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Abstract

Several human genetic diseases, including myotonic dytsyrtype 1 (DM1) and Huntington dis-
ease (HD), are associated with inheriting an abnormalbyelamstable DNA simple sequence tan-
dem repeat. These sequences mutate, by changing the nufmbeeats, many times during the
lifetime of those affected, with a bias towards expansiorighHepeat numbers are associated
with early onset and disease severity. The presence of Eomstability compromises attempts to
measure intergenerational repeat dynamics and infer gesqhenotype relationships. Modelling
the progression of repeat length throughout the lifetimmdividuals has potential for improving
prognostic information as well as providing a deeper uridading of the underlying biological
process.

Dr Fernando Morales, Dr Anneli Cooper and others from the dkton lab have characterised
more than 25,00@e novosomatic mutations from a large cohort of DM1 patients usiimgle-
molecule polymerase chain reaction (SM-PCR). This richskttenables us to fully quantify levels
of somatic instability across a representative DM1 pojatafor the first time. We establish the
relationship between inherited or progenitor allele langige at sampling and levels of somatic
instability using linear regression analysis. We show thatestimated progenitor allele length
genotype is significantly better than modal repeat lendpd urrent clinical standard) at predicting
age of onset and this novel genotype is the major modifiereoatie of onset phenotype. Further we
show that somatic variation (adjusted for estimated pridgeallele length and age at sampling)
is also a modifier of the age of onset phenotype. Several isrfibrm the large cohort, and we
find that the level of somatic instability is highly heritabimplying a role for individual-specific
trans-acting genetic modifiers.

We develop new mathematical models, the main focus of tesishby modifying a previously pro-
posed stochastic birth process to incorporate possiblgamtion. A Bayesian likelihood approach
is used as the basis for inference and parameter estimdiieruse model comparison analysis to
reveal, for the first time, that the expansion bias obsermetié distributions of repeat lengths is
likely to be the cumulative effect of many expansion and kamtion events. We predict that mu-
tation events can occur as frequently as every other daghahatches the timing of regular cell
activities such as DNA repair and transcription, but not Dir¢glication.

Mutation rates estimated under the models described abeviower than expected among in-
dividuals with inherited repeat lengths less than 100 CTsEggesting that these rates may be
suppressed at the lower end of the disease causing rangeroyéesp that a length-specific effect
may be operating within this range and test this hypothegigtboducing such an effect into the
model. To calibrate this extended model, we use blood DNA ftatn DM1 individuals with small
alleles (inherited repeat lengths less than 100 CTGs) andablDNA from HD individuals who



almost always have inherited repeat lengths less than 1@BsCAhese datasets comprise single
DNA molecules sized using SM-PCR. We find statistical supfoora general length-specific effect
which suppresses mutational rates among the smallersaliei@ gives rise to a distinctive pattern
in the repeat length distributions. In a novel applicatidrthis new model, fitted to a large co-
hort of DM1 individuals, we also show that this distinctivatigrn may help identify individuals
whose effective repeat length, with regards to somatiability, is less than their actual repeat
length. A plausible explanation for this distinction istttze expanded repeat tract is compromised
by interruptions or other unusual features. For these iddals, we estimate the effective repeat
length of their expanded repeat tracts and contribute tomthgoing discussion about the effect of
interruptions on phenotype.

The interpretation of the levels of somatic instability irmmny of the affected tissues in the triplet
repeat diseases is hindered by complex cell compositioressexénd our model to two cell pop-
ulations whose repeat lengths have different rates of iouatéfast and slow). Swangt al. have
recently characterised repeat length distributions instade HD brain. Applying our model, we
infer for each frontal cortex HD dataset the likely relativeight of these cell populations and their
corresponding contribution towards somatic variation.cBsnparison with data from laser captured
single cells we conclude that the neuronal repeat lengtist likely mutate at a higher rate than
glial repeat lengths, explaining the characteristic skedistributions observed in mixed cell tissue
from the brain. We confirm that individual-specific mutatites in neurons are, in addition to
the inherited repeat length, a modifier of age of onset. Gault® support a model of disease pro-
gression where individuals with the same inherited repaajth may reach age of onset, as much
as 30 years earlier, because of greater somatic expansidespinned by higher mutational rates.
Therapies aimed at reducing somatic expansions wouldftrerbave considerable benefits with
regard to extending the age of onset.

Currently clinical diagnosis of DM1 is based on a measurespéat length from blood cells, but
variance in modal length only accounts for between 20 - 40%h@fvariance in age of onset and,
therefore, is not a an accurate predictive tool. We showithatinciple progenitor allele length
improves the inverse correlation with age of onset over fihditional model length measure. We
make use of second blood samples that are now available fioDML individuals. We show
that inherited repeat length and the mutation rates unidgrisepeat length instability in blood,
inferred from samples at two time points rather than onebatter predictors of age of onset than
the traditional modal length measure. Our results are atstgards providing better prognostic
information for DM1 individuals and their families. Theyahid also lead to better predictions for
drug/therapy response, which is emerging as key to sucdedigiical trials.

Microsatellites are another type of tandem repeat foundergenome with high levels of intergen-
erational and somatic mutation. Differences between iddals make microsatellites very useful
biomarkers and they have many applications in forensicsraeticine. As well as a general appli-
cation to other expanded repeat diseases, the mathenratidels developed here could be used to
better understand instability at other mutational hotsgoich as microsatellites.
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Chapter 1

Introduction

Over 20 genetic diseases are associated with inheritindpaoranally large number of simple se-
guence repeats in genomic DNA. Most of these diseases, ballnare caused by repeat units of
three nucleotide bases: CTG in myotonic dystrophy type 1G@AHuntington disease, and CGG
in fragile X syndrome. Collectively these diseases are knaw/trinucleotide repeat diseases and
repeats with the motif CATG comprise the largest class of repetitive elements (GePezeira

& Monckton 2006). Some expanded repeat diseases are basedram more bases. For example,
the repeat unit involved in myotonic dystrophy type 2 camdbur bases (CCTG) and in spinocere-
bellar ataxia type 10 is a repeat unit containing five bas&3 Q') (Castel et al. 2010). Generally,
the longer the inherited repeat length, the earlier symptappear (Gomes-Pereira & Monckton

2006).

Myotonic dystrophy type 1 (DM1) and Huntington disease (HD§ among the most common of
the trinucleotide diseases. Based on clinical obsergtiBM1 has an incidence of around 1 in
8,000 among Europeans (Harper 1989) but is less common ie populations including African
Americans and Japanese (Ashizawa & Epstein 1991). Inoideimca few other populations are
much higher. In the Saguenay region of Quebec the incidehB&/d is 1 in 500 (Mathieu et al.
1990). This is possibly due to founder effects arising tQfo&European migration (Yotova et al.
2005). The prevalence of HD s 1 in 10,000 people in the Americas, Europe, and Australasia
(Bates et al. 2002). The highest prevalence of HD in the wisntgtar Lake Maracaibo in Venezuela

where it affects around 700 per 100,000 of the populationx(@Vest al. 1987).

Inherited unstable DNA mutates by changing the number afatpduring the lifetime of the pa-
tient (Gomes-Pereira & Monckton 2006, Mirkin 2007, McMwr2010). This happens in both the
germline and soma, leading to repeat length gains betwewratons and variation between cells

and within tissues. There are no cures for DM1 or HD althouglesular therapy is currently mak-
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ing advances in this area (Mulders et al. 2010). The goaleaftitnent therefore is to help patients
maintain their quality of life by preventing or reducing theverity of their symptoms. Currently,
patients concerned about their own prognosis and theiodegtive choices have limited infor-
mation available to them about how their disease will pregireThus, there is great potential for
more sophisticated modelling and inference techniqguesipwdve the prognostic value of genetic
information. Understanding how these diseases progregigfément individuals is also of critical
importance in assessing treatment response and the suéadisscal trials. The more we under-
stand about the progression of disease the better we caragstiesponse and establish the efficacy

of the treatment.

1.1 Myotonic dystrophy

1.1.1 Clinical observations

Myotonic dystrophy type 1 (DM1) is the most common form of rmuwiar dystrophy in adults.
DML1 is a multi-systemic disorder characterised by the preseof myotonia (slow relaxation of
the muscles after voluntary contraction or electrical station) followed by progressive weakness
and wasting of distal limb and facial muscles, cardiac cetido defects, cataracts, frontal balding
and testicular atrophy (Harper 1989). The way DM1 affect$epts is very variable. Different
sets of symptoms are observed in different patients, samestieven within the same family. The

observable characteristics of patients (or phenotypkintal four broad clinical forms:

« mild or late onset disease: the only striking symptoms at@&aets beyond the age of 40;
x classic adult onset: patients present most symptoms hy2@gior 30s;

x juvenile onset: presence of delayed motor and growth dpwatmt, myotonia and sometimes

mild mental retardation occurs before 10 years;

*

congenital: most severe, symptoms (breathing difficuiied poor muscle tone) are clearly
present at birth. There is a high rate of neonatal mortaliti babies often dying within the

first few days of life.
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1.1.2 DM1 mutation

DM1 is transmitted in an autosomal (from one of the 22 nonesemosomes) dominant fashion,
meaning that the allele associated with DM1 could come friaheeparent and one such allele is
sufficient for the child to be affected. A typical family widiscover that it is affected by DM1 with
the birth of a child with the congenital form the disease. 8times the parents of the child will
have symptoms which are unrecognised, but more commoninttier will have the classic form
of the disease with a grandparent, usually the grandfatlagimg the mild form with just cataracts

(Harper 1989).

The mutation responsible for DM1 is an expansion of an uhst@bG trinucleotide repeat located
in the3’ untranslated region of a gene encoding a serine-threonateip kinase, namedystrophia
myotonicgprotein kinase gendMPK) and in the promoter region of ttsne oculishomeobox ho-
mologue 5 geneSIX5 located in chromosome 19913.3 (Aslanidis et al. 1992, Bretoal. 1992,
Buxton et al. 1992, Fu et al. 1992, Harley et al. 1992, Mahadeat al. 1992). A schematic rep-
resentation of the genomic organisation at the DM1 loculdsvs in Figure 1.1. The CTG repeat
is polymorphic (existing in many forms) in the general p@pian, ranging from 5 to 37 repeats
in healthy individuals, and from upwards of 50 to severaudand in affected DM1 patients. The
gene is expressed in smooth, skeletal, and heart musclesimand testis (Groenen & Wieringa

1998, Ueda et al. 2000).

The length of the inherited repeat tract correlates paditiwith the severity of the disease and
negatively with age of onset (Ashizawa et al. 1992, Tsilfetial. 1992, Harley et al. 1993, Lavedan
et al. 1993). Late onset cases with mild symptoms preserdghitbgest number of repeats (usually
between 50 - 150 repeats). Congenital cases with symptams lfirth show the largest number
of repeats (usually more than 1,000 repeats). The repedtdamssshown to be unstable in both the

germline and in the soma (Harris et al. 1996).

The sex of the transmitting parent is important in deterngrthe size of the expansion in the off-
spring. Congenital cases almost exclusively have an affiestother with the classic adult form
of the disease (Harley et al. 1993, Lavedan et al. 1993, Redrhal. 1993, Cobo et al. 1995).
However, males carrying small expansions (below 100 rejpead associated with the late-onset
form or asymptomatic, are more likely to transmit an alledsaiated with the adult-onset form,
resulting in an excess of male carriers of small allelesgmem the first generation of DM1 fam-

ilies (Brunner et al. 1993, Harley et al. 1993, Lavedan e1883, Lopez de Munain et al. 1995).
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Although the repeat usually expands (or has the effect ohmding over time), there have been

reported cases with apparent intergenerational contrectif the repeat (Ashizawa et al. 1994).

DM1-like disorders without the DM1 mutation have been retisgd and described, in particular
myotonic dystrophy type 2 (DM2), which is an expansion of astable CCTG repeat in intron 1

of the transcription factor cellular retroviral nucleid@binding protein 1 (Liquori et al. 2001).

Currently clinical diagnosis is based on a measure of repagth from blood cells but variance
in modal length only accounts for between 20 - 40% of the wagan age of onset (Perini et al.
1999, Marchini et al. 2000, Mladenovic et al. 2006) and, ¢fane, is not an accurate predictive
tool. Correlations with specific symptoms are often worsajraetectable (Merlevede et al. 2002,
Modoni et al. 2004, Gharehbaghi-Schneli et al. 2008). Hémednternational Myotonic Dystrophy
Consortium have recommended that patients are not offexghpstic information based on the

current test (Gonzalez et al. 2000).

000 congenitar
200-500 adultonset
[Sio0iateonset ™|

<100 late onset

5-37 non disease ‘

5 end 3" end

— - DMPK ...CTGCTGCTG...CTG... —

translated region untranslated region

Figure 1.1:Schematic representation of the genomic organisation at thhDM1 locus. The dia-
gram shows the location of the CTG unstable repeat id'thaetranslated region of tieMPK gene.
The non disease range and the pathological ranges of repegih$ and associated phenotypes are
shown in the boxes above.

1.1.3 Anticipation

Anticipation is defined as the occurrence of a genetic desoatl progressively earlier ages in suc-

cessive generations (Harper et al. 1992). Myotonic dykiydgpe 1 has been associated with the
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concept of anticipation since it was first described andgeised as a specific disorder (Green-
field 1911, Fleischer 1918). Until the 1980s there was copigy as to whether the phenomenon
of anticipation resulted from observational and ascemtaimt biases (Penrose 1948) or reflected a
more fundamental mechanism. Julia Bell made the first quaing analysis of the genetic aspects
of myotonic dystrophy when she assembled pedigree andalidata on all families reported up
to that time. Bell noted the extreme variability in the atiali features of myotonic dystrophy, age
at onset and death, and found evidence of anticipation lbspite advances in genetics, there was
not a genetic explanation as to how a gene could change dawaragions at this time (Bell et al.

1948).

The validation of anticipation followed the study by Hoeeilvho provided clear genetic evidence
that refuted Penrose’s explanation of bias as being soéslpansible (Howeler et al. 1989). He
found, as Bell and others had done, that families with myiotdgstrophy showed clear intergener-
ational differences with both anticipation and a close @ation between disease severity and age
at onset. Using segregation analysis he showed that peoetod the gene was close to complete

with 46% of offspring affected making it unlikely that themas an ascertainment bias.

The discovery of inherited unstable DNA sequences for ieagimental retardation (Fu et al. 1991)
suggested a potential genetic mechanism for anticipaSotherland predicted that unstable DNA
sequences might be responsible for other examples of igarigt genetic disease, including antic-
ipation in myotonic dystrophy, thus providing a spur to sbdor a similar genetic mechanism for
this disorder and others such as HD (Sutherland et al. 198d&pendently, several groups found
specific molecular abnormalities in myotonic dystrophyhvatvariable DNA insert of as much as
5 kb in length (Buxton et al. 1992, Harley et al. 1992, Aslaniet al. 1992). This finding was
followed, shortly after by the identification that the vdnie DNA insert comprised CTG repeats
(Brook et al. 1992, Fu et al. 1992, Mahadevan et al. 1992).

1.2 Huntington disease

Huntington disease (HD) is an inherited neurological disorcharacterised by progressive move-
ment, psychiatric and cognitive disturbances. Neurodeggive changes in the brain of affected
individuals follow a typical pattern, with early cellulaysfunction and loss of medium spiny neu-
rons in the striatum, followed by more generalised cell bxg®ss the brain (Graveland et al. 1985).

The cause of HD is an inherited unstable expanded CAG repeatdd in exon 1 of a large gene
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on the small arm of chromosome 4 (The Huntington’s Diseadai@wative Research Group 1993)
that results in the extension of a polyglutamine tract aiNHerminus of the encoded, ubiquitously
expressed protein called huntingtin. This lengthenedaghirie tract is thought to confer a novel
toxic property on huntingtin (Mangiarini et al. 1996) thaitiates neuron loss from the striatum, in

particular, and also the cortex (Vonsattel et al. 1985).

Affected individuals are seen with repeat lengths over 3%6€M HD (The Huntington's Disease
Collaborative Research Group 1993). But whereas in DM1ritdterepeat length levels range
between 50 and several thousand CTGs, in HD most individob&rit between 40 and 50 CAGs

and adult onset is the norm. There is not a known congenital & HD.

Whilst the age of disease onset is strongly inversely catedlwith the length of the expanded CAG
repeat length (Andrew et al. 1993, Duyao et al. 1993, Snell.€1993, Stine et al. 1993, Gusella
et al. 1996), with repeat length accounting for around 70%hefvariability in age of onset, this
reduces to less than 50% for the majority of HD patients waiheats less than 60 repeats (Myers
et al. 1998, Li et al. 2003). There is evidence for heritapitor the portion of age at onset not
explained by CAG repeat size, which provides support, aleitg several studiese(g.Li et al.
2003, Wexler et al. 2004), for genetic modifiers of age of anMeasurement of biomarkers that
contribute to variation in age of onset could be used to ifletliese genetic modifiers, which are
key targets for therapies aimed at slowing or reversing #tleqgenic process. These measurements

could also be used to assess the relative effect of any theragpecific individuals.

1.3 Expandable DNA repeats and human disease

Microsatellites are short DNA tandem motifs (1 to 6 basegairlength) that comprise: 3% of

the human genome (Lander et al. 2001). As the number of nattifisese loci is highly variable
between individuals, microsatellites make very inforwatmolecular markers with many appli-
cations in genetics, forensics and medicine. Current geneide association studies of single
nucleotide polymorphisms have not fully detected the sowfcgenetic variation associated with
complex disease. Tandem repeats, which have been showiedbafange of biological processes
including brain function and behaviour (Fondon et al. 20@83 potential candidates for this “miss-
ing heritability” (Hannan 2010). The size of microsatelit(often much greater than 75 base pairs
in length) does not make them amenable to current high thmutgsequencing methods but as next

generation sequencing makes it possible to sequence Itemgghs, microsatellites are expected to
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enjoy renewed focus.

The reason that microsatellites are polymorphic is attaibie to length changes which occur more
commonly than other types of mutations such as individusélpair substitutions, at betwed2
and 105 per locus per generation (Eckert & Hile 2009). Recent workSbet al. is the largest
study of new mutations to date comprising over 2,000 genm-tihanges in 85,000 Icelanders at
nearly 2,500 microsatellites (Sun et al. 2012). Their eatiom of the mutation rate is 1.4-2:310~8
per base pair per generation. They observe that the ratiatefral to maternal mutation rate is 3.3
and report a doubling in fathers from age 20 to 58. No assoniatith age is seen in mothers. They
also observe that longer alleles are more mutagenic that alteées and tend to decrease in size.
Mutation in tetra-nucleotides is mostly stepwise whereagdr gains are seen in di-nucleotides.
Mutation rates for DM1 are several orders of magnitude higieeurring, as described above,
not just between generations, but also at a high rate duhiedifetime of individuals. This has
led to the introduction of the descriptive term ‘dynamic’distinguish the properties of unstable
DNA sequences from other forms of mutation (Richards & Sudimel 1992). The frequency of the
mutations at the DM1 locus makes them an excellent modeésysHence DNA samples from
individuals with one of these genetic diseases provide aisual opportunity to estimate the rates

of mutation and the number of events underlying the mechanfsDNA instability.

1.3.1 Mutation analysis by single genome PCR

Measurement of trinucleotide repeat germ-line and sonmmatitations has traditionally involved
polymerase chain reaction (PCR) analysis. As single gerammadysis requires many PCR cycles
for the detection of PCR products, there is a possibility /@R artefacts might result in vitro
generated mutations. Hence specific control experimems been designed to assess the likeli-
hood of such artefacte(g.Cortopassi & Arnheim 1990, Zhang et al. 2002). To determihetiver

a single sperm mutant arose from a true germ-line event, aischat an artefact of PCR amplifica-
tion, single sperm were amplified for 6 PCR cycles, after Wihialf the PCR product was removed
and saved. For the other half, the reaction continued witimberruption. If a mutant was identified
in this half, then the other half was also checked for mutavitgants arising from germ-line event
should exist in each of the saved molecules. Mutants arghimigg the first 6 cycles of PCR would
give rise to a mixture of molecules, hence allowing true migt#o be distinguished from PCR arte-
facts. The Arnhein lab, performing this work, reports nodevice for PCR artefacts contributing

to misidentification. Another way to check for true gernelievents is to compare size distribution
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of sperm mutation with mutations in somatic DNA (Leeflang let1895). Again, this approach
led to the conclusion that the observed variation in singkrm allele sizes was due to germ-line
events. Size fractionation of template DNA prior to PCR aonéid the presence of CAG repeat
expansions in the striatum of mice that had inheritedHda(¢A%)150 gllele (Hunter et al. 2005).
This work challenges the theoretical possibility that CAgpaat expansions might occur during
PCR. The correspondence of fragment size before and aftglifiation provides evidence that
the expansions exigh vivo. In summary,n vitro PCR artefacts, discussed above, are reported to

be minimal.

1.3.2 Somatic instability

DM1 and HD repeat lengths continue to evolve during theififetof individuals, with what looks
like an expansion bias, leading to the presence of cells diffarent repeat lengths in the same
tissue, known as somatic mosaicism (Monckton et al. 199&ndwet al. 2009). An increase in the
number of repeats throughout the lifetime of an individuaitcibutes toward the progressive nature

of the symptoms (Morales et al. 2012) and similarly for HD éBuv et al. 2009).

Repeat length variation was first observed as a smear rdthera discrete band on a gel using
polymerase chain reaction (PCR) analysis, a biochemichhique in molecular biology to amplify
DNA fragments which are then loaded on to a gel dispersing Eid@ments by length (Brook et al.
1992). These results were interpreted as cells within adibaving different repeat lengths. Later,
Moncktonet al. resolved the smear into individual alleles with heterogeiserepeat sizes by using

small molecule or small pool PCR techniques (Monckton €1295).

For a DM1 individual, repeat length is larger in muscle DNArhin blood DNA (Anvret et al.
1993, Ashizawa et al. 1993, Thornton et al. 1994, Moncktal. €995, Zatz et al. 1995). Typically,
repeat length distributions for the mutant allele in DM1daddDNA are positively skewed with a
relatively sharp lower boundary below which smaller abedee relatively rare. This lower boundary
is conserved between tissues and provides an estimateefanttarited or progenitor allele length

(Monckton et al. 1995).

The association of longer repeats with more severe diseasdisease related tissues informs the
hypothesis that the expansion-biased, age-dependerisane-specific nature of somatic instability
contributes towards both the tissue specificity and therpszive nature of the symptoms. Up until

now, there are no direct data to support this hypothesis.
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The expanded CTG repeat in blood is unstable throughoutiftndirhe of the patient. Levels
of somatic mosaicism in blood from DM1 patients correlatigmificantly with age (Monckton
et al. 1995, Wong et al. 1995, Martorell 1998). These effaotsalso size-dependent, with larger
alleles showing the most variation. These studies haveshlean that somatic mosaicism in blood
DNA from babies with DM1 was minimal despite the large CTG @axgions associated with the

congenital form of the disease.

In summary, the data discussed suggests that somatic nisos@#icDM1 is expansion-biased, age

and size dependent and tissue specific in that differentessicrease at different rates, features
which contribute toward the tissue specificity and progvessature and severity of the symptoms.

This suggests that individual differences in levels of stitriastability may explain why individuals

inheriting the same repeat length may present symptomsdifdrent degrees of severity.

The expanded HD CAG repeat is also somatically unstableengoihg progressive length increases
over time (Telenius et al. 1994, Kennedy et al. 2003). HD ganiastability is also tissue-specific
with high levels found in striatum and cortex (Shelbourn@leR007) and occurs in post-mitotic
neurons (Gonitel et al. 2008). Somatically expanded HD Céyéeats are transcribed and translated
(Aronin et al. 1995, Wheeler et al. 2003, Gonitel et al. 200Byidence of somatic expansion in
tissues that are the targets of pathogenesis has given ageypothesis that somatic instability may
itself contribute to the HD pathogenic process. Experimémta genetically accurate Huntington
disease homologuddflh) knock-in mouse modelH{dh®'!1), in which an early symptomatic, HD
CAG length-dependent phenotype was significantly delagedice that lacked somatic instability
as a result of the deletion of mismatch repair gbfeh2 supports this hypothesis (Wheeler et al.

2003).

Despite differences between DM1 and HD with respect to tpeatmotif and its position, and
hence differences in the tissues affected and diseaselpgghthe uni-modal shape of sized single
molecule repeat length distributions is very similar inddoor buccal DNA (Veitch et al. 2007,
Wong et al. 1995). This suggests that there may be siméariti the mechanism underlying mu-
tation in each disease. Differences other than those litdedll type may have a molecular basis
related to flanking GC content which differ in DM1 and HD wittskightly higher percentage of
GCs in HD. There is a strong correlation between the relakgandability of these repeats and
the flanking GC content (Brock et al. 1999, Nestor & Monckt@®iP). Varying degrees of somatic
mosaicism have been reported for other related trinudeatepeat disorders (Gomes-Pereira &

Monckton 2006).
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1.3.3 What are the mechanisms of repeat expansion?

The precise mechanisms that cause repeat units to becoanedher deleted from the repeat length
tract are not known (Gomes-Pereira & Monckton 2006, McMu2@10, Mirkin 2007). Expansions
occur at different stages of human development and witlfardint tissues, and this instability has
been linked to DNA repair, transcription and replication the same pathway is not necessarily at
work within different tissues (McMurray 2010). Two basipgs of explanation have been proposed
for the expansion of simple sequence repeats. The first fut@NA replication and the second on
DNA repair. There has been some debate about whether thargirigle mechanism or more than
one mechanism involved. It is important to note that supfmrthe various trinucleotide repeat
models has arisen from different systems and differenttgpls whose properties are unlikely to

be the same.

DNA polymerase strand slippage has been proposed as thenigwhfor instability in simple se-
quence repeats (Richards & Sutherland 1994). During i, the repeats misalign, resulting
in a DNA loop that if not properly repaired is either incorpterd into the nascent strand leading
to expansion or skipped leading to contraction of the DNArglr However, investigation into
the dynamic nature of triplet repeat sequences in mouse Imdakdieved to provide an accurate
model of somatic instability observed in man, reveals a lafodbvious correlation between levels
of instability and the rates of cell turnover, with high l&vef instability observed in post-mitotic
tissues such as brain and muscle (Fortune et al. 2000, Sezakc2000, Kennedy & Shelbourne
2000, Lia et al. 1998). Further, data from a DM1 mouse tissiteie model exhibiting expansion-
biased-age-dependent somatic mosaicism found no cdorelaétween cell proliferation rate and
instability (Gomes-Pereira et al. 2001). As conceptugtipealing as the simple slippage model is,
these results suggest that the expansion mechanism cameatitely dependent on DNA replica-

tion.

A cell division-independent DNA mismatch repair (MMR) mattid mechanism has been pro-
posed as an alternative explanation for somatic trinuiclegepeat expansion and deletion (Gomes-
Pereira et al. 2004). Several components of MMR are requoegknerate expansions (van den
Broek et al. 2002, Manley et al. 1999, Savouret et al. 2003tigo& McMurray 2001, Gomes-
Pereira et al. 2004) hence implicating inappropriate DNA RINThis view hypothesises that in-
appropriate DNA MMR is triggered by a slipped-stranded DNANA) structure with comple-
mentary loop-outs of 1-3 repeat units which may form wheraexded repeat DNA re-anneals out

of register, see Figure 1.2. These alternative DNA conftiona form readilyin vitro and are very
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stable (Pearson & Sinden 1996) but have not yet been reportégdo. MMR proteins are then
recruited and bound to each loop-out independently. The Mi#Rhinery either incorporates the
loop-out by creating a gap and filling it on the opposite stran simply removes the loop-out.
The size of a potential gap is not known but experiments ukingan nuclear extracts suggests
that the MMR machinery may remove between 60-230 base pab&A (Genschel & Modrich
2003). Incorporation of the loop-out would result in a sniradirease in the number of repeat units
and removal of the loop-out would result in a small decreashhé number of repeat units. How
the decision to incorporate or remove loop-outs is made isremswered question. As loop-outs
re-form, this process is re-initiated. A bias towards ipooating the loops, no matter how subtle,

will lead over time, through the accumulation of many smafieats, to expansion gains.

1.3.4 How do repeat expansions result in disease?

The mechanisms underlying pathology depend on where tleatrépfound within the gene. The
CTG repeat unit in DM1 is found in the non-coding untranslategion at they’ end of theDMPK
gene (Buxton et al. 1992, Fu et al. 1992, Brook et al. 1992) Hlimtington disease the repeat
unit is CAG in the coding region of the huntingtin gene (Thenkington’s Disease Collaborative
Research Group 1993). Repeats found in non-coding unatadstegionsd.g. DM1) are thought
to give rise to a toxic RNA gain of function whereas repeatsfbin coding regionse(g. HD)
are often transcribed and translated, creating expandgdlptamines and a related toxic gain of

function (Castel et al. 2010).

RNA-mediated muscle disease

DML1 is hailed as the first example of an RNA-mediated dise@#igegler & Thornton 2007). This
is based on evidence that it is the RNA rather than the prateiduct of a disease gene that has the
deleterious effect on muscle. DM1 is not explained by redugression of DMPK protein (Jansen
et al. 1996). The RNA containing the expanded repeat fornateau foci in muscle cells (Taneja
et al. 1995) and expression of mutdbMPK RNA leads to abnormal regulation of alternative
splicing (Philips et al. 1998). RNA splicing is the processwhich introns are removed from
the RNA transcript and exons are joined together to make mRhNAis critical for regulation of
gene expression. Often there are multiple introns and eandsegulated splicing decisions can
yield a spectrum of alternative products for differentuiss or at different stages of development.

The outcome of alternative splicing is controlled by spigciregulatory proteins. One group of
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Figure 1.2:Hypothetical mechansism of repeat expansion based on inapgpriate DNA mis-
match repair (MMR). Inappropriate MMR is triggered when expanded repeat DNAg4gnneals
out of register (2) forming a slipped-stranded DNA (S-DNAusture with complementary loop-
outs of 1-3 repeat units (3). MMR proteins are then recruited bound to each loop-out indepen-
dently (4,5). If both events result in either the loop-ouingeincorporated or deleted then the net
result is expansion or contraction. If the events are difiethen there is no change. As loop-outs
re-form, this process is re-initiated. A bias towards ipowating the loop-outs, no matter how
subtle, will lead over time, through the accumulation of gnamall repeats, to expansion gains.
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RNA binding proteins implicated in myotonic dystrophy paglenesis are splicing factors in the
muscleblind-like (MBNL) family. MBNL proteins bind t€€UG RNA in vitro with high affinity
and are found in RNA inclusions in DM1 muscle nuclei. Consatiée evidence supports the theory
that sequestration of MBNL proteins is a critical step in gathogenesis of myotonic dystrophy
(Ranum & Cooper 2006). One effect of this disease processattdr the function of alternative

splicing factors and thereby perturb the regulation of RNécpssing for other genes.

1.3.5 Cure and treatment

Longer DM1 alleles transmitted to the next generation tésuhore severe symptoms and an earlier
age at onset, an effect compounded by somatic expansioral®sogt al. 2012). As such, suppres-
sion of somatic expansion is expected to be therapeutibaleficial and induction of contractions
potentially curative (Gomes-Pereira & Monckton 2006, €bet al. 2010). Small molecules that
may reduce somatic expansion have been identified (Gonregd& Monckton 2006) and novel
technologies (Olsen et al. 2009, Mittelman et al. 2009, f\attal. 2009) may prove beneficial
in the future. However, the feasibility of suppressing exgdans/inducing contractions remains

largely undetermined.

Further along the pathology cascade, defects in RNA altigenaplicing are potentially reversible
so there is a new focus on therapies targeted directly atgiegeRNA toxicity, which are showing
promise in preclinical models by correcting spliceopathg aliminating myotonia (Wheeler 2008,
Mulders et al. 2010). In particular the use of antisenseooligleotides which target toxic RNA is a
proof-of-principle therapy very effective in cell cultuaed mice (Lee et al. 2012). This therapeutic
approach looks very promising and two major drug compafdésyen Idec and Isis Pharmaceuti-
cals, have recently entered a highly funded (over 50 millit$Dollars) collaboration to develop

and commercialise a novel antisense drug for the treatnfdi/d.

Patient stories

Patient stories can be found online at support groups suskmasny ot oni ¢. or g and
www. muscul ar - dyst rophy. or g. These stories highlight the need for better prognostic in-

formation and display the efforts made in the hope that a wilfeventually be found.
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1.4 Mathematical models

Mathematical models aim to capture and quantify key feataf¢he biological processes of interest
in order to give insights into how a system works and how it wakpond to change. (These
principles are described more fully in (Otto et al. 2007))mathematical model is developed by
incorporating biological knowledge into precise mathaoztanguage, which can then be analysed
in a variety of ways. Most models require parameters, sontigese are known or can be measured
experimentally, but others will not be available. In theetatase, modern statistical techniques exist
to fit parameters to the data. Sometimes several differedetaonay be proposed, perhaps based on
competing biological hypotheses, and there is a need to ammpodels in terms of best fit. In the
mathematical modelling community these issues are acteasaf research. The challenge with a
specific biological process is therefore to develop a goadscbf models along with methods for
parameter estimation and model selection. We want the mmattieal model not just to reproduce

the data but to make useful hypotheses about the systemathéiectested experimentally.

The biological phenomenon of interest often concerns a oot or a system of interacting com-
ponents and how this system changes over time. A dynamicaéimdhich aims to describe how a
system changes over time can provide insights into how waffiorces act to change the component,
which in our case is repeat length. There are two broad €lzsdns of dynamical models: de-
terministic or stochastic. A deterministic model is one vehile future is entirely predicted by the
model whereas a stochastic model is based on the assuntpiombdom events affect the biolog-
ical system and so the model can only assign probabilitip@s$sible outcomes. Models which are
stochastic at the single cell level can often be well appnated by simpler deterministic models
if there are large numbers of cells involved. Stochastic efedre generally more challenging than
deterministic models in terms of computational demandalyais and data fitting. But as reduc-
tionist genetic and molecular biology produces qualityetiocourse data at single-cell resolution, the
stochastic approach is needed to underpin such a processatde complex dynamics (illustrated

in (Wilkinson 2009)).

