion and contraction

were relatively low, much lower than the rest of the cohort. Whilst this does not affect our ability

to describe the changes in repeat length and hence the levelsof somatic mosaicism over time, the

implication that individuals with small inherited repeat lengths also have low rates of mutation does

not have an obvious biological basis. It is more plausible that we did not take repeat length fully into

account in our model and that there is a length effect unaccounted for. Gellibolianet al. concluded

from the biophysical examination of DNA mis-pairing in different CTG repeat lengths, using plas-

mid DNA, that the number of mis-pairings per repeat unit is length dependent with relatively fewer

mis-pairings per repeat unit (and hence less mutation) below 200 CTGs and reaching a constant

rate over 200 CTGs (Gellibolian et al. 1997). This result supports less frequent mutation events

per repeat unit in small alleles than in long alleles. To quantify this effect we introduced a length

constraint into the expressions for expansion and contraction as an extension of the original mathe-

matical model. This approach is sufficiently general to cover a wide range of possible constraints on

the mutational mechanism that act by suppressing mutation rates per repeat unit proportionally less

as alleles increase in size. The biological basis for mutational differences in length is very likely

linked to the the mutational mechanism underlying repeat length changes. This mechanism is not

fully understood, but it is thought that DNA mismatch repairplays an important role in the stability

of trinucleotide repeats, see Chapter 1, Section 1.3.2 and Figure 1.2. Simple repeat sequences in

DNA are prone to a slipped strand structure comprising complementary loop-outs of one to three

repeats on opposite strands (Pearson et al. 2005). Loop-outs occurring during cell division would,

normally, be recognised by DNA mismatch repair proteins (Wells et al. 2005) and be fixed ac-

cordingly. However it is possible that loop-outs arising inexpanded repeats, independently of cell

division, may be inappropriately repaired and, depending on the choice between incorporating or

deleting the loop-out, become either expansions or contractions (Gomes-Pereira et al. 2004). The

distance between loop-outs is one possible and highly plausible length constraint on the mutational
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mechanism but similarly acting constraints could depend onother features, such as the length of

a DNA fragment typically processed by the DNA repair mechanism and/or DNA replication ma-

chinery. A hypothetical explanation for how a length constraint might modify mutational rates is

illustrated in Figure 5.4.

In summary, we hypothesised that lower rates of mutation in small alleles are connected to the

constraint that size enforces on the mutational mechanism.We extended our mathematical model

to include a general, but biologically justified, length-specific effect and compared this new model,

Mα, with our original model,M6b, in terms of the goodness of fit. We found that under the new

model,Mα, there was an improvement in the fit (Table 5.2A) which supports our conclusion that a

length-specific effect acts over smaller alleles in DM1 blood.

Having fitted modelsM6b andMα to DM1 small alleles, these models were also adapted for HD

and fitted to repeat length distributions from HD buccal cells (Veitch et al. 2007). Over all 12 HD

buccal datasets, modelMα with its length-specific effect fitted better than the thresholded model,

M6b (Table 5.2B). This result suggests that there is also a constraint on the mutational mechanism in

HD buccal cells. Estimated mutational rates, for both expansion and contraction, were significantly

lower in HD buccal cells than in DM1 blood cells (Figure 5.10)and were more weighted towards

expansion in HD buccal cells (82%) than in DM1 blood cells (60%). These differences have impli-

cations for the shape of the repeat length distributions (more skewed to higher repeat lengths in HD

and more spread out in DM1) and hence levels of somatic mosaicism. The most likely explanation

for these differences is linked to cell type rather than to disease type. Repeat length distributions

measured in both blood cells and buccal cells from the same DM1 individuals (Moraleset al., in

preparation) showed similar differences. Here, the variance to mean ratio was found to be higher in

blood than in buccal cells reflecting a higher percentage of contraction and hence a lower percent-

age of expansion in blood than in buccal cells. Differences other than those linked to cell type may

have a molecular basis related to flanking GC content which differ in DM1 and HD with a slightly

higher percentage of GCs in HD. As there is a strong correlation between the relative expandability

of these repeats and the flanking GC content (Brock et al. 1999, Nestor & Monckton 2011) the

higher percentage of GCs in HD might explain the weighting towards expansion in HD and further

illuminate a modifying role for flanking GC content.

As well as quantifying the length-specific effect, we inferred the parameter values underlying the

best fit and associated with the maximum likelihood value. For modelMα, the parameters com-

prised expansion rate per repeat per year (λ), contraction rate per repeat per year (µ), length pa-
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rameter (α) and inherited repeat length (n0). For small alleles, in both DM1 and HD, we found

statistical support for expansion and contraction and individual-specific parameters. Our estimate

for the length parameter in HD (average = 26 CAGs) is lower than for DM1 (average = 51 CTGs)

which may reflect differences in flanking GC content and possibly explain differences in the disease

threshold, which is lower for HD (35 CAGs) than for DM1 (50 CTGs). Expansion and contraction

rates were correlated in DM1 (correlation coefficient> 0.99) and in HD (correlation coefficient

= 0.70) suggesting that expansion and contraction, in both DM1 andHD, may be different out-

comes of the same underlying process or otherwise conservedcomponents of the instability path-

way. This result has direct relevance to therapies that target the mutations directly (Castel et al.

2010) in order to readdress the balance and/or reduce levelsof instability, as it is very likely that

both expansions and contractions will be affected by a potential therapy.

For individuals with pure repeat length tracts, without interruptions in their repeat lengths, the value

of α relates directly to the size of the hypothetical length constraint on the mutational mechanism.

We estimate the value of this constraint to be, on average, 26CAGs in HD and 51 CTGs in DM1.

ModelMα is sufficiently general to apply to any length constraint that acts in this manner. In ad-

dition to the 14 DM1 individuals with inherited repeat lengths less than 100 CTGs, we identified

eight DM1 individuals with distributions with lower than expected (modelM6b) variance to mean

ratios (Figure 5.1). We hypothesised that the repeat lengthdistributions in these individuals may

also have been affected by an individual-specific length constraint of biological origin. We, there-

fore, fitted modelMα using an extended range (0-200 CTGs) for the length constraint, α, to an

additional 128 DM1 sized single molecule blood DNA datasets. We found that for six of the eight

DM1 individuals, mentioned above, modelMα fitted the data better than modelM6b (likelihood

gain greater than or equal to 2), see Table 5.3A. The explanation for this lies with high estimated

values forα (80 CTGs and above) and a correspondingly better fit at the lowend of the repeat length

distributions in these individuals (Figures 5.11 and 5.12)whose likelihood dramatically increased.

An improvement in fit (≥ 2) and a high estimated value forα (> 100 CTGs) were also observed for

a further 12 individuals listed in Table 5.3B, notably individuals BC8 and SCO115. These results

suggest that length-specific effect may operate in some individuals over higher repeat length ranges

(greater than 200 CTGs).

As mutation rates are assumed negligible in repeat lengths less thanα under modelMα, the effective

length of the repeat length tract, with respect to mutation,can be considered to be the remaining

number of repeats in the tract, complementary toα. We thus defined the difference between the

inherited repeat length andα as the effective length of an individual. In this context, individuals
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with either small inherited repeat lengths (less than 100 CTGs) and/or high estimated values for

α are predicted to have effective lengths much smaller than their actual lengths. The length ofα

may be determined by individual-specificcis-acting and ortrans-acting factors. One such plausible

cis-acting factor could be an interruption in the pure CTG tractsuch as CGG or CCG. A model

for how variant repeats might modify mutational dynamics inan adjacent stretch of pure CTG

repeats is outlined in Figure 5.3. As discussed in the introduction of this chapter, Section 5.2, in the

presence of variant repeats at the3′ end of the array, the distance between the pure CTG tract and

thecis-acting modifier will be increased and its effect may be reduced. In our model, high values

of α suggest that pre-mutation or other mutation events (such asloop-outs or mis-pairings) either

cancel one another out or do not occur over a greater distancethan expected (around 50 CTGs).

One possible interpretation with implications for effective length, illustrated in Figure 5.13, is that

this distance or length constraint has been extended by the physical presence of an interruption. A

rule where the length constraint ofα applies only on one side of an interruption at positionβ from

the other side would be entirely consistent with the uninterrupted version. We would simply infer

α + β in the first instance andα in the second instance. High inferredα values correspond to low

effective lengths and potentially less instability and disease.

All 142 DM1 individuals were screened for variant repeats CCG or CGG (Coutoet al., in prepara-

tion). BC19 and BC6 tested positive for CGG interruptions (Coutoet al., in preparation). These in-

dividuals (BC19 and BC6) are part of an extended family who initially came to attention (Ashizawa

et al. 1992) because of the discrepancy between their clinical symptoms and the molecular diagno-

sis of inherited repeat length. The symptoms of BC6 are less severe than expected and the inherited

repeat length of his son did not show the usual expansion effect of anticipation. Our analysis inde-

pendently suggests that a length-specific effect (α values 175 CTGs and 110 CTGs, respectively)

operates in these individuals and supports a role for CGG interruptions as modifying mutation rates

and resulting in less somatic mosaicism. This in turn may explain reduced disease progression in

this family. Interestingly, the repeat length distribution for individual SCO99, who tested positive

for CCG interruptions and who also has a low variance to mean ratio, is not explained by a length

constraint. We conclude that the CCG interruption in this individual does not affect mutation rates

in a length dependent manner, though it may do so through another means. Other individuals (Ta-

bles 5.3A and 5.3B) with highα values not testing positive for CCG or CGG variant repeats may

have other variant repeats or unusual flanking sequences which act in a length-dependent manner

and are therefore candidates for further investigation.

Inherited repeat length explains a large proportion of variance in age of onset and, as shown in
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Figure 5.13:Hypothetical explanation for how variant repeats might modify effective length.
A length constraintα may suppress mutation rates resulting in an effective length, n0 − α, lower
than inherited repeat length,n0 (top). The presence of variant repeats in the repeat length tract may
reduce effective length further becomingn0 − α− β (bottom).

Chapter 3, the relationship between inherited repeat length and age of onset is not straightforwardly

linear. This relationship is further complicated by somatic instability, which has also been shown to

modify age of onset in DM1 (Morales et al. 2012) and HD (Swami et al. 2009). In DM1, thresholds

beyond which increasing allele length appears to no longer contribute toward age of onset have

been reported (143 CTG (Hamshere et al. 1999) and 250 CTG (Savić et al. 2002)) but Morales

et al. found a highly significant relationship between the logarithm of estimated inherited repeat

length and variation in age of onset, both above and below theaverage threshold of 200 (Morales

et al. 2012). The apparent threshold is likely attributed toan additional, non-linear component

to the relationship between age of onset and estimated inherited repeat length. By quantifying

length-specific effects we can now suggest a biologically plausible explanation for this non-linear

component, namely that levels of somatic mosaicism do not progress in a linear fashion. Levels

of somatic mosaicism appear to be relatively lower in small alleles than in long alleles due to the

length-specific effect. This gives rise to relatively laterages of onset in small alleles than in long

alleles, resulting in the observed non-linear relationship between age of onset and inherited repeat



5. EFFECTIVE LENGTH 111

length, discussed in Chapter 3. We would expect effective length to align more closely and better

predict age of onset and disease progression than inheritedrepeat length. To test this prediction,

we obtained an estimate for effective length by adjusting inherited repeat length (by subtractingα)

in the individuals with lower than expected variance to meanratios (15th percentile) and settingα

equal to zero in the other individuals (16th to 100th percentile), 128 DM1 individuals in total. We

then compared inherited repeat length and effective length, in 128 DM1 individuals, in terms of

explaining age of onset using linear regression analysis. Effective length (adjustedR2 = 50.6%,

P < 10−15, N = 128) was better than inherited repeat length (adjustedR2 = 46.8%, P < 10−15,

N = 128) at explaining variance in age of onset confirming our expectation. Importantly, using

modelMα, we remove some of the bias in mutation rates, mentioned above, making them less

length dependent. Under modelM6b the mutation rates were correlated with inherited repeat length

(correlation coefficient = 0.64,P < 10−5), whereas under modelMα correlation between mutation

rates and inherited repeat length was much lower (correlation coefficient = 0.30,P < 10−5). Con-

sequently, rates adjusted in this way will be better suited as quantitative traits to investigatetransor

cis-acting modifiers of somatic mosaicism, disease onset and progression.

Our findings that mutational rates may be suppressed in the region above the disease thresholds

in both HD buccal DNA (most effective up to 60 CAGs on average)and DM1 blood DNA (most

effective up to 173 CTGs on average) are encouraging from a clinical perspective. Individuals

with alleles in this range generally have reduced levels of somatic mosaicism, less severe pheno-

types and later age of onset. Longer DM1 alleles transmittedto the next generation result in more

severe symptoms and an earlier age at onset, an effect compounded by somatic expansion. Sup-

pression of somatic expansion is therefore expected to be therapeutically beneficial and induction

of contractions potentially curative (Gomes-Pereira & Monckton 2006, Castel et al. 2010). How-

ever, the feasibility of suppressing expansions/inducingcontractions remains largely undetermined.

Our results show that, in principle, therapies aimed at reducing the length of disease DNA tracts,

if successful, should result in lower levels of somatic mosaicism which should slow down disease

progression. Interruptions in the disease repeat length tract have also been associated with a less

severe phenotype in DM1 (Musova et al. 2009, Braida et al. 2010) and we now suggest a biological

basis for this which links interruptions and the pattern of repeat length distributions to lower levels

of somatic mosaicism and, in the case of one family, less severe phenotypes.

Inherited repeat length and somatic instability are emerging as key modifiers of disease onset and

progression in DM1 and HD (Swami et al. 2009, Morales et al. 2012). However, the relationship

between inherited repeat length, somatic instability and age of onset appears complex. Our work
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unravels some of this complexity through estimation of the biological parameters that drive levels

of somatic mosaicism. Through quantification we can better assess the relative importance of these

parameters within an individual, between individuals and between cell types and diseases. We find

similarities in the underlying mechanism, as evidenced by strong correlation between expansion

and contraction rates in both DM1 and HD. But we also find high levels of variation in these rates

suggesting that individual-specific factors modify levelsof somatic mosaicism to a large degree.

Also, as illustrated here, some variant repeats or other polymorphisms may further modify repeat

length distributions and disease progression. Finding factors that modify disease is an important

next step that will be facilitated by the use of biologicallyrelevant quantitative traits, such as those

established here.

5.5 Material and methods

5.5.1 Project data

The data in this study comprise distributions of CTG repeat lengths sized from blood DNA from

14 DM1 affected individuals at the DM1 locus, see below, and distributions of CAG repeat lengths

sized from buccal DNA from 12 HD affected individuals at the HD locus (Veitch et al. 2007).

DM1 individuals with inherited repeat lengths less than 100CTGs were selected for this study

from the total cohort of 145 DM1 individuals, see Chapter 2, Section 2.2, as their repeat lengths

are representative of the smallest repeat lengths seen in DM1. Out of the 14 individuals selected,

9 were asymptomatic when the blood samples were taken and 5 had late-onset with age at onset

ranging from 46 years to 74 years. The 12 unrelated HD individuals (Veitch et al. 2007) had

estimated inherited repeat lengths between 39 and 48 CAGs and were all 39 years old when the

buccal samples were taken. The distributions were sized, interms of the number of repeats, using

single-molecule PCR assays.

5.5.2 Mathematical model with length-specific effect

As described in Chapter 2, Section 2.4, representing the expansion rate per year, the contraction

rate per year and inherited repeat length byλn, µn andn0, respectively, and lettingPn (t) denote

the probability that an allele has lengthn at timet, the rate of change ofPn (t) with respect to time



5. EFFECTIVE LENGTH 113

is governed by the master equation of the form

dPn (t)

dt
= − (λn + µn)Pn (t) + λn−1Pn−1 (t) + µn+1Pn+1 (t) . (5.1)

Given the allele length at time zero,n0, we may approximate this infinite system of ordinary differ-

ential equations numerically by truncating at a suitably large value ofn = N and settingPn (t) = 0

for all n ≥ N + 1.

To specify the functional form ofλn andµn, we departed from the traditional linear model by

introducing a threshold,a, for the birth and death process. No activity takes place forrepeat lengths

below this threshold and the general propensity for expansion or contraction is proportional to the

excess length above the threshold, consistent with the inherent stability observed in non-diseased

individuals. Hence the definitions forλn andµn wereλn = λ (n− a) andµn = µ (n− a),

respectively.

To derive a new variation of this model, we formulated a length-specific factor, denotedRn, as

follows. Let the total repeat length ben. Consider now a length constraint on the mutational

mechanism.A andB are locations where repair is needed (for example loop-outs). We hypothesise

that subsequent mutation requires|A−B| > α, whereα is an unknown number of repeat units to be

inferred from the data. The length parameterα is therefore interpreted as the minimum separation

between repeats required for mutation to occur. We are interested in the likelihood that mutation

occurs or the proportion of all possible distances that result in |A−B| > α. Assuming thatA andB

occur at arbitrary uniformly random positions alongn, and that these occurrences are independent,

there aren2 possible complementary pairs. Using combinatorial counting methods it can be shown

that there are(n− α)(n − α+ 1) pairs separated by distance|A−B| > α.

Hence the ratio,Rn, of possible mutation events, is defined as

Rn =
(n− α)(n − α+ 1)

n2
. (5.2)

We note that for fixedα, Rn → 1 asn → ∞. This corresponds to the intuitively reasonable notion

that the finite length constraint is negligible for very large repeat lengths.

Rn can be considered as the biophysical capacity of a repeat length to undergo expansion and con-

traction. We would expect smaller alleles to have a lower capacity than larger alleles to expand and
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contract. Based on these considerations, we modify our basic model, Equation (5.1), by introducing

Rn as follows

λn = Rnλn, (5.3)

µn = Rnµn, (5.4)

for n > α, whereλ andµ are now constant rates of expansion and contraction per repeat unit per

year respectively.

This introduces a nonlinearity into our equations and hencewe cannot derive closed forms for the

mean and variance. However, the equations can of course still be solved numerically.

5.5.3 Model comparison and parameter estimation

We use likelihood methods to carry out model comparison and parameter estimation. The likelihood

is defined to be the probability that a repeat length has reached the length observed given the model

and its parameters. We can solve Equation (5.1) numericallyin order to obtain the probability

distribution function componentsPn (t) which give the probability that repeat length isn at time

t. The likelihoodL[i] is then the product over all the datad[i]j , which denotes the repeat length for

thejth observation from individuali, of the probabilityP
d
[i]
j

(t[i]; θ[i])n≥α, whereθ[i] are the model

parameters for that individual andt[i] the age of the individual when the data sample was taken.

This gives the likelihood for individuali,

L[i] =
∏

j

P
d
[i]
j

(t[i]; θ[i]), (5.5)

and the overall likelihoodL is the product over all individuals in the population,

L =
∏

i

L[i]. (5.6)

The Akaike information criterion (AIC) is used to assess thegoodness of the fit of the model (Akaike

1974). AIC uses the maximised value of the likelihood of the model,Lmax, penalised by the number

of model parameters,k, to rank models thus

AIC = 2k − 2 log Lmax, (5.7)
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with the model with the smallest AIC value being ranked highest.

We obtain the maximum value of the likelihood by evaluating the likelihood over a broad parameter

space described in Table 5.1. Maximisation of the likelihood L in Equation (5.6) is essentially

the maximisation of eachL[i] in Equation (5.5) using each dataset from an individual. Forfurther

statistical analysis, it was useful to have point estimatesfor the parameters. These were taken to be

the maximum likelihood values.

The relative likelihood of two models with AIC values denotedAIC1 andAIC2 respectively, where

AIC1 < AIC2 is

exp

(
AIC1 −AIC2

2

)
. (5.8)



Chapter 6

Levels of somatic instability in Huntington disease related tissue are

linked to age of onset and disease progression

6.1 Abstract

Evidence of somatic expansion in tissues that are the targets of pathogenesis has given rise to the
hypothesis that somatic instability may itself contributeto the pathogenic process. However the
interpretation of the levels of somatic instability in manyof the affected tissues in the triplet repeat
diseases is hindered by complex cell compositions. It has recently been demonstrated by Swami
et al. that larger somatic expansions and hence skewed distributions of the HD CAG repeat ex-
pansion in HD frontal cortex at end stage are significantly associated with an earlier age of disease
onset, independent of any effects of inherited CAG repeat length on either somatic instability or
onset age. This interesting dataset comprised post mortem end stage CAG repeat length distribu-
tions from 48 HD individuals with either an extremely young or an extremely old age of onset
but matched inherited repeat lengths. We now extend our mathematical model to two cell pop-
ulations whose repeat lengths have different rates of mutation (fast and slow). We infer for each
frontal cortex HD dataset the likely relative weight of these cell populations and their corresponding
contribution towards somatic variation. By comparison with data from laser captured single cells
we conclude that the neuronal repeat lengths most likely mutate at a higher rate than glial repeat
lengths, explaining the characteristic skewed distributions observed in mixed cell tissue from the
brain. Derived parameter values differ significantly between the two extreme phenotypes and we
show that individual-specific mutation rates in neurons are, in addition to the inherited repeat length,
a modifier of age of onset. Using the parameters estimated from our HD end-stage analysis we also
simulate the expected distribution of repeat lengths at ageof onset. Very interestingly, the predicted
repeat length distributions at disease onset in neurons arevery similar between individuals, despite
very different ages at onset. Our results support a model of disease progression where individuals
with the same inherited repeat length may reach age of onset,as much as 30 years earlier, because
of greater somatic expansions underpinned by higher mutational rates. Therapies aimed at reducing
somatic expansions would therefore have considerable benefits with regard to extending the age of
onset.

116
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6.2 Introduction

Huntington disease

As discussed in Chapter 1, Huntington disease (HD) is an inherited neurological disorder char-

acterised by progressive movement, psychiatric and cognitive disturbances. Neurodegenerative

changes in the brain of affected individuals follow a typical pattern, with early cellular dysfunction

and loss of medium spiny neurons in the striatum, followed bymore generalised cell loss across

the brain (Graveland et al. 1985). Whilst the age of disease onset is strongly inversely correlated

with the length of the expanded CAG repeat length (Andrew et al. 1993, Duyao et al. 1993, Snell

et al. 1993, Stine et al. 1993, Gusella et al. 1996), with repeat length accounting for around 70% of

the variability in age of onset, this reduces to less than 50%for the majority of HD patients with

repeat lengths below 60 CAGs (Myers et al. 1998, Li et al. 2003). There is evidence for heritability

for the portion of age at onset not explained by CAG repeat size, which provides support, along

with several other studies,e.g. (Li et al. 2003, Wexler et al. 2004), for genetic modifiers of age

of onset. Measurement of biomarkers that contribute to variation in age of onset could be used to

identify these genetic modifiers, which are key targets for therapies aimed at slowing or reversing

the pathogenic process.

The expanded HD CAG repeat is somatically unstable, undergoing progressive length increases

over time (Telenius et al. 1994, Kennedy et al. 2003). Somatic instability is also tissue-specific

with high levels found in striatum and cortex (Shelbourne etal. 2007) and occurs in post-mitotic

neurons (Gonitel et al. 2008). Somatically expanded HD CAG repeats are transcribed and translated

(Aronin et al. 1995, Wheeler et al. 2003, Gonitel et al. 2008). Evidence of somatic expansion in

tissues that are the targets of pathogenesis has given rise to a hypothesis that somatic instability may

itself contribute to the HD pathogenic process. Experiments in a genetically accurate Huntington

disease homologue (Hdh) knock-in mouse model (HdhQ111), in which an early symptomatic, HD

CAG length-dependent phenotype was significantly delayed in mice that lacked somatic instability

as a result of the deletion of mismatch repair genesMsh2, supports this hypothesis (Wheeler et al.

2003).

Different cell types in the brain (principally neurons and glia) show different levels of instability,

with higher levels seen in neurons (Shelbourne et al. 2007, Gonitel et al. 2008). This provides a

straightforward explanation for the multi-modal and skewed shape of the distributions of repeat
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lengths in brain tissue. Jung and Bonini proposed that CAG instability is linked to pathogenesis

as seen in aDrosophila model (Jung & Bonini 2007), but the conclusions of Gonitelet al. and

the experiments of Wheeleret al. (specifically showing that the rate of somatic instability corre-

lates with huntingtin accumulation in neuronal nuclei) would contradict this suggestion and place

somatic instability as a significant disease modifier with other reported factors (Lloret et al. 2006)

contributing to the process.

Recently, Swamiet al. investigated the potentially modifying role of somatic instability on the age

of onset phenotype (Swami et al. 2009). Their study design chose HD individuals with extreme

phenotypes for young and old age of onset. These were the individuals whose age of onset deviated

the most from what would be predicted by their inherited repeat length alone. They identified

48 individuals, 24 with an extremely young age of onset and 24with an extremely old age of

onset, matched for their mutant and normal inherited repeatlengths (as established by analysis of

cerebellar DNA which is somatically stable (Kennedy et al. 2003)) but with mean age of onset

differing by approximately 30 years. The frontal cortex waschosen for examination as it has been

shown to retain relatively high levels of mosaicism at the end stage of the disease compared to

the striatum where reduced levels of variation are observedat end stage most likely due to disease

related cell loss (Shelbourne et al. 2007). The alleles weresized using small-pool PCR and provide

suitable distributions for quantitative analysis using a mathematical model as previously described

for CTG repeat lengths in myotonic dystrophy type 1 blood (DM1) in Chapter 4 and now modified

for CAG repeat lengths in HD frontal cortex. The key finding ofthe Swamiet al. study was

that repeat length distributions are biased towards longeralleles in individuals with earlier disease

onset (Swami et al. 2009). There was a significant differencebetween the two groups of extreme

phenotypes concerning the maximum expansion, and more robustly (as maximum expansion is

only one observation), skewness (a measurement of the degree of symmetry of a distribution) of

the samples with the extremely old age of onset having lower skewness than the extremely young

age of onset. Their results demonstrated that larger somatic expansions of the HD CAG repeat

expansion in HD patient cortex are significantly associatedwith an earlier age of disease onset,

independent of any effects of inherited CAG repeat length oneither somatic instability or onset

age. A mechanism for age of onset has been proposed by Kaplanet al. for trinucleotide diseases

in general where disease onset is triggered when a percentage of disease related cells (arbitrarily

chosen to be 20%) cross a critical threshold in terms of expanded repeat length (Kaplan et al. 2007) .

They suggest that this critical threshold for HD is 115 CAG repeat units. The results of Swamiet al.

are consistent with the expectation that individuals starting at the same inherited repeat length who
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have more somatic expansion would reach the disease threshold earlier than individuals with less

somatic expansion, but do not provide further quantitativeor descriptive features of this threshold.

Study aims

As the different cell types in the brain (principally neurons and glia) show different levels of insta-

bility, with higher levels seen in neurons than in glia (Shelbourne et al. 2007, Gonitel et al. 2008), it

follows that the overall distribution of repeat lengths in acomplex tissue sample comprising one or

more cell types may be skewed or contain more than one mode. Interpretation of the components

of somatic mosaicism in the frontal cortex, a tissue directly involved in the pathology of HD, is

hindered by the complex cell composition of this tissue. In this study we extend our mathematical

model to monitor changes over time in repeat length in two cell types: cells in which the repeat

lengths expand more rapidly (fast) and cells in which the repeat lengths expand less rapidly (slow).