1.4.1 Models of microsatellite evolution

In the non disease case there exist models for microsateliblution, which are summarised in
(Calabrese & Sainudiin 2005). However mutation at thess sitcurs at lower rates and typically

involves shorter lengths than in the pathological disease.cAlso these models tend to assume that
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an equilibrium in the distribution of lengths has been reakim the population. In the pathological
disease case the data suggests that the distribution dhlentime-dependent throughout the life
of a patient. This makes the analysis different as we carsmtrae equilibrium status. However
these models form a useful basis for our work. The earliestatfor microsatellite evolution is the
stepwise mutation model originally proposed by (Ohta & Kim994). Kruglyaket al. proposed
a proportional slippage model where the mutation rate asgs linearly with microsatellite length
(Kruglyak et al. 1998). Although most observed micros#éelnutations are by one repeat unit,
not all are, so Di Rienzet al. proposed a model which allows for larger mutations (Riertzal.e

1994). We refer to (Calabrese & Sainudiin 2005) for furthetads.

In a different, but related context, mathematical modelgehzeen applied to the evolution of the
CAG expansion in the huntingtin (HTT) gene in the generalytajion (Falush 2009). The mod-
elling approach (Falush et al. 2001) quantifies the rateag@ssion of the disease in the population
by measuring the mutational flow. The model can be used taidesihe repeat length change, ei-
ther from parents to offspring, or during the mitotic diaiss in the germ cells of a single individual,
or over time in a population. These models assume stepwisations and incorporate an upper
bound so that all repeats that reach the boundary are renameethe model is well behaved and
results in dynamic equilibria. For HD, they use the uppemubio represent selection against very
large repeats. Warbsgt al. looked at the haplotype background of chromosomes carthiediD
mutation and the length distribution of the CAG repeat fdfedént haplotypes within the general
population. They concluded theis-elements are likely to represent a major predisposing etem
in HD expansion. Using evolutionary modelling of the CAG eaplength within populations,
Falushet al. argue that the distribution of CAG repeat length and diséasidence can be ex-
plained by founder events, each of which involved expansforpeats to lengths that are classified
as normal by HD investigators<(28 repeats). There is no need to invatie-elements as having a
role in the evolution of HD chromosomes. Whilst the work byusa et al. provides insights into
the evolution of CAG expansion in HD, there are assumptiarthé computational model which
weaken their hypothesis. First, the assumption that negatlection acts strongly against chro-
mosomes with 50 CAG repeats is unrealistic as many indiédwith repeat lengths- 50 CAGs
typically do not become symptomatic until their thirtiesec8nd, the mutation rates are based on
sperm typing data from 26 men in a Venezuelan HD cohort witls&Gizes ranging from 37 to 62
repeats (Leeflang et al. 1999). There are no data to validate tmutation rates for chromosomes
in the intermediate allele range (27-35 CAG) or the normagjea 27). Third, CAG dependency

and upward bias of the mutation may have lower cut-off troisklictated by Okazaki fragment
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length, DNA damage susceptibility, repair excision trazé andcis-elements (Cleary et al. 2002,

Pollard et al. 2004).

These models describing the evolution of microsatelligdate to differences between generations,
and to short and slowly changing repeats rather than to ladgapidly changing repeats. Patho-
logical mutations associated with rapidly changing repasating during the lifetime of individuals
have also been studied using a mathematical modelling franke Leeflanget al. investigated
germline mutation frequency in HD using a simple Okazakjffinent processing model of trinu-
cleotide repeat instability supporting a cell-divisiorpdadent mitotic origin for mutations in sperm
(Leeflang et al. 1999). Falusdt al. show that a simple length-dependent stepwise mitotic model
can account for repeat length distribution observed inviddal sperm samples, the mutation rate
variation between samples with different somatic repeaaities and the overall pattern of mutation
observed in disease-chromosome transmissions (Falush28i04). However they also reported
discrepancies with the empirical data: underestimatiothefmutation rate for female transmis-
sion; inter-individual variation; larger than stepwis@anbes occurring at a significant rate in sperm;
and underestimation of the mutational bias in sperm sanipdes individuals with somatic repeat
lengths> 49 CAGs. More recently Veytsman and Akhmadeyeva showed thiatles theoretical
model of pathological microsatellite expansion based drpimaformation could offer an explana-
tion for the observed phenomena of somatic mosaicism,ipation and rare reversions (Veytsman
& Akhmadeyeva 2006). Although these models do not incotearacent insights recognising the
involvement of activities other than replication, suchezair and transcription (Castel et al. 2010),

or are not based an vivo data, they also form a useful reference for our work.

1.5 Statistical inference

Mathematical models have biological parameters, some aftwdan be measured experimentally
and some of which must be inferred indirectly. Parametémesion (recovering unknown param-
eters from experimental data) and model selection (ratorgpeting models that are attempting
to describe the biological processes) are important stepartls obtaining an explanatory model
that can be used for simulation and prediction. Bayesiagrémice is being used increasingly in
genetics (Beaumont & Rannala 2004) as it provides a soliddation for parameter estimation
and model selection. Model selection based on informatieory is a relatively new paradigm in
the biological and statistical sciences and is quite difieffrom the usual methods based on null

hypothesis testing. Model selection based on informatieoty is not only an intuitively attractive
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approach but also has philosophical and computationalréalgas (Burnham & Anderson 2002).
There is currently much interest (Wilkinson 2011) in usitgtistical methods to estimate param-
eters of detailed mechanistic (bottom-up) biological niedsing quantitative time course data on

the system.

1.6 Project design and aims

Currently, individuals finding out that they or their famidye affected by DM1, and wanting to
know more about the likely progression of the disease or tieproductive choices, have limited
prognostic information available to them. This is partlycéese variance in modal repeat length,
measured usually when the symptoms first present themselmsaccounts for around 25% of
the variance in age of onset (Mladenovic et al. 2006, Petial.01999, Marchini et al. 2000). Low
correlation between age of onset of symptoms and modal trégegth is in part due to the antici-
pation associated with DM1 and sampling bias caused by tiuetey for people to be tested only
when they or a member of their family presents with symptofiaus, there is great potential for
more sophisticated modelling and inference techniqguesipwdve the prognostic value of genetic
information. More broadly, an accurate model for descghime mutation mechanism in DM1 is

likely to give insight into DNA instability in general.

Advances in technologies such as DNA sequencing are gemgvaist data sets which offer exciting
opportunities for the development of quantitative methtmsinderstand biological phenomena.
Ongoing studies (Morales et al. 2012) are measuring somaigaicism in many DM1 families

and sequencing the affected region of DNA. These recenttigai@re data sets make it feasible to
develop a mathematical model which aims to explore the lyidgrmechanism of mutation and

identify the key drivers and, most importantly, have prédécpower. Increasingly there is a need
to combine numerical techniques with biological underditag to get the most out of the data. We
seek to bridge this divide by deriving new mathematical ngdesing a range of deterministic and
stochastic modelling techniques, for the genetic phenomer hypermutational DNA dynamics.

This work, as well as improving prognostic information fatients, could have an important role
in the design and interpretation of clinical trials. Forexde, by accounting for variation between

patients, we should be able to exclude outliers and thuswetre estimates for drug response.

By increasing our understanding of the mechanism undeylyirstable repeats, we also expect our

models to have general application to unstable microgatethnd other trinucleotide diseases.
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Our extensive data arises from elaborate small pool PCRysinadf repeat length in blood cells
from a cohort of 145 individuals with DM1 expansions (Mosakt al. 2012). The cohort includes
affected individuals as well as asymptomatic carriersc&ihe first application of small pool PCR
to quantify variation at the myotonic dystrophy locus in 2§Monckton et al. 1995), the technique
has become well established as robust and reliable, anddeas used to quantify triplet repeat
dynamics in a wide range of scenarios and at various loctReret al. 2000, Martorell et al. 2000,
Libby et al. 2003, Gomes-Pereira et al. 2004, Gomes-Pegeinckton 2004, Monckton et al.

1999, Zhang et al. 2002, Kennedy et al. 2003, Watase et aB)2@br each individual, Morales

et al. have used single molecule analysis to size the expanded €pé&at tract in between 100
and 350 cells (see Figure 2.1), providing a total data setvef 85,000 observations (Morales
et al. 2012). These data reveal the variation in repeat hebgtween cells and individuals. The
shapes of the distributions of repeat lengths are seen tendepn both age and typical length.
Older individuals with longer than average repeat lengthetbroader distributions than younger
subjects with similar repeat lengths, whereas older iddi&is with shorter repeat lengths have
narrow skewed distributions. Subjects from the same faorilyith potentially the same inherited

repeat length can have quite different distributions. €h#ata are highly suited for quantitative
treatment to develop mathematical models that captureapédatures of the mutation mechanism

underlying repeat length evolution.

The overall challenge of this work is to develop a matherahtinodel that sheds light on the
underlying dynamical process of DNA mutation and calibiitt® a large dataset. Unlike other
applications where only one population may be observed tiwey, by sampling many cells from
individuals we have many realisations of the same stoahpsticess at one point in time. Hence,
our data provides a unique opportunity to access direc#lyrtherent fluctuations that are required
to fit a stochastic process. This enables us to quantify aeumportant biological parameters
relating to the mechanism underlying repeat length evaiutiThis is an important step towards
understanding pathological mutations and ultimately fpliog better prognostic information for

individuals with diseases arising from these mutations.

Our model builds on Kaplaet al. who used a simple birth process to describe repeat length evo
lution and derived expressions to fit basic clinical and gjerdata (age at onset and modal repeat
length) for a range of diseases associated with expandeatsefKaplan et al. 2007). They were
able to demonstrate that somatic mosaicism contributesseaske onset and progression. How-
ever their model is concerned with only expansions. Cotitnag have been seen in cell modils

vitro (Gorbunova et al. 2003, Gomes-Pereira & Monckton 2004) apdse tissuén vivo (Gomes-
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Pereira et al. 2004) providing a basis for the assumptiohcibiatractions occur in somatic human
cellsin vivo. There is also evidence for contractions between genasatidsing in the germline
(Ashizawa et al. 1994, Monckton et al. 1995, Martorell eRI04). Thus we statistically test here
the possibility that somatic variation is due to the diffare between expansion and contraction
mutations. We use the same stochastic modelling framewsdescribed in (Kaplan et al. 2007),
but extend it to include contractions (death process) ardesihold below which expansion and
contraction does not occur. Such a threshold is consistihttiae relative stability of the normal

allele (Monckton et al. 1995).

1.6.1 Experimental approaches

Our new experiments will predominantly lie silico using precise mathematical language and
computer power to generate results. In our case the key teglgred include probability theory,

calculus and statistical inference.

* \We use a stochastic approach to model the evolution of régregth which assigns probabili-
ties to the biological events of expansion and contract8ome simple stochastic approaches
can be formally analysed but others require simulationrtiegles to realise the model out-

comes (for example Gillespie’s Algorithm).

x A variety of computational techniques are required for thmarical solution of the under-
lying equations. This includes state-of-the-art softwar@s for non-linear equations and

ordinary differential equations.

x In order to obtain estimates for the model parameters weaxlore Bayesian techniques to
calibrate the model against the biological data. This isrg meodern research area with little
specific existing software, and a large component of our vimr&lves customised design

and implementation of computational algorithms for ourcfieclass of models.

x Modelling is an iterative process and the models will be acigid to tests and refinements
following biological discussions and validations. Thisnsaccord with the highly interdisci-

plinary nature of the project.
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1.6.2 Summary of project aims

In summary, the principle aim of this work is to develop arst teew mathematical models using a
range of modelling techniques that capture the key featfrdse mutation mechanism underlying
repeat length evolution. Values for the biological parargeinforming the models will be inferred
from the data using modern Bayesian statistical methods.o8etwill be developed, in the first
instance, for blood DNA from DM1 affected individuals, arfteh extended to DNA from other
tissues. We will also fit the models to DNA from HD affectediinduals. We expect there to be
some differences in parameter values between tissues seakdis. The calibrated models will then

be employed in a number of ways:

x To investigate the possibility that expansion bias is dutaéodifference between expansion

and contraction mutations, rather than expansion alone.

x To quantify different aspects of repeat instability suchmagation rates between tissues and

diseases.

x To predict the progression of the disease in an individudhaithin families and hence con-

tribute towards the development of a useful prognostic. tool

x To reduce the unaccounted for variability between patiantsenable better stratification of

the patient cohort in clinical trials.

x To estimate the length of the inherited allele and allow ugtisit pedigree data with a view

to shedding light on important issues such as heritability.



Chapter 2

Materials and methods

2.1 Introduction

This chapter covers the construction of the mathematicaletsoand the inference method used
for fitting the models to the data. The aim of our models, inftrst instance, is to describe the
progression over time of the unstable repeat length fourtdeaimyotonic dystrophy type 1 locus
in blood DNA. The dataset used to calibrate this first modeulined in Section 2.2. In later
chapters, we describe the extension of this first model $a¢is other than blood and to Huntington
disease (Chapters 5 and 6). In Chapter 7 we adapt the modahtteehtwo DNA samples taken at

different time points from one individual.

Before using individual data to infer the parameters of a @hatlis informative to establish what
can be inferred in the best possible scenario, when the datgemerated synthetically from the
appropriate model with known parameter values. Even indieialised case, there will still be some
uncertainty in the inference process due to the finitenesseo$ample size and the impossibility
of searching exhaustively over a high-dimensional realec parameter space. Hence this type of
computational experiment helps to quantify the inheremeudiainty. In Section 2.7 the inference

method is applied to a synthetic dataset to assess how \eathéithod infers parameters.

2.2 Project data

The data analysed in this study comes from DNA blood sampddisated from patients with
myotonic dystrophy type 1 across four countries: 77 fromt&€d&ica provided by Dr Fernando

Morales, 36 from Texas, USA provided by Prof. Tetsuo Ashi&a@7 from the western region

39
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of Scotland provided by Dr Douglas Wilcox and Dr Alison Wilcand 5 from Uruguay pro-

vided by Dr Claudia Braida. All the samples were purified frperipheral blood leukocytes using
phenol-chloroform purification and proteinase K. The pasenclude affected individuals as well
as asymptomatic carriers and clinical information was iolkthfrom their hospitals. The informa-
tion collected includes age of onset if applicable, age atpiimg and a brief description of the
main symptoms. Signed informed consent was obtained foyewne in this clinical and molecular

investigation as in accordance with the relevant ethiocaiqmols.

2.2.1 Small-pool PCR

Small-pool polymerase chain reaction (PCR) analysis wesimed using oligonucleotide primers
DM-C and DM-BR as previously described (Monckton et al. 1996 Dr Fernando Morales, Berit
Adams and others from the Monckton lab to estimate the piitageallele length (the inherited
repeat length) using the lower boundary of the total allefegth distribution and to quantify the
degree of somatic variation in 145 DM1 samples. Restrictimested genomic DNA is diluted
and multiple aliquots or small pools are amplified using tERRand primers flanking the repeat.
Products are resolved by agarose gel electrophoresis aactatk by Southern blot hybridization
with an interval probe. The PCR products are sized using Kdigital Science software by
lining up and comparing the bands with known molecular wergarkers. To assess the variation
in the data, the first issue to consider is the DNA concewmatequired so that individual bands
can be distinguished from one another in the small poolgctfily the lanes on the gel. For
samples where there is less expected variaiien gamples with short repeat lengths), the level of
concentration needs to be lower (fewer bands per lane) dsdwe for longer so that the bands
are well dispersed and can be individually identified. Tgpicseveral gels are run at increasingly
lower dilutions to determine best dilution level. As a fuatitheck that all the molecules have been
accounted for, the number of molecules amplified in eachtimais expected to follow a Poisson
distribution over the number of lanes. Gels that do not canfiw these criteria are rejected. Further
details can be found in (Morales 2006, Morales et al. 201#)some typical output is shown in
Figure 2.1. The data can be visualised as allele length émzjes in a histogram format (Figure
2.2) and the mathematical models describe these distitgitn terms of the biological parameters

of interest.
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2.2.2 PCR artefacts and interpretation of the data

The original SP-PCR procedure (Jeffreys et al. 1994) waptaddor analysis of CTG variability
by (Monckton et al. 1995). Measuring somatic instabilitylest expanded repeat loci is challenging
and requires relatively sophisticated approaches. Thesieauts are still heavily used today by the
Monckton lab, University of Glasgow, and have been develdpe HD CAG repeats, principally
by the Wheeler lab, Center for Human Genetic Research, hMadical School. Even between
these two labs, as there are differences in typical repeed §ir DM and HD, there are consequently
differences in the equipment and products used. Althoughaimg comparisons between labs
would provide further reassurance about the quality of #im,dsmall-pool PCR is a well proven
method (Jeffreys et al. 1994, Monckton et al. 1995) thatipes/a robust approach to quantification
of length variation in somatic DNA. Currently, emphasisig pn checking the internal consistency
of the data, discussed below, and overcoming new challesgets as characterizing interruptions
in the expanded repeat (Musova et al. 2009, Braida et al.)20t@ main issue is whether the PCR
products are faithful representations of alleles presestrigle cells. The following observations,
from the data, provide positive support: variant lengtblal associated with expanded allele reflect
variation in an independent Southern blot analysis; thebmrmof bands are directly proportional
to quantity of input DNA; and distributions are sample-sfieand not merely a reflection of allele

length (two samples indistinguishable by SB have diffetbsitributions with small-pool PCR).

However PCR and other technical artefacts can confoundhtbaepretation of the data. PCR stutter,
the generation of shadow bands by products of the PCR anagilifit differing in length from the
original allele, is a particular issue. When analysing thadpcts of single molecules the effect of
PCR stutter is greatly reduced and has been estimated tonbesabne single repeat at 35 cycles
of PCR (Zhang et al. 2002). In our case, as well as minimisiG& Btutter by employing fewer
cycles of PCR (28), the underlying variation is typicallyrespd over many hundreds of repeats.
PCR artefacts could be included in the model likelihood a@ @eflang et al. 1996), but we con-
sider that most of the uncertainty in our parameter estonadrises from the finite sampling of a
highly diverse distribution with only a small contributidrom PCR artefacts such as PCR stutter.
Hence finite sampling is of more concern than PCR artefagtapBlying our parameter estimation
method to a synthetic dataset where the parameter valuésiangn we can quantify this level of

uncertainty and these results are discussed in Section 2.7.
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Figure 2.1:Representative data of single molecule analysis by PCR in aNDL sample. The total
number of molecules sized in this sample was 141 alleleseelhrarker lanes were run (M) with
the PCR products and the band sizes of the marker were trarexdcdo the corresponding number
of CTG repeats in the scale on the left (Morales 2006).
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Figure 2.2:Representative allele length distributions in DM1 patiens. The histograms represent
the frequencies of allele lengths (allele sizes were cadlanto 80 repeat groups). As seen in the
histograms, data from top right appears, although skewdtktdaght, to be more more normal than
the data from sample top left. Data from bottom left also appéo be relatively close to a normal
distribution. Data from sample bottom right shows a disttitn that is highly skewed to the left,

suggesting the presence of contracted alleles. The agamfiiag of each patient is also shown
(Morales 2006).
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2.3 Modelling context

We base our model on a stochastic birth and death framewoidhwias traditionally developed
to model the growth of a population (Renshaw 1991). Birth dedth models are used to count
entities over time and are applied to many types of bioldgicacesses where the individuals can
involve anything from molecules, cells, tissues, orgasisatosystems or biospheres (Novozhilov
et al. 2006). The entity, in our case a CTG repeat lengthgeted as a discrete random variable
at each continuous point in time with “birth” being the exp@m of the repeat length and “death”
the contraction of the repeat length. The use of random blasa whose value results from a
measurement on some type of random process, means that wenaerned with how likely the
events under investigation, expansion and contracti@amad assign these events a probability. We
can obtain expressions for the probable CTG repeat lengtln gts starting length, at a point in
time. We can also obtain expressions for the mean repeahlamgl variance in repeat length for

an ensemble of alleles.

The use of a stochastic process is appropriate for our datasee can interpret the individual sam-
ples as resulting from many independent (see below) runseo§ame process. The data that we
use in our study effectively provides between 100 and 306amuies of an independent stochastic
process in the somatic blood cells sampled at a single potirnie. In total, 25,000 repeat lengths
were sized, representing one of the largest databaseskifdts Of those alleles, over 20,000 are
estimated to bee novg having arisen during the lifetime of individuals. So ashasalinformation
about the mean behaviour of this process, we also have iat@mabout the variation and distri-
bution. This allows us to uncover more aspects of the unihgrlgnechanism, increase the fitting
capacity, and obtain more information about the parameffettse biological processes involved in

DM1.

Our model builds on Kaplan et al. who used a simple birth gede describe repeat length evo-
lution and derived expressions to fit basic clinical datae(@gonset and modal repeat length) for a
range of diseases associated with expanded repeats (K@hr2007). They were able to demon-
strate that somatic mosaicism contributes to disease andgirogression. However, because their
data was limited to modal summaries, it did not indicate aayation that might be present within
an individual, making it impossible to distinguish betwespansion and contraction. Hence their
work assumed that the expansion bias observed in indigdaadolely due to expanding lengths.

As mentioned above, we have information about the variadioth distribution of repeat lengths.
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This allows us to uncover more aspects of the underlying ar@sh, increase the fitting capacity,

and obtain more information about the parameters of thegichl processes involved in DM1.

We investigate here the possibility that somatic variat®due to the difference between expan-
sion and contraction mutations. We use the same stochasteltimg framework as Kaplan et al.
but extend it to include contractions (death process) andeashold below which expansion and
contraction does not occur (Kaplan et al. 2007). Such ahibidss consistent with the relative
stability of the normal allele (Monckton et al. 1995). In tbentext of this work, we are counting
the number of CTG repeats within each cell. The mathematicalel quantifies the probability of
an increase or decrease in the repeat length per unit timeiré@sgating white blood cells typically
do not replicate, we assume that the main mutational chand@sA occur in the progenitor stem
cells before cell differentiation and not in the relativelyort window between cell differentiation
and cell release into the bloodstream. At puberty, the gtetate number of hematopoietic stem
cells is estimated between 11,000 and 22,000 (Abkowitz @082, Catlin et al. 2011). These stem
cells give rise to differentiated multipotent clones thahgrate around 100 billion blood cells per
day over a few weeks before the clone exhausts (Catlin e0all)2 These circulating blood cells,
including erythrocytes and nucleated white blood cellsgHdespans typically ranging from days
to weeks. As somatic mosaicism accumulates with age (Woalg E295, Martorell 1998, Martorell
et al. 2000), variation must therefore be accumulating épibpulation of stem cells. Stem cells re-
plenish every 40 weeks or so and hence typically for the iddas in our study, many generations
will have passed since the stem cells shared a common ancAstairth, virtually no mosaicism
is seen in blood in DM1 patients, even those with the congkfotm of the disease (Wong et al.
1995, Martorell 1997, Wong & Ashizawa 1997, Martorell 1998)n this basis it is reasonable to
assume that the stem cells effectively have independerdtioniél histories. Thus we interpret our
samples of between 100-350 cells as a proxy representdtibie ¢1,000 - 22,000 ultra progenitor
stem cells with each sample informing us about the undeylpiocess. Hence the stochastic pro-
cess model is derived under the assumption that the celisindependent mutational histories and

at each continuous point in time a discrete random variageesents the repeat lengths.

Another key issue for the model formulation is the number ®f3S inserted or deleted at either
mutational event. Studies using microsatellite data (W&b&0ong 1993, Xu et al. 2000) found that
the majority of insertions or deletions were of one CTG rép&ata from HD individuals where
the alleles are smaller and there is less variation, andenher assumed that a similar mechanism
underlies DNA instability, provide an opportunity to obseithe possible number of repeat units

that might be inserted or deleted at one mutation event. Htenps of length distribution in
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these data (Veitch et al. 2007, Wheeler et al. 2007) sugbesthe inserted or deleted tracts are
predominantly one repeat unit long but may include occaditonger lengths up to 5-15 repeat
units. The same observation is made from data from DM1 iddiafs with small alleles (less than
100 CTGs) (Morales et al. 2012). So, in our case, it is a regdenvorking assumption that the
birth and death process treats one CTG repeat as the individit and we associate “birth” with
expansion and “death” with contraction. In effect we coasidhether the observed distributions
from individuals could have arisen from the cumulative efief small incremental gains and losses

of one repeat length.

The overall aim of this work is to develop and test a matherahtinodel that sheds light on the
underlying dynamical process of DNA mutation and calibiiate a large data set. Unlike other
applications where only one population may be observed tover, by sampling many cells from
individuals we have many realisations of the same stoahpsticess at one point in time. Hence,
our data provides a unique opportunity to access directlyrtherent fluctuations that are required
to fit a stochastic process. Since a likelihood arises niftuiram the stochastic process, both
maximum likelihood and Bayesian methods lend themselvdititty the data to the model. We
are able to quantify several important biological paramsetelating to the mechanism underlying
repeat length evolution. This is an important step towardietstanding pathological mutations and

providing better prognostic information for individualstivdiseases arising from these mutations.

2.4 Mathematical model

The mathematical modelling approach commences by quargifyre probability of an increase
or decrease in the repeat length in one cell. Suppose thdernlgth, defined as the number of
consecutive CTG units, i8 at timet. Let A be the rate of expansion above the threshold length,
a, 4 the rate of contraction aboveands the increment step size. Then at time 6t, wheredt is

small:

* the probability that the length is+ s = A (n — a) dt,
« the probability that the length is — s ~ u (n — a) dt,

x the probability that the length is~ 1 — (A + i) (n — a) dt.
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For reasons covered above, the increment stepssize@ur model is one CTG unit. However the

model could readily be extended to other step sizes by apgpte@djustment to these expressions.

Let P, (t) denote the probability that an allele has lengthat time¢. Then the rate of change of

P, (t) with respect to time is governed by the master equation:

dP, (1)
dt

— ) (=) Py () +A(n—a—1) Py () +p(n—a+1) Py (1), (2.1)

where P, (t) = 0 for all £ < a, sincen > a att = 0 for all individuals with the pathological
condition. Given the allele length at time zero, we may sthig infinite system of ordinary dif-
ferential equations numerically by truncating the systéw suitably large value of = N, setting

P,(t)=0foralln >N +1.

We may then derive expressions for repeat length méanand variance}/, from the first and

second moments d¥, (¢), denotedM (t) and M, (t), respectively, and defined as

M(t) = > nP(t), (2.2)
My (t) = z_:nan(t). (2.3)

Differentiating both (2.2) and (2.3) with respectttand substituting (2.1) into the result leads, after

some manipulation, to

d]\gt(t) = ()‘ - M) (M (t) —a), (2.4)
d]\?t(t) = 20— Me () + D+ p—2aA =@M () —a(A+p).  (25)

Solving (2.4) and (2.5) with\/ (t =0) = ng andV (t = 0) = 0, whereny is inherited repeat
length, and settind (t) = M, (t) — (M (t))? for the variance at timegives the analytical expres-
sions (2.6) and (2.7).

For completeness, we mention that this modelling approaa atso be extended to a more gen-
eral setting that allows a range of possible increments tmé@porated. Here, a general state-

dependent function g could be supplied such that, givertthem@t timet, at timet + ot:
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x the probability that the length is~ g (n, i) dt,fori =0,1,2,...,n —1,n+1,n+2,...,

+ the probability that the length is ~ 1 — X, ;g (n, ) 6t
Here, the non-negative functignmust be chosen so thE@I;fO,i#ng (n,1) ot is finite. The form of
the functiong would, of course, require justification from a biologicalrgmective, and the extra

freedom of specifying a range of possible expansion andactitn increments would come at the

expense of an increase in the number of unknown model pagasnet

2.4.1 Analytical expressions for mean and variance

Equations (2.6) and (2.7) link measurable quantities ointlean and variance found in the blood

DNA samples to the biological parameters which underlienieehanism of repeat length evolution:

M(@t) = (ng—a)eP M 4q, (2.6)
V() = (np—a) (H) (eQ(A_“)t - e()‘_“)t) , (2.7)

where we recall thatis the age of the individual in years when the samples weteatel n is the
repeat length at = 0, which is referred to as the inherited or progenitor repeadgith, A\ andy are
the rates of expansion and contraction, per CTG unit per, yespectively, and is the threshold

above which non-negligible expansion and contraction kgcu

We see from (2.6) that mean repeat length changes expdhentiar time at a rate determined by
the difference denoted = A — . It follows that values fo’ andy: cannot be extracted individually
from the mean data alone. Only the difference can be fousduhy. However the variance depends
on the difference betweenandy and also on the sum,+ ;.. As our data comprises many samples,
resolved at the cell level, from individuals, it is possitdestimate both mean and variance, making
it feasible to fitA — x and A + p and hence obtaiin and i individually. However, in the next

subsection, we describe a more systematic, likelihoodddapproach to parameter estimation.
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2.5 Model comparison and parameter estimation

2.5.1 Likelihood

We use likelihood methods to carry out model comparison anampeter estimation. The likelihood

is defined to be the probability that a repeat length has ezhtife length observed given the model
and its parameters. We can solve Equation (2.1) numerigalrder to obtain the probability
distribution functionP, (t), which gives the probability that a repeat lengtmist time¢. The
likelihood Ll is then the product over all the daﬂg}, which denotes the repeat length for the
jth observation from individual, of the probabilitdey] (tli1; 1), wheredl! are the model
parameters for that individual anti! the age of the individual when the data sample was taken.

This gives the likelihood for individual,

L =TT Py 0), (2.8)

j J

and the overall likelihood. is found by taking the product over all individuals in the ptgion,
L=][Lb. (2.9)

The model parameters comprise the contraction ratethe expansion minus contraction raté!,

the thresholdgl!, and the inherited repeat Iengﬁtg}.

As a proof-of-principle for the inference procedure, wefpened computational experiments on an
appropriate amount of synthetic data, generated from tdenying stochastic birth death process
with known parameter values (see Section 2.7). This givesusdication of the level of certainty

arising from the inference procedure.

2.5.2 Evaluation of the likelihood

The likelihood, Equation (2.9), is calculated numericallsing a computer algorithm. A repre-
sentative MATLAB code with comments for evaluating the likeod for an individual sample is
provided in Appendix 1. The main numerical method usetf15sis based on a family of implicit

schemes, known as backward differentiation formulae (BDR& program implements the formu-
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lae between orders one and five, adaptively choosing botbrtiez and the discretisation level (step
size) in order to meet the specified error tolerance. The BiDiily are examples of implicit lin-
ear multi-step methods, widely used because of their exttedtability properties (Shampine et al.

2003)

It is computationally very expensive to evaluate the fldelihood equation for reasons to do with
the stiffness of the ODE problem. In Chapter 4, we therefoop@se a pragmatic approach, namely
to approximate the likelihood function in order to explohe full parameter space and to narrow
down the parameter space on which we calculate the fulliiged, thereby making the prob-
lem computationally feasible. Our approximation arisesfiquasi-likelihood theory (Wedderburn
1974) where the relationship between mean and varianceecardd to inform a quasi-likelihood
which has the required properties of a full likelihood. Thé fletails of this approach are found in

Chapter 4.

2.5.3 Model comparison

The Akaike information criterion (AIC) is used to assessgbedness of the fit of the model (Akaike
1974). AIC uses the maximised value of the likelihood of thasled, L,,,..., penalised by the number

of model parameters;, to rank models thus
AIC = 2k — 2log Lyae. (2.10)

As an alternative, the likelihood ratio test statistic candstimated for pairs of nested models
with maximised likelihoodsL,,,..1 and L,,.> and number of independent parametersand k-

respectively, as follows
2 (log Lmaa:Q - log Lmaa:l) . (211)

This statistic has asymptotically;ga?,m7,€1 distribution under the null hypothesis (Cox & Hinkley

1994) thus it can be established whether the differencedmrihe two models is significant.

We obtain the maximum value of the likelihood by evaluating likelihood over a broad parameter
space, as illustrated in Tables 4.1, 5.1 and 6.1. Maxinoisadf the likelihoodZ in Equation (2.9)

is equivalent to the maximisation &f), in Equation (2.8), of each dataset from an individual.
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2.5.4 Bayesian parameter estimation

We use a Bayesian framework for parameter estimation. B#yesrem (Sivia 2006) states that

the posterior distributiony, of the parameter8” given the observed daté” is

A A d[l]w 7] p
x (00)a") = al ? G ) (2.12)
J

£(47)

where L (dg-ﬂ\e["]) is the likelihood of the data given the parameter valueé?m) is the prior
distribution of the parameters representing our initididie about the parameter values before
observing any data anfl (dg.ﬂ) is the normalising constant that makes the posterior Higtdn

a valid probability function, otherwise interpreted as thedel evidence. Equation (2.12) has the

important consequence
™ (9[2‘1|d§.“) x L (dg.“w[ﬂ) D (am) . (2.13)

In the special case of a uniform priqr,(em) is greater than zero only for a truncated range of
6ll, see Table 4.1, and hence a constacén be chosen so that the probabilities sum to unity and

Equation (2.13) further simplifies to
- (a[ﬂ |d§.“) x L (dg.“ |9[Z‘1) : (2.14)

Note that in this case, the posterior mode of the distriloutids equal to the maximum likelihood
estimator of the parameter. Also, the posterior distributtan be said to be data-driven as the

likelihood now dominates the posterior.

2.5.5 Hierarchical Bayes

The underlying distribution of two parameters of particutderest,.. and¢, within the population
can be inferred using a hierarchical Bayesian approach. dalenze that these are gamma distri-
butions, in shape, chosen because the gamma distributitefireed by two hyper-parameters and
hence offers flexibility as to the shape of this distributi@ve then infer these hyper-parameters,

andg,, for parametey, ando, and;3,, for parametetp, by a modification to the posterior probability
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distribution function

w (607 oc L (169 p (67, B g, Bo) p () p (B p () p (Be) . (2.15)

In effect we are weighting the likelihood on the strengthhaf support for the parameters of interest

from the underlying gamma distributions.