It is predicted that the cells with the fast expanding repeats will be neurons and the cells with the

slow expanding repeats will be glia. We fit this extended model to the datasets described in (Shel-

bourne et al. 2007, Swami et al. 2009) and infer the relative composition of these two cell types and

their respective rates of mutation. We hypothesise that thederived parameters will explain some of

the variability in age of onset not explained by the inherited repeat length. To further investigate the

role of somatic mosaicism within the frontal cortex and its relationship to phenotype, we simulate

the expected distribution of mutant alleles at age of onset.This provides further qualitative and

quantitative indication of the role somatic instability plays in age of onset and disease progression.

6.3 Results

6.3.1 Assumptions underlying the mathematical models

To clarify the presentation and discussion of our results, we begin by stating and justifying our key

assumptions about how the data arose. We assume that the CAG repeat lengths can undergo expan-

sion (increase in length) and contraction (decrease in length). Our mathematical model quantifies

the probability of both expansion events and contraction events in the repeat length in frontal cortex

cells. The human brain contains around 160 billion cells (Azevedo et al. 2009) split roughly into

equal numbers of neurons, the basic building blocks of the nervous system, and glial cells, the non-

neuronal cells that provide support and protection for neurons. The ratio of glia to neurons differs
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from one part of the brain to another. This ratio is thought tobe as high as 3.72 in the cerebral

cortex, 1.48 in the cerebral cortex gray matter and as low as 0.23 in the cerebellum (Azevedo et al.

2009). In the frontal cortex the ratio is expected to be around 2.

There are differences between neurons and non-neuronal cells in terms of their generation. It is

thought that virtually all neurons (> 99%) are generated prenatally and retained for our lifespan,

whereas there may be constant production of new glial cells in adults (Bhardwaj et al. 2006). That

large repeat length changes occur in terminally differentiated, post-mitotic neurons was confirmed

by (Shelbourne et al. 2007, Gonitel et al. 2008). In formulating our model for brain cells, we as-

sume that the sampled cells, comprising both cell types, have had independent mutational histories

(from their prenatal generation and differentiation from stem cells, onwards). For neurons, which

are virtually all non-dividing cells, this is clearly the case. For glial cells, even if they are under

production in adults as indicated by (Bhardwaj et al. 2006),the sheer number of cells makes it ex-

tremely unlikely that two sampled cells arose from the same glial stem cell and so the assumption

of independent mutational histories remains valid.

The inherited repeat length was estimated for each individual from cerebellar DNA by Swamiet

al. but by treating it here as an unknown parameter we can establish whether in principle, it is

possible to infer the inherited repeat length from a pathological tissue. A positive result would be

useful for future work exploring somatic mosaicism where there is more instability and hence less

certainty where the inherited repeat length lies, e.g. muscle in DM1. The changes in repeat length

are age-dependent and as the samples were end stage taken at autopsy, the appropriate input for age

or time in our model is age at death. Information about age at death was available for 38 samples

(22 young age of onset and 16 old age of onset). Comparison between different sized groups, as

in this case, is not an issue for our modelling or inference methods. The other additional statistical

test used and comparisons with the full dataset take this difference in size into account.

Our probabilistic model assumes that the probability of mutational events occurring increases as the

repeat lengths get longer. As previous work, see Chapter 5, reported that small alleles with repeat

lengths less than 200 repeat units long may have less capacity to mutate than longer alleles, we

have introduced into the model a further parameter,α, quantifying a length effect. This addition

is particularly pertinent for HD as allele lengths are generally much lower than those found in

myotonic dystrophy type 1.

The mutational gains and losses are assumed to be of one CAG unit. Such small gains and losses

have been observed in several studies (e.g. Veitch et al. 2007). It has been suggested that the
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mutations occur in a synchronous manner (Gonitel et al. 2008) based on the observation that the

distributions in genetically identical mouse models appear to follow a predictable pattern. We

argue that a predictable pattern can also be the result of a stochastic process, where many cells are

involved, as the aggregate behaviour of many cells in the stochastic processes will appear to be

deterministic.

We assume that the cell types contained within the frontal cortex can be differentiated by rates of

mutation in their repeat lengths: fast and slow. Hence we fit two allele distribution curves: one

for cells with fast mutating repeat lengths and one for cellswith slow mutating repeat lengths,

with a range of weights for each type of cell (Table 6.1). We obtain the maximum likelihood

value and the associated parameter values using a grid search of the parameter space (Table 6.1).

This likelihood method quantifies which parameters providethe best fit to the data. The fit can

be visualised as a distribution curve or a cumulative distribution curve and can be compared with

the data, as in Figures 6.1, 6.2 and 6.3. As this is a computationally demanding task, involving

many parameters, consideration was given to the design and organisation of the implementation to

minimise the computational cost.

Model parameters Prior ranges 

Contraction rate per CAG unit per year in cells 

with fast mutating repeat lengths ( 
f
)

0 – 0.12 

Net expansion rate per CAG unit per year in cells 

with fast mutating repeat lengths ( 
f
 -  

f
)

0.01 – 0.031 

Length parameter in cells with fast mutating repeat 

lengths, number of CAG units ( 
f
)

10 – 30 

Contraction rate per CAG unit per year in cells 

with slow mutating repeat lengths ( 
s
)

0 – 0.02 

Net expansion rate per CAG unit per year in cells 

with slow mutating repeat lengths ( 
s
 –  

s
)

0.0001 – 0.0014 

Length parameter in cells with slow mutating 

repeat lengths, number of CAG units ( 
s
)

10 – 30 

Percentage of cells with fast mutating repeat 

lengths (w
f
)

0% – 100% 

Inherited repeat length, number of CAG units (n0) 38 – 50 

Table 6.1:Prior ranges for parameter estimation for Huntington disease brain.

Another important issue is that neurons with the longest repeat expansions may be preferentially
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Figure 6.1:Histogram showing the distribution of CAG repeat lengths infrontal cortex from
a representative HD individual (sample 11) compared with the fitted probability distribution
for fast mutating cells (solid line) and the fitted distribution for slow mutating cells (dashed
line).
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Figure 6.2:Cumulative distribution of CAG repeat lengths in frontal cortex (jagged line) from
a representative HD individual (sample 11) compared with the fitted probability distribution
(smooth line).
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lost during the disease course (Kennedy et al. 2003) and we consider the importance of such an

effect through a model with a truncated distribution, described more fully below. Preferential loss

of neurons with long repeat lengths during the disease course and their consequential absence from

the data may result in an underestimation of the mutation rates. The highest observed repeat length

in this study in frontal cortex was 116 CAGs. To address this issue, we also fit allele distributions

truncated at a range of repeat lengths (100 CAGs to 145 CAGs) including the length 115 CAG

units which has been proposed as critical to disease onset by(Kaplan et al. 2007). These truncated

distributions will predict higher rates of mutation if the distribution of the other alleles support this.

We use a model comparison method (AIC) to formally compare these fits.

6.3.2 Model comparison supports two cell types and a minor role for truncation

We tested our hypothesis that cells with two different ratesof mutation were responsible for the

skewed, multi-modal shape of the allele distribution by fitting a mixed distribution to the data. This

hypothesis was tested against the null hypothesis that one cell type would explain the changes in

repeat length using the likelihood ratio test. We also fitteda truncated distribution to the data to test

the extent to which preferential cell loss may have a role in shaping the repeat length distributions.

In summary, the following models, with parameters specific to each HD individual, were fitted to

the data:

∗ Model F1: Full distribution one mutating repeat length cell type (4 parameters per 38 HD

individuals, 152 in total)

∗ ModelF2: Full distribution two (fast and slow) mutating repeat length cell types (8 parame-

ters per 38 HD individuals, 304 in total)

∗ Model T1100: Truncated distribution (100 CAGs) one mutating repeat length cell type (152

parameters)

∗ ModelsT2100, T2115, T2130 andT2145: Truncated distribution (100 CAGs, 115 CAGs, 130

CAGs and 145 CAGs respectively) two (fast and slow) mutatingrepeat length cell types (304

parameters)

The models were compared and ranked using AIC, see Table 6.2 and Section 2.5.3 for further

details about AIC. This involved calculating the maximum likelihood value using a grid search

over the parameter space as outlined in Table 6.1 (see Chapter 2, Section 2.5, for further details).
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Despite having more parameters, ModelF2 is ranked higher than modelF1 (maximum likelihoods

-11,098 (304 parameters) and -13,739 (152 parameters) respectively) and similarly modelT2100 is

ranked higher than modelT1100 (maximum likelihoods -11,093 (304 parameters) and -13,735(152

parameters) respectively) providing strong support for two cell types. The other truncated models

(T2115, T2130 andT2145) had similar maximum likelihood values, -11,097 for ModelT2115 and -

11,098 for ModelsT2130 andT2145. ModelF2 and the truncated models are significantly different

from the next ranked model, ModelT1, with a maximum likelihood value of -13,735.

Models

(N=38 individuals) 

Number of 

parameters

Maximised

log-likelihood 

Adjusted AIC AIC 

 rank 

Truncated Distribution for a 

mixture of cells with fast and slow 

mutating repeat lengths  

T2100 – 100 CAGs 304 -11,093 0 1

T2115 – 115 CAGs 304 -11,097 8 2=

T2130 – 130 CAGs 304 -11,098 10 3=

T2145 – 145 CAGs 304 -11,098 10 3=

F2   Full Distribution for a mixture 

of cells with fast and slow 

mutating repeat lengths 

304 -11,098 10 3=

T1   Truncated Distribution for one 

type of cell 

152 -13,735 4980 4

F1   Full Distribution for one type 

of cell 

152 -13,739 4988 5

Table 6.2:Model comparison summary for Huntington disease brain. The models, listed in
column 1, are ranked using AIC which has been adjusted by subtracting the lowest overall value
(ModelT2100) from the other models (column 4).

We introduced a model with a truncated distribution to assess whether cell loss was having a sig-

nificant effect on the repeat length distributions and hencewhether ignoring this effect would lead

to an underestimation of the rates of mutation. This does notappear to be the case as the estimated

rates of mutation are virtually identical for modelsF2 andT2100 with only two individuals having

very slightly higher rates of mutation under modelT2100. The estimated percentage of fast cells

(35%) was also the same for modelsF2 andT2100. In order to obtain the parameter estimates, the

truncated model used the simplifying assumption that all cells with repeat lengths over 100 CAGs

would be lost. This is clearly not the case as two alleles in the total sample were over 100 (103

CAGs and 116 CAGs). So although modelT2100 with a maximum likelihood value of -11,093 was

ranked higher than model F2 suggesting that the addition of aparameter for truncation is justified

and was a useful hypothesis for checking the mutation rates,overall, this model requires further

work to include the probability of cell death. Taking these factors into account, especially the fact

that the parameter estimates are not affected, we consider the full distribution model,F2, is an

appropriate model for further analysis.
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We also considered a model with global parameters for the mutation rates and length effect and

individual-specific parameters only for the inherited length and percentage of fast cells (data not

shown). However, as reported for DM1 (Higham et al. 2012), global parameters did not capture

the variation seen in the data which indicates that individual-specific factors play a major role in

somatic instability. Inclusion of contraction events,i.e. decreases in repeat length of one CAG unit,

was also justified as there was no statistical support for thecontraction rates being zero. Model

F2 is significantly better (P < 10−15) than an expansion only model even taking into account the

reduced number of parameters (228).

The model fit can be further examined by comparing the expected distribution, associated with the

maximum likelihood value, to the data (Figures 6.1, 6.2 and 6.3). Visually, small deviances from

the expected distribution are observed (e.g. Figure 6.2). To investigate whether these deviances

could arise from the model, or whether another explanation is required, we simulated distributions

for each of the 38 HD individuals. Using a two-sample Kolmogorov-Smirnov test we show that the

observed distributions are very similar to the simulated distribution and hence very likely do arise

from the model. An alternative explanation, such as that thesmall deviances are sub-populations

arising from alleles that have had large contractions is notrequired. In summary, we regard model

F2 as being the most successful among those considered in explaining how the data has arisen.

6.3.3 Mutation rates are predictive of onset age

Through fitting modelF2 we obtained the following parameter estimates for 38 HD individuals:

the expansion rate for fast and slow mutating cells per CAG unit per year,λf andλs, respectively,

the contraction rate for fast and slow mutating cells per CAGunit per year,µf andµs, respectively,

the length parameter measured in number of CAGs for fast and slow mutating cells,αf andαs,

respectively, the inherited repeat length,n0, and the percentage of fast cells,wf . Our estimated

values forn0 were in close agreement (correlation coefficient> 0.99) with those determined by

(Swami et al. 2009) from cerebellar DNA. We hypothesised that the estimated parameter values

may differ between the two extreme phenotypes and hence provide a molecular explanation for the

underlying mechanism of disease progression. The individual-specific parameters associated with

the maximum likelihood value provide an explanation under the full distribution model (ModelF2)

of how each individual has obtained the distribution of repeat lengths observed in frontal cortex

DNA through mutational gains and losses of CAGs over their lifetime from their initial inherited

length. We tested whether the parameters associated with mutation (λf , λs, µf , µs, αf andαs)
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differ significantly between the extreme phenotypes, by comparing the multivariate means of the

parameter values for each group (extremely young age of onset and extremely old age of onset)

and performing a one-way multivariate analysis of variance(MANOVA). A statistically significant

MANOVA effect was obtained (P = 0.0063) indicating that one or more of the parameters do differ

significantly between the two groups. The multivariate effect size was estimated at 0.42, which

implies that 42% of the variance in the dependent variables was accounted for by phenotype group.

The median mutation rates for repeat lengths within both fast cells and slow cells are significantly

higher for the young age of onset phenotype group than for theold age of onset phenotype group

(see Figure 6.4 and Table 6.3). Concerning the length parameters,αf andαs, the median values

were not significantly different for each phenotype group (30 CAGs and 20 CAGs respectively).