2.6 Other techniques

Sections 2.4 and 2.5 above outline the main mathematicasttidtical tools used. Further tech-

niques are introduced in context in the following chapteith their related experiments and results.

2.7 Synthetic experiments

One hundred datasets, of a comparable size to the indivithia] were simulated using the Gille-
spie algorithm adapted for our specific stochastic procagsthe model parameters preassigned
(Renshaw 1991, Wilkinson 2011). The inference procedwescribed in detail in Chapter 4, Sec-
tion 4.5.2, was then applied to infer the parameters back fiee synthetic data set, as illustrated

in Figure 2.3.

2.7.1 Simulation method

A pseudo code for the simulation of repeat length evolutiorseveral cells using the Gillespie
algorithm is as follows:
for each repeat lengttho
initialise time, ¢, to 0 and repeat lengthly, to the inherited repeat length value
while ¢ is less than the age of the individual when the sample was @&e
setAy to A x (V —a)anduy topu* (N — a)

choose a numbeér; at random uniformly in0, 1)

if Y < )\N)\‘:'VMN then

the next event is an expansion aNds updated taV + 1

else
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the next event is a contraction andis updated taV — 1
end if

choose a numbeér; at random uniformly in0, 1)

the time to the next eventis _A}V%(MY;) andt is updated td + s
end while
end for

One hundred synthetic datasets were simulated from thenskpaand contraction model with

parameters,, = 160, u = 0.55, ¢ = 0.0142, a = 40 andt = 30.

Root mean square error (RMSE) was calculated for the maxitiketihood (ML) solution and the
posterior mean so that these potential point estimatesl dmibssessed. Results are shown as an
absolute distance and percentage difference of the uilgitiue parameter, see Table 2.1A. The
ML estimate has smaller estimated bias than the posterianrfog inherited repeat length and net
expansion, but in all cases the posterior mean has lower RNi&guantify the possible effect of
PCR stutter (small errors in sizing alleles, discussed oti&® 2.2), random unit amounts (-3,-2-1,
0, 1, 2, 3) were added t the dataset to recreate a situatiorevA@R stutter led to either lower or
higher estimates. This does not appear to affect the agcofdbe parameter inference, see Table
2.1B. In summary, we attribute the uncertainty to finite simgpand would expect this to reduce if

larger samples could be obtained.

A histogram of one illustrative synthetic dataset is showifrigure 2.3. The same data is shown
as a cumulative distribution, along with the inferred fitlwihe maximum likelihood value. The
inferred parameter values correspond well with the actalales used to generate the synthetic data

set and provide a good fit to the data.

We investigated the posterior probability distributionsdéach parameter, marginalised by summing
over all the other parameters, see Figure 2.3. The shape gfasterior probability distributions
shown in Figure 2.3 convey the uncertainty in the parameséémation. The crosses on each hori-
zontal axis indicate the parameter value used to geneitagedbta. Given that in this case we know
the model that generated the data, the distribution reftBetstochasticity of the process and the
sampling error. We see in Figure 2.3 that the credible ialdor n is fairly large, lying between 50
and 250 repeats, similarly far, between 0.001 and 0.06. Further analysis of these two [deas
suggests that they are inversely correlated through theem@bnsequently, these parameters are

really only informative when considered together. Thislddae rectified by using prior knowledge
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aboutn to improve the result fop. For u the distribution is clearly peaked, which suggests that
this parameter is more well determined than the other pasmeT he inference for parameteis

more clearly viewed jointly with parametey with a peak just below 50.

A. N=100 simulated datasets (t = 20 years)

Parameter True MAXIMUM LIKELIHOOD POSTERIOR MEAN
value mean RMSE STD RMSE mean RMSE STD RMSE
%true value %true value
contraction, u 055| 0.6217 0.1422 0.1234 0.2586 0.6165| 0.0904 | 0.0616 0.1644
net expansion, A - |1 0.0142 | 0.0101 0.0081 0.0070 0.5688 0.0088 | 0.0054 |  0.0004 0.3803
threshold, a 40 49.98 | 153010 | 11.6567 0.3825| 456905 | 6.2039| 2.4836 0.1551
inherited repeat, ng 160 | 17292 | 221088 | 18.0312 0.1382 | 1752089 | 15.6817 |  3.8409 0.0980

B. N=100 simulated datasets (t = 20 years) + random repeat unit(s) to recreate PCR stutter

Parameter True MAXIMUM LIKELIHOOD POSTERIOR MEAN
value mean RMSE STD RMSE mean RMSE STD RMSE
%true value %true value
contraction, u 055| 0.6223 0.1411 0.1218 0.2566 0.6167 | 0.0904 | 0.0614 0.1644
net expansion, A - i 0.0142 |  0.0100 0.0081 0.0070 0.5739 0.0088 | 0.0054 |  0.0004 0.3800
threshold, a 40 4936 | 152250 | 12.0684 0.3806 | 45.1744| 57936 | 26192 0.1448
inherited repeat, ng 160 | 17252 | 21.8833 | 18.0384 0.1368 | 174.6930 | 15.1869 3.8609 0.0949

Table 2.1: Analysis of the inference method. Root mean square error (RMSE) was calculated
for the maximum likelihood (ML) solution and the posterioeam so that these potential point

estimates could be assessed. Results are shown as analkistfaimce and percentage difference
of the underlying true parameter.

The multi-modality seen originally in Figure 2.3D, still jpgars, when a finer grid is used, in ap-
proximately 1 in 5 cases, see the joint posterior probahilistribution for the contraction rate and
inherited repeat length, dataset 20, see Figure 2.4. Refew the marginal posterior probability
distribution for the contraction rate and inherited regdarately, see Figure 2.5, an interpretation

of this multi-modality is the ridge feature of the marginalsgerior for inherited repeat length.



2. MATERIALS AND METHODS 55

150

100

distribution

50

probability density
cumulative distribution

0 100 200 300 0 100 200 300 400 500 600 0 200 400 600 800
n #CTG repeats #CTG repeats

D E F

w
Ind
o w

u
-
(52
probability density
- : N
n

o
o

S
uX

0 100 200 300 0.

0.06 0.06

30

0.05 0.05 25

0.04 0.04 20

S 0.03 15

0.02 0.02 10

probability density

0.01 0.01

300 1 15 2 25 3 001 0.02 003 0.04 005 0.06

H ]

Figure 2.3: Synthetic data and inference results from the expansion andontraction model
with parameters: p = 0.55, ¢ = 0.0142, ng = 160, a = 40 and ¢t = 20. B. The distribution of
this synthetic dataset. C. The same data is shown as a civauladtribution (dark line), along with
the inferred fit with the maximum likelihood value (light &éh These inferred parameter values are:
w = 0.61, ¢ = 0.015, a = 50 andny = 160. The individual aget, is taken as known and not in-
ferred. The posterior probability density distributions parameters, the inherited repeat length,
1, the rate of contraction per CTG repeat per year, aitlde rate of expansion minus contraction
per CTG repeat per year, marginalised for each parametettiwether parameters, are shown in
panels A, E and | respectively. Marginalised joint probibitlistributions for parameter pairg,
andng, ¢ andng, ¢ andu, andngy anda, the threshold over which expansion and contraction occur
are shown in panels D, G, H and F as contours with the dark b digection representing increas-
ing probability. The crosses on each horizontal axis irditiae parameter value used to generated
the data. The shape of the distributions convey the unogytai the parameter estimation. Given
that in this case we know the model that generated the datdjdtribution reflects the stochasticity
of the process and the sampling error.
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Chapter 3

Somatic instability of the expanded CTG repeat in myotonic gstrophy

type 1 is a heritable quantitative trait and modifier of disease

Some of the results in this Chapter (Sections 3.3.1 to 3t%a@¢ been published, see Morales, F.,
Couto, J.M., Higham, C.F., Hogg, G., Cuenca, P., BraidaWilson, R.H., Adam, B., del Valle,
G., Brian, R., Sittenfeld, M., Ashizawa, T., Wilcox, A., Wix, D.E. and Monckton, D.G. (2012),
Somatic instability of the expanded CTG triplet repeat irotagic dystrophy type 1 is a heritable
quantitative trait and modifier of disease severtyuman Molecular Genetics (21), 3558 - 3567.

3.1 Abstract

The expanded CTG repeat in myotonic dystrophy type 1 (DMbwshextremely high levels of
somatic instability. These levels are age-dependenttHethgpendent and tissue-specific. The pres-
ence of somatic instability compromises attempts to mesdstgrgenerational repeat dynamics and
infer genotype-phenotype relationships. Using singldeade PCR, Moralest al. characterized
more than 25,000e novosomatic mutations from a large cohort of DM1 patients. Ttuis dataset
enables us to fully quantify levels of somatic instabilitgr@ss a representative DM1 population
for the first time. We establish the relationship betweenreged progenitor allele length, age at
sampling and levels of somatic instability using linearresgion analysis. We show that the esti-
mated progenitor allele length genotype is significantlgdsehan modal repeat length (the current
clinical standard) at predicting age of onset and this ngeelotype is the major modifier of the
age of onset phenotype. Further we show that somatic varigidjusted for estimated progenitor
allele length and age at sampling) is also a modifier of theoAgaset phenotype. Several families
form the large cohort, and we find that the level of somatitaibidity is highly heritable, implying

a role for individual-specificrans-acting genetic modifiers. Identifying thesans-acting genetic
modifiers will facilitate the formulation of novel theragi¢hat curtail the accumulation of somatic
expansions and may provide clues to the role these factysmpthe development of cancer, ageing
and inherited disease in the general population. We alssiigate whether our findings can, in
principle, be transferred to another dataset.

57
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3.2 Introduction

This chapter focuses on the relationship between genotygelaenotype in myotonic dystrophy
type 1 (DM1) and covers, in the first part of the chapter, tlatisttcal analysis prepared for the
publication of our findings (Morales et al. 2012). This prisna@ataset is used here to answer
questions about the relationship between inherited rdpagth (a novel genotype) and the clinical
manifestation of disease (phenotype). In the second paineathapter, we investigate transferring
the findings from this dataset to another dataset to add valdiee analysis. In later chapters,
which form the main body of the thesis, we use this rich datiase different manner, to calibrate

mathematical models and address a different set of question

As discussed in Chapter 1 (Introduction) affected DML ifdiials present with expansions from
50 CTGs to up to several thousand repeats (Brook et al. 199®2)ger alleles are associated with
a more severe form of the disease and an earlier age of onaatefHet al. 1992, Harley et al.
1993, Redman et al. 1993). The expanded CTG repeat in DM1sskatwemely high levels of
somatic instability. These levels are age-dependenttHetigpendent and tissue-specific (Anvret
et al. 1993, Ashizawa et al. 1993, Thornton et al. 1994, Mttlet al. 1995, Wong et al. 1995,
Martorell 1998). Hence the allele lengths observed when & Bample is taken depend not only
on the progenitor allele length but the age of the individuben, and the tissue from which, the

DNA sample is taken.

Currently clinical diagnosis is based on a measure of magfadat length from blood cells, but
variance in modal length only accounts for between 20 - 40¥%efariance in age of onset (Perini
etal. 1999, Marchini et al. 2000, Mladenovic et al. 2006),dhdrefore, is not an accurate predictive
tool. Correlations with specific symptoms are often worseyraletectable (Merlevede et al. 2002,
Modoni et al. 2004, Gharehbaghi-Schneli et al. 2008). Hémednternational Myotonic Dystrophy
Consortium have recommended that patients are not offexghpstic information based on the
current test (Gonzalez et al. 2000). We hypothesise thatque genotype-phenotype correlations
have been compromised by failure to take into account thelagendent, expansion biased nature

of somatic mosaicism.

Single-molecule based small pool PCR approaches resadvhdterogeneous smear of CTG re-
peats into the discrete alleles present in individual g@llenckton et al. 1995). This provides a
guantitative measure of repeat length variation and rewbal underlying shape of the distribution

of repeat lengths. Typically, repeat length distributifarsthe mutant allele in DM1 blood DNA are
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positively skewed with a relatively sharp lower boundariobewhich smaller alleles are relatively
rare. This lower boundary is conserved between tissuestiorerand provides a useful estimate
for the inherited or progenitor allele length (Monckton et1®95). A key aim in this chapter is to
estimate progenitor allele length and measure the total tevallelic variation in blood DNA in a

large number of DM1 patients using single-molecule baseallgool PCR data. We quantify the
effect of progenitor allele length and age at sampling onaa@nvariation and the relationship of
these effects with disease severity. We also investigatethehn variation in somatic instability is

heritable.

If our hypothesis that previous genotype-phenotype caticels have been compromised by failure
to take into account the age-dependent, expansion biaserk rd somatic mosaicism holds then
there is a wealth of data to revisit. For example, a largeystt@®3 neuromuscular disease clinics
in the United States was initiated in April 1997 with on-gpifollow-up and comprises 406 DM1

affected individuals (Groh et al. 2008). At the end of thiggter, we investigate whether find-
ings from our in-depth analysis of repeat length distritmutand age of onset can, in principle, be

transferred to another dataset (Groh et al. 2008).

3.3 Results

The full dataset comprises sized repeat lengths in blood Dk 145 DM1 individuals as de-

scribed in Chapter 2, Section 2.2.

In DM1 and HD, age at onset is considered to have biologicdlctinical relevance as it takes into
account both when the disease might start and the sevettyg gfymptoms (typically the symptoms
associated with late onset are much less severe than theseisaed with juvenile/adult onset).
This information would be useful in reproductive counsgjlito as it makes sense of the patterns
of inheritance seen in families due to the phenomenon otigation. Hence efforts are directed
at looking for explanatory variables for age of onset. Hosveseveral issues have to be taken
into account. First, modal repeat lengfif,A, an obvious candidate as an explanatory variable, is
highly dependent on the age at which it is measurgsl, Second, as typically many individuals are
recruited to studies after the symptoms have appearediifahnglies, there is a strong correlation
betweenAS and age of onset. One way to remove the effect of age fromlaiysis is to consider
the progenitor repeat lengti® AL, which is the modal repeat length at birth. Another apprpach

would be to consider the difference between age of onsetAf\dtime to onsetI'T'O as the
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response. In our study and othefgO is negative for many individuals as they are symptomatic,
but this does not affect our ability to u§&I'O as a response indicator. Taking all these issues
into account we analyse a series of models u§ifi) as the response dependent variable (model
series 1) and age of onset(), as the response dependent variables. The independeahatqly
variables are modal repeat lengiti,A, progenitor allele lengthP AL, age at samplingd.S and
finally, somatic instability,57, which is defined as the difference in the number of repeatiseat

10*" and at thed0” percentile of the repeat length distribution.

3.3.1 Progenitor allele length is a modifier of age of onset iDM1

The progenitor allele length was estimated from the lowemllary of the repeat length distribution
established by small pool PCR analysis (Monckton et al. 1885137 DM1 affected individuals
for whom age of onset was known. Modal repeat length meastiged traditional Southern blot
(SB) of restricted digested genomic DNA, currently theicksh method for establishing CTG repeat

length and diagnosis of DM1, was available for a subset oh8®iduals.

Linear regression analysis was used ta\itd (Models 1A and 2A)M A + AS (Models 1D and
2D), MA+ PAL+ AS (Models 1F and 2F) and/ A + PAL + AS + ST (Models 1G and 2G) to
TTO (Models 1A-1G) anddO (Models 2A-2G) respectively, see Tables 3.1 and 3.2. Theetsod
were compared using adjusté&} and AIC criteria. Concernin@7’O, including AS improves the
model (1D vs 1A), includingP AL further improves the model (1F vs 1D) and addisif further
improves the model (1G vs 1F). These results support the pasmise thaf’ AL and ST explain

some of the variance in disease onset and progression aatiglexplained by modal repeat length.

In terms of response variable$( is the better response variable in terms of the adjuBfedtiteria
but comparable t@'TO in terms of the AIC criteria, explained by higher correlasounderAO

but equivalent residuals, and hence fit betwdéhand110.

A series of models (linear, quadratic, exponential and ppwere then fitted to all 137 DM1 af-
fected individuals using least squares regression asapiti age of onset as the dependent variable
and the logarithm (base 10) of the estimated progenitoied#agth as the independent variable. For
all these models the negative sign of the coefficient for tidependent variable indicates that age
at onset and estimated progenitor allele length are inlecserelated, with age of onset decreasing
as progenitor allele length increases. The non-linear Bo@ejustedR? ~ 0.7, P < 0.0001)

provided a better fit than the linear model (adjusi&d= 0.640, P < 0.0001) which suggests that
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N=82 Model R’ adjusted R? | Py, AIC Parameter Coefficient P
1A TTO~MA 0.154 0.143 2.7e-04 375 80 21.88 2.0e-02
81 log MA -5.53 2.7e-04
1B TTO~PAL 0.084 0.073 8.1e-03 382 80 15.78 1.4e-01
81 log PAL -4.92 8.1e-03
1C TTO~AS 0.122 0.111 1.3e-03 378 60 -4.55 9.9e-02
81 ages -0.25 1.3e-03
1D TTO~MA + AS 0.433 0.419 1.8e-10 344 80 53.84 8.8e-08
81 log MA -8.47 4.5e-09
B2 ages -0.41 2.0e-08
1E TTO~PAL + AS 0.430 0.416 2.2e-10 345 80 67.95 5.3e-08
81 log PAL -11.05 5.5e-09
82 ages -0.49 1.0e-09
1F TTO~MA+PAL+AS 0.476 0.456 5.5e-11 340 80 70.16 1.0e-08
81 log MA -4.90 1.1e-02
82 log PAL -6.23 1.3e-02
83 ages -0.48 1.1e-09
1G TTO~MA+PAL+AS +SI 0.588 0.567 3.4e-14 322 60 23.49 1.0e-01
81 log MA -0.72 7.1e-01
62 log PAL -2.31 3.3e-01
83 ages -0.25 2.8e-03
8451 -0.03 1.8e-05
1H TTO™~SI 0.526 0.520 1.3e-14 328 60 0.20 9.0e-01
815l -0.04 1.3e-14
1 TTO~SI+AS 0.579 0.568 1.5e-15 320 80 5.08 2.2e-02
6151 -0.03 3.0e-14
B2 ages -0.17 2.2e-03

TTO = time to onset (age at onset — age at sampling), MA= modal allele length (Southern blot), PAL=progenitor allele length, AS= age at sampling,
Sl=somatic instability (10"-90" percentile) and AO= age at onset.

Table 3.1:Linear regression analysis to fit different models to the regonse variableT'TO.

N=82 Model R? adjusted R® | Py, AIC Parameter Coefficient 3
2A AO~MA 0.412 0.405 8.1le-11 401 80 100.42 1.9e-14
81 log MA -12.74 8.1e-11
2B AO~PAL 0.529 0.523 1.0e-14 383 80 121.23 2.7e-18
81 log PAL -17.31 1.0e-14
2C AO~AS 0.555 0.550 1.0e-15 378 80 -4.55 9.9e-02
81 ages 0.75 1.0e-15
2D AO~MA + AS 0.713 0.706 3.9e-22 344 80 53.84 8.8e-08
81 log MA -8.47 4.5e-09
B2 ages 0.59 6.2e-14
2E AO~PAL + AS 0.712 0.704 4.7e-22 345 80 67.95 5.3e-08
81 log PAL -11.05 5.5e-09
B2 ages 0.51 5.3e-10
2F AO~MA+PAL+AS 0.735 0.725 2.0e-22 340 80 70.16 1.0e-08
81 log MA -4.90 1.1e-02
B2 log PAL -6.23 1.3e-02
83 ages 0.52 7.5e-11
2G AO~MA+PAL+AS +SI 0.791 0.781 1.9e-25 322 80 23.49 1.0e-01
81 log MA -0.72 7.1e-01
82 log PAL -2.31 3.3e-01
83 ages 0.75 1.8e-14
84 S| -0.03 1.8e-05
2H AO~SI 0.122 0.111 1.3e-03 434 80 29.28 7.4e-15
6158/ -0.02 1.3e-03
21 AO~SI+AS 0.787 0.781 3.le-27 320 80 5.08 2.2e-02
8158/ -0.03 3.0e-14
B2 ages 0.83 5.5e-26

TTO = age to onset (age at onset — age at sampling), MA= modal allele length (Southern blot), PAL=progenitor allele length, AS= age at sampling, Sl=somati
instability (10"-90" percentile) and AO= age at onset.

Table 3.2:Linear regression analysis to fit different models to the regonse variable AO.
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age of onset decreases more slowly as progenitor allel¢hiémgreases or equivalently, that age of

onset increases more rapidly as progenitor length dewease

3.3.2 Age at sampling and progenitor allele length modify tlk level of somatic insta-

bility

We quantify somatic variation for an individual patient he difference in the number of repeats
at the10* and at thed0*" percentile of the repeat length distribution. This was réed via single
molecule PCR for 136 DM1 affected or at risk individuals inato The group contains some
asymptomatic patients whereas the group of 137 used indd8e818.1 did not. This measure of
variation captures the repeat length range of alleles wlilminating outliers that are sensitive to
finite sampling. Linear regression analysis was performét w series of models that took the
logarithm (base 10) of somatic variation as the dependaidhbla and either the logarithm (base
10) of inherited allele length, the logarithm (base 10) af ag sampling or a combination of both
as the independent explanatory variables. The objectiggovastablish whether and to what extent

age and progenitor length modify the level of somatic ingitab

Alone, progenitor allele lengthpg PAL, is positively correlated to somatic variatidng ST (ad-
justedR? = 0.644, P < 0.0001) whereas age at samplinigg age,, is not significantly correlated
tolog SI (adjustedR? = —0.005, P = 0.6). Togetherlog PAL andlog age, are both significantly
correlated tdog ST (adjustedR? = 0.746 and P < 0.0001) with coefficient p-valuess.3 x 1042
and1.2 x 10~'1, respectively, see Table 3.3. These results suggest thgemitor allele length has
a greater effect than age at sampling on levels of somatiakilisy. Inclusion of the interactive
term,log PAL x logage, (P = 6.5 x 10~3), and quadratic termépg PAL? (P = 2.3 x 10~%%)
andlog age? (P = 5.6 x 107%), results in a better fit, allowing for the extra parametadjysted
R? =0.890, P < 0.001), and indicates that the relationship betw&ens1, log PAL andlog age;

is non-linear and complex. Analysis of the residuals, im&epf constant variance, in particular for
the smaller Sl values, improves and confirms the superiof fiteoquadratic model, see Figure 3.1.
We observe also that the trend in the plot for the linear nodslappears when the quadratic term

is included, justifying the need for the non-linear term.
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Model R’ adj R’ P, parameter coeff std t-stat P
crror
log(SI) = Sy + 0.646  0.644 | <0.0001 | intercept S |-0.84 021 -4.0]93x10%
Silog(PAL)
log(PAL) S| 129 0.08 157|49x107
log(S) =y + . -16
Blog(age,) 0.002 -0.005 0.60 | intercept fp| 2.27 0.25 9.2 | 74x10
log(age) f;| 0.09 0.16 05| 6.0x10"
log(SI) = fy + 0.750  0.746 | <0.0001 | intercept S |-2.24 026 -8.7|12x10™"
Bilog(PAL) + 42
Brlog(age.) log(PAL) S, | 147 0.07 20.0|83x10
log(age) f.| 065 009 74| 12x10"
log(SI) = Sy + 0.764  0.759 | <0.0001 | intercept fy|-0.40 0.70 -0.6|5.7x 10
ﬁf%"ggf’ AL)): log(PAL)  f;| 079 025 32|21x10™
2log(ages o1
Bslog(PAL)*log(age,) log(ages) p.|-056 044 -13]20x10
log(PAL)* -03
og(age.) f3| 044 016 28|58x10
log(SI) = fy + 0.894  0.890 | <0.0001 | intercept Sy |-9.04 099 -9.1 | 1.1x107"
é!}ogEPAL)) : log(PAL) f;| 878 068 12.9|43x107%
210g(ages 03
Bilog(PAL)*log(ages) log(ages) p.|-1.62 058 -2.8]65x10
+ falog(PAL)”+ og(PAL® g | 040 015 27| 7.7x10™
pslog(ages) log(age)
log(PAL)® .| -1.67 0.13 -12.6|23x10*
log(age))® fs| 044 0.11 42]56x10%

Table 3.3:The relationship between somatic instability 61), estimated progenitor allele length
(PAL) and age at sampling ¢ges), established using regression analysishe table shows the
squared coefficient of correlatior?t) and the statistical significancé) for each relationship,
and the coefficient, standard error, t-statistic and sieaissignificance P) associated with each
parameter in the linear regression analysis (N = 136).
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3.3.3 Heritability analysis

Genetic correlations and heritability estimates were sieduising QTDT, a general test package
for the association of quantitative measures in nucleaili@sr{Abecasis et al. 2000). After correct-
ing for the two major modifiers of somatic instability (pratger allele length and age at sampling),
the residual variation in somatic instability represemtsralividual-specific measure of genetic in-
stability. Individual differences in the level of somatitstability may be attributable to genetic
modifiers and therefore may be heritable. Of the 136 indadslwvith derived repeat length dis-
tributions, 89 were part of 21 families and formed 51 siblpajrs. Using QTDT (Abecasis et al.
2000), we estimated the sib-pair intra-class correlationsesidual somatic instability to be 0.28
(P = 0.04). We then used QTDT to partition this variation and yield athbility estimate. The
variance was partitioned into additive genetig, non-shared environmerit, and shared environ-
ment, V.. The analysis yielded the estimates of heritabillty, = 0.42, V. = 0.58 andV. = 0,

establishing residual somatic instability as a heritablargjitative genetic trait.

3.4 Extension to another dataset

We hypothesise that the interpretation of SB modal repewitieis compromised by not taking
progenitor allele length and age at sampling into accounplitit in this assumption is that there
is a relationship between progenitor allele length, ageatping and SB modal repeat length. If
such a relationship can be established, in a simple anallytianner, then it should be possible to
deduce one of these variables from the other two. In paaicgiven the predictive importance of
progenitor allele length, it would be useful to deduce pruige allele length from age at sampling
and SB modal repeat length. Blood DNA samples are taken iryail or other related disease
studies and variables such as age at sampling or SB modah largyusually known or measured,

whereas progenitor allele length is not typically known @asured.

In our dataset, there are 82 individuals for whom we have &garapling, an estimate of progen-
itor allele length from small pool PCR analysis and in aduditiSB modal repeat length measured
from traditional Southern blot of restricted digested gaitoDNA. We confirmed the relation-
ship between these variables statistically using linegresion analysis. We then projected this
framework on to an American dataset (Groh et al. 2008), kipdbvided by Dr William Groh and
described below, to estimate progenitor allele length f&Bnmodal repeat length and age at sam-

pling. We therefore now investigate whether this quantity add predictive value to the American
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Figure 3.1:Residual analysis for Sl response modeResiduals (vertical axis) plotted against the
response variable Sl (log transformation base 10) for fooulels, see Table 3.3 for further details.
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Figure 3.2: Summary of the Glasgow data: Log transformation of estimated progenitor allele
length (vertical axis) versus log transformation of CTG mlaeépeat length determined by Southern
blot and age at sampling (horizontal axes) for 82 patiersfthe Glasgow study. Surface fitted
using linear regressiorR? = 80%).
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data.

3.4.1 American data

A large study at 23 neuromuscular disease clinics in theddriitates was initiated in April 1997
with on-going follow-up. Patients comprise adults (18 weand older) with a clinical diagnosis of
myotonic dystrophy and an abnormal CTG repeat sequenceofdrath alleles with> 38 repeats)

confirmed by the traditional Southern blot of restrictededigd genomic DNA (Groh et al. 2008).

Also available were the ages of individuals when the blood®Ddi diagnosis was taken.

3.4.2 Relationship between age of onset, SB modal repeat ¢gh, progenitor allele

length and age at sampling in the University of Glasgow study

Variance of SB modal repeat length and age at sampling epédiou80% of the variance in the
estimated progenitor allele length, see Figure 3.2. Thi#ifgnsupports the use of the fitted linear
model to predict progenitor allele length for new patieriteg SB modal repeat length and age at

sampling.

Including M A + AS in the linear model to explain age of onset is mathematicadjyivalent to
including PAL + AS, see Table 3.2, Models 2D and 2E. the explanation for thisatM/ A + AS

is a proxy forP AL which is the biologically meaningful parameter as opposedSs.

3.4.3 Adding value to the American data

We analysed the American data following the approach ini@e& 3.1, see Table 3.4. Currently,
SB modal repeat length is used to indicate broadly the pgprand corresponding age of onset.
In the American study, the variance of SB modal repeat leagfiains abou26% of the variance
in age of onset (Figure 3.3, top row). This increase8it if the SB modal repeat length is
transformed using logarithms (Figure 3.3, middle rolwJA + AS is treated as a proxy faPAL

and this substitution improves the explained variance hytaér 12 percentage pointsG8%.
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Figure 3.3: Summary of the American data. Top row. Scatter plot of SB modal repeat length
(horizontal axis) and age at onset (vertical axis) for 4060dtents. Line fitted using linear regres-
sion (R? = 26%). Middle row: Scatter plot of the log transformation of SB modal repeagte
(horizontal axis) and age at onset (vertical axis) for thaesd06 US patientsi®> = 35%). Bottom
row: Scatter plot of the log transformation of estimated prawerallele length (horizontal axis)
and age at onset (vertical axis) for the same 406 US pati@3ts=(47%).
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3.5 Discussion

We have shown that the progenitor allele length is bettem 8B modal repeat length in blood
for predicting age of onset. A key factor behind this impmoeat is that progenitor allele length
does not depend on age or tissue whereas both these fadtmtsaafd confound the interpretation
of SB modal repeat length. SB modal repeat length is expdotédcrease with age and vary
between tissues (Monckton et al. 1995) whereas the trueepitog allele length does not. Blood
DNA is relatively stable compared to muscle DNA and so SB rhoepeat length measured in
blood may not reflect levels of instability in the diseaseated tissues pertinent to age of onset
and disease progression. However blood is easily accessilllarge number of patients and is a
tissue within which the repeat remains relatively stablealftsing blood DNA thus gives us a good
chance to estimate the progenitor allele length. Measunisigbility in other tissues poses several
challenges. Muscle biopsies are considered too invasiveofdine testing and other tissues are
only available post mortem. Complex tissues often displaitirmodal distributions reflecting the
presence of very different cell types within the same tissMtéhough SB modal length in muscle
would indicate actual levels of instability realised, iretAbsence of this measure the progenitor
allele is closely associated with the DM1 phenotype (coitgkfuvenile, adult and late adult) and

is expected to be indicative of age of onset.

Some studies, such as (Groh et al. 2008), have measured the&® repeat length in blood and
used this measure in their analysis. For those studies vagerat sampling DNA is also recorded,
we suggest that is possible to reinterpret the findings. ftiqoéar, we have shown that it is possible
to use modal repeat length and age at sampling as a proxydgemitor allele length. This allows
re-interpretation of the relationship between genotype @renotype using a novel genotype with
more predictive power. This approach can add value to a decpmlataset and extends the range

of analysis.

Basing progenitor allele length on the lower boundary igestitve and relies on the progenitor
allele being sufficiently prevalent in the sample when, edvably for advanced DM1 individuals,
this may not be the case when the progenitor allele has mosttgted and mutations have blurred
the lower boundary. The main work of this thesis, descritethé subsequent chapters, takes a
different, more objective approach. By using a mathemhaticaiel to describe the evolution of the
repeat (Chapter 4), we treat the progenitor allele lengtaragnknown entity and infer its value

from the data. However, importantly, we have shown here @ghsiimple estimate of progenitor
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allele length is available that forms a good predictor of agenset. This type of readily accessible
prognostic information is very important for families wilbM1. Age to onset is an additional
response variable with prognostic utility but we would arghat for DM1, it is not clear that time
to onset represents a biologically relevant outcome. Thinkbout how we would want to use the
model in a predictive senseg. in prenatal testing then the AS versus AO ascertainment atestli

correlation would on longer exist.

Overall in this chapter, evidence of somatic expansionssutes that are the targets of pathogenesis
has informed the hypothesis that somatic instability mssfftcontribute to the pathogenic process.
Through quantification of somatic variation in a large calairDM1 individuals, we are able to
show, for the first time, that somatic variation, adjusteddstimated progenitor allele length and
age at sampling, is a modifier of the age of onset phenotypeseltmportant results concerning
somatic instability are discussed again in more detail infiér 5. Several families form the large
cohort, and we find that the level of somatic instability igtiy heritable, implying a role for
individual-specifictrans-acting genetic modifiers. ldentifying thegans-acting genetic modifiers

is a future direction for this work that is discussed in moeéad in Chapter 8.
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American Data

N=406 | Model R adjusted R* | Py, AIC | Parameter | Coefficient P
3A TTO~MA 0.153 0.151 2.6e-16 15 60 17.68 5.5e-06
81 log MA -5.26 2.6e-16
3C TTO™AS 0.005 0.003 1.4e-01 15 60 -12.13 7.9e-10
81 ages -0.06 1.4e-01
3D TTO~PAL(=MA + AS) 0.220 0217 1.6e-22 17 60 38.13 3.4e-13
61 log MA -6.85 4.1e-23
82 ages -0.25 8.0e-09
4A AO~MA 0.350 0.349 9.4e-40 15 60 98.90 2.4e-63
81 log MA -11.57 9.4e-40
4C AO~AS 0.530 0.528 3.9e-68 15 60 -12.13 7.9e-10
81 ages 0.94 3.9e-68
4D AO~PAL(=MA + AS) 0.631 0.629 5.0e-88 17 60 38.13 3.4e-13
81 log MA -6.85 4.1e-23
62 ages 0.75 1.7e-51

TTO = age to onset (age at onset - age at sampling) and AO= age at onset.

MA= modal allele length (Southern blot), AS=age at sampling and PAL=progenitor allele length a proxy for MA+AS.

Table 3.4:American Data: Linear regression analysis to fit different models to the response
variables TT'O and AO respectively.



Chapter 4

High levels of somatic DNA diversity at the myotonic dystrofy type 1
locus are driven by ultra frequent expansion and contractian

mutations

The results in this Chapter (Sections 4.3.1 to 4.3.5) haga pablished, see Higham, C.F., Morales,
F., Cobbold, C.A., Haydon, D.T. and Monckton, D.G., (20H2)h levels of somatic DNA diversity
at the myotonic dystrophy type 1 locus are driven by ulteapflent expansion and contraction
mutations Human Molecular Genetics (21), 2450 - 2463.

4.1 Abstract

Several human genetic diseases are associated with inpeit abnormally large unstable DNA
simple sequence repeat. These sequences mutate, by chémgimumber of repeats, many times
during the lifetime of those affected, with a bias towardpansion. These somatic changes lead
not only to the presence of cells with different numbers qfeggs in the same tissue, but also
produce increasingly longer repeats, contributing towhedprogressive nature of the symptoms.
Modelling the progression of repeat length throughout ifetine of individuals has potential for
improving prognostic information as well as providing a jplereunderstanding of the underlying
biological process. A large data set comprising blood DNyslas from individuals with one such
disease, myotonic dystrophy type 1, provides an oppostdaiparametrise a mathematical model
for repeat length evolution that we can use to infer biolagparameters of interest. We developed
new mathematical models by modifying a proposed stochbstlt process to incorporate possible
contraction. A hierarchical Bayesian approach was uselkedsasis for inference and we estimated
the distribution of mutation rates in the population. Wedisedel comparison analysis to reveal,
for the first time, that the expansion bias observed in thieiligions of repeat lengths is likely to
be the cumulative effect of many expansion and contractients. We predict that mutation events
can occur as frequently as every other day, which matcheintiveg of regular cell activities such
as DNA repair and transcription but not DNA replication.

71
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4.2 Introduction

The main aim of this work is to develop a mathematical modai $heds light on the underlying dy-
namical process of DNA mutation and calibrate it to experitakdata. This chapter focuses on the
results from fitting mathematical models to the primary dataescribed in Chapter 3, as published
in (Higham et al. 2012). As discussed in more detail in Chaptby sampling many cells from in-
dividuals we have many realisations of the same stochasi@eps at one point in time. Hence, our
data provides a unique opportunity to access directly thergnt fluctuations that are required to fit
a stochastic process. This enables us to quantify sevepakrtemt biological parameters relating to
the mechanism underlying repeat length evolution. Thisisrgortant step towards understanding
pathological mutations and ultimately providing bettesgmostic information for individuals with

diseases arising from these mutations.

4.3 Results

4.3.1 Model definitions

The features of the dynamics underlying repeat length liilgtaare largely unknown. By fitting
different models which represent different hypothesesiatios mechanism to the dataset we can
use model comparison methods to rank the hypothetical rmadeirder of best fit. Thus we can
establish which models are more likely to explain the dasa ththers. Is the underlying process
driven by expansion only, as hypothesised by (Kaplan et@07% or could it be a combination
of expansion and contraction? Are the rates of expansioncanttaction universal or are there
significant differences between individuals indicating thfluence of individual-specific factors?
Is there a fixed or individual-specific threshold number gfei@s around the instability threshold

of 40 CTGs?

To answer these questions we defined the following eight lepde

x expansion only with a global parameter for expansion andedl filkreshold (Model,);

x expansion only with an individual-specific parameter fopaxsion and a fixed threshold

(Model Ms,,);

x expansion only with individual-specific parameters foraxgion and threshold (Modéfs;);
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x expansion and contraction with global parameters for esiparand contraction, and a fixed

threshold (Model\/3);

x expansion and contraction with a global parameter for eotibn and individual-specific

parameters for expansion and threshold (Mddg);

x expansion and contraction with a global parameter for esiparand individual-specific pa-

rameters for contraction and threshold (Modé));

x expansion and contraction with individual-specific partarsefor expansion and contraction,

and a fixed threshold (Modéllg,); and finally

x expansion and contraction with individual-specific partarefor expansion, contraction and

threshold (ModelVg;).

4.3.2 Model comparison

We used model comparison methods as described in Chaptec01$2.5.3, to evaluate several
hypotheses relating to the mechanics of how the distribatwf repeat lengths arise in samples of
blood DNA, the shape of which can differ between individudépending on their age when the
sample was taken and the size of the repeat lengths. Sinkelidiod arises naturally from the

stochastic process, both Bayesian and non-Bayesianhidadi methods lend themselves to fitting
the data to the model. We used the maximised log-likelihodH tlie Akaike information criterion

and the likelihood ratio test as the bases for model comprari§he likelihood is also employed as

part of a Bayesian framework with prior information to preiparameter distributions.

Data comprising the distribution of CTG repeat lengths imithblood sample from 142 individuals
(out of 145 individuals tested) was used to fit the eight madadscribed above, representing the
different hypotheses. As detailed below in Section 4.%irkd individuals were excluded from this
analysis. In the most general case we had the following umknmarameters for each individual:
the number of CTG units from which the process started, wiiserknown as the progenitor or in-
herited allele lengthp; the threshold number of CTG units over which expansion amdraction
are non-negligibleq; the rates of expansion and contraction, over this thresipar CTG unit per
year, A andy, respectively, which define the net expansion rate;, A — ;.. These parameters were
treated as unknowns and investigated over a broad rangéuekv@able 4.1). To formally compare

the different models, we used the Akaike information ciiter(AIC) (Akaike 1974, Burnham &
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Anderson 2002) and the likelihood ratio test (Cox & Hinkleg92) which both employ the max-

imised log-likelihood penalised by the number of paranseterthe model, summarised in Table
4.2. The likelihood of the data given the model arose ndtufedm the stochastic process and we
obtained the maximised log-likelihood value for each mo#elther details of how the models and

their likelihood were derived is found in Chapter 2, Sedi@ and 2.5.

Parameters Range for uniform Increment
prior®(small alleles) | size

Contraction, rate per CTG repeat 0.01 to 3.01 0.06

per year, u (0.001 to 0.011)

Expansion minus contraction, rate | 0.001 to 0.061 0.0012

per CTG repeat per year, ¢ (0.001 to 0.026)

Threshold, number of CTG 0to 50 1

repeats, a

Inherited repeat length, number of | 82 to PAL™ + 200° 8

CTG repeats, ny (51 -81) )

Table 4.1:Prior ranges for parameter estimation for myotonic dystrophy type 1 blood. Notes:

(i) This range was adapted for some patients witlsmall alleles in order to investigate smaller
rates of contraction (see figures in parentheses);?>gassibly unreliable progenitor allele length
(PAL) estimates due to ambiguous or dispersed distribstidrhis included both extending up to
the maximum possible value and down to the pathologicalkstiolel of 50 CTGs; and (ii) PAL
was broadly estimated from the small-pool PCR data whicblves the cells into different lengths
based on the position of the 10th percentile or a sharp loaend if one existed. This measure can
only be considered a rough estimate and the priors are setafithis mark to eliminate any bias
that this estimate could introduce into the inference laoe.

The very negative values of the maximised log-likelihoogimund—1.35 x 10°, reflect the vast
quantity of data (between 100 and 350 samples for each of4Bentlividuals) and lead to cor-
respondingly large AICs. However, what is important for mlodomparison is not the absolute
value of AIC but the difference between models, with morepsuping evidence for the model with
the lowest value of AIC. To see this more clearly, we adjustach AIC by subtracting the low-
est value overall and ranked the models in order, with thdlsstalifference and hence strongest
model first. We conclude that there is most support for mddg] (expansion and contraction
with individual-specific parameters and a fixed threshofd) modelMg;, (expansion and contrac-
tion with individual-specific parameters and a variable#hold) with adjusted AICs of 0 and 100
respectively followed by modél/; (expansion and contraction with a global parameter for expa
sion, an individual-specific parameter for contraction arfiked threshold) with an adjusted AIC

of 1,274. Expansion only model®,, and My, have adjusted AICs of 1,930 and 1,996 respec-
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tively. Comparing modeld/s, and Mg, using the likelihood ratio test indicates that the differen
between these models is of low significanée £ 0.01). However comparing model&/s,, Mg
and M5 to modelMs, using the likelihood ratio test gives a highly significangut (P < 10~1°).
The Bonferroni correction for eight multiple tests is 0.286 This strongly supports the hypothesis

that contractions are present in the underlying processp#at length evolution.

The models with individual-specific parameters, both witl aithout contractions, are better sup-
ported by the AIC evidence, ranging from 0 to 8,194, than thdeis with global parameters, AlICs
ranging from 9,822 to 102,308 (ranked 7 to 8 in Table 4.2).sEhuiggests that there is significant
parameter variation between individuals. When considettie threshold parametet, we observe

that modelMg, (a? = 40) provides a better fit to the data as modé}, (individual values for a),

providing support for the involvement of a universal thi@gheffect in the mechanism of repeat
instability. This finding is consistent with the observedtability threshold of around 40 repeats in

DM1 (Fu et al. 1992, Brook et al. 1992).

Models Number of Maximised AIC Adjusted Likelihood
N=142 individuals parameters log-likelihood AIC ratio test

(rank)
6a. Expansion and contraction with individual-specific 427 -135,614 272,082 0(1) 2)*

parameters for expansion, contraction and a fixed
threshold, a®=40, 2", u!", n,/"

6b. Expansion and contraction with individual-specific 568 -135,523 272,182 100 (2) (H*
parameters for expansion, contraction and threshold, at?,
/1/'], /4”, m;/'/

5. Expansion and contraction with a global parameter for 286 -136,392 273,356 1,274 (3) 3)*

expansion, an individual-specific parameter for
contraction and a fixed threshold, a®=40, 2%, 17, n,/”
Expansion only with an individual-specific parameter for 285 -136,721 274,012 1,930 (4) 5)

expansion and a fixed threshold, a*=40, A, n//”

2

®

2b. Expansion only with individual-specific parameters for 426 -136,613 274,078 1,996 (5) 4)
expansion and threshold, al’, /1/'], m/’]

4. Expansion and contraction with a global parameter for 286 -139,852 280,276 8,194 (6) (6)
contraction, an individual-specific parameter for
(il

expansion and a fixed threshold, a®=40, 2 15, nyg

3. Expansion and contraction with global parameters for 145 -140,807 281,904 9,822 (7) (7)
expansion and contraction, and a fixed threshold, a*=40,
28 4 n”

1. Expansion only with a global parameter for expansion and 144 -187,051 374,390 102,308 (8) ®)

a fixed threshold, a®=40, /%, n,/”

Table 4.2:Model comparison summary for myotonic dystrophy type 1.The mathematical mod-
els, listed in column 1, were ranked according to their AlGreovhich penalises the maximised
log-likelihood by the number of parameters. Adjusted AlGlgonn 5) was obtained by subtract-
ing the lowest value overall (272,082 Mod&fs,) from the value for each model (column 4).
*Significantly (P < 10~'°) better than Model\/>,. The models were also compared pairwise
using a likelihood ratio test and ranked on this basis to igema summary comparison to AIC
(column 6).

4.3.3 Parameter estimation

The model fitting produces some evidence for individualat&i inp and¢. The maximum like-
lihood approach provides point estimates of parameterg lsualso desirable to have information

on the parameter distributions. We compute the paramesaitditions for each individual using
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a Bayesian framework which fully takes into account any uagaty arising from the finite nature
of the sample for each DM1 affected individual and the PCRripie. As elaborated in Chapter
2, the effect of the finite sample outweighs that of the PCRri&pie and simulation experiments
investigating sample size show that we have enough indilligsized alleles from each DM1 af-
fected individual to satisfactorily infer the parametefrterest, namely, expansion and contraction

rates, and the inherited repeat length (Chapter 2, Sectin 2

The parameters\{!, ;li, al! andn)! where a particular individual is denotedor i = 1, ... , 142
corresponding to the 142 individuals analysed) were tdeaseunknowns and their probable values
were inferred from the data using a Bayesian framework aalbgically informed prior for each
parameter (Table 4.1). This approach provided not only thetmrobable value for each param-
eter but also a credible range. In some cases, there is ediddrsolutions at local maxima. By
presenting the results in this way, we retain a full pictufehe parameter solution space which
is particularly important when the model has non-linear porents causing such sub-optimal so-
lutions to arise. We report the parameter estimates as Ipitityalensity functions, or posterior
distributions, the peaks of which indicate the most probatalrameter values whilst capturing any
uncertainty in the prediction. The results for individudR®85 ¢ = 35), Figure 4.1, are typical of
many individuals. The parameter with the highest postgmobability peak, and hence for which
the data are the most informative, is the contraction rét& (Figure 4.1E). The peak is located
at 0.25 contractions per CTG unit per year. For paramei@?%andqb[%} (Figures 4.1A and 4.11)
peaking over 209 CTGs and 0.0346 expansions minus cominactier CTG unit per year respec-
tively, the posterior distributions are wider than that f6t°.. Given the range of repeat lengths
sampled for this individual (between 300 and 1,300 CTG®,fbsterior distribution foul3? is
best viewed jointly withu (Figure 4.1F). The resulting contour is widely spread okerrange for
al®) (0 to 50 CTGs), implying that the observed repeat lengthstHis particular individual, are
not informative for this parameter. This is because the mieskrepeat lengths are much greater in
length than the plausible range for the threshold (below 5G€) and consequently we conclude
that parametes!! has little effect on the dynamics of repeat length evolut@rthis particular in-
dividual. Inspection of the joint probabilities for pairmarameters can indicate interdependencies
between parameters. For many individuals there is a trédsetweeng andn (anti-correlation)

concerning the best fit, as illustrated by the contour (FEgudG).

The parameter values associated with the maximum liketifooeach DM1 individual form part
of the supplementary files of (Higham et al. 2012), SuppldargriFigure 3, available for viewing
athtt p:// hnyg. oxfordjournals.org/content/21/ 11/ 2450/ suppl / DC1. The av-
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Figure 4.1: Parameter estimation results for representative individwl CR35, aged 30. The
data is presented in panel B as a histogram showing thetdisom of repeat lengths for individual
CR35 ¢ = 35). The posterior probability density distributions for paretersng)’f’}, the inherited
repeat length,*®, the rate of contraction per CTG unit per ye#f?l, the rate of expansion minus
contraction per CTG unit per year, marginalised for eaclampater over the other parameters, are
shown in panels A, E and I, respectively. Marginalised jairdabability distributions for parame-
ter pairs ;35 andnl®®, 33 andn®, ¢ andu], andn® and a3, the threshold number
of repeats over which expansion and contraction occur, lawens, in panels D, G, H and F, re-
spectively, as contours with the dark to light directionresggnting increasing probability. (The
probability surface was smoothed slightly using a standard/olution filter to reduce noise). In
panel C, the data, shown as a cumulative distribution (jdgigek line) is compared to the inferred
fit with the maximum likelihood value (light line) with assated parameter valugs3® = 0.25,

139 = 0.0358, al3® = 41 andnf® = 209.

erage expansion rate is 0.53 CTGs per CTG unit per year aravdrage contraction rate is 0.51
CTGs per CTG unit per year. The resulting net expansion {&sipa minus contraction) is 0.02
CTGs per CTG unit per year. Hence, a relatively small gaircigeved by very many expansions
and contractions. Interestingly, although there is a linadiidual-specific variation in the mutation
rates, the correlation between expansion rates and ctotraates across the 142 DM1 individuals

is very high (correlation coefficient 0.99).
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4.3.4 Model fit

Models Mg, and Mg, fitted the data equally well but as modkls, is more general concerning
the threshold, we consider further the fit of modé};, (expansion and contraction with individual
parameters) to the data. For representative individualSC&& maximum likelihood solutiony(=
0.25, ¢ = 0.036, a = 41 andngy = 209) traces closely the rising slope of the cumulative data-(Fig
ure 4.1 C) and the inferred value pfis non-zero under the expansion and contraction model. Fur-
ther to this, the maximum log-likelihood of the expansion anntraction model (-1,495) is greater
than the maximum log-likelihood of the expansion only mo@#&|511). Capturing the variance
seen in the data is key to fitting these models. In the exparssid contraction model, the variance
seen in the data is the result of both expansion and corractihe contraction process is playing
an important role in generating the variance in the datahérekpansion only model, the observed
variance can only be explained by an inherited repeat lebhgtbw the lowest observed repeat
length. As well as a poorer fit, indicated by the AIC analytig, resulting predicted inherited allele
length,ng, from the expansion only model is also implausibly closéhtorange seen in the general
population (5-37 CTGs) which would argue against this beimdjsease allele in the first place.
For illustrative purposes, the time dependent distribugenerated first by the expansion and con-
traction model and second by the expansion only model warelated for 120 cells with an initial
repeat length of 160 CTGs over 30 years, see Supplementdep¥il and 2 in (Higham et al. 2012)
athttp://hng. oxfordjournal s.org/content/21/11/ 2450/ suppl / DCL. In each
scenario, the expansion bias was set at 0.02 CTGs per CTGemitear. Inspection of the re-
sulting distributions confirms that repeat length variaisceuch greater under the expansion and
contraction model whereas mean repeat length is the saneadbrmodel. Under expansion only,
the distribution lies above the initial repeat length. Téhesnulations visually confirm the higher
plausibility of the expansion and contraction model andpsupour more rigorous statistical finding
that contractions underlie this mutational mechanism.tHeurvisual evidence of the model fit is
provided by comparing simulations, based on the paramstienates for six DM1 individuals with

different ranges of allele lengths, with the original aattiographs, see Appendix 2.

The full model Mg, assumed that the rates of expansion and contraction aegliingroportional

to repeat length beyond a threshold. Equivalently, each GiiiGbeyond the threshold is equally
likely to give rise to an event. The fitting of this model to ihdividual data sets suggests that this
assumption is a good approximation for the majority of imdiisals (121 out of 142) whose repeat

lengths lie in the mid-range, see Supplementary Data, Higegal. 2012. This excludes con-
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gential cases where repeat length is very high and asymfitomdividuals whose repeat lengths
are relatively low. For low-range individuals (allele l¢hg less than 200 CTGs), contraction rates
cluster around the low end of the parameter spectrum (FigL8). For high-range individuals
(allele lengths greater than 800 CTGs), expansion minusaxtion values cluster around the low
end of the spectrum (Figure 4.2B). In both cases, havinguaded for repeat length and age, it is
reasonable to expect these rates to be randomly distrilltedghout the spectrum. These results
provide an indication that the overall model may be improftether by introducing a non-linear
response in line with differences in the biology of smalekds or large alleles. Small alleles may
have a reduced propensity to expand or contract due to pessild effects and there may be a
mechanism either limiting the expansion of the large alale causing more contraction. To fit
fully such a non-linear response requires additional amalgmong low-range individuals and in-
dividuals bridging the mid-range and the high range. Datha which to do this is now available.
In Chapter 5, we investigate small alleles through analysimiccal cell DNA from HD individuals
who, as discussed in Chapter 1, invariably have allelesaridiv range as their inherited repeat
lengths are much lower; typically between 40 and 50 CAGs.r@ree, alleles generally expand
and, in some individuals, change from the mid-range to tgb-minge. Hence a second blood DNA
sample taken at a later point in time increases the numbemof &lleles in our study. We revisit

this topic in Chapter 7.

4.3.5 Hierarchical Bayesian analysis

Given there is support for individual variation pnand ¢, the aim of the hierarchical Bayesian
analysis was to use the data to predict the probable rangdisinitbution of;. and¢ in the general
DM1 population. To do this, we make some assumptions abewdtape and scale of the underlying

distribution, which are summarised as fhrér information (Table 4.3).

This information reflects our knowledge about the mutatiates before analysing the data. In
our case, the gamma distribution is a good choice as it nedlyskes over positive values and

allows for the possibility that the distribution may be slegly either towards zero or with a long
tail. The shape and scale of the gamma distribution enshatstwide range of possibilities were
considered. This analysis effectively weights the prdlitginf each parameter value of interest by
the probability that it could have arisen from each of theartyihg distributions under considera-
tion. For this analysis we considered first, all our indidtiutogether § = 142) and second, the

subset of individuals who do not have the congenital formhef disease but do have symptoms
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Figure 4.2:Scatter plot of the maximum likelihood parameter values formodel Mg;,. A. Con-
traction, rate per CTG unit per year, on the vertical axis versus inherited allele lengthon the
horizontal axis (V = 142). B. Expansion minus contraction, rate per CTG unit per,ygas A — p.

(NN = 121). By excluding those diagnosed at birth or those asymptioriratividuals who have yet
to develop symptoms we focus on the group for whom prograssidthe disease is most variable
and hence diagnosis most open and pertinent. The range redstalues for all 142 individuals
peaks at 0.14 contractions per CTG unit per year and the subgroup of 121 individuals peaks
at 0.25 contractions per CTG unit per year (Figure 4.3A). & ;ahe shared values peak at around
0.0026 expansions minus contractions per CTG unit per yar=(142) and 0.0032 expansions
minus contractions per CTG unit per yeay (= 121) (Figure 4.3B). The credible interval (5-95
percentile) for this prediction is shown as a shaded greg @fe@gure 4.3). All distributions are
skewed towards the right with long tails. The lower rates minelividuals with very short and very
long alleles are included is another indication that theag tme length effects unaccounted for in

the model.

4.4 Discussion

We have shown that a thresholded stochastic birth and deategs, where birth represents ex-

pansion and death contraction, can explain a wide rangepeftdength distributions arising in
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Figure 4.3:Hierarchical Bayesian analysis results.Panel A shows the modal distribution of the
contraction rate (dark line) for all individuals except$eavho have had DM since birth (congenital)
or who have no symptoms yet (asymptomatic), 121 individiratstal. Panel B shows the modal
distribution of the expansion minus contraction rate (damk) for the same 121 individuals. The
shaded area, in both panels, represents the 5-95 perametilible range. The modal distribution
for all 142 individuals is shown by the dashed line.

the blood cells of individuals with myotonic dystrophy typeThis conclusion remains valid both

when individuals and the population as a whole are congidere

Alternative modelling frameworks for pathological mutats associated with rapidly changing re-
peats have been proposed and discussed in Chapter 1, Skdtibnin the larger context of models
of microsatellite evolution. Leeflangt al. investigated germline mutation frequency in HD us-
ing a simple Okazaki fragment processing model of trinuaieorepeat instability (Leeflang et al.
1999). This model could be fitted very nicely to sperm data mevealed support for a mitotic
cell division dependent mutational mechanism in the rgpilifiding spermatogonial stem cells in
the male germline. In contrast, our data do not support aocegn with mitotic cell division

in the hematopoietic stem cell population with hundreds ofations predicted each year (see be-

low) relative to a stem cell renewal rate of once every 40 wdé€latlin et al. 2011). Interestingly
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though, Leeflangpt al, did, as did we, reveal evidence for individual-specific atiohal parame-
ters, suggesting that both germline and somatic instalzitié modified by as yet unknown genetic
and/or environmental factors. More recently Veytsman akimadeyeva showed that a simple
theoretical model of pathological microsatellite expansbased on hairpin formation, including
both expansions and contractions, could offer a qual@agixplanation for the observed phenom-
ena of mosaicism, anticipation and rare reversions (Vesits Akhmadeyeva 2006). However,
this model did not incorporate ang vivo somatic data and thus the actual parameters could not
be calculated. Our model builds on Kaplahal. who used a simple birth process to describe re-
peat length evolution (Kaplan et al. 2007). Because thda das limited to modal summaries, it
did not indicate any variation that might be present withiniradividual, making it impossible to
distinguish between expansion and contraction. Hencewwrk assumed that the expansion bias
observed in individuals is solely due to expanding lengB.contrast, for each DM1 individual,
the data that we use in our study effectively provides betvi€ and 350 outcomes of a stochastic
process in the somatic blood cells sampled at a single poititrie. In total, over 25,000 repeat
lengths were sized representing one of the largest dawsodses kind. Of those alleles, around
20,000 are estimated to loke novg having arisen during the lifetime of individuals. So as vesl
information about the mean behaviour of this process, wetase information about the variation
and distribution. This allows us to uncover more aspecthefunderlying mechanism, increase
the fitting capacity, and obtain more information about theameters of the biological processes

involved in DML1.

The key question we posed is whether the variation obsenvéitese repeat lengths is solely due to
expansion, as implicitly assumed in the model of Ka@aal.,, or whether it is the combined result
of expansions and contractions. We also wanted to estaflishmuch variation exists between
individuals. To address these questions in a rigoroussstal way, we formulated the hypotheses
as a series of models and then ranked them using AIC and iinbkd ratio test. There was most
support for the expansion and contraction model with irtllied-specific parameters. Previously,
it was thought that the expansion bias observed in indivgdwas mostly due to expansions with
relatively rare incidences of contractions. We show thatabserved expansion bias is actually the
difference between expansions and contractions. Congtguthere are many more mutational
events in total, comprising both expansions and contnastithan an expansion only model would
predict. Assuming that mutational gains and/or losses arstlynof one repeat unit, our results
suggest that a relatively small net gain of two repeats misg éirom 100 expansions and 98 con-

tractions: in total 198 mutational events. This makes thelDdtus even more hyper-mutational
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than we thought and is a provocative hypotheses for futuperaxental research. The closeness
of the contraction and expansion rates could be experinhertaified with various model systems
such as transgenic mice, assuming that the mechanisms aachibg are accurately reflected in
such models. Whilst transgenic mouse models do not usuadly farge intergenerational changes,
substantial expansion-biased and age-dependent somagit Ichanges of many hundreds of re-
peats are observed in some somatic tissues but not usudllgad (Fortune et al. 2000, Kennedy

& Shelbourne 2000, Seznec et al. 2000).

The expansion and contraction rates are assumed to be mbnstha age. With one sample for
each individual, it is not possible to distinguish clearty age effect from another effect (genetic
or environmental). Repeat samples from the same DM1 ind@&at different ages would allow
us to test whether the individual specific rates of contoscind expansion vary over time. With
another time sample we can assume that other effects artanbasd quantify temporal changes.
Collection of further samples is currently under way in agibedinal study and we address these

issues in Chapter 7.

For a thirty year old individual with an inherited repeatdémof 200 and a net gain of two repeats
per 100 expansions, the model predicts about 5,500 expeaasggcontraction events per cell during
their life time, which is about 1 event every other day. Sigantly, for establishing a causal link
for instability with DNA replication, this number is not csistent with the number of stem cell
divisions, once every 40 weeks (Catlin et al. 2011). Rathés,number links the mutation process
with the time scale of other more frequent cell activitieslsas DNA repair and transcription.
Compared with estimates of the amount of DNA damage endwek @ay in a white blood cell,
which is thought to be ovel0* events and may be as manyl&$, over the3.2 x 10° base pairs of
the genome, discussed in (Kunkel 1999) and (Lindahl 1998}ational events at the DM1 locus
are occurring between 10 and 100 times more frequently. Trbaglink between expansion and
contraction rates within an individual may arise from samties in the mutational mechanism,
suggesting that expansions and contractions may resnittfie stochastic effects of one biological
process rather than two. Further support for this idea isigea by studies of transgenic mice
in which the expanded repeat is completely stabilized imeeiatnMsh2or Msh3null background
(Manley et al. 1999, van den Broek et al. 2002), implying thath the underlying expansions and

contractions have been affected by loss of function of theespathway.

Longer DM1 alleles transmitted to the next generation teauhore severe symptoms and an ear-

lier age at onset, an effect compounded by somatic exparstenChapter 3. As such, suppression



4. HIGH LEVELS OF SOMATIC DNA DIVERSITY 84

of somatic expansion is expected to be therapeuticallyfluéaleand induction of contractions po-
tentially curative (Gomes-Pereira & Monckton 2006, Castedl. 2010). However, the feasibility
of suppressing expansions/inducing contractions remangely undetermined. Our results have
revealed that the mutational pathway is even more dynanaic fheviously envisioned, and that
although overall biased toward expansion, net gains ar@rbguct of a very subtle bias toward
expansions relative to almost equally frequent contrastid he high underlying frequency of con-
tractions suggest therefore that a therapeutically beakfiwpact may be mediated by a relatively
subtle shift in the relative bias from small expansions talxsmall contractions. With the under-
lying expansion and contraction frequencies so closelycheat, either a 3% decrease in the basal
expansion frequency, or a 3% increase in the basal comraitéquency, would result in a net loss
of repeats over time. Such a subtle intervention would apmpese pharmacologically achievable

than the major suppression of expansions foreseen aseddnian expansion only system.

The hierarchical analysis establishes the underlyingibiigton for parametergs and ¢ by effec-
tively weighting the evidence from individuals to form a jptgtion prediction. This prediction

is based on individuals who have developed symptoms sinte dmd who represent the group
for which prognosis is most variable. The results fiosuggest that population rates peak at 0.25
contractions per CTG unit per year. kgrwhich represents the difference between expansion and
contraction rate, the values peak at 0.0032 per CTG unitger. ¥ his analysis supports the model
comparison finding that individual parameters give risehim best model fit. This indicates that

individual specific factors, either environmental and dgienar both, may influence instability.

Our model could also be extended to other triplet repeatresipa diseases depending on the avail-
ability of suitable datasets and we do this in Chapter 6 fontihgton disease. However, compared
to DM1 the expanded repeat tract in most other triplet regdiesstases is relatively stable, particu-
larly in blood. Other tissues such as brain are difficult ttaoband have a greater complexity than
blood in terms of cell composition which would necessitatdiag additional parameters partition-

ing mutations between cell types. If the model could be caléddl to another disease we would

expect differences in the parameter values but similanithé underlying mechanism.

Mathematical modelling and inference of somatic DNA dynzsmat the DM1 locus has enabled
the estimation of biological parameters, inherited referagth and mutation rates, which could not
otherwise be obtained. The level of these measures provddefer understanding of the underly-
ing mechanisms and we can use a calibrated model to simaetaisos and to make predictions.

In Chapter 3, we found that the inherited CTG repeat lengfbotentially much better than the
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current modal CTG repeat length measure taken during digdthe expansion repeat diseases
at explaining age of onset and the progression of the dis€Hss is partly because the analysis
of the modal repeat length is confounded by the tissue andpggficity of somatic mutations.
With one blood DNA sample, our method can broadly estimagentbst probable inherited repeat
length. Data from another time point could in principle warrthis estimate even further and we

investigate this issue in Chapter 7.

Further, these quantitative traitg,and ¢, are potential biomarkers that can be used via GWAS
(genome-wide association study) to identifgns-acting genetic factors thought to be linked to this
somatic variation, see Chapter 3. This is a future directisrour work and is discussed in our

concluding remarks, Chapter 8.

45 Materials and methods

4.5.1 Project data

The dataset analysed in this study and described in Chaptas3lerived from a large cohort of
individuals with DM1 expansionsx 50 repeats). The total cohort comprised 145 individuals. In
addition to a normal allele, two individuals (CR51 and CR)lfifesented an expanded allele with
two distinct modes. The two modes likely represent the petedaf an early embryonic mutation
(Gibbs et al. 1993, Monckton et al. 1997) and because of @bility to clearly apportion addi-
tional variants to either of these two progenitors, theskviduals were excluded from the model
comparison analysis. In addition, one other individual {OR who presented with very high levels
of instability despite their very young age at sampling weaséfore also excluded from the model

comparison analysis.

4.5.2 Other techniques

Evaluation of the likelihood

Each individual has a unique age and inherited allele lengtich means that the model is fitted
over a different length of time for each individual. Consewjly certain parameter combinations
are less viable than others, particularly concernigg It is computationally very expensive to

evaluate the full likelihood, see Chapter 2, Equation (X&) reasons to do with the stiffness of
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the ODE problem. We therefore propose a pragmatic approechely to approximate the likeli-
hood function in order to explore the full parameter spaaktamarrow down the parameter space
on which we calculate the full likelihood thereby making g®blem computationally feasible.
Our approximation arises from quasi-likelihood theory @dferburn 1974) where the relationship
between mean and variance can be used to inform a quasidikel which has the required prop-
erties of a full likelihood. Rearranging the derived aniat expressions for meal and variance
V', Equations (2.6) and (2.7) respectively, gives an expvaskir variance in terms of the mean

adjusted for the threshold,denoted bw\? :

M = M-—a, 4.1)

- ()

The equation for the variance is now a quadraticﬂhand the theory behind quasi-likelihood
informs us that the full likelihood can be approximated byegative binomial distribution with
parameters that depend directIyH]andV. We therefore approximate the full distributiah, (¢),

by a negative binomial distribution with parametgrandr defined in terms o/ andV:

M

p = 1—77 (4.3)
172

r = VMJ\Y. (4.4)

This approximate likelihood has the advantage of intraglgiche model parameters via the mean
and variance into a likelihood with, by definition, the prdjes of a likelihood in terms of the error
distribution and allows us to utilise all our data when easihg the parameter space. Simulations
with a range of individuals shows this to be a good approxwmnatcapturing both the mean and
variance of the full distribution. The negative binomiastdibution is also recommended for count
data when there is over dispersion, which applies in our aashe variance exceeds the mean (Ver

Hoef & Boveng 2007).

The corresponding likelihood, N B, is

=T (1 —pm)f pl v (4.5)
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Parameter combinations with a log likelihood value thasfathe condition

log (LN B) — log (max LN B) > &, (4.6)

were then subjected to the full likelihood computatianwas chosen (typically: = —2) to obtain
computationally manageable sample sizes (about 50,0G0anteter combinations arising under
these conditions generally form a cloud of values, closeistadce, and are not expected to give

rise to discontinuities in the likelihood at the transition
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Distribution Hyper Range for uniform | Incremental
parameters prior step size for
parameter
exploration
Iy (o, Bu) mean o, f, 0.3t00.8 0.01
variance a, f3,. | 0.05 to 0.55 0.01
Iy(a,, p,) mean o, f3, 0.005 to 0.03 0.0005
variance a,, f,” | 0.0001 to 0.0006 0.00001

Table 4.3:Hierarchical Bayesian analysis.For the hierarchical Bayesian analysis we require an
assumption about the shape of the distribution underljfiegriodel parameters of interegtando,

and priors, which encapsulate any information we may haweht parameters of that distribution.
We assume that the distribution underlyipg the rate of contraction per CTG repeat per year
is a gamma distributionl’,,, defined by a shape parametey and a scale parametgy,, as the
gamma distribution has many different forms over positighugs. The mean and variance of this
distribution are, 3, and«,, 3}, respectively and we chose, for convenience, to place oarsgeoin

the mean and variance to ensure we cover a range of possitgessfor this distribution. Fa, the
rate of expansion minus contraction per CTG repeat per yeaglso assume that the underlying
distribution is a gamma distributiof,;, defined by a shape parameteys; anda 3.