Median

young age 

of onset 

Median

old age of 

onset

Mann Whitney U 

test P-value

R
2
 explained 

variance

dependent variable 

age of onset 

Expansion rate per 

CAG unit per year in 

cells with fast mutating 

repeat lengths 

0.055 0.031 0.0039 21.6% 

Contraction rate per 

CAG unit per year in 

cells with fast mutating 

repeat lengths 

0.038 0.018 0.0088 19.1% 

Net expansion rate per 

CAG unit per year in 

cells with fast mutating 

repeat lengths 

0.017 0.009 0.1003 1.4% 

Expansion rate per 

CAG unit per year in 

cells with slow 

mutating repeat lengths 

0.00085 0.00055 0.0179 28.0% 

Contraction rate per 

CAG unit per year in 

cells with slow 

mutating repeat lengths 

0.000075 0.00005 0.6605 11.2% 

Table 6.3:Parameter comparison between extreme phenotypes in Huntington disease brain.
Notes: (i) Bonferroni corrected significance level (5 tests) = 0.01.

Some parameter pairs are highly correlated: expansion and contraction rates for the fast mutating

cells (correlation coefficientr = 0.974), expansion and contraction rates for the slow mutating cells

(correlation coefficientr = 0.849). There is also positive correlation between the expansionrates

for fast mutating cells and slow mutating cells (correlation coefficientr = 0.553) as illustrated in

Figure 6.5. The expected number of expansions per year per cell type depends on the model param-

eters,λf , αf , λs, αs, but also on the current number of CAG units. In summary, our results show
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Figure 6.3:Cumulative distribution of CAG repeat lengths in frontal cortex (jagged line) from
a representative HD individual (sample 29) compared to the fitted probability distribution
(smooth line).
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that the median expected number of expansions per year, as a function of length, is significantly

different between the extreme phenotypes, young age of onset and old age of onset, with higher

levels of mutations in the young age of onset group (Figure 6.6).
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Figure 6.5:Matrix of scatter plots for pairwise comparison of the modelparametersλf , µf ,
λs, µs between phenotypes (young age of onset denoted by ’+’ and oldage of onset denoted by
’o’) and a histogram showing the distribution of each parameter along the diagonal.
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Figure 6.6:The median expected number of expansions per year, as a function of length, for
phenotype group early age of onset (dark solid line) and lateage of onset (light dashed line).

In terms of age of onset, the expansion rate for fast expanding cells explains 21.6% of the variance in

age of onset (Tables 6.3 and 6.4). Together, in a linear model, inherited repeat length and expansion

explain 57.8% of the variance in age of onset rising to 69.7% in an interaction model. This result

indicates that both the expansion rate and the inherited repeat length contribute to age of onset in a
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complex, non-linear manner, consistent with the fitted model, F2, where the number of expansions

(and contractions) is dependent on CAG repeat length.

Independent variables 

R
2
 explained 

variance dependent 

variable age of onset

Adjusted R
2

P-value

Inherited length 52.7% 51.4% 2.4659e-07

Expansion rate per CAG unit per 

year in cells with fast mutating 

repeat lengths 

21.6% 19.4% 0.0033 

Inherited length and expansion rate 57.8% 55.4% 2.7843e-07

Inherited length, expansion rate 

and interaction, 

inherited length*expansion rate 

69.7% 67.0% 6.2139e-09 

Table 6.4:The relationship between age of onset, inherited repeat length and expansion rate
for fast expanding cells, established using linear regression analysis.

So far we have not identified which cells belong to the fast andslow groups, the obvious distinction

being neurons versus glia. Shelbourneet al. sized repeat lengths in laser captured single cells in

different human brain tissues, caudate nucleus, accumbens, putamen region (CAP), temporal pole

of the cortex (TP) and hippocampal formation (HF), separated into grey matter (neuron rich) and

white matter (glia rich) (Shelbourne et al. 2007). We fitted our model to each of these datasets and

found that expansion rates are higher in grey matter than in white matter (P = 0.0019) and that the

percentage of fast cells is higher in grey matter than in white matter (P = 0.024). This confirms

that neurons are most likely the fast mutating cells and gliamost likely the slow mutating cells.

Parameter estimates for the percentage of fast mutating cells in each sample reveal that the relative

proportions of the different cell types (fast and slow) varybetween individuals (10% to 70%) but

that the difference between the groups (mean = 30.5% for young age of onset and mean = 38.6%

for old age of onset) is not significantly different. The range is greater than that which could be

reasonably attributed to sampling from a mixed two cell tissue assuming a ratio of two glia for each

neuron (estimated to be35% ± 10% with 95% confidence). As the ratio of neurons to glia varies

even within sections of the brain, these individual-specific differences are most likely attributable

to differences in the actual sample taken such as position ordepth rather than indicating individual

differences in the neuron to glia ratio.
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6.3.4 Simulation of allele distributions at age of onset

We have inferred the mutation rate values that underlie the measured repeat length distributions

at end stage and shown that these values are significantly higher in the young age of onset group.

The estimated number of mutational events per year for fast/slow mutating cells is on average

1.241/0.024 for the young age of onset phenotype and 0.591/0.013 for the old age of onset pheno-

type with, in all cases, high variance. From these results, we predict that the distribution of repeat

lengths will spread out over time, from the inherited repeatlength, mostly towards higher repeat

lengths but also slightly towards lower repeat lengths. In the young age of onset group the distri-

bution of repeat lengths will spread out further and quickerthan in the old age of onset group. The

difference in rates between cells will give rise to skewed and multi-modal distributions of repeat

lengths.

Using the estimated parameter values associated with the maximum likelihood value of modelF2,

the expected distribution of mutant alleles for each cell type was determined by simulation at pre-

cisely the age of onset for each HD individual (N=38). Time dependent distributions for alleles

are generated under the models using an adapted Gillespie Algorithm (details given in Chapter 2,

Section 2.7.1) and preassigned parameter values.

The expected mutant allele distributions, at age of onset, for extremely young onset age and ex-

tremely old onset age, further split by cell type, were compared in terms of their percentile median

values (Figure 6.7). The Mann Whitney U test was used to determine the significance of any dif-

ferences between the two extreme phenotypes. For the fast cells (35%), there was no significant

difference between the distributions for extremely young onset age and extremely old onset age

with the 70th to 90th percentile being highly similar. For the slow cells (65%), all differences

in percentile means were significant except for the maximum repeat length at the10th percentile.

These results, specifically the commonality between extreme phenotypes at age of onset, suggest

that the distribution of the fast cells defines age of onset rather than the distribution of the slow cells.

Time dependent simulations of repeat length distributionswere also generated for all 38 HD indi-

viduals 15 years prior to onset, 10 years prior to onset and 5 years post onset (see Figure 6.8 for

a summary of the repeat length differences as disease progresses). The greatest differences during

the 15 years prior to onset occur among the largest repeat lengths (95th to 100th percentile) where

repeat length differences are between 5 and 15 CAGs.



6. HD BRAIN 131

30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

number of CAG repeat units

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

Figure 6.7:Simulated median cumulative repeat length distributions at age of onset for fast
mutating cells (young age of onset, dark solid line and old age of onset, dark dashed line) and
for slow mutating cells (young age of onset, light solid lineand old age of onset, light dashed
line).
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Figure 6.8:Simulated median repeat length differences among 38 HD individuals by percentile
15 years prior to onset to 5 years post onset.100th percentile = long dashed line,95th percentile
= solid line and70th percentile = short dashed line.
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6.4 Discussion

We have extended the model developed in Chapters 4 and 5 to HD frontal cortex. We hypothesised

that the repeat lengths in two different cell types (neuronsand glia) differ with respect to their

mutation rates. This hypothesis was tested against the nullhypothesis that there is no difference

between the mutation rates in repeat lengths in neurons and glia. We found significant statistical

support (P < 10−15) for heterogeneous repeat length mutation rates in frontalcortex. Statistical

comparison with sized alleles in grey and white brain matter(Shelbourne et al. 2007) suggests

that the fast mutating repeat lengths are most likely found in neurons and the slow mutating repeat

lengths are most likely found in glia.

The pathology of Huntington disease involves neuronal loss(Vonsattel et al. 1985). If neurons are

lost, proportional to inherited repeat length in an age-dependent manner as suggested by (Aylward

et al. 1997), we would expect the shape of the repeat length distribution to reflect this. We tested this

hypothesis by fitting truncated repeat length distributions to the data. Substantial loss of neurons

and hence missing data might lead to an underestimation of expansion rates and so truncated models

were also considered in order to assess the effect neuron loss might have on our estimation of the

mutation rates. Although there was evidence that some neurons with repeat lengths greater than

100 CAGs may have been lost, this consideration did not affect our estimates of the mutation rates.

Hence we concluded that neuronal loss in frontal cortex can have only a minor truncating effect

on the repeat length distributions in HD individuals with inherited repeat lengths between 40 - 50

CAGs.

Swamiet al. defined two phenotype groups: HD individuals with a relatively young age of onset

(average = 29 years) taking into account inherited repeat length and HD individuals with a relatively

old age of onset (average = 61 years) taking into account inherited repeat length (Swami et al.

2009). We found that individuals with young onset age have significantly higher mutation rates

(both expansion and contraction) than those individuals with old onset age (P = 0.0063 using

MANOVA). This partly explains why individuals with similarinherited repeat lengths can differ in

terms of onset age (sometimes by as much as 30 years). Our results are consistent with the finding

of (Swami et al. 2009) that the larger somatic expansions of the HD CAG repeat expansion in

HD frontal cortex are significantly associated with an earlier age of disease onset. By quantifying

the mutation rates in neurons and glia we show further that, in particular, the expansion rate in

neurons explains some of the variance in age of onset not already explained by inherited repeat
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length. Together, inherited repeat length and the expansion rate in neurons explain almost70%

of the variance in age of onset. We note that the results concerning explained variance in age of

onset due to expansion rates apply to extreme phenotypes, chosen to have large differences in age

of onset and hence the effect may be exaggerated. However these results would hold in the general

HD population if expansion rates correlate with age of onsetin a similar manner.

We also show that the rates of expansion and contraction are highly correlated in cells with fast

mutating repeat lengths (correlation coefficientr = 0.974) and in cells with slow mutating repeat

lengths (correlation coefficientr = 0.849). These results suggest that expansion and contraction

events are mutationally linked and could be considered as alternative outcomes of the same process.

As a potential modifier of age of onset, it would be highly informative to have a profile of somatic

mosaicism and genotype at age of onset in the pathology related tissues, as it should be highly

predictive of the contribution somatic variation makes towards age of onset and disease progression.

However it is not feasible to obtain brain tissue for HD individuals at age of onset. We argue

here that a viable alternative is mathematical simulation of the changes in repeat length from the

inherited repeat length at birth to the age of onset using as input the parameters estimated from end

stage samples. The similarity between the profiles at age of onset suggests that disease onset is

strongly characterised by the repeat length distribution.

We next looked at the differences between the percentile levels prior to onset (between 5 and 15

years) and onset (summarised in Figure 6.8). The greatest difference during the 15 years prior

to onset occurs among the very largest repeat lengths (95th to 100th percentile) which expand on

average from 70 CAGs to 85 CAGs. This observation strongly suggests that the larger repeat lengths

(over 80 CAGs) drive disease onset (degeneration and associated symptoms) in HD frontal cortex.

Our findings support the scenario proposed by (Kaplan et al. 2007) whereby disease is triggered

once a percentage of pathology related cells have expanded over a disease-specific threshold. We

have shown that mutation rates are higher in individuals with young age of onset than in individuals

with old age of onset. In the context of the age of onset model outlined above, these mutational

differences provide an explanation as to why individuals with similar inherited repeat lengths can

differ in terms of onset age (sometimes by as much as 30 years). Consequently, therapies aimed at

keeping CAGs below 80 CAGs would be predicted to delay the onset of symptoms in the frontal

cortex. The rate of expansion is around 40% lower among the old age of onset phenotype group

than among the young age of onset phenotype group. If expansion rates could be knocked down

by 40% in the young age of onset phenotype group then our modelwould predict that the onset of
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symptoms in the frontal cortex would be delayed by up to 30 years.

In the Kaplanet al. study, the disease-specific threshold was predicted to be 115 CAGs for Hunt-

ington disease based on clinical data for age of onset and repeat length. We found the threshold to

be lower than this (80 CAGs) in frontal cortex. This most likely reflects differences in mutational

rates within the brain (i.e. higher levels in striatum than in cortex) as shown by (Shelbourne et al.

2007). Kaplanet al. relied on available clinical data that typically sizes repeat length by the modal

repeat length. The datasets we employ provide a fuller picture of the repeat length distribution by

sizing single molecules within a sample of cells. Using thisdata we can estimate the total mu-

tational dispersion (expansion plus contraction) as well as the mutational drift (expansion minus

contraction) which provides much more information about the underlying process. Interestingly,

mutational dispersion in the cells with fast mutating repeat lengths is more important, in terms of

explaining age of onset (R2 = 21.6%), than mutational drift (R2 = 1.4%), see Table 6.3. Also,

mutational dispersion is more individual-specific (0.095 ± 0.070 per CAG unit per year) than mu-

tational drift (0.016 ± 0.008 per CAG unit per year). As well as quantifying underlying dynamics

of age of onset, these measurements combined with inheritedrepeat length improve the predictive

power of the age of onset model (R2 = 69.7%), see Table 6.4.

Higher levels of somatic instability are seen in the major targets of the pathogenic process, namely

the striatum and cortex regions of the brain, making these important tissues for investigation. Leeet

al. recently investigated tissue-specific trinucleotide repeat instability and demonstrated that mul-

tiple tissue factors reflect the level of somatic instability in different tissues (Lee et al. 2010). But

interpretation of somatic mosaicism at the tissue level is hindered for some tissues by a complex

cell composition which, we show, can result in overlapping profiles of repeat lengths and hence

skewed, multi-modal distributions. Tissues, such as the brain, comprise different cells and some-

times different cell type ratios across the tissue. Cell activities other than replication are implicated

in mutation and somatic instability. Therefore, tissue differences with respect to instability must,

to some extent, be due to cell differences. Hence understanding somatic instability at the cell level,

in particularlyin vivo, is fundamental to understanding somatic instability at the tissue level and its

potential role in modifying the age of onset. It has been shown that the level of HD gene expression

is higher in neurons than in glia (Landwehrmeyer et al. 1995). Gonitel et al. demonstrated that

neurons are distinguished from non-neuronal cells in both mice and humans by the expression of

MSH3 (Gonitel et al. 2008) which, given its requirement for instability in vivo (van den Broek et al.

2002), would provide the environment for greater instability in neurons independent of pathology.

High rates of L1 transposition in neurons reported by (Singer et al. 2010) also suggest differences
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in DNA repair and damage between cell types in the human brain.

Our approach to the quantification of the mutation rates underlying somatic mosaicism did not re-

quire the cells to be physically separated (Shelbourne et al. 2007, Lee et al. 2011), a task which may

be infeasible or very time-consuming in some tissues. Estimation of mutation rates for fast and slow

mutating cells established the greater role of neurons in disease onset and the pathogenic process.

We also showed that mutation rates are individual-specific and explain some of the variance seen

in age of onset not already explained by the inherited repeatlength. Further, we revealed that the

mutation rates for the different cell types are correlated within individuals, implicating an influence

across cells which is also individual-specific. The abilityto quantify rates of mutation in complex

pathologically relevant tissues answers specific questions about the contribution of cell types to-

wards somatic instability but, equally importantly, enables comparison between HD individuals in

terms of individual-specific differences and the contribution of these differences towards disease

onset and progression. These quantitative traits have applications for use with genome-wide studies

to find the genetic factors (and environmental factors) thatcontribute towards disease. Furthermore,

they have applications for use in evaluating therapies or drugs. The extent of the variation in the

rates of mutation in individuals makes it highly likely thattherapies/drugs targeting either the DNA

or the RNA will also have variable rates of success. In futuretrials for HD and other triplet repeat

diseases, the ability, through quantification, to benchmark individuals with respect to individual-

specific factors would appear key to the evaluation and successful development of therapies and

drugs.

6.5 Materials and methods

6.5.1 Project data

The data analysed in this study ((Swami et al. 2009)) was derived from a cohort of 48 individuals

with inherited HD expansions between 40 and 48 CAGs, determined from cerebellar DNA which

has been shown to be somatically stable (Kennedy et al. 2003). Swamiet al. identified 24 individ-

uals with an extremely young age of onset and 24 with an extremely old age of onset, matched for

their mutant and normal inherited repeat lengths but with mean age of onset differing by approxi-

mately 30 years.

Small pool-PCR analysis was used to amplify the genomic DNA isolated from frontal cortex, dis-
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sected from brains obtained at autopsy of the 48 individuals, using HD gene CAG repeat-specific

primers to obtain a profile of HD CAG repeat lengths (visualised in a histogram format in Fig-

ure 6.1). For each sample, the length of the HD CAG repeat of 100 or more mutant alleles was

determined. There was no significant difference in the number of normal and mutant HD alleles

amplified. This indicates the absence of bias in the size of allele amplified and confirms that the

targets were single molecules. As further demonstrated by (Gonitel et al. 2008), through repli-

cated experiments, samples of this size can be considered sufficient to reflect the total population of

mutant alleles.

6.5.2 Mathematical model for complex tissue

We hypothesise that the distribution of CAG repeat lengths seen in frontal cortex in end-stage HD

individuals arises from two cell types, one with repeat lengths that mutate faster than the other. We

therefore obtain the probability distribution function for a mixed cell sample,P f+s
n , by combining

a distribution function for cells with fast mutating repeatlengths,P f
n

(
t, θf , n0

)
, with a distribution

function for cells with slow mutating repeat lengths,P s
n (t, θ

s, n0). Thus

P f+s
n = wfP f

n +
(
1− wf

)
P s
n, (6.1)

wherewf is the unknown percentage of cells with fast mutating repeatlengths to be inferred from

the data,t is the age when the sample was taken,θf andθs are the model parameters described

below andn0 is the inherited repeat length.

The corresponding master equations (see Chapter 2, Section2.4, for an explanation of how master

equation are derived) are

Ṗ f
n (t) = −

(
λfRn + µfRn

)
P f
n (t) + λfRn−1P

f
n−1 (t) + µfRn+1P

f
n+1 (t) , (6.2)

Ṗ s
n (t) = − (λsRn + µsRn)P

s
n (t) + λsRn−1P

s
n−1 (t) + µsRn+1P

s
n+1 (t) , (6.3)

whereλf , λs are the expansion rates per CAG repeat unit per year for fast mutating repeat lengths

and slow mutation repeat lengths, respectively, andµf , µs are the contraction rates per CAG repeat

unit per year for fast mutating repeat lengths and slow mutation repeat lengths, respectively.Rn is

the length specific factor defined in Equation (5.2), Section5.5.2, Chapter 5, and can be considered

as the biophysical capacity of a repeat length to undergo mutation. We showed in Chapter 5 that

this factor influences small alleles. Hence it is pertinent to data arising from HD individuals.
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Parameter estimation

We use likelihood methods to carry out parameter estimation, see Chapter 2, Section 2.5.4, for fur-

ther details. The likelihood is defined to be the probabilitythat a repeat length (from either cell type)

has reached the length observed given the model and its parameters. We can solve Equations (6.2)

and (6.3) numerically in order to obtain the probability distribution function componentsP f
n (t) and

P s
n (t), which are the respective probabilities that a fast mutating repeat length isn at timet and a

slow mutating repeat length isn at timet. The likelihoodL[i] is then the product over all the data

d
[i]
j , which denotes the repeat length for thejth observation from individuali, of the probability

functionP f+s

d
[i]
j

. This gives the likelihood for individuali,

L[i] =
∏

j

P f+s

d
[i]
j

, (6.4)

and the overall likelihoodL is the product over all individuals in the population,

L =
∏

i

L[i]. (6.5)

We obtain the maximum value of the likelihood by evaluating the likelihood over a broad parameter

space described in Table 6.1. For further statistical analysis, it was useful to have point estimates for

the parameters. These were taken to be the maximum likelihood values. The complexity of the com-

putation was reduced by creating libraries for the calculations common to each dataset (P f
n andP s

n

for all parameter values) and calling these over the cell weights to finalise the likelihood calculation.

6.5.3 Simulations deriving from the parameter estimations

The maximum likelihood approach provides point estimates of the parameter values which best fit

the data. We use these parameter estimates for cells with fast mutating repeat lengths and for cells

with slow mutating repeat lengths, along with the inheritedrepeat length, to simulate, using the

Gillespie algorithm adapted for our specific stochastic process (Renshaw 1991), the time dependent

distribution for 100,000 cells under the full distributionmodel at age of onset. We assume that

35% of the cells have fast mutating repeat lengths and 65% of the cells have slow mutating repeat

lengths.



Chapter 7

Availability of two DNA samples from the same individual at different

points in time is better for predicting age of onset and validates the

model

7.1 Abstract

Myotonic dystrophy type 1 (DM1) is a multisystemic disordercharacterised by the presence of my-
otonia (slow relaxation of the muscles after voluntary contraction or electrical stimulation) followed
by progressive weakness and wasting of distal limb and facial muscles, cardiac conduction defects,
cataracts, frontal balding and testicular atrophy. The observable characteristics of patients (or phe-
notype) fall into four broad clinical forms: mild or late onset disease; classic adult onset; juvenile
onset and congenital (onset at birth). Currently clinical diagnosis is based on a measure of repeat
length from blood cells but variance in modal length only accounts for between 20 - 40% of the
variance in age of onset and, therefore, is not predictive. Hence the International Myotonic Dystro-
phy Consortium have recommended that patients are not offered prognostic information based on
the current test. Recently, Moraleset al. showed that progenitor allele length, estimated using the
lower bound of the distribution as seen with small pool PCR, significantly improves the inverse cor-
relation with age of onset over the traditional modal lengthmeasure. Highamet al. have developed
a mathematical approach to inferring inherited repeat length from blood DNA samples. However
the estimates of inherited repeat length have wide credibleintervals. New data now provides blood
samples for 40 DM1 individuals at two time points. Using a mathematical approach we infer inher-
ited repeat length from the combined blood samples. We show that inherited repeat length and the
mutation rates underlying repeat length instability in blood, inferred from two samples rather than
one, are better predictors of age of onset. These results support other findings that inherited repeat
length and somatic instability are modifiers of disease onset and progression. Our results are a step
towards providing better prognostic information for DM1 individuals and their families. They may
also lead to better predictions for drug/therapy response which is emerging as key to successful
clinical trials.

138
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7.2 Introduction

So far, the mathematical models developed for DM1 (Chapters4 and 5) have been fitted to DNA

blood samples taken from DM1 affected or at risk individualson one occasion. This occasion was

most likely initiated by disease onset either in that individual or in a related individual. The DNA

blood samples assessed cover a wide range of inherited repeat lengths and ages at sampling and

capture the variation seen in repeat length distributions across a large cohort. We attribute this vari-

ation to differences between individuals in terms of inherited repeat length, age at sampling and

individual-specific rates of mutation. Using a Bayesian context (Chapters 4 and 5) we inferred the

value and credible interval of the model parameters (inherited repeat length and rates of mutation)

for each DM1 individual (see posterior probability distributions in Figure 4.3). In Chapter 2, Sec-

tion 2.7, we applied the inference method to a synthetic dataset (simulated from known parameter

values) to assess how well the method inferred parameter values. The slanted shape and size of the

credible interval for inherited repeat length and rates of mutation (Figures 2.3D and 2.3G) suggests

that one sample (between 100 and 200 cells) does not provide enough information about the un-

derlying process to distinguish clearly between inheritedrepeat length and rates of mutation. The

intuitive explanation is that similar repeat length distributions arise from different scenarios. For ex-

ample, the repeat length distribution from an individual with an inherited repeat length of 100 CTGs

and a high rate of mutation may closely resemble the repeat length distribution from an individual

with an inherited repeat length of 150 CTGs and a lower rate ofmutation. One way to distinguish

between inherited repeat length and rates of mutation wouldbe to observe the mutational process

at another point in time. Observing the process at an earlierpoint in time should provide more in-

formation about the inherited repeat length and observing the process again, at a later point in time,

should provide more information about rates of mutation over time. In particular, it is not known

whether rates of mutation are constant throughout the lifetime of an individual or whether they vary

over time. Combining both observations would be expected toprovide more information about the

trajectory of the repeat length distribution and hence overall more information about the inherited

repeat length and the rates of mutation.

Further blood samples are now available from a subset (25) ofthe original cohort of 142 DM1

affected or at risk individuals. Pairs of blood samples, taken from an individual at different points

in time, are also available from 15 Scottish individuals recruited to a new study to investigate genetic

variation. These pairs of samples (40 in total) provide an opportunity to assess repeat length changes

within an individual over time. As discussed above, two samples should improve our ability to
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distinguish between the contribution of inherited repeat length, age and individual-specific rates

of mutation. Hence we hypothesise that two samples will provide more information about the

underlying mechanism, reduce the level of uncertainty in the parameter estimation and improve the

ability of these parameters to predict disease onset and progression. We address these hypotheses by

fitting modelsM6b (as described in Chapter 4) andMα with length-specific effect (as described in

Chapter 5) to the data from the earlier time point, the data from the later time point and the combined

data from both time points. We recall that modelMα was found to be better than modelM6b at

describing the small repeat lengths (under 200 CTGs) but thesame as modelM6b at describing

repeat lengths above 200 CTGs. As we are now considering the evolution of repeat length over

several years, small repeat lengths will be relevant to manyof these individuals.

7.3 Results

7.3.1 First and second time point samples are consistent with samples from the large

cohort study (142 DM1 individuals)

As expected from our analysis of repeat length distributionin a large cohort of DM1 individuals with

different inherited repeat lengths and ages at sampling, the individual repeat length distributions

disperse over time with an expansion bias. Figures 7.1, 7.2 and 7.3 show repeat length distributions

at different time points for representative individuals. Levels of expansion depend on repeat length

and age, so clear differences are seen among individuals whovery likely inherited long repeat

lengths (e.g. Figure 7.3) but also when the time between sample collectionis high (e.g. 19 years,

see Figure 7.2).

In Chapter 5, we compared the variance to mean ratio in 142 DM1affected or at risk individuals,

taking into account age at sampling, with the predicted variance to mean ratio under the thresholded

modelM6b (see Figure 5.1). This analysis provided a useful summary ofthe data, highlighting the

highly individual nature of somatic variation. A subset of outliers (15th percentile) was significantly

dominated by individuals with small inherited repeat lengths (less than 100 CTGs). The analysis

enabled identification of other individuals whose effective length is less than their actual length,

possibly due to anomalies in their repeat length tracts. Returning to this type of analysis, we find

that both time points broadly follow the expected variance-to-mean trajectory, see Figure 7.4. There

are eight samples from four individuals who lie in the 15th percentile along with the individuals

discussed above. If the samples are consistent with the model, having corrected for repeat length and
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Figure 7.1:Comparison between repeat length distribution at the first time point (top) and at
the second time point (bottom) for individual CR27.

age, we would expect the residuals (actual results minus expected results) to be normally distributed.