Chapter 5

A length-specific effect is associated with less somatic tadility in

myotonic dystrophy type 1 and Huntington disease

5.1 Abstract

Over 20 genetic diseases, including myotonic dystrophg tyg(DM1) and Huntington disease
(HD) are caused by inheriting an unstable expanded simpgjeesee repeat. Repeat lengths at
the lower end of the disease causing range are associatedesst somatic instability, less severe
symptoms and later disease onset. It was initially assutmaidthe repeat lengths in DM1 were
pure CTG tracts, but interruptions within the repeat leadthave recently been estimated to exist in
around 5% of DM1 individuals. Some of these interruptioresassociated with less instability and
less severe phenotypes in DM1. We have developed a matloahatidel that describes changes
over time in repeat length distributions in DM1 blood. Thisdael has been fitted to sized repeat
lengths from a large cohort of DM1 affected or at risk indiéds with inherited repeat lengths,
ranging between 50 CTGs and 1,500 CTGs, and explains diffese in repeat length distributions,
across this varied group of DM1 individuals. However the atioh rates estimated under the
model are lower than expected among individuals with inbdniepeat lengths less than 100 CTGs,
suggesting that these rates may be suppressed at the losvef e disease causing range. We
propose that a length-specific effect may be operating withis range and test this hypothesis by
introducing such an effect into the model. For data, to caldbthe model, we use blood DNA from
DML1 individuals with small alleles (inherited repeat lemgjtess than 100 CTGs) and buccal DNA
from HD individuals who almost always have inherited redeagths less than 100 CAGs. These
datasets comprise single DNA molecules sized using smoallBCR. We find statistical support
for a general length-specific effect which suppresses iouatt rates among the smaller alleles
giving rise to a distinctive pattern in the repeat lengthritigtions. In a novel application of the
new model, fitted to a large cohort of DM1 individuals, we aséow that this distinctive pattern
may help identify individuals whose effective repeat ldngtith regards to somatic instability, is
less than their actual repeat length. A plausible explandtir this distinction is that the expanded
repeat tract is compromised by interruptions or other uaufatures. For these individuals, we
estimate the effective repeat length of their expandedatejpacts and contribute to the on-going
discussion about the effect of interruptions on phenotype.

89
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5.2 Introduction

In Chapter 4, we developed a mathematical model that desceifianges over time in repeat length
distributions in DM1 blood DNA. This model was fitted to sizegbeat lengths from a large cohort
of DM1 affected or at risk individuals whose estimated itileer repeat lengths range between 50
CTGs and 1,500 CTGs. This model was shown to explain satisfycthe variable distributions
of repeat lengths seen across this group of DM1 individuidimwever, we observed that the vari-
ance to mean ratios of the repeat length distribution amidigiduals with inherited repeat lengths
below 100 CTGs were very low, especially when age is alsontéki® account. To visualise this
effect, Figure 5.1 shows the variance to mean ratios, lggtitig those for the 14 individuals with
estimated progenitor allele lengths below 100, along withpredicted level from modél/g,. In
terms of the difference between the expected and the olukeatio, the fact that all 14 DM1 indi-
viduals with estimated repeat lengths less than 100 CTGa tree low end (5t percentile) of this
distribution is highly significant? < 10~° using a permutation test). In addition, the estimated
model parameters that quantify the rates of mutation wagbtst biased, with individuals with the
lowest estimated inherited repeat values having lower thqrected rates of expansion and con-
traction (Figure 4.2). These results strongly suggest gtheeffect not accounted for in the model:
an effect that results in proportionally less mutation witthe small alleles. In this chapter, we
account for a length-specific factor using first-principlathematical modelling arguments (Sec-
tion 5.5.2 and Figure 5.2) and compare the fit of this new muidlél the fit of the original model
using the Akaike information criterion (AIC) (Akaike 1974AIC is an appropriate choice when
comparing un-nested models, as in our case. We fit this neveinmtlood DNA data from the 14
DM1 individuals with estimated inherited repeat lengttsslthan 100 CTGs (a subset of the DM1
individuals analysed in Chapter 4) and buccal DNA data fr&rHD individuals with estimated
inherited repeat lengths between 39 and 48 CAGs (Veitch 208al7).

It was initially thought that the expanded DM1 repeats wearseepbut interruptions within DM1
repeat lengths have been recently reported (Musova et@®, Zraida et al. 2010). These variant
repeats (pure repeats containing interruptions) are neacégted with less instability and less se-
vere phenotypes in between 3 - 5% of DM1 individuals (Caital., in preparation). As discussed
in Chapter 3, inherited repeat length explains most of thimatian in age of onset for many of the
expanded repeat diseases and somatic instability is adaednodifier of age of onset and disease
progression. It is possible that some interruptions ireee stability of the pure repeat tract by

reducing the effective length of an allele. An explanation iow variant repeats might modify
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Figure 5.1:Comparison of the actual variance over mean (adjusted for tk threshold effect)

by age (circles) among 142 DML individuals (blood DNA) and th predicted variance over
mean path under modelMg, (line). DM1 individuals with mean repeat lengths less than 100 are
indicated by a cross within a circle. Some DML1 individuale arrther identified by a code, see
Table 5.3A for more details, and discussed in Section 5.3.6.
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Figure 5.2:Predicted number of expansions (of one CTG unit on the vertial axis) per year as
a function of repeat length (number of CTGs on the horizontalaxis) under model Mg, (dark
straight line) and under model M, with a length-specific effect (light curved line).

mutational dynamics in an adjacent stretch of pure CTG tepsautlined in (Braida et al. 2010)

and illustrated in Figure 5.3. In summary, for pure exparaées the mutational dynamics of the
CTG tract is driven by the action of@s-acting modifier in thed’ flanking sequence. As discussed
in (Braida et al. 2010) there is evidence that the contenbokfhg DNA has a role in repeat length
stability, for example the GC content (Nestor & Monckton 2D1in the presence of variant repeats

at the3’ end of the array, the distance between the pure CTG trachaetstacting modifier will be
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increased and its effect may be reduced. Alternativelyptesence of variant repeats may directly
inhibit the mutability of the pure CTG tract. A novel appliican of our new model is to estimate
the effective length, as well as the inherited length, ulyiey the repeat length distributions. We
therefore fitted this new model to the rest of the DM1 dataset8 DM1 individuals with repeat

lengths in the mid-to-high range, and compared the resutkstie original model.

The objectives of this Chapter are to develop and test a napkisticated mathematical model
based on plausible biological assumptions about smallealleWe use this model to establish
whether mutational propensity is lower in the small alledesl whether reduced levels of somatic
mosaicism give rise to distinctive repeat length distitmg. We also introduce and quantify the
concept of effective length, see Section 5.3.4. Individwahose effective length is different from

their actual length are strong candidates for further itigaton, as lower than expected levels of
somatic mosaicism may indicate the presence of modifiersroftic instability such as interrup-

tions in the repeat lengths.

5.3 Results

5.3.1 Formulation of an expansion and contraction model ingrporating a length-

specific effect

The framework we use to describe changes in repeat lengths(imed by the number of repeat
units) over time in a population of cells is a stochastichoahd death process. In our context birth
is the gain of one repeat unit (expansion) and death is tiseofasne repeat unit (contraction) within
a cell. This is a probabilistic model with probability furats defined for the mutational events of
expansion and contraction. In Chapter 4, we assumed thdik&ldood of a mutational event
increased linearly with repeat length over a threshold remalb repeats and it is this assumption
and corresponding function definitions that we will refinghis chapter. Another key modelling as-
sumption is that the cells acquire mutations independerfithne another, and this was justified (see
Chapter 2, Section 2.3) for DM1 blood cells. Application loé tmodel to another disease and cell
type, HD buccal cells, requires the assumption that buetd acquire mutations independently of
one another. Buccal cells, like other external epitheliwiscare replenished from a large pool of

self-renewing stem cells (Fuchs 2008) hence an assumtiodependence is reasonable.

A biological explanation as to why small alleles may diffeorh long alleles, in terms of DNA



5. EFFECTIVE LENGTH 93

A

pure CTG repeats

3’

b—

‘ variant repeats

C

3!

Figure 5.3: Hypothetical explanation for how variant repeats might modfy mutational dy-
namics in an adjacent stretch of pure CTGs. For a pure expanded allele (top) the mutational
dynamics of the CTG tract is driven by the action ofisracting modifier in the3’ flanking se-
guence (a). For a CTG tract containing variant repeats ag'tlemd of the array (bottom), the
distance between the pure CTG tract anddiseacting modifier is increased and its effect reduced
(b). Alternatively, the presence of variant repeats magaltly inhibit the mutability of the pure
CTG tract (c). This figure was adapted from Figure 5A in (Baaéd al. 2010).

stability, can be based on the physical structure that theyseat lengths assume during the cell
processes of transcription, repair, replication and rdgination (Pearson & Sinden 1996). Simple
repeat sequences in DNA are prone to adopt slipped stramctugies comprising complementary
loop-outs of one to three repeats on opposite strands @earsl. 2005). One such working model
for repeat instability (as illustrated in Chapter 1, Figtg) is as follows. Sequences opposite the
loop-outs can be excised and the gap filled by DNA mismatcairgpoteins resulting in expansion.
Alternatively sequences comprising the loop-outs can lsesed resulting in contraction (Gomes-
Pereira & Monckton 2006). Whilst loop-outs far apart may éygaired independently, it is possible
that loop-outs that occur close to one another may be encgsagdy the DNA repair domain and
repaired together, effectively cancelling each other ot r@sulting in neither expansion nor con-
traction. The size of this domain is not known but, as disedse Chapter 1, Section 1.3.2, may
be between 60-230 base pairs of DNA (Genschel & Modrich 2003this is the case, then the

likelihood that arbitrarily located loop-outs fall close @ach other (and hence no mutation) would
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be higher in smaller alleles than in longer alleles, seergi§u. Similarly, in support of relatively
lower rates of mutation below 200 CTGs, Gelliboliahal. concluded from the biophysical ex-
amination of DNA mis-pairing in different CTG repeat lengthsing plasmid DNA (Gellibolian
et al. 1997) that for CTG repeat lengths up to 200 CTGs thereisasing mis-pairing per repeat
unit (and hence increasingly more mutation) after whiclkegater repeat unit are constant. These
investigations inform our hypothesis that a constraintf@rnutational mechanism, whose effect
decreases as repeat length increases, may operate at énefahof the range of repeat lengths. We
quantify this length-specific effect using a combinatodauinting method based on the length of
the constraint (one interpretation being the distance éetwoop-outs), denoted asand the like-
lihood that mutation occurs. We introduce this effect irite probability functions for expansion

and contraction, as described in Section 5.5.2.

We use statistical inference based on the available datetéordine the value af, along with the
other model parameters (expansion per repeat unit perg@araction per repeat unit per year and
the inherited repeat length), and to determine whethearies between individuals. Our approach,
to quantify a length-specific effect and to determine thgeaover which it operates, is sufficiently
general to incorporate other distance requirements, mbttie distance between loop-outs, that
might suppress mutation proportional to length. Such adds requirement might be created by
an interruption in the repeat length. Alternativelymay be interpreted as the length of a DNA

fragment typically processed by the DNA repair mechanisti@DNA replication machinery.

5.3.2 Model comparison supports a role for a length-specifieffect suppressing mu-

tational rates in DM1

We introduced a length-specific effe@,, (n, «), which is a function of repeat length, and the
distance constrainty, into modellMyg;,, as described in Section 5.5.2. We tested our hypothedis tha
this extended model, denotéd,,, would provide a better explanation for the mutational dyitzs
within the smaller alleles by fitting to sized blood DNA repé&ngth distributions from 14 DM1
individuals with repeat lengths at the lower end of the DMdge The relative goodness of fit of
the original modelMg, and new model/, was assessed using the Akaike information criterion
(AIC) (Akaike 1974). The models have the same number of patare and are not nested, so
AIC is an appropriate method to rank the models through divelaneasure of the goodness of fit.
Application of AIC involved calculating the maximum likalbod value using a grid search over the

parameter space, as outlined in Table 5.1 (see Chaptert&ys2®, for further details). Modél/,,
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Figure 5.4:Hypothetical explanation for how a length-specific effect my modify mutational
rates. Loop-outs occurring far apart{(60 - 230 base pairs DNA) are repaired independently. This
results in either expansion, contraction or no change ingpeat length (left column). Loop-outs
occurring close togethek(60 - 230 base pairs DNA) are repaired together resulting iohamge

in the repeat length (right column).

(maximum likelihood value = -4,779 and AIC = 9,670) rankshagthan modelMg, (maximum
likelihood value = -4,805 and AIC = 9,721), see Table 5.2Ae ™ifference in AIC values of 51
indicates that the relative likelihood (relative likeliab =6.90 x 10~'2) of model Mg, compared
with M, is very low and so we conclude that modél, fits the data better than modgfs, among
individuals with repeat lengths at the lower end of the DMdge The model fit can be visualised
as a distribution curve or a cumulative distribution curke fits of models\{g, and M, compared

with the data and each other are shown in Figures 5.5 and brégeesentative DM1 individuals.
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Model M,, is seen to be better than modd], at tracking the initially steep ascent of the cumulative

distribution typical of the distributions among these indials.

A

Model My, parameters Prior ranges Prior ranges
DM1 blood HD buccal

Contraction rate per repeat 0to1.2 0 to 0.005

unit per year (u)

Net expansion rate per repeat 0.001 to 0.5 0.0001 to 0.1

unit per year (4 - x)

Threshold number of repeat 0to 50 0to 40

units (a)

Inherited repeat length, 51to 100 38to 50

number of repeat units (1)

B

Model M, parameters Prior ranges Prior ranges
DM1 blood HD buccal

Contraction rate per repeat Oto1.2 0t0 0.01

unit per year (u)

Net expansion rate per repeat 0.001 to 0.5 0.0001 to 0.1

unit per year (4 - )

Length parameter number of 0 to 200 0to 40

repeat units («)

Inherited repeat length, 51 to 100 38 to 50

number of repeat units (1)

Table 5.1:Prior ranges for parameter estimation for small alleles. For modelMg, (A) and for
model M, (B).

The average among these 14 DM1 individuals of the maximuetfitikod value otx was 51 CTGs,
but there was considerable variation (standard deviati®d? €TGs). This result placeswithin the
DNA repair domain 60-230 bp suggested by (Genschel & Mo2@dB) and thus is consistent with
a hypothesis implicating inappropriate DNA repair, asioetl in Figure 5.4. With a fixed length
parameterp = 51 CTGs, we estimate that the length-specific effect woeldtoongest between
51 CTGs and 173 CTGs (Figure 5.7). These results provideosufigr a length-specific effect
operating below 200 CTGs in DM1. By suppressing the mutatie per repeat unit, the length-
specific effect makes a big difference to the shape of theatdprgth distribution below 200 CTGs

but increasingly less difference over 200 CTGs.
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A
myotonic dystrophy type 1 Number of | Maximised AIC
(N=14 individuals) parameters log-
likelihood
M,  expansion and contraction with
length-specific effect 56 -4,779 9,670
Mg, expansion and contraction over
a threshold number of repeats 56 -4,805 9,721
B
Huntington disease Number of | Maximised AIC
(N=12 individuals) parameters log-
likelihood
M,  expansion and contraction with
length-specific effect 48 -1,312 2,746
Mg, expansion and contraction over
a threshold number of repeats 48 -1,343 2,781

Table 5.2:Model comparison summary. The models, listed in column 1, were compared using

AIC (column 4) for myotonic dystrophy type 1 (A) and for Humgiton disease (B).
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Figure 5.5:Model fitting results for a representative DM1 individual CR8. Top: Distribution
of repeat lengthsBottom: Model M, fit (grey solid line) and modeMg, fit (black dashed line)
compared with the cumulative distribution of repeat lesdthiack jagged line).
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Figure 5.6:Model fitting results for a representative DM1 individual CR27. Top: Distribution
of repeat lengthsBottom: Model M, fit (grey solid line) and modeMg, fit (black dashed line)
compared with the cumulative distribution of repeat lesdthiack jagged line).

5.3.3 Model comparison supports a role for a length-specifieffect suppressing mu-

tational rates in HD

For comparison, both models{s, and M., were fitted to sized distributions of buccal DNA single

molecule repeat lengths from 12 unrelated HD individudlsaged 39 years when the samples were
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Figure 5.7:Length-specific effect { — R,,) for DM1 as a function of repeat length for an average
a value 51 CTGs (solid line).The 10" and90*" percentiles are indicated by the lower dashed line
and upper dashed line, respectively.

taken, as collected and previously analysed by (Veitch.&2Gl7). The prior ranges for Bayesian
parameter estimation were chosen to represent HD bucdsi egpansion per CAG unit per yeatr,
contraction per CAG unit per year, and a threshold measar€d\G units (Table 5.1). The inherited
number of CAG repeats;y, was treated as an unknown parameter and its value inferwedthe
data along with the other parameters. The maximum liketih@as calculated using a grid search

over the parameter space, modified for buccal cells and Higraihan blood cells and DM1.

As for DM1, the results from AIC indicate that moded, (maximum likelihood value =-1,312 and
AIC = 2,746) ranks higher than mod&l;, (maximum likelihood value = -1,343 and AIC = 2,781),
see Table 5.2B. The difference in AIC values of 35 indicaled the relative likelihood (relative
likelihood =2.06 x 10~%) of model Mg, compared with\/,, is very low so we conclude that model
M, fits the buccal DNA data better than moddl, among individuals with repeat lengths at the
lower end of the range. As was the case for DM1, maddglis better than modely;, at tracking

the initially steep ascent of the cumulative distributisag Figure 5.8.

Among these 12 HD individuals, there were three individdatsvhom the two models) /s, and
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Figure 5.8:Model fitting results for a representative HD individual HD10. Top: Distribution
of repeat lengthsBottom: Model M, fit (grey solid line) and modeMg, fit (black dashed line)
compared with the cumulative distribution of repeat lesdthiack jagged line).

M,, were equally likely and the estimates for the fixed lengtrapeeter were below 3 CAGs.
These three individuals had low levels of somatic mosai@sith hence it may not be possible to
distinguish between the models and estimate the lengttifep&actor for this type of individual.
Among the other 9 HD individuals the average valuex@ssociated with the maximum likelihood
value was 26 CAGs (standard deviation = 11 CAGSs). Thesetseprdvide support for a length-
specific effect, suppressing the mutation rate per repest awer the whole range of observed

repeat lengths in this HD dataset (59 CAGs or less), see é& 5o

We also considered a model with global parameters for thetiount rates and length effect and
individual-specific parameters only for the inherited lgn¢results not shown). However, as re-
ported for DM1 in Chapter 4, global parameters did not capthe variation seen in the data,
indicating that individual-specific factors play a majolerin HD somatic instability. Inclusion of
contraction eventd,e. decreases in repeat length of one CTG unit for DM1 or one CAGfan

HD, was also justified statistically, as there was no supfootihe contraction rates being zero.

5.3.4 Estimates of inherited repeat length under model/,, are in agreement with

original predictions

In our study we treated inherited repeat length, as an unknown parameter to be inferred from

the data. Our estimates of the valuergf are in agreement (correlation coefficient = 0.93) with
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Figure 5.9:Length-specific effect { — R,,) for HD as a function of repeat length for an average

a value 26 CAGs (solid line).The 10" and90*" percentiles are indicated by the lower dashed line
and upper dashed line, respectively. Results are showntleweasbserved range of repeat lengths
(less than 60 CAGS).

those estimated using the lower bound of the distributioeezn with small pool PCR, discussed
in Chapter 3, Section 3.3.1. Further, our estimates of theevaf n, are in complete agreement
(correlation coefficient> 0.99) with the estimates by Veitcht al. which for the HD individuals
in this study were based on the lower boundary of their higklswed distributions (Veitch et al.
2007).

5.3.5 Mutational levels are higher in DM1 blood cells than inHD buccal cells, indi-

cating differences in the overall level rather than the undelying mechanism

The parameter values associated with the maximum likelih@ue provide a point estimate for
mutation rates, in terms of expansion per repeat unit anttaion per repeat unit for each in-
dividual. Comparing parameter values under matgl for DM1 blood with those for HD buc-

cal, the median expansion rate for DML1( x 10~2 per CTG per year) is significantly higher

(P = 8.28 x 10~° using the Mann Whitney U test) than for HB.§ x 10~* per CAG per year).
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Similarly the median contraction rate is significantly hegh{P? = 1.32 x 10~° using the Mann
Whitney U test) for DM1 {.0 x 10~2 per CTG per year) than for HDL(5 x 10~* per CAG per
year), see Figure 5.10 for comparison. The number of indaliglis small but there appears to be
a correlation between expansion and contraction ratesniithl1 (correlation coefficient- 0.99)
and within HD (correlation coefficient = 0.70) suggestingnt between expansion and contraction,
within the mutational mechanism, in both diseases. Intieigy, the ratio of contraction to total
mutation (expansion and contraction) is higher for DM1 @).than for HD (0.18) and this most

probably reflects biological differences between DM1 bloetls and HD buccal cells.
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Figure 5.10:Comparison of mutation rates between DM1 (14 individuals) ad HD (12 indi-
viduals)

5.3.6 For some DML individuals, effective length is lower tan inherited repeat

length which may have resulted from an interruption or another anomaly

We have shown that incorporating a length parameterja a length-specific effect into mod&{,
better explains the distinctive distributions among DMdiwduals with smaller alleles than model
Mg,. Variance to mean ratios of the repeat length distributiotorg individuals with inherited

repeat lengths less than 100 CTGs were very low, especidignvage is also taken into account.
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In terms of the difference between the expected and the wix$eatio, the fact that all 14 DM1
individuals lie at the low endl16" percentile) of this distribution is highly significanP(< 10~5°
using a permutation test). We hypothesise that a lengtbifgpeffect may operate in other unusual
individuals (particularly those with low variance to meatios) and that applying this new model
to the data in order to infer a value farmay establish whether, and if so where, this effect operates
A further eight individuals with low variance to mean rat{@athin the 15t percentile) comparable

to individuals with small alleles (Figure 5.1) are listedTiable 5.3A.

We now fit the new model}/,,, to distributions of repeat lengths (blood DNA) from thetrefsthe
cohort (128 DM1 individuals with estimated inherited refpeagth,ny, over 100 CTGs including
the eight DM1 individuals mentioned above). The prior rafiyea was chosen to be 0 to 200
CTGs (for individuals with inherited repeat length greatesn 200 CTGs) andg to 200 CTGs
(for individuals with inherited repeat length less than ZODGs). Five of the 8 DM1 individuals,
mentioned above, have estimates doof 80 repeat units or more and an improvement in fit (log-
likelihood gain of 2 or more). The improvement in fit can bersbg comparing the fit of both
models to the data for representative individuals BC19 aB@®5L7 (Figures 5.11 and 5.12). As
seen before (Figures 5.5 and 5.6) modig| is better than model{y;, at capturing the steep rise at
the beginning of the cumulative distribution. Other DM1liinduals, with estimated values far
over 100 CTGs, are listed in Table 5.3B. For most of theseviddals there is an improvement in

fit (likelihood gain of 2 or more).
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Figure 5.11:Model fitting results for an unusual DM1 individual BC19. Top: Distribution of
repeat lengths.Bottom: Model M, fit (grey solid line) and modelMy, fit (black dashed line)
compared with the cumulative distribution of repeat lesdthlack jagged line).
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A
Code Age at Sex, PAL log- a | Notes
sampling | family | (estimated | Jjkelihood | (estimated
from ML) . from ML)
gain
CRI12 49 1,1 132 13 110
CR28 35 NA 107 0 20
CR70 50 1,12 102 18 80
BC6 51 1,101 279 2 110 | Couto CGG +ve
BCI19 27 1,101 229 9 175 | Couto CGG +ve
SCO4 39 1,6401 [ 114 14 90
SCO99 |36 1,2449 |140 0 10 | Couto CCG +ve
SCO117 | 29 1,18328 | 134 14 120
B
CR10 29 2,3 197 3 120
CR11 31 1,7 160 9 110
CRI18 38 1,5 225 0 130
CR26 44 2,6 160 4 120
CR35 30 2,8 353 4 140
CR39 21 1,11 194 8 175
CR69 13 1,9 471 0 130
BC8 50 2,101 152 26 120
BCI10 42 1,101 261 3 140
BCl11 43 1,101 341 1 130
BCl16 34 1,100 342 0 150
BC47 36 1,175 160 9 120
SCO95 |51 1,0897 | 184 9 110
SCO9% |29 1,0897 1431 2 200
SCO115 | 35 2,18328 | 134 39 130
SCO134 | 36 2,1964 | 225 5 130
Cc
CR21 36 2,6 265 0 70 | Couto CCG +ve
BC39 34 2,137 332 1 10 | Couto G—C 3
prime flanking
sequence
BC40 10 1,137 621 -2 0 | Couto G—C3
prime flanking
sequence

Table 5.3: DM1 individuals with unusual repeat length distributions. Individuals with low
variance mean ratid 6*" percentile) and inherited repeat lengthl00 CTGs (A). Individuals with
high estimated: value (B). Individuals with unusual features (C). Note}1&male, 2=female; (ii)
Couto CGG+ve - these individuals tested positive for CGG interrupgiam their repeat lengths;
(iii) Couto CCG+ve - these individuals tested positive for CCG interruptiontheir repeat lengths;
and (iv) Couto G— C - a C instead of a G was found in theflanking sequence.
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Figure 5.12:Model fitting results for an unusual DM1 individual SCO117. Top: Distribution
of repeat lengthsBottom: Model M, fit (grey solid line) and modeMg, fit (black dashed line)
compared with the cumulative distribution of repeat lesdthiack jagged line).

In defining effective length, we use inherited repeat leragtta point of reference as it is both the
initial repeat length and the major modifier of age of onsein¢e we define effective length as the
difference between inherited repeat andhat isno— «. Consequently higher values imply lower
effective lengths. For example, BC19 (inherited repeagtlerequals 229 CTGs andequals 175
CTGs) has an effective length of 54 CTGs. Interestinglyeradtgeneral screen for CGG and CCG
interruptions in the expanded repeat lengths (Cetitd,, in preparation) BC19 tested positively for
CGG interruptions and the father of BC19 (BC6), who has amaséda value of 110 CTGs, also
tested positive for CGG interruptions. BC19 and BC6 wereiptesly noted for two reasons. First,
they have unusually mild symptoms given their estimate@ritdd repeat lengths (see Figure 2 in
ref. (Ashizawa et al. 1992), BC6=I11.2 and BC19=l11.2). Sedpthe germline transmission from
father (BC6) to son (BC19) resulted in relatively rare appacontractions (Ashizawa et al. 1992).
Also of interest are two individuals, SCO99 and CR21, sed¢ela3A and Table 5.3C, respectively,
who tested positive for CCG interruptions but did not havghhialues fora and two individuals
who had changes in their DM1 flanking sequence, BC39 and BR4Gdid not have high values
for o, see Table 5.3B.
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5.4 Discussion

In DM1, small inherited repeat lengths (less than 100 CT®Gs)aagsociated with late onset and
less disease severity. Investigation of repeat lengthilalisions in DM1 blood DNA among a large
cohort of 145 individuals with a range of inherited repeaigkhs (see Chapter 4) found that in-
dividuals with inherited repeat lengths less than 100 CT&s \rery low variance to mean ratios
especially when taking into account their advanced age wiineiblood DNA samples were taken
(Figure 5.1). Correspondingly, when we estimated the ratenutation per repeat unit per year
for these 14 DM1 individuals, using the original modéd};,, the rates of expansion and contraction
were relatively low, much lower than the rest of the cohorthid! this does not affect our ability
to describe the changes in repeat length and hence the tdvatenatic mosaicism over time, the
implication that individuals with small inherited repeahfths also have low rates of mutation does
not have an obvious biological basis. It is more plausibée e did not take repeat length fully into
account in our model and that there is a length effect unatedufor. Gellibolianet al. concluded
from the biophysical examination of DNA mis-pairing in déifent CTG repeat lengths, using plas-
mid DNA, that the number of mis-pairings per repeat unit igtey dependent with relatively fewer
mis-pairings per repeat unit (and hence less mutationmb2@0 CTGs and reaching a constant
rate over 200 CTGs (Gellibolian et al. 1997). This resultpgrfs less frequent mutation events
per repeat unit in small alleles than in long alleles. To dgjfyathis effect we introduced a length
constraint into the expressions for expansion and coitraes an extension of the original mathe-
matical model. This approach is sufficiently general to cawide range of possible constraints on
the mutational mechanism that act by suppressing mutadies per repeat unit proportionally less
as alleles increase in size. The biological basis for munatidifferences in length is very likely
linked to the the mutational mechanism underlying repeagtte changes. This mechanism is not
fully understood, but it is thought that DNA mismatch regaays an important role in the stability
of trinucleotide repeats, see Chapter 1, Section 1.3.2 andd-1.2. Simple repeat sequences in
DNA are prone to a slipped strand structure comprising cemphtary loop-outs of one to three
repeats on opposite strands (Pearson et al. 2005). Logpsoatirring during cell division would,
normally, be recognised by DNA mismatch repair proteins [[§\Met al. 2005) and be fixed ac-
cordingly. However it is possible that loop-outs arisingekpanded repeats, independently of cell
division, may be inappropriately repaired and, dependimghe choice between incorporating or
deleting the loop-out, become either expansions or cditrec(Gomes-Pereira et al. 2004). The

distance between loop-outs is one possible and highly ipl@usngth constraint on the mutational
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mechanism but similarly acting constraints could depenather features, such as the length of
a DNA fragment typically processed by the DNA repair meckamand/or DNA replication ma-
chinery. A hypothetical explanation for how a length coaisir might modify mutational rates is

illustrated in Figure 5.4.

In summary, we hypothesised that lower rates of mutatiommiallsalleles are connected to the
constraint that size enforces on the mutational mechan@mextended our mathematical model
to include a general, but biologically justified, lengthesific effect and compared this new model,
M, with our original model Mgy, in terms of the goodness of fit. We found that under the new
model, M., there was an improvement in the fit (Table 5.2A) which sufgpour conclusion that a

length-specific effect acts over smaller alleles in DM1 dloo

Having fitted models\/g;, and M, to DM1 small alleles, these models were also adapted for HD
and fitted to repeat length distributions from HD buccal<éUeitch et al. 2007). Over all 12 HD
buccal datasets, modé¥,, with its length-specific effect fitted better than the thadbd model,
Mg, (Table 5.2B). This result suggests that there is also a@nsbn the mutational mechanism in
HD buccal cells. Estimated mutational rates, for both exfmanand contraction, were significantly
lower in HD buccal cells than in DM1 blood cells (Figure 5.H3)d were more weighted towards
expansion in HD buccal cells (82%) than in DM1 blood cellsy§0These differences have impli-
cations for the shape of the repeat length distributionsérekewed to higher repeat lengths in HD
and more spread out in DM1) and hence levels of somatic mesaid he most likely explanation
for these differences is linked to cell type rather than sedse type. Repeat length distributions
measured in both blood cells and buccal cells from the samé Dilividuals (Moralest al,, in
preparation) showed similar differences. Here, the vagan mean ratio was found to be higher in
blood than in buccal cells reflecting a higher percentagenfraction and hence a lower percent-
age of expansion in blood than in buccal cells. Differendégrthan those linked to cell type may
have a molecular basis related to flanking GC content whiiferdn DM1 and HD with a slightly
higher percentage of GCs in HD. As there is a strong corogldietween the relative expandability
of these repeats and the flanking GC content (Brock et al.,18988tor & Monckton 2011) the
higher percentage of GCs in HD might explain the weightingaials expansion in HD and further

illuminate a modifying role for flanking GC content.

As well as quantifying the length-specific effect, we inéetthe parameter values underlying the
best fit and associated with the maximum likelihood valuer rRodel M,,, the parameters com-

prised expansion rate per repeat per yedr ¢ontraction rate per repeat per yeal,(length pa-
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rameter &) and inherited repeat length{). For small alleles, in both DM1 and HD, we found
statistical support for expansion and contraction andviddal-specific parameters. Our estimate
for the length parameter in HD (average = 26 CAGS) is lowen fion DM1 (average = 51 CTGSs)
which may reflect differences in flanking GC content and fidgsixplain differences in the disease
threshold, which is lower for HD (35 CAGs) than for DM1 (50 C3)GExpansion and contraction
rates were correlated in DM1 (correlation coefficient0.99) and in HD (correlation coefficient
= 0.70) suggesting that expansion and contraction, in both DM1tDBdmay be different out-
comes of the same underlying process or otherwise conseoragonents of the instability path-
way. This result has direct relevance to therapies thaetdtge mutations directly (Castel et al.
2010) in order to readdress the balance and/or reduce lef/eistability, as it is very likely that

both expansions and contractions will be affected by a piaieherapy.

For individuals with pure repeat length tracts, withouemtiptions in their repeat lengths, the value
of a relates directly to the size of the hypothetical length t@ist on the mutational mechanism.
We estimate the value of this constraint to be, on averag€ABs in HD and 51 CTGs in DML1.
Model M, is sufficiently general to apply to any length constraint #ets in this manner. In ad-
dition to the 14 DML1 individuals with inherited repeat lehgtiess than 100 CTGs, we identified
eight DM1 individuals with distributions with lower than pected (modelMg,) variance to mean
ratios (Figure 5.1). We hypothesised that the repeat ledigthibutions in these individuals may
also have been affected by an individual-specific lengtistaimt of biological origin. We, there-
fore, fitted modelM,, using an extended range (0-200 CTGs) for the length constraj to an
additional 128 DML1 sized single molecule blood DNA datas¥ts found that for six of the eight
DML1 individuals, mentioned above, mod&l, fitted the data better than mod&lg,; (likelihood
gain greater than or equal to 2), see Table 5.3A. The exptamfdr this lies with high estimated
values fora (80 CTGs and above) and a correspondingly better fit at thehahof the repeat length
distributions in these individuals (Figures 5.11 and 5MBpse likelihood dramatically increased.
An improvement in fit & 2) and a high estimated value far(> 100 CTGs) were also observed for
a further 12 individuals listed in Table 5.3B, notably indivals BC8 and SCO115. These results
suggest that length-specific effect may operate in someithdils over higher repeat length ranges

(greater than 200 CTGSs).

As mutation rates are assumed negligible in repeat lengdisgharny under modelV/,,, the effective
length of the repeat length tract, with respect to mutaté@m be considered to be the remaining
number of repeats in the tract, complementaryrtoWe thus defined the difference between the

inherited repeat length and as the effective length of an individual. In this contexgliinduals
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with either small inherited repeat lengths (less than 10G€§)Tand/or high estimated values for
« are predicted to have effective lengths much smaller thaim #ttual lengths. The length of
may be determined by individual-specifits-acting and otrans-acting factors. One such plausible
cis-acting factor could be an interruption in the pure CTG tiath as CGG or CCG. A model
for how variant repeats might modify mutational dynamicsaimadjacent stretch of pure CTG
repeats is outlined in Figure 5.3. As discussed in the inittidn of this chapter, Section 5.2, in the
presence of variant repeats at ieend of the array, the distance between the pure CTG tract and
the cis-acting modifier will be increased and its effect may be redudn our model, high values
of o suggest that pre-mutation or other mutation events (sudbopsouts or mis-pairings) either
cancel one another out or do not occur over a greater disthaceexpected (around 50 CTGS).
One possible interpretation with implications for effgetiength, illustrated in Figure 5.13, is that
this distance or length constraint has been extended byhysigal presence of an interruption. A
rule where the length constraint afapplies only on one side of an interruption at positibfrom
the other side would be entirely consistent with the unmiatied version. We would simply infer
«a + B in the first instance and in the second instance. High inferredvalues correspond to low

effective lengths and potentially less instability ancedise.

All 142 DM1 individuals were screened for variant repeatsGo@ CGG (Couteet al,, in prepara-
tion). BC19 and BC6 tested positive for CGG interruptionsift® et al,, in preparation). These in-
dividuals (BC19 and BC6) are part of an extended family wilikiailhy came to attention (Ashizawa
et al. 1992) because of the discrepancy between their alisianptoms and the molecular diagno-
sis of inherited repeat length. The symptoms of BC6 are legsre than expected and the inherited
repeat length of his son did not show the usual expansiontaffeanticipation. Our analysis inde-
pendently suggests that a length-specific effactglues 175 CTGs and 110 CTGs, respectively)
operates in these individuals and supports a role for CGgrimptions as modifying mutation rates
and resulting in less somatic mosaicism. This in turn mayagpeduced disease progression in
this family. Interestingly, the repeat length distributifor individual SCO99, who tested positive
for CCG interruptions and who also has a low variance to mato, ris not explained by a length
constraint. We conclude that the CCG interruption in thiividual does not affect mutation rates
in a length dependent manner, though it may do so throughhenoteans. Other individuals (Ta-
bles 5.3A and 5.3B) with high values not testing positive for CCG or CGG variant repeatg ma
have other variant repeats or unusual flanking sequencehwaht in a length-dependent manner

and are therefore candidates for further investigation.

Inherited repeat length explains a large proportion ofarae in age of onset and, as shown in
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Figure 5.13:Hypothetical explanation for how variant repeats might modfy effective length.
A length constrainty may suppress mutation rates resulting in an effective kengt — «, lower
than inherited repeat lengthg (top). The presence of variant repeats in the repeat lergthrnay
reduce effective length further becoming — « — g (bottom).

Chapter 3, the relationship between inherited repeat thesigtl age of onset is not straightforwardly
linear. This relationship is further complicated by somdistability, which has also been shown to
modify age of onset in DM1 (Morales et al. 2012) and HD (Swainail €2009). In DM1, thresholds

beyond which increasing allele length appears to no longatribute toward age of onset have
been reported (143 CTG (Hamshere et al. 1999) and 250 CTG¢(8aal. 2002)) but Morales

et al. found a highly significant relationship between the lodemitof estimated inherited repeat
length and variation in age of onset, both above and belovavheage threshold of 200 (Morales
et al. 2012). The apparent threshold is likely attributecamoadditional, non-linear component
to the relationship between age of onset and estimateditetieepeat length. By quantifying

length-specific effects we can now suggest a biologicalygible explanation for this non-linear
component, namely that levels of somatic mosaicism do mmjrpss in a linear fashion. Levels
of somatic mosaicism appear to be relatively lower in smiédles than in long alleles due to the
length-specific effect. This gives rise to relatively laségres of onset in small alleles than in long

alleles, resulting in the observed non-linear relatiopdigtween age of onset and inherited repeat
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length, discussed in Chapter 3. We would expect effectimgtleto align more closely and better
predict age of onset and disease progression than inheepedt length. To test this prediction,
we obtained an estimate for effective length by adjustirgiiied repeat length (by subtracting

in the individuals with lower than expected variance to meios (5" percentile) and setting
equal to zero in the other individual$6t” to 100t percentile), 128 DM1 individuals in total. We
then compared inherited repeat length and effective lerigth28 DM1 individuals, in terms of
explaining age of onset using linear regression analysifec@ive length (adjusted?? = 50.6%,

P < 10715, N = 128) was better than inherited repeat length (adjugtéd= 46.8%, P < 10715,

N = 128) at explaining variance in age of onset confirming our exgemt. Importantly, using
model M., we remove some of the bias in mutation rates, mentionedealroaking them less
length dependent. Under modél, the mutation rates were correlated with inherited repesjthe
(correlation coefficient = 0.642 < 10~°), whereas under modal,, correlation between mutation
rates and inherited repeat length was much lower (coroelaefficient = 0.30P < 10~°). Con-
sequently, rates adjusted in this way will be better suitedumntitative traits to investigateinsor

cis-acting modifiers of somatic mosaicism, disease onset avgtession.

Our findings that mutational rates may be suppressed in tierrebove the disease thresholds
in both HD buccal DNA (most effective up to 60 CAGs on average) DM1 blood DNA (most
effective up to 173 CTGs on average) are encouraging fronincal perspective. Individuals
with alleles in this range generally have reduced levelsoofistic mosaicism, less severe pheno-
types and later age of onset. Longer DML1 alleles transmitidbde next generation result in more
severe symptoms and an earlier age at onset, an effect coofgmblpy somatic expansion. Sup-
pression of somatic expansion is therefore expected todyaghutically beneficial and induction
of contractions potentially curative (Gomes-Pereira & Mkton 2006, Castel et al. 2010). How-
ever, the feasibility of suppressing expansions/inducimgtractions remains largely undetermined.
Our results show that, in principle, therapies aimed atcieduthe length of disease DNA tracts,
if successful, should result in lower levels of somatic niisen which should slow down disease
progression. Interruptions in the disease repeat lengtt bave also been associated with a less
severe phenotype in DM1 (Musova et al. 2009, Braida et alOpaad we now suggest a biological
basis for this which links interruptions and the patternegfaat length distributions to lower levels

of somatic mosaicism and, in the case of one family, lessreggenotypes.

Inherited repeat length and somatic instability are enngrgis key modifiers of disease onset and
progression in DM1 and HD (Swami et al. 2009, Morales et al.220 However, the relationship

between inherited repeat length, somatic instability agel @f onset appears complex. Our work
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unravels some of this complexity through estimation of tlwdgical parameters that drive levels
of somatic mosaicism. Through quantification we can betisess the relative importance of these
parameters within an individual, between individuals aatieen cell types and diseases. We find
similarities in the underlying mechanism, as evidencedthyng correlation between expansion
and contraction rates in both DM1 and HD. But we also find hiylels of variation in these rates
suggesting that individual-specific factors modify levefssomatic mosaicism to a large degree.
Also, as illustrated here, some variant repeats or othgmpmiphisms may further modify repeat
length distributions and disease progression. Findingpfadhat modify disease is an important
next step that will be facilitated by the use of biological®fevant quantitative traits, such as those

established here.

5.5 Material and methods

5.5.1 Project data

The data in this study comprise distributions of CTG repeagths sized from blood DNA from
14 DM1 affected individuals at the DM1 locus, see below, aisttibutions of CAG repeat lengths
sized from buccal DNA from 12 HD affected individuals at th® Hbcus (Veitch et al. 2007).
DML1 individuals with inherited repeat lengths less than TODGs were selected for this study
from the total cohort of 145 DM1 individuals, see Chapter @cttbn 2.2, as their repeat lengths
are representative of the smallest repeat lengths seen ih [\t of the 14 individuals selected,
9 were asymptomatic when the blood samples were taken and &teaonset with age at onset
ranging from 46 years to 74 years. The 12 unrelated HD indal&l (Veitch et al. 2007) had
estimated inherited repeat lengths between 39 and 48 CAGsvare all 39 years old when the
buccal samples were taken. The distributions were size@rins of the number of repeats, using

single-molecule PCR assays.

5.5.2 Mathematical model with length-specific effect

As described in Chapter 2, Section 2.4, representing thareskpn rate per year, the contraction
rate per year and inherited repeat length)y 1, andnyg, respectively, and letting’, (¢) denote

the probability that an allele has lengthat timet, the rate of change d?, (¢) with respect to time
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is governed by the master equation of the form

dP, (t)
dt

= - ()\n + ;un) Pn (t) + )‘nflpnfl (t) + ,unJrlanrl (t) : (5-1)

Given the allele length at time zerey, we may approximate this infinite system of ordinary differ-
ential equations numerically by truncating at a suitablfgéavalue of» = N and settingP,, (t) = 0

foralln > N + 1.

To specify the functional form of\,, and u,,, we departed from the traditional linear model by
introducing a threshold, for the birth and death process. No activity takes placedpeat lengths
below this threshold and the general propensity for expansr contraction is proportional to the
excess length above the threshold, consistent with theeénhestability observed in non-diseased
individuals. Hence the definitions fox,, and i, were \,, = A(n—a) andp, = p(n—a),

respectively.

To derive a new variation of this model, we formulated a largpecific factor, denote®,,, as
follows. Let the total repeat length be Consider now a length constraint on the mutational
mechanism A and B are locations where repair is needed (for example looprows hypothesise
that subsequent mutation requitels— B| > «, wherea is an unknown number of repeat units to be
inferred from the data. The length parametes therefore interpreted as the minimum separation
between repeats required for mutation to occur. We aredsiied in the likelihood that mutation
occurs or the proportion of all possible distances thatlr@siiA — B| > «. Assuming thatd and B
occur at arbitrary uniformly random positions alomgand that these occurrences are independent,
there aren? possible complementary pairs. Using combinatorial cognthethods it can be shown

that there arén — «)(n — « + 1) pairs separated by distané — B| > «.
Hence the ratioR,,, of possible mutation events, is defined as

R, — = O‘)(Zz_ atl) (5.2)

We note that for fixedv, R, — 1 asn — oco. This corresponds to the intuitively reasonable notion

that the finite length constraint is negligible for very langpeat lengths.

R,, can be considered as the biophysical capacity of a repegthlém undergo expansion and con-

traction. We would expect smaller alleles to have a lowerncHy than larger alleles to expand and
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contract. Based on these considerations, we modify ouc basilel, Equation (5.1), by introducing

R,, as follows

An = RoAn, (5.3)

pn = Rppn, (5.4

for n > «, where) andy are now constant rates of expansion and contraction peatepé per

year respectively.

This introduces a nonlinearity into our equations and hemeeannot derive closed forms for the

mean and variance. However, the equations can of coursbestiblved numerically.

5.5.3 Model comparison and parameter estimation

We use likelihood methods to carry out model comparison andmeter estimation. The likelihood

is defined to be the probability that a repeat length has ezhtife length observed given the model
and its parameters. We can solve Equation (5.1) numerigalrder to obtain the probability
distribution function componentB,, (t) which give the probability that repeat lengthrisat time

t. The likelihoodL!" is then the product over all the dad#i], which denotes the repeat length for
the jth observation from individual, of the probabilitdey] (tl; 90y, 5, wheregl! are the model
parameters for that individual anti! the age of the individual when the data sample was taken.

This gives the likelihood for individual,

L =TT Py 0), (5.5)

j J

and the overall likelihood. is the product over all individuals in the population,

L=T]L (5.6)

The Akaike information criterion (AIC) is used to assessgbedness of the fit of the model (Akaike
1974). AIC uses the maximised value of the likelihood of theled, L,,,..., penalised by the number

of model parameters;, to rank models thus

AIC = 2k — 210g Linaa, (5.7)
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with the model with the smallest AIC value being ranked hgihe

We obtain the maximum value of the likelihood by evaluating likelihood over a broad parameter
space described in Table 5.1. Maximisation of the likeldthdoin Equation (5.6) is essentially
the maximisation of each” in Equation (5.5) using each dataset from an individual. fEgher
statistical analysis, it was useful to have point estimiiethe parameters. These were taken to be

the maximum likelihood values.

The relative likelihood of two models with AIC values derebt¢/ C; and AIC, respectively, where

AIC, < AICyis

exp (M) ] (5.8)

2



Chapter 6

Levels of somatic instability in Huntington disease relatd tissue are

linked to age of onset and disease progression

6.1 Abstract

Evidence of somatic expansion in tissues that are the tagjgiathogenesis has given rise to the
hypothesis that somatic instability may itself contribtibethe pathogenic process. However the
interpretation of the levels of somatic instability in mawfythe affected tissues in the triplet repeat
diseases is hindered by complex cell compositions. It hesntey been demonstrated by Swami
et al. that larger somatic expansions and hence skewed distiitautif the HD CAG repeat ex-
pansion in HD frontal cortex at end stage are significanthpeisted with an earlier age of disease
onset, independent of any effects of inherited CAG repeawtleon either somatic instability or
onset age. This interesting dataset comprised post monenstage CAG repeat length distribu-
tions from 48 HD individuals with either an extremely youngam extremely old age of onset
but matched inherited repeat lengths. We now extend ouremnsdtical model to two cell pop-
ulations whose repeat lengths have different rates of iouatéfast and slow). We infer for each
frontal cortex HD dataset the likely relative weight of taell populations and their corresponding
contribution towards somatic variation. By comparisonhwdata from laser captured single cells
we conclude that the neuronal repeat lengths most likehatauit a higher rate than glial repeat
lengths, explaining the characteristic skewed distrimgiobserved in mixed cell tissue from the
brain. Derived parameter values differ significantly besawéhe two extreme phenotypes and we
show that individual-specific mutation rates in neuronsiaraddition to the inherited repeat length,
a modifier of age of onset. Using the parameters estimated dur HD end-stage analysis we also
simulate the expected distribution of repeat lengths abhgaset. Very interestingly, the predicted
repeat length distributions at disease onset in neurongeayssimilar between individuals, despite
very different ages at onset. Our results support a modeisebde progression where individuals
with the same inherited repeat length may reach age of asetuch as 30 years earlier, because
of greater somatic expansions underpinned by higher rontdtrates. Therapies aimed at reducing
somatic expansions would therefore have considerablditeendth regard to extending the age of
onset.

116
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6.2 Introduction

Huntington disease

As discussed in Chapter 1, Huntington disease (HD) is arribakleneurological disorder char-
acterised by progressive movement, psychiatric and degnitisturbances. Neurodegenerative
changes in the brain of affected individuals follow a typigattern, with early cellular dysfunction
and loss of medium spiny neurons in the striatum, followedrmye generalised cell loss across
the brain (Graveland et al. 1985). Whilst the age of diseasetds strongly inversely correlated
with the length of the expanded CAG repeat length (Andrew.et33, Duyao et al. 1993, Snell
etal. 1993, Stine et al. 1993, Gusella et al. 1996), withaefmngth accounting for around 70% of
the variability in age of onset, this reduces to less than 5%the majority of HD patients with
repeat lengths below 60 CAGs (Myers et al. 1998, Li et al. 200Bere is evidence for heritability
for the portion of age at onset not explained by CAG repeat, sithich provides support, along
with several other studie®.g. (Li et al. 2003, Wexler et al. 2004), for genetic modifiers gka
of onset. Measurement of biomarkers that contribute tatiari in age of onset could be used to
identify these genetic modifiers, which are key targets ierdpies aimed at slowing or reversing

the pathogenic process.

The expanded HD CAG repeat is somatically unstable, undeggorogressive length increases
over time (Telenius et al. 1994, Kennedy et al. 2003). Samiastability is also tissue-specific
with high levels found in striatum and cortex (Shelbourn@le2007) and occurs in post-mitotic
neurons (Gonitel et al. 2008). Somatically expanded HD Céyéeats are transcribed and translated
(Aronin et al. 1995, Wheeler et al. 2003, Gonitel et al. 200Byidence of somatic expansion in
tissues that are the targets of pathogenesis has given aseypothesis that somatic instability may
itself contribute to the HD pathogenic process. Experimémta genetically accurate Huntington
disease homologuddflh) knock-in mouse modelH{dh?'!1), in which an early symptomatic, HD
CAG length-dependent phenotype was significantly delagedice that lacked somatic instability
as a result of the deletion of mismatch repair gedet2 supports this hypothesis (Wheeler et al.

2003).

Different cell types in the brain (principally neurons arthgshow different levels of instability,
with higher levels seen in neurons (Shelbourne et al. 200njtél et al. 2008). This provides a

straightforward explanation for the multi-modal and skdvehape of the distributions of repeat
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lengths in brain tissue. Jung and Bonini proposed that CA®bility is linked to pathogenesis
as seen in drosophilamodel (Jung & Bonini 2007), but the conclusions of Gondelal. and
the experiments of Wheelet al. (specifically showing that the rate of somatic instabilityre-
lates with huntingtin accumulation in neuronal nuclei) Wbcontradict this suggestion and place
somatic instability as a significant disease modifier wittheotreported factors (Lloret et al. 2006)

contributing to the process.

Recently, Swamet al. investigated the potentially modifying role of somatictatslity on the age
of onset phenotype (Swami et al. 2009). Their study desigrsehdD individuals with extreme
phenotypes for young and old age of onset. These were thaduodls whose age of onset deviated
the most from what would be predicted by their inherited eedength alone. They identified
48 individuals, 24 with an extremely young age of onset andvth an extremely old age of
onset, matched for their mutant and normal inherited rejeegiths (as established by analysis of
cerebellar DNA which is somatically stable (Kennedy et &02) but with mean age of onset
differing by approximately 30 years. The frontal cortex whssen for examination as it has been
shown to retain relatively high levels of mosaicism at the stage of the disease compared to
the striatum where reduced levels of variation are obseavexhd stage most likely due to disease
related cell loss (Shelbourne et al. 2007). The alleles wizexl using small-pool PCR and provide
suitable distributions for quantitative analysis using @amematical model as previously described
for CTG repeat lengths in myotonic dystrophy type 1 blood (Dlh Chapter 4 and now modified
for CAG repeat lengths in HD frontal cortex. The key findingtbé Swamiet al. study was
that repeat length distributions are biased towards loatieles in individuals with earlier disease
onset (Swami et al. 2009). There was a significant differdretereen the two groups of extreme
phenotypes concerning the maximum expansion, and morestiplfas maximum expansion is
only one observation), skewness (a measurement of theedefjisymmetry of a distribution) of
the samples with the extremely old age of onset having lokewsess than the extremely young
age of onset. Their results demonstrated that larger soreatiansions of the HD CAG repeat
expansion in HD patient cortex are significantly associatéti an earlier age of disease onset,
independent of any effects of inherited CAG repeat lengtteitimer somatic instability or onset
age. A mechanism for age of onset has been proposed by Kep#infor trinucleotide diseases
in general where disease onset is triggered when a pereeofatjsease related cells (arbitrarily
chosen to be 20%) cross a critical threshold in terms of edg@adunepeat length (Kaplan et al. 2007) .
They suggest that this critical threshold for HD is 115 CA@aat units. The results of Swastial.

are consistent with the expectation that individuals sigrat the same inherited repeat length who
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have more somatic expansion would reach the disease ttolestudier than individuals with less

somatic expansion, but do not provide further quantitativdescriptive features of this threshold.

Study aims

As the different cell types in the brain (principally neusaand glia) show different levels of insta-
bility, with higher levels seen in neurons than in glia (Rloelrne et al. 2007, Gonitel et al. 2008), it
follows that the overall distribution of repeat lengths in@nplex tissue sample comprising one or
more cell types may be skewed or contain more than one motkrptatation of the components
of somatic mosaicism in the frontal cortex, a tissue diyettvolved in the pathology of HD, is
hindered by the complex cell composition of this tissue.his study we extend our mathematical
model to monitor changes over time in repeat length in twbtgpkes: cells in which the repeat
lengths expand more rapidly (fast) and cells in which theat¢fengths expand less rapidly (slow).
It is predicted that the cells with the fast expanding repeal be neurons and the cells with the
slow expanding repeats will be glia. We fit this extended rhtaléhe datasets described in (Shel-
bourne et al. 2007, Swami et al. 2009) and infer the relativeposition of these two cell types and
their respective rates of mutation. We hypothesise thatiéhiged parameters will explain some of
the variability in age of onset not explained by the inheritepeat length. To further investigate the
role of somatic mosaicism within the frontal cortex and @rtionship to phenotype, we simulate
the expected distribution of mutant alleles at age of on3#iis provides further qualitative and

guantitative indication of the role somatic instabilityapé in age of onset and disease progression.

6.3 Results

6.3.1 Assumptions underlying the mathematical models

To clarify the presentation and discussion of our resulespegin by stating and justifying our key
assumptions about how the data arose. We assume that thegpa@& tengths can undergo expan-
sion (increase in length) and contraction (decrease irth@n@ur mathematical model quantifies
the probability of both expansion events and contractiantyin the repeat length in frontal cortex
cells. The human brain contains around 160 billion cellseffeto et al. 2009) split roughly into
equal numbers of neurons, the basic building blocks of tireoms system, and glial cells, the non-

neuronal cells that provide support and protection for aesir The ratio of glia to neurons differs
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from one part of the brain to another. This ratio is thoughb¢oas high as 3.72 in the cerebral
cortex, 1.48 in the cerebral cortex gray matter and as low2ifl the cerebellum (Azevedo et al.

2009). In the frontal cortex the ratio is expected to be add2in

There are differences between neurons and non-neurorsliceérms of their generation. It is
thought that virtually all neurons 99%) are generated prenatally and retained for our lifespan,
whereas there may be constant production of new glial aeldslults (Bhardwaj et al. 2006). That
large repeat length changes occur in terminally diffeedat, post-mitotic neurons was confirmed
by (Shelbourne et al. 2007, Gonitel et al. 2008). In formnbur model for brain cells, we as-
sume that the sampled cells, comprising both cell typess had independent mutational histories
(from their prenatal generation and differentiation frorans cells, onwards). For neurons, which
are virtually all non-dividing cells, this is clearly thesm For glial cells, even if they are under
production in adults as indicated by (Bhardwaj et al. 206 ,sheer number of cells makes it ex-
tremely unlikely that two sampled cells arose from the satia stem cell and so the assumption

of independent mutational histories remains valid.

The inherited repeat length was estimated for each indlithom cerebellar DNA by Swarnst
al. but by treating it here as an unknown parameter we can estabfether in principle, it is
possible to infer the inherited repeat length from a paitickd tissue. A positive result would be
useful for future work exploring somatic mosaicism wherer¢ghis more instability and hence less
certainty where the inherited repeat length lies, e.g. tBUuadM1. The changes in repeat length
are age-dependent and as the samples were end stage talkpay,ahe appropriate input for age
or time in our model is age at death. Information about ageeathdwas available for 38 samples
(22 young age of onset and 16 old age of onset). Comparisevebatdifferent sized groups, as
in this case, is not an issue for our modelling or inferencéhods. The other additional statistical

test used and comparisons with the full dataset take tHisrdifce in size into account.

Our probabilistic model assumes that the probability ofatiahal events occurring increases as the
repeat lengths get longer. As previous work, see Chaptapdrted that small alleles with repeat
lengths less than 200 repeat units long may have less capaaitutate than longer alleles, we
have introduced into the model a further parameterjuantifying a length effect. This addition
is particularly pertinent for HD as allele lengths are gafigrmuch lower than those found in

myotonic dystrophy type 1.

The mutational gains and losses are assumed to be of one CiAGSuch small gains and losses

have been observed in several studieg.(Veitch et al. 2007). It has been suggested that the
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mutations occur in a synchronous manner (Gonitel et al. PB88ed on the observation that the
distributions in genetically identical mouse models appeafollow a predictable pattern. We

argue that a predictable pattern can also be the result othastic process, where many cells are
involved, as the aggregate behaviour of many cells in thehsstic processes will appear to be

deterministic.

We assume that the cell types contained within the frontekgacan be differentiated by rates of
mutation in their repeat lengths: fast and slow. Hence wenfit allele distribution curves: one
for cells with fast mutating repeat lengths and one for cefith slow mutating repeat lengths,
with a range of weights for each type of cell (Table 6.1). Weaobthe maximum likelihood
value and the associated parameter values using a grichsefaifte parameter space (Table 6.1).
This likelihood method quantifies which parameters proviue best fit to the data. The fit can
be visualised as a distribution curve or a cumulative diistron curve and can be compared with
the data, as in Figures 6.1, 6.2 and 6.3. As this is a compuotdly demanding task, involving
many parameters, consideration was given to the designrgadisation of the implementation to

minimise the computational cost.

Model parameters Prior ranges

Contraction rate per CAG unit per year in cells 0-0.12
with fast mutating repeat lengths (i)

Net expansion rate per CAG unit per year in cells 0.01 -0.031
with fast mutating repeat lengths (¥ - 1)

Length parameter in cells with fast mutating repeat 10-30
lengths, number of CAG units (¢/)

Contraction rate per CAG unit per year in cells 0-0.02
with slow mutating repeat lengths (i)

Net expansion rate per CAG unit per year in cells 0.0001 - 0.0014
with slow mutating repeat lengths (1’ — u)

Length parameter in cells with slow mutating 10-30
repeat lengths, number of CAG units («")

Percentage of cells with fast mutating repeat 0% — 100%
lengths (w/)
Inherited repeat length, number of CAG units (n) 38 -50

Table 6.1:Prior ranges for parameter estimation for Huntington disease brain.

Another important issue is that neurons with the longestaepxpansions may be preferentially
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Figure 6.1:Histogram showing the distribution of CAG repeat lengths infrontal cortex from
a representative HD individual (sample 11) compared with tle fitted probability distribution
for fast mutating cells (solid line) and the fitted distribution for slow mutating cells (dashed
line).
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Figure 6.2:Cumulative distribution of CAG repeat lengths in frontal cortex (jagged line) from
a representative HD individual (sample 11) compared with tle fitted probability distribution
(smooth line).
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lost during the disease course (Kennedy et al. 2003) and wsidgr the importance of such an
effect through a model with a truncated distribution, désat more fully below. Preferential loss
of neurons with long repeat lengths during the disease eand their consequential absence from
the data may result in an underestimation of the mutatiasrathe highest observed repeat length
in this study in frontal cortex was 116 CAGs. To address #ssi€, we also fit allele distributions
truncated at a range of repeat lengths (100 CAGs to 145 CAtR)ding the length 115 CAG
units which has been proposed as critical to disease ongétapjan et al. 2007). These truncated
distributions will predict higher rates of mutation if thesttibution of the other alleles support this.

We use a model comparison method (AIC) to formally compagsetHits.

6.3.2 Model comparison supports two cell types and a minor rie for truncation

We tested our hypothesis that cells with two different ratemutation were responsible for the
skewed, multi-modal shape of the allele distribution byrfifta mixed distribution to the data. This
hypothesis was tested against the null hypothesis that @hé&/pe would explain the changes in
repeat length using the likelihood ratio test. We also figedincated distribution to the data to test
the extent to which preferential cell loss may have a rolehaping the repeat length distributions.
In summary, the following models, with parameters speciiedach HD individual, were fitted to

the data:

x Model F'1: Full distribution one mutating repeat length cell type @gmeters per 38 HD

individuals, 152 in total)

x Model F'2: Full distribution two (fast and slow) mutating repeat léngell types (8 parame-

ters per 38 HD individuals, 304 in total)

x Model T'1199: Truncated distribution (100 CAGs) one mutating repeagtiercell type (152

parameters)

x ModelsT2109, 12115, 12130 andT'2145: Truncated distribution (100 CAGs, 115 CAGs, 130
CAGs and 145 CAGs respectively) two (fast and slow) mutatapgeat length cell types (304

parameters)

The models were compared and ranked using AIC, see Tablen@.Baction 2.5.3 for further
details about AIC. This involved calculating the maximurkelihood value using a grid search

over the parameter space as outlined in Table 6.1 (see Cla@ection 2.5, for further details).
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Despite having more parameters, Modi@ is ranked higher than modéll (maximum likelihoods
-11,098 (304 parameters) and -13,739 (152 parameter®atdggly) and similarly model2,qg is
ranked higher than mod&l1,y (maximum likelihoods -11,093 (304 parameters) and -13(152
parameters) respectively) providing strong support far tell types. The other truncated models
(T2115, T2130 andT2145) had similar maximum likelihood values, -11,097 for Mod&l,5 and -
11,098 for Modeld'213¢ andT2145. Model F'2 and the truncated models are significantly different

from the next ranked model, Mod#l1, with a maximum likelihood value of -13,735.

Models Number of Maximised Adjusted AIC AIC
(N=38 individuals) parameters log-likelihood rank

Truncated Distribution for a
mixture of cells with fast and slow
mutating repeat lengths

12100 — 100 CAGs 304 -11,093 0 1

12,5— 115 CAGs 304 -11,097 8 2=
1213 — 130 CAGs 304 -11,098 10 3=
12145 — 145 CAGs 304 -11,098 10 3=

F2 Full Distribution for a mixture
of cells with fast and slow 304 -11,098 10 3=
mutating repeat lengths

T1 Truncated Distribution for one 152 -13,735 4980 4
type of cell
F1 Full Distribution for one type 152 -13,739 4988 5

of cell

Table 6.2: Model comparison summary for Huntington disease brain. The models, listed in
column 1, are ranked using AIC which has been adjusted byamilitg the lowest overall value
(Model T21¢p) from the other models (column 4).

We introduced a model with a truncated distribution to assd@sether cell loss was having a sig-
nificant effect on the repeat length distributions and hewleether ignoring this effect would lead
to an underestimation of the rates of mutation. This doesppéar to be the case as the estimated
rates of mutation are virtually identical for moddl® and7'2,¢y with only two individuals having
very slightly higher rates of mutation under modé!,,. The estimated percentage of fast cells
(35%) was also the same for modé18 and1'2,¢g. In order to obtain the parameter estimates, the
truncated model used the simplifying assumption that di$ eéith repeat lengths over 100 CAGs
would be lost. This is clearly not the case as two alleles énttital sample were over 100 (103
CAGs and 116 CAGSs). So although mod#l,y, with a maximum likelihood value of -11,093 was
ranked higher than model F2 suggesting that the additionpaframeter for truncation is justified
and was a useful hypothesis for checking the mutation ratesall, this model requires further
work to include the probability of cell death. Taking theaetbrs into account, especially the fact
that the parameter estimates are not affected, we considefull distribution model,F'2, is an

appropriate model for further analysis.
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We also considered a model with global parameters for thetiount rates and length effect and
individual-specific parameters only for the inherited ldmgnd percentage of fast cells (data not
shown). However, as reported for DM1 (Higham et al. 2012)bgl parameters did not capture
the variation seen in the data which indicates that ind&ieypecific factors play a major role in
somatic instability. Inclusion of contraction everits, decreases in repeat length of one CAG unit,
was also justified as there was no statistical support foictimtraction rates being zero. Model
F2 is significantly better P < 10~!%) than an expansion only model even taking into account the

reduced number of parameters (228).

The model fit can be further examined by comparing the expeatigtribution, associated with the
maximum likelihood value, to the data (Figures 6.1, 6.2 ar3).6Visually, small deviances from
the expected distribution are observexg( Figure 6.2). To investigate whether these deviances
could arise from the model, or whether another explanasaequired, we simulated distributions
for each of the 38 HD individuals. Using a two-sample KolmayeSmirnov test we show that the
observed distributions are very similar to the simulatesiritiution and hence very likely do arise
from the model. An alternative explanation, such as thasthall deviances are sub-populations
arising from alleles that have had large contractions isemaired. In summary, we regard model

F2 as being the most successful among those considered irirerglAow the data has arisen.

6.3.3 Mutation rates are predictive of onset age

Through fitting modelf'2 we obtained the following parameter estimates for 38 HDvinldials:
the expansion rate for fast and slow mutating cells per CABper year,\/ and\*, respectively,
the contraction rate for fast and slow mutating cells per G/&@ per yeary,/ andp®, respectively,
the length parameter measured in number of CAGs for fast lamd rautating cells,o/ ando®,
respectively, the inherited repeat length, and the percentage of fast cells/. Our estimated
values forny were in close agreement (correlation coefficien0.99) with those determined by
(Swami et al. 2009) from cerebellar DNA. We hypothesised tha estimated parameter values
may differ between the two extreme phenotypes and hencéderavmolecular explanation for the
underlying mechanism of disease progression. The indiidpecific parameters associated with
the maximum likelihood value provide an explanation unterftill distribution model (ModeF'2)

of how each individual has obtained the distribution of wgdengths observed in frontal cortex
DNA through mutational gains and losses of CAGs over thétifhe from their initial inherited

length. We tested whether the parameters associated wititionu(\", \°*, u/, p*, of anda®)
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differ significantly between the extreme phenotypes, by matimg the multivariate means of the
parameter values for each group (extremely young age oft amskextremely old age of onset)
and performing a one-way multivariate analysis of variafMANOVA). A statistically significant
MANOVA effect was obtained# = 0.0063) indicating that one or more of the parameters do differ
significantly between the two groups. The multivariate @ffeize was estimated at 0.42, which
implies that 42% of the variance in the dependent variablEsaecounted for by phenotype group.
The median mutation rates for repeat lengths within bothdells and slow cells are significantly
higher for the young age of onset phenotype group than foolth@ge of onset phenotype group
(see Figure 6.4 and Table 6.3). Concerning the length paeasye’ anda?, the median values

were not significantly different for each phenotype group CAGs and 20 CAGs respectively).