Examination of the residual variance-to-mean ratio among the 36 individuals with two samples

(excluding the four outliers) show that there is no significant correlation between this residual and

age when the sample was taken (R2 = 0.6%, P = 0.52), but that there is a significant correlation

between this residual and mean repeat length (R2 = 17.75%, P = 2.28 × 10−4), see Figure

7.5. Individual differences in the variance to mean ratio over time are mostly (the exceptions are

discussed below) consistent with increases in line with expectations (Figure 7.4). This suggests that,

under the model, the parameters may change slightly as repeat length increases with the effect of

reducing the variance to mean ratio. Indeed, we observed that the variance-to-mean ratio went down

between the first and second time points for some individualswith repeat lengths over 1500 CTGs,

see Figure 7.4. However as this observation may be the resultof missing data, either because the

sample did not capture relatively rare long repeats or because the experimental technique was not

able to amplify or measure the long repeats, these samples will be reinvestigated in the laboratory.
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Figure 7.2:Comparison between repeat length distribution at the first time point (top) and at
the second time point (bottom) for individual DMGV93.

7.3.2 Combining first and second time points reduces uncertainty in the parameter

estimation

The model parameters, under modelMα, are expansion per CTG unit per year,λ, contraction

per CTG unit per year,µ, the length parameter measured in CTG units,α, and the inherited re-

peat length,n0. ModelMα was fitted to the data and the parameter values were estimatedusing

a Bayesian inference approach (see Section 7.5.2) which involved choosing prior ranges for the

model parameters (Table 7.1). As this inference approach isbased at the cell level, the samples

can be treated separately or combined (see Section 7.5.2). Hence it was possible to obtain posterior

probability distributions for each parameter for the first earlier sample, the second later sample and

the combined sample. The peak of the posterior probability distribution indicates the most likely

parameter value and the spread of the distribution defines a credible interval associated with this

estimate. Comparing the posterior probability distributions for the first sample, the second sample

and the combined sample, the credible interval tends to be wider for the second time point sample

than the first time point sample but narrower than either for the combined sample, see represen-
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Figure 7.3:Comparison between repeat length distribution at the first time point (top) and at
the second time point (bottom) for individual DMGV76.

tative individuals in Figures 7.6 and 7.7. This suggests that there is more information about the

underlying mutational process and hence model parameters in the earlier first sample than the later

second sample. This finding is consistent with a basic feature of the computational approach that

is independent of the parameter values – the variance in the length distribution increases over time,

and hence the accuracy in recovering the mean from a fixed number of sample points degrades.

We can partially compensate for this by increasing the sample size to capture increased variance at

the second time point. Our finding that combining samples from two time points further increases

the information, reducing the uncertainty in the parameterestimation, provides strong evidence that

the model is capturing time-dependent effects. This effect, of reducing uncertainty, is more clearly

seen by comparing the joint posterior probabilities for thefirst sample, second sample and combined

sample, representative results are given in Figures 7.8 and7.9.

There is virtually no instability in blood at birth, even in those with the congenital form of the dis-

ease (Wong et al. 1995, Wong & Ashizawa 1997, Martorell 1997,1998), so mean repeat length is

expected to be the inherited repeat length. It is useful to visualise the expected path of mean repeat

length over time as it passes from the inherited repeat length through the mean repeat length of
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Figure 7.4: Individual variance to mean ratio trajectories (short solid lines). The short lines
join the variance to mean ratio at time point 1 (left end) to the variance to mean ratio at time point
2 (right end). There are five individuals with variance to mean ratios that decrease over time (short
dashed lines). The trajectories of the other 35 individualsbroadly follow the expected trajectory
under modelM6b (long solid curve).

0 10 20 30 40 50 60
−40

−20

0

20

40

60

age (years) when sample was taken

re
si

du
al

 v
ar

ia
nc

e 
to

 m
ea

n

 

 

0 200 400 600 800 1000 1200 1400
−40

−20

0

20

40

60

mean repeat length

re
si

du
al

 v
ar

ia
nc

e 
to

 m
ea

n

 

 

Figure 7.5:Residual variance over mean (72 samples): Upper panel: by age when sample was
taken, linear regression fitR2 = 0.6%, P = 0.5168; andLower panel: by mean repeat length
when sample was taken, linear regression fitR2 = 17.75%, P = 2.2782 × 10−4.

the first time sample and the second time sample, see Figures 7.10 and 7.11 for two representative

individuals. Comparing the expected mean repeat length path based on the first sample, the second

sample and the combined sample, the credible interval (5th to 95th percentile) based on the com-

bined sample is generally narrower than either that based onthe first or second samples. Generally,
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Figure 7.6:Model parameter posterior probability distributions for r epresentative individual
DMGV4. Upper left panel: contraction rate per repeat unit per year,Upper right panel: net
expansion rate per repeat per year,Lower left panel: length parameter (number of repeat units)
andLower right panel: inherited repeat length (number of repeat units): based on first time point
(dashed line), based on second time point (dash dot line) andcombined samples (solid line).
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Figure 7.7:Model parameter posterior probability distributions for r epresentative individual
CR022. Upper left panel: contraction rate per repeat unit per year,Upper right panel: net
expansion rate per repeat per year,Lower left panel: length parameter (number of repeat units)
andLower right panel: inherited repeat length (number of repeat units): based on first time point
(dashed line), based on second time point (dash dot line) andcombined samples (solid line).

the credible interval for the first sample is narrower than the credible interval for the second sample.

These results suggest that the prediction for inherited repeat length is more robust when based on
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Figure 7.8: Joint posterior probability distributions for representa tive individual DMGV4.
Upper row: contraction rate per 100 CTG repeat units per year (horizontal axis) and net expansion
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and combined samples (Right column).
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Figure 7.9:Joint posterior probability distributions for representa tive individual CR022. Up-
per row: contraction rate per 100 CTG repeat units per year (horizontal axis) and net expansion rate
per 100 repeat units per year (vertical axis),Middle row: contraction rate per 100 CTG repeat units
per year (horizontal axis) and length parameter (number of repeat units),Lower row: contraction
rate per 100 CTG repeat units per year (horizontal axis) and inherited repeat length (number of re-
peat units): based on first time point (Left column), based on second time point (Middle column)
and combined samples (Right column).
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two samples rather than one and that the prediction for inherited repeat length is likely to be better

the earlier samples are taken.
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Figure 7.10:Expected mean repeat length over time fitted to two samples from representative
individual CR019. Upper panel: repeat length distribution in first sample at time taken and repeat
length distribution in second sample at time taken with meanrepeat length (light grey).Second
panel: maximum likelihood mean repeat length over time based on first sample with5 − 95th

percentile credible level shaded in grey.Third panel: maximum likelihood mean repeat length
over time based on first sample with5 − 95th percentile credible level shaded in grey.Lower
panel: maximum likelihood mean repeat length over time based on combined sample with5−95th

percentile credible level shaded in grey. The credible bands for the expected mean repeat length
were computed from the posterior probability distributions at each time point.

7.3.3 Model parameters estimated from two time points are better predictors of age

of onset

As well as inherited repeat length, (Morales et al. 2012) showed that somatic variation (adjusted

for age at sampling and inherited repeat length) also explained some of the variance in age at onset

not already explained by inherited repeat length. This result suggests that somatic instability, along

with inherited repeat length, are modifiers of disease severity. Based on this finding, we hypothesise

that the model parameters will also explain some of the variance in age at onset. We obtained point
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Figure 7.11:Expected mean repeat length over time fitted to two samples from representative
individual CR094. Upper panel: repeat length distribution in first sample at time taken and repeat
length distribution in second sample at time taken with meanrepeat length (light grey).Second
panel: maximum likelihood mean repeat length over time based on first sample with5 − 95th

percentile credible level shaded in grey.Third panel: maximum likelihood mean repeat length
over time based on first sample with5 − 95th percentile credible level shaded in grey.Lower
panel: maximum likelihood mean repeat length over time based on combined sample with5−95th

percentile credible level shaded in grey.

estimates for the model parameters from the maximum likelihood solution for the first sample, the

second sample and the combined sample and tested this hypothesis on all DM1 individuals with

two samples for whom age at onset was available (N = 36) for several parameter combinations

using linear regression analysis, see Table 7.2. The results based on the first time point sample, the

second time point sample and the combined sample were compared using the adjustedR2 statistic

which takes into account the number of parameters and hence allows comparison between predictive

models with different numbers of parameters. In all cases, the adjustedR2 statistic is higher for the

combined sample than for the first sample or the second sample. Generally (for the results where

P < 0.004) the adjustedR2 statistic is higher for the first sample than the second sample. These

results confirm our hypothesis that there is more information in the combined example resulting in

better predictors of age of onset.

In terms of which parameters or combination of parameters are best at predicting age of onset,
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Model parameters Prior ranges 

Contraction rate per CTG unit per year

( )

0 – 0.12 

Net expansion rate per CTG unit per year 

(  =   -  )

0.01 – 0.05 

Length parameter, number of CTG units 

( )

0 – 250 (or n0 if n0 is less than 250) 

Inherited repeat length, number of CTG 

units (n0)

50 – 800 

Table 7.1:Prior ranges for parameter estimation for analysis with two time points.

Age at onset versus 

N=36

Sample earlier time point t1 Sample later time point t2 Combined Sample 

Inherited repeat length 

adj R
2
= 25.0%     (P=0.0011) adj R

2
= 14.0%     (P=0.0142) adj R

2
= 34.7%      (P=9.3963E-005)

Expansion

adj R
2
= -2.4%     (P=0.6786) adj R

2
=  1.9%      (P=0.2061) adj R

2
= 14.2%      (P=0.0135)

Contraction

adj R
2
= -2.4%     (P=0.6649) adj R

2
=  1.9%      (P=0.2053) adj R

2
= 14.1%      (P=0.0138)

Net expansion 

adj R
2
= -1.9%     (P=0.5659) adj R

2
= -2.0%     (P=0.5761) adj R

2
=  1.9%       (P=0.2040)

Expansion, inherited repeat length 

adj R
2
= 28.4%     (P=0.0015) adj R

2
= 11.5%     (P=0.0508) adj R

2
= 32.9%     (P=5.2203E-004)

Contraction, inherited repeat 

length adj R
2
= 28.8%    (P=0.0014) adj R

2
= 11.4%     (P=0.0514) adj R

2
= 33.1%      (P=4.9559E-004)

Expansion, contraction, inherited 

repeat length adj R
2
= 29.4%    (P=0.0026) adj R

2
= 18.4%     (P=0.0234) adj R

2
= 48.2%     (P=2.2070E-005)

Net expansion, inherited repeat 

length adj R
2
= 28.0%    (P=0.0017) adj R

2
= 20.4%     (P=0.0087) adj R

2
= 49.6%     (P=4.7200E-006)

Table 7.2:Comparison of the relationship between age of onset, inherited repeat length and
mutation rates for myotonic dystrophy type 1. Under three scenarios: 1. when only the first time
point sample was available (column 2), 2. when only the second time point was available (column
3) and 3. when both time points were available (column 4).
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inherited repeat length and expansion are inversely correlated with age at onset whilst contraction

is positively correlated with age of onset. Consequently, age of onset is best explained (adjusted

R2 = 49.6%, P = 4.72×10−6) by a linear model with inherited repeat length and the net expansion

rate (expansion rate minus contraction rate), see Table 7.2. Under this model, age of onset would

be expected to decrease as inherited repeat length increases. In individuals with the same inherited

repeat length, age of onset would be expected to be lower in the individual with the lower net

expansion rate than in the individual with the higher net expansion rate. Over the prior parameter

values, inherited repeat length is expected to have more impact on age of onset (between 0 and 40

years) than net expansion rate (between 0 and 25 years) but both are considerable (Figure 7.12).
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Figure 7.12:The estimated inherited repeat length and the net expansionrate are modifiers of
age of onset.The relationship between inherited repeat length (number of CTG repeat units) and
net expansion rate per CTG unit per year and age of onset (years) (N = 36). The surface has been
fitted to the data using linear regression analysis (Table 7.2).

Having shown that inherited repeat length and both expansion and contraction are considerations

for predicting age of onset, we tested whether the summary statistic given by the variance-to-mean

ratio at age of sampling, which captures the effect of inherited repeat length as well as expansion

and contraction, is also a potential indicator of age of onset. The results were positive (adjusted

R2 = 55%, P = 3.14× 10−13, N = 72).
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7.4 Discussion

We now have second DNA blood samples taken at a later point in time for 25 DM1 individuals

from the original cohort of 145 DM1 individuals. We also havepairs of DNA blood samples from

15 Scottish DM1 individuals recruited for a DM1 genetic variation study. All these samples have

been sized using small pool PCR and provide an excellent opportunity to investigate repeat length

changes over time within an individual. We compared these samples, in terms of their variance-to-

mean ratio taking into account age at sampling, with the original samples. Analysis of the residual

variance-to-mean for these samples suggests that time point one and time point two are consistent

with the previous samples and that our assumption that the model parameters are fixed for individ-

uals over time is reasonable.

The model parameters were estimated under three scenarios:1. when only the first time point

sample was available, 2. when only the second time point was available and 3. when both time

points were available. The results showed that the credibleintervals for the parameter values are

narrower for scenario 1. than scenario 2. but narrower againfor scenario 3. These results support

the intuitive notion that there is more information about the model parameters in samples taken at

earlier time points, when there is less deviation from the inherited repeat length, than in samples

taken at later time points. Two samples tracking repeat length distribution over time in an individual

provided even more information about the underlying process. The improved parameter fit over

two time points also provides further validation for the models as a quantitative description of the

underlying biological mechanisms.

We hypothesized that the model parameters inferred from thedata would explain some of the vari-

ance seen in age of onset not already explained by inherited repeat length. As discussed in Chapter

5, blood is not the tissue where DM1 manifests itself, but under the assumption that levels of insta-

bility in blood may be correlated to levels of instability inmuscle and other tissues where DM1 does

manifest itself, the model parameters inferred from blood DNA may still explain age of onset. As

instability is easier to measure in blood than muscle due to the lower repeat length levels present,

this result would support a prognostic role for blood DNA. Our results showed that inherited repeat

length, expansion rate and contraction rate, inferred fromtwo blood DNA samples were predictive

of age of onset (adjustedR2 = 49.6%, P = 4.72 × 10−6).