Median Median |Mann Whitney U R explained
young age | old age of test P-value variance
of onset onset dependent variable
age of onset
Expansion rate per 0.055 0.031 0.0039 21.6%
CAG unit per year in
cells with fast mutating
repeat lengths
Contraction rate per 0.038 0.018 0.0088 19.1%
CAG unit per year in
cells with fast mutating
repeat lengths
INet expansion rate per 0.017 0.009 0.1003 1.4%
CAG unit per year in
cells with fast mutating
repeat lengths
Expansion rate per 0.00085 0.00055 0.0179 28.0%
CAG unit per year in
cells with slow
mutating repeat lengths
Contraction rate per 0.000075 0.00005 0.6605 11.2%
CAG unit per year in
cells with slow
mutating repeat lengths

Table 6.3:Parameter comparison between extreme phenotypes in Huntgton disease brain.
Notes: (i) Bonferroni corrected significance level (5 tgst§.01.

Some parameter pairs are highly correlated: expansion amttaction rates for the fast mutating
cells (correlation coefficient = 0.974), expansion and contraction rates for the slow mutatinig cel
(correlation coefficient = 0.849). There is also positive correlation between the expansitas
for fast mutating cells and slow mutating cells (correlatamefficientr = 0.553) as illustrated in
Figure 6.5. The expected number of expansions per year béymedepends on the model param-

eters,\/, af, \*, a®, but also on the current number of CAG units. In summary, esults show



6. HD BRAIN

150

127

100

a
o

cumulative distribution

0 20

40

1
80

60
number of CAG repeat units

1 1
100 120

1
140 160

Figure 6.3:Cumulative distribution of CAG repeat lengths in frontal cortex (jagged line) from
a representative HD individual (sample 29) compared to the fied probability distribution
(smooth line).
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that the median expected number of expansions per year,waxtoh of length, is significantly

different between the extreme phenotypes, young age ot amskold age of onset, with higher

levels of mutations in the young age of onset group (Figusg 6.
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Figure 6.5:Matrix of scatter plots for pairwise comparison of the model parameters \/, p/,
A%, u® between phenotypes (young age of onset denoted by '+’ and ade of onset denoted by
'0’) and a histogram showing the distribution of each paraméer along the diagonal.
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Figure 6.6:The median expected number of expansions per year, as a fumat of length, for
phenotype group early age of onset (dark solid line) and latage of onset (light dashed line).

In terms of age of onset, the expansion rate for fast expgraiis explains 21.6% of the variance in

age of onset (Tables 6.3 and 6.4). Together, in a linear mivdhedrited repeat length and expansion

explain 57.8% of the variance in age of onset rising to 69.@%n interaction model. This result

indicates that both the expansion rate and the inheriteshtdpngth contribute to age of onset in a



6. HD BRAIN 129

complex, non-linear manner, consistent with the fitted rhakl2, where the number of expansions

(and contractions) is dependent on CAG repeat length.

R’ explained
Independent variables variance dependent | Adjusted R? P-value
variable age of onset

Inherited length 52.7% 51.4% 2.4659e-07

Expansion rate per CAG unit per 21.6% 19.4% 0.0033
year in cells with fast mutating
repeat lengths

Inherited length and expansion rate 57.8% 55.4% 2.7843e-07

Inherited length, expansion rate 69.7% 67.0% 6.2139¢e-09
and interaction,
inherited length*expansion rate

Table 6.4:The relationship between age of onset, inherited repeat Igth and expansion rate
for fast expanding cells, established using linear regregm analysis.

So far we have not identified which cells belong to the fastslod groups, the obvious distinction
being neurons versus glia. Shelbousteal. sized repeat lengths in laser captured single cells in
different human brain tissues, caudate nucleus, accumpatemen region (CAP), temporal pole
of the cortex (TP) and hippocampal formation (HF), separaté grey matter (neuron rich) and
white matter (glia rich) (Shelbourne et al. 2007). We fitted model to each of these datasets and
found that expansion rates are higher in grey matter tharhitewnatter £ = 0.0019) and that the
percentage of fast cells is higher in grey matter than inevhiatter £ = 0.024). This confirms

that neurons are most likely the fast mutating cells andrglist likely the slow mutating cells.

Parameter estimates for the percentage of fast mutatifggieelach sample reveal that the relative
proportions of the different cell types (fast and slow) vagtween individuals (10% to 70%) but
that the difference between the groups (mean = 30.5% forgyagie of onset and mean = 38.6%
for old age of onset) is not significantly different. The rarig greater than that which could be
reasonably attributed to sampling from a mixed two cellisassuming a ratio of two glia for each
neuron (estimated to B5% + 10% with 95% confidence). As the ratio of neurons to glia varies
even within sections of the brain, these individual-speddiiferences are most likely attributable
to differences in the actual sample taken such as positioleth rather than indicating individual

differences in the neuron to glia ratio.
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6.3.4 Simulation of allele distributions at age of onset

We have inferred the mutation rate values that underlie tbasured repeat length distributions
at end stage and shown that these values are significantigrii the young age of onset group.
The estimated number of mutational events per year forsfast/ mutating cells is on average
1.241/0.024 for the young age of onset phenotype and 0.88Bdor the old age of onset pheno-
type with, in all cases, high variance. From these resuléspredict that the distribution of repeat
lengths will spread out over time, from the inherited redeagth, mostly towards higher repeat
lengths but also slightly towards lower repeat lengths.hinytoung age of onset group the distri-
bution of repeat lengths will spread out further and quickan in the old age of onset group. The
difference in rates between cells will give rise to skewed amlti-modal distributions of repeat

lengths.

Using the estimated parameter values associated with thiemaia likelihood value of modeF'2,
the expected distribution of mutant alleles for each cqdetywas determined by simulation at pre-
cisely the age of onset for each HD individual (N=38). Timeeledent distributions for alleles
are generated under the models using an adapted Gillespaithin (details given in Chapter 2,

Section 2.7.1) and preassigned parameter values.

The expected mutant allele distributions, at age of onseteftremely young onset age and ex-
tremely old onset age, further split by cell type, were coragan terms of their percentile median
values (Figure 6.7). The Mann Whitney U test was used to ohéter the significance of any dif-
ferences between the two extreme phenotypes. For the fiisi{88%), there was no significant
difference between the distributions for extremely younget age and extremely old onset age
with the 70" to 90" percentile being highly similar. For the slow cells (65%l), differences

in percentile means were significant except for the maximepeat length at the0t" percentile.
These results, specifically the commonality between exdrphenotypes at age of onset, suggest

that the distribution of the fast cells defines age of ongberahan the distribution of the slow cells.

Time dependent simulations of repeat length distributiwese also generated for all 38 HD indi-
viduals 15 years prior to onset, 10 years prior to onset aneabsypost onset (see Figure 6.8 for
a summary of the repeat length differences as disease peege The greatest differences during
the 15 years prior to onset occur among the largest repegthe®5t" to 100" percentile) where

repeat length differences are between 5 and 15 CAGs.
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6.4 Discussion

We have extended the model developed in Chapters 4 and 5 toddlf cortex. We hypothesised
that the repeat lengths in two different cell types (neurand glia) differ with respect to their
mutation rates. This hypothesis was tested against thehgptithesis that there is no difference
between the mutation rates in repeat lengths in neurons land\We found significant statistical
support P < 10~1°) for heterogeneous repeat length mutation rates in frantaex. Statistical
comparison with sized alleles in grey and white brain mai®&hrelbourne et al. 2007) suggests
that the fast mutating repeat lengths are most likely foumngeiurons and the slow mutating repeat

lengths are most likely found in glia.

The pathology of Huntington disease involves neuronal (Wegsattel et al. 1985). If neurons are
lost, proportional to inherited repeat length in an ageedelent manner as suggested by (Aylward
etal. 1997), we would expect the shape of the repeat lengthhilition to reflect this. We tested this
hypothesis by fitting truncated repeat length distribuigiom the data. Substantial loss of neurons
and hence missing data might lead to an underestimatiorpafesion rates and so truncated models
were also considered in order to assess the effect neursmmligit have on our estimation of the
mutation rates. Although there was evidence that some nswkith repeat lengths greater than
100 CAGs may have been lost, this consideration did not taffi@cestimates of the mutation rates.
Hence we concluded that neuronal loss in frontal cortex e lonly a minor truncating effect
on the repeat length distributions in HD individuals witlhémited repeat lengths between 40 - 50

CAGs.

Swamiet al. defined two phenotype groups: HD individuals with a reld$iweoung age of onset
(average = 29 years) taking into account inherited repegtteand HD individuals with a relatively
old age of onset (average = 61 years) taking into accountitelderepeat length (Swami et al.
2009). We found that individuals with young onset age hageiicantly higher mutation rates
(both expansion and contraction) than those individuakh wid onset ageR = 0.0063 using
MANOVA). This partly explains why individuals with similanherited repeat lengths can differ in
terms of onset age (sometimes by as much as 30 years). Olis m®uconsistent with the finding
of (Swami et al. 2009) that the larger somatic expansionhefHD CAG repeat expansion in
HD frontal cortex are significantly associated with an eartige of disease onset. By quantifying
the mutation rates in neurons and glia we show further timapairticular, the expansion rate in

neurons explains some of the variance in age of onset nadyirexplained by inherited repeat
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length. Together, inherited repeat length and the exparsite in neurons explain almosd%

of the variance in age of onset. We note that the results eoimgeexplained variance in age of
onset due to expansion rates apply to extreme phenotypeserchio have large differences in age
of onset and hence the effect may be exaggerated. Howeser thgults would hold in the general

HD population if expansion rates correlate with age of oitsatsimilar manner.

We also show that the rates of expansion and contractionightytcorrelated in cells with fast
mutating repeat lengths (correlation coefficient 0.974) and in cells with slow mutating repeat
lengths (correlation coefficient = 0.849). These results suggest that expansion and contraction

events are mutationally linked and could be consideredtasative outcomes of the same process.

As a potential modifier of age of onset, it would be highly mfative to have a profile of somatic
mosaicism and genotype at age of onset in the pathologyedetasues, as it should be highly
predictive of the contribution somatic variation makesaots age of onset and disease progression.
However it is not feasible to obtain brain tissue for HD indisals at age of onset. We argue
here that a viable alternative is mathematical simulatibthe changes in repeat length from the
inherited repeat length at birth to the age of onset using@# ithe parameters estimated from end
stage samples. The similarity between the profiles at agesétesuggests that disease onset is

strongly characterised by the repeat length distribution.

We next looked at the differences between the percentileldgwrior to onset (between 5 and 15
years) and onset (summarised in Figure 6.8). The greatffstetice during the 15 years prior
to onset occurs among the very largest repeat lengii8 {o 100" percentile) which expand on
average from 70 CAGs to 85 CAGs. This observation stronglgests that the larger repeat lengths
(over 80 CAGs) drive disease onset (degeneration and assocymptoms) in HD frontal cortex.
Our findings support the scenario proposed by (Kaplan et0&l7Pwhereby disease is triggered
once a percentage of pathology related cells have expanaggdaaisease-specific threshold. We
have shown that mutation rates are higher in individualk waitung age of onset than in individuals
with old age of onset. In the context of the age of onset mod#ined above, these mutational
differences provide an explanation as to why individualthwimilar inherited repeat lengths can
differ in terms of onset age (sometimes by as much as 30 ygaosisequently, therapies aimed at
keeping CAGs below 80 CAGs would be predicted to delay thetossymptoms in the frontal
cortex. The rate of expansion is around 40% lower among tthexgé of onset phenotype group
than among the young age of onset phenotype group. If exggamates could be knocked down

by 40% in the young age of onset phenotype group then our nvealgd predict that the onset of



6. HD BRAIN 134

symptoms in the frontal cortex would be delayed by up to 30s/ea

In the Kaplanet al. study, the disease-specific threshold was predicted to B&CAGs for Hunt-
ington disease based on clinical data for age of onset amdirégngth. We found the threshold to
be lower than this (80 CAGSs) in frontal cortex. This most ljkeeflects differences in mutational
rates within the brainife. higher levels in striatum than in cortex) as shown by (Shaibe et al.
2007). Kaplaret al. relied on available clinical data that typically sizes rapength by the modal
repeat length. The datasets we employ provide a fuller ygabfithe repeat length distribution by
sizing single molecules within a sample of cells. Using tiééa we can estimate the total mu-
tational dispersion (expansion plus contraction) as welih@ mutational drift (expansion minus
contraction) which provides much more information abowt timderlying process. Interestingly,
mutational dispersion in the cells with fast mutating regeagths is more important, in terms of
explaining age of onsetf? = 21.6%), than mutational drift > = 1.4%), see Table 6.3. Also,
mutational dispersion is more individual-specific005 4+ 0.070 per CAG unit per year) than mu-
tational drift (0.016 + 0.008 per CAG unit per year). As well as quantifying underlying dymics
of age of onset, these measurements combined with inhegfesht length improve the predictive

power of the age of onset modet{ = 69.7%), see Table 6.4.

Higher levels of somatic instability are seen in the majoges of the pathogenic process, namely
the striatum and cortex regions of the brain, making theg®itant tissues for investigation. Lee

al. recently investigated tissue-specific trinucleotide egpestability and demonstrated that mul-
tiple tissue factors reflect the level of somatic instailit different tissues (Lee et al. 2010). But
interpretation of somatic mosaicism at the tissue levelngdred for some tissues by a complex
cell composition which, we show, can result in overlappimgdfites of repeat lengths and hence
skewed, multi-modal distributions. Tissues, such as tambcomprise different cells and some-
times different cell type ratios across the tissue. Cellaiets other than replication are implicated
in mutation and somatic instability. Therefore, tissudedénces with respect to instability must,
to some extent, be due to cell differences. Hence undeistasdmatic instability at the cell level,
in particularlyin vivo, is fundamental to understanding somatic instability attibsue level and its
potential role in modifying the age of onset. It has been shthat the level of HD gene expression
is higher in neurons than in glia (Landwehrmeyer et al. 1995pnitel et al. demonstrated that
neurons are distinguished from non-neuronal cells in baterand humans by the expression of
MSH3 (Gonitel et al. 2008) which, given its requirement fustabilityin vivo (van den Broek et al.
2002), would provide the environment for greater instabilh neurons independent of pathology.

High rates of L1 transposition in neurons reported by (Sirgeal. 2010) also suggest differences
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in DNA repair and damage between cell types in the human brain

Our approach to the guantification of the mutation rates tyidg somatic mosaicism did not re-
quire the cells to be physically separated (Shelbourne 20@l7, Lee et al. 2011), a task which may
be infeasible or very time-consuming in some tissues. Edion of mutation rates for fast and slow
mutating cells established the greater role of neuronssieadie onset and the pathogenic process.
We also showed that mutation rates are individual-specifit explain some of the variance seen
in age of onset not already explained by the inherited releegth. Further, we revealed that the
mutation rates for the different cell types are correlatétiiwindividuals, implicating an influence
across cells which is also individual-specific. The abit@yquantify rates of mutation in complex
pathologically relevant tissues answers specific questidiout the contribution of cell types to-
wards somatic instability but, equally importantly, ereotomparison between HD individuals in
terms of individual-specific differences and the contiitnutof these differences towards disease
onset and progression. These quantitative traits havécatiphs for use with genome-wide studies
to find the genetic factors (and environmental factors) ¢batribute towards disease. Furthermore,
they have applications for use in evaluating therapies vgsir The extent of the variation in the
rates of mutation in individuals makes it highly likely thherapies/drugs targeting either the DNA
or the RNA will also have variable rates of success. In futtieds for HD and other triplet repeat
diseases, the ability, through quantification, to benchkniadividuals with respect to individual-
specific factors would appear key to the evaluation and ssfaedevelopment of therapies and

drugs.

6.5 Materials and methods

6.5.1 Project data

The data analysed in this study ((Swami et al. 2009)) waweldfirom a cohort of 48 individuals
with inherited HD expansions between 40 and 48 CAGs, detmthfrom cerebellar DNA which
has been shown to be somatically stable (Kennedy et al. 2@@&miet al. identified 24 individ-
uals with an extremely young age of onset and 24 with an exieoid age of onset, matched for
their mutant and normal inherited repeat lengths but witlimege of onset differing by approxi-

mately 30 years.

Small pool-PCR analysis was used to amplify the genomic Déddaited from frontal cortex, dis-
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sected from brains obtained at autopsy of the 48 individuadgig HD gene CAG repeat-specific
primers to obtain a profile of HD CAG repeat lengths (visualisn a histogram format in Fig-
ure 6.1). For each sample, the length of the HD CAG repeat 0fdtOnore mutant alleles was
determined. There was no significant difference in the nurob@ormal and mutant HD alleles
amplified. This indicates the absence of bias in the sizelefeahmplified and confirms that the
targets were single molecules. As further demonstratedGmnifel et al. 2008), through repli-
cated experiments, samples of this size can be consideifeziest to reflect the total population of

mutant alleles.

6.5.2 Mathematical model for complex tissue

We hypothesise that the distribution of CAG repeat lengéensn frontal cortex in end-stage HD
individuals arises from two cell types, one with repeat tesghat mutate faster than the other. We
therefore obtain the probability distribution functiorr ®mixed cell sampleP/**, by combining

a distribution function for cells with fast mutating repésigths,P/ (t, 6f, no), with a distribution

function for cells with slow mutating repeat lengti#; (¢, 6°, ng). Thus
Pl =w/Pl+ (1-wl) Py, (6.1)

wherew/ is the unknown percentage of cells with fast mutating refeajths to be inferred from
the data, is the age when the sample was takéh,and#* are the model parameters described

below andny is the inherited repeat length.

The corresponding master equations (see Chapter 2, S@cipofor an explanation of how master

equation are derived) are

PI(t) = —(NRy+p/R)) Pl (&) + N Ryt P () + W/ R PLL (1), (62)

Pi(t) = —(MRy+p'Ry)Ps(t) + NRy 1 Pi_y () + 'R Piyy (8),  (6.3)

where)’, \* are the expansion rates per CAG repeat unit per year for fagiting repeat lengths
and slow mutation repeat lengths, respectively, @hd.® are the contraction rates per CAG repeat
unit per year for fast mutating repeat lengths and slow riautaepeat lengths, respectiveli,, is

the length specific factor defined in Equation (5.2), Seciidn2, Chapter 5, and can be considered
as the biophysical capacity of a repeat length to undergationt We showed in Chapter 5 that

this factor influences small alleles. Hence it is pertinerddta arising from HD individuals.
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Parameter estimation

We use likelihood methods to carry out parameter estimasiea Chapter 2, Section 2.5.4, for fur-
ther details. The likelihood is defined to be the probabiligt a repeat length (from either cell type)
has reached the length observed given the model and its p@mWe can solve Equations (6.2)
and (6.3) numerically in order to obtain the probabilitytdisition function component8/ () and
P¢? (t), which are the respective probabilities that a fast mutatépeat length is at timet and a
slow mutating repeat length isat timet. The likelihood L/ is then the product over all the data
dgi], which denotes the repeat length for tft observation from individual, of the probability
functionP;[j]rs. This gives the likelihood for individual,

J

LI =T P, (6.4)
j J
and the overall likelihood. is the product over all individuals in the population,

L=T]L (6.5)

We obtain the maximum value of the likelihood by evaluating likelihood over a broad parameter
space described in Table 6.1. For further statistical aiglit was useful to have point estimates for
the parameters. These were taken to be the maximum likeliv@oes. The complexity of the com-
putation was reduced by creating libraries for the cal@tatcommon to each datasét/(and P2

for all parameter values) and calling these over the celgttsito finalise the likelihood calculation.

6.5.3 Simulations deriving from the parameter estimations

The maximum likelihood approach provides point estimafab® parameter values which best fit
the data. We use these parameter estimates for cells witmtaating repeat lengths and for cells
with slow mutating repeat lengths, along with the inheritegeat length, to simulate, using the
Gillespie algorithm adapted for our specific stochasticpss (Renshaw 1991), the time dependent
distribution for 100,000 cells under the full distributiomodel at age of onset. We assume that
35% of the cells have fast mutating repeat lengths and 65%eof¢lls have slow mutating repeat

lengths.



Chapter 7

Availability of two DNA samples from the same individual at different
points in time is better for predicting age of onset and valictes the

model

7.1 Abstract

Myotonic dystrophy type 1 (DM1) is a multisystemic disordbaracterised by the presence of my-
otonia (slow relaxation of the muscles after voluntary caction or electrical stimulation) followed
by progressive weakness and wasting of distal limb andlfetiacles, cardiac conduction defects,
cataracts, frontal balding and testicular atrophy. Theeplable characteristics of patients (or phe-
notype) fall into four broad clinical forms: mild or late @isdisease; classic adult onset; juvenile
onset and congenital (onset at birth). Currently clinidabdosis is based on a measure of repeat
length from blood cells but variance in modal length onlyaats for between 20 - 40% of the
variance in age of onset and, therefore, is not predictiendd the International Myotonic Dystro-
phy Consortium have recommended that patients are noedffgrognostic information based on
the current test. Recently, Moraletal. showed that progenitor allele length, estimated using the
lower bound of the distribution as seen with small pool PGghificantly improves the inverse cor-
relation with age of onset over the traditional modal leng@masure. Higharat al. have developed

a mathematical approach to inferring inherited repeattlefrgm blood DNA samples. However
the estimates of inherited repeat length have wide credibdevals. New data now provides blood
samples for 40 DM1 individuals at two time points. Using almeatatical approach we infer inher-
ited repeat length from the combined blood samples. We shatirtherited repeat length and the
mutation rates underlying repeat length instability indolpinferred from two samples rather than
one, are better predictors of age of onset. These resulmdugpther findings that inherited repeat
length and somatic instability are modifiers of disease toase progression. Our results are a step
towards providing better prognostic information for DMHividuals and their families. They may
also lead to better predictions for drug/therapy responisielnwis emerging as key to successful
clinical trials.

138
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7.2 Introduction

So far, the mathematical models developed for DM1 (Chaptersd 5) have been fitted to DNA
blood samples taken from DM1 affected or at risk individuattsone occasion. This occasion was
most likely initiated by disease onset either in that indiivl or in a related individual. The DNA
blood samples assessed cover a wide range of inheritedt lepgéhs and ages at sampling and
capture the variation seen in repeat length distributi@nsss a large cohort. We attribute this vari-
ation to differences between individuals in terms of inteetirepeat length, age at sampling and
individual-specific rates of mutation. Using a Bayesiantegnh(Chapters 4 and 5) we inferred the
value and credible interval of the model parameters (itderiepeat length and rates of mutation)
for each DM1 individual (see posterior probability distritons in Figure 4.3). In Chapter 2, Sec-
tion 2.7, we applied the inference method to a syntheticsgat@simulated from known parameter
values) to assess how well the method inferred parameteesal he slanted shape and size of the
credible interval for inherited repeat length and rates ofation (Figures 2.3D and 2.3G) suggests
that one sample (between 100 and 200 cells) does not prowimegh information about the un-
derlying process to distinguish clearly between inheriggokat length and rates of mutation. The
intuitive explanation is that similar repeat length distitions arise from different scenarios. For ex-
ample, the repeat length distribution from an individuahvén inherited repeat length of 100 CTGs
and a high rate of mutation may closely resemble the repegtiaistribution from an individual
with an inherited repeat length of 150 CTGs and a lower ratauthtion. One way to distinguish
between inherited repeat length and rates of mutation walth observe the mutational process
at another point in time. Observing the process at an egudiett in time should provide more in-
formation about the inherited repeat length and observiagtocess again, at a later point in time,
should provide more information about rates of mutatiornr dvee. In particular, it is not known
whether rates of mutation are constant throughout théntigebf an individual or whether they vary
over time. Combining both observations would be expectgadvide more information about the
trajectory of the repeat length distribution and hence al/enore information about the inherited

repeat length and the rates of mutation.

Further blood samples are now available from a subset (2H)eobriginal cohort of 142 DM1
affected or at risk individuals. Pairs of blood samplesetaktom an individual at different points
in time, are also available from 15 Scottish individualsu@ed to a new study to investigate genetic
variation. These pairs of samples (40 in total) provide grooonity to assess repeat length changes

within an individual over time. As discussed above, two s@sshould improve our ability to
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distinguish between the contribution of inherited repeaigth, age and individual-specific rates
of mutation. Hence we hypothesise that two samples will idewnore information about the
underlying mechanism, reduce the level of uncertainty éngirameter estimation and improve the
ability of these parameters to predict disease onset amplgssion. We address these hypotheses by
fitting modelsMg;, (as described in Chapter 4) and, with length-specific effect (as described in
Chapter 5) to the data from the earlier time point, the datafthe later time point and the combined
data from both time points. We recall that modé}, was found to be better than models;, at
describing the small repeat lengths (under 200 CTGs) busdinee as model/y, at describing
repeat lengths above 200 CTGs. As we are now consideringviiietien of repeat length over

several years, small repeat lengths will be relevant to naditlyese individuals.

7.3 Results

7.3.1 Firstand second time point samples are consistent wisamples from the large

cohort study (142 DM1 individuals)

As expected from our analysis of repeat length distribuiticmlarge cohort of DM1 individuals with
different inherited repeat lengths and ages at samplirgjritlividual repeat length distributions
disperse over time with an expansion bias. Figures 7.1,nidZ & show repeat length distributions
at different time points for representative individualgvels of expansion depend on repeat length
and age, so clear differences are seen among individualsvesyolikely inherited long repeat
lengths €.g. Figure 7.3) but also when the time between sample colledsidrigh €.g9. 19 years,

see Figure 7.2).

In Chapter 5, we compared the variance to mean ratio in 142 Bff&tted or at risk individuals,
taking into account age at sampling, with the predictedavanre to mean ratio under the thresholded
model Mg, (see Figure 5.1). This analysis provided a useful summatiyentlata, highlighting the
highly individual nature of somatic variation. A subset ofl@rs (15th percentile) was significantly
dominated by individuals with small inherited repeat ldrsgfless than 100 CTGs). The analysis
enabled identification of other individuals whose effegtiength is less than their actual length,
possibly due to anomalies in their repeat length tractsurRitg to this type of analysis, we find
that both time points broadly follow the expected variat@@aean trajectory, see Figure 7.4. There
are eight samples from four individuals who lie in the 15ticpatile along with the individuals

discussed above. If the samples are consistent with thelpiang corrected for repeat length and
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Figure 7.1:Comparison between repeat length distribution at the first ime point (top) and at
the second time point (bottom) for individual CR27.

age, we would expect the residuals (actual results minusoteg results) to be normally distributed.
Examination of the residual variance-to-mean ratio amdmeg36 individuals with two samples
(excluding the four outliers) show that there is no significeorrelation between this residual and
age when the sample was takek? (= 0.6%, P = 0.52), but that there is a significant correlation
between this residual and mean repeat length & 17.75%, P = 2.28 x 10~%), see Figure
7.5. Individual differences in the variance to mean ratieraime are mostly (the exceptions are
discussed below) consistent with increases in line witleetadions (Figure 7.4). This suggests that,
under the model, the parameters may change slightly astrkgmegih increases with the effect of
reducing the variance to mean ratio. Indeed, we observéththaariance-to-mean ratio went down
between the first and second time points for some individwalsrepeat lengths over 1500 CTGs,
see Figure 7.4. However as this observation may be the rafsoiissing data, either because the
sample did not capture relatively rare long repeats or mr#e experimental techniqgue was not

able to amplify or measure the long repeats, these samplleseweinvestigated in the laboratory.
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Figure 7.2:Comparison between repeat length distribution at the first tme point (top) and at
the second time point (bottom) for individual DMGV93.

7.3.2 Combining first and second time points reduces uncertaty in the parameter

estimation

The model parameters, under modédl,, are expansion per CTG unit per yeatr, contraction
per CTG unit per yean, the length parameter measured in CTG unitsand the inherited re-
peat lengthyny. Model M, was fitted to the data and the parameter values were estirsitegl

a Bayesian inference approach (see Section 7.5.2) whidivew choosing prior ranges for the
model parameters (Table 7.1). As this inference approatiased at the cell level, the samples
can be treated separately or combined (see Section 7.%BgeHt was possible to obtain posterior
probability distributions for each parameter for the firstlier sample, the second later sample and
the combined sample. The peak of the posterior probabildiridution indicates the most likely
parameter value and the spread of the distribution defineedibde interval associated with this
estimate. Comparing the posterior probability distribng for the first sample, the second sample
and the combined sample, the credible interval tends to denior the second time point sample

than the first time point sample but narrower than either lier ¢dombined sample, see represen-
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Figure 7.3:Comparison between repeat length distribution at the first tme point (top) and at
the second time point (bottom) for individual DMGV76.

tative individuals in Figures 7.6 and 7.7. This suggests there is more information about the
underlying mutational process and hence model parameténg iearlier first sample than the later
second sample. This finding is consistent with a basic featfithe computational approach that
is independent of the parameter values — the variance iretfggH distribution increases over time,
and hence the accuracy in recovering the mean from a fixed ewunftsample points degrades.
We can partially compensate for this by increasing the sarsigk to capture increased variance at
the second time point. Our finding that combining samplemft@o time points further increases
the information, reducing the uncertainty in the paramestimation, provides strong evidence that
the model is capturing time-dependent effects. This efféfateducing uncertainty, is more clearly
seen by comparing the joint posterior probabilities forftret sample, second sample and combined

sample, representative results are given in Figures 7.8 &nd

There is virtually no instability in blood at birth, even inase with the congenital form of the dis-
ease (Wong et al. 1995, Wong & Ashizawa 1997, Martorell 19988), so mean repeat length is
expected to be the inherited repeat length. It is usefulgoalise the expected path of mean repeat

length over time as it passes from the inherited repeat hetigbugh the mean repeat length of
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Figure 7.4:Individual variance to mean ratio trajectories (short solid lines). The short lines
join the variance to mean ratio at time point 1 (left end) ® ¥hariance to mean ratio at time point
2 (right end). There are five individuals with variance to meaios that decrease over time (short
dashed lines). The trajectories of the other 35 individatsadly follow the expected trajectory
under modelMg, (long solid curve).
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Figure 7.5:Residual variance over mean (72 samples)Upper panel: by age when sample was
taken, linear regression fR? = 0.6%, P = 0.5168; and Lower panel: by mean repeat length
when sample was taken, linear regressioifit= 17.75%, P = 2.2782 x 1074

the first time sample and the second time sample, see Figur@sid 7.11 for two representative
individuals. Comparing the expected mean repeat lengthlpged on the first sample, the second
sample and the combined sample, the credible inteb/alto 95" percentile) based on the com-

bined sample is generally narrower than either that basedeofirst or second samples. Generally,
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Figure 7.6:Model parameter posterior probability distributions for r epresentative individual
DMGV4. Upper left panel: contraction rate per repeat unit per yedpper right panel: net
expansion rate per repeat per ydawwer left panel: length parameter (number of repeat units)
andLower right panel: inherited repeat length (number of repeat units): basedsirtifine point
(dashed line), based on second time point (dash dot linefamdbined samples (solid line).
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Figure 7.7:Model parameter posterior probability distributions for r epresentative individual
CRO022. Upper left panel: contraction rate per repeat unit per yedpper right panel: net
expansion rate per repeat per ydawwer left panel: length parameter (number of repeat units)
andLower right panel: inherited repeat length (number of repeat units): basedrsirtifine point
(dashed line), based on second time point (dash dot linef@amiined samples (solid line).

the credible interval for the first sample is narrower thandtedible interval for the second sample.

These results suggest that the prediction for inheritedaej@ngth is more robust when based on
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Figure 7.8: Joint posterior probability distributions for representa tive individual DMGV4.
Upper row: contraction rate per 100 CTG repeat units per year (hord¢@xis) and net expansion
rate per 100 repeat units per year (vertical ax¥igdle row: contraction rate per 100 CTG repeat
units per year (horizontal axis) and length parameter (rerrabrepeat units),.ower row: contrac-
tion rate per 100 CTG repeat units per year (horizontal afig)inherited repeat length (number of
repeat units): based on first time poibeft column), based on second time poiniddle column)
and combined sampleRight column).
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Figure 7.9:Joint posterior probability distributions for representa tive individual CR022. Up-
per row: contraction rate per 100 CTG repeat units per year (hord¢@xis) and net expansion rate
per 100 repeat units per year (vertical axid)ddle row: contraction rate per 100 CTG repeat units
per year (horizontal axis) and length parameter (numbeemdat units)Lower row: contraction
rate per 100 CTG repeat units per year (horizontal axis) anerited repeat length (number of re-
peat units): based on first time poiteft column), based on second time poiiddle column)
and combined sampleRight column).
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two samples rather than one and that the prediction for itduerepeat length is likely to be better

the earlier samples are taken.

Repeat length distributions for individual CR019 time point 2
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Figure 7.10:Expected mean repeat length over time fitted to two samples &m representative
individual CR019. Upper panel: repeat length distribution in first sample at time taken ambat
length distribution in second sample at time taken with megoeat length (light grey)Second
panel: maximum likelihood mean repeat length over time based onhdample with5 — 95"
percentile credible level shaded in greyhird panel: maximum likelihood mean repeat length
over time based on first sample with— 95" percentile credible level shaded in grelyower
panel: maximum likelihood mean repeat length over time based orbawed sample witts — 95"
percentile credible level shaded in grey. The credible bdndthe expected mean repeat length
were computed from the posterior probability distribuicat each time point.