Analysis of the relationship between age of onset and the model parameters inferred from blood

DNA suggests that differences in the estimated net expansion rate in blood could explain, on aver-
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age, up to 25 years difference in age of onset between individuals with the same inherited repeat

length. This result supports previous findings in DM1 (Morales et al. 2012) and Huntington disease

(HD) (Swami et al. 2009) that levels of somatic instability modify disease onset and progression.

However, for several reasons, we cannot propose a mechanistic cell based age of onset model for

DM1 based on blood as we did for HD brain (Chapter 5). We do not know the the mutation rates

(and the relative importance of expansion and contraction)in DM1 disease related tissues. However

it is very likely that rates of mutation are correlated between cells and tissues within an individual

– we have shown this to be the case for blood and buccal cells inDM1 (Chapter 4) and neurons

and glia in HD brain (Chapter 5). The power of the parameters inferred from blood to predict age

of onset also suggests that this may be the case. However as earlier work shows (Chapters 4 and 5)

there are disease and cell differences between the proportion of expansion events and contraction

events. In HD brain, we suggested that onset in the frontal cortex may be triggered by the neurons

with longer repeats, the important factor being the expansion rate in neurons rather than the net

expansion rate in neurons or glia. It is not known whether onset in other diseases or tissues is trig-

gered in a similar manner. In DM1 muscle, it is unlikely that onset is triggered by a threshold. Very

large repeats are seen in muscle before onset and so the threshold would have to be unrealistically

high. It is more likely that onset is dependent on average repeat length and this is supported by

our finding in this chapter that net expansion rather than expansion explain more of the variance in

age of onset. If mutation rates in tissues directly involvedin the DM1 pathology were available,

future work could involve simulation of repeat length distribution at age of onset hence providing

an approach to quantify the pathological drivers of diseaseonset and progression.

As discussed in Chapter 1, myotonic dystrophy type 1 is a multisystemic disorder characterised

by the presence of myotonia. The observable characteristics of patients (or phenotype) fall into

four broad clinical forms: mild or late onset disease; classic adult onset; juvenile onset and con-

genital (Harper 1989). Variance in modal length only accounts for between 20 - 40% of the

variance in age of onset (Mladenovic et al. 2006, Perini et al. 1999, Marchini et al. 2000) and,

therefore, is not an accurate predictive tool. The improvement in the predictive power of the es-

timated parameters, inherited repeat length and net expansion, based on the combined samples

(adjustedR2 = 49.6%, P = 4.72× 10−6) compared with those based on the first sample (adjusted

R2 = 28.0%, P = 0.0017) or on the second sample (adjustedR2 = 20.4%, P = 0.0087), along

with narrower credible intervals, suggests that the parameters based on two samples are more robust

and more useful for potentially providing patients with better prognostic information. These esti-

mates are also potential biomarkers for onset and progression and could be used in a clinical context
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to assess treatment response which, given the variable nature of DM1 and HD, is predicted to be

also highly variable. Accurately assessing treatment response is an important factor when selecting

patients for drug and therapy trials and also when deciding how long the trials should last. These

considerations are emerging as critical to the success of drug and therapy trials (McGoldrick et al.

2006). Biomarkers such as inherited repeat length and mutation rates which modify age of onset

and disease progression can provide trials with a better basis for assessing treatment response.

Obtaining two blood samples suitably far apart and then individually sizing the cells to obtain repeat

length distributions may not be a feasible strategy for prognostic testing for patients. However, from

a research perspective, this rich data is allowing us to calibrate and further validate our models and

assess the levels of variation seen in the DM1 or HD population. Through model comparison,

we have established the importance of contraction and individual variation. We now have a better

understanding of how key summary statistics of the repeat length distributions, such as mean and

variation, contribute to the underlying mutational process.
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Figure 7.13:Summary statistic variance-to-mean ratio at age of sampling is a potential indi-
cator of age of onset.The relationship between the variance-to-mean ratio at ageof sampling and
age of onset (72 samples: first and second samples combined).Actual age of onset is indicated by
the size of the circle for each sample, with the largest circle indicating an age of onset of around 60
years and the smallest circle indicating an age of onset around birth. The size of circle correspond-
ing to each age group is shown at the top of each age group. The predictive lines and associated
predicted age of onsets are derived from the data using linear regression analysis (Table 7.2).
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7.5 Material and Methods

7.5.1 Project data

The data used in this study comprises a further blood sample from 25 Costa Rican DM1 individuals

originally in the large cohort study (discussed in Chapters3 and 4) and two blood samples taken at

different times from 15 Scottish DM1 individuals recently recruited for the DM1 genome variation

study. Collecting DNA samples from blood and other tissues is ongoing in this longitudinal study.

Access to previously taken diagnostic samples is obtained from the individuals recruited to the

study with informed consent. The study is ethically approved by relevant local committees. Repeat

lengths in these blood samples were sized using small pool PCR by Dr Fernando Morales, Dr Anneli

Cooper and others from the Monckton lab.

7.5.2 Modelling approach for two samples taken at differentpoints in time

Likelihood and maximum likelihood calculation

As in previous chapters, we represent the expansion rate peryear, the contraction rate per year and

inherited repeat length byλn, µn andn0, respectively, and letPn (t) denote the probability that a

cell (from either sample) has lengthn at timet. We know that the rate of change ofPn (t) with

respect to time is governed by the master equation

dPn (t)

dt
= − (λn + µn)Pn (t) + λn−1Pn−1 (t) + µn+1Pn+1 (t) . (7.1)

Given the allele length at time zero,n0, we may approximate this infinite system of ordinary differ-

ential equations numerically by truncating at a suitably large value ofn = N and settingPn (t) = 0

for all n ≥ N + 1.

We use likelihood methods for model fitting and parameter estimation. We recall that likelihood is

defined to be the probability that a repeat length has reachedthe length observed given the model

and its parameters. For each individual in this study there are now two data samples,dj1 anddj2,

which denote the repeat length for thej1th observation taken at timet1 and the repeat length for

the j2th observation taken at timet2. We fit the model first to each dataset separately and second
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to the combined dataset. The likelihood of observing the range of repeat lengths in the first sample,

denotedL1, is the product, overdj1, of the probability of observing each repeat length, denoted

Pdj1(t1; θ), whereθ are the model parameters. Similarly, the likelihood of observing the range

of repeat lengths in the second sample, denotedL2, is the product, overdj2, of the probability

Pdj2(t2; θ). This gives the likelihoods for data samples,dj1 anddj2 respectively,

L1 =
∏

j1

Pdj1(t1; θ), (7.2)

L2 =
∏

j2

Pdj2(t2; θ). (7.3)

As the data samples are derived independently of each other,the likelihood of observing both data

samples,L, is the product of each likelihood,

L = L1L2. (7.4)

We obtain the maximum value of each likelihood (L1, L2 andL) by evaluating over a broad param-

eter space, described in Table 7.1. For statistical analysis, it was useful to have point estimates for

the parameters for each individual based on the first sample,the second sample and the combined

sample. In each case, these were taken to be the maximum likelihood values.

Bayesian parameter estimation

For further statistical analysis, we obtained posterior probability distributions for each parameter

and each individual, for each dataset separately and combined, by employing the likelihood in a

Bayesian inference framework, see Chapter 4 for further details of this approach. In summary, the

posterior distributions, under the special case of uniformpriors, for each dataset separately and

combined,π1, π2 andπ, respectively, are

π1(θ|dj1) ∝ L1(dj1|θ), (7.5)

π2(θ|dj2) ∝ L2(dj2|θ), (7.6)

π(θ|dj1, dj2) ∝ L(dj1, dj2|θ). (7.7)



Chapter 8

Conclusions and future directions

We show that it is feasible to develop new mathematical models for dynamic DNA and use modern

techniques from statistical inference on the latest datasets to calibrate and compare hypotheses and

gain biological insights. By fitting mathematical models toextensive somatic mutation datasets

arising from relevant individuals, we identify and quantify, for the first time, important features of

the underlying mutational mechanism. This is the first time that large-scale populations of dynamic

DNA data have been tackled in a systematic modelling framework and the results have significant

implications for future work.

Individual differences in mutation rates and levels of somatic instability partially explain why indi-

viduals with the same inherited repeat lengths can have widely varying symptoms and disease onset,

see Chapters 3, 4, 6 and 7. We interpret this variation as implicating trans-acting factors, either ge-

netic or environmental in DM1 and HD. Having quantified several phenotype related traits, a future

direction for this work is to use these traits to identify corresponding genetic factors. The avail-

ability of high-throughput genotyping technologies make it possible to survey the entire genome

and uncover genetic influences using a genome wide association study (GWAS). An important con-

sideration for the feasibility of a GWAS is the number of individuals required to ensure that the

associated genes are identified. Recent traditional case-control studies, where disease individuals

(case) are compared to non-disease individuals (control),have required large numbers of individ-

uals (up to 10,000 or more), primarily because, for many complex traits, the effect of genes on

the phenotype is low, less than 1.5 fold increase in risk (Hindorff et al. 2009). However we would

expect gene variants that impact the observed phenotypes toexplain more of the variability of the

trait and consequently have more effect. Hence combining quantitative traits (QTs) such as somatic

variation with a GWAS study rather than the traditional case-control approach should provide more

power to find these genes and increase our understanding of the underlying mechanism (Potkin et al.

2009). Most GWAS studies are conducted using single-nucleotide polymorphisms (SNPs) instead

156
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of the whole genome. Another factor that impacts on power is the frequency of the gene variant in

the population. In summary, the sample size needed to detecta related locus with a QT phenotype

depends on the amount of variance explained by the QT and on the SNP allele frequencies. With

conservative estimates for effect size (10%) and SNP allelefrequency (between 10% and 20%), a

sample size of between 500 and 800 should provide the required 80% power for a phenotype to be

detected (Potkin et al. 2009, Purcell et al. 2003). Obtaining this number of affected individuals is

clearly feasible as cohorts and patient registries of this size and greater have been recruited for DM1

and HD. An alternative approach would be to choose a subset ofcandidate genes, such as genes

relating the the DNA mismatch repair mechanism, rather thanthe whole genome. This reduces the

power requirement and hence the sample size, but could result in previously unconsidered effects

being missed.

Quantifying the somatic variation phenotype for this size of group (500-800 individuals) would be

challenging with existing low throughput methods, but somenext generation sequencing technolo-

gies such as PacBio are claiming to be able to sequence longerlengths, 3,000 base pairs on average,

than the standard 150 base pairs (Illumina). Taking into account flanking regions, we would require

a technology that could accurately handle at least 7,000 base pairs for DM1 and 500 base pairs for

HD, which although not currently possible, in particular for DM1, will soon be achievable. Alter-

natively, current technologies could be used, in combination with our models, to estimate average

frequencies and mutation rates at shorter microsatelliteswhich are potential proxies for expanded

repeat loci for investigating instability across the genome. The creation of datasets that combine

quantitative phenotypes with genome wide data pave the way for multivariate analysis that could

uncover complex gene reactions involved in the somatic instability.

In Chapter 4, we challenge the widely held assumption that somatic DNA instability is dominated

by expansion and reveal, surprisingly, that the observed expansion bias is the cumulative effect of

very many expansion and contraction events. There have beenno previous estimates of how often

the repeat units are inserted in the repeat length tractin vivo. Our results suggest that mutational

events happen every other day and that roughly 100 expansions and 98 contractions give rise to two

overall repeat length gains. This suggests a link with regular DNA activities, such as DNA repair

and transcription, rather than DNA replication. This is an example of how computational analysis

can generate provocative hypotheses and drive future experimental work. Given the dependency

of instability on repeat length and age, low levels of somatic instability are expected in individuals

with small inherited repeat lengths, in particular very young individuals. Follow-up work could

include looking at samples from these individuals which might allow us to observe small changes



8. CONCLUSIONS 158

that could confirm our assumption that changes are typicallyone repeat unit, and that there are

contractions as well as expansions.

Our hypothetical explanation for the repeat length instability involves DNA secondary structures

and inappropriate DNA mismatch repair. However, how often the repeat lengths mutate and what

determines the decision to expand or contract are unanswered questions. A cell system to study

this issue could be devised involving synthesised DNA molecules with adopted structures such as

loop-outs and expanded repeats. By exposing these DNA substrates to the DNA repair mechanism,

extracted from cell culture, we could determine the rate of changein vitro. Given our results, we

would expect that a high percentage of the changes were contractions. Such a system could also be

used to assess potential therapies directed at reducing instability.

We show in Chapter 3 that the relationship between repeat length and levels of somatic variation is

non-linear and complex. Concerning smaller alleles (less than 100 repeat units) found in late onset

DM1 individuals and the majority of HD individuals, in Chapter 5 we find statistical support for a

length-specific effect which suppresses mutational rates among the smaller alleles giving rise to a

distinctive pattern in the repeat length distributions. Ina novel application we also show that this

distinctive pattern may help identify individuals whose effective repeat length, with regards to so-

matic instability, is less than their actual repeat length.A plausible explanation for this distinction

is that the expanded repeat tract is compromised by interruptions or other unusual features. For

these individuals, we are able to estimate the effective repeat length of their expanded repeat tracts

and thereby contribute to the on-going discussion about theeffect of interruptions on phenotype.

The biochemical experiment discussed above could be extended to DNA structures containing in-

terruptions and we could thereby consider the effect of different types of interruptions on instability.

Some interruptions, such as CGG at the3′ end, appear to reduce instability and havecis-acting ef-

fects. Other individuals with reduced instability do not appear to have interruptions but instability

here could be due to mutations in thecis-flanking region or atrans-acting effect due to mutations

in genes on other chromosomes. Individuals, such as these, with extreme phenotypes could form

part of a study, such as exome sequencing, to find the associated genes. Recently, exome sequenc-

ing with extreme phenotypes has been successful in identifying modifiers of disease (Emond et al.