7.3.3 Model parameters estimated from two time points are biger predictors of age

of onset

As well as inherited repeat length, (Morales et al. 2012&tbthat somatic variation (adjusted
for age at sampling and inherited repeat length) also exgptbsome of the variance in age at onset
not already explained by inherited repeat length. Thisltesiggests that somatic instability, along
with inherited repeat length, are modifiers of disease #gv&ased on this finding, we hypothesise

that the model parameters will also explain some of the magan age at onset. We obtained point
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Repeat length distributions for individual CR094
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Figure 7.11:Expected mean repeat length over time fitted to two samples &m representative
individual CR094. Upper panel: repeat length distribution in first sample at time taken akat
length distribution in second sample at time taken with megreat length (light grey)Second
panel: maximum likelihood mean repeat length over time based ohdasiple with5 — 95"
percentile credible level shaded in grephird panel: maximum likelihood mean repeat length
over time based on first sample with— 95" percentile credible level shaded in grelyower
panel: maximum likelihood mean repeat length over time based orbawed sample witty — 95"
percentile credible level shaded in grey.

estimates for the model parameters from the maximum ligelihsolution for the first sample, the
second sample and the combined sample and tested this bgotn all DM1 individuals with
two samples for whom age at onset was available=£ 36) for several parameter combinations
using linear regression analysis, see Table 7.2. The sdsatted on the first time point sample, the
second time point sample and the combined sample were cethpaing the adjustet? statistic
which takes into account the number of parameters and hdoas@aomparison between predictive
models with different numbers of parameters. In all casesatljusted?? statistic is higher for the
combined sample than for the first sample or the second sarGgeerally (for the results where
P < 0.004) the adjustedr? statistic is higher for the first sample than the second sanifihese
results confirm our hypothesis that there is more infornmaitiothe combined example resulting in

better predictors of age of onset.

In terms of which parameters or combination of parametegsbast at predicting age of onset,
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Model parameters Prior ranges
Contraction rate per CTG unit per year 0-0.12

()

Net expansion rate per CTG unit per year 0.01-0.05

(p=4-p)

Length parameter, number of CTG units 0 —250 (or ny if ny is less than 250)
()

Inherited repeat length, number of CTG 50-800

units (np)

Table 7.1:Prior ranges for parameter estimation for analysis with twotime points.

Age at onset versus Sample earlier time point t1 | Sample later time point t2 Combined Sample
N=36
Inherited repeat length

adj R?=25.0% (P=0.0011) |adjR>=14.0% (P=0.0142) |adjR>=34.7% (P=9.3963E-005)

Expansion
adj R*=-2.4% (P=0.6786) |adjR>= 1.9% (P=0.2061) adj R*=14.2%  (P=0.0135)

Contraction
adj R*=-2.4% (P=0.6649) |adjR>= 1.9% (P=0.2053) adj R*=14.1%  (P=0.0138)

Net expansion
adj R?=-1.9% (P=0.5659) |adjR*=-2.0% (P=0.5761) adj R?= 1.9%  (P=0.2040)

Expansion, inherited repeat length
adj R?=28.4% (P=0.0015) |adjR’=11.5% (P=0.0508) adj R*=32.9%  (P=5.2203E-004)

Contraction, inherited repeat
length adj R*=28.8% (P=0.0014) |adjR*=11.4% (P=0.0514) adj R>=33.1%  (P=4.9559E-004)

Expansion, contraction, inherited
repeat length adj R*=29.4% (P=0.0026) |adjR>=18.4% (P=0.0234) adj R*=482%  (P=2.2070E-005)

Net expansion, inherited repeat
length adj R?=28.0% (P=0.0017) |adjR*=20.4% (P=0.0087) adj R?=49.6%  (P=4.7200E-006)

Table 7.2:Comparison of the relationship between age of onset, inhddd repeat length and
mutation rates for myotonic dystrophy type 1. Under three scenarios: 1. when only the first time
point sample was available (column 2), 2. when only the sgi¢iome point was available (column
3) and 3. when both time points were available (column 4).
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inherited repeat length and expansion are inversely @aglwith age at onset whilst contraction
is positively correlated with age of onset. Consequentig af onset is best explained (adjusted
R? = 49.6%, P = 4.72x107%) by a linear model with inherited repeat length and the ngaasion
rate (expansion rate minus contraction rate), see TableUnhd8er this model, age of onset would
be expected to decrease as inherited repeat length insrdasedividuals with the same inherited
repeat length, age of onset would be expected to be lowereinniividual with the lower net
expansion rate than in the individual with the higher netamgion rate. Over the prior parameter
values, inherited repeat length is expected to have moradimn age of onset (between 0 and 40

years) than net expansion rate (between 0 and 25 years) thuateoconsiderable (Figure 7.12).

age at onset

400

200 .
o O net expansion

inherited repeat length

Figure 7.12:The estimated inherited repeat length and the net expansiorate are modifiers of
age of onset.The relationship between inherited repeat length (numb&Td&s repeat units) and
net expansion rate per CTG unit per year and age of onsetsfy@ar= 36). The surface has been
fitted to the data using linear regression analysis (Tallg 7.

Having shown that inherited repeat length and both exparesia contraction are considerations
for predicting age of onset, we tested whether the summatigtit given by the variance-to-mean
ratio at age of sampling, which captures the effect of inbdriepeat length as well as expansion
and contraction, is also a potential indicator of age of bn3ée results were positive (adjusted

R? =55%, P =3.14 x 10713, N = 72).
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7.4 Discussion

We now have second DNA blood samples taken at a later pointi@ for 25 DML1 individuals
from the original cohort of 145 DML1 individuals. We also haairs of DNA blood samples from
15 Scottish DML individuals recruited for a DM1 genetic adion study. All these samples have
been sized using small pool PCR and provide an excellentrappty to investigate repeat length
changes over time within an individual. We compared thesgptes, in terms of their variance-to-
mean ratio taking into account age at sampling, with theimsigsamples. Analysis of the residual
variance-to-mean for these samples suggests that timegerand time point two are consistent
with the previous samples and that our assumption that ttiehparameters are fixed for individ-

uals over time is reasonable.

The model parameters were estimated under three scendriosthen only the first time point
sample was available, 2. when only the second time point waitahle and 3. when both time
points were available. The results showed that the credhidevals for the parameter values are
narrower for scenario 1. than scenario 2. but narrower dgaiscenario 3. These results support
the intuitive notion that there is more information abouwd thodel parameters in samples taken at
earlier time points, when there is less deviation from theeiited repeat length, than in samples
taken at later time points. Two samples tracking repeathedigtribution over time in an individual
provided even more information about the underlying precebhe improved parameter fit over
two time points also provides further validation for the ralsdas a quantitative description of the

underlying biological mechanisms.

We hypothesized that the model parameters inferred frorddkee would explain some of the vari-
ance seen in age of onset not already explained by inhegfszht length. As discussed in Chapter
5, blood is not the tissue where DM1 manifests itself, butauride assumption that levels of insta-
bility in blood may be correlated to levels of instabilityrimuscle and other tissues where DM1 does
manifest itself, the model parameters inferred from bloddADnay still explain age of onset. As
instability is easier to measure in blood than muscle dubdddwer repeat length levels present,
this result would support a prognostic role for blood DNA.r@esults showed that inherited repeat
length, expansion rate and contraction rate, inferred fn@mblood DNA samples were predictive

of age of onset (adjustell? = 49.6%, P = 4.72 x 107°).

Analysis of the relationship between age of onset and theehqmatameters inferred from blood

DNA suggests that differences in the estimated net expamaie in blood could explain, on aver-
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age, up to 25 years difference in age of onset between indilddwith the same inherited repeat
length. This result supports previous findings in DM1 (Mesaét al. 2012) and Huntington disease
(HD) (Swami et al. 2009) that levels of somatic instabilitpdify disease onset and progression.
However, for several reasons, we cannot propose a medharefitbased age of onset model for
DM1 based on blood as we did for HD brain (Chapter 5). We do notkthe the mutation rates
(and the relative importance of expansion and contractioBM1 disease related tissues. However
it is very likely that rates of mutation are correlated bedweells and tissues within an individual
— we have shown this to be the case for blood and buccal celdvih (Chapter 4) and neurons
and glia in HD brain (Chapter 5). The power of the parametafesriied from blood to predict age
of onset also suggests that this may be the case. Howeverlias wark shows (Chapters 4 and 5)
there are disease and cell differences between the propatiexpansion events and contraction
events. In HD brain, we suggested that onset in the frontaéxanay be triggered by the neurons
with longer repeats, the important factor being the exmensate in neurons rather than the net
expansion rate in neurons or glia. It is not known whetheebimsother diseases or tissues is trig-
gered in a similar manner. In DM1 muscle, it is unlikely thaset is triggered by a threshold. Very
large repeats are seen in muscle before onset and so thiedidresould have to be unrealistically
high. It is more likely that onset is dependent on averageatfength and this is supported by
our finding in this chapter that net expansion rather tharmesion explain more of the variance in
age of onset. If mutation rates in tissues directly involirethe DM1 pathology were available,
future work could involve simulation of repeat length distition at age of onset hence providing

an approach to quantify the pathological drivers of disesmsgt and progression.

As discussed in Chapter 1, myotonic dystrophy type 1 is aisystemic disorder characterised
by the presence of myotonia. The observable charactarisfipatients (or phenotype) fall into
four broad clinical forms: mild or late onset disease; étasslult onset; juvenile onset and con-
genital (Harper 1989). Variance in modal length only acesuor between 20 - 40% of the
variance in age of onset (Mladenovic et al. 2006, Perini e1899, Marchini et al. 2000) and,
therefore, is not an accurate predictive tool. The improetnin the predictive power of the es-
timated parameters, inherited repeat length and net ekpansased on the combined samples
(adjustedR? = 49.6%, P = 4.72 x 10~%) compared with those based on the first sample (adjusted
R? = 28.0%, P = 0.0017) or on the second sample (adjustBd = 20.4%, P = 0.0087), along
with narrower credible intervals, suggests that the pararsdased on two samples are more robust
and more useful for potentially providing patients withtbefprognostic information. These esti-

mates are also potential biomarkers for onset and progreasid could be used in a clinical context
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to assess treatment response which, given the variableenafttddM1 and HD, is predicted to be
also highly variable. Accurately assessing treatmentoesp is an important factor when selecting
patients for drug and therapy trials and also when decidow llong the trials should last. These
considerations are emerging as critical to the successugfaind therapy trials (McGoldrick et al.
2006). Biomarkers such as inherited repeat length and rontedtes which modify age of onset

and disease progression can provide trials with a bettés fmsassessing treatment response.

Obtaining two blood samples suitably far apart and therviddally sizing the cells to obtain repeat
length distributions may not be a feasible strategy for postic testing for patients. However, from
a research perspective, this rich data is allowing us tbk and further validate our models and
assess the levels of variation seen in the DM1 or HD populatibhrough model comparison,

we have established the importance of contraction andigheiV variation. We now have a better
understanding of how key summary statistics of the repemsgthedistributions, such as mean and

variation, contribute to the underlying mutational praces
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Figure 7.13:Summary statistic variance-to-mean ratio at age of samplig is a potential indi-
cator of age of onset.The relationship between the variance-to-mean ratio abhgampling and
age of onset (72 samples: first and second samples combihetdal age of onset is indicated by
the size of the circle for each sample, with the largest eimtlicating an age of onset of around 60
years and the smallest circle indicating an age of onsendrbirth. The size of circle correspond-
ing to each age group is shown at the top of each age group. rEdéetive lines and associated
predicted age of onsets are derived from the data using lregeession analysis (Table 7.2).
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7.5 Material and Methods

7.5.1 Project data

The data used in this study comprises a further blood sammie 25 Costa Rican DM1 individuals
originally in the large cohort study (discussed in Chap&asnd 4) and two blood samples taken at
different times from 15 Scottish DM1 individuals recenticruited for the DM1 genome variation
study. Collecting DNA samples from blood and other tisssasnigoing in this longitudinal study.
Access to previously taken diagnostic samples is obtainea the individuals recruited to the
study with informed consent. The study is ethically apptblg relevant local committees. Repeat
lengths in these blood samples were sized using small pdRIl®r Fernando Morales, Dr Anneli

Cooper and others from the Monckton lab.

7.5.2 Modelling approach for two samples taken at differenpoints in time

Likelihood and maximum likelihood calculation

As in previous chapters, we represent the expansion ratgeperthe contraction rate per year and
inherited repeat length by, 1, andng, respectively, and leb,, (¢) denote the probability that a
cell (from either sample) has lengthat timet. We know that the rate of change &%, (¢) with
respect to time is governed by the master equation

dP, (1)
dt

= — (An + fin) P () + An1 Pt () + png1Poya (1) - (7.2)

Given the allele length at time zerog, we may approximate this infinite system of ordinary differ-
ential equations numerically by truncating at a suitablgéavalue of» = N and settingP, (¢) =0

foralln > N + 1.

We use likelihood methods for model fitting and parametamegion. We recall that likelihood is
defined to be the probability that a repeat length has reaitteetbngth observed given the model
and its parameters. For each individual in this study thezenaw two data sampled,; andd;s,
which denote the repeat length for thgth observation taken at timd and the repeat length for

the j2th observation taken at tim&. We fit the model first to each dataset separately and second
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to the combined dataset. The likelihood of observing thgeaof repeat lengths in the first sample,
denotedL, is the product, ovei;;, of the probability of observing each repeat length, deshote
Py, (t1;0), where are the model parameters. Similarly, the likelihood of obisg the range
of repeat lengths in the second sample, dendigdis the product, ovet,;,, of the probability

Py, (t2;0). This gives the likelihoods for data samplés, andd;, respectively,

Ly =[] Py, (t1;6), (7.2)
j1

Ly =[] Py, (t2:6). (7.3)
j2

As the data samples are derived independently of each diiedikelihood of observing both data

samples/, is the product of each likelihood,

L = LiLo. (7.4)

We obtain the maximum value of each likelihodd, ( L, and L) by evaluating over a broad param-
eter space, described in Table 7.1. For statistical argligsivas useful to have point estimates for
the parameters for each individual based on the first sanifesecond sample and the combined

sample. In each case, these were taken to be the maximurhd&eélvalues.

Bayesian parameter estimation

For further statistical analysis, we obtained posteriabpbility distributions for each parameter
and each individual, for each dataset separately and cemply employing the likelihood in a

Bayesian inference framework, see Chapter 4 for furthaildetf this approach. In summary, the
posterior distributions, under the special case of unifpniors, for each dataset separately and

combined,ry, mo andm, respectively, are

m1(0ldj1) o Li(dji0), (7.5)
ma(0]dj2) o< La(djolf), (7.6)

ﬂ(@’djl,djg) X L(djl,djgw). (7.7)



Chapter 8

Conclusions and future directions

We show that it is feasible to develop new mathematical nsoideldynamic DNA and use modern
techniques from statistical inference on the latest degdeecalibrate and compare hypotheses and
gain biological insights. By fitting mathematical modelsextensive somatic mutation datasets
arising from relevant individuals, we identify and quawtifor the first time, important features of
the underlying mutational mechanism. This is the first tila targe-scale populations of dynamic
DNA data have been tackled in a systematic modelling framleaod the results have significant

implications for future work.

Individual differences in mutation rates and levels of sboastability partially explain why indi-
viduals with the same inherited repeat lengths can haveywaeying symptoms and disease onset,
see Chapters 3, 4, 6 and 7. We interpret this variation addatjlgtrans-acting factors, either ge-
netic or environmental in DM1 and HD. Having quantified sal@henotype related traits, a future
direction for this work is to use these traits to identify iemponding genetic factors. The avail-
ability of high-throughput genotyping technologies makpdssible to survey the entire genome
and uncover genetic influences using a genome wide assocétidy (GWAS). An important con-
sideration for the feasibility of a GWAS is the number of widuals required to ensure that the
associated genes are identified. Recent traditional aastest studies, where disease individuals
(case) are compared to non-disease individuals (contral)e required large numbers of individ-
uals (up to 10,000 or more), primarily because, for many demfraits, the effect of genes on
the phenotype is low, less than 1.5 fold increase in risk ddiff et al. 2009). However we would
expect gene variants that impact the observed phenotypmgtain more of the variability of the
trait and consequently have more effect. Hence combiniagtipative traits (QTs) such as somatic
variation with a GWAS study rather than the traditional eesstrol approach should provide more
power to find these genes and increase our understanding ofitterlying mechanism (Potkin et al.

2009). Most GWAS studies are conducted using single-ntidieg@olymorphisms (SNPs) instead
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of the whole genome. Another factor that impacts on powdragtequency of the gene variant in
the population. In summary, the sample size needed to detretated locus with a QT phenotype
depends on the amount of variance explained by the QT andec8NHP allele frequencies. With
conservative estimates for effect size (10%) and SNP dlletpiency (between 10% and 20%), a
sample size of between 500 and 800 should provide the rehj8d® power for a phenotype to be
detected (Potkin et al. 2009, Purcell et al. 2003). Obtginitis number of affected individuals is
clearly feasible as cohorts and patient registries of thesand greater have been recruited for DM1
and HD. An alternative approach would be to choose a subsedrafidate genes, such as genes
relating the the DNA mismatch repair mechanism, rather tharwhole genome. This reduces the
power requirement and hence the sample size, but could ieguieviously unconsidered effects

being missed.

Quantifying the somatic variation phenotype for this sifgroup (500-800 individuals) would be
challenging with existing low throughput methods, but soraet generation sequencing technolo-
gies such as PacBio are claiming to be able to sequence Iemgghs, 3,000 base pairs on average,
than the standard 150 base pairs (lllumina). Taking intoaetflanking regions, we would require
a technology that could accurately handle at least 7,008 jbaiss for DM1 and 500 base pairs for
HD, which although not currently possible, in particular EBM1, will soon be achievable. Alter-
natively, current technologies could be used, in combamatvith our models, to estimate average
frequencies and mutation rates at shorter microsatellitésh are potential proxies for expanded
repeat loci for investigating instability across the gemonthe creation of datasets that combine
gquantitative phenotypes with genome wide data pave the wagnitiltivariate analysis that could

uncover complex gene reactions involved in the somatiailsty.

In Chapter 4, we challenge the widely held assumption thaiasic DNA instability is dominated

by expansion and reveal, surprisingly, that the observedrsion bias is the cumulative effect of
very many expansion and contraction events. There haverigeprevious estimates of how often
the repeat units are inserted in the repeat length nagitvo. Our results suggest that mutational
events happen every other day and that roughly 100 expanai@wh98 contractions give rise to two
overall repeat length gains. This suggests a link with gDINA activities, such as DNA repair

and transcription, rather than DNA replication. This is aarmaple of how computational analysis
can generate provocative hypotheses and drive future iexpetal work. Given the dependency
of instability on repeat length and age, low levels of somistability are expected in individuals
with small inherited repeat lengths, in particular very ggundividuals. Follow-up work could

include looking at samples from these individuals which migllow us to observe small changes
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that could confirm our assumption that changes are typiaaily repeat unit, and that there are

contractions as well as expansions.

Our hypothetical explanation for the repeat length inditghinvolves DNA secondary structures
and inappropriate DNA mismatch repair. However, how oftemrepeat lengths mutate and what
determines the decision to expand or contract are unandvggrestions. A cell system to study
this issue could be devised involving synthesised DNA md&with adopted structures such as
loop-outs and expanded repeats. By exposing these DNAratdssto the DNA repair mechanism,
extracted from cell culture, we could determine the ratehafingein vitro. Given our results, we
would expect that a high percentage of the changes wereactiotts. Such a system could also be

used to assess potential therapies directed at reducitagpilits.

We show in Chapter 3 that the relationship between repegtieand levels of somatic variation is
non-linear and complex. Concerning smaller alleles (lean tL00 repeat units) found in late onset
DML1 individuals and the majority of HD individuals, in Chapts we find statistical support for a
length-specific effect which suppresses mutational ratesng the smaller alleles giving rise to a
distinctive pattern in the repeat length distributions.alnovel application we also show that this
distinctive pattern may help identify individuals whoséeefive repeat length, with regards to so-
matic instability, is less than their actual repeat lengitplausible explanation for this distinction
is that the expanded repeat tract is compromised by intéongoor other unusual features. For
these individuals, we are able to estimate the effectiveaelength of their expanded repeat tracts
and thereby contribute to the on-going discussion abouttfeet of interruptions on phenotype.
The biochemical experiment discussed above could be eatiettdDNA structures containing in-
terruptions and we could thereby consider the effect oédffit types of interruptions on instability.
Some interruptions, such as CGG at thend, appear to reduce instability and haisacting ef-
fects. Other individuals with reduced instability do nopepr to have interruptions but instability
here could be due to mutations in tbis-flanking region or arans-acting effect due to mutations
in genes on other chromosomes. Individuals, such as thégeemtreme phenotypes could form
part of a study, such as exome sequencing, to find the asstgjahes. Recently, exome sequenc-
ing with extreme phenotypes has been successful in idemgifyodifiers of disease (Emond et al.
2012). Enriched frequency of the gene associated traitdrettreme phenotype group improved
the power of the study to find the modifiers in a moderate nurobérdividuals (less than 100).
This type of approach based on in-depth analysis of extrdmaqgiypes would be very applicable
to DM1 and HD.
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DML1 is a multi-systemic disease with even patients from #maes family varying in age of onset,
symptoms and the progression of the disease. Our modeliisatad to blood which, although
not a primary target of the disease, is easily accessiblelamge number of patients. Blood is
also a tissue within which the repeat remains relativellglstaompared with other tissues in which
the main symptoms of the disorder are manifest. AnalysirmpdIDNA thus gives us a good
chance to estimate the progenitor allele length, which istrimaicative of age of onset. Future
studies that collect data from different tissues along wwithre detailed information about disease
progression would in theory allow us to investigate the ulyitey mechanism of instability in
different tissues and also determine stability in othesugs. As complex tissues often display
multi-modal distributions, likely reflecting the preserafevery different cell types, dissecting the
relative contribution of different cell types with diffexfemutational dynamics is challenging. We
approach this for end stage HD brain in Chapter 6 with prargisésults. The very large expansions
observed in most other tissues of DM1 patients pose tedttiedlenges but methods to size these

repeat lengths are currently being investigated.

One of the aims of this work and ongoing work is to improve piaggic information for DM1
affected or at risk individuals. In Chapter 3, we show thaigenitor allele length is the major
modifier of age of onset. To measure progenitor allele lergiturately, a blood sample could
be recorded at birth. However this type of information is tygiically available. Instead we use
a novel computational approach to quantify objectively phegenitor or inherited repeat length.
With blood DNA from one time point we can obtain a useful estienand in Chapter 7 we show
that the availability of two blood samples, from the samavididial taken at different points in time,
improves the estimates for both inherited repeat lengththadates of mutation. The resulting
estimates have very promising predictive power in termsgef @f onset. We also note that the
success of clinical trials depends on setting targets img@f patient response to drugs (McGoldrick
et al. 2006). A better understanding of how an individualsedse is likely to progress therefore
helps to set realistic targets and better evaluate pot¢néeapies. Individuals recruited for clinical
trials are quite likely to have been diagnosed previousti/lance to have diagnostic samples which
could retrospectively be analysed and provide the relewdatmation for response assessment.
Extra samples will not typically be available for individsdeing diagnosed for the first time but
one option would be to take samples from different tissues,elasiest and least intrusive being
blood and buccal. Our work shows that mutation rates cdeeldthin HD individuals between
neurons and glia so, in principle, assuming that this extexmtoss tissues, two samples provide

more information than one about inherited repeat lengthiadigidual specific levels of mutation.



8. CONCLUSIONS 160

We have taken steps towards establishing this principlenap@er 6 where we adapt our instability
model to infer mutation rates within two different types eflén Huntington disease. As we build
up a clearer picture of instability across disease anddigssynergies make it possible to transfer

learnings between datasets, as seen in Chapter 3, whiaiddkie value of the analysis.

In summary, by developing and applying new mathematicalatspave have added value to experi-
mental data and provided novel and important insights iatoatic instability at both the DM1 and
HD loci. These computational studies have generated patwechypotheses for directing exper-
imental research. Our results have important implicatfonguture therapies directed at reducing
somatic variation, which in principle could cure or slow dodisease progression. As well as im-
proved prognostic information for patients and their fagsilour models can also be used to provide

better predictions for therapeutic response within ciihtdals.
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Appendix 1

Representative examples of MATLAB
programs:

1. To calculate the probability that a
cell has repeat length n at time t
under model M,;

2. To calculate the log likelihood.
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o° o° o

returns Pn and T - the probability that a repeat length is length n
at time T given the parameter combination (lam, mu, alpha, nO)
finite limit for age at sampling (maxt) and n (maxn)

function [Pn T]=Pnmat sol (lam, mu, alpha, n0, maxt, maxn)

N=0:maxn;

$Define matrix A where row N is the master equation dPN/dt

A=zeros (length(N), length (N)) ;

%calculate the length-specific effect (RN) for each N
RN= (max (N-alpha, 0) . *max (N-alpha+1,0)) ./max (N,1) ."2;
%1l.calculate diagonal in matrix A
vx=-(lam*RN. *N) - (mu*RN. *N) ;

%calculate the length-specific effect (RNa) for each Na
Na=(N(l:end-1)+1);

RNa= (max (Na-alpha,0) .*max (Na-alpha+1,0)) ./max (Na,1l)."2;
%2 .calculate diagonal above in matrix A

vxa=mu*RNa. *Na;

$calculate the length-specific effect (RNb) for each Nb
Nb=(N(2:end)-1);

RNb= (max (Nb-alpha, 0) . *max (Nb-alpha+1,0)) ./max (Nb,1)."2;
$3.calculate diagonal below in matrix A
vxb=lam*RNb. *Nb;

A=diag (vx)+diag(vxa,l)+diag(vxb,-1);
A=sparse (A) ;

% define the range for age at sampling

tspan=[0:maxt];

%calculate the row position of n0

yO0=zeros (length(N),1);

posn0=n0+1;y0 (posn0)=1;
y0=y0(:);

% set options for solving the differential equations

options=odeset ('Jacobian',@jacobian) ;
options=odeset (options, 'RelTol',1le-3, 'AbsTol',1le-3);

% call ordinary differential equation solver odel5s which returns
% Pn and T given dPN/dt (see function dydt below), tspan, y0 and options
[

T,Pn]=0del5s (@f, tspan,y0,options);
function dydt = f(t,vy)
dydt=A*y;
end

function dfdy

jacobian(t,y)

dfdy=A;

end

end
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o
°
o
°

program to calculate log likelihood over parameter grid for two time
points for 40 DM1 individuals

clear all

oe  oe

parameter grid
set grid search values for contraction (mu)

itl=1:6:121;
Ml=size (itl,2);

o
°
o
o

set grid search values for net expansion (expansion minus contraction)
(phi)

it2=0.1:0.24:5.1;
M2=size (it2,2);

Q

°

set grid search values for length parameter (alpha)

it4=[0:10:150,175:25:250];
Md4=size (it4,2);

[

°

set grid search values for inherited repeat length (n0)

it6=[50:10:150,175:25:8001;
M6=size (1t6,2) ;

o° oo

e oo o°

nmuct=zeros (nct, 1) ;nlamct=zeros (nct, 1) ;nalphact=zeros (nct,1l);nnlOct=zeros (nct,1);

calculate the number of parameter combinations
nct=M1*M2*M4*M6-parameter combinations where nO<alpha

define mu, phi, alpha, nO for each possible parameter combination
initialise nmuct (contraction) nlamct (expansion) nalphct (length
parameter) nnOct (inherited repeat length)

ct=0;
for jbl=1:M1

for jb2=1:M2
for jb4=1:M4
for jb6=1:M6
if i6(jb6)>14 (jb4)
ct=ct+1;
nmuct (ct)=11 (jbl) ;
nlmmct (ct)=12 (jb2) ;
nlamct (ct) =12 (jb2) +il (jbl);
nalphact (ct)=14 (jb4);
nnOct (ct)=16 (jb6) ;
else
end
end
end
end

end

o
°
<5
°

define LP (log likelihood) for each sample (80) and each parameter
combination

LP=-1e32*ones (80,ct) ;

o° o° o

calculate LP for each sample (80) and each parameter combination
lam (expansion), mu (contraction), alpha (length parameter), nO
(inherited repeat length)
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for jbl=l:ct
lam=nlamct (jbl) /100;
mu=nmuct (jbl) /100;
alpha=nalphact (jbl) ;
n0=nnOct (jbl) ;

call Pnmat sol which returns Pn (the probability that a repeat length is
length n at time T given the parameter combination) and a finite limit for

e oo o°

T (74 years) and n (3000 repeat units)

[T Pn]=Pnmat sol (lam, mu, alpha, n0O, 74, 3000);

% Assign very small probability to exceptional parameter combinations that
% return negative Pn values

Pn=max (F, 1e-32);

calculate LP (log likelihood) for each sample (80)
LP = sum log Pn (x,t) where x is a vector of the sample lengths
and t is age at sampling

o° o° o° o°

x and t are returned by calling xptall for each sample in turn
for jn=1:80
[x t]l=xptall(jn);
LP(jn,jbl)=sum(log(Pn((floor(t)+1),x+1)));
end

end

% save definitions and log likelihood
save LPdata nlamct nmuct nlmmct nalphact nnOct LP



Appendix 2

Comparison of simulated cell data with
actual cell data for six DM1 individuals.



Simulations deriving from the parameter estimations

The maximum likelihood approach provided point estimates of the parameter values
which best fit the data. Here we use these parameter estimates (7, 4, « and a and age
at sampling ) to simulate the time dependent distribution under model My, using the
simulation method outlined above, for six DM1 individuals with different ranges of
allele lengths. We then compare the simulated distribution of CTG repeat lengths
(measured in CTG units) at age of sampling to the autoradiographs for each DM1
individual. This provides a visual representation of the model fit.



Figure Al.1

Comparison of simulated cell data (A) with actual cell data (B)

Panel A. A sample computed from the calibrated mathematical model, showing the distribution of CTG repeat units (105 cells) for
DM1 individual SCO132 (aged 18 years when the sample was taken) using parameter estimates (A = 0.94 CTGs per CTG unit per year,
p=0.91 CTGs per CTG unit per year, a =2 CTGs and n, = 514 CTGs and t = 18 years) associated with the maximum likelihood value.

Panel B. Small pool PCR analysis of repeat length variation at the expanded DM1 CTG repeat in the blood DNA of individual SCO132
at age 18 years. The scale on the right shows the length of the fragments in CTG repeats.

A
1284, " e o4 1,284
951! .:..o e 4o ,.° | 951
2 ¢ gL
= S e 32 * o
§ :o .} [ ] :Q. ‘..'.
oo s o0 %0 . — 618
O 618 e o o - *
@] o ¢ H ® % . °
- ¢ : . v 501
L 501} A
g -
c [ ]
284( ] — 284




Figure Al.2

Comparison of simulated cell data (A) with actual cell data (B)

Panel A. A sample computed from the calibrated mathematical model, showing the distribution of CTG repeat units (105 cells) for
DML individual CR69 (aged 14 years when the sample was taken) using parameter estimates (A = 0.27 CTGs per CTG unit per year,
p=0.25 CTGs per CTG unit per year, a = 50 CTGs and n, = 399 CTGs and t = 14 years) associated with the maximum likelihood
value.

Panel B. Small pool PCR analysis of repeat length variation at the expanded DM1 CTG repeat in the blood DNA of individual CR69
at age 14 years. The scale on the right shows the length of the fragments in CTG repeats.
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Figure Al1.3

Comparison of simulated cell data (A) with actual cell data (B)

Panel A. A sample computed from the calibrated mathematical model, showing the distribution of CTGs (105 cells) for DM1
individual SCO107 (aged 43 years when the sample was taken) using parameter estimates (A = 0.24 CTGs per CTG unit per year,
U =0.19 CTGs per CTG unit per year, a = 48 CTGs and n, = 103 CTGs and t = 43 years) associated with the maximum
likelihood value.

Panel B. Small pool PCR analysis of repeat length variation at the expanded DM1 CTG repeat in the blood DNA of individual
SCO107 at age 43 years. The scale on the right shows the length of the fragments in CTG repeats.
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Figure Al.4

Comparison of simulated cell data (A) with actual cell data (B)

Panel A. A sample computed from the calibrated mathematical model, showing the distribution of CTGs (105 cells) for DM1
individual SCO95 (aged 52 years when the sample was taken) using parameter estimates (A = 0.50 CTGs per CTG unit per year,
U =0.49 CTGs per CTG unit per year, a =50 CTGs and n, = 192 CTGs and t = 52 years) associated with the maximum
likelihood value.

Panel B. Small pool PCR analysis of repeat length variation at the expanded DM1 CTG repeat in the blood DNA of individual
SCO95 at age 52 years. The scale on the right shows the length of the fragments in CTG repeats.
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Figure A1.5

Comparison of simulated cell data (A) with actual cell data (B)

Panel A. A sample computed from the calibrated mathematical model, showing the distribution of CTGs (105 cells) for DM1
individual CR94 (aged 16 years when the sample was taken) using parameter estimates (A = 0.29 CTGs per CTG unit per year,
Y =0.25 CTGs per CTG unit per year, a =49 CTGs and n, = 255 CTGs and t = 16 years) associated with the maximum
likelihood value.

Panel B. Small pool PCR analysis of repeat length variation at the expanded DM1 CTG repeat in the blood DNA of individual
CR94 at age 16 years. The scale on the right shows the length of the fragments in CTG repeats.
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Figure Al1.6

Comparison of simulated cell data (A) with actual cell data (B)

Panel A. A sample computed from the calibrated mathematical model, showing the distribution of CTGs (105 cells) for DM1
individual CR118 (aged 65 years when the sample was taken) using parameter estimates (A = 0.014 CTGs per CTG unit per year,
(1 =0.003 CTGs per CTG unit per year, a =45 CTGs and n, = 53 CTGs and t = 65 years) associated with the maximum likelihood
value.

Panel B. Small pool PCR analysis of repeat length variation at the expanded DM1 CTG repeat in the blood DNA of individual
CR118 at age 65 years. The scale on the right shows the length of the fragments in CTG repeats.
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