2012). Enriched frequency of the gene associated trait in the extreme phenotype group improved

the power of the study to find the modifiers in a moderate numberof individuals (less than 100).

This type of approach based on in-depth analysis of extreme phenotypes would be very applicable

to DM1 and HD.
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DM1 is a multi-systemic disease with even patients from the same family varying in age of onset,

symptoms and the progression of the disease. Our model is calibrated to blood which, although

not a primary target of the disease, is easily accessible in alarge number of patients. Blood is

also a tissue within which the repeat remains relatively stable compared with other tissues in which

the main symptoms of the disorder are manifest. Analysing blood DNA thus gives us a good

chance to estimate the progenitor allele length, which is most indicative of age of onset. Future

studies that collect data from different tissues along withmore detailed information about disease

progression would in theory allow us to investigate the underlying mechanism of instability in

different tissues and also determine stability in other tissues. As complex tissues often display

multi-modal distributions, likely reflecting the presenceof very different cell types, dissecting the

relative contribution of different cell types with different mutational dynamics is challenging. We

approach this for end stage HD brain in Chapter 6 with promising results. The very large expansions

observed in most other tissues of DM1 patients pose technical challenges but methods to size these

repeat lengths are currently being investigated.

One of the aims of this work and ongoing work is to improve prognostic information for DM1

affected or at risk individuals. In Chapter 3, we show that progenitor allele length is the major

modifier of age of onset. To measure progenitor allele lengthaccurately, a blood sample could

be recorded at birth. However this type of information is nottypically available. Instead we use

a novel computational approach to quantify objectively theprogenitor or inherited repeat length.

With blood DNA from one time point we can obtain a useful estimate and in Chapter 7 we show

that the availability of two blood samples, from the same individual taken at different points in time,

improves the estimates for both inherited repeat length andthe rates of mutation. The resulting

estimates have very promising predictive power in terms of age of onset. We also note that the

success of clinical trials depends on setting targets in terms of patient response to drugs (McGoldrick

et al. 2006). A better understanding of how an individual’s disease is likely to progress therefore

helps to set realistic targets and better evaluate potential therapies. Individuals recruited for clinical

trials are quite likely to have been diagnosed previously and hence to have diagnostic samples which

could retrospectively be analysed and provide the relevantinformation for response assessment.

Extra samples will not typically be available for individuals being diagnosed for the first time but

one option would be to take samples from different tissues, the easiest and least intrusive being

blood and buccal. Our work shows that mutation rates correlate within HD individuals between

neurons and glia so, in principle, assuming that this extends across tissues, two samples provide

more information than one about inherited repeat length andindividual specific levels of mutation.
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We have taken steps towards establishing this principle in Chapter 6 where we adapt our instability

model to infer mutation rates within two different types of cell in Huntington disease. As we build

up a clearer picture of instability across disease and tissues, synergies make it possible to transfer

learnings between datasets, as seen in Chapter 3, which extend the value of the analysis.

In summary, by developing and applying new mathematical models, we have added value to experi-

mental data and provided novel and important insights into somatic instability at both the DM1 and

HD loci. These computational studies have generated provocative hypotheses for directing exper-

imental research. Our results have important implicationsfor future therapies directed at reducing

somatic variation, which in principle could cure or slow down disease progression. As well as im-

proved prognostic information for patients and their families our models can also be used to provide

better predictions for therapeutic response within clinical trials.
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Appendix 1 
 
Representative examples of MATLAB 
programs:  

1. To calculate the probability that a 
cell has repeat length n at time t 
under model Mα; 

2. To calculate the log likelihood. 
 
 



1.   C:\Program Files\MATLAB\R2008b\work\examples\Pnmat_sol.m                      1 of 1

% returns Pn and T - the probability that a repeat length is length n 
% at time T given the parameter combination (lam, mu, alpha, n0) and a 
% finite limit for age at sampling (maxt) and n (maxn)
 
function [Pn T]=Pnmat_sol(lam, mu, alpha, n0, maxt, maxn)
 
        N=0:maxn;
        %Define matrix A where row N is the master equation dPN/dt 
        A=zeros(length(N),length(N));
        
        %calculate the length-specific effect (RN) for each N
        RN=(max(N-alpha,0).*max(N-alpha+1,0))./max(N,1).^2;
        %1.calculate diagonal in matrix A
        vx=-(lam*RN.*N)-(mu*RN.*N);
        
        %calculate the length-specific effect (RNa) for each Na    
        Na=(N(1:end-1)+1);
        RNa=(max(Na-alpha,0).*max(Na-alpha+1,0))./max(Na,1).^2;
        %2.calculate diagonal above in matrix A
        vxa=mu*RNa.*Na;
        
        %calculate the length-specific effect (RNb) for each Nb    
        Nb=(N(2:end)-1);
        RNb=(max(Nb-alpha,0).*max(Nb-alpha+1,0))./max(Nb,1).^2;
        %3.calculate diagonal below in matrix A
        vxb=lam*RNb.*Nb;
        
        A=diag(vx)+diag(vxa,1)+diag(vxb,-1); 
        A=sparse(A);
        
% define the range for age at sampling
tspan=[0:maxt]; 
 
%calculate the row position of n0
y0=zeros(length(N),1);
posn0=n0+1;y0(posn0)=1;
y0=y0(:);
 
% set options for solving the differential equations
options=odeset('Jacobian',@jacobian);
options=odeset(options,'RelTol',1e-3,'AbsTol',1e-3);
 
% call ordinary differential equation solver ode15s which returns
% Pn and T given dPN/dt (see function dydt below), tspan, y0 and options
[T,Pn]=ode15s(@f,tspan,y0,options);
 
function dydt = f(t,y)
dydt=A*y;
end
 
function dfdy = jacobian(t,y)
dfdy=A;
end
 
end
 



2.  C:\Program Files\MATLAB\R2008b\work\examples\calc_loglike.m                    1 of 2

% program to calculate log likelihood over parameter grid for two time
% points for 40 DM1 individuals
 
clear all
 
% parameter grid
% set grid search values for contraction (mu)
it1=1:6:121;
M1=size(it1,2);
 
% set grid search values for net expansion (expansion minus contraction)
% (phi)
it2=0.1:0.24:5.1;
M2=size(it2,2);
 
% set grid search values for length parameter (alpha)
it4=[0:10:150,175:25:250];
M4=size(it4,2);
 
% set grid search values for inherited repeat length (n0)
it6=[50:10:150,175:25:800];
M6=size(it6,2);
 
% calculate the number of parameter combinations
% nct=M1*M2*M4*M6-parameter combinations where n0<alpha
 
% define mu, phi, alpha, n0 for each possible parameter combination
% initialise nmuct (contraction) nlamct (expansion) nalphct (length
% parameter) nn0ct (inherited repeat length)
nmuct=zeros(nct,1);nlamct=zeros(nct,1);nalphact=zeros(nct,1);nn0ct=zeros(nct,1);
ct=0;
for jb1=1:M1
    for jb2=1:M2
             for jb4=1:M4
                 for jb6=1:M6
                    if i6(jb6)>i4(jb4)
                    ct=ct+1;
                    nmuct(ct)=i1(jb1);
                    nlmmct(ct)=i2(jb2);
                    nlamct(ct)=i2(jb2)+i1(jb1);
                    nalphact(ct)=i4(jb4);
                    nn0ct(ct)=i6(jb6);
                    else
                    end
                end
            end
       end
end
 
% define LP (log likelihood) for each sample (80) and each parameter
% combination
LP=-1e32*ones(80,ct);
 
% calculate LP for each sample (80) and each parameter combination
% lam (expansion), mu (contraction), alpha (length parameter), n0
% (inherited repeat length)



2.  C:\Program Files\MATLAB\R2008b\work\examples\calc_loglike.m                    2 of 2

for jb1=1:ct
    lam=nlamct(jb1)/100;
    mu=nmuct(jb1)/100;
    alpha=nalphact(jb1);
    n0=nn0ct(jb1);
    
                       
% call Pnmat_sol which returns Pn (the probability that a repeat length is
% length n at time T given the parameter combination) and a finite limit for
% T (74 years) and n (3000 repeat units)
 
[T Pn]=Pnmat_sol(lam, mu, alpha, n0, 74, 3000);
% Assign very small probability to exceptional parameter combinations that 
% return negative Pn values
Pn=max(F,1e-32);   
 
% calculate LP (log likelihood) for each sample (80)
% LP = sum log Pn (x,t) where x is a vector of the sample lengths 
% and t is age at sampling
% x and t are returned by calling xptall for each sample in turn
    for jn=1:80
            [x t]=xptall(jn);
            LP(jn,jb1)=sum(log(Pn((floor(t)+1),x+1)));
    end
 
end
 
% save definitions and log likelihood
save LPdata nlamct nmuct nlmmct nalphact nn0ct LP
 
 
 
 
 
        
 
 
 
 



Appendix 2 
 
Comparison of simulated cell data with 
actual cell data for six DM1 individuals. 
 



Simulations deriving from the parameter estimations 
 
The maximum likelihood approach provided point estimates of the parameter values 
which best fit the data. Here we use these parameter estimates (n0, λ, μ and a and age 
at sampling t) to simulate the time dependent distribution under model M6b using the 
simulation method outlined above, for six DM1 individuals with different ranges of 
allele lengths. We then compare the simulated distribution of CTG repeat lengths 
(measured in CTG units) at age of sampling to the autoradiographs for each DM1 
individual. This provides a visual representation of the model fit.
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Figure A1.1
Comparison of simulated cell data (A) with actual cell data (B)

Panel A. A sample computed from the calibrated mathematical model, showing the distribution of CTG repeat units (105 cells) for 
DM1 individual SCO132 (aged 18 years when the sample was taken) using parameter estimates (λ

 

= 0.94 CTGs per CTG unit per year, 
μ

 

= 0.91 CTGs per CTG unit per year, a = 2 CTGs and n0 = 514 CTGs and t = 18 years) associated with the maximum likelihood value.

Panel B. Small pool PCR analysis of repeat length variation at the expanded DM1 CTG repeat in the blood DNA of individual SCO132 
at age 18 years. The scale on the right shows the length of the fragments in CTG repeats.
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Figure A1.2
Comparison of simulated cell data (A) with actual cell data (B)

Panel A. A sample computed from the calibrated mathematical model, showing the distribution of CTG repeat units (105 cells) for 
DM1 individual CR69 (aged 14 years when the sample was taken) using parameter estimates (λ

 

= 0.27 CTGs per CTG unit per year, 
μ

 

= 0.25 CTGs per CTG unit per year, a = 50 CTGs and n0 = 399 CTGs and t = 14 years) associated with the maximum likelihood 
value.

Panel B. Small pool PCR analysis of repeat length variation at the expanded DM1 CTG repeat in the blood DNA of individual CR69 
at age 14 years. The scale on the right shows the length of the fragments in CTG repeats.
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Figure A1.3
Comparison of simulated cell data (A) with actual cell data (B)

Panel A. A sample computed from the calibrated mathematical model, showing the distribution of CTGs (105 cells) for DM1 
individual SCO107 (aged 43 years when the sample was taken) using parameter estimates (λ

 

= 0.24 CTGs per CTG unit per year, 
μ

 

= 0.19 CTGs per CTG unit per year, a = 48 CTGs and n0 = 103 CTGs and t = 43 years) associated with the maximum 
likelihood value.

Panel B. Small pool PCR analysis of repeat length variation at the expanded DM1 CTG repeat in the blood DNA of individual 
SCO107 at age 43 years. The scale on the right shows the length of the fragments in CTG repeats.
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Figure A1.4
Comparison of simulated cell data (A) with actual cell data (B)

Panel A. A sample computed from the calibrated mathematical model, showing the distribution of CTGs (105 cells) for DM1 
individual SCO95 (aged 52 years when the sample was taken) using parameter estimates (λ

 

= 0.50 CTGs per CTG unit per year, 
μ

 

= 0.49 CTGs per CTG unit per year, a = 50 CTGs and n0 = 192 CTGs and t = 52 years) associated with the maximum 
likelihood value.

Panel B. Small pool PCR analysis of repeat length variation at the expanded DM1 CTG repeat in the blood DNA of individual 
SCO95 at age 52 years. The scale on the right shows the length of the fragments in CTG repeats.
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Figure A1.5
Comparison of simulated cell data (A) with actual cell data (B)

Panel A. A sample computed from the calibrated mathematical model, showing the distribution of CTGs (105 cells) for DM1 
individual CR94 (aged 16 years when the sample was taken) using parameter estimates (λ

 

= 0.29 CTGs per CTG unit per year, 
μ

 

= 0.25 CTGs per CTG unit per year, a = 49 CTGs and n0 = 255 CTGs and t = 16 years) associated with the maximum 
likelihood value.

Panel B. Small pool PCR analysis of repeat length variation at the expanded DM1 CTG repeat in the blood DNA of individual 
CR94 at age 16 years. The scale on the right shows the length of the fragments in CTG repeats.
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Figure A1.6
Comparison of simulated cell data (A) with actual cell data (B)

Panel A. A sample computed from the calibrated mathematical model, showing the distribution of CTGs (105 cells) for DM1 
individual CR118 (aged 65 years when the sample was taken) using parameter estimates (λ

 

= 0.014 CTGs per CTG unit per year, 
μ

 

= 0.003 CTGs per CTG unit per year, a = 45 CTGs and n0 = 53 CTGs and t = 65 years) associated with the maximum likelihood 
value.

Panel B. Small pool PCR analysis of repeat length variation at the expanded DM1 CTG repeat in the blood DNA of individual 
CR118 at age 65 years. The scale on the right shows the length of the fragments in CTG repeats.
